Sample records for conventional two-dimensional 2d

  1. 3D hybrid profile order technique in a single breath-hold 3D T2-weighted fast spin-echo sequence: Usefulness in diagnosis of small liver lesions.

    PubMed

    Hirata, Kenichiro; Nakaura, Takeshi; Okuaki, Tomoyuki; Tsuda, Noriko; Taguchi, Narumi; Oda, Seitaro; Utsunomiya, Daisuke; Yamashita, Yasuyuki

    2018-01-01

    We compared the efficacy of three-dimensional (3D) isotropic T2-weighted fast spin-echo imaging using a 3D hybrid profile order technique with a single-breath-hold (3D-Hybrid BH) with a two-dimensional (2D) T2-weighted fast spin-echo conventional respiratory-gated (2D-Conventional RG) technique for visualising small liver lesions. This study was approved by our institutional review board. The requirement to obtain written informed consent was waived. Fifty patients with small (≤15mm) hepatocellular carcinomas (HCC) (n=26), or benign cysts (n=24), had undergone hepatic MRI including both 2D-Conventional RG and 3D-Hybrid BH. We calculated the signal-to-noise ratio (SNR) and tumour-to-liver contrast (TLC). The diagnostic performance of the two protocols was analysed. The image acquisition time was 89% shorter with the 3D-Hybrid BH than with 2D-Conventional RG. There was no significant difference in the SNR between the two protocols. The area under the curve (AUC) of the TLC was significantly higher on 3D-Hybrid BH than on 2D-Conventional RG. The 3D-Hybrid BH sequence significantly improved diagnostic performance for small liver lesions with a shorter image acquisition time without sacrificing accuracy. Copyright © 2017. Published by Elsevier B.V.

  2. Performance analysis of three-dimensional-triple-level cell and two-dimensional-multi-level cell NAND flash hybrid solid-state drives

    NASA Astrophysics Data System (ADS)

    Sakaki, Yukiya; Yamada, Tomoaki; Matsui, Chihiro; Yamaga, Yusuke; Takeuchi, Ken

    2018-04-01

    In order to improve performance of solid-state drives (SSDs), hybrid SSDs have been proposed. Hybrid SSDs consist of more than two types of NAND flash memories or NAND flash memories and storage-class memories (SCMs). However, the cost of hybrid SSDs adopting SCMs is more expensive than that of NAND flash only SSDs because of the high bit cost of SCMs. This paper proposes unique hybrid SSDs with two-dimensional (2D) horizontal multi-level cell (MLC)/three-dimensional (3D) vertical triple-level cell (TLC) NAND flash memories to achieve higher cost-performance. The 2D-MLC/3D-TLC hybrid SSD achieves up to 31% higher performance than the conventional 2D-MLC/2D-TLC hybrid SSD. The factors of different performance between the proposed hybrid SSD and the conventional hybrid SSD are analyzed by changing its block size, read/write/erase latencies, and write unit of 3D-TLC NAND flash memory, by means of a transaction-level modeling simulator.

  3. Epi-Two-Dimensional Fluid Flow: A New Topological Paradigm for Dimensionality

    NASA Astrophysics Data System (ADS)

    Yoshida, Z.; Morrison, P. J.

    2017-12-01

    While a variety of fundamental differences are known to separate two-dimensional (2D) and three-dimensional (3D) fluid flows, it is not well understood how they are related. Conventionally, dimensional reduction is justified by an a priori geometrical framework; i.e., 2D flows occur under some geometrical constraint such as shallowness. However, deeper inquiry into 3D flow often finds the presence of local 2D-like structures without such a constraint, where 2D-like behavior may be identified by the integrability of vortex lines or vanishing local helicity. Here we propose a new paradigm of flow structure by introducing an intermediate class, termed epi-two-dimensional flow, and thereby build a topological bridge between 2D and 3D flows. The epi-2D property is local and is preserved in fluid elements obeying ideal (inviscid and barotropic) mechanics; a local epi-2D flow may be regarded as a "particle" carrying a generalized enstrophy as its charge. A finite viscosity may cause "fusion" of two epi-2D particles, generating helicity from their charges giving rise to 3D flow.

  4. On the application of a fast polynomial transform and the Chinese remainder theorem to compute a two-dimensional convolution

    NASA Technical Reports Server (NTRS)

    Truong, T. K.; Lipes, R.; Reed, I. S.; Wu, C.

    1980-01-01

    A fast algorithm is developed to compute two dimensional convolutions of an array of d sub 1 X d sub 2 complex number points, where d sub 2 = 2(M) and d sub 1 = 2(m-r+) for some 1 or = r or = m. This algorithm requires fewer multiplications and about the same number of additions as the conventional fast fourier transform method for computing the two dimensional convolution. It also has the advantage that the operation of transposing the matrix of data can be avoided.

  5. Two-dimensional simple proportional feedback control of a chaotic reaction system

    NASA Astrophysics Data System (ADS)

    Mukherjee, Ankur; Searson, Dominic P.; Willis, Mark J.; Scott, Stephen K.

    2008-04-01

    The simple proportional feedback (SPF) control algorithm may, in principle, be used to attain periodic oscillations in dynamic systems exhibiting low-dimensional chaos. However, if implemented within a discrete control framework with sampling frequency limitations, controller performance may deteriorate. This phenomenon is illustrated using simulations of a chaotic autocatalytic reaction system. A two-dimensional (2D) SPF controller that explicitly takes into account some of the problems caused by limited sampling rates is then derived by introducing suitable modifications to the original SPF method. Using simulations, the performance of the 2D-SPF controller is compared to that of a conventional SPF control law when implemented as a sampled data controller. Two versions of the 2D-SPF controller are described: linear (L2D-SPF) and quadratic (Q2D-SPF). The performance of both the L2D-SPF and Q2D-SPF controllers is shown to be superior to the SPF when controller sampling frequencies are decreased. Furthermore, it is demonstrated that the Q2D-SPF controller provides better fixed point stabilization compared to both the L2D-SPF and the conventional SPF when concentration measurements are corrupted by noise.

  6. [3D Virtual Reality Laparoscopic Simulation in Surgical Education - Results of a Pilot Study].

    PubMed

    Kneist, W; Huber, T; Paschold, M; Lang, H

    2016-06-01

    The use of three-dimensional imaging in laparoscopy is a growing issue and has led to 3D systems in laparoscopic simulation. Studies on box trainers have shown differing results concerning the benefit of 3D imaging. There are currently no studies analysing 3D imaging in virtual reality laparoscopy (VRL). Five surgical fellows, 10 surgical residents and 29 undergraduate medical students performed abstract and procedural tasks on a VRL simulator using conventional 2D and 3D imaging in a randomised order. No significant differences between the two imaging systems were shown for students or medical professionals. Participants who preferred three-dimensional imaging showed significantly better results in 2D as wells as in 3D imaging. First results on three-dimensional imaging on box trainers showed different results. Some studies resulted in an advantage of 3D imaging for laparoscopic novices. This study did not confirm the superiority of 3D imaging over conventional 2D imaging in a VRL simulator. In the present study on 3D imaging on a VRL simulator there was no significant advantage for 3D imaging compared to conventional 2D imaging. Georg Thieme Verlag KG Stuttgart · New York.

  7. Te Monolayer-Driven Spontaneous van der Waals Epitaxy of Two-dimensional Pnictogen Chalcogenide Film on Sapphire.

    PubMed

    Hwang, Jae-Yeol; Kim, Young-Min; Lee, Kyu Hyoung; Ohta, Hiromichi; Kim, Sung Wng

    2017-10-11

    Demands on high-quality layer structured two-dimensional (2D) thin films such as pnictogen chalcogenides and transition metal dichalcogenides are growing due to the findings of exotic physical properties and potentials for device applications. However, the difficulties in controlling epitaxial growth and the unclear understanding of van der Waals epitaxy (vdWE) for a 2D chalcogenide film on a three-dimensional (3D) substrate have been major obstacles for the further advances of 2D materials. Here, we exploit the spontaneous vdWE of a high-quality 2D chalcogenide (Bi 0.5 Sb 1.5 Te 3 ) film by the chalcogen-driven surface reconstruction of a conventional 3D sapphire substrate. It is verified that the in situ formation of a pseudomorphic Te atomic monolayer on the surface of sapphire, which results in a dangling bond-free surface, allows the spontaneous vdWE of 2D chalcogenide film. Since this route uses the natural surface reconstruction of sapphire with chalcogen under vacuum condition, it can be scalable and easily utilized for the developments of various 2D chalcogenide vdWE films through conventional thin-film fabrication technologies.

  8. Forming three-dimensional closed shapes from two-dimensional soft ribbons by controlled buckling

    PubMed Central

    Aoki, Michio

    2018-01-01

    Conventional manufacturing techniques—moulding, machining and casting—exist to produce three-dimensional (3D) shapes. However, these industrial processes are typically geared for mass production and are not directly applicable to residential settings, where inexpensive and versatile tools are desirable. Moreover, those techniques are, in general, not adequate to process soft elastic materials. Here, we introduce a new concept of forming 3D closed hollow shapes from two-dimensional (2D) elastic ribbons by controlled buckling. We numerically and experimentally characterize how the profile and thickness of the ribbon determine its buckled shape. We find a 2D master profile with which various elliptical 3D shapes can be formed. More complex natural and artificial hollow shapes, such as strawberry, hourglass and wheel, can also be achieved via strategic design and pattern engraving on the ribbons. The nonlinear response of the post-buckling regime is rationalized through finite-element analysis, which shows good quantitative agreement with experiments. This robust fabrication should complement conventional techniques and provide a rich arena for future studies on the mechanics and new applications of elastic hollow structures. PMID:29515894

  9. Forming three-dimensional closed shapes from two-dimensional soft ribbons by controlled buckling

    NASA Astrophysics Data System (ADS)

    Aoki, Michio; Juang, Jia-Yang

    2018-02-01

    Conventional manufacturing techniques-moulding, machining and casting-exist to produce three-dimensional (3D) shapes. However, these industrial processes are typically geared for mass production and are not directly applicable to residential settings, where inexpensive and versatile tools are desirable. Moreover, those techniques are, in general, not adequate to process soft elastic materials. Here, we introduce a new concept of forming 3D closed hollow shapes from two-dimensional (2D) elastic ribbons by controlled buckling. We numerically and experimentally characterize how the profile and thickness of the ribbon determine its buckled shape. We find a 2D master profile with which various elliptical 3D shapes can be formed. More complex natural and artificial hollow shapes, such as strawberry, hourglass and wheel, can also be achieved via strategic design and pattern engraving on the ribbons. The nonlinear response of the post-buckling regime is rationalized through finite-element analysis, which shows good quantitative agreement with experiments. This robust fabrication should complement conventional techniques and provide a rich arena for future studies on the mechanics and new applications of elastic hollow structures.

  10. A study to evaluate the reliability of using two-dimensional photographs, three-dimensional images, and stereoscopic projected three-dimensional images for patient assessment.

    PubMed

    Zhu, S; Yang, Y; Khambay, B

    2017-03-01

    Clinicians are accustomed to viewing conventional two-dimensional (2D) photographs and assume that viewing three-dimensional (3D) images is similar. Facial images captured in 3D are not viewed in true 3D; this may alter clinical judgement. The aim of this study was to evaluate the reliability of using conventional photographs, 3D images, and stereoscopic projected 3D images to rate the severity of the deformity in pre-surgical class III patients. Forty adult patients were recruited. Eight raters assessed facial height, symmetry, and profile using the three different viewing media and a 100-mm visual analogue scale (VAS), and appraised the most informative viewing medium. Inter-rater consistency was above good for all three media. Intra-rater reliability was not significantly different for rating facial height using 2D (P=0.704), symmetry using 3D (P=0.056), and profile using projected 3D (P=0.749). Using projected 3D for rating profile and symmetry resulted in significantly lower median VAS scores than either 3D or 2D images (all P<0.05). For 75% of the raters, stereoscopic 3D projection was the preferred method for rating. The reliability of assessing specific characteristics was dependent on the viewing medium. Clinicians should be aware that the visual information provided when viewing 3D images is not the same as when viewing 2D photographs, especially for facial depth, and this may change the clinical impression. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  11. Efficient two-dimensional compressive sensing in MIMO radar

    NASA Astrophysics Data System (ADS)

    Shahbazi, Nafiseh; Abbasfar, Aliazam; Jabbarian-Jahromi, Mohammad

    2017-12-01

    Compressive sensing (CS) has been a way to lower sampling rate leading to data reduction for processing in multiple-input multiple-output (MIMO) radar systems. In this paper, we further reduce the computational complexity of a pulse-Doppler collocated MIMO radar by introducing a two-dimensional (2D) compressive sensing. To do so, we first introduce a new 2D formulation for the compressed received signals and then we propose a new measurement matrix design for our 2D compressive sensing model that is based on minimizing the coherence of sensing matrix using gradient descent algorithm. The simulation results show that our proposed 2D measurement matrix design using gradient decent algorithm (2D-MMDGD) has much lower computational complexity compared to one-dimensional (1D) methods while having better performance in comparison with conventional methods such as Gaussian random measurement matrix.

  12. The Airborne Optical Systems Testbed (AOSTB)

    DTIC Science & Technology

    2017-05-31

    appropriate color to each pixel in and displayed in a two -dimensional array. Another method is to render a 3D model from the data and display the model as if...USA Distribution A: Public Release ALBOTA@LL.MIT.EDU ABSTRACT Over the last two decades MIT Lincoln Laboratory (MITLL) has pioneered the development... two -dimensional (2D) grid of detectors. Rather than measuring intensity, as in a conventional camera, these detectors measure the photon time-of

  13. Two-dimensional vocal tracts with three-dimensional behavior in the numerical generation of vowels.

    PubMed

    Arnela, Marc; Guasch, Oriol

    2014-01-01

    Two-dimensional (2D) numerical simulations of vocal tract acoustics may provide a good balance between the high quality of three-dimensional (3D) finite element approaches and the low computational cost of one-dimensional (1D) techniques. However, 2D models are usually generated by considering the 2D vocal tract as a midsagittal cut of a 3D version, i.e., using the same radius function, wall impedance, glottal flow, and radiation losses as in 3D, which leads to strong discrepancies in the resulting vocal tract transfer functions. In this work, a four step methodology is proposed to match the behavior of 2D simulations with that of 3D vocal tracts with circular cross-sections. First, the 2D vocal tract profile becomes modified to tune the formant locations. Second, the 2D wall impedance is adjusted to fit the formant bandwidths. Third, the 2D glottal flow gets scaled to recover 3D pressure levels. Fourth and last, the 2D radiation model is tuned to match the 3D model following an optimization process. The procedure is tested for vowels /a/, /i/, and /u/ and the obtained results are compared with those of a full 3D simulation, a conventional 2D approach, and a 1D chain matrix model.

  14. Three-dimensional fluorescent microscopy via simultaneous illumination and detection at multiple planes.

    PubMed

    Ma, Qian; Khademhosseinieh, Bahar; Huang, Eric; Qian, Haoliang; Bakowski, Malina A; Troemel, Emily R; Liu, Zhaowei

    2016-08-16

    The conventional optical microscope is an inherently two-dimensional (2D) imaging tool. The objective lens, eyepiece and image sensor are all designed to capture light emitted from a 2D 'object plane'. Existing technologies, such as confocal or light sheet fluorescence microscopy have to utilize mechanical scanning, a time-multiplexing process, to capture a 3D image. In this paper, we present a 3D optical microscopy method based upon simultaneously illuminating and detecting multiple focal planes. This is implemented by adding two diffractive optical elements to modify the illumination and detection optics. We demonstrate that the image quality of this technique is comparable to conventional light sheet fluorescent microscopy with the advantage of the simultaneous imaging of multiple axial planes and reduced number of scans required to image the whole sample volume.

  15. Non-uniformly weighted sampling for faster localized two-dimensional correlated spectroscopy of the brain in vivo

    NASA Astrophysics Data System (ADS)

    Verma, Gaurav; Chawla, Sanjeev; Nagarajan, Rajakumar; Iqbal, Zohaib; Albert Thomas, M.; Poptani, Harish

    2017-04-01

    Two-dimensional localized correlated spectroscopy (2D L-COSY) offers greater spectral dispersion than conventional one-dimensional (1D) MRS techniques, yet long acquisition times and limited post-processing support have slowed its clinical adoption. Improving acquisition efficiency and developing versatile post-processing techniques can bolster the clinical viability of 2D MRS. The purpose of this study was to implement a non-uniformly weighted sampling (NUWS) scheme for faster acquisition of 2D-MRS. A NUWS 2D L-COSY sequence was developed for 7T whole-body MRI. A phantom containing metabolites commonly observed in the brain at physiological concentrations was scanned ten times with both the NUWS scheme of 12:48 duration and a 17:04 constant eight-average sequence using a 32-channel head coil. 2D L-COSY spectra were also acquired from the occipital lobe of four healthy volunteers using both the proposed NUWS and the conventional uniformly-averaged L-COSY sequence. The NUWS 2D L-COSY sequence facilitated 25% shorter acquisition time while maintaining comparable SNR in humans (+0.3%) and phantom studies (+6.0%) compared to uniform averaging. NUWS schemes successfully demonstrated improved efficiency of L-COSY, by facilitating a reduction in scan time without affecting signal quality.

  16. Three-dimensional color Doppler echocardiographic quantification of tricuspid regurgitation orifice area: comparison with conventional two-dimensional measures.

    PubMed

    Chen, Tien-En; Kwon, Susan H; Enriquez-Sarano, Maurice; Wong, Benjamin F; Mankad, Sunil V

    2013-10-01

    Three-dimensional (3D) color Doppler echocardiography (CDE) provides directly measured vena contracta area (VCA). However, a large comprehensive 3D color Doppler echocardiographic study with sufficiently severe tricuspid regurgitation (TR) to verify its value in determining TR severity in comparison with conventional quantitative and semiquantitative two-dimensional (2D) parameters has not been previously conducted. The aim of this study was to examine the utility and feasibility of directly measured VCA by 3D transthoracic CDE, its correlation with 2D echocardiographic measurements of TR, and its ability to determine severe TR. Ninety-two patients with mild or greater TR prospectively underwent 2D and 3D transthoracic echocardiography. Two-dimensional evaluation of TR severity included the ratio of jet area to right atrial area, vena contracta width, and quantification of effective regurgitant orifice area using the flow convergence method. Full-volume breath-hold 3D color data sets of TR were obtained using a real-time 3D echocardiography system. VCA was directly measured by 3D-guided direct planimetry of the color jet. Subgroup analysis included the presence of a pacemaker, eccentricity of the TR jet, ellipticity of the orifice shape, underlying TR mechanism, and baseline rhythm. Three-dimensional VCA correlated well with effective regurgitant orifice area (r = 0.62, P < .0001), moderately with vena contracta width (r = 0.42, P < .0001), and weakly with jet area/right atrial area ratio. Subgroup analysis comparing 3D VCA with 2D effective regurgitant orifice area demonstrated excellent correlation for organic TR (r = 0.86, P < .0001), regular rhythm (r = 0.78, P < .0001), and circular orifice (r = 0.72, P < .0001) but poor correlation in atrial fibrillation rhythm (r = 0.23, P = .0033). Receiver operating characteristic curve analysis for 3D VCA demonstrated good accuracy for severe TR determination. Three-dimensional VCA measurement is feasible and obtainable in the majority of patients with mild or greater TR. Three-dimensional VCA measurement is also feasible in patients with atrial fibrillation but performed poorly even with <20% cycle length variation. Three-dimensional VCA has good cutoff accuracy in determining severe TR. This simple, straightforward 3D color Doppler measurement shows promise as an alternative for the quantification of TR. Copyright © 2013 American Society of Echocardiography. Published by Mosby, Inc. All rights reserved.

  17. Postoperative outcomes of two- and three-dimensional planning in orthognathic surgery: A comparative study.

    PubMed

    Wu, Ting-Yu; Lin, Hsiu-Hsia; Lo, Lun-Jou; Ho, Cheng-Ting

    2017-08-01

    Compared with conventional two-dimensional (2D) planning, three-dimensional (3D) planning in orthognathic surgery yields more accurate anatomical information and enables the precise positioning of maxillary and mandibular segments, particularly for patients with facial asymmetry. Accordingly, surgical outcomes achieved using 3D planning should be superior. This study determined the differences between the 2D and 3D planning techniques by comparing their surgical outcomes. In this retrospective study, patients who underwent surgery following the traditional 2D planning technique were classified into the 2D planning group. Patients in whom the 2D plan was transferred to a 3D system after surgical simulation were classified into the 3D planning group. Surgical outcomes were compared using cephalometric measurements and patient perception of the results. In the 3D planning group, more favorable results were observed in frontal symmetry, change in the angle between the orbital and occlusal lines, frontal ramus inclination, and the distances from the mandibular central incisor and menton to the midsagittal line. No significant differences were observed in the lateral profiles (SNA, SNB, ANB, and angle convexity) of the two groups. Patient satisfaction was favorable in the two groups, but more patients in the 3D planning group reported being very satisfied. The 3D planning technique provided superior overall outcomes. The study findings can be used to augment clinical planning and surgical execution when using a conventional approach. Copyright © 2017 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  18. Three-dimensional imaging technology offers promise in medicine.

    PubMed

    Karako, Kenji; Wu, Qiong; Gao, Jianjun

    2014-04-01

    Medical imaging plays an increasingly important role in the diagnosis and treatment of disease. Currently, medical equipment mainly has two-dimensional (2D) imaging systems. Although this conventional imaging largely satisfies clinical requirements, it cannot depict pathologic changes in 3 dimensions. The development of three-dimensional (3D) imaging technology has encouraged advances in medical imaging. Three-dimensional imaging technology offers doctors much more information on a pathology than 2D imaging, thus significantly improving diagnostic capability and the quality of treatment. Moreover, the combination of 3D imaging with augmented reality significantly improves surgical navigation process. The advantages of 3D imaging technology have made it an important component of technological progress in the field of medical imaging.

  19. Space-based optical image encryption.

    PubMed

    Chen, Wen; Chen, Xudong

    2010-12-20

    In this paper, we propose a new method based on a three-dimensional (3D) space-based strategy for the optical image encryption. The two-dimensional (2D) processing of a plaintext in the conventional optical encryption methods is extended to a 3D space-based processing. Each pixel of the plaintext is considered as one particle in the proposed space-based optical image encryption, and the diffraction of all particles forms an object wave in the phase-shifting digital holography. The effectiveness and advantages of the proposed method are demonstrated by numerical results. The proposed method can provide a new optical encryption strategy instead of the conventional 2D processing, and may open up a new research perspective for the optical image encryption.

  20. Documentation and analysis of traumatic injuries in clinical forensic medicine involving structured light three-dimensional surface scanning versus photography.

    PubMed

    Shamata, Awatif; Thompson, Tim

    2018-05-10

    Non-contact three-dimensional (3D) surface scanning has been applied in forensic medicine and has been shown to mitigate shortcoming of traditional documentation methods. The aim of this paper is to assess the efficiency of structured light 3D surface scanning in recording traumatic injuries of live cases in clinical forensic medicine. The work was conducted in Medico-Legal Centre in Benghazi, Libya. A structured light 3D surface scanner and ordinary digital camera with close-up lens were used to record the injuries and to have 3D and two-dimensional (2D) documents of the same traumas. Two different types of comparison were performed. Firstly, the 3D wound documents were compared to 2D documents based on subjective visual assessment. Additionally, 3D wound measurements were compared to conventional measurements and this was done to determine whether there was a statistical significant difference between them. For this, Friedman test was used. The study established that the 3D wound documents had extra features over the 2D documents. Moreover; the 3D scanning method was able to overcome the main deficiencies of the digital photography. No statistically significant difference was found between the 3D and conventional wound measurements. The Spearman's correlation established strong, positive correlation between the 3D and conventional measurement methods. Although, the 3D surface scanning of the injuries of the live subjects faced some difficulties, the 3D results were appreciated, the validity of 3D measurements based on the structured light 3D scanning was established. Further work will be achieved in forensic pathology to scan open injuries with depth information. Crown Copyright © 2018. Published by Elsevier Ltd. All rights reserved.

  1. Three-dimensional navigation is more accurate than two-dimensional navigation or conventional fluoroscopy for percutaneous sacroiliac screw fixation in the dysmorphic sacrum: a randomized multicenter study.

    PubMed

    Matityahu, Amir; Kahler, David; Krettek, Christian; Stöckle, Ulrich; Grutzner, Paul Alfred; Messmer, Peter; Ljungqvist, Jan; Gebhard, Florian

    2014-12-01

    To evaluate the accuracy of computer-assisted sacral screw fixation compared with conventional techniques in the dysmorphic versus normal sacrum. Review of a previous study database. Database of a multinational study with 9 participating trauma centers. The reviewed group included 130 patients, 72 from the navigated group and 58 from the conventional group. Of these, 109 were in the nondysmorphic group and 21 in the dysmorphic group. Placement of sacroiliac (SI) screws was performed using standard fluoroscopy for the conventional group and BrainLAB navigation software with either 2-dimensional or 3-dimensional (3D) navigation for the navigated group. Accuracy of SI screw placement by 2-dimensional and 3D navigation versus conventional fluoroscopy in dysmorphic and nondysmorphic patients, as evaluated by 6 observers using postoperative computerized tomography imaging at least 1 year after initial surgery. Intraobserver agreement was also evaluated. There were 11.9% (13/109) of patients with misplaced screws in the nondysmorphic group and 28.6% (6/21) of patients with misplaced screws in the dysmorphic group, none of which were in the 3D navigation group. Raw agreement between the 6 observers regarding misplaced screws was 32%. However, the percent overall agreement was 69.0% (kappa = 0.38, P < 0.05). The use of 3D navigation to improve intraoperative imaging for accurate insertion of SI screws is magnified in the dysmorphic proximal sacral segment. We recommend the use of 3D navigation, where available, for insertion of SI screws in patients with normal and dysmorphic proximal sacral segments. Therapeutic level I.

  2. Simplified expressions that incorporate finite pulse effects into coherent two-dimensional optical spectra.

    PubMed

    Do, Thanh Nhut; Gelin, Maxim F; Tan, Howe-Siang

    2017-10-14

    We derive general expressions that incorporate finite pulse envelope effects into a coherent two-dimensional optical spectroscopy (2DOS) technique. These expressions are simpler and less computationally intensive than the conventional triple integral calculations needed to simulate 2DOS spectra. The simplified expressions involving multiplications of arbitrary pulse spectra with 2D spectral response function are shown to be exactly equal to the conventional triple integral calculations of 2DOS spectra if the 2D spectral response functions do not vary with population time. With minor modifications, they are also accurate for 2D spectral response functions with quantum beats and exponential decay during population time. These conditions cover a broad range of experimental 2DOS spectra. For certain analytically defined pulse spectra, we also derived expressions of 2D spectra for arbitrary population time dependent 2DOS spectral response functions. Having simpler and more efficient methods to calculate experimentally relevant 2DOS spectra with finite pulse effect considered will be important in the simulation and understanding of the complex systems routinely being studied by using 2DOS.

  3. Dynamic three-dimensional display of common congenital cardiac defects from reconstruction of two-dimensional echocardiographic images.

    PubMed

    Hsieh, K S; Lin, C C; Liu, W S; Chen, F L

    1996-01-01

    Two-dimensional echocardiography had long been a standard diagnostic modality for congenital heart disease. Further attempts of three-dimensional reconstruction using two-dimensional echocardiographic images to visualize stereotypic structure of cardiac lesions have been successful only recently. So far only very few studies have been done to display three-dimensional anatomy of the heart through two-dimensional image acquisition because such complex procedures were involved. This study introduced a recently developed image acquisition and processing system for dynamic three-dimensional visualization of various congenital cardiac lesions. From December 1994 to April 1995, 35 cases were selected in the Echo Laboratory here from about 3000 Echo examinations completed. Each image was acquired on-line with specially designed high resolution image grazmber with EKG and respiratory gating technique. Off-line image processing using a window-architectured interactive software package includes construction of 2-D ehcocardiographic pixel to 3-D "voxel" with conversion of orthogonal to rotatory axial system, interpolation, extraction of region of interest, segmentation, shading and, finally, 3D rendering. Three-dimensional anatomy of various congenital cardiac defects was shown, including four cases with ventricular septal defects, two cases with atrial septal defects, and two cases with aortic stenosis. Dynamic reconstruction of a "beating heart" is recorded as vedio tape with video interface. The potential application of 3D display of the reconstruction from 2D echocardiographic images for the diagnosis of various congenital heart defects has been shown. The 3D display was able to improve the diagnostic ability of echocardiography, and clear-cut display of the various congenital cardiac defects and vavular stenosis could be demonstrated. Reinforcement of current techniques will expand future application of 3D display of conventional 2D images.

  4. Three dimensional fabrication at small size scales

    PubMed Central

    Leong, Timothy G.; Zarafshar, Aasiyeh M.; Gracias, David H.

    2010-01-01

    Despite the fact that we live in a three-dimensional (3D) world and macroscale engineering is 3D, conventional sub-mm scale engineering is inherently two-dimensional (2D). New fabrication and patterning strategies are needed to enable truly three-dimensionally-engineered structures at small size scales. Here, we review strategies that have been developed over the last two decades that seek to enable such millimeter to nanoscale 3D fabrication and patterning. A focus of this review is the strategy of self-assembly, specifically in a biologically inspired, more deterministic form known as self-folding. Self-folding methods can leverage the strengths of lithography to enable the construction of precisely patterned 3D structures and “smart” components. This self-assembling approach is compared with other 3D fabrication paradigms, and its advantages and disadvantages are discussed. PMID:20349446

  5. Enhanced differentiation of mesenchymal stromal cells by three-dimensional culture and azacitidine

    PubMed Central

    Bae, Yoo-Jin; Kwon, Yong-Rim; Kim, Hye Joung; Lee, Seok

    2017-01-01

    Background Mesenchymal stromal cells (MSCs) are useful for cell therapy because of their potential for multilineage differentiation. However, MSCs that are expanded in traditional two-dimensional (2D) culture systems eventually lose their differentiation abilities. Therefore, we investigated whether azacitidine (AZA) supplementation and three-dimensional culture (3D) could improve the differentiation properties of MSCs. Methods 2D- or 3D-cultured MSCs which were prepared according to the conventional or hanging-drop culture method respectively, were treated with or without AZA (1 µM for 72 h), and their osteogenic and adipogenic differentiation potential were determined and compared. Results AZA treatment did not affect the cell apoptosis or viability in both 2D- and 3D-cultured MSCs. However, compared to conventionally cultured 2D-MSCs, AZA-treated 2D-MSCs showed marginally increased differentiation abilities. In contrast, 3D-MSCs showed significantly increased osteogenic and adipogenic differentiation ability. When 3D culture was performed in the presence of AZA, the osteogenic differentiation ability was further increased, whereas adipogenic differentiation was not affected. Conclusion 3D culture efficiently promoted the multilineage differentiation of MSCs, and in combination with AZA, it could help MSCs to acquire greater osteogenic differentiation ability. This optimized culture method can enhance the therapeutic potential of MSCs. PMID:28401097

  6. High-throughput 3D spheroid culture and drug testing using a 384 hanging drop array.

    PubMed

    Tung, Yi-Chung; Hsiao, Amy Y; Allen, Steven G; Torisawa, Yu-suke; Ho, Mitchell; Takayama, Shuichi

    2011-02-07

    Culture of cells as three-dimensional (3D) aggregates can enhance in vitro tests for basic biological research as well as for therapeutics development. Such 3D culture models, however, are often more complicated, cumbersome, and expensive than two-dimensional (2D) cultures. This paper describes a 384-well format hanging drop culture plate that makes spheroid formation, culture, and subsequent drug testing on the obtained 3D cellular constructs as straightforward to perform and adapt to existing high-throughput screening (HTS) instruments as conventional 2D cultures. Using this platform, we show that drugs with different modes of action produce distinct responses in the physiological 3D cell spheroids compared to conventional 2D cell monolayers. Specifically, the anticancer drug 5-fluorouracil (5-FU) has higher anti-proliferative effects on 2D cultures whereas the hypoxia activated drug commonly referred to as tirapazamine (TPZ) are more effective against 3D cultures. The multiplexed 3D hanging drop culture and testing plate provides an efficient way to obtain biological insights that are often lost in 2D platforms.

  7. Evaluating the effect of three-dimensional visualization on force application and performance time during robotics-assisted mitral valve repair.

    PubMed

    Currie, Maria E; Trejos, Ana Luisa; Rayman, Reiza; Chu, Michael W A; Patel, Rajni; Peters, Terry; Kiaii, Bob B

    2013-01-01

    The purpose of this study was to determine the effect of three-dimensional (3D) binocular, stereoscopic, and two-dimensional (2D) monocular visualization on robotics-assisted mitral valve annuloplasty versus conventional techniques in an ex vivo animal model. In addition, we sought to determine whether these effects were consistent between novices and experts in robotics-assisted cardiac surgery. A cardiac surgery test-bed was constructed to measure forces applied during mitral valve annuloplasty. Sutures were passed through the porcine mitral valve annulus by the participants with different levels of experience in robotics-assisted surgery and tied in place using both robotics-assisted and conventional surgery techniques. The mean time for both the experts and the novices using 3D visualization was significantly less than that required using 2D vision (P < 0.001). However, there was no significant difference in the maximum force applied by the novices to the mitral valve during suturing (P = 0.7) and suture tying (P = 0.6) using either 2D or 3D visualization. The mean time required and forces applied by both the experts and the novices were significantly less using the conventional surgical technique than when using the robotic system with either 2D or 3D vision (P < 0.001). Despite high-quality binocular images, both the experts and the novices applied significantly more force to the cardiac tissue during 3D robotics-assisted mitral valve annuloplasty than during conventional open mitral valve annuloplasty. This finding suggests that 3D visualization does not fully compensate for the absence of haptic feedback in robotics-assisted cardiac surgery.

  8. Human neural stem cell-derived cultures in three-dimensional substrates form spontaneously functional neuronal networks.

    PubMed

    Smith, Imogen; Silveirinha, Vasco; Stein, Jason L; de la Torre-Ubieta, Luis; Farrimond, Jonathan A; Williamson, Elizabeth M; Whalley, Benjamin J

    2017-04-01

    Differentiated human neural stem cells were cultured in an inert three-dimensional (3D) scaffold and, unlike two-dimensional (2D) but otherwise comparable monolayer cultures, formed spontaneously active, functional neuronal networks that responded reproducibly and predictably to conventional pharmacological treatments to reveal functional, glutamatergic synapses. Immunocytochemical and electron microscopy analysis revealed a neuronal and glial population, where markers of neuronal maturity were observed in the former. Oligonucleotide microarray analysis revealed substantial differences in gene expression conferred by culturing in a 3D vs a 2D environment. Notable and numerous differences were seen in genes coding for neuronal function, the extracellular matrix and cytoskeleton. In addition to producing functional networks, differentiated human neural stem cells grown in inert scaffolds offer several significant advantages over conventional 2D monolayers. These advantages include cost savings and improved physiological relevance, which make them better suited for use in the pharmacological and toxicological assays required for development of stem cell-based treatments and the reduction of animal use in medical research. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  9. From Flatland to Spaceland: Higher Dimensional Patterning with Two-Dimensional Materials.

    PubMed

    Chen, Po-Yen; Liu, Muchun; Wang, Zhongying; Hurt, Robert H; Wong, Ian Y

    2017-06-01

    The creation of three-dimensional (3D) structures from two-dimensional (2D) nanomaterial building blocks enables novel chemical, mechanical or physical functionalities that cannot be realized with planar thin films or in bulk materials. Here, we review the use of emerging 2D materials to create complex out-of-plane surface topographies and 3D material architectures. We focus on recent approaches that yield periodic textures or patterns, and present four techniques as case studies: (i) wrinkling and crumpling of planar sheets, (ii) encapsulation by crumpled nanosheet shells, (iii) origami folding and kirigami cutting to create programmed curvature, and (iv) 3D printing of 2D material suspensions. Work to date in this field has primarily used graphene and graphene oxide as the 2D building blocks, and we consider how these unconventional approaches may be extended to alternative 2D materials and their heterostructures. Taken together, these emerging patterning and texturing techniques represent an intriguing alternative to conventional materials synthesis and processing methods, and are expected to contribute to the development of new composites, stretchable electronics, energy storage devices, chemical barriers, and biomaterials. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Three-dimensional (3D)- computed tomography bronchography and angiography combined with 3D-video-assisted thoracic surgery (VATS) versus conventional 2D-VATS anatomic pulmonary segmentectomy for the treatment of non-small cell lung cancer.

    PubMed

    She, Xiao-Wei; Gu, Yun-Bin; Xu, Chun; Li, Chang; Ding, Cheng; Chen, Jun; Zhao, Jun

    2018-02-01

    Compared to the pulmonary lobe, the anatomical structure of the pulmonary segment is relatively complex and prone to variation, thus the risk and difficulty of segmentectomy is increased. We compared three-dimensional computed tomography bronchography and angiography (3D-CTBA) combined with 3D video-assisted thoracic surgery (3D-VATS) to perform segmentectomy to conventional two-dimensional (2D)-VATS for the treatment of non-small cell lung cancer (NSCLC). We retrospectively reviewed the data of randomly selected patients who underwent 3D-CTBA combined with 3D-VATS (3D-CTBA-VATS) or 2D-VATS at the Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University Hospital, from January 2014 to May 2017. The operative duration of 3D group was significantly shorter than the 2D group (P < 0.05). There was no significant difference in the number of dissected lymph nodes between the two groups (P > 0.05). The extent of intraoperative bleeding and postoperative drainage in the 3D group was significantly lower than in the 2D group (P < 0.05). Chest tube duration in the 3D group was shorter than in the 2D group (P < 0.05). Incidences of pulmonary infection, atelectasis, and arrhythmia were not statistically different between the two groups (P > 0.05). However, hemoptysis and pulmonary air leakage (>3d) occurred significantly less frequently in the 3D than in the 2D group (P < 0.05). 3D-CTBA-VATS is a more accurate and smooth technique and leads to reduced intraoperative and postoperative complications. © 2018 The Authors. Thoracic Cancer published by China Lung Oncology Group and John Wiley & Sons Australia, Ltd.

  11. Fabrication of 2D and 3D photonic structures using laser lithography

    NASA Astrophysics Data System (ADS)

    Gaso, P.; Jandura, D.; Pudis, D.

    2016-12-01

    In this paper we demonstrate possibilities of three-dimensional (3D) printing technology based on two photon polymerization. We used three-dimensional dip-in direct-laser-writing (DLW) optical lithography to fabricate 2D and 3D optical structures for optoelectronics and for optical sensing applications. DLW lithography allows us use a non conventional way how to couple light into the waveguide structure. We prepared ring resonator and we investigated its transmission spectral characteristic. We present 3D inverse opal structure from its design to printing and scanning electron microscope (SEM) imaging. Finally, SEM images of some prepared photonic crystal structures were performed.

  12. Vertical versus Lateral Two-Dimensional Heterostructures: On the Topic of Atomically Abrupt p/n-Junctions.

    PubMed

    Zhou, Ruiping; Ostwal, Vaibhav; Appenzeller, Joerg

    2017-08-09

    The key appeal of two-dimensional (2D) materials such as graphene, transition metal dichalcogenides (TMDs), or phosphorene for electronic applications certainly lies in their atomically thin nature that offers opportunities for devices beyond conventional transistors. It is also this property that makes them naturally suited for a type of integration that is not possible with any three-dimensional (3D) material, that is, forming heterostructures by stacking dissimilar 2D materials together. Recently, a number of research groups have reported on the formation of atomically sharp p/n-junctions in various 2D heterostructures that show strong diode-type rectification. In this article, we will show that truly vertical heterostructures do exhibit much smaller rectification ratios and that the reported results on atomically sharp p/n-junctions can be readily understood within the framework of the gate and drain voltage response of Schottky barriers that are involved in the lateral transport.

  13. Two- and three-dimensional accuracy of dental impression materials: effects of storage time and moisture contamination.

    PubMed

    Chandran, Deepa T; Jagger, Daryll C; Jagger, Robert G; Barbour, Michele E

    2010-01-01

    Dental impression materials are used to create an inverse replica of the dental hard and soft tissues, and are used in processes such as the fabrication of crowns and bridges. The accuracy and dimensional stability of impression materials are of paramount importance to the accuracy of fit of the resultant prosthesis. Conventional methods for assessing the dimensional stability of impression materials are two-dimensional (2D), and assess shrinkage or expansion between selected fixed points on the impression. In this study, dimensional changes in four impression materials were assessed using an established 2D and an experimental three-dimensional (3D) technique. The former involved measurement of the distance between reference points on the impression; the latter a contact scanning method for producing a computer map of the impression surface showing localised expansion, contraction and warpage. Dimensional changes were assessed as a function of storage times and moisture contamination comparable to that found in clinical situations. It was evident that dimensional changes observed using the 3D technique were not always apparent using the 2D technique, and that the former offers certain advantages in terms of assessing dimensional accuracy and predictability of impression methods. There are, however, drawbacks associated with 3D techniques such as the more time-consuming nature of the data acquisition and difficulty in statistically analysing the data.

  14. Two-Dimensional Materials for Halide Perovskite-Based Optoelectronic Devices.

    PubMed

    Chen, Shan; Shi, Gaoquan

    2017-06-01

    Halide perovskites have high light absorption coefficients, long charge carrier diffusion lengths, intense photoluminescence, and slow rates of non-radiative charge recombination. Thus, they are attractive photoactive materials for developing high-performance optoelectronic devices. These devices are also cheap and easy to be fabricated. To realize the optimal performances of halide perovskite-based optoelectronic devices (HPODs), perovskite photoactive layers should work effectively with other functional materials such as electrodes, interfacial layers and encapsulating films. Conventional two-dimensional (2D) materials are promising candidates for this purpose because of their unique structures and/or interesting optoelectronic properties. Here, we comprehensively summarize the recent advancements in the applications of conventional 2D materials for halide perovskite-based photodetectors, solar cells and light-emitting diodes. The examples of these 2D materials are graphene and its derivatives, mono- and few-layer transition metal dichalcogenides (TMDs), graphdiyne and metal nanosheets, etc. The research related to 2D nanostructured perovskites and 2D Ruddlesden-Popper perovskites as efficient and stable photoactive layers is also outlined. The syntheses, functions and working mechanisms of relevant 2D materials are introduced, and the challenges to achieving practical applications of HPODs using 2D materials are also discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Assessment of Myocardial Infarct Size by Three-Dimensional and Two-Dimensional Speckle Tracking Echocardiography: A Comparative Study to Single Photon Emission Computed Tomography.

    PubMed

    Wang, Qiushuang; Huang, Dangsheng; Zhang, Liwei; Shen, Dong; Ouyang, Qiaohong; Duan, Zhongxiang; An, Xiuzhi; Zhang, Meiqing; Zhang, Chunhong; Yang, Feifei; Zhi, Guang

    2015-10-01

    To compare three-dimensional (3D) and two-dimensional (2D) speckle tracking echocardiography (STE) techniques in the assessment of left ventricular function and myocardial infarct size (MIS). Thirty-two patients diagnosed with ST elevation myocardial infarction and 18 healthy control patients underwent 2D echocardiography, 3D echocardiography, and single photon emission computed tomography (SPECT). 3D left ventricular global area strain (GAS), 2D and 3D global longitudinal strain (GLS), global radial strain (GRS) as well as global circumferential strain (GCS) were analyzed to correlate with myocardial infarct size detected by SPECT. 2D and 3D left ventricular ejection fraction (LVEF) as well as 2D and 3D wall motion score index (WMSI) also were measured using conventional echocardiography. The 2D-GLS values were significantly higher than that of 3D-GLS, while 2D-GCS and GRS were significantly lower than 3D-GCS and GRS, respectively. However, no significant differences in LVEF and WMSI could be observed between 2D and 3D echocardiography. Myocardial strain indices, LVEF, and WMSI using 2D and 3D echocardiography also had good correlations with MIS as measured by SPECT. ROC curve analysis showed that the 3D and 2D myocardial indices, LVEF, and WMSI could distinguish between small and large MIS, while 2D-GLS had the highest AUC. The 2D and 3D myocardial strain indices correlated well with MIS by SPECT. Among them, the 2D-GLS showed the highest diagnostic value, while 3D-GRS and GCS had better diagnostic value than 2D-GRS and GCS. © 2015, Wiley Periodicals, Inc.

  16. Electrical characterization of two-dimensional materials and their heterostructures

    NASA Astrophysics Data System (ADS)

    Arora, H.; Schönherr, T.; Erbe, A.

    2017-05-01

    Two-dimensional (2D) materials have gained enormous attention in recent years owing to their huge potential in future electronics and optics. On the one hand, conventional 2D materials like graphene, MoS2, h-BN are being intensively studied, on the other hand, search for novel 2D materials is at a rapid pace. In this study, we have investigated electrical properties of 2D nanosheets of ultrathin Indium Selenide (InSe), a member of the III-VI chalcogenides’ family. The InSe layers were prepared via micromechanical cleavage of its bulk crystal and were integrated into a field-effect transistor (FET) device as the transport channel. On characterizing the InSe-based FETs, InSe showed n-type conductance with the mobility of 2.1×10-4 cm2V-1s-1.

  17. Dual-dimensional microscopy: real-time in vivo three-dimensional observation method using high-resolution light-field microscopy and light-field display.

    PubMed

    Kim, Jonghyun; Moon, Seokil; Jeong, Youngmo; Jang, Changwon; Kim, Youngmin; Lee, Byoungho

    2018-06-01

    Here, we present dual-dimensional microscopy that captures both two-dimensional (2-D) and light-field images of an in-vivo sample simultaneously, synthesizes an upsampled light-field image in real time, and visualizes it with a computational light-field display system in real time. Compared with conventional light-field microscopy, the additional 2-D image greatly enhances the lateral resolution at the native object plane up to the diffraction limit and compensates for the image degradation at the native object plane. The whole process from capturing to displaying is done in real time with the parallel computation algorithm, which enables the observation of the sample's three-dimensional (3-D) movement and direct interaction with the in-vivo sample. We demonstrate a real-time 3-D interactive experiment with Caenorhabditis elegans. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  18. Two-dimensional Shear Wave Elastography on Conventional Ultrasound Scanners with Time Aligned Sequential Tracking (TAST) and Comb-push Ultrasound Shear Elastography (CUSE)

    PubMed Central

    Song, Pengfei; Macdonald, Michael C.; Behler, Russell H.; Lanning, Justin D.; Wang, Michael H.; Urban, Matthew W.; Manduca, Armando; Zhao, Heng; Callstrom, Matthew R.; Alizad, Azra; Greenleaf, James F.; Chen, Shigao

    2014-01-01

    Two-dimensional (2D) shear wave elastography presents 2D quantitative shear elasticity maps of tissue, which are clinically useful for both focal lesion detection and diffuse disease diagnosis. Realization of 2D shear wave elastography on conventional ultrasound scanners, however, is challenging due to the low tracking pulse-repetition-frequency (PRF) of these systems. While some clinical and research platforms support software beamforming and plane wave imaging with high PRF, the majority of current clinical ultrasound systems do not have the software beamforming capability, which presents a critical challenge for translating the 2D shear wave elastography technique from laboratory to clinical scanners. To address this challenge, this paper presents a Time Aligned Sequential Tracking (TAST) method for shear wave tracking on conventional ultrasound scanners. TAST takes advantage of the parallel beamforming capability of conventional systems and realizes high PRF shear wave tracking by sequentially firing tracking vectors and aligning shear wave data in the temporal direction. The Comb-push Ultrasound Shear Elastography (CUSE) technique was used to simultaneously produce multiple shear wave sources within the field-of-view (FOV) to enhance shear wave signal-to-noise-ratio (SNR) and facilitate robust reconstructions of 2D elasticity maps. TAST and CUSE were realized on a conventional ultrasound scanner (the General Electric LOGIQ E9). A phantom study showed that the shear wave speed measurements from the LOGIQ E9 were in good agreement to the values measured from other 2D shear wave imaging technologies. An inclusion phantom study showed that the LOGIQ E9 had comparable performance to the Aixplorer (Supersonic Imagine) in terms of bias and precision in measuring different sized inclusions. Finally, in vivo case analysis of a breast with a malignant mass, and a liver from a healthy subject demonstrated the feasibility of using the LOGIQ E9 for in vivo 2D shear wave elastography. These promising results indicate that the proposed technique can enable the implementation of 2D shear wave elastography on conventional ultrasound scanners and potentially facilitate wider clinical applications with shear wave elastography. PMID:25643079

  19. Two-dimensionally grown single-crystal silicon nanosheets with tunable visible-light emissions.

    PubMed

    Kim, Sung Wook; Lee, Jaejun; Sung, Ji Ho; Seo, Dong-jae; Kim, Ilsoo; Jo, Moon-Ho; Kwon, Byoung Wook; Choi, Won Kook; Choi, Heon-Jin

    2014-07-22

    Since the discovery of graphene, growth of two-dimensional (2D) nanomaterials has greatly attracted attention. However, spontaneous growth of atomic two-dimensional (2D) materials is limitedly permitted for several layered-structure crystals, such as graphene, MoS2, and h-BN, and otherwise it is notoriously difficult. Here we report the gas-phase 2D growth of silicon (Si), that is cubic in symmetry, via dendritic growth and an interdendritic filling mechanism and to form Si nanosheets (SiNSs) of 1 to 13 nm in thickness. Thin SiNSs show strong thickness-dependent photoluminescence in visible range including red, green, and blue (RGB) emissions with the associated band gap energies ranging from 1.6 to 3.2 eV; these emission energies were greater than those from Si quantum dots (SiQDs) of the similar sizes. We also demonstrated that electrically driven white, as well as blue, emission in a conventional organic light-emitting diode (OLED) geometry with the SiNS assembly as the active emitting layers. Tunable light emissions in visible range in our observations suggest practical implications for novel 2D Si nanophotonics.

  20. Two- versus three-dimensional imaging in subjects with unerupted maxillary canines.

    PubMed

    Botticelli, Susanna; Verna, Carlalberta; Cattaneo, Paolo M; Heidmann, Jens; Melsen, Birte

    2011-08-01

    The aim of this study was to evaluate whether there is any difference in the diagnostic information provided by conventional two-dimensional (2D) images or by three-dimensional (3D) cone beam computed tomography (CBCT) in subjects with unerupted maxillary canines. Twenty-seven patients (17 females and 10 males, mean age 11.8 years) undergoing orthodontic treatment with 39 impacted or retained maxillary canines were included. For each canine, two different digital image sets were obtained: (1) A 2D image set including a panoramic radiograph, a lateral cephalogram, and the available periapical radiographs with different projections and (2) A 3D image set obtained with CBCT. Both sets of images were submitted, in a single-blind randomized order, to eight dentists. A questionnaire was used to assess the position of the canine, the presence of root resorption, the difficulty of the case, treatment choice options, and the quality of the images. Data analysis was performed using the McNemar-Bowker test for paired data, Kappa statistics, and paired t-tests. The findings demonstrated a difference in the localization of the impacted canines between the two techniques, which can be explained by factors affecting the conventional 2D radiographs such as distortion, magnification, and superimposition of anatomical structures situated in different planes of space. The increased precision in the localization of the canines and the improved estimation of the space conditions in the arch obtained with CBCT resulted in a difference in diagnosis and treatment planning towards a more clinically orientated approach.

  1. Examining the Relationship between 2D Diagrammatic Conventions and Students' Success on Representational Translation Tasks in Organic Chemistry

    ERIC Educational Resources Information Center

    Olimpo, Jeffrey T.; Kumi, Bryna C.; Wroblewski, Richard; Dixon, Bonnie L.

    2015-01-01

    Two-dimensional (2D) diagrams are essential in chemistry for conveying and communicating key knowledge about disciplinary phenomena. While experts are adept at identifying, interpreting, and manipulating these representations, novices often are not. Ongoing research efforts in the field suggest that students' effective use of concrete and virtual…

  2. 3D ultrasound imaging in image-guided intervention.

    PubMed

    Fenster, Aaron; Bax, Jeff; Neshat, Hamid; Cool, Derek; Kakani, Nirmal; Romagnoli, Cesare

    2014-01-01

    Ultrasound imaging is used extensively in diagnosis and image-guidance for interventions of human diseases. However, conventional 2D ultrasound suffers from limitations since it can only provide 2D images of 3-dimensional structures in the body. Thus, measurement of organ size is variable, and guidance of interventions is limited, as the physician is required to mentally reconstruct the 3-dimensional anatomy using 2D views. Over the past 20 years, a number of 3-dimensional ultrasound imaging approaches have been developed. We have developed an approach that is based on a mechanical mechanism to move any conventional ultrasound transducer while 2D images are collected rapidly and reconstructed into a 3D image. In this presentation, 3D ultrasound imaging approaches will be described for use in image-guided interventions.

  3. Electron counting and a large family of two-dimensional semiconductors

    NASA Astrophysics Data System (ADS)

    Miao, Maosheng; Botana, Jorge; Zurek, Eva; Liu, Jingyao; Yang, Wen

    Two-dimensional semiconductors (2DSC) are currently the focus of many studies, thanks to their novel and superior transport properties that may greatly influence future electronic devices. The potential applications of 2DSCs range from low-dimensional electronics, topological insulators and vallytronics all the way to novel photolysis. However, compared with the conventional semiconductors that are comprised of main group elements and cover a large range of band gaps and lattice constants, the choice of 2D materials is very limited. In this work, we propose and demonstrate a large family of 2DSCs, all adopting the same structure and consisting of only main group elements. Using advanced density functional calculations, we demonstrate the attainability of these materials, and show that they cover a large range of lattice constants, band gaps and band edge states, making them good candidate materials for heterojunctions. This family of two dimensional materials may be instrumental in the fabrication of 2DSC devices that may rival the currently employed 3D semiconductors.

  4. Three-dimensional assessment of facial asymmetry: A systematic review.

    PubMed

    Akhil, Gopi; Senthil Kumar, Kullampalayam Palanisamy; Raja, Subramani; Janardhanan, Kumaresan

    2015-08-01

    For patients with facial asymmetry, complete and precise diagnosis, and surgical treatments to correct the underlying cause of the asymmetry are significant. Conventional diagnostic radiographs (submento-vertex projections, posteroanterior radiography) have limitations in asymmetry diagnosis due to two-dimensional assessments of three-dimensional (3D) images. The advent of 3D images has greatly reduced the magnification and projection errors that are common in conventional radiographs making it as a precise diagnostic aid for assessment of facial asymmetry. Thus, this article attempts to review the newly introduced 3D tools in the diagnosis of more complex facial asymmetries.

  5. Two-Dimensional Semiconductor Optoelectronics Based on van der Waals Heterostructures.

    PubMed

    Lee, Jae Yoon; Shin, Jun-Hwan; Lee, Gwan-Hyoung; Lee, Chul-Ho

    2016-10-27

    Two-dimensional (2D) semiconductors such as transition metal dichalcogenides (TMDCs) and black phosphorous have drawn tremendous attention as an emerging optical material due to their unique and remarkable optical properties. In addition, the ability to create the atomically-controlled van der Waals (vdW) heterostructures enables realizing novel optoelectronic devices that are distinct from conventional bulk counterparts. In this short review, we first present the atomic and electronic structures of 2D semiconducting TMDCs and their exceptional optical properties, and further discuss the fabrication and distinctive features of vdW heterostructures assembled from different kinds of 2D materials with various physical properties. We then focus on reviewing the recent progress on the fabrication of 2D semiconductor optoelectronic devices based on vdW heterostructures including photodetectors, solar cells, and light-emitting devices. Finally, we highlight the perspectives and challenges of optoelectronics based on 2D semiconductor heterostructures.

  6. Two-Dimensional Semiconductor Optoelectronics Based on van der Waals Heterostructures

    PubMed Central

    Lee, Jae Yoon; Shin, Jun-Hwan; Lee, Gwan-Hyoung; Lee, Chul-Ho

    2016-01-01

    Two-dimensional (2D) semiconductors such as transition metal dichalcogenides (TMDCs) and black phosphorous have drawn tremendous attention as an emerging optical material due to their unique and remarkable optical properties. In addition, the ability to create the atomically-controlled van der Waals (vdW) heterostructures enables realizing novel optoelectronic devices that are distinct from conventional bulk counterparts. In this short review, we first present the atomic and electronic structures of 2D semiconducting TMDCs and their exceptional optical properties, and further discuss the fabrication and distinctive features of vdW heterostructures assembled from different kinds of 2D materials with various physical properties. We then focus on reviewing the recent progress on the fabrication of 2D semiconductor optoelectronic devices based on vdW heterostructures including photodetectors, solar cells, and light-emitting devices. Finally, we highlight the perspectives and challenges of optoelectronics based on 2D semiconductor heterostructures. PMID:28335321

  7. Defects activated photoluminescence in two-dimensional semiconductors: interplay between bound, charged, and free excitons

    PubMed Central

    Tongay, Sefaattin; Suh, Joonki; Ataca, Can; Fan, Wen; Luce, Alexander; Kang, Jeong Seuk; Liu, Jonathan; Ko, Changhyun; Raghunathanan, Rajamani; Zhou, Jian; Ogletree, Frank; Li, Jingbo; Grossman, Jeffrey C.; Wu, Junqiao

    2013-01-01

    Point defects in semiconductors can trap free charge carriers and localize excitons. The interaction between these defects and charge carriers becomes stronger at reduced dimensionalities, and is expected to greatly influence physical properties of the hosting material. We investigated effects of anion vacancies in monolayer transition metal dichalcogenides as two-dimensional (2D) semiconductors where the vacancies density is controlled by α-particle irradiation or thermal-annealing. We found a new, sub-bandgap emission peak as well as increase in overall photoluminescence intensity as a result of the vacancy generation. Interestingly, these effects are absent when measured in vacuum. We conclude that in opposite to conventional wisdom, optical quality at room temperature cannot be used as criteria to assess crystal quality of the 2D semiconductors. Our results not only shed light on defect and exciton physics of 2D semiconductors, but also offer a new route toward tailoring optical properties of 2D semiconductors by defect engineering. PMID:24029823

  8. Three-dimensional vision enhances task performance independently of the surgical method.

    PubMed

    Wagner, O J; Hagen, M; Kurmann, A; Horgan, S; Candinas, D; Vorburger, S A

    2012-10-01

    Within the next few years, the medical industry will launch increasingly affordable three-dimensional (3D) vision systems for the operating room (OR). This study aimed to evaluate the effect of two-dimensional (2D) and 3D visualization on surgical skills and task performance. In this study, 34 individuals with varying laparoscopic experience (18 inexperienced individuals) performed three tasks to test spatial relationships, grasping and positioning, dexterity, precision, and hand-eye and hand-hand coordination. Each task was performed in 3D using binocular vision for open performance, the Viking 3Di Vision System for laparoscopic performance, and the DaVinci robotic system. The same tasks were repeated in 2D using an eye patch for monocular vision, conventional laparoscopy, and the DaVinci robotic system. Loss of 3D vision significantly increased the perceived difficulty of a task and the time required to perform it, independently of the approach (P < 0.0001-0.02). Simple tasks took 25 % to 30 % longer to complete and more complex tasks took 75 % longer with 2D than with 3D vision. Only the difficult task was performed faster with the robot than with laparoscopy (P = 0.005). In every case, 3D robotic performance was superior to conventional laparoscopy (2D) (P < 0.001-0.015). The more complex the task, the more 3D vision accelerates task completion compared with 2D vision. The gain in task performance is independent of the surgical method.

  9. Pursuing two-dimensional nanomaterials for flexible lithium-ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Bin; Zhang, Ji-Guang; Shen, Guozhen

    2016-02-01

    Stretchable/flexible electronics provide a foundation for various emerging applications that beyond the scope of conventional wafer/circuit board technologies due to their unique features that can satisfy a broad range of applications such as wearable devices. Stretchable electronic and optoelectronics devices require the bendable/wearable rechargeable Li-ion batteries, thus these devices can operate without limitation of external powers. Various two-dimensional (2D) nanomaterials are of great interest in flexible energy storage devices, especially Li-ion batteries. This is because 2D materials exhibit much more exposed surface area supplying abundant Li-insertion channels and shortened paths for fast lithium ion diffusion. Here, we will review themore » recent developments on the flexible Li-ion batteries based on two dimensional nanomaterials. These researches demonstrated advancements in flexible electronics by incorporating various 2D nanomaterials into bendable batteries to achieve high electrochemical performance, excellent mechanical flexibility as well as electrical stability under stretching/bending conditions.« less

  10. Design Two-dimensional Materials with Superb Electronic and Optoelectronic Properties: The case of SiS

    NASA Astrophysics Data System (ADS)

    Wei, Su-Huai; Yang, Ji-Hui; Zhang, Yueyu; Yin, Wan-Jian; Gong, X. G.; Yakobson, Boris I.

    Two-dimensional (2D) semiconductors have many unique electronic and optoelectronic properties that is suitable for novel device applications. Most of the current study are focused on group IV or transition metal chalcogenides. In this study, using atomic transmutation and global optimization methods, we identified two group IV-VI 2D materials, Pma2-SiS and silicene sulfide that can overcome shortcomings encountered in conventional 2D semiconducttord. Pma2-SiS is found to be both chemically, energetically, and thermally stable. Most importantly, Pma2-SiS has unique electronic and optoelectronic properties, including direct bandgaps suitable for solar cells, good mobility for nanoelectronics, good flexibility of property tuning by layer thickness and strain appliance, and good air stability as well. Therefore, Pma2-SiS is expected to be a very promising 2D material in the field of 2D electronics and optoelectronics. Silicene sulfide also shows similar properties. We believe that the designing principles and approaches used to identify these materials have great potential to accelerate future finding of new functional materials within the 2D families.

  11. Investigation on the properties of omnidirectional photonic band gaps in two-dimensional plasma photonic crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Hai-Feng, E-mail: hanlor@163.com; Nanjing Artillery Academy, Nanjing 211132; Liu, Shao-Bin

    2016-01-15

    The properties of omnidirectional photonic band gaps (OBGs) in two-dimensional plasma photonic crystals (2D PPCs) are theoretically investigated by the modified plane wave expansion method. In the simulation, we consider the off-plane incident wave vector. The configuration of 2D PPCs is the triangular lattices filled with the nonmagnetized plasma cylinders in the homogeneous and isotropic dielectric background. The calculated results show that the proposed 2D PPCs possess a flatbands region and the OBGs. Compared with the OBGs in the conventional 2D dielectric-air PCs, it can be obtained more easily and enlarged in the 2D PPCs with a similar structure. Themore » effects of configurational parameters of the PPCs on the OBGs also are studied. The simulated results demonstrate that the locations of OBGs can be tuned easily by manipulating those parameters except for changing plasma collision frequency. The achieved OBGs can be enlarged by optimizations. The OBGs of two novel configurations of PPCs with different cross sections are computed for a comparison. Both configurations have the advantages of obtaining the larger OBGs compared with the conventional configuration, since the symmetry of 2D PPCs is broken by different sizes of periodically inserted plasma cylinders or connected by the embedded plasma cylinders with thin veins. The analysis of the results shows that the bandwidths of OBGs can be tuned by changing geometric and physical parameters of such two PPCs structures. The theoretical results may open a new scope for designing the omnidirectional reflectors or mirrors based on the 2D PPCs.« less

  12. Doping of two-dimensional MoS2 by high energy ion implantation

    NASA Astrophysics Data System (ADS)

    Xu, Kang; Zhao, Yuda; Lin, Ziyuan; Long, Yan; Wang, Yi; Chan, Mansun; Chai, Yang

    2017-12-01

    Two-dimensional (2D) materials have been demonstrated to be promising candidates for next generation electronic circuits. Analogues to conventional Si-based semiconductors, p- and n-doping of 2D materials are essential for building complementary circuits. Controllable and effective doping strategies require large tunability of the doping level and negligible structural damage to ultrathin 2D materials. In this work, we demonstrate a doping method utilizing a conventional high-energy ion-implantation machine. Before the implantation, a Polymethylmethacrylate (PMMA) protective layer is used to decelerate the dopant ions and minimize the structural damage to MoS2, thus aggregating the dopants inside MoS2 flakes. By optimizing the implantation energy and fluence, phosphorus dopants are incorporated into MoS2 flakes. Our Raman and high-resolution transmission electron microscopy (HRTEM) results show that only negligibly structural damage is introduced to the MoS2 lattice during the implantation. P-doping effect by the incorporation of p+ is demonstrated by Photoluminescence (PL) and electrical characterizations. Thin PMMA protection layer leads to large kinetic damage but also a more significant doping effect. Also, MoS2 with large thickness shows less kinetic damage. This doping method makes use of existing infrastructures in the semiconductor industry and can be extended to other 2D materials and dopant species as well.

  13. Cancer Cell Migration in 3D

    NASA Astrophysics Data System (ADS)

    Wirtz, Denis

    2014-03-01

    Two-dimensional (2D) in vitro culture systems have for a number of years provided a controlled and versatile environment for mechanistic studies of cell adhesion, polarization, and migration, three interrelated cell functions critical to cancer metastasis. However, the organization and functions of focal adhesion proteins, protrusion machinery, and microtubule-based polarization in cells embedded in physiologically more relevant 3D extracellular matrices is qualitatively different from their organization and functions on conventional 2D planar substrates. This talk will describe the implications of the dependence of focal adhesion protein-based cell migration on micro-environmental dimensionality (1D vs. 2D vs.. 3D), how cell micromechanics plays a critical role in promoting local cell invasion, and associated validation in mouse models. We will discuss the implications of this work in cancer metastasis.

  14. Two-Dimensional Covalent Organic Frameworks for Carbon Dioxide Capture through Channel-Wall Functionalization

    PubMed Central

    Huang, Ning; Chen, Xiong; Krishna, Rajamani; Jiang, Donglin

    2015-01-01

    Ordered open channels found in two-dimensional covalent organic frameworks (2D COFs) could enable them to adsorb carbon dioxide. However, the frameworks’ dense layer architecture results in low porosity that has thus far restricted their potential for carbon dioxide adsorption. Here we report a strategy for converting a conventional 2D COF into an outstanding platform for carbon dioxide capture through channel-wall functionalization. The dense layer structure enables the dense integration of functional groups on the channel walls, creating a new version of COFs with high capacity, reusability, selectivity, and separation productivity for flue gas. These results suggest that channel-wall functional engineering could be a facile and powerful strategy to develop 2D COFs for high-performance gas storage and separation. PMID:25613010

  15. Computer-Assisted Orthognathic Surgery for Patients with Cleft Lip/Palate: From Traditional Planning to Three-Dimensional Surgical Simulation

    PubMed Central

    Lonic, Daniel; Pai, Betty Chien-Jung; Yamaguchi, Kazuaki; Chortrakarnkij, Peerasak; Lin, Hsiu-Hsia; Lo, Lun-Jou

    2016-01-01

    Background Although conventional two-dimensional (2D) methods for orthognathic surgery planning are still popular, the use of three-dimensional (3D) simulation is steadily increasing. In facial asymmetry cases such as in cleft lip/palate patients, the additional information can dramatically improve planning accuracy and outcome. The purpose of this study is to investigate which parameters are changed most frequently in transferring a traditional 2D plan to 3D simulation, and what planning parameters can be better adjusted by this method. Patients and Methods This prospective study enrolled 30 consecutive patients with cleft lip and/or cleft palate (mean age 18.6±2.9 years, range 15 to 32 years). All patients received two-jaw single-splint orthognathic surgery. 2D orthodontic surgery plans were transferred into a 3D setting. Severe bony collisions in the ramus area after 2D plan transfer were noted. The position of the maxillo-mandibular complex was evaluated and eventually adjusted. Position changes of roll, midline, pitch, yaw, genioplasty and their frequency within the patient group were recorded as an alternation of the initial 2D plan. Patients were divided in groups of no change from the original 2D plan and changes in one, two, three and four of the aforementioned parameters as well as subgroups of unilateral, bilateral cleft lip/palate and isolated cleft palate cases. Postoperative OQLQ scores were obtained for 20 patients who finished orthodontic treatment. Results 83.3% of 2D plans were modified, mostly concerning yaw (63.3%) and midline (36.7%) adjustments. Yaw adjustments had the highest mean values in total and in all subgroups. Severe bony collisions as a result of 2D planning were seen in 46.7% of patients. Possible asymmetry was regularly foreseen and corrected in the 3D simulation. Conclusion Based on our findings, 3D simulation renders important information for accurate planning in complex cleft lip/palate cases involving facial asymmetry that is regularly missed in conventional 2D planning. PMID:27002726

  16. Computer-Assisted Orthognathic Surgery for Patients with Cleft Lip/Palate: From Traditional Planning to Three-Dimensional Surgical Simulation.

    PubMed

    Lonic, Daniel; Pai, Betty Chien-Jung; Yamaguchi, Kazuaki; Chortrakarnkij, Peerasak; Lin, Hsiu-Hsia; Lo, Lun-Jou

    2016-01-01

    Although conventional two-dimensional (2D) methods for orthognathic surgery planning are still popular, the use of three-dimensional (3D) simulation is steadily increasing. In facial asymmetry cases such as in cleft lip/palate patients, the additional information can dramatically improve planning accuracy and outcome. The purpose of this study is to investigate which parameters are changed most frequently in transferring a traditional 2D plan to 3D simulation, and what planning parameters can be better adjusted by this method. This prospective study enrolled 30 consecutive patients with cleft lip and/or cleft palate (mean age 18.6±2.9 years, range 15 to 32 years). All patients received two-jaw single-splint orthognathic surgery. 2D orthodontic surgery plans were transferred into a 3D setting. Severe bony collisions in the ramus area after 2D plan transfer were noted. The position of the maxillo-mandibular complex was evaluated and eventually adjusted. Position changes of roll, midline, pitch, yaw, genioplasty and their frequency within the patient group were recorded as an alternation of the initial 2D plan. Patients were divided in groups of no change from the original 2D plan and changes in one, two, three and four of the aforementioned parameters as well as subgroups of unilateral, bilateral cleft lip/palate and isolated cleft palate cases. Postoperative OQLQ scores were obtained for 20 patients who finished orthodontic treatment. 83.3% of 2D plans were modified, mostly concerning yaw (63.3%) and midline (36.7%) adjustments. Yaw adjustments had the highest mean values in total and in all subgroups. Severe bony collisions as a result of 2D planning were seen in 46.7% of patients. Possible asymmetry was regularly foreseen and corrected in the 3D simulation. Based on our findings, 3D simulation renders important information for accurate planning in complex cleft lip/palate cases involving facial asymmetry that is regularly missed in conventional 2D planning.

  17. The analysis of carbohydrates in milk powder by a new "heart-cutting" two-dimensional liquid chromatography method.

    PubMed

    Ma, Jing; Hou, Xiaofang; Zhang, Bing; Wang, Yunan; He, Langchong

    2014-03-01

    In this study, a new"heart-cutting" two-dimensional liquid chromatography method for the simultaneous determination of carbohydrate contents in milk powder was presented. In this two dimensional liquid chromatography system, a Venusil XBP-C4 analysis column was used in the first dimension ((1)D) as a pre-separation column, a ZORBAX carbohydrates analysis column was used in the second dimension ((2)D) as a final-analysis column. The whole process was completed in less than 35min without a particular sample preparation procedure. The capability of the new two dimensional HPLC method was demonstrated in the determination of carbohydrates in various brands of milk powder samples. A conventional one dimensional chromatography method was also proposed. The two proposed methods were both validated in terms of linearity, limits of detection, accuracy and precision. The comparison between the results obtained with the two methods showed that the new and completely automated two dimensional liquid chromatography method is more suitable for milk powder sample because of its online cleanup effect involved. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  18. Growth and electrical characterization of two-dimensional layered MoS{sub 2}/SiC heterojunctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Edwin W.; Nath, Digbijoy N.; Lee, Choong Hee

    2014-11-17

    The growth and electrical characterization of the heterojunction formed between two-dimensional (2D) layered p-molybdenum disulfide (MoS{sub 2}) and nitrogen-doped 4H silicon carbide (SiC) are reported. The integration of 2D semiconductors with the conventional three-dimensional (3D) substrates could enable semiconductor heterostructures with unprecedented properties. In this work, direct growth of p-type MoS{sub 2} films on SiC was demonstrated using chemical vapor deposition, and the MoS{sub 2} films were found to be high quality based on x-ray diffraction and Raman spectra. The resulting heterojunction was found to display rectification and current-voltage characteristics consistent with a diode for which forward conduction in themore » low-bias region is dominated by multi-step recombination tunneling. Capacitance-voltage measurements were used to determine the built-in voltage for the p-MoS{sub 2}/n-SiC heterojunction diode, and we propose an energy band line up for the heterostructure based on these observations. The demonstration of heterogeneous material integration between MoS{sub 2} and SiC enables a promising new class of 2D/3D heterostructures.« less

  19. Three-dimensional prostate tumor model based on a hyaluronic acid-alginate hydrogel for evaluation of anti-cancer drug efficacy.

    PubMed

    Tang, Yadong; Huang, Boxin; Dong, Yuqin; Wang, Wenlong; Zheng, Xi; Zhou, Wei; Zhang, Kun; Du, Zhiyun

    2017-10-01

    In vitro cell-based assays are widely applied to evaluate anti-cancer drug efficacy. However, the conventional approaches are mostly based on two-dimensional (2D) culture systems, making it difficult to recapitulate the in vivo tumor scenario because of spatial limitations. Here, we develop an in vitro three-dimensional (3D) prostate tumor model based on a hyaluronic acid (HA)-alginate hybrid hydrogel to bridge the gap between in vitro and in vivo anticancer drug evaluations. In situ encapsulation of PCa cells was achieved by mixing HA and alginate aqueous solutions in the presence of cells and then crosslinking with calcium ions. Unlike in 2D culture, cells were found to aggregate into spheroids in a 3D matrix. The expression of epithelial to mesenchyme transition (EMT) biomarkers was found to be largely enhanced, indicating an increased invasion and metastasis potential in the hydrogel matrix. A significant up-regulation of proangiogenic growth factors (IL-8, VEGF) and matrix metalloproteinases (MMPs) was observed in 3D-cultured PCa cells. The results of anti-cancer drug evaluation suggested a higher drug tolerance within the 3D tumor model compared to conventional 2D-cultured cells. Finally, we found that the drug effect within the in vitro 3D cancer model based on HA-alginate matrix exhibited better predictability for in vivo drug efficacy.

  20. Three-dimensional contractile muscle tissue consisting of human skeletal myocyte cell line.

    PubMed

    Shima, Ai; Morimoto, Yuya; Sweeney, H Lee; Takeuchi, Shoji

    2018-06-18

    This paper describes a method to construct three-dimensional (3D) contractile human skeletal muscle tissues from a cell line. The 3D tissue was fabricated as a fiber-based structure and cultured for two weeks under tension by anchoring its both ends. While myotubes from the immortalized human skeletal myocytes used in this study never contracted in the conventional two-dimensional (2D) monolayer culture, myotubes in the 3D tissue showed spontaneous contraction at a high frequency and also reacted to the electrical stimulation. Immunofluorescence revealed that the myotubes in the 3D tissues had sarcomeres and expressed ryanodine receptor (RyR) and sarco/endoplasmic reticulum Ca 2+ -ATPase (SERCA). In addition, intracellular calcium oscillations in the myotubes in the 3D tissue were observed. These results indicated that the 3D culture enabled the myocyte cell line to reach a more highly matured state compared to 2D culture. Since contraction is the most significant feature of skeletal muscle, we believe that our 3D human muscle tissue with the contractile ability would be a useful tool for both basic biology research and drug discovery as one of the muscle-on-chips. Copyright © 2018. Published by Elsevier Inc.

  1. Surgical outcomes of total laparoscopic hysterectomy with 2-dimensional versus 3-dimensional laparoscopic surgical systems.

    PubMed

    Yazawa, Hiroyuki; Takiguchi, Kaoru; Imaizumi, Karin; Wada, Marina; Ito, Fumihiro

    2018-04-17

    Three-dimensional (3D) laparoscopic surgical systems have been developed to account for the lack of depth perception, a known disadvantage of conventional 2-dimensional (2D) laparoscopy. In this study, we retrospectively compared the outcomes of total laparoscopic hysterectomy (TLH) with 3D versus conventional 2D laparoscopy. From November 2014, when we began using a 3D laparoscopic system at our hospital, to December 2015, 47 TLH procedures were performed using a 3D laparoscopic system (3D-TLH). The outcomes of 3D-TLH were compared with the outcomes of TLH using the conventional 2D laparoscopic system (2D-TLH) performed just before the introduction of the 3D system. The 3D-TLH group had a statistically significantly shorter mean operative time than the 2D-TLH group (119±20 vs. 137±20 min), whereas the mean weight of the resected uterus and mean intraoperative blood loss were not statistically different. When we compared the outcomes for 20 cases in each group, using the same energy sealing device in a short period of time, only mean operative time was statistically different between the 3D-TLH and 2D-TLH groups (113±19 vs. 133±21 min). During the observation period, there was one occurrence of postoperative peritonitis in the 2D-TLH group and one occurrence of vaginal cuff dehiscence in each group, which was not statistically different. The surgeon and assistant surgeons did not report any symptoms attributable to the 3D imaging system such as dizziness, eyestrain, nausea, and headache. Therefore, we conclude that the 3D laparoscopic system could be used safely and efficiently for TLH.

  2. From Three-Dimensional Cell Culture to Organs-on-Chips

    PubMed Central

    Huh, Dongeun; Hamilton, Geraldine A.; Ingber, Donald E.

    2014-01-01

    Three-dimensional (3D) cell culture models have recently garnered great attention because they often promote levels of cell differentiation and tissue organization not possible in conventional two-dimensional (2D) culture systems. Here, we review new advances in 3D culture that leverage microfabrication technologies from the microchip industry and microfluidics approaches to create cell culture microenvironments that both support tissue differentiation and recapitulate the tissue-tissue interfaces, spatiotemporal chemical gradients, and mechanical microenvironments of living organs. These ‘organs-on-chips’ permit study of human physiology in an organ-specific context, enable development of novel in vitro disease models, and could potentially serve as replacements for animals used in drug development and toxin testing. PMID:22033488

  3. Secure positioning technique based on the encrypted visible light map

    NASA Astrophysics Data System (ADS)

    Lee, Y. U.; Jung, G.

    2017-01-01

    For overcoming the performance degradation problems of the conventional visible light (VL) positioning system, which are due to the co-channel interference by adjacent light and the irregularity of the VL reception position in the three dimensional (3-D) VL channel, the secure positioning technique based on the two dimensional (2-D) encrypted VL map is proposed, implemented as the prototype for the specific embedded positioning system, and verified by performance tests in this paper. It is shown from the test results that the proposed technique achieves the performance enhancement over 21.7% value better than the conventional one in the real positioning environment, and the well known PN code is the optimal stream encryption key for the good VL positioning.

  4. Interface formation in monolayer graphene-boron nitride heterostructures.

    PubMed

    Sutter, P; Cortes, R; Lahiri, J; Sutter, E

    2012-09-12

    The ability to control the formation of interfaces between different materials has become one of the foundations of modern materials science. With the advent of two-dimensional (2D) crystals, low-dimensional equivalents of conventional interfaces can be envisioned: line boundaries separating different materials integrated in a single 2D sheet. Graphene and hexagonal boron nitride offer an attractive system from which to build such 2D heterostructures. They are isostructural, nearly lattice-matched, and isoelectronic, yet their different band structures promise interesting functional properties arising from their integration. Here, we use a combination of in situ microscopy techniques to study the growth and interface formation of monolayer graphene-boron nitride heterostructures on ruthenium. In a sequential chemical vapor deposition process, boron nitride grows preferentially at the edges of existing monolayer graphene domains, which can be exploited for synthesizing continuous 2D membranes of graphene embedded in boron nitride. High-temperature growth leads to intermixing near the interface, similar to interfacial alloying in conventional heterostructures. Using real-time microscopy, we identify processes that eliminate this intermixing and thus pave the way to graphene-boron nitride heterostructures with atomically sharp interfaces.

  5. Effects of molecular geometry on the properties of compressed diamondoid crystals

    DOE PAGES

    Yang, Fan; Lin, Yu; Baldini, Maria; ...

    2016-11-01

    Diamondoids are an intriguing group of carbon-based nanomaterials, which combine desired properties of inorganic nanomaterials and small hydrocarbon molecules with atomic-level uniformity. In this Letter, we report the first comparative study on the effect of pressure on a series of diamondoid crystals with systematically varying molecular geometries and shapes, including zero-dimensional (0D) adamantane; one-dimensional (1D) diamantane, [121]tetramantane, [123]tetramantane, and [1212]pentamantane; two-dimensional (2D) [12312]hexamantane; and three-dimensional (3D) triamantane and [1(2,3)4]pentamantane. We find the bulk moduli of these diamondoid crystals are strongly dependent on the diamondoids’ molecular geometry with 3D [1(2,3)4]pentamantane being the least compressible and 0D adamantane being the most compressible.more » These diamondoid crystals possess excellent structural rigidity and are able to sustain large volume deformation without structural failure even after repetitive pressure loading cycles. These properties are desirable for constructing cushioning devices. Furthermore, we also demonstrate that lower diamondoids outperform the conventional cushioning materials in both the working pressure range and energy absorption density.« less

  6. Ethanol catalytic optical driven deposition for 1D and 2D materials with ultra-low power threshold of 0 dBm

    NASA Astrophysics Data System (ADS)

    Wang, Hao; Chen, Bohua; Xiao, Xu; Guo, Chaoshi; Zhang, Xiaoyan; Wang, Jun; Jiang, Meng; Wu, Kan; Chen, Jianping

    2018-01-01

    We have demonstrated a generalized optical driven deposition method, ethanol catalytic deposition (ECD) method, which is widely applicable to the deposition of a broad range of one-dimensional (1D) and two-dimensional (2D) materials with common deposition parameters. Using ECD method, deposition of 1D material carbon nanotubes and 2D materials MoS2, MoSe2, WS2 and WSe2 on tapered fiber has been demonstrated with the threshold power as low as 0 dBm. To our knowledge, this is the lowest threshold power ever reported in optical driven deposition, noting that the conventional optical driven deposition has a threshold typically near 15 dBm. It means ECD method can significantly reduce the power requirement and simplify the setup of the optical driven deposition as well as its wide applicability to different materials, which benefits the research on optical nonlinearity and ultrafast photonics of 1D and 2D materials.

  7. An evaluation of three experimental processes for two-dimensional transonic tests

    NASA Technical Reports Server (NTRS)

    Zuppardi, Gennaro

    1989-01-01

    The aerodynamic measurements in conventional wind tunnels usually suffer from the interference effects of the sting supporting the model and the test section walls. These effects are particularly severe in the transonic regime. Sting interference effects can be overcome through the Magnetic Suspension technique. Wall effects can be alleviated by: testing airfoils in conventional, ventilated tunnels at relatively small model to tunnel size ratios; treatment of the tunnel wall boundary layers; or by utilization of the Adaptive Wall Test Section (AWTS) concept. The operating capabilities and results from two of the foremost two-dimensional, transonic, AWTS facilities in existence are assessed. These facilities are the NASA 0.3-Meter Transonic Cryogenic Tunnel and the ONERA T-2 facility located in Toulouse, France. In addition, the results derived from the well known conventional facility, the NAE 5 ft x 5 ft Canadian wind tunnel will be assessed. CAST10/D0A2 Airfoil results will be used in all of the evaluations.

  8. Contrast-Enhanced Magnetic Resonance Cholangiography: Practical Tips and Clinical Indications for Biliary Disease Management.

    PubMed

    Palmucci, Stefano; Roccasalva, Federica; Piccoli, Marina; Fuccio Sanzà, Giovanni; Foti, Pietro Valerio; Ragozzino, Alfonso; Milone, Pietro; Ettorre, Giovanni Carlo

    2017-01-01

    Since its introduction, MRCP has been improved over the years due to the introduction of several technical advances and innovations. It consists of a noninvasive method for biliary tree representation, based on heavily T2-weighted images. Conventionally, its protocol includes two-dimensional single-shot fast spin-echo images, acquired with thin sections or with multiple thick slabs. In recent years, three-dimensional T2-weighted fast-recovery fast spin-echo images have been added to the conventional protocol, increasing the possibility of biliary anatomy demonstration and leading to a significant benefit over conventional 2D imaging. A significant innovation has been reached with the introduction of hepatobiliary contrasts, represented by gadoxetic acid and gadobenate dimeglumine: they are excreted into the bile canaliculi, allowing the opacification of the biliary tree. Recently, 3D interpolated T1-weighted spoiled gradient echo images have been proposed for the evaluation of the biliary tree, obtaining images after hepatobiliary contrast agent administration. Thus, the acquisition of these excretory phases improves the diagnostic capability of conventional MRCP-based on T2 acquisitions. In this paper, technical features of contrast-enhanced magnetic resonance cholangiography are briefly discussed; main diagnostic tips of hepatobiliary phase are showed, emphasizing the benefit of enhanced cholangiography in comparison with conventional MRCP.

  9. Two-dimensional wavelet analysis based classification of gas chromatogram differential mobility spectrometry signals.

    PubMed

    Zhao, Weixiang; Sankaran, Shankar; Ibáñez, Ana M; Dandekar, Abhaya M; Davis, Cristina E

    2009-08-04

    This study introduces two-dimensional (2-D) wavelet analysis to the classification of gas chromatogram differential mobility spectrometry (GC/DMS) data which are composed of retention time, compensation voltage, and corresponding intensities. One reported method to process such large data sets is to convert 2-D signals to 1-D signals by summing intensities either across retention time or compensation voltage, but it can lose important signal information in one data dimension. A 2-D wavelet analysis approach keeps the 2-D structure of original signals, while significantly reducing data size. We applied this feature extraction method to 2-D GC/DMS signals measured from control and disordered fruit and then employed two typical classification algorithms to testify the effects of the resultant features on chemical pattern recognition. Yielding a 93.3% accuracy of separating data from control and disordered fruit samples, 2-D wavelet analysis not only proves its feasibility to extract feature from original 2-D signals but also shows its superiority over the conventional feature extraction methods including converting 2-D to 1-D and selecting distinguishable pixels from training set. Furthermore, this process does not require coupling with specific pattern recognition methods, which may help ensure wide applications of this method to 2-D spectrometry data.

  10. Probing dynamics and mechanism of exchange process of quaternary ammonium dimeric surfactants, 14-s-14, in the presence of conventional surfactants.

    PubMed

    Liu, Jun; Jiang, Yan; Chen, Hong; Mao, Shi Zhen; Du, You Ru; Liu, Mai Li

    2012-12-27

    In this Article, we investigated effects of different types of conventional surfactants on exchange dynamics of quaternary ammonium dimeric surfactants, with chemical formula C(14)H(29)N(+)(CH(3))(2)- (CH(2))(s)-N(+)(CH(3))(2)C(14)H(29)·2Br(-), or 14-s-14 for short. Two nonionic surfactants, TritonX-100 (TX-100) and polyethylene glycol (23) laurylether (Brij-35), and one cationic surfactant, n-tetradecyltrimethyl ammonium bromide (TTAB), and one ionic surfactant, sodium dodecyl sulfate (SDS) were chosen as typical conventional surfactants. Exchange rates of 14-s-14 (s = 2, 3, and 4) between the micelle form and monomer in solution were detected by two NMR methods: one-dimensional (1D) line shape analysis and two-dimensional (2D) exchange spectroscopy (EXSY). Results show that the nonionic surfactants (TX-100 and Brij-35), the cationic surfactant (TTAB), and the ionic surfactant (SDS) respectively accelerated, barely influenced, and slowed the exchange rate of 14-s-14. The effect mechanism was investigated by the self-diffusion experiment, relaxation time measurements (T(2)/T(1)), the fluorescence experiment (I(1)/I(3)) and observed chemical shift variations. Results reveal that, nonionic conventional surfactants (TX-100 and Brij-35) loosened the molecule arrangement and decreased hydrophobic interactions in the micelle, and thus accelerated the exchange rate of 14-s-14. The cationic conventional surfactant (TTAB) barely changed the molecule arrangement and thus barely influenced the exchange rate of 14-s-14. The ionic conventional surfactant (SDS) introduced the electrostatic attraction effect, tightened the molecule arrangement, and increased hydrophobic interactions in the micelle, and thus slowed down the exchange rate of 14-s-14. Additionally, the two-step exchange mechanism of 14-s-14 in the mixed solution was revealed through interesting variation tendencies of exchange rates of 14-s-14.

  11. Supercomputer algorithms for efficient linear octree encoding of three-dimensional brain images.

    PubMed

    Berger, S B; Reis, D J

    1995-02-01

    We designed and implemented algorithms for three-dimensional (3-D) reconstruction of brain images from serial sections using two important supercomputer architectures, vector and parallel. These architectures were represented by the Cray YMP and Connection Machine CM-2, respectively. The programs operated on linear octree representations of the brain data sets, and achieved 500-800 times acceleration when compared with a conventional laboratory workstation. As the need for higher resolution data sets increases, supercomputer algorithms may offer a means of performing 3-D reconstruction well above current experimental limits.

  12. Comparison of three-dimensional vs. conventional radiotherapy in saving optic tract in paranasal sinus tumors.

    PubMed

    Kamian, S; Kazemian, A; Esfahani, M; Mohammadi, E; Aghili, M

    2010-01-01

    To assess the possibility of delivering a homogeneous irradiation with respect to maximal tolerated dose to the optic pathway for paranasal sinus (PNS) tumors. Treatment planning with conformal three-dimensional (3D) and conventional two-dimensional (2D) was done on CT scans of 20 patients who had early or advanced PNS tumors. Four cases had been previously irradiated. Dose-volume histograms (DVH) for the planning target volume (PTV) and the visual pathway including globes, chiasma and optic nerves were compared between the 2 treatment plannings. The area under curve (AUC) in the DVH of the globes on the same side and contralateral side of tumor involvement was significantly higher in 2D planning (p <0.05), which caused higher integral dose to both globes. Also, the AUC in the DVH of chiasma was higher in 2D treatment planning (p=0.002). The integral dose to the contralateral optic nerve was significantly lower with 3D planning (p=0.007), but there was no significant difference for the optic nerve which was on the same side of tumor involvement (p >0.05). The AUC in the DVH of PTV was not significant (201.1 + or - 16.23 mm(3) in 2D planning vs. 201.15 + or - 15.09 mm(3) in 3D planning). The volume of PTV which received 90% of the prescribed dose was 96.9 + or - 4.41 cm(3) in 2D planning and 97.2 + or - 2.61 cm(3) in 3D planning (p >0.05). 3D conformal radiotherapy (RT) for PNS tumors enables the delivery of radiation to the tumor with respect to critical organs with a lower toxicity to the optic pathway.

  13. Operation mode switchable charge-trap memory based on few-layer MoS2

    NASA Astrophysics Data System (ADS)

    Hou, Xiang; Yan, Xiao; Liu, Chunsen; Ding, Shijin; Zhang, David Wei; Zhou, Peng

    2018-03-01

    Ultrathin layered two-dimensional (2D) semiconductors like MoS2 and WSe2 have received a lot of attention because of their excellent electrical properties and potential applications in electronic devices. We demonstrate a charge-trap memory with two different tunable operation modes based on a few-layer MoS2 channel and an Al2O3/HfO2/Al2O3 charge storage stack. Our device shows excellent memory properties under the traditional three-terminal operation mode. More importantly, unlike conventional charge-trap devices, this device can also realize the memory performance with just two terminals (drain and source) because of the unique atomic crystal electrical characteristics. Under the two-terminal operation mode, the erase/program current ratio can reach up to 104 with a stable retention property. Our study indicates that the conventional charge-trap memory cell can also realize the memory performance without the gate terminal based on novel two dimensional materials, which is meaningful for low power consumption and high integration density applications.

  14. Development of a digital impression procedure using photogrammetry for complete denture fabrication.

    PubMed

    Matsuda, Takashi; Goto, Takaharu; Kurahashi, Kosuke; Kashiwabara, Toshiya; Ichikawa, Tetsuo

    We developed an innovative procedure for digitizing maxillary edentulous residual ridges with a photogrammetric system capable of estimating three-dimensional (3D) digital forms from multiple two-dimensional (2D) digital images. The aim of this study was to validate the effectiveness of the photogrammetric system. Impressions of the maxillary residual ridges of five edentulous patients were taken with four kinds of procedures: three conventional impression procedures and the photogrammetric system. Plaster models were fabricated from conventional impressions and digitized with a 3D scanner. Two 3D forms out of four forms were superimposed with 3D inspection software, and differences were evaluated using a least squares best fit algorithm. The in vitro experiment suggested that better imaging conditions were in the horizontal range of ± 15 degrees and at a vertical angle of 45 degrees. The mean difference between the photogrammetric image (Form A) and the image taken from conventional preliminarily impression (Form C) was 0.52 ± 0.22 mm. The mean difference between the image taken of final impression through a special tray (Form B) and Form C was 0.26 ± 0.06 mm. The mean difference between the image taken from conventional final impression (Form D) and Form C was 0.25 ± 0.07 mm. The difference between Forms A and C was significantly larger than the differences between Forms B and C and between Forms D and C. The results of this study suggest that obtaining digital impressions of edentulous residual ridges using a photogrammetric system is feasible and available for clinical use.

  15. Evaluation of four-dimensional nonbinary LDPC-coded modulation for next-generation long-haul optical transport networks.

    PubMed

    Zhang, Yequn; Arabaci, Murat; Djordjevic, Ivan B

    2012-04-09

    Leveraging the advanced coherent optical communication technologies, this paper explores the feasibility of using four-dimensional (4D) nonbinary LDPC-coded modulation (4D-NB-LDPC-CM) schemes for long-haul transmission in future optical transport networks. In contrast to our previous works on 4D-NB-LDPC-CM which considered amplified spontaneous emission (ASE) noise as the dominant impairment, this paper undertakes transmission in a more realistic optical fiber transmission environment, taking into account impairments due to dispersion effects, nonlinear phase noise, Kerr nonlinearities, and stimulated Raman scattering in addition to ASE noise. We first reveal the advantages of using 4D modulation formats in LDPC-coded modulation instead of conventional two-dimensional (2D) modulation formats used with polarization-division multiplexing (PDM). Then we demonstrate that 4D LDPC-coded modulation schemes with nonbinary LDPC component codes significantly outperform not only their conventional PDM-2D counterparts but also the corresponding 4D bit-interleaved LDPC-coded modulation (4D-BI-LDPC-CM) schemes, which employ binary LDPC codes as component codes. We also show that the transmission reach improvement offered by the 4D-NB-LDPC-CM over 4D-BI-LDPC-CM increases as the underlying constellation size and hence the spectral efficiency of transmission increases. Our results suggest that 4D-NB-LDPC-CM can be an excellent candidate for long-haul transmission in next-generation optical networks.

  16. Bioprinting technologies for disease modeling.

    PubMed

    Memic, Adnan; Navaei, Ali; Mirani, Bahram; Cordova, Julio Alvin Vacacela; Aldhahri, Musab; Dolatshahi-Pirouz, Alireza; Akbari, Mohsen; Nikkhah, Mehdi

    2017-09-01

    There is a great need for the development of biomimetic human tissue models that allow elucidation of the pathophysiological conditions involved in disease initiation and progression. Conventional two-dimensional (2D) in vitro assays and animal models have been unable to fully recapitulate the critical characteristics of human physiology. Alternatively, three-dimensional (3D) tissue models are often developed in a low-throughput manner and lack crucial native-like architecture. The recent emergence of bioprinting technologies has enabled creating 3D tissue models that address the critical challenges of conventional in vitro assays through the development of custom bioinks and patient derived cells coupled with well-defined arrangements of biomaterials. Here, we provide an overview on the technological aspects of 3D bioprinting technique and discuss how the development of bioprinted tissue models have propelled our understanding of diseases' characteristics (i.e. initiation and progression). The future perspectives on the use of bioprinted 3D tissue models for drug discovery application are also highlighted.

  17. An Air-Liquid Interface Culture System for 3D Organoid Culture of Diverse Primary Gastrointestinal Tissues.

    PubMed

    Li, Xingnan; Ootani, Akifumi; Kuo, Calvin

    2016-01-01

    Conventional in vitro analysis of gastrointestinal epithelium usually relies on two-dimensional (2D) culture of epithelial cell lines as monolayer on impermeable surfaces. However, the lack of context of differentiation and tissue architecture in 2D culture can hinder the faithful recapitulation of the phenotypic and morphological characteristics of native epithelium. Here, we describe a robust long-term three-dimensional (3D) culture methodology for gastrointestinal culture, which incorporates both epithelial and mesenchymal/stromal components into a collagen-based air-liquid interface 3D culture system. This system allows vigorously expansion of primary gastrointestinal epithelium for over 60 days as organoids with both proliferation and multilineage differentiation, indicating successful long-term intestinal culture within a microenvironment accurately recapitulating the stem cell niche.

  18. Feasibility of Obtaining Quantitative 3-Dimensional Information Using Conventional Endoscope: A Pilot Study

    PubMed Central

    Hyun, Jong Jin; Keum, Bora; Seo, Yeon Seok; Kim, Yong Sik; Jeen, Yoon Tae; Lee, Hong Sik; Um, Soon Ho; Kim, Chang Duck; Ryu, Ho Sang; Lim, Jong-Wook; Woo, Dong-Gi; Kim, Young-Joong; Lim, Myo-Taeg

    2012-01-01

    Background/Aims Three-dimensional (3D) imaging is gaining popularity and has been partly adopted in laparoscopic surgery or robotic surgery but has not been applied to gastrointestinal endoscopy. As a first step, we conducted an experiment to evaluate whether images obtained by conventional gastrointestinal endoscopy could be used to acquire quantitative 3D information. Methods Two endoscopes (GIF-H260) were used in a Borrmann type I tumor model made of clay. The endoscopes were calibrated by correcting the barrel distortion and perspective distortion. Obtained images were converted to gray-level image, and the characteristics of the images were obtained by edge detection. Finally, data on 3D parameters were measured by using epipolar geometry, two view geometry, and pinhole camera model. Results The focal length (f) of endoscope at 30 mm was 258.49 pixels. Two endoscopes were fixed at predetermined distance, 12 mm (d12). After matching and calculating disparity (v2-v1), which was 106 pixels, the calculated length between the camera and object (L) was 29.26 mm. The height of the object projected onto the image (h) was then applied to the pinhole camera model, and the result of H (height and width) was 38.21 mm and 41.72 mm, respectively. Measurements were conducted from 2 different locations. The measurement errors ranged from 2.98% to 7.00% with the current Borrmann type I tumor model. Conclusions It was feasible to obtain parameters necessary for 3D analysis and to apply the data to epipolar geometry with conventional gastrointestinal endoscope to calculate the size of an object. PMID:22977798

  19. Modeling Semantic Emotion Space Using a 3D Hypercube-Projection: An Innovative Analytical Approach for the Psychology of Emotions

    PubMed Central

    Trnka, Radek; Lačev, Alek; Balcar, Karel; Kuška, Martin; Tavel, Peter

    2016-01-01

    The widely accepted two-dimensional circumplex model of emotions posits that most instances of human emotional experience can be understood within the two general dimensions of valence and activation. Currently, this model is facing some criticism, because complex emotions in particular are hard to define within only these two general dimensions. The present theory-driven study introduces an innovative analytical approach working in a way other than the conventional, two-dimensional paradigm. The main goal was to map and project semantic emotion space in terms of mutual positions of various emotion prototypical categories. Participants (N = 187; 54.5% females) judged 16 discrete emotions in terms of valence, intensity, controllability and utility. The results revealed that these four dimensional input measures were uncorrelated. This implies that valence, intensity, controllability and utility represented clearly different qualities of discrete emotions in the judgments of the participants. Based on this data, we constructed a 3D hypercube-projection and compared it with various two-dimensional projections. This contrasting enabled us to detect several sources of bias when working with the traditional, two-dimensional analytical approach. Contrasting two-dimensional and three-dimensional projections revealed that the 2D models provided biased insights about how emotions are conceptually related to one another along multiple dimensions. The results of the present study point out the reductionist nature of the two-dimensional paradigm in the psychological theory of emotions and challenge the widely accepted circumplex model. PMID:27148130

  20. Geological mapping goes 3-D in response to societal needs

    USGS Publications Warehouse

    Thorleifson, H.; Berg, R.C.; Russell, H.A.J.

    2010-01-01

    The transition to 3-D mapping has been made possible by technological advances in digital cartography, GIS, data storage, analysis, and visualization. Despite various challenges, technological advancements facilitated a gradual transition from 2-D maps to 2.5-D draped maps to 3-D geological mapping, supported by digital spatial and relational databases that can be interrogated horizontally or vertically and viewed interactively. Challenges associated with data collection, human resources, and information management are daunting due to their resource and training requirements. The exchange of strategies at the workshops has highlighted the use of basin analysis to develop a process-based predictive knowledge framework that facilitates data integration. Three-dimensional geological information meets a public demand that fills in the blanks left by conventional 2-D mapping. Two-dimensional mapping will, however, remain the standard method for extensive areas of complex geology, particularly where deformed igneous and metamorphic rocks defy attempts at 3-D depiction.

  1. A two-dimensional DNA lattice implanted polymer solar cell.

    PubMed

    Lee, Keun Woo; Kim, Kyung Min; Lee, Junwye; Amin, Rashid; Kim, Byeonghoon; Park, Sung Kye; Lee, Seok Kiu; Park, Sung Ha; Kim, Hyun Jae

    2011-09-16

    A double crossover tile based artificial two-dimensional (2D) DNA lattice was fabricated and the dry-wet method was introduced to recover an original DNA lattice structure in order to deposit DNA lattices safely on the organic layer without damaging the layer. The DNA lattice was then employed as an electron blocking layer in a polymer solar cell causing an increase of about 10% up to 160% in the power conversion efficiency. Consequently, the resulting solar cell which had an artificial 2D DNA blocking layer showed a significant enhancement in power conversion efficiency compared to conventional polymer solar cells. It should be clear that the artificial DNA nanostructure holds unique physical properties that are extremely attractive for various energy-related and photonic applications.

  2. Three-dimensional shear wave elastography for differentiation of breast lesions: An initial study with quantitative analysis using three orthogonal planes.

    PubMed

    Wang, Qiao

    2018-05-25

    To prospectively evaluate the diagnostic performance of three-dimensional (3D) shear wave elastography (SWE) for breast lesions with quantitative stiffness information from transverse, sagittal and coronal planes. Conventional ultrasound (US), two-dimensional (2D)-SWE and 3D-SWE were performed for 122 consecutive patients with 122 breast lesions before biopsy or surgical excision. Maximum elasticity values of Young's modulus (Emax) were recorded on 2D-SWE and three planes of 3D-SWE. Area under the receiver operating characteristic curve (AUC), sensitivity and specificity of US, 2D-SWE and 3D-SWE were evaluated. Two combined sets (i.e., BI-RADS and 2D-SWE; BI-RADS and 3D-SWE) were compared in AUC. Observer consistency was also evaluated. On 3D-SWE, the AUC and sensitivity of sagittal plane were significantly higher than those of transverse and coronal planes (both P < 0.05). Compared with BI-RADS alone, both combined sets had significantly (P < 0.05) higher AUCs and specificities, whereas, the two combined sets showed no significant difference in AUC (P > 0.05). However, the combined set of BI-RADS and sagittal plane of 3D-SWE had significantly higher sensitivity than the combined set of BI-RADS and 2D-SWE. The sagittal plane shows the best diagnostic performance among 3D-SWE. The combination of BI-RADS and 3D-SWE is a useful tool for predicting breast malignant lesions in comparison with BI-RADS alone.

  3. Ionic liquid phases with comprehensive two-dimensional gas chromatography of fatty acid methyl esters.

    PubMed

    Pojjanapornpun, Siriluck; Nolvachai, Yada; Aryusuk, Kornkanok; Kulsing, Chadin; Krisnangkura, Kanit; Marriott, Philip J

    2018-02-17

    New generation inert ionic liquid (iIL) GC columns IL60i, IL76i and IL111i, comprising phosphonium or imidazolium cationic species, were investigated for separation of fatty acid methyl esters (FAME). In general, the iIL phases provide comparable retention times to their corresponding conventional columns, with only minor selectivity differences. The average tailing factors and peak widths were noticeably improved (reduced) for IL60i and IL76i, while they were slightly improved for IL111i. Inert IL phase columns were coupled with conventional IL columns in comprehensive two-dimensional GC (GC × GC) with a solid-state modulator which offers variable modulation temperature (T M ), programmable T M during analysis and trapping stationary phase material during the trap/release (modulation) process, independent of oven T and column sets. Although IL phases are classified as polar, relative polarity of the two phases comprising individual GC × GC column sets permits combination of less-polar IL/polar IL and polar IL/less-polar IL column sets; it was observed that a polar/less-polar column set provided better separation of FAME. A higher first dimension ( 1 D) phase polarity combined with a lower 2 D phase polarity, for instance 1 D IL111i with 2 D IL59 gave the best result; the greater difference in 1 D/ 2 D phase polarity results in increasing occupancy of peak area in the 2D space. The IL111i/IL59 column set was selected for analysis of fatty acids in fat and oil products (butter, margarine, fish oil and canola oil). Compared with the conventional IL111, IL111i showed reduced column bleed which makes this more suited to GC × GC analysis of FAME. The proposed method offers a fast profiling approach with good repeatability of analysis of FAME.

  4. A liquid metal reaction environment for the room-temperature synthesis of atomically thin metal oxides

    NASA Astrophysics Data System (ADS)

    Zavabeti, Ali; Ou, Jian Zhen; Carey, Benjamin J.; Syed, Nitu; Orrell-Trigg, Rebecca; Mayes, Edwin L. H.; Xu, Chenglong; Kavehei, Omid; O'Mullane, Anthony P.; Kaner, Richard B.; Kalantar-zadeh, Kourosh; Daeneke, Torben

    2017-10-01

    Two-dimensional (2D) oxides have a wide variety of applications in electronics and other technologies. However, many oxides are not easy to synthesize as 2D materials through conventional methods. We used nontoxic eutectic gallium-based alloys as a reaction solvent and co-alloyed desired metals into the melt. On the basis of thermodynamic considerations, we predicted the composition of the self-limiting interfacial oxide. We isolated the surface oxide as a 2D layer, either on substrates or in suspension. This enabled us to produce extremely thin subnanometer layers of HfO2, Al2O3, and Gd2O3. The liquid metal-based reaction route can be used to create 2D materials that were previously inaccessible with preexisting methods. The work introduces room-temperature liquid metals as a reaction environment for the synthesis of oxide nanomaterials with low dimensionality.

  5. Image recovery from defocused 2D fluorescent images in multimodal digital holographic microscopy.

    PubMed

    Quan, Xiangyu; Matoba, Osamu; Awatsuji, Yasuhiro

    2017-05-01

    A technique of three-dimensional (3D) intensity retrieval from defocused, two-dimensional (2D) fluorescent images in the multimodal digital holographic microscopy (DHM) is proposed. In the multimodal DHM, 3D phase and 2D fluorescence distributions are obtained simultaneously by an integrated system of an off-axis DHM and a conventional epifluorescence microscopy, respectively. This gives us more information of the target; however, defocused fluorescent images are observed due to the short depth of field. In this Letter, we propose a method to recover the defocused images based on the phase compensation and backpropagation from the defocused plane to the focused plane using the distance information that is obtained from a 3D phase distribution. By applying Zernike polynomial phase correction, we brought back the fluorescence intensity to the focused imaging planes. The experimental demonstration using fluorescent beads is presented, and the expected applications are suggested.

  6. Design of two-dimensional zero reference codes with cross-entropy method.

    PubMed

    Chen, Jung-Chieh; Wen, Chao-Kai

    2010-06-20

    We present a cross-entropy (CE)-based method for the design of optimum two-dimensional (2D) zero reference codes (ZRCs) in order to generate a zero reference signal for a grating measurement system and achieve absolute position, a coordinate origin, or a machine home position. In the absence of diffraction effects, the 2D ZRC design problem is known as the autocorrelation approximation. Based on the properties of the autocorrelation function, the design of the 2D ZRC is first formulated as a particular combination optimization problem. The CE method is then applied to search for an optimal 2D ZRC and thus obtain the desirable zero reference signal. Computer simulation results indicate that there are 15.38% and 14.29% reductions in the second maxima value for the 16x16 grating system with n(1)=64 and the 100x100 grating system with n(1)=300, respectively, where n(1) is the number of transparent pixels, compared with those of the conventional genetic algorithm.

  7. Two-Dimensional Atomic-Layered Alloy Junctions for High-Performance Wearable Chemical Sensor.

    PubMed

    Cho, Byungjin; Kim, Ah Ra; Kim, Dong Jae; Chung, Hee-Suk; Choi, Sun Young; Kwon, Jung-Dae; Park, Sang Won; Kim, Yonghun; Lee, Byoung Hun; Lee, Kyu Hwan; Kim, Dong-Ho; Nam, Jaewook; Hahm, Myung Gwan

    2016-08-03

    We first report that two-dimensional (2D) metal (NbSe2)-semiconductor (WSe2)-based flexible, wearable, and launderable gas sensors can be prepared through simple one-step chemical vapor deposition of prepatterned WO3 and Nb2O5. Compared to a control device with a Au/WSe2 junction, gas-sensing performance of the 2D NbSe2/WSe2 device was significantly enhanced, which might have resulted from the formation of a NbxW1-xSe2 transition alloy junction lowering the Schottky barrier height. This would make it easier to collect charges of channels induced by molecule adsorption, improving gas response characteristics toward chemical species including NO2 and NH3. 2D NbSe2/WSe2 devices on a flexible substrate provide gas-sensing properties with excellent durability under harsh bending. Furthermore, the device stitched on a T-shirt still performed well even after conventional cleaning with a laundry machine, enabling wearable and launderable chemical sensors. These results could pave a road toward futuristic gas-sensing platforms based on only 2D materials.

  8. Three-Dimensional Anatomic Evaluation of the Anterior Cruciate Ligament for Planning Reconstruction

    PubMed Central

    Hoshino, Yuichi; Kim, Donghwi; Fu, Freddie H.

    2012-01-01

    Anatomic study related to the anterior cruciate ligament (ACL) reconstruction surgery has been developed in accordance with the progress of imaging technology. Advances in imaging techniques, especially the move from two-dimensional (2D) to three-dimensional (3D) image analysis, substantially contribute to anatomic understanding and its application to advanced ACL reconstruction surgery. This paper introduces previous research about image analysis of the ACL anatomy and its application to ACL reconstruction surgery. Crucial bony landmarks for the accurate placement of the ACL graft can be identified by 3D imaging technique. Additionally, 3D-CT analysis of the ACL insertion site anatomy provides better and more consistent evaluation than conventional “clock-face” reference and roentgenologic quadrant method. Since the human anatomy has a complex three-dimensional structure, further anatomic research using three-dimensional imaging analysis and its clinical application by navigation system or other technologies is warranted for the improvement of the ACL reconstruction. PMID:22567310

  9. Three-dimensional ultrasound imaging of the prostate

    NASA Astrophysics Data System (ADS)

    Fenster, Aaron; Downey, Donal B.

    1999-05-01

    Ultrasonography, a widely used imaging modality for the diagnosis and staging of many diseases, is an important cost- effective technique, however, technical improvements are necessary to realize its full potential. Two-dimensional viewing of 3D anatomy, using conventional ultrasonography, limits our ability to quantify and visualize most diseases, causing, in part, the reported variability in diagnosis and ultrasound guided therapy and surgery. This occurs because conventional ultrasound images are 2D, yet the anatomy is 3D; hence the diagnostician must integrate multiple images in his mind. This practice is inefficient, and may lead to operator variability and incorrect diagnoses. In addition, the 2D ultrasound image represents a single thin plane at some arbitrary angle in the body. It is difficult to localize and reproduce the image plane subsequently, making conventional ultrasonography unsatisfactory for follow-up studies and for monitoring therapy. Our efforts have focused on overcoming these deficiencies by developing 3D ultrasound imaging techniques that can acquire B-mode, color Doppler and power Doppler images. An inexpensive desktop computer is used to reconstruct the information in 3D, and then is also used for interactive viewing of the 3D images. We have used 3D ultrasound images for the diagnosis of prostate cancer, carotid disease, breast cancer and liver disease and for applications in obstetrics and gynecology. In addition, we have also used 3D ultrasonography for image-guided minimally invasive therapeutic applications of the prostate such as cryotherapy and brachytherapy.

  10. Advanced glossmeters for industrial applications

    NASA Astrophysics Data System (ADS)

    Kuivalainen, Kalle; Oksman, Antti; Juuti, Mikko; Myller, Kari; Peiponen, Kai-Erik

    2010-05-01

    In this paper, we present three new types of diffractive-optical-element (DOE)-based glossmeters (DOGs) that have been developed for both laboratory and online local specular gloss measurements of objects in industrial processes. The three are denoted as the handheld wireless glossmeter, µDOG two-dimensional (2D) and µDOG one-dimensional (1D), respectively. These glossmeters are designed to operate under conditions where gloss measurement with conventional glossmeters is impossible or difficult, or when fine structures of the gloss over a surface are an issue. Here, we show the applicability of the handheld glossmeter and µDOG 2D in the inspection of gloss from rough stainless steel plates finished by different machining methods. We also briefly introduce the concept of online gauge µDOG 1D for gloss assessment in industrial measurement environments.

  11. Three-dimensional textural features of conventional MRI improve diagnostic classification of childhood brain tumours.

    PubMed

    Fetit, Ahmed E; Novak, Jan; Peet, Andrew C; Arvanitits, Theodoros N

    2015-09-01

    The aim of this study was to assess the efficacy of three-dimensional texture analysis (3D TA) of conventional MR images for the classification of childhood brain tumours in a quantitative manner. The dataset comprised pre-contrast T1 - and T2-weighted MRI series obtained from 48 children diagnosed with brain tumours (medulloblastoma, pilocytic astrocytoma and ependymoma). 3D and 2D TA were carried out on the images using first-, second- and higher order statistical methods. Six supervised classification algorithms were trained with the most influential 3D and 2D textural features, and their performances in the classification of tumour types, using the two feature sets, were compared. Model validation was carried out using the leave-one-out cross-validation (LOOCV) approach, as well as stratified 10-fold cross-validation, in order to provide additional reassurance. McNemar's test was used to test the statistical significance of any improvements demonstrated by 3D-trained classifiers. Supervised learning models trained with 3D textural features showed improved classification performances to those trained with conventional 2D features. For instance, a neural network classifier showed 12% improvement in area under the receiver operator characteristics curve (AUC) and 19% in overall classification accuracy. These improvements were statistically significant for four of the tested classifiers, as per McNemar's tests. This study shows that 3D textural features extracted from conventional T1 - and T2-weighted images can improve the diagnostic classification of childhood brain tumours. Long-term benefits of accurate, yet non-invasive, diagnostic aids include a reduction in surgical procedures, improvement in surgical and therapy planning, and support of discussions with patients' families. It remains necessary, however, to extend the analysis to a multicentre cohort in order to assess the scalability of the techniques used. Copyright © 2015 John Wiley & Sons, Ltd.

  12. Experimental implementations of 2D IR spectroscopy through a horizontal pulse shaper design and a focal plane array detector

    PubMed Central

    Ghosh, Ayanjeet; Serrano, Arnaldo L.; Oudenhoven, Tracey A.; Ostrander, Joshua S.; Eklund, Elliot C.; Blair, Alexander F.; Zanni, Martin T.

    2017-01-01

    Aided by advances in optical engineering, two-dimensional infrared spectroscopy (2D IR) has developed into a promising method for probing structural dynamics in biophysics and material science. We report two new advances for 2D IR spectrometers. First, we report a fully reflective and totally horizontal pulse shaper, which significantly simplifies alignment. Second, we demonstrate the applicability of mid-IR focal plane arrays (FPAs) as suitable detectors in 2D IR experiments. FPAs have more pixels than conventional linear arrays and can be used to multiplex optical detection. We simultaneously measure the spectra of a reference beam, which improves the signal-to-noise by a factor of 4; and two additional beams that are orthogonally polarized probe pulses for 2D IR anisotropy experiments. PMID:26907414

  13. Three dimensional de novo micro bone marrow and its versatile application in drug screening and regenerative medicine.

    PubMed

    Li, Guanqun; Liu, Xujun; Du, Qian; Gao, Mei; An, Jing

    2015-08-01

    The finding that bone marrow hosts several types of multipotent stem cell has prompted extensive research aimed at regenerating organs and building models to elucidate the mechanisms of diseases. Conventional research depends on the use of two-dimensional (2D) bone marrow systems, which imposes several obstacles. The development of 3D bone marrow systems with appropriate molecules and materials however, is now showing promising results. In this review, we discuss the advantages of 3D bone marrow systems over 2D systems and then point out various factors that can enhance the 3D systems. The intensive research on 3D bone marrow systems has revealed multiple important clinical applications including disease modeling, drug screening, regenerative medicine, etc. We also discuss some possible future directions in the 3D bone marrow research field. © 2015 by the Society for Experimental Biology and Medicine.

  14. Topological and trivial magnetic oscillations in nodal loop semimetals

    NASA Astrophysics Data System (ADS)

    Oroszlány, László; Dóra, Balázs; Cserti, József; Cortijo, Alberto

    2018-05-01

    Nodal loop semimetals are close descendants of Weyl semimetals and possess a topologically dressed band structure. We argue by combining the conventional theory of magnetic oscillation with topological arguments that nodal loop semimetals host coexisting topological and trivial magnetic oscillations. These originate from mapping the topological properties of the extremal Fermi surface cross sections onto the physics of two dimensional semi-Dirac systems, stemming from merging two massless Dirac cones. By tuning the chemical potential and the direction of magnetic field, a sharp transition is identified from purely trivial oscillations, arising from the Landau levels of a normal two dimensional (2D) electron gas, to a phase where oscillations of topological and trivial origin coexist, originating from 2D massless Dirac and semi-Dirac points, respectively. These could in principle be directly identified in current experiments.

  15. 2.5D Finite/infinite Element Approach for Simulating Train-Induced Ground Vibrations

    NASA Astrophysics Data System (ADS)

    Yang, Y. B.; Hung, H. H.; Kao, J. C.

    2010-05-01

    The 2.5D finite/infinite element approach for simulating the ground vibrations by surface or underground moving trains will be briefly summarized in this paper. By assuming the soils to be uniform along the direction of the railway, only a two-dimensional profile of the soil perpendicular to the railway need be considered in the modeling. Besides the two in-plane degrees of freedom (DOFs) per node conventionally used for plane strain elements, an extra DOF is introduced to account for the out-of-plane wave transmission. The profile of the half-space is divided into a near field and a semi-infinite far field. The near field containing the train loads and irregular structures is simulated by the finite elements, while the far field covering the soils with infinite boundary by the infinite elements, by which due account is taken of the radiation effects for the moving loads. Enhanced by the automated mesh expansion procedure proposed previously by the writers, the far field impedances for all the lower frequencies are generated repetitively from the mesh created for the highest frequency considered. Finally, incorporated with a proposed load generation mechanism that takes the rail irregularity and dynamic properties of trains into account, an illustrative case study was performed. This paper investigates the vibration isolation effect of the elastic foundation that separates the concrete slab track from the underlying soil or tunnel structure. In addition, the advantage of the 2.5D approach was clearly demonstrated in that the three-dimensional wave propagation effect can be virtually captured using a two-dimensional finite/infinite element mesh. Compared with the conventional 3D approach, the present approach appears to be simple, efficient and generally accurate.

  16. Magnetic Resonance Imaging in Patients With Mechanical Low Back Pain Using a Novel Rapid-Acquisition Three-Dimensional SPACE Sequence at 1.5-T: A Pilot Study Comparing Lumbar Stenosis Assessment With Routine Two-Dimensional Magnetic Resonance Sequences.

    PubMed

    Swami, Vimarsha G; Katlariwala, Mihir; Dhillon, Sukhvinder; Jibri, Zaid; Jaremko, Jacob L

    2016-11-01

    To minimize the burden of overutilisation of lumbar spine magnetic resonance imaging (MRI) on a resource-constrained public healthcare system, it may be helpful to image some patients with mechanical low-back pain (LBP) using a simplified rapid MRI screening protocol at 1.5-T. A rapid-acquisition 3-dimensional (3D) SPACE (Sampling Perfection with Application-optimized Contrasts using different flip angle Evolution) sequence can demonstrate common etiologies of LBP. We compared lumbar spinal canal stenosis (LSCS) and neural foraminal stenosis (LNFS) assessment on 3D SPACE against conventional 2-dimensional (2D) MRI. We prospectively performed 3D SPACE and 2D spin-echo MRI sequences (axial or sagittal T1-weighted or T2-weighted) at 1.5-T in 20 patients. Two blinded readers assessed levels L3-4, L4-5 and L5-S1 using: 1) morphologic grading systems, 2) global impression on the presence or absence of clinically significant stenosis (n = 60 disc levels for LSCS, n = 120 foramina for LNFS). Reliability statistics were calculated. Acquisition time was ∼5 minutes for SPACE and ∼20 minutes for 2D MRI sequences. Interobserver agreement of LSCS was substantial to near perfect on both sequences (morphologic grading: kappa [k] = 0.71 SPACE, k = 0.69 T2-weighted; global impression: k = 0.85 SPACE, k = 0.78 T2-weighted). LNFS assessment had superior interobserver reliability using SPACE than T1-weighted (k = 0.54 vs 0.37). Intersequence agreement of findings between SPACE and 2D MRI was substantial to near perfect by global impression (LSCS: k = 0.78 Reader 1, k = 0.85 Reader 2; LNFS: k = 0.63 Reader 1, k = 0.66 Reader 2). 3D SPACE was acquired in one-quarter the time as the conventional 2D MRI protocol, had excellent agreement with 2D MRI for stenosis assessment, and had interobserver reliability superior to 2D MRI. These results justify future work to explore the role of 3D SPACE in a rapid MRI screening protocol at 1.5-T for mechanical LBP. Copyright © 2016 Canadian Association of Radiologists. Published by Elsevier Inc. All rights reserved.

  17. Three-dimensional echocardiographic assessment of the repaired mitral valve.

    PubMed

    Maslow, Andrew; Mahmood, Feroze; Poppas, Athena; Singh, Arun

    2014-02-01

    This study examined the geometric changes of the mitral valve (MV) after repair using conventional and three-dimensional echocardiography. Prospective evaluation of consecutive patients undergoing mitral valve repair. Tertiary care university hospital. Fifty consecutive patients scheduled for elective repair of the mitral valve for regurgitant disease. Intraoperative transesophageal echocardiography. Assessments of valve area (MVA) were performed using two-dimensional planimetry (2D-Plan), pressure half-time (PHT), and three-dimensional planimetry (3D-Plan). In addition, the direction of ventricular inflow was assessed from the three-dimensional imaging. Good correlations (r = 0.83) and agreement (-0.08 +/- 0.43 cm(2)) were seen between the MVA measured with 3D-Plan and PHT, and were better than either compared to 2D-Plan. MVAs were smaller after repair of functional disease repaired with an annuloplasty ring. After repair, ventricular inflow was directed toward the lateral ventricular wall. Subgroup analysis showed that the change in inflow angle was not different after repair of functional disease (168 to 171 degrees) as compared to those presenting with degenerative disease (168 to 148 degrees; p<0.0001). Three-dimensional imaging provides caregivers with a unique ability to assess changes in valve function after mitral valve repair. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Two-Dimensional Layered Oxide Structures Tailored by Self-Assembled Layer Stacking via Interfacial Strain.

    PubMed

    Zhang, Wenrui; Li, Mingtao; Chen, Aiping; Li, Leigang; Zhu, Yuanyuan; Xia, Zhenhai; Lu, Ping; Boullay, Philippe; Wu, Lijun; Zhu, Yimei; MacManus-Driscoll, Judith L; Jia, Quanxi; Zhou, Honghui; Narayan, Jagdish; Zhang, Xinghang; Wang, Haiyan

    2016-07-06

    Study of layered complex oxides emerge as one of leading topics in fundamental materials science because of the strong interplay among intrinsic charge, spin, orbital, and lattice. As a fundamental basis of heteroepitaxial thin film growth, interfacial strain can be used to design materials that exhibit new phenomena beyond their conventional forms. Here, we report a strain-driven self-assembly of bismuth-based supercell (SC) with a two-dimensional (2D) layered structure. With combined experimental analysis and first-principles calculations, we investigated the full SC structure and elucidated the fundamental growth mechanism achieved by the strain-enabled self-assembled atomic layer stacking. The unique SC structure exhibits room-temperature ferroelectricity, enhanced magnetic responses, and a distinct optical bandgap from the conventional double perovskite structure. This study reveals the important role of interfacial strain modulation and atomic rearrangement in self-assembling a layered singe-phase multiferroic thin film, which opens up a promising avenue in the search for and design of novel 2D layered complex oxides with enormous promise.

  19. Dosimetric Comparison between Three-Dimensional Magnetic Resonance Imaging-Guided and Conventional Two-Dimensional Point A-Based Intracavitary Brachytherapy Planning for Cervical Cancer

    PubMed Central

    Ren, Juan; Yuan, Wei; Wang, Ruihua; Wang, Qiuping; Li, Yi; Xue, Chaofan; Yan, Yanli; Ma, Xiaowei; Tan, Li; Liu, Zi

    2016-01-01

    Objective The purpose of this study was to comprehensively compare the 3-dimensional (3D) magnetic resonance imaging (MRI)-guided and conventional 2-dimensional (2D) point A-based intracavitary brachytherapy (BT) planning for cervical cancer with regard to target dose coverage and dosages to adjacent organs-at risk (OARs). Methods A total of 79 patients with cervical cancer were enrolled to receive 2D point A-based BT planning and then immediately to receive 3D planning between October 2011 and April 2013 at the First Hospital Affiliated to Xi’an Jiao Tong University (Xi’an, China). The dose-volume histogram (DVH) parameters for gross tumor volume (GTV), high-risk clinical target volume (HR-CTV), intermediate-risk clinical target volume (IR-CTV) and OARs were compared between the 2D and 3D planning. Results In small tumors, there was no significant difference in most of the DVHs between 2D and 3D planning (all p>0.05). While in big tumors, 3D BT planning significantly increased the DVHs for most of the GTV, HR-CTV and IR-CTV, and some OARs compared with 2D planning (all P<0.05). In 3D planning, DVHs for GTV, HR-CTV, IR-CTV and some OARs were significantly higher in big tumors than in small tumors (all p<0.05). In contrast, in 2D planning, DVHs for almost all of the HR-CTV and IR-CTV were significantly lower in big tumors (all p<0.05). In eccentric tumors, 3D planning significantly increased dose coverage but decreased dosages to OARs compared with 2D planning (p<0.05). In tumors invading adjacent tissues, the target dose coverage in 3D planning was generally significantly higher than in 2D planning (P<0.05); the dosages to the adjacent rectum and bladder were significantly higher but those to sigmoid colon were lower in 3D planning (all P<0.05). Conclusions 3D MRI image-guided BT planning exhibits advantages over 2D planning in a complex way, generally showing advantages for the treatment of cervical cancer except small tumors. PMID:27611853

  20. An assessment of the new generation three-dimensional high definition laparoscopic vision system on surgical skills: a randomized prospective study.

    PubMed

    Usta, Taner A; Ozkaynak, Aysel; Kovalak, Ebru; Ergul, Erdinc; Naki, M Murat; Kaya, Erdal

    2015-08-01

    Two-dimensional (2D) view is known to cause practical difficulties for surgeons in conventional laparoscopy. Our goal was to evaluate whether the new-generation, Three-Dimensional Laparoscopic Vision System (3D LVS) provides greater benefit in terms of execution time and error number during the performance of surgical tasks. This study tests the hypothesis that the use of the new generation 3D LVS can significantly improve technical ability on complex laparoscopic tasks in an experimental model. Twenty-four participants (8 experienced, 8 minimally experienced, and 8 inexperienced) were evaluated for 10 different tasks in terms of total execution time and error number. The 4-point lickert scale was used for subjective assessment of the two imaging modalities. All tasks were completed by all participants. Statistically significant difference was determined between 3D and 2D systems in the tasks of bead transfer and drop, suturing, and pick-and-place in the inexperienced group; in the task of passing through two circles with the needle in the minimally experienced group; and in the tasks of bead transfer and drop, suturing and passing through two circles with the needle in the experienced group. Three-dimensional imaging was preferred over 2D in 6 of the 10 subjective criteria questions on 4-point lickert scale. The majority of the tasks were completed in a shorter time using 3D LVS compared to 2D LVS. The subjective Likert-scale ratings from each group also demonstrated a clear preference for 3D LVS. New 3D LVS has the potential to improve the learning curve, and reduce the operating time and error rate during the performances of laparoscopic surgeons. Our results suggest that the new-generation 3D HD LVS will be helpful for surgeons in laparoscopy (Clinical Trial ID: NCT01799577, Protocol ID: BEHGynobs-4).

  1. Volumetric three-dimensional intravascular ultrasound visualization using shape-based nonlinear interpolation

    PubMed Central

    2013-01-01

    Background Intravascular ultrasound (IVUS) is a standard imaging modality for identification of plaque formation in the coronary and peripheral arteries. Volumetric three-dimensional (3D) IVUS visualization provides a powerful tool to overcome the limited comprehensive information of 2D IVUS in terms of complex spatial distribution of arterial morphology and acoustic backscatter information. Conventional 3D IVUS techniques provide sub-optimal visualization of arterial morphology or lack acoustic information concerning arterial structure due in part to low quality of image data and the use of pixel-based IVUS image reconstruction algorithms. In the present study, we describe a novel volumetric 3D IVUS reconstruction algorithm to utilize IVUS signal data and a shape-based nonlinear interpolation. Methods We developed an algorithm to convert a series of IVUS signal data into a fully volumetric 3D visualization. Intermediary slices between original 2D IVUS slices were generated utilizing the natural cubic spline interpolation to consider the nonlinearity of both vascular structure geometry and acoustic backscatter in the arterial wall. We evaluated differences in image quality between the conventional pixel-based interpolation and the shape-based nonlinear interpolation methods using both virtual vascular phantom data and in vivo IVUS data of a porcine femoral artery. Volumetric 3D IVUS images of the arterial segment reconstructed using the two interpolation methods were compared. Results In vitro validation and in vivo comparative studies with the conventional pixel-based interpolation method demonstrated more robustness of the shape-based nonlinear interpolation algorithm in determining intermediary 2D IVUS slices. Our shape-based nonlinear interpolation demonstrated improved volumetric 3D visualization of the in vivo arterial structure and more realistic acoustic backscatter distribution compared to the conventional pixel-based interpolation method. Conclusions This novel 3D IVUS visualization strategy has the potential to improve ultrasound imaging of vascular structure information, particularly atheroma determination. Improved volumetric 3D visualization with accurate acoustic backscatter information can help with ultrasound molecular imaging of atheroma component distribution. PMID:23651569

  2. Real-time broadband terahertz spectroscopic imaging by using a high-sensitivity terahertz camera

    NASA Astrophysics Data System (ADS)

    Kanda, Natsuki; Konishi, Kuniaki; Nemoto, Natsuki; Midorikawa, Katsumi; Kuwata-Gonokami, Makoto

    2017-02-01

    Terahertz (THz) imaging has a strong potential for applications because many molecules have fingerprint spectra in this frequency region. Spectroscopic imaging in the THz region is a promising technique to fully exploit this characteristic. However, the performance of conventional techniques is restricted by the requirement of multidimensional scanning, which implies an image data acquisition time of several minutes. In this study, we propose and demonstrate a novel broadband THz spectroscopic imaging method that enables real-time image acquisition using a high-sensitivity THz camera. By exploiting the two-dimensionality of the detector, a broadband multi-channel spectrometer near 1 THz was constructed with a reflection type diffraction grating and a high-power THz source. To demonstrate the advantages of the developed technique, we performed molecule-specific imaging and high-speed acquisition of two-dimensional (2D) images. Two different sugar molecules (lactose and D-fructose) were identified with fingerprint spectra, and their distributions in one-dimensional space were obtained at a fast video rate (15 frames per second). Combined with the one-dimensional (1D) mechanical scanning of the sample, two-dimensional molecule-specific images can be obtained only in a few seconds. Our method can be applied in various important fields such as security and biomedicine.

  3. Three-dimensional magnetic resonance angiography of vascular lesions in children.

    PubMed

    Katayama, H; Shimizu, T; Tanaka, Y; Narabayashi, I; Tamai, H

    2000-01-01

    We applied three-dimensional (3D) magnetic resonance (MR) angiography to vascular lesions in children and evaluated the clinical usefulness of this technique. Ten patients, whose ages ranged from 1 month to 16 years, underwent 3D MR angiography for 12 vascular lesions, including lesions in seven pulmonary arteries, two thoracic aortae, a pair of renal arteries, and one iliac artery. Three-dimensional MR angiography was performed with body-or pelvic-phased array coils on a 1.5-T scanner using fast spoiled gradient echo sequence. Data were acquired with the following parameters: TE, 1.9 ms; TR, 10.1 ms; flip angle, 20-60 degrees ; 1 or 2 NEX; field of view, 24-48 x 18-40 cm; matrix, 256 or 512 x 128 or 256; slice thickness, 1.2-7.5 mm; and 12, 28, or 60 partitions. Vascular imaging was enhanced with 20% gadolinium-diethylenetriaminepentaacetic acid. The examination was performed under breath-holding in six patients and with shallow breathing in four patients. In a comparative study with other noninvasive methods, 3D MR angiography was superior in seven of nine cases to other noninvasive examinations and in two cases, all methods evaluated the lesions. Furthermore, six cases were compared with conventional angiography. In five of the six cases, both methods depicted the lesions similarly, and in one case, MR angiography was more effective. A quantitative comparison of vascular diameter in the MR image was made with that in the conventional angiographic image. The correlation between them was excellent: y = 1.145x-2.090 (r = 0.987; P < 0.0001), where x is the diameter in the conventional angiographic images, y is the diameter in the MR images, and r is the correlation coefficient. In conclusion, 3D MR angiography is useful for depicting peripheral vascular lesions in children.

  4. Two-dimensional photonic crystal arrays for polymer:fullerene solar cells.

    PubMed

    Nam, Sungho; Han, Jiyoung; Do, Young Rag; Kim, Hwajeong; Yim, Sanggyu; Kim, Youngkyoo

    2011-11-18

    We report the application of two-dimensional (2D) photonic crystal (PC) array substrates for polymer:fullerene solar cells of which the active layer is made with blended films of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). The 2D PC array substrates were fabricated by employing a nanosphere lithography technique. Two different hole depths (200 and 300 nm) were introduced for the 2D PC arrays to examine the hole depth effect on the light harvesting (trapping). The optical effect by the 2D PC arrays was investigated by the measurement of optical transmittance either in the direction normal to the substrate (direct transmittance) or in all directions (integrated transmittance). The results showed that the integrated transmittance was higher for the 2D PC array substrates than the conventional planar substrate at the wavelengths of ca. 400 nm, even though the direct transmittance of 2D PC array substrates was much lower over the entire visible light range. The short circuit current density (J(SC)) was higher for the device with the 2D PC array (200 nm hole depth) than the reference device. However, the device with the 2D PC array (300 nm hole depth) showed a slightly lower J(SC) value at a high light intensity in spite of its light harvesting effect proven at a lower light intensity.

  5. Direct Conversion of Equine Adipose-Derived Stem Cells into Induced Neuronal Cells Is Enhanced in Three-Dimensional Culture.

    PubMed

    Petersen, Gayle F; Hilbert, Bryan J; Trope, Gareth D; Kalle, Wouter H J; Strappe, Padraig M

    2015-12-01

    The ability to culture neurons from horses may allow further investigation into equine neurological disorders. In this study, we demonstrate the generation of induced neuronal cells from equine adipose-derived stem cells (EADSCs) using a combination of lentiviral vector expression of the neuronal transcription factors Brn2, Ascl1, Myt1l (BAM) and NeuroD1 and a defined chemical induction medium, with βIII-tubulin-positive induced neuronal cells displaying a distinct neuronal morphology of rounded and compact cell bodies, extensive neurite outgrowth, and branching of processes. Furthermore, we investigated the effects of dimensionality on neuronal transdifferentiation, comparing conventional two-dimensional (2D) monolayer culture against three-dimensional (3D) culture on a porous polystyrene scaffold. Neuronal transdifferentiation was enhanced in 3D culture, with evenly distributed cells located on the surface and throughout the scaffold. Transdifferentiation efficiency was increased in 3D culture, with an increase in mean percent conversion of more than 100% compared to 2D culture. Additionally, induced neuronal cells were shown to transit through a Nestin-positive precursor state, with MAP2 and Synapsin 2 expression significantly increased in 3D culture. These findings will help to increase our understanding of equine neuropathogenesis, with prospective roles in disease modeling, drug screening, and cellular replacement for treatment of equine neurological disorders.

  6. Stationary Wavelet-based Two-directional Two-dimensional Principal Component Analysis for EMG Signal Classification

    NASA Astrophysics Data System (ADS)

    Ji, Yi; Sun, Shanlin; Xie, Hong-Bo

    2017-06-01

    Discrete wavelet transform (WT) followed by principal component analysis (PCA) has been a powerful approach for the analysis of biomedical signals. Wavelet coefficients at various scales and channels were usually transformed into a one-dimensional array, causing issues such as the curse of dimensionality dilemma and small sample size problem. In addition, lack of time-shift invariance of WT coefficients can be modeled as noise and degrades the classifier performance. In this study, we present a stationary wavelet-based two-directional two-dimensional principal component analysis (SW2D2PCA) method for the efficient and effective extraction of essential feature information from signals. Time-invariant multi-scale matrices are constructed in the first step. The two-directional two-dimensional principal component analysis then operates on the multi-scale matrices to reduce the dimension, rather than vectors in conventional PCA. Results are presented from an experiment to classify eight hand motions using 4-channel electromyographic (EMG) signals recorded in healthy subjects and amputees, which illustrates the efficiency and effectiveness of the proposed method for biomedical signal analysis.

  7. Late Detection of Left Ventricular Dysfunction Using Two-Dimensional and Three-Dimensional Speckle-Tracking Echocardiography in Patients with History of Nonsevere Acute Myocarditis.

    PubMed

    Caspar, Thibault; Fichot, Marie; Ohana, Mickaël; El Ghannudi, Soraya; Morel, Olivier; Ohlmann, Patrick

    2017-08-01

    Acute myocarditis (AM) often involves the left ventricular (LV) subepicardium that might be displayed by cardiac magnetic resonance even late after the acute phase. In the absence of global or regional LV dysfunction, conventional transthoracic echocardiography (TTE) does not accurately identify tissue sequelae of AM. We sought to evaluate the diagnostic value of two-dimensional (2D) and three-dimensional (3D) speckle-tracking echocardiography to identify patients with a history of AM with preserved LV ejection fraction (LVEF). Fifty patients (group 1: age, 31.4 ± 10.5 years; 76% males) with a history of cardiac magnetic resonance-confirmed diagnosis of AM (according to the Lake Louise criteria) were retrospectively identified and then (21.7 ± 23.4 months later) evaluated by complete echocardiography including 2D and 3D speckle-tracking analysis, as well as 50 age- and gender-matched healthy controls (group 2: age, 31.2 ± 9.5 years: 76% males). Patients with a history of severe clinical presentation of AM (sudden death, ventricular arrhythmia, heart failure, alteration of LVEF) were excluded. At diagnosis, peak troponin and C-reactive protein were 11.97 (interquartile range, 4.52-25.92) μg/L and 32.3 (interquartile range, 14.85-70.45) mg/L, respectively. Mean delay between acute phase and follow-up study TTE was 21.7 ± 23.4 months. LVEF was not statistically different between groups (62.1% vs 63.5%, P = .099). Two-dimensional global longitudinal strain (GLS) was lower in magnitude in group 1 (-17.8% vs -22.1%, P < .0001) as were 2D layer-specific subepicardial GLS (-15.4% vs -19.7%, P < .0001) and subendocardial GLS (-20.71% vs -25.08%, P < .0001). Three-dimensional global longitudinal, circumferential, area, and radial strains were lower in magnitude in group 1 (-11.80% vs -14.98%, P < .0001; -12.57% vs -15.12%, P < .0001; -22.28% vs -25.87%, P < .0001; 31.47% vs 38.06%, P < .0001, respectively). Receiver operating characteristic curve analysis showed that subepicardial GLS displayed a better diagnostic performance to detect sequelae of AM as compared with GLS (area under the curve = 0.97 vs 0.93, P = .045). In patients with a history of AM, a subtle LV dysfunction can be detected by 2D and 3D speckle-tracking echocardiography, even though LVEF is conserved, adding incremental information over conventional TTE. Copyright © 2017 American Society of Echocardiography. Published by Elsevier Inc. All rights reserved.

  8. Convergence acceleration of the Proteus computer code with multigrid methods

    NASA Technical Reports Server (NTRS)

    Demuren, A. O.; Ibraheem, S. O.

    1995-01-01

    This report presents the results of a study to implement convergence acceleration techniques based on the multigrid concept in the two-dimensional and three-dimensional versions of the Proteus computer code. The first section presents a review of the relevant literature on the implementation of the multigrid methods in computer codes for compressible flow analysis. The next two sections present detailed stability analysis of numerical schemes for solving the Euler and Navier-Stokes equations, based on conventional von Neumann analysis and the bi-grid analysis, respectively. The next section presents details of the computational method used in the Proteus computer code. Finally, the multigrid implementation and applications to several two-dimensional and three-dimensional test problems are presented. The results of the present study show that the multigrid method always leads to a reduction in the number of iterations (or time steps) required for convergence. However, there is an overhead associated with the use of multigrid acceleration. The overhead is higher in 2-D problems than in 3-D problems, thus overall multigrid savings in CPU time are in general better in the latter. Savings of about 40-50 percent are typical in 3-D problems, but they are about 20-30 percent in large 2-D problems. The present multigrid method is applicable to steady-state problems and is therefore ineffective in problems with inherently unstable solutions.

  9. On-line comprehensive two-dimensional normal-phase liquid chromatography×reversed-phase liquid chromatography for preparative isolation of toad venom.

    PubMed

    Li, Jia-Fu; Fang, Hua; Yan, Xia; Chang, Fang-Rong; Wu, Zhen; Wu, Yun-Long; Qiu, Ying-Kun

    2016-07-22

    An on-line comprehensive preparative two-dimensional normal-phase liquid chromatography×reversed-phase liquid chromatography (2D NPLC×RPLC) system was constructed with a newly developed vacuum evaporation assisted adsorption (VEAA) interface, allowing fast removal of NPLC solvent in the vacuum condition and successfully solving the solvent incompatibility problem between NPLC and RPLC. The system achieved on-line solvent exchange within the two dimensions and its performance was illustrated by gram-scale isolation of crude extract from the venom of Bufo bufo gargarizans. Within separation time of ∼20h, 19 compounds were obtained with high purity in a single run. With the VEAA interface, the 2D system exhibited apparent advantages in separation efficiency and automation compared with conventional methods, indicating its promising application in the routine separation process for complicated natural products. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Functionalization of liquid-exfoliated two-dimensional 2H-MoS2.

    PubMed

    Backes, Claudia; Berner, Nina C; Chen, Xin; Lafargue, Paul; LaPlace, Pierre; Freeley, Mark; Duesberg, Georg S; Coleman, Jonathan N; McDonald, Aidan R

    2015-02-23

    Layered two-dimensional (2D) inorganic transition-metal dichalchogenides (TMDs) have attracted great interest as a result of their potential application in optoelectronics, catalysis, and medicine. However, methods to functionalize and process such 2D TMDs remain scarce. We have established a facile route towards functionalized layered MoS2 . We found that the reaction of liquid-exfoliated 2D MoS2 , with M(OAc)2 salts (M=Ni, Cu, Zn; OAc=acetate) yielded functionalized MoS2 -M(OAc)2 materials. Importantly, this method furnished the 2H-polytype of MoS2 which is a semiconductor. X-ray photoelectron spectroscopy (XPS), diffuse reflectance infrared Fourier transform spectroscopy (DRIFT-IR), and thermogravimetric analysis (TGA) provide strong evidence for the coordination of MoS2 surface sulfur atoms to the M(OAc)2 salt. Interestingly, functionalization of 2H-MoS2 allows for its dispersion/processing in more conventional laboratory solvents. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Three-dimensional microstructural characterization of bulk plutonium and uranium metals using focused ion beam technique

    NASA Astrophysics Data System (ADS)

    Chung, Brandon W.; Erler, Robert G.; Teslich, Nick E.

    2016-05-01

    Nuclear forensics requires accurate quantification of discriminating microstructural characteristics of the bulk nuclear material to identify its process history and provenance. Conventional metallographic preparation techniques for bulk plutonium (Pu) and uranium (U) metals are limited to providing information in two-dimension (2D) and do not allow for obtaining depth profile of the material. In this contribution, use of dual-beam focused ion-beam/scanning electron microscopy (FIB-SEM) to investigate the internal microstructure of bulk Pu and U metals is demonstrated. Our results demonstrate that the dual-beam methodology optimally elucidate microstructural features without preparation artifacts, and the three-dimensional (3D) characterization of inner microstructures can reveal salient microstructural features that cannot be observed from conventional metallographic techniques. Examples are shown to demonstrate the benefit of FIB-SEM in improving microstructural characterization of microscopic inclusions, particularly with respect to nuclear forensics.

  12. Three-dimensional microstructural characterization of bulk plutonium and uranium metals using focused ion beam technique

    DOE PAGES

    Chung, Brandon W.; Erler, Robert G.; Teslich, Nick E.

    2016-03-03

    Nuclear forensics requires accurate quantification of discriminating microstructural characteristics of the bulk nuclear material to identify its process history and provenance. Conventional metallographic preparation techniques for bulk plutonium (Pu) and uranium (U) metals are limited to providing information in two-dimension (2D) and do not allow for obtaining depth profile of the material. In this contribution, use of dual-beam focused ion-beam/scanning electron microscopy (FIB-SEM) to investigate the internal microstructure of bulk Pu and U metals is demonstrated. Our results demonstrate that the dual-beam methodology optimally elucidate microstructural features without preparation artifacts, and the three-dimensional (3D) characterization of inner microstructures can revealmore » salient microstructural features that cannot be observed from conventional metallographic techniques. As a result, examples are shown to demonstrate the benefit of FIB-SEM in improving microstructural characterization of microscopic inclusions, particularly with respect to nuclear forensics.« less

  13. Characteristics of Superjunction Lateral-Double-Diffusion Metal Oxide Semiconductor Field Effect Transistor and Degradation after Electrical Stress

    NASA Astrophysics Data System (ADS)

    Lin, Jyh‑Ling; Lin, Ming‑Jang; Lin, Li‑Jheng

    2006-04-01

    The superjunction lateral double diffusion metal oxide semiconductor field effect has recently received considerable attention. Introducing heavily doped p-type strips to the n-type drift region increases the horizontal depletion capability. Consequently, the doping concentration of the drift region is higher and the conduction resistance is lower than those of conventional lateral-double-diffusion metal oxide semiconductor field effect transistors (LDMOSFETs). These characteristics may increase breakdown voltage (\\mathit{BV}) and reduce specific on-resistance (Ron,sp). In this study, we focus on the electrical characteristics of conventional LDMOSFETs on silicon bulk, silicon-on-insulator (SOI) LDMOSFETs and superjunction LDMOSFETs after bias stress. Additionally, the \\mathit{BV} and Ron,sp of superjunction LDMOSFETs with different N/P drift region widths and different dosages are discussed. Simulation tools, including two-dimensional (2-D) TSPREM-4/MEDICI and three-dimensional (3-D) DAVINCI, were employed to determine the device characteristics.

  14. Low-cost Volumetric Ultrasound by Augmentation of 2D Systems: Design and Prototype.

    PubMed

    Herickhoff, Carl D; Morgan, Matthew R; Broder, Joshua S; Dahl, Jeremy J

    2018-01-01

    Conventional two-dimensional (2D) ultrasound imaging is a powerful diagnostic tool in the hands of an experienced user, yet 2D ultrasound remains clinically underutilized and inherently incomplete, with output being very operator dependent. Volumetric ultrasound systems can more fully capture a three-dimensional (3D) region of interest, but current 3D systems require specialized transducers, are prohibitively expensive for many clinical departments, and do not register image orientation with respect to the patient; these systems are designed to provide improved workflow rather than operator independence. This work investigates whether it is possible to add volumetric 3D imaging capability to existing 2D ultrasound systems at minimal cost, providing a practical means of reducing operator dependence in ultrasound. In this paper, we present a low-cost method to make 2D ultrasound systems capable of quality volumetric image acquisition: we present the general system design and image acquisition method, including the use of a probe-mounted orientation sensor, a simple probe fixture prototype, and an offline volume reconstruction technique. We demonstrate initial results of the method, implemented using a Verasonics Vantage research scanner.

  15. High Content Imaging (HCI) on Miniaturized Three-Dimensional (3D) Cell Cultures

    PubMed Central

    Joshi, Pranav; Lee, Moo-Yeal

    2015-01-01

    High content imaging (HCI) is a multiplexed cell staining assay developed for better understanding of complex biological functions and mechanisms of drug action, and it has become an important tool for toxicity and efficacy screening of drug candidates. Conventional HCI assays have been carried out on two-dimensional (2D) cell monolayer cultures, which in turn limit predictability of drug toxicity/efficacy in vivo; thus, there has been an urgent need to perform HCI assays on three-dimensional (3D) cell cultures. Although 3D cell cultures better mimic in vivo microenvironments of human tissues and provide an in-depth understanding of the morphological and functional features of tissues, they are also limited by having relatively low throughput and thus are not amenable to high-throughput screening (HTS). One attempt of making 3D cell culture amenable for HTS is to utilize miniaturized cell culture platforms. This review aims to highlight miniaturized 3D cell culture platforms compatible with current HCI technology. PMID:26694477

  16. Localization and oscillations of Majorana fermions in a two-dimensional electron gas coupled with d -wave superconductors

    NASA Astrophysics Data System (ADS)

    Ortiz, L.; Varona, S.; Viyuela, O.; Martin-Delgado, M. A.

    2018-02-01

    We study the localization and oscillation properties of the Majorana fermions that arise in a two-dimensional electron gas (2DEG) with spin-orbit coupling (SOC) and a Zeeman field coupled with a d -wave superconductor. Despite the angular dependence of the d -wave pairing, localization and oscillation properties are found to be similar to the ones seen in conventional s -wave superconductors. In addition, we study a microscopic lattice version of the previous system that can be characterized by a topological invariant. We derive its real space representation that involves nearest and next-to-nearest-neighbors pairing. Finally, we show that the emerging chiral Majorana fermions are indeed robust against static disorder. This analysis has potential applications to quantum simulations and experiments in high-Tc superconductors.

  17. Modelling of thick composites using a layerwise laminate theory

    NASA Technical Reports Server (NTRS)

    Robbins, D. H., Jr.; Reddy, J. N.

    1993-01-01

    The layerwise laminate theory of Reddy (1987) is used to develop a layerwise, two-dimensional, displacement-based, finite element model of laminated composite plates that assumes a piecewise continuous distribution of the tranverse strains through the laminate thickness. The resulting layerwise finite element model is capable of computing interlaminar stresses and other localized effects with the same level of accuracy as a conventional 3D finite element model. Although the total number of degrees of freedom are comparable in both models, the layerwise model maintains a 2D-type data structure that provides several advantages over a conventional 3D finite element model, e.g. simplified input data, ease of mesh alteration, and faster element stiffness matrix formulation. Two sample problems are provided to illustrate the accuracy of the present model in computing interlaminar stresses for laminates in bending and extension.

  18. Two-dimensional straightness measurement based on optical knife-edge sensing

    NASA Astrophysics Data System (ADS)

    Wang, Chen; Zhong, Fenghe; Ellis, Jonathan D.

    2017-09-01

    Straightness error is a parasitic translation along a perpendicular direction to the primary displacement axis of a linear stage. The parasitic translations could be coupled into other primary displacement directions of a multi-axis platform. Hence, its measurement and compensation are critical in precision multi-axis metrology, calibration, and manufacturing. This paper presents a two-dimensional (2D) straightness measurement configuration based on 2D optical knife-edge sensing, which is simple, light-weight, compact, and easy to align. It applies a 2D optical knife-edge to manipulate the diffraction pattern sensed by a quadrant photodetector, whose output voltages could derive 2D straightness errors after a calibration process. This paper analyzes the physical model of the configuration and performs simulations and experiments to study the system sensitivity, measurement nonlinearity, and error sources. The results demonstrate that the proposed configuration has higher sensitivity and insensitive to beam's vibration, compared with the conventional configurations without using the knife-edge, and could achieve ±0.25 μ m within a ±40 μ m measurement range along a 40 mm primary axial motion.

  19. Evidence of a field-induced Berezinskii-Kosterlitz-Thouless scenario in a two-dimensional spin-dimer system.

    PubMed

    Tutsch, U; Wolf, B; Wessel, S; Postulka, L; Tsui, Y; Jeschke, H O; Opahle, I; Saha-Dasgupta, T; Valentí, R; Brühl, A; Remović-Langer, K; Kretz, T; Lerner, H-W; Wagner, M; Lang, M

    2014-10-27

    Two-dimensional (2D) systems with continuous symmetry lack conventional long-range order because of thermal fluctuations. Instead, as pointed out by Berezinskii, Kosterlitz and Thouless (BKT), 2D systems may exhibit so-called topological order driven by the binding of vortex-antivortex pairs. Signatures of the BKT mechanism have been observed in thin films, specially designed heterostructures, layered magnets and trapped atomic gases. Here we report on an alternative approach for studying BKT physics by using a chemically constructed multilayer magnet. The novelty of this approach is to use molecular-based pairs of spin S=½ ions, which, by the application of a magnetic field, provide a gas of magnetic excitations. On the basis of measurements of the magnetic susceptibility and specific heat on a so-designed material, combined with density functional theory and quantum Monte Carlo calculations, we conclude that these excitations have a distinct 2D character, consistent with a BKT scenario, implying the emergence of vortices and antivortices.

  20. Estimation of two-dimensional motion velocity using ultrasonic signals beamformed in Cartesian coordinate for measurement of cardiac dynamics

    NASA Astrophysics Data System (ADS)

    Kaburaki, Kaori; Mozumi, Michiya; Hasegawa, Hideyuki

    2018-07-01

    Methods for the estimation of two-dimensional (2D) velocity and displacement of physiological tissues are necessary for quantitative diagnosis. In echocardiography with a phased array probe, the accuracy in the estimation of the lateral motion is lower than that of the axial motion. To improve the accuracy in the estimation of the lateral motion, in the present study, the coordinate system for ultrasonic beamforming was changed from the conventional polar coordinate to the Cartesian coordinate. In a basic experiment, the motion velocity of a phantom, which was moved at a constant speed, was estimated by the conventional and proposed methods. The proposed method reduced the bias error and standard deviation in the estimated motion velocities. In an in vivo measurement, intracardiac blood flow was analyzed by the proposed method.

  1. Perceptual video quality comparison of 3DTV broadcasting using multimode service systems

    NASA Astrophysics Data System (ADS)

    Ok, Jiheon; Lee, Chulhee

    2015-05-01

    Multimode service (MMS) systems allow broadcasters to provide multichannel services using a single HD channel. Using these systems, it is possible to provide 3DTV programs that can be watched either in three-dimensional (3-D) or two-dimensional (2-D) modes with backward compatibility. In the MMS system for 3DTV broadcasting using the Advanced Television Systems Committee standards, the left and the right views are encoded using MPEG-2 and H.264, respectively, and then transmitted using a dual HD streaming format. The left view, encoded using MPEG-2, assures 2-D backward compatibility while the right view, encoded using H.264, can be optionally combined with the left view to generate stereoscopic 3-D views. We analyze 2-D and 3-D perceptual quality when using the MMS system by comparing items in the frame-compatible format (top-bottom), which is a conventional transmission scheme for 3-D broadcasting. We performed perceptual 2-D and 3-D video quality evaluation assuming 3DTV programs are encoded using the MMS system and top-bottom format. The results show that MMS systems can be preferable with regard to perceptual 2-D and 3-D quality and backward compatibility.

  2. Electrically tunable two-dimensional holographic polymer-dispersed liquid crystal grating with variable period

    NASA Astrophysics Data System (ADS)

    Wang, Kangni; Zheng, Jihong; Liu, Yourong; Gao, Hui; Zhuang, Songlin

    2017-06-01

    An electrically tunable two-dimensional (2D) holographic polymer-dispersed liquid crystal (H-PDLC) grating with variable period was fabricated by inserting a cylindrical lens in a conventional holographic interference beam. The interference between the plane wave and cylindrical wave resulting in varying intersection angles on the sample, combined with dual exposure along directions perpendicular to each other, generates a 2D H-PDLC grating with varied period. We have identified periods varying from 3.109 to 5.158 μm across a 16 mm width, with supporting theoretical equations for the period. The period exhibits a symmetrical square lattice in a diagonal direction, with an asymmetrical rectangular lattice in off-diagonal locations. With the first exposure at 2 s and the second exposure at 60 s, the phase separation between the prepolymer and liquid crystal was most evident. The diffraction properties and optic-electric characteristics were also studied. The diffraction efficiency of first-order light was observed to be 13.5% without external voltage, and the transmission efficiency of non-diffracted light was 78% with an applied voltage of 100 V. The proposed method provides the capability of generating period variation to the conventional holographic interference path, with potential application in diffractive optics such as tunable multi-wavelength organic lasing from a dye-doped 2D H-PDLC grating.

  3. Wide wavelength range tunable one-dimensional silicon nitride nano-grating guided mode resonance filter based on azimuthal rotation

    NASA Astrophysics Data System (ADS)

    Yukino, Ryoji; Sahoo, Pankaj K.; Sharma, Jaiyam; Takamura, Tsukasa; Joseph, Joby; Sandhu, Adarsh

    2017-01-01

    We describe wavelength tuning in a one dimensional (1D) silicon nitride nano-grating guided mode resonance (GMR) structure under conical mounting configuration of the device. When the GMR structure is rotated about the axis perpendicular to the surface of the device (azimuthal rotation) for light incident at oblique angles, the conditions for resonance are different than for conventional GMR structures under classical mounting. These resonance conditions enable tuning of the GMR peak position over a wide range of wavelengths. We experimental demonstrate tuning over a range of 375 nm between 500 nm˜875 nm. We present a theoretical model to explain the resonance conditions observed in our experiments and predict the peak positions with show excellent agreement with experiments. Our method for tuning wavelengths is simpler and more efficient than conventional procedures that employ variations in the design parameters of structures or conical mounting of two-dimensional (2D) GMR structures and enables a single 1D GMR device to function as a high efficiency wavelength filter over a wide range of wavelengths. We expect tunable filters based on this technique to be applicable in a wide range of fields including astronomy and biomedical imaging.

  4. Measuring strain and rotation fields at the dislocation core in graphene

    NASA Astrophysics Data System (ADS)

    Bonilla, L. L.; Carpio, A.; Gong, C.; Warner, J. H.

    2015-10-01

    Strain fields, dislocations, and defects may be used to control electronic properties of graphene. By using advanced imaging techniques with high-resolution transmission electron microscopes, we have measured the strain and rotation fields about dislocations in monolayer graphene with single-atom sensitivity. These fields differ qualitatively from those given by conventional linear elasticity. However, atom positions calculated from two-dimensional (2D) discrete elasticity and three-dimensional discrete periodized Föppl-von Kármán equations (dpFvKEs) yield fields close to experiments when determined by geometric phase analysis. 2D theories produce symmetric fields whereas those from experiments exhibit asymmetries. Numerical solutions of dpFvKEs provide strain and rotation fields of dislocation dipoles and pairs that also exhibit asymmetries and, compared with experiments, may yield information on out-of-plane displacements of atoms. While discrete theories need to be solved numerically, analytical formulas for strains and rotation about dislocations can be obtained from 2D Mindlin's hyperstress theory. These formulas are very useful for fitting experimental data and provide a template to ascertain the importance of nonlinear and nonplanar effects. Measuring the parameters of this theory, we find two characteristic lengths between three and four times the lattice spacings that control dilatation and rotation about a dislocation. At larger distances from the dislocation core, the elastic fields decay to those of conventional elasticity. Our results may be relevant for strain engineering in graphene and other 2D materials of current interest.

  5. A paper-based scaffold for enhanced osteogenic differentiation of equine adipose-derived stem cells.

    PubMed

    Petersen, Gayle F; Hilbert, Bryan J; Trope, Gareth D; Kalle, Wouter H J; Strappe, Padraig M

    2015-11-01

    We investigated the applicability of single layer paper-based scaffolds for the three-dimensional (3D) growth and osteogenic differentiation of equine adipose-derived stem cells (EADSC), with comparison against conventional two-dimensional (2D) culture on polystyrene tissue culture vessels. Viable culture of EADSC was achieved using paper-based scaffolds, with EADSC grown and differentiated in 3D culture retaining high cell viability (>94 %), similarly to EADSC in 2D culture. Osteogenic differentiation of EADSC was significantly enhanced in 3D culture, with Alizarin Red S staining and quantification demonstrating increased mineralisation (p < 0.0001), and an associated increase in expression of the osteogenic-specific markers alkaline phosphatase (p < 0.0001), osteopontin (p < 0.0001), and runx2 (p < 0.01). Furthermore, scanning electron microscopy revealed a spherical morphology of EADSC in 3D culture, compared to a flat morphology of EADSC in 2D culture. Single layer paper-based scaffolds provide an enhanced environment for the in vitro 3D growth and osteogenic differentiation of EADSC, with high cell viability, and a spherical morphology.

  6. Human red blood cell recognition enhancement with three-dimensional morphological features obtained by digital holographic imaging

    NASA Astrophysics Data System (ADS)

    Jaferzadeh, Keyvan; Moon, Inkyu

    2016-12-01

    The classification of erythrocytes plays an important role in the field of hematological diagnosis, specifically blood disorders. Since the biconcave shape of red blood cell (RBC) is altered during the different stages of hematological disorders, we believe that the three-dimensional (3-D) morphological features of erythrocyte provide better classification results than conventional two-dimensional (2-D) features. Therefore, we introduce a set of 3-D features related to the morphological and chemical properties of RBC profile and try to evaluate the discrimination power of these features against 2-D features with a neural network classifier. The 3-D features include erythrocyte surface area, volume, average cell thickness, sphericity index, sphericity coefficient and functionality factor, MCH and MCHSD, and two newly introduced features extracted from the ring section of RBC at the single-cell level. In contrast, the 2-D features are RBC projected surface area, perimeter, radius, elongation, and projected surface area to perimeter ratio. All features are obtained from images visualized by off-axis digital holographic microscopy with a numerical reconstruction algorithm, and four categories of biconcave (doughnut shape), flat-disc, stomatocyte, and echinospherocyte RBCs are interested. Our experimental results demonstrate that the 3-D features can be more useful in RBC classification than the 2-D features. Finally, we choose the best feature set of the 2-D and 3-D features by sequential forward feature selection technique, which yields better discrimination results. We believe that the final feature set evaluated with a neural network classification strategy can improve the RBC classification accuracy.

  7. Anomalous spin Josephson effect

    NASA Astrophysics Data System (ADS)

    Wang, Mei-Juan; Wang, Jun; Hao, Lei; Liu, Jun-Feng

    2016-10-01

    We report a theoretical study on the spin Josephson effect arising from the exchange coupling of the two ferromagnets (Fs), which are deposited on a two-dimensional (2D) time-reversal-invariant topological insulator. An anomalous spin supercurrent Js z˜sin(α +α0) is found to flow in between the two Fs and the ground state of the system is not limited to the magnetically collinear configuration (α =n π ,n is an integer) but determined by a controllable angle α0, where α is the crossed angle between the two F magnetizations. The angle α0 is the dynamic phase of the electrons traveling in between the two Fs and can be controlled electrically by a gate voltage. This anomalous spin Josephson effect, similar to the conventional φ0 superconductor junction, originates from the definite electron chirality of the helical edge states in the 2D topological insulator. These results indicate that the magnetic coupling in a topological system is different from the usual one in conventional materials.

  8. LBQ2D, Extending the Line Broadened Quasilinear Model to TAE-EP Interaction

    NASA Astrophysics Data System (ADS)

    Ghantous, Katy; Gorelenkov, Nikolai; Berk, Herbert

    2012-10-01

    The line broadened quasilinear model was proposed and tested on the one dimensional electrostatic case of the bump on tailfootnotetextH.L Berk, B. Breizman and J. Fitzpatrick, Nucl. Fusion, 35:1661, 1995 to study the wave particle interaction. In conventional quasilinear theory, the sea of overlapping modes evolve with time as the particle distribution function self consistently undergo diffusion in phase space. The line broadened quasilinear model is an extension to the conventional theory in a way that allows treatment of isolated modes as well as overlapping modes by broadening the resonant line in phase space. This makes it possible to treat the evolution of modes self consistently from onset to saturation in either case. We describe here the model denoted by LBQ2D which is an extension of the proposed one dimensional line broadened quasilinear model to the case of TAEs interacting with energetic particles in two dimensional phase space, energy as well as canonical angular momentum. We study the saturation of isolated modes in various regimes and present the analytical derivation and numerical results. Finally, we present, using ITER parameters, the case where multiple modes overlap and describe the techniques used for the numerical treatment.

  9. Multimodality 3D Superposition and Automated Whole Brain Tractography: Comprehensive Printing of the Functional Brain

    PubMed Central

    Brimley, Cameron J; Sublett, Jesna Mathew; Stefanowicz, Edward; Flora, Sarah; Mongelluzzo, Gino; Schirmer, Clemens M

    2017-01-01

    Whole brain tractography using diffusion tensor imaging (DTI) sequences can be used to map cerebral connectivity; however, this can be time-consuming due to the manual component of image manipulation required, calling for the need for a standardized, automated, and accurate fiber tracking protocol with automatic whole brain tractography (AWBT). Interpreting conventional two-dimensional (2D) images, such as computed tomography (CT) and magnetic resonance imaging (MRI), as an intraoperative three-dimensional (3D) environment is a difficult task with recognized inter-operator variability. Three-dimensional printing in neurosurgery has gained significant traction in the past decade, and as software, equipment, and practices become more refined, trainee education, surgical skills, research endeavors, innovation, patient education, and outcomes via valued care is projected to improve. We describe a novel multimodality 3D superposition (MMTS) technique, which fuses multiple imaging sequences alongside cerebral tractography into one patient-specific 3D printed model. Inferences on cost and improved outcomes fueled by encouraging patient engagement are explored. PMID:29201580

  10. Three-Dimensional, Fibrous Lithium Iron Phosphate Structures Deposited by Magnetron Sputtering.

    PubMed

    Bünting, Aiko; Uhlenbruck, Sven; Sebold, Doris; Buchkremer, H P; Vaßen, R

    2015-10-14

    Crystalline, three-dimensional (3D) structured lithium iron phosphate (LiFePO4) thin films with additional carbon are fabricated by a radio frequency (RF) magnetron-sputtering process in a single step. The 3D structured thin films are obtained at deposition temperatures of 600 °C and deposition times longer than 60 min by using a conventional sputtering setup. In contrast to glancing angle deposition (GLAD) techniques, no tilting of the substrate is required. Thin films are characterized by X-ray diffraction (XRD), Raman spectrospcopy, scanning electron microscopy (SEM), cyclic voltammetry (CV), and galvanostatic charging and discharging. The structured LiFePO4+C thin films consist of fibers that grow perpendicular to the substrate surface. The fibers have diameters up to 500 nm and crystallize in the desired olivine structure. The 3D structured thin films have superior electrochemical properties compared with dense two-dimensional (2D) LiFePO4 thin films and are, hence, very promising for application in 3D microbatteries.

  11. Multimodality 3D Superposition and Automated Whole Brain Tractography: Comprehensive Printing of the Functional Brain.

    PubMed

    Konakondla, Sanjay; Brimley, Cameron J; Sublett, Jesna Mathew; Stefanowicz, Edward; Flora, Sarah; Mongelluzzo, Gino; Schirmer, Clemens M

    2017-09-29

    Whole brain tractography using diffusion tensor imaging (DTI) sequences can be used to map cerebral connectivity; however, this can be time-consuming due to the manual component of image manipulation required, calling for the need for a standardized, automated, and accurate fiber tracking protocol with automatic whole brain tractography (AWBT). Interpreting conventional two-dimensional (2D) images, such as computed tomography (CT) and magnetic resonance imaging (MRI), as an intraoperative three-dimensional (3D) environment is a difficult task with recognized inter-operator variability. Three-dimensional printing in neurosurgery has gained significant traction in the past decade, and as software, equipment, and practices become more refined, trainee education, surgical skills, research endeavors, innovation, patient education, and outcomes via valued care is projected to improve. We describe a novel multimodality 3D superposition (MMTS) technique, which fuses multiple imaging sequences alongside cerebral tractography into one patient-specific 3D printed model. Inferences on cost and improved outcomes fueled by encouraging patient engagement are explored.

  12. k-t accelerated aortic 4D flow MRI in under two minutes: Feasibility and impact of resolution, k-space sampling patterns, and respiratory navigator gating on hemodynamic measurements.

    PubMed

    Bollache, Emilie; Barker, Alex J; Dolan, Ryan Scott; Carr, James C; van Ooij, Pim; Ahmadian, Rouzbeh; Powell, Alex; Collins, Jeremy D; Geiger, Julia; Markl, Michael

    2018-01-01

    To assess the performance of highly accelerated free-breathing aortic four-dimensional (4D) flow MRI acquired in under 2 minutes compared to conventional respiratory gated 4D flow. Eight k-t accelerated nongated 4D flow MRI (parallel MRI with extended and averaged generalized autocalibrating partially parallel acquisition kernels [PEAK GRAPPA], R = 5, TRes = 67.2 ms) using four k y -k z Cartesian sampling patterns (linear, center-out, out-center-out, random) and two spatial resolutions (SRes1 = 3.5 × 2.3 × 2.6 mm 3 , SRes2 = 4.5 × 2.3 × 2.6 mm 3 ) were compared in vitro (aortic coarctation flow phantom) and in 10 healthy volunteers, to conventional 4D flow (16 mm-navigator acceptance window; R = 2; TRes = 39.2 ms; SRes = 3.2 × 2.3 × 2.4 mm 3 ). The best k-t accelerated approach was further assessed in 10 patients with aortic disease. The k-t accelerated in vitro aortic peak flow (Qmax), net flow (Qnet), and peak velocity (Vmax) were lower than conventional 4D flow indices by ≤4.7%, ≤ 11%, and ≤22%, respectively. In vivo k-t accelerated acquisitions were significantly shorter but showed a trend to lower image quality compared to conventional 4D flow. Hemodynamic indices for linear and out-center-out k-space samplings were in agreement with conventional 4D flow (Qmax ≤ 13%, Qnet ≤ 13%, Vmax ≤ 17%, P > 0.05). Aortic 4D flow MRI in under 2 minutes is feasible with moderate underestimation of flow indices. Differences in k-space sampling patterns suggest an opportunity to mitigate image artifacts by an optimal trade-off between scan time, acceleration, and k-space sampling. Magn Reson Med 79:195-207, 2018. © 2018 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  13. van der Waals epitaxial two-dimensional CdSxSe(1-x) semiconductor alloys with tunable-composition and application to flexible optoelectronics.

    PubMed

    Xia, Jing; Zhao, Yun-Xuan; Wang, Lei; Li, Xuan-Ze; Gu, Yi-Yi; Cheng, Hua-Qiu; Meng, Xiang-Min

    2017-09-21

    Despite the substantial progress in the development of two-dimensional (2D) materials from conventional layered crystals, it still remains particularly challenging to produce high-quality 2D non-layered semiconductor alloys which may bring in some unique properties and new functions. In this work, the synthesis of well-oriented 2D non-layered CdS x Se (1-x) semiconductor alloy flakes with tunable compositions and optical properties is established. Structural analysis reveals that the 2D non-layered alloys follow an incommensurate van der Waals epitaxial growth pattern. Photoluminescence measurements show that the 2D alloys have composition-dependent direct bandgaps with the emission peak varying from 1.8 eV to 2.3 eV, coinciding well with the density functional theory calculations. Furthermore, photodetectors based on the CdS x Se (1-x) flakes exhibit a high photoresponsivity of 703 A W -1 with an external quantum efficiency of 1.94 × 10 3 and a response time of 39 ms. Flexible devices fabricated on a thin mica substrate display good mechanical stability upon repeated bending. This work suggests a facile and general method to produce high-quality 2D non-layered semiconductor alloys for next-generation optoelectronic devices.

  14. Three-dimensional Tissue Culture Based on Magnetic Cell Levitation

    PubMed Central

    Souza, Glauco R.; Molina, Jennifer R.; Raphael, Robert M.; Ozawa, Michael G.; Stark, Daniel J.; Levin, Carly S.; Bronk, Lawrence F.; Ananta, Jeyarama S.; Mandelin, Jami; Georgescu, Maria-Magdalena; Bankson, James A.; Gelovani, Juri G.

    2015-01-01

    Cell culture is an essential tool for drug discovery, tissue engineering, and stem cell research. Conventional tissue culture produces two-dimensional (2D) cell growth with gene expression, signaling, and morphology that can differ from those in vivo and thus compromise clinical relevancy1–5. Here we report a three-dimensional (3D) culture of cells based on magnetic levitation in the presence of hydrogels containing gold and magnetic iron oxide (MIO) nanoparticles plus filamentous bacteriophage. This methodology allows for control of cell mass geometry and guided, multicellular clustering of different cell types in co-culture through spatial variance of the magnetic field. Moreover, magnetic levitation of human glioblastoma cells demonstrates similar protein expression profiles to those observed in human tumor xenografts. Taken together, these results suggest levitated 3D culture with magnetized phage-based hydrogels more closely recapitulates in vivo protein expression and allows for long-term multi-cellular studies. PMID:20228788

  15. Theory and design of compact hybrid microphone arrays on two-dimensional planes for three-dimensional soundfield analysis.

    PubMed

    Chen, Hanchi; Abhayapala, Thushara D; Zhang, Wen

    2015-11-01

    Soundfield analysis based on spherical harmonic decomposition has been widely used in various applications; however, a drawback is the three-dimensional geometry of the microphone arrays. In this paper, a method to design two-dimensional planar microphone arrays that are capable of capturing three-dimensional (3D) spatial soundfields is proposed. Through the utilization of both omni-directional and first order microphones, the proposed microphone array is capable of measuring soundfield components that are undetectable to conventional planar omni-directional microphone arrays, thus providing the same functionality as 3D arrays designed for the same purpose. Simulations show that the accuracy of the planar microphone array is comparable to traditional spherical microphone arrays. Due to its compact shape, the proposed microphone array greatly increases the feasibility of 3D soundfield analysis techniques in real-world applications.

  16. Intercorrelated In-Plane and Out-of-Plane Ferroelectricity in Ultrathin Two-Dimensional Layered Semiconductor In2Se3.

    PubMed

    Cui, Chaojie; Hu, Wei-Jin; Yan, Xingxu; Addiego, Christopher; Gao, Wenpei; Wang, Yao; Wang, Zhe; Li, Linze; Cheng, Yingchun; Li, Peng; Zhang, Xixiang; Alshareef, Husam N; Wu, Tom; Zhu, Wenguang; Pan, Xiaoqing; Li, Lain-Jong

    2018-02-14

    Enriching the functionality of ferroelectric materials with visible-light sensitivity and multiaxial switching capability would open up new opportunities for their applications in advanced information storage with diverse signal manipulation functions. We report experimental observations of robust intralayer ferroelectricity in two-dimensional (2D) van der Waals layered α-In 2 Se 3 ultrathin flakes at room temperature. Distinct from other 2D and conventional ferroelectrics, In 2 Se 3 exhibits intrinsically intercorrelated out-of-plane and in-plane polarization, where the reversal of the out-of-plane polarization by a vertical electric field also induces the rotation of the in-plane polarization. On the basis of the in-plane switchable diode effect and the narrow bandgap (∼1.3 eV) of ferroelectric In 2 Se 3 , a prototypical nonvolatile memory device, which can be manipulated both by electric field and visible light illumination, is demonstrated for advancing data storage technologies.

  17. Evaluation of tricuspid annular plane systolic excursion measured by two-dimensional echocardiography in healthy dogs: repeatability, reference intervals, and comparison with M-mode assessment.

    PubMed

    Visser, L C; Sintov, D J; Oldach, M S

    2018-06-01

    We sought to determine the feasibility, measurement variability, and within-day repeatability of tricuspid annular plane systolic excursion (TAPSE) measured by two-dimensional echocardiography (2D TAPSE), generate reference intervals for 2D TAPSE, assess agreement and correlation between 2D TAPSE and the conventional TAPSE measured by M-mode echocardiography (MM TAPSE), and to assess the ability of 2D TAPSE to track a drug-induced decrease in right ventricular (RV) function compared with MM TAPSE. Seventy healthy privately owned dogs of varying bodyweight. All dogs underwent a single echocardiogram to quantify RV function by both TAPSE methods. Ten dogs underwent a second echocardiogram 2-3 h after the first to assess within-day repeatability, and 20 different dogs underwent a second echocardiogram 3-h after atenolol (1 mg/kg per os (PO)). Intraobserver and interobserver measurement variabilities were assessed in 12 randomly selected studies using coefficients of variation. Statistical relationships between 2D TAPSE and bodyweight, gender, heart rate, and age were explored. 2D TAPSE could be measured in all dogs. Coefficients of variation for repeatability and measurement variability were low (≤12%). Bodyweight-dependent reference intervals for 2D TAPSE were generated using allometric scaling. TAPSE methods were strongly correlated (r = 0.72; p<0.0001) but 2D TAPSE measured consistently less than MM TAPSE (-1.6 [2.2] mm) when analyzed by Bland-Altman's method. Both TAPSE methods were significantly (p≤0.014) reduced after atenolol but percent decrease in 2D TAPSE (-16.2 [9.3]%) was significantly greater (p=0.03) than MM TAPSE (-7.5 [13.8]%). Two-dimensional echocardiography TAPSE appears well suited for clinical assessment of RV function. The TAPSE methods should not be used interchangeably. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. 3D Medical Collaboration Technology to Enhance Emergency Healthcare

    PubMed Central

    Welch, Greg; Sonnenwald, Diane H; Fuchs, Henry; Cairns, Bruce; Mayer-Patel, Ketan; Söderholm, Hanna M.; Yang, Ruigang; State, Andrei; Towles, Herman; Ilie, Adrian; Ampalam, Manoj; Krishnan, Srinivas; Noel, Vincent; Noland, Michael; Manning, James E.

    2009-01-01

    Two-dimensional (2D) videoconferencing has been explored widely in the past 15–20 years to support collaboration in healthcare. Two issues that arise in most evaluations of 2D videoconferencing in telemedicine are the difficulty obtaining optimal camera views and poor depth perception. To address these problems, we are exploring the use of a small array of cameras to reconstruct dynamic three-dimensional (3D) views of a remote environment and of events taking place within. The 3D views could be sent across wired or wireless networks to remote healthcare professionals equipped with fixed displays or with mobile devices such as personal digital assistants (PDAs). The remote professionals’ viewpoints could be specified manually or automatically (continuously) via user head or PDA tracking, giving the remote viewers head-slaved or hand-slaved virtual cameras for monoscopic or stereoscopic viewing of the dynamic reconstructions. We call this idea remote 3D medical collaboration. In this article we motivate and explain the vision for 3D medical collaboration technology; we describe the relevant computer vision, computer graphics, display, and networking research; we present a proof-of-concept prototype system; and we present evaluation results supporting the general hypothesis that 3D remote medical collaboration technology could offer benefits over conventional 2D videoconferencing in emergency healthcare. PMID:19521951

  19. 3D medical collaboration technology to enhance emergency healthcare.

    PubMed

    Welch, Gregory F; Sonnenwald, Diane H; Fuchs, Henry; Cairns, Bruce; Mayer-Patel, Ketan; Söderholm, Hanna M; Yang, Ruigang; State, Andrei; Towles, Herman; Ilie, Adrian; Ampalam, Manoj K; Krishnan, Srinivas; Noel, Vincent; Noland, Michael; Manning, James E

    2009-04-19

    Two-dimensional (2D) videoconferencing has been explored widely in the past 15-20 years to support collaboration in healthcare. Two issues that arise in most evaluations of 2D videoconferencing in telemedicine are the difficulty obtaining optimal camera views and poor depth perception. To address these problems, we are exploring the use of a small array of cameras to reconstruct dynamic three-dimensional (3D) views of a remote environment and of events taking place within. The 3D views could be sent across wired or wireless networks to remote healthcare professionals equipped with fixed displays or with mobile devices such as personal digital assistants (PDAs). The remote professionals' viewpoints could be specified manually or automatically (continuously) via user head or PDA tracking, giving the remote viewers head-slaved or hand-slaved virtual cameras for monoscopic or stereoscopic viewing of the dynamic reconstructions. We call this idea remote 3D medical collaboration. In this article we motivate and explain the vision for 3D medical collaboration technology; we describe the relevant computer vision, computer graphics, display, and networking research; we present a proof-of-concept prototype system; and we present evaluation results supporting the general hypothesis that 3D remote medical collaboration technology could offer benefits over conventional 2D videoconferencing in emergency healthcare.

  20. Computational fluid dynamics (CFD) study on the fetal aortic coarctation

    NASA Astrophysics Data System (ADS)

    Zhou, Yue; Zhang, Yutao; Wang, Jingying

    2018-03-01

    Blood flows in normal and coarctate fetal aortas are simulated by the CFD technique using T-rex grids. The three-dimensional (3-D) digital model of the fetal arota is reconstructed by the computer-aided design (CAD) software based on two-dimensional (2-D) ultrasono tomographic images. Simulation results displays the development and enhancement of the secondary flow structure in the coarctate fetal arota. As the diameter narrow ratio rises greater than 45%, the pressure and wall shear stress (WSS) of the aorta arch increase exponentially, which is consistent with the conventional clinical concept. The present study also demonstrates that CFD is a very promising assistant technique to investigate human cardiovascular diseases.

  1. Secure positioning technique based on encrypted visible light map for smart indoor service

    NASA Astrophysics Data System (ADS)

    Lee, Yong Up; Jung, Gillyoung

    2018-03-01

    Indoor visible light (VL) positioning systems for smart indoor services are negatively affected by both cochannel interference from adjacent light sources and VL reception position irregularity in the three-dimensional (3-D) VL channel. A secure positioning methodology based on a two-dimensional (2-D) encrypted VL map is proposed, implemented in prototypes of the specific positioning system, and analyzed based on performance tests. The proposed positioning technique enhances the positioning performance by more than 21.7% compared to the conventional method in real VL positioning tests. Further, the pseudonoise code is found to be the optimal encryption key for secure VL positioning for this smart indoor service.

  2. A Generalization of Theory for Two-Dimensional Fluorescence Recovery after Photobleaching Applicable to Confocal Laser Scanning Microscopes

    PubMed Central

    Kang, Minchul; Day, Charles A.; Drake, Kimberly; Kenworthy, Anne K.; DiBenedetto, Emmanuele

    2009-01-01

    Abstract Fluorescence recovery after photobleaching (FRAP) using confocal laser scanning microscopes (confocal FRAP) has become a valuable technique for studying the diffusion of biomolecules in cells. However, two-dimensional confocal FRAP sometimes yields results that vary with experimental setups, such as different bleaching protocols and bleaching spot sizes. In addition, when confocal FRAP is used to measure diffusion coefficients (D) for fast diffusing molecules, it often yields D-values that are one or two orders-of-magnitude smaller than that predicted theoretically or measured by alternative methods such as fluorescence correlation spectroscopy. Recently, it was demonstrated that this underestimation of D can be corrected by taking diffusion during photobleaching into consideration. However, there is currently no consensus on confocal FRAP theory, and no efforts have been made to unify theories on conventional and confocal FRAP. To this end, we generalized conventional FRAP theory to incorporate diffusion during photobleaching so that analysis by conventional FRAP theory for a circular region of interest is easily applicable to confocal FRAP. Finally, we demonstrate the accuracy of these new (to our knowledge) formulae by measuring D for soluble enhanced green fluorescent protein in aqueous glycerol solution and in the cytoplasm and nucleus of COS7 cells. PMID:19720039

  3. Fast Shear Compounding Using Robust Two-dimensional Shear Wave Speed Calculation and Multi-directional Filtering

    PubMed Central

    Song, Pengfei; Manduca, Armando; Zhao, Heng; Urban, Matthew W.; Greenleaf, James F.; Chen, Shigao

    2014-01-01

    A fast shear compounding method was developed in this study using only one shear wave push-detect cycle, such that the shear wave imaging frame rate is preserved and motion artifacts are minimized. The proposed method is composed of the following steps: 1. applying a comb-push to produce multiple differently angled shear waves at different spatial locations simultaneously; 2. decomposing the complex shear wave field into individual shear wave fields with differently oriented shear waves using a multi-directional filter; 3. using a robust two-dimensional (2D) shear wave speed calculation to reconstruct 2D shear elasticity maps from each filter direction; 4. compounding these 2D maps from different directions into a final map. An inclusion phantom study showed that the fast shear compounding method could achieve comparable performance to conventional shear compounding without sacrificing the imaging frame rate. A multi-inclusion phantom experiment showed that the fast shear compounding method could provide a full field-of-view (FOV), 2D, and compounded shear elasticity map with three types of inclusions clearly resolved and stiffness measurements showing excellent agreement to the nominal values. PMID:24613636

  4. Three-dimensional virtual planning in orthognathic surgery enhances the accuracy of soft tissue prediction.

    PubMed

    Van Hemelen, Geert; Van Genechten, Maarten; Renier, Lieven; Desmedt, Maria; Verbruggen, Elric; Nadjmi, Nasser

    2015-07-01

    Throughout the history of computing, shortening the gap between the physical and digital world behind the screen has always been strived for. Recent advances in three-dimensional (3D) virtual surgery programs have reduced this gap significantly. Although 3D assisted surgery is now widely available for orthognathic surgery, one might still argue whether a 3D virtual planning approach is a better alternative to a conventional two-dimensional (2D) planning technique. The purpose of this study was to compare the accuracy of a traditional 2D technique and a 3D computer-aided prediction method. A double blind randomised prospective study was performed to compare the prediction accuracy of a traditional 2D planning technique versus a 3D computer-aided planning approach. The accuracy of the hard and soft tissue profile predictions using both planning methods was investigated. There was a statistically significant difference between 2D and 3D soft tissue planning (p < 0.05). The statistically significant difference found between 2D and 3D planning and the actual soft tissue outcome was not confirmed by a statistically significant difference between methods. The 3D planning approach provides more accurate soft tissue planning. However, the 2D orthognathic planning is comparable to 3D planning when it comes to hard tissue planning. This study provides relevant results for choosing between 3D and 2D planning in clinical practice. Copyright © 2015 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  5. FRET Imaging in Three-dimensional Hydrogels

    PubMed Central

    Taboas, Juan M.

    2016-01-01

    Imaging of Förster resonance energy transfer (FRET) is a powerful tool for examining cell biology in real-time. Studies utilizing FRET commonly employ two-dimensional (2D) culture, which does not mimic the three-dimensional (3D) cellular microenvironment. A method to perform quenched emission FRET imaging using conventional widefield epifluorescence microscopy of cells within a 3D hydrogel environment is presented. Here an analysis method for ratiometric FRET probes that yields linear ratios over the probe activation range is described. Measurement of intracellular cyclic adenosine monophosphate (cAMP) levels is demonstrated in chondrocytes under forskolin stimulation using a probe for EPAC1 activation (ICUE1) and the ability to detect differences in cAMP signaling dependent on hydrogel material type, herein a photocrosslinking hydrogel (PC-gel, polyethylene glycol dimethacrylate) and a thermoresponsive hydrogel (TR-gel). Compared with 2D FRET methods, this method requires little additional work. Laboratories already utilizing FRET imaging in 2D can easily adopt this method to perform cellular studies in a 3D microenvironment. It can further be applied to high throughput drug screening in engineered 3D microtissues. Additionally, it is compatible with other forms of FRET imaging, such as anisotropy measurement and fluorescence lifetime imaging (FLIM), and with advanced microscopy platforms using confocal, pulsed, or modulated illumination. PMID:27500354

  6. Comparison of scoliosis measurements based on three-dimensional vertebra vectors and conventional two-dimensional measurements: advantages in evaluation of prognosis and surgical results.

    PubMed

    Illés, Tamás; Somoskeöy, Szabolcs

    2013-06-01

    A new concept of vertebra vectors based on spinal three-dimensional (3D) reconstructions of images from the EOS system, a new low-dose X-ray imaging device, was recently proposed to facilitate interpretation of EOS 3D data, especially with regard to horizontal plane images. This retrospective study was aimed at the evaluation of the spinal layout visualized by EOS 3D and vertebra vectors before and after surgical correction, the comparison of scoliotic spine measurement values based on 3D vertebra vectors with measurements using conventional two-dimensional (2D) methods, and an evaluation of horizontal plane vector parameters for their relationship with the magnitude of scoliotic deformity. 95 patients with adolescent idiopathic scoliosis operated according to the Cotrel-Dubousset principle were subjected to EOS X-ray examinations pre- and postoperatively, followed by 3D reconstructions and generation of vertebra vectors in a calibrated coordinate system to calculate vector coordinates and parameters, as published earlier. Differences in values of conventional 2D Cobb methods and methods based on vertebra vectors were evaluated by means comparison T test and relationship of corresponding parameters was analysed by bivariate correlation. Relationship of horizontal plane vector parameters with the magnitude of scoliotic deformities and results of surgical correction were analysed by Pearson correlation and linear regression. In comparison to manual 2D methods, a very close relationship was detectable in vertebra vector-based curvature data for coronal curves (preop r 0.950, postop r 0.935) and thoracic kyphosis (preop r 0.893, postop r 0.896), while the found small difference in L1-L5 lordosis values (preop r 0.763, postop r 0.809) was shown to be strongly related to the magnitude of corresponding L5 wedge. The correlation analysis results revealed strong correlation between the magnitude of scoliosis and the lateral translation of apical vertebra in horizontal plane. The horizontal plane coordinates of the terminal and initial points of apical vertebra vectors represent this (r 0.701; r 0.667). Less strong correlation was detected in the axial rotation of apical vertebras and the magnitudes of the frontal curves (r 0.459). Vertebra vectors provide a key opportunity to visualize spinal deformities in all three planes simultaneously. Measurement methods based on vertebral vectors proved to be just as accurate and reliable as conventional measurement methods for coronal and sagittal plane parameters. In addition, the horizontal plane display of the curves can be studied using the same vertebra vectors. Based on the vertebra vectors data, during the surgical treatment of spinal deformities, the diminution of the lateral translation of the vertebras seems to be more important in the results of the surgical correction than the correction of the axial rotation.

  7. Engineering cancer microenvironments for in vitro 3-D tumor models

    PubMed Central

    Asghar, Waseem; El Assal, Rami; Shafiee, Hadi; Pitteri, Sharon; Paulmurugan, Ramasamy; Demirci, Utkan

    2017-01-01

    The natural microenvironment of tumors is composed of extracellular matrix (ECM), blood vasculature, and supporting stromal cells. The physical characteristics of ECM as well as the cellular components play a vital role in controlling cancer cell proliferation, apoptosis, metabolism, and differentiation. To mimic the tumor microenvironment outside the human body for drug testing, two-dimensional (2-D) and murine tumor models are routinely used. Although these conventional approaches are employed in preclinical studies, they still present challenges. For example, murine tumor models are expensive and difficult to adopt for routine drug screening. On the other hand, 2-D in vitro models are simple to perform, but they do not recapitulate natural tumor microenvironment, because they do not capture important three-dimensional (3-D) cell–cell, cell–matrix signaling pathways, and multi-cellular heterogeneous components of the tumor microenvironment such as stromal and immune cells. The three-dimensional (3-D) in vitro tumor models aim to closely mimic cancer microenvironments and have emerged as an alternative to routinely used methods for drug screening. Herein, we review recent advances in 3-D tumor model generation and highlight directions for future applications in drug testing. PMID:28458612

  8. 3D digital image correlation using single color camera pseudo-stereo system

    NASA Astrophysics Data System (ADS)

    Li, Junrui; Dan, Xizuo; Xu, Wan; Wang, Yonghong; Yang, Guobiao; Yang, Lianxiang

    2017-10-01

    Three dimensional digital image correlation (3D-DIC) has been widely used by industry to measure the 3D contour and whole-field displacement/strain. In this paper, a novel single color camera 3D-DIC setup, using a reflection-based pseudo-stereo system, is proposed. Compared to the conventional single camera pseudo-stereo system, which splits the CCD sensor into two halves to capture the stereo views, the proposed system achieves both views using the whole CCD chip and without reducing the spatial resolution. In addition, similarly to the conventional 3D-DIC system, the center of the two views stands in the center of the CCD chip, which minimizes the image distortion relative to the conventional pseudo-stereo system. The two overlapped views in the CCD are separated by the color domain, and the standard 3D-DIC algorithm can be utilized directly to perform the evaluation. The system's principle and experimental setup are described in detail, and multiple tests are performed to validate the system.

  9. 4D spiral imaging of flows in stenotic phantoms and subjects with aortic stenosis.

    PubMed

    Negahdar, M J; Kadbi, Mo; Kendrick, Michael; Stoddard, Marcus F; Amini, Amir A

    2016-03-01

    The utility of four-dimensional (4D) spiral flow in imaging of stenotic flows in both phantoms and human subjects with aortic stenosis is investigated. The method performs 4D flow acquisitions through a stack of interleaved spiral k-space readouts. Relative to conventional 4D flow, which performs Cartesian readout, the method has reduced echo time. Thus, reduced flow artifacts are observed when imaging high-speed stenotic flows. Four-dimensional spiral flow also provides significant savings in scan times relative to conventional 4D flow. In vitro experiments were performed under both steady and pulsatile flows in a phantom model of severe stenosis (one inch diameter at the inlet, with 87% area reduction at the throat of the stenosis) while imaging a 6-cm axial extent of the phantom, which included the Gaussian-shaped stenotic narrowing. In all cases, gradient strength and slew rate for standard clinical acquisitions, and identical field of view and resolution were used. For low steady flow rates, quantitative and qualitative results showed a similar level of accuracy between 4D spiral flow (echo time [TE] = 2 ms, scan time = 40 s) and conventional 4D flow (TE = 3.6 ms, scan time = 1:01 min). However, in the case of high steady flow rates, 4D spiral flow (TE = 1.57 ms, scan time = 38 s) showed better visualization and accuracy as compared to conventional 4D flow (TE = 3.2 ms, scan time = 51 s). At low pulsatile flow rates, a good agreement was observed between 4D spiral flow (TE = 2 ms, scan time = 10:26 min) and conventional 4D flow (TE = 3.6 ms, scan time = 14:20 min). However, in the case of high flow-rate pulsatile flows, 4D spiral flow (TE = 1.57 ms, scan time = 10:26 min) demonstrated better visualization as compared to conventional 4D flow (TE = 3.2 ms, scan time = 14:20 min). The feasibility of 4D spiral flow was also investigated in five normal volunteers and four subjects with mild-to-moderate aortic stenosis. The approach achieved TE = 1.68 ms and scan time = 3:44 min. The conventional sequence achieved TE = 2.9 ms and scan time = 5:23 min. In subjects with aortic stenosis, we also compared both MRI methods with Doppler ultrasound (US) in the measurement of peak velocity, time to peak systolic velocity, and eject time. Bland-Altman analysis revealed that, when comparing peak velocities, the discrepancy between Doppler US and 4D spiral flow was significantly less than the discrepancy between Doppler and 4D Cartesian flow (2.75 cm/s vs. 10.25 cm/s), whereas the two MR methods were comparable (-5.75 s vs. -6 s) for time to peak. However, for the estimation of eject time, relative to Doppler US, the discrepancy for 4D conventional flow was smaller than that of 4D spiral flow (-16.25 s vs. -20 s). Relative to conventional 4D flow, 4D spiral flow achieves substantial reductions in both the TE and scan times; therefore, utility for it should be sought in a variety of in vivo and complex flow imaging applications. © 2015 Wiley Periodicals, Inc.

  10. TGF-β1 gene-engineered mesenchymal stem cells induce rat cartilage regeneration using nonviral gene vector.

    PubMed

    He, Cai-Xia; Zhang, Tian-Yuan; Miao, Pei-Hong; Hu, Zhong-Jie; Han, Min; Tabata, Yasuhiko; Hu, Yu-Lan; Gao, Jian-Qing

    2012-01-01

    This study evaluated the potential of utilizing transfected pTGFβ-1 gene-engineered rat mesenchymal stem cells (MSCs) using nonviral vector to promote cartilage regeneration. Pullulan-spermine was used as the nonviral gene vector and gelatin sponge was used as the scaffold. MSCs were engineered with TGF-β1 gene with either the three-dimensional (3D) reverse transfection system or the two-dimensional (2D) conventional transfection system. For the 3D reverse transfection system, pullulan-spermine/pTGF-β1 gene complexes were immobilized to the gelatin sponge, followed by the seeding of MSCs. Pullulan-spermine/pTGF-β1 gene complexes were delivered to MSCs cultured in the plate to perform the 2D conventional transfection system, and then MSCs were seeded to the gelatin sponge. Then, TGF-β1 gene-transfected MSC seeded gelatin sponge was implanted to the full-thickness cartilage defect. Compared with the control group, both groups of TGF-β1 gene-engineered MSCs improved cartilage regeneration through optical observation and histology staining. So, with pullulan-spermine as the nonviral vector, TGF-β1-gene engineered MSCs can induce cartilage regeneration in vivo. Copyright © 2012 International Union of Biochemistry and Molecular Biology, Inc.

  11. Two-Dimensional Optical Processing Of One-Dimensional Acoustic Data

    NASA Astrophysics Data System (ADS)

    Szu, Harold H.

    1982-10-01

    The concept of carrier-mean-frequency-selective convolution is introduced to solve the undersea problem of passive acoustic surveillance (PAS) and compared with the conventional notion of difference-frequency Doppler-corrected correlation. The former results in the cross-Wigner distribution function (WD), and the latter results in the cross-ambiguity function (AF). When the persistent time of a sound emitter is more important than the characteristic tone of the sound emitter, WD will be more useful than AF for PAS activity detection, and vice versa. Their mutual relationships with the instantaneous power spectrum (IPS) show the importance of the phase information that must be kept in any 2-D representation of a 1 -D signal. If a square-law detector is used, or an unsymmetric version of WD or AF is gener-ated, then one must produce the other 2-D representations directly, rather than transform one to the other.

  12. New on-line separation workflow of microbial metabolites via hyphenation of analytical and preparative comprehensive two-dimensional liquid chromatography.

    PubMed

    Yan, Xia; Wang, Li-Juan; Wu, Zhen; Wu, Yun-Long; Liu, Xiu-Xiu; Chang, Fang-Rong; Fang, Mei-Juan; Qiu, Ying-Kun

    2016-10-15

    Microbial metabolites represent an important source of bioactive natural products, but always exhibit diverse of chemical structures or complicated chemical composition with low active ingredients content. Traditional separation methods rely mainly on off-line combination of open-column chromatography and preparative high performance liquid chromatography (HPLC). However, the multi-step and prolonged separation procedure might lead to exposure to oxygen and structural transformation of metabolites. In the present work, a new two-dimensional separation workflow for fast isolation and analysis of microbial metabolites from Chaetomium globosum SNSHI-5, a cytotoxic fungus derived from extreme environment. The advantage of this analytical comprehensive two-dimensional liquid chromatography (2D-LC) lies on its ability to analyze the composition of the metabolites, and to optimize the separation conditions for the preparative 2D-LC. Furthermore, gram scale preparative 2D-LC separation of the crude fungus extract could be performed on a medium-pressure liquid chromatograph×preparative high-performance liquid chromatography system, under the optimized condition. Interestingly, 12 cytochalasan derivatives, including two new compounds named cytoglobosin Ab (3) and isochaetoglobosin Db (8), were successfully obtained with high purity in a short period of time. The structures of the isolated metabolites were comprehensively characterized by HR ESI-MS and NMR. To be highlighted, this is the first report on the combination of analytical and preparative 2D-LC for the separation of microbial metabolites. The new workflow exhibited apparent advantages in separation efficiency and sample treatment capacity compared with conventional methods. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Sensor assembly method using silicon interposer with trenches for three-dimensional binocular range sensors

    NASA Astrophysics Data System (ADS)

    Nakajima, Kazuhiro; Yamamoto, Yuji; Arima, Yutaka

    2018-04-01

    To easily assemble a three-dimensional binocular range sensor, we devised an alignment method for two image sensors using a silicon interposer with trenches. The trenches were formed using deep reactive ion etching (RIE) equipment. We produced a three-dimensional (3D) range sensor using the method and experimentally confirmed that sufficient alignment accuracy was realized. It was confirmed that the alignment accuracy of the two image sensors when using the proposed method is more than twice that of the alignment assembly method on a conventional board. In addition, as a result of evaluating the deterioration of the detection performance caused by the alignment accuracy, it was confirmed that the vertical deviation between the corresponding pixels in the two image sensors is substantially proportional to the decrease in detection performance. Therefore, we confirmed that the proposed method can realize more than twice the detection performance of the conventional method. Through these evaluations, the effectiveness of the 3D binocular range sensor aligned by the silicon interposer with the trenches was confirmed.

  14. Osteogenic differentiation is inhibited and angiogenic expression is enhanced in MC3T3-E1 cells cultured on three-dimensional scaffolds.

    PubMed

    Jarrahy, Reza; Huang, Weibiao; Rudkin, George H; Lee, Jane M; Ishida, Kenji; Berry, Micah D; Sukkarieh, Modar; Wu, Benjamin M; Yamaguchi, Dean T; Miller, Timothy A

    2005-08-01

    Osteogenic differentiation of osteoprogenitor cells in three-dimensional (3D) in vitro culture remains poorly understood. Using quantitative real-time RT-PCR techniques, we examined mRNA expression of alkaline phosphatase, osteocalcin, and vascular endothelial growth factor (VEGF) in murine preosteoblastic MC3T3-E1 cells cultured for 48 h and 14 days on conventional two-dimensional (2D) poly(l-lactide-co-glycolide) (PLGA) films and 3D PLGA scaffolds. Differences in VEGF secretion and function between 2D and 3D culture systems were examined using Western blots and an in vitro Matrigel-based angiogenesis assay. Expression of both alkaline phosphatase and osteocalcin in cells cultured on 3D scaffolds was significantly downregulated relative to 2D controls in 48 h and 14 day cultures. In contrast, elevated levels of VEGF expression in 3D culture were noted at every time point in short- and long-term culture. VEGF protein secretion in 3D cultures was triple the amount of secretion observed in 2D controls. Conditioned medium from 3D cultures induced an enhanced level of angiogenic activity, as evidenced by increases in branch points observed in in vitro angiogenesis assays. These results collectively indicate that MC3T3-E1 cells commit to osteogenic differentiation at a slower rate when cultured on 3D PLGA scaffolds and that VEGF is preferentially expressed by these cells when they are cultured in three dimensions.

  15. Effects of increased left ventricular wall thickness on the myocardium in severe aortic stenosis with normal left ventricular ejection fraction: Two- and three-dimensional multilayer speckle tracking echocardiography.

    PubMed

    Cho, Eun Jeong; Park, Sung-Ji; Kim, Eun Kyoung; Lee, Ga Yeon; Chang, Sung-A; Choi, Jin-Oh; Lee, Sang-Chol; Park, Seung Woo

    2017-04-01

    The aim of this study was to determine the capability of real time three-dimensional echocardiography (RT3DE) and two-dimensional (2D) multilayer speckle tracking echocardiography (MSTE) for evaluation of early myocardial dysfunction triggered by increased left ventricular (LV) wall thickness in severe aortic stenosis (AS) with normal LV ejection fraction (EF≥55%). Conventional, RT3D STE and 2D MSTE were performed in 45 patients (mean 68.9±9.0 years) with severe AS (aortic valve area <1 cm 2 , aortic velocity Vmax >4 m/s or mean PG >40 mm Hg) and normal left ventricular ejection fraction (LVEF) without overt coronary artery disease and in 18 age-, sex-matched healthy controls. Global longitudinal strain (GLS), global circumferential strain (GCS), global area strain (GAS), and global radial strain (GRS) were calculated using RT3DE and MSTE. The severe AS group had lower 3D GLS, GRS, GAS and 2D epicardium, and mid-wall and endocardium GLS compared to healthy controls. In MSTE analysis, 2D LS and CS values decreased from the endocardial layer toward the epicardial layer. Severe AS patients with increased LV wall thickness had lower 3D GLS and 2D epicardium, and mid-wall and endocardium GLS compared with severe AS patients without LV wall thickening. GLS on RT3D STE was correlated with GLS on 2D MSTE, left ventricular mass index, LVEF, left atrial volume index, and lnNT-proBNP. RT3DE and 2D MSTE can be used to identify subtle contractile dysfunction triggered by increased LV wall thickness in severe AS with normal LVEF. Therefore, RT3D STE and 2D MSTE may provide additional information that can facilitate decision-making regarding severe AS patients with increased LV wall thickness and normal LV function. © 2017, Wiley Periodicals, Inc.

  16. Using 2D correlation analysis to enhance spectral information available from highly spatially resolved AFM-IR spectra

    NASA Astrophysics Data System (ADS)

    Marcott, Curtis; Lo, Michael; Hu, Qichi; Kjoller, Kevin; Boskey, Adele; Noda, Isao

    2014-07-01

    The recent combination of atomic force microscopy and infrared spectroscopy (AFM-IR) has led to the ability to obtain IR spectra with nanoscale spatial resolution, nearly two orders-of-magnitude better than conventional Fourier transform infrared (FT-IR) microspectroscopy. This advanced methodology can lead to significantly sharper spectral features than are typically seen in conventional IR spectra of inhomogeneous materials, where a wider range of molecular environments are coaveraged by the larger sample cross section being probed. In this work, two-dimensional (2D) correlation analysis is used to examine position sensitive spectral variations in datasets of closely spaced AFM-IR spectra. This analysis can reveal new key insights, providing a better understanding of the new spectral information that was previously hidden under broader overlapped spectral features. Two examples of the utility of this new approach are presented. Two-dimensional correlation analysis of a set of AFM-IR spectra were collected at 200-nm increments along a line through a nucleation site generated by remelting a small spot on a thin film of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). There are two different crystalline carbonyl band components near 1720 cm-1 that sequentially disappear before a band at 1740 cm-1 due to more disordered material appears. In the second example, 2D correlation analysis of a series of AFM-IR spectra spaced every 1 μm of a thin cross section of a bone sample measured outward from an osteon center of bone growth. There are many changes in the amide I and phosphate band contours, suggesting changes in the bone structure are occurring as the bone matures.

  17. Engineering two-dimensional superconductivity and Rashba spin–orbit coupling in LaAlO 3/SrTiO 3 quantum wells by selective orbital occupancy

    DOE PAGES

    Herranz, Gervasi; Singh, Gyanendra; Bergeal, Nicolas; ...

    2015-01-13

    We find the discovery of two-dimensional electron gases (2DEGs) at oxide interfaces—involving electrons in narrow d-bands—has broken new ground, enabling the access to correlated states that are unreachable in conventional semiconductors based on s- and p- electrons. There is a growing consensus that emerging properties at these novel quantum wells—such as 2D superconductivity and magnetism—are intimately connected to specific orbital symmetries in the 2DEG sub-band structure. Here we show that crystal orientation allows selective orbital occupancy, disclosing unprecedented ways to tailor the 2DEG properties. By carrying out electrostatic gating experiments in ​LaAlO 3/​SrTiO 3 wells of different crystal orientations, wemore » show that the spatial extension and anisotropy of the 2D superconductivity and the Rashba spin–orbit field can be largely modulated by controlling the 2DEG sub-band filling. Such an orientational tuning expands the possibilities for electronic engineering of 2DEGs at ​LaAlO 3/​SrTiO 3 interfaces.« less

  18. Electron Transport in Quasi-Two-Dimensional Porous Network of Titania Nanoparticles, Incorporating Electrical and Optical Advantages in Dye-Sensitized Solar Cells.

    PubMed

    Javadi, Mohammad; Alizadeh, Saba; Khosravi, Yusef; Abdi, Yaser

    2016-11-04

    The integration of fast electron transport and large effective surface area is critical to attaining higher gains in the nanostructured photovoltaic devices. Here, we report facilitated electron transport in the quasi-two-dimensional (Q2D) porous TiO 2 . Liquid electrolyte dye-sensitized solar cells were prepared by utilizing photoanodes based on the Q2D porous substructures. Due to electron confinement in a microscale porous medium, directional diffusion toward collecting electrode is induced into the electron transport. Our measurements based on the photocurrent and photovoltage time-of-flight transients show that at higher Fermi levels, the electron diffusion coefficient in the Q2D porous TiO 2 is about one order of magnitude higher when compared with the conventional layer of porous TiO 2 . The results show that microstructuring of the porous TiO 2 leads to an approximately threefold improvement in the electron diffusion length. Such a modification may considerably affects the electrical functionality of moderate or low performance dye-sensitized solar cells for which the internal gain or collection efficiency is typically low. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Flat holographic stereograms synthesized from computer-generated images by using LiNbO3 crystal

    NASA Astrophysics Data System (ADS)

    Qu, Zhi-Min; Liu, Jinsheng; Xu, Liangying

    1991-02-01

    In this paper we used a novel method for synthesizing computer gene rated images in which by means of a series of intermediate holograms recorded on Fe--doped LiNbO crystals a high quality flat stereograni with wide view angle and much deep 3D image ha been obtained. 2. INTRODUCTITJN As we all know the conventional holography is very limited. With the help of a contineous wave laser only stationary objects can be re corded due tO its insufficient power. Although some moving objects could be recorded by a pulsed laser the dimensions and kinds of object are restricted. If we would like to see a imaginary object or a three dimensional image designed by computer it is very difficult by means of above conventional holography. Of course if we have a two-dimensional image on a comouter screen we can rotate it to give a three-dimensional perspective but we can never really see it as a solid. However flat holographic stereograrns synthesized from computer generated images will make one directly see the comoute results in the form of 3D image. Obviously it will have wide applications in design architecture medicine education and arts. 406 / SPIE Vol. 1238 Three-Dimensional Holography: Science Culture Education (1989)

  20. Experimental evidence for improved neuroimaging interpretation using three-dimensional graphic models.

    PubMed

    Ruisoto, Pablo; Juanes, Juan Antonio; Contador, Israel; Mayoral, Paula; Prats-Galino, Alberto

    2012-01-01

    Three-dimensional (3D) or volumetric visualization is a useful resource for learning about the anatomy of the human brain. However, the effectiveness of 3D spatial visualization has not yet been assessed systematically. This report analyzes whether 3D volumetric visualization helps learners to identify and locate subcortical structures more precisely than classical cross-sectional images based on a two dimensional (2D) approach. Eighty participants were assigned to each experimental condition: 2D cross-sectional visualization vs. 3D volumetric visualization. Both groups were matched for age, gender, visual-spatial ability, and previous knowledge of neuroanatomy. Accuracy in identifying brain structures, execution time, and level of confidence in the response were taken as outcome measures. Moreover, interactive effects between the experimental conditions (2D vs. 3D) and factors such as level of competence (novice vs. expert), image modality (morphological and functional), and difficulty of the structures were analyzed. The percentage of correct answers (hit rate) and level of confidence in responses were significantly higher in the 3D visualization condition than in the 2D. In addition, the response time was significantly lower for the 3D visualization condition in comparison with the 2D. The interaction between the experimental condition (2D vs. 3D) and difficulty was significant, and the 3D condition facilitated the location of difficult images more than the 2D condition. 3D volumetric visualization helps to identify brain structures such as the hippocampus and amygdala, more accurately and rapidly than conventional 2D visualization. This paper discusses the implications of these results with regards to the learning process involved in neuroimaging interpretation. Copyright © 2012 American Association of Anatomists.

  1. Superconductivity in YTE2Ge2 compounds (TE = d-electron transition metal)

    NASA Astrophysics Data System (ADS)

    Chajewski, G.; Samsel-Czekała, M.; Hackemer, A.; Wiśniewski, P.; Pikul, A. P.; Kaczorowski, D.

    2018-05-01

    Polycrystalline samples of YTE2Ge2 with TE = Co, Ni, Ru, Rh, Pd and Pt were synthesized and characterized by means of X-ray powder diffraction and low-temperature electrical resistivity and specific heat measurements, supplemented by fully relativistic full-potential local-orbital band structure calculations. We confirm that most of the compounds studied crystallize in a body-centered tetragonal ThCr2S2 -type structure (space group I 4 / mmm) and have three-dimensional Fermi surfaces, while only one of them (YPt2Ge2) forms with a primitive tetragonal CaBe2Ge2 -type unit cell (space group P 4 / nmm) and possesses quasi-two-dimensional Fermi surface sheets with some nesting. Physical properties data show conventional superconductivity in the phases with TE = Co, Pd and Pt, i.e. independently of the structure type (and hence the dimensionality of the Fermi surface).

  2. Fast generation of video holograms of three-dimensional moving objects using a motion compensation-based novel look-up table.

    PubMed

    Kim, Seung-Cheol; Dong, Xiao-Bin; Kwon, Min-Woo; Kim, Eun-Soo

    2013-05-06

    A novel approach for fast generation of video holograms of three-dimensional (3-D) moving objects using a motion compensation-based novel-look-up-table (MC-N-LUT) method is proposed. Motion compensation has been widely employed in compression of conventional 2-D video data because of its ability to exploit high temporal correlation between successive video frames. Here, this concept of motion-compensation is firstly applied to the N-LUT based on its inherent property of shift-invariance. That is, motion vectors of 3-D moving objects are extracted between the two consecutive video frames, and with them motions of the 3-D objects at each frame are compensated. Then, through this process, 3-D object data to be calculated for its video holograms are massively reduced, which results in a dramatic increase of the computational speed of the proposed method. Experimental results with three kinds of 3-D video scenarios reveal that the average number of calculated object points and the average calculation time for one object point of the proposed method, have found to be reduced down to 86.95%, 86.53% and 34.99%, 32.30%, respectively compared to those of the conventional N-LUT and temporal redundancy-based N-LUT (TR-N-LUT) methods.

  3. Communication: Prediction of the rate constant of bimolecular hydrogen exchange in the water dimer using an ab initio potential energy surface.

    PubMed

    Wang, Yimin; Bowman, Joel M; Huang, Xinchuan

    2010-09-21

    We report the properties of two novel transition states of the bimolecular hydrogen exchange reaction in the water dimer, based on an ab initio water dimer potential [A. Shank et al., J. Chem. Phys. 130, 144314 (2009)]. The realism of the two transition states is assessed by comparing structures, energies, and harmonic frequencies obtained from the potential energy surface and new high-level ab initio calculations. The rate constant for the exchange is obtained using conventional transition state theory with a tunneling correction. We employ a one-dimensional approach for the tunneling calculations using a relaxed potential from the full-dimensional potential in the imaginary-frequency normal mode of the saddle point, Q(im). The accuracy of this one-dimensional approach has been shown for the ground-state tunneling splittings for H and D-transfer in malonaldehyde and for the D+H(2) reaction [Y. Wang and J. M. Bowman, J. Chem. Phys. 129, 121103 (2008)]. This approach is applied to calculate the rate constant for the H(2)O+H(2)O exchange and also for H(2)O+D(2)O→2HOD. The local zero-point energy is also obtained using diffusion Monte Carlo calculations in the space of real-frequency-saddle-point normal modes, as a function of Q(im).

  4. Bending wavefunctions for linear molecules

    NASA Astrophysics Data System (ADS)

    Hirano, Tsuneo; Nagashima, Umpei; Jensen, Per

    2018-01-01

    The bending motion of a linear triatomic molecule has two unique characteristics: the bending mode is doubly degenerate and only positive values of the bending angle, expressed by the bond angle supplement ρ bar , can be observed. The double degeneracy requires the wavefunction to be described as a two-dimensional oscillator. In the present work, we first review the conventional expressions based on two, symmetrically equivalent normal coordinates. Then we discuss an alternative expression for the bending wavefunction in terms of two geometrical coordinates, the bond angle supplement ρ bar (= π - τ ⩾ 0 , where τ is the bond angle) and the rotation angle χ (0 ⩽ χ < 2 π) describing rotation of the molecule around the molecular axis. In this formalism, defined for the (ρ bar , χ) polar-coordinate space with volume element ρ bar d ρ bar dχ , the one-dimensional wavefunction resulted through re-normalization for χ has zero amplitude at ρ bar = 0 , and the ro-vibrational average of the bending angle, i.e., the expectation value 〈 ρ bar 〉 , attains a non-zero, positive value for any ro-vibrational state including the vibrational ground state. This conclusion appears to cause some controversy since much conventional spectroscopic wisdom insists on 〈 ρ bar 〉 having the value zero.

  5. Two-dimensional fluorescence correlation spectroscopy: resolution of fluorescence of tryptophan residues in horse heart myoglobin.

    PubMed

    Nakashima, Kenichi; Yuda, Kazuki; Ozaki, Yukihiro; Noda, Isao

    2003-11-01

    Generalized two-dimensional (2D) fluorescence correlation spectroscopy has been used to resolve fluorescence of two tryptophan (Trp) residues in horse heart myoglobin. Fluorescence quenching is employed as a perturbation mode for causing intensity changes in the fluorescence (quenching perturbation). Two kinds of quenchers, iodide ion and acrylamide, are used for inducing fluorescence intensity change. This technique works because the Trp residue located at the 7th position (W7) is known to be easily accessible to the quencher, whereas that located at the 14th position (W14) is not. By this technique, the fluorescence spectra of the two Trp residues were clearly resolved. From asynchronous maps, it was also shown that the quenching of W7 fluorescence is brought about prior to the quenching of W14 fluorescence. This result is consistent with the structure of horse heart myoglobin that was proposed earlier. Furthermore, it was elucidated that the present 2D analysis is not interfered with by Raman bands of the solvents, which sometimes brings difficulty into conventional fluorescence analysis.

  6. Separation of polyphenols from leaves of Malus hupehensis (Pamp.) Rehder by off-line two-dimensional High Speed Counter-Current Chromatography combined with recycling elution mode.

    PubMed

    Liu, Qi; Zeng, Hualiang; Jiang, Shujing; Zhang, Li; Yang, Fuzhu; Chen, Xiaoqing; Yang, Hua

    2015-11-01

    In this study, off-line two-dimensional High Speed Counter-Current Chromatography (2D HSCCC) strategy combined with recycling elution mode was developed to isolate compounds from the ethyl acetate extract of a common green tea--leaves of Malus hupehensis (Pamp.) Rehder. In the orthogonal separation system, a conventional HSCCC was employed for the first dimension and two recycling HSCCCs were used for the second in parallel. Using a solvent system consisting of n-hexane-ethyl acetate-methanol-water (1:4:0.6:4.4, v/v) in the first and second dimension, four compounds including 3-hydroxy-phlorizin (1), phloretin (2), avicularin (3) and kaempferol 3-O-β-D-glucoside (4) were obtained. The purities of these four compounds were all over 95.0% as determined by HPLC. And their structures were all identified through UV, MS and (1)H NMR. It has been demonstrated that the combination of off-line 2D HSCCC with recycling elution mode is an efficient technique to isolate compounds with similar polarities in natural products. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. [3D FSPGR (fast spoiled gradient echo) magnetic resonance imaging in the diagnosis of focal cortical dysplasia in children].

    PubMed

    Alikhanov, A A; Sinitsyn, V E; Perepelova, E M; Mukhin, K Iu; Demushkina, A A; Omarova, M O; Piliia, S V

    2001-01-01

    Small dysplastic lesions of the cerebral cortex are often missed by conventional MRI methods. The identification of subtle structural abnormalities by traditional multiplanar rectilinear slices is often limited by the complex convolutional pattern of the brain. We used a method of FSPGR (fast spoiled gradient-echo) of three-dimensional MRI data that improves the anatomical display of the sulcal structure of the hemispheric convexities. It also reduces the asymmetric sampling of gray-white matter that may lead to false-positive results. We present 5 from 12 patients with dysplastic cortical lesions in whom conventional two-dimensional and three-dimensional MRI with multiplanar reformatting was initially considered normal. Subsequent studies using 3D FSPGR identified various types of focal cortical dysplasia in all. These results indicate that an increase in the detection of subtle focal dysplastic lesions may be accomplished when one improves the anatomical display of the brain sulcal structure by performing 3D FSPGR.

  8. Graphene and Other 2D Colloids: Liquid Crystals and Macroscopic Fibers.

    PubMed

    Liu, Yingjun; Xu, Zhen; Gao, Weiwei; Cheng, Zhengdong; Gao, Chao

    2017-04-01

    Two-dimensional colloidal nanomaterials are running into renaissance after the enlightening researches of graphene. Macroscopic one-dimensional fiber is an optimal ordered structural form to express the in-plane merits of 2D nanomaterials, and the formation of liquid crystals (LCs) allows the creation of continuous fibers. In the correlated system from LCs to fibers, understanding their macroscopic organizing behavior and transforming them into new solid fibers is greatly significant for applications. Herein, we retrospect the history of 2D colloids and discuss about the concept of 2D nanomaterial fibers in the context of LCs, elaborating the motivation, principle and possible strategies of fabrication. Then we highlight the creation, development and typical applications of graphene fibers. Additionally, the latest advances of other 2D nanomaterial fibers are also summarized. Finally, conclusions, challenges and perspectives are provided to show great expectations of better and more fibrous materials of 2D nanomaterials. This review gives a comprehensive retrospect of the past century-long effort about the whole development of 2D colloids, and plots a clear roadmap - "lamellar solid - LCs - macroscopic fibers - flexible devices", which will certainly open a new era of structural-multifunctional application for the conventional 2D colloids. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Development and applications of 3-dimensional integration nanotechnologies.

    PubMed

    Kim, Areum; Choi, Eunmi; Son, Hyungbin; Pyo, Sung Gyu

    2014-02-01

    Unlike conventional two-dimensional (2D) planar structures, signal or power is supplied through through-silicon via (TSV) in three-dimensional (3D) integration technology to replace wires for binding the chip/wafer. TSVs have becomes an essential technology, as they satisfy Moore's law. This 3D integration technology enables system and sensor functions at a nanoscale via the implementation of a highly integrated nano-semiconductor as well as the fabrication of a single chip with multiple functions. Thus, this technology is considered to be a new area of development for the systemization of the nano-bio area. In this review paper, the basic technology required for such 3D integration is described and methods to measure the bonding strength in order to measure the void occurring during bonding are introduced. Currently, CMOS image sensors and memory chips associated with nanotechnology are being realized on the basis of 3D integration technology. In this paper, we intend to describe the applications of high-performance nano-biosensor technology currently under development and the direction of development of a high performance lab-on-a-chip (LOC).

  10. "Ten-point" 3D cephalometric analysis using low-dosage cone beam computed tomography.

    PubMed

    Farronato, Giampietro; Garagiola, Umberto; Dominici, Aldo; Periti, Giulia; de Nardi, Sandro; Carletti, Vera; Farronato, Davide

    2010-01-01

    The aim of this study was to combine the huge amount of information of low dose Cone Beam CT with a cephalometric simplified protocol thanks to the latest informatics aids. Lateral cephalograms are two-dimensional (2-D) radiographs that are used to represent three-dimensional (3-D) structures. Cephalograms have inherent limitations as a result of distortion, super imposition and differential magnification of the craniofacial complex. This may lead to errors of identification and reduced measurement accuracy. The advantages of CBCT over conventional CT include low radiation exposure, imaging quality improvement, potentially better access, high spatial resolution and lower cost. This study assessed cephalometric 2D and 3D measurements and the analysis of CBCT cephalograms of the volume and centroid of the maxilla and mandible, in 10 clinical cases. With a few exceptions the linear and angular cephalometric measurements obtained from CBCT and from conventional cephalograms did not differ statistically (p>0.01). There was a correlation between the variation in the skeletal malocclusion and growth direction of the jaws, and the variation in the spatial position (x, y, z) of the centroids and their volumes (p<0.01). The 3D cephalometric analysis is easier to interpret than 2D cephalometric analysis. In contrast to those made on projective radiographies, the angular and linear measurements detected on 3D become real, moreover the fewest points to select and the automatic measurements made by the computer drastically reduced human error, for a much more reliable reproducible and repeatable diagnosis. Copyright © 2010 Società Italiana di Ortodonzia SIDO. Published by Elsevier Srl. All rights reserved.

  11. Development of axisymmetric lattice Boltzmann flux solver for complex multiphase flows

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Shu, Chang; Yang, Li-Ming; Yuan, Hai-Zhuan

    2018-05-01

    This paper presents an axisymmetric lattice Boltzmann flux solver (LBFS) for simulating axisymmetric multiphase flows. In the solver, the two-dimensional (2D) multiphase LBFS is applied to reconstruct macroscopic fluxes excluding axisymmetric effects. Source terms accounting for axisymmetric effects are introduced directly into the governing equations. As compared to conventional axisymmetric multiphase lattice Boltzmann (LB) method, the present solver has the kinetic feature for flux evaluation and avoids complex derivations of external forcing terms. In addition, the present solver also saves considerable computational efforts in comparison with three-dimensional (3D) computations. The capability of the proposed solver in simulating complex multiphase flows is demonstrated by studying single bubble rising in a circular tube. The obtained results compare well with the published data.

  12. Image formation analysis and high resolution image reconstruction for plenoptic imaging systems.

    PubMed

    Shroff, Sapna A; Berkner, Kathrin

    2013-04-01

    Plenoptic imaging systems are often used for applications like refocusing, multimodal imaging, and multiview imaging. However, their resolution is limited to the number of lenslets. In this paper we investigate paraxial, incoherent, plenoptic image formation, and develop a method to recover some of the resolution for the case of a two-dimensional (2D) in-focus object. This enables the recovery of a conventional-resolution, 2D image from the data captured in a plenoptic system. We show simulation results for a plenoptic system with a known response and Gaussian sensor noise.

  13. Depinning transition of a domain wall in ferromagnetic films

    DOE PAGES

    Xi, Bin; Luo, Meng -Bo; Vinokur, Valerii M.; ...

    2015-09-14

    Here, we report first principle numerical study of domain wall (DW) depinning in two-dimensional magnetic film, which is modeled by 2D random-field Ising system with the dipole-dipole interaction. We observe non-conventional activation-type motion of DW and reveal the fractal structure of DW near the depinning transition. We determine scaling functions describing critical dynamics near the transition and obtain universal exponents establishing connection between thermal softening of pinning potential and critical dynamics. In addition, we observe that tuning the strength of the dipole-dipole interaction switches DW dynamics between two different universality classes, corresponding to two distinct dynamic regimes characterized by non-Arrheniusmore » and conventional Arrhenius-type DW motions.« less

  14. Concordance of Gleason grading with three-dimensional ultrasound systematic biopsy and biopsy core pre-embedding.

    PubMed

    van der Aa, Anouk A M A; Mannaerts, Christophe K; van der Linden, Hans; Gayet, Maudy; Schrier, Bart Ph; Mischi, Massimo; Beerlage, Harrie P; Wijkstra, Hessel

    2018-02-01

    To determine the value of a three-dimensional (3D) greyscale transrectal ultrasound (TRUS)-guided prostate biopsy system and biopsy core pre-embedding method on concordance between Gleason scores of needle biopsies and radical prostatectomy (RP) specimens. Retrospective analysis of prostate biopsies and subsequent RP for PCa in the Jeroen Bosch Hospital, the Netherlands, from 2007 to 2016. Two cohorts were analysed: conventional 2D TRUS-guided biopsies and RP (2007-2013, n = 266) versus 3D TRUS-guided biopsies with pre-embedding (2013-2016, n = 129). The impact of 3D TRUS-guidance with pre-embedding on Gleason score (GS) concordance between biopsy and RP was evaluated using the κ-coefficient. Predictors of biopsy GS 6 upgrading were assessed using logistic regression models. Gleason concordance was comparable between the two cohorts with a κ = 0.44 for the 3D cohort, compared to κ = 0.42 for the 2D cohort. 3D TRUS-guidance with pre-embedding, did not significantly affect the risk of biopsy GS 6 upgrading in univariate and multivariate analysis. 3D TRUS-guidance with biopsy core pre-embedding did not improve Gleason concordance. Improved detection techniques are needed for recognition of low-grade disease upgrading.

  15. Vectorial point spread function and optical transfer function in oblique plane imaging.

    PubMed

    Kim, Jeongmin; Li, Tongcang; Wang, Yuan; Zhang, Xiang

    2014-05-05

    Oblique plane imaging, using remote focusing with a tilted mirror, enables direct two-dimensional (2D) imaging of any inclined plane of interest in three-dimensional (3D) specimens. It can image real-time dynamics of a living sample that changes rapidly or evolves its structure along arbitrary orientations. It also allows direct observations of any tilted target plane in an object of which orientational information is inaccessible during sample preparation. In this work, we study the optical resolution of this innovative wide-field imaging method. Using the vectorial diffraction theory, we formulate the vectorial point spread function (PSF) of direct oblique plane imaging. The anisotropic lateral resolving power caused by light clipping from the tilted mirror is theoretically analyzed for all oblique angles. We show that the 2D PSF in oblique plane imaging is conceptually different from the inclined 2D slice of the 3D PSF in conventional lateral imaging. Vectorial optical transfer function (OTF) of oblique plane imaging is also calculated by the fast Fourier transform (FFT) method to study effects of oblique angles on frequency responses.

  16. Two-Dimensional Layered Oxide Structures Tailored by Self-Assembled Layer Stacking via Interfacial Strain

    DOE PAGES

    Zhang, Wenrui; Li, Mingtao; Chen, Aiping; ...

    2016-06-13

    Two-dimensional (2D) nanostructures emerge as one of leading topics in fundamental materials science and could enable next generation nanoelectronic devices. Beyond graphene and molybdenum disulphide, layered complex oxides are another large group of promising 2D candidates because of their strong interplay of intrinsic charge, spin, orbital and lattice. As a fundamental basis of heteroepitaxial thin film growth, interfacial strain can be used to design materials exhibiting new phenomena beyond their conventional form. Here we report the strain-driven self-assembly of Bismuth-based supercells (SC) with a 2D layered structure, and elucidate the fundamental growth mechanism with combined experimental tools and first-principles calculations.more » The study revealed that the new layered structures were formed by the strain-enabled self-assembled atomic layer stacking, i.e., alternative growth of Bi 2O 2 layer and [Fe 0.5Mn 0.5]O 6 layer. The strain-driven approach is further demonstrated in other SC candidate systems with promising room-temperature multiferroic properties. This well-integrated theoretical and experimental study inspired by the Materials Genome Initiatives opens up a new avenue in searching and designing novel 2D layered complex oxides with enormous promises.« less

  17. First-Passage Times in d -Dimensional Heterogeneous Media

    NASA Astrophysics Data System (ADS)

    Vaccario, G.; Antoine, C.; Talbot, J.

    2015-12-01

    Although there are many theoretical studies of the mean first-passage time (MFPT), most neglect the diffusive heterogeneity of real systems. We present exact analytical expressions for the MFPT and residence times of a pointlike particle diffusing in a spherically symmetric d -dimensional heterogeneous system composed of two concentric media with different diffusion coefficients with an absorbing inner boundary (target) and a reflecting outer boundary. By varying the convention, e.g., Itō, Stratonovich, or isothermal, chosen to interpret the overdamped Langevin equation with multiplicative noise describing the diffusion process, we find different predictions and counterintuitive results for the residence time in the outer region and hence for the MFPT, while the residence time in the inner region is independent of the convention. This convention dependence of residence times and the MFPT could provide insights about the heterogeneous diffusion in a cell or in a tumor, or for animal and insect searches inside their home range.

  18. Synthesis and Evaluation of Single Layer, Bilayer, and Multilayer Thermoelectric Thin Films

    DOE R&D Accomplishments Database

    Farmer, J. C.; Barbee, T. W. Jr.; Chapline, G. C. Jr.; Olsen, M. L.; Foreman, R. J.; Summers, L. J.; Dresselhaus, M. S.; Hicks, L. D.

    1995-01-20

    The relative efficiency of a thermoelectric material is measured in terms of a dimensionless figure of merit, ZT. Though all known thermoelectric materials are believed to have ZT{le}1, recent theoretical results predict that thermoelectric devices fabricated as two-dimensional quantum wells (2D QWs) or one-dimensional (ID) quantum wires could have ZT{ge}3. Multilayers with the dimensions of 2D QWs have been synthesized by alternately sputtering thermoelectric and barrier materials onto a moving single-crystal sapphire substrate from dual magnetrons. These materials have been used to test the thermoelectric quantum well concept and gain insight into relevant transport mechanisms. If successful, research could lead to thermoelectric devices that have efficiencies close to that of an ideal Carnot engine. Ultimately, such devices could be used to replace conventional heat engines and mechanical refrigeration systems.

  19. A two dimensional analytical modeling of surface potential in triple metal gate (TMG) fully-depleted Recessed-Source/Drain (Re-S/D) SOI MOSFET

    NASA Astrophysics Data System (ADS)

    Priya, Anjali; Mishra, Ram Awadh

    2016-04-01

    In this paper, analytical modeling of surface potential is proposed for new Triple Metal Gate (TMG) fully depleted Recessed-Source/Dain Silicon On Insulator (SOI) Metal Oxide Semiconductor Field Effect Transistor (MOSFET). The metal with the highest work function is arranged near the source region and the lowest one near the drain. Since Recessed-Source/Drain SOI MOSFET has higher drain current as compared to conventional SOI MOSFET due to large source and drain region. The surface potential model developed by 2D Poisson's equation is verified by comparison to the simulation result of 2-dimensional ATLAS simulator. The model is compared with DMG and SMG devices and analysed for different device parameters. The ratio of metal gate length is varied to optimize the result.

  20. Three-dimensional Echocardiography of Right Ventricular Function Correlates with Severity of Pediatric Pulmonary Hypertension.

    PubMed

    Jone, Pei-Ni; Patel, Sonali S; Cassidy, Courtney; Ivy, David Dunbar

    2016-12-01

    Right ventricular function and biomarkers of B-type natriuretic peptide (BNP) and N-Terminal pro-BNP (NT pro-BNP) are used to determine the severity of right ventricular failure and outcomes from pulmonary hypertension. Real-time three-dimensional echocardiography (3DE) is a novel quantitative measure of the right ventricle and decreases the geometric assumptions from conventional two-dimensional echocardiography (2DE). We correlated right ventricular functional measures using 2DE and single-beat 3DE with biomarkers and hemodynamics to determine the severity of pediatric pulmonary hypertension. We retrospectively evaluated 35 patients (mean age 12.67 ± 5.78 years) with established pulmonary hypertension who had echocardiograms and biomarkers on the same day. Ten out of 35 patients had hemodynamic evaluation within 3 days. 2DE evaluation included tricuspid annular plane systolic excursion (TAPSE), right ventricular myocardial performance index from tissue Doppler imaging (RV TDI MPI), and right ventricular fractional area change (FAC). Three-dimensional echocardiography evaluation included right ventricular ejection fraction (EF), end-systolic volume, and end-diastolic volume. The quality of the 3DE was graded as good, fair, or poor. Pearson correlation coefficients were utilized to evaluate between biomarkers and echocardiographic parameters and between hemodynamics and echocardiography. Three-dimensional echocardiography and FAC correlated significantly with BNP and NT pro-BNP. TAPSE and RV TDI MPI did not correlate significantly with biomarkers. 3D right ventricular EF correlated significantly with hemodynamics. Two-dimensional echocardiography did not correlate with hemodynamics. Single-beat 3DE is a noninvasive, feasible tool in the quantification of right ventricular function and maybe more accurate than conventional 2DE in evaluating severity of pulmonary hypertension. © 2016 Wiley Periodicals, Inc.

  1. Synthesis, Structure and Thermal Behavior of Oxalato-Bridged Rb+ and H3O+ Extended Frameworks with Different Dimensionalities

    PubMed Central

    Kherfi, Hamza; Hamadène, Malika; Guehria-Laïdoudi, Achoura; Dahaoui, Slimane; Lecomte, Claude

    2010-01-01

    Correlative studies of three oxalato-bridged polymers, obtained under hydrothermal conditions for the two isostructural compounds {Rb(HC2O4)(H2C2O4)(H2O)2}∞1, 1, {H3O(HC2O4)(H2C2O4).2H2O}∞1, 2, and by conventional synthetic method for {Rb(HC2O4)}∞3, 3, allowed the identification of H-bond patterns and structural dimensionality. Ferroïc domain structures are confirmed by electric measurements performed on 3. Although 2 resembles one oxalic acid sesquihydrate, its structure determination doesn’t display any kind of disorder and leads to recognition of a supramolecular network identical to hybrid s-block series, where moreover, unusual H3O+ and NH4+ similarity is brought out. Thermal behaviors show that 1D frameworks with extended H-bonds, whether with or without a metal center, have the same stability. Inversely, despite the dimensionalities, the same metallic intermediate and final compounds are obtained for the two Rb+ ferroïc materials.

  2. Potential for change in US diagnosis of hip dysplasia solely caused by changes in probe orientation: patterns of alpha-angle variation revealed by using three-dimensional US.

    PubMed

    Jaremko, Jacob L; Mabee, Myles; Swami, Vimarsha G; Jamieson, Lucy; Chow, Kelvin; Thompson, Richard B

    2014-12-01

    To use three-dimensional ( 3D three-dimensional ) ultrasonography (US) to quantify the alpha-angle variability due to changing probe orientation during two-dimensional ( 2D two-dimensional ) US of the infant hip and its effect on the diagnostic classification of developmental dysplasia of the hip ( DDH developmental dysplasia of the hip ). In this institutional research ethics board-approved prospective study, with parental written informed consent, 13-MHz 3D three-dimensional US was added to initial 2D two-dimensional US for 56 hips in 35 infants (mean age, 41.7 days; range, 4-112 days), 26 of whom were female (mean age, 38.7 days; range, 6-112 days) and nine of whom were male (mean age, 50.2 days; range, 4-111 days). Findings in 20 hips were normal at the initial visit and were initially inconclusive but normalized spontaneously at follow-up in 23 hips; 13 hips were treated for dysplasia. With the computer algorithm, 3D three-dimensional US data were resectioned in planes tilted in 5° increments away from a central plane, as if slowly rotating a 2D two-dimensional US probe, until resulting images no longer met Graf quality criteria. On each acceptable 2D two-dimensional image, two observers measured alpha angles, and descriptive statistics, including mean, standard deviation, and limits of agreement, were computed. Acceptable 2D two-dimensional images were produced over a range of probe orientations averaging 24° (maximum, 45°) from the central plane. Over this range, alpha-angle variation was 19° (upper limit of agreement), leading to alteration of the diagnostic category of hip dysplasia in 54% of hips scanned. Use of 3D three-dimensional US showed that alpha angles measured at routine 2D two-dimensional US of the hip can vary substantially between 2D two-dimensional scans solely because of changes in probe positioning. Not only could normal hips appear dysplastic, but dysplastic hips also could have normal alpha angles. Three-dimensional US can display the full acetabular shape, which might improve DDH developmental dysplasia of the hip assessment accuracy. © RSNA, 2014.

  3. Dynamically tunable graphene/dielectric photonic crystal transmission lines

    NASA Astrophysics Data System (ADS)

    Williamson, Ian; Mousavi, S. Hossein; Wang, Zheng

    2015-03-01

    It is well known that graphene supports plasmonic modes with high field confinement and lower losses when compared to conventional metals. Additionally, graphene features a highly tunable conductivity through which the plasmon dispersion can be modulated. Over the years these qualities have inspired a wide range of applications for graphene in the THz and infrared regimes. In this presentation we theoretically demonstrate a graphene parallel plate waveguide (PPWG) that sandwiches a 2D photonic crystal slab. The marriage of these two geometries offers a large two dimensional band gap that can be dynamically tuned over a very broad bandwidth. Our device operates in the low-THz band where the graphene PPWG supports a quasi-TEM mode with a relatively flat attenuation. Unlike conventional photonic crystal slabs, the quasi-TEM nature of the graphene PPWG mode allows the slab thickness to be less than 1/10 of the photonic crystal lattice constant. These features offer up a wealth of opportunities, including tunable metamaterials with a possible platform for large band gaps in 3D structures through tiling and stacking. Additionally, the geometry provides a platform for tunable defect cavities without needing three dimensional periodicity.

  4. Resistivity of Rotated Graphite-Graphene Contacts.

    PubMed

    Chari, Tarun; Ribeiro-Palau, Rebeca; Dean, Cory R; Shepard, Kenneth

    2016-07-13

    Robust electrical contact of bulk conductors to two-dimensional (2D) material, such as graphene, is critical to the use of these 2D materials in practical electronic devices. Typical metallic contacts to graphene, whether edge or areal, yield a resistivity of no better than 100 Ω μm but are typically >10 kΩ μm. In this Letter, we employ single-crystal graphite for the bulk contact to graphene instead of conventional metals. The graphite contacts exhibit a transfer length up to four-times longer than in conventional metallic contacts. Furthermore, we are able to drive the contact resistivity to as little as 6.6 Ω μm(2) by tuning the relative orientation of the graphite and graphene crystals. We find that the contact resistivity exhibits a 60° periodicity corresponding to crystal symmetry with additional sharp decreases around 22° and 39°, which are among the commensurate angles of twisted bilayer graphene.

  5. Analytical theory of the space-charge region of lateral p-n junctions in nanofilms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gurugubelli, Vijaya Kumar, E-mail: vkgurugubelli@gmail.com; Karmalkar, Shreepad

    There is growing interest in fabricating conventional semiconductor devices in a nanofilm which could be a 3D material with one reduced dimension (e.g., silicon-on-insulator (SOI) film), or single/multiple layers of a 2D material (e.g., MoS{sub 2}), or a two dimensional electron gas/two dimensional hole gas (2DEG/2DHG) layer. Lateral p-n junctions are essential parts of these devices. The space-charge region electrostatics in these nanofilm junctions is strongly affected by the surrounding field, unlike in bulk junctions. Current device physics of nanofilms lacks a simple analytical theory of this 2D electrostatics of lateral p-n junctions. We present such a theory taking intomore » account the film's thickness, permittivity, doping, interface charge, and possibly different ambient permittivities on film's either side. In analogy to the textbook theory of the 1D electrostatics of bulk p-n junctions, our theory yields simple formulas for the depletion width, the extent of space-charge tails beyond this width, and the screening length associated with the space-charge layer in nanofilm junctions; these formulas agree with numerical simulations and measurements. Our theory introduces an electrostatic thickness index to classify nanofilms into sheets, bulk and intermediate sized.« less

  6. A coumarin with an unusual structure from Cuphea ignea, its cytotoxicity and antioxidant activities.

    PubMed

    Moustafa, E S; Swilam, N F; Ghanem, O B; Hashim, A N; Nawwar, M A; Lindequist, U; Linscheid, M W

    2018-04-02

    Phenolic metabolite profiling using two dimensional paper chromatographic analysis (2 DPC) was used for assaying the complex mixture of phenolics of an aqueous ethanol aerial part extract of Cuphea ignea (Lytheraceae). A coumarin with a rare structure, namely, 7-hydroxy 3-methoxy coumarin 5-O-β-glucopyranoside was isolated from the investigated extract. The structure was elucidated by conventional methods and spectral analysis, including one and two dimensional NMR (1D and 2D NMR), as well as by interpretation of the spectra obtained by high resolution electrospray ionization mass technique (HRESIMS). The rare coumarin significantly inhibited reactive oxygen species production with an ED50 value of 6.31±1.64 μg/ml and 5.78±0.66 μg/ml as determined by the the free radical 2,2-diphenyl-1-picrylhydrazyl (DPPH) and the oxygen radical absorption capacity (ORAC) assay respectively. The isolated coumarin presented a cytotoxic activity assessed by using the neutral red assay (NRU) against lung cancer cell line (H23) with IC50 of 40.38±2.75 μg/ml.

  7. In vivo evaluation of inter-operator reproducibility of digital dental and conventional impression techniques.

    PubMed

    Kamimura, Emi; Tanaka, Shinpei; Takaba, Masayuki; Tachi, Keita; Baba, Kazuyoshi

    2017-01-01

    The aim of this study was to evaluate and compare the inter-operator reproducibility of three-dimensional (3D) images of teeth captured by a digital impression technique to a conventional impression technique in vivo. Twelve participants with complete natural dentition were included in this study. A digital impression of the mandibular molars of these participants was made by two operators with different levels of clinical experience, 3 or 16 years, using an intra-oral scanner (Lava COS, 3M ESPE). A silicone impression also was made by the same operators using the double mix impression technique (Imprint3, 3M ESPE). Stereolithography (STL) data were directly exported from the Lava COS system, while STL data of a plaster model made from silicone impression were captured by a three-dimensional (3D) laboratory scanner (D810, 3shape). The STL datasets recorded by two different operators were compared using 3D evaluation software and superimposed using the best-fit-algorithm method (least-squares method, PolyWorks, InnovMetric Software) for each impression technique. Inter-operator reproducibility as evaluated by average discrepancies of corresponding 3D data was compared between the two techniques (Wilcoxon signed-rank test). The visual inspection of superimposed datasets revealed that discrepancies between repeated digital impression were smaller than observed with silicone impression. Confirmation was forthcoming from statistical analysis revealing significantly smaller average inter-operator reproducibility using a digital impression technique (0.014± 0.02 mm) than when using a conventional impression technique (0.023 ± 0.01 mm). The results of this in vivo study suggest that inter-operator reproducibility with a digital impression technique may be better than that of a conventional impression technique and is independent of the clinical experience of the operator.

  8. Electrical detection and analysis of surface acoustic wave in line-defect two-dimensional piezoelectric phononic crystals

    NASA Astrophysics Data System (ADS)

    Cai, Feida; Li, Honglang; Tian, Yahui; Ke, Yabing; Cheng, Lina; Lou, Wei; He, Shitang

    2018-03-01

    Line-defect piezoelectric phononic crystals (PCs) show good potential applications in surface acoustic wave (SAW) MEMS devices for RF communication systems. To analyze the SAW characteristics in line-defect two-dimensional (2D) piezoelectric PCs, optical methods are commonly used. However, the optical instruments are complex and expensive, whereas conventional electrical methods can only measure SAW transmission of the whole device and lack spatial resolution. In this paper, we propose a new electrical experimental method with multiple receiving interdigital transducers (IDTs) to detect the SAW field distribution, in which an array of receiving IDTs of equal aperture was used to receive the SAW. For this new method, SAW delay lines with perfect and line-defect 2D Al/128°YXLiNbO3 piezoelectric PCs on the transmitting path were designed and fabricated. The experimental results showed that the SAW distributed mainly in the line-defect region, which agrees with the theoretical results.

  9. Reducing 4D CT artifacts using optimized sorting based on anatomic similarity.

    PubMed

    Johnston, Eric; Diehn, Maximilian; Murphy, James D; Loo, Billy W; Maxim, Peter G

    2011-05-01

    Four-dimensional (4D) computed tomography (CT) has been widely used as a tool to characterize respiratory motion in radiotherapy. The two most commonly used 4D CT algorithms sort images by the associated respiratory phase or displacement into a predefined number of bins, and are prone to image artifacts at transitions between bed positions. The purpose of this work is to demonstrate a method of reducing motion artifacts in 4D CT by incorporating anatomic similarity into phase or displacement based sorting protocols. Ten patient datasets were retrospectively sorted using both the displacement and phase based sorting algorithms. Conventional sorting methods allow selection of only the nearest-neighbor image in time or displacement within each bin. In our method, for each bed position either the displacement or the phase defines the center of a bin range about which several candidate images are selected. The two dimensional correlation coefficients between slices bordering the interface between adjacent couch positions are then calculated for all candidate pairings. Two slices have a high correlation if they are anatomically similar. Candidates from each bin are then selected to maximize the slice correlation over the entire data set using the Dijkstra's shortest path algorithm. To assess the reduction of artifacts, two thoracic radiation oncologists independently compared the resorted 4D datasets pairwise with conventionally sorted datasets, blinded to the sorting method, to choose which had the least motion artifacts. Agreement between reviewers was evaluated using the weighted kappa score. Anatomically based image selection resulted in 4D CT datasets with significantly reduced motion artifacts with both displacement (P = 0.0063) and phase sorting (P = 0.00022). There was good agreement between the two reviewers, with complete agreement 34 times and complete disagreement 6 times. Optimized sorting using anatomic similarity significantly reduces 4D CT motion artifacts compared to conventional phase or displacement based sorting. This improved sorting algorithm is a straightforward extension of the two most common 4D CT sorting algorithms.

  10. Exotic superfluidity and pairing phenomena in atomic Fermi gases in mixed dimensions.

    PubMed

    Zhang, Leifeng; Che, Yanming; Wang, Jibiao; Chen, Qijin

    2017-10-11

    Atomic Fermi gases have been an ideal platform for simulating conventional and engineering exotic physical systems owing to their multiple tunable control parameters. Here we investigate the effects of mixed dimensionality on the superfluid and pairing phenomena of a two-component ultracold atomic Fermi gas with a short-range pairing interaction, while one component is confined on a one-dimensional (1D) optical lattice whereas the other is in a homogeneous 3D continuum. We study the phase diagram and the pseudogap phenomena throughout the entire BCS-BEC crossover, using a pairing fluctuation theory. We find that the effective dimensionality of the non-interacting lattice component can evolve from quasi-3D to quasi-1D, leading to strong Fermi surface mismatch. Upon pairing, the system becomes effectively quasi-two dimensional in the BEC regime. The behavior of T c bears similarity to that of a regular 3D population imbalanced Fermi gas, but with a more drastic departure from the regular 3D balanced case, featuring both intermediate temperature superfluidity and possible pair density wave ground state. Unlike a simple 1D optical lattice case, T c in the mixed dimensions has a constant BEC asymptote.

  11. Point-point and point-line moving-window correlation spectroscopy and its applications

    NASA Astrophysics Data System (ADS)

    Zhou, Qun; Sun, Suqin; Zhan, Daqi; Yu, Zhiwu

    2008-07-01

    In this paper, we present a new extension of generalized two-dimensional (2D) correlation spectroscopy. Two new algorithms, namely point-point (P-P) correlation and point-line (P-L) correlation, have been introduced to do the moving-window 2D correlation (MW2D) analysis. The new method has been applied to a spectral model consisting of two different processes. The results indicate that P-P correlation spectroscopy can unveil the details and re-constitute the entire process, whilst the P-L can provide general feature of the concerned processes. Phase transition behavior of dimyristoylphosphotidylethanolamine (DMPE) has been studied using MW2D correlation spectroscopy. The newly proposed method verifies that the phase transition temperature is 56 °C, same as the result got from a differential scanning calorimeter. To illustrate the new method further, a lysine and lactose mixture has been studied under thermo perturbation. Using the P-P MW2D, the Maillard reaction of the mixture was clearly monitored, which has been very difficult using conventional display of FTIR spectra.

  12. Tooth segmentation system with intelligent editing for cephalometric analysis

    NASA Astrophysics Data System (ADS)

    Chen, Shoupu

    2015-03-01

    Cephalometric analysis is the study of the dental and skeletal relationship in the head, and it is used as an assessment and planning tool for improved orthodontic treatment of a patient. Conventional cephalometric analysis identifies bony and soft-tissue landmarks in 2D cephalometric radiographs, in order to diagnose facial features and abnormalities prior to treatment, or to evaluate the progress of treatment. Recent studies in orthodontics indicate that there are persistent inaccuracies and inconsistencies in the results provided using conventional 2D cephalometric analysis. Obviously, plane geometry is inappropriate for analyzing anatomical volumes and their growth; only a 3D analysis is able to analyze the three-dimensional, anatomical maxillofacial complex, which requires computing inertia systems for individual or groups of digitally segmented teeth from an image volume of a patient's head. For the study of 3D cephalometric analysis, the current paper proposes a system for semi-automatically segmenting teeth from a cone beam computed tomography (CBCT) volume with two distinct features, including an intelligent user-input interface for automatic background seed generation, and a graphics processing unit (GPU) acceleration mechanism for three-dimensional GrowCut volume segmentation. Results show a satisfying average DICE score of 0.92, with the use of the proposed tooth segmentation system, by 15 novice users who segmented a randomly sampled tooth set. The average GrowCut processing time is around one second per tooth, excluding user interaction time.

  13. Fuzzy rule-based image segmentation in dynamic MR images of the liver

    NASA Astrophysics Data System (ADS)

    Kobashi, Syoji; Hata, Yutaka; Tokimoto, Yasuhiro; Ishikawa, Makato

    2000-06-01

    This paper presents a fuzzy rule-based region growing method for segmenting two-dimensional (2-D) and three-dimensional (3- D) magnetic resonance (MR) images. The method is an extension of the conventional region growing method. The proposed method evaluates the growing criteria by using fuzzy inference techniques. The use of the fuzzy if-then rules is appropriate for describing the knowledge of the legions on the MR images. To evaluate the performance of the proposed method, it was applied to artificially generated images. In comparison with the conventional method, the proposed method shows high robustness for noisy images. The method then applied for segmenting the dynamic MR images of the liver. The dynamic MR imaging has been used for diagnosis of hepatocellular carcinoma (HCC), portal hypertension, and so on. Segmenting the liver, portal vein (PV), and inferior vena cava (IVC) can give useful description for the diagnosis, and is a basis work of a pres-surgery planning system and a virtual endoscope. To apply the proposed method, fuzzy if-then rules are derived from the time-density curve of ROIs. In the experimental results, the 2-D reconstructed and 3-D rendered images of the segmented liver, PV, and IVC are shown. The evaluation by a physician shows that the generated images are comparable to the hepatic anatomy, and they would be useful to understanding, diagnosis, and pre-surgery planning.

  14. Review and comparison of non-conventional imaging systems for three-dimensional digitization of transparent objects

    NASA Astrophysics Data System (ADS)

    Mériaudeau, Fabrice; Rantoson, Rindra; Fofi, David; Stolz, Christophe

    2012-04-01

    Fashion and design greatly influence the conception of manufactured products which now exhibit complex forms and shapes. Two-dimensional quality control procedures (e.g., shape, textures, colors, and 2D geometry) are progressively being replaced by 3D inspection methods (e.g., 3D geometry, colors, and texture on the 3D shape) therefore requiring a digitization of the object surface. Three dimensional surface acquisition is a topic which has been studied to a large extent, and a significant number of techniques for acquiring 3D shapes has been proposed, leading to a wide range of commercial solutions available on the market. These systems cover a wide range from micro-scale objects such as shape from focus and shape from defocus techniques, to several meter sized objects (time of flight technique). Nevertheless, the use of such systems still encounters difficulties when dealing with non-diffuse (non Lambertian) surfaces as is the case for transparent, semi-transparent, or highly reflective materials (e.g., glass, crystals, plastics, and shiny metals). We review and compare various systems and approaches which were recently developed for 3D digitization of transparent objects.

  15. Informatics in radiology: Intuitive user interface for 3D image manipulation using augmented reality and a smartphone as a remote control.

    PubMed

    Nakata, Norio; Suzuki, Naoki; Hattori, Asaki; Hirai, Naoya; Miyamoto, Yukio; Fukuda, Kunihiko

    2012-01-01

    Although widely used as a pointing device on personal computers (PCs), the mouse was originally designed for control of two-dimensional (2D) cursor movement and is not suited to complex three-dimensional (3D) image manipulation. Augmented reality (AR) is a field of computer science that involves combining the physical world and an interactive 3D virtual world; it represents a new 3D user interface (UI) paradigm. A system for 3D and four-dimensional (4D) image manipulation has been developed that uses optical tracking AR integrated with a smartphone remote control. The smartphone is placed in a hard case (jacket) with a 2D printed fiducial marker for AR on the back. It is connected to a conventional PC with an embedded Web camera by means of WiFi. The touch screen UI of the smartphone is then used as a remote control for 3D and 4D image manipulation. Using this system, the radiologist can easily manipulate 3D and 4D images from computed tomography and magnetic resonance imaging in an AR environment with high-quality image resolution. Pilot assessment of this system suggests that radiologists will be able to manipulate 3D and 4D images in the reading room in the near future. Supplemental material available at http://radiographics.rsna.org/lookup/suppl/doi:10.1148/rg.324115086/-/DC1.

  16. Fabrication of Al2O3 coated 2D TiO2 nanoparticle photonic crystal layers by reverse nano-imprint lithography and plasma enhanced atomic layer deposition.

    PubMed

    Kim, Ki-Kang; Ko, Ki-Young; Ahn, Jinho

    2013-10-01

    This paper reports simple process to enhance the extraction efficiency of photoluminescence (PL) from Eu-doped yttrium oxide (Y2O3:Eu3+) thin-film phosphor (TFP). Two-dimensional (2D) photonic crystal layer (PCL) was fabricated on Y2O3:Eu3+ phosphor films by reverse nano-imprint method using TiO2 nanoparticle solution as a nano-imprint resin and a 2D hole-patterned PDMS stamp. Atomic scale controlled Al2O3 deposition was performed onto this 2D nanoparticle PCL for the optimization of the photonic crystal pattern size and stabilization of TiO2 nanoparticle column structure. As a result, the light extraction efficiency of the Y2O3:Eu3+ phosphor film was improved by 2.0 times compared to the conventional Y2O3:Eu3+ phosphor film.

  17. Engineering correlation effects via artificially designed oxide superlattices.

    PubMed

    Chen, Hanghui; Millis, Andrew J; Marianetti, Chris A

    2013-09-13

    Ab initio calculations are used to predict that a superlattice composed of layers of LaTiO3 and LaNiO3 alternating along the [001] direction is a S=1 Mott insulator with large magnetic moments on the Ni sites, negligible moments on the Ti sites and a charge transfer gap set by the energy difference between Ni d and Ti d states, distinct from conventional Mott insulators. Correlation effects are enhanced on the Ni sites via filling the oxygen p states and reducing the Ni-O-Ni bond angle. Small hole (electron) doping of the superlattice leads to a two-dimensional single-band situation with holes (electrons) residing on the Ni d(x2-y2) (Ti d(xy)) orbital and coupled to antiferromagnetically correlated spins in the NiO2 layer.

  18. Imaging and quantification of anomaly volume using an eight-electrode 'hemiarray' EIT reconstruction method.

    PubMed

    Sadleir, R J; Zhang, S U; Tucker, A S; Oh, Sungho

    2008-08-01

    Electrical impedance tomography (EIT) is particularly well-suited to applications where its portability, rapid acquisition speed and sensitivity give it a practical advantage over other monitoring or imaging systems. An EIT system's patient interface can potentially be adapted to match the target environment, and thereby increase its utility. It may thus be appropriate to use different electrode positions from those conventionally used in EIT in these cases. One application that may require this is the use of EIT on emergency medicine patients; in particular those who have suffered blunt abdominal trauma. In patients who have suffered major trauma, it is desirable to minimize the risk of spinal cord injury by avoiding lifting them. To adapt EIT to this requirement, we devised and evaluated a new electrode topology (the 'hemiarray') which comprises a set of eight electrodes placed only on the subject's anterior surface. Images were obtained using a two-dimensional sensitivity matrix and weighted singular value decomposition reconstruction. The hemiarray method's ability to quantify bleeding was evaluated by comparing its performance with conventional 2D reconstruction methods using data gathered from a saline phantom. We found that without applying corrections to reconstructed images it was possible to estimate blood volume in a two-dimensional hemiarray case with an uncertainty of around 27 ml. In an approximately 3D hemiarray case, volume prediction was possible with a maximum uncertainty of around 38 ml in the centre of the electrode plane. After application of a QI normalizing filter, average uncertainties in a two-dimensional hemiarray case were reduced to about 15 ml. Uncertainties in the approximate 3D case were reduced to about 30 ml.

  19. Designing 3-Dimensional In Vitro Oviduct Culture Systems to Study Mammalian Fertilization and Embryo Production.

    PubMed

    Ferraz, Marcia A M M; Henning, Heiko H W; Stout, Tom A E; Vos, Peter L A M; Gadella, Bart M

    2017-07-01

    The oviduct was long considered a largely passive conduit for gametes and embryos. However, an increasing number of studies into oviduct physiology have demonstrated that it specifically and significantly influences gamete interaction, fertilization and early embryo development. While oviduct epithelial cell (OEC) function has been examined during maintenance in conventional tissue culture dishes, cells seeded into these two-dimensional (2-D) conditions suffer a rapid loss of differentiated OEC characteristics, such as ciliation and secretory activity. Recently, three-dimensional (3-D) cell culture systems have been developed that make use of cell inserts to create basolateral and apical medium compartments with a confluent epithelial cell layer at the interface. Using such 3-D culture systems, OECs can be triggered to redevelop typical differentiated cell properties and levels of tissue organization can be developed that are not possible in a 2-D culture. 3-D culture systems can be further refined using new micro-engineering techniques (including microfluidics and 3-D printing) which can be used to produce 'organs-on-chips', i.e. live 3-D cultures that bio-mimic the oviduct. In this review, concepts for designing bio-mimic 3-D oviduct cultures are presented. The increased possibilities and concomitant challenges when trying to more closely investigate oviduct physiology, gamete activation, fertilization and embryo production are discussed.

  20. Van der Waals metal-semiconductor junction: Weak Fermi level pinning enables effective tuning of Schottky barrier

    PubMed Central

    Liu, Yuanyue; Stradins, Paul; Wei, Su-Huai

    2016-01-01

    Two-dimensional (2D) semiconductors have shown great potential for electronic and optoelectronic applications. However, their development is limited by a large Schottky barrier (SB) at the metal-semiconductor junction (MSJ), which is difficult to tune by using conventional metals because of the effect of strong Fermi level pinning (FLP). We show that this problem can be overcome by using 2D metals, which are bounded with 2D semiconductors through van der Waals (vdW) interactions. This success relies on a weak FLP at the vdW MSJ, which is attributed to the suppression of metal-induced gap states. Consequently, the SB becomes tunable and can vanish with proper 2D metals (for example, H-NbS2). This work not only offers new insights into the fundamental properties of heterojunctions but also uncovers the great potential of 2D metals for device applications. PMID:27152360

  1. Van der Waals metal-semiconductor junction: Weak Fermi level pinning enables effective tuning of Schottky barrier

    DOE PAGES

    Liu, Yuanyue; Stradins, Paul; Wei, Su -Huai

    2016-04-22

    Two-dimensional (2D) semiconductors have shown great potential for electronic and optoelectronic applications. However, their development is limited by a large Schottky barrier (SB) at the metal-semiconductor junction (MSJ), which is difficult to tune by using conventional metals because of the effect of strong Fermi level pinning (FLP). We show that this problem can be overcome by using 2D metals, which are bounded with 2D semiconductors through van der Waals (vdW) interactions. This success relies on a weak FLP at the vdW MSJ, which is attributed to the suppression of metal-induced gap states. Consequently, the SB becomes tunable and can vanishmore » with proper 2D metals (for example, H-NbS2). This work not only offers new insights into the fundamental properties of heterojunctions but also uncovers the great potential of 2D metals for device applications.« less

  2. 3D X-Ray Luggage-Screening System

    NASA Technical Reports Server (NTRS)

    Fernandez, Kenneth

    2006-01-01

    A three-dimensional (3D) x-ray luggage- screening system has been proposed to reduce the fatigue experienced by human inspectors and increase their ability to detect weapons and other contraband. The system and variants thereof could supplant thousands of xray scanners now in use at hundreds of airports in the United States and other countries. The device would be applicable to any security checkpoint application where current two-dimensional scanners are in use. A conventional x-ray luggage scanner generates a single two-dimensional (2D) image that conveys no depth information. Therefore, a human inspector must scrutinize the image in an effort to understand ambiguous-appearing objects as they pass by at high speed on a conveyor belt. Such a high level of concentration can induce fatigue, causing the inspector to reduce concentration and vigilance. In addition, because of the lack of depth information, contraband objects could be made more difficult to detect by positioning them near other objects so as to create x-ray images that confuse inspectors. The proposed system would make it unnecessary for a human inspector to interpret 2D images, which show objects at different depths as superimposed. Instead, the system would take advantage of the natural human ability to infer 3D information from stereographic or stereoscopic images. The inspector would be able to perceive two objects at different depths, in a more nearly natural manner, as distinct 3D objects lying at different depths. Hence, the inspector could recognize objects with greater accuracy and less effort. The major components of the proposed system would be similar to those of x-ray luggage scanners now in use. As in a conventional x-ray scanner, there would be an x-ray source. Unlike in a conventional scanner, there would be two x-ray image sensors, denoted the left and right sensors, located at positions along the conveyor that are upstream and downstream, respectively (see figure). X-ray illumination may be provided by a single source or by two sources. The position of the conveyor would be detected to provide a means of matching the appropriate left- and right-eye images of an item under inspection. The appropriate right- and left-eye images of an item would be displayed simultaneously to the right and left eyes, respectively, of the human inspector, using commercially available stereo display screens. The human operator could adjust viewing parameters for maximum viewing comfort. The stereographic images thus generated would differ from true stereoscopic images by small distortions that are characteristic of radiographic images in general, but these distortions would not diminish the value of the images for identifying distinct objects at different depths.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abushakra, Bass

    The aging tests conducted so far showed that duct tape tends to degrade in its performance as the joint it is applied to requires a geometrical description of a higher number of space dimensions (1-D, 2-D, 3-D). One-dimensional joints are the easiest to seal with duct tape, and thus the least to experience failure. Two-dimensional joints, such as the flexible duct core-to-collar joints tested in this study, are less likely to fail than three-dimensional collar-to-plenum joints, as the shrinkage could have a positive effect in tightening the joint. Three-dimensional joints are the toughest to seal and the most likely tomore » experience failure. The 2-D flexible duct core-to-collar joints passed the six-month period of the aging test in terms of leakage, but with the exception of the foil-butyl tape, showed degradation in terms hardening, brittleness, partial peeling, shrinkage, wrinkling, delamination of the tape layers, flaking, cracking, bubbling, oozing and discoloration. The baking test results showed that the failure in the duct tape joints could be attributed to the type of combination of the duct tape and the material it is applied to, as the duct tape behaves differently with different substrates. Overall, the foil-butyl tape (Tape 4) had the best results, while the film tape (Tape 3) showed the most deterioration. The conventional duct tapes tested (Tape 1 and Tape 2) were between these two extremes, with Tape 2 performing better than Tape 1. Lastly, we found that plastic straps became discolored and brittle during the tests, and a couple of straps broke completely. Therefore, we recommend that clamping the duct-taped flexible core-to-collar joints should be done with metallic adjustable straps.« less

  4. A fast rigid-registration method of inferior limb X-ray image and 3D CT images for TKA surgery

    NASA Astrophysics Data System (ADS)

    Ito, Fumihito; O. D. A, Prima; Uwano, Ikuko; Ito, Kenzo

    2010-03-01

    In this paper, we propose a fast rigid-registration method of inferior limb X-ray films (two-dimensional Computed Radiography (CR) images) and three-dimensional Computed Tomography (CT) images for Total Knee Arthroplasty (TKA) surgery planning. The position of the each bone, such as femur and tibia (shin bone), in X-ray film and 3D CT images is slightly different, and we must pay attention how to use the two different images, since X-ray film image is captured in the standing position, and 3D CT is captured in decubitus (face up) position, respectively. Though the conventional registration mainly uses cross-correlation function between two images,and utilizes optimization techniques, it takes enormous calculation time and it is difficult to use it in interactive operations. In order to solve these problems, we calculate the center line (bone axis) of femur and tibia (shin bone) automatically, and we use them as initial positions for the registration. We evaluate our registration method by using three patient's image data, and we compare our proposed method and a conventional registration, which uses down-hill simplex algorithm. The down-hill simplex method is an optimization algorithm that requires only function evaluations, and doesn't need the calculation of derivatives. Our registration method is more effective than the downhill simplex method in computational time and the stable convergence. We have developed the implant simulation system on a personal computer, in order to support the surgeon in a preoperative planning of TKA. Our registration method is implemented in the simulation system, and user can manipulate 2D/3D translucent templates of implant components on X-ray film and 3D CT images.

  5. Superfocusing terahertz waves below lambda/250 using plasmonic parallel-plate waveguides.

    PubMed

    Zhan, Hui; Mendis, Rajind; Mittleman, Daniel M

    2010-04-26

    We experimentally demonstrate complete two-dimensional (2-D) confinement of terahertz (THz) energy in finite-width parallel-plate waveguides, defying conventional wisdom in the century-old field of microwave waveguide technology. We find that the degree of energy confinement increases exponentially with decreasing plate separation. We propose that this 2-D confinement is mediated by the mutual coupling of plasmonic edge modes, analogous to that observed in slot waveguides at optical wavelengths. By adiabatically tapering the width and the separation, we focus THz waves down to a size of 10 microm (approximately lambda/260) by 18 microm ( approximately lambda/145), which corresponds to a mode area of only 2.6 x 10(-5) lambda(2).

  6. A new method to make 2-D wear measurements less sensitive to projection differences of cemented THAs.

    PubMed

    The, Bertram; Flivik, Gunnar; Diercks, Ron L; Verdonschot, Nico

    2008-03-01

    Wear curves from individual patients often show unexplained irregular wear curves or impossible values (negative wear). We postulated errors of two-dimensional wear measurements are mainly the result of radiographic projection differences. We tested a new method that makes two-dimensional wear measurements less sensitive for radiograph projection differences of cemented THAs. The measurement errors that occur when radiographically projecting a three-dimensional THA were modeled. Based on the model, we developed a method to reduce the errors, thus approximating three-dimensional linear wear values, which are less sensitive for projection differences. An error analysis was performed by virtually simulating 144 wear measurements under varying conditions with and without application of the correction: the mean absolute error was reduced from 1.8 mm (range, 0-4.51 mm) to 0.11 mm (range, 0-0.27 mm). For clinical validation, radiostereometric analysis was performed on 47 patients to determine the true wear at 1, 2, and 5 years. Subsequently, wear was measured on conventional radiographs with and without the correction: the overall occurrence of errors greater than 0.2 mm was reduced from 35% to 15%. Wear measurements are less sensitive to differences in two-dimensional projection of the THA when using the correction method.

  7. Current State-of-the-Art 3D Tissue Models and Their Compatibility with Live Cell Imaging.

    PubMed

    Bardsley, Katie; Deegan, Anthony J; El Haj, Alicia; Yang, Ying

    2017-01-01

    Mammalian cells grow within a complex three-dimensional (3D) microenvironment where multiple cells are organized and surrounded by extracellular matrix (ECM). The quantity and types of ECM components, alongside cell-to-cell and cell-to-matrix interactions dictate cellular differentiation, proliferation and function in vivo. To mimic natural cellular activities, various 3D tissue culture models have been established to replace conventional two dimensional (2D) culture environments. Allowing for both characterization and visualization of cellular activities within possibly bulky 3D tissue models presents considerable challenges due to the increased thickness and subsequent light scattering features of such 3D models. In this chapter, state-of-the-art methodologies used to establish 3D tissue models are discussed, first with a focus on both scaffold-free and scaffold-based 3D tissue model formation. Following on, multiple 3D live cell imaging systems, mainly optical imaging modalities, are introduced. Their advantages and disadvantages are discussed, with the aim of stimulating more research in this highly demanding research area.

  8. Layer-by-layer 3-dimensional nanofiber tissue scaffold with controlled gap by electrospinning

    NASA Astrophysics Data System (ADS)

    Lin, Sai-Jun; Xue, Ya-Ping; Chang, Guoqing; Han, Qiao-Ling; Chen, Li-Fang; Jia, Yan-Bo; Zheng, Yu-Guo

    2018-02-01

    The development of three-dimensional (3D) nanofiber structures by electrospinning has drawn considerable attention in the field of tissue scaffolds. However, the generation of two dimensional mats using the conventional method limits electrospinning, the electrical charging of polymer liquids, as a means of nanofiber fabrication. In this study, we established a facile method of fabrication of layer-by-layer 3D polycaprolactone (PCL) nanofiber structures by utilizing a booklet collector with controlled morphology. Meanwhile, we explore the application of the manufactured 3D architectures in the field of tissue scaffolds. The approximately 20 μm layer-to-layer distance enhanced the ability of cells to migrate freely into tissues and induce cells in an ordered arrangement.

  9. A dark-line two-dimensional magneto-optical trap of 85Rb atoms with high optical depth.

    PubMed

    Zhang, Shanchao; Chen, J F; Liu, Chang; Zhou, Shuyu; Loy, M M T; Wong, G K L; Du, Shengwang

    2012-07-01

    We describe the apparatus of a dark-line two-dimensional (2D) magneto-optical trap (MOT) of (85)Rb cold atoms with high optical depth (OD). Different from the conventional configuration, two (of three) pairs of trapping laser beams in our 2D MOT setup do not follow the symmetry axes of the quadrupole magnetic field: they are aligned with 45° angles to the longitudinal axis. Two orthogonal repumping laser beams have a dark-line volume in the longitudinal axis at their cross over. With a total trapping laser power of 40 mW and repumping laser power of 18 mW, we obtain an atomic OD up to 160 in an electromagnetically induced transparency (EIT) scheme, which corresponds to an atomic-density-length product NL = 2.05 × 10(15) m(-2). In a closed two-state system, the OD can become as large as more than 600. Our 2D MOT configuration allows full optical access of the atoms in its longitudinal direction without interfering with the trapping and repumping laser beams spatially. Moreover, the zero magnetic field along the longitudinal axis allows the cold atoms maintain a long ground-state coherence time without switching off the MOT magnetic field, which makes it possible to operate the MOT at a high repetition rate and a high duty cycle. Our 2D MOT is ideal for atomic-ensemble-based quantum optics applications, such as EIT, entangled photon pair generation, optical quantum memory, and quantum information processing.

  10. Water-Floating Giant Nanosheets from Helical Peptide Pentamers

    NASA Astrophysics Data System (ADS)

    Lee, Jaehun; Nam, Ki Tae

    One of the important challenges in the development of protein-mimetic materials is to understand the sequence specific assembly behavior and the dynamic folding change. Conventional strategies to construct two dimensional nanostructures from the peptides have been limited to beta-sheet forming sequences in use of basic building blocks because of their natural tendency to form sheet like aggregations. Here we identified a new peptide sequence, YFCFY that can form dimers by the disulfide bridge, fold into helix and assemble into macroscopic flat sheet at the air/water interface. Because of large driving force for two dimensional assembly and high elastic modulus of the resulting sheet, the peptide assembly induces the flattening of initially round water droplet. Additionally, we found that stabilization of helix by the dimerization is a key determinant for maintaining macroscopic flatness over a few tens centimeter even with a uniform thickness below 10 nm. Furthermore, the capability to transfer 2D film from water droplet to other substrates allows for the multiple stacking of 2D peptide nanostructure, suggesting possible applications in the biomimetic catalysts, biosensor and 2D related electronic devices. This work was supported by Samsung Research Funding Center of Samsung Electronics under Project Number SRFC-MA1401-01.

  11. Hierarchical honeycomb auxetic metamaterials

    NASA Astrophysics Data System (ADS)

    Mousanezhad, Davood; Babaee, Sahab; Ebrahimi, Hamid; Ghosh, Ranajay; Hamouda, Abdelmagid Salem; Bertoldi, Katia; Vaziri, Ashkan

    2015-12-01

    Most conventional materials expand in transverse directions when they are compressed uniaxially resulting in the familiar positive Poisson’s ratio. Here we develop a new class of two dimensional (2D) metamaterials with negative Poisson’s ratio that contract in transverse directions under uniaxial compressive loads leading to auxeticity. This is achieved through mechanical instabilities (i.e., buckling) introduced by structural hierarchy and retained over a wide range of applied compression. This unusual behavior is demonstrated experimentally and analyzed computationally. The work provides new insights into the role of structural organization and hierarchy in designing 2D auxetic metamaterials, and new opportunities for developing energy absorbing materials, tunable membrane filters, and acoustic dampeners.

  12. High resolution Physio-chemical Tissue Analysis: Towards Non-invasive In Vivo Biopsy

    NASA Astrophysics Data System (ADS)

    Xu, Guan; Meng, Zhuo-Xian; Lin, Jian-Die; Deng, Cheri X.; Carson, Paul L.; Fowlkes, J. Brian; Tao, Chao; Liu, Xiaojun; Wang, Xueding

    2016-02-01

    Conventional gold standard histopathologic diagnosis requires information of both high resolution structural and chemical changes in tissue. Providing optical information at ultrasonic resolution, photoacoustic (PA) technique could provide highly sensitive and highly accurate tissue characterization noninvasively in the authentic in vivo environment, offering a replacement for histopathology. A two-dimensional (2D) physio-chemical spectrogram (PCS) combining micrometer to centimeter morphology and chemical composition simultaneously can be generated for each biological sample with PA measurements at multiple optical wavelengths. This spectrogram presents a unique 2D “physio-chemical signature” for any specific type of tissue. Comprehensive analysis of PCS, termed PA physio-chemical analysis (PAPCA), can lead to very rich diagnostic information, including the contents of all relevant molecular and chemical components along with their corresponding histological microfeatures, comparable to those accessible by conventional histology. PAPCA could contribute to the diagnosis of many diseases involving diffusive patterns such as fatty liver.

  13. Development of new two-dimensional spectral/spatial code based on dynamic cyclic shift code for OCDMA system

    NASA Astrophysics Data System (ADS)

    Jellali, Nabiha; Najjar, Monia; Ferchichi, Moez; Rezig, Houria

    2017-07-01

    In this paper, a new two-dimensional spectral/spatial codes family, named two dimensional dynamic cyclic shift codes (2D-DCS) is introduced. The 2D-DCS codes are derived from the dynamic cyclic shift code for the spectral and spatial coding. The proposed system can fully eliminate the multiple access interference (MAI) by using the MAI cancellation property. The effect of shot noise, phase-induced intensity noise and thermal noise are used to analyze the code performance. In comparison with existing two dimensional (2D) codes, such as 2D perfect difference (2D-PD), 2D Extended Enhanced Double Weight (2D-Extended-EDW) and 2D hybrid (2D-FCC/MDW) codes, the numerical results show that our proposed codes have the best performance. By keeping the same code length and increasing the spatial code, the performance of our 2D-DCS system is enhanced: it provides higher data rates while using lower transmitted power and a smaller spectral width.

  14. In Vitro Validation of Real-Time Three-Dimensional Color Doppler Echocardiography for Direct Measurement of Proximal Isovelocity Surface Area in Mitral Regurgitation

    PubMed Central

    Little, Stephen H.; Igo, Stephen R.; Pirat, Bahar; McCulloch, Marti; Hartley, Craig J.; Nosé, Yukihiko; Zoghbi, William A.

    2012-01-01

    The 2-dimensional (2D) color Doppler (2D-CD) proximal isovelocity surface area (PISA) method assumes a hemispheric flow convergence zone to estimate transvalvular flow. Recently developed 3-dimensional (3D)-CD can directly visualize PISA shape and surface area without geometric assumptions. To validate a novel method to directly measure PISA using real-time 3D-CD echocardiography, a circulatory loop with an ultrasound imaging chamber was created to model mitral regurgitation (MR). Thirty-two different regurgitant flow conditions were tested using symmetric and asymmetric flow orifices. Three-dimensional–PISA was reconstructed from a hand-held real-time 3D-CD data set. Regurgitant volume was derived using both 2D-CD and 3D-CD PISA methods, and each was compared against a flowmeter standard. The circulatory loop achieved regurgitant volume within the clinical range of MR (11 to 84 ml). Three-dimensional–PISA geometry reflected the 2D geometry of the regurgitant orifice. Correlation between the 2D-PISA method regurgitant volume and actual regurgitant volume was significant (r2 = 0.47, p <0.001). Mean 2D-PISA regurgitant volume underestimate was 19.1 ± 25 ml (2 SDs). For the 3D-PISA method, correlation with actual regurgitant volume was significant (r2 = 0.92, p <0.001), with a mean regurgitant volume underestimate of 2.7 ± 10 ml (2 SDs). The 3D-PISA method showed less regurgitant volume underestimation for all orifice shapes and regurgitant volumes tested. In conclusion, in an in vitro model of MR, 3D-CD was used to directly measure PISA without geometric assumption. Compared with conventional 2D-PISA, regurgitant volume was more accurate when derived from 3D-PISA across symmetric and asymmetric orifices within a broad range of hemodynamic flow conditions. PMID:17493476

  15. High resolution three-dimensional robotic synthetic tracked aperture ultrasound imaging: feasibility study

    NASA Astrophysics Data System (ADS)

    Zhang, Haichong K.; Fang, Ting Yun; Finocchi, Rodolfo; Boctor, Emad M.

    2017-03-01

    Three dimensional (3D) ultrasound imaging is becoming a standard mode for medical ultrasound diagnoses. Conventional 3D ultrasound imaging is mostly scanned either by using a two dimensional matrix array or by motorizing a one dimensional array in the elevation direction. However, the former system is not widely assessable due to its cost, and the latter one has limited resolution and field-of-view in the elevation axis. Here, we propose a 3D ultrasound imaging system based on the synthetic tracked aperture approach, in which a robotic arm is used to provide accurate tracking and motion. While the ultrasound probe is moved by a robotic arm, each probe position is tracked and can be used to reconstruct a wider field-of-view as there are no physical barriers that restrict the elevational scanning. At the same time, synthetic aperture beamforming provides a better resolution in the elevation axis. To synthesize the elevational information, the single focal point is regarded as the virtual element, and forward and backward delay-andsum are applied to the radio-frequency (RF) data collected through the volume. The concept is experimentally validated using a general ultrasound phantom, and the elevational resolution improvement of 2.54 and 2.13 times was measured at the target depths of 20 mm and 110 mm, respectively.

  16. Three-dimensional analysis of alveolar bone resorption by image processing of 3-D dental CT images

    NASA Astrophysics Data System (ADS)

    Nagao, Jiro; Kitasaka, Takayuki; Mori, Kensaku; Suenaga, Yasuhito; Yamada, Shohzoh; Naitoh, Munetaka

    2006-03-01

    We have developed a novel system that provides total support for assessment of alveolar bone resorption, caused by periodontitis, based on three-dimensional (3-D) dental CT images. In spite of the difficulty in perceiving the complex 3-D shape of resorption, dentists assessing resorption location and severity have been relying on two-dimensional radiography and probing, which merely provides one-dimensional information (depth) about resorption shape. However, there has been little work on assisting assessment of the disease by 3-D image processing and visualization techniques. This work provides quantitative evaluation results and figures for our system that measures the three-dimensional shape and spread of resorption. It has the following functions: (1) measures the depth of resorption by virtually simulating probing in the 3-D CT images, taking advantage of image processing of not suffering obstruction by teeth on the inter-proximal sides and much smaller measurement intervals than the conventional examination; (2) visualizes the disposition of the depth by movies and graphs; (3) produces a quantitative index and intuitive visual representation of the spread of resorption in the inter-radicular region in terms of area; and (4) calculates the volume of resorption as another severity index in the inter-radicular region and the region outside it. Experimental results in two cases of 3-D dental CT images and a comparison of the results with the clinical examination results and experts' measurements of the corresponding patients confirmed that the proposed system gives satisfying results, including 0.1 to 0.6mm of resorption measurement (probing) error and fairly intuitive presentation of measurement and calculation results.

  17. 3D Band Diagram and Photoexcitation of 2D-3D Semiconductor Heterojunctions.

    PubMed

    Li, Bo; Shi, Gang; Lei, Sidong; He, Yongmin; Gao, Weilu; Gong, Yongji; Ye, Gonglan; Zhou, Wu; Keyshar, Kunttal; Hao, Ji; Dong, Pei; Ge, Liehui; Lou, Jun; Kono, Junichiro; Vajtai, Robert; Ajayan, Pulickel M

    2015-09-09

    The emergence of a rich variety of two-dimensional (2D) layered semiconductor materials has enabled the creation of atomically thin heterojunction devices. Junctions between atomically thin 2D layers and 3D bulk semiconductors can lead to junctions that are fundamentally electronically different from the covalently bonded conventional semiconductor junctions. Here we propose a new 3D band diagram for the heterojunction formed between n-type monolayer MoS2 and p-type Si, in which the conduction and valence band-edges of the MoS2 monolayer are drawn for both stacked and in-plane directions. This new band diagram helps visualize the flow of charge carriers inside the device in a 3D manner. Our detailed wavelength-dependent photocurrent measurements fully support the diagrams and unambiguously show that the band alignment is type I for this 2D-3D heterojunction. Photogenerated electron-hole pairs in the atomically thin monolayer are separated and driven by an external bias and control the "on/off" states of the junction photodetector device. Two photoresponse regimes with fast and slow relaxation are also revealed in time-resolved photocurrent measurements, suggesting the important role played by charge trap states.

  18. Innovations in 3D printing: a 3D overview from optics to organs.

    PubMed

    Schubert, Carl; van Langeveld, Mark C; Donoso, Larry A

    2014-02-01

    3D printing is a method of manufacturing in which materials, such as plastic or metal, are deposited onto one another in layers to produce a three dimensional object, such as a pair of eye glasses or other 3D objects. This process contrasts with traditional ink-based printers which produce a two dimensional object (ink on paper). To date, 3D printing has primarily been used in engineering to create engineering prototypes. However, recent advances in printing materials have now enabled 3D printers to make objects that are comparable with traditionally manufactured items. In contrast with conventional printers, 3D printing has the potential to enable mass customisation of goods on a large scale and has relevance in medicine including ophthalmology. 3D printing has already been proved viable in several medical applications including the manufacture of eyeglasses, custom prosthetic devices and dental implants. In this review, we discuss the potential for 3D printing to revolutionise manufacturing in the same way as the printing press revolutionised conventional printing. The applications and limitations of 3D printing are discussed; the production process is demonstrated by producing a set of eyeglass frames from 3D blueprints.

  19. Strong transmittance above the light line in mid-infrared two-dimensional photonic crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kraeh, Christian, E-mail: christian.kraeh@tum.de; Walter Schottky Institut, Technische Universität München, Am Coulombwall 4, D-85748 Garching; Martinez-Hurtado, J. L.

    2015-06-14

    The mid-infrared region of the electromagnetic spectrum between 3 and 8 μm hosts absorption lines of gases relevant for chemical and biological sensing. 2D photonic crystal structures capable of guiding light in this region of the spectrum have been widely studied, and their implementation into miniaturized sensors has been proposed. However, light guiding in conventional 2D photonic crystals is usually restricted to a frequency range below the light line, which is the dispersion relation of light in the media surrounding the structures. These structures rely on total internal reflection for confinement of the light in z-direction normal to the lattice plane.more » In this work, 2D mid-infrared photonic crystals consisting of microtube arrays that mitigate these limitations have been developed. Due to their high aspect ratios of ∼1:30, they are perceived as semi-infinite in the z-direction. Light transmission experiments in the 5–8 μm range reveal attenuations as low as 0.27 dB/100 μm, surpassing the limitations for light guiding above the light line in conventional 2D photonic crystals. Fair agreement is obtained between these experiments, 2D band structure and transmission simulations.« less

  20. Two-dimensional antiscatter grid: A novel scatter rejection device for Cone-beam computed tomography.

    PubMed

    Alexeev, Timur; Kavanagh, Brian; Miften, Moyed; Altunbas, Cem

    2018-02-01

    Scattered radiation remains to be a major cause of image quality degradation in Flat Panel Detector (FPD)-based Cone-beam computed tomography (CBCT). We have been investigating a novel two-dimensional antiscatter grid (2D-ASG) concept to reduce scatter intensity, and hence improve CBCT image quality. We present the first CBCT imaging experiments performed with the 2D-ASG prototype, and demonstrate its efficacy in improving CBCT image quality. A 2D-ASG prototype with septa focused to x-ray source was additively manufactured from tungsten and mounted on a Varian TrueBeam CBCT system. CBCT projections of phantoms were acquired with an offset detector geometry using TrueBeam's "developer" mode. To minimize the effect of gantry flex, projections were gain corrected on angle-specific bases. CBCT images were reconstructed using a filtered backprojection algorithm and image quality improvement was quantified by measuring contrast-to-noise ratio (CNR) and CT number accuracy in images acquired with no antiscatter grid (NO-ASG), conventional one dimensional antiscatter grid (1D-ASG), and the 2D-ASG prototype. A significant improvement in contrast resolution was achieved using our 2D-ASG prototype compared to results of 1D-ASG and NO-ASG acquisitions. Compared to NO-ASG and 1D-ASG experiments, the CNR of material inserts improved by as much as 86% and 54% respectively. Using 2D-ASG, CT number underestimation in water equivalent material section of the phantom was reduced by up to 325 HU when compared to NO-ASG and up to 179 HU when compared to 1D-ASG. We successfully performed the first CBCT imaging experiments with a 2D-ASG prototype. 2D-ASG provided significantly higher CT number accuracy, higher CNR, and diminished scatter-induced image artifacts in qualitative evaluations. We strongly believe that utilization of a 2D-ASG may potentially lead to better soft tissue visualization in CBCT and may enable novel clinical applications that require high CT number accuracy. © 2017 American Association of Physicists in Medicine.

  1. Progression of conventional hepatic cell culture models to bioengineered HepG2 cells for evaluation of herbal bioactivities.

    PubMed

    Kaur, Pardeep; Robin; Mehta, Rajendra G; Arora, Saroj; Singh, Balbir

    2018-06-01

    Cancer cell lines of human tissue origin have been extensively used to investigate antiproliferative activity and toxicity of herbal extracts, isolated compounds, and anticancer drugs. These cell lines are genetically and/or epigenetically well characterized to determine the altered expression of proteins within given cellular pathways and critical genes in cancer. Human derived hepatoma (HepG2) cell line has been extensively exploited to examine cytoprotective, antioxidative, hepatoprotective, anti-hepatoma, hypocholesterolemic, anti-steatosis, bioenergetic homeostatic and anti-insulin resistant properties. Moreover, mechanism of action of various botanicals and bioactive constituents has been reported using these cells. HepG2 cells have significant differences as compared to primary hepatocytes with respect to expression of cytochrome P450 enzymes and xenobiotic receptors in conventional in vitro culture conditions. Therefore, strategies have been employed to overcome limitations of two dimensional (2D) in vitro HepG2 cell culture in order to recognize functional biomarkers more accurately and to boost its predictive value in clinical research. In consequence, three dimensional (3D) human hepatoma cell culture models are being developed as a resource to achieve these goals of simulating the in vivo tumor microenvironment. It is assumed that bioengineered 3D hepatoma cell culture models can provide significant assistance in scrutinizing the molecular response of herbal natural products to recognize novel prognostic targets and crucial biomarkers in treatment strategies for cancer patients in near future.

  2. CUBIC pathology: three-dimensional imaging for pathological diagnosis.

    PubMed

    Nojima, Satoshi; Susaki, Etsuo A; Yoshida, Kyotaro; Takemoto, Hiroyoshi; Tsujimura, Naoto; Iijima, Shohei; Takachi, Ko; Nakahara, Yujiro; Tahara, Shinichiro; Ohshima, Kenji; Kurashige, Masako; Hori, Yumiko; Wada, Naoki; Ikeda, Jun-Ichiro; Kumanogoh, Atsushi; Morii, Eiichi; Ueda, Hiroki R

    2017-08-24

    The examination of hematoxylin and eosin (H&E)-stained tissues on glass slides by conventional light microscopy is the foundation for histopathological diagnosis. However, this conventional method has some limitations in x-y axes due to its relatively narrow range of observation area and in z-axis due to its two-dimensionality. In this study, we applied a CUBIC pipeline, which is the most powerful tissue-clearing and three-dimensional (3D)-imaging technique, to clinical pathology. CUBIC was applicable to 3D imaging of both normal and abnormal patient-derived, human lung and lymph node tissues. Notably, the combination of deparaffinization and CUBIC enabled 3D imaging of specimens derived from paraffin-embedded tissue blocks, allowing quantitative evaluation of nuclear and structural atypia of an archival malignant lymphoma tissue. Furthermore, to examine whether CUBIC can be applied to practical use in pathological diagnosis, we performed a histopathological screening of a lymph node metastasis based on CUBIC, which successfully improved the sensitivity in detecting minor metastatic carcinoma nodules in lymph nodes. Collectively, our results indicate that CUBIC significantly contributes to retrospective and prospective clinicopathological diagnosis, which might lead to the establishment of a novel field of medical science based on 3D histopathology.

  3. Exploring 3D non-interpenetrated metal-organic framework with malonate-bridged Co(II) coordination polymer: structural elucidation and theoretical study

    NASA Astrophysics Data System (ADS)

    Hossain, Anowar; Mandal, Tripti; Mitra, Monojit; Manna, Prankrishna; Bauzá, Antonio; Frontera, Antonio; Seth, Saikat Kumar; Mukhopadhyay, Subrata

    2017-12-01

    A Co(II)-based coordination polymer with tetranuclear cobalt(II)-malonate cluster has been easily generated by aqueous medium self-assembly from Cobalt(II) chloride hexahydrate and malonic acid. The structure exhibits a non-interpenetrating, highly undulating two-dimensional (2D) bi-layer network with (4,4) topology. The crystal structure is composed of infinite interdigitated 2D metal-organic bi-layers which extended to an intricate 3D framework through the interbilayer hydrogen bonds. We have studied energetically by means of Density Functional Theory (DFT) calculations the H-bonding interactions that connect the 2D metal-organic bi-layers. The finite theoretical models have been used to compute conventional O‒H•••O and unconventional C‒H•••O interactions which plays a key role to build 3D architecture.

  4. Highly Enhanced Many-Body Interactions in Anisotropic 2D Semiconductors.

    PubMed

    Sharma, Ankur; Yan, Han; Zhang, Linglong; Sun, Xueqian; Liu, Boqing; Lu, Yuerui

    2018-05-15

    Atomically thin two-dimensional (2D) semiconductors have presented a plethora of opportunities for future optoelectronic devices and photonics applications, made possible by the strong light matter interactions at the 2D quantum limit. Many body interactions between fundamental particles in 2D semiconductors are strongly enhanced compared with those in bulk semiconductors because of the reduced dimensionality and, thus, reduced dielectric screening. These enhanced many body interactions lead to the formation of robust quasi-particles, such as excitons, trions, and biexcitons, which are extremely important for the optoelectronics device applications of 2D semiconductors, such as light emitting diodes, lasers, and optical modulators, etc. Recently, the emerging anisotropic 2D semiconductors, such as black phosphorus (termed as phosphorene) and phosphorene-like 2D materials, such as ReSe 2 , 2D-perovskites, SnS, etc., show strong anisotropic optical and electrical properties, which are different from conventional isotropic 2D semiconductors, such as transition metal dichalcogenide (TMD) monolayers. This anisotropy leads to the formation of quasi-one-dimensional (quasi-1D) excitons and trions in a 2D system, which results in even stronger many body interactions in anisotropic 2D materials, arising from the further reduced dimensionality of the quasi-particles and thus reduced dielectric screening. Many body interactions have been heavily investigated in TMD monolayers in past years, but not in anisotropic 2D materials yet. The quasi-particles in anisotropic 2D materials have fractional dimensionality which makes them perfect candidates to serve as a platform to study fundamental particle interactions in fractional dimensional space. In this Account, we present our recent progress related to 2D phosphorene, a 2D system with quasi-1D excitons and trions. Phosphorene, because of its unique anisotropic properties, provides a unique 2D platform for investigating the dynamics of excitons, trions, and biexcitons in reduced dimensions and fundamental many body interactions. We begin by explaining the fundamental reasons for the highly enhanced interactions in the 2D systems influenced by dielectric screening, resulting in high binding energies of excitons and trions, which are supported by theoretical calculations and experimental observations. Phosphorene has shown much higher binding energies of excitons and trions than TMD monolayers, which allows robust quasi-particles in anisotropic materials at room temperature. We also discuss the role of extrinsic defects induced in phosphorene, resulting in localized excitonic emissions in the near-infrared range, making it suitable for optical telecommunication applications. Finally, we present our vision of the exciting device applications based on the highly enhanced many body interactions in phosphorene, including exciton-polariton devices, polariton lasers, single-photon emitters, and tunable light emitting diodes (LEDs).

  5. High efficiency and non-Richardson thermionics in three dimensional Dirac materials

    NASA Astrophysics Data System (ADS)

    Huang, Sunchao; Sanderson, Matthew; Zhang, Yan; Zhang, Chao

    2017-10-01

    Three dimensional (3D) topological materials have a linear energy dispersion and exhibit many electronic properties superior to conventional materials such as fast response times, high mobility, and chiral transport. In this work, we demonstrate that 3D Dirac materials also have advantages over conventional semiconductors and graphene in thermionic applications. The low emission current suffered in graphene due to the vanishing density of states is enhanced by an increased group velocity in 3D Dirac materials. Furthermore, the thermal energy carried by electrons in 3D Dirac materials is twice of that in conventional materials with a parabolic electron energy dispersion. As a result, 3D Dirac materials have the best thermal efficiency or coefficient of performance when compared to conventional semiconductors and graphene. The generalized Richardson-Dushman law in 3D Dirac materials is derived. The law exhibits the interplay of the reduced density of states and enhanced emission velocity.

  6. SU-E-T-279: Realization of Three-Dimensional Conformal Dose Planning in Prostate Brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Z; Jiang, S; Yang, Z

    2014-06-01

    Purpose: Successful clinical treatment in prostate brachytherapy is largely dependent on the effectiveness of pre-surgery dose planning. Conventional dose planning method could hardly arrive at a satisfy result. In this abstract, a three-dimensional conformal localized dose planning method is put forward to ensure the accuracy and effectiveness of pre-implantation dose planning. Methods: Using Monte Carlo method, the pre-calculated 3-D dose map for single source is obtained. As for multiple seeds dose distribution, the maps are combined linearly to acquire the 3-D distribution. The 3-D dose distribution is exhibited in the form of isodose surface together with reconstructed 3-D organs groupmore » real-timely. Then it is possible to observe the dose exposure to target volume and normal tissues intuitively, thus achieving maximum dose irradiation to treatment target and minimum healthy tissues damage. In addition, the exfoliation display of different isodose surfaces can be realized applying multi-values contour extraction algorithm based on voxels. The needles could be displayed in the system by tracking the position of the implanted seeds in real time to conduct block research in optimizing insertion trajectory. Results: This study extends dose planning from two-dimensional to three-dimensional, realizing the three-dimensional conformal irradiation, which could eliminate the limitations of 2-D images and two-dimensional dose planning. A software platform is developed using VC++ and Visualization Toolkit (VTK) to perform dose planning. The 3-D model reconstruction time is within three seconds (on a Intel Core i5 PC). Block research could be conducted to avoid inaccurate insertion into sensitive organs or internal obstructions. Experiments on eight prostate cancer cases prove that this study could make the dose planning results more reasonable. Conclusion: The three-dimensional conformal dose planning method could improve the rationality of dose planning by safely reducing the large target margin and avoiding dose dead zones for prostate cancer treatment. 1) National Natural Science Foundation of People's Republic of China (No. 51175373); 2) New Century Educational Talents Plan of Chinese Education Ministry (NCET-10-0625); 3) Scientific and Technological Major Project, Tianjin (No. 12ZCDZSY10600)« less

  7. Comparison of intraoral scanning and conventional impression techniques using 3-dimensional superimposition.

    PubMed

    Rhee, Ye-Kyu; Huh, Yoon-Hyuk; Cho, Lee-Ra; Park, Chan-Jin

    2015-12-01

    The aim of this study is to evaluate the appropriate impression technique by analyzing the superimposition of 3D digital model for evaluating accuracy of conventional impression technique and digital impression. Twenty-four patients who had no periodontitis or temporomandibular joint disease were selected for analysis. As a reference model, digital impressions with a digital impression system were performed. As a test models, for conventional impression dual-arch and full-arch, impression techniques utilizing addition type polyvinylsiloxane for fabrication of cast were applied. 3D laser scanner is used for scanning the cast. Each 3 pairs for 25 STL datasets were imported into the inspection software. The three-dimensional differences were illustrated in a color-coded map. For three-dimensional quantitative analysis, 4 specified contact locations(buccal and lingual cusps of second premolar and molar) were established. For twodimensional quantitative analysis, the sectioning from buccal cusp to lingual cusp of second premolar and molar were acquired depending on the tooth axis. In color-coded map, the biggest difference between intraoral scanning and dual-arch impression was seen (P<.05). In three-dimensional analysis, the biggest difference was seen between intraoral scanning and dual-arch impression and the smallest difference was seen between dual-arch and full-arch impression. The two- and three-dimensional deviations between intraoral scanner and dual-arch impression was bigger than full-arch and dual-arch impression (P<.05). The second premolar showed significantly bigger three-dimensional deviations than the second molar in the three-dimensional deviations (P>.05).

  8. Comparison of intraoral scanning and conventional impression techniques using 3-dimensional superimposition

    PubMed Central

    Rhee, Ye-Kyu

    2015-01-01

    PURPOSE The aim of this study is to evaluate the appropriate impression technique by analyzing the superimposition of 3D digital model for evaluating accuracy of conventional impression technique and digital impression. MATERIALS AND METHODS Twenty-four patients who had no periodontitis or temporomandibular joint disease were selected for analysis. As a reference model, digital impressions with a digital impression system were performed. As a test models, for conventional impression dual-arch and full-arch, impression techniques utilizing addition type polyvinylsiloxane for fabrication of cast were applied. 3D laser scanner is used for scanning the cast. Each 3 pairs for 25 STL datasets were imported into the inspection software. The three-dimensional differences were illustrated in a color-coded map. For three-dimensional quantitative analysis, 4 specified contact locations(buccal and lingual cusps of second premolar and molar) were established. For twodimensional quantitative analysis, the sectioning from buccal cusp to lingual cusp of second premolar and molar were acquired depending on the tooth axis. RESULTS In color-coded map, the biggest difference between intraoral scanning and dual-arch impression was seen (P<.05). In three-dimensional analysis, the biggest difference was seen between intraoral scanning and dual-arch impression and the smallest difference was seen between dual-arch and full-arch impression. CONCLUSION The two- and three-dimensional deviations between intraoral scanner and dual-arch impression was bigger than full-arch and dual-arch impression (P<.05). The second premolar showed significantly bigger three-dimensional deviations than the second molar in the three-dimensional deviations (P>.05). PMID:26816576

  9. Two-dimensional models for the optical response of thin films

    NASA Astrophysics Data System (ADS)

    Li, Yilei; Heinz, Tony F.

    2018-04-01

    In this work, we present a systematic study of 2D optical models for the response of thin layers of material under excitation by normally incident light. The treatment, within the framework of classical optics, analyzes a thin film supported by a semi-infinite substrate, with both the thin layer and the substrate assumed to exhibit local, isotropic linear response. Starting from the conventional three-dimensional (3D) slab model of the system, we derive a two-dimensional (2D) sheet model for the thin film in which the optical response is described by a sheet optical conductivity. We develop criteria for the applicability of this 2D sheet model for a layer with an optical thickness far smaller than the wavelength of the light. We examine in detail atomically thin semi-metallic and semiconductor van-der-Waals layers and ultrathin metal films as representative examples. Excellent agreement of the 2D sheet model with the 3D slab model is demonstrated over a broad spectral range from the radio frequency limit to the near ultraviolet. A linearized version of system response for the 2D model is also presented for the case where the influence of the optically thin layer is sufficiently weak. Analytical expressions for the applicability and accuracy of the different optical models are derived, and the appropriateness of the linearized treatment for the materials is considered. We discuss the advantages, as well as limitations, of these models for the purpose of deducing the optical response function of the thin layer from experiment. We generalize the theory to take into account in-plane anisotropy, layered thin film structures, and more general substrates. Implications of the 2D model for the transmission of light by the thin film and for the implementation of half- and totally absorbing layers are discussed.

  10. Photonics and optoelectronics of two-dimensional materials beyond graphene.

    PubMed

    Ponraj, Joice Sophia; Xu, Zai-Quan; Dhanabalan, Sathish Chander; Mu, Haoran; Wang, Yusheng; Yuan, Jian; Li, Pengfei; Thakur, Siddharatha; Ashrafi, Mursal; Mccoubrey, Kenneth; Zhang, Yupeng; Li, Shaojuan; Zhang, Han; Bao, Qiaoliang

    2016-11-18

    Apart from conventional materials, the study of two-dimensional (2D) materials has emerged as a significant field of study for a variety of applications. Graphene-like 2D materials are important elements of potential optoelectronics applications due to their exceptional electronic and optical properties. The processing of these materials towards the realization of devices has been one of the main motivations for the recent development of photonics and optoelectronics. The recent progress in photonic devices based on graphene-like 2D materials, especially topological insulators (TIs) and transition metal dichalcogenides (TMDs) with the methodology level discussions from the viewpoint of state-of-the-art designs in device geometry and materials are detailed in this review. We have started the article with an overview of the electronic properties and continued by highlighting their linear and nonlinear optical properties. The production of TIs and TMDs by different methods is detailed. The following main applications focused towards device fabrication are elaborated: (1) photodetectors, (2) photovoltaic devices, (3) light-emitting devices, (4) flexible devices and (5) laser applications. The possibility of employing these 2D materials in different fields is also suggested based on their properties in the prospective part. This review will not only greatly complement the detailed knowledge of the device physics of these materials, but also provide contemporary perception for the researchers who wish to consider these materials for various applications by following the path of graphene.

  11. Photonics and optoelectronics of two-dimensional materials beyond graphene

    NASA Astrophysics Data System (ADS)

    Ponraj, Joice Sophia; Xu, Zai-Quan; Chander Dhanabalan, Sathish; Mu, Haoran; Wang, Yusheng; Yuan, Jian; Li, Pengfei; Thakur, Siddharatha; Ashrafi, Mursal; Mccoubrey, Kenneth; Zhang, Yupeng; Li, Shaojuan; Zhang, Han; Bao, Qiaoliang

    2016-11-01

    Apart from conventional materials, the study of two-dimensional (2D) materials has emerged as a significant field of study for a variety of applications. Graphene-like 2D materials are important elements of potential optoelectronics applications due to their exceptional electronic and optical properties. The processing of these materials towards the realization of devices has been one of the main motivations for the recent development of photonics and optoelectronics. The recent progress in photonic devices based on graphene-like 2D materials, especially topological insulators (TIs) and transition metal dichalcogenides (TMDs) with the methodology level discussions from the viewpoint of state-of-the-art designs in device geometry and materials are detailed in this review. We have started the article with an overview of the electronic properties and continued by highlighting their linear and nonlinear optical properties. The production of TIs and TMDs by different methods is detailed. The following main applications focused towards device fabrication are elaborated: (1) photodetectors, (2) photovoltaic devices, (3) light-emitting devices, (4) flexible devices and (5) laser applications. The possibility of employing these 2D materials in different fields is also suggested based on their properties in the prospective part. This review will not only greatly complement the detailed knowledge of the device physics of these materials, but also provide contemporary perception for the researchers who wish to consider these materials for various applications by following the path of graphene.

  12. A new methodology for accurate 3-dimensional coronary artery reconstruction using routine intravascular ultrasound and angiographic data: implications for widespread assessment of endothelial shear stress in humans.

    PubMed

    Bourantas, Christos V; Papafaklis, Michail I; Athanasiou, Lambros; Kalatzis, Fanis G; Naka, Katerina K; Siogkas, Panagiotis K; Takahashi, Saeko; Saito, Shigeru; Fotiadis, Dimitrios I; Feldman, Charles L; Stone, Peter H; Michalis, Lampros K

    2013-09-01

    To develop and validate a new methodology that allows accurate 3-dimensional (3-D) coronary artery reconstruction using standard, simple angiographic and intravascular ultrasound (IVUS) data acquired during routine catheterisation enabling reliable assessment of the endothelial shear stress (ESS) distribution. Twenty-two patients (22 arteries: 7 LAD; 7 LCx; 8 RCA) who underwent angiography and IVUS examination were included. The acquired data were used for 3-D reconstruction using a conventional method and a new methodology that utilised the luminal 3-D centreline to place the detected IVUS borders and anatomical landmarks to estimate their orientation. The local ESS distribution was assessed by computational fluid dynamics. In corresponding consecutive 3 mm segments, lumen, plaque and ESS measurements in the 3-D models derived by the centreline approach were highly correlated to those derived from the conventional method (r>0.98 for all). The centreline methodology had a 99.5% diagnostic accuracy for identifying segments exposed to low ESS and provided similar estimations to the conventional method for the association between the change in plaque burden and ESS (centreline method: slope= -1.65%/Pa, p=0.078; conventional method: slope= -1.64%/Pa, p=0.084; p =0.69 for difference between the two methodologies). The centreline methodology provides geometrically correct models and permits reliable ESS computation. The ability to utilise data acquired during routine coronary angiography and IVUS examination will facilitate clinical investigation of the role of local ESS patterns in the natural history of coronary atherosclerosis.

  13. Web GIS in practice VII: stereoscopic 3-D solutions for online maps and virtual globes

    PubMed Central

    Boulos, Maged N Kamel; Robinson, Larry R

    2009-01-01

    Because our pupils are about 6.5 cm apart, each eye views a scene from a different angle and sends a unique image to the visual cortex, which then merges the images from both eyes into a single picture. The slight difference between the right and left images allows the brain to properly perceive the 'third dimension' or depth in a scene (stereopsis). However, when a person views a conventional 2-D (two-dimensional) image representation of a 3-D (three-dimensional) scene on a conventional computer screen, each eye receives essentially the same information. Depth in such cases can only be approximately inferred from visual clues in the image, such as perspective, as only one image is offered to both eyes. The goal of stereoscopic 3-D displays is to project a slightly different image into each eye to achieve a much truer and realistic perception of depth, of different scene planes, and of object relief. This paper presents a brief review of a number of stereoscopic 3-D hardware and software solutions for creating and displaying online maps and virtual globes (such as Google Earth) in "true 3D", with costs ranging from almost free to multi-thousand pounds sterling. A practical account is also given of the experience of the USGS BRD UMESC (United States Geological Survey's Biological Resources Division, Upper Midwest Environmental Sciences Center) in setting up a low-cost, full-colour stereoscopic 3-D system. PMID:19849837

  14. Web GIS in practice VII: stereoscopic 3-D solutions for online maps and virtual globes.

    PubMed

    Boulos, Maged N Kamel; Robinson, Larry R

    2009-10-22

    Because our pupils are about 6.5 cm apart, each eye views a scene from a different angle and sends a unique image to the visual cortex, which then merges the images from both eyes into a single picture. The slight difference between the right and left images allows the brain to properly perceive the 'third dimension' or depth in a scene (stereopsis). However, when a person views a conventional 2-D (two-dimensional) image representation of a 3-D (three-dimensional) scene on a conventional computer screen, each eye receives essentially the same information. Depth in such cases can only be approximately inferred from visual clues in the image, such as perspective, as only one image is offered to both eyes. The goal of stereoscopic 3-D displays is to project a slightly different image into each eye to achieve a much truer and realistic perception of depth, of different scene planes, and of object relief. This paper presents a brief review of a number of stereoscopic 3-D hardware and software solutions for creating and displaying online maps and virtual globes (such as Google Earth) in "true 3D", with costs ranging from almost free to multi-thousand pounds sterling. A practical account is also given of the experience of the USGS BRD UMESC (United States Geological Survey's Biological Resources Division, Upper Midwest Environmental Sciences Center) in setting up a low-cost, full-colour stereoscopic 3-D system.

  15. Web GIS in practice VII: stereoscopic 3-D solutions for online maps and virtual globes

    USGS Publications Warehouse

    Boulos, Maged N.K.; Robinson, Larry R.

    2009-01-01

    Because our pupils are about 6.5 cm apart, each eye views a scene from a different angle and sends a unique image to the visual cortex, which then merges the images from both eyes into a single picture. The slight difference between the right and left images allows the brain to properly perceive the 'third dimension' or depth in a scene (stereopsis). However, when a person views a conventional 2-D (two-dimensional) image representation of a 3-D (three-dimensional) scene on a conventional computer screen, each eye receives essentially the same information. Depth in such cases can only be approximately inferred from visual clues in the image, such as perspective, as only one image is offered to both eyes. The goal of stereoscopic 3-D displays is to project a slightly different image into each eye to achieve a much truer and realistic perception of depth, of different scene planes, and of object relief. This paper presents a brief review of a number of stereoscopic 3-D hardware and software solutions for creating and displaying online maps and virtual globes (such as Google Earth) in "true 3D", with costs ranging from almost free to multi-thousand pounds sterling. A practical account is also given of the experience of the USGS BRD UMESC (United States Geological Survey's Biological Resources Division, Upper Midwest Environmental Sciences Center) in setting up a low-cost, full-colour stereoscopic 3-D system.

  16. Distinction of three wood species by Fourier transform infrared spectroscopy and two-dimensional correlation IR spectroscopy

    NASA Astrophysics Data System (ADS)

    Huang, Anmin; Zhou, Qun; Liu, Junliang; Fei, Benhua; Sun, Suqin

    2008-07-01

    Dalbergia odorifera T. Chen, Pterocarpus santalinus L.F. and Pterocarpus soyauxii are three kinds of the most valuable wood species, which are hard to distinguish. In this paper, differentiation of D. odorifera, P. santalinus and P. soyauxii was carried out by using Fourier transform infrared spectroscopy (FT-IR), second derivative IR spectra and two-dimensional correlation infrared (2D-IR) spectroscopy. The three woods have their characteristic peaks in conventional IR spectra. For example, D. odorifera has obvious absorption peaks at 1640 and 1612 cm -1; P. santalinus has only one peak at 1614 cm -1; and P. soyauxii has one peak at 1619 cm -1 and one shoulder peak at 1597 cm -1. To enhance spectrum resolution and amplify the differences between the IR spectra of different woods, the second derivative technology was adopted to examine the three wood samples. More differences could be observed in the region of 800-1700 cm -1. Then, the thermal perturbation is applied to distinguish different wood samples in an easier way, because of the spectral resolution being enhanced by the 2D correlation spectroscopy. In the region of 1300-1800 cm -1, D. odorifera has five auto-peaks at 1518, 1575, 1594, 1620 and 1667 cm -1; P. santalinus has four auto-peaks at 1469, 1518, 1627 and 1639 cm -1 and P. soyauxii has only two auto-peaks at 1627 and 1639 cm -1. It is proved that the 2D correlation IR spectroscopy can be a new method to distinguish D. odorifera, P. santalinus and P. soyauxii.

  17. Three-Dimensional Root Phenotyping with a Novel Imaging and Software Platform1[C][W][OA

    PubMed Central

    Clark, Randy T.; MacCurdy, Robert B.; Jung, Janelle K.; Shaff, Jon E.; McCouch, Susan R.; Aneshansley, Daniel J.; Kochian, Leon V.

    2011-01-01

    A novel imaging and software platform was developed for the high-throughput phenotyping of three-dimensional root traits during seedling development. To demonstrate the platform’s capacity, plants of two rice (Oryza sativa) genotypes, Azucena and IR64, were grown in a transparent gellan gum system and imaged daily for 10 d. Rotational image sequences consisting of 40 two-dimensional images were captured using an optically corrected digital imaging system. Three-dimensional root reconstructions were generated and analyzed using a custom-designed software, RootReader3D. Using the automated and interactive capabilities of RootReader3D, five rice root types were classified and 27 phenotypic root traits were measured to characterize these two genotypes. Where possible, measurements from the three-dimensional platform were validated and were highly correlated with conventional two-dimensional measurements. When comparing gellan gum-grown plants with those grown under hydroponic and sand culture, significant differences were detected in morphological root traits (P < 0.05). This highly flexible platform provides the capacity to measure root traits with a high degree of spatial and temporal resolution and will facilitate novel investigations into the development of entire root systems or selected components of root systems. In combination with the extensive genetic resources that are now available, this platform will be a powerful resource to further explore the molecular and genetic determinants of root system architecture. PMID:21454799

  18. Transparent Large-Area MoS2 Phototransistors with Inkjet-Printed Components on Flexible Platforms.

    PubMed

    Kim, Tae-Young; Ha, Jewook; Cho, Kyungjune; Pak, Jinsu; Seo, Jiseok; Park, Jongjang; Kim, Jae-Keun; Chung, Seungjun; Hong, Yongtaek; Lee, Takhee

    2017-10-24

    Two-dimensional (2D) transition-metal dichalcogenides (TMDCs) have gained considerable attention as an emerging semiconductor due to their promising atomically thin film characteristics with good field-effect mobility and a tunable band gap energy. However, their electronic applications have been generally realized with conventional inorganic electrodes and dielectrics implemented using conventional photolithography or transferring processes that are not compatible with large-area and flexible device applications. To facilitate the advantages of 2D TMDCs in practical applications, strategies for realizing flexible and transparent 2D electronics using low-temperature, large-area, and low-cost processes should be developed. Motivated by this challenge, we report fully printed transparent chemical vapor deposition (CVD)-synthesized monolayer molybdenum disulfide (MoS 2 ) phototransistor arrays on flexible polymer substrates. All the electronic components, including dielectric and electrodes, were directly deposited with mechanically tolerable organic materials by inkjet-printing technology onto transferred monolayer MoS 2 , and their annealing temperature of <180 °C allows the direct fabrication on commercial flexible substrates without additional assisted-structures. By integrating the soft organic components with ultrathin MoS 2 , the fully printed MoS 2 phototransistors exhibit excellent transparency and mechanically stable operation.

  19. The design and operational development of self-streamlining 2-dimensional flexible walled test sections. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Wolf, S. W. D.

    1984-01-01

    Self streamlining two dimensional flexible walled test sections eliminate the uncertainties found in data from conventional test sections particularly at transonic speeds. The test section sidewalls are rigid, while the floor and ceiling are flexible and are positioned to streamline shapes by a system of jacks, without reference to the model. The walls are therefore self streamlining. Data are taken from the model when the walls are good streamlines such that the inevitable residual wall induced interference is acceptably small and correctable. Successful two dimensional validation testing at low speeds has led to the development of a new transonic flexible walled test section. Tunnel setting times are minimized by the development of a rapid wall setting strategy coupled with on line computer control of wall shapes using motorized jacks. Two dimensional validation testing using symmetric and cambered aerofoils in the Mach number range up to about 0.85 where the walls are just supercritical, shows good agreement with reference data using small height-chord ratios between 1.5 and unity.

  20. Multi-dimensional Fokker-Planck equation analysis using the modified finite element method

    NASA Astrophysics Data System (ADS)

    Náprstek, J.; Král, R.

    2016-09-01

    The Fokker-Planck equation (FPE) is a frequently used tool for the solution of cross probability density function (PDF) of a dynamic system response excited by a vector of random processes. FEM represents a very effective solution possibility, particularly when transition processes are investigated or a more detailed solution is needed. Actual papers deal with single degree of freedom (SDOF) systems only. So the respective FPE includes two independent space variables only. Stepping over this limit into MDOF systems a number of specific problems related to a true multi-dimensionality must be overcome. Unlike earlier studies, multi-dimensional simplex elements in any arbitrary dimension should be deployed and rectangular (multi-brick) elements abandoned. Simple closed formulae of integration in multi-dimension domain have been derived. Another specific problem represents the generation of multi-dimensional finite element mesh. Assembling of system global matrices should be subjected to newly composed algorithms due to multi-dimensionality. The system matrices are quite full and no advantages following from their sparse character can be profited from, as is commonly used in conventional FEM applications in 2D/3D problems. After verification of partial algorithms, an illustrative example dealing with a 2DOF non-linear aeroelastic system in combination with random and deterministic excitations is discussed.

  1. Analysis of branched DNA replication and recombination intermediates from prokaryotic cells by two-dimensional (2D) native-native agarose gel electrophoresis.

    PubMed

    Robinson, Nicholas P

    2013-01-01

    Branched DNA molecules are generated by the essential processes of replication and recombination. Owing to their distinctive extended shapes, these intermediates migrate differently from linear double-stranded DNA under certain electrophoretic conditions. However, these branched species exist in the cell at much low abundance than the bulk linear DNA. Consequently, branched molecules cannot be visualized by conventional electrophoresis and ethidium bromide staining. Two-dimensional native-native agarose electrophoresis has therefore been developed as a method to facilitate the separation and visualization of branched replication and recombination intermediates. A wide variety of studies have employed this technique to examine branched molecules in eukaryotic, archaeal, and bacterial cells, providing valuable insights into how DNA is duplicated and repaired in all three domains of life.

  2. The in vitro biocompatibility of d-(+) raffinose modified chitosan: Two-dimensional and three-dimensional systems for culturing of horse articular chondrocytes.

    PubMed

    De Angelis, Elena; Ravanetti, Francesca; Martelli, Paolo; Cacchioli, Antonio; Ivanovska, Ana; Corradi, Attilio; Nasi, Sonia; Bianchera, Annalisa; Passeri, Benedetta; Canelli, Elena; Bettini, Ruggero; Borghetti, Paolo

    2017-12-01

    The present study investigated the biocompatibility of chitosan films and scaffolds modified with d-(+)raffinose and their capability to support the growth and maintenance of the differentiation of articular chondrocytes in vitro. Primary equine articular chondrocytes were cultured on films and scaffolds of modified d-(+) raffinose chitosan. Their behavior was compared to that of chondrocytes grown in conventional bi- and three-dimensional culture systems, such as micromasses and alginate beads. Chitosan films maintained the phenotype of differentiated chondrocytes (typical round morphology) and sustained the synthesis of cartilaginous extracellular matrix (ECM), even at 4weeks of culture. Indeed, starting from 2weeks of culture, chondrocytes seeded on chitosan scaffolds were able to penetrate the surface pores and to colonize the internal matrix. Moreover they produced ECM expressing the genes of typical chondrocytes differentiation markers such as collagen II and aggrecan. In conclusion, chitosan modified with d-raffinose represents an ideal support for chondrocyte adhesion, proliferation and for the maintenance of cellular phenotypic and genotypic differentiation. This novel biomaterial could potentially be a reliable support for the re-differentiation of dedifferentiated chondrocytes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Refraction of high frequency noise in an arbitrary jet flow

    NASA Technical Reports Server (NTRS)

    Khavaran, Abbas; Krejsa, Eugene A.

    1994-01-01

    Refraction of high frequency noise by mean flow gradients in a jet is studied using the ray-tracing methods of geometrical acoustics. Both the two-dimensional (2D) and three-dimensional (3D) formulations are considered. In the former case, the mean flow is assumed parallel and the governing propagation equations are described by a system of four first order ordinary differential equations. The 3D formulation, on the other hand, accounts for the jet spreading as well as the axial flow development. In this case, a system of six first order differential equations are solved to trace a ray from its source location to an observer in the far field. For subsonic jets with a small spreading angle both methods lead to similar results outside the zone of silence. However, with increasing jet speed the two prediction models diverge to the point where the parallel flow assumption is no longer justified. The Doppler factor of supersonic jets as influenced by the refraction effects is discussed and compared with the conventional modified Doppler factor.

  4. Differentiation of Asian ginseng, American ginseng and Notoginseng by Fourier transform infrared spectroscopy combined with two-dimensional correlation infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Lu, Guang-hua; Zhou, Qun; Sun, Su-qin; Leung, Kelvin Sze-yin; Zhang, Hao; Zhao, Zhong-zhen

    2008-07-01

    The herbal materials of Asian ginseng (the root of Panax ginseng), American ginseng (the root of Panax quinquefolius) and Notoginseng (the root of Panax notoginseng) were differentiated by conventional Fourier transform infrared spectroscopy (1D-FTIR) and two-dimensional (2D) correlation FTIR applying a thermal perturbation. Altogether 30 samples were collected and analyzed. Their entire 1D-FTIR spectra in the range of 4000-400 cm -1 and 2D-FTIR spectra in the region of 850-1530 cm -1 were generally similar based on the peaks position and intensities. This indicated the chemical constituents in these species of herbs were not distinctively different. However, variation in peak intensity were observed at about 1640 cm -1, 1416 cm -1, 1372 cm -1 and 1048 cm -1 in the 1D-FTIR spectra among these species for their ease differentiation. Clustering analysis of 1D-FTIR showed that these species located in different clusters. Much difference in their second derivative FTIR pattern among the three species also provided information for easy differentiation. These species of herbs were further identified based on the positions and intensities of relatively strong auto-peaks, positive or negative cross-peaks in their 2D-FTIR spectra. The findings provide a rapid and new operational procedure for the differentiation of these notable herbs. The visual and colorful 2D-FTIR spectra can provide dynamic structural information of chemical components in analyte and demonstrated as a powerful and useful approach for herbs identification.

  5. Data Visualization for ESM and ELINT: Visualizing 3D and Hyper Dimensional Data

    DTIC Science & Technology

    2011-06-01

    technique to present multiple 2D views was devised by D. Asimov . He assembled multiple two dimensional scatter plot views of the hyper dimensional...Viewing Multidimensional Data”, D. Asimov , DIAM Journal on Scientific and Statistical Computing, vol.61, pp.128-143, 1985. [2] “High-Dimensional

  6. Establishing Substantial Equivalence: Proteomics

    NASA Astrophysics Data System (ADS)

    Lovegrove, Alison; Salt, Louise; Shewry, Peter R.

    Wheat is a major crop in world agriculture and is consumed after processing into a range of food products. It is therefore of great importance to determine the consequences (intended and unintended) of transgenesis in wheat and whether genetically modified lines are substantially equivalent to those produced by conventional plant breeding. Proteomic analysis is one of several approaches which can be used to address these questions. Two-dimensional PAGE (2D PAGE) remains the most widely available method for proteomic analysis, but is notoriously difficult to reproduce between laboratories. We therefore describe methods which have been developed as standard operating procedures in our laboratory to ensure the reproducibility of proteomic analyses of wheat using 2D PAGE analysis of grain proteins.

  7. Photogrammetry of the three-dimensional shape and texture of a nanoscale particle using scanning electron microscopy and free software.

    PubMed

    Gontard, Lionel C; Schierholz, Roland; Yu, Shicheng; Cintas, Jesús; Dunin-Borkowski, Rafal E

    2016-10-01

    We apply photogrammetry in a scanning electron microscope (SEM) to study the three-dimensional shape and surface texture of a nanoscale LiTi2(PO4)3 particle. We highlight the fact that the technique can be applied non-invasively in any SEM using free software (freeware) and does not require special sample preparation. Three-dimensional information is obtained in the form of a surface mesh, with the texture of the sample stored as a separate two-dimensional image (referred to as a UV Map). The mesh can be used to measure parameters such as surface area, volume, moment of inertia and center of mass, while the UV map can be used to study the surface texture using conventional image processing techniques. We also illustrate the use of 3D printing to visualize the reconstructed model. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Combination of two-dimensional shear wave elastography with ultrasound breast imaging reporting and data system in the diagnosis of breast lesions: a new method to increase the diagnostic performance.

    PubMed

    Li, Dan-Dan; Xu, Hui-Xiong; Guo, Le-Hang; Bo, Xiao-Wan; Li, Xiao-Long; Wu, Rong; Xu, Jun-Mei; Zhang, Yi-Feng; Zhang, Kun

    2016-09-01

    To evaluate the diagnostic performance of a new method of combined two-dimensional shear wave elastography (i.e. virtual touch imaging quantification, VTIQ) and ultrasound (US) Breast Imaging Reporting and Data System (BI-RADS) in the differential diagnosis of breast lesions. From September 2014 to December 2014, 276 patients with 296 pathologically proven breast lesions were enrolled in this study. The conventional US images were interpreted by two independent readers. The diagnosis performances of BI-RADS and combined BI-RADS and VTIQ were evaluated, including the area under the receiver operating characteristic curve (AUROC), sensitivity and specificity. Observer consistency was also evaluated. Pathologically, 212 breast lesions were benign and 84 were malignant. Compared with BI-RADS alone, the AUROCs and specificities of the combined method for both readers increased significantly (AUROC: 0.862 vs. 0.693 in reader 1, 0.861 vs. 0.730 in reader 2; specificity: 91.5 % vs. 38.7 % in reader 1, 94.8 % vs. 47.2 % in reader 2; all P < .05). The Kappa value between the two readers for BI-RADS assessment was 0.614, and 0.796 for the combined method. The combined VTIQ and BI-RADS had a better diagnostic performance in the diagnosis of breast lesions in comparison with BI-RADS alone. • Combination of conventional ultrasound and elastography distinguishes breast cancers more effectively. • Combination of conventional ultrasound and elastography increases observer consistency. • BI-RADS weights more than the 2D-SWE with an increase in malignancy probability.

  9. Peculiar Piezoelectricity in Two-Dimensional Materials

    NASA Astrophysics Data System (ADS)

    Sevik, Cem; Cakir, Deniz; Gulseren, Oguz; Peeters, Francois M.

    Recently, two dimensional materials with noncentrosymmetric structure have received significant interest due to their potential usage in piezoelectric applications. It has been reported by first principles calculations that relaxed-ion piezoelectric strain (d11) and stress (e11) coefficients of some transition metal dichalcogenide (TMDC) monolayers are comparable or even better than that of conventional bulk piezoelectric materials. Furthermore, e11 coefficient of MoS2 has been measured as 2.9 .10-10 C/m, which agrees well with the theoretical calculations. In order to deeply investigate this potential, we have performed first-principles calculations and systematically investigated the piezoelectric properties of various single layer structures: TMDCs, transition metal oxides, and hexagonal group II-VI compounds. The results clearly show that not only the Mo- and W-based TMDCs but also the other materials with Cr, Ti, Zr and Sn exhibit highly promising piezoelectric properties. Moreover, d11coefficient of some II-VI compounds have been predicted as quite larger than that of TMDCs and the bulk materials, α-quartz, w-GaN, and w-AlN which are widely used in applications.

  10. Topological states in a two-dimensional metal alloy in Si surface: BiAg/Si(111)-4 ×4 surface

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoming; Cui, Bin; Zhao, Mingwen; Liu, Feng

    2018-02-01

    A bridging topological state with a conventional semiconductor platform offers an attractive route towards future spintronics and quantum device applications. Here, based on first-principles and tight-binding calculations, we demonstrate the existence of topological states hosted by a two-dimensional (2D) metal alloy in a Si surface, the BiAg/Si(111)-4 ×4 surface, which has already been synthesized experimentally. It exhibits a topological insulating state with an energy gap of 71 meV (˜819 K ) above the Fermi level and a topological metallic state with quasiquantized conductance below the Fermi level. The underlying mechanism leading to the formation of such nontrivial states is revealed by analysis of the "charge-transfer" and "orbital-filtering" effect of the Si substrate. A minimal effective tight-binding model is employed to reveal the formation mechanism of the topological states. Our finding opens opportunities to detect topological states and measure its quantized conductance in a large family of 2D surface metal alloys, which have been or are to be grown on semiconductor substrates.

  11. Design of a rotational three-dimensional nonimaging device by a compensated two-dimensional design process.

    PubMed

    Yang, Yi; Qian, Ke-Yuan; Luo, Yi

    2006-07-20

    A compensation process has been developed to design rotational three-dimensional (3D) nonimaging devices. By compensating the desired light distribution during a two-dimensional (2D) design process for an extended Lambertian source using a compensation coefficient, the meridian plane of a 3D device with good performance can be obtained. This method is suitable in many cases with fast calculation speed. Solutions to two kinds of optical design problems have been proposed, and the limitation of this compensated 2D design method is discussed.

  12. In vivo evaluation of inter-operator reproducibility of digital dental and conventional impression techniques

    PubMed Central

    Kamimura, Emi; Tanaka, Shinpei; Takaba, Masayuki; Tachi, Keita; Baba, Kazuyoshi

    2017-01-01

    Purpose The aim of this study was to evaluate and compare the inter-operator reproducibility of three-dimensional (3D) images of teeth captured by a digital impression technique to a conventional impression technique in vivo. Materials and methods Twelve participants with complete natural dentition were included in this study. A digital impression of the mandibular molars of these participants was made by two operators with different levels of clinical experience, 3 or 16 years, using an intra-oral scanner (Lava COS, 3M ESPE). A silicone impression also was made by the same operators using the double mix impression technique (Imprint3, 3M ESPE). Stereolithography (STL) data were directly exported from the Lava COS system, while STL data of a plaster model made from silicone impression were captured by a three-dimensional (3D) laboratory scanner (D810, 3shape). The STL datasets recorded by two different operators were compared using 3D evaluation software and superimposed using the best-fit-algorithm method (least-squares method, PolyWorks, InnovMetric Software) for each impression technique. Inter-operator reproducibility as evaluated by average discrepancies of corresponding 3D data was compared between the two techniques (Wilcoxon signed-rank test). Results The visual inspection of superimposed datasets revealed that discrepancies between repeated digital impression were smaller than observed with silicone impression. Confirmation was forthcoming from statistical analysis revealing significantly smaller average inter-operator reproducibility using a digital impression technique (0.014± 0.02 mm) than when using a conventional impression technique (0.023 ± 0.01 mm). Conclusion The results of this in vivo study suggest that inter-operator reproducibility with a digital impression technique may be better than that of a conventional impression technique and is independent of the clinical experience of the operator. PMID:28636642

  13. Fabrication of 3D-culture platform with sandwich architecture for preserving liver-specific functions of hepatocytes using 3D bioprinter.

    PubMed

    Arai, Kenichi; Yoshida, Toshiko; Okabe, Motonori; Goto, Mitsuaki; Mir, Tanveer Ahmad; Soko, Chika; Tsukamoto, Yoshinari; Akaike, Toshihiro; Nikaido, Toshio; Zhou, Kaixuan; Nakamura, Makoto

    2017-06-01

    The development of new three-dimensional (3D) cell culture system that maintains the physiologically relevant signals of hepatocytes is essential in drug discovery and tissue engineering research. Conventional two-dimensional (2D) culture yields cell growth, proliferation, and differentiation. However, gene expression and signaling profiles can be different from in vivo environment. Here, we report the fabrication of a 3D culture system using an artificial scaffold and our custom-made inkjet 3D bioprinter as a new strategy for studying liver-specific functions of hepatocytes. We built a 3D culture platform for hepatocytes-attachment and formation of cell monolayer by interacting the galactose chain of galactosylated alginate gel (GA-gel) with asialoglycoprotein receptor (ASGPR) of hepatocytes. The 3D geometrical arrangement of cells was controlled by using 3D bioprinter, and cell polarity was controlled with the galactosylated hydrogels. The fabricated GA-gel was able to successfully promote adhesion of hepatocytes. To observe liver-specific functions and to mimic hepatic cord, an additional parallel layer of hepatocytes was generated using two gel sheets. These results indicated that GA-gel biomimetic matrices can be used as a 3D culture system that could be effective for the engineering of liver tissues. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1583-1592, 2017. © 2017 Wiley Periodicals, Inc.

  14. Solving the Vlasov equation in two spatial dimensions with the Schrödinger method

    NASA Astrophysics Data System (ADS)

    Kopp, Michael; Vattis, Kyriakos; Skordis, Constantinos

    2017-12-01

    We demonstrate that the Vlasov equation describing collisionless self-gravitating matter may be solved with the so-called Schrödinger method (ScM). With the ScM, one solves the Schrödinger-Poisson system of equations for a complex wave function in d dimensions, rather than the Vlasov equation for a 2 d -dimensional phase space density. The ScM also allows calculating the d -dimensional cumulants directly through quasilocal manipulations of the wave function, avoiding the complexity of 2 d -dimensional phase space. We perform for the first time a quantitative comparison of the ScM and a conventional Vlasov solver in d =2 dimensions. Our numerical tests were carried out using two types of cold cosmological initial conditions: the classic collapse of a sine wave and those of a Gaussian random field as commonly used in cosmological cold dark matter N-body simulations. We compare the first three cumulants, that is, the density, velocity and velocity dispersion, to those obtained by solving the Vlasov equation using the publicly available code ColDICE. We find excellent qualitative and quantitative agreement between these codes, demonstrating the feasibility and advantages of the ScM as an alternative to N-body simulations. We discuss, the emergence of effective vorticity in the ScM through the winding number around the points where the wave function vanishes. As an application we evaluate the background pressure induced by the non-linearity of large scale structure formation, thereby estimating the magnitude of cosmological backreaction. We find that it is negligibly small and has time dependence and magnitude compatible with expectations from the effective field theory of large scale structure.

  15. Finite element analysis of a novel implant distribution to support maxillary overdentures.

    PubMed

    Osman, Reham B; Elkhadem, Amr H; Ma, Sunyoung; Swain, Michael V

    2013-01-01

    To evaluate the biomechanics of a novel implant placement distribution and compare it with that of conventional maxillary overdenture support using three-dimensional finite element analysis (FEA). The application of zirconia implants in the context of this novel design was also evaluated. Detailed FEA models were created to analyze the loading responses of two different distributions of implants to support maxillary overdentures. The two implant distributions were as follows: the conventional design (D1) included four unsplinted implants in the premolar regions, whereas the novel design (D2) included one midpalatal implant, bilateral canine/premolar implants, and one anterior off-center crestal implant. Anatomical models were created with computed tomographic data and static loads were applied axially and obliquely. Von Mises stresses and equivalent strains generated in peri-implant bone and first principal stresses in the implants were calculated, including any denture displacement. Comparable stress and strain values were seen in the peri-implant bone for both designs. A significant decrease in the first principal stresses of D2 implants was observed with oblique loads. The maximum equivalent strain produced in the peri-implant region was mostly within the range for bone augmentation. D2 displayed lower maximum displacement values than D1. Maximum tensile stresses in the zirconia implants for either design were well below their fracture strength. A novel four-implant distribution involving midpalatal and crestal implants may be an alternative to the conventional design used for maxillary overdentures. This is particularly relevant when anatomical considerations prevent the placement of four anterior crestal implants. Zirconia implants may also be a valid option for a selected group of patients or for those requesting metal-free restorations. Prospective clinical studies are required to confirm these in vitro results.

  16. Quadratic Frequency Modulation Signals Parameter Estimation Based on Two-Dimensional Product Modified Parameterized Chirp Rate-Quadratic Chirp Rate Distribution.

    PubMed

    Qu, Zhiyu; Qu, Fuxin; Hou, Changbo; Jing, Fulong

    2018-05-19

    In an inverse synthetic aperture radar (ISAR) imaging system for targets with complex motion, the azimuth echo signals of the target are always modeled as multicomponent quadratic frequency modulation (QFM) signals. The chirp rate (CR) and quadratic chirp rate (QCR) estimation of QFM signals is very important to solve the ISAR image defocus problem. For multicomponent QFM (multi-QFM) signals, the conventional QR and QCR estimation algorithms suffer from the cross-term and poor anti-noise ability. This paper proposes a novel estimation algorithm called a two-dimensional product modified parameterized chirp rate-quadratic chirp rate distribution (2D-PMPCRD) for QFM signals parameter estimation. The 2D-PMPCRD employs a multi-scale parametric symmetric self-correlation function and modified nonuniform fast Fourier transform-Fast Fourier transform to transform the signals into the chirp rate-quadratic chirp rate (CR-QCR) domains. It can greatly suppress the cross-terms while strengthening the auto-terms by multiplying different CR-QCR domains with different scale factors. Compared with high order ambiguity function-integrated cubic phase function and modified Lv's distribution, the simulation results verify that the 2D-PMPCRD acquires higher anti-noise performance and obtains better cross-terms suppression performance for multi-QFM signals with reasonable computation cost.

  17. A unified convention for biological assemblies with helical symmetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsai, Chung-Jung, E-mail: tsaic@mail.nih.gov; Nussinov, Ruth; Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978

    A new representation of helical structure by four parameters, [n{sub 1}, n{sub 2}, twist, rise], is able to generate an entire helical construct from asymmetric units, including cases of helical assembly with a seam. Assemblies with helical symmetry can be conveniently formulated in many distinct ways. Here, a new convention is presented which unifies the two most commonly used helical systems for generating helical assemblies from asymmetric units determined by X-ray fibre diffraction and EM imaging. A helical assembly is viewed as being composed of identical repetitive units in a one- or two-dimensional lattice, named 1-D and 2-D helical systems,more » respectively. The unification suggests that a new helical description with only four parameters [n{sub 1}, n{sub 2}, twist, rise], which is called the augmented 1-D helical system, can generate the complete set of helical arrangements, including coverage of helical discontinuities (seams). A unified four-parameter characterization implies similar parameters for similar assemblies, can eliminate errors in reproducing structures of helical assemblies and facilitates the generation of polymorphic ensembles from helical atomic models or EM density maps. Further, guidelines are provided for such a unique description that reflects the structural signature of an assembly, as well as rules for manipulating the helical symmetry presentation.« less

  18. Three-dimensional extracellular matrix scaffolds by microfluidic fabrication for long-term spontaneously contracted cardiomyocyte culture.

    PubMed

    Mei, Jeng-Chun; Wu, Aden Yuan Kun; Wu, Po-Chen; Cheng, Nai-Chen; Tsai, Wei-Bor; Yu, Jiashing

    2014-11-01

    To repair damaged cardiac tissue, the important principle of in vitro cell culture is to mimic the in vivo cell growth environment. Thus, micro-sized cells are more suitably cultured in three-dimensional (3D) than in two-dimensional (2D) microenvironments (ex: culture dish). With the matching dimensions of works produced by microfluidic technology, chemical engineering and biochemistry applications have used this technology extensively in cellular works. The 3D scaffolds produced in our investigation has essential properties, such has high mass transfer efficiency, and variable pore sizes, to adapt to various needs of different cell types. In addition to the malleability of these innovative scaffolds, fabrication procedure was effortless and fast. Primary neonatal mice cardiomyocytes were successfully harvested and cultured in 3D scaffolds made of gelatin and collagen. Gelatin and gelatin-collagen scaffold were produced by the formation of microbubbles through a microfluidic device, and the mechanical properties of gelatin scaffold and gelatin-collagen scaffold were measured. Cellular properties in the microbubbles were also monitored. Fluorescence staining results assured that cardiomyocytes could maintain in vivo morphology in 3D gelatin scaffold. In addition, it was found that 3D scaffold could prolong the contraction behavior of cardiomyocytes compared with a conventional 2D culture dish. Spontaneously contracted behavior was maintained for the longest (about 1 month) in the 3D gelatin scaffold, about 19 days in the 3D gelatin-collagen scaffold. To sum up, this 3D platform for cell culture has promising potential for myocardial tissue engineering.

  19. Density-controlled quantum Hall ferromagnetic transition in a two-dimensional hole system

    DOE PAGES

    Lu, T. M.; Tracy, L. A.; Laroche, D.; ...

    2017-06-01

    We typically achieve Quantum Hall ferromagnetic transitions by increasing the Zeeman energy through in-situ sample rotation, while transitions in systems with pseudo-spin indices can be induced by gate control. We report here a gate-controlled quantum Hall ferromagnetic transition between two real spin states in a conventional two-dimensional system without any in-plane magnetic field. We also show that the ratio of the Zeeman splitting to the cyclotron gap in a Ge two-dimensional hole system increases with decreasing density owing to inter-carrier interactions. Below a critical density of ~2.4 × 10 10 cm -2, this ratio grows greater than 1, resulting inmore » a ferromagnetic ground state at filling factor ν = 2. At the critical density, a resistance peak due to the formation of microscopic domains of opposite spin orientations is observed. For such gate-controlled spin-polarizations in the quantum Hall regime the door opens in order to realize Majorana modes using two-dimensional systems in conventional, low-spin-orbit-coupling semiconductors.« less

  20. Density-controlled quantum Hall ferromagnetic transition in a two-dimensional hole system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, T. M.; Tracy, L. A.; Laroche, D.

    We typically achieve Quantum Hall ferromagnetic transitions by increasing the Zeeman energy through in-situ sample rotation, while transitions in systems with pseudo-spin indices can be induced by gate control. We report here a gate-controlled quantum Hall ferromagnetic transition between two real spin states in a conventional two-dimensional system without any in-plane magnetic field. We also show that the ratio of the Zeeman splitting to the cyclotron gap in a Ge two-dimensional hole system increases with decreasing density owing to inter-carrier interactions. Below a critical density of ~2.4 × 10 10 cm -2, this ratio grows greater than 1, resulting inmore » a ferromagnetic ground state at filling factor ν = 2. At the critical density, a resistance peak due to the formation of microscopic domains of opposite spin orientations is observed. For such gate-controlled spin-polarizations in the quantum Hall regime the door opens in order to realize Majorana modes using two-dimensional systems in conventional, low-spin-orbit-coupling semiconductors.« less

  1. A mathematical formula to estimate in vivo thyroid volume from two-dimensional ultrasonography.

    PubMed

    Trimboli, Pierpaolo; Ruggieri, Massimo; Fumarola, Angela; D'Alò, Michele; Straniero, Andrea; Maiuolo, Amelia; Ulisse, Salvatore; D'Armiento, Massimino

    2008-08-01

    The determination of thyroid volume (TV) is required for the management of thyroid diseases. Since two-dimensional ultrasonography (2D-US) has become the accepted method for the assessment of TV (2D-US-TV), we verified whether it accurately assesses postsurgical measured TV (PS-TV). In 92 patients who underwent total thyroidectomy by conventional cervicotomy, 2D-US-TV obtained by the ellipsoid volume formula was compared to PS-TV, determined by the Archimedes' principle. Mean 2D-US-TV (23.9 +/- 14.8 mL) was significantly lower than mean PS-TV (33.4 +/- 20.1 mL). Underestimation was observed in 77% of cases, and it was related to gland multinodularity and/or nodular involvement of the isthmus, while 2D-US-TV matched the PS-TV in the remaining 21 cases (23%). A mathematical formula, to estimate PS-TV from US-TV, was derived using a linear model (Calculated-TV = [1.24 x 2D-US-TV]+ 3.66). Calculated-TV (mean value 33.4 +/- 18.3 mL) significantly (p < 0.01) increased from 21 (23%) to 31 (34%) of the cases that matched PS-TV. In addition, it significantly (p < 0.01) decreased from 77% to 27% the percentage of cases where PS-TV was underestimated as well as the range of the disagreement from 245% to 92%. This study shows that 2D-US does not provide an accurate estimation of TV and suggests that it can be improved by a mathematical model different from the ellipsoid model. If confirmed in prospective studies, this may contribute to a more appropriate management of thyroid diseases.

  2. Rapid Three-Dimensional Printing in Water Using Semiconductor-Metal Hybrid Nanoparticles as Photoinitiators.

    PubMed

    Pawar, Amol Ashok; Halivni, Shira; Waiskopf, Nir; Ben-Shahar, Yuval; Soreni-Harari, Michal; Bergbreiter, Sarah; Banin, Uri; Magdassi, Shlomo

    2017-07-12

    Additive manufacturing processes enable fabrication of complex and functional three-dimensional (3D) objects ranging from engine parts to artificial organs. Photopolymerization, which is the most versatile technology enabling such processes through 3D printing, utilizes photoinitiators that break into radicals upon light absorption. We report on a new family of photoinitiators for 3D printing based on hybrid semiconductor-metal nanoparticles. Unlike conventional photoinitiators that are consumed upon irradiation, these particles form radicals through a photocatalytic process. Light absorption by the semiconductor nanorod is followed by charge separation and electron transfer to the metal tip, enabling redox reactions to form radicals in aerobic conditions. In particular, we demonstrate their use in 3D printing in water, where they simultaneously form hydroxyl radicals for the polymerization and consume dissolved oxygen that is a known inhibitor. We also demonstrate their potential for two-photon polymerization due to their giant two-photon absorption cross section.

  3. The effect on surgical skills of expert surgeons using 3D/HD and 2D/4K resolution monitors in laparoscopic phantom tasks.

    PubMed

    Harada, Hitoshi; Kanaji, Shingo; Hasegawa, Hiroshi; Yamamoto, Masashi; Matsuda, Yoshiko; Yamashita, Kimihiro; Matsuda, Takeru; Oshikiri, Taro; Sumi, Yasuo; Nakamura, Tetsu; Suzuki, Satoshi; Kakeji, Yoshihiro

    2018-03-30

    Recently, several new imaging technologies, such as three-dimensional (3D)/high-definition (HD) stereovision and high-resolution two-dimensional (2D)/4K monitors, have been introduced in laparoscopic surgery. However, it is still unclear whether these technologies actually improve surgical performance. Participants were 11 expert laparoscopic surgeons. We designed three laparoscopic suturing tasks (task 1: simple suturing, task 2: knotting thread in a small box, and task 3: suturing in a narrow space) in training boxes. Performances were recorded by an optical position tracker. All participants first performed each task five times consecutively using a conventional 2D/HD monitor. Then they were randomly divided into two groups: six participants performed the tasks using 3D/HD before using 2D/4K; the other five participants performed the tasks using a 2D/4K monitor before the 3D/HD monitor. After the trials, we evaluated the performance scores (operative time, path length of forceps, and technical errors) and compared performance scores across all monitors. Surgical performances of participants were ranked in decreasing order: 3D/HD, 2D/4K, and 2D/HD using the total scores for each task. In task 1 (simple suturing), some surgical performances using 3D/HD were significantly better than those using 2D/4K (P = 0.017, P = 0.033, P = 0.492 for operative time, path length, and technical errors, respectively). On the other hand, with operation in narrow spaces such as in tasks 2 and 3, performances using 2D/4K were not inferior to 3D/HD performances. The high-resolution images from the 2D/4K monitor may enhance depth perception in narrow spaces and may complement stereoscopic vision almost as well as using 3D/HD. Compared to a 2D/HD monitor, a 3D/HD monitor improved the laparoscopic surgical technique of expert surgeons more than a 2D/4K monitor. However, the advantage of 2D/4K high-resolution images may be comparable to a 3D/HD monitor especially in narrow spaces.

  4. Creating Quasi Two-Dimensional Cluster-Assembled Materials through Self-Assembly of a Janus Polyoxometalate-Silsesquioxane Co-Cluster.

    PubMed

    Wu, Han; Zhang, Yu-Qi; Hu, Min-Biao; Ren, Li-Jun; Lin, Yue; Wang, Wei

    2017-05-30

    Clusters are an important class of nanoscale molecules or superatoms that exhibit an amazing diversity in structure, chemical composition, shape, and functionality. Assembling two types of clusters is creating emerging cluster-assembled materials (CAMs). In this paper, we report an effective approach to produce quasi two-dimensional (2D) CAMs of two types of spherelike clusters, polyhedral oligomeric silsesquioxanes (POSS), and polyoxometalates (POM). To avoid macrophase separation between the two clusters, they are covalently linked to form a POM-POSS cocluster with Janus characteristics and a dumbbell shape. This Janus characteristics enables the cocluster to self-assemble into diverse nanoaggregates, as conventional amphiphilic molecules and macromolecules do, in selective solvents. In our study, we obtained micelles, vesicles, nanosheets, and nanoribbons by tuning the n-hexane content in mixed solvents of acetone and n-hexane. Ordered packing of clusters in the nanosheets and nanoribbons were directly visualized using high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) technique. We infer that the increase of packing order results in the vesicle-to-sheet transition and the change in packing mode causes the sheet-to-ribbon transitions. Our findings have verified the effectivity of creating quasi 2D cluster-assembled materials though the cocluster self-assembly as a new approach to produce novel CAMs.

  5. Articular cartilage grading of the knee: diagnostic performance of fat-suppressed 3D volume isotropic turbo spin-echo acquisition (VISTA) compared with 3D T1 high-resolution isovolumetric examination (THRIVE).

    PubMed

    Lee, Young Han; Hahn, Seok; Lim, Daekeon; Suh, Jin-Suck

    2017-02-01

    Background Conventionally, two-dimensional (2D) fast spin-echo (FSE) sequences have been widely used for clinical cartilage imaging as well as gradient (GRE) sequences. Recently, three-dimensional (3D) volumetric magnetic resonance imaging (MRI) has been introduced with one 3D volumetric scan, and this is replacing slice-by-slice 2D MR scans. Purpose To evaluate the image quality and diagnostic performance of two 3D sequences for abnormalities of knee cartilage: fat-suppressed (FS) FSE-based 3D volume isotropic turbo spin-echo acquisition (VISTA) and GRE-based 3D T1 high-resolution isovolumetric examination (THRIVE). Material and Methods The institutional review board approved the protocol of this retrospective review. This study enrolled 40 patients (41 knees) with arthroscopically confirmed abnormalities of cartilage. All patients underwent isovoxel 3D-VISTA and 3D-THRIVE MR sequences on 3T MRI. We assessed the cartilage grade on the two 3D sequences using arthroscopy as a gold standard. Inter-observer agreement for each technique was evaluated with the intraclass correlation coefficient (ICC). Differences in the area under the curve (AUC) were compared between the 3D-THRIVE and 3D-VISTA. Results Although inter-observer agreement for both sequences was excellent, the inter-observer agreement for 3D-VISTA was higher than for 3D-THRIVE for cartilage grading in all regions of the knee. There was no significant difference in the diagnostic performance ( P > 0.05) between the two sequences for detecting cartilage grade. Conclusion FSE-based 3D-VISTA images had good diagnostic performance that was comparable to GRE-based 3D-THRIVE images in the evaluation of knee cartilage, and can be used in routine knee MR protocols for the evaluation of cartilage.

  6. 'Metal'-like transport in high-resistance, high aspect ratio two-dimensional electron gases.

    PubMed

    Backes, Dirk; Hall, Richard; Pepper, Michael; Beere, Harvey; Ritchie, David; Narayan, Vijay

    2016-01-13

    We investigate the striking absence of strong localisation observed in mesoscopic two-dimensional electron gases (2DEGs) (Baenninger et al 2008 Phys. Rev. Lett. 100 016805, Backes et al 2015 arXiv:1505.03444) even when their resistivity [Formula: see text]. In particular, we try to understand whether this phenomenon originates in quantum many-body effects, or simply percolative transport through a network of electron puddles. To test the latter scenario, we measure the low temperature (low-T) transport properties of long and narrow 2DEG devices in which percolation effects should be heavily suppressed in favour of Coulomb blockade. Strikingly we find no indication of Coulomb blockade and that the high-ρ, low-T transport is exactly similar to that previously reported in mesoscopic 2DEGs with different geometries. Remarkably, we are able to induce a 'metal'-insulator transition (MIT) by applying a perpendicular magnetic field B. We present a picture within which these observations fit into the more conventional framework of the 2D MIT.

  7. Migration ability and Toll-like receptor expression of human mesenchymal stem cells improves significantly after three-dimensional culture.

    PubMed

    Zhou, Panpan; Liu, Zilin; Li, Xue; Zhang, Bing; Wang, Xiaoyuan; Lan, Jing; Shi, Qing; Li, Dong; Ju, Xiuli

    2017-09-16

    While the conventional two-dimensional (2D) culture protocol is well accepted for the culture of mesenchymal stem cells (MSCs), this method fails to recapitulate the in vivo native three-dimensional (3D) cellular microenvironment, and may result in phenotypic changes, and homing and migration capacity impairments. MSC preparation in 3D culture systems has been considered an attractive preparatory and delivery method recently. We seeded human umbilical cord-derived MSCs (hUCMSCs) in a 3D culture system with porcine acellular dermal matrix (PADM), and investigated the phenotypic changes, the expression changes of some important receptors, including Toll-like receptors (TLRs) and C-X-C chemokine receptor type 4 (CXCR4) when hUCMSCs were transferred from 2D to 3D systems, as well as the alterations in in vivo homing and migration potential. It was found that the percentage of CD105-positive cells decreased significantly, whereas that of CD34- and CD271-positive cells increased significantly in 3D culture, compared to that in 2D culture. The mRNA and protein expression levels of TLR2, TLR3, TLR4, TLR6, and CXCR4 in hUCMSCs were increased significantly upon culturing with PADM for 3 days, compared to the levels in 2D culture. The numbers of migratory 3D hUCMSCs in the heart, liver, spleen, and bone marrow were significantly greater than the numbers of 2D hUCMSCs, and the worst migration occurred in 3D + AMD3100 (CXCR4 antagonist) hUCMSCs. These results suggested that 3D culture of hUCMSCs with PADM could alter the phenotypic characteristics of hUCMSCs, increase their TLR and CXCR4 expression levels, and promote their migratory and homing capacity in which CXCR4 plays an important role. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Agreement and reliability of pelvic floor measurements during contraction using three-dimensional pelvic floor ultrasound and virtual reality.

    PubMed

    Speksnijder, L; Rousian, M; Steegers, E A P; Van Der Spek, P J; Koning, A H J; Steensma, A B

    2012-07-01

    Virtual reality is a novel method of visualizing ultrasound data with the perception of depth and offers possibilities for measuring non-planar structures. The levator ani hiatus has both convex and concave aspects. The aim of this study was to compare levator ani hiatus volume measurements obtained with conventional three-dimensional (3D) ultrasound and with a virtual reality measurement technique and to establish their reliability and agreement. 100 symptomatic patients visiting a tertiary pelvic floor clinic with a normal intact levator ani muscle diagnosed on translabial ultrasound were selected. Datasets were analyzed using a rendered volume with a slice thickness of 1.5 cm at the level of minimal hiatal dimensions during contraction. The levator area (in cm(2)) was measured and multiplied by 1.5 to get the levator ani hiatus volume in conventional 3D ultrasound (in cm(3)). Levator ani hiatus volume measurements were then measured semi-automatically in virtual reality (cm(3) ) using a segmentation algorithm. An intra- and interobserver analysis of reliability and agreement was performed in 20 randomly chosen patients. The mean difference between levator ani hiatus volume measurements performed using conventional 3D ultrasound and virtual reality was 0.10 (95% CI, - 0.15 to 0.35) cm(3). The intraclass correlation coefficient (ICC) comparing conventional 3D ultrasound with virtual reality measurements was > 0.96. Intra- and interobserver ICCs for conventional 3D ultrasound measurements were > 0.94 and for virtual reality measurements were > 0.97, indicating good reliability for both. Levator ani hiatus volume measurements performed using virtual reality were reliable and the results were similar to those obtained with conventional 3D ultrasonography. Copyright © 2012 ISUOG. Published by John Wiley & Sons, Ltd.

  9. Optimizing transformations of stencil operations for parallel cache-based architectures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bassetti, F.; Davis, K.

    This paper describes a new technique for optimizing serial and parallel stencil- and stencil-like operations for cache-based architectures. This technique takes advantage of the semantic knowledge implicity in stencil-like computations. The technique is implemented as a source-to-source program transformation; because of its specificity it could not be expected of a conventional compiler. Empirical results demonstrate a uniform factor of two speedup. The experiments clearly show the benefits of this technique to be a consequence, as intended, of the reduction in cache misses. The test codes are based on a 5-point stencil obtained by the discretization of the Poisson equation andmore » applied to a two-dimensional uniform grid using the Jacobi method as an iterative solver. Results are presented for a 1-D tiling for a single processor, and in parallel using 1-D data partition. For the parallel case both blocking and non-blocking communication are tested. The same scheme of experiments has bee n performed for the 2-D tiling case. However, for the parallel case the 2-D partitioning is not discussed here, so the parallel case handled for 2-D is 2-D tiling with 1-D data partitioning.« less

  10. Two-dimensional displacement measurement based on two parallel gratings

    NASA Astrophysics Data System (ADS)

    Wei, Peipei; Lu, Xi; Qiao, Decheng; Zou, Limin; Huang, Xiangdong; Tan, Jiubin; Lu, Zhengang

    2018-06-01

    In this paper, a two-dimensional (2-D) planar encoder based on two parallel gratings, which includes a scanning grating and scale grating, is presented. The scanning grating is a combined transmission rectangular grating comprised of a 2-D grating located at the center and two one-dimensional (1-D) gratings located at the sides. The grating lines of the two 1-D gratings are perpendicular to each other and parallel with the 2-D grating lines. The scale grating is a 2-D reflective-type rectangular grating placed in parallel with the scanning grating, and there is an angular difference of 45° between the grating lines of the two 2-D gratings. With the special structural design of the scanning grating, the encoder can measure the 2-D displacement in the grating plane simultaneously, and the measured interference signals in the two directions are uncoupled. Moreover, by utilizing the scanning grating to modulate the phase of the interference signals instead of the prisms, the structure of the encoder is compact. Experiments were implemented, and the results demonstrate the validity of the 2-D planar grating encoder.

  11. Patient-specific instrumentation improved mechanical alignment, while early clinical outcome was comparable to conventional instrumentation in TKA.

    PubMed

    Anderl, Werner; Pauzenberger, Leo; Kölblinger, Roman; Kiesselbach, Gabriele; Brandl, Georg; Laky, Brenda; Kriegleder, Bernhard; Heuberer, Philipp; Schwameis, Eva

    2016-01-01

    The aim of this prospective study was to compare early clinical outcome, radiological limb alignment, and three-dimensional (3D)-component positioning between conventional and computed tomography (CT)-based patient-specific instrumentation (PSI) in primary mobile-bearing total knee arthroplasty (TKA). Two hundred ninety consecutive patients (300 knees) with severe, debilitating osteoarthritis scheduled for TKA were included in this study using either conventional instrumentation (CVI, n = 150) or PSI (n = 150). Patients were clinically assessed before and 2 years after surgery according to the Knee-Society-Score (KSS) and the visual-analog-scale for pain (VAS). Additionally, the Western Ontario McMaster Universities Osteoarthritis Index (WOMAC) and the Oxford-Knee-Score (OKS) were collected at follow-up. To evaluate accuracy of CVI and PSI, hip-knee-ankle angle (HKA) and 3D-component positioning were assessed on postoperative radiographs and CT. Data of 222 knees (CVI: n = 108, PSI: n = 114) were available for analysis after a mean follow-up of 28.6 ± 5.2 months. At the early follow-up, clinical outcome (KSS, VAS, WOMAC, OKS) was comparable between the two groups. Mean HKA-deviation from the targeted neutral mechanical axis (CVI: 2.2° ± 1.7°; PSI: 1.5° ± 1.4°; p < 0.001), rates of outliers (CVI: 22.2%; PSI: 9.6%; p = 0.016), and 3D-component positioning outliers were significantly lower in the PSI group. Non-outliers (HKA: 180° ± 3°) showed better clinical results than outliers at the 2-year follow-up. CT-based PSI compared with CVI improves accuracy of mechanical alignment restoration and 3D-component positioning in primary TKA. While clinical outcome was comparable between the two instrumentation groups at early follow-up, significantly inferior outcome was detected in the subgroup of HKA-outliers. Prospective comparative study, Level II.

  12. 3D Band Diagram and Photoexcitation of 2D–3D Semiconductor Heterojunctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Bo; Shi, Gang; Lei, Sidong

    2015-08-17

    The emergence of a rich variety of two-dimensional (2D) layered semiconductor materials has enabled the creation of atomically thin heterojunction devices. Junctions between atomically thin 2D layers and 3D bulk semiconductors can lead to junctions that are fundamentally electronically different from the covalently bonded conventional semiconductor junctions. In this paper, we propose a new 3D band diagram for the heterojunction formed between n-type monolayer MoS 2 and p-type Si, in which the conduction and valence band-edges of the MoS 2 monolayer are drawn for both stacked and in-plane directions. This new band diagram helps visualize the flow of charge carriersmore » inside the device in a 3D manner. Our detailed wavelength-dependent photocurrent measurements fully support the diagrams and unambiguously show that the band alignment is type I for this 2D-3D heterojunction. Photogenerated electron–hole pairs in the atomically thin monolayer are separated and driven by an external bias and control the “on/off” states of the junction photodetector device. Finally, two photoresponse regimes with fast and slow relaxation are also revealed in time-resolved photocurrent measurements, suggesting the important role played by charge trap states.« less

  13. A chemical approach to perovskite solar cells: control of electron-transporting mesoporous TiO2 and utilization of nanocarbon materials.

    PubMed

    Umeyama, Tomokazu; Imahori, Hiroshi

    2017-11-21

    Over the past several years, organometal halide perovskite solar cells (PSCs) have attracted considerable interest from the scientific research community because of their potential as promising photovoltaic devices for use in renewable energy production. To date, high power conversion efficiencies (PCEs) of more than 20% have been primarily achieved with mesoscopic-structured PSCs, where a mesoporous TiO 2 (mTiO 2 ) layer is incorporated as an electron-transporting mesoporous scaffold into the perovskite crystal, in addition to a compact TiO 2 (cTiO 2 ) as an electron-transporting layer (ETL). In this Perspective, we first summarize recent research on the preparation strategies of the mTiO 2 layer with a high electron transport capability by facile sol-gel methods instead of the conventional nanoparticle approach. The importance of the control of the pore size and grain boundaries of the mTiO 2 in achieving high PCEs for PSCs is discussed. In addition, an alternative method to improve the electron transport in the mTiO 2 layer via the incorporation of highly conductive nanocarbon materials, such as two-dimensional (2D) graphene and one-dimensional (1D) carbon nanotubes, is also summarized. Finally, we highlight the utilization of zero-dimensional (0D) nanocarbon, i.e., fullerenes, as an n-type semiconducting material in mesostructure-free planar PSCs, which avoids high-temperature sintering during the fabrication of an ETL.

  14. Improving flexible thinking in deaf and hard of hearing children with virtual reality technology.

    PubMed

    Passig, D; Eden, S

    2000-07-01

    The study investigated whether rotating three-dimensional (3-D) objects using virtual reality (VR) will affect flexible thinking in deaf and hard of hearing children. Deaf and hard of hearing subjects were distributed into experimental and control groups. The experimental group played virtual 3-D Tetris (a game using VR technology) individually, 15 minutes once weekly over 3 months. The control group played conventional two-dimensional (2-D) Tetris over the same period. Children with normal hearing participated as a second control group in order to establish whether deaf and hard of hearing children really are disadvantaged in flexible thinking. Before-and-after testing showed significantly improved flexible thinking in the experimental group; the deaf and hard of hearing control group showed no significant improvement. Also, before the experiment, the deaf and hard of hearing children scored lower in flexible thinking than the children with normal hearing. After the experiment, the difference between the experimental group and the control group of children with normal hearing was smaller.

  15. Bioprinting Cartilage Tissue from Mesenchymal Stem Cells and PEG Hydrogel.

    PubMed

    Gao, Guifang; Hubbell, Karen; Schilling, Arndt F; Dai, Guohao; Cui, Xiaofeng

    2017-01-01

    Bioprinting based on thermal inkjet printing is one of the most attractive enabling technologies for tissue engineering and regeneration. During the printing process, cells, scaffolds , and growth factors are rapidly deposited to the desired two-dimensional (2D) and three-dimensional (3D) locations. Ideally, the bioprinted tissues are able to mimic the native anatomic structures in order to restore the biological functions. In this study, a bioprinting platform for 3D cartilage tissue engineering was developed using a commercially available thermal inkjet printer with simultaneous photopolymerization . The engineered cartilage demonstrated native zonal organization, ideal extracellular matrix (ECM ) composition, and proper mechanical properties. Compared to the conventional tissue fabrication approach, which requires extended UV exposure, the viability of the printed cells with simultaneous photopolymerization was significantly higher. Printed neocartilage demonstrated excellent glycosaminoglycan (GAG) and collagen type II production, which was consistent with gene expression profile. Therefore, this platform is ideal for anatomic tissue engineering with accurate cell distribution and arrangement.

  16. Comparison of Commercial Structure-From Photogrammety Software Used for Underwater Three-Dimensional Modeling of Coral Reef Environments

    NASA Astrophysics Data System (ADS)

    Burns, J. H. R.; Delparte, D.

    2017-02-01

    Structural complexity in ecosystems creates an assortment of microhabitat types and has been shown to support greater diversity and abundance of associated organisms. The 3D structure of an environment also directly affects important ecological parameters such as habitat provisioning and light availability and can therefore strongly influence ecosystem function. Coral reefs are architecturally complex 3D habitats, whose structure is intrinsically linked to the ecosystem biodiversity, productivity, and function. The field of coral ecology has, however, been primarily limited to using 2-dimensional (2D) planar survey techniques for studying the physical structure of reefs. This conventional approach fails to capture or quantify the intricate structural complexity of corals that influences habitat facilitation and biodiversity. A 3-dimensional (3D) approach can obtain accurate measurements of architectural complexity, topography, rugosity, volume, and other structural characteristics that affect biodiversity and abundance of reef organisms. Structurefrom- Motion (SfM) photogrammetry is an emerging computer vision technology that provides a simple and cost-effective method for 3D reconstruction of natural environments. SfM has been used in several studies to investigate the relationship between habitat complexity and ecological processes in coral reef ecosystems. This study compared two commercial SfM software packages, Agisoft Photoscan Pro and Pix4Dmapper Pro 3.1, in order to assess the cpaability and spatial accuracy of these programs for conducting 3D modeling of coral reef habitats at three spatial scales.

  17. Effects of Adjuvant Mental Practice on Affected Upper Limb Function Following a Stroke: Results of Three-Dimensional Motion Analysis, Fugl-Meyer Assessment of the Upper Extremity and Motor Activity Logs.

    PubMed

    Oh, Hyun Seung; Kim, Eun Joo; Kim, Doo Young; Kim, Soo Jeong

    2016-06-01

    To investigate the effects of adjuvant mental practice (MP) on affected upper limb function following a stroke using three-dimensional (3D) motion analysis. In this AB/BA crossover study, we studied 10 hemiplegic patients who had a stroke within the past 6 months. The patients were randomly allocated to two groups: one group received MP combined with conventional rehabilitation therapy for the first 3 weeks followed by conventional rehabilitation therapy alone for the final 3 weeks; the other group received the same therapy but in reverse order. The MP tasks included drinking from a cup and opening a door. MP was individually administered for 20 minutes, 3 days a week for 3 weeks. To assess the tasks, we used 3D motion analysis and three additional tests: the Fugl-Meyer Assessment of the upper extremity (FMA-UE) and the motor activity logs for amount of use (MAL-AOU) and quality of movement (MAL-QOM). Assessments were performed immediately before treatment (T0), 3 weeks into treatment (T1), and 6 weeks into treatment (T2). Based on the results of the 3D motion analysis and the FMA-UE index (p=0.106), the MAL-AOU scale (p=0.092), and MAL-QOM scale (p=0.273), adjuvant MP did not result in significant improvements. Adjuvant MP had no significant effect on upper limb function following a stroke, according to 3D motion analysis and three clinical assessment tools (the FMA-UE index and the two MAL scales). The importance of this study is its use of objective 3D motion analysis to evaluate the effects of MP. Further studies will be needed to validate these findings.

  18. Reference intervals and allometric scaling of two-dimensional echocardiographic measurements in 150 healthy cats.

    PubMed

    Karsten, Schober; Stephanie, Savino; Vedat, Yildiz

    2017-11-10

    The objective of the study was to evaluate the effects of body weight (BW), breed, and sex on two-dimensional (2D) echocardiographic measures, reference ranges, and prediction intervals using allometrically-scaled data of left atrial (LA) and left ventricular (LV) size and LV wall thickness in healthy cats. Study type was retrospective, observational, and clinical cohort. 150 healthy cats were enrolled and 2D echocardiograms analyzed. LA diameter, LV wall thickness, and LV dimension were quantified using three different imaging views. The effect of BW, breed, sex, age, and interaction (BW*sex) on echocardiographic variables was assessed using univariate and multivariate regression and linear mixed model analysis. Standard (using raw data) and allometrically scaled (Y=a × M b ) reference intervals and prediction intervals were determined. BW had a significant (P<0.05) independent effect on 2D variables whereas breed, sex, and age did not. There were clinically relevant differences between reference intervals using mean ± 2SD of raw data and mean and 95% prediction interval of allometrically-scaled variables, most prominent in larger (>6 kg) and smaller (<3 kg) cats. A clinically relevant difference between thickness of the interventricular septum (IVS) and dimension of the LV posterior wall (LVPW) was identified. In conclusion, allometric scaling and BW-based 95% prediction intervals should be preferred over conventional 2D echocardiographic reference intervals in cats, in particular in small and large cats. These results are particularly relevant to screening examinations for feline hypertrophic cardiomyopathy.

  19. A feasibility study using TomoDirect for craniospinal irradiation

    PubMed Central

    Molloy, Janelle A.; Gleason, John F.; Feddock, Jonathan M.

    2013-01-01

    The feasibility of delivering craniospinal irradiation (CSI) with TomoDirect is investigated. A method is proposed to generate TomoDirect plans using standard three‐dimensional (3D) beam arrangements on Tomotherapy with junctioning of these fields to minimize hot or cold spots at the cranial/spinal junction. These plans are evaluated and compared to a helical Tomotherapy and a three‐dimensional conformal therapy (3D CRT) plan delivered on a conventional linear accelerator (linac) for CSI. The comparison shows that a TomoDirect plan with an overlap between the cranial and spinal fields might be preferable over Tomotherapy plans because of decreased low dose to large volumes of normal tissues outside of the planning target volume (PTV). Although the TomoDirect plans were not dosimetrically superior to a 3D CRT linac plan, the patient can be easily treated in the supine position, which is often more comfortable and efficient from an anesthesia standpoint. TomoDirect plans also have only one setup position which obviates the need for matching of fields and feathering of junctions, two issues encountered with conventional 3D CRT plans. TomoDirect plans can be delivered with comparable treatment times to conventional 3D plans and in shorter times than a Tomotherapy plan. In this paper, a method is proposed for creating TomoDirect craniospinal plans, and the dosimetric consequences for choosing different planning parameters are discussed. PACS number: 87.55.D‐ PMID:24036863

  20. Evaluation of the Diagnostic Accuracy of Conventional 2-Dimensional and 3-Dimensional Computed Tomography for Assessing Canine Sacral and Pelvic Fractures by Radiologists, Orthopedic Surgeons, and Veterinary Medical Students.

    PubMed

    Stieger-Vanegas, Susanne M; Senthirajah, Sri Kumar Jamie; Nemanic, Sarah; Baltzer, Wendy; Warnock, Jennifer; Hollars, Katelyn; Lee, Scott S; Bobe, Gerd

    2015-08-01

    To determine, using 3 groups of evaluators of varying experience reading orthopedic CT studies, if 3-dimensional computed tomography (3D-CT) provides a more accurate and time efficient method for diagnosis of canine sacral and pelvic fractures, and displacements of the sacroiliac and coxofemoral joints compared with 2-dimensional computed tomography (2D-CT). Retrospective clinical and prospective study. Dogs (n = 23): 12 dogs with traumatic pelvic fractures, 11 canine cadavers with pelvic trauma induced by a lateral impactor. All dogs had a 2D-CT exam of the pelvis and subsequent 3D-CT reconstructions from the 2D-CT images. Both 2D-CT and 3D-CT studies were anonymized and randomly presented to 2 veterinary radiologists, 2 veterinary orthopedic surgeons, and 2 veterinary medical students. Evaluators classified fractures using a confidence scale and recorded the duration of evaluation for each modality and case. 3D-CT was a more time-efficient technique for evaluation of traumatic sacral and pelvic injuries compared with 2D-CT in all evaluator groups irrespective of experience level reading orthopedic CT studies. However, for radiologists and surgeons, 2D-CT was the more accurate technique for evaluating sacral and pelvic fractures. 3D-CT improves sacral and pelvic fracture diagnosis when added to 2D-CT; however, 3D-CT has a reduced accuracy for evaluation of sacral and pelvic fractures if used without concurrent evaluation of 2D-CT images. © Copyright 2014 by The American College of Veterinary Surgeons.

  1. The usage of the three-dimension distractor in the NAVID system for plagiocephaly-three case reports.

    PubMed

    Osawa, Hirokatsu; Kato, Mihoko; Nagakura, Masamune; Morishita, Tsuyoshi; Kondo, Goro; Kurimoto, Michihiro

    2015-12-01

    Distraction osteogenesis is a standard method for craniosynostosis. However, the technique using conventional devices still has some disadvantages, especially for anterior or posterior plagiocephaly with complex deformities. In the Nakajima's angle-variable internal distraction (NAVID) system originally for maxillary surgeries, the cranial three-dimension (D) distractor with three dimensionally movable joint at the anterior arm has been developed recently in order to prevent the interference in the distraction process and excessive force. In this paper, we first reported two cases of anterior plagiocephaly, and one case of posterior plagiocephaly received distraction osteogenesis using new 3-D distractor in the NAVID system. In two cases of anterior plagiocephaly, the reshaping of supra-orbital bar in reference of simulating by the 3-D skull model was performed. In all cases, we fixed two paralleled 2-D distractors and a 3-D distractor in the upper frontal or parietal region. Within the limitations of this study, we believe that the NAVID system is suitable for infant plagiocephaly due to the simple and small joint arm. Furthermore, the usage of the 3-D distractor would reduce the interference with 2-D distractors and easily lead to attainment of targeted distracting distance.

  2. Evaluation of left atrial function in patients with iron-deficiency anemia by two-dimensional speckle tracking echocardiography.

    PubMed

    Shen, Jiaqi; Zhou, Qiao; Liu, Yue; Luo, Runlan; Tan, Bijun; Li, Guangsen

    2016-08-23

    Iron-deficiency anemia (IDA) is a global health problem and a common medical condition that can be seen in everyday clinical practice. And two-dimensional speckle tracking echocardiography (2D-STE) has been reported very useful in evaluating left atrial (LA) function, as well as left ventricular (LV) function. The aim of our study is to evaluate the LA function in patients with IDA by 2D-STE. 65 patients with IDA were selected. This group of patients was then divided into two groups according to the degree of hemoglobin: group B (Hb > 90 g/L) and group C (Hb60 ~ 90 g/L). Another 30 healthy people were also selected as control group A. Conventional echocardiography parameters, such as left atrial diameter (LAD), peak E and A of mitralis (E, A), E/A, end-diastolic thickness of ventricular septum (IVST d), end-diastolic thickness of LV posterior wall (PWTd) and left ventricular end-diastolic dimension (LVDd) were obtained from these three groups. Left atrial minimum volume (LAVmin), left atrial pre-atrial contraction volume (LAVp) and left atrial maximum volume (LAVmax) were measured by Simpson's rule, whereas left atrial active ejection fraction (LAAEF) and left atrial passive ejection fraction (LAPEF) were obtained from calculation. Two-dimensional images were acquired from apical four-chamber view and two-chamber view to store images for offline analysis. The global peak atrial longitudinal strain and strain rate of systolic LV (GLSs, GLSRs) as well as early and late diastolic LV strain rate (GLSRe, GLSRa) curves of LA were acquired in each LA segment from basal segment to top segment of LA by 2D-STE. Compared with group A, there were no differences between group B and group A (all P > 0.05). The LAAEF and GLSRa were significantly higher in group C compared with those of group A and group B (all P < 0.01). The LAPEF, GLSs, GLSRs and GLSRe were significantly lower in group C compared with those of group A and group B (all P < 0.01). 2D-STE could evaluate the LA function in patients with IDA.

  3. Unusual two-dimensional behavior of iron-based superconductors with low anisotropy

    NASA Astrophysics Data System (ADS)

    Kalenyuk, A. A.; Pagliero, A.; Borodianskyi, E. A.; Aswartham, S.; Wurmehl, S.; Büchner, B.; Chareev, D. A.; Kordyuk, A. A.; Krasnov, V. M.

    2017-10-01

    We study angular-dependent magnetoresistance in iron-based superconductors Ba1 -xNaxFe2As2 and FeTe1 -xSex . Both superconductors have relatively small anisotropies γ ˜2 and exhibit a three-dimensional (3D) behavior at low temperatures. However, we observe that they start to exhibit a profound two-dimensional behavior at elevated temperatures and in applied magnetic field parallel to the surface. We conclude that the unexpected two-dimensional (2D) behavior of the studied low-anisotropic superconductors is not related to layeredness of the materials, but is caused by appearance of surface superconductivity when magnetic field exceeds the upper critical field Hc 2(T ) for destruction of bulk superconductivity. We argue that the corresponding 3D-2D bulk-to-surface dimensional transition can be used for accurate determination of the upper critical field.

  4. Assessment of left ventricular mass in hypertrophic cardiomyopathy by real-time three-dimensional echocardiography using single-beat capture image.

    PubMed

    Chang, Sung-A; Kim, Hyung-Kwan; Lee, Sang-Chol; Kim, Eun-Young; Hahm, Seung-Hee; Kwon, Oh Min; Park, Seung Woo; Choe, Yeon Hyeon; Oh, Jae K

    2013-04-01

    Left ventricular (LV) mass is an important prognostic indicator in hypertrophic cardiomyopathy. Although LV mass can be easily calculated using conventional echocardiography, it is based on geometric assumptions and has inherent limitations in asymmetric left ventricles. Real-time three-dimensional echocardiographic (RT3DE) imaging with single-beat capture provides an opportunity for the accurate estimation of LV mass. The aim of this study was to validate this new technique for LV mass measurement in patients with hypertrophic cardiomyopathy. Sixty-nine patients with adequate two-dimensional (2D) and three-dimensional echocardiographic image quality underwent cardiac magnetic resonance (CMR) imaging and echocardiography on the same day. Real-time three-dimensional echocardiographic images were acquired using an Acuson SC2000 system, and CMR-determined LV mass was considered the reference standard. Left ventricular mass was derived using the formula of the American Society of Echocardiography (M-mode mass), the 2D-based truncated ellipsoid method (2D mass), and the RT3DE technique (RT3DE mass). The mean time for RT3DE analysis was 5.85 ± 1.81 min. Intraclass correlation analysis showed a close relationship between RT3DE and CMR LV mass (r = 0.86, P < .0001). However, LV mass by the M-mode or 2D technique showed a smaller intraclass correlation coefficient compared with CMR-determined mass (r = 0.48, P = .01, and r = 0.71, P < .001, respectively). Bland-Altman analysis showed reasonable limits of agreement between LV mass by RT3DE imaging and by CMR, with a smaller positive bias (19.5 g [9.1%]) compared with that by the M-mode and 2D methods (-35.1 g [-20.2%] and 30.6 g [17.6%], respectively). RT3DE measurement of LV mass using the single-beat capture technique is practical and more accurate than 2D or M-mode LV mass in patients with hypertrophic cardiomyopathy. Copyright © 2013 American Society of Echocardiography. Published by Mosby, Inc. All rights reserved.

  5. MR imaging near metallic implants using MAVRIC SL: initial clinical experience at 3T.

    PubMed

    Gutierrez, Luis B; Do, Bao H; Gold, Garry E; Hargreaves, Brian A; Koch, Kevin M; Worters, Pauline W; Stevens, Kathryn J

    2015-03-01

    To compare the effectiveness of multiacquisition with variable resonance image combination selective (MAVRIC SL) with conventional two-dimensional fast spin-echo (2D-FSE) magnetic resonance (MR) techniques at 3T in imaging patients with a variety of metallic implants. Twenty-one 3T MR studies were obtained in 19 patients with different types of metal implants. Paired MAVRIC SL and 2D-FSE sequences were reviewed by two radiologists and compared for in-plane and through-plane metal artifact, visualization of the bone implant interface and surrounding soft tissues, blurring, and overall image quality using a two-tailed Wilcoxon signed rank test. The area of artifact on paired images was measured and compared using a paired Wilcoxon signed rank test. Changes in patient management resulting from MAVRIC SL imaging were documented. Significantly less in-plane and through-plane artifact was seen with MAVRIC SL, with improved visualization of the bone-implant interface and surrounding soft tissues, and superior overall image quality (P = .0001). Increased blurring was seen with MAVRIC SL (P = .0016). MAVRIC SL significantly decreased the image artifact compared to 2D-FSE (P = .0001). Inclusion of MAVRIC SL to the imaging protocol determined the need for surgery or type of surgery in five patients and ruled out the need for surgery in 13 patients. In three patients, the area of interest was well seen on both MAVRIC SL and 2D-FSE images, so the addition of MAVRIC had no effect on patient management. Imaging around metal implants with MAVRIC SL at 3T significantly improved image quality and decreased image artifact compared to conventional 2D-FSE imaging techniques and directly impacted patient management. Copyright © 2015 AUR. Published by Elsevier Inc. All rights reserved.

  6. 1-Dimensional AgVO3 nanowires hybrid with 2-dimensional graphene nanosheets to create 3-dimensional composite aerogels and their improved electrochemical properties

    NASA Astrophysics Data System (ADS)

    Liang, Liying; Xu, Yimeng; Lei, Yong; Liu, Haimei

    2014-03-01

    Three-dimensional (3D) porous composite aerogels have been synthesized via an innovative in situ hydrothermal method assisted by a freeze-drying process. In this hybrid structure, one-dimensional (1D) AgVO3 nanowires are uniformly dispersed on two-dimensional (2D) graphene nanosheet surfaces and/or are penetrated through the graphene sheets, forming 3D porous composite aerogels. As cathode materials for lithium-ion batteries, the composite aerogels exhibit high discharge capacity, excellent rate capability, and good cycling stability.Three-dimensional (3D) porous composite aerogels have been synthesized via an innovative in situ hydrothermal method assisted by a freeze-drying process. In this hybrid structure, one-dimensional (1D) AgVO3 nanowires are uniformly dispersed on two-dimensional (2D) graphene nanosheet surfaces and/or are penetrated through the graphene sheets, forming 3D porous composite aerogels. As cathode materials for lithium-ion batteries, the composite aerogels exhibit high discharge capacity, excellent rate capability, and good cycling stability. Electronic supplementary information (ESI) available: Preparation, characterization, SEM images, XRD patterns, and XPS of AgVO3/GAs. See DOI: 10.1039/c3nr06899d

  7. Clinical value of real time 3D sonohysterography and 2D sonohysterography in comparison to hysteroscopy with subsequent histopathological examination in perimenopausal women with abnormal uterine bleeding.

    PubMed

    Kowalczyk, Dariusz; Guzikowski, Wojciech; Więcek, Jacek; Sioma-Markowska, Urszula

    2012-01-01

    In many publications the transvaginal ultrasound is regarded as the first step to diagnose the cause of uterine bleeding in perimenopausal women. In order to improve the sensitivity and specificity of the conventional ultrasound physiological saline solution was administered to the uterine cavity and after expansion of its walls the interior uterine cavity was examined. And this procedure is called 2D sonohysterography (SIS 2D). By the ultrasound scanners which enable to get 3D real time image a spatial evaluation of the uterine cavity is possible. Clinical value of the real time 3D sonohysterography and 2D sonohysterography compared to hysteroscopy with histopathological examination in perimenopausal women. The study concerned a group of 97 perimenopausal women with abnormal uterine bleeding. In all of them after a standard transvaginal ultrasonography a catheter was inserted into the uterine cavity. After expansion of the uterine walls by administering about 10 ml of 0,9% saline solution the uterine cavity was examined by conventional sonohysterography. Then a 3D imaging mode was activated and the uterine interior was examined by real time 3D ultrasonography. The ultrasound results were verified by hysteroscopy, the endometrial lesions were removed and underwent a histopathological examination. In two cases the SIS examination was impossible because of uterine cervix atresion. In the rest of examined group the SIS 2D sensitivity and specificity came up to 72 and 96% respectively. In the group of SIS 3D the sensitivity and specificity reached 83 and 99% respectively. Adding SIS 3D, a minimally invasive method, to conventional sonohysterography improves the precision of diagnosis of endometrial pathology, allows to get three-dimensional image of the uterine cavity and enables examination of endometrial lesions. The diagnostic precision of this procedure is similar to the results achieved by hysteroscopy.

  8. Effects that different types of sports have on the hearts of children and adolescents and the value of two-dimensional strain-strain-rate echocardiography.

    PubMed

    Binnetoğlu, Fatih Köksal; Babaoğlu, Kadir; Altun, Gürkan; Kayabey, Özlem

    2014-01-01

    Whether the hypertrophy found in the hearts of athletes is physiologic or a risk factor for the progression of pathologic hypertrophy remains controversial. The diastolic and systolic functions of athletes with left ventricular (LV) hypertrophy usually are normal when measured by conventional methods. More precise assessment of global and regional myocardial function may be possible using a newly developed two-dimensional (2D) strain echocardiographic method. This study evaluated the effects that different types of sports have on the hearts of children and adolescents and compared the results of 2D strain and strain-rate echocardiographic techniques with conventional methods. Athletes from clubs for five different sports (basketball, swimming, football, wrestling, and tennis) who had practiced regularly at least 3 h per week during at least the previous 2 years were included in the study. The control group consisted of sedentary children and adolescents with no known cardiac or systemic diseases (n = 25). The athletes were grouped according to the type of exercise: dynamic (football, tennis), static (wrestling), or static and dynamic (basketball, swimming). Shortening fraction and ejection fraction values were within normal limits for the athletes in all the sports disciplines. Across all 140 athletes, LV geometry was normal in 58 athletes (41.4 %), whereas 22 athletes (15.7 %) had concentric remodeling, 20 (14.3 %) had concentric hypertrophy, and 40 (28.6 %) had eccentric hypertrophy. Global LV longitudinal strain values obtained from the average of apical four-, two-, and three-chamber global strain values were significantly lower for the basketball players than for all the other groups (p < 0.001).

  9. Assembly of hydrogel units for 3D microenvironment in a poly(dimethylsiloxane) channel

    NASA Astrophysics Data System (ADS)

    Cho, Chang Hyun; Kwon, Seyong; Park, Je-Kyun

    2017-12-01

    Construction of three-dimensional (3D) microenvironment become an important issue in recent biological studies due to their biological relevance compared to conventional two-dimensional (2D) microenvironment. Various fabrication techniques have been employed to construct a 3D microenvironment, however, it is difficult to fully satisfy the biological and mechanical properties required for the 3D cell culture system, such as heterogeneous tissue structures generated from the functional differences or diseases. We propose here an assembly method for facile construction of 3D microenvironment in a poly(dimethylsiloxane) (PDMS) channel using hydrogel units. The high-aspect-ratio of hydrogel units was achieved by fabricating these units using a 2D mold. With this approach, 3D heterogeneous hydrogel units were produced and assembled in a PDMS channel by structural hookup. In vivo-like 3D heterogeneous microenvironment in a precisely controllable fluidic system was also demonstrated using a controlled assembly of different types of hydrogel units, which was difficult to obtain from previous methods. By regulating the flow condition, the mechanical stability of the assembled hydrogel units was verified by the flow-induced deformation of hydrogel units. In addition, in vivo-like cell culture environment was demonstrated using an assembly of cell-coated hydrogel units in the fluidic channel. Based on these features, our method expects to provide a beneficial tool for the 3D cell culture module and biomimetic engineering.

  10. Study on a two-dimensional scanning micro-mirror and its application in a MOEMS target detector.

    PubMed

    Zhang, Chi; You, Zheng; Huang, Hu; Li, Guanhua

    2010-01-01

    A two-dimensional (2D) scanning micro-mirror for target detection and measurement has been developed. This new micro-mirror is used in a MOEMS target detector to replace the conventional scanning detector. The micro-mirror is fabricated by MEMS process and actuated by a piezoelectric actuator. To achieve large deflection angles, the micro-mirror is excited in the resonance modes. It has two degrees of freedom and changes the direction of the emitted laser beam for a regional 2D scanning. For the deflection angles measurement, piezoresistors are integrated in the micro-mirror and the deflection angles of each direction can be detected independently and precisely. Based on the scanning micro-mirror and the phase-shift ranging technology, a MOEMS target detector has been developed in a size of 90 mm × 35 mm × 50 mm. The experiment shows that the target can be detected in the scanning field and the relative range and orientation can be measured by the MOEMS target detector. For the target distance up to 3 m with a field of view about 20° × 20°, the measurement resolution is about 10.2 cm in range, 0.15° in the horizontal direction and 0.22° in the vertical direction for orientation.

  11. Study on a Two-Dimensional Scanning Micro-Mirror and Its Application in a MOEMS Target Detector

    PubMed Central

    Zhang, Chi; You, Zheng; Huang, Hu; Li, Guanhua

    2010-01-01

    A two-dimensional (2D) scanning micro-mirror for target detection and measurement has been developed. This new micro-mirror is used in a MOEMS target detector to replace the conventional scanning detector. The micro-mirror is fabricated by MEMS process and actuated by a piezoelectric actuator. To achieve large deflection angles, the micro-mirror is excited in the resonance modes. It has two degrees of freedom and changes the direction of the emitted laser beam for a regional 2D scanning. For the deflection angles measurement, piezoresistors are integrated in the micro-mirror and the deflection angles of each direction can be detected independently and precisely. Based on the scanning micro-mirror and the phase-shift ranging technology, a MOEMS target detector has been developed in a size of 90 mm × 35 mm × 50 mm. The experiment shows that the target can be detected in the scanning field and the relative range and orientation can be measured by the MOEMS target detector. For the target distance up to 3 m with a field of view about 20° × 20°, the measurement resolution is about 10.2 cm in range, 0.15° in the horizontal direction and 0.22° in the vertical direction for orientation. PMID:22163580

  12. Two-dimensional interferometric characterization of laser-induced refractive index profiles in bulk Topas polymer

    NASA Astrophysics Data System (ADS)

    Hessler, Steffen; Rosenberger, Manuel; Schmauss, Bernhard; Hellmann, Ralf

    2018-01-01

    In this paper we precisely determine laser-induced refractive index profiles created in cyclic olefin copolymer Topas 6017 employing a sophisticated phase shifting Mach-Zehnder interferometry approach. Beyond the usual one-dimensional modification depth measurement we highlight that for straight waveguide structures also a two-dimensional refractive index distribution can be directly obtained providing full information of a waveguide's exact cross section and its gradient refractive index contrast. Deployed as direct data input in optical waveguide simulation, the evaluated 2D refractive index profiles permit a detailed calculation of the waveguides' actual mode profiles. Furthermore, conventional one-dimensional interferometric measurements for refractive index depth profiles with varying total imposed laser fluence of a 248 nm KrF excimer laser are included to investigate the effect on refractive index modification depth. Maximum surface refractive index increase turns out to attain up to 1.86 ·10-3 enabling laser-written optical waveguide channels. Additionally, a comprehensive optical material characterization in terms of dispersion, thermo-optic coefficient and absorption measurement of unmodified and UV-modified Topas 6017 is carried out.

  13. Remote sensor response study in the regime of the microwave radiation-induced magnetoresistance oscillations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Tianyu; Mani, R. G.; Wegscheider, W.

    2013-11-04

    A concurrent remote sensing and magneto-transport study of the microwave excited two dimensional electron system (2DES) at liquid helium temperatures has been carried out using a carbon detector to remotely sense the microwave activity of the 2D electron system in the GaAs/AlGaAs heterostructure during conventional magneto-transport measurements. Various correlations are observed and reported between the oscillatory magnetotransport and the remotely sensed reflection. In addition, the oscillatory remotely sensed signal is shown to exhibit a power law type variation in its amplitude, similar to the radiation-induced magnetoresistance oscillations.

  14. High-Speed Printing Process Characterization using the Lissajous Trajectory Method

    NASA Astrophysics Data System (ADS)

    Lee, Sangwon; Kim, Daekeun

    2018-04-01

    We present a novel stereolithographic three-dimensional (3D) printing process that uses Lissajous trajectories. By using Lissajous trajectories, this 3D printing process allows two laser-scanning mirrors to operate at similar high-speed frequencies simultaneously, and the printing speed can be faster than that of raster scanning used in conventional stereolithography. In this paper, we first propose the basic theoretical background for this printing process based on Lissajous trajectories. We also characterize its printing conditions, such as printing size, laser spot size, and minimum printing resolution, with respect to the operating frequencies of the scanning mirrors and the capability of the laser modulation. Finally, we demonstrate simulation results for printing basic 2D shapes by using a noble printing process algorithm.

  15. Persistent mobility edges and anomalous quantum diffusion in order-disorder separated quantum films

    NASA Astrophysics Data System (ADS)

    Zhong, Jianxin; Stocks, G. Malcolm

    2007-01-01

    A concept of order-disorder separated quantum films is proposed for the design of ultrathin quantum films of a few atomic layers thick with unconventional transport properties. The concept is demonstrated through studying an atomic bilayer comprised of an ordered layer and a disordered layer. Without the disordered layer or the ordered layer, the system is a conducting two-dimensional (2D) crystal or an insulating disordered 2D electron system. Without the order-disorder phase separation, a disordered bilayer is insulating under large disorder. In an order-disorder separated atomic bilayer, however, we show that the system behaves remarkably different from conventional ordered or disordered electron systems, exhibiting metal-insulator transitions with persistent mobility edges and superdiffusive anomalous quantum diffusion.

  16. Comparison between various patch wise strategies for reconstruction of ultra-spectral cubes captured with a compressive sensing system

    NASA Astrophysics Data System (ADS)

    Oiknine, Yaniv; August, Isaac Y.; Revah, Liat; Stern, Adrian

    2016-05-01

    Recently we introduced a Compressive Sensing Miniature Ultra-Spectral Imaging (CS-MUSI) system. The system is based on a single Liquid Crystal (LC) cell and a parallel sensor array where the liquid crystal cell performs spectral encoding. Within the framework of compressive sensing, the CS-MUSI system is able to reconstruct ultra-spectral cubes captured with only an amount of ~10% samples compared to a conventional system. Despite the compression, the technique is extremely complex computationally, because reconstruction of ultra-spectral images requires processing huge data cubes of Gigavoxel size. Fortunately, the computational effort can be alleviated by using separable operation. An additional way to reduce the reconstruction effort is to perform the reconstructions on patches. In this work, we consider processing on various patch shapes. We present an experimental comparison between various patch shapes chosen to process the ultra-spectral data captured with CS-MUSI system. The patches may be one dimensional (1D) for which the reconstruction is carried out spatially pixel-wise, or two dimensional (2D) - working on spatial rows/columns of the ultra-spectral cube, as well as three dimensional (3D).

  17. Young Infants' Perception of the Trajectories of Two- and Three-Dimensional Objects

    ERIC Educational Resources Information Center

    Johnson, Scott P.; Bremner, J. Gavin; Slater, Alan M.; Shuwairi, Sarah M.; Mason, Uschi; Spring, Jo; Usherwood, Barrie

    2012-01-01

    We investigated oculomotor anticipations in 4-month-old infants as they viewed center-occluded object trajectories. In two experiments, we examined performance in two-dimensional (2D) and three-dimensional (3D) dynamic occlusion displays and in an additional 3D condition with a smiley face as the moving target stimulus. Rates of anticipatory eye…

  18. Data processing from lobster eye type optics

    NASA Astrophysics Data System (ADS)

    Nentvich, Ondrej; Stehlikova, Veronika; Urban, Martin; Hudec, Rene; Sieger, Ladislav

    2017-05-01

    Wolter I optics are commonly used for imaging in X-Ray spectrum. This system uses two reflections, and at higher energies, this system is not so much efficient but has a very good optical resolution. Here is another type of optics Lobster Eye, which is using also two reflections for focusing rays in Schmidt's or Angel's arrangement. Here is also possible to use Lobster eye optics as two one dimensional independent optics. This paper describes advantages of one dimensional and two dimensional Lobster Eye optics in Schmidt's arrangement and its data processing - find out a number of sources in wide field of view. Two dimensional (2D) optics are suitable to detect the number of point X-ray sources and their magnitude, but it is necessary to expose for a long time because a 2D system has much lower transitivity, due to double reflection, compared to one dimensional (1D) optics. Not only for this reason, two 1D optics are better to use for lower magnitudes of sources. In this case, additional image processing is necessary to achieve a 2D image. This article describes of approach an image reconstruction and advantages of two 1D optics without significant losses of transitivity.

  19. MRI of the lumbar spine: comparison of 3D isotropic turbo spin-echo SPACE sequence versus conventional 2D sequences at 3.0 T.

    PubMed

    Lee, Sungwon; Jee, Won-Hee; Jung, Joon-Yong; Lee, So-Yeon; Ryu, Kyeung-Sik; Ha, Kee-Yong

    2015-02-01

    Three-dimensional (3D) fast spin-echo sequence with variable flip-angle refocusing pulse allows retrospective alignments of magnetic resonance imaging (MRI) in any desired plane. To compare isotropic 3D T2-weighted (T2W) turbo spin-echo sequence (TSE-SPACE) with standard two-dimensional (2D) T2W TSE imaging for evaluating lumbar spine pathology at 3.0 T MRI. Forty-two patients who had spine surgery for disk herniation and had 3.0 T spine MRI were included in this study. In addition to standard 2D T2W TSE imaging, sagittal 3D T2W TSE-SPACE was obtained to produce multiplanar (MPR) images. Each set of MR images from 3D T2W TSE and 2D TSE-SPACE were independently scored for the degree of lumbar neural foraminal stenosis, central spinal stenosis, and nerve compression by two reviewers. These scores were compared with operative findings and the sensitivities were evaluated by McNemar test. Inter-observer agreements and the correlation with symptoms laterality were assessed with kappa statistics. The 3D T2W TSE and 2D TSE-SPACE had similar sensitivity in detecting foraminal stenosis (78.9% versus 78.9% in 32 foramen levels), spinal stenosis (100% versus 100% in 42 spinal levels), and nerve compression (92.9% versus 81.8% in 59 spinal nerves). The inter-observer agreements (κ = 0.849 vs. 0.451 for foraminal stenosis, κ = 0.809 vs. 0.503 for spinal stenosis, and κ = 0.681 vs. 0.429 for nerve compression) and symptoms correlation (κ = 0.449 vs. κ = 0.242) were better in 3D TSE-SPACE compared to 2D TSE. 3D TSE-SPACE with oblique coronal MPR images demonstrated better inter-observer agreements compared to 3D TSE-SPACE without oblique coronal MPR images (κ = 0.930 vs. κ = 0.681). Isotropic 3D T2W TSE-SPACE at 3.0 T was comparable to 2D T2W TSE for detecting foraminal stenosis, central spinal stenosis, and nerve compression with better inter-observer agreements and symptom correlation. © The Foundation Acta Radiologica 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  20. Enhanced 2/3 four-ary modulation code using soft-decision Viterbi decoding for four-level holographic data storage systems

    NASA Astrophysics Data System (ADS)

    Kong, Gyuyeol; Choi, Sooyong

    2017-09-01

    An enhanced 2/3 four-ary modulation code using soft-decision Viterbi decoding is proposed for four-level holographic data storage systems. While the previous four-ary modulation codes focus on preventing maximum two-dimensional intersymbol interference patterns, the proposed four-ary modulation code aims at maximizing the coding gains for better bit error rate performances. For achieving significant coding gains from the four-ary modulation codes, we design a new 2/3 four-ary modulation code in order to enlarge the free distance on the trellis through extensive simulation. The free distance of the proposed four-ary modulation code is extended from 1.21 to 2.04 compared with that of the conventional four-ary modulation code. The simulation result shows that the proposed four-ary modulation code has more than 1 dB gains compared with the conventional four-ary modulation code.

  1. Two-dimensional auto-correlation analysis and Fourier-transform analysis of second-harmonic-generation image for quantitative analysis of collagen fiber in human facial skin

    NASA Astrophysics Data System (ADS)

    Ogura, Yuki; Tanaka, Yuji; Hase, Eiji; Yamashita, Toyonobu; Yasui, Takeshi

    2018-02-01

    We compare two-dimensional auto-correlation (2D-AC) analysis and two-dimensional Fourier transform (2D-FT) for evaluation of age-dependent structural change of facial dermal collagen fibers caused by intrinsic aging and extrinsic photo-aging. The age-dependent structural change of collagen fibers for female subjects' cheek skin in their 20s, 40s, and 60s were more noticeably reflected in 2D-AC analysis than in 2D-FT analysis. Furthermore, 2D-AC analysis indicated significantly higher correlation with the skin elasticity measured by Cutometer® than 2D-AC analysis. 2D-AC analysis of SHG image has a high potential for quantitative evaluation of not only age-dependent structural change of collagen fibers but also skin elasticity.

  2. High degree of discordance between three-dimensional and two-dimensional lumbar spine bone mineral density in Turner's syndrome.

    PubMed

    Lage, Andrea Z; Brandão, Cynthia A; Mendes, Judite R T; Huayllas, Martha K; Liberman, Bernardo; Mendonça, Berenice B; Costa, Elaine M F; Verreschi, Ieda T; Lazaretti-Castro, Marise

    2005-01-01

    Low bone mineral density (BMD) measured by dual-energy X-ray absorptiometry (DXA) has been described in Turner's syndrome (TS). One of the error factors of DXA is short stature, a common finding in TS patients. Aimed to evaluate the influence of a low stature on BMD, we compared the two-dimensional (2D) or conventional BMD (cBMD) with three-dimensional (3D) or volumetric BMD (vBMD) in 62 females (10 to 48 yr old) with TS diagnosis in a case control study. They were compared to 102 normal females (7 to 45 yr old) grouped by age-ranges. All patients were subjected to a lumbar spine densitometry by DXA in the PA and lateral projections, obtained the cBMD and vBMD and calculated for the apparent BMD (appBMD). In TS, the mean of Z-score for cBMD was significantly lower than that for vBMD and for appBMD (-2.31 +/- 1.42; -0.64 +/- 1.55; and -1.72 +/- 1.5; respectively). Most of the patients (83.8%) had a Z-score <-1 for cBMD, whereas the majority (58.1%) had a Z-score <-1 for vBMD. Concluding, the cBMD underestimates the bone mass of the lumbar spine in patients with TS inducing to false diagnoses of bone fragility. Volumetric BMD approached the bone mass of control patients, while appBMD just partially do that.

  3. Discrimination of Fritillary according to geographical origin with Fourier transform infrared spectroscopy and two-dimensional correlation IR spectroscopy.

    PubMed

    Hua, Rui; Sun, Su-Qin; Zhou, Qun; Noda, Isao; Wang, Bao-Qin

    2003-09-19

    Fritillaria is a traditional Chinese herbal medicine for eliminating phlegm and relieving a cough with a long history in China and some other Asian countries. The objective of this study is to develop a nondestructive and accurate method to discriminate Fritillaria of different geographical origins, which is a troublesome work by existing analytical methods. We conducted a systematic study on five kinds of Fritillaria by Fourier transform infrared spectroscopy, second derivative infrared spectroscopy, and two-dimensional (2D) correlation infrared spectroscopy under thermal perturbation. Because Fritillaria consist of a large amount of starch, the conventional IR spectra of different Fritillaria only have very limited spectral feature differences. Based on these differences, we can separate different Fritillaria to a limited extent, but this method was deemed not very practical. The second derivative IR spectra of Fritillaria could enhance spectrum resolution, amplify the differences between the IR spectra of different Fritillaria, and provide some dissimilarity in their starch content, when compared with the spectrum of pure starch. Finally, we applied thermal perturbation to Fritillaria and analyzed the resulting spectra by the 2D correlation method to distinguish different Fritillaria easily and clearly. The distinction of very similar Fritillaria was possible because the spectral resolution was greatly enhanced by the 2D correlation spectroscopy. In addition, with the dynamic information of molecular structure provided by 2D correlation IR spectra, we studied the differences in the stability of active components of Fritillaria. The differences embodied mainly on the intensity ratio of the auto-peak at 985 cm(-1) and other auto-peaks. The 2D correlation IR spectroscopy (2D IR) of Fritillaria can be a new and powerful method to discriminate Fritillaria.

  4. On-line comprehensive two-dimensional normal-phase liquid chromatography × reversed-phase liquid chromatography for preparative isolation of Peucedanum praeruptorum.

    PubMed

    Wang, Xin-Yuan; Li, Jia-Fu; Jian, Ya-Mei; Wu, Zhen; Fang, Mei-Juan; Qiu, Ying-Kun

    2015-03-27

    A new on-line comprehensive preparative two-dimensional normal-phase liquid chromatography × reversed-phase liquid chromatography (2D NPLC × RPLC) system was developed for the separation of complicated natural products. It was based on the use of a silica gel packed medium-pressure column as the first dimension and an ODS preparative HPLC column as the second dimension. The two dimensions were connected with normal-phase (NP) and reversed-phase (RP) enrichment units, involving a newly developed airflow assisted adsorption (AAA) technique. The instrument operation and the performance of this NPLC × RPLC separation method were illustrated by gram-scale isolation of ethanol extract from the roots of Peucedanum praeruptorum. In total, 19 compounds with high purity were obtained via automated multi-step preparative separation in a short period of time using this system, and their structures were comprehensively characterized by ESI-MS, (1)H NMR, and (13)C NMR. Including two new compounds, five isomers in two groups with identical HPLC and TLC retention values were also obtained and identified by 1D NMR and 2D NMR. This is the first report of an NPLC × RPLC system successfully applied in an on-line preparative process. This system not only solved the interfacing problem of mobile-phase immiscibility caused by NP and RP separation, it also exhibited apparent advantages in separation efficiency and sample treatment capacity compared with conventional methods. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. [Application of 3D printing and computer-assisted surgical simulation in preoperative planning for acetabular fracture].

    PubMed

    Liu, Xin; Zeng, Can-Jun; Lu, Jian-Sen; Lin, Xu-Chen; Huang, Hua-Jun; Tan, Xin-Yu; Cai, Dao-Zhang

    2017-03-20

    To evaluate the feasibility and effectiveness of using 3D printing and computer-assisted surgical simulation in preoperative planning for acetabular fractures. A retrospective analysis was performed in 53 patients with pelvic fracture, who underwent surgical treatment between September, 2013 and December, 2015 with complete follow-up data. Among them, 19 patients were treated with CT three-dimensional reconstruction, computer-assisted virtual reset internal fixation, 3D model printing, and personalized surgery simulation before surgery (3D group), and 34 patients underwent routine preoperative examination (conventional group). The intraoperative blood loss, transfusion volume, times of intraoperative X-ray, operation time, Matta score and Merle D' Aubigne & Postel score were recorded in the 2 groups. Preoperative planning and postoperative outcomes in the two groups were compared. All the operations were completed successfully. In 3D group, significantly less intraoperative blood loss, transfusion volume, fewer times of X-ray, and shortened operation time were recorded compared with those in the conventional group (P<0.05). According to the Matta scores, excellent or good fracture reduction was achieved in 94.7% (18/19) of the patients in 3D group and in 82.4% (28/34) of the patients in conventional group; the rates of excellent and good hip function at the final follow-up were 89.5% (17/19) in the 3D group and 85.3% (29/34) in the conventional group (P>0.05). In the 3D group, the actual internal fixation well matched the preoperative design. 3D printing and computer-assisted surgical simulation for preoperative planning is feasible and accurate for management of acetabular fracture and can effectively improve the operation efficiency.

  6. Three-dimensional imaging of cultural heritage artifacts with holographic printers

    NASA Astrophysics Data System (ADS)

    Kang, Hoonjong; Stoykova, Elena; Berberova, Nataliya; Park, Jiyong; Nazarova, Dimana; Park, Joo Sup; Kim, Youngmin; Hong, Sunghee; Ivanov, Branimir; Malinowski, Nikola

    2016-01-01

    Holography is defined as a two-steps process of capture and reconstruction of the light wavefront scattered from three-dimensional (3D) objects. Capture of the wavefront is possible due to encoding of both amplitude and phase in the hologram as a result of interference of the light beam coming from the object and mutually coherent reference beam. Three-dimensional imaging provided by holography motivates development of digital holographic imaging methods based on computer generation of holograms as a holographic display or a holographic printer. The holographic printing technique relies on combining digital 3D object representation and encoding of the holographic data with recording of analog white light viewable reflection holograms. The paper considers 3D contents generation for a holographic stereogram printer and a wavefront printer as a means of analogue recording of specific artifacts which are complicated objects with regards to conventional analog holography restrictions.

  7. Engineering Correlation Effects via Artificially Designed Oxide Superlattices

    NASA Astrophysics Data System (ADS)

    Chen, Hanghui; Millis, Andrew J.; Marianetti, Chris A.

    2013-09-01

    Ab initio calculations are used to predict that a superlattice composed of layers of LaTiO3 and LaNiO3 alternating along the [001] direction is a S=1 Mott insulator with large magnetic moments on the Ni sites, negligible moments on the Ti sites and a charge transfer gap set by the energy difference between Ni d and Ti d states, distinct from conventional Mott insulators. Correlation effects are enhanced on the Ni sites via filling the oxygen p states and reducing the Ni-O-Ni bond angle. Small hole (electron) doping of the superlattice leads to a two-dimensional single-band situation with holes (electrons) residing on the Ni dx2-y2 (Ti dxy) orbital and coupled to antiferromagnetically correlated spins in the NiO2 layer.

  8. Human cartilage tissue fabrication using three-dimensional inkjet printing technology.

    PubMed

    Cui, Xiaofeng; Gao, Guifang; Yonezawa, Tomo; Dai, Guohao

    2014-06-10

    Bioprinting, which is based on thermal inkjet printing, is one of the most attractive enabling technologies in the field of tissue engineering and regenerative medicine. With digital control cells, scaffolds, and growth factors can be precisely deposited to the desired two-dimensional (2D) and three-dimensional (3D) locations rapidly. Therefore, this technology is an ideal approach to fabricate tissues mimicking their native anatomic structures. In order to engineer cartilage with native zonal organization, extracellular matrix composition (ECM), and mechanical properties, we developed a bioprinting platform using a commercial inkjet printer with simultaneous photopolymerization capable for 3D cartilage tissue engineering. Human chondrocytes suspended in poly(ethylene glycol) diacrylate (PEGDA) were printed for 3D neocartilage construction via layer-by-layer assembly. The printed cells were fixed at their original deposited positions, supported by the surrounding scaffold in simultaneous photopolymerization. The mechanical properties of the printed tissue were similar to the native cartilage. Compared to conventional tissue fabrication, which requires longer UV exposure, the viability of the printed cells with simultaneous photopolymerization was significantly higher. Printed neocartilage demonstrated excellent glycosaminoglycan (GAG) and collagen type II production, which was consistent with gene expression. Therefore, this platform is ideal for accurate cell distribution and arrangement for anatomic tissue engineering.

  9. Intracellular Doppler Signatures of Platinum Sensitivity Captured by Biodynamic Profiling in Ovarian Xenografts

    NASA Astrophysics Data System (ADS)

    Merrill, Daniel; An, Ran; Sun, Hao; Yakubov, Bakhtiyor; Matei, Daniela; Turek, John; Nolte, David

    2016-01-01

    Three-dimensional (3D) tissue cultures are replacing conventional two-dimensional (2D) cultures for applications in cancer drug development. However, direct comparisons of in vitro 3D models relative to in vivo models derived from the same cell lines have not been reported because of the lack of sensitive optical probes that can extract high-content information from deep inside living tissue. Here we report the use of biodynamic imaging (BDI) to measure response to platinum in 3D living tissue. BDI combines low-coherence digital holography with intracellular Doppler spectroscopy to study tumor drug response. Human ovarian cancer cell lines were grown either in vitro as 3D multicellular monoculture spheroids or as xenografts in nude mice. Fragments of xenografts grown in vivo in nude mice from a platinum-sensitive human ovarian cell line showed rapid and dramatic signatures of induced cell death when exposed to platinum ex vivo, while the corresponding 3D multicellular spheroids grown in vitro showed negligible response. The differences in drug response between in vivo and in vitro growth have important implications for predicting chemotherapeutic response using tumor biopsies from patients or patient-derived xenografts.

  10. Glasses-free large size high-resolution three-dimensional display based on the projector array

    NASA Astrophysics Data System (ADS)

    Sang, Xinzhu; Wang, Peng; Yu, Xunbo; Zhao, Tianqi; Gao, Xing; Xing, Shujun; Yu, Chongxiu; Xu, Daxiong

    2014-11-01

    Normally, it requires a huge amount of spatial information to increase the number of views and to provide smooth motion parallax for natural three-dimensional (3D) display similar to real life. To realize natural 3D video display without eye-wears, a huge amount of 3D spatial information is normal required. However, minimum 3D information for eyes should be used to reduce the requirements for display devices and processing time. For the 3D display with smooth motion parallax similar to the holographic stereogram, the size the virtual viewing slit should be smaller than the pupil size of eye at the largest viewing distance. To increase the resolution, two glass-free 3D display systems rear and front projection are presented based on the space multiplexing with the micro-projector array and the special designed 3D diffuse screens with the size above 1.8 m× 1.2 m. The displayed clear depths are larger 1.5m. The flexibility in terms of digitized recording and reconstructed based on the 3D diffuse screen relieves the limitations of conventional 3D display technologies, which can realize fully continuous, natural 3-D display. In the display system, the aberration is well suppressed and the low crosstalk is achieved.

  11. Single-particle tracking of quantum dot-conjugated prion proteins inside yeast cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsuji, Toshikazu; Kawai-Noma, Shigeko; Pack, Chan-Gi

    2011-02-25

    Research highlights: {yields} We develop a method to track a quantum dot-conjugated protein in yeast cells. {yields} We incorporate the conjugated quantum dot proteins into yeast spheroplasts. {yields} We track the motions by conventional or 3D tracking microscopy. -- Abstract: Yeast is a model eukaryote with a variety of biological resources. Here we developed a method to track a quantum dot (QD)-conjugated protein in the budding yeast Saccharomyces cerevisiae. We chemically conjugated QDs with the yeast prion Sup35, incorporated them into yeast spheroplasts, and tracked the motions by conventional two-dimensional or three-dimensional tracking microscopy. The method paves the way towardmore » the individual tracking of proteins of interest inside living yeast cells.« less

  12. Two-dimensional fluorescence-detected coherent spectroscopy with absolute phasing by confocal imaging of a dynamic grating and 27-step phase-cycling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De, Arijit K., E-mail: akde@lbl.gov; Fleming, Graham R., E-mail: grfleming@lbl.gov; Department of Chemistry, University of California at Berkeley, Berkeley, California 94702

    2014-05-21

    We present a novel experimental scheme for two-dimensional fluorescence-detected coherent spectroscopy (2D-FDCS) using a non-collinear beam geometry with the aid of “confocal imaging” of dynamic (population) grating and 27-step phase-cycling to extract the signal. This arrangement obviates the need for distinct experimental designs for previously developed transmission detected non-collinear two-dimensional coherent spectroscopy (2D-CS) and collinear 2D-FDCS. We also describe a novel method for absolute phasing of the 2D spectrum. We apply this method to record 2D spectra of a fluorescent dye in solution at room temperature and observe “spectral diffusion.”.

  13. The Electronic Structure of Mn in Oxides, Coordination Complexes, and the Oxygen-Evolving Complex of Photosystem II Studied by Resonant Inelastic X-ray Scattering

    PubMed Central

    Yano, Junko; Visser, Hendrik; Robblee, John H.; Gu, Weiwei; de Groot, Frank M. F.; Christou, George; Pecoraro, Vincent L.

    2014-01-01

    Resonant inelastic X-ray scattering (RIXS) was used to collect Mn K pre-edge spectra and to study the electronic structure in oxides, molecular coordination complexes, as well as the S1 and S2 states of the oxygen-evolving complex (OEC) of photosystem II (PS II). The RIXS data yield two-dimensional plots that can be interpreted along the incident (absorption) energy or the energy transfer axis. The second energy dimension separates the pre-edge (predominantly 1s to 3d transitions) from the main K-edge, and a detailed analysis is thus possible. The 1s2p RIXS final-state electron configuration along the energy transfer axis is identical to conventional L-edge absorption spectroscopy, and the RIXS spectra are therefore sensitive to the Mn spin state. This new technique thus yields information on the electronic structure that is not accessible in conventional K-edge absorption spectroscopy. The line splittings can be understood within a ligand field multiplet model, i.e., (3d,3d) and (2p,3d) two-electron interactions are crucial to describe the spectral shapes in all systems. We propose to explain the shift of the K pre-edge absorption energy upon Mn oxidation in terms of the effective number of 3d electrons (fractional 3d orbital population). The spectral changes in the Mn 1s2p3/2 RIXS spectra between the PS II S1 and S2 states are small compared to that of the oxides and two of the coordination complexes (MnIII(acac)3 and MnIV(sal)2(bipy)). We conclude that the electron in the step from S1 to S2 is transferred from a strongly delocalized orbital. PMID:15303869

  14. Applying microCT and 3D visualization to Jurassic silicified conifer seed cones: A virtual advantage over thin-sectioning.

    PubMed

    Gee, Carole T

    2013-11-01

    As an alternative to conventional thin-sectioning, which destroys fossil material, high-resolution X-ray computed tomography (also called microtomography or microCT) integrated with scientific visualization, three-dimensional (3D) image segmentation, size analysis, and computer animation is explored as a nondestructive method of imaging the internal anatomy of 150-million-year-old conifer seed cones from the Late Jurassic Morrison Formation, USA, and of recent and other fossil cones. • MicroCT was carried out on cones using a General Electric phoenix v|tome|x s 240D, and resulting projections were processed with visualization software to produce image stacks of serial single sections for two-dimensional (2D) visualization, 3D segmented reconstructions with targeted structures in color, and computer animations. • If preserved in differing densities, microCT produced images of internal fossil tissues that showed important characters such as seed phyllotaxy or number of seeds per cone scale. Color segmentation of deeply embedded seeds highlighted the arrangement of seeds in spirals. MicroCT of recent cones was even more effective. • This is the first paper on microCT integrated with 3D segmentation and computer animation applied to silicified seed cones, which resulted in excellent 2D serial sections and segmented 3D reconstructions, revealing features requisite to cone identification and understanding of strobilus construction.

  15. Magnetic properties of tapiolite (FeTa2O6); a quasi two-dimensional (2D) antiferromagnet

    NASA Astrophysics Data System (ADS)

    Chung, E. M. L.; Lees, M. R.; McIntyre, G. J.; Wilkinson, C.; Balakrishnan, G.; Hague, J. P.; Visser, D.; McK Paul, D.

    2004-11-01

    The possibilities of two-dimensional (2D) short-range magnetic correlations and frustration effects in the mineral tapiolite are investigated using bulk-property measurements and neutron Laue diffraction. In this study of the magnetic properties of synthetic single-crystals of tapiolite, we find that single crystals of FeTa2O6 order antiferromagnetically at TN = 7.95 ± 0.05 K, with extensive two-dimensional correlations existing up to at least 40 K. Although we find no evidence that FeTa2O6 is magnetically frustrated, hallmarks of two-dimensional magnetism observed in our single-crystal data include: (i) broadening of the susceptibility maximum due to short-range correlations, (ii) a spin-flop transition and (iii) lambda anomalies in the heat capacity and d(χT)/dT. Complementary neutron Laue diffraction measurements reveal 1D magnetic diffuse scattering extending along the c* direction perpendicular to the magnetic planes. This magnetic diffuse scattering, observed for the first time using the neutron Laue technique by VIVALDI, arises directly as a result of 2D short-range spin correlations.

  16. Theoretical Study of Large-Angle Bending Transport of Microparticles by 2D Acoustic Half-Bessel Beams.

    PubMed

    Li, Yixiang; Qiu, Chunyin; Xu, Shengjun; Ke, Manzhu; Liu, Zhengyou

    2015-08-17

    Conventional microparticle transports by light or sound are realized along a straight line. Recently, this limit has been overcome in optics as the growing up of the self-accelerating Airy beams, which are featured by many peculiar properties, e.g., bending propagation, diffraction-free and self-healing. However, the bending angles of Airy beams are rather small since they are only paraxial solutions of the two-dimensional (2D) Helmholtz equation. Here we propose a novel micromanipulation by using acoustic Half-Bessel beams, which are strict solutions of the 2D Helmholtz equation. Compared with that achieved by Airy beams, the bending angle of the particle trajectory attained here is much steeper (exceeding 90(o)). The large-angle bending transport of microparticles, which is robust to complex scattering environment, enables a wide range of applications from the colloidal to biological sciences.

  17. Fundamentals of lateral and vertical heterojunctions of atomically thin materials.

    PubMed

    Pant, Anupum; Mutlu, Zafer; Wickramaratne, Darshana; Cai, Hui; Lake, Roger K; Ozkan, Cengiz; Tongay, Sefaattin

    2016-02-21

    At the turn of this century, Herbert Kroemer, the 2000 Nobel Prize winner in Physics, famously commented that "the interface is the device". This statement has since opened up unparalleled opportunities at the interface of conventional three-dimensional (3D) materials (H. Kroemer, Quasi-Electric and Quasi-Magnetic Fields in Non-Uniform Semiconductors, RCA Rev., 1957, 18, 332-342). More than a decade later, Sir Andre Geim and Irina Grigorieva presented their views on 2D heterojunctions which further cultivated broad interests in the 2D materials field. Currently, advances in two-dimensional (2D) materials enable us to deposit layered materials that are only one or few unit-cells in thickness to construct sharp in-plane and out-of-plane interfaces between dissimilar materials, and to be able to fabricate novel devices using these cutting-edge techniques. The interface alone, which traditionally dominated overall device performance, thus has now become the device itself. Fueled by recent progress in atomically thin materials, we are now at the ultimate limit of interface physics, which brings to us new and exciting opportunities, with equally demanding challenges. This paper endeavors to provide stalwarts and newcomers a perspective on recent advances in synthesis, fundamentals, applications, and future prospects of a large variety of heterojunctions of atomically thin materials.

  18. Applying a 3D Situational Virtual Learning Environment to the Real World Business--An Extended Research in Marketing

    ERIC Educational Resources Information Center

    Wang, Shwu-huey

    2012-01-01

    In order to understand (1) what kind of students can be facilitated through the help of three-dimensional virtual learning environment (3D VLE), and (2) the relationship between a conventional test (ie, paper and pencil test) and the 3D VLE used in this study, the study designs a 3D virtual supermarket (3DVS) to help students transform their role…

  19. Dual-detection confocal fluorescence microscopy: fluorescence axial imaging without axial scanning.

    PubMed

    Lee, Dong-Ryoung; Kim, Young-Duk; Gweon, Dae-Gab; Yoo, Hongki

    2013-07-29

    We propose a new method for high-speed, three-dimensional (3-D) fluorescence imaging, which we refer to as dual-detection confocal fluorescence microscopy (DDCFM). In contrast to conventional beam-scanning confocal fluorescence microscopy, where the focal spot must be scanned either optically or mechanically over a sample volume to reconstruct a 3-D image, DDCFM can obtain the depth of a fluorescent emitter without depth scanning. DDCFM comprises two photodetectors, each with a pinhole of different size, in the confocal detection system. Axial information on fluorescent emitters can be measured by the axial response curve through the ratio of intensity signals. DDCFM can rapidly acquire a 3-D fluorescent image from a single two-dimensional scan with less phototoxicity and photobleaching than confocal fluorescence microscopy because no mechanical depth scans are needed. We demonstrated the feasibility of the proposed method by phantom studies.

  20. A new model for two-dimensional numerical simulation of pseudo-2D gas-solids fluidized beds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Tingwen; Zhang, Yongmin

    2013-10-11

    Pseudo-two dimensional (pseudo-2D) fluidized beds, for which the thickness of the system is much smaller than the other two dimensions, is widely used to perform fundamental studies on bubble behavior, solids mixing, or clustering phenomenon in different gas-solids fluidization systems. The abundant data from such experimental systems are very useful for numerical model development and validation. However, it has been reported that two-dimensional (2D) computational fluid dynamic (CFD) simulations of pseudo-2D gas-solids fluidized beds usually predict poor quantitative agreement with the experimental data, especially for the solids velocity field. In this paper, a new model is proposed to improve themore » 2D numerical simulations of pseudo-2D gas-solids fluidized beds by properly accounting for the frictional effect of the front and back walls. Two previously reported pseudo-2D experimental systems were simulated with this model. Compared to the traditional 2D simulations, significant improvements in the numerical predictions have been observed and the predicted results are in better agreement with the available experimental data.« less

  1. Vectorized Rebinning Algorithm for Fast Data Down-Sampling

    NASA Technical Reports Server (NTRS)

    Dean, Bruce; Aronstein, David; Smith, Jeffrey

    2013-01-01

    A vectorized rebinning (down-sampling) algorithm, applicable to N-dimensional data sets, has been developed that offers a significant reduction in computer run time when compared to conventional rebinning algorithms. For clarity, a two-dimensional version of the algorithm is discussed to illustrate some specific details of the algorithm content, and using the language of image processing, 2D data will be referred to as "images," and each value in an image as a "pixel." The new approach is fully vectorized, i.e., the down-sampling procedure is done as a single step over all image rows, and then as a single step over all image columns. Data rebinning (or down-sampling) is a procedure that uses a discretely sampled N-dimensional data set to create a representation of the same data, but with fewer discrete samples. Such data down-sampling is fundamental to digital signal processing, e.g., for data compression applications.

  2. Comparison of two- and three-dimensional Navier-Stokes solutions with NASA experimental data for CAST-10 airfoil

    NASA Technical Reports Server (NTRS)

    Swanson, R. Charles; Radespiel, Rolf; Mccormick, V. Edward

    1989-01-01

    The two-dimensional (2-D) and three-dimensional Navier-Stokes equations are solved for flow over a NAE CAST-10 airfoil model. Recently developed finite-volume codes that apply a multistage time stepping scheme in conjunction with steady state acceleration techniques are used to solve the equations. Two-dimensional results are shown for flow conditions uncorrected and corrected for wind tunnel wall interference effects. Predicted surface pressures from 3-D simulations are compared with those from 2-D calculations. The focus of the 3-D computations is the influence of the sidewall boundary layers. Topological features of the 3-D flow fields are indicated. Lift and drag results are compared with experimental measurements.

  3. Charged-particle emission tomography

    NASA Astrophysics Data System (ADS)

    Ding, Yijun

    Conventional charged-particle imaging techniques--such as autoradiography-- provide only two-dimensional (2D) images of thin tissue slices. To get volumetric information, images of multiple thin slices are stacked. This process is time consuming and prone to distortions, as registration of 2D images is required. We propose a direct three-dimensional (3D) autoradiography technique, which we call charged-particle emission tomography (CPET). This 3D imaging technique enables imaging of thick sections, thus increasing laboratory throughput and eliminating distortions due to registration. In CPET, molecules or cells of interest are labeled so that they emit charged particles without significant alteration of their biological function. Therefore, by imaging the source of the charged particles, one can gain information about the distribution of the molecules or cells of interest. Two special case of CPET include beta emission tomography (BET) and alpha emission tomography (alphaET), where the charged particles employed are fast electrons and alpha particles, respectively. A crucial component of CPET is the charged-particle detector. Conventional charged-particle detectors are sensitive only to the 2-D positions of the detected particles. We propose a new detector concept, which we call particle-processing detector (PPD). A PPD measures attributes of each detected particle, including location, direction of propagation, and/or the energy deposited in the detector. Reconstruction algorithms for CPET are developed, and reconstruction results from simulated data are presented for both BET and alphaET. The results show that, in addition to position, direction and energy provide valuable information for 3D reconstruction of CPET. Several designs of particle-processing detectors are described. Experimental results for one detector are discussed. With appropriate detector design and careful data analysis, it is possible to measure direction and energy, as well as position of each detected particle. The null functions of CPET with PPDs that measure different combinations of attributes are calculated through singular-value decomposition. In general, the more particle attributes are measured from each detection event, the smaller the null space of CPET is. In other words, the higher dimension the data space is, the more information about an object can be recovered from CPET.

  4. 2-dimensional implicit hydrodynamics on adaptive grids

    NASA Astrophysics Data System (ADS)

    Stökl, A.; Dorfi, E. A.

    2007-12-01

    We present a numerical scheme for two-dimensional hydrodynamics computations using a 2D adaptive grid together with an implicit discretization. The combination of these techniques has offered favorable numerical properties applicable to a variety of one-dimensional astrophysical problems which motivated us to generalize this approach for two-dimensional applications. Due to the different topological nature of 2D grids compared to 1D problems, grid adaptivity has to avoid severe grid distortions which necessitates additional smoothing parameters to be included into the formulation of a 2D adaptive grid. The concept of adaptivity is described in detail and several test computations demonstrate the effectivity of smoothing. The coupled solution of this grid equation together with the equations of hydrodynamics is illustrated by computation of a 2D shock tube problem.

  5. 3-Dimensional shear wave elastography of breast lesions

    PubMed Central

    Chen, Ya-ling; Chang, Cai; Zeng, Wei; Wang, Fen; Chen, Jia-jian; Qu, Ning

    2016-01-01

    Abstract Color patterns of 3-dimensional (3D) shear wave elastography (SWE) is a promising method in differentiating tumoral nodules recently. This study was to evaluate the diagnostic accuracy of color patterns of 3D SWE in breast lesions, with special emphasis on coronal planes. A total of 198 consecutive women with 198 breast lesions (125 malignant and 73 benign) were included, who underwent conventional ultrasound (US), 3D B-mode, and 3D SWE before surgical excision. SWE color patterns of Views A (transverse), T (sagittal), and C (coronal) were determined. Sensitivity, specificity, and the area under the receiver operating characteristic curve (AUC) were calculated. Distribution of SWE color patterns was significantly different between malignant and benign lesions (P = 0.001). In malignant lesions, “Stiff Rim” was significantly more frequent in View C (crater sign, 60.8%) than in View A (51.2%, P = 0.013) and View T (54.1%, P = 0.035). AUC for combination of “Crater Sign” and conventional US was significantly higher than View A (0.929 vs 0.902, P = 0.004) and View T (0.929 vs 0.907, P = 0.009), and specificity significantly increased (90.4% vs 78.1%, P = 0.013) without significant change in sensitivity (85.6% vs 88.0%, P = 0.664) as compared with conventional US. In conclusion, combination of conventional US with 3D SWE color patterns significantly increased diagnostic accuracy, with “Crater Sign” in coronal plane of the highest value. PMID:27684820

  6. Recent progress in the assembly of nanodevices and van der Waals heterostructures by deterministic placement of 2D materials.

    PubMed

    Frisenda, Riccardo; Navarro-Moratalla, Efrén; Gant, Patricia; Pérez De Lara, David; Jarillo-Herrero, Pablo; Gorbachev, Roman V; Castellanos-Gomez, Andres

    2018-01-02

    Designer heterostructures can now be assembled layer-by-layer with unmatched precision thanks to the recently developed deterministic placement methods to transfer two-dimensional (2D) materials. This possibility constitutes the birth of a very active research field on the so-called van der Waals heterostructures. Moreover, these deterministic placement methods also open the door to fabricate complex devices, which would be otherwise very difficult to achieve by conventional bottom-up nanofabrication approaches, and to fabricate fully-encapsulated devices with exquisite electronic properties. The integration of 2D materials with existing technologies such as photonic and superconducting waveguides and fiber optics is another exciting possibility. Here, we review the state-of-the-art of the deterministic placement methods, describing and comparing the different alternative methods available in the literature, and we illustrate their potential to fabricate van der Waals heterostructures, to integrate 2D materials into complex devices and to fabricate artificial bilayer structures where the layers present a user-defined rotational twisting angle.

  7. Drug transporter expression profiling in a three-dimensional kidney proximal tubule in vitro nephrotoxicity model.

    PubMed

    Diekjürgen, Dorina; Grainger, David W

    2018-05-09

    Given currently poor toxicity translational predictions for drug candidates, improved mechanistic understanding underlying nephrotoxicity and drug renal clearance is needed to improve drug development and safety screening. Therefore, better relevant and well-characterized in vitro screening models are required to reliably predict human nephrotoxicity. Because kidney proximal tubules are central to active drug uptake and secretion processes and therefore to nephrotoxicity, this study acquired regio-specific expression data from recently reported primary proximal tubule three-dimensional (3D) hyaluronic acid gel culture and non-gel embedded cultured murine proximal tubule suspensions used in nephrotoxicity assays. Quantitative assessment of the mRNA expression of 21 known kidney tubule markers and important proximal tubule transporters with known roles in drug transport was obtained. Asserting superior gene expression levels over current commonly used two-dimensional (2D) kidney cell culture lines was the study objective. Hence, we compare previously published gel-based 3D proximal tubule fragment culture and their non-gel suspensions for up to 1 week. We demonstrate that 3D tubule culture exhibits superior gene expression levels and profiles compared to published commonly used 2D kidney cell lines (Caki-1 and HK-2) in plastic plate monocultures. Additionally, nearly all tested genes retain mRNA expression after 7 days in both proximal tubule cultures, a limitation of 2D cell culture lines. Importantly, gel presence is shown not to interfere with the gene expression assay. Western blots confirm protein expression of OAT1 and 3 and OCT2. Functional transport assays confirm their respective transporter functions in vitro. Overall, results validate retention of essential toxicity-relevant transporters in this published 3D proximal tubule model over conventional 2D kidney cell cultures, producing opportunities for more reliable, sensitive, and comprehensive drug toxicity studies relevant to drug development and nephrotoxicity goals.

  8. Spinstand demonstration of areal density enhancement using two-dimensional magnetic recording (invited)

    NASA Astrophysics Data System (ADS)

    Lippman, Thomas; Brockie, Richard; Coker, Jon; Contreras, John; Galbraith, Rick; Garzon, Samir; Hanson, Weldon; Leong, Tom; Marley, Arley; Wood, Roger; Zakai, Rehan; Zolla, Howard; Duquette, Paul; Petrizzi, Joe

    2015-05-01

    Exponential growth of the areal density has driven the magnetic recording industry for almost sixty years. But now areal density growth is slowing down, suggesting that current technologies are reaching their fundamental limit. The next generation of recording technologies, namely, energy-assisted writing and bit-patterned media, remains just over the horizon. Two-Dimensional Magnetic Recording (TDMR) is a promising new approach, enabling continued areal density growth with only modest changes to the heads and recording electronics. We demonstrate a first generation implementation of TDMR by using a dual-element read sensor to improve the recovery of data encoded by a conventional low-density parity-check (LDPC) channel. The signals are combined with a 2D equalizer into a single modified waveform that is decoded by a standard LDPC channel. Our detection hardware can perform simultaneous measurement of the pre- and post-combined error rate information, allowing one set of measurements to assess the absolute areal density capability of the TDMR system as well as the gain over a conventional shingled magnetic recording system with identical components. We discuss areal density measurements using this hardware and demonstrate gains exceeding five percent based on experimental dual reader components.

  9. [Prenatal diagnosis of isolated otocefalia. Usefulness of three-dimensional ultrasound].

    PubMed

    Escribano Abad, David; Arbués Gabarre, Juan; Gómez Montes, Enery; Puente Agueda, José Manuel; Herraiz García, Ignacio; Galindo Izquierdo, Alberto

    2011-08-01

    Otocephaly is a rare and lethal congenital malformation characterized by the presence of agnathia, microstomia, aglossia and synotia. Despite its frequent association with severe malformations, diagnosis in the few published cases is usually made at III trimester. In this case, three-dimensional ultrasound scan was performed in a Chinese primigravida with no remarkable personal nor familiar history since mandible was difficulty visualized with two-dimensional sonography at 21 weeks of gestation. Multiplanar and rendering mode showed the typical cervicofacial features of otocephaly without associated malformations. After parental counselling, they opted for termination of pregnancy and necropsy confirmed our prenatal findings. Our case shows the usefulness of three-dimensional ultrasound in assessing fetal cervicofacial pathology. Volumetric capture allows a delayed study of fetal anatomy and multiplanar mode offers the reconstruction of views whose achivement is difficult with conventional 2D ultrasound. Surface rendering provides excellent spatial vision and enables parents to understand the severity of the malformation thus helping with their decisions.

  10. An innovative method of ocular prosthesis fabrication by bio-CAD and rapid 3-D printing technology: A pilot study.

    PubMed

    Alam, Md Shahid; Sugavaneswaran, M; Arumaikkannu, G; Mukherjee, Bipasha

    2017-08-01

    Ocular prosthesis is either a readymade stock shell or custom made prosthesis (CMP). Presently, there is no other technology available, which is either superior or even comparable to the conventional CMP. The present study was designed to fabricate ocular prosthesis using computer aided design (CAD) and rapid manufacturing (RM) technology and to compare it with custom made prosthesis (CMP). The ocular prosthesis prepared by CAD was compared with conventional CMP in terms of time taken for fabrication, weight, cosmesis, comfort, and motility. Two eyes of two patients were included. Computerized tomography scan of wax model of socket was converted into three dimensional format using Materialize Interactive Medical Image Control System (MIMICS)software and further refined. This was given as an input to rapid manufacturing machine (Polyjet 3-D printer). The final painting on prototype was done by an ocularist. The average effective time required for fabrication of CAD prosthesis was 2.5 hours; and weight 2.9 grams. The same for CMP were 10 hours; and 4.4 grams. CAD prosthesis was more comfortable for both the patients. The study demonstrates the first ever attempt of fabricating a complete ocular prosthesis using CAD and rapid manufacturing and comparing it with conventional CMP. This prosthesis takes lesser time for fabrication, and is more comfortable. Studies with larger sample size will be required to further validate this technique.

  11. Burning invariant manifolds for reaction fronts in three-dimensional fluid flows

    NASA Astrophysics Data System (ADS)

    Mitchell, Kevin; Solomon, Tom

    2017-11-01

    The geometry of reaction fronts that propagate in fully three-dimensional (3D) fluid flows is studied using the tools of dynamical systems theory. The evolution of an infinitesimal front element is modeled as a six-dimensional ODE-three dimensions for the position of the front element and three for the orientation of its unit normal. This generalizes an earlier approach to understanding front propagation in two-dimensional (2D) fluid flows. As in 2D, the 3D system exhibits prominent burning invariant manifolds (BIMs). In 3D, BIMs are two-dimensional dynamically defined surfaces that form one-way barriers to the propagation of reaction fronts within the fluid. Due to the third dimension, BIMs in 3D exhibit a richer topology than their cousins in 2D. In particular, whereas BIMs in both 2D and 3D can originate from fixed points of the dynamics, BIMs in 3D can also originate from limit cycles. Such BIMs form robust tube-like channels that guide and constrain the evolution of the front within the bulk of the fluid. Supported by NSF Grant CMMI-1201236.

  12. On the current drive capability of low dimensional semiconductors: 1D versus 2D

    DOE PAGES

    Zhu, Y.; Appenzeller, J.

    2015-10-29

    Low-dimensional electronic systems are at the heart of many scaling approaches currently pursuit for electronic applications. Here, we present a comparative study between an array of one-dimensional (1D) channels and its two-dimensional (2D) counterpart in terms of current drive capability. Lastly, our findings from analytical expressions derived in this article reveal that under certain conditions an array of 1D channels can outperform a 2D field-effect transistor because of the added degree of freedom to adjust the threshold voltage in an array of 1D devices.

  13. Security analysis of quadratic phase based cryptography

    NASA Astrophysics Data System (ADS)

    Muniraj, Inbarasan; Guo, Changliang; Malallah, Ra'ed; Healy, John J.; Sheridan, John T.

    2016-09-01

    The linear canonical transform (LCT) is essential in modeling a coherent light field propagation through first-order optical systems. Recently, a generic optical system, known as a Quadratic Phase Encoding System (QPES), for encrypting a two-dimensional (2D) image has been reported. It has been reported together with two phase keys the individual LCT parameters serve as keys of the cryptosystem. However, it is important that such the encryption systems also satisfies some dynamic security properties. Therefore, in this work, we examine some cryptographic evaluation methods, such as Avalanche Criterion and Bit Independence, which indicates the degree of security of the cryptographic algorithms on QPES. We compare our simulation results with the conventional Fourier and the Fresnel transform based DRPE systems. The results show that the LCT based DRPE has an excellent avalanche and bit independence characteristics than that of using the conventional Fourier and Fresnel based encryption systems.

  14. Comparison of Conventional Versus Spiral Computed Tomography with Three Dimensional Reconstruction in Chronic Otitis Media with Ossicular Chain Destruction.

    PubMed

    Naghibi, Saeed; Seifirad, Sirous; Adami Dehkordi, Mahboobeh; Einolghozati, Sasan; Ghaffarian Eidgahi Moghadam, Nafiseh; Akhavan Rezayat, Amir; Seifirad, Soroush

    2016-01-01

    Chronic otitis media (COM) can be treated with tympanoplasty with or without mastoidectomy. In patients who have undergone middle ear surgery, three-dimensional spiral computed tomography (CT) scan plays an important role in optimizing surgical planning. This study was performed to compare the findings of three-dimensional reconstructed spiral and conventional CT scan of ossicular chain study in patients with COM. Fifty patients enrolled in the study underwent plane and three dimensional CT scan (PHILIPS-MX 8000). Ossicles changes, mastoid cavity, tympanic cavity, and presence of cholesteatoma were evaluated. Results of the two methods were then compared and interpreted by a radiologist, recorded in questionnaires, and analyzed. Logistic regression test and Kappa coefficient of agreement were used for statistical analyses. Sixty two ears with COM were found in physical examination. A significant difference was observed between the findings of the two methods in ossicle erosion (11.3% in conventional CT vs. 37.1% in spiral CT, P = 0.0001), decrease of mastoid air cells (82.3% in conventional CT vs. 93.5% in spiral CT, P = 0.001), and tympanic cavity opacity (12.9% in conventional CT vs. 40.3% in spiral CT, P=0.0001). No significant difference was observed between the findings of the two methods in ossicle destruction (6.5% conventional CT vs. 56.4% in spiral CT, P = 0.125), and presence of cholesteatoma (3.2% in conventional CT vs. 42% in spiral CT, P = 0.172). In this study, spiral CT scan demonstrated ossicle dislocation in 9.6%, decrease of mastoid air cells in 4.8%, and decrease of volume in the tympanic cavity in 1.6%; whereas, none of these findings were reported in the patients' conventional CT scans. Spiral-CT scan is superior to conventional CT in the diagnosis of lesions in COM before operation. It can be used for detailed evaluation of ossicular chain in such patients.

  15. Stable and efficient retrospective 4D-MRI using non-uniformly distributed quasi-random numbers

    NASA Astrophysics Data System (ADS)

    Breuer, Kathrin; Meyer, Cord B.; Breuer, Felix A.; Richter, Anne; Exner, Florian; Weng, Andreas M.; Ströhle, Serge; Polat, Bülent; Jakob, Peter M.; Sauer, Otto A.; Flentje, Michael; Weick, Stefan

    2018-04-01

    The purpose of this work is the development of a robust and reliable three-dimensional (3D) Cartesian imaging technique for fast and flexible retrospective 4D abdominal MRI during free breathing. To this end, a non-uniform quasi random (NU-QR) reordering of the phase encoding (k y –k z ) lines was incorporated into 3D Cartesian acquisition. The proposed sampling scheme allocates more phase encoding points near the k-space origin while reducing the sampling density in the outer part of the k-space. Respiratory self-gating in combination with SPIRiT-reconstruction is used for the reconstruction of abdominal data sets in different respiratory phases (4D-MRI). Six volunteers and three patients were examined at 1.5 T during free breathing. Additionally, data sets with conventional two-dimensional (2D) linear and 2D quasi random phase encoding order were acquired for the volunteers for comparison. A quantitative evaluation of image quality versus scan times (from 70 s to 626 s) for the given sampling schemes was obtained by calculating the normalized mutual information (NMI) for all volunteers. Motion estimation was accomplished by calculating the maximum derivative of a signal intensity profile of a transition (e.g. tumor or diaphragm). The 2D non-uniform quasi-random distribution of phase encoding lines in Cartesian 3D MRI yields more efficient undersampling patterns for parallel imaging compared to conventional uniform quasi-random and linear sampling. Median NMI values of NU-QR sampling are the highest for all scan times. Therefore, within the same scan time 4D imaging could be performed with improved image quality. The proposed method allows for the reconstruction of motion artifact reduced 4D data sets with isotropic spatial resolution of 2.1  ×  2.1  ×  2.1 mm3 in a short scan time, e.g. 10 respiratory phases in only 3 min. Cranio-caudal tumor displacements between 23 and 46 mm could be observed. NU-QR sampling enables for stable 4D-MRI with high temporal and spatial resolution within short scan time for visualization of organ or tumor motion during free breathing. Further studies, e.g. the application of the method for radiotherapy planning are needed to investigate the clinical applicability and diagnostic value of the approach.

  16. Three-dimensional culture conditions differentially affect astrocyte modulation of brain endothelial barrier function in response to transforming growth factor β1.

    PubMed

    Hawkins, Brian T; Grego, Sonia; Sellgren, Katelyn L

    2015-05-22

    Blood-brain barrier (BBB) function is regulated by dynamic interactions among cell types within the neurovascular unit, including astrocytes and endothelial cells. Co-culture models of the BBB typically involve astrocytes seeded on two-dimensional (2D) surfaces, which recent studies indicate cause astrocytes to express a phenotype similar to that of reactive astrocytes in situ. We hypothesized that the culture conditions of astrocytes would differentially affect their ability to modulate BBB function in vitro. Brain endothelial cells were grown alone or in co-culture with astrocytes. Astrocytes were grown either as conventional (2D) monolayers, or in a collagen-based gel which allows them to grow in a three-dimensional (3D) construct. Astrocytes were viable in 3D conditions, and displayed a marked reduction in their expression of glial fibrillary acidic protein (GFAP), suggesting reduced activation. Stimulation of astrocytes with transforming growth factor (TGF)β1 decreased transendothelial electrical resistance (TEER) and reduced expression of claudin-5 in co-cultures, whereas treatment of endothelial cells in the absence of astrocytes was without effect. The effect of TGFβ1 on TEER was significantly more pronounced in endothelial cells cultured with 3D astrocytes compared to 2D astrocytes. These results demonstrate that astrocyte culture conditions differentially affect their ability to modulate brain endothelial barrier function, and suggest a direct relationship between reactive gliosis and BBB permeability. Moreover, these studies demonstrate the potential importance of physiologically relevant culture conditions to in vitro modeling of disease processes that affect the neurovascular unit. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Effect of 3D animation videos over 2D video projections in periodontal health education among dental students.

    PubMed

    Dhulipalla, Ravindranath; Marella, Yamuna; Katuri, Kishore Kumar; Nagamani, Penupothu; Talada, Kishore; Kakarlapudi, Anusha

    2015-01-01

    There is limited evidence about the distinguished effect of 3D oral health education videos over conventional 2 dimensional projections in improving oral health knowledge. This randomized controlled trial was done to test the effect of 3 dimensional oral health educational videos among first year dental students. 80 first year dental students were enrolled and divided into two groups (test and control). In the test group, 3D animation and in the control group, regular 2D video projections pertaining to periodontal anatomy, etiology, presenting conditions, preventive measures and treatment of periodontal problems were shown. Effect of 3D animation was evaluated by using a questionnaire consisting of 10 multiple choice questions given to all participants at baseline, immediately after and 1month after the intervention. Clinical parameters like Plaque Index (PI), Gingival Bleeding Index (GBI), and Oral Hygiene Index Simplified (OHI-S) were measured at baseline and 1 month follow up. A significant difference in the post intervention knowledge scores was found between the groups as assessed by unpaired t-test (p<0.001) at baseline, immediate and after 1 month. At baseline, all the clinical parameters in the both the groups were similar and showed a significant reduction (p<0.001)p after 1 month, whereas no significant difference was noticed post intervention between the groups. 3D animation videos are more effective over 2D videos in periodontal disease education and knowledge recall. The application of 3D animation results also demonstrate a better visual comprehension for students and greater health care outcomes.

  18. Centimeter Scale Patterned Growth of Vertically Stacked Few Layer Only 2D MoS2/WS2 van der Waals Heterostructure.

    PubMed

    Choudhary, Nitin; Park, Juhong; Hwang, Jun Yeon; Chung, Hee-Suk; Dumas, Kenneth H; Khondaker, Saiful I; Choi, Wonbong; Jung, Yeonwoong

    2016-05-05

    Two-dimensional (2D) van der Waal (vdW) heterostructures composed of vertically-stacked multiple transition metal dichalcogenides (TMDs) such as molybdenum disulfide (MoS2) and tungsten disulfide (WS2) are envisioned to present unprecedented materials properties unobtainable from any other material systems. Conventional fabrications of these hybrid materials have relied on the low-yield manual exfoliation and stacking of individual 2D TMD layers, which remain impractical for scaled-up applications. Attempts to chemically synthesize these materials have been recently pursued, which are presently limited to randomly and scarcely grown 2D layers with uncontrolled layer numbers on very small areas. Here, we report the chemical vapor deposition (CVD) growth of large-area (>2 cm(2)) patterned 2D vdW heterostructures composed of few layer, vertically-stacked MoS2 and WS2. Detailed structural characterizations by Raman spectroscopy and high-resolution/scanning transmission electron microscopy (HRTEM/STEM) directly evidence the structural integrity of two distinct 2D TMD layers with atomically sharp vdW heterointerfaces. Electrical transport measurements of these materials reveal diode-like behavior with clear current rectification, further confirming the formation of high-quality heterointerfaces. The intrinsic scalability and controllability of the CVD method presented in this study opens up a wide range of opportunities for emerging applications based on the unconventional functionalities of these uniquely structured materials.

  19. Electronic nanobiosensors based on two-dimensional materials

    NASA Astrophysics Data System (ADS)

    Ping, Jinglei

    Atomically-thick two-dimensional (2D) nanomaterials have tremendous potential to be applied as transduction elements in biosensors and bioelectronics. We developed scalable methods for synthesis and large-area transfer of two-dimensional nanomaterials, particularly graphene and metal dichalcogenides (so called ``MX2'' materials). We also developed versatile fabrication methods for large arrays of field-effect transistors (FETs) and micro-electrodes with these nanomaterials based on either conventional photolithography or innovative approaches that minimize contamination of the 2D layer. By functionalizing the FETs with a computationally redesigned water-soluble mu-opioid receptor, we created selective and sensitive biosensors suitable for detection of the drug target naltrexone and the neuropeptide enkephalin at pg/mL concentrations. We also constructed DNA-functionalized biosensors and nano-particle decorated biosensors by applying related bio-nano integration techniques. Our methodology paves the way for multiplexed nanosensor arrays with all-electronic readout suitable for inexpensive point-of-care diagnostics, drug-development and biomedical research. With graphene field-effect transistors, we investigated the graphene/solution interface and developed a quantitative model for the effect of ionic screening on the graphene carrier density based on theories of the electric double layer. Finally, we have developed a technique for measuring low-level Faradaic charge-transfer current (fA) across the graphene/solution interface via real-time charge monitoring of graphene microelectrodes in ionic solution. This technique enables the development of flexible and transparent pH sensors that are promising for in vivo applications. The author acknowledges the support from the Defense Advanced Research Projects Agency (DARPA) and the U. S. Army Research Office under Grant Number W911NF1010093.

  20. Phase I study of replication-competent adenovirus-mediated double-suicide gene therapy in combination with conventional-dose three-dimensional conformal radiation therapy for the treatment of newly diagnosed, intermediate- to high-risk prostate cancer.

    PubMed

    Freytag, Svend O; Stricker, Hans; Pegg, Jan; Paielli, Dell; Pradhan, Deepak G; Peabody, James; DePeralta-Venturina, Mariza; Xia, Xueqing; Brown, Steve; Lu, Mei; Kim, Jae Ho

    2003-11-01

    The primary study objective was to determine the safety of intraprostatic administration of a replication-competent, oncolytic adenovirus containing a cytosine deaminase (CD)/herpes simplex virus thymidine kinase (HSV-1 TK) fusion gene concomitant with increasing durations of 5-fluorocytosine and valganciclovir prodrug therapy and conventional-dose three-dimensional conformal radiation therapy (3D-CRT) in patients with newly diagnosed, intermediate- to high-risk prostate cancer. Secondary objectives were to determine the persistence of therapeutic transgene expression in the prostate and to examine early posttreatment response. Fifteen patients in five cohorts received a single intraprostatic injection of 10(12) viral particles of the replication-competent Ad5-CD/TKrep adenovirus on day 1. Two days later, patients were administered 5-fluorocytosine and valganciclovir prodrug therapy for 1 (cohorts 1-3), 2 (cohort 4), or 3 (cohort 5) weeks along with 70-74 Gy 3D-CRT. Sextant needle biopsy of the prostate was obtained at 2 (cohort 1), 3 (cohort 2), and 4 (cohort 3) weeks for determination of the persistence of transgene expression. There were no dose-limiting toxicities and no significant treatment-related adverse events. Ninety-four percent of the adverse events observed were mild to moderate and self-limiting. Acute urinary and gastrointestinal toxicities were similar to those expected for conventional-dose 3D-CRT. Therapeutic transgene expression was found to persist in the prostate for up to 3 weeks after the adenovirus injection. As expected for patients receiving definitive radiation therapy, all patients experienced significant declines in prostate-specific antigen (PSA). The mean PSA half-life in patients administered more than 1 week of prodrug therapy was significantly shorter than that of patients receiving prodrugs for only 1 week (0.6 versus 2.0 months; P < 0.02) and markedly shorter than that reported previously for patients treated with conventional-dose 3D-CRT alone (2.4 months). With a median follow-up of only 9 months, 5 of 10 (50%) patients not treated with androgen-deprivation therapy achieved a serum PSA < or = 0.5 ng/ml. The results demonstrate that replication-competent adenovirus-mediated double-suicide gene therapy can be combined safely with conventional-dose 3D-CRT in patients with intermediate- to high-risk prostate cancer. The shorter than expected PSA half-life in patients receiving more than 1 week of prodrug therapy may suggest a possible interaction between the oncolytic adenovirus and/or double-suicide gene therapies and radiation therapy.

  1. Differentiation of benign from malignant solid breast masses: comparison of two-dimensional and three-dimensional shear-wave elastography.

    PubMed

    Lee, Su Hyun; Chang, Jung Min; Kim, Won Hwa; Bae, Min Sun; Cho, Nariya; Yi, Ann; Koo, Hye Ryoung; Kim, Seung Ja; Kim, Jin You; Moon, Woo Kyung

    2013-04-01

    To prospectively compare the diagnostic performances of two-dimensional (2D) and three-dimensional (3D) shear-wave elastography (SWE) for differentiating benign from malignant breast masses. B-mode ultrasound and SWE were performed for 134 consecutive women with 144 breast masses before biopsy. Quantitative elasticity values (maximum and mean elasticity in the stiffest portion of mass, Emax and Emean; lesion-to-fat elasticity ratio, Erat) were measured with both 2D and 3D SWE. The area under the receiver operating characteristic curve (AUC), sensitivity and specificity of B-mode, 2D, 3D SWE and combined data of B-mode and SWE were compared. Sixty-seven of the 144 breast masses (47 %) were malignant. Overall, higher elasticity values of 3D SWE than 2D SWE were noted for both benign and malignant masses. The AUC for 2D and 3D SWE were not significantly different: Emean, 0.938 vs 0.928; Emax, 0.939 vs 0.930; Erat, 0.907 vs 0.871. Either 2D or 3D SWE significantly improved the specificity of B-mode ultrasound from 29.9 % (23 of 77) up to 71.4 % (55 of 77) and 63.6 % (49 of 77) without a significant change in sensitivity. Two-dimensional and 3D SWE performed equally in distinguishing benign from malignant masses and both techniques improved the specificity of B-mode ultrasound.

  2. Three-dimensional macro-structures of two-dimensional nanomaterials.

    PubMed

    Shehzad, Khurram; Xu, Yang; Gao, Chao; Duan, Xiangfeng

    2016-10-21

    If two-dimensional (2D) nanomaterials are ever to be utilized as components of practical, macroscopic devices on a large scale, there is a complementary need to controllably assemble these 2D building blocks into more sophisticated and hierarchical three-dimensional (3D) architectures. Such a capability is key to design and build complex, functional devices with tailored properties. This review provides a comprehensive overview of the various experimental strategies currently used to fabricate the 3D macro-structures of 2D nanomaterials. Additionally, various approaches for the decoration of the 3D macro-structures with organic molecules, polymers, and inorganic materials are reviewed. Finally, we discuss the applications of 3D macro-structures, especially in the areas of energy, environment, sensing, and electronics, and describe the existing challenges and the outlook for this fast emerging field.

  3. Tunable dark modes in one-dimensional “diatomic” dielectric gratings

    DOE PAGES

    Zeng, Bo; Majumdar, Arka; Wang, Feng

    2015-05-04

    Recently researchers have demonstrated ultra high quality factor (Q) resonances in one-dimensional (1D) dielectric gratings. Here we theoretically investigate a new class of subwavelength 1D gratings, namely “diatomic” gratings with two nonequivalent subcells in one period, and utilize their intrinsic dark modes to achieve robust ultra high Q resonances. Such “diatomic” gratings provide extra design flexibility, and enable high Q resonators using thinner geometry with smaller filling factors compared to conventional designs like the high contrast gratings (HCGs). More importantly, we show that these high Q resonances can be efficiently tuned in situ, making the design appealing in various applicationsmore » including optical sensing, filtering and displays.« less

  4. Acquisition of epithelial-mesenchymal transition and cancer stem-like phenotypes within chitosan-hyaluronan membrane-derived 3D tumor spheroids.

    PubMed

    Huang, Yen-Jang; Hsu, Shan-Hui

    2014-12-01

    Cancer drug development has to go through rigorous testing and evaluation processes during pre-clinical in vitro studies. However, the conventional two-dimensional (2D) in vitro culture is often discounted by the insufficiency to present a more typical tumor microenvironment. The multicellular tumor spheroids have been a valuable model to provide more comprehensive assessment of tumor in response to therapeutic strategies. Here, we applied chitosan-hyaluronan (HA) membranes as a platform to promote three-dimensional (3D) tumor spheroid formation. The biological features of tumor spheroids of human non-small cell lung cancer (NSCLC) cells on chitosan-HA membranes were compared to those of 2D cultured cells in vitro. The cells in tumor spheroids cultured on chitosan-HA membranes showed higher levels of stem-like properties and epithelial-mesenchymal transition (EMT) markers, such as NANOG, SOX2, CD44, CD133, N-cadherin, and vimentin, than 2D cultured cells. Moreover, they exhibited enhanced invasive activities and multidrug resistance by the upregulation of MMP2, MMP9, BCRC5, BCL2, MDR1, and ABCG2 as compared with 2D cultured cells. The grafting densities of HA affected the tumor sphere size and mRNA levels of genes on the substrates. These evidences suggest that chitosan-HA membranes may offer a simple and valuable biomaterial platform for rapid generation of tumor spheroids in vitro as well as for further applications in cancer stem cell research and cancer drug screening. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Moving branes in the presence of background tachyon fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rezaei, Z., E-mail: z.rezaei@aut.ac.ir; Kamani, D., E-mail: kamani@aut.ac.ir

    2011-12-15

    We compute the boundary state associated with a moving Dp-brane in the presence of the open string tachyon field as a background field. The effect of the tachyon condensation on the boundary state is discussed. It leads to a boundary state associated with a lower-dimensional moving D-brane or a stationary instantonic D-brane. The former originates from condensation along the spatial directions and the latter comes from the temporal direction of the D-brane worldvolume. Using the boundary state, we also study the interaction amplitude between two arbitrary Dp{sub 1}- and Dp{sub 2}-branes. The long-range behavior of the amplitude is investigated, demonstratingmore » an obvious deviation from the conventional form, due to the presence of the background tachyon field.« less

  6. 2D SiNx photonic crystal coated Y3Al5O12:Ce3+ ceramic plate phosphor for high-power white light-emitting diodes.

    PubMed

    Park, Hoo Keun; Oh, Jeong Rok; Do, Young Rag

    2011-12-05

    This paper reports the optical effects of a two-dimensional (2D) SiNx photonic crystal layer (PCL) on Y3Al5O12:Ce3+ (YAG:Ce) yellow ceramic plate phosphor (CPP) in order to enhance the forward emission of YAG:Ce CPP-capped high-power white light-emitting diodes (LEDs). By adding the 2D SiNx PCL with a 580 nm lattice constant, integrated yellow emission was improved by a factor of 1.72 compared to that of a conventional YAG:Ce CPP capped on a blue LED cup. This enhanced forward yellow emission is attributed to increased extraction of yellow emission light and improved absorption of blue excitation light through Bragg scattering and/or the leaky modes produced by the 2D PCLs. The introduction of 2D PCL can also reduce the wide variation of optical properties as a function of both ambient temperature and applied current, compared to those of a high-power YAG:Ce CPP-capped LED.

  7. Mass detection in digital breast tomosynthesis data using convolutional neural networks and multiple instance learning.

    PubMed

    Yousefi, Mina; Krzyżak, Adam; Suen, Ching Y

    2018-05-01

    Digital breast tomosynthesis (DBT) was developed in the field of breast cancer screening as a new tomographic technique to minimize the limitations of conventional digital mammography breast screening methods. A computer-aided detection (CAD) framework for mass detection in DBT has been developed and is described in this paper. The proposed framework operates on a set of two-dimensional (2D) slices. With plane-to-plane analysis on corresponding 2D slices from each DBT, it automatically learns complex patterns of 2D slices through a deep convolutional neural network (DCNN). It then applies multiple instance learning (MIL) with a randomized trees approach to classify DBT images based on extracted information from 2D slices. This CAD framework was developed and evaluated using 5040 2D image slices derived from 87 DBT volumes. The empirical results demonstrate that this proposed CAD framework achieves much better performance than CAD systems that use hand-crafted features and deep cardinality-restricted Bolzmann machines to detect masses in DBTs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Role of four-dimensional echocardiography with high-definition flow imaging and spatiotemporal image correlation in detecting fetal pulmonary veins.

    PubMed

    Sun, Xue; Zhang, Ying; Fan, Miao; Wang, Yu; Wang, Meilian; Siddiqui, Faiza Amber; Sun, Wei; Sun, Feifei; Zhang, Dongyu; Lei, Wenjia; Hu, Guyue

    2017-06-01

    Prenatal diagnosis of fetal total anomalous pulmonary vein connection (TAPVC) remains challenging for most screening sonographers. The purpose of this study was to evaluate the use of four-dimensional echocardiography with high-definition flow imaging and spatiotemporal image correlation (4D-HDFI) in identifying pulmonary veins in normal and TAPVC fetuses. We retrospectively reviewed and performed 4D-HDFI in 204 normal and 12 fetuses with confirmed diagnosis of TAPVC. Cardiac volumes were available for postanalysis to obtain 4D-rendered images of the pulmonary veins. For the normal fetuses, two other traditional modalities including color Doppler and HDFI were used to detect the number of pulmonary veins and comparisons were made between each of these traditional methods and 4D-HDFI. For conventional echocardiography, HDFI modality was superior to color Doppler in detecting more pulmonary veins in normal fetuses throughout the gestational period. 4D-HDFI was the best method during the second trimester of pregnancy in identifying normal fetal pulmonary veins. 4D-HDFI images vividly depicted the figure, course, and drainage of pulmonary veins in both normal and TAPVC fetuses. HDFI and the advanced 4D-HDFI technique could facilitate identification of the anatomical features of pulmonary veins in both normal and TAPVC fetuses; 4D-HDFI therefore provides additional and more precise information than conventional echocardiography techniques. © 2017, Wiley Periodicals, Inc.

  9. Motion processing with two eyes in three dimensions.

    PubMed

    Rokers, Bas; Czuba, Thaddeus B; Cormack, Lawrence K; Huk, Alexander C

    2011-02-11

    The movement of an object toward or away from the head is perhaps the most critical piece of information an organism can extract from its environment. Such 3D motion produces horizontally opposite motions on the two retinae. Little is known about how or where the visual system combines these two retinal motion signals, relative to the wealth of knowledge about the neural hierarchies involved in 2D motion processing and binocular vision. Canonical conceptions of primate visual processing assert that neurons early in the visual system combine monocular inputs into a single cyclopean stream (lacking eye-of-origin information) and extract 1D ("component") motions; later stages then extract 2D pattern motion from the cyclopean output of the earlier stage. Here, however, we show that 3D motion perception is in fact affected by the comparison of opposite 2D pattern motions between the two eyes. Three-dimensional motion sensitivity depends systematically on pattern motion direction when dichoptically viewing gratings and plaids-and a novel "dichoptic pseudoplaid" stimulus provides strong support for use of interocular pattern motion differences by precluding potential contributions from conventional disparity-based mechanisms. These results imply the existence of eye-of-origin information in later stages of motion processing and therefore motivate the incorporation of such eye-specific pattern-motion signals in models of motion processing and binocular integration.

  10. High-resolution gadolinium-enhanced 3D MRA of the infrapopliteal arteries. Lessons for improving bolus-chase peripheral MRA.

    PubMed

    Hood, Maureen N; Ho, Vincent B; Foo, Thomas K F; Marcos, Hani B; Hess, Sandra L; Choyke, Peter L

    2002-09-01

    Peripheral magnetic resonance angiography (MRA) is growing in use. However, methods of performing peripheral MRA vary widely and continue to be optimized, especially for improvement in illustration of infrapopliteal arteries. The main purpose of this project was to identify imaging factors that can improve arterial visualization in the lower leg using bolus chase peripheral MRA. Eighteen healthy adults were imaged on a 1.5T MR scanner. The calf was imaged using conventional three-station bolus chase three-dimensional (3D) MRA, two dimensional (2D) time-of-flight (TOF) MRA and single-station Gadolinium (Gd)-enhanced 3D MRA. Observer comparisons of vessel visualization, signal to noise ratios (SNR), contrast to noise ratios (CNR) and spatial resolution comparisons were performed. Arterial SNR and CNR were similar for all three techniques. However, arterial visualization was dramatically improved on dedicated, arterial-phase Gd-enhanced 3D MRA compared with the multi-station bolus chase MRA and 2D TOF MRA. This improvement was related to optimization of Gd-enhanced 3D MRA parameters (fast injection rate of 2 mL/sec, high spatial resolution imaging, the use of dedicated phased array coils, elliptical centric k-space sampling and accurate arterial phase timing for image acquisition). The visualization of the infrapopliteal arteries can be substantially improved in bolus chase peripheral MRA if voxel size, contrast delivery, and central k-space data acquisition for arterial enhancement are optimized. Improvements in peripheral MRA should be directed at these parameters.

  11. Universal Fermi Gases in Mixed Dimensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishida, Yusuke; Tan, Shina

    2008-10-24

    We investigate a two-species Fermi gas in which one species is confined in a two-dimensional plane (2D) or one-dimensional line (1D) while the other is free in the three-dimensional space (3D). We discuss the realization of such a system with the interspecies interaction tuned to resonance. When the mass ratio is in the range 0.0351

  12. Separation and characterization of chemical constituents in Ginkgo biloba extract by off-line hydrophilic interaction×reversed-phase two-dimensional liquid chromatography coupled with quadrupole-time of flight mass spectrometry.

    PubMed

    Ji, Shuai; He, Dan-Dan; Wang, Tian-Yun; Han, Jie; Li, Zheng; Du, Yan; Zou, Jia-Hui; Guo, Meng-Zhe; Tang, Dao-Quan

    2017-11-30

    Ginkgo biloba extract (GBE), derived from the leaves of Ginkgo biloba L., is one of the most widely used traditional Chinese medicines worldwide. Due to high structural diversity and low abundance of chemical constituents in GBE, conventional reversed-phase liquid chromatography has limited power to meet the needs of its quality control. In this study, an off-line hydrophilic interaction×reversed-phase two-dimensional liquid chromatography (HILIC×RP 2D-LC) system coupled with diode array detection (DAD) and quadrupole time-of-flight mass spectrometry (qTOF-MS) was established to comprehensively analyze the chemical constituents of GBE. After optimizing the chromatographic columns and mobile phase of 2D-LC, a Waters XBridge Amide column using acetonitrile/water/formic acid as the mobile phase was selected as the first dimension to fractionate GBE, and the obtained fractions were further separated on an Agilent Zorbax XDB-C18 column with methanol/water/formic acid as the mobile phase. As a result, a total of 125 compounds were detected in GBE. The orthogonality of the 2D-LC system was 69.5%, and the practical peak capacity was 3864 and 2994, respectively, calculated by two different methods. The structures of 104 compounds were tentatively characterized by qTOF-MS analysis, and 21 of them were further confirmed by comparing with reference standards. This established HILIC×RP 2D-LC-qTOF/MS system can greatly improve the separation and characterization of natural products in GBE or other complicated herbal extracts. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. A Low Cost Structurally Optimized Design for Diverse Filter Types

    PubMed Central

    Kazmi, Majida; Aziz, Arshad; Akhtar, Pervez; Ikram, Nassar

    2016-01-01

    A wide range of image processing applications deploys two dimensional (2D)-filters for performing diversified tasks such as image enhancement, edge detection, noise suppression, multi scale decomposition and compression etc. All of these tasks require multiple type of 2D-filters simultaneously to acquire the desired results. The resource hungry conventional approach is not a viable option for implementing these computationally intensive 2D-filters especially in a resource constraint environment. Thus it calls for optimized solutions. Mostly the optimization of these filters are based on exploiting structural properties. A common shortcoming of all previously reported optimized approaches is their restricted applicability only for a specific filter type. These narrow scoped solutions completely disregard the versatility attribute of advanced image processing applications and in turn offset their effectiveness while implementing a complete application. This paper presents an efficient framework which exploits the structural properties of 2D-filters for effectually reducing its computational cost along with an added advantage of versatility for supporting diverse filter types. A composite symmetric filter structure is introduced which exploits the identities of quadrant and circular T-symmetries in two distinct filter regions simultaneously. These T-symmetries effectually reduce the number of filter coefficients and consequently its multipliers count. The proposed framework at the same time empowers this composite filter structure with additional capabilities of realizing all of its Ψ-symmetry based subtypes and also its special asymmetric filters case. The two-fold optimized framework thus reduces filter computational cost up to 75% as compared to the conventional approach as well as its versatility attribute not only supports diverse filter types but also offers further cost reduction via resource sharing for sequential implementation of diversified image processing applications especially in a constraint environment. PMID:27832133

  14. Micro-Mirrors for Nanoscale Three-Dimensional Microscopy

    PubMed Central

    Seale, Kevin; Janetopoulos, Chris; Wikswo, John

    2013-01-01

    A research-grade optical microscope is capable of resolving fine structures in two-dimensional images. However, three-dimensional resolution, or the ability of the microscope to distinguish between objects lying above or below the focal plane from in-focus objects, is not nearly as good as in-plane resolution. In this issue of ACS Nano, McMahon et al. report the use of mirrored pyramidal wells with a conventional microscope for rapid, 3D localization and tracking of nanoparticles. Mirrors have been used in microscopy before, but recent work with MPWs is unique because it enables the rapid determination of the x-, y-, and z-position of freely diffusing nanoparticles and cellular nanostructures with unprecedented speed and spatial accuracy. As inexpensive tools for 3D visualization, mirrored pyramidal wells may prove to be invaluable aids in nanotechnology and engineering of nanomaterials. PMID:19309167

  15. 3D-hierarchical MoSe2 nanoarchitecture as a highly efficient electrocatalyst for hydrogen evolution

    NASA Astrophysics Data System (ADS)

    Zheng, Binjie; Chen, Yuanfu; Qi, Fei; Wang, Xinqiang; Zhang, Wanli; Li, Yanrong; Li, Xuesong

    2017-06-01

    Clean hydrogen split from water by hydrogen evolution reaction (HER) is significant for sustainability, environmental emissions, and energy security. So far, it is still a big challenge to develop highly efficient noble metal-free electrocatalysts with comparable HER efficiency to platinum-based catalysts, which are mainly hindered by the intrinsic electrocatalytic property and particularly the reasonable nanostructure design of the electrocatalyst. Here we report a newly-designed three-dimensional hierarchical MoSe2 nanoarchitecture (3D-MoSe2) with outstanding HER performance. The 3D-MoSe2 is grown by chemical vapor deposition method with using perylene-3, 4, 9, 10-tetracarboxylic acid tetrapotassium salt as a seeding promoter. The as-grown 3D-MoSe2 nanoarchitecture is highly crystalline and constructed with curly few-layered vertical nanosheets onto the horizontal layer, which has much larger (~12 times) electrochemically active area and much smaller (only 2%) charge transfer resistance compared to conventional horizontal MoSe2 layer. With these advantages, the Tafel slope of 3D-MoSe2 can be as small as 47.3 mV/dev, which is the smallest record ever reported for pure MoSe2, even for pure two-dimensional transition metal dichalcogenides (2D-TMDs) catalysts. Furthermore, when 3D-MoSe2 is grown on the multiwall carbon nanotube film, its Tafel slope can be further reduced down to 32.5 mV/dec, which is close to the theoretical limit (29 mV/dec) of HER, and comparable to platinum-based electrocatalysts, making it promising as a highly efficient electrocatalyst for hydrogen evolution.

  16. A 2.5D Computational Method to Simulate Cylindrical Fluidized Beds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Tingwen; Benyahia, Sofiane; Dietiker, Jeff

    2015-02-17

    In this paper, the limitations of axisymmetric and Cartesian two-dimensional (2D) simulations of cylindrical gas-solid fluidized beds are discussed. A new method has been proposed to carry out pseudo-two-dimensional (2.5D) simulations of a cylindrical fluidized bed by appropriately combining computational domains of Cartesian 2D and axisymmetric simulations. The proposed method was implemented in the open-source code MFIX and applied to the simulation of a lab-scale bubbling fluidized bed with necessary sensitivity study. After a careful grid study to ensure the numerical results are grid independent, detailed comparisons of the flow hydrodynamics were presented against axisymmetric and Cartesian 2D simulations. Furthermore,more » the 2.5D simulation results have been compared to the three-dimensional (3D) simulation for evaluation. This new approach yields better agreement with the 3D simulation results than with axisymmetric and Cartesian 2D simulations.« less

  17. Application of photogrammetry for analysis of occlusal contacts.

    PubMed

    Shigeta, Yuko; Hirabayashi, Rio; Ikawa, Tomoko; Kihara, Takuya; Ando, Eriko; Hirai, Shinya; Fukushima, Shunji; Ogawa, Takumi

    2013-04-01

    The conventional 2D-analysis methods for occlusal contacts provided limited information on tooth morphology. This present study aims to detect 3D positional information of occlusal contacts from 2D-photos via photogrammetry. We propose an image processing solution for analysis of occlusal contacts and facets via the black silicone method and a photogrammetric technique. The occlusal facets were reconstructed from a 2D-photograph data-set of inter-occlusal records into a 3D image via photogrammetry. The configuration of the occlusal surface was reproduced with polygons. In addition, the textures of the occlusal contacts were mapped to each polygon. DIFFERENCE FROM CONVENTIONAL METHODS: Constructing occlusal facets with 3D polygons from 2D-photos with photogrammetry was a defining characteristic of this image processing technique. It allowed us to better observe findings of the black silicone method. Compared with conventional 3D analysis using a 3D scanner, our 3D models did not reproduce the detail of the anatomical configuration. However, by merging the findings of the inter-occlusal record, the deformation of mandible and the displacement of periodontal ligaments under occlusal force were reflected in our model. EFFECT OR PERFORMANCE: Through the use of polygons in the conversion of 2D images to 3D images, we were able to define the relation between the location and direction of the occlusal contacts and facets, which was difficult to detect via conventional methods. Through our method of making a 3D polygon model, the findings of inter-occlusal records which reflected the jaw/teeth behavior under occlusal force could be observed 3-dimensionally. Copyright © 2012 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  18. Divergence of the long-wavelength collective diffusion coefficient in quasi-one- and quasi-two-dimensional colloidal suspensions.

    PubMed

    Lin, Binhua; Cui, Bianxiao; Xu, Xinliang; Zangi, Ronen; Diamant, Haim; Rice, Stuart A

    2014-02-01

    We report the results of experimental studies of the short-time-long-wavelength behavior of collective particle displacements in quasi-one-dimensional (q1D) and quasi-two-dimensional (q2D) colloid suspensions. Our results are reported via the q → 0 behavior of the hydrodynamic function H(q) that relates the effective collective diffusion coefficient D(e)(q), with the static structure factor S(q) and the self-diffusion coefficient of isolated particles D(0): H(q) ≡ D(e)(q)S(q)/D(0). We find an apparent divergence of H(q) as q → 0 with the form H(q) ∝ q(-γ) (1.7 < γ < 1.9) for both q1D and q2D colloid suspensions. Given that S(q) does not diverge as q → 0 we infer that D(e)(q) does. This behavior is qualitatively different from that of the three-dimensional H(q) and D(e)(q) as q → 0, and the divergence is of a different functional form from that predicted for the diffusion coefficient in one-component one-dimensional and two-dimensional fluids not subject to boundary conditions that define the dimensionality of the system. We provide support for the contention that the boundary conditions that define a confined system play a very important role in determining the long-wavelength behavior of the collective diffusion coefficient from two sources: (i) the results of simulations of H(q) and D(e)(q) in quasi-1D and quasi-2D systems and (ii) verification, using data from the work of Lin, Rice and Weitz [Phys. Rev. E 51, 423 (1995)], of the prediction by Bleibel et al., arXiv:1305.3715, that D(e)(q) for a monolayer of colloid particles constrained to lie in the interface between two fluids diverges as q(-1) as q → 0.

  19. Effects of dimensionality and laser polarization on kinetic simulations of laser-ion acceleration in the transparency regime

    NASA Astrophysics Data System (ADS)

    Stark, David; Yin, Lin; Albright, Brian; Guo, Fan

    2017-10-01

    The often cost-prohibitive nature of three-dimensional (3D) kinetic simulations of laser-plasma interactions has resulted in heavy use of two-dimensional (2D) simulations to extract physics. However, depending on whether the polarization is modeled as 2D-S or 2D-P (laser polarization in and out of the simulation plane, respectively), different results arise. In laser-ion acceleration in the transparency regime, VPIC particle-in-cell simulations show that 2D-S and 2D-P capture different physics that appears in 3D simulations. The electron momentum distribution is virtually two-dimensional in 2D-P, unlike the more isotropic distributions in 2D-S and 3D, leading to greater heating in the simulation plane. As a result, target expansion time scales and density thresholds for the onset of relativistic transparency differ dramatically between 2D-S and 2D-P. The artificial electron heating in 2D-P exaggerates the effectiveness of target-normal sheath acceleration (TNSA) into its dominant acceleration mechanism, whereas 2D-S and 3D both have populations accelerated preferentially during transparency to higher energies than those of TNSA. Funded by the LANL Directed Research and Development Program.

  20. Two- and three-dimensional folding of thin film single-crystalline silicon for photovoltaic power applications

    PubMed Central

    Guo, Xiaoying; Li, Huan; Yeop Ahn, Bok; Duoss, Eric B.; Hsia, K. Jimmy; Lewis, Jennifer A.; Nuzzo, Ralph G.

    2009-01-01

    Fabrication of 3D electronic structures in the micrometer-to-millimeter range is extremely challenging due to the inherently 2D nature of most conventional wafer-based fabrication methods. Self-assembly, and the related method of self-folding of planar patterned membranes, provide a promising means to solve this problem. Here, we investigate self-assembly processes driven by wetting interactions to shape the contour of a functional, nonplanar photovoltaic (PV) device. A mechanics model based on the theory of thin plates is developed to identify the critical conditions for self-folding of different 2D geometrical shapes. This strategy is demonstrated for specifically designed millimeter-scale silicon objects, which are self-assembled into spherical, and other 3D shapes and integrated into fully functional light-trapping PV devices. The resulting 3D devices offer a promising way to efficiently harvest solar energy in thin cells using concentrator microarrays that function without active light tracking systems. PMID:19934059

  1. Two- and three-dimensional folding of thin film single-crystalline silicon for photovoltaic power applications.

    PubMed

    Guo, Xiaoying; Li, Huan; Ahn, Bok Yeop; Duoss, Eric B; Hsia, K Jimmy; Lewis, Jennifer A; Nuzzo, Ralph G

    2009-12-01

    Fabrication of 3D electronic structures in the micrometer-to-millimeter range is extremely challenging due to the inherently 2D nature of most conventional wafer-based fabrication methods. Self-assembly, and the related method of self-folding of planar patterned membranes, provide a promising means to solve this problem. Here, we investigate self-assembly processes driven by wetting interactions to shape the contour of a functional, nonplanar photovoltaic (PV) device. A mechanics model based on the theory of thin plates is developed to identify the critical conditions for self-folding of different 2D geometrical shapes. This strategy is demonstrated for specifically designed millimeter-scale silicon objects, which are self-assembled into spherical, and other 3D shapes and integrated into fully functional light-trapping PV devices. The resulting 3D devices offer a promising way to efficiently harvest solar energy in thin cells using concentrator microarrays that function without active light tracking systems.

  2. Two- to three-dimensional crossover in a dense electron liquid in silicon

    NASA Astrophysics Data System (ADS)

    Matmon, Guy; Ginossar, Eran; Villis, Byron J.; Kölker, Alex; Lim, Tingbin; Solanki, Hari; Schofield, Steven R.; Curson, Neil J.; Li, Juerong; Murdin, Ben N.; Fisher, Andrew J.; Aeppli, Gabriel

    2018-04-01

    Doping of silicon via phosphine exposures alternating with molecular beam epitaxy overgrowth is a path to Si:P substrates for conventional microelectronics and quantum information technologies. The technique also provides a well-controlled material for systematic studies of two-dimensional lattices with a half-filled band. We show here that for a dense (ns=2.8 ×1014 cm-2) disordered two-dimensional array of P atoms, the full field magnitude and angle-dependent magnetotransport is remarkably well described by classic weak localization theory with no corrections due to interaction. The two- to three-dimensional crossover seen upon warming can also be interpreted using scaling concepts developed for anistropic three-dimensional materials, which work remarkably except when the applied fields are nearly parallel to the conducting planes.

  3. Advanced morphological and biochemical magnetic resonance imaging of cartilage repair procedures in the knee joint at 3 Tesla.

    PubMed

    Welsch, Goetz H; Mamisch, Tallal C; Hughes, Timothy; Domayer, Stephan; Marlovits, Stefan; Trattnig, Siegfried

    2008-09-01

    Morphological and biochemical magnetic resonance imaging (MRI) is due to high field MR systems, advanced coil technology, and sophisticated sequence protocols capable of visualizing articular cartilage in vivo with high resolution in clinical applicable scan time. Several conventional two-dimensional (2D) and three-dimensional (3D) approaches show changes in cartilage structure. Furthermore newer isotropic 3D sequences show great promise in improving cartilage imaging and additionally in diagnosing surrounding pathologies within the knee joint. Functional MR approaches are additionally able to provide a specific measure of the composition of cartilage. Cartilage physiology and ultra-structure can be determined, changes in cartilage macromolecules can be detected, and cartilage repair tissue can thus be assessed and potentially differentiated. In cartilage defects and following nonsurgical and surgical cartilage repair, morphological MRI provides the basis for diagnosis and follow-up evaluation, whereas biochemical MRI provides a deeper insight into the composition of cartilage and cartilage repair tissue. A combination of both, together with clinical evaluation, may represent a desirable multimodal approach in the future, also available in routine clinical use.

  4. Nanoscale Morphology, Dimensional Control and Electrical Properties of Oligoanilines

    PubMed Central

    Wang, Yue; Tran, Henry D.; Liao, Lei; Duan, Xiangfeng; Kaner, Richard B.

    2010-01-01

    While nanostructures of organic conductors have generated great interest in recent years, their nanoscale size and shape control remains a significant challenge. Here we report a general method for producing a variety of oligoaniline nanostructures with well-defined morphologies and dimensionalities. 1-D nanowires, 2-D nanoribbons, and 3-D rectangular nanoplates and nanoflowers of tetraaniline are produced by a solvent exchange process in which the dopant acid can be used to tune the oligomer morphology. The process appears to be a general route for producing nanostructures for a variety of other aniline oligomers such as the phenyl-capped tetramer. X-ray diffraction of the tetraniline nanostructures reveals that they possess different packing arrangements, which results in different nanoscale morphologies with different electrical properties for the structures. The conductivity of a single tetraaniline nanostructure is up to two orders of magnitude higher than the highest previously reported value and rivals that of pressed pellets of conventional polyaniline doped with acid. Furthermore, these oligomer nanostructures can be easily processed by a number of methods in order to create thin films composed of aligned nanostructures over a macroscopic area. PMID:20662516

  5. A Graphic Anthropometric Aid for Seating and Workplace Design.

    DTIC Science & Technology

    1984-04-01

    required proportion of the pdf . Suppose that some attribute is distributed according to a bivariate Normal pdf of zero mean value and equal variances a...2󈧓 Note that circular contours. dran at the normaliwed radii presented above, will enclose the respective proportions of the bi artate Normal pdf ...INTRODUCTION 1 2. A TWO-DIMENSIONAL MODEL BASE 2 3. CONCEPT OF USE 4 4. VALIDATION OF THE TWO-DIMENSIONAL MODEL 8 4.1 Conventional Anthropometry 9 4.2

  6. Are Young Children's Drawings Canonically Biased?

    ERIC Educational Resources Information Center

    Picard, Delphine; Durand, Karine

    2005-01-01

    In a between-subjects design, 4-to 6-year-olds were asked to draw from three-dimensional (3D) models, two-and-a-half-dimensional (212D) models with or without depth cues, or two-dimensional (2D) models of a familiar object (a saucepan) in noncanonical orientations (handle at the back or at the front). Results showed that canonical errors were…

  7. Stargate GTM: Bridging Descriptor and Activity Spaces.

    PubMed

    Gaspar, Héléna A; Baskin, Igor I; Marcou, Gilles; Horvath, Dragos; Varnek, Alexandre

    2015-11-23

    Predicting the activity profile of a molecule or discovering structures possessing a specific activity profile are two important goals in chemoinformatics, which could be achieved by bridging activity and molecular descriptor spaces. In this paper, we introduce the "Stargate" version of the Generative Topographic Mapping approach (S-GTM) in which two different multidimensional spaces (e.g., structural descriptor space and activity space) are linked through a common 2D latent space. In the S-GTM algorithm, the manifolds are trained simultaneously in two initial spaces using the probabilities in the 2D latent space calculated as a weighted geometric mean of probability distributions in both spaces. S-GTM has the following interesting features: (1) activities are involved during the training procedure; therefore, the method is supervised, unlike conventional GTM; (2) using molecular descriptors of a given compound as input, the model predicts a whole activity profile, and (3) using an activity profile as input, areas populated by relevant chemical structures can be detected. To assess the performance of S-GTM prediction models, a descriptor space (ISIDA descriptors) of a set of 1325 GPCR ligands was related to a B-dimensional (B = 1 or 8) activity space corresponding to pKi values for eight different targets. S-GTM outperforms conventional GTM for individual activities and performs similarly to the Lasso multitask learning algorithm, although it is still slightly less accurate than the Random Forest method.

  8. Investigation of Fully Three-Dimensional Helical RF Field Effects on TWT Beam/Circuit Interaction

    NASA Technical Reports Server (NTRS)

    Kory, Carol L.

    2000-01-01

    A fully three-dimensional (3D), time-dependent, helical traveling wave-tube (TWT) interaction model has been developed using the electromagnetic particle-in-cell (PIC) code MAFIA. The model includes a short section of helical slow-wave circuit with excitation fed by RF input/output couplers, and electron beam contained by periodic permanent magnet (PPM) focusing. All components of the model are simulated in three dimensions allowing the effects of the fully 3D helical fields on RF circuit/beam interaction to be investigated for the first time. The development of the interaction model is presented, and predicted TWT performance using 2.5D and 3D models is compared to investigate the effect of conventional approximations used in TWT analyses.

  9. Dual-polarized light-field imaging micro-system via a liquid-crystal microlens array for direct three-dimensional observation.

    PubMed

    Xin, Zhaowei; Wei, Dong; Xie, Xingwang; Chen, Mingce; Zhang, Xinyu; Liao, Jing; Wang, Haiwei; Xie, Changsheng

    2018-02-19

    Light-field imaging is a crucial and straightforward way of measuring and analyzing surrounding light worlds. In this paper, a dual-polarized light-field imaging micro-system based on a twisted nematic liquid-crystal microlens array (TN-LCMLA) for direct three-dimensional (3D) observation is fabricated and demonstrated. The prototyped camera has been constructed by integrating a TN-LCMLA with a common CMOS sensor array. By switching the working state of the TN-LCMLA, two orthogonally polarized light-field images can be remapped through the functioned imaging sensors. The imaging micro-system in conjunction with the electric-optical microstructure can be used to perform polarization and light-field imaging, simultaneously. Compared with conventional plenoptic cameras using liquid-crystal microlens array, the polarization-independent light-field images with a high image quality can be obtained in the arbitrary polarization state selected. We experimentally demonstrate characters including a relatively wide operation range in the manipulation of incident beams and the multiple imaging modes, such as conventional two-dimensional imaging, light-field imaging, and polarization imaging. Considering the obvious features of the TN-LCMLA, such as very low power consumption, providing multiple imaging modes mentioned, simple and low-cost manufacturing, the imaging micro-system integrated with this kind of liquid-crystal microstructure driven electrically presents the potential capability of directly observing a 3D object in typical scattering media.

  10. R (D(*)) anomalies in light of a nonminimal universal extra dimension

    NASA Astrophysics Data System (ADS)

    Biswas, Aritra; Shaw, Avirup; Patra, Sunando Kumar

    2018-02-01

    We estimate contributions from Kaluza-Klein excitations of gauge bosons and physical charge scalar for the explanation of the lepton flavor universality violating excess in the ratios R (D ) and R (D*) in 5 dimensional universal extra dimensional scenario with nonvanishing boundary localized terms. This model is conventionally known as nonminimal universal extra dimensional model. We obtain the allowed parameter space in accordance with constraints coming from Bc→τ ν decay, as well as those from the electroweak precision tests.

  11. Echocardiography Comparison Between Two and Three Dimensional Echocardiograms

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Echocardiography uses sound waves to image the heart and other organs. Developing a compact version of the latest technology improved the ease of monitoring crew member health, a critical task during long space flights. NASA researchers plan to adapt the three-dimensional (3-D) echocardiogram for space flight. The two-dimensional (2-D) echocardiogram utilized in orbit on the International Space Station (ISS) was effective, but difficult to use with precision. A heart image from a 2-D echocardiogram (left) is of a better quality than that from a 3-D device (right), but the 3-D imaging procedure is more user-friendly.

  12. Two-dimensional vibrational spectroscopy of the amide I band of crystalline acetanilide: Fermi resonance, conformational substates, or vibrational self-trapping?

    NASA Astrophysics Data System (ADS)

    Edler, J.; Hamm, P.

    2003-08-01

    Two-dimensional infrared (2D-IR) spectroscopy is applied to investigate acetanilide, a molecular crystal consisting of quasi-one-dimensional hydrogen bonded peptide units. The amide-I band exhibits a double peak structure, which has been attributed to different mechanisms including vibrational self-trapping, a Fermi resonance, or the existence of two conformational substates. The 2D-IR spectrum of crystalline acetanilide is compared with that of two different molecular systems: (i) benzoylchloride, which exhibits a strong symmetric Fermi resonance and (ii) N-methylacetamide dissolved in methanol which occurs in two spectroscopically distinguishable conformations. Both 2D-IR spectra differ significantly from that of crystalline acetanilide, proving that these two alternative mechanisms cannot account for the anomalous spectroscopy of crystalline acetanilide. On the other hand, vibrational self-trapping of the amide-I band can naturally explain the 2D-IR response.

  13. SU-E-J-110: Dosimetric Analysis of Respiratory Motion Based On Four-Dimensional Dose Accumulation in Liver Stereotactic Body Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, S; Kim, D; Kim, T

    2015-06-15

    Purpose: Respiratory motion in thoracic and abdominal region could lead to significant underdosing of target and increased dose to healthy tissues. The aim of this study is to evaluate the dosimetric effect of respiratory motion in conventional 3D dose by comparing 4D deformable dose in liver stereotactic body radiotherapy (SBRT). Methods: Five patients who had previously treated liver SBRT were included in this study. Four-dimensional computed tomography (4DCT) images with 10 phases for all patients were acquired on multi-slice CT scanner (Siemens, Somatom definition). Conventional 3D planning was performed using the average intensity projection (AIP) images. 4D dose accumulation wasmore » calculated by summation of dose distribution for all phase images of 4DCT using deformable image registration (DIR) . The target volume and normal organs dose were evaluated with the 4D dose and compared with those from 3D dose. And also, Index of achievement (IOA) which assesses the consistency between planned dose and prescription dose was used to compare target dose distribution between 3D and 4D dose. Results: Although the 3D dose calculation considered the moving target coverage, significant differences of various dosimetric parameters between 4D and 3D dose were observed in normal organs and PTV. The conventional 3D dose overestimated dose to PTV, however, there was no significant difference for GTV. The average difference of IOA which become ‘1’ in an ideal case was 3.2% in PTV. The average difference of liver and duodenum was 5% and 16% respectively. Conclusion: 4D dose accumulation which can provide dosimetric effect of respiratory motion has a possibility to predict the more accurate delivered dose to target and normal organs and improve treatment accuracy. This work was supported by the Radiation Technology R&D program (No. 2013M2A2A7043498) and the Mid-career Researcher Program (2014R1A2A1A10050270) through the National Research Foundation of Korea funded by the Ministry of Science, ICT&Future Planning (MSIP) of Korea.« less

  14. Current status of one- and two-dimensional numerical models: Successes and limitations

    NASA Technical Reports Server (NTRS)

    Schwartz, R. J.; Gray, J. L.; Lundstrom, M. S.

    1985-01-01

    The capabilities of one and two-dimensional numerical solar cell modeling programs (SCAP1D and SCAP2D) are described. The occasions when a two-dimensional model is required are discussed. The application of the models to design, analysis, and prediction are presented along with a discussion of problem areas for solar cell modeling.

  15. Volumetric quantification of bone-implant contact using micro-computed tomography analysis based on region-based segmentation.

    PubMed

    Kang, Sung-Won; Lee, Woo-Jin; Choi, Soon-Chul; Lee, Sam-Sun; Heo, Min-Suk; Huh, Kyung-Hoe; Kim, Tae-Il; Yi, Won-Jin

    2015-03-01

    We have developed a new method of segmenting the areas of absorbable implants and bone using region-based segmentation of micro-computed tomography (micro-CT) images, which allowed us to quantify volumetric bone-implant contact (VBIC) and volumetric absorption (VA). The simple threshold technique generally used in micro-CT analysis cannot be used to segment the areas of absorbable implants and bone. Instead, a region-based segmentation method, a region-labeling method, and subsequent morphological operations were successively applied to micro-CT images. The three-dimensional VBIC and VA of the absorbable implant were then calculated over the entire volume of the implant. Two-dimensional (2D) bone-implant contact (BIC) and bone area (BA) were also measured based on the conventional histomorphometric method. VA and VBIC increased significantly with as the healing period increased (p<0.05). VBIC values were significantly correlated with VA values (p<0.05) and with 2D BIC values (p<0.05). It is possible to quantify VBIC and VA for absorbable implants using micro-CT analysis using a region-based segmentation method.

  16. Usage of 3D models of tetralogy of Fallot for medical education: impact on learning congenital heart disease.

    PubMed

    Loke, Yue-Hin; Harahsheh, Ashraf S; Krieger, Axel; Olivieri, Laura J

    2017-03-11

    Congenital heart disease (CHD) is the most common human birth defect, and clinicians need to understand the anatomy to effectively care for patients with CHD. However, standard two-dimensional (2D) display methods do not adequately carry the critical spatial information to reflect CHD anatomy. Three-dimensional (3D) models may be useful in improving the understanding of CHD, without requiring a mastery of cardiac imaging. The study aimed to evaluate the impact of 3D models on how pediatric residents understand and learn about tetralogy of Fallot following a teaching session. Pediatric residents rotating through an inpatient Cardiology rotation were recruited. The sessions were randomized into using either conventional 2D drawings of tetralogy of Fallot or physical 3D models printed from 3D cardiac imaging data sets (cardiac MR, CT, and 3D echocardiogram). Knowledge acquisition was measured by comparing pre-session and post-session knowledge test scores. Learner satisfaction and self-efficacy ratings were measured with questionnaires filled out by the residents after the teaching sessions. Comparisons between the test scores, learner satisfaction and self-efficacy questionnaires for the two groups were assessed with paired t-test. Thirty-five pediatric residents enrolled into the study, with no significant differences in background characteristics, including previous clinical exposure to tetralogy of Fallot. The 2D image group (n = 17) and 3D model group (n = 18) demonstrated similar knowledge acquisition in post-test scores. Residents who were taught with 3D models gave a higher composite learner satisfaction scores (P = 0.03). The 3D model group also had higher self-efficacy aggregate scores, but the difference was not statistically significant (P = 0.39). Physical 3D models enhance resident education around the topic of tetralogy of Fallot by improving learner satisfaction. Future studies should examine the impact of models on teaching CHD that are more complex and elaborate.

  17. Three-dimensional printing of Hela cells for cervical tumor model in vitro.

    PubMed

    Zhao, Yu; Yao, Rui; Ouyang, Liliang; Ding, Hongxu; Zhang, Ting; Zhang, Kaitai; Cheng, Shujun; Sun, Wei

    2014-09-01

    Advances in three-dimensional (3D) printing have enabled the direct assembly of cells and extracellular matrix materials to form in vitro cellular models for 3D biology, the study of disease pathogenesis and new drug discovery. In this study, we report a method of 3D printing for Hela cells and gelatin/alginate/fibrinogen hydrogels to construct in vitro cervical tumor models. Cell proliferation, matrix metalloproteinase (MMP) protein expression and chemoresistance were measured in the printed 3D cervical tumor models and compared with conventional 2D planar culture models. Over 90% cell viability was observed using the defined printing process. Comparisons of 3D and 2D results revealed that Hela cells showed a higher proliferation rate in the printed 3D environment and tended to form cellular spheroids, but formed monolayer cell sheets in 2D culture. Hela cells in 3D printed models also showed higher MMP protein expression and higher chemoresistance than those in 2D culture. These new biological characteristics from the printed 3D tumor models in vitro as well as the novel 3D cell printing technology may help the evolution of 3D cancer study.

  18. Polyaxial stress-dependent permeability of a three-dimensional fractured rock layer

    NASA Astrophysics Data System (ADS)

    Lei, Qinghua; Wang, Xiaoguang; Xiang, Jiansheng; Latham, John-Paul

    2017-12-01

    A study about the influence of polyaxial (true-triaxial) stresses on the permeability of a three-dimensional (3D) fractured rock layer is presented. The 3D fracture system is constructed by extruding a two-dimensional (2D) outcrop pattern of a limestone bed that exhibits a ladder structure consisting of a "through-going" joint set abutted by later-stage short fractures. Geomechanical behaviour of the 3D fractured rock in response to in-situ stresses is modelled by the finite-discrete element method, which can capture the deformation of matrix blocks, variation of stress fields, reactivation of pre-existing rough fractures and propagation of new cracks. A series of numerical simulations is designed to load the fractured rock using various polyaxial in-situ stresses and the stress-dependent flow properties are further calculated. The fractured layer tends to exhibit stronger flow localisation and higher equivalent permeability as the far-field stress ratio is increased and the stress field is rotated such that fractures are preferentially oriented for shearing. The shear dilation of pre-existing fractures has dominant effects on flow localisation in the system, while the propagation of new fractures has minor impacts. The role of the overburden stress suggests that the conventional 2D analysis that neglects the effect of the out-of-plane stress (perpendicular to the bedding interface) may provide indicative approximations but not fully capture the polyaxial stress-dependent fracture network behaviour. The results of this study have important implications for understanding the heterogeneous flow of geological fluids (e.g. groundwater, petroleum) in subsurface and upscaling permeability for large-scale assessments.

  19. Robotic Surgery in Gynecology

    PubMed Central

    Bouquet de Joliniere, Jean; Librino, Armando; Dubuisson, Jean-Bernard; Khomsi, Fathi; Ben Ali, Nordine; Fadhlaoui, Anis; Ayoubi, J. M.; Feki, Anis

    2016-01-01

    Minimally invasive surgery (MIS) can be considered as the greatest surgical innovation over the past 30 years. It revolutionized surgical practice with well-proven advantages over traditional open surgery: reduced surgical trauma and incision-related complications, such as surgical-site infections, postoperative pain and hernia, reduced hospital stay, and improved cosmetic outcome. Nonetheless, proficiency in MIS can be technically challenging as conventional laparoscopy is associated with several limitations as the two-dimensional (2D) monitor reduction in-depth perception, camera instability, limited range of motion, and steep learning curves. The surgeon has a low force feedback, which allows simple gestures, respect for tissues, and more effective treatment of complications. Since the 1980s, several computer sciences and robotics projects have been set up to overcome the difficulties encountered with conventional laparoscopy, to augment the surgeon’s skills, achieve accuracy and high precision during complex surgery, and facilitate widespread of MIS. Surgical instruments are guided by haptic interfaces that replicate and filter hand movements. Robotically assisted technology offers advantages that include improved three-dimensional stereoscopic vision, wristed instruments that improve dexterity, and tremor canceling software that improves surgical precision. PMID:27200358

  20. Impedance Eduction in Sound Fields With Peripherally Varying Liners and Flow

    NASA Technical Reports Server (NTRS)

    Watson, W. R.; Jones, M. G.

    2015-01-01

    A two-dimensional impedance eduction theory is extended to three-dimensional sound fields and peripherally varying duct liners. The approach is to first measure the acoustic pressure field at a series of flush-mounted wall microphones located around the periphery of the flow duct. The numerical solution for the acoustic pressure field at these microphones is also obtained by solving the three-dimensional convected Helmholtz equation using the finite element method. A quadratic objective function based on the difference between the measured and finite element solution is constructed and the unknown impedance function is obtained by minimizing this objective function. Impedance spectra educed for two uniform-structure liners (a wire-mesh and a conventional liner) and a hard-soft-hard peripherally varying liner (for which the soft segment is that of the conventional liner) are presented. Results are presented at three mean flow Mach numbers and fourteen sound source frequencies. The impedance spectra of the uniform-structure liners are also computed using a two-dimensional impedance eduction theory. The primary conclusions of the study are: 1) when measured data is used with the uniform-structure liners, the three-dimensional theory reproduces the same impedance spectra as the two-dimensional theory except for frequencies corresponding to very low or very high liner attenuation; and 2) good agreement between the educed impedance spectra of the uniform structure conventional liner and the soft segment of the peripherally varying liner is obtained.

  1. Fast inner-volume imaging of the lumbar spine with a spatially focused excitation using a 3D-TSE sequence.

    PubMed

    Riffel, Philipp; Michaely, Henrik J; Morelli, John N; Paul, Dominik; Kannengiesser, Stephan; Schoenberg, Stefan O; Haneder, Stefan

    2015-04-01

    The purpose of this study was to evaluate the feasibility and technical quality of a zoomed three-dimensional (3D) turbo spin-echo (TSE) sampling perfection with application optimized contrasts using different flip-angle evolutions (SPACE) sequence of the lumbar spine. In this prospective feasibility study, nine volunteers underwent a 3-T magnetic resonance examination of the lumbar spine including 1) a conventional 3D T2-weighted (T2w) SPACE sequence with generalized autocalibrating partially parallel acquisition technique acceleration factor 2 and 2) a zoomed 3D T2w SPACE sequence with a reduced field of view (reduction factor 2). Images were evaluated with regard to image sharpness, signal homogeneity, and the presence of artifacts by two experienced radiologists. For quantitative analysis, signal-to-noise ratio (SNR) values were calculated. Image sharpness of anatomic structures was statistically significantly greater with zoomed SPACE (P < .0001), whereas the signal homogeneity was statistically significantly greater with conventional SPACE (cSPACE; P = .0003). There were no statistically significant differences in extent of artifacts. Acquisition times were 8:20 minutes for cSPACE and 6:30 minutes for zoomed SPACE. Readers 1 and 2 selected zSPACE as the preferred sequence in five of nine cases. In two of nine cases, both sequences were rated as equally preferred by both the readers. SNR values were statistically significantly greater with cSPACE. In comparison to a cSPACE sequences, zoomed SPACE imaging of the lumbar spine provides sharper images in conjunction with a 25% reduction in acquisition time. Copyright © 2015 AUR. Published by Elsevier Inc. All rights reserved.

  2. Multiparticle collision simulations of two-dimensional one-component plasmas: Anomalous transport and dimensional crossovers

    NASA Astrophysics Data System (ADS)

    Di Cintio, Pierfrancesco; Livi, Roberto; Lepri, Stefano; Ciraolo, Guido

    2017-04-01

    By means of hybrid multiparticle collsion-particle-in-cell (MPC-PIC) simulations we study the dynamical scaling of energy and density correlations at equilibrium in moderately coupled two-dimensional (2D) and quasi-one-dimensional (1D) plasmas. We find that the predictions of nonlinear fluctuating hydrodynamics for the structure factors of density and energy fluctuations in 1D systems with three global conservation laws hold true also for 2D systems that are more extended along one of the two spatial dimensions. Moreover, from the analysis of the equilibrium energy correlators and density structure factors of both 1D and 2D neutral plasmas, we find that neglecting the contribution of the fluctuations of the vanishing self-consistent electrostatic fields overestimates the interval of frequencies over which the anomalous transport is observed. Such violations of the expected scaling in the currents correlation are found in different regimes, hindering the observation of the asymptotic scaling predicted by the theory.

  3. Inter-track interference mitigation with two-dimensional variable equalizer for bit patterned media recording

    NASA Astrophysics Data System (ADS)

    Wang, Yao; Vijaya Kumar, B. V. K.

    2017-05-01

    The increased track density in bit patterned media recording (BPMR) causes increased inter-track interference (ITI), which degrades the bit error rate (BER) performance. In order to mitigate the effect of the ITI, signals from multiple tracks can be equalized by a 2D equalizer with 1D target. Usually, the 2D fixed equalizer coefficients are obtained by using a pseudo-random bit sequence (PRBS) for training. In this study, a 2D variable equalizer is proposed, where various sets of 2D equalizer coefficients are predetermined and stored for different ITI patterns besides the usual PRBS training. For data detection, as the ITI patterns are unknown in the first global iteration, the main and adjacent tracks are equalized with the conventional 2D fixed equalizer, detected with Bahl-Cocke-Jelinek-Raviv (BCJR) detector and decoded with low-density parity-check (LDPC) decoder. Then using the estimated bit information from main and adjacent tracks, the ITI pattern for each island of the main track can be estimated and the corresponding 2D variable equalizers are used to better equalize the bits on the main track. This process is executed iteratively by feeding back the main track information. Simulation results indicate that for both single-track and two-track detection, the proposed 2D variable equalizer can achieve better BER and frame error rate (FER) compared to that with the 2D fixed equalizer.

  4. Accuracy of Digital vs Conventional Implant Impression Approach: A Three-Dimensional Comparative In Vitro Analysis.

    PubMed

    Basaki, Kinga; Alkumru, Hasan; De Souza, Grace; Finer, Yoav

    To assess the three-dimensional (3D) accuracy and clinical acceptability of implant definitive casts fabricated using a digital impression approach and to compare the results with those of a conventional impression method in a partially edentulous condition. A mandibular reference model was fabricated with implants in the first premolar and molar positions to simulate a patient with bilateral posterior edentulism. Ten implant-level impressions per method were made using either an intraoral scanner with scanning abutments for the digital approach or an open-tray technique and polyvinylsiloxane material for the conventional approach. 3D analysis and comparison of implant location on resultant definitive casts were performed using laser scanner and quality control software. The inter-implant distances and interimplant angulations for each implant pair were measured for the reference model and for each definitive cast (n = 20 per group); these measurements were compared to calculate the magnitude of error in 3D for each definitive cast. The influence of implant angulation on definitive cast accuracy was evaluated for both digital and conventional approaches. Statistical analysis was performed using t test (α = .05) for implant position and angulation. Clinical qualitative assessment of accuracy was done via the assessment of the passivity of a master verification stent for each implant pair, and significance was analyzed using chi-square test (α = .05). A 3D error of implant positioning was observed for the two impression techniques vs the reference model, with mean ± standard deviation (SD) error of 116 ± 94 μm and 56 ± 29 μm for the digital and conventional approaches, respectively (P = .01). In contrast, the inter-implant angulation errors were not significantly different between the two techniques (P = .83). Implant angulation did not have a significant influence on definitive cast accuracy within either technique (P = .64). The verification stent demonstrated acceptable passive fit for 11 out of 20 casts and 18 out of 20 casts for the digital and conventional methods, respectively (P = .01). Definitive casts fabricated using the digital impression approach were less accurate than those fabricated from the conventional impression approach for this simulated clinical scenario. A significant number of definitive casts generated by the digital technique did not meet clinically acceptable accuracy for the fabrication of a multiple implant-supported restoration.

  5. Optical second-harmonic-generation probe of two-dimensional ferroelectricity.

    PubMed

    Aktsipetrov, O A; Misuryaev, T V; Murzina, T V; Blinov, L M; Fridkin, V M; Palto, S P

    2000-03-15

    Optical second-harmonic generation (SHG) is used as a noninvasive probe of two-dimensional (2D) ferroelectricity in Langmuir-Blodgett (LB) films of the copolymer vinylidene fluoride with trifluoroethylene. The surface 2D ferroelectric-paraelectric phase transition in the topmost layer of the LB films and a thickness-independent (almost 2D) transition in the bulk of these films are observed in temperature studies of SHG.

  6. Three-dimensional to two-dimensional transition in mode-I fracture microbranching in a perturbed hexagonal close-packed lattice

    NASA Astrophysics Data System (ADS)

    Heizler, Shay I.; Kessler, David A.

    2017-06-01

    Mode-I fracture exhibits microbranching in the high velocity regime where the simple straight crack is unstable. For velocities below the instability, classic modeling using linear elasticity is valid. However, showing the existence of the instability and calculating the dynamics postinstability within the linear elastic framework is difficult and controversial. The experimental results give several indications that the microbranching phenomenon is basically a three-dimensional (3D) phenomenon. Nevertheless, the theoretical effort has been focused mostly on two-dimensional (2D) modeling. In this paper we study the microbranching instability using three-dimensional atomistic simulations, exploring the difference between the 2D and the 3D models. We find that the basic 3D fracture pattern shares similar behavior with the 2D case. Nevertheless, we exhibit a clear 3D-2D transition as the crack velocity increases, whereas as long as the microbranches are sufficiently small, the behavior is pure 3D behavior, whereas at large driving, as the size of the microbranches increases, more 2D-like behavior is exhibited. In addition, in 3D simulations, the quantitative features of the microbranches, separating the regimes of steady-state cracks (mirror) and postinstability (mist-hackle) are reproduced clearly, consistent with the experimental findings.

  7. The bias of a 2D view: Comparing 2D and 3D mesophyll surface area estimates using non-invasive imaging

    USDA-ARS?s Scientific Manuscript database

    The surface area of the leaf mesophyll exposed to intercellular airspace per leaf area (Sm) is closely associated with CO2 diffusion and photosynthetic rates. Sm is typically estimated from two-dimensional (2D) leaf sections and corrected for the three-dimensional (3D) geometry of mesophyll cells, l...

  8. Improved Virtual Planning for Bimaxillary Orthognathic Surgery.

    PubMed

    Hatamleh, Muhanad; Turner, Catherine; Bhamrah, Gurprit; Mack, Gavin; Osher, Jonas

    2016-09-01

    Conventional model surgery planning for bimaxillary orthognathic surgery can be laborious, time-consuming and may contain potential errors; hence three-dimensional (3D) virtual orthognathic planning has been proven to be an efficient, reliable, and cost-effective alternative. In this report, the 3D planning is described for a patient presenting with a Class III incisor relationship on a Skeletal III base with pan facial asymmetry complicated by reverse overjet and anterior open bite. A combined scan data of direct cone beam computer tomography and indirect dental scan were used in the planning. Additionally, a new method of establishing optimum intercuspation by scanning dental casts in final occlusion and positioning it to the composite-scans model was shown. Furthermore, conventional model surgery planning was carried out following in-house protocol. Intermediate and final intermaxillary splints were produced following the conventional method and 3D printing. Three-dimensional planning showed great accuracy and treatment outcome and reduced laboratory time in comparison with the conventional method. Establishing the final dental occlusion on casts and integrating it in final 3D planning enabled us to achieve the best possible intercuspation.

  9. Three-dimensional color Doppler echocardiography for direct measurement of vena contracta area in mitral regurgitation: in vitro validation and clinical experience.

    PubMed

    Little, Stephen H; Pirat, Bahar; Kumar, Rahul; Igo, Stephen R; McCulloch, Marti; Hartley, Craig J; Xu, Jiaqiong; Zoghbi, William A

    2008-11-01

    Our goal was to prospectively compare the accuracy of real-time three-dimensional (3D) color Doppler vena contracta (VC) area and two-dimensional (2D) VC diameter in an in vitro model and in the clinical assessment of mitral regurgitation (MR) severity. Real-time 3D color Doppler allows direct measurement of VC area and may be more accurate for assessment of MR than the conventional VC diameter measurement by 2D color Doppler. Using a circulatory loop with an incorporated imaging chamber, various pulsatile flow rates of MR were driven through 4 differently sized orifices. In a clinical study of patients with at least mild MR, regurgitation severity was assessed quantitatively using Doppler-derived effective regurgitant orifice area (EROA), and semiquantitatively as recommended by the American Society of Echocardiography. We describe a step-by-step process to accurately identify the 3D-VC area and compare that measure against known orifice areas (in vitro study) and EROA (clinical study). In vitro, 3D-VC area demonstrated the strongest correlation with known orifice area (r = 0.92, p < 0.001), whereas 2D-VC diameter had a weak correlation with orifice area (r = 0.56, p = 0.01). In a clinical study of 61 patients, 3D-VC area correlated with Doppler-derived EROA (r = 0.85, p < 0.001); the relation was stronger than for 2D-VC diameter (r = 0.67, p < 0.001). The advantage of 3D-VC area over 2D-VC diameter was more pronounced in eccentric jets (r = 0.87, p < 0.001 vs. r = 0.6, p < 0.001, respectively) and in moderate-to-severe or severe MR (r = 0.80, p < 0.001 vs. r = 0.18, p = 0.4, respectively). Measurement of VC area is feasible with real-time 3D color Doppler and provides a simple parameter that accurately reflects MR severity, particularly in eccentric and clinically significant MR where geometric assumptions may be challenging.

  10. Three-Dimensional Color Doppler Echocardiography for Direct Measurement of Vena Contracta Area in Mitral Regurgitation

    PubMed Central

    Little, Stephen H.; Pirat, Bahar; Kumar, Rahul; Igo, Stephen R.; McCulloch, Marti; Hartley, Craig J.; Xu, Jiaqiong; Zoghbi, William A.

    2012-01-01

    OBJECTIVES Our goal was to prospectively compare the accuracy of real-time three-dimensional (3D) color Doppler vena contracta (VC) area and two-dimensional (2D) VC diameter in an in vitro model and in the clinical assessment of mitral regurgitation (MR) severity. BACKGROUND Real-time 3D color Doppler allows direct measurement of VC area and may be more accurate for assessment of MR than the conventional VC diameter measurement by 2D color Doppler. METHODS Using a circulatory loop with an incorporated imaging chamber, various pulsatile flow rates of MR were driven through 4 differently sized orifices. In a clinical study of patients with at least mild MR, regurgitation severity was assessed quantitatively using Doppler-derived effective regurgitant orifice area (EROA), and semiquantitatively as recommended by the American Society of Echocardiography. We describe a step-by-step process to accurately identify the 3D-VC area and compare that measure against known orifice areas (in vitro study) and EROA (clinical study). RESULTS In vitro, 3D-VC area demonstrated the strongest correlation with known orifice area (r = 0.92, p < 0.001), whereas 2D-VC diameter had a weak correlation with orifice area (r = 0.56, p = 0.01). In a clinical study of 61 patients, 3D-VC area correlated with Doppler-derived EROA (r = 0.85, p < 0.001); the relation was stronger than for 2D-VC diameter (r = 0.67, p < 0.001). The advantage of 3D-VC area over 2D-VC diameter was more pronounced in eccentric jets (r = 0.87, p < 0.001 vs. r = 0.6, p < 0.001, respectively) and in moderate-to-severe or severe MR (r = 0.80, p < 0.001 vs. r = 0.18, p = 0.4, respectively). CONCLUSIONS Measurement of VC area is feasible with real-time 3D color Doppler and provides a simple parameter that accurately reflects MR severity, particularly in eccentric and clinically significant MR where geometric assumptions may be challenging. PMID:19356505

  11. Disease Modeling Using 3D Organoids Derived from Human Induced Pluripotent Stem Cells.

    PubMed

    Ho, Beatrice Xuan; Pek, Nicole Min Qian; Soh, Boon-Seng

    2018-03-21

    The rising interest in human induced pluripotent stem cell (hiPSC)-derived organoid culture has stemmed from the manipulation of various combinations of directed multi-lineage differentiation and morphogenetic processes that mimic organogenesis. Organoids are three-dimensional (3D) structures that are comprised of multiple cell types, self-organized to recapitulate embryonic and tissue development in vitro. This model has been shown to be superior to conventional two-dimensional (2D) cell culture methods in mirroring functionality, architecture, and geometric features of tissues seen in vivo. This review serves to highlight recent advances in the 3D organoid technology for use in modeling complex hereditary diseases, cancer, host-microbe interactions, and possible use in translational and personalized medicine where organoid cultures were used to uncover diagnostic biomarkers for early disease detection via high throughput pharmaceutical screening. In addition, this review also aims to discuss the advantages and shortcomings of utilizing organoids in disease modeling. In summary, studying human diseases using hiPSC-derived organoids may better illustrate the processes involved due to similarities in the architecture and microenvironment present in an organoid, which also allows drug responses to be properly recapitulated in vitro.

  12. Applying microCT and 3D visualization to Jurassic silicified conifer seed cones: A virtual advantage over thin-sectioning1

    PubMed Central

    Gee, Carole T.

    2013-01-01

    • Premise of the study: As an alternative to conventional thin-sectioning, which destroys fossil material, high-resolution X-ray computed tomography (also called microtomography or microCT) integrated with scientific visualization, three-dimensional (3D) image segmentation, size analysis, and computer animation is explored as a nondestructive method of imaging the internal anatomy of 150-million-year-old conifer seed cones from the Late Jurassic Morrison Formation, USA, and of recent and other fossil cones. • Methods: MicroCT was carried out on cones using a General Electric phoenix v|tome|x s 240D, and resulting projections were processed with visualization software to produce image stacks of serial single sections for two-dimensional (2D) visualization, 3D segmented reconstructions with targeted structures in color, and computer animations. • Results: If preserved in differing densities, microCT produced images of internal fossil tissues that showed important characters such as seed phyllotaxy or number of seeds per cone scale. Color segmentation of deeply embedded seeds highlighted the arrangement of seeds in spirals. MicroCT of recent cones was even more effective. • Conclusions: This is the first paper on microCT integrated with 3D segmentation and computer animation applied to silicified seed cones, which resulted in excellent 2D serial sections and segmented 3D reconstructions, revealing features requisite to cone identification and understanding of strobilus construction. PMID:25202495

  13. Single-scan 2D NMR: An Emerging Tool in Analytical Spectroscopy

    PubMed Central

    Giraudeau, Patrick; Frydman, Lucio

    2016-01-01

    Two-dimensional Nuclear Magnetic Resonance (2D NMR) spectroscopy is widely used in chemical and biochemical analyses. Multidimensional NMR is also witnessing an increased use in quantitative and metabolic screening applications. Conventional 2D NMR experiments, however, are affected by inherently long acquisition durations, arising from their need to sample the frequencies involved along their indirect domains in an incremented, scan-by-scan nature. A decade ago a so-called “ultrafast” (UF) approach was proposed, capable to deliver arbitrary 2D NMR spectra involving any kind of homo- or hetero-nuclear correlations, in a single scan. During the intervening years the performance of this sub-second 2D NMR methodology has been greatly improved, and UF 2D NMR is rapidly becoming a powerful analytical tool witnessing an expanded scope of applications. The present reviews summarizes the principles and the main developments which have contributed to the success of this approach, and focuses on applications which have been recently demonstrated in various areas of analytical chemistry –from the real time monitoring of chemical and biochemical processes, to extensions in hyphenated techniques and in quantitative applications. PMID:25014342

  14. Data assimilation of non-conventional observations using GEOS-R flash lightning: 1D+4D-VAR approach vs. assimilation of images (Invited)

    NASA Astrophysics Data System (ADS)

    Navon, M. I.; Stefanescu, R.

    2013-12-01

    Previous assimilation of lightning used nudging approaches. We develop three approaches namely, 3D-VAR WRFDA and1D+nD-VAR (n=3,4) WRFDA . The present research uses Convective Available Potential Energy (CAPE) as a proxy between lightning data and model variables. To test performance of aforementioned schemes, we assess quality of resulting analysis and forecasts of precipitation compared to those from a control experiment and verify them against NCEP stage IV precipitation. Results demonstrate that assimilating lightning observations improves precipitation statistics during the assimilation window and for 3-7 h thereafter. The 1D+4D-VAR approach yielded the best performance significantly improving precipitation rmse errors by 25% and 27.5%,compared to control during the assimilation window for two tornadic test cases. Finally we propose a new approach to assimilate 2-D images of lightning flashes based on pixel intensity, mitigating dimensionality by a reduced order method.

  15. Observation and explanation of two-dimensional interconversion of oximes with multiple heart-cutting using comprehensive multidimensional gas chromatography.

    PubMed

    Kulsing, Chadin; Nolvachai, Yada; Wong, Yong Foo; Glouzman, Melissa I; Marriott, Philip J

    2018-04-20

    Real-time interconversion processes produce unconventional peak broadening in gas chromatography (GC), and can be used to generate kinetic and thermodynamic data. In this study, an unusual separation situation in comprehensive two dimensional GC where two dimensional interconversion (i.e. a raised plateau in both first and second dimension, 1 D and 2 D) was observed in analysis of oxime isomers. This resulted in a characteristic and unusual rectangular peak shape in the two dimensional result. A related theoretical approach was introduced to explain the peak shape supported by simulation results which can be varied depending on concentration profiles and kinetics of the process. The simulated results were supported by experimental results obtained by a comprehensive heart-cut multidimensional GC (H/C MDGC) approach which was developed to clearly investigate isomerisation of E/Z oxime molecules in both 1 D and 2 D separations under different isothermal conditions. The carrier gas flow and oven temperature were selected according to initial results for 1D interconversion on a poly(ethyleneglycol) stationary phase, which was further used in both 1 D and 2 D separations to result in broad zones of oxime interconversion in both dimensions. The method involved repetitive injections of oxime sample, then sampling contiguous fractions of sample into a long 2 D column which is intended to promote considerable interconversion. Comprehensiveness arises from the fact that the whole sample is sampled from the 1 D to the 2 D column, with the long 2 D column replacing the short 2 D column used in classical comprehensive two-dimensional gas chromatography, where the latter will not promote sufficient interconversion. Data processing and presentation permits a 'rectangular' distribution corresponding to the separated compounds, characteristic of this experiment. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Three-dimensional virtual navigation versus conventional image guidance: A randomized controlled trial.

    PubMed

    Dixon, Benjamin J; Chan, Harley; Daly, Michael J; Qiu, Jimmy; Vescan, Allan; Witterick, Ian J; Irish, Jonathan C

    2016-07-01

    Providing image guidance in a 3-dimensional (3D) format, visually more in keeping with the operative field, could potentially reduce workload and lead to faster and more accurate navigation. We wished to assess a 3D virtual-view surgical navigation prototype in comparison to a traditional 2D system. Thirty-seven otolaryngology surgeons and trainees completed a randomized crossover navigation exercise on a cadaver model. Each subject identified three sinonasal landmarks with 3D virtual (3DV) image guidance and three landmarks with conventional cross-sectional computed tomography (CT) image guidance. Subjects were randomized with regard to which side and display type was tested initially. Accuracy, task completion time, and task workload were recorded. Display type did not influence accuracy (P > 0.2) or efficiency (P > 0.3) for any of the six landmarks investigated. Pooled landmark data revealed a trend of improved accuracy in the 3DV group by 0.44 millimeters (95% confidence interval [0.00-0.88]). High-volume surgeons were significantly faster (P < 0.01) and had reduced workload scores in all domains (P < 0.01), but they were no more accurate (P > 0.28). Real-time 3D image guidance did not influence accuracy, efficiency, or task workload when compared to conventional triplanar image guidance. The subtle pooled accuracy advantage for the 3DV view is unlikely to be of clinical significance. Experience level was strongly correlated to task completion time and workload but did not influence accuracy. N/A. Laryngoscope, 126:1510-1515, 2016. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.

  17. Hot-electron thermocouple and the diffusion thermopower of two-dimensional electrons in GaAs.

    PubMed

    Chickering, W E; Eisenstein, J P; Reno, J L

    2009-07-24

    A simple hot-electron thermocouple is realized in a two-dimensional electron system (2DES) and used to measure the diffusion thermopower of the 2DES at zero magnetic field. This hot-electron technique, which requires no micron-scale patterning of the 2DES, is much less sensitive than conventional methods to phonon-drag effects. Our thermopower results are in good agreement with the Mott formula for diffusion thermopower for temperatures up to T approximately 2 K.

  18. Three-dimensional versus two-dimensional ultrasound for assessing levonorgestrel intrauterine device location: A pilot study.

    PubMed

    Andrade, Carla Maria Araujo; Araujo Júnior, Edward; Torloni, Maria Regina; Moron, Antonio Fernandes; Guazzelli, Cristina Aparecida Falbo

    2016-02-01

    To compare the rates of success of two-dimensional (2D) and three-dimensional (3D) sonographic (US) examinations in locating and adequately visualizing levonorgestrel intrauterine devices (IUDs) and to explore factors associated with the unsuccessful viewing on 2D US. Transvaginal 2D and 3D US examinations were performed on all patients 1 month after insertion of levonorgestrel IUDs. The devices were considered adequately visualized on 2D US if both the vertical (shadow, upper and lower extremities) and the horizontal (two echogenic lines) shafts were identified. 3D volumes were also captured to assess the location of levonorgestrel IUDs on 3D US. Thirty women were included. The rates of adequate device visualization were 40% on 2D US (95% confidence interval [CI], 24.6; 57.7) and 100% on 3D US (95% CI, 88.6; 100.0). The device was not adequately visualized in all six women who had a retroflexed uterus, but it was adequately visualized in 12 of the 24 women (50%) who had a nonretroflexed uterus (95% CI, -68.6; -6.8). We found that 3D US is better than 2D US for locating and adequately visualizing levonorgestrel IUDs. Other well-designed studies with adequate power should be conducted to confirm this finding. © 2015 Wiley Periodicals, Inc.

  19. A resolution measure for three-dimensional microscopy

    PubMed Central

    Chao, Jerry; Ram, Sripad; Abraham, Anish V.; Ward, E. Sally; Ober, Raimund J.

    2009-01-01

    A three-dimensional (3D) resolution measure for the conventional optical microscope is introduced which overcomes the drawbacks of the classical 3D (axial) resolution limit. Formulated within the context of a parameter estimation problem and based on the Cramer-Rao lower bound, this 3D resolution measure indicates the accuracy with which a given distance between two objects in 3D space can be determined from the acquired image. It predicts that, given enough photons from the objects of interest, arbitrarily small distances of separation can be estimated with prespecified accuracy. Using simulated images of point source pairs, we show that the maximum likelihood estimator is capable of attaining the accuracy predicted by the resolution measure. We also demonstrate how different factors, such as extraneous noise sources and the spatial orientation of the imaged object pair, can affect the accuracy with which a given distance of separation can be determined. PMID:20161040

  20. Color Constancy in Two-Dimensional and Three-Dimensional Scenes: Effects of Viewing Methods and Surface Texture.

    PubMed

    Morimoto, Takuma; Mizokami, Yoko; Yaguchi, Hirohisa; Buck, Steven L

    2017-01-01

    There has been debate about how and why color constancy may be better in three-dimensional (3-D) scenes than in two-dimensional (2-D) scenes. Although some studies have shown better color constancy for 3-D conditions, the role of specific cues remains unclear. In this study, we compared color constancy for a 3-D miniature room (a real scene consisting of actual objects) and 2-D still images of that room presented on a monitor using three viewing methods: binocular viewing, monocular viewing, and head movement. We found that color constancy was better for the 3-D room; however, color constancy for the 2-D image improved when the viewing method caused the scene to be perceived more like a 3-D scene. Separate measurements of the perceptual 3-D effect of each viewing method also supported these results. An additional experiment comparing a miniature room and its image with and without texture suggested that surface texture of scene objects contributes to color constancy.

  1. Simultaneous quantitation of five Panax notoginseng saponins by multi heart-cutting two-dimensional liquid chromatography: Method development and application to the quality control of eight Notoginseng containing Chinese patent medicines.

    PubMed

    Yao, Chang-liang; Yang, Wen-zhi; Wu, Wan-Yyng; Da, Juan; Hou, Jin-jun; Zhang, Jing-xian; Zhang, Yan-hai; Jin, Yan; Yang, Min; Jiang, Bao-hong; Liu, Xuan; Guo, De-an

    2015-07-10

    Current China Pharmacopoeia (ChP) standards employ diversified and case-dependent assay methods to evaluate the quality of different Chinese patent medicines (CPMs) that contain Panax notoginseng as the monarch drug. These conventional, HPLC-based approaches, utilizing a complex sample preparation procedure, can easily result in low analytical efficiency and possible component loss. Here, a "monomethod-heterotrait matrix" (MHM) strategy is proposed, that is, developing a universal multi heart-cutting two-dimensional liquid chromatography (MHC-2D-LC) approach that facilitates the simultaneous quantitation of five P. notoginseng saponins (noto-R1, Re, Rg1, Rb1, and Rd) in eight different CPMs. The MHC-2D-LC system was constructed on a dual-gradient liquid chromatography instrument equipped with a Poroshell SB C18 column and a Zorbax SB-Aq column for respective (1)D and (2)D separation. Method validation was performed in terms of specificity, linearity (r(2) and F-test), intra-/inter-day precision (0.4-7.9%), stability (1.2-3.9%), and recovery (90.2-108.7%), and the LODs and LOQs (loaded masses) of the five analytes varied between 4.0-11.0ng and 6.0-33.0ng, respectively. The validated MHC-2D-LC approach was subsequently applied to quantify the five saponins in thirty batches of different CPMs. The method demonstrated superiority over the current ChP assay methods in respect of specificity (avoiding co-elution), resolution (Rs>1.5), sample preparation (easy-to-implement ultrasonic extraction without repeated re-extraction), and transfer rate (minimum component loss). This is the first application of an MHC-2D-LC method for the quantitative assessment of the constituents of CPMs. The MHM approach represents a new, strategically significant methodology for the quality control of CPMs that involve complex chemical matrix. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Biomolecule-assisted exfoliation and dispersion of graphene and other two-dimensional materials: a review of recent progress and applications.

    PubMed

    Paredes, J I; Villar-Rodil, S

    2016-08-25

    Direct liquid-phase exfoliation of layered materials by means of ultrasound, shear forces or electrochemical intercalation holds enormous promise as a convenient, cost-effective approach to the mass production of two-dimensional (2D) materials, particularly in the form of colloidal suspensions of high quality and micrometer- and submicrometer-sized flakes. Of special relevance due to environmental and practical reasons is the production of 2D materials in aqueous medium, which generally requires the use of certain additives (surfactants and other types of dispersants) to assist in the exfoliation and colloidal stabilization processes. In this context, biomolecules have received, in recent years, increasing attention as dispersants for 2D materials, as they provide a number of advantages over more conventional, synthetic surfactants. Here, we review research progress in the use of biomolecules as exfoliating and dispersing agents for the production of 2D materials. Although most efforts in this area have focused on graphene, significant advances have also been reported with transition metal dichalcogenides (MoS2, WS2, etc.) or hexagonal boron nitride. Particular emphasis is placed on the specific merits of different types of biomolecules, including proteins and peptides, nucleotides and nucleic acids (RNA, DNA), polysaccharides, plant extracts and bile salts, on their role as efficient colloidal dispersants of 2D materials, as well as on the potential applications that have been explored for such biomolecule-exfoliated materials. These applications are wide-ranging and encompass the fields of biomedicine (photothermal and photodynamic therapy, bioimaging, biosensing, etc.), energy storage (Li- and Na-ion batteries), catalysis (e.g., catalyst supports for the oxygen reduction reaction or electrocatalysts for the hydrogen evolution reaction), or composite materials. As an incipient area of research, a number of knowledge gaps, unresolved issues and novel future directions remain to be addressed for biomolecule-exfoliated 2D materials, which will be discussed in the last part of this review.

  3. 7T MRI in focal epilepsy with unrevealing conventional field strength imaging.

    PubMed

    De Ciantis, Alessio; Barba, Carmen; Tassi, Laura; Cosottini, Mirco; Tosetti, Michela; Costagli, Mauro; Bramerio, Manuela; Bartolini, Emanuele; Biagi, Laura; Cossu, Massimo; Pelliccia, Veronica; Symms, Mark R; Guerrini, Renzo

    2016-03-01

    To assess the diagnostic yield of 7T magnetic resonance imaging (MRI) in detecting and characterizing structural lesions in patients with intractable focal epilepsy and unrevealing conventional (1.5 or 3T) MRI. We conducted an observational clinical imaging study on 21 patients (17 adults and 4 children) with intractable focal epilepsy, exhibiting clinical and electroencephalographic features consistent with a single seizure-onset zone (SOZ) and unrevealing conventional MRI. Patients were enrolled at two tertiary epilepsy surgery centers and imaged at 7T, including whole brain (three-dimensional [3D] T1 -weighted [T1W] fast-spoiled gradient echo (FSPGR), 3D susceptibility-weighted angiography [SWAN], 3D fluid-attenuated inversion recovery [FLAIR]) and targeted imaging (2D T2*-weighted dual-echo gradient-recalled echo [GRE] and 2D gray-white matter tissue border enhancement [TBE] fast spin echo inversion recovery [FSE-IR]). MRI studies at 1.5 or 3T deemed unrevealing at the referral center were reviewed by three experts in epilepsy imaging. Reviewers were provided information regarding the suspected localization of the SOZ. The same team subsequently reviewed 7T images. Agreement in imaging interpretation was reached through consensus-based discussions based on visual identification of structural abnormalities and their likely correlation with clinical and electrographic data. 7T MRI revealed structural lesions in 6 (29%) of 21 patients. The diagnostic gain in detection was obtained using GRE and FLAIR images. Four of the six patients with abnormal 7T underwent epilepsy surgery. Histopathology revealed focal cortical dysplasia (FCD) in all. In the remaining 15 patients (71%), 7T MRI remained unrevealing; 4 of the patients underwent epilepsy surgery and histopathologic evaluation revealed gliosis. 7T MRI improves detection of epileptogenic FCD that is not visible at conventional field strengths. A dedicated protocol including whole brain FLAIR and GRE images at 7T targeted at the suspected SOZ increases the diagnostic yield. Wiley Periodicals, Inc. © 2016 International League Against Epilepsy.

  4. Retrospectively gated intracardiac 4D flow MRI using spiral trajectories.

    PubMed

    Petersson, Sven; Sigfridsson, Andreas; Dyverfeldt, Petter; Carlhäll, Carl-Johan; Ebbers, Tino

    2016-01-01

    To develop and evaluate retrospectively gated spiral readout four-dimensional (4D) flow MRI for intracardiac flow analysis. Retrospectively gated spiral 4D flow MRI was implemented on a 1.5-tesla scanner. The spiral sequence was compared against conventional Cartesian 4D flow (SENSE [sensitivity encoding] 2) in seven healthy volunteers and three patients (only spiral). In addition to comparing flow values, linear regression was used to assess internal consistency of aortic versus pulmonary net volume flows and left ventricular inflow versus outflow using quantitative pathlines analysis. Total scan time with spiral 4D flow was 44% ± 6% of the Cartesian counterpart (13 ± 3 vs. 31 ± 7 min). Aortic versus pulmonary flow correlated strongly for the spiral sequence (P < 0.05, slope = 1.03, R(2) = 0.88, N = 10), whereas the linear relationship for the Cartesian sequence was not significant (P = 0.06, N = 7). Pathlines analysis indicated good data quality for the spiral (P < 0.05, slope = 1.02, R(2) = 0.90, N = 10) and Cartesian sequence (P < 0.05, slope = 1.10, R(2) = 0.93, N = 7). Spiral and Cartesian peak flow rate (P < 0.05, slope = 0.96, R(2) = 0.72, N = 14), peak velocity (P < 0.05, slope = 1.00, R(2) = 0.81, N = 14), and pathlines flow components (P < 0.05, slope = 1.04, R(2) = 0.87, N = 28) correlated well. Retrospectively gated spiral 4D flow MRI permits more than two-fold reduction in scan time compared to conventional Cartesian 4D flow MRI, while maintaining similar data quality. © 2015 Wiley Periodicals, Inc.

  5. A Cylindrical, Inner Volume Selecting 2D-T2-Prep Improves GRAPPA-Accelerated Image Quality in MRA of the Right Coronary Artery

    PubMed Central

    Coristine, Andrew J.; Yerly, Jerome; Stuber, Matthias

    2016-01-01

    Background Two-dimensional (2D) spatially selective radiofrequency (RF) pulses may be used to excite restricted volumes. By incorporating a "pencil beam" 2D pulse into a T2-Prep, one may create a "2D-T2-Prep" that combines T2-weighting with an intrinsic outer volume suppression. This may particularly benefit parallel imaging techniques, where artefacts typically originate from residual foldover signal. By suppressing foldover signal with a 2D-T2-Prep, image quality may therefore improve. We present numerical simulations, phantom and in vivo validations to address this hypothesis. Methods A 2D-T2-Prep and a conventional T2-Prep were used with GRAPPA-accelerated MRI (R = 1.6). The techniques were first compared in numerical phantoms, where per pixel maps of SNR (SNRmulti), noise, and g-factor were predicted for idealized sequences. Physical phantoms, with compartments doped to mimic blood, myocardium, fat, and coronary vasculature, were scanned with both T2-Preparation techniques to determine the actual SNRmulti and vessel sharpness. For in vivo experiments, the right coronary artery (RCA) was imaged in 10 healthy adults, using accelerations of R = 1,3, and 6, and vessel sharpness was measured for each. Results In both simulations and phantom experiments, the 2D-T2-Prep improved SNR relative to the conventional T2-Prep, by an amount that depended on both the acceleration factor and the degree of outer volume suppression. For in vivo images of the RCA, vessel sharpness improved most at higher acceleration factors, demonstrating that the 2D-T2-Prep especially benefits accelerated coronary MRA. Conclusion Suppressing outer volume signal with a 2D-T2-Prep improves image quality particularly well in GRAPPA-accelerated acquisitions in simulations, phantoms, and volunteers, demonstrating that it should be considered when performing accelerated coronary MRA. PMID:27736866

  6. Intermediate view reconstruction using adaptive disparity search algorithm for real-time 3D processing

    NASA Astrophysics Data System (ADS)

    Bae, Kyung-hoon; Park, Changhan; Kim, Eun-soo

    2008-03-01

    In this paper, intermediate view reconstruction (IVR) using adaptive disparity search algorithm (ASDA) is for realtime 3-dimensional (3D) processing proposed. The proposed algorithm can reduce processing time of disparity estimation by selecting adaptive disparity search range. Also, the proposed algorithm can increase the quality of the 3D imaging. That is, by adaptively predicting the mutual correlation between stereo images pair using the proposed algorithm, the bandwidth of stereo input images pair can be compressed to the level of a conventional 2D image and a predicted image also can be effectively reconstructed using a reference image and disparity vectors. From some experiments, stereo sequences of 'Pot Plant' and 'IVO', it is shown that the proposed algorithm improves the PSNRs of a reconstructed image to about 4.8 dB by comparing with that of conventional algorithms, and reduces the Synthesizing time of a reconstructed image to about 7.02 sec by comparing with that of conventional algorithms.

  7. Multicellular tumor spheroids as an in vivo-like tumor model for three-dimensional imaging of chemotherapeutic and nano material cellular penetration.

    PubMed

    Ma, Hui-li; Jiang, Qiao; Han, Siyuan; Wu, Yan; Cui Tomshine, Jin; Wang, Dongliang; Gan, Yaling; Zou, Guozhang; Liang, Xing-Jie

    2012-01-01

    We present a flexible and highly reproducible method using three-dimensional (3D) multicellular tumor spheroids to quantify chemotherapeutic and nanoparticle penetration properties in vitro. We generated HeLa cell-derived spheroids using the liquid overlay method. To properly characterize HeLa spheroids, scanning electron microscopy, transmission electron microscopy, and multiphoton microscopy were used to obtain high-resolution 3D images of HeLa spheroids. Next, pairing high-resolution optical characterization techniques with flow cytometry, we quantitatively compared the penetration of doxorubicin, quantum dots, and synthetic micelles into 3D HeLa spheroid versus HeLa cells grown in a traditional two-dimensional culturing system. Our data revealed that 3D cultured HeLa cells acquired several clinically relevant morphologic and cellular characteristics (such as resistance to chemotherapeutics) often found in human solid tumors. These characteristic, however, could not be captured using conventional two-dimensional cell culture techniques. This study demonstrated the remarkable versatility of HeLa spheroid 3D imaging. In addition, our results revealed the capability of HeLa spheroids to function as a screening tool for nanoparticles or synthetic micelles that, due to their inherent size, charge, and hydrophobicity, can penetrate into solid tumors and act as delivery vehicles for chemotherapeutics. The development of this image-based, reproducible, and quantifiable in vitro HeLa spheroid screening tool will greatly aid future exploration of chemotherapeutics and nanoparticle delivery into solid tumors.

  8. The distinct roles of the nucleus and nucleus-cytoskeleton connections in three-dimensional cell migration

    PubMed Central

    Khatau, Shyam B.; Bloom, Ryan J.; Bajpai, Saumendra; Razafsky, David; Zang, Shu; Giri, Anjil; Wu, Pei-Hsun; Marchand, Jorge; Celedon, Alfredo; Hale, Christopher M.; Sun, Sean X.; Hodzic, Didier; Wirtz, Denis

    2012-01-01

    Cells often migrate in vivo in an extracellular matrix that is intrinsically three-dimensional (3D) and the role of actin filament architecture in 3D cell migration is less well understood. Here we show that, while recently identified linkers of nucleoskeleton to cytoskeleton (LINC) complexes play a minimal role in conventional 2D migration, they play a critical role in regulating the organization of a subset of actin filament bundles – the perinuclear actin cap - connected to the nucleus through Nesprin2giant and Nesprin3 in cells in 3D collagen I matrix. Actin cap fibers prolong the nucleus and mediate the formation of pseudopodial protrusions, which drive matrix traction and 3D cell migration. Disruption of LINC complexes disorganizes the actin cap, which impairs 3D cell migration. A simple mechanical model explains why LINC complexes and the perinuclear actin cap are essential in 3D migration by providing mechanical support to the formation of pseudopodial protrusions. PMID:22761994

  9. Advantage of three dimensional animated teaching over traditional surgical videos for teaching ophthalmic surgery: a randomised study.

    PubMed

    Prinz, A; Bolz, M; Findl, O

    2005-11-01

    Owing to the complex topographical aspects of ophthalmic surgery, teaching with conventional surgical videos has led to a poor understanding among medical students. A novel multimedia three dimensional (3D) computer animated program, called "Ophthalmic Operation Vienna" has been developed, where surgical videos are accompanied by 3D animated sequences of all surgical steps for five operations. The aim of the study was to assess the effect of 3D animations on the understanding of cataract and glaucoma surgery among medical students. Set in the Medical University of Vienna, Department of Ophthalmology, 172 students were randomised into two groups: a 3D group (n=90), that saw the 3D animations and video sequences, and a control group (n=82), that saw only the surgical videos. The narrated text was identical for both groups. After the presentation, students were questioned and tested using multiple choice questions. Students in the 3D group found the interactive multimedia teaching methods to be a valuable supplement to the conventional surgical videos. The 3D group outperformed the control group not only in topographical understanding by 16% (p<0.0001), but also in theoretical understanding by 7% (p<0.003). Women in the 3D group gained most by 19% over the control group (p<0.0001). The use of 3D animations lead to a better understanding of difficult surgical topics among medical students, especially for female users. Gender related benefits of using multimedia should be further explored.

  10. Quantitative measurement and analysis for detection and treatment planning of developmental dysplasia of the hip

    NASA Astrophysics Data System (ADS)

    Liu, Xin; Lu, Hongbing; Chen, Hanyong; Zhao, Li; Shi, Zhengxing; Liang, Zhengrong

    2009-02-01

    Developmental dysplasia of the hip is a congenital hip joint malformation affecting the proximal femurs and acetabulum that are subluxatable, dislocatable, and dislocated. Conventionally, physicians made diagnoses and treatments only based on findings from two-dimensional (2D) images by manually calculating clinic parameters. However, anatomical complexity of the disease and the limitation of current standard procedures make accurate diagnosis quite difficultly. In this study, we developed a system that provides quantitative measurement of 3D clinical indexes based on computed tomography (CT) images. To extract bone structure from surrounding tissues more accurately, the system firstly segments the bone using a knowledge-based fuzzy clustering method, which is formulated by modifying the objective function of the standard fuzzy c-means algorithm with additive adaptation penalty. The second part of the system calculates automatically the clinical indexes, which are extended from 2D to 3D for accurate description of spatial relationship between femurs and acetabulum. To evaluate the system performance, experimental study based on 22 patients with unilateral or bilateral affected hip was performed. The results of 3D acetabulum index (AI) automatically provided by the system were validated by comparison with 2D results measured by surgeons manually. The correlation between the two results was found to be 0.622 (p<0.01).

  11. Left ventricular volume estimation in cardiac three-dimensional ultrasound: a semiautomatic border detection approach.

    PubMed

    van Stralen, Marijn; Bosch, Johan G; Voormolen, Marco M; van Burken, Gerard; Krenning, Boudewijn J; van Geuns, Robert-Jan M; Lancée, Charles T; de Jong, Nico; Reiber, Johan H C

    2005-10-01

    We propose a semiautomatic endocardial border detection method for three-dimensional (3D) time series of cardiac ultrasound (US) data based on pattern matching and dynamic programming, operating on two-dimensional (2D) slices of the 3D plus time data, for the estimation of full cycle left ventricular volume, with minimal user interaction. The presented method is generally applicable to 3D US data and evaluated on data acquired with the Fast Rotating Ultrasound (FRU-) Transducer, developed by Erasmus Medical Center (Rotterdam, the Netherlands), a conventional phased-array transducer, rotating at very high speed around its image axis. The detection is based on endocardial edge pattern matching using dynamic programming, which is constrained by a 3D plus time shape model. It is applied to an automatically selected subset of 2D images of the original data set, for typically 10 equidistant rotation angles and 16 cardiac phases (160 images). Initialization requires the drawing of four contours per patient manually. We evaluated this method on 14 patients against MRI end-diastole and end-systole volumes. Initialization requires the drawing of four contours per patient manually. We evaluated this method on 14 patients against MRI end-diastolic (ED) and end-systolic (ES) volumes. The semiautomatic border detection approach shows good correlations with MRI ED/ES volumes (r = 0.938) and low interobserver variability (y = 1.005x - 16.7, r = 0.943) over full-cycle volume estimations. It shows a high consistency in tracking the user-defined initial borders over space and time. We show that the ease of the acquisition using the FRU-transducer and the semiautomatic endocardial border detection method together can provide a way to quickly estimate the left ventricular volume over the full cardiac cycle using little user interaction.

  12. Two-dimensional Dirac fermions in thin films of C d3A s2

    NASA Astrophysics Data System (ADS)

    Galletti, Luca; Schumann, Timo; Shoron, Omor F.; Goyal, Manik; Kealhofer, David A.; Kim, Honggyu; Stemmer, Susanne

    2018-03-01

    Two-dimensional states in confined thin films of the three-dimensional Dirac semimetal C d3A s2 are probed by transport and capacitance measurements under applied magnetic and electric fields. The results establish the two-dimensional Dirac electronic spectrum of these states. We observe signatures of p -type conduction in the two-dimensional states as the Fermi level is tuned across their charge neutrality point and the presence of a zero-energy Landau level, all of which indicate topologically nontrivial states. The resistance at the charge neutrality point is approximately h /e2 and increases rapidly under the application of a magnetic field. The results open many possibilities for gate-tunable topological devices and for the exploration of novel physics in the zero-energy Landau level.

  13. Two-dimensional limit of crystalline order in perovskite membrane films

    PubMed Central

    Hong, Seung Sae; Yu, Jung Ho; Lu, Di; Marshall, Ann F.; Hikita, Yasuyuki; Cui, Yi; Hwang, Harold Y.

    2017-01-01

    Long-range order and phase transitions in two-dimensional (2D) systems—such as magnetism, superconductivity, and crystallinity—have been important research topics for decades. The issue of 2D crystalline order has reemerged recently, with the development of exfoliated atomic crystals. Understanding the dimensional limit of crystalline phases, with different types of bonding and synthetic techniques, is at the foundation of low-dimensional materials design. We study ultrathin membranes of SrTiO3, an archetypal perovskite oxide with isotropic (3D) bonding. Atomically controlled membranes are released after synthesis by dissolving an underlying epitaxial layer. Although all unreleased films are initially single-crystalline, the SrTiO3 membrane lattice collapses below a critical thickness (5 unit cells). This crossover from algebraic to exponential decay of the crystalline coherence length is analogous to the 2D topological Berezinskii-Kosterlitz-Thouless (BKT) transition. The transition is likely driven by chemical bond breaking at the 2D layer-3D bulk interface, defining an effective dimensional phase boundary for coherent crystalline lattices. PMID:29167822

  14. Two-dimensional limit of crystalline order in perovskite membrane films

    DOE PAGES

    Hong, Seung Sae; Yu, Jung Ho; Lu, Di; ...

    2017-11-17

    Long-range order and phase transitions in two-dimensional (2D) systems—such as magnetism, superconductivity, and crystallinity—have been important research topics for decades. The issue of 2D crystalline order has reemerged recently, with the development of exfoliated atomic crystals. Understanding the dimensional limit of crystalline phases, with different types of bonding and synthetic techniques, is at the foundation of low-dimensional materials design. We study ultrathin membranes of SrTiO 3, an archetypal perovskite oxide with isotropic (3D) bonding. Atomically controlled membranes are released after synthesis by dissolving an underlying epitaxial layer. Although all unreleased films are initially single-crystalline, the SrTiO 3 membrane lattice collapsesmore » below a critical thickness (5 unit cells). This crossover from algebraic to exponential decay of the crystalline coherence length is analogous to the 2D topological Berezinskii-Kosterlitz-Thouless (BKT) transition. Finally, the transition is likely driven by chemical bond breaking at the 2D layer-3D bulk interface, defining an effective dimensional phase boundary for coherent crystalline lattices.« less

  15. IDEAL 3D spoiled gradient echo of the articular cartilage of the knee on 3.0 T MRI: a comparison with conventional 3.0 T fast spin-echo T2 fat saturation image.

    PubMed

    Han, Chul Hee; Park, Hee Jin; Lee, So Yeon; Chung, Eun Chul; Choi, Seon Hyeong; Yun, Ji Sup; Rho, Myung Ho

    2015-12-01

    Many two-dimensional (2D) morphologic cartilage imaging sequences have disadvantages such as long acquisition time, inadequate spatial resolution, suboptimal tissue contrast, and image degradation secondary to artifacts. IDEAL imaging can overcome these disadvantages. To compare sound-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and quality of two different methods of imaging that include IDEAL 3D SPGR and 3.0-T FSE T2 fat saturation (FS) imaging and to evaluate the utility of IDEAL 3D SPGR for knee joint imaging. SNR and CNR of the patellar and femoral cartilages were measured and calculated. Two radiologists performed subjective scoring of all images for three measures: general image quality, FS, and cartilage evaluation. SNR and CNR values were compared by paired Student's t-tests. Mean SNRs of patellar and femoral cartilages were 90% and 66% higher, respectively, for IDEAL 3D SPGR. CNRs of patellar cartilages and joint fluids were 2.4 times higher for FSE T2 FS, and CNR between the femoral cartilage and joint fluid was 2.2 times higher for FSE T2 FS. General image quality and FS were superior using FSE T2 FS compared to those of IDEAL 3D SPGR imaging according to both readers, while cartilage evaluation was superior using IDEAL 3D SPGR. Additionally, cartilage injuries were more prominent in IDEAL 3D SPGR than in FSE T2FS according to both readers. IDEAL 3D SPGR images show excellent visualization of patellar and femoral cartilages in 3.0 T and can compensate for the weaknesses of FSE T2 FS in the evaluation of cartilage injuries. © The Foundation Acta Radiologica 2014.

  16. Robust L1-norm two-dimensional linear discriminant analysis.

    PubMed

    Li, Chun-Na; Shao, Yuan-Hai; Deng, Nai-Yang

    2015-05-01

    In this paper, we propose an L1-norm two-dimensional linear discriminant analysis (L1-2DLDA) with robust performance. Different from the conventional two-dimensional linear discriminant analysis with L2-norm (L2-2DLDA), where the optimization problem is transferred to a generalized eigenvalue problem, the optimization problem in our L1-2DLDA is solved by a simple justifiable iterative technique, and its convergence is guaranteed. Compared with L2-2DLDA, our L1-2DLDA is more robust to outliers and noises since the L1-norm is used. This is supported by our preliminary experiments on toy example and face datasets, which show the improvement of our L1-2DLDA over L2-2DLDA. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Three-dimensional compound comparison methods and their application in drug discovery.

    PubMed

    Shin, Woong-Hee; Zhu, Xiaolei; Bures, Mark Gregory; Kihara, Daisuke

    2015-07-16

    Virtual screening has been widely used in the drug discovery process. Ligand-based virtual screening (LBVS) methods compare a library of compounds with a known active ligand. Two notable advantages of LBVS methods are that they do not require structural information of a target receptor and that they are faster than structure-based methods. LBVS methods can be classified based on the complexity of ligand structure information utilized: one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D). Unlike 1D and 2D methods, 3D methods can have enhanced performance since they treat the conformational flexibility of compounds. In this paper, a number of 3D methods will be reviewed. In addition, four representative 3D methods were benchmarked to understand their performance in virtual screening. Specifically, we tested overall performance in key aspects including the ability to find dissimilar active compounds, and computational speed.

  18. FireStem2D — A two-dimensional heat transfer model for simulating tree stem injury in fires

    Treesearch

    Efthalia K. Chatziefstratiou; Gil Bohrer; Anthony S. Bova; Ravishankar Subramanian; Renato P.M. Frasson; Amy Scherzer; Bret W. Butler; Matthew B. Dickinson

    2013-01-01

    FireStem2D, a software tool for predicting tree stem heating and injury in forest fires, is a physically-based, two-dimensional model of stem thermodynamics that results from heating at the bark surface. It builds on an earlier one-dimensional model (FireStem) and provides improved capabilities for predicting fire-induced mortality and injury before a fire occurs by...

  19. Comparison between PVI2D and Abreu–Johnson’s Model for Petroleum Vapor Intrusion Assessment

    PubMed Central

    Yao, Yijun; Wang, Yue; Verginelli, Iason; Suuberg, Eric M.; Ye, Jianfeng

    2018-01-01

    Recently, we have developed a two-dimensional analytical petroleum vapor intrusion model, PVI2D (petroleum vapor intrusion, two-dimensional), which can help users to easily visualize soil gas concentration profiles and indoor concentrations as a function of site-specific conditions such as source strength and depth, reaction rate constant, soil characteristics, and building features. In this study, we made a full comparison of the results returned by PVI2D and those obtained using Abreu and Johnson’s three-dimensional numerical model (AJM). These comparisons, examined as a function of the source strength, source depth, and reaction rate constant, show that PVI2D can provide similar soil gas concentration profiles and source-to-indoor air attenuation factors (within one order of magnitude difference) as those by the AJM. The differences between the two models can be ascribed to some simplifying assumptions used in PVI2D and to some numerical limitations of the AJM in simulating strictly piecewise aerobic biodegradation and no-flux boundary conditions. Overall, the obtained results show that for cases involving homogenous source and soil, PVI2D can represent a valid alternative to more rigorous three-dimensional numerical models. PMID:29398981

  20. Tumor and red bone marrow dosimetry: comparison of methods for prospective treatment planning in pretargeted radioimmunotherapy.

    PubMed

    Woliner-van der Weg, Wietske; Schoffelen, Rafke; Hobbs, Robert F; Gotthardt, Martin; Goldenberg, David M; Sharkey, Robert M; Slump, Cornelis H; van der Graaf, Winette Ta; Oyen, Wim Jg; Boerman, Otto C; Sgouros, George; Visser, Eric P

    2015-12-01

    Red bone marrow (RBM) toxicity is dose-limiting in (pretargeted) radioimmunotherapy (RIT). Previous blood-based and two-dimensional (2D) image-based methods have failed to show a clear dose-response relationship. We developed a three-dimensional (3D) image-based RBM dosimetry approach using the Monte Carlo-based 3D radiobiological dosimetry (3D-RD) software and determined its additional value for predicting RBM toxicity. RBM doses were calculated for 13 colorectal cancer patients after pretargeted RIT with the two-step administration of an anti-CEA × anti-HSG bispecific monoclonal antibody and a (177)Lu-labeled di-HSG-peptide. 3D-RD RBM dosimetry was based on the lumbar vertebrae, delineated on single photon emission computed tomography (SPECT) scans acquired directly, 3, 24, and 72 h after (177)Lu administration. RBM doses were correlated to hematologic effects, according to NCI-CTC v3 and compared with conventional 2D cranium-based and blood-based dosimetry results. Tumor doses were calculated with 3D-RD, which has not been possible with 2D dosimetry. Tumor-to-RBM dose ratios were calculated and compared for (177)Lu-based pretargeted RIT and simulated pretargeted RIT with (90)Y. 3D-RD RBM doses of all seven patients who developed thrombocytopenia were higher (range 0.43 to 0.97 Gy) than that of the six patients without thrombocytopenia (range 0.12 to 0.39 Gy), except in one patient (0.47 Gy) without thrombocytopenia but with grade 2 leucopenia. Blood and 2D image-based RBM doses for patients with grade 1 to 2 thrombocytopenia were in the same range as in patients without thrombocytopenia (0.14 to 0.29 and 0.11 to 0.26 Gy, respectively). Blood-based RBM doses for two grade 3 to 4 patients were higher (0.66 and 0.51 Gy, respectively) than the others, and the cranium-based dose of only the grade 4 patient was higher (0.34 Gy). Tumor-to-RBM dose ratios would increase by 25% on average when treating with (90)Y instead of (177)Lu. 3D dosimetry identifies patients at risk of developing any grade of RBM toxicity more accurately than blood- or 2D image-based methods. It has the added value to enable calculation of tumor-to-RBM dose ratios.

  1. 3D-Holoscopic Imaging: A New Dimension to Enhance Imaging in Minimally Invasive Therapy in Urologic Oncology

    PubMed Central

    Aggoun, Amar; Swash, Mohammad; Grange, Philippe C.R.; Challacombe, Benjamin; Dasgupta, Prokar

    2013-01-01

    Abstract Background and Purpose Existing imaging modalities of urologic pathology are limited by three-dimensional (3D) representation on a two-dimensional screen. We present 3D-holoscopic imaging as a novel method of representing Digital Imaging and Communications in Medicine data images taken from CT and MRI to produce 3D-holographic representations of anatomy without special eyewear in natural light. 3D-holoscopic technology produces images that are true optical models. This technology is based on physical principles with duplication of light fields. The 3D content is captured in real time with the content viewed by multiple viewers independently of their position, without 3D eyewear. Methods We display 3D-holoscopic anatomy relevant to minimally invasive urologic surgery without the need for 3D eyewear. Results The results have demonstrated that medical 3D-holoscopic content can be displayed on commercially available multiview auto-stereoscopic display. Conclusion The next step is validation studies comparing 3D-Holoscopic imaging with conventional imaging. PMID:23216303

  2. Thermoacoustic imaging over large field of view for three-dimensional breast tumor localization: a phantom study.

    PubMed

    Fu, Yong; Ji, Zhong; Ding, Wenzheng; Ye, Fanghao; Lou, Cunguang

    2014-11-01

    Previous studies demonstrated that thermoacoustic imaging (TAI) has great potential for breast tumor detection. However, large field of view (FOV) imaging remains a long-standing challenge for three-dimensional (3D) breast tumor localization. Here, the authors propose a practical TAI system for noninvasive 3D localization of breast tumors with large FOV through the use of ultrashort microwave pulse (USMP). A USMP generator was employed for TAI. The energy density required for quality imaging and the corresponding microwave-to-acoustic conversion efficiency were compared with that of conventional TAI. The microwave energy distribution, imaging depth, resolution, and 3D imaging capabilities were then investigated. Finally, a breast phantom embedded with a laboratory-grown tumor was imaged to evaluate the FOV performance of the USMP TAI system, under a simulated clinical situation. A radiation energy density equivalent to just 1.6%-2.2% of that for conventional submicrosecond microwave TAI was sufficient to obtain a thermoacoustic signal with the required signal-to-noise ratio. This result clearly demonstrated a significantly higher microwave-to-acoustic conversion efficiency of USMP TAI compared to that of conventional TAI. The USMP TAI system achieved 61 mm imaging depth and 12 × 12 cm(2) microwave radiation area. The volumetric image of a copper target measured at depth of 4-6 cm matched well with the actual shape and the resolution reaches 230 μm. The TAI of the breast phantom was precisely localized to an accuracy of 0.1 cm over an 8 × 8 cm(2) FOV. The experimental results demonstrated that the USMP TAI system offered significant potential for noninvasive clinical detection and 3D localization of deep breast tumors, with low microwave radiation dose and high spatial resolution over a sufficiently large FOV.

  3. Effect of 3D animation videos over 2D video projections in periodontal health education among dental students

    PubMed Central

    Dhulipalla, Ravindranath; Marella, Yamuna; Katuri, Kishore Kumar; Nagamani, Penupothu; Talada, Kishore; Kakarlapudi, Anusha

    2015-01-01

    Background: There is limited evidence about the distinguished effect of 3D oral health education videos over conventional 2 dimensional projections in improving oral health knowledge. This randomized controlled trial was done to test the effect of 3 dimensional oral health educational videos among first year dental students. Materials and Methods: 80 first year dental students were enrolled and divided into two groups (test and control). In the test group, 3D animation and in the control group, regular 2D video projections pertaining to periodontal anatomy, etiology, presenting conditions, preventive measures and treatment of periodontal problems were shown. Effect of 3D animation was evaluated by using a questionnaire consisting of 10 multiple choice questions given to all participants at baseline, immediately after and 1month after the intervention. Clinical parameters like Plaque Index (PI), Gingival Bleeding Index (GBI), and Oral Hygiene Index Simplified (OHI-S) were measured at baseline and 1 month follow up. Results: A significant difference in the post intervention knowledge scores was found between the groups as assessed by unpaired t-test (p<0.001) at baseline, immediate and after 1 month. At baseline, all the clinical parameters in the both the groups were similar and showed a significant reduction (p<0.001)p after 1 month, whereas no significant difference was noticed post intervention between the groups. Conclusion: 3D animation videos are more effective over 2D videos in periodontal disease education and knowledge recall. The application of 3D animation results also demonstrate a better visual comprehension for students and greater health care outcomes. PMID:26759805

  4. Development of 3D culture models of plexiform neurofibroma and initial application for phenotypic characterization and drug screening.

    PubMed

    Kraniak, Janice M; Chalasani, Anita; Wallace, Margaret R; Mattingly, Raymond R

    2018-01-01

    Plexiform neurofibromas (PNs), which may be present at birth in up to half of children with type 1 neurofibromatosis (NF1), can cause serious loss of function, such as quadriparesis, and can undergo malignant transformation. Surgery is the first line treatment although the invasive nature of these tumors often prevents complete resection. Recent clinical trials have shown promising success for some drugs, notably selumetinib, an inhibitor of MAP kinase kinase (MEK). We have developed three-dimensional (3D) cell culture models of immortalized cells from NF1 PNs and of control Schwann cells (SCs) that we believe mimic more closely the in vivo condition than conventional two-dimensional (2D) cell culture. Our goal is to facilitate pre-clinical identification of potential targeted therapeutics for these tumors. Three drugs, selumetinib (a MEK inhibitor), picropodophyllin (an IGF-1R inhibitor) and LDN-193189 (a BMP2 inhibitor) were tested with dose-response design in both 2D and 3D cultures for their abilities to block net cell growth. Cell lines grown in 3D conditions showed varying degrees of resistance to the inhibitory actions of all three drugs. For example, control SCs became resistant to growth inhibition by selumetinib in 3D culture. LDN-193189 was the most effective drug in 3D cultures, with only slightly reduced potency compared to the 2D cultures. Characterization of these models also demonstrated increased proteolysis of collagen IV in the matrix by the PN driver cells as compared to wild-type SCs. The proteolytic capacity of the PN cells in the model may be a clinically significant property that can be used for testing the ability of drugs to inhibit their invasive phenotype. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Accuracy and precision of polyurethane dental arch models fabricated using a three-dimensional subtractive rapid prototyping method with an intraoral scanning technique.

    PubMed

    Kim, Jae-Hong; Kim, Ki-Baek; Kim, Woong-Chul; Kim, Ji-Hwan; Kim, Hae-Young

    2014-03-01

    This study aimed to evaluate the accuracy and precision of polyurethane (PUT) dental arch models fabricated using a three-dimensional (3D) subtractive rapid prototyping (RP) method with an intraoral scanning technique by comparing linear measurements obtained from PUT models and conventional plaster models. Ten plaster models were duplicated using a selected standard master model and conventional impression, and 10 PUT models were duplicated using the 3D subtractive RP technique with an oral scanner. Six linear measurements were evaluated in terms of x, y, and z-axes using a non-contact white light scanner. Accuracy was assessed using mean differences between two measurements, and precision was examined using four quantitative methods and the Bland-Altman graphical method. Repeatability was evaluated in terms of intra-examiner variability, and reproducibility was assessed in terms of inter-examiner and inter-method variability. The mean difference between plaster models and PUT models ranged from 0.07 mm to 0.33 mm. Relative measurement errors ranged from 2.2% to 7.6% and intraclass correlation coefficients ranged from 0.93 to 0.96, when comparing plaster models and PUT models. The Bland-Altman plot showed good agreement. The accuracy and precision of PUT dental models for evaluating the performance of oral scanner and subtractive RP technology was acceptable. Because of the recent improvements in block material and computerized numeric control milling machines, the subtractive RP method may be a good choice for dental arch models.

  6. Flipping-shuttle oscillations of bright one- and two-dimensional solitons in spin-orbit-coupled Bose-Einstein condensates with Rabi mixing

    NASA Astrophysics Data System (ADS)

    Sakaguchi, Hidetsugu; Malomed, Boris A.

    2017-10-01

    We analyze the possibility of macroscopic quantum effects in the form of coupled structural oscillations and shuttle motion of bright two-component spin-orbit-coupled striped (one-dimensional, 1D) and semivortex (two-dimensional, 2D) matter-wave solitons, under the action of linear mixing (Rabi coupling) between the components. In 1D, the intrinsic oscillations manifest themselves as flippings between spatially even and odd components of striped solitons, while in 2D the system features periodic transitions between zero-vorticity and vortical components of semivortex solitons. The consideration is performed by means of a combination of analytical and numerical methods.

  7. Phase modulated 2D HSQC-TOCSY for unambiguous assignment of overlapping spin systems

    NASA Astrophysics Data System (ADS)

    Singh, Amrinder; Dubey, Abhinav; Adiga, Satish K.; Atreya, Hanudatta S.

    2018-01-01

    We present a new method that allows one to unambiguously resolve overlapping spin systems often encountered in biomolecular systems such as peptides and proteins or in samples containing a mixture of different molecules such as in metabolomics. We address this problem using the recently proposed phase modulation approach. By evolving the 1H chemical shifts in a conventional two dimensional (2D) HSQC-TOCSY experiment for a fixed delay period, the phase/intensity of set of cross peaks belonging to one spin system are modulated differentially relative to those of its overlapping counterpart, resulting in their discrimination and recognition. The method thus accelerates the process of identification and resonance assignment of individual compounds in complex mixtures. This approach facilitated the assignment of molecules in the embryo culture medium used in human assisted reproductive technology.

  8. Limitations to the use of two-dimensional thermal modeling of a nuclear waste repository

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, B.W.

    1979-01-04

    Thermal modeling of a nuclear waste repository is basic to most waste management predictive models. It is important that the modeling techniques accurately determine the time-dependent temperature distribution of the waste emplacement media. Recent modeling studies show that the time-dependent temperature distribution can be accurately modeled in the far-field using a 2-dimensional (2-D) planar numerical model; however, the near-field cannot be modeled accurately enough by either 2-D axisymmetric or 2-D planar numerical models for repositories in salt. The accuracy limits of 2-D modeling were defined by comparing results from 3-dimensional (3-D) TRUMP modeling with results from both 2-D axisymmetric andmore » 2-D planar. Both TRUMP and ADINAT were employed as modeling tools. Two-dimensional results from the finite element code, ADINAT were compared with 2-D results from the finite difference code, TRUMP; they showed almost perfect correspondence in the far-field. This result adds substantially to confidence in future use of ADINAT and its companion stress code ADINA for thermal stress analysis. ADINAT was found to be somewhat sensitive to time step and mesh aspect ratio. 13 figures, 4 tables.« less

  9. Two-dimensional imaging in a lightweight portable MRI scanner without gradient coils.

    PubMed

    Cooley, Clarissa Zimmerman; Stockmann, Jason P; Armstrong, Brandon D; Sarracanie, Mathieu; Lev, Michael H; Rosen, Matthew S; Wald, Lawrence L

    2015-02-01

    As the premiere modality for brain imaging, MRI could find wider applicability if lightweight, portable systems were available for siting in unconventional locations such as intensive care units, physician offices, surgical suites, ambulances, emergency rooms, sports facilities, or rural healthcare sites. We construct and validate a truly portable (<100 kg) and silent proof-of-concept MRI scanner which replaces conventional gradient encoding with a rotating lightweight cryogen-free, low-field magnet. When rotated about the object, the inhomogeneous field pattern is used as a rotating spatial encoding magnetic field (rSEM) to create generalized projections which encode the iteratively reconstructed two-dimensional (2D) image. Multiple receive channels are used to disambiguate the nonbijective encoding field. The system is validated with experimental images of 2D test phantoms. Similar to other nonlinear field encoding schemes, the spatial resolution is position dependent with blurring in the center, but is shown to be likely sufficient for many medical applications. The presented MRI scanner demonstrates the potential for portability by simultaneously relaxing the magnet homogeneity criteria and eliminating the gradient coil. This new architecture and encoding scheme shows convincing proof of concept images that are expected to be further improved with refinement of the calibration and methodology. © 2014 Wiley Periodicals, Inc.

  10. Thermal distributions of first, second and third quantization

    NASA Astrophysics Data System (ADS)

    McGuigan, Michael

    1989-05-01

    We treat first quantized string theory as two-dimensional gravity plus matter. This allows us to compute the two-dimensional density of one string states by the method of Darwin and Fowler. One can then use second quantized methods to form a grand microcanonical ensemble in which one can compute the density of multistring states of arbitrary momentum and mass. It is argued that modelling an elementary particle as a d-1-dimensional object whose internal degrees of freedom are described by a massless d-dimensional gas yields a density of internal states given by σ d(m)∼m -aexp((bm) {2(d-1)}/{d}) . This indicates that these objects cannot be in thermal equilibrium at any temperature unless d⩽2; that is for a string or a particle. Finally, we discuss the application of the above ideas to four-dimensional gravity and introduce an ensemble of multiuniverse states parameterized by second quantized canonical momenta and particle number.

  11. Three-dimensional Visualization of Ultrasound Backscatter Statistics by Window-modulated Compounding Nakagami Imaging.

    PubMed

    Zhou, Zhuhuang; Wu, Shuicai; Lin, Man-Yen; Fang, Jui; Liu, Hao-Li; Tsui, Po-Hsiang

    2018-05-01

    In this study, the window-modulated compounding (WMC) technique was integrated into three-dimensional (3D) ultrasound Nakagami imaging for improving the spatial visualization of backscatter statistics. A 3D WMC Nakagami image was produced by summing and averaging a number of 3D Nakagami images (number of frames denoted as N) formed using sliding cubes with varying side lengths ranging from 1 to N times the transducer pulse. To evaluate the performance of the proposed 3D WMC Nakagami imaging method, agar phantoms with scatterer concentrations ranging from 2 to 64 scatterers/mm 3 were made, and six stages of fatty liver (zero, one, two, four, six, and eight weeks) were induced in rats by methionine-choline-deficient diets (three rats for each stage, total n = 18). A mechanical scanning system with a 5-MHz focused single-element transducer was used for ultrasound radiofrequency data acquisition. The experimental results showed that 3D WMC Nakagami imaging was able to characterize different scatterer concentrations. Backscatter statistics were visualized with various numbers of frames; N = 5 reduced the estimation error of 3D WMC Nakagami imaging in visualizing the backscatter statistics. Compared with conventional 3D Nakagami imaging, 3D WMC Nakagami imaging improved the image smoothness without significant image resolution degradation, and it can thus be used for describing different stages of fatty liver in rats.

  12. Magnetic resonance imaging of focal cortical dysplasia: Comparison of 3D and 2D fluid attenuated inversion recovery sequences at 3T.

    PubMed

    Tschampa, Henriette J; Urbach, Horst; Malter, Michael; Surges, Rainer; Greschus, Susanne; Gieseke, Jürgen

    2015-10-01

    Focal cortical dysplasia (FCD) is a frequent finding in drug resistant epilepsy. The aim of our study was to evaluate an isotropic high-resolution 3-dimensional Fluid-attenuated inversion recovery sequence (3D FLAIR) at 3T in comparison to standard 2D FLAIR in the diagnosis of FCD. In a prospective study, 19 epilepsy patients with the MR diagnosis of FCD were examined with a sagittal 3D FLAIR sequence with modulated refocusing flip angle (slice thickness 1.10mm) and a 2D FLAIR in the coronal (thk. 3mm) and axial planes (thk. 2mm). Manually placed regions of interest were used for quantitative analysis. Qualitative image analysis was performed by two neuroradiologists in consensus. Contrast between gray and white matter (p ≤ 0.02), the lesion (p ≤ 0.031) or hyperintense extension to the ventricle (p ≤ 0.021) and white matter was significantly higher in 2D than in 3D FLAIR sequences. In the visual analysis there was no difference between 2D and 3D sequences. Conventional 2D FLAIR sequences yield a higher image contrast compared to the employed 3D FLAIR sequence in patients with FCDs. Potential advantages of 3D imaging using surface rendering or automated techniques for lesion detection have to be further elucidated. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Statistical image reconstruction from correlated data with applications to PET

    PubMed Central

    Alessio, Adam; Sauer, Ken; Kinahan, Paul

    2008-01-01

    Most statistical reconstruction methods for emission tomography are designed for data modeled as conditionally independent Poisson variates. In reality, due to scanner detectors, electronics and data processing, correlations are introduced into the data resulting in dependent variates. In general, these correlations are ignored because they are difficult to measure and lead to computationally challenging statistical reconstruction algorithms. This work addresses the second concern, seeking to simplify the reconstruction of correlated data and provide a more precise image estimate than the conventional independent methods. In general, correlated variates have a large non-diagonal covariance matrix that is computationally challenging to use as a weighting term in a reconstruction algorithm. This work proposes two methods to simplify the use of a non-diagonal covariance matrix as the weighting term by (a) limiting the number of dimensions in which the correlations are modeled and (b) adopting flexible, yet computationally tractable, models for correlation structure. We apply and test these methods with simple simulated PET data and data processed with the Fourier rebinning algorithm which include the one-dimensional correlations in the axial direction and the two-dimensional correlations in the transaxial directions. The methods are incorporated into a penalized weighted least-squares 2D reconstruction and compared with a conventional maximum a posteriori approach. PMID:17921576

  14. Transmission characteristics of a two dimensional antiscatter grid prototype for CBCT.

    PubMed

    Altunbas, Cem; Kavanagh, Brian; Alexeev, Timur; Miften, Moyed

    2017-08-01

    High fraction of scattered radiation in cone-beam CT (CBCT) imaging degrades CT number accuracy and visualization of low contrast objects. To suppress scatter in CBCT projections, we developed a focused, two-dimensional antiscatter grid (2DASG) prototype. In this work, we report on the primary and scatter transmission characteristics of the 2DASG prototype aimed for linac mounted, offset detector geometry CBCT systems in radiation therapy, and compared its performance to a conventional one-dimensional ASG (1DASG). The 2DASG is an array of through-holes separated by 0.1 mm septa that was fabricated from tungsten using additive manufacturing techniques. Through-holes' focusing geometry was designed for offset detector CBCT in Varian TrueBeam system. Two types of ASGs were evaluated: (a) a conventional 1DASG with a grid ratio of 10, (b) the 2DASG prototype with a grid ratio of 8.2. To assess the scatter suppression performance of both ASGs, Scatter-to-primary ratio (SPR) and scatter transmission fraction (Ts) were measured using the beam stop method. Scatter and primary intensities were modulated by varying the phantom thickness between 10 and 40 cm. Additionally, the effect of air gap and bow tie (BT) filter on SPR and Ts were evaluated. Average primary transmission fraction (T P ) and pixel specific primary transmission were also measured for both ASGs. To assess the effect of transmission characteristics on projection image signal-to-noise ratio (SNR), SNR improvement factor was calculated. Improvement in contrast to noise ratio (CNR) was demonstrated using a low contrast object. In comparison to 1DASG, 2DASG reduced SPRs by a factor of 3 to 6 across the range of phantom setups investigated. Ts values for 1D and 2DASGs were in the range of 21 to 29%, and 5 to 14% respectively. 2DASG continued to provide lower SPR and Ts at increased air gap and with BT filter. Tp of 1D and 2DASGs were 70.6% and 84.7% respectively. Due to the septal shadow of the 2DASG, its pixel specific primary transmission values varied between 32.5% and 99.1%. With respect to 1DASG, 2DASG provided up to factor of 1.7 more improvement in SNR across the SPR range investigated. Moreover, 2DASG provided improved visualization of low contrast objects with respect to 1DASG and NOASG setups. When compared to a conventional 1DASG, 2DASG prototype provided noticeably lower SPR and Ts values, indicating its superior scatter suppression performance. 2DASG also provided 19% higher average primary transmission that was attributed to the absence of interseptal spacers and optimized grid geometry. Our results indicate that the combined effect of lower scatter and higher primary transmission provided by 2DASG may potentially translate into more accurate CT numbers and improved contrast resolution in CBCT images. © 2017 American Association of Physicists in Medicine.

  15. Internal high-reflectivity omni-directional reflectors

    NASA Astrophysics Data System (ADS)

    Xi, J.-Q.; Ojha, Manas; Plawsky, J. L.; Gill, W. N.; Kim, Jong Kyu; Schubert, E. F.

    2005-07-01

    An internal high-reflectivity omni-directional reflector (ODR) for the visible spectrum is realized by the combination of total internal reflection using a low-refractive-index (low-n) material and reflection from a one-dimensional photonic crystal (1D PC). The low-n layer limits the range of angles in the 1D PC to values below the Brewster angle, thereby enabling high reflectivity and omni-directionality. This ODR is demonstrated using GaP as ambient, nanoporous SiO2 with a very low refractive index (n=1.10), and a four-pair TiO2/SiO2 multilayer stack. The results indicate a two orders of magnitude lower angle-integrated transverse-electric-transverse-magnetic polarization averaged mirror loss of the ODR compared with conventional distributed Bragg reflectors and metal reflectors. This indicates the high potential of the internal ODRs for optoelectronic semiconductor devices, e.g., light-emitting diodes.

  16. Handheld real-time volumetric imaging of the spine: technology development.

    PubMed

    Tiouririne, Mohamed; Nguyen, Sarah; Hossack, John A; Owen, Kevin; William Mauldin, F

    2014-03-01

    Technical difficulties, poor image quality and reliance on pattern identifications represent some of the drawbacks of two-dimensional ultrasound imaging of spinal bone anatomy. To overcome these limitations, this study sought to develop real-time volumetric imaging of the spine using a portable handheld device. The device measured 19.2 cm × 9.2 cm × 9.0 cm and imaged at 5 MHz centre frequency. 2D imaging under conventional ultrasound and volumetric (3D) imaging in real time was achieved and verified by inspection using a custom spine phantom. Further device performance was assessed and revealed a 75-min battery life and an average frame rate of 17.7 Hz in volumetric imaging mode. The results suggest that real-time volumetric imaging of the spine is a feasible technique for more intuitive visualization of the spine. These results may have important ramifications for a large array of neuraxial procedures.

  17. Tailoring femtosecond 1.5-μm Bessel beams for manufacturing high-aspect-ratio through-silicon vias

    NASA Astrophysics Data System (ADS)

    He, Fei; Yu, Junjie; Tan, Yuanxin; Chu, Wei; Zhou, Changhe; Cheng, Ya; Sugioka, Koji

    2017-01-01

    Three-dimensional integrated circuits (3D ICs) are an attractive replacement for conventional 2D ICs as high-performance, low-power-consumption, and small-footprint microelectronic devices. However, one of the major remaining challenges is the manufacture of high-aspect-ratio through-silicon vias (TSVs), which is a crucial technology for the assembly of 3D Si ICs. Here, we present the fabrication of high-quality TSVs using a femtosecond (fs) 1.5-μm Bessel beam. To eliminate the severe ablation caused by the sidelobes of a conventional Bessel beam, a fs Bessel beam is tailored using a specially designed binary phase plate. We demonstrate that the tailored fs Bessel beam can be used to fabricate a 2D array of approximately ∅10-μm TSVs on a 100-μm-thick Si substrate without any sidelobe damage, suggesting potential application in the 3D assembly of 3D Si ICs.

  18. Tailoring femtosecond 1.5-μm Bessel beams for manufacturing high-aspect-ratio through-silicon vias.

    PubMed

    He, Fei; Yu, Junjie; Tan, Yuanxin; Chu, Wei; Zhou, Changhe; Cheng, Ya; Sugioka, Koji

    2017-01-18

    Three-dimensional integrated circuits (3D ICs) are an attractive replacement for conventional 2D ICs as high-performance, low-power-consumption, and small-footprint microelectronic devices. However, one of the major remaining challenges is the manufacture of high-aspect-ratio through-silicon vias (TSVs), which is a crucial technology for the assembly of 3D Si ICs. Here, we present the fabrication of high-quality TSVs using a femtosecond (fs) 1.5-μm Bessel beam. To eliminate the severe ablation caused by the sidelobes of a conventional Bessel beam, a fs Bessel beam is tailored using a specially designed binary phase plate. We demonstrate that the tailored fs Bessel beam can be used to fabricate a 2D array of approximately ∅10-μm TSVs on a 100-μm-thick Si substrate without any sidelobe damage, suggesting potential application in the 3D assembly of 3D Si ICs.

  19. Development of micromachine tool prototypes for microfactories

    NASA Astrophysics Data System (ADS)

    Kussul, E.; Baidyk, T.; Ruiz-Huerta, L.; Caballero-Ruiz, A.; Velasco, G.; Kasatkina, L.

    2002-11-01

    At present, many areas of industry have strong tendencies towards miniaturization of products. Mechanical components of these products as a rule are manufactured using conventional large-scale equipment or micromechanical equipment based on microelectronic technology (MEMS). The first method has some drawbacks because conventional large-scale equipment consumes much energy, space and material. The second method seems to be more advanced but has some limitations, for example, two-dimensional (2D) or 2.5-dimensional shapes of components and materials compatible with silicon technology. In this paper, we consider an alternative technology of micromechanical device production. This technology is based on micromachine tools (MMT) and microassembly devices, which can be produced as sequential generations of microequipment. The first generation can be produced by conventional large-scale equipment. The machine tools of this generation can have overall sizes of 100-200 mm. Using microequipment of this generation, second generation microequipment having smaller overall sizes can be produced. This process can be repeated to produce generations of micromachine tools having overall sizes of some millimetres. In this paper we describe the efforts and some results of first generation microequipment prototyping. A micromachining centre having an overall size of 130 × 160 × 85 mm3 was produced and characterized. This centre has allowed us to manufacture micromechanical details having sizes from 50 µm to 5 mm. These details have complex three-dimensional shapes (for example, screw, gear, graduated shaft, conic details, etc), and are made from different materials, such as brass, steel, different plastics etc. We have started to investigate and to make prototypes of the assembly microdevices controlled by a computer vision system. In this paper we also describe an example of the applications (microfilters) for the proposed technology.

  20. Comparison of two-dimensional and three-dimensional simulations of dense nonaqueous phase liquids (DNAPLs): Migration and entrapment in a nonuniform permeability field

    NASA Astrophysics Data System (ADS)

    Christ, John A.; Lemke, Lawrence D.; Abriola, Linda M.

    2005-01-01

    The influence of reduced dimensionality (two-dimensional (2-D) versus 3-D) on predictions of dense nonaqueous phase liquid (DNAPL) infiltration and entrapment in statistically homogeneous, nonuniform permeability fields was investigated using the University of Texas Chemical Compositional Simulator (UTCHEM), a 3-D numerical multiphase simulator. Hysteretic capillary pressure-saturation and relative permeability relationships implemented in UTCHEM were benchmarked against those of another lab-tested simulator, the Michigan-Vertical and Lateral Organic Redistribution (M-VALOR). Simulation of a tetrachloroethene spill in 16 field-scale aquifer realizations generated DNAPL saturation distributions with approximately equivalent distribution metrics in two and three dimensions, with 2-D simulations generally resulting in slightly higher maximum saturations and increased vertical spreading. Variability in 2-D and 3-D distribution metrics across the set of realizations was shown to be correlated at a significance level of 95-99%. Neither spill volume nor release rate appeared to affect these conclusions. Variability in the permeability field did affect spreading metrics by increasing the horizontal spreading in 3-D more than in 2-D in more heterogeneous media simulations. The assumption of isotropic horizontal spatial statistics resulted, on average, in symmetric 3-D saturation distribution metrics in the horizontal directions. The practical implication of this study is that for statistically homogeneous, nonuniform aquifers, 2-D simulations of saturation distributions are good approximations to those obtained in 3-D. However, additional work will be needed to explore the influence of dimensionality on simulated DNAPL dissolution.

  1. An existence criterion for low-dimensional materials

    NASA Astrophysics Data System (ADS)

    Chen, Jiapeng; Wang, Biao; Hu, Yangfan

    2017-10-01

    The discovery of graphene and other two-dimensional (2-D) materials has stimulated a general interest in low-dimensional (low-D) materials. Whereas long time ago, Peierls (1935) and Landau's (1937) theoretical work demonstrated that any one- and two-dimensional materials could not exist in any finite temperature environment. Then, two basic issues became a central concern for many researchers: How can stable low-D materials exist? What kind of low-D materials are stable? Here, we establish an energy stability criterion for low-D materials, which seeks to provide a clear answer to these questions. For a certain kind of element, the stability of its specific low-D structure is determined by several derivatives of its interatomic potential. This atomistic-based approach is then applied to study any straight/planar, low-D, equal-bond-length elemental materials. We found that 1-D monatomic chains, 2-D honeycomb lattices, square lattices, and triangular lattices are the only four permissible structures, and the stability of these structures can only be understood by assuming multi-body interatomic potentials. Using this approach, the stable existence of graphene, silicene and germanene can be explained.

  2. Usability of Three-dimensional Augmented Visual Cues Delivered by Smart Glasses on (Freezing of) Gait in Parkinson's Disease.

    PubMed

    Janssen, Sabine; Bolte, Benjamin; Nonnekes, Jorik; Bittner, Marian; Bloem, Bastiaan R; Heida, Tjitske; Zhao, Yan; van Wezel, Richard J A

    2017-01-01

    External cueing is a potentially effective strategy to reduce freezing of gait (FOG) in persons with Parkinson's disease (PD). Case reports suggest that three-dimensional (3D) cues might be more effective in reducing FOG than two-dimensional cues. We investigate the usability of 3D augmented reality visual cues delivered by smart glasses in comparison to conventional 3D transverse bars on the floor and auditory cueing via a metronome in reducing FOG and improving gait parameters. In laboratory experiments, 25 persons with PD and FOG performed walking tasks while wearing custom-made smart glasses under five conditions, at the end-of-dose. For two conditions, augmented visual cues (bars/staircase) were displayed via the smart glasses. The control conditions involved conventional 3D transverse bars on the floor, auditory cueing via a metronome, and no cueing. The number of FOG episodes and percentage of time spent on FOG were rated from video recordings. The stride length and its variability, cycle time and its variability, cadence, and speed were calculated from motion data collected with a motion capture suit equipped with 17 inertial measurement units. A total of 300 FOG episodes occurred in 19 out of 25 participants. There were no statistically significant differences in number of FOG episodes and percentage of time spent on FOG across the five conditions. The conventional bars increased stride length, cycle time, and stride length variability, while decreasing cadence and speed. No effects for the other conditions were found. Participants preferred the metronome most, and the augmented staircase least. They suggested to improve the comfort, esthetics, usability, field of view, and stability of the smart glasses on the head and to reduce their weight and size. In their current form, augmented visual cues delivered by smart glasses are not beneficial for persons with PD and FOG. This could be attributable to distraction, blockage of visual feedback, insufficient familiarization with the smart glasses, or display of the visual cues in the central rather than peripheral visual field. Future smart glasses are required to be more lightweight, comfortable, and user friendly to avoid distraction and blockage of sensory feedback, thus increasing usability.

  3. Complete thoracoscopic lobectomy for cancer: comparative study of three-dimensional high-definition with two-dimensional high-definition video systems †.

    PubMed

    Bagan, Patrick; De Dominicis, Florence; Hernigou, Jacques; Dakhil, Bassel; Zaimi, Rym; Pricopi, Ciprian; Le Pimpec Barthes, Françoise; Berna, Pascal

    2015-06-01

    Common video systems for video-assisted thoracic surgery (VATS) provide the surgeon a two-dimensional (2D) image. This study aimed to evaluate performances of a new three-dimensional high definition (3D-HD) system in comparison with a two-dimensional high definition (2D-HD) system when conducting a complete thoracoscopic lobectomy (CTL). This multi-institutional comparative study trialled two video systems: 2D-HD and 3D-HD video systems used to conduct the same type of CTL. The inclusion criteria were T1N0M0 non-small-cell lung carcinoma (NSCLC) in the left lower lobe and suitable for thoracoscopic resection. The CTL was performed by the same surgeon using either a 3D-HD or 2D-HD system. Eighteen patients with NSCLC were included in the study between January and December 2013: 14 males, 4 females, with a median age of 65.6 years (range: 49-81). The patients were randomized before inclusion into two groups: to undergo surgery with the use of a 2D-HD or 3D-HD system. We compared operating time, the drainage duration, hospital stay and the N upstaging rate from the definitive histology. The use of the 3D-HD system significantly reduced the surgical time (by 17%). However, chest-tube drainage, hospital stay, the number of lymph-node stations and upstaging were similar in both groups. The main finding was that 3D-HD system significantly reduced the surgical time needed to complete the lobectomy. Thus, future integration of 3D-HD systems should improve thoracoscopic surgery, and enable more complex resections to be performed. It will also help advance the field of endoscopically assisted surgery. © The Author 2015. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  4. Digital versus conventional implant impressions for partially edentulous arches: An evaluation of accuracy.

    PubMed

    Marghalani, Amin; Weber, Hans-Peter; Finkelman, Matthew; Kudara, Yukio; El Rafie, Khaled; Papaspyridakos, Panos

    2018-04-01

    To the authors' knowledge, while accuracy outcomes of the TRIOS scanner have been compared with conventional impressions, no available data are available regarding the accuracy of digital scans with the Omnicam and True Definition scanners versus conventional impressions for partially edentulous arches. The purpose of this in vitro study was to compare the accuracy of digital implant scans using 2 different intraoral scanners (IOSs) with that of conventional impressions for partially edentulous arches. Two partially edentulous mandibular casts with 2 implant analogs with a 30-degree angulation from 2 different implant systems (Replace Select RP; Nobel Biocare and Tissue level RN; Straumann) were used as controls. Sixty digital models were made from these 2 definitive casts in 6 different groups (n=10). Splinted implant-level impression procedures followed by digitization were used to produce the first 2 groups. The next 2 groups were produced by digital scanning with Omnicam. The last 2 groups were produced by digital scanning with the True Definition scanner. Accuracy was evaluated by superimposing the digital files of each test group onto the digital file of the controls with inspection software. The difference in 3-dimensional (3D) deviations (median ±interquartile range) among the 3 impression groups for Nobel Biocare was statistically significant among all groups (P<.001), except for the Omnicam (20 ±4 μm) and True Definition (15 ±6 μm) groups; the median ±interquartile range for the conventional group was 39 ±18 μm. The difference in 3D deviations among the 3 impression groups for Straumann was statistically significant among all groups (P=.003), except for the conventional impression (22 ±5 μm) and True Definition (17 ±5 μm) groups; the median ±interquartile range for the Omnicam group was 26 ±15 μm. The difference in 3D deviations between the 2 implant systems was significant for the Omnicam (P=.011) and conventional (P<.001) impression techniques but not for the True Definition technique (P=.247). Within the limitations of this study, both the impression technique and the implant system affected accuracy. The True Definition technique had the fewest 3D deviations compared with the other 2 techniques; however, the accuracy of all impression techniques was within clinically acceptable levels, and not all differences were statistically significant. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  5. Left atrium by echocardiography in clinical practice: from conventional methods to new echocardiographic techniques.

    PubMed

    Ancona, Roberta; Comenale Pinto, Salvatore; Caso, Pio; D'Andrea, Antonello; Di Salvo, Giovanni; Arenga, Fortunato; Coppola, Maria Gabriella; Sellitto, Vincenzo; Macrino, Maria; Calabrò, Raffaele

    2014-01-01

    Although often referred to as "the forgotten chamber", compared with left ventricle (LV), especially in the past years, the left atrium (LA) plays a critical role in the clinical expression and prognosis of patients with heart and cerebrovascular disease, as demonstrated by several studies. Echocardiographers initially focused on early detection of atrial geometrical abnormalities through monodimensional atrial diameter quantification and then bidimensional (2D) areas and volume estimation. Now, together with conventional echocardiographic parameters, new echocardiographic techniques, such as strain Doppler, 2D speckle tracking and three-dimensional (3D) echocardiography, allow assessing early LA dysfunction and they all play a fundamental role to detect early functional remodelling before anatomical alterations occur. LA dysfunction and its important prognostic implications may be detected sooner by LA strain than by volumetric measurements.

  6. Femtosecond X-ray Diffraction From Two-Dimensional Protein Crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frank, Matthias; Carlson, David B.; Hunter, Mark

    2014-02-28

    Here we present femtosecond x-ray diffraction patterns from two-dimensional (2-D) protein crystals using an x-ray free electron laser (XFEL). To date it has not been possible to acquire x-ray diffraction from individual 2-D protein crystals due to radiation damage. However, the intense and ultrafast pulses generated by an XFEL permits a new method of collecting diffraction data before the sample is destroyed. Utilizing a diffract-before-destroy methodology at the Linac Coherent Light Source, we observed Bragg diffraction to better than 8.5 Å resolution for two different 2-D protein crystal samples that were maintained at room temperature. These proof-of-principle results show promisemore » for structural analysis of both soluble and membrane proteins arranged as 2-D crystals without requiring cryogenic conditions or the formation of three-dimensional crystals.« less

  7. Monte Carol-based validation of neutronic methodology for EBR-II analyses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liaw, J.R.; Finck, P.J.

    1993-01-01

    The continuous-energy Monte Carlo code VIM (Ref. 1) has been validated extensively over the years against fast critical experiments and other neutronic analysis codes. A high degree of confidence in VIM for predicting reactor physics parameters has been firmly established. This paper presents a numerical validation of two conventional multigroup neutronic analysis codes, DIF3D (Ref. 4) and VARIANT (Ref. 5), against VIM for two Experimental Breeder Reactor II (EBR-II) core loadings in detailed three-dimensional hexagonal-z geometry. The DIF3D code is based on nodal diffusion theory, and it is used in calculations for day-today reactor operations, whereas the VARIANT code ismore » based on nodal transport theory and is used with increasing frequency for specific applications. Both DIF3D and VARIANT rely on multigroup cross sections generated from ENDF/B-V by the ETOE-2/MC[sup 2]-II/SDX (Ref. 6) code package. Hence, this study also validates the multigroup cross-section processing methodology against the continuous-energy approach used in VIM.« less

  8. RKKY exchange interaction within the parabolic quantum-well

    NASA Astrophysics Data System (ADS)

    Baķ, Zygmunt

    2001-03-01

    Indirect magnetic exchange in a semimagnetic semiconductor heterostructure with the parabolic quantum-well barrier potential is considered. Within the analytical method, we provide the exact derivation of the spatial dependence of the RKKY exchange integral. Using the effective dimensionality approach, we show that the spectral dimensionality of the free electron (hole) system equals four. We prove, that the RKKY exchange integral shows conventional, sign reversal variation with the 2 kF period, however, the envelope function falls off in a manner characteristic to 4D systems.

  9. Evaluating mental workload of two-dimensional and three-dimensional visualization for anatomical structure localization.

    PubMed

    Foo, Jung-Leng; Martinez-Escobar, Marisol; Juhnke, Bethany; Cassidy, Keely; Hisley, Kenneth; Lobe, Thom; Winer, Eliot

    2013-01-01

    Visualization of medical data in three-dimensional (3D) or two-dimensional (2D) views is a complex area of research. In many fields 3D views are used to understand the shape of an object, and 2D views are used to understand spatial relationships. It is unclear how 2D/3D views play a role in the medical field. Using 3D views can potentially decrease the learning curve experienced with traditional 2D views by providing a whole representation of the patient's anatomy. However, there are challenges with 3D views compared with 2D. This current study expands on a previous study to evaluate the mental workload associated with both 2D and 3D views. Twenty-five first-year medical students were asked to localize three anatomical structures--gallbladder, celiac trunk, and superior mesenteric artery--in either 2D or 3D environments. Accuracy and time were taken as the objective measures for mental workload. The NASA Task Load Index (NASA-TLX) was used as a subjective measure for mental workload. Results showed that participants viewing in 3D had higher localization accuracy and a lower subjective measure of mental workload, specifically, the mental demand component of the NASA-TLX. Results from this study may prove useful for designing curricula in anatomy education and improving training procedures for surgeons.

  10. Two-dimensional multiferroics in monolayer group IV monochalcogenides

    NASA Astrophysics Data System (ADS)

    Wang, Hua; Qian, Xiaofeng

    2017-03-01

    Low-dimensional multiferroic materials hold great promises in miniaturized device applications such as nanoscale transducers, actuators, sensors, photovoltaics, and nonvolatile memories. Here, using first-principles theory we predict that two-dimensional (2D) monolayer group IV monochalcogenides including GeS, GeSe, SnS, and SnSe are a class of 2D semiconducting multiferroics with giant strongly-coupled in-plane spontaneous ferroelectric polarization and spontaneous ferroelastic lattice strain that are thermodynamically stable at room temperature and beyond, and can be effectively modulated by elastic strain engineering. Their optical absorption spectra exhibit strong in-plane anisotropy with visible-spectrum excitonic gaps and sizable exciton binding energies, rendering the unique characteristics of low-dimensional semiconductors. More importantly, the predicted low domain wall energy and small migration barrier together with the coupled multiferroic order and anisotropic electronic structures suggest their great potentials for tunable multiferroic functional devices by manipulating external electrical, mechanical, and optical field to control the internal responses, and enable the development of four device concepts including 2D ferroelectric memory, 2D ferroelastic memory, and 2D ferroelastoelectric nonvolatile photonic memory as well as 2D ferroelectric excitonic photovoltaics.

  11. Comparison of two-dimensional fast spin echo T2 weighted sequences and three-dimensional volume isotropic T2 weighted fast spin echo (VISTA) MRI in the evaluation of triangular fibrocartilage of the wrist.

    PubMed

    Park, Hee Jin; Lee, So Yeon; Kang, Kyung A; Kim, Eun Young; Shin, Hun Kyu; Park, Se Jin; Park, Jai Hyung; Kim, Eugene

    2018-04-01

    To compare image quality of three-dimensional volume isotropic T 2 weighted fast spin echo (3D VISTA) and two-dimensional (2D) T 2 weighted images (T2WI) for evaluation of triangular fibrocartilage (TFC) and to investigate whether 3D VISTA can replace 2D T 2 WI in evaluating TFC injury. This retrospective study included 69 patients who received wrist MRIs using both 2D T 2 WI and 3D VISTA techniques for assessment of wrist pathology, including TFC injury. Two radiologists measured the signal-to-noise ratio (SNR) and the contrast-to-noise ratio (CNR) of the two sequences. The anatomical identification score and diagnostic performance were independently assessed by two interpreters. The diagnostic abilities of 3D VISTA and 2D T 2 WI were analysed by sensitivity, specificity and accuracy for diagnosing TFC injury using surgically or clinically confirmed diagnostic reference standards. 17 cases (25%) were classified as having TFC injury. 2 cases (12%) were diagnosed surgically, and 15 cases (88%) were diagnosed by physical examination. 52 cases (75%) were diagnosed as having intact TFC. 8 of these cases (15%) were surgically confirmed, while the others were diagnosed by physical examination and clinical findings. The 3D VISTA images had significantly higher SNR and CNR values for the TFC than 2D T 2 WI images. The scores of 3D VISTA's total length, full width and sharpness were similar to those of 2D T 2 WI. We were unable to find a significant difference between 3D VISTA and 2D T 2 WI in the ability to diagnose TFC injury. 3D VISTA image quality is similar to that of 2D T 2 WI for TFC evaluation and is also excellent for tissue contrast. 3D VISTA can replace 2D images in TFC injury assessment. Advances in knowledge: 3D VISTA image quality is similar to that of 2D T 2 WI for TFC evaluation and is also excellent for tissue contrast. 3D VISTA can replace 2D images in TFC injury assessment.

  12. Four-dimensional MRI using an internal respiratory surrogate derived by dimensionality reduction

    NASA Astrophysics Data System (ADS)

    Uh, Jinsoo; Ayaz Khan, M.; Hua, Chiaho

    2016-11-01

    This study aimed to develop a practical and accurate 4-dimensional (4D) magnetic resonance imaging (MRI) method using a non-navigator, image-based internal respiratory surrogate derived by dimensionality reduction (DR). The use of DR has been previously suggested but not implemented for reconstructing 4D MRI, despite its practical advantages. We compared multiple image-acquisition schemes and refined a retrospective-sorting process to optimally implement a DR-derived surrogate. The comparison included an unconventional scheme that acquires paired slices alternately to mitigate the internal surrogate’s dependency on a specific slice location. We introduced ‘target-oriented sorting’, as opposed to conventional binning, to quantify the coherence in retrospectively sorted images, thereby determining the minimal scan time needed for sufficient coherence. This study focused on evaluating the proposed method using digital phantoms which provided unequivocal gold standard. The evaluation indicated that the DR-based respiratory surrogate is highly accurate: the error in amplitude percentile of the surrogate signal was less than 5% with the optimal scheme. Acquiring alternating paired slices was superior to the conventional scheme of acquiring individual slices; the advantage of the unconventional scheme was more pronounced when a substantial phase shift occurred across slice locations. The analysis of coherence across sorted images confirmed the advantage of higher sampling efficiencies in non-navigator respiratory surrogates. We determined that a scan time of 20 s per imaging slice was sufficient to achieve a mean coherence error of less than 1% for the tested respiratory patterns. The clinical applicability of the proposed 4D MRI has been demonstrated with volunteers and patients. The diaphragm motion in 4D MRI was consistent with that in dynamic 2D imaging which was regarded as the gold standard (difference within 1.8 mm on average).

  13. Diagnosing common bile duct obstruction: comparison of image quality and diagnostic performance of three-dimensional magnetic resonance cholangiopancreatography with and without compressed sensing.

    PubMed

    Kwon, Heejin; Reid, Scott; Kim, Dongeun; Lee, Sangyun; Cho, Jinhan; Oh, Jongyeong

    2018-01-04

    This study aimed to evaluate image quality and diagnostic performance of a recently developed navigated three-dimensional magnetic resonance cholangiopancreatography (3D-MRCP) with compressed sensing (CS) based on parallel imaging (PI) and conventional 3D-MRCP with PI only in patients with abnormal bile duct dilatation. This institutional review board-approved study included 45 consecutive patients [non-malignant common bile duct lesions (n = 21) and malignant common bile duct lesions (n = 24)] who underwent MRCP of the abdomen to evaluate bile duct dilatation. All patients were imaged at 3T (MR 750, GE Healthcare, Waukesha, WI) including two kinds of 3D-MRCP using 352 × 288 matrices with and without CS based on PI. Two radiologists independently and blindly assessed randomized images. CS acceleration reduced the acquisition time on average 5 min and 6 s to a total of 2 min and 56 s. The all CS cine image quality was significantly higher than standard cine MR image for all quantitative measurements. Diagnostic accuracy for benign and malignant lesions is statistically different between standard and CS 3D-MRCP. Total image quality and diagnostic accuracy at biliary obstruction evaluation demonstrates that CS-accelerated 3D-MRCP sequences can provide superior quality of diagnostic information in 42.5% less time. This has the potential to reduce motion-related artifacts and improve diagnostic efficacy.

  14. Proof of Principle of Ocular sparing in dogs with sinonasal tumors treated with intensity-modulated radiation therapy

    PubMed Central

    Lawrence, Jessica A.; Forrest, Lisa J.; Turek, Michelle M.; Miller, Paul E.; Mackie, T. Rockwell; Jaradat, Hazim A.; Vail, David M.; Dubielzig, Richard R.; Chappell, Richard; Mehta, Minesh P.

    2010-01-01

    Intensity modulated radiation therapy (IMRT) allows optimization of radiation dose delivery to complex tumor volumes with rapid dose drop-off to surrounding normal tissues. A prospective study was performed to evaluate the concept of conformal avoidance using IMRT in canine sinonasal cancer. The potential of IMRT to improve clinical outcome with respect to acute and late ocular toxicity was evaluated. Thirty-one dogs with sinonasal cancer were treated definitively with IMRT using helical tomotherapy and/or dynamic multileaf collimator (DMLC) delivery. Ocular toxicity was evaluated prospectively and compared to a comparable group of historical controls treated with conventional two-dimensional radiotherapy (2D-RT) techniques. Treatment plans were devised for each dog using helical tomotherapy and DMLC that achieved the target dose to the planning treatment volume and limited critical normal tissues to the prescribed dose-volume constraints. Overall acute and late toxicities were limited and minor, detectable by an experienced observer. This was in contrast to the profound ocular morbidity observed in the historical control group treated with 2D-RT. Overall median survival for IMRT treated and 2D treated dogs was 420 days and 411 days, respectively. Compared with conventional techniques, IMRT reduced dose delivered to eyes and resulted in bilateral ocular sparing in the dogs reported herein. These data provide proof-of-principle that conformal avoidance radiotherapy can be delivered through high conformity IMRT, resulting in decreased normal tissue toxicity as compared to historical controls treated with 2D-RT. PMID:20973393

  15. Zinc Sulphide Overlayer Two-Dimensional Photonic Crystal for Enhanced Extraction of Light from a Micro Cavity Light-Emitting Diode

    NASA Astrophysics Data System (ADS)

    Mastro, Michael A.; Kim, Chul Soo; Kim, Mijin; Caldwell, Josh; Holm, Ron T.; Vurgaftman, Igor; Kim, Jihyun; Eddy, Charles R., Jr.; Meyer, Jerry R.

    2008-10-01

    A two-dimensional (2D) ZnS photonic crystal was deposited on the surface of a one-dimensional (1D) III-nitride micro cavity light-emitting diode (LED), to intermix the light extraction features of both structures (1D+2D). The deposition of an ideal micro-cavity optical thickness of ≈λ/2 is impractical for III-nitride LEDs, and in realistic multi-mode devices a large fraction of the light is lost to internal refraction as guided light. Therefore, a 2D photonic crystal on the surface of the LED was used to diffract and thus redirect this guided light out of the semiconductor over several hundred microns. Additionally, the employment of a post-epitaxy ZnS 2D photonic crystal avoided the typical etching into the GaN:Mg contact layer, a procedure which can cause damage to the near surface.

  16. FGF1 and IGF1-conditioned 3D culture system promoted the amplification and cancer stemness of lung cancer cells.

    PubMed

    Liu, Pengpeng; Zhang, Rui; Yu, Wenwen; Ye, Yingnan; Cheng, Yanan; Han, Lei; Dong, Li; Chen, Yongzi; Wei, Xiyin; Yu, Jinpu

    2017-12-01

    Lung cancer stem cells (LCSCs) are considered as the cellular origins of metastasis and relapse of lung cancer. However, routine two-dimensional culture system (2D-culture) hardly mimics the growth and functions of LCSCs in vivo and therefore significantly decreases the stemness activity of LCSCs. In this study, we constructed a special BME-based three-dimensional culture system (3D-culture) to amplify LCSCs in human lung adenocarcinoma cell line A549 cells and found 3D-culture promoted the enrichment and amplification of LCSCs in A549 cells displaying higher proliferation potential and invasion activity, but lower apoptosis. The expression and secretion levels of FGF1 and IGF1 were dramatically elevated in 3D-culture compared to 2D-culture. After growing in FGF1 and IGF1-conditioned 3D-culture, the proportion of LCSCs with specific stemness phenotypes in A549 cells significantly increased compared to that in conventional 3D suspension culture system. Further results indicated that FGF1 and IGF1 promoted the amplification and cancer stemness of LCSCs dependent on MAPK signaling pathway. Our data firstly established a growth factors-conditioned 3D-culture for LCSCs and demonstrated the effects of FGF1 and IGF1 in promoting the enrichment and amplification of LCSCs which might provide a feasible cell model in vitro for both mechanism study and translational research on lung cancer. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Bak-Tang-Wiesenfeld model in the upper critical dimension: Induced criticality in lower-dimensional subsystems.

    PubMed

    Dashti-Naserabadi, H; Najafi, M N

    2017-10-01

    We present extensive numerical simulations of Bak-Tang-Wiesenfeld (BTW) sandpile model on the hypercubic lattice in the upper critical dimension D_{u}=4. After re-extracting the critical exponents of avalanches, we concentrate on the three- and two-dimensional (2D) cross sections seeking for the induced criticality which are reflected in the geometrical and local exponents. Various features of finite-size scaling (FSS) theory have been tested and confirmed for all dimensions. The hyperscaling relations between the exponents of the distribution functions and the fractal dimensions are shown to be valid for all dimensions. We found that the exponent of the distribution function of avalanche mass is the same for the d-dimensional cross sections and the d-dimensional BTW model for d=2 and 3. The geometrical quantities, however, have completely different behaviors with respect to the same-dimensional BTW model. By analyzing the FSS theory for the geometrical exponents of the two-dimensional cross sections, we propose that the 2D induced models have degrees of similarity with the Gaussian free field (GFF). Although some local exponents are slightly different, this similarity is excellent for the fractal dimensions. The most important one showing this feature is the fractal dimension of loops d_{f}, which is found to be 1.50±0.02≈3/2=d_{f}^{GFF}.

  18. Modern moulage: evaluating the use of 3-dimensional prosthetic mimics in a dermatology teaching program for second-year medical students.

    PubMed

    Garg, Amit; Haley, Heather-Lyn; Hatem, David

    2010-02-01

    To evaluate the effectiveness of a teaching method that uses 3-dimensional (3D) silicone-based prosthetic mimics of common serious lesions and eruptions and to compare learning outcomes with those achieved through the conventional method of lectures with 2-dimensional (2D) images. Prospective and comparative. University of Massachusetts Medical School. Ninety second-year medical students. A 1-hour teaching intervention using a lecture with 2D images (2D group) or using 3D prosthetic mimics of lesions and eruptions (3D group). Mean scores in the domains of morphology, lesion and rash recognition, lesion and rash management, and overall performance assessed at baseline, immediately after, and 3 months after each group's respective teaching intervention. Immediately after the teaching intervention, the 3D group had significantly higher mean percentage scores than did the 2D group for overall performance (71 vs 65, P = .03), lesion recognition (65 vs 56, P = .02), and rash management (80 vs 67, P = .01). Three months later, the 3D group still had significantly higher mean percentage scores than did the 2D group for lesion recognition (47 vs 40, P = .03). The 3D group better recognized lesions at 3 months compared with at baseline, whereas the 2D group was no better at recognizing lesions at 3 months compared with at baseline. Despite limited curricular time, the novel teaching method using 3D prosthetic mimics of lesions and eruptions improves immediate and long-term learning outcomes, in particular, lesion recognition. It is also a preferred teaching format among second-year medical students.

  19. Three-dimensional visual guidance improves the accuracy of calculating right ventricular volume with two-dimensional echocardiography

    NASA Technical Reports Server (NTRS)

    Dorosz, Jennifer L.; Bolson, Edward L.; Waiss, Mary S.; Sheehan, Florence H.

    2003-01-01

    Three-dimensional guidance programs have been shown to increase the reproducibility of 2-dimensional (2D) left ventricular volume calculations, but these systems have not been tested in 2D measurements of the right ventricle. Using magnetic fields to identify the probe location, we developed a new 3-dimensional guidance system that displays the line of intersection, the plane of intersection, and the numeric angle of intersection between the current image plane and previously saved scout views. When used by both an experienced and an inexperienced sonographer, this guidance system increases the accuracy of the 2D right ventricular volume measurements using a monoplane pyramidal model. Furthermore, a reconstruction of the right ventricle, with a computed volume similar to the calculated 2D volume, can be displayed quickly by tracing a few anatomic structures on 2D scans.

  20. Spherical self-organizing map using efficient indexed geodesic data structure.

    PubMed

    Wu, Yingxin; Takatsuka, Masahiro

    2006-01-01

    The two-dimensional (2D) Self-Organizing Map (SOM) has a well-known "border effect". Several spherical SOMs which use lattices of the tessellated icosahedron have been proposed to solve this problem. However, existing data structures for such SOMs are either not space efficient or are time consuming when searching the neighborhood. We introduce a 2D rectangular grid data structure to store the icosahedron-based geodesic dome. Vertices relationships are maintained by their positions in the data structure rather than by immediate neighbor pointers or an adjacency list. Increasing the number of neurons can be done efficiently because the overhead caused by pointer updates is reduced. Experiments show that the spherical SOM using our data structure, called a GeoSOM, runs with comparable speed to the conventional 2D SOM. The GeoSOM also reduces data distortion due to removal of the boundaries. Furthermore, we developed an interface to project the GeoSOM onto the 2D plane using a cartographic approach, which gives users a global view of the spherical data map. Users can change the center of the 2D data map interactively. In the end, we compare the GeoSOM to the other spherical SOMs by space complexity and time complexity.

  1. Convolutional neural networks for the detection of diseased hearts using CT images and left atrium patches

    NASA Astrophysics Data System (ADS)

    Dormer, James D.; Halicek, Martin; Ma, Ling; Reilly, Carolyn M.; Schreibmann, Eduard; Fei, Baowei

    2018-02-01

    Cardiovascular disease is a leading cause of death in the United States. The identification of cardiac diseases on conventional three-dimensional (3D) CT can have many clinical applications. An automated method that can distinguish between healthy and diseased hearts could improve diagnostic speed and accuracy when the only modality available is conventional 3D CT. In this work, we proposed and implemented convolutional neural networks (CNNs) to identify diseased hears on CT images. Six patients with healthy hearts and six with previous cardiovascular disease events received chest CT. After the left atrium for each heart was segmented, 2D and 3D patches were created. A subset of the patches were then used to train separate convolutional neural networks using leave-one-out cross-validation of patient pairs. The results of the two neural networks were compared, with 3D patches producing the higher testing accuracy. The full list of 3D patches from the left atrium was then classified using the optimal 3D CNN model, and the receiver operating curves (ROCs) were produced. The final average area under the curve (AUC) from the ROC curves was 0.840 +/- 0.065 and the average accuracy was 78.9% +/- 5.9%. This demonstrates that the CNN-based method is capable of distinguishing healthy hearts from those with previous cardiovascular disease.

  2. Measuring the Autocorrelation Function of Nanoscale Three-Dimensional Density Distribution in Individual Cells Using Scanning Transmission Electron Microscopy, Atomic Force Microscopy, and a New Deconvolution Algorithm.

    PubMed

    Li, Yue; Zhang, Di; Capoglu, Ilker; Hujsak, Karl A; Damania, Dhwanil; Cherkezyan, Lusik; Roth, Eric; Bleher, Reiner; Wu, Jinsong S; Subramanian, Hariharan; Dravid, Vinayak P; Backman, Vadim

    2017-06-01

    Essentially all biological processes are highly dependent on the nanoscale architecture of the cellular components where these processes take place. Statistical measures, such as the autocorrelation function (ACF) of the three-dimensional (3D) mass-density distribution, are widely used to characterize cellular nanostructure. However, conventional methods of reconstruction of the deterministic 3D mass-density distribution, from which these statistical measures can be calculated, have been inadequate for thick biological structures, such as whole cells, due to the conflict between the need for nanoscale resolution and its inverse relationship with thickness after conventional tomographic reconstruction. To tackle the problem, we have developed a robust method to calculate the ACF of the 3D mass-density distribution without tomography. Assuming the biological mass distribution is isotropic, our method allows for accurate statistical characterization of the 3D mass-density distribution by ACF with two data sets: a single projection image by scanning transmission electron microscopy and a thickness map by atomic force microscopy. Here we present validation of the ACF reconstruction algorithm, as well as its application to calculate the statistics of the 3D distribution of mass-density in a region containing the nucleus of an entire mammalian cell. This method may provide important insights into architectural changes that accompany cellular processes.

  3. Measuring the Autocorrelation Function of Nanoscale Three-Dimensional Density Distribution in Individual Cells Using Scanning Transmission Electron Microscopy, Atomic Force Microscopy, and a New Deconvolution Algorithm

    PubMed Central

    Li, Yue; Zhang, Di; Capoglu, Ilker; Hujsak, Karl A.; Damania, Dhwanil; Cherkezyan, Lusik; Roth, Eric; Bleher, Reiner; Wu, Jinsong S.; Subramanian, Hariharan; Dravid, Vinayak P.; Backman, Vadim

    2018-01-01

    Essentially all biological processes are highly dependent on the nanoscale architecture of the cellular components where these processes take place. Statistical measures, such as the autocorrelation function (ACF) of the three-dimensional (3D) mass–density distribution, are widely used to characterize cellular nanostructure. However, conventional methods of reconstruction of the deterministic 3D mass–density distribution, from which these statistical measures can be calculated, have been inadequate for thick biological structures, such as whole cells, due to the conflict between the need for nanoscale resolution and its inverse relationship with thickness after conventional tomographic reconstruction. To tackle the problem, we have developed a robust method to calculate the ACF of the 3D mass–density distribution without tomography. Assuming the biological mass distribution is isotropic, our method allows for accurate statistical characterization of the 3D mass–density distribution by ACF with two data sets: a single projection image by scanning transmission electron microscopy and a thickness map by atomic force microscopy. Here we present validation of the ACF reconstruction algorithm, as well as its application to calculate the statistics of the 3D distribution of mass–density in a region containing the nucleus of an entire mammalian cell. This method may provide important insights into architectural changes that accompany cellular processes. PMID:28416035

  4. Numerical modelling techniques of soft soil improvement via stone columns: A brief review

    NASA Astrophysics Data System (ADS)

    Zukri, Azhani; Nazir, Ramli

    2018-04-01

    There are a number of numerical studies on stone column systems in the literature. Most of the studies found were involved with two-dimensional analysis of the stone column behaviour, while only a few studies used three-dimensional analysis. The most popular software utilised in those studies was Plaxis 2D and 3D. Other types of software that used for numerical analysis are DIANA, EXAMINE, ZSoil, ABAQUS, ANSYS, NISA, GEOSTUDIO, CRISP, TOCHNOG, CESAR, GEOFEM (2D & 3D), FLAC, and FLAC 3. This paper will review the methodological approaches to model stone column numerically, both in two-dimensional and three-dimensional analyses. The numerical techniques and suitable constitutive model used in the studies will also be discussed. In addition, the validation methods conducted were to verify the numerical analysis conducted will be presented. This review paper also serves as a guide for junior engineers through the applicable procedures and considerations when constructing and running a two or three-dimensional numerical analysis while also citing numerous relevant references.

  5. Three-dimensional Imaging Methods for Quantitative Analysis of Facial Soft Tissues and Skeletal Morphology in Patients with Orofacial Clefts: A Systematic Review

    PubMed Central

    Kuijpers, Mette A. R.; Chiu, Yu-Ting; Nada, Rania M.; Carels, Carine E. L.; Fudalej, Piotr S.

    2014-01-01

    Background Current guidelines for evaluating cleft palate treatments are mostly based on two-dimensional (2D) evaluation, but three-dimensional (3D) imaging methods to assess treatment outcome are steadily rising. Objective To identify 3D imaging methods for quantitative assessment of soft tissue and skeletal morphology in patients with cleft lip and palate. Data sources Literature was searched using PubMed (1948–2012), EMBASE (1980–2012), Scopus (2004–2012), Web of Science (1945–2012), and the Cochrane Library. The last search was performed September 30, 2012. Reference lists were hand searched for potentially eligible studies. There was no language restriction. Study selection We included publications using 3D imaging techniques to assess facial soft tissue or skeletal morphology in patients older than 5 years with a cleft lip with/or without cleft palate. We reviewed studies involving the facial region when at least 10 subjects in the sample size had at least one cleft type. Only primary publications were included. Data extraction Independent extraction of data and quality assessments were performed by two observers. Results Five hundred full text publications were retrieved, 144 met the inclusion criteria, with 63 high quality studies. There were differences in study designs, topics studied, patient characteristics, and success measurements; therefore, only a systematic review could be conducted. Main 3D-techniques that are used in cleft lip and palate patients are CT, CBCT, MRI, stereophotogrammetry, and laser surface scanning. These techniques are mainly used for soft tissue analysis, evaluation of bone grafting, and changes in the craniofacial skeleton. Digital dental casts are used to evaluate treatment and changes over time. Conclusion Available evidence implies that 3D imaging methods can be used for documentation of CLP patients. No data are available yet showing that 3D methods are more informative than conventional 2D methods. Further research is warranted to elucidate it. Systematic review registration International Prospective Register of Systematic Reviews, PROSPERO CRD42012002041 PMID:24710215

  6. Equations of state and diagrams of two-dimensional liquid dusty plasmas

    NASA Astrophysics Data System (ADS)

    Feng, Yan; Lin, Wei; Li, Wei; Wang, Qiaoling

    2016-09-01

    Recently, the pressure of two-dimensional (2D) Yukawa liquids has been calculated from the simulations of isochores [Feng et al., J. Phys. D: Appl. Phys. 49, 235203 (2016)], which is applicable to 2D dusty plasmas. Thus, the equation of state for 2D strongly coupled liquid dusty plasmas is obtained. Isobars and isotherms of 2D liquid dusty plasmas are derived from this equation of state. For 2D liquid dusty plasmas, the surface corresponding to this equation of state has also been obtained in the 3D space of the pressure, the temperature, and the screening parameter which is related to the volume in the equilibrium state.

  7. Superconductivity in metal coated graphene

    NASA Astrophysics Data System (ADS)

    Uchoa, Bruno; Castro Neto, Antonio

    2007-03-01

    Graphene, a single atomic layer of graphite, is a two dimensional (2D) zero gap insulator with a high electronic mobility between nearest neighbor carbon sites. The unique electronic properties of graphene, from the semi-metallic behavior to the observation of an anomalous quantum Hall effect and a zero field quantized minimum of conductivity derive from the relativistic nature of its quasiparticles. By doping graphene, it behaves in several aspects as a conventional Fermi liquid, where electrons may form Cooper pairs by coupling with a bosonic mode. In this talk, we develop a mean-field phenomenology of superconductivity in a honeycomb lattice. We predict the possibility of two distinct phases, a singlet s-wave phase and a novel p+ip wave phase in the singlet channel. At half filling, the p+ip phase is gapless and superconductivity is a hidden order. We propose a few possible sources of Cooper pairing instability in graphene coated with alkaline and transition metals, and similar low dimensional graphene based devices.

  8. Color Constancy in Two-Dimensional and Three-Dimensional Scenes: Effects of Viewing Methods and Surface Texture

    PubMed Central

    Morimoto, Takuma; Mizokami, Yoko; Yaguchi, Hirohisa; Buck, Steven L.

    2017-01-01

    There has been debate about how and why color constancy may be better in three-dimensional (3-D) scenes than in two-dimensional (2-D) scenes. Although some studies have shown better color constancy for 3-D conditions, the role of specific cues remains unclear. In this study, we compared color constancy for a 3-D miniature room (a real scene consisting of actual objects) and 2-D still images of that room presented on a monitor using three viewing methods: binocular viewing, monocular viewing, and head movement. We found that color constancy was better for the 3-D room; however, color constancy for the 2-D image improved when the viewing method caused the scene to be perceived more like a 3-D scene. Separate measurements of the perceptual 3-D effect of each viewing method also supported these results. An additional experiment comparing a miniature room and its image with and without texture suggested that surface texture of scene objects contributes to color constancy. PMID:29238513

  9. Two-dimensional turbulent flow chromatography coupled on-line to liquid chromatography-mass spectrometry for solution-based ligand screening against multiple proteins.

    PubMed

    Zhou, Jian-Liang; An, Jing-Jing; Li, Ping; Li, Hui-Jun; Jiang, Yan; Cheng, Jie-Fei

    2009-03-20

    We present herein a novel bioseparation/chemical analysis strategy for protein-ligand screening and affinity ranking in compound mixtures, designed to increase screening rates and improve sensitivity and ruggedness in performance. The strategy is carried out by combining on-line two-dimensional turbulent flow chromatography (2D-TFC) with liquid chromatography-mass spectrometry (LC-MS), and accomplished through the following steps: (1) a reversed-phase TFC stage to separate the protein/ligand complex from the unbound free molecules, (2) an on-line dissociation process to release the bound ligands from the complexes, and (3) a second mixed-mode cation-exchange/reversed-phase TFC stage to trap the bound ligands and to remove the proteins and salts, followed by LC-MS analysis for identification and determination of the binding affinities. The technique can implement an ultra-fast isolation of protein/ligand complex with the retention time of a complex peak in about 5s, and on-line prepare the "clean" sample to be directly compatible with the LC-MS analysis. The improvement in performance of this 2D-TFC/LC-MS approach over the conventional approach has been demonstrated by determining affinity-selected ligands of the target proteins acetylcholinesterase and butyrylcholinesterase from a small library with known binding affinities and a steroidal alkaloid library composed of structurally similar compounds. Our results show that 2D-TFC/LC-MS is a generic and efficient tool for high-throughput screening of ligands with low-to-high binding affinities, and structure-activity relationship evaluation.

  10. Identification of authentic and adulterated Aquilariae Lignum Resinatum by Fourier transform infrared (FT-IR) spectroscopy and two-dimensional correlation analysis

    NASA Astrophysics Data System (ADS)

    Qu, Lei; Chen, Jian-bo; Zhou, Qun; Zhang, Gui-jun; Sun, Su-qin; Guo, Yi-zhen

    2016-11-01

    As a kind of expensive perfume and valuable herb, the commercial Aquilariae Lignum Resinatum (ALR) is often adulterated for economic motivations. In this research, Fourier transform infrared (FT-IR) spectroscopy and two-dimensional (2D) correlation analysis are employed to establish a simple and quick identification method for the authentic and adulterated ALR. In the conventional infrared spectra, the standard ALR has a strong peak at 1658 cm-1 referring to the conjugated carbonyl of resin, while this peak is absent in the adulterated samples. The position, intensity, and shape of the auto-peaks and cross-peaks of the authentic and adulterated ALR are much different in the synchronous 2D correlation spectra with thermal perturbation. In the range of 1700-1500 cm-1, the standard ALR has four obvious auto-peaks, while the strongest one is at 1659 cm-1. The adulterated sample w-1 has three obvious auto-peaks and the strongest one is at 1647 cm-1. The adulterated sample w-2 has three obvious auto-peaks and the strongest one is at 1519 cm-1. The adulterated sample w-3 has four obvious auto-peaks and the strongest one is at 1690 cm-1. The above auto-peaks confirm that the standard ALR contains a certain content of resin compounds, while the three counterfeits contain little or different resins. The results show the potential of FT-IR spectroscopy and 2D correlation analysis in the simple and quick identification of authentic and adulterated ALR.

  11. Cognitive Load and Attentional Demands during Objects' Position Change in Real and Digital Environments

    ERIC Educational Resources Information Center

    Zacharis, Georgios K.; Mikropoulos, Tassos Anastasios; Kalyvioti, Katerina

    2016-01-01

    Studies showed that two-dimensional (2D) and three-dimensional (3D) educational content contributes to learning. Although there were many studies with 3D stereoscopic learning environments, only a few studies reported on the differences between real, 2D, and 3D scenes, as far as cognitive load and attentional demands were concerned. We used…

  12. The role of magnetic resonance diffusion-weighted imaging and three-dimensional arterial spin labelling perfusion imaging in the differentiation of parasellar meningioma and cavernous haemangioma.

    PubMed

    Xiao, Hua-Feng; Lou, Xin; Liu, Meng-Yu; Wang, Yu-Lin; Wang, Yan; Chen, Zhi-Ye; Shi, Kai-Ning; Ma, Lin

    2014-08-01

    To evaluate the diagnostic value of magnetic resonance diffusion-weighted imaging (DWI) and three-dimensional arterial spin labelling perfusion imaging (3D-ASL) in distinguishing cavernous haemangioma from parasellar meningioma, using histological data as a reference standard. Patients with parasellar meningioma or parasellar cavernous haemangioma underwent conventional T1- and T2-weighted magnetic resonance imaging (MRI) followed by DWI and 3D-ASL using a 3.0 Tesla MRI. The minimum apparent diffusion coefficient (minADC) from DWI and the maximal normalized cerebral blood flow (nCBF) from 3D-ASL were measured in each tumour. Diagnosis was confirmed by histology. MinADC was significantly lower and nCBF significantly higher in meningioma (n = 19) than cavernous haemangioma (n = 15). There was a significant negative correlation between minADC and nCBF (r = -0.605). DWI and 3D-ASL are useful in differentiating cavernous haemangiomas from parasellar meningiomas, particularly in situations when the appearance on conventional MRI sequences is otherwise ambiguous. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  13. Comparison of Two- and Three-Dimensional Methods for Analysis of Trunk Kinematic Variables in the Golf Swing.

    PubMed

    Smith, Aimée C; Roberts, Jonathan R; Wallace, Eric S; Kong, Pui; Forrester, Stephanie E

    2016-02-01

    Two-dimensional methods have been used to compute trunk kinematic variables (flexion/extension, lateral bend, axial rotation) and X-factor (difference in axial rotation between trunk and pelvis) during the golf swing. Recent X-factor studies advocated three-dimensional (3D) analysis due to the errors associated with two-dimensional (2D) methods, but this has not been investigated for all trunk kinematic variables. The purpose of this study was to compare trunk kinematic variables and X-factor calculated by 2D and 3D methods to examine how different approaches influenced their profiles during the swing. Trunk kinematic variables and X-factor were calculated for golfers from vectors projected onto the global laboratory planes and from 3D segment angles. Trunk kinematic variable profiles were similar in shape; however, there were statistically significant differences in trunk flexion (-6.5 ± 3.6°) at top of backswing and trunk right-side lateral bend (8.7 ± 2.9°) at impact. Differences between 2D and 3D X-factor (approximately 16°) could largely be explained by projection errors introduced to the 2D analysis through flexion and lateral bend of the trunk and pelvis segments. The results support the need to use a 3D method for kinematic data calculation to accurately analyze the golf swing.

  14. Agreement and reliability of pelvic floor measurements during rest and on maximum Valsalva maneuver using three-dimensional translabial ultrasound and virtual reality imaging.

    PubMed

    Speksnijder, L; Oom, D M J; Koning, A H J; Biesmeijer, C S; Steegers, E A P; Steensma, A B

    2016-08-01

    Imaging of the levator ani hiatus provides valuable information for the diagnosis and follow-up of patients with pelvic organ prolapse (POP). This study compared measurements of levator ani hiatal volume during rest and on maximum Valsalva, obtained using conventional three-dimensional (3D) translabial ultrasound and virtual reality imaging. Our objectives were to establish their agreement and reliability, and their relationship with prolapse symptoms and POP quantification (POP-Q) stage. One hundred women with an intact levator ani were selected from our tertiary clinic database. Information on clinical symptoms were obtained using standardized questionnaires. Ultrasound datasets were analyzed using a rendered volume with a slice thickness of 1.5 cm, at the level of minimal hiatal dimensions, during rest and on maximum Valsalva. The levator area (in cm(2) ) was measured and multiplied by 1.5 to obtain the levator ani hiatal volume (in cm(3) ) on conventional 3D ultrasound. Levator ani hiatal volume (in cm(3) ) was measured semi-automatically by virtual reality imaging using a segmentation algorithm. Twenty patients were chosen randomly to analyze intra- and interobserver agreement. The mean difference between levator hiatal volume measurements on 3D ultrasound and by virtual reality was 1.52 cm(3) (95% CI, 1.00-2.04 cm(3) ) at rest and 1.16 cm(3) (95% CI, 0.56-1.76 cm(3) ) during maximum Valsalva (P < 0.001). Both intra- and interobserver intraclass correlation coefficients were ≥ 0.96 for conventional 3D ultrasound and > 0.99 for virtual reality. Patients with prolapse symptoms or POP-Q Stage ≥ 2 had significantly larger hiatal measurements than those without symptoms or POP-Q Stage < 2. Levator ani hiatal volume at rest and on maximum Valsalva is significantly smaller when using virtual reality compared with conventional 3D ultrasound; however, this difference does not seem clinically important. Copyright © 2015 ISUOG. Published by John Wiley & Sons Ltd. Copyright © 2015 ISUOG. Published by John Wiley & Sons Ltd.

  15. Four-dimensional \\mathcal{N} = 2 supersymmetric theory with boundary as a two-dimensional complex Toda theory

    NASA Astrophysics Data System (ADS)

    Luo, Yuan; Tan, Meng-Chwan; Vasko, Petr; Zhao, Qin

    2017-05-01

    We perform a series of dimensional reductions of the 6d, \\mathcal{N} = (2, 0) SCFT on S 2 × Σ × I × S 1 down to 2d on Σ. The reductions are performed in three steps: (i) a reduction on S 1 (accompanied by a topological twist along Σ) leading to a supersymmetric Yang-Mills theory on S 2 × Σ × I, (ii) a further reduction on S 2 resulting in a complex Chern-Simons theory defined on Σ × I, with the real part of the complex Chern-Simons level being zero, and the imaginary part being proportional to the ratio of the radii of S 2 and S 1, and (iii) a final reduction to the boundary modes of complex Chern-Simons theory with the Nahm pole boundary condition at both ends of the interval I, which gives rise to a complex Toda CFT on the Riemann surface Σ. As the reduction of the 6d theory on Σ would give rise to an \\mathcal{N} = 2 supersymmetric theory on S 2 × I × S 1, our results imply a 4d-2d duality between four-dimensional \\mathcal{N} = 2 supersymmetric theory with boundary and two-dimensional complex Toda theory.

  16. Accelerating the discovery of hidden two-dimensional magnets using machine learning and first principle calculations

    NASA Astrophysics Data System (ADS)

    Miyazato, Itsuki; Tanaka, Yuzuru; Takahashi, Keisuke

    2018-02-01

    Two-dimensional (2D) magnets are explored in terms of data science and first principle calculations. Machine learning determines four descriptors for predicting the magnetic moments of 2D materials within reported 216 2D materials data. With the trained machine, 254 2D materials are predicted to have high magnetic moments. First principle calculations are performed to evaluate the predicted 254 2D materials where eight undiscovered stable 2D materials with high magnetic moments are revealed. The approach taken in this work indicates that undiscovered materials can be surfaced by utilizing data science and materials data, leading to an innovative way of discovering hidden materials.

  17. Alternative dimensional reduction via the density matrix

    NASA Astrophysics Data System (ADS)

    de Carvalho, C. A.; Cornwall, J. M.; da Silva, A. J.

    2001-07-01

    We give graphical rules, based on earlier work for the functional Schrödinger equation, for constructing the density matrix for scalar and gauge fields in equilibrium at finite temperature T. More useful is a dimensionally reduced effective action (DREA) constructed from the density matrix by further functional integration over the arguments of the density matrix coupled to a source. The DREA is an effective action in one less dimension which may be computed order by order in perturbation theory or by dressed-loop expansions; it encodes all thermal matrix elements. We term the DREA procedure alternative dimensional reduction, to distinguish it from the conventional dimensionally reduced field theory (DRFT) which applies at infinite T. The DREA is useful because it gives a dimensionally reduced theory usable at any T including infinity, where it yields the DRFT, and because it does not and cannot have certain spurious infinities which sometimes occur in the density matrix itself or the conventional DRFT; these come from ln T factors at infinite temperature. The DREA can be constructed to all orders (in principle) and the only regularizations needed are those which control the ultraviolet behavior of the zero-T theory. An example of spurious divergences in the DRFT occurs in d=2+1φ4 theory dimensionally reduced to d=2. We study this theory and show that the rules for the DREA replace these ``wrong'' divergences in physical parameters by calculable powers of ln T; we also compute the phase transition temperature of this φ4 theory in one-loop order. Our density-matrix construction is equivalent to a construction of the Landau-Ginzburg ``coarse-grained free energy'' from a microscopic Hamiltonian.

  18. Polarization engineered enhancement mode GaN HEMT: Design and investigation

    NASA Astrophysics Data System (ADS)

    Verma, Sumit; Loan, Sajad A.; Alharbi, Abdullah G.

    2018-07-01

    In this paper, we propose and perform the experimentally calibrated simulation of a novel structure of a GaN/AlGaN high electron mobility transistor (HEMT). The novelty of the structure is the realization of enhancement mode operation by employing polarization engineering approach. In the proposed polarization engineered HEMT (PE-HEMT) a buried Aluminum Nitride (AlN) box is employed in the GaN layer just below the gate. The AlN box creates a two-dimensional hole gas (2DHG) at the GaN/AlN interface, which creates a conduction band barrier in the path of the already existing two-dimensional electron gas (2DEG) at GaN/AlGaN. Therefore, there is no direct path between the source and drain regions at zero gate voltage due to the barrier created by AIN and the device is initially OFF, an enhancement mode operation. A two dimensional (2D) calibrated simulation study of proposed PE-HEMT shows that the device has a threshold voltage (Vth) of 2.3 V. The PE-HEMT also reduces the electron spillover and thus improves the breakdown voltage by 108% as compared to conventional HEMT. The thermal analysis of the GaN PE-HEMT shows that a hot zone occurs on the drain side gate edge. It has been observed that the drain current in the PE-HEMT structure can be improved by 157% by using AlN heat sink.

  19. Coherent backscattering enhancement in cavities. Highlights of the role of symmetry.

    PubMed

    Gallot, Thomas; Catheline, Stefan; Roux, Philippe

    2011-04-01

    Through experiments and simulations, the consequences of symmetry on coherent backscattering enhancement (CBE) are studied in cavities. Three main results are highlighted. First, the CBE outside the source is observed: (a) on a single symmetric point in a one-dimensional (1-D) cavity, in a disk and in a symmetric chaotic plate; (b) on three symmetric points in a two-dimensional (2-D) rectangle; and (c) on seven symmetric points in a three-dimensional (3-D) parallelepiped cavity. Second, the existence of enhanced intensity lines and planes in 2-D and 3-D simple-shape cavities is demonstrated. Third, it is shown how the anti-symmetry caused by the special boundary conditions is responsible for the existence of a coherent backscattering decrement with a dimensional dependence of R = (½)(d), with d = 1,2,3 as the dimensionality of the cavity.

  20. Identification of the critical depth-of-cut through a 2D image of the cutting region resulting from taper cutting of brittle materials

    NASA Astrophysics Data System (ADS)

    Gu, Wen; Zhu, Zhiwei; Zhu, Wu-Le; Lu, Leyao; To, Suet; Xiao, Gaobo

    2018-05-01

    An automatic identification method for obtaining the critical depth-of-cut (DoC) of brittle materials with nanometric accuracy and sub-nanometric uncertainty is proposed in this paper. With this method, a two-dimensional (2D) microscopic image of the taper cutting region is captured and further processed by image analysis to extract the margin of generated micro-cracks in the imaging plane. Meanwhile, an analytical model is formulated to describe the theoretical curve of the projected cutting points on the imaging plane with respect to a specified DoC during the whole cutting process. By adopting differential evolution algorithm-based minimization, the critical DoC can be identified by minimizing the deviation between the extracted margin and the theoretical curve. The proposed method is demonstrated through both numerical simulation and experimental analysis. Compared with conventional 2D- and 3D-microscopic-image-based methods, determination of the critical DoC in this study uses the envelope profile rather than the onset point of the generated cracks, providing a more objective approach with smaller uncertainty.

  1. Structure determination of two modulated gamma-brass structures in the Zn-Pd System through a (3 + 1)-dimensional space description.

    PubMed

    Gourdon, Olivier; Izaola, Zunbeltz; Elcoro, Luis; Petricek, Vaclav; Miller, Gordon J

    2009-10-19

    The structure determination of two composite compounds in the Zn-Pd system with close relationships to the cubic gamma-brass structure Zn(11-delta)Pd(2+delta) is reported. Their structures have been solved from single crystal X-ray diffraction data within a (3 + 1)-dimensional [(3 + 1)D] formalism. Zn(75.7(7))Pd(24.3) and Zn(78.8(7))Pd(21.2) crystallize with orthorhombic symmetry, superspace group Xmmm(00gamma)0s0 (X = [(1/2,1/2,0,0); (0,1/2,1/2,1/2); (1/2,0,1/2,1/2)]), with the following lattice parameters, respectively: a(s) = 12.929(3) A, b(s) = 9.112(4) A, c(s) = 2.5631(7) A, q = 8/13 c* and V(s) = 302.1(3) A(3) and a(s) = 12.909(3) A, b(s) = 9.115(3) A, c(s) = 2.6052(6) A, q = 11/18 c* and V(s) = 306.4(2) A(3). Their structures may be considered as commensurate because they can be refined in the conventional 3D space groups (Cmce and Cmcm, respectively) using supercells, but they also refined within the (3 + 1)D formalism to residual factors R = 3.14% for 139 parameters and 1184 independent reflections for Zn(75.7(7))Pd(24.3) and R = 3.16% for 175 parameters and 1804 independent reflections for Zn(78.8(7))Pd(21.2). The use of the (3 + 1)D formalism improves the results of the refinement and leads to a better understanding of the complexity of the atomic arrangement through the various modulations (occupation waves and displacive waves). Our refinements emphasize a unique Pd/Zn occupancy modulation at the center of distorted icosahedra, a modulation which correlates with the distortion of these polyhedra.

  2. (d -2 ) -Dimensional Edge States of Rotation Symmetry Protected Topological States

    NASA Astrophysics Data System (ADS)

    Song, Zhida; Fang, Zhong; Fang, Chen

    2017-12-01

    We study fourfold rotation-invariant gapped topological systems with time-reversal symmetry in two and three dimensions (d =2 , 3). We show that in both cases nontrivial topology is manifested by the presence of the (d -2 )-dimensional edge states, existing at a point in 2D or along a line in 3D. For fermion systems without interaction, the bulk topological invariants are given in terms of the Wannier centers of filled bands and can be readily calculated using a Fu-Kane-like formula when inversion symmetry is also present. The theory is extended to strongly interacting systems through the explicit construction of microscopic models having robust (d -2 )-dimensional edge states.

  3. Quantum Computational Universality of the 2D Cai-Miyake-D"ur-Briegel Quantum State

    NASA Astrophysics Data System (ADS)

    Wei, Tzu-Chieh; Raussendorf, Robert; Kwek, Leong Chuan

    2012-02-01

    Universal quantum computation can be achieved by simply performing single-qubit measurements on a highly entangled resource state, such as cluster states. Cai, Miyake, D"ur, and Briegel recently constructed a ground state of a two-dimensional quantum magnet by combining multiple Affleck-Kennedy-Lieb-Tasaki quasichains of mixed spin-3/2 and spin-1/2 entities and by mapping pairs of neighboring spin-1/2 particles to individual spin-3/2 particles [Phys. Rev. A 82, 052309 (2010)]. They showed that this state enables universal quantum computation by constructing single- and two-qubit universal gates. Here, we give an alternative understanding of how this state gives rise to universal measurement-based quantum computation: by local operations, each quasichain can be converted to a one-dimensional cluster state and entangling gates between two neighboring logical qubits can be implemented by single-spin measurements. Furthermore, a two-dimensional cluster state can be distilled from the Cai-Miyake-D"ur-Briegel state.

  4. Three-dimensional scene reconstruction from a two-dimensional image

    NASA Astrophysics Data System (ADS)

    Parkins, Franz; Jacobs, Eddie

    2017-05-01

    We propose and simulate a method of reconstructing a three-dimensional scene from a two-dimensional image for developing and augmenting world models for autonomous navigation. This is an extension of the Perspective-n-Point (PnP) method which uses a sampling of the 3D scene, 2D image point parings, and Random Sampling Consensus (RANSAC) to infer the pose of the object and produce a 3D mesh of the original scene. Using object recognition and segmentation, we simulate the implementation on a scene of 3D objects with an eye to implementation on embeddable hardware. The final solution will be deployed on the NVIDIA Tegra platform.

  5. Three-dimensional surface imaging system for assessing human obesity

    NASA Astrophysics Data System (ADS)

    Xu, Bugao; Yu, Wurong; Yao, Ming; Pepper, M. Reese; Freeland-Graves, Jeanne H.

    2009-10-01

    The increasing prevalence of obesity suggests a need to develop a convenient, reliable, and economical tool for assessment of this condition. Three-dimensional (3-D) body surface imaging has emerged as an exciting technology for the estimation of body composition. We present a new 3-D body imaging system, which is designed for enhanced portability, affordability, and functionality. In this system, stereo vision technology is used to satisfy the requirement for a simple hardware setup and fast image acquisition. The portability of the system is created via a two-stand configuration, and the accuracy of body volume measurements is improved by customizing stereo matching and surface reconstruction algorithms that target specific problems in 3-D body imaging. Body measurement functions dedicated to body composition assessment also are developed. The overall performance of the system is evaluated in human subjects by comparison to other conventional anthropometric methods, as well as air displacement plethysmography, for body fat assessment.

  6. Three-dimensional scanning transmission electron microscopy of biological specimens.

    PubMed

    de Jonge, Niels; Sougrat, Rachid; Northan, Brian M; Pennycook, Stephen J

    2010-02-01

    A three-dimensional (3D) reconstruction of the cytoskeleton and a clathrin-coated pit in mammalian cells has been achieved from a focal-series of images recorded in an aberration-corrected scanning transmission electron microscope (STEM). The specimen was a metallic replica of the biological structure comprising Pt nanoparticles 2-3 nm in diameter, with a high stability under electron beam radiation. The 3D dataset was processed by an automated deconvolution procedure. The lateral resolution was 1.1 nm, set by pixel size. Particles differing by only 10 nm in vertical position were identified as separate objects with greater than 20% dip in contrast between them. We refer to this value as the axial resolution of the deconvolution or reconstruction, the ability to recognize two objects, which were unresolved in the original dataset. The resolution of the reconstruction is comparable to that achieved by tilt-series transmission electron microscopy. However, the focal-series method does not require mechanical tilting and is therefore much faster. 3D STEM images were also recorded of the Golgi ribbon in conventional thin sections containing 3T3 cells with a comparable axial resolution in the deconvolved dataset.

  7. Generation of Neural Progenitor Spheres from Human Pluripotent Stem Cells in a Suspension Bioreactor.

    PubMed

    Yan, Yuanwei; Song, Liqing; Tsai, Ang-Chen; Ma, Teng; Li, Yan

    2016-01-01

    Conventional two-dimensional (2-D) culture systems cannot provide large numbers of human pluripotent stem cells (hPSCs) and their derivatives that are demanded for commercial and clinical applications in in vitro drug screening, disease modeling, and potentially cell therapy. The technologies that support three-dimensional (3-D) suspension culture, such as a stirred bioreactor, are generally considered as promising approaches to produce the required cells. Recently, suspension bioreactors have also been used to generate mini-brain-like structure from hPSCs for disease modeling, showing the important role of bioreactor in stem cell culture. This chapter describes a detailed culture protocol for neural commitment of hPSCs into neural progenitor cell (NPC) spheres using a spinner bioreactor. The basic steps to prepare hPSCs for bioreactor inoculation are illustrated from cell thawing to cell propagation. The method for generating NPCs from hPSCs in the spinner bioreactor along with the static control is then described. The protocol in this study can be applied to the generation of NPCs from hPSCs for further neural subtype specification, 3-D neural tissue development, or potential preclinical studies or clinical applications in neurological diseases.

  8. Three-Dimensional Scanning Transmission Electron Microscopy of Biological Specimens

    PubMed Central

    de Jonge, Niels; Sougrat, Rachid; Northan, Brian M.; Pennycook, Stephen J.

    2010-01-01

    A three-dimensional (3D) reconstruction of the cytoskeleton and a clathrin-coated pit in mammalian cells has been achieved from a focal-series of images recorded in an aberration-corrected scanning transmission electron microscope (STEM). The specimen was a metallic replica of the biological structure comprising Pt nanoparticles 2–3 nm in diameter, with a high stability under electron beam radiation. The 3D dataset was processed by an automated deconvolution procedure. The lateral resolution was 1.1 nm, set by pixel size. Particles differing by only 10 nm in vertical position were identified as separate objects with greater than 20% dip in contrast between them. We refer to this value as the axial resolution of the deconvolution or reconstruction, the ability to recognize two objects, which were unresolved in the original dataset. The resolution of the reconstruction is comparable to that achieved by tilt-series transmission electron microscopy. However, the focal-series method does not require mechanical tilting and is therefore much faster. 3D STEM images were also recorded of the Golgi ribbon in conventional thin sections containing 3T3 cells with a comparable axial resolution in the deconvolved dataset. PMID:20082729

  9. Dipeptide Structural Analysis Using Two-Dimensional NMR for the Undergraduate Advanced Laboratory

    ERIC Educational Resources Information Center

    Gonzalez, Elizabeth; Dolino, Drew; Schwartzenburg, Danielle; Steiger, Michelle A.

    2015-01-01

    A laboratory experiment was developed to introduce students in either an organic chemistry or biochemistry lab course to two-dimensional nuclear magnetic resonance (2D NMR) spectroscopy using simple biomolecules. The goal of this experiment is for students to understand and interpret the information provided by a 2D NMR spectrum. Students are…

  10. High-definition resolution three-dimensional imaging systems in laparoscopic radical prostatectomy: randomized comparative study with high-definition resolution two-dimensional systems.

    PubMed

    Kinoshita, Hidefumi; Nakagawa, Ken; Usui, Yukio; Iwamura, Masatsugu; Ito, Akihiro; Miyajima, Akira; Hoshi, Akio; Arai, Yoichi; Baba, Shiro; Matsuda, Tadashi

    2015-08-01

    Three-dimensional (3D) imaging systems have been introduced worldwide for surgical instrumentation. A difficulty of laparoscopic surgery involves converting two-dimensional (2D) images into 3D images and depth perception rearrangement. 3D imaging may remove the need for depth perception rearrangement and therefore have clinical benefits. We conducted a multicenter, open-label, randomized trial to compare the surgical outcome of 3D-high-definition (HD) resolution and 2D-HD imaging in laparoscopic radical prostatectomy (LRP), in order to determine whether an LRP under HD resolution 3D imaging is superior to that under HD resolution 2D imaging in perioperative outcome, feasibility, and fatigue. One-hundred twenty-two patients were randomly assigned to a 2D or 3D group. The primary outcome was time to perform vesicourethral anastomosis (VUA), which is technically demanding and may include a number of technical difficulties considered in laparoscopic surgeries. VUA time was not significantly shorter in the 3D group (26.7 min, mean) compared with the 2D group (30.1 min, mean) (p = 0.11, Student's t test). However, experienced surgeons and 3D-HD imaging were independent predictors for shorter VUA times (p = 0.000, p = 0.014, multivariate logistic regression analysis). Total pneumoperitoneum time was not different. No conversion case from 3D to 2D or LRP to open RP was observed. Fatigue was evaluated by a simulation sickness questionnaire and critical flicker frequency. Results were not different between the two groups. Subjective feasibility and satisfaction scores were significantly higher in the 3D group. Using a 3D imaging system in LRP may have only limited advantages in decreasing operation times over 2D imaging systems. However, the 3D system increased surgical feasibility and decreased surgeons' effort levels without inducing significant fatigue.

  11. User's Guide for ECAP2D: an Euler Unsteady Aerodynamic and Aeroelastic Analysis Program for Two Dimensional Oscillating Cascades, Version 1.0

    NASA Technical Reports Server (NTRS)

    Reddy, T. S. R.

    1995-01-01

    This guide describes the input data required for using ECAP2D (Euler Cascade Aeroelastic Program-Two Dimensional). ECAP2D can be used for steady or unsteady aerodynamic and aeroelastic analysis of two dimensional cascades. Euler equations are used to obtain aerodynamic forces. The structural dynamic equations are written for a rigid typical section undergoing pitching (torsion) and plunging (bending) motion. The solution methods include harmonic oscillation method, influence coefficient method, pulse response method, and time integration method. For harmonic oscillation method, example inputs and outputs are provided for pitching motion and plunging motion. For the rest of the methods, input and output for pitching motion only are given.

  12. Composite Scaffolds Containing Silk Fibroin, Gelatin, and Hydroxyapatite for Bone Tissue Regeneration and 3D Cell Culturing

    PubMed Central

    Moisenovich, M. M.; Arkhipova, A. Yu.; Orlova, A. A.; Drutskaya, M. S; Volkova, S. V.; Zacharov, S. E.; Agapov, I. I.; Kirpichnikov, M. P.

    2014-01-01

    Three-dimensional (3D) silk fibroin scaffolds were modified with one of the major bone tissue derivatives (nano-hydroxyapatite) and/or a collagen derivative (gelatin). Adhesion and proliferation of mouse embryonic fibroblasts (MEF) within the scaffold were increased after modification with either nano-hydroxyapatite or gelatin. However, a significant increase in MEF adhesion and proliferation was observed when both additives were introduced into the scaffold. Such modified composite scaffolds provide a new and better platform to study wound healing, bone and other tissue regeneration, as well as artificial organ bioengineering. This system can further be applied to establish experimental models to study cell-substrate interactions, cell migration and other complex processes, which may be difficult to address using the conventional two-dimensional culture systems. PMID:24772332

  13. Clinical validation of coronal and sagittal spinal curve measurements based on three-dimensional vertebra vector parameters.

    PubMed

    Somoskeöy, Szabolcs; Tunyogi-Csapó, Miklós; Bogyó, Csaba; Illés, Tamás

    2012-10-01

    For many decades, visualization and evaluation of three-dimensional (3D) spinal deformities have only been possible by two-dimensional (2D) radiodiagnostic methods, and as a result, characterization and classification were based on 2D terminologies. Recent developments in medical digital imaging and 3D visualization techniques including surface 3D reconstructions opened a chance for a long-sought change in this field. Supported by a 3D Terminology on Spinal Deformities of the Scoliosis Research Society, an approach for 3D measurements and a new 3D classification of scoliosis yielded several compelling concepts on 3D visualization and new proposals for 3D classification in recent years. More recently, a new proposal for visualization and complete 3D evaluation of the spine by 3D vertebra vectors has been introduced by our workgroup, a concept, based on EOS 2D/3D, a groundbreaking new ultralow radiation dose integrated orthopedic imaging device with sterEOS 3D spine reconstruction software. Comparison of accuracy, correlation of measurement values, intraobserver and interrater reliability of methods by conventional manual 2D and vertebra vector-based 3D measurements in a routine clinical setting. Retrospective, nonrandomized study of diagnostic X-ray images created as part of a routine clinical protocol of eligible patients examined at our clinic during a 30-month period between July 2007 and December 2009. In total, 201 individuals (170 females, 31 males; mean age, 19.88 years) including 10 healthy athletes with normal spine and patients with adolescent idiopathic scoliosis (175 cases), adult degenerative scoliosis (11 cases), and Scheuermann hyperkyphosis (5 cases). Overall range of coronal curves was between 2.4 and 117.5°. Analysis of accuracy and reliability of measurements was carried out on a group of all patients and in subgroups based on coronal plane deviation: 0 to 10° (Group 1; n=36), 10 to 25° (Group 2; n=25), 25 to 50° (Group 3; n=69), 50 to 75° (Group 4; n=49), and above 75° (Group 5; n=22). All study subjects were examined by EOS 2D imaging, resulting in anteroposterior (AP) and lateral (LAT) full spine, orthogonal digital X-ray images, in standing position. Conventional coronal and sagittal curvature measurements including sagittal L5 vertebra wedges were determined by 3 experienced examiners, using traditional Cobb methods on EOS 2D AP and LAT images. Vertebra vector-based measurements were performed as published earlier, based on computer-assisted calculations of corresponding spinal curvature. Vertebra vectors were generated by dedicated software from sterEOS 3D spine models reconstructed from EOS 2D images by the same three examiners. Manual measurements were performed by each examiner, thrice for sterEOS 3D reconstructions and twice for vertebra vector-based measurements. Means comparison t test, Pearson bivariate correlation analysis, reliability analysis by intraclass correlation coefficients for intraobserver reproducibility and interrater reliability were performed using SPSS v16.0 software. In comparison with manual 2D methods, only small and nonsignificant differences were detectable in vertebra vector-based curvature data for coronal curves and thoracic kyphosis, whereas the found difference in L1-L5 lordosis values was shown to be strongly related to the magnitude of corresponding L5 wedge. Intraobserver reliability was excellent for both methods, and interrater reproducibility was consistently higher for vertebra vector-based methods that was also found to be unaffected by the magnitude of coronal curves or sagittal plane deviations. Vertebra vector-based angulation measurements could fully substitute conventional manual 2D measurements, with similar accuracy and higher intraobserver reliability and interrater reproducibility. Vertebra vectors represent a truly 3D solution for clear and comprehensible 3D visualization of spinal deformities while preserving crucial parametric information for vertebral size, 3D position, orientation, and rotation. The concept of vertebra vectors may serve as a starting point to a valid and clinically useful alternative for a new 3D classification of scoliosis. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Vertical heterostructures of MoS2 and graphene nanoribbons grown by two-step chemical vapor deposition for high-gain photodetectors.

    PubMed

    Yunus, Rozan Mohamad; Endo, Hiroko; Tsuji, Masaharu; Ago, Hiroki

    2015-10-14

    Heterostructures of two-dimensional (2D) layered materials have attracted growing interest due to their unique properties and possible applications in electronics, photonics, and energy. Reduction of the dimensionality from 2D to one-dimensional (1D), such as graphene nanoribbons (GNRs), is also interesting due to the electron confinement effect and unique edge effects. Here, we demonstrate a bottom-up approach to grow vertical heterostructures of MoS2 and GNRs by a two-step chemical vapor deposition (CVD) method. Single-layer GNRs were first grown by ambient pressure CVD on an epitaxial Cu(100) film, followed by the second CVD process to grow MoS2 over the GNRs. The MoS2 layer was found to grow preferentially on the GNR surface, while the coverage could be further tuned by adjusting the growth conditions. The MoS2/GNR nanostructures show clear photosensitivity to visible light with an optical response much higher than that of a 2D MoS2/graphene heterostructure. The ability to grow a novel 1D heterostructure of layered materials by a bottom-up CVD approach will open up a new avenue to expand the dimensionality of the material synthesis and applications.

  15. Rational growth of Bi2S3 nanotubes from quasi-two-dimensional precursors.

    PubMed

    Ye, Changhui; Meng, Guowen; Jiang, Zhi; Wang, Yinhai; Wang, Guozhong; Zhang, Lide

    2002-12-25

    Synthesis of Bi2S3 nanotubes from rolling of the quasi-two-dimensional (2-D) layered precursor represents new progress in the synthetic approach and adds new members to the present inorganic fullerene family. These nanotubes display multiwalled structures that resemble that of a multiwalled carbon nanotube. The successful synthesis of Bi2S3 nanotubes highlights the feasibility of inorganic fullerene-like structures from other chemicals that possess layered crystalline structures, not only the well-known 2-D family, but possibly also those quasi-2-D members.

  16. Quantitative analysis of amygdalin and prunasin in Prunus serotina Ehrh. using (1) H-NMR spectroscopy.

    PubMed

    Santos Pimenta, Lúcia P; Schilthuizen, Menno; Verpoorte, Robert; Choi, Young Hae

    2014-01-01

    Prunus serotina is native to North America but has been invasively introduced in Europe since the seventeenth century. This plant contains cyanogenic glycosides that are believed to be related to its success as an invasive plant. For these compounds, chromatographic- or spectrometric-based (targeting on HCN hydrolysis) methods of analysis have been employed so far. However, the conventional methods require tedious preparation steps and a long measuring time. To develop a fast and simple method to quantify the cyanogenic glycosides, amygdalin and prunasin in dried Prunus serotina leaves without any pre-purification steps using (1) H-NMR spectroscopy. Extracts of Prunus serotina leaves using CH3 OH-d4 and KH2 PO4 buffer in D2 O (1:1) were quantitatively analysed for amygdalin and prunasin using (1) H-NMR spectroscopy. Different internal standards were evaluated for accuracy and stability. The purity of quantitated (1) H-NMR signals was evaluated using several two-dimensional NMR experiments. Trimethylsilylpropionic acid sodium salt-d4 proved most suitable as the internal standard for quantitative (1) H-NMR analysis. Two-dimensional J-resolved NMR was shown to be a useful tool to confirm the structures and to check for possible signal overlapping with the target signals for the quantitation. Twenty-two samples of P. serotina were subsequently quantitatively analysed for the cyanogenic glycosides prunasin and amygdalin. The NMR method offers a fast, high-throughput analysis of cyanogenic glycosides in dried leaves permitting simultaneous quantification and identification of prunasin and amygdalin in Prunus serotina. Copyright © 2013 John Wiley & Sons, Ltd.

  17. Differentiating two- from three-dimensional mental rotation training effects.

    PubMed

    Moreau, David

    2013-01-01

    Block videogame training has consistently demonstrated transfer effects to mental rotation tasks, yet how variations in training influence performance with different stimuli remains unclear. In this study, participants took mental rotation assessments before and after a 3-week training programme based on 2D or 3D block videogames. Assessments varied in terms of dimensionality (2D or 3D) and stimulus type (polygon or body). Increases in videogame scores throughout training were correlated with mental rotation improvements. In particular, 2D training led to improvements in 2D tasks, whereas 3D training led to improvements in both 2D and 3D tasks. This effect did not depend on stimulus type, demonstrating that training can transfer to different stimuli of identical dimensionality. Interestingly, traditional gender differences in 3D mental rotation tasks vanished after 3D videogame training, highlighting the malleability of mental rotation ability given adequate training. These findings emphasize the influence of dimensionality in transfer effects and offer promising perspectives to reduce differences in mental rotation via designed training programmes.

  18. Application of Combined Two-Dimensional and Three-Dimensional Transvaginal Contrast Enhanced Ultrasound in the Diagnosis of Endometrial Carcinoma

    PubMed Central

    Zhou, Hui-li; Xiang, Hong; Duan, Li; Shahai, Gulinaer; Liu, Hui; Li, Xiang-hong; Mou, Rui-xue

    2015-01-01

    Objective. The goal of this study was to explore the clinical value of combining two-dimensional (2D) and three-dimensional (3D) transvaginal contrast-enhanced ultrasounds (CEUS) in diagnosis of endometrial carcinoma (EC). Methods. In this prospective diagnostic study, transvaginal 2D and 3D CEUS were performed on 68 patients with suspected EC, and the results of the obtained 2D-CEUS and 3D-CEUS images were compared with the gold standard for statistical analysis. Results. 2D-CEUS benign endometrial lesions showed the normal uterine perfusion phase while EC cases showed early arrival and early washout of the contrast agent and nonuniform enhancement. The 3D-CEUS images differed in central blood vessel manifestation, blood vessel shape, and vascular pattern between benign and malignant endometrial lesions (P < 0.05). Sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of transvaginal 2D-CEUS and 2D-CEUS combined with 3D-CEUS for diagnosis of benign and malignant endometrial lesions were 76.9%, 73.8%, 64.5%, 83.8%, and 75.0% and 84.6%, 83.3%, 75.9%, 89.7%, and 83.8%, respectively. Conclusion. 3D-CEUS is a useful supplement to 2D-CEUS and can clearly reveal the angioarchitecture spatial relationships between vessels and depth of myometrial invasion in EC. The combined use of 2D and 3D-CEUS can offer direct, accurate, and comprehensive diagnosis of early EC. PMID:26090396

  19. Differentiating Fragmentation Pathways of Cholesterol by Two-Dimensional Fourier Transform Ion Cyclotron Resonance Mass Spectrometry.

    PubMed

    van Agthoven, Maria A; Barrow, Mark P; Chiron, Lionel; Coutouly, Marie-Aude; Kilgour, David; Wootton, Christopher A; Wei, Juan; Soulby, Andrew; Delsuc, Marc-André; Rolando, Christian; O'Connor, Peter B

    2015-12-01

    Two-dimensional Fourier transform ion cyclotron resonance mass spectrometry is a data-independent analytical method that records the fragmentation patterns of all the compounds in a sample. This study shows the implementation of atmospheric pressure photoionization with two-dimensional (2D) Fourier transform ion cyclotron resonance mass spectrometry. In the resulting 2D mass spectrum, the fragmentation patterns of the radical and protonated species from cholesterol are differentiated. This study shows the use of fragment ion lines, precursor ion lines, and neutral loss lines in the 2D mass spectrum to determine fragmentation mechanisms of known compounds and to gain information on unknown ion species in the spectrum. In concert with high resolution mass spectrometry, 2D Fourier transform ion cyclotron resonance mass spectrometry can be a useful tool for the structural analysis of small molecules. Graphical Abstract ᅟ.

  20. Two-Dimensional Micro-/Nanoradian Angle Generator with High Resolution and Repeatability Based on Piezo-Driven Double-Axis Flexure Hinge and Three Capacitive Sensors.

    PubMed

    Tan, Xinran; Zhu, Fan; Wang, Chao; Yu, Yang; Shi, Jian; Qi, Xue; Yuan, Feng; Tan, Jiubin

    2017-11-19

    This study presents a two-dimensional micro-/nanoradian angle generator (2D-MNAG) that achieves high angular displacement resolution and repeatability using a piezo-driven flexure hinge for two-dimensional deflections and three capacitive sensors for output angle monitoring and feedback control. The principal error of the capacitive sensor for precision microangle measurement is analyzed and compensated for; so as to achieve a high angle output resolution of 10 nrad (0.002 arcsec) and positioning repeatability of 120 nrad (0.024 arcsec) over a large angular range of ±4363 μrad (±900 arcsec) for the 2D-MNAG. The impact of each error component, together with the synthetic error of the 2D-MNAG after principal error compensation are determined using Monte Carlo simulation for further improvement of the 2D-MNAG.

Top