Sample records for conventional waste management

  1. Achievements and Perspectives of the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Louvat, D.; Lacoste, A.C.

    The Joint Convention on the Safety of Spent Fuel management and on the Safety of Radioactive Waste Management is the first legal instrument to directly address the safety of spent fuel and radioactive waste management on a global scale. The Joint Convention entered into force in 2001. This paper describes its process and its main achievements to date. The perspectives to establish of a Global Waste Safety Regime based on the Joint Convention are also discussed. (authors)

  2. Slovenian Experience with the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stritar, A.

    Slovenia is a relatively small European country with only one operating nuclear power plant, one operating research reactor and one Central Interim Storage for Radioactive Waste from small producers. There are also a uranium mine and mill at Zirovski vrh, both in the decommissioning stage. The Slovenian Government, its public and neighboring countries are most interested in the managing of radioactive waste in the safest possible way by carefully utilizing best practices and existing human and financial resources. In order to achieve this goal the tight connection with the international community in the area of radioactive waste management is essential.more » Slovenia was among those countries involved in the process of preparation of the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management (Joint Convention) from the very beginning and was also among first ratifiers. Slovenia had prepared the first report under the Convention and took part in the first Review Meeting in November 2003. The preparation of this report was not regarded only as a fulfillment of obligation toward Joint Convention, but was considered primarily as a kind of self appraisal of the national radioactive management program. Therefore the preparation of the report primarily contributed to the improvements in the field of radioactive waste management and consequently enhanced the safety of our public. For the preparation of the second report for the review meeting in 2006 it was decided to follow the structure of the first report. Only updates were introduced and eventual changes in the area of radioactive waste management were reflected. (authors)« less

  3. The Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Risoluti, P.

    The Joint Convention on the Safety of Spent Fuel Management and the Safety of Radioactive Waste Management (the Joint Convention) is the only legally binding international treaty in the area of radioactive waste management. It was adopted by a Diplomatic Conference in September 1997 and opened for signature on 29 September 1997. The Convention entered into force on 18 June 1998, and to date (September 04) has been signed by 42 States, of which 34 have formally ratified, thus becoming Contracting Parties. The Joint Convention applies to spent fuel and radioactive waste resulting from civilian application. Its principal aim ismore » to achieve and maintain a high degree of safety in their management worldwide. The Convention is an incentive instrument, not designed to ensure fulfillment of obligations through control and sanction, but by a peer pressure. The obligations of the Contracting Parties are mainly based on the international safety standards developed by the IAEA in past decades. The Convention is intended for all countries generating radioactive waste. Therefore it is relevant not only for those using nuclear power, but for any country where application of nuclear energy in medicine, conventional industry and research is currently used. Obligations of Contracting Parties include attending periodic Review Meetings and prepare National Reports for review by the other Contracting Parties. The National Reports should describe how the country is complying with the requirements of the Articles of the Convention. The first such meeting was held at the IAEA headquarters in November 2003. This paper will describe the origin of the Convention, present its content, the expected outcome for the worldwide safety, and the benefits for a country to be part of it.« less

  4. Assessment for the management of NORM wastes in conventional hazardous and nonhazardous waste landfills.

    PubMed

    Mora, Juan C; Baeza, Antonio; Robles, Beatriz; Sanz, Javier

    2016-06-05

    Naturally Occurring Radioactive Materials (NORM) wastes are generated in huge quantities in several industries and their management has been carried out under considerations of industrial non-radioactive wastes, before the concern on the radioactivity content was included in the legislation. Therefore these wastes were conditioned using conventional methods and the waste disposals were designed to isolate toxic elements from the environment for long periods of time. Spanish regulation for these conventional toxic waste disposals includes conditions that assure adequate isolation to minimize the impact of the wastes to the environment in present and future conditions. After 1996 the radiological impact of the management of NORM wastes is considered and all the aspects related with natural radiations and the radiological control regarding the management of residues from NORM industries were developed in the new regulation. One option to be assessed is the disposal of NORM wastes in hazardous and non-hazardous waste disposals, as was done before this new regulation. This work analyses the management of NORM wastes in these landfills to derive the masses that can be disposed without considerable radiological impact. Generic dose assessments were carried out under highly conservative hypothesis and a discussion on the uncertainty and variability sources was included to provide consistency to the calculations. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Solid Waste Management with Emphasis on Environmental Aspect

    NASA Astrophysics Data System (ADS)

    Sinha, Navin Kr.; Choudhary, Binod Kumar; Shree, Shalini

    2011-12-01

    In this paper focus on Solid waste management. Its comprises of purposeful and systematic control of generation, storage, collection, transport, separations, processing, recycling, recovery and disposal of solid waste. Awareness of Four R's management & EMS support also for management Solid waste. Basel convention on the Control of transboundary movements of hazardous wastes and their Disposal usually known simply as the Basel Convention, is an international treaty that was designed to reduce the movements of hazardous waste between nations, and specifically to prevent transfer of hazardous waste from developed to less developed countries (LDCs). it came into force 5 May 1992. According to this "Substances or objects which are disposed of or are intended to be disposed of or are required to be disposed of by the provisions of national law"(UNEP).

  6. Government of Canada Initiatives in Support of the Joint Convention

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, P.A.; Metcalfe, D.E.; Lojk, R.

    The Government of Canada strongly supported international efforts to bring into force the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management (the Joint Convention), and was the second country to ratify it. The Joint Convention places a number of obligations on Contracting Parties aimed at achieving and maintaining a high level of safety worldwide in spent fuel and radioactive waste management, ensuring that effective defenses against potential hazards are in place during all management stages, preventing accidents with radiological consequences and mitigating their consequences should they occur. In addition to establishingmore » and maintaining a modem regulatory framework and an independent regulatory body through the 2000 Nuclear Safety and Control Act, the Government of Canada has implemented a number of initiatives that address its responsibilities and serve to further enhance Canada's compliance with the Joint Convention. For nuclear fuel waste, the Government of Canada brought into force the Nuclear Fuel Waste Act in 2002 to require waste owners to develop, fund, organize and implement a long-term solution for Canada's nuclear fuel waste. The Act clearly reserves for Government the decision on the solution to be implemented in the best interests of Canadians, as well as oversight to ensure that waste owners are fulfilling their responsibilities. In the case of low-level radioactive waste, long-term solutions are being developed to ensure the protection of health, safety, and the environment, both now and in the future. Regarding uranium mine and mill tailings, current operators have state-of-the-art waste management facilities in place. The Government of Canada works with provincial governments to ensure that any potential abandoned or legacy mines sites where no owner can be held responsible are safely decommissioned and managed over the long term. (authors)« less

  7. Transboundary hazardous waste management. Part I: Waste management policy of importing countries.

    PubMed

    Fan, Kuo-Shuh; Chang, Tien Chin; Ni, Shih-Piao; Lee, Ching-Hwa

    2005-12-01

    Mixed metal-containing waste, polychlorinated biphenyls (PCB) containing capacitors, printed circuit boards, steel mill dust and metal sludge were among the most common wastes exported from Taiwan. Before the implementation of the self-monitoring model programme of the Basel Convention (secretariat of the Basel Convention 2001) in the Asia region, Taiwan conducted a comprehensive 4-year follow-up project involving government authorities and the waste disposal facilities of the importing countries. A total of five countries and nine plants were visited in 2001-2002. The following outcomes can be drawn from these investigations. The Chinese government adopts the strategies of 'on-site processing' and 'relative centralization' on the waste management by tightening permitting and increasing site inspection. A three-level reviewing system is adopted for the import application. The United States have not signed the Basel Convention yet; the procedures of hazardous waste import rely on bilateral agreements. Importers are not required to provide official notification from the waste exporting countries. The operation, administration, monitoring and licensing of waste treatment plants are governed by the state environmental bureau. Finland, France and Belgium are members of the European Union. The procedures and policies of waste import are similar. All of the documents associated with transboundary movement require the approval of each government involved. Practically, the notification forms and tracking forms effectively manage the waste movement.

  8. The impact of council directive 2011/70/EURATOM and IAEA joint convention review meetings on the ongoing establishment of the Portuguese regulatory framework and on the future of national radioactive waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paiva, Isabel; Trindade, Romao B.

    Council Directive 2011/70/EURATOM of 19 July 2011, establishing a Community framework for the responsible and safe management of spent fuel and radioactive waste will enter in force August 2013 in all EU Member States. Portugal has already started preparing its legislative framework to accommodate the new legislative piece. However, the first report of Portugal to the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management of the IAEA, in Vienna, 2012, has shown that Portugal still has many steps to overcome to establish a successful and effective basic regulatory framework. The existencemore » of many competent authorities related to the radiological protection area and a newly independent commission that is still looking on how to fulfill its regulator role in other areas such as the radioactive waste management makes quite challenging the full application of the new directive as well as compliance that Portugal will have to show in the next Joint Convention review meeting in order to meet the obligations of the Convention. In this paper, the reality of the regulatory Portuguese framework on radiological protection, nuclear safety and radioactive waste management is presented. Discussion of the future impact of the new legislation and its consequences such as the need to setup the national program on radioactive waste management is critical discussed. (authors)« less

  9. FSILP: fuzzy-stochastic-interval linear programming for supporting municipal solid waste management.

    PubMed

    Li, Pu; Chen, Bing

    2011-04-01

    Although many studies on municipal solid waste management (MSW management) were conducted under uncertain conditions of fuzzy, stochastic, and interval coexistence, the solution to the conventional linear programming problems of integrating fuzzy method with the other two was inefficient. In this study, a fuzzy-stochastic-interval linear programming (FSILP) method is developed by integrating Nguyen's method with conventional linear programming for supporting municipal solid waste management. The Nguyen's method was used to convert the fuzzy and fuzzy-stochastic linear programming problems into the conventional linear programs, by measuring the attainment values of fuzzy numbers and/or fuzzy random variables, as well as superiority and inferiority between triangular fuzzy numbers/triangular fuzzy-stochastic variables. The developed method can effectively tackle uncertainties described in terms of probability density functions, fuzzy membership functions, and discrete intervals. Moreover, the method can also improve upon the conventional interval fuzzy programming and two-stage stochastic programming approaches, with advantageous capabilities that are easily achieved with fewer constraints and significantly reduces consumption time. The developed model was applied to a case study of municipal solid waste management system in a city. The results indicated that reasonable solutions had been generated. The solution can help quantify the relationship between the change of system cost and the uncertainties, which could support further analysis of tradeoffs between the waste management cost and the system failure risk. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. E-waste issues in Sri Lanka and the Basel Convention.

    PubMed

    Suraweera, Inoka

    2016-03-01

    E-waste is hazardous, complex and expensive to treat in an environmentally sound manner. The management of e-waste is considered a serious challenge in both developed and developing countries and Sri Lanka is no exception. Due to significant growth in the economy and investments and other reasons the consumption of electronic and electrical equipment in Sri Lanka has increased over the years resulting in significant generation of e-waste. Several initiatives such as introduction of hazardous waste management rules, ratification of the Basel Convention in 1992 and the introduction of a National Corporate E-waste Management Program have been undertaken in Sri Lanka to manage e-waste. Strengthening policy and legislation, introducing methods for upstream reduction of e-waste, building capacity of relevant officers, awareness raising among school children and the general public and development of an e-waste information system are vital. Research on e-waste needs to be developed in Sri Lanka. The health sector could play a leading role in the provision of occupational health and safety for e-waste workers, advocacy, capacity building of relevant staff and raising awareness among the general public about e-waste. Improper e-waste management practices carried out by informal sector workers need to be addressed urgently in Sri Lanka.

  11. The Joint Convention on the Safety of Spent fuel Management and on the safety of Radioactive Waste Management: A UK Regulator's Perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lacey, D.; Bacon, M.L.

    The UK fully supports the objective of the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management to achieve and maintain a high level of safety worldwide in spent fuel and radioactive waste management, through the enhancement of national measures and international co-operation, including where appropriate, safety-related co-operation. The UK's Health and Safety Executive, through its Nuclear Safety Directorate (NSD), has been committed to the Convention since the initial negotiations to set up the Convention and provided the president of the first review meeting in 2003. It would be wrong of anymore » nation to believe that they have all the best solutions to managing spent fuel and radioactive waste. The process of compiling reports for the Convention review meetings provides a structured process through which every contracting party can review its provisions against a common set of standards and identify for itself possible areas of improvements. The sharing of reports and the asking and answering of questions then provides a further opportunity for both sharing of experience and learning. The UK was encouraged by the spirit of constructive discussion rather than negative criticism that pervaded the first review meeting that provided an incentive for all to learn and improve. While, as could be expected of the first meeting of such a group, not everything worked as well as could be hoped for, all parties seemed committed to learn from mistakes and to make the process more effective. Lessons were learned from the Nuclear Safety Convention on the process of submitting reports electronically and the UK actively supported aims to use IAEA requirements documents as an additional focus for reports. This should, we hope, provide for even better benchmarking of achievements and provide feedback for improvements of the IAEA requirements where appropriate. In summary, the UK finds the Joint Convention process to be a very positive one that can only improve the worldwide standards of safety in spent fuel and radioactive waste management. (authors)« less

  12. Delineating site-specific irrigation management units for managing soil salinity

    USDA-ARS?s Scientific Manuscript database

    Crop yield varies within fields due to nonuniformity of a number of factors including climate, pests, disease, management, topography, and soil. Conventional farming manages a field uniformly; as a result, conventional farming tends to wastes resources and money, and tends to detrimentally impact t...

  13. The Management of the Radioactive Waste Generated by Cernavoda NPP, Romania, an Example of International Cooperation - 13449

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barariu, Gheorghe

    2013-07-01

    The design criteria and constraints for the development of the management strategy for radioactive waste generated from operating and decommissioning of CANDU Nuclear Units from Cernavoda NPP in Romania, present many specific aspects. The main characteristics of CANDU type waste are its high concentrations of tritium and radiocarbon. Also, the existing management strategy for radioactive waste at Cernavoda NPP provides no treatment or conditioning for radioactive waste disposal. These characteristics embodied a challenging effort, in order to select a proper strategy for radioactive waste management at present, when Romania is an EU member and a signatory country of the Jointmore » Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management. The helping of advanced countries in radioactive waste management, directly or into the frame of the international organizations, like IAEA, become solve the aforementioned challenges at adequate level. (authors)« less

  14. The Joint Convention - Its Structure, the Articles and its Administration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Metcalf, P.; Louvat, D.

    The objective of the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management (The Joint Convention) is to achieve a high level of safety worldwide in the management of spent nuclear and fuel and radioactive waste. [1] It is an incentive convention designed to encourage and assist countries to achieve the objective. Contracting Parties to the Joint Convention are required to compile and submit a national report on how they meet the articles of the Joint Convention. The reports are peer reviewed by other Contracting Parties to the Joint Convention and thenmore » countries have to defend the report at a review meeting of all the Contracting Parties. The process entails both a self appraisal in compiling the report and independent international peer review. Summaries are compiled of the various reviews and these are presented in plenary, with a view to identifying generic issues and areas in which countries are improving safety or have identified for further development. The process also presents an opportunity for countries involved to benchmark their national spent fuel and radioactive waste safety programmes against prevailing international practice. The paper elaborates the detailed elements involved and discusses the experience from the first review meeting of Contracting Parties, and issues envisaged for consideration at the second review meeting scheduled for May 2006. (authors)« less

  15. Waste electrical and electronic equipment management and Basel Convention compliance in Brazil, Russia, India, China and South Africa (BRICS) nations.

    PubMed

    Ghosh, Sadhan Kumar; Debnath, Biswajit; Baidya, Rahul; De, Debashree; Li, Jinhui; Ghosh, Sannidhya Kumar; Zheng, Lixia; Awasthi, Abhishek Kumar; Liubarskaia, Maria A; Ogola, Jason S; Tavares, André Neiva

    2016-08-01

    Brazil, Russia, India, China and South Africa (BRICS) nations account for one-quarter of the world's land area, having more than 40% of the world's population, and only one-quarter of the world gross national income. Hence the study and review of waste electrical and electronic equipment management systems in BRICS nations is of relevance. It has been observed from the literature that there are studies available comparing two or three country's waste electrical and electronic equipment status, while the study encompassing the BRICS nations considering in a single framework is scant. The purpose of this study is to analyse the existing waste electrical and electronic equipment management systems and status of compliance to Basel convention in the BRICS nations, noting possible lessons from matured systems, such as those in the European Union EU) and USA. The study introduced a novel framework for a waste electrical and electronic equipment management system that may be adopted in BRICS nations and revealed that BRICS countries have many similar types of challenges. The study also identified some significant gaps with respect to the management systems and trans-boundary movement of waste electrical and electronic equipment, which may attract researchers for further research. © The Author(s) 2016.

  16. General survey of solid-waste management

    NASA Technical Reports Server (NTRS)

    Reese, T. G.; Wadle, R. C.

    1974-01-01

    Potential ways of providing solid-waste management for a building complex serviced by a modular integrated utility system (MIUS) were explored. Literature surveys were conducted to investigate both conventional and unusual systems to serve this purpose. The advantages and disadvantages of the systems most compatible with MIUS are discussed.

  17. Review of Waste Management Symposium 2007, Tucson, AZ, USA

    DOE PAGES

    Luna, Robert E.; Yoshimura, R. H.

    2007-03-01

    The Waste Management Symposium 2007 is the most recent in a long series that has been held at Tucson, Arizona. The meeting has become extremely popular as a venue for technical exchange, marketing, and networking involving upward of 1800 persons involved with various aspects of radioactive waste management. However, in a break with tradition, the symposium organizers reported that next year’s Waste Management Symposium would be held at the Phoenix, AZ convention center. Additionally, most of the WM07 sessions dealt with the technical and institutional issues relating to the resolution of waste disposal and processing challenges, including a number ofmore » sessions dealing with related transport activities.« less

  18. WASTE AND WATER MANAGEMENT FOR CONVENTIONAL COAL COMBUSTION: ASSESSMENT REPORT - 1979. VOLUME V. DISPOSAL OF FGC (FLUE GAS CLEANING) WASTES

    EPA Science Inventory

    The report, the fifth of five volumes, focuses on disposal of coal ash and FGD wastes which (together) comprise FGC wastes. The report assesses the various options for the disposal of FGC wastes with emphasis on disposal on land. A number of technical, economic, and regulatory fa...

  19. Current perspectives on biomedical waste management: Rules, conventions and treatment technologies.

    PubMed

    Capoor, Malini R; Bhowmik, Kumar Tapas

    2017-01-01

    Unregulated biomedical waste management (BMWM) is a public health problem. This has posed a grave threat to not only human health and safety but also to the environment for the current and future generations. Safe and reliable methods for handling of biomedical waste (BMW) are of paramount importance. Effective BMWM is not only a legal necessity but also a social responsibility. This article reviews the current perspectives on BMWM and rules, conventions and the treatment technologies used worldwide. BMWM should ideally be the subject of a national strategy with dedicated infrastructure, cradle-to-grave legislation, competent regulatory authority and trained personnel. Improving the management of biomedical waste begins with waste minimisation. These standards, norms and rules on BMWM in a country regulate the disposal of various categories of BMW to ensure the safety of the health-care workers, patients, public and environment. Furthermore, developing models for the monitoring of hospital health-care waste practices and research into non-burn eco-friendly sustainable technologies, recycling and polyvinyl chloride-free devices will go in long way for safe carbon environment. Globally, greater research in BMWM is warranted to understand its growing field of public health importance.

  20. Comparative Risk Analysis for Metropolitan Solid Waste Management Systems

    NASA Astrophysics Data System (ADS)

    Chang, Ni-Bin; Wang, S. F.

    1996-01-01

    Conventional solid waste management planning usually focuses on economic optimization, in which the related environmental impacts or risks are rarely considered. The purpose of this paper is to illustrate the methodology of how optimization concepts and techniques can be applied to structure and solve risk management problems such that the impacts of air pollution, leachate, traffic congestion, and noise increments can be regulated in the iong-term planning of metropolitan solid waste management systems. Management alternatives are sequentially evaluated by adding several environmental risk control constraints stepwise in an attempt to improve the management strategies and reduce the risk impacts in the long run. Statistics associated with those risk control mechanisms are presented as well. Siting, routing, and financial decision making in such solid waste management systems can also be achieved with respect to various resource limitations and disposal requirements.

  1. Waste management CDM projects barriers NVivo 10® qualitative dataset.

    PubMed

    Bufoni, André Luiz; de Sousa Ferreira, Aracéli Cristina; Oliveira, Luciano Basto

    2017-12-01

    This article contains one NVivo 10® file with the complete 432 projects design documents (PDD) of seven waste management sector industries registered as Clean Development Mechanism (CDM) under United Nations Framework Convention on Climate Change (UNFCCC) Kyoto Protocol Initiative from 2004 to 2014. All data analyses and sample statistics made during the research remain in the file. We coded PDDs in 890 fragments of text, classified in five categories of barriers (nodes): technological, financial, human resources, regulatory, socio-political. The data supports the findings of author thesis [1] and other two indexed publication in Waste Management Journal: "The financial attractiveness assessment of large waste management projects registered as clean development mechanism" and "The declared barriers of the large developing countries waste management projects: The STAR model" [2], [3]. The data allows any computer assisted qualitative content analysis (CAQCA) on the sector and it is available at Mendeley [4].

  2. Impact of the Munitions Rule on management of military chemical warfare agents and associated waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimmell, T.A.; Green, D.R.; Rosenblatt, D.H.

    1997-07-01

    The Federal Facility Compliance Act (FFCA), an amendment to the Resource Conservation and Recovery Act (RCRA), was signed by President Bush on October 6, 1992. Section 107 of the FFCA amended RCRA by adding a new Section 3004(y) that required the US Environmental Protection Agency (EPA) to develop, after consultation with the US Department of Defense (DOD) and appropriate state officials, regulations that identify when conventional and chemical munitions become hazardous waste and that provide for the safe transportation and storage of these wastes. The Military Munitions Rule (MMR) was proposed by EPA on November 8, 1995. The impact ofmore » the MMR on the management of military chemical warfare agents and associated waste is an important topic. There has been significant controversy regarding the disposition, under RCRA, of military chemical stockpile materials, and the MMR, in addition to issues with respect to conventional munitions, was expected to clarify the applicability of RCRA in these situations. The purpose of this paper is to review the applicability of the RCRA regulations to military chemical munitions that become waste and to discuss the impacts of the final MMR on the management of these wastes. The focus is on selected chemical agents that are part of the US chemical stockpile.« less

  3. Report: transboundary hazardous waste management. part II: performance auditing of treatment facilities in importing countries.

    PubMed

    Chang, Tien-Chin; Ni, Shih-Piao; Fan, Kuo-Shuh; Lee, Ching-Hwa

    2006-06-01

    Before implementing the self-monitoring model programme of the Basel Convention in the Asia, Taiwan has conducted a comprehensive 4-year follow-up project to visit the governmental authorities and waste-disposal facilities in the countries that import waste from Taiwan. A total of nine treatment facilities, six of which are reported in this paper, and the five countries where the plants are located were visited in 2001-2002. France, Belgium and Finland primarily handled polychlorinated biphenyl capacitors, steel mill dust and metal waste. The United States accepted metal sludge, mainly electroplating sludge, from Taiwan. Waste printed circuit boards, waste wires and cables, and a mixture of waste metals and electronics were the major items exported to China. Relatively speaking, most treatment plants for hazardous waste paid close attention to environmental management, such as pollution control and monitoring, site zoning, system management regarding occupational safety and hygiene, data management, permits application, and image promotion. Under the tight restrictions formulated by the central environment agency, waste treatment plants in China managed the environmental issues seriously. For example, one of the treatment plants had ISO 14001 certification. It is believed that with continuous implementation of regulations, more improvement is foreseeable. Meanwhile, Taiwan and China should also continuously enhance their collaboration regarding the transboundary management of hazardous waste.

  4. A case-study of landfill minimization and material recovery via waste co-gasification in a new waste management scheme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanigaki, Nobuhiro, E-mail: tanigaki.nobuhiro@eng.nssmc.com; Ishida, Yoshihiro; Osada, Morihiro

    Highlights: • A new waste management scheme and the effects of co-gasification of MSW were assessed. • A co-gasification system was compared with other conventional systems. • The co-gasification system can produce slag and metal with high-quality. • The co-gasification system showed an economic advantage when bottom ash is landfilled. • The sensitive analyses indicate an economic advantage when the landfill cost is high. - Abstract: This study evaluates municipal solid waste co-gasification technology and a new solid waste management scheme, which can minimize final landfill amounts and maximize material recycled from waste. This new scheme is considered for amore » region where bottom ash and incombustibles are landfilled or not allowed to be recycled due to their toxic heavy metal concentration. Waste is processed with incombustible residues and an incineration bottom ash discharged from existent conventional incinerators, using a gasification and melting technology (the Direct Melting System). The inert materials, contained in municipal solid waste, incombustibles and bottom ash, are recycled as slag and metal in this process as well as energy recovery. Based on this new waste management scheme with a co-gasification system, a case study of municipal solid waste co-gasification was evaluated and compared with other technical solutions, such as conventional incineration, incineration with an ash melting facility under certain boundary conditions. From a technical point of view, co-gasification produced high quality slag with few harmful heavy metals, which was recycled completely without requiring any further post-treatment such as aging. As a consequence, the co-gasification system had an economical advantage over other systems because of its material recovery and minimization of the final landfill amount. Sensitivity analyses of landfill cost, power price and inert materials in waste were also conducted. The higher the landfill costs, the greater the advantage of the co-gasification system has. The co-gasification was beneficial for landfill cost in the range of 80 Euro per ton or more. Higher power prices led to lower operation cost in each case. The inert contents in processed waste had a significant influence on the operating cost. These results indicate that co-gasification of bottom ash and incombustibles with municipal solid waste contributes to minimizing the final landfill amount and has great possibilities maximizing material recovery and energy recovery from waste.« less

  5. Investigation of bioaerosols released from swine farms using conventional and alternative waste treatment and management technologies

    USGS Publications Warehouse

    Ko, G.; Simmons, O. D.; Likirdopulos, C.A.; Worley-Davis, L.; Williams, M.; Sobsey, M.D.

    2008-01-01

    Microbial air pollution from concentrated animal feeding operations (CAFOs) has raised concerns about potential public health and environmental impacts. We investigated the levels of bioaerosols released from two swine farms using conventional lagoon-sprayfield technology and ten farms using alternative waste treatment and management technologies in the United States. In total, 424 microbial air samples taken at the 12 CAFOs were analyzed for several indicator and pathogenic microorganisms, including culturable bacteria and fungi, fecal coliform, Escherichia coli, Clostridium perfringens, bacteriophage, and Salmonella. At all of the investigated farms, bacterial concentrations at the downwind boundary were higher than those at the upwind boundary, suggesting that the farms are sources of microbial air contamination. In addition, fecal indicator microorganisms were found more frequently near barns and treatment technology sites than upwind or downwind of the farms. Approximately 4.5% (19/424), 1.2% (5/424), 22.2% (94/424), and 12.3% (53/424) of samples were positive for fecal coliform, E. coli, Clostridium, and total coliphage, respectively. Based on statistical comparison of airborne fecal indicator concentrations at alternative treatment technology farms compared to control farms with conventional technology, three alternative waste treatment technologies appear to perform better at reducing the airborne release of fecal indicator microorganisms during on-farm treatment and management processes. These results demonstrate that airborne microbial contaminants are released from swine farms and pose possible exposure risks to farm workers and nearby neighbors. However, the release of airborne microorganisms appears to decrease significantly through the use of certain alternative waste management and treatment technologies. ?? 2008 American Chemical Society.

  6. Ceramic ware waste as coarse aggregate for structural concrete production.

    PubMed

    García-González, Julia; Rodríguez-Robles, Desirée; Juan-Valdés, Andrés; Morán-Del Pozo, Julia M; Guerra-Romero, M Ignacio

    2015-01-01

    The manufacture of any kind of product inevitably entails the production of waste. The quantity of waste generated by the ceramic industry, a very important sector in Spain, is between 5% and 8% of the final output and it is therefore necessary to find an effective waste recovery method. The aim of the study reported in the present article was to seek a sustainable means of managing waste from the ceramic industry through the incorporation of this type of waste in the total replacement of conventional aggregate (gravel) used in structural concrete. Having verified that the recycled ceramic aggregates met all the technical requirements imposed by current Spanish legislation, established in the Code on Structural Concrete (EHE-08), then it is prepared a control concrete mix and the recycled concrete mix using 100% recycled ceramic aggregate instead of coarse natural aggregate. The concretes obtained were subjected to the appropriate tests in order to conduct a comparison of their mechanical properties. The results show that the concretes made using ceramic sanitary ware aggregate possessed the same mechanical properties as those made with conventional aggregate. It is therefore possible to conclude that the reuse of recycled ceramic aggregate to produce recycled concrete is a feasible alternative for the sustainable management of this waste.

  7. Strategy of Construction and Demolition Waste Management after Chemical Industry Facilities Removal

    NASA Astrophysics Data System (ADS)

    Tashkinova, I. N.; Batrakova, G. M.; Vaisman, Ya I.

    2017-06-01

    Mixed waste products are generated in the process of irrelevant industrial projects’ removal if conventional techniques of their demolition and dismantling are applied. In Russia the number of unused chemical industry facilities including structures with high rate of wear is growing. In removing industrial buildings and production shops it is used conventional techniques of demolition and dismantling in the process of which mixed waste products are generated. The presence of hazardous chemicals in these wastes makes difficulties for their use and leads to the increasing volume of unutilized residues. In the process of chemical industry facilities’ removal this fact takes on special significance as a high level of hazardous chemicals in the waste composition demands for the realization of unprofitable measures aimed at ensuring environmental and industrial safety. The proposed strategy of managing waste originated from the demolition and dismantling of chemical industry facilities is based on the methodology of industrial metabolism which allows identifying separate material flows of recycled, harmful and ballast components, performing separate collection of components during removal and taking necessary preventive measures. This strategy has been tested on the aniline synthesis plant being in the process of removal. As a result, a flow of 10 wt. %, subjected to decontamination, was isolated from the total volume of construction and demolition waste (C&D waste). The considered approach allowed using the resource potential of more than 80wt. % of waste and minimizing the disposed waste volume.

  8. A case-study of landfill minimization and material recovery via waste co-gasification in a new waste management scheme.

    PubMed

    Tanigaki, Nobuhiro; Ishida, Yoshihiro; Osada, Morihiro

    2015-03-01

    This study evaluates municipal solid waste co-gasification technology and a new solid waste management scheme, which can minimize final landfill amounts and maximize material recycled from waste. This new scheme is considered for a region where bottom ash and incombustibles are landfilled or not allowed to be recycled due to their toxic heavy metal concentration. Waste is processed with incombustible residues and an incineration bottom ash discharged from existent conventional incinerators, using a gasification and melting technology (the Direct Melting System). The inert materials, contained in municipal solid waste, incombustibles and bottom ash, are recycled as slag and metal in this process as well as energy recovery. Based on this new waste management scheme with a co-gasification system, a case study of municipal solid waste co-gasification was evaluated and compared with other technical solutions, such as conventional incineration, incineration with an ash melting facility under certain boundary conditions. From a technical point of view, co-gasification produced high quality slag with few harmful heavy metals, which was recycled completely without requiring any further post-treatment such as aging. As a consequence, the co-gasification system had an economical advantage over other systems because of its material recovery and minimization of the final landfill amount. Sensitivity analyses of landfill cost, power price and inert materials in waste were also conducted. The higher the landfill costs, the greater the advantage of the co-gasification system has. The co-gasification was beneficial for landfill cost in the range of 80 Euro per ton or more. Higher power prices led to lower operation cost in each case. The inert contents in processed waste had a significant influence on the operating cost. These results indicate that co-gasification of bottom ash and incombustibles with municipal solid waste contributes to minimizing the final landfill amount and has great possibilities maximizing material recovery and energy recovery from waste. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Life cycle costing of waste management systems: Overview, calculation principles and case studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinez-Sanchez, Veronica, E-mail: vems@env.dtu.dk; Kromann, Mikkel A.; Astrup, Thomas Fruergaard

    2015-02-15

    Highlights: • We propose a comprehensive model for cost assessment of waste management systems. • The model includes three types of LCC: Conventional, Environmental and Societal LCCs. • The applicability of the proposed model is tested with two case studies. - Abstract: This paper provides a detailed and comprehensive cost model for the economic assessment of solid waste management systems. The model was based on the principles of Life Cycle Costing (LCC) and followed a bottom-up calculation approach providing detailed cost items for all key technologies within modern waste systems. All technologies were defined per tonne of waste input, andmore » each cost item within a technology was characterised by both a technical and an economic parameter (for example amount and cost of fuel related to waste collection), to ensure transparency, applicability and reproducibility. Cost items were classified as: (1) budget costs, (2) transfers (for example taxes, subsidies and fees) and (3) externality costs (for example damage or abatement costs related to emissions and disamenities). Technology costs were obtained as the sum of all cost items (of the same type) within a specific technology, while scenario costs were the sum of all technologies involved in a scenario. The cost model allows for the completion of three types of LCC: a Conventional LCC, for the assessment of financial costs, an Environmental LCC, for the assessment of financial costs whose results are complemented by a Life Cycle Assessment (LCA) for the same system, and a Societal LCC, for socio-economic assessments. Conventional and Environmental LCCs includes budget costs and transfers, while Societal LCCs includes budget and externality costs. Critical aspects were found in the existing literature regarding the cost assessment of waste management, namely system boundary equivalency, accounting for temporally distributed emissions and impacts, inclusions of transfers, the internalisation of environmental impacts and the coverage of shadow prices, and there was also significant confusion regarding terminology. The presented cost model was implemented in two case study scenarios assessing the costs involved in the source segregation of organic waste from 100,000 Danish households and the subsequent co-digestion of organic waste with animal manure. Overall, source segregation resulted in higher financial costs than the alternative of incinerating the organic waste with the residual waste: 1.6 M€/year, of which 0.9 M€/year was costs for extra bins and bags used by the households, 1.0 M€/year for extra collections and −0.3 M€/year saved on incineration.« less

  10. Recommended methods for the disposal of sanitary wastes from temporary field medical facilities.

    PubMed

    Reed, R A; Dean, P T

    1994-12-01

    Emergency field medical facilities constructed after a disaster are frequently managed by medical staff even though many of the day-to-day problems of hospital management are unrelated to medicine. In this paper we discuss the short-term management of one of these problems, namely the control and disposal of sanitary wastes. It is aimed at persons in the medical profession who may find themselves responsible for a temporary hospital and have little or no previous experience of managing such situations. The wastes commonly generated are excreta, sullage and refuse. In addition, surface water must also be considered because its inadequate disposal is a potential health hazard. The paper concentrates on short-term measures appropriate for the first six months of the hospital or clinic's existence. Facilities expected to last longer are recommended to install conventional waste management systems appropriate to the local community and conditions. In most situations, wastes should be disposed of underground either by burial (for solids) or infiltration (for liquids). The design, construction and management of appropriate disposal systems are described.

  11. Health physics challenges involved with opening a "seventeen-inch" concrete waste vault.

    PubMed

    Sullivan, Patrick T; Pizzulli, Michelle

    2005-05-01

    This paper describes the various activities involved with opening a sealed legacy "Seventeen-inch" concrete vault and the health physics challenges and solutions employed. As part of a legacy waste stream that was removed from the former Hazardous Waste Management Facility at Brookhaven National Laboratory, the "Seventeen-inch" concrete vault labeled 1-95 was moved to the new Waste Management Facility for ultimate disposal. Because the vault contained 239Pu foils with a total activity in excess of the transuranic waste limits, the foils needed to be removed and repackaged for disposal. Conventional diamond wire saws could not be used because of facility constraints, so this project relied mainly on manual techniques. The planning and engineering controls put in place enabled personnel to open the vault and remove the waste while keeping dose as low as reasonably achievable.

  12. An international waste convention: measures for achieving sustainable development.

    PubMed

    Meyers, Gary D; McLeod, Glen; Anbarci, Melanie A

    2006-12-01

    Waste is a by-product of economic growth. Consequently, economic growth presents challenges for sustainable resource management and development because continued economic growth implies continued growth in waste outputs. Poor management of waste results in the inappropriate depletion of natural resources and potentially adverse effects on the environment, health and the economy. It is unsustainable. This paper begins by outlining the magnitude of and the current response to the growth in the quantity of waste outputs. This is followed by a consideration of why the international response to date, including the Rio Declaration and Agenda 21, fails to address the issue adequately. The paper concludes with a discussion on why and how an international treaty or other measure could advance sustainable development by providing an appropriate framework within which to address the problem.

  13. Worldwide Emerging Environmental Issues Affecting the U.S. Military. November 2005 Report

    DTIC Science & Technology

    2005-11-01

    rapid development. At the program’s launch festivity, the need for developing an international e- waste recycling systems along with transparent...electronic equipment. Sources: Roadmap Set for the Environmentally Sound Management of Electronic Waste in Asia-Pacific under the Basel Convention...34 Tom Dunne, of the agency’s Office of Solid Waste and Emergency Response, wrote in an e-mail message. 4.5 Sunk Weapons Represent a Growing

  14. The analysis of waste treatment methods and managerial skills towards the effectiveness of CO2 emmissions (an ex post facto study at TPA Bantar Gebang Bekasi)

    NASA Astrophysics Data System (ADS)

    Ria Rajagukguk, Jenni; Siagian, Lestina

    2017-09-01

    In the last three years, Java Island produces 29.413.336 m3/year of waste, coming from settlement (house hold) and non-settlement waste. Recently, this waste is managed with conventional technology, composting and recycling. Based on law No. 18 of 2008 on Waste Management, Chapter III Article 5, it is firmly stated that the government and regional governments are responsible for ensuring proper and environmentally sound waste management in accordance with the objectives. The observation of managerial skills is highly needed to investigate the operation of waste management at TPA Bantar Gebang towards the effectiveness of CO2 emissions.The problems are (1)Whether there is any influence between the method of waste management through Biogas Technology to the effectiveness of CO2 emissions. (2) Whether there is any influence between managerial skills to effectiveness of CO2 emission. (3) Whether there is any simultaneous influence between waste management method and managerial skill to CO2 emission effectiveness and (4) how is the method of waste management. Quantitative and egineering method were used to process the data.Biogas Technology variables and Managerial Skill are simultaneously and significantly influenced to CO2 Emission Effectiveness, this is based on Fh > Ft value of 168,453 > 3.072467) and its significance is 0.000 < 0,05. Then Ho was rejected and Ha was accepted which means that variable of Managerial Skill have influence or very big influence to Effeciveness of CO2 Emission, Correlation coefficient value 94,1% which means there is very strong relation between variable of Biogas Technology, Managerial Skill to Effectiveness of CO2 emission. Then Technology management through Biogas Technology is anaerobic biology.

  15. Land management effects on soil carbon in olive groves of Mediterranean areas

    NASA Astrophysics Data System (ADS)

    Fernández-Romero, Maria Luisa; Parras-Alcántara, Luis; Lozano-García, Beatriz; Clark, Joanna; Collins, Chris

    2015-04-01

    The study analysed soil organic carbon (SOC) and hot-water extractable carbon (HWC) in an agricultural Mediterranean area of Southern Spain under different land management: Conventional tillage (CT); Conventional tillage with the addition of oil mill waste, also known as alperujo (A); Conventional tillage with the addition of oil mill waste olive leaves (L); No tillage with chipped pruned branches (NT1); and No tillage with chipped pruned branches and weeds (NT2). SOC values in CT, A, NT1 and NT2 decreased with depth. In L, SOC also decreased with depth, although there was an increase of 89% from the first (0-10 cm) to the second horizon (10-16 cm). Total SOC stock (considering the entire soil profile) was very similar under A (101.9 Mg ha-1), CT (101.7 Mg ha-1), NT1 (105.8 Mg ha-1) and NT2 (111.3 Mg ha-1). However, SOC under L was significantly higher (p

  16. Yolo County's Accelerated Anaerobic and Aerobic Composting (Full-Scale Controlled Landfill Bioreactor) Project

    NASA Astrophysics Data System (ADS)

    Yazdani, R.; Kieffer, J.; Akau, H.; Augenstein, D.

    2002-12-01

    Sanitary landfilling is the dominant method of solid waste disposal in the United States, accounting for about 217 million tons of waste annually (U.S. EPA, 1997) and has more than doubled since 1960. In spite of increasing rates of reuse and recycling, population and economic growth will continue to render landfilling as an important and necessary component of solid waste management. Yolo County Department of Planning and Public Works, Division of Integrated Waste Management is demonstrating a new landfill technology called Bioreactor Landfill to better manage solid waste. In a Bioreactor Landfill, controlled quantities of liquid (leachate, groundwater, gray-water, etc.) are added and recirculated to increase the moisture content of the waste and improve waste decomposition. As demonstrated in a small-scale demonstration project at the Yolo County Central Landfill in 1995, this process significantly increases the biodegradation rate of waste and thus decreases the waste stabilization and composting time (5 to 10 years) relative to what would occur within a conventional landfill (30 to 50 years or more). When waste decomposes anaerobically (in absence of oxygen), it produces landfill gas (biogas). Biogas is primarily a mixture of methane, a potent greenhouse gas, carbon dioxide, and small amounts of Volatile Organic Compounds (VOC's) which can be recovered for electricity or other uses. Other benefits of a bioreactor landfill composting operation include increased landfill waste settlement which increases in landfill capacity and life, improved leachate chemistry, possible reduction of landfill post-closure management time, opportunity to explore decomposed waste for landfill mining, and abatement of greenhouse gases through highly efficient methane capture over a much shorter period of time than is typical of waste management through conventional landfilling. This project also investigates the aerobic decomposition of waste of 13,000 tons of waste (2.5 acre) for elimination of methane production and acceleration of waste decomposition. In the first phase of this project a 12-acre module that contains a 9.5-acre anaerobic cell and a 2.5-acre aerobic cell has been constructed and filled with over 220,000 tons of municipal solid waste. Water and leachate addition began in April 2002 and to date less than 200,000 gallons of liquid has been added to the 3.5-acre anaerobic cell. The waste filling phase of the aerobic cell was completed in June of 2002 and a 12-inches soil cover and 12-inches of greenwaste compost cover was placed on top of the cell. A vacuum will be applied to the piping within the waste to draw air through the landfill. Instrumentations have been installed to monitor the following parameters: waste temperature, moisture, leachate volumes, leachate hydraulic head over the primary liner, leachate composition, gas volumes and composition. A supervisory Control and Data Acquisition (SCADA) system has been installed to monitor and control the operation of the bioreactor cells. Waste samples were taken from each cell for laboratory testing in early June 2002.

  17. Determining the environmental training needs and training preferences of tribal officials on reservations in the United States

    NASA Astrophysics Data System (ADS)

    Saxena, Jeeta Lakhani

    The problem of this research was to determine the priority environmental management training needs (drinking water, wastewater, and solid waste), classroom training system preferences and related cultural factors of Native American tribal officials with environmental responsibilities living on reservations in the United States. The researcher conducted telephone interviews with 18 tribal officials on reservations in diverse geographic areas of the United States to determine their classroom training preferences. These officials also responded to a mail/fax survey comprised of 28 statements describing their environmental responsibilities in the areas of drinking water, wastewater, and solid waste. Tribal officials indicated how important the statements were according to them on a scale of 1--5 (1 being low importance and 5 being high importance). Tribal officials also indicated their ability to perform in the stated areas on a scale of 1 to 5 (1 being low ability and 5 being high ability). It was found that tribal officials felt they needed training in the areas of: (1) Solid Waste: Awareness of conventional and alternative solid waste management strategies as well as assessing the reservation's need related to solid waste management. (2) Regional or Inter-Governmental Strategies : Working with the federal, and, state governments for enforcing and developing regulations. (3) Drinking water: Assessing the reservation's drinking water needs and awareness of conventional and alternative drinking water systems. (4) Training for environmental staff: Determining and planning training for environmental personnel is another area of need indicated by the responding tribal officials. (5) Wastewater : Assessing the reservations wastewater needs, compliance and liability issues and awareness of alternative and conventional wastewater systems. It was also found that tribal officials preferred: (1) Trainers who were knowledgeable about the subject matter and tribal culture, problems and issues related to environmental management. (2) Cooperative learning in the form of group exercises and group discussions. Activities such as field trips, case studies or role play were strongly preferred. (3) To receive relevant information from different sources. (4) To attend training within a 200-mile radius. (5) To attend training that was 2--3 days in duration. (6) To attend training sessions organized in circular or U-shaped arrangements.

  18. Utilization of municipal solid and liquid wastes for bioenergy and bioproducts production.

    PubMed

    Chen, Paul; Xie, Qinglong; Addy, Min; Zhou, Wenguang; Liu, Yuhuan; Wang, Yunpu; Cheng, Yanling; Li, Kun; Ruan, Roger

    2016-09-01

    Municipal wastes, be it solid or liquid, are rising due to the global population growth and rapid urbanization and industrialization. Conventional management practice involving recycling, combustion, and treatment/disposal is deemed unsustainable. Solutions must be sought to not only increase the capacity but also improve the sustainability of waste management. Research has demonstrated that the non-recyclable waste materials and bio-solids can be converted into useable heat, electricity, or fuel and chemical through a variety of processes, including gasification, pyrolysis, anaerobic digestion, and landfill gas in addition to combustion, and wastewater streams have the potential to support algae growth and provide other energy recovery options. The present review is intended to assess and analyze the current state of knowledge in the municipal solid wastes and wastewater treatment and utilization technologies and recommend practical solution options and future research and development needs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. The Minamata Convention on Mercury: attempting to address the global controversy of dental amalgam use and mercury waste disposal.

    PubMed

    Mackey, Tim K; Contreras, John T; Liang, Bryan A

    2014-02-15

    In October 2013, a new international binding treaty instrument called the Minamata Convention on Mercury opened for signature in Minamata City, Japan, the site of arguably the worst public health and environmental disaster involving mercury contamination. The treaty aims to curb the significant health and environmental impacts of mercury pollution and includes provisions addressing the mining, export and import, storage, and waste management of products containing mercury. Importantly, a provision heavily negotiated in the treaty addresses the use of dental fillings using mercury amalgam, an issue that has been subject to decades of global controversy. Though use of dental amalgam is widespread and has benefits, concerns have been raised regarding the potential for human health risk and environmental damage from emissions and improper waste management. While the Minamata Convention attempts to address these issues by calling for a voluntary phase-down of dental amalgam use and commitment to other measures, it falls short by failing to require binding and measurable targets to achieve these goals. In response, the international community should begin exploring ways to strengthen the implementation of the dental amalgam treaty provisions by establishing binding phase-down targets and milestones as well as exploring financing mechanisms to support treaty measures. Through strengthening of the Convention, stakeholders can ensure equitable access to global oral health treatment while also promoting responsible environmental stewardship. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Co-management of domestic wastewater and food waste: A life cycle comparison of alternative food waste diversion strategies.

    PubMed

    Becker, Adilson M; Yu, Kevin; Stadler, Lauren B; Smith, Adam L

    2017-01-01

    Food waste is increasingly viewed as a resource that should be diverted from landfills. This study used life cycle assessment to compare co-management of food waste and domestic wastewater using anaerobic membrane bioreactor (AnMBR) against conventional activated sludge (CAS) and high rate activated sludge (HRAS) with three disposal options for food waste: landfilling (LF), anaerobic digestion (AD), and composting (CP). Based on the net energy balance (NEB), AnMBR and HRAS/AD were the most attractive scenarios due to cogeneration of produced biogas. However, cogeneration negatively impacted carcinogenics, non-carcinogenics, and ozone depletion, illustrating unavoidable tradeoffs between energy recovery from biogas and environmental impacts. Fugitive emissions of methane severely increased global warming impacts of all scenarios except HRAS/AD with AnMBR particularly affected by effluent dissolved methane emissions. AnMBR was also most sensitive to food waste diversion participation, with 40% diversion necessary to achieve a positive NEB at the current state of development. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Source separation of household waste: a case study in China.

    PubMed

    Zhuang, Ying; Wu, Song-Wei; Wang, Yun-Long; Wu, Wei-Xiang; Chen, Ying-Xu

    2008-01-01

    A pilot program concerning source separation of household waste was launched in Hangzhou, capital city of Zhejiang province, China. Detailed investigations on the composition and properties of household waste in the experimental communities revealed that high water content and high percentage of food waste are the main limiting factors in the recovery of recyclables, especially paper from household waste, and the main contributors to the high cost and low efficiency of waste disposal. On the basis of the investigation, a novel source separation method, according to which household waste was classified as food waste, dry waste and harmful waste, was proposed and performed in four selected communities. In addition, a corresponding household waste management system that involves all stakeholders, a recovery system and a mechanical dehydration system for food waste were constituted to promote source separation activity. Performances and the questionnaire survey results showed that the active support and investment of a real estate company and a community residential committee play important roles in enhancing public participation and awareness of the importance of waste source separation. In comparison with the conventional mixed collection and transportation system of household waste, the established source separation and management system is cost-effective. It could be extended to the entire city and used by other cities in China as a source of reference.

  2. Towards sets of hazardous waste indicators. Essential tools for modern industrial management.

    PubMed

    Peterson, Peter J; Granados, Asa

    2002-01-01

    Decision-makers require useful tools, such as indicators, to help them make environmentally sound decisions leading to effective management of hazardous wastes. Four hazardous waste indicators are being tested for such a purpose by several countries within the Sustainable Development Indicator Programme of the United Nations Commission for Sustainable Development. However, these indicators only address the 'down-stream' end-of-pipe industrial situation. More creative thinking is clearly needed to develop a wider range of indicators that not only reflects all aspects of industrial production that generates hazardous waste but considers socio-economic implications of the waste as well. Sets of useful and innovative indicators are proposed that could be applied to the emerging paradigm shift away from conventional end-of-pipe management actions and towards preventive strategies that are being increasingly adopted by industry often in association with local and national governments. A methodological and conceptual framework for the development of a core-set of hazardous waste indicators has been developed. Some of the indicator sets outlined quantify preventive waste management strategies (including indicators for cleaner production, hazardous waste reduction/minimization and life cycle analysis), whilst other sets address proactive strategies (including changes in production and consumption patterns, eco-efficiency, eco-intensity and resource productivity). Indicators for quantifying transport of hazardous wastes are also described. It was concluded that a number of the indicators proposed could now be usefully implemented as management tools using existing industrial and economic data. As cleaner production technologies and waste minimization approaches are more widely deployed, and industry integrates environmental concerns at all levels of decision-making, it is expected that the necessary data for construction of the remaining indicators will soon become available.

  3. Reuse of industrial sludge as construction aggregates.

    PubMed

    Tay, J H; Show, K Y; Hong, S Y

    2001-01-01

    Industrial wastewater sludge and dredged marine clay are high volume wastes that needed enormous space at landfill disposal sites. Due to the limitation of land space, there is an urgent need for alternative disposal methods for these two wastes. This study investigates the possibility of using the industrial sludge in combination with marine clay as construction aggregates. Different proportions of sludge and clay were made into round and angular aggregates. It was found that certain mix proportions could provide aggregates of adequate strength, comparable to that of conventional aggregates. Concrete samples cast from the sludge-clay aggregates yield compressive strengths in the range of 31.0 to 39.0 N/mm2. The results showed that the round aggregates of 100% sludge and the crush aggregates of sludge with up to 20% clay produced concrete of compressive strengths which are superior to that of 38.0 N/mm2 for conventional aggregate. The study indicates that the conversion of high volume wastes into construction materials is a potential option for waste management.

  4. GHG emission control and solid waste management for megacities with inexact inputs: a case study in Beijing, China.

    PubMed

    Lu, Hongwei; Sun, Shichao; Ren, Lixia; He, Li

    2015-03-02

    This study advances an integrated MSW management model under inexact input information for the city of Beijing, China. The model is capable of simultaneously generating MSW management policies, performing GHG emission control, and addressing system uncertainty. Results suggest that: (1) a management strategy with minimal system cost can be obtained even when suspension of certain facilities becomes unavoidable through specific increments of the remaining ones; (2) expansion of facilities depends only on actual needs, rather than enabling the full usage of existing facilities, although it may prove to be a costly proposition; (3) adjustment of waste-stream diversion ratio directly leads to a change in GHG emissions from different disposal facilities. Results are also obtained from the comparison of the model with a conventional one without GHG emissions consideration. It is indicated that (1) the model would reduce the net system cost by [45, 61]% (i.e., [3173, 3520] million dollars) and mitigate GHG emissions by [141, 179]% (i.e., [76, 81] million tons); (2) increased waste would be diverted to integrated waste management facilities to prevent overmuch CH4 emission from the landfills. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Final environmental impact statement. Management of commercially generated radioactive waste. Volume 3. Public comments hearing board report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-10-01

    This EIS analyzes the significant environmental impacts that could occur if various technologies for management and disposal of high-level and transuranic wastes from commercial nuclear power reactors were to be developed and implemented. This EIS will serve as the environmental input for the decision on which technology, or technologies, will be emphasized in further research and development activities in the commercial waste management program. The action proposed in this EIS is to (1) adopt a national strategy to develop mined geologic repositories for disposal of commercially generated high-level and transuranic radioactive waste (while continuing to examine subseabed and very deepmore » hole disposal as potential backup technologies) and (2) conduct a R and D program to develop such facilities and the necessary technology to ensure the safe long-term containment and isolation of these wastes. The Department has considered in this statement: development of conventionally mined deep geologic repositories for disposal of spent fuel from nuclear power reactors and/or radioactive fuel reprocessing wastes; balanced development of several alternative disposal methods; and no waste disposal action. This volume contains written public comments and hearing board responses and reports offered on the draft statement.« less

  6. Factors Controlling Carbon Metabolism and Humification in Different Soil Agroecosystems

    PubMed Central

    Doni, S.; Macci, C.; Peruzzi, E.; Ceccanti, B.; Masciandaro, G.

    2014-01-01

    The aim of this study was to describe the processes that control humic carbon sequestration in soil. Three experimental sites differing in terms of management system and climate were selected: (i) Abanilla-Spain, soil treated with municipal solid wastes in Mediterranean semiarid climate; (ii) Puch-Germany, soil under intensive tillage and conventional agriculture in continental climate; and (iii) Alberese-Italy, soil under organic and conventional agriculture in Mediterranean subarid climate. The chemical-structural and biochemical soil properties at the initial sampling time and one year later were evaluated. The soils under organic (Alberese, soil cultivated with Triticum durum Desf.) and nonintensive management practices (Puch, soil cultivated with Triticum aestivum L. and Avena sativa L.) showed higher enzymatically active humic carbon, total organic carbon, humification index (B/E3s), and metabolic potential (dehydrogenase activity/water soluble carbon) if compared with conventional agriculture and plough-based tillage, respectively. In Abanilla, the application of municipal solid wastes stimulated the specific β-glucosidase activity (extracellular β-glucosidase activity/extractable humic carbon) and promoted the increase of humic substances with respect to untreated soil. The evolution of the chemical and biochemical status of the soils along a climatic gradient suggested that the adoption of certain management practices could be very promising in increasing SOC sequestration potential. PMID:25614887

  7. The role of non-governmental organizations in residential solid waste management: a case study of Puducherry, a coastal city of India.

    PubMed

    Rajamanikam, Ramamoorthy; Poyyamoli, Gopalsamy; Kumar, Sunil; R, Lekshmi

    2014-09-01

    Poorly planned and uncontrolled urbanization in India has caused a variety of negative, often irreversible, environmental impacts. The impacts appear to be unavoidable and not easily mitigable due to the mounting public health problems caused by non-segregation of solid wastes at source and their subsequent improper management. Recently in India, non-governmental organizations (NGOs) and other civil society organizations have increasingly started to get involved in improving waste management services. Municipal solid waste management being a governmental function, the contribution of NGOs in this field has not been well documented. This study highlights the activities and services of Shuddham, an NGO functioning in the town of Puducherry within the Union Territory of Puducherry in South India. The NGO program promoted much needed awareness and education, encouraged source separation, enhanced door-to-door collection, utilized wastes as raw materials and generated more job opportunities. Even though source separation prior to door-to-door collection is a relatively new concept, a significant percentage of residents (39%) in the study area participated fully, while a further 48% participated in the collection service. The average amount of municipal solid waste generated by residential units in the Raj Bhavan ward was 8582 kg/month of which 47% was recovered through active recycling and composting practices. The study describes the features and performance of NGO-mediated solid waste management, and evaluates the strengths and weaknesses as well as the opportunities and threats of this system to see whether this model can sustainably replace the low-performance conventional solid waste management in practice in the town of Puducherry. The experiences from this case study are expected to provide broad guidelines to better understand the role of NGOs and their contributions towards sustainable waste management practices in urban areas. © The Author(s) 2014.

  8. Hexachlorocyclohexane (HCH) as new Stockholm Convention POPs--a global perspective on the management of Lindane and its waste isomers.

    PubMed

    Vijgen, John; Abhilash, P C; Li, Yi Fan; Lal, Rup; Forter, Martin; Torres, Joao; Singh, Nandita; Yunus, Mohammad; Tian, Chongguo; Schäffer, Andreas; Weber, Roland

    2011-02-01

    Hexachlorocyclohexane (HCH) isomers (α-, β- and γ- (Lindane)) were recently included as new persistent organic pollutants (POPs) in the Stockholm Convention, and therefore, the legacy of HCH and Lindane production became a contemporary topic of global relevance. This article wants to briefly summarise the outcomes of the Stockholm Convention process and make an estimation of the amount of HCH waste generated and dumped in the former Lindane/HCH-producing countries. In a preliminary assessment, the countries and the respective amount of HCH residues stored and deposited from Lindane production are estimated. Between 4 and 7 million tones of wastes of toxic, persistent and bioaccumulative residues (largely consisting of alpha- (approx. 80%) and beta-HCH) are estimated to have been produced and discarded around the globe during 60 years of Lindane production. For approximately 1.9 million tones, information is available regarding deposition. Countries are: Austria, Brazil, China, Czech Republic, France, Germany, Hungary, India, Italy, Japan, Macedonia, Nigeria, Poland, Romania, Slovakia, South Africa, Spain, Switzerland, Turkey, The Netherlands, UK, USA, and former USSR. The paper highlights the environmental relevance of deposited HCH wastes and the related POPs' contaminated sites and provides suggestions for further steps to address the challenge of the legacy of HCH/Lindane production. It can be expected that most locations where HCH waste was discarded/stockpiled are not secured and that critical environmental impacts are resulting from leaching and volatilization. As parties to the Stockholm Convention are legally required to take action to stop further POPs pollution, identification and evaluation of such sites are necessary.

  9. Construction and demolition waste generation rates for high-rise buildings in Malaysia.

    PubMed

    Mah, Chooi Mei; Fujiwara, Takeshi; Ho, Chin Siong

    2016-12-01

    Construction and demolition waste continues to sharply increase in step with the economic growth of less developed countries. Though the construction industry is large, it is composed of small firms with individual waste management practices, often leading to the deleterious environmental outcomes. Quantifying construction and demolition waste generation allows policy makers and stakeholders to understand the true internal and external costs of construction, providing a necessary foundation for waste management planning that may overcome deleterious environmental outcomes and may be both economically and environmentally optimal. This study offers a theoretical method for estimating the construction and demolition project waste generation rate by utilising available data, including waste disposal truck size and number, and waste volume and composition. This method is proposed as a less burdensome and more broadly applicable alternative, in contrast to waste estimation by on-site hand sorting and weighing. The developed method is applied to 11 projects across Malaysia as the case study. This study quantifies waste generation rate and illustrates the construction method in influencing the waste generation rate, estimating that the conventional construction method has a waste generation rate of 9.88 t 100 m -2 , the mixed-construction method has a waste generation rate of 3.29 t 100 m -2 , and demolition projects have a waste generation rate of 104.28 t 100 m -2 . © The Author(s) 2016.

  10. Evaluation of conventional power systems. [emphasizing fossil fuels and nuclear energy

    NASA Technical Reports Server (NTRS)

    Smith, K. R.; Weyant, J.; Holdren, J. P.

    1975-01-01

    The technical, economic, and environmental characteristics of (thermal, nonsolar) electric power plants are reviewed. The fuel cycle, from extraction of new fuel to final waste management, is included. Emphasis is placed on the fossil fuel and nuclear technologies.

  11. Feathered Detectives: Real-Time GPS Tracking of Scavenging Gulls Pinpoints Illegal Waste Dumping.

    PubMed

    Navarro, Joan; Grémillet, David; Afán, Isabel; Ramírez, Francisco; Bouten, Willem; Forero, Manuela G

    2016-01-01

    Urban waste impacts human and environmental health, and waste management has become one of the major challenges of humanity. Concurrently with new directives due to manage this human by-product, illegal dumping has become one of the most lucrative activities of organized crime. Beyond economic fraud, illegal waste disposal strongly enhances uncontrolled dissemination of human pathogens, pollutants and invasive species. Here, we demonstrate the potential of novel real-time GPS tracking of scavenging species to detect environmental crime. Specifically, we were able to detect illegal activities at an officially closed dump, which was visited recurrently by 5 of 19 GPS-tracked yellow-legged gulls (Larus michahellis). In comparison with conventional land-based surveys, GPS tracking allows a much wider and cost-efficient spatiotemporal coverage, even of the most hazardous sites, while GPS data accessibility through the internet enables rapid intervention. Our results suggest that multi-species guilds of feathered detectives equipped with GPS and cameras could help fight illegal dumping at continental scales. We encourage further experimental studies, to infer waste detection thresholds in gulls and other scavenging species exploiting human waste dumps.

  12. Feathered Detectives: Real-Time GPS Tracking of Scavenging Gulls Pinpoints Illegal Waste Dumping

    PubMed Central

    Grémillet, David; Afán, Isabel; Ramírez, Francisco; Bouten, Willem; Forero, Manuela G.

    2016-01-01

    Urban waste impacts human and environmental health, and waste management has become one of the major challenges of humanity. Concurrently with new directives due to manage this human by-product, illegal dumping has become one of the most lucrative activities of organized crime. Beyond economic fraud, illegal waste disposal strongly enhances uncontrolled dissemination of human pathogens, pollutants and invasive species. Here, we demonstrate the potential of novel real-time GPS tracking of scavenging species to detect environmental crime. Specifically, we were able to detect illegal activities at an officially closed dump, which was visited recurrently by 5 of 19 GPS-tracked yellow-legged gulls (Larus michahellis). In comparison with conventional land-based surveys, GPS tracking allows a much wider and cost-efficient spatiotemporal coverage, even of the most hazardous sites, while GPS data accessibility through the internet enables rapid intervention. Our results suggest that multi-species guilds of feathered detectives equipped with GPS and cameras could help fight illegal dumping at continental scales. We encourage further experimental studies, to infer waste detection thresholds in gulls and other scavenging species exploiting human waste dumps. PMID:27448048

  13. Environmental-benefit analysis of two urban waste collection systems.

    PubMed

    Aranda Usón, Alfonso; Ferreira, Germán; Zambrana Vásquez, David; Zabalza Bribián, Ignacio; Llera Sastresa, Eva

    2013-10-01

    Sustainable transportation infrastructure and travel policies aim to optimise the use of transportation systems to achieve economic and related social and environmental goals. To this end, a novel methodology based on life cycle assessment (LCA) has been developed in this study, with the aim of quantifying, in terms of CO2 emissions equivalent, the impact associated with different alternatives of waste collection systems in different urban typologies. This new approach is focussed on saving energy and raw materials and reducing the environmental impact associated with the waste collection system in urban areas, as well as allowing the design and planning of the best available technologies and most environment-friendly management. The methodology considers a large variety of variables from the point of view of sustainable urban transport such as the location and size of the urban area, the amount of solid waste generated, the level of social awareness on waste separation procedures, the distance between houses and waste collection points and the distance from the latter to the possible recovery plants and/or landfills, taking into account the material and energy recovery ratio within an integrated waste management system. As a case study, two different waste collection systems have been evaluated with this methodology in the ecocity Valdespartera located in Zaragoza, Spain, consisting of approximately 10,000 homes: (i) a system based on traditional truck transportation and manual collection, and (ii) a stationary vacuum waste collection system. Results show that, when operating at loads close to 100%, the stationary collection system has the best environmental performance in comparison with the conventional system. In contrast, when operating at load factors around 13% the environmental benefits in terms of net CO2-eq. emissions for the stationary collection system are around 60% lower in comparison with the conventional one. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. The potential reuse of biodegradable municipal solid wastes (MSW) as feedstocks in vermicomposting.

    PubMed

    Sim, Edwin Yih Shyang; Wu, Ta Yeong

    2010-10-01

    There is an urgent need globally to find alternative sustainable steps to treat municipal solid wastes (MSW) originated from mismanagement of urban wastes with increasing disposal cost. Furthermore, a conglomeration of ever-increasing population and consumerist lifestyle is contributing towards the generation of more MSW. In this context, vermicomposting offers excellent potential to promote safe, hygienic and sustainable management of biodegradable MSW. It has been demonstrated that, through vermicomposting, MSW such as city garbage, household and kitchen wastes, vegetable wastes, paper wastes, human faeces and others could be sustainably transformed into organic fertiliser or vermicompost that provides great benefits to agricultural soil and plants. Generally, earthworms are sensitive to their environment and require temperature, moisture content, pH and sometimes ventilation at proper levels for the optimum vermicomposting process. Apart from setting the optimum operational conditions for the vermicomposting process, other approaches such as pre-composting, inoculating micro-organisms into MSW and redesigning the conventional vermireactor could be introduced to further enhance the vermicomposting of MSW. Thus the present mini-review discusses the potential of introducing vermicomposting in MSW management, the benefits of vermicomposted MSW to plants, suggestions on how to enhance the vermicomposting of MSW as well as risk management in the vermicomposting of MSW. Copyright © 2010 Society of Chemical Industry.

  15. MOVEMENT AND LONGEVITY OF VIRUSES IN THE SUBSURFACE

    EPA Science Inventory

    Since human pathogens, in particular human enteric viruses, are not completely adsorbed or inactivated by conventional waste treatment facilities, sound management practices must be devised which rely on knowledge of the fate of these pollutant in the environment in order to prot...

  16. Life cycle costing of waste management systems: overview, calculation principles and case studies.

    PubMed

    Martinez-Sanchez, Veronica; Kromann, Mikkel A; Astrup, Thomas Fruergaard

    2015-02-01

    This paper provides a detailed and comprehensive cost model for the economic assessment of solid waste management systems. The model was based on the principles of Life Cycle Costing (LCC) and followed a bottom-up calculation approach providing detailed cost items for all key technologies within modern waste systems. All technologies were defined per tonne of waste input, and each cost item within a technology was characterised by both a technical and an economic parameter (for example amount and cost of fuel related to waste collection), to ensure transparency, applicability and reproducibility. Cost items were classified as: (1) budget costs, (2) transfers (for example taxes, subsidies and fees) and (3) externality costs (for example damage or abatement costs related to emissions and disamenities). Technology costs were obtained as the sum of all cost items (of the same type) within a specific technology, while scenario costs were the sum of all technologies involved in a scenario. The cost model allows for the completion of three types of LCC: a Conventional LCC, for the assessment of financial costs, an Environmental LCC, for the assessment of financial costs whose results are complemented by a Life Cycle Assessment (LCA) for the same system, and a Societal LCC, for socio-economic assessments. Conventional and Environmental LCCs includes budget costs and transfers, while Societal LCCs includes budget and externality costs. Critical aspects were found in the existing literature regarding the cost assessment of waste management, namely system boundary equivalency, accounting for temporally distributed emissions and impacts, inclusions of transfers, the internalisation of environmental impacts and the coverage of shadow prices, and there was also significant confusion regarding terminology. The presented cost model was implemented in two case study scenarios assessing the costs involved in the source segregation of organic waste from 100,000 Danish households and the subsequent co-digestion of organic waste with animal manure. Overall, source segregation resulted in higher financial costs than the alternative of incinerating the organic waste with the residual waste: 1.6 M€/year, of which 0.9 M€/year was costs for extra bins and bags used by the households, 1.0 M€/year for extra collections and -0.3 M€/year saved on incineration. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Biodiesel, a renewable fuel produced from animal fats or vegetable oils, is popular among many vehicle owners and fleet managers seeking to reduce emissions and support U.S. energy security. Questions sometimes arise about the viability of fueling vehicles with straight vegetable oil (SVO), or waste oils from cooking and other processes, without intermediate processing. But SVO and waste oils differ from biodiesel (and conventional diesel) in some important ways and are generally not considered acceptable vehicle fuels for large-scale or long-term use.

  18. Recommendations on chemicals management policy and legislation in the framework of the Egyptian-German twinning project on hazardous substances and waste management.

    PubMed

    Wagner, Burkhard O; Aziz, Elham Refaat Abdel; Schwetje, Anja; Shouk, Fatma Abou; Koch-Jugl, Juliane; Braedt, Michael; Choudhury, Keya; Weber, Roland

    2013-04-01

    The sustainable management of chemicals and their associated wastes-especially legacy stockpiles-is always challenging. Developing countries face particular difficulties as they often have insufficient treatment and disposal capacity, have limited resources and many lack an appropriate and effective regulatory framework. This paper describes the objectives and the approach of the Egyptian-German Twinning Project under the European Neighbourhood Policy to improve the strategy of managing hazardous substances in the Egyptian Environmental Affairs Agency (EEAA) between November 2008 and May 2011. It also provides an introduction to the Republic of Egypt's legal and administrative system regarding chemical controls. Subsequently, options for a new chemical management strategy consistent with the recommendations of the United Nations Chemicals Conventions are proposed. The Egyptian legal and administrative system is discussed in relation to the United Nations' recommendations and current European Union legislation for the sound management of chemicals. We also discuss a strategy for the EEAA to use the existing Egyptian legal system to implement the United Nations' Globally Harmonized System of Classification and Labelling of Chemicals, the Stockholm Convention and other proposed regulatory frameworks. The analysis, the results, and the recommendations presented may be useful for other developing countries in a comparable position to Egypt aspiring to update their legislation and administration to the international standards of sound management of chemicals.

  19. Waste policies gone soft: An analysis of European and Swedish waste prevention plans.

    PubMed

    Johansson, Nils; Corvellec, Hervé

    2018-04-30

    This paper presents an analysis of European and Swedish national and municipal waste prevention plans to determine their capability of preventing the generation of waste. An analysis of the stated objectives in these waste prevention plans and the measures they propose to realize them exposes six problematic features: (1) These plans ignore what drives waste generation, such as consumption, and (2) rely as much on conventional waste management goals as they do on goals with the aim of preventing the generation of waste at the source. The Swedish national and local plans (3) focus on small waste streams, such as food waste, rather than large ones, such as industrial and commercial waste. Suggested waste prevention measures at all levels are (4) soft rather than constraining, for example, these plans focus on information campaigns rather than taxes and bans, and (5) not clearly connected to incentives and consequences for the actors involved. The responsibility for waste prevention has been (6) entrusted to non-governmental actors in the market such as companies that are then free to define which proposals suit them best rather than their being guided by planners. For improved waste prevention regulation, two strategies are proposed. First, focus primarily not on household-related waste, but on consumption and production of products with high environmental impact and toxicity as waste. Second, remove waste prevention from the waste hierarchy to make clear that, by definition, waste prevention is not about the management of waste. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Recycling of glass: accounting of greenhouse gases and global warming contributions.

    PubMed

    Larsen, Anna W; Merrild, Hanna; Christensen, Thomas H

    2009-11-01

    Greenhouse gas (GHG) emissions related to recycling of glass waste were assessed from a waste management perspective. Focus was on the material recovery facility (MRF) where the initial sorting of glass waste takes place. The MRF delivers products like cullet and whole bottles to other industries. Two possible uses of reprocessed glass waste were considered: (i) remelting of cullet added to glass production; and (ii) re-use of whole bottles. The GHG emission accounting included indirect upstream emissions (provision of energy, fuels and auxiliaries), direct activities at the MRF and bottle-wash facility (combustion of fuels) as well as indirect downstream activities in terms of using the recovered glass waste in other industries and, thereby, avoiding emissions from conventional production. The GHG accounting was presented as aggregated global warming factors (GWFs) for the direct and indirect upstream and downstream processes, respectively. The range of GWFs was estimated to 0-70 kg CO(2)eq. tonne( -1) of glass waste for the upstream activities and the direct emissions from the waste management system. The GWF for the downstream effect showed some significant variation between the two cases. It was estimated to approximately -500 kg CO(2)-eq. tonne(- 1) of glass waste for the remelting technology and -1500 to -600 kg CO(2)-eq. tonne(-1) of glass waste for bottle re-use. Including the downstream process, large savings of GHG emissions can be attributed to the waste management system. The results showed that, in GHG emission accounting, attention should be drawn to thorough analysis of energy sources, especially electricity, and the downstream savings caused by material substitution.

  1. Role of waste management with regard to climate protection: a case study.

    PubMed

    Hackl, Albert; Mauschitz, Gerd

    2008-02-01

    According to the Kyoto Protocol and the burden-sharing agreement of the European Union, Austria is required to cut greenhouse gas (GHG) emissions during the years 2008 to 2012 in order to achieve an average reduction of 13%, based on the level of emissions for the year 1990. The present contribution gives an overview of the history of GHG emission regulation in Austria and identifies the progress made towards the realization of the national climate strategy to attain the GHG emission targets. The contribution uses Austria as an example of the way in which proper waste management can help to reduce GHG emissions. The GHG inventories show that everything must be done to minimize the carbon input due to waste deposition at landfill sites. The incineration of waste is particularly helpful in reducing GHG emissions. The waste-to-energy by incineration plants and recovery of energy yield an ecologically proper treatment of waste using state-of-the-art techniques of a very high standard. The potential for GHG reduction of conventional waste treatment technologies has been estimated by the authors. A growing number of waste incinerators and intensified co-incineration of waste in Austrian industry will both help to reduce national GHG emissions substantially. By increasing the number and capacity of plants for thermal treatment of waste the contribution of proper waste management to the national target for reduction of GHG emissions will be in the range of 8 to 14%. The GHG inventories also indicate that a potential CO2 reduction of about 500 000 t year(-1) is achievable by co-incineration of waste in Austrian industry.

  2. Eco-efficient waste glass recycling: Integrated waste management and green product development through LCA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blengini, Gian Andrea, E-mail: blengini@polito.it; CNR-IGAG, Institute of Environmental Geology and Geo-Engineering, Corso Duca degli Abruzzi 24, 10129 Turin; Busto, Mirko, E-mail: mirko.busto@polito.it

    Highlights: Black-Right-Pointing-Pointer A new eco-efficient recycling route for post-consumer waste glass was implemented. Black-Right-Pointing-Pointer Integrated waste management and industrial production are crucial to green products. Black-Right-Pointing-Pointer Most of the waste glass rejects are sent back to the glass industry. Black-Right-Pointing-Pointer Recovered co-products give more environmental gains than does avoided landfill. Black-Right-Pointing-Pointer Energy intensive recycling must be limited to waste that cannot be closed-loop recycled. - Abstract: As part of the EU Life + NOVEDI project, a new eco-efficient recycling route has been implemented to maximise resources and energy recovery from post-consumer waste glass, through integrated waste management and industrial production.more » Life cycle assessment (LCA) has been used to identify engineering solutions to sustainability during the development of green building products. The new process and the related LCA are framed within a meaningful case of industrial symbiosis, where multiple waste streams are utilised in a multi-output industrial process. The input is a mix of rejected waste glass from conventional container glass recycling and waste special glass such as monitor glass, bulbs and glass fibres. The green building product is a recycled foam glass (RFG) to be used in high efficiency thermally insulating and lightweight concrete. The environmental gains have been contrasted against induced impacts and improvements have been proposed. Recovered co-products, such as glass fragments/powders, plastics and metals, correspond to environmental gains that are higher than those related to landfill avoidance, whereas the latter is cancelled due to increased transportation distances. In accordance to an eco-efficiency principle, it has been highlighted that recourse to highly energy intensive recycling should be limited to waste that cannot be closed-loop recycled.« less

  3. Gaseous emissions from management of solid waste: a systematic review

    PubMed Central

    Pardo, Guillermo; Moral, Raúl; Aguilera, Eduardo; del Prado, Agustín

    2015-01-01

    The establishment of sustainable soil waste management practices implies minimizing their environmental losses associated with climate change (greenhouse gases: GHGs) and ecosystems acidification (ammonia: NH3). Although a number of management strategies for solid waste management have been investigated to quantify nitrogen (N) and carbon (C) losses in relation to varied environmental and operational conditions, their overall effect is still uncertain. In this context, we have analyzed the current scientific information through a systematic review. We quantified the response of GHG emissions, NH3 emissions, and total N losses to different solid waste management strategies (conventional solid storage, turned composting, forced aerated composting, covering, compaction, addition/substitution of bulking agents and the use of additives). Our study is based on a meta-analysis of 50 research articles involving 304 observations. Our results indicated that improving the structure of the pile (waste or manure heap) via addition or substitution of certain bulking agents significantly reduced nitrous oxide (N2O) and methane (CH4) emissions by 53% and 71%, respectively. Turned composting systems, unlike forced aerated composted systems, showed potential for reducing GHGs (N2O: 50% and CH4: 71%). Bulking agents and both composting systems involved a certain degree of pollution swapping as they significantly promoted NH3 emissions by 35%, 54%, and 121% for bulking agents, turned and forced aerated composting, respectively. Strategies based on the restriction of O2 supply, such as covering or compaction, did not show significant effects on reducing GHGs but substantially decreased NH3 emissions by 61% and 54% for covering and compaction, respectively. The use of specific additives significantly reduced NH3 losses by 69%. Our meta-analysis suggested that there is enough evidence to refine future Intergovernmental Panel on Climate Change (IPCC) methodologies from solid waste, especially for solid waste composting practices. More holistic and integrated approaches are therefore required to develop more sustainable solid waste management systems. PMID:25393229

  4. Gaseous emissions from management of solid waste: a systematic review.

    PubMed

    Pardo, Guillermo; Moral, Raúl; Aguilera, Eduardo; Del Prado, Agustín

    2015-03-01

    The establishment of sustainable soil waste management practices implies minimizing their environmental losses associated with climate change (greenhouse gases: GHGs) and ecosystems acidification (ammonia: NH3 ). Although a number of management strategies for solid waste management have been investigated to quantify nitrogen (N) and carbon (C) losses in relation to varied environmental and operational conditions, their overall effect is still uncertain. In this context, we have analyzed the current scientific information through a systematic review. We quantified the response of GHG emissions, NH3 emissions, and total N losses to different solid waste management strategies (conventional solid storage, turned composting, forced aerated composting, covering, compaction, addition/substitution of bulking agents and the use of additives). Our study is based on a meta-analysis of 50 research articles involving 304 observations. Our results indicated that improving the structure of the pile (waste or manure heap) via addition or substitution of certain bulking agents significantly reduced nitrous oxide (N2 O) and methane (CH4 ) emissions by 53% and 71%, respectively. Turned composting systems, unlike forced aerated composted systems, showed potential for reducing GHGs (N2 O: 50% and CH4 : 71%). Bulking agents and both composting systems involved a certain degree of pollution swapping as they significantly promoted NH3 emissions by 35%, 54%, and 121% for bulking agents, turned and forced aerated composting, respectively. Strategies based on the restriction of O2 supply, such as covering or compaction, did not show significant effects on reducing GHGs but substantially decreased NH3 emissions by 61% and 54% for covering and compaction, respectively. The use of specific additives significantly reduced NH3 losses by 69%. Our meta-analysis suggested that there is enough evidence to refine future Intergovernmental Panel on Climate Change (IPCC) methodologies from solid waste, especially for solid waste composting practices. More holistic and integrated approaches are therefore required to develop more sustainable solid waste management systems. © 2014 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  5. Eco-efficient waste glass recycling: Integrated waste management and green product development through LCA.

    PubMed

    Blengini, Gian Andrea; Busto, Mirko; Fantoni, Moris; Fino, Debora

    2012-05-01

    As part of the EU Life + NOVEDI project, a new eco-efficient recycling route has been implemented to maximise resources and energy recovery from post-consumer waste glass, through integrated waste management and industrial production. Life cycle assessment (LCA) has been used to identify engineering solutions to sustainability during the development of green building products. The new process and the related LCA are framed within a meaningful case of industrial symbiosis, where multiple waste streams are utilised in a multi-output industrial process. The input is a mix of rejected waste glass from conventional container glass recycling and waste special glass such as monitor glass, bulbs and glass fibres. The green building product is a recycled foam glass (RFG) to be used in high efficiency thermally insulating and lightweight concrete. The environmental gains have been contrasted against induced impacts and improvements have been proposed. Recovered co-products, such as glass fragments/powders, plastics and metals, correspond to environmental gains that are higher than those related to landfill avoidance, whereas the latter is cancelled due to increased transportation distances. In accordance to an eco-efficiency principle, it has been highlighted that recourse to highly energy intensive recycling should be limited to waste that cannot be closed-loop recycled. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Biomedical waste management in India: Critical appraisal.

    PubMed

    Datta, Priya; Mohi, Gursimran Kaur; Chander, Jagdish

    2018-01-01

    The safe and sustainable management of biomedical waste (BMW) is social and legal responsibility of all people supporting and financing health-care activities. Effective BMW management (BMWM) is mandatory for healthy humans and cleaner environment. This article reviews the recent 2016 BMWM rules, practical problems for its effective implementation, the major drawback of conventional techniques, and the latest eco-friendly methods for BMW disposal. The new rules are meant to improve the segregation, transportation, and disposal methods, to decrease environmental pollution so as to change the dynamic of BMW disposal and treatment in India. For effective disposal of BMWM, there should be a collective teamwork with committed government support in terms of finance and infrastructure development, dedicated health-care workers and health-care facilities, continuous monitoring of BMW practices, tough legislature, and strong regulatory bodies. The basic principle of BMWM is segregation at source and waste reduction. Besides, a lot of research and development need to be in the field of developing environmental friendly medical devices and BMW disposal systems for a greener and cleaner environment.

  7. Verifying the performance of artificial neural network and multiple linear regression in predicting the mean seasonal municipal solid waste generation rate: A case study of Fars province, Iran.

    PubMed

    Azadi, Sama; Karimi-Jashni, Ayoub

    2016-02-01

    Predicting the mass of solid waste generation plays an important role in integrated solid waste management plans. In this study, the performance of two predictive models, Artificial Neural Network (ANN) and Multiple Linear Regression (MLR) was verified to predict mean Seasonal Municipal Solid Waste Generation (SMSWG) rate. The accuracy of the proposed models is illustrated through a case study of 20 cities located in Fars Province, Iran. Four performance measures, MAE, MAPE, RMSE and R were used to evaluate the performance of these models. The MLR, as a conventional model, showed poor prediction performance. On the other hand, the results indicated that the ANN model, as a non-linear model, has a higher predictive accuracy when it comes to prediction of the mean SMSWG rate. As a result, in order to develop a more cost-effective strategy for waste management in the future, the ANN model could be used to predict the mean SMSWG rate. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Infectious Risk Assessment of Unsafe Handling Practices and Management of Clinical Solid Waste

    PubMed Central

    Hossain, Md. Sohrab; Rahman, Nik Norulaini Nik Ab; Balakrishnan, Venugopal; Puvanesuaran, Vignesh R.; Sarker, Md. Zaidul Islam; Kadir, Mohd Omar Ab

    2013-01-01

    The present study was undertaken to determine the bacterial agents present in various clinical solid wastes, general waste and clinical sharp waste. The waste was collected from different wards/units in a healthcare facility in Penang Island, Malaysia. The presence of bacterial agents in clinical and general waste was determined using the conventional bacteria identification methods. Several pathogenic bacteria including opportunistic bacterial agent such as Pseudomonas aeruginosa, Salmonella spp., Klebsiella pneumoniae, Serratia marcescens, Acinetobacter baumannii, Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecalis, Streptococcus pyogenes were detected in clinical solid wastes. The presence of specific pathogenic bacterial strains in clinical sharp waste was determined using 16s rDNA analysis. In this study, several nosocomial pathogenic bacteria strains of Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Lysinibacillus sphaericus, Serratia marcescens, and Staphylococcus aureus were detected in clinical sharp waste. The present study suggests that waste generated from healthcare facilities should be sterilized at the point of generation in order to eliminate nosocomial infections from the general waste or either of the clinical wastes. PMID:23435587

  9. Global perspectives on e-waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Widmer, Rolf; Oswald-Krapf, Heidi; Sinha-Khetriwal, Deepali

    2005-07-15

    Electronic waste, or e-waste, is an emerging problem as well as a business opportunity of increasing significance, given the volumes of e-waste being generated and the content of both toxic and valuable materials in them. The fraction including iron, copper, aluminium, gold and other metals in e-waste is over 60%, while pollutants comprise 2.70%. Given the high toxicity of these pollutants especially when burned or recycled in uncontrolled environments, the Basel Convention has identified e-waste as hazardous, and developed a framework for controls on transboundary movement of such waste. The Basel Ban, an amendment to the Basel Convention that hasmore » not yet come into force, would go one step further by prohibiting the export of e-waste from developed to industrializing countries. Section 1 of this paper gives readers an overview on the e-waste topic-how e-waste is defined, what it is composed of and which methods can be applied to estimate the quantity of e-waste generated. Considering only PCs in use, by one estimate, at least 100 million PCs became obsolete in 2004. Not surprisingly, waste electrical and electronic equipment (WEEE) today already constitutes 8% of municipal waste and is one of the fastest growing waste fractions. Section 2 provides insight into the legislation and initiatives intended to help manage these growing quantities of e-waste. Extended Producer Responsibility (EPR) is being propagated as a new paradigm in waste management. The European Union's WEEE Directive, which came into force in August of 2004, makes it incumbent on manufacturers and importers in EU states to take back their products from consumers and ensure environmentally sound disposal. WEEE management in industrializing countries has its own characteristics and problems, and therefore this paper identifies some problems specific to such countries. The risky process of extracting copper from printed wiring boards is discussed as an example to illustrate the hazards of the e-waste recycling industry in India. The WEEE Knowledge Partnership programme funded by seco (Swiss State Secretariat for Economic Affairs) and implemented by Empa has developed a methodology to assess the prevailing situation, in order to better understand the opportunities and risks in pilot urban areas of three countries-Beijing-China, Delhi-India and Johannesburg-South Africa. The three countries are compared using an assessment indicator system which takes into account the structural framework, the recycling system and its various impacts. Three key points have emerged from the assessments so far: a) e-waste recycling has developed in all countries as a market based activity, b) in China and India it is based on small to medium-sized enterprises (SME) in the informal sector, whereas in South Africa it is in the formal sector, and c) each country is trying to overcome shortcomings in the current system by developing strategies for improvement.« less

  10. Waste management technology development and demonstration programs at Brookhaven National Laboratory

    NASA Technical Reports Server (NTRS)

    Kalb, Paul D.; Colombo, Peter

    1991-01-01

    Two thermoplastic processes for improved treatment of radioactive, hazardous, and mixed wastes were developed from bench scale through technology demonstration: polyethylene encapsulation and modified sulfur cement encapsulation. The steps required to bring technologies from the research and development stage through full scale implementation are described. Both systems result in durable waste forms that meet current Nuclear Regulatory Commission and Environmental Protection Agency regulatory criteria and provide significant improvements over conventional solidification systems such as hydraulic cement. For example, the polyethylene process can encapsulate up to 70 wt pct. nitrate salt, compared with a maximum of about 20 wt pct. for the best hydraulic cement formulation. Modified sulfur cement waste forms containing as much as 43 wt pct. incinerator fly ash were formulated, whereas the maximum quantity of this waste in hydraulic cement is 16 wt pct.

  11. Utilization and recycling of industrial magnesite refractory waste material for removal of certain radionuclides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morcos, T.N.; Tadrous, N.A.; Borai, E.H.

    2007-07-01

    Increased industrialization over the last years in Egypt has resulted in an increased and uncontrolled generation of industrial hazardous waste. The current lack of management of the solid waste in Egypt has created a situation where large parts of the land (especially industrial areas) are covered by un-planned dumps of industrial wastes. Consequently, in the present work, industrial magnesite waste produced in large quantities after production process of magnesium sulfate in Zinc Misr factory, Egypt, was tried to be recycled. Firstly, this material has been characterized applying different analytical techniques such as infrared spectroscopy (IR), surface analyzer (BET), particle sizemore » distribution (PSD), elemental analysis by X-ray fluorescence (XRF) and X-ray diffraction (XRD). The magnesite material has been used as a source of producing aluminum, chromium, and magnesium oxides that has better chemical stability than conventional metal oxides. Secondly, utilization of magnesite material for removal of certain radionuclides was applied. Different factors affecting the removal capability such as pH, contacting time, metal concentration, particle size were systematically investigated. The overall objective was aimed at determining feasible and economic solution to the environmental problems related to re-use of the industrial solid waste for radioactive waste management. (authors)« less

  12. Food waste disposal units in UK households: the need for policy intervention.

    PubMed

    Iacovidou, Eleni; Ohandja, Dieudonne-Guy; Voulvoulis, Nikolaos

    2012-04-15

    The EU Landfill Directive requires Member States to reduce the amount of biodegradable waste disposed of to landfill. This has been a key driver for the establishment of new waste management options, particularly in the UK, which in the past relied heavily on landfill for the disposal of municipal solid waste (MSW). MSW in the UK is managed by Local Authorities, some of which in a less conventional way have been encouraging the installation and use of household food waste disposal units (FWDs) as an option to divert food waste from landfill. This study aimed to evaluate the additional burden to water industry operations in the UK associated with this option, compared with the benefits and related savings from the subsequent reductions in MSW collection and disposal. A simple economic analysis was undertaken for different FWD uptake scenarios, using the Anglian Region as a case study. Results demonstrated that the significant savings from waste collection arising from a large-scale uptake of FWDs would outweigh the costs associated with the impacts to the water industry. However, in the case of a low uptake, such savings would not be enough to cover the increased costs associated with the wastewater provision. As a result, this study highlights the need for policy intervention in terms of regulating the use of FWDs, either promoting them as an alternative to landfill to increase savings from waste management, or banning them as a threat to wastewater operations to reduce potential costs to the water industry. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. U.S. Perspectives on the Joint Convention

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strosnider, J.; Federline, M.; Camper, L.

    The Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management (Joint Convention) is an international convention, under the auspices of the International Atomic Energy Agency (IAEA). It is a companion to a suite of international conventions on nuclear safety and physical security, which serve to promote a global culture for the safe use of radioactive materials. Although the U.S. was the first nation to sign the Joint Convention on September 29, 1997, the ratification process was a challenging experience for the U.S., in the face of legislative priorities dominated by concerns formore » national security and threats from terrorism after September 11, 2001. Notwithstanding these prevailing circumstances, the U.S. ratified the Joint Convention in 2003, just prior to the First Review Meeting of the Contracting Parties, and participated fully therein. For the United States, participation as a Contracting Party provides many benefits. These range from working with other Parties to harmonize international approaches to achieve strong and effective nuclear safety programs on a global scale, to stimulating initiatives to improve safety systems within our own domestic programs, to learning about technical innovations by other Parties that can be useful to U.S. licensees, utilities, and industry in managing safety and its associated costs in our waste management activities. The Joint Convention process also provides opportunities to identify future areas of bilateral and multilateral technical and regulatory cooperation with other Parties, as well as an opportunity for U.S. vendors and suppliers to broaden their market to include foreign clients for safety improvement equipment and services. The Joint Convention is consistent with U.S. foreign policy considerations to support, as a priority, the strengthening of the worldwide safety culture in the use of nuclear energy. Because of its many benefits, we believe it is important to take a leadership role in promoting its ratification in the global setting, as well as in more focused regions. At the First Review Meeting of the Contracting Parties, delegations agreed it was highly desirable to have more member states become Contracting Parties. To that end, the United States proposed initiating a Regional Conference Initiative outreach. To launch the Initiative, the U.S. provided Extra-Budgetary contributions to fund conferences, in Africa, the Americans and Southeast Asia. We also provided an expert for each of the conferences to assist in advancing the message to non-member States, in particular developing nations. (authors)« less

  14. Comparison of phytoplankton communities in catfish split-pond aquaculture systems with conventional ponds

    USDA-ARS?s Scientific Manuscript database

    There has been a growing interest and use of variations of partitioned aquaculture systems (PAS) in recent years by the southeastern United States of America farmed catfish industry. Split-pond systems, one type of PAS, are designed to better manage fish waste byproducts (e.g., ammonia) and dissolv...

  15. Bioproducts from Potatoes. A Review

    NASA Astrophysics Data System (ADS)

    Priedniece, Vivita; Spalvins, Kriss; Ivanovs, Kaspars; Pubule, Jelena; Blumberga, Dagnija

    2017-12-01

    The increasing amount of food waste througout the world is becoming a major problem for waste management plants. The food waste produced amounts to 1.3 million tons a year. This is a resource that could be used for production of new products. Decreasing fossil resources and a rapidly growing population lead to the necessity to produce more food and to replace existing with new materials ones that are biological and produce little effect on environment. Bioeconomy is a method that can help achieve production of value-added products that use local resources and waste to manufacture products efficiently. In this article, we are looking at possibilities to use potatoes for production of new materials, such as bioplastics, antioxidants, proteins, instead of their conventional use for food production. We have studied potato components, extraction technologies and summed up possible directions for development for new products, looking at the use of processing waste as a raw material.

  16. Utilization of agricultural and forest industry waste and residues in natural fiber-polymer composites: A review.

    PubMed

    Väisänen, Taneli; Haapala, Antti; Lappalainen, Reijo; Tomppo, Laura

    2016-08-01

    Natural fiber-polymer composites (NFPCs) are becoming increasingly utilized in a wide variety of applications because they represent an ecological and inexpensive alternative to conventional petroleum-derived materials. On the other hand, considerable amounts of organic waste and residues from the industrial and agricultural processes are still underutilized as low-value energy sources. Organic materials are commonly disposed of or subjected to the traditional waste management methods, such as landfilling, composting or anaerobic digestion. The use of organic waste and residue materials in NFPCs represents an ecologically friendly and a substantially higher value alternative. This is a comprehensive review examining how organic waste and residues could be utilized in the future as reinforcements or additives for NFPCs from the perspective of the recently reported work in this field. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Coffee husk waste for fermentation production of mosquitocidal bacteria.

    PubMed

    Poopathi, Subbiah; Abidha, S

    2011-12-01

    Coffee husk waste (CHW) discarded as bio-organic waste, from coffee industries, is rich in carbohydrates. The current study emphasizes the management of solid waste from agro-industrial residues for the production of biopesticides (Bacillus sphaericus, and B. thuringiensis subsp. israelensis), to control disease transmitting mosquito vectors. An experimental culture medium was prepared by extracting the filtrates from coffee husk. A conventional culture medium (NYSM) also was prepared. The studies revealed that the quantity of mosquitocidal toxins produced from CHW is at par with NYSM. The bacteria produced in these media, were bioassayed against mosquito vectors (Culex quinquefasciatus, Anopheles stephensi, and Aedes aegypti) and it was found that the toxic effect was statistically comparable. Cost-effective analysis have revealed that, production of biopesticides from CHW is highly economical. Therefore, the utilization of CHW provides dual benefits of effective utilization of environmental waste and efficient production of mosquitocidal toxins.

  18. Waste management under multiple complexities: inexact piecewise-linearization-based fuzzy flexible programming.

    PubMed

    Sun, Wei; Huang, Guo H; Lv, Ying; Li, Gongchen

    2012-06-01

    To tackle nonlinear economies-of-scale (EOS) effects in interval-parameter constraints for a representative waste management problem, an inexact piecewise-linearization-based fuzzy flexible programming (IPFP) model is developed. In IPFP, interval parameters for waste amounts and transportation/operation costs can be quantified; aspiration levels for net system costs, as well as tolerance intervals for both capacities of waste treatment facilities and waste generation rates can be reflected; and the nonlinear EOS effects transformed from objective function to constraints can be approximated. An interactive algorithm is proposed for solving the IPFP model, which in nature is an interval-parameter mixed-integer quadratically constrained programming model. To demonstrate the IPFP's advantages, two alternative models are developed to compare their performances. One is a conventional linear-regression-based inexact fuzzy programming model (IPFP2) and the other is an IPFP model with all right-hand-sides of fussy constraints being the corresponding interval numbers (IPFP3). The comparison results between IPFP and IPFP2 indicate that the optimized waste amounts would have the similar patterns in both models. However, when dealing with EOS effects in constraints, the IPFP2 may underestimate the net system costs while the IPFP can estimate the costs more accurately. The comparison results between IPFP and IPFP3 indicate that their solutions would be significantly different. The decreased system uncertainties in IPFP's solutions demonstrate its effectiveness for providing more satisfactory interval solutions than IPFP3. Following its first application to waste management, the IPFP can be potentially applied to other environmental problems under multiple complexities. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Biomedical waste management in India: Critical appraisal

    PubMed Central

    Datta, Priya; Mohi, Gursimran Kaur; Chander, Jagdish

    2018-01-01

    The safe and sustainable management of biomedical waste (BMW) is social and legal responsibility of all people supporting and financing health-care activities. Effective BMW management (BMWM) is mandatory for healthy humans and cleaner environment. This article reviews the recent 2016 BMWM rules, practical problems for its effective implementation, the major drawback of conventional techniques, and the latest eco-friendly methods for BMW disposal. The new rules are meant to improve the segregation, transportation, and disposal methods, to decrease environmental pollution so as to change the dynamic of BMW disposal and treatment in India. For effective disposal of BMWM, there should be a collective teamwork with committed government support in terms of finance and infrastructure development, dedicated health-care workers and health-care facilities, continuous monitoring of BMW practices, tough legislature, and strong regulatory bodies. The basic principle of BMWM is segregation at source and waste reduction. Besides, a lot of research and development need to be in the field of developing environmental friendly medical devices and BMW disposal systems for a greener and cleaner environment. PMID:29403196

  20. Lifecycle Greenhouse Gas Analysis of an Anaerobic Codigestion Facility Processing Dairy Manure and Industrial Food Waste.

    PubMed

    Ebner, Jacqueline H; Labatut, Rodrigo A; Rankin, Matthew J; Pronto, Jennifer L; Gooch, Curt A; Williamson, Anahita A; Trabold, Thomas A

    2015-09-15

    Anaerobic codigestion (AcoD) can address food waste disposal and manure management issues while delivering clean, renewable energy. Quantifying greenhouse gas (GHG) emissions due to implementation of AcoD is important to achieve this goal. A lifecycle analysis was performed on the basis of data from an on-farm AcoD in New York, resulting in a 71% reduction in GHG, or net reduction of 37.5 kg CO2e/t influent relative to conventional treatment of manure and food waste. Displacement of grid electricity provided the largest reduction, followed by avoidance of alternative food waste disposal options and reduced impacts associated with storage of digestate vs undigested manure. These reductions offset digester emissions and the net increase in emissions associated with land application in the AcoD case relative to the reference case. Sensitivity analysis showed that using feedstock diverted from high impact disposal pathways, control of digester emissions, and managing digestate storage emissions were opportunities to improve the AcoD GHG benefits. Regional and parametrized emissions factors for the storage emissions and land application phases would reduce uncertainty.

  1. Dioxin/POPs legacy of pesticide production in Hamburg: part 1--securing of the production area.

    PubMed

    Weber, Roland; Varbelow, Hans Gerhard

    2013-04-01

    α-Hexachlorocyclohexane (HCH), β-HCH, and γ-HCH (lindane) were recently included as new persistent organic pollutants (POPs) in the Stockholm Convention. Therefore, the chemicals need to be globally addressed, including the disposal of historic wastes. At most sites, the approximately 85% of HCH waste isomers were dumped. At a former lindane factory in Hamburg and some other factories the HCH, waste was recycled producing residues with high polychlorinated dibenzo-p-dioxin and dibenzofuran (PCDD/PCDF) levels. The soil and ground water under the former pesticide factory was/is highly contaminated with HCH (260 tons), chlorobenzenes (550 tons), and PCDD/PCDF (6 kg toxic equivalents (TEQ)). This contamination did not result from disposal operations but from spillages and leakages during the 30 years of the factory's production history. A containment wall has been constructed around the production area to prevent the dispersal of the pollutants. The ground water is managed by a pump and treat system. Over the last 15 years, approximately 10-30 tons of this pollution reservoir has been pumped and incinerated. For the contaminated production buildings, specific assessment and demolition technologies have been applied. In addition to their HCH waste isomer deposition, former lindane/HCH productions need to be assessed for possible recycling practice of HCH and related PCDD/PCDF contamination of the production area and buildings. Since such recycling activities have taken place at several factories in different countries, the experience of assessment and management of the described production area and contaminated buildings could be valuable. Such assessment could be addressed within the frame of the Stockholm Convention.

  2. Final environmental impact statement. Management of commercially generated radioactive waste. Volume 1 of 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-10-01

    This EIS analyzes the significant environmental impacts that could occur if various technologies for management and disposal of high-level and transuranic wastes from commercial nuclear power reactors were to be developed and implemented. This EIS will serve as the environmental input for the decision on which technology, or technologies, will be emphasized in further research and development activities in the commercial waste management program. The action proposed in this EIS is to (1) adopt a national strategy to develop mined geologic repositories for disposal of commercially generated high-level and transuranic radioactive waste (while continuing to examine subseabed and very deepmore » hole disposal as potential backup technologies) and (2) conduct a R and D program to develop such facilities and the necessary technology to ensure the safe long-term containment and isolation of these wastes. The Department has considered in this statement: development of conventionally mined deep geologic repositories for disposal of spent fuel from nuclear power reactors and/or radioactive fuel reprocessing wastes; balanced development of several alternative disposal methods; and no waste disposal action. This EIS reflects the public review of and comments offered on the draft statement. Included are descriptions of the characteristics of nuclear waste, the alternative disposal methods under consideration, and potential environmental impacts and costs of implementing these methods. Because of the programmatic nature of this document and the preliminary nature of certain design elements assumed in assessing the environmental consequences of the various alternatives, this study has been based on generic, rather than specific, systems. At such time as specific facilities are identified for particular sites, statements addressing site-specific aspects will be prepared for public review and comment.« less

  3. Evaluation of landfill gas emissions from municipal solid waste landfills for the life-cycle analysis of waste-to-energy pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Uisung; Han, Jeongwoo; Wang, Michael

    Various waste-to-energy (WTE) conversion technologies can generate energy products from municipal solid waste (MSW). Accurately evaluating landfill gas (LFG, mainly methane) emissions from base case landfills is critical to conducting a WTE life-cycle analysis (LCA) of their greenhouse gas (GHG) emissions. To reduce uncertainties in estimating LFG, this study investigated key parameters for its generation, based on updated experimental results. These results showed that the updated parameters changed the calculated GHG emissions from landfills significantly depending on waste stream; they resulted in a 65% reduction for wood (from 2412 to 848 t CO 2e/dry t) to a 4% increase formore » food waste (from 2603 to 2708 t CO 2e/dry t). Landfill GHG emissions also vary significantly based on LFG management practices and climate. In LCAs of WTE conversion, generating electricity from LFG helps reduce GHG emissions indirectly by displacing regional electricity. When both active LFG collection and power generation are considered, GHG emissions are 44% less for food waste (from 2708 to 1524 t CO 2e/dry t), relative to conventional MSW landfilling. The method developed and data collected in this study can help improve the assessment of GHG impacts from landfills, which supports transparent decision-making regarding the sustainable treatment, management, and utilization of MSW.« less

  4. Evaluation of landfill gas emissions from municipal solid waste landfills for the life-cycle analysis of waste-to-energy pathways

    DOE PAGES

    Lee, Uisung; Han, Jeongwoo; Wang, Michael

    2017-08-05

    Various waste-to-energy (WTE) conversion technologies can generate energy products from municipal solid waste (MSW). Accurately evaluating landfill gas (LFG, mainly methane) emissions from base case landfills is critical to conducting a WTE life-cycle analysis (LCA) of their greenhouse gas (GHG) emissions. To reduce uncertainties in estimating LFG, this study investigated key parameters for its generation, based on updated experimental results. These results showed that the updated parameters changed the calculated GHG emissions from landfills significantly depending on waste stream; they resulted in a 65% reduction for wood (from 2412 to 848 t CO 2e/dry t) to a 4% increase formore » food waste (from 2603 to 2708 t CO 2e/dry t). Landfill GHG emissions also vary significantly based on LFG management practices and climate. In LCAs of WTE conversion, generating electricity from LFG helps reduce GHG emissions indirectly by displacing regional electricity. When both active LFG collection and power generation are considered, GHG emissions are 44% less for food waste (from 2708 to 1524 t CO 2e/dry t), relative to conventional MSW landfilling. The method developed and data collected in this study can help improve the assessment of GHG impacts from landfills, which supports transparent decision-making regarding the sustainable treatment, management, and utilization of MSW.« less

  5. Selective classification and quantification model of C&D waste from material resources consumed in residential building construction.

    PubMed

    Mercader-Moyano, Pilar; Ramírez-de-Arellano-Agudo, Antonio

    2013-05-01

    The unfortunate economic situation involving Spain and the European Union is, among other factors, the result of intensive construction activity over recent years. The excessive consumption of natural resources, together with the impact caused by the uncontrolled dumping of untreated C&D waste in illegal landfills have caused environmental pollution and a deterioration of the landscape. The objective of this research was to generate a selective classification and quantification model of C&D waste based on the material resources consumed in the construction of residential buildings, either new or renovated, namely the Conventional Constructive Model (CCM). A practical example carried out on ten residential buildings in Seville, Spain, enabled the identification and quantification of the C&D waste generated in their construction and the origin of the waste, in terms of the building material from which it originated and its impact for every m(2) constructed. This model enables other researchers to establish comparisons between the various improvements proposed for the minimization of the environmental impact produced by building a CCM, new corrective measures to be proposed in future policies that regulate the production and management of C&D waste generated in construction from the design stage to the completion of the construction process, and the establishment of sustainable management for C&D waste and for the selection of materials for the construction on projected or renovated buildings.

  6. Municipal solid waste management health risk assessment from air emissions for China by applying life cycle analysis.

    PubMed

    Li, Hua; Nitivattananon, Vilas; Li, Peng

    2015-05-01

    This study is to quantify and objectively evaluate the extent of environmental health risks from three waste treatment options suggested by the national municipal solid waste management enhancing strategy (No [2011] 9 of the State Council, promulgated on 19 April 2011), which includes sanitary landfill, waste-to-energy incineration and compost, together with the material recovery facility through a case study in Zhangqiu City of China. It addresses potential chronic health risks from air emissions to residential receptors in the impacted area. It combines field survey, analogue survey, design documents and life cycle inventory methods in defining the source strength of chemicals of potential concern. The modelling of life cycle inventory and air dispersion is via integrated waste management(IWM)-2 and Screening Air Dispersion Model (Version 3.0) (SCREEN3). The health risk assessment is in accordance with United States Environmental Protection Agency guidance Risk Assessment Guidance for Superfund (RAGS), Volume I: Human Health Evaluation Manual (Part F, Supplemental Guidance for Inhalation Risk Assessment). The exposure concentration is based on long-term exposure to the maximum ground level contaminant in air under the 'reasonable worst situation' emissions and then directly compared with reference for concentration and unit risk factor/cancer slope factor derived from the national air quality standard (for a conventional pollutant) and toxicological studies (for a specific pollutant). Results from this study suggest that the option of compost with material recovery facility treatment may pose less negative health impacts than other options; the sensitivity analysis shows that the landfill integrated waste management collection rate has a great influence on the impact results. Further investigation is needed to validate or challenge the findings of this study. © The Author(s) 2015.

  7. Management of low-level radioactive waste in Israel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shabtai, B.; Brenner, S.; Ne`eman, E.

    1995-12-31

    Radioactive materials are used extensively in Israel in many areas and applications for medicine, industry, agriculture, research and development and others. Israel`s primary concern in waste management is population safety and environmental protection. The Ministry of The Environment (MOE), in cooperation with the Israeli Atomic Energy Commission (IAEC), supervise over the disposal system, and ensure an effective control. The MOE is responsible for the granting of permits to users of radioactive elements in about 300 plants and institutes, with about 2,200 installations. The MOE operates a computerized database management system (DBMS) on radioactive materials, with data on licensing, import andmore » distribution, waste disposal and transportation. Supervision over the disposal of LLRW has deepened recently, and periodic reports, based on the number of drums containing LLRW, which were transferred from all institutes in Israel to the NRWDS, were prepared. Draft regulations on the disposal of LLRW from institutes of research and education, hospitals, medical laboratories and other, have been recently prepared. These regulations include instructions on the disposal of solid and liquid LLRW as well as radioactive gases and vapors. As a general rule, no LLRW of any sort will be disposed of through the ordinary waste system or general sewage. However, in some extraordinary cases, residues of liquid LLRW are allowed to be disposed in this manner, if the requirements for disposal are satisfied. There are some conditions, in which solid LLRW might be treated as a conventional waste, as well as for safe emission of radioactive gases and aerosols. In light of these considerations, a new and more specific approach to radiation protection organizations and management of low-level radioactive waste problems, supervision and optimization is presented.« less

  8. Benefits of sustainable waste management in the vegetable greenhouse industry.

    PubMed

    Cheuk, William; Lo, Kwang Victor; Branion, Richard M R; Fraser, Bud

    2003-11-01

    This study investigated the benefits of an on-site sustainable solid waste treatment and utilization system for the greenhouse industry. The composts made from greenhouse wastes were tested and found to contain high nutrient values and good physical properties, and could be used as high quality growing media. The finished composts were tested in a greenhouse against the conventional growth media (sawdust) and resulted in a 10% yield increase by using the compost. An economic analysis was conducted to show the economic benefits of on-site composting for a greenhouse operation. Based on a four-hectare tomato or pepper greenhouse, and amortizing the capital equipment over five years, the net annual cost of composting represents a savings of dollars 8,000 annually.

  9. Construction materials as a waste management solution for cellulose sludge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Modolo, R., E-mail: regina.modolo@ua.pt; Ferreira, V.M.; Machado, L.M.

    2011-02-15

    Sustainable waste management system for effluents treatment sludge has been a pressing issue for pulp and paper sector. Recycling is always recommended in terms of environmental sustainability. Following an approach of waste valorisation, this work aims to demonstrate the technical viability of producing fiber-cement roof sheets incorporating cellulose primary sludge generated on paper and pulp mills. From the results obtained with preliminary studies it was possible to verify the possibility of producing fiber-cement sheets by replacing 25% of the conventional used virgin long fiber by primary effluent treatment cellulose sludge. This amount of incorporation was tested on an industrial scale.more » Environmental parameters related to water and waste, as well as tests for checking the quality of the final product was performed. These control parameters involved total solids in suspension, dissolved salts, chlorides, sulphates, COD, metals content. In the product, parameters like moisture, density and strength were controlled. The results showed that it is possible to replace the virgin long fibers pulp by primary sludge without impacts in final product characteristics and on the environment. This work ensures the elimination of significant waste amounts, which are nowadays sent to landfill, as well as reduces costs associated with the standard raw materials use in the fiber-cement industrial sector.« less

  10. Acoustic barriers obtained from industrial wastes.

    PubMed

    Garcia-Valles, M; Avila, G; Martinez, S; Terradas, R; Nogués, J M

    2008-07-01

    Acoustic pollution is an environmental problem that is becoming increasingly more important in our society. Likewise, the accumulation of generated waste and the need for waste management are also becoming more and more pressing. In this study we describe a new material--called PROUSO--obtained from industrial wastes. PROUSO has a variety of commercial and engineering, as well as building, applications. The main raw materials used for this environmentally friendly material come from slag from the aluminium recycling process, dust from the marble industry, foundry sands, and recycled expanded polystyrene from recycled packaging. Some natural materials, such as plastic clays, are also used. To obtain PROUSO we used a conventional ceramic process, forming new mineral phases and incorporating polluted elements into the structure. Its physical properties make PROUSO an excellent acoustic and thermal insulation material. It absorbs 95% of the sound in the frequency band of the 500 Hz. Its compressive strength makes it ideal for use in ceramic wall building.

  11. Stabilization/solidification of radioactive salt waste by using xSiO2-yAl2O3-zP2O5 (SAP) material at molten salt state.

    PubMed

    Park, Hwan-Seo; Kim, In-Tae; Cho, Yong-Zun; Eun, Hee-Chul; Lee, Han-Soo

    2008-12-15

    The molten salt waste from the pyroprocess is one of the problematic wastes to directly apply a conventional process such as vitrification or ceramization. This study suggested a novel method using a reactive material for metal chlorides at a molten temperature of salt waste, and then converting them into manageable product at a high temperature. The inorganic composite, SAP (SiO2-Al2O3-P2O5), synthesized by a conventional sol-gel process has three or four distinctive domains that are bonded sequentially, Si-O-Si-O-A-O-P-O-P. The P-rich phase in the SAP composite is unstable for producing a series of reactive sites when in contact with a molten LiCl salt. After the reaction, metal aluminosilicate, metal aluminophosphate, metal phosphates and gaseous chlorines are generated. From this process, the volatile salt waste is stabilized and it is possible to apply a high temperature process. The reaction products were fabricated successfully by using a borosilicate glass with an arbitrary composition as a chemical binder. There was a low possibility for the valorization of radionuclides up to 1200 degrees C, based on the result of the thermo gravimetric analysis. The Cs and Sr leach rates by the PCT-A method were about 1 x 10(-3) g/(m2 day). For the final disposal of the problematic salt waste, this approach suggested the design concept of an effective stabilizer for metal chlorides and revealed the chemical route to the fabrication of monolithic wasteform by using a composite as an example. Using this method, we could obtain a higher disposal efficiency and lower waste volume, compared with the present immobilization methods.

  12. Waste gasification vs. conventional Waste-to-Energy: a comparative evaluation of two commercial technologies.

    PubMed

    Consonni, Stefano; Viganò, Federico

    2012-04-01

    A number of waste gasification technologies are currently proposed as an alternative to conventional Waste-to-Energy (WtE) plants. Assessing their potential is made difficult by the scarce operating experience and the fragmentary data available. After defining a conceptual framework to classify and assess waste gasification technologies, this paper compares two of the proposed technologies with conventional WtE plants. Performances are evaluated by proprietary software developed at Politecnico di Milano and compared on the basis of a coherent set of assumptions. Since the two gasification technologies are configured as "two-step oxidation" processes, their energy performances are very similar to those of conventional plants. The potential benefits that may justify their adoption relate to material recovery and operation/emission control: recovery of metals in non-oxidized form; collection of ashes in inert, vitrified form; combustion control; lower generation of some pollutants. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Concentric Split Flow Filter

    NASA Technical Reports Server (NTRS)

    Stapleton, Thomas J. (Inventor)

    2015-01-01

    A concentric split flow filter may be configured to remove odor and/or bacteria from pumped air used to collect urine and fecal waste products. For instance, filter may be designed to effectively fill the volume that was previously considered wasted surrounding the transport tube of a waste management system. The concentric split flow filter may be configured to split the air flow, with substantially half of the air flow to be treated traveling through a first bed of filter media and substantially the other half of the air flow to be treated traveling through the second bed of filter media. This split flow design reduces the air velocity by 50%. In this way, the pressure drop of filter may be reduced by as much as a factor of 4 as compare to the conventional design.

  14. Quantifying the waste reduction potential of using prefabrication in building construction in Hong Kong.

    PubMed

    Jaillon, L; Poon, C S; Chiang, Y H

    2009-01-01

    As Hong Kong is a compact city with limited available land and high land prices, the construction of high-rise buildings is prevalent. The construction industry produces a significant amount of building waste. In 2005, about 21.5 million tonnes of construction waste were generated, of which 11% was disposed of in landfills and 89% in public filling areas. At the present rate, Hong Kong will run out of both public filling areas and landfill space within the next decade. The government is taking action to tackle the problem, such as by introducing a construction waste landfill charge, and promoting prefabrication to reduce on-site waste generation. This paper reports an ongoing study on the use of prefabrication in buildings and its impact on waste reduction in Hong Kong. A questionnaire survey was administered to experienced professionals, and case studies of recently completed building projects were conducted. The results revealed that construction waste reduction is one of the major benefits when using prefabrication compared with conventional construction. The average wastage reduction level was about 52%. This implies that a wider use of prefabrication could considerably reduce construction waste generation in Hong Kong and alleviate the burdens associated with its management.

  15. Enzyme Technology for Shipboard Waste Management

    DTIC Science & Technology

    1976-12-01

    converting corn starch to high fructose corn syrups , a product equivalent in sweetness to the conventional cane and beet sugars. Semisynthetic penicillins...catalysts that accelerate virtually all of the known chemical reactions occurring in living cells. These reactions, due to the relatively high energies...affect proteins. Con- sequently, high temperatures, generally in excess of the 400-500 C range, will cause the destruction or denaturation of most

  16. Waste management of printed wiring boards: a life cycle assessment of the metals recycling chain from liberation through refining.

    PubMed

    Xue, Mianqiang; Kendall, Alissa; Xu, Zhenming; Schoenung, Julie M

    2015-01-20

    Due to economic and societal reasons, informal activities including open burning, backyard recycling, and landfill are still the prevailing methods used for electronic waste treatment in developing countries. Great efforts have been made, especially in China, to promote formal approaches for electronic waste management by enacting laws, developing green recycling technologies, initiating pilot programs, etc. The formal recycling process can, however, engender environmental impact and resource consumption, although information on the environmental loads and resource consumption is currently limited. To quantitatively assess the environmental impact of the processes in a formal printed wiring board (PWB) recycling chain, life cycle assessment (LCA) was applied to a formal recycling chain that includes the steps from waste liberation through materials refining. The metal leaching in the refining stage was identified as a critical process, posing most of the environmental impact in the recycling chain. Global warming potential was the most significant environmental impact category after normalization and weighting, followed by fossil abiotic depletion potential, and marine aquatic eco-toxicity potential. Scenario modeling results showed that variations in the power source and chemical reagents consumption had the greatest influence on the environmental performance. The environmental impact from transportation used for PWB collection was also evaluated. The results were further compared to conventional primary metals production processes, highlighting the environmental benefit of metal recycling from waste PWBs. Optimizing the collection mode, increasing the precious metals recovery efficiency in the beneficiation stage and decreasing the chemical reagents consumption in the refining stage by effective materials liberation and separation are proposed as potential improvement strategies to make the recycling chain more environmentally friendly. The LCA results provide environmental information for the improvement of future integrated technologies and electronic waste management.

  17. Waste management under multiple complexities: Inexact piecewise-linearization-based fuzzy flexible programming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun Wei; Huang, Guo H., E-mail: huang@iseis.org; Institute for Energy, Environment and Sustainable Communities, University of Regina, Regina, Saskatchewan, S4S 0A2

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer Inexact piecewise-linearization-based fuzzy flexible programming is proposed. Black-Right-Pointing-Pointer It's the first application to waste management under multiple complexities. Black-Right-Pointing-Pointer It tackles nonlinear economies-of-scale effects in interval-parameter constraints. Black-Right-Pointing-Pointer It estimates costs more accurately than the linear-regression-based model. Black-Right-Pointing-Pointer Uncertainties are decreased and more satisfactory interval solutions are obtained. - Abstract: To tackle nonlinear economies-of-scale (EOS) effects in interval-parameter constraints for a representative waste management problem, an inexact piecewise-linearization-based fuzzy flexible programming (IPFP) model is developed. In IPFP, interval parameters for waste amounts and transportation/operation costs can be quantified; aspiration levels for net system costs, as well as tolerancemore » intervals for both capacities of waste treatment facilities and waste generation rates can be reflected; and the nonlinear EOS effects transformed from objective function to constraints can be approximated. An interactive algorithm is proposed for solving the IPFP model, which in nature is an interval-parameter mixed-integer quadratically constrained programming model. To demonstrate the IPFP's advantages, two alternative models are developed to compare their performances. One is a conventional linear-regression-based inexact fuzzy programming model (IPFP2) and the other is an IPFP model with all right-hand-sides of fussy constraints being the corresponding interval numbers (IPFP3). The comparison results between IPFP and IPFP2 indicate that the optimized waste amounts would have the similar patterns in both models. However, when dealing with EOS effects in constraints, the IPFP2 may underestimate the net system costs while the IPFP can estimate the costs more accurately. The comparison results between IPFP and IPFP3 indicate that their solutions would be significantly different. The decreased system uncertainties in IPFP's solutions demonstrate its effectiveness for providing more satisfactory interval solutions than IPFP3. Following its first application to waste management, the IPFP can be potentially applied to other environmental problems under multiple complexities.« less

  18. Microbial utilisation of natural organic wastes

    NASA Astrophysics Data System (ADS)

    Ilyin, V. K.; Smirnov, I. A.; Soldatov, P. E.; Korniushenkova, I. N.; Grinin, A. S.; Lykov, I. N.; Safronova, S. A.

    2004-03-01

    The waste management strategy for the future should meet the benefits of humanity safety, respect principals of planet ecology, and compatibility with other habitability systems. For these purpose the waste management technologies, relevant to application of the biodegradation properties of bacteria are of great value. The biological treatment method is based upon the biodegradation of organic substances by various microorganisms. The advantage of the biodegradation waste management in general: it allows to diminish the volume of organic wastes, the biological hazard of the wastes is controlled and this system may be compatible with the other systems. The objectives of our study were: to evaluate effectiveness of microbial biodegradation of non-pretreated substrate, to construct phneumoautomatic digester for organic wastes biodegradation and to study microbial characteristics of active sludge samples used as inoculi in biodegradation experiment. The technology of vegetable wastes treatment was elaborated in IBMP and BMSTU. For this purpose the special unit was created where the degradation process is activated by enforced reinvention of portions of elaborated biogas into digester. This technology allows to save energy normally used for electromechanical agitation and to create optimal environment for anaerobic bacteria growth. The investigations were performed on waste simulator, which imitates physical and chemical content of food wastes calculated basing on the data on food wastes of moderate Russian city. The volume of created experimental sample of digester is 40 l. The basic system elements of device are digesters, gas receiver, remover of drops and valve monitoring and thermal control system. In our testing we used natural food wastes to measure basic parameters and time of biodegradation process. The diminution rate of organic gained 76% from initial mass taking part within 9 days of fermentation. The biogas production achieved 46 l per 1 kg of substrate. The microbial studies of biodegradation process revealed following peculiarities: gradual quantitative increasing of Lactobacillus sp. (from 10 3 to 10 5 colony forming units (CFU) per ml), activation of Clostridia sp. (from 10 2 to 10 4 CFU/ml) and elimination of aerobic conventional pathogens ( Enterobacteriaceae sp., Protea sp., staphylococci). The obtained results allow to evaluate effectiveness of proposed technology and to determine the leading role of lactobacilli and clostridia in process of natural wastes biodegradation. Our further investigations shall further be concentrated on creation of artificial inoculi for launching of food wastes biodegradation. These inoculi will include active and adapted strains of clostridia and lactobacilli.

  19. The Water Reuse project: Sustainable waste water re-use technologies for irrigated land in NIS and southern European states; project overview and results.

    NASA Astrophysics Data System (ADS)

    van den Elsen, E.; Doerr, S.; Ritsema, C. J.

    2009-04-01

    In irrigated areas in the New Independent States (NIS) and southern European States, inefficient use of conventional water resources occurs through incomplete wetting of soils, which causes accelerated runoff and preferential flow, and also through excessive evaporation associated with unhindered capillary rise. Furthermore, a largely unexploited potential exists to save conventional irrigation water by supplementation with organic-rich waste water, which, if used appropriately, can also lead to improvements to soil physical properties and soil nutrient and organic matter content. This project aims to (a) reduce irrigation water losses by developing, evaluating and promoting techniques that improve the wetting properties of soils, and (b) investigate the use of organic-rich waste water as a non-conventional water resource in irrigation and, in addition, as a tool in improving soil physical properties and soil nutrient and organic matter content. Key activities include (i) identifying, for the NIS and southern European partner countries, the soil type/land use combinations, for which the above approaches are expected to be most effective and their implementation most feasible, using physical and socio-economic research methods, and (ii) examining the water saving potential, physical, biological and chemical effects on soils of the above approaches, and also their impact on performance. Expected outputs include techniques for sustainable improvements in soil wettability management as a novel approach in water saving, detailed evaluation of the prospects and effects of using supplemental organic-rich waste waters in irrigation, an advanced process-based numerical hydrological model, fully adapted to quantify and upscale resulting water savings and nutrient and potential contaminant fluxes for irrigated areas, and identification of suitable areas in the NIS and Mediterranean (in soil, land use, legislative and socio-economic terms) for implementation.

  20. New insights into polyurethane biodegradation and realistic prospects for the development of a sustainable waste recycling process.

    PubMed

    Cregut, Mickael; Bedas, M; Durand, M-J; Thouand, G

    2013-12-01

    Polyurethanes are polymeric plastics that were first used as substitutes for traditional polymers suspected to release volatile organic hazardous substances. The limitless conformations and formulations of polyurethanes enabled their use in a wide variety of applications. Because approximately 10 Mt of polyurethanes is produced each year, environmental concern over their considerable contribution to landfill waste accumulation appeared in the 1990s. To date, no recycling processes allow for the efficient reuse of polyurethane waste due to their high resistance to (a)biotic disturbances. To find alternatives to systematic accumulation or incineration of polyurethanes, a bibliographic analysis was performed on major scientific advances in the polyurethane (bio)degradation field to identify opportunities for the development of new technologies to recondition this material. Until polymers exhibiting oxo- or hydro-biodegradative traits are generated, conventional polyurethanes that are known to be only slightly biodegradable are of great concern. The research focused on polyurethane biodegradation highlights recent attempts to reprocess conventional industrial polyurethanes via microbial or enzymatic degradation. This review describes several wonderful opportunities for the establishment of new processes for polyurethane recycling. Meeting these new challenges could lead to the development of sustainable management processes involving polymer recycling or reuse as environmentally safe options for industries. The ability to upgrade polyurethane wastes to chemical compounds with a higher added value would be especially attractive. © 2013.

  1. How technology transfer issues are managed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sink, C.H.; Easley, K.R.

    1991-12-31

    In 1989, Secretary of Energy James Watkins made a commitment to accelerate DOE compliance with all applicable laws and standards aimed at protecting human health and the environment. At a minimum, this pledge requires the remediation of the 1989 inventory of chemical, radioactive, and mixed wastes at DOE production sites by 2019. The 1989 Complex inventory consisted of more than 3,700 sites, encompassing more than 26,000 acres contaminated with radioactive, hazardous, and mixed wastes. In addition, over 500 surplus sites are awaiting decontamination and decommissioning (D and D), and approximately 5,000 peripheral properties have contaminated soils (e.g., uranium tailings). Moreover,more » these problems exist at both inactive sites, where the primary focus is on environmental restoration, and at active sites, where the major emphasis is on improved waste management techniques. Although some of DOE`s problems are considered unique due to radioactivity, most forms of contamination resident in the Complex are not; rather, contaminants such as waste chemicals (e.g., inorganics), organics (e.g., fuels and solvents), halogenated organics (e.g., PCBs) and heavy metals commonly result in conventional industrial processes. Although certain other forms of contamination are more unique to DOE operations (e.g., radioactive materials, explosives, and pyrophorics), they are not exclusive to DOE. As DOE develops innovative solutions to these and related waste problems, it is imperative that technology systems and lessons learned be transferred from DOE sites and its R and D laboratories to private industry to maximize the nation`s return on environmental management technology investments.« less

  2. Technical feasibility and carbon footprint of biochar co-production with tomato plant residue.

    PubMed

    Llorach-Massana, Pere; Lopez-Capel, Elisa; Peña, Javier; Rieradevall, Joan; Montero, Juan Ignacio; Puy, Neus

    2017-09-01

    World tomato production is in the increase, generating large amounts of organic agricultural waste, which are currently incinerated or composted, releasing CO 2 into the atmosphere. Organic waste is not only produced from conventional but also urban agricultural practices due recently gained popularity. An alternative to current waste management practices and carbon sequestration opportunity is the production of biochar (thermally converted biomass) from tomato plant residues and use as a soil amendment. To address the real contribution of biochar for greenhouse gas mitigation, it is necessary to assess the whole life cycle from the production of the tomato biomass feedstock to the actual distribution and utilisation of the biochar produced in a regional context. This study is the first step to determine the technical and environmental potential of producing biochar from tomato plant (Solanum lycopersicum arawak variety) waste biomass and utilisation as a soil amendment. The study includes the characterisation of tomato plant residue as biochar feedstock (cellulose, hemicellulose, lignin and metal content); feedstock thermal stability; and the carbon footprint of biochar production under urban agriculture at pilot and small-scale plant, and conventional agriculture at large-scale plant. Tomato plant residue is a potentially suitable biochar feedstock under current European Certification based on its lignin content (19.7%) and low metal concentration. Biomass conversion yields of over 40%, 50% carbon stabilization and low pyrolysis temperature conditions (350-400°C) would be required for biochar production to sequester carbon under urban pilot scale conditions; while large-scale biochar production from conventional agricultural practices have not the potential to sequestrate carbon because its logistics, which could be improved. Therefore, the diversion of tomato biomass waste residue from incineration or composting to biochar production for use as a soil amendment would environmentally be beneficial, but only if high biochar yields could be produced. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Marine litter plastics and microplastics and their toxic chemicals components: the need for urgent preventive measures.

    PubMed

    Gallo, Frederic; Fossi, Cristina; Weber, Roland; Santillo, David; Sousa, Joao; Ingram, Imogen; Nadal, Angel; Romano, Dolores

    2018-01-01

    Persistent plastics, with an estimated lifetime for degradation of hundreds of years in marine conditions, can break up into micro- and nanoplastics over shorter timescales, thus facilitating their uptake by marine biota throughout the food chain. These polymers may contain chemical additives and contaminants, including some known endocrine disruptors that may be harmful at extremely low concentrations for marine biota, thus posing potential risks to marine ecosystems, biodiversity and food availability. Although there is still need to carry out focused scientific research to fill the knowledge gaps about the impacts of plastic litter in the marine environment (Wagner et al. in Environ Sci Eur 26:9, 2014), the food chain and human health, existing scientific evidence and concerns are already sufficient to support actions by the scientific, industry, policy and civil society communities to curb the ongoing flow of plastics and the toxic chemicals they contain into the marine environment. Without immediate strong preventive measures, the environmental impacts and the economic costs are set only to become worse, even in the short term. Continued increases in plastic production and consumption, combined with wasteful uses, inefficient waste collection infrastructures and insufficient waste management facilities, especially in developing countries, mean that even achieving already established objectives for reductions in marine litter remains a huge challenge, and one unlikely to be met without a fundamental rethink of the ways in which we consume plastics. This document was prepared by a working group of Regional Centres of the Stockholm and Basel Conventions and related colleagues intended to be a background document for discussion in the 2017 Conference of the Parties (COP) of the Basel Convention on hazardous wastes and the Stockholm Convention on persistent organic pollutants (POPs). The COP finally approved that the issue of plastic waste could be dealt by its Regional Centres and consistently report their activities on the matter to next COP's meetings.

  4. The use of artificial neural networks and multiple linear regression to predict rate of medical waste generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jahandideh, Sepideh; Jahandideh, Samad; Asadabadi, Ebrahim Barzegari

    2009-11-15

    Prediction of the amount of hospital waste production will be helpful in the storage, transportation and disposal of hospital waste management. Based on this fact, two predictor models including artificial neural networks (ANNs) and multiple linear regression (MLR) were applied to predict the rate of medical waste generation totally and in different types of sharp, infectious and general. In this study, a 5-fold cross-validation procedure on a database containing total of 50 hospitals of Fars province (Iran) were used to verify the performance of the models. Three performance measures including MAR, RMSE and R{sup 2} were used to evaluate performancemore » of models. The MLR as a conventional model obtained poor prediction performance measure values. However, MLR distinguished hospital capacity and bed occupancy as more significant parameters. On the other hand, ANNs as a more powerful model, which has not been introduced in predicting rate of medical waste generation, showed high performance measure values, especially 0.99 value of R{sup 2} confirming the good fit of the data. Such satisfactory results could be attributed to the non-linear nature of ANNs in problem solving which provides the opportunity for relating independent variables to dependent ones non-linearly. In conclusion, the obtained results showed that our ANN-based model approach is very promising and may play a useful role in developing a better cost-effective strategy for waste management in future.« less

  5. Consolidation and Centralization of Waste Operations Business Systems - 12319

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newton, D. Dean

    This abstract provides a comprehensive plan supporting the continued development and integration of all waste operations and waste management business systems. These include existing systems such as ATMS (Automated Transportation Management System), RadCalc, RFITS (Radio Frequency Identification Transportation System) Programs as well as incorporating key components of existing government developed waste management systems and COTS (Computer Off The Shelf) applications in order to deliver a truly integrated waste tracking and management business system. Some of these existing systems to be integrated include IWTS at Idaho National Lab, WIMS at Sandia National Lab and others. The aggregation of data and consolidationmore » into a single comprehensive business system delivers best practices in lifecycle waste management processes to be delivered across the Department of Energy facilities. This concept exists to reduce operational costs to the federal government by combining key business systems into a centralized enterprise application following the methodology that as contractors change, the tools they use to manage DOE's assets do not. IWITS is one efficient representation of a sound architecture currently supporting multiple DOE sites from a waste management solution. The integration of ATMS, RadCalc and RFITS and the concept like IWITS into a single solution for DOE contractors will result in significant savings and increased efficiencies for DOE. Building continuity and solving collective problems can only be achieved through mass collaboration, resulting in an online community that DOE contractors and subcontractors access common applications, allowing for the collection of business intelligence at an unprecedented level. This is a fundamental shift from a solely 'for profit' business model to a 'for purpose' business model. To the conventional-minded, putting values before profit is an unfamiliar and unnatural way for a contractor to operate - unless however; your objective is to build a strong, strategic alliance across the enterprise in order to execute an unprecedented change in waste management, transportation and logistical operations. The success of such an initiative can be achieved by creating a responsible framework by enabling key individuals to 'own' the sustainability of the program. This includes the strategic collaboration of responsible revolutionaries covering application developers, information owners and federal stakeholders to ensure compliance, security and risk management are 'baked' into the process and sustainability is fostered through continued innovation by both technology and application functionality. This ensures that working software can adapt to changing circumstances and is the principle measure of the success of the program. The consolidation of waste management business systems must be achieved in order to realize efficiencies in information technology portfolio management, data integrity, business intelligence and the lifecycle management of hazardous materials within the DOE enterprise architecture. By identifying best practices across the enterprise and aggregating computational and application development resources, you can provide a unified, holistic solution serviceable from a single location while being accessed from anywhere. The business impact of integrating and delivering a unified solution would reduce costs to the Department of Energy within the first year of deployment with increased savings annually. (author)« less

  6. The Evaluation of Developing Vehicle Technologies on the Fuel Economy of Long-Haul Trucks

    DOE PAGES

    Gao, Zhiming; Smith, David E.; Daw, C. Stuart; ...

    2015-12-01

    We present fuel savings estimates resulting from the combined implementation of multiple advanced energy management technologies in both conventional and parallel hybrid class 8 diesel trucks. The energy management technologies considered here have been specifically targeted by the 21st Century Truck Partnership (21 CTP) between the U.S. Department of Energy and U.S. industry and include advanced combustion engines, waste heat recovery, and reductions in auxiliary loads, rolling resistance, aerodynamic drag, and gross vehicle weight. Furthermore, we estimated that combined use of all these technologies in hybrid trucks has the potential to improve fuel economy by more than 60% compared tomore » current conventional trucks, but this requires careful system integration to avoid non-optimal interactions. Major factors to be considered in system integration are discussed.« less

  7. Systematic characterization of generation and management of e-waste in China.

    PubMed

    Duan, Huabo; Hu, Jiukun; Tan, Quanyin; Liu, Lili; Wang, Yanjie; Li, Jinhui

    2016-01-01

    Over the last decade, there has been much effort to promote the management of e-waste in China. Policies have been affected to prohibit imports and to control pollution. Research has been conducted in laboratories and on large-scale industrial operations. A subsidy system to support sound e-waste recycling has been put in place. However, the handling of e-waste is still a concern in China and the issue remains unresolved. There has been relatively little work to follow up this issue or to interpret continuing problems from the perspective of sustainable development. This paper first provides a brief overview of conventional and emerging environmental pollution in Chinese "famous" e-waste dismantling areas, including Guiyu in Guangdong and Wenling in Zhejiang. Environmentalists have repeatedly proven that these areas are significantly polluted. Importing and backyard recycling are decreasing but are ongoing. Most importantly, no work is being done to treat or remediate the contaminated environmental media. The situation is exacerbated by the rising tide of e-waste generated by domestic update of various electronics. This study, therefore, employs a Sales Obsolescence Model approach to predict the generation of e-waste. When accounting for weight, approximately 8 million tons of e-waste will be generated domestically in 2015, of which around 50% is ferrous metals, followed by miscellaneous plastic (30%), copper metal and cables (8%), aluminum (5%), and others (7%). Of this, 3.6% will come from scrap PCBs and 0.2% from lead CRT glass. While more and more end-of-life electronics have been collected and treated by formal or licensed recyclers in China in terms of our analysis, many of them only have dismantling and separation activities. Hazardous e-wastes, including those from PCBs, CRT glass, and brominated flame retardant (BFR) plastics, have become problematic and probably flow to small or backyard recyclers without environmentally sound management. Traditional technologies are still being used to recover precious metals--such as cyanide method of gold hydrometallurgy--from e-waste. While recovery rates of precious metals from e-waste are above 50%, it has encountered some challenges from environmental considerations. Worse, many critical metals contained in e-waste are lost because the recovery rates are less than 1%. On the other hand, this implies that there is opportunity to develop the urban mine of the critical metals from e-waste.

  8. Environmental sustainability comparison of a hypothetical pneumatic waste collection system and a door-to-door system.

    PubMed

    Punkkinen, Henna; Merta, Elina; Teerioja, Nea; Moliis, Katja; Kuvaja, Eveliina

    2012-10-01

    Waste collection is one of the life cycle phases that influence the environmental sustainability of waste management. Pneumatic waste collection systems represent a new way of arranging waste collection in densely populated urban areas. However, limited information is available on the environmental impacts of this system. In this study, we compare the environmental sustainability of conventional door-to-door waste collection with its hypothetical pneumatic alternative. Furthermore, we analyse whether the size of the hypothetical pneumatic system, or the number of waste fractions included, have an impact on the results. Environmental loads are calculated for a hypothetical pneumatic waste collection system modelled on an existing dense urban area in Helsinki, Finland, and the results are compared to those of the prevailing, container-based, door-to-door waste collection system. The evaluation method used is the life-cycle inventory (LCI). In this study, we report the atmospheric emissions of greenhouse gases (GHG), SO(2) and NO(x). The results indicate that replacing the prevailing system with stationary pneumatic waste collection in an existing urban infrastructure would increase total air emissions. Locally, in the waste collection area, emissions would nonetheless diminish, as collection traffic decreases. While the electricity consumption of the hypothetical pneumatic system and the origin of electricity have a significant bearing on the results, emissions due to manufacturing the system's components prove decisive. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Advanced reactors and associated fuel cycle facilities: safety and environmental impacts.

    PubMed

    Hill, R N; Nutt, W M; Laidler, J J

    2011-01-01

    The safety and environmental impacts of new technology and fuel cycle approaches being considered in current U.S. nuclear research programs are contrasted to conventional technology options in this paper. Two advanced reactor technologies, the sodium-cooled fast reactor (SFR) and the very high temperature gas-cooled reactor (VHTR), are being developed. In general, the new reactor technologies exploit inherent features for enhanced safety performance. A key distinction of advanced fuel cycles is spent fuel recycle facilities and new waste forms. In this paper, the performance of existing fuel cycle facilities and applicable regulatory limits are reviewed. Technology options to improve recycle efficiency, restrict emissions, and/or improve safety are identified. For a closed fuel cycle, potential benefits in waste management are significant, and key waste form technology alternatives are described. Copyright © 2010 Health Physics Society

  10. Effects of moisture content of food waste on residue separation, larval growth and larval survival in black soldier fly bioconversion.

    PubMed

    Cheng, Jack Y K; Chiu, Sam L H; Lo, Irene M C

    2017-09-01

    In order to foster sustainable management of food waste, innovations in food waste valorization technologies are crucial. Black soldier fly (BSF) bioconversion is an emerging technology that can turn food waste into high-protein fish feed through the use of BSF larvae. The conventional method of BSF bioconversion is to feed BSF larvae with food waste directly without any moisture adjustment. However, it was reported that difficulty has been experienced in the separation of the residue (larval excreta and undigested material) from the insect biomass due to excessive moisture. In addition to the residue separation problem, the moisture content of the food waste may also affect the growth and survival aspects of BSF larvae. This study aims to determine the most suitable moisture content of food waste that can improve residue separation as well as evaluate the effects of the moisture content of food waste on larval growth and survival. In this study, pre-consumer and post-consumer food waste with different moisture content (70%, 75% and 80%) was fed to BSF larvae in a temperature-controlled rotary drum reactor. The results show that the residue can be effectively separated from the insect biomass by sieving using a 2.36mm sieve, for both types of food waste at 70% and 75% moisture content. However, sieving of the residue was not feasible for food waste at 80% moisture content. On the other hand, reduced moisture content of food waste was found to slow down larval growth. Hence, there is a trade-off between the sieving efficiency of the residue and the larval growth rate. Furthermore, the larval survival rate was not affected by the moisture content of food waste. A high larval survival rate of at least 95% was achieved using a temperature-controlled rotary drum reactor for all treatment groups. The study provides valuable insights for the waste management industry on understanding the effects of moisture content when employing BSF bioconversion for food waste recycling. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Innovative market-based policy instruments for waste management: A case study on shredder residues in Belgium.

    PubMed

    Dubois, Maarten; Hoogmartens, Rob; Van Passel, Steven; Van Acker, Karel; Vanderreydt, Ive

    2015-10-01

    In an increasingly complex waste market, market-based policy instruments, such as disposal taxes, can give incentives for sustainable progress while leaving flexibility for innovation. However, implementation of disposal taxes is often criticised by domestic waste handlers that fear to be outcompeted by competitors in other countries. The article discusses three innovative market-based instruments that limit the impact on international competitiveness: Tradable recycling credits, refunded disposal taxes and differentiated disposal taxes. All three instruments have already been implemented for distinct environmental policies in Europe. In order to illustrate how these instruments can be used for waste policy, the literature review is complemented with a case study on shredder residues from metal-containing waste streams in Belgium. The analysis shows that a conventional disposal tax remains the most efficient, simple and transparent instrument. However, if international competition is a significant issue or if political support is weak, refunded and differentiated disposal taxes can have an added value as second-best instruments. Tradable recycling credits are not an appropriate instrument for use in small waste markets with market power. In addition, refunded taxes create similar incentives, but induce lower transactions costs. © The Author(s) 2015.

  12. Source, Managemnt and Quantification of Unintentional POPs (PCDDD/Fs) in Nepal

    NASA Astrophysics Data System (ADS)

    Charitra Sah, Ram

    2010-05-01

    The aim to prepare and present this paper is to highlight the source, management and quantification of the unintentional POPs in an unindustrialized least developing landlocked small country Nepal. The methodology adopted for this is the review of the relevant research documents and national initiative towards addressing this issues complemented with sharing of the first hand experience from the implementation of the POPs management activities undertaken by our organization. Nepal is a small country of size 147181 sq.km but having large sources of POPs including unintentional POPs (PCDD/Fs) mainly because of weak enforcement of the existing environment related laws, standards and international commitment including POPs Convention. Country became homes to about 75 tons of Obsolete Pesticide since last 30 years including about 44 percent (33 tons out of 75) are of known POPs. These obsolete pesticides including identified POPs have been poorly stored in some about 25 locations throughout the country. The major warehouse accommodating about 50 tons at Amlekhgunj has been located just in front of a high school where about 1000 children are being studying and found to have some health related problem due to the gasses emission from the warehouse as well as school playground field contaminated with these POPs pesticides. The playground soil contamination has been found from routine examination of the soil samples. In addition to pesticides including POPs were used in the agriculture and public health field in the past, there are several other practices as well as anthropogenic activities producing PCDD/Fs. The annual inventory of countrywide emission of unintentional POPs was estimated to be 312.55 g TEQ for Nepal (MOE 2004). This is very high for a country like Nepal least developing in terms of industrial and economy. This estimation was based on the UNEP Toolkit which has included the broad categories of waste such as waste incineration, ferrous and non ferrous metal production, power generation and cooking using biomass, production of mineral products, transportation, uncontrolled combustion processes production of chemicals and consumer goods, disposal and land filling and miscellaneous. However, it does not account all the sources of the unintentional POPs emission. There are increasing amount of PCDD/Fs emission from other unidentified and/or under estimate sources. An another estimates just for medical waste incineration amount to be 57.37 g TEQ / year based on the current rate of medical waste generation, incineration proportion and considering small box-type batch incinerator with no afterburner as it is mostly adopted in all individual health care institutions. Toward management of POPs, earlier government is not found to be serious as there is still provision of waste incineration in its waste management guidelines including medical waste and has also given Environment Impact Assessment (EIA) clearance to some of the project with waste incineration components. It is important to make the highlight here that the waste incinerator no matter of its art of standards is the indentified major source of unintentional POPs such as PCDD/Fs the known human carcinogen. However, in the recent years, there was increasing concerned of the government as it has come up with the National Implementation Plan (NIP) for Stockholm Convention on Persistent Organic Pollutants with clear identification, prioritization as well as developed program of action linked with monitoring and reporting mechanism. Some of the recent development projects with FAO and GTZ towards realization of the few prioritized plan of action about the sound management of obsolete pesticides including POPs can be considered as remarkable positive progress towards overall development in this field which upon successful implementation will help to improve the country situation. Key words: unintentional POPs, source, management

  13. Steam gasification of tyre waste, poplar, and refuse-derived fuel: a comparative analysis.

    PubMed

    Galvagno, S; Casciaro, G; Casu, S; Martino, M; Mingazzini, C; Russo, A; Portofino, S

    2009-02-01

    In the field of waste management, thermal disposal is a treatment option able to recover resources from "end of life" products. Pyrolysis and gasification are emerging thermal treatments that work under less drastic conditions in comparison with classic direct combustion, providing for reduced gaseous emissions of heavy metals. Moreover, they allow better recovery efficiency since the process by-products can be used as fuels (gas, oils), for both conventional (classic engines and heaters) and high efficiency apparatus (gas turbines and fuel cells), or alternatively as chemical sources or as raw materials for other processes. This paper presents a comparative study of a steam gasification process applied to three different waste types (refuse-derived fuel, poplar wood and scrap tyres), with the aim of comparing the corresponding yields and product compositions and exploring the most valuable uses of the by-products.

  14. Microbial utilisation of natural organic wastes.

    PubMed

    Ilyin, V K; Smirnov, I A; Soldatov, P E; Korniushenkova, I N; Grinin, A S; Lykov, I N; Safronova, S A

    2004-03-01

    The waste management strategy for the future should meet the benefits of humanity safety, respect principals of planet ecology, and compatibility with other habitability systems. For these purpose the waste management technologies, relevant to application of the biodegradation properties of bacteria are of great value. The biological treatment method is based upon the biodegradation of organic substances by various microorganisms. The advantage of the biodegradation waste management in general: it allows to diminish the volume of organic wastes, the biological hazard of the wastes is controlled, and this system may be compatible with the other systems. The objectives of our study were: to evaluate effectiveness of microbial biodegradation of non-pretreated substrate, to construct phneumoautomatic digester for organic wastes biodegradation, and to study microbial characteristics of active sludge samples used as inoculi in biodegradation experiment. The technology of vegetable wastes treatment was elaborated in IBMP and BMSTU. For this purpose the special unit was created where the degradation process is activated by enforced reinvention of portions of elaborated biogas into digester. This technology allows to save energy normally used for electromechanical agitation and to create optimal environment for anaerobic bacteria growth. The investigations were performed on waste simulator, which imitates physical and chemical content of food wastes calculated basing on the data on food wastes of moderate Russian city. The volume of created experimental sample of digester is 40 l. The basic system elements of device are digesters, gas receiver, remover of drops and valve monitoring and thermal control system. In our testing we used natural food wastes to measure basic parameters and time of biodegradation process. The diminution rate of organic gained 76% from initial mass taking part within 9 days of fermentation. The biogas production achieved 46 l per 1 kg of substrate. The microbial studies of biodegradation process revealed following peculiarities: (i) gradual quantitative increasing of Lactobacillus sp. (from 10(3) to 10(5) colony forming units (CFU) per ml), (ii) activation of Clostridia sp. (from 10(2) to 10(4)CFU/ml), (iii) elimination of aerobic conventional pathogens (Enterobacteriaceae sp., Protea sp., staphylococci). The obtained results allow to evaluate effectiveness of proposed technology and to determine the leading role of lactobacilli and clostridia in process of natural wastes biodegradation. Our further investigations shall further be concentrated on creation of artificial inoculi for launching of food wastes biodegradation. These inoculi will include active and adapted strains of clostridia and lactobacilli. c2003 Elsevier Ltd. All rights reserved.

  15. Treatment of radioactive waste salt by using synthetic silica-based phosphate composite for de-chlorination and solidification

    NASA Astrophysics Data System (ADS)

    Cho, In-Hak; Park, Hwan-Seo; Lee, Ki-Rak; Choi, Jung-Hun; Kim, In-Tae; Hur, Jin Mok; Lee, Young-Seak

    2017-09-01

    In the radioactive waste management, waste salts as metal chloride generated from a pyrochemical process to recover uranium and transuranic elements are one of problematic wastes due to their intrinsic properties such as high volatility and low compatibility with conventional glasses. This study reports a method to stabilize and solidify LiCl waste via de-chlorination using a synthetic composite, U-SAP (SiO2-Al2O3-B2O3-Fe2O3-P2O5) prepared by a sol-gel process. The composite was reacted with alkali metal elements to produce some metal aluminosilicates, aluminophosphates or orthophosphate as a crystalline or amorphous compound. Different from the original SAP (SiO2-Al2O3-P2O5), the reaction product of U-SAP could be successfully fabricated as a monolithic wasteform without a glassy binder at a proper reaction/consolidation condition. From the results of the FE-SEM, FT-IR and MAS-NMR analysis, it could be inferred that the Si-rich phase and P-rich phase as a glassy grains would be distributed in tens of nm scale, where alkali metal elements would be chemically interacted with Si-rich or P-rich region in the virgin U-SAP composite and its products was vitrified into a silicate or phosphate glass after a heat-treatment at 1150 °C. The PCT-A (Product Consistency Test, ASTM-1208) revealed that the mass loss of Cs and Sr in the U-SAP wasteform had a range of 10-3∼10-1 g/m2 and the leach-resistance of the U-SAP wasteform was comparable to other conventional wasteforms. From the U-SAP method, LiCl waste salt was effectively stabilized and solidified with high waste loading and good leach-resistance.

  16. Backtracking search algorithm in CVRP models for efficient solid waste collection and route optimization.

    PubMed

    Akhtar, Mahmuda; Hannan, M A; Begum, R A; Basri, Hassan; Scavino, Edgar

    2017-03-01

    Waste collection is an important part of waste management that involves different issues, including environmental, economic, and social, among others. Waste collection optimization can reduce the waste collection budget and environmental emissions by reducing the collection route distance. This paper presents a modified Backtracking Search Algorithm (BSA) in capacitated vehicle routing problem (CVRP) models with the smart bin concept to find the best optimized waste collection route solutions. The objective function minimizes the sum of the waste collection route distances. The study introduces the concept of the threshold waste level (TWL) of waste bins to reduce the number of bins to be emptied by finding an optimal range, thus minimizing the distance. A scheduling model is also introduced to compare the feasibility of the proposed model with that of the conventional collection system in terms of travel distance, collected waste, fuel consumption, fuel cost, efficiency and CO 2 emission. The optimal TWL was found to be between 70% and 75% of the fill level of waste collection nodes and had the maximum tightness value for different problem cases. The obtained results for four days show a 36.80% distance reduction for 91.40% of the total waste collection, which eventually increases the average waste collection efficiency by 36.78% and reduces the fuel consumption, fuel cost and CO 2 emission by 50%, 47.77% and 44.68%, respectively. Thus, the proposed optimization model can be considered a viable tool for optimizing waste collection routes to reduce economic costs and environmental impacts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. E-waste: impacts, issues and management strategies.

    PubMed

    Hussain, Mumtaz; Mumtaz, Saniea

    2014-01-01

    The present electronic era has seen massive proliferation of electrical and electronic equipment especially during the last two decades. These gadgets have become indispensable components of human life. The gravity of this sensitive 21st century problem is being felt by relevant stakeholders from the community to global level. Consequently, the annual global generation of e-waste is estimated to be 20-50 million tons. According to the Basel Action Network, 500 million computers contain 287 billion kilograms (kg) plastics; 716.7 million kg lead; and 286,700 kg mercury. These gadgets contain over 50 elements from the periodic table. The lethal components include heavy metals (like cadmium, mercury, copper, nickel, lead, barium, hexavalent chromium and beryllium); phosphor; plastics; and brominated flame retardants. These are persistent, mobile, and bioaccumulative toxins that remain in the environment but their forms are changed and are carcinogens, mutagens and teratogens. The ensuing hazardous waste has created deleterious impacts on physical, biological and socioeconomic environments. The lithosphere, hydrosphere, biosphere, and atmosphere of Earth are being gravely polluted. Human beings and other biodiversity face fatal diseases, such as cancer, reproductive disorders, neural damages, endocrine disruptions, asthmatic bronchitis, and brain retardation. Marginal populations of developing countries living in squatter/slums are most vulnerable. Numerous issues are associated with uncontrolled generation, unscientific and environmentally inappropriate recycling processes for the extraction of heavy and precious metals (e.g., gold, platinum, and silver), illegal transboundary shipments from advanced to developing countries and weak conventions/legislations at global and national levels. Although the Basel Convention has been ratified by most countries, illicit trading/trafficking of hazardous substances remains unchecked, sometimes "disguised" as donations. The fact of matter is that vested business interests have surpassed ethical values. Existing scenarios of unbridled e-waste generation has attained alarming levels for humanity. This warrants immediate attention by public and private sectors, civil society, NGOs, industrialists and the business community for the protection of nature and natural resources from future destruction. Multipronged strategies need to be adopted for the management of e-waste encompassing administrative, technical, environmental, regulatory, legislative, educative, stakeholders' participation and global cooperation.

  18. Treatment of alumina refinery waste (red mud) through neutralization techniques: A review.

    PubMed

    Rai, Suchita; Wasewar, K L; Agnihotri, A

    2017-06-01

    In the Bayer process of extraction of alumina from bauxite, the insoluble product generated after bauxite digestion with sodium hydroxide at elevated temperature and pressure is known as 'red mud' or 'bauxite residue'. This alumina refinery waste is highly alkaline in nature with a pH of 10.5-12.5 and is conventionally disposed of in mostly clay-lined land-based impoundments. The alkaline constituents in the red mud impose severe and alarming environmental problems, such as soil and air pollution. Keeping in view sustainable re-vegetation and residue management, neutralization/treatment of red mud using different techniques is the only alternative to make the bauxite residue environmentally benign. Hence, neutralization techniques, such as using mineral acids, acidic waste (pickling liquor waste), coal dust, superphosphate and gypsum as amenders, CO 2 , sintering with silicate material and seawater for treatment of red mud have been studied in detail. This paper is based upon and emphasizes the experimental work carried out for all the neutralization techniques along with a comprehensive review of each of the processes. The scope, applicability, limitations and feasibility of these processes have been compared exhaustively. Merits and demerits have been discussed using flow diagrams. All the techniques described are technically feasible, wherein findings obtained with seawater neutralization can be set as a benchmark for future work. Further studies should be focused on exploring the economical viability of these processes for better waste management and disposal of red mud.

  19. Issues that Drive Waste Management Technology Development for Space Missions

    NASA Technical Reports Server (NTRS)

    Fisher, John W.; Levri, Julie A.; Hogan, John A.; Wignarajah, Kanapathipillai

    2005-01-01

    Waste management technologies for space life support systems are currently at low development levels. Manual compaction of waste in plastic bags and overboard disposal to earth return vehicles are the primary current waste management methods. Particularly on future missions, continuance of current waste management methods would tend to expose the crew to waste hazards, forfeit recoverable resources such as water, consume valuable crew time, contaminate planetary surfaces, and risk return to Earth of extraterrestrial life. Improvement of waste management capabilities is needed for adequate management of wastes. Improvements include recovery of water and other resources, conversion of waste to states harmless to humans, long-term containment of wastes, and disposal of waste. Current NASA requirements documents on waste management are generally not highly detailed. More detailed requirements are needed to guide the development of waste management technologies that will adequately manage waste. In addition to satisfying requirements, waste management technologies must also recover resources. Recovery of resources such as water and habitat volume can reduce mission cost. This paper explores the drivers for waste management technology development including requirements and resource recovery.

  20. Solid Waste Management Plan. Revision 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-04-26

    The waste types discussed in this Solid Waste Management Plan are Municipal Solid Waste, Hazardous Waste, Low-Level Mixed Waste, Low-Level Radioactive Waste, and Transuranic Waste. The plan describes for each type of solid waste, the existing waste management facilities, the issues, and the assumptions used to develop the current management plan.

  1. International law on ship recycling and its interface with EU law.

    PubMed

    Argüello Moncayo, Gabriela

    2016-08-15

    The regulation on ship recycling at international and European Union (EU) level has transitioned from the realm of transboundary movement of wastes to a specialized regime, i.e., the Hong Kong International Convention for the Safe and Environmentally Sound Recycling of Ships (2009) (Hong Kong Convention). Although this convention is not in force yet, the principal features of it have been incorporated in EU Regulation 1257/2013 on ship recycling. This paper examines the rationale behind developing a ship recycling regime, its disassociation from wastes, and the departure from the main principles of transboundary movement of wastes, such as the proximity principle, reduction of transboundary movement of wastes, and the prior informed consent procedure. While acknowledging some of the positive features of the emerging ship recycling, it is submitted that the Hong Kong Convention and EU Regulation 1257/2013 on ship recycling represent a step back in the regulation of ship recycling. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. 40 CFR 273.33 - Waste management.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Waste management. 273.33 Section 273...) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Large Quantity Handlers of Universal Waste § 273.33 Waste management. (a) Universal waste batteries. A large quantity handler of universal waste must manage...

  3. 40 CFR 273.13 - Waste management.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Waste management. 273.13 Section 273...) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Small Quantity Handlers of Universal Waste § 273.13 Waste management. (a) Universal waste batteries. A small quantity handler of universal waste must manage...

  4. 1st Quarter Transportation Report FY 2015: Radioactive Waste Shipments to and from the Nevada National Security Site (NNSS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gregory, Louis

    2015-02-20

    This report satisfies the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO) commitment to prepare a quarterly summary report of radioactive waste shipments to and from the Nevada National Security Site (NNSS) Radioactive Waste Management Complex (RWMC) at Area 5. There were no shipments sent for offsite treatment and returned to the NNSS this quarter. This report summarizes the 1st quarter of Fiscal Year (FY) 2015 low-level radioactive waste (LLW) and mixed low-level radioactive waste (MLLW) shipments. Tabular summaries are provided which include the following: Sources of and carriers for LLW and MLLW shipments tomore » and from the NNSS; Number and external volume of LLW and MLLW shipments; Highway routes used by carriers; and Incident/accident data applicable to LLW and MLLW shipments. In this report shipments are accounted for upon arrival at the NNSS, while disposal volumes are accounted for upon waste burial. The disposal volumes presented in this report include minor volumes of non-radioactive classified waste/material that were approved for disposal (non-radioactive classified or nonradioactive classified hazardous). Volume reports showing cubic feet generated using the Low-Level Waste Information System may vary slightly due to rounding conventions for volumetric conversions from cubic meters to cubic feet.« less

  5. Healthcare waste management: current practices in selected healthcare facilities, Botswana.

    PubMed

    Mbongwe, Bontle; Mmereki, Baagi T; Magashula, Andrew

    2008-01-01

    Healthcare waste management continues to present an array of challenges for developing countries, and Botswana is no exception. The possible impact of healthcare waste on public health and the environment has received a lot of attention such that Waste Management dedicated a special issue to the management of healthcare waste (Healthcare Wastes Management, 2005. Waste Management 25(6) 567-665). As the demand for more healthcare facilities increases, there is also an increase on waste generation from these facilities. This situation requires an organised system of healthcare waste management to curb public health risks as well as occupational hazards among healthcare workers as a result of poor waste management. This paper reviews current waste management practices at the healthcare facility level and proposes possible options for improvement in Botswana.

  6. The environmental impact of recombinant bovine somatotropin (rbST) use in dairy production

    PubMed Central

    Capper, Judith L.; Castañeda-Gutiérrez, Euridice; Cady, Roger A.; Bauman, Dale E.

    2008-01-01

    The environmental impact of using recombinant bovine somatotropin (rbST) in dairy production was examined on an individual cow, industry-scale adoption, and overall production system basis. An average 2006 U.S. milk yield of 28.9 kg per day was used, with a daily response to rbST supplementation of 4.5 kg per cow. Rations were formulated and both resource inputs (feedstuffs, fertilizers, and fuels) and waste outputs (nutrient excretion and greenhouse gas emissions) calculated. The wider environmental impact of production systems was assessed via acidification (AP), eutrophication (EP), and global warming (GWP) potentials. From a producer perspective, rbST supplementation improved individual cow production, with reductions in nutrient input and waste output per unit of milk produced. From an industry perspective, supplementing one million cows with rbST reduced feedstuff and water use, cropland area, N and P excretion, greenhouse gas emissions, and fossil fuel use compared with an equivalent milk production from unsupplemented cows. Meeting future U.S. milk requirements from cows supplemented with rbST conferred the lowest AP, EP, and GWP, with intermediate values for conventional management and the highest environmental impact resulting from organic production. Overall, rbST appears to represent a valuable management tool for use in dairy production to improve productive efficiency and to have less negative effects on the environment than conventional dairying. PMID:18591660

  7. Sustainable management and utilisation of concrete slurry waste: A case study in Hong Kong.

    PubMed

    Hossain, Md Uzzal; Xuan, Dongxing; Poon, Chi Sun

    2017-03-01

    With the promotion of environmental protection in the construction industry, the mission to achieve more sustainable use of resources during the production process of concrete is also becoming important. This study was conducted to assess the environmental sustainability of concrete slurry waste (CSW) management by life cycle assessment (LCA) techniques, with the aim of identifying a resource-efficient solution for utilisation of CSW in the production of partition wall blocks. CSW is the dewatered solid residues deposited in the sedimentation tank after washing out over-ordered/rejected fresh concrete and concrete trucks in concrete batching plants. The reuse of CSW as recycled aggregates or a cementitious binder for producing partition wall blocks, and the life cycle environmental impact of the blocks were assessed and compared with the conventional one designed with natural materials. The LCA results showed that the partition wall blocks prepared with fresh CSW and recycled concrete aggregates achieved higher sustainability as it consumed 59% lower energy, emitted 66% lower greenhouse gases, and produced lesser amount of other environmental impacts than that of the conventional one. When the mineral carbonation technology was further adopted for blocks curing using CO 2 , the global warming potential of the corresponding blocks production process was negligible, and hence the carbonated blocks may be considered as carbon neutral eco-product. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. A proposed framework of food waste collection and recycling for renewable biogas fuel production in Hong Kong.

    PubMed

    Woon, Kok Sin; Lo, Irene M C

    2016-01-01

    Hong Kong is experiencing a pressing need for food waste management. Currently, approximately 3600 tonnes of food waste are disposed of at landfills in Hong Kong daily. The landfills in Hong Kong are expected to be exhausted by 2020. In the long run, unavoidable food waste should be sorted out from the other municipal solid waste (MSW) and then valorized into valuable resources. A simple sorting process involving less behavioural change of residents is, therefore, of paramount importance in order to encourage residents to sort the food waste from other MSW. In this paper, a sustainable framework of food waste collection and recycling for renewable biogas fuel production is proposed. For an efficient separation and collection system, an optic bag (i.e. green bag) can be used to pack the food waste, while the residual MSW can be packed in a common plastic bag. All the wastes are then sent to the refuse transfer stations in the conventional way (i.e. refuse collection vehicles). At the refuse transfer stations, the food waste is separated from the residual MSW using optic sensors which recognize the colours of the bags. The food waste in the optic bags is then delivered to the proposed Organic Waste Treatment Facilities, in which biogas is generated following the anaerobic digestion technology. The biogas can be further upgraded via gas upgrading units to a quality suitable for use as a vehicle biogas fuel. The use of biogas fuel from food waste has been widely practiced by some countries such as Sweden, France, and Norway. Hopefully, the proposed framework can provide the epitome of the waste-to-wealth concept for the sustainable collection and recycling of food waste in Hong Kong. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Ethanol production from food waste at high solids content with vacuum recovery technology.

    PubMed

    Huang, Haibo; Qureshi, Nasib; Chen, Ming-Hsu; Liu, Wei; Singh, Vijay

    2015-03-18

    Ethanol production from food wastes does not only solve environmental issues but also provides renewable biofuels. This study investigated the feasibility of producing ethanol from food wastes at high solids content (35%, w/w). A vacuum recovery system was developed and applied to remove ethanol from fermentation broth to reduce yeast ethanol inhibition. A high concentration of ethanol (144 g/L) was produced by the conventional fermentation of food waste without a vacuum recovery system. When the vacuum recovery is applied to the fermentation process, the ethanol concentration in the fermentation broth was controlled below 100 g/L, thus reducing yeast ethanol inhibition. At the end of the conventional fermentation, the residual glucose in the fermentation broth was 5.7 g/L, indicating incomplete utilization of glucose, while the vacuum fermentation allowed for complete utilization of glucose. The ethanol yield for the vacuum fermentation was found to be 358 g/kg of food waste (dry basis), higher than that for the conventional fermentation at 327 g/kg of food waste (dry basis).

  10. Waste Generation Overview, Course 23263

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simpson, Lewis Edward

    This course, Waste Generation Overview Live (COURSE 23263), provides an overview of federal and state waste management regulations, as well as Los Alamos National Laboratory (LANL) policies and procedures for waste management operations. The course covers the activities involved in the cradle-to-grave waste management process and focuses on waste characterization, waste compatibility determinations and classification, and the storage requirements for temporary waste accumulation areas at LANL. When you have completed this course, you will be able to recognize federal, state, and LANL environmental requirements and their impact on waste operations; recognize the importance of the cradle-to-grave waste management process; identifymore » the roles and responsibilities of key LANL waste management personnel (e.g., Waste Generator, Waste Management Coordinator, Waste Stream Profile approver, and Waste Certification Official); characterize a waste stream to determine whether it meets the definition of a hazardous waste, as well as characterize the use and minimum requirements for use of acceptable knowledge (AK) for waste characterization and waste compatibility documentation requirements; and identify the requirements for setting up and managing temporary waste accumulation areas.« less

  11. Public concerns and behaviours towards solid waste management in Italy.

    PubMed

    Sessa, Alessandra; Di Giuseppe, Gabriella; Marinelli, Paolo; Angelillo, Italo F

    2010-12-01

    A self-administered questionnaire investigated knowledge, perceptions of the risks to health associated with solid waste management, and practices about waste management in a random sample of 1181 adults in Italy. Perceived risk of developing cancer due to solid waste burning was significantly higher in females, younger, with an educational level lower than university and who believed that improper waste management is linked to cancer. Respondents who had visited a physician at least once in the last year for fear of contracting a disease due to the non-correct waste management had an educational level lower than university, have modified dietary habits for fear of contracting disease due to improper waste management, believe that improper waste management is linked to allergies, perceive a higher risk of contracting infectious disease due to improper waste management and have participated in education/information activities on waste management. Those who more frequently perform with regularity differentiate household waste collection had a university educational level, perceived a higher risk of developing cancer due to solid waste burning, had received information about waste collection and did not need information about waste management. Educational programmes are needed to modify public concern about adverse health effects of domestic waste.

  12. Appropriate Technology for Treating Wastewater at Remote Sites on Army Installations: Preliminary Findings

    DTIC Science & Technology

    1984-04-01

    firing ranges, and training areas--four conventional methods have been used to treat human wastes: trenching and cat holing, pit latrines, vault toilets...stations, and training and recrea- tional areas. The Army now uses four conventional methods to treat human wastes at such sites: trenching and cat ...holing, pit latrines, vault toilets, and chemical toilets ("port-a-pots"). Trenching and cat holing are used when troops are on bivouac; waste is

  13. 2nd Quarter Transportation Report FY 2014

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gregory, L.

    2014-07-01

    This report satisfies the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO) commitment to prepare a quarterly summary report of radioactive waste shipments to the Nevada National Security Site (NNSS) Radioactive Waste Management Complex (RWMC) at Area 5. There were no shipments sent for offsite treatment and returned to the NNSS this quarter. This report summarizes the second quarter of fiscal year (FY) 2014 low-level radioactive waste (LLW) and mixed low-level radioactive waste (MLLW) shipments. This report also includes annual summaries for FY 2014 in Tables 4 and 5. Tabular summaries are provided which includemore » the following: Sources of and carriers for LLW and MLLW shipments to and from the NNSS; Number and external volume of LLW and MLLW shipments; Highway routes used by carriers; and Incident/accident data applicable to LLW and MLLW shipments. In this report shipments are accounted for upon arrival at the NNSS, while disposal volumes are accounted for upon waste burial. The disposal volumes presented in this report do not include minor volumes of non-radioactive materials that were approved for disposal. Volume reports showing cubic feet (ft3) generated using the Low-Level Waste Information System may vary slightly due to differing rounding conventions.« less

  14. Waste rice for waterfowl in the Mississippi Alluvial Valley

    USGS Publications Warehouse

    Stafford, J.D.; Kaminski, R.M.; Reinecke, K.J.; Manley, S.W.

    2006-01-01

    Flooded rice fields are important foraging habitats for waterfowl in the lower Mississippi Alluvial Valley (MAV). Waste rice previously was abundant in late autumn (140?492 kg/ha), but early planting and harvest dates in recent years may have increased losses of waste rice during autumn before waterfowl arrive. Research in Mississippi rice fields revealed waste-rice abundance decreased 79?99% during autumns 1995?1996. To determine if this trend existed throughout the MAV, we used multistage sampling (MSS) to estimate waste-rice abundance during September?December 2000?2002. Averaged over years, mean abundance of waste rice decreased 71% between harvest ((x) over bar = 271.0 kg/ha, CV = 13% n = 3 years) and late autumn ( (x) over bar = 78.4 kg/ha, CV = 15% n = 3). Among 15 models formulated to explain variation in rice abundance among fields and across years, the best model indicated abundance of waste rice in late autumn differed between harvester types (i.e., conventional > stripper header) and was positively related to initial waste-rice abundance after harvest. Because abundance of waste rice in late autumn was less than previous estimates in all 3 years, we concluded that waterfowl conservationists have overestimated carrying capacity of rice fields for wintering waterfowl by 52?83% and recommend 325 duck-use days/ha (DUDs) as a revised estimate. We suggest monitoring advances in rice harvest dates to determine when new surveys are warranted and recommend increased management of moist-soil wetlands to compensate for decreased rice abundance.

  15. Understanding the role of waste prevention in local waste management: A literature review.

    PubMed

    Zacho, Kristina O; Mosgaard, Mette A

    2016-10-01

    Local waste management has so far been characterised by end-of-pipe solutions, landfilling, incineration, and recycling. End-of-pipe solutions build on a different mind-set than life cycle-based approaches, and for this reason, local waste managers are reluctant to consider strategies for waste prevention. To accelerate the transition of waste and resource management towards a more integrated management, waste prevention needs to play a larger role in the local waste management. In this review article, we collect knowledge from the scientific community on waste prevention of relevance to local waste management. We analyse the trends in the waste prevention literature by organising the literature into four categories. The results indicate an increasing interest in waste prevention, but not much literature specifically concerns the integration of prevention into the local waste management. However, evidence from the literature can inform local waste management on the prevention potential; the environmental and social effects of prevention; how individuals in households can be motivated to reduce waste; and how the effects of prevention measures can be monitored. Nevertheless, knowledge is still lacking on local waste prevention, especially regarding the methods for monitoring and how local waste management systems can be designed to encourage waste reduction in the households. We end the article with recommendations for future research. The literature review can be useful for both practitioners in the waste sector and for academics seeking an overview of previous research on waste prevention. © The Author(s) 2016.

  16. Digestate and ash as alternatives to conventional fertilisers: Benefits and threats to soil biota

    NASA Astrophysics Data System (ADS)

    Marshall, Rachel; Lag-Brotons, Alfonso J.; Herbert, Ben; Hurst, Lois; Ostle, Nick; Dodd, Ian C.; Quinton, John; Surridge, Ben; Aiouache, Farid; Semple, Kirk T.

    2017-04-01

    Recovering energy and nutrients from waste offers opportunities to tackle issues of energy and food security whilst simultaneously improving waste management. Waste materials from the bioenergy industry potentially contain valuable resources for use in agriculture and there is growing evidence to suggest that the use of digestate, from anaerobic digestion, and biomass ash from incineration processes could contribute to improving soil health and nutrition. The work presented here is part of the Adding Value to Ash and Digestate (AVAnD) project which looks at the impacts of digestate and ash blends on soil fertility, crop yields and soil health. Whilst increased crop productivity is one of the essential indicators of the success of these alternative soil amendments; it is important that the impacts on soil biological function is understood. Field and lab experiments were conducted with a number of different fertiliser treatments, including conventional fertiliser (urea and superphosphate), digestate from two contrasting feedstocks, ash material and ash-digestate blends. Looking across different biological scales from soil microbe to soil macro-fauna, this work examines the benefits and threats to soil biota arising from the use of ash-digestate fertilisers in agriculture. Measurements of microbial respiration and biomass (by chloroform fumigation) and community composition (by phospholipid fatty acid analysis) were made at different timescales (days/weeks). Data from these studies demonstrates that none of the soil amendments decreased microbial activity or biomass in the short term (t= 1 month). Additions of both conventional fertilisers and the fertilisers derived from waste stimulated microbial activity with significantly higher respiration observed from the digestate based treatments. Digestate-based treatments also resulted in higher soil microbial biomass and differential effects were observed between digestate amendments with and without ash. These results will be discussed in the context of microbial community change in response to the amendments. At the macro-fauna scale, effects of amendments on earthworm (Eisenia fetida and Lumbricus terrestris) health were assessed using 14 day toxicity assays (4 application rates between 85-340 kgN.ha-1) and with 48 hour avoidance tests. In general, the addition of digestate-based fertilisers resulted in no observable toxic effects and earthworms did not significantly avoid these materials when compared to a conventional fertiliser. However, earthworms mortality was observed with one of the ash-digestate blends applied at 340 kgN.ha-1, potentially linked to changes in soil pH and elements speciation .It is therefore crucial that the effects of the amendments on soil properties, and the implications this has for soil communities at all scales, is understood to ensure sustainable soil management in agriculture.

  17. Biodegradable and compostable alternatives to conventional plastics.

    PubMed

    Song, J H; Murphy, R J; Narayan, R; Davies, G B H

    2009-07-27

    Packaging waste forms a significant part of municipal solid waste and has caused increasing environmental concerns, resulting in a strengthening of various regulations aimed at reducing the amounts generated. Among other materials, a wide range of oil-based polymers is currently used in packaging applications. These are virtually all non-biodegradable, and some are difficult to recycle or reuse due to being complex composites having varying levels of contamination. Recently, significant progress has been made in the development of biodegradable plastics, largely from renewable natural resources, to produce biodegradable materials with similar functionality to that of oil-based polymers. The expansion in these bio-based materials has several potential benefits for greenhouse gas balances and other environmental impacts over whole life cycles and in the use of renewable, rather than finite resources. It is intended that use of biodegradable materials will contribute to sustainability and reduction in the environmental impact associated with disposal of oil-based polymers. The diversity of biodegradable materials and their varying properties makes it difficult to make simple, generic assessments such as biodegradable products are all 'good' or petrochemical-based products are all 'bad'. This paper discusses the potential impacts of biodegradable packaging materials and their waste management, particularly via composting. It presents the key issues that inform judgements of the benefits these materials have in relation to conventional, petrochemical-based counterparts. Specific examples are given from new research on biodegradability in simulated 'home' composting systems. It is the view of the authors that biodegradable packaging materials are most suitable for single-use disposable applications where the post-consumer waste can be locally composted.

  18. Global capacity, potentials and trends of solid waste research and management.

    PubMed

    Nwachukwu, Michael A; Ronald, Mersky; Feng, Huan

    2017-09-01

    In this study, United States, China, India, United Kingdom, Nigeria, Egypt, Brazil, Italy, Germany, Taiwan, Australia, Canada and Mexico were selected to represent the global community. This enabled an overview of solid waste management worldwide and between developed and developing countries. These are countries that feature most in the International Conference on Solid Waste Technology and Management (ICSW) over the past 20 years. A total of 1452 articles directly on solid waste management and technology were reviewed and credited to their original country of research. Results show significant solid waste research potentials globally, with the United States leading by 373 articles, followed by India with 230 articles. The rest of the countries are ranked in the order of: UK > Taiwan > Brazil > Nigeria > Italy > Japan > China > Canada > Germany >Mexico > Egypt > Australia. Global capacity in solid waste management options is in the order of: Waste characterisation-management > waste biotech/composting > waste to landfill > waste recovery/reduction > waste in construction > waste recycling > waste treatment-reuse-storage > waste to energy > waste dumping > waste education/public participation/policy. It is observed that the solid waste research potential is not a measure of solid waste management capacity. The results show more significant research impacts on solid waste management in developed countries than in developing countries where economy, technology and society factors are not strong. This article is targeted to motivate similar study in each country, using solid waste research articles from other streamed databases to measure research impacts on solid waste management.

  19. 40 CFR 60.2620 - What is a waste management plan?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false What is a waste management plan? 60... Commercial and Industrial Solid Waste Incineration Units that Commenced Construction On or Before November 30, 1999 Model Rule-Waste Management Plan § 60.2620 What is a waste management plan? A waste management...

  20. 40 CFR 60.3010 - What is a waste management plan?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false What is a waste management plan? 60... Other Solid Waste Incineration Units That Commenced Construction On or Before December 9, 2004 Model Rule-Waste Management Plan § 60.3010 What is a waste management plan? A waste management plan is a...

  1. 40 CFR 60.2620 - What is a waste management plan?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false What is a waste management plan? 60... Commercial and Industrial Solid Waste Incineration Units Model Rule-Waste Management Plan § 60.2620 What is a waste management plan? A waste management plan is a written plan that identifies both the feasibility...

  2. 40 CFR 60.3010 - What is a waste management plan?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false What is a waste management plan? 60... Other Solid Waste Incineration Units That Commenced Construction On or Before December 9, 2004 Model Rule-Waste Management Plan § 60.3010 What is a waste management plan? A waste management plan is a...

  3. 40 CFR 60.3010 - What is a waste management plan?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false What is a waste management plan? 60... Other Solid Waste Incineration Units That Commenced Construction On or Before December 9, 2004 Model Rule-Waste Management Plan § 60.3010 What is a waste management plan? A waste management plan is a...

  4. 40 CFR 60.3010 - What is a waste management plan?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false What is a waste management plan? 60... Other Solid Waste Incineration Units That Commenced Construction On or Before December 9, 2004 Model Rule-Waste Management Plan § 60.3010 What is a waste management plan? A waste management plan is a...

  5. 45 CFR 671.13 - Waste management for the USAP.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... can be taken into account in planning future scientific, logistic and waste management programs. (e... 45 Public Welfare 3 2014-10-01 2014-10-01 false Waste management for the USAP. 671.13 Section 671... WASTE REGULATION Waste Management § 671.13 Waste management for the USAP. (a) In order to provide a...

  6. 45 CFR 671.13 - Waste management for the USAP.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... can be taken into account in planning future scientific, logistic and waste management programs. (e... 45 Public Welfare 3 2013-10-01 2013-10-01 false Waste management for the USAP. 671.13 Section 671... WASTE REGULATION Waste Management § 671.13 Waste management for the USAP. (a) In order to provide a...

  7. 45 CFR 671.13 - Waste management for the USAP.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... can be taken into account in planning future scientific, logistic and waste management programs. (e... 45 Public Welfare 3 2012-10-01 2012-10-01 false Waste management for the USAP. 671.13 Section 671... WASTE REGULATION Waste Management § 671.13 Waste management for the USAP. (a) In order to provide a...

  8. 45 CFR 671.13 - Waste management for the USAP.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... can be taken into account in planning future scientific, logistic and waste management programs. (e... 45 Public Welfare 3 2010-10-01 2010-10-01 false Waste management for the USAP. 671.13 Section 671... WASTE REGULATION Waste Management § 671.13 Waste management for the USAP. (a) In order to provide a...

  9. 3rd Quarter Transportation Report FY 2014: Radioactive Waste Shipments to and from the Nevada National Security Site (NNSS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gregory, Louis

    2014-09-20

    This report satisfies the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO) commitment to prepare a quarterly summary report of radioactive waste shipments to the Nevada National Security Site (NNSS) Radioactive Waste Management Complex (RWMC) at Area 5. There were no shipments sent for offsite treatment and returned to the NNSS this quarter. This report summarizes the 3rd quarter of Fiscal Year (FY) 2014 low-level radioactive waste (LLW) and mixed low-level radioactive waste (MLLW) shipments. This report also includes annual summaries for FY 2014 in Tables 4 and 5. Tabular summaries are provided which includemore » the following: Sources of and carriers for LLW and MLLW shipments to and from the NNSS; Number and external volume of LLW and MLLW shipments; Highway routes used by carriers; and Incident/accident data applicable to LLW and MLLW shipments. In this report shipments are accounted for upon arrival at the NNSS, while disposal volumes are accounted for upon waste burial. The disposal volumes presented in this report do not include minor volumes of non-radioactive materials that were approved for disposal. Volume reports showing cubic feet generated using the Low-Level Waste Information System may vary slightly due to differing rounding conventions.« less

  10. Correlates of domestic waste management and related health outcomes in Sunyani, Ghana: a protocol towards enhancing policy.

    PubMed

    Addo, Henry O; Dun-Dery, Elvis J; Afoakwa, Eugenia; Elizabeth, Addai; Ellen, Amposah; Rebecca, Mwinfaug

    2017-07-03

    Domestic waste generation has contributed significantly to hampering national waste management efforts. It poses serious threat to national development and requires proper treatment and management within and outside households. The problem of improper waste management has always been a challenge in Ghana, compelling several national surveys to report on the practice of waste management. However, little is known about how much waste is generated and managed within households and there is a serious dearth of information for national policy and planning. This paper seeks to document the handling and practice of waste management, including collection, storage, transportation and disposal along with the types and amount of waste generated by Households and their related health outcome. The study was a descriptive cross-sectional study and used a multi-stage sampling technique to sample 700 households. The study was planned and implemented from January to May 2015. It involved the use of structured questionnaires in the data collection over the period. Factors such as demographic characteristics, amount of waste generated, types of waste bins used within households, waste recycling, cost of disposing waste, and distance to dumpsite were all assessed. The paper shows that each surveyed household generated 0.002 t of waste per day, of which 29% are both organic and inorganic. Though more than half of the respondents (53.6%) had positive attitude towards waste management, only 29.1% practiced waste management. The study reveals that there is no proper management of domestic waste except in few households that segregate waste. The study identified several elements as determinants of waste management practice. Female respondents were less likely to practice waste management (AOR 0.45; 95% Cl 0.29, 0.79), household size also determined respondents practice (AOR 0.26; Cl 0.09, 0.77). Practice of recycling (AOR 0.03; Cl 0.02, 0.08), distance to dumpsite (AOR 0.45; Cl 0.20, 0.99), were all significant predictors of waste management practice. Cholera which is a hygiene related disease was three times more likely to determine households' waste management practice (AOR 3.22; Cl 1.33, 7.84). Considering the low waste management practice among households, there is the need for improved policy and enhanced education on proper waste management practice among households.

  11. 40 CFR 260.23 - Petitions to amend 40 CFR part 273 to include additional hazardous wastes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) HAZARDOUS WASTE MANAGEMENT SYSTEM: GENERAL Rulemaking... appropriate for the waste or category of waste; will improve management practices for the waste or category of... waste or category of waste, will improve management practices for the waste or category of waste, and...

  12. 40 CFR 260.23 - Petitions to amend 40 CFR part 273 to include additional hazardous wastes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) HAZARDOUS WASTE MANAGEMENT SYSTEM: GENERAL Rulemaking... appropriate for the waste or category of waste; will improve management practices for the waste or category of... waste or category of waste, will improve management practices for the waste or category of waste, and...

  13. 40 CFR 260.23 - Petitions to amend 40 CFR part 273 to include additional hazardous wastes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) HAZARDOUS WASTE MANAGEMENT SYSTEM: GENERAL Rulemaking... appropriate for the waste or category of waste; will improve management practices for the waste or category of... waste or category of waste, will improve management practices for the waste or category of waste, and...

  14. 40 CFR 260.23 - Petitions to amend 40 CFR part 273 to include additional hazardous wastes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) HAZARDOUS WASTE MANAGEMENT SYSTEM: GENERAL Rulemaking... appropriate for the waste or category of waste; will improve management practices for the waste or category of... waste or category of waste, will improve management practices for the waste or category of waste, and...

  15. Infectious waste management in Japan: A revised regulation and a management process in medical institutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyazaki, M.; Une, H.

    In Japan, the waste management practice is carried out in accordance with the Waste Disposal Law of 1970. The first rule of infectious waste management was regulated in 1992, and infectious wastes are defined as the waste materials generated in medical institutions as a result of medical care or research which contain pathogens that have the potential to transmit infectious diseases. Revised criteria for infectious waste management were promulgated by the Ministry of Environment in 2004. Infectious waste materials are divided into three categories: the form of waste; the place of waste generation; the kind of infectious diseases. A reductionmore » of infectious waste is expected. We introduce a summary of the revised regulation of infectious waste management in this article.« less

  16. Mine waste management legislation. Gold mining areas in Romania

    NASA Astrophysics Data System (ADS)

    Maftei, Raluca-Mihaela; Filipciuc, Constantina; Tudor, Elena

    2014-05-01

    Problems in the post-mining regions of Eastern Europe range from degraded land and landscapes, huge insecure dumps, surface cracks, soil pollution, lowering groundwater table, deforestation, and damaged cultural potentials to socio economic problems like unemployment or population decline. There is no common prescription for tackling the development of post-mining regions after mine closure nor is there a common definition of good practices or policy in this field. Key words : waste management, legislation, EU Directive, post mining Rosia Montana is a common oh 16 villages; one of them is also called Rosia Montana, a traditional mining Community, located in the Apuseni Mountains in the North-Western Romania. Beneath part of the village area lays one of the largest gold and silver deposits in Europe. In the Rosia Montana area mining had begun ever since the height of the Roman Empire. While the modern approach to mining demands careful remediation of environmental impacts, historically disused mines in this region have been abandoned, leaving widespread environmental damage. General legislative framework Strict regulations and procedures govern modern mining activity, including mitigation of all environmental impacts. Precious metals exploitation is put under GO no. 190/2000 re-published in 2004. The institutional framework was established and organized based on specific regulations, being represented by the following bodies: • The Ministry of Economy and Commerce (MEC), a public institution which develops the Government policy in the mining area, also provides the management of the public property in the mineral resources area; • The National Agency for the development and implementation of the mining Regions Reconstruction Programs (NAD), responsible with promotion of social mitigation measures and actions; • The Office for Industry Privatization, within the Education Ministry, responsible with privatization of companies under the CEM; • The National Agency for Mineral Resources (NAMR) manages, on behalf of the state, the mineral resources. Waste management framework Nowadays, Romania, is trying to align its regulation concerning mining activity to the European legislation taking into consideration waste management and their impact on the environment. Therefore the European Waste Catalog (Commission Decision 2001/118/EC) has been updated and published in the form of HG 856/2002 Waste management inventory and approved wastes list, including dangerous wastes. The HG 349/2005 establishes the legal framework for waste storage activity as well as for the monitoring of the closing and post-closing existing deposits, taking into account the environment protection and the health of the general population. Based on Directive 2000/60/EC the Ministry of Waters Administration, Forests and Environment Protection from Romania issued the GO No 756/1997 (amended by GO 532/2002 and GO 1144/2002),"Regulations for environment pollution assessment" that contains alarm and intervention rates for soil pollution for contaminants such as metals, metalloids (Sb, Ag, As, Be, Bi, B, Cd, Co, Cr, Cu, Hg, Mo, Ni, Pb, Se, Sn, TI, V, Zn) and cyanides. Also GO No 756/1997 was amended and updated by Law No 310/2004 and 112/2006 in witch technical instructions concerning general framework for the use of water sources in the human activities including mining industry, are approved. Chemical compounds contained in industrial waters are fully regulated by H. G. 352/2005 concerning the contents of waste water discharged. Directive 2006/21/EC of the European Parliament and of the Council relating to the management of waste from extractive industries and amending Directive 2004/35/EC is transposed into the national law of the Romanian Government under Decision No 856/2008. The 856/2008 Decision on the management of waste from extractive industries establishes "the legal framework concerning the guidelines, measures and procedures to prevent or reduce as far as possible any adverse effects on the environment, in particular water, air, soil, fauna, flora and landscape, and any health risks to the population, arising as a result of waste management in extractive industries". Based on the Commission decision 2009/339/EC concerning the waste management facilities - classification criteria - Romanian Government issued GO 2042/2010 witch states the procedures for approving the plan of waste management in extractive industries and its applications norms. Law No. 22/2001 fallows the regulations from the Espoo Convention on assessing the impact of mining on the environment sector in a cross-border context. This work is presented within the framework of SUSMIN project.

  17. 40 CFR 273.52 - Waste management.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 28 2013-07-01 2013-07-01 false Waste management. 273.52 Section 273...) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Universal Waste Transporters § 273.52 Waste management. (a) A universal waste transporter must comply with all applicable U.S. Department of...

  18. 40 CFR 273.52 - Waste management.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 28 2012-07-01 2012-07-01 false Waste management. 273.52 Section 273...) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Universal Waste Transporters § 273.52 Waste management. (a) A universal waste transporter must comply with all applicable U.S. Department of...

  19. 40 CFR 273.52 - Waste management.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 27 2011-07-01 2011-07-01 false Waste management. 273.52 Section 273...) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Universal Waste Transporters § 273.52 Waste management. (a) A universal waste transporter must comply with all applicable U.S. Department of...

  20. 40 CFR 273.52 - Waste management.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 27 2014-07-01 2014-07-01 false Waste management. 273.52 Section 273...) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Universal Waste Transporters § 273.52 Waste management. (a) A universal waste transporter must comply with all applicable U.S. Department of...

  1. 40 CFR 273.52 - Waste management.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Waste management. 273.52 Section 273...) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Universal Waste Transporters § 273.52 Waste management. (a) A universal waste transporter must comply with all applicable U.S. Department of...

  2. Concept of sustainable waste management in the city of Zagreb: Towards the implementation of circular economy approach.

    PubMed

    Ribić, Bojan; Voća, Neven; Ilakovac, Branka

    2017-02-01

    Improvement of the current waste management is one of the main challenges for most municipalities in Croatia, mainly due to legal obligations set in different European Union (EU) directives regarding waste management, such as reduction of waste generation and landfilling, or increase of separately collected waste and recycling rates. This paper highlights the current waste management in the city of Zagreb by analyzing the waste generation, collection, and disposal scenario along with the regulatory and institutional framework. Since the present waste management system mainly depends upon landfilling, with the rate of separate waste collection and recycling far from being adequate, it is necessary to introduce a new system that will take into account the current situation in the city as well as the obligations imposed by the EU. Namely, in the coming years, the Waste Framework and Landfill Directives of the European Union will be a significant driver of change in waste management practices and governance of the city of Zagreb. At present, the yearly separate waste collection makes somewhat less than 5 kg per capita of various waste fractions, i.e., far below the average value for the (28) capital cities of the EU, which is 108 kg per capita. This is possible to achieve only by better and sustainable planning of future activities and facilities, taking into account of environmental, economic, and social aspects of waste management. This means that the city of Zagreb not only will have to invest in new infrastructure to meet the targets, but also will have to enhance public awareness in diverting this waste at the household level. The solution for the new waste management proposed in this paper will certainly be a way of implementing circular economy approach to current waste management practice in the city of Zagreb. Municipal waste management in the developing countries in the EU (new eastern EU members) is often characterized by its limited utilization of recycling activities, inadequate management of nonindustrial hazardous waste, and inadequate landfill disposal. Many cities in Eastern Europe and Zagreb as well are facing serious problems in managing municipal wastes due to the existing solid waste management system that is found to be highly inefficient. The proposed scenario for city of Zagreb in the paper is an innovative upgrading of municipal waste management based on the waste management hierarchy and circular economy approach.

  3. 40 CFR 60.2625 - When must I submit my waste management plan?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false When must I submit my waste management... Compliance Times for Commercial and Industrial Solid Waste Incineration Units Model Rule-Waste Management Plan § 60.2625 When must I submit my waste management plan? You must submit a waste management plan no...

  4. 40 CFR 60.2055 - What is a waste management plan?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false What is a waste management plan? 60... Industrial Solid Waste Incineration Units Waste Management Plan § 60.2055 What is a waste management plan? A waste management plan is a written plan that identifies both the feasibility and the methods used to...

  5. 40 CFR 60.2055 - What is a waste management plan?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false What is a waste management plan? 60... Industrial Solid Waste Incineration Units Waste Management Plan § 60.2055 What is a waste management plan? A waste management plan is a written plan that identifies both the feasibility and the methods used to...

  6. Integrated models for solid waste management in tourism regions: Langkawi Island, Malaysia.

    PubMed

    Shamshiry, Elmira; Nadi, Behzad; Mokhtar, Mazlin Bin; Komoo, Ibrahim; Hashim, Halimaton Saadiah; Yahaya, Nadzri

    2011-01-01

    The population growth, changing consumption patterns, and rapid urbanization contribute significantly to the growing volumes of solid waste that are generated in urban settings. As the rate of urbanization increases, demand on the services of solid waste management increases. The rapid urban growth in Langkawi Island, Malaysia, combined with the increasing rates of solid waste production has provided evidence that the traditional solid waste management practices, particularly the methods of waste collection and disposal, are inefficient and quite nonsustainable. Accordingly, municipal managers and planners in Langkawi need to look for and adopt a model for solid waste management that emphasizes an efficient and sustainable management of solid wastes in Langkawi Island. This study presents the current practices of solid waste management in Langkawi Island, describes the composition of the solid waste generated in that area, and presents views of local residents and tourist on issues related to solid waste management like the aesthetic value of the island environment. The most important issue of this paper is that it is the first time that integrated solid waste management is investigated in the Langkawi Island.

  7. Integrated Models for Solid Waste Management in Tourism Regions: Langkawi Island, Malaysia

    PubMed Central

    Shamshiry, Elmira; Nadi, Behzad; Bin Mokhtar, Mazlin; Komoo, Ibrahim; Saadiah Hashim, Halimaton; Yahaya, Nadzri

    2011-01-01

    The population growth, changing consumption patterns, and rapid urbanization contribute significantly to the growing volumes of solid waste that are generated in urban settings. As the rate of urbanization increases, demand on the services of solid waste management increases. The rapid urban growth in Langkawi Island, Malaysia, combined with the increasing rates of solid waste production has provided evidence that the traditional solid waste management practices, particularly the methods of waste collection and disposal, are inefficient and quite nonsustainable. Accordingly, municipal managers and planners in Langkawi need to look for and adopt a model for solid waste management that emphasizes an efficient and sustainable management of solid wastes in Langkawi Island. This study presents the current practices of solid waste management in Langkawi Island, describes the composition of the solid waste generated in that area, and presents views of local residents and tourist on issues related to solid waste management like the aesthetic value of the island environment. The most important issue of this paper is that it is the first time that integrated solid waste management is investigated in the Langkawi Island. PMID:21904559

  8. Alternative approaches for better municipal solid waste management in Mumbai, India

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rathi, Sarika

    2006-07-01

    Waste is an unavoidable by product of human activities. Economic development, urbanization and improving living standards in cities, have led to an increase in the quantity and complexity of generated waste. Rapid growth of population and industrialization degrades the urban environment and places serious stress on natural resources, which undermines equitable and sustainable development. Inefficient management and disposal of solid waste is an obvious cause of degradation of the environment in most cities of the developing world. Municipal corporations of the developing countries are not able to handle increasing quantities of waste, which results in uncollected waste on roads andmore » in other public places. There is a need to work towards a sustainable waste management system, which requires environmental, institutional, financial, economic and social sustainability. This study explores alternative approaches to municipal solid waste (MSW) management and estimates the cost of waste management in Mumbai, India. Two alternatives considered in the paper are community participation and public private partnership in waste management. Data for the present study are from various non-governmental organizations (NGOs) and from the private sector involved in waste management in Mumbai. Mathematical models are used to estimate the cost per ton of waste management for both of the alternatives, which are compared with the cost of waste management by Municipal Corporation of Greater Mumbai (MCGM). It is found that the cost per ton of waste management is Rs. 1518 (US$35) with community participation; Rs. 1797 (US$41) with public private partnership (PPP); and Rs. 1908 (US$44) when only MCGM handles the waste. Hence, community participation in waste management is the least cost option and there is a strong case for comprehensively involving community participation in waste management.« less

  9. The munitions provisions of the Federal Facility Compliance Act

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimmell, T.A.; Green, D.R.; Queen, R.

    1994-03-01

    The Federal Facility Compliance Act (FFCA) was signed by President Bush on October 6, 1992. This Act amends the Resource Conservation and Recovery Act (RCRA), the primary law governing hazardous waste management in the US The most significant provision of the FFCA was the waiver of sovereign immunity. This waiver subjects Federal facilities to the same ``incentives`` as the private sector for compliance. While the waiver has broad implications for all Federal facilities, other provisions of the FFCA impact specific sectors of the Federal complex. The focus of this paper is the FFCA Munitions Provisions, which have the potential tomore » change some aspects of the structure of munitions management within the military. The Munitions Provisions, contained in Section 107 of the FFCA, modifies Section 3004 of RCRA by adding a new subsection (y) on Munitions. Section 107 requires the Environmental Protection Agency (EPA) to develop, after consultation with the Department of Defense (DOD) and appropriate State officials, regulations identifying when military munitions (including conventional and chemical munitions) become hazardous waste, and to provide for the safe transportation and storage of such waste. The FFCA requires EPA to promulgate the final ``Munitions Rule`` by October 6, 1994. These are the only provisions of the FFCA that require a new rulemaking. It is clear that the Munitions Rule could have a significant effect on the way in which DOD manages munitions. Demilitarization, range management, training activities, and emergency response actions may be affected. It is important for DOD, the Services, and individual installations, to be aware of potential impacts of the FFCA on munitions management operations. The purpose of this paper is to review several important munitions Rule issues, and to discuss potential impacts of these issues.« less

  10. Field performance of alternative landfill covers vegetated with cottonwood and eucalyptus trees.

    PubMed

    Abichou, Tarek; Musagasa, Jubily; Yuan, Lei; Chanton, Jeff; Tawfiq, Kamal; Rockwood, Donald; Licht, Louis

    2012-01-01

    A field study was conducted to assess the ability of landfill covers to control percolation into the waste. Performance of one conventional cover was compared to that of two evapotranspiration (ET) tree covers, using large (7 x 14 m) lined lysimeters at the Leon County Solid Waste management facility in Tallahassee, Florida. Additional unlined test sections were also constructed and monitored in order to compare soil water storage, soil temperature, and tree growth inside lysimeters and in unlined test sections. The unlined test sections were in direct contact with landfill gas. Surface runoff on the ET covers was a small proportion of the water balance (1% of precipitation) as compared to 13% in the conventional cover. Percolation in the ET covers averaged 17% and 24% of precipitation as compared to 33% in the conventional cover. On average, soil water storage was higher in the lined lysimeters (429 mm) compared to unlined test sections (408 mm). The average soil temperature in the lysimeters was lower than in the unlined test sections. The average tree height inside the lysimeters was not significantly lower (8.04 mfor eucalyptus and 7.11 mfor cottonwood) than outside (8.82 m for eucalyptus and 8.01 m for cottonwood). ET tree covers vegetated with cottonwood or eucalyptus are feasible for North Florida climate as an alternative to GCL covers.

  11. Plutonium shipments - a supplement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwiatkowska, B.; Soons, A.

    1994-10-01

    By means of a supplement to the stimulating analysis found in the comprehensive article by Professor Jon Van Dyke on `Sea Shipment of Japanese Plutonium under International Law`, published in Volume 24 of this journal, we feel that the following clarifications and additions are appropriate. Radioactive wastes are not covered by the 1989 Basel Convention on the Control of Transboundary Movements of Hazardous Wastes and Their Disposal. Fir this reason, the Basel Conference adopted on March 22, 1989, along with the convention, Resolution 5 on Harmonization of Procedures of the Basel Convention and the Code of Practice for International Transactionsmore » Involving Nuclear Wastes. In accordance with Resolution 5, the provisions of the Basel Convention were taken into full account during the elaboration of the IAEA code, which ultimately was adopted by Resolution GC(XXXIV)/530 of the General Conference on Code of Practice on the International Transboundary Movement of Radioactive Waste (TMRW) of September 21, 1990. The IAEA code of practice and the respective regional instruments affirm, with respect to TMRW, the general principles of the Basel Convention, including the critical regime of prior notification and prior informed consent (PIC) that extend the scope of duties of notification, environmental impact assessment, and consultation with respect to transboundary interference as the duties have evolved under existing customary law.« less

  12. Waste Management Project fiscal year 1998 multi-year work plan, WBS 1.2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobsen, P.H.

    The Waste Management Project manages and integrates (non-TWRS) waste management activities at the site. Activities include management of Hanford wastes as well as waste transferred to Hanford from other DOE, Department of Defense, or other facilities. This work includes handling, treatment, storage, and disposal of radioactive, nonradioactive, hazardous, and mixed solid and liquid wastes. Major Waste Management Projects are the Solid Waste Project, Liquid Effluents Project, and Analytical Services. Existing facilities (e.g., grout vaults and canyons) shall be evaluated for reuse for these purposes to the maximum extent possible.

  13. E-waste Management and Refurbishment Prediction (EMARP) Model for Refurbishment Industries.

    PubMed

    Resmi, N G; Fasila, K A

    2017-10-01

    This paper proposes a novel algorithm for establishing a standard methodology to manage and refurbish e-waste called E-waste Management And Refurbishment Prediction (EMARP), which can be adapted by refurbishing industries in order to improve their performance. Waste management, particularly, e-waste management is a serious issue nowadays. Computerization has been into waste management in different ways. Much of the computerization has happened in planning the waste collection, recycling and disposal process and also managing documents and reports related to waste management. This paper proposes a computerized model to make predictions for e-waste refurbishment. All possibilities for reusing the common components among the collected e-waste samples are predicted, thus minimizing the wastage. Simulation of the model has been done to analyse the accuracy in the predictions made by the system. The model can be scaled to accommodate the real-world scenario. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Progress and challenges to the global waste management system.

    PubMed

    Singh, Jagdeep; Laurenti, Rafael; Sinha, Rajib; Frostell, Björn

    2014-09-01

    Rapid economic growth, urbanization and increasing population have caused (materially intensive) resource consumption to increase, and consequently the release of large amounts of waste to the environment. From a global perspective, current waste and resource management lacks a holistic approach covering the whole chain of product design, raw material extraction, production, consumption, recycling and waste management. In this article, progress and different sustainability challenges facing the global waste management system are presented and discussed. The study leads to the conclusion that the current, rather isolated efforts, in different systems for waste management, waste reduction and resource management are indeed not sufficient in a long term sustainability perspective. In the future, to manage resources and wastes sustainably, waste management requires a more systems-oriented approach that addresses the root causes for the problems. A specific issue to address is the development of improved feedback information (statistics) on how waste generation is linked to consumption. © The Author(s) 2014.

  15. Comparison of municipal solid waste management systems in Canada and Ghana: A case study of the cities of London, Ontario, and Kumasi, Ghana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asase, Mizpah; Yanful, Ernest K.; Mensah, Moses

    2009-10-15

    Integrated waste management has been accepted as a sustainable approach to solid waste management in any region. It can be applied in both developed and developing countries. The difference is the approach taken to develop the integrated waste management system. This review looks at the integrated waste management system operating in the city of London, Ontario-Canada and how lessons can be drawn from the system's development and operation that will help implement a sustainable waste management system in the city of Kumasi, Ghana. The waste management system in London is designed such that all waste generated in the city ismore » handled and disposed of appropriately. The responsibility of each sector handling waste is clearly defined and monitored. All major services are provided and delivered by a combination of public and private sector forces. The sustainability of the waste management in the city of London is attributed to the continuous improvement strategy framework adopted by the city based on the principles of integrated waste management. It is perceived that adopting a strategic framework based on the principles of integrated waste management with a strong political and social will, can transform the current waste management in Kumasi and other cities in developing countries in the bid for finding lasting solutions to the problems that have plagued the waste management system in these cities.« less

  16. Comparative assessment of metallurgical recovery of metals from electronic waste with special emphasis on bioleaching.

    PubMed

    Priya, Anshu; Hait, Subrata

    2017-03-01

    Waste electrical and electronic equipment (WEEE) or electronic waste (e-waste) is one of the fastest growing waste streams in the urban environment worldwide. The core component of printed circuit board (PCB) in e-waste contains a complex array of metals in rich quantity, some of which are toxic to the environment and all of which are valuable resources. Therefore, the recycling of e-waste is an important aspect not only from the point of waste treatment but also from the recovery of metals for economic growth. Conventional approaches for recovery of metals from e-waste, viz. pyrometallurgical and hydrometallurgical techniques, are rapid and efficient, but cause secondary pollution and economically unviable. Limitations of the conventional techniques have led to a shift towards biometallurgical technique involving microbiological leaching of metals from e-waste in eco-friendly manner. However, optimization of certain biotic and abiotic factors such as microbial species, pH, temperature, nutrients, and aeration rate affect the bioleaching process and can lead to profitable recovery of metals from e-waste. The present review provides a comprehensive assessment on the metallurgical techniques for recovery of metals from e-waste with special emphasis on bioleaching process and the associated factors.

  17. Analysis on 3RWB model (Reduce, reuse, recycle, and waste bank) in comprehensive waste management toward community-based zero waste

    NASA Astrophysics Data System (ADS)

    Affandy, Nur Azizah; Isnaini, Enik; Laksono, Arif Budi

    2017-06-01

    Waste management becomes a serious issue in Indonesia. Significantly, waste production in Lamongan Regency is increasing in linear with the growth of population and current people activities, creating a gap between waste production and waste management. It is a critical problem that should be solved immediately. As a reaction to the issue, the Government of Lamongan Regency has enacted a new policy regarding waste management through a program named Lamongan Green and Clean (LGC). From the collected data, it showed that the "wet waste" or "organic waste" was approximately 63% of total domestic waste. With such condition, it can be predicted that the trashes will decompose quite quickly. From the observation, it was discovered that the generated waste was approximately 0.25 kg/person/day. Meanwhile, the number of population in Tumenggungan Village, Lamongan (data obtained from Monograph in Lamongan district, 2012) was 4651 people. Thus, it can be estimated the total waste in Lamongan was approximately 0.25 kg/person/day x 4651 characters = 930 kg/day. Within 3RWB Model, several stages have to be conducted. In the planning stage, the promotion of self-awareness among the communities in selecting and managing waste due to their interest in a potential benefit, is done. It indicated that community's awareness of waste management waste grew significantly. Meanwhile in socialization stage, each village staff, environmental expert, and policymaker should bear significant role in disseminating the awareness among the people. In the implementation phase, waste management with 3RWB model is promoted by applying it among of the community, starting from selection, waste management, until recycled products sale through the waste bank. In evaluation stage, the village managers, environmental expert, and waste managers are expected to regularly supervise and evaluate the whole activity of the waste management.

  18. Oak Ridge National Laboratory Waste Management Plan, fiscal year 1994. Revision 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turner, J.W.

    1993-12-01

    US Department of Energy (DOE) Order 5820.2A was promulgated in final form on September 26, 1988. The order requires heads of field organizations to prepare and to submit updates on the waste management plans for all operations under their purview according to the format in Chap. 6, {open_quotes}Waste Management Plan Outline.{close_quotes} These plans are to be submitted by the DOE Oak Ridge Operations Office (DOE-ORO) in December of each year and distributed to the DP-12, ES&H-1, and other appropriate DOE Headquarters (DOE-HQ) organizations for review and comment. This document was prepared in response to this requirement for fiscal year (FY)more » 1994. The Oak Ridge National Laboratory (ORNL) waste management mission is reduction, collection, storage, treatment, and disposal of DOE wastes, generated primarily in pursuit of ORNL missions, in order to protect human health and safety and the environment. In carrying out this mission, waste management staff in the Waste Management and Remedial Action Division (WMRAD) will (1) guide ORNL in optimizing waste reduction and waste management capabilities and (2) conduct waste management operations in a compliant, publicly acceptable, technically sound, and cost-efficient manner. Waste management requirements for DOE radioactive wastes are detailed in DOE Order 5820.2A, and the ORNL Waste Management Program encompasses all elements of this order. The requirements of this DOE order and other appropriate DOE orders, along with applicable Tennessee Department of Environment and Conservation and US Environmental Protection Agency (EPA) rules and regulations, provide the principal source of regulatory guidance for waste management operations at ORNL. The objective of this document is compilation and consolidation of information on how the ORNL Waste Management Program is conducted, which waste management facilities are being used to manage wastes, what activities are planned for FY 1994, and how all of the activities are documented.« less

  19. Healthcare waste management research: A structured analysis and review (2005-2014).

    PubMed

    Thakur, Vikas; Ramesh, A

    2015-10-01

    The importance of healthcare waste management in preserving the environment and protecting the public cannot be denied. Past research has dealt with various issues in healthcare waste management and disposal, which spreads over various journals, pipeline research disciplines and research communities. Hence, this article analyses this scattered knowledge in a systematic manner, considering the period between January 2005 and July 2014. The purpose of this study is to: (i) identify the trends in healthcare waste management literature regarding journals published; (ii) main topics of research in healthcare waste management; (iii) methodologies used in healthcare waste management research; (iv) areas most frequently researched by researchers; and (v) determine the scope of future research in healthcare waste management. To this end, the authors conducted a systematic review of 176 articles on healthcare waste management taken from the following eight esteemed journals: International Journal of Environmental Health Research, International Journal of Healthcare Quality Assurance, Journal of Environmental Management, Journal of Hazardous Material, Journal of Material Cycles and Waste Management, Resources, Conservations and Recycling, Waste Management, and Waste Management & Research. The authors have applied both quantitative and qualitative approaches for analysis, and results will be useful in the following ways: (i) results will show importance of healthcare waste management in healthcare operations; (ii) findings will give a comparative view of the various publications; (c) study will shed light on future research areas. © The Author(s) 2015.

  20. Life cycle assessment of the end-of-life phase of a residential building.

    PubMed

    Vitale, Pierluca; Arena, Noemi; Di Gregorio, Fabrizio; Arena, Umberto

    2017-02-01

    The study investigates the potential environmental impacts related to the end-of-life phase of a residential building, identified in a multifamily dwelling of three levels, constructed in the South of Italy by utilizing conventional materials and up-to-date procedures. An attributional life cycle assessment has been utilised to quantify the contributions of each stage of the end-of-life phase, with a particular attention to the management of the demolition waste. The investigation takes into account the selective demolition, preliminary sorting and collection of main components of the building, together with the processes of sorting, recycling and/or disposal of main fractions of the demolition waste. It quantifies the connections between these on-site and off-site processes as well as the main streams of materials sent to recycling, energy recovery, and final disposal. A sensitivity analysis has been eventually carried out by comparing the overall environmental performances of some alternative scenarios, characterised by different criteria for the demolition of the reference building, management of demolition waste and assessment of avoided burdens of the main recycled materials. The results quantify the advantage of an appropriate technique of selective demolition, which could increase the quality and quantity of residues sent to the treatment of resource recovery and safe disposal. They also highlight the contributions to the positive or negative environmental impact of each stage of the investigated waste management system. The recycling of reinforcing steel appears to play a paramount role, accounting for 65% of the total avoided impacts related to respiratory inorganics, 89% of those for global warming and 73% of those for mineral extraction. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Sustainable Materials Management: Non-Hazardous Materials and Waste Management Hierarchy

    EPA Pesticide Factsheets

    EPA developed the non-hazardous materials and waste management hierarchy in recognition that no single waste management approach is suitable for managing all materials and waste streams in all circumstances.

  2. 40 CFR 60.2900 - When must I submit my waste management plan?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false When must I submit my waste management... Waste Management Plan § 60.2900 When must I submit my waste management plan? You must submit a waste management plan prior to commencing construction, reconstruction, or modification. ...

  3. 40 CFR 62.14430 - Must I prepare a waste management plan?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 8 2010-07-01 2010-07-01 false Must I prepare a waste management plan... 20, 1996 Waste Management Plan § 62.14430 Must I prepare a waste management plan? Yes. All HMIWI owners or operators must have a waste management plan. ...

  4. 40 CFR 60.2900 - When must I submit my waste management plan?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false When must I submit my waste management... Waste Management Plan § 60.2900 When must I submit my waste management plan? You must submit a waste management plan prior to commencing construction, reconstruction, or modification. ...

  5. 40 CFR 62.14430 - Must I prepare a waste management plan?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 9 2013-07-01 2013-07-01 false Must I prepare a waste management plan... December 1, 2008 Waste Management Plan § 62.14430 Must I prepare a waste management plan? Yes. All HMIWI owners or operators must have a waste management plan. ...

  6. 40 CFR 60.2900 - When must I submit my waste management plan?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false When must I submit my waste management... Waste Management Plan § 60.2900 When must I submit my waste management plan? You must submit a waste management plan prior to commencing construction, reconstruction, or modification. ...

  7. 40 CFR 62.14430 - Must I prepare a waste management plan?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 9 2014-07-01 2014-07-01 false Must I prepare a waste management plan... December 1, 2008 Waste Management Plan § 62.14430 Must I prepare a waste management plan? Yes. All HMIWI owners or operators must have a waste management plan. ...

  8. 40 CFR 62.14430 - Must I prepare a waste management plan?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 8 2011-07-01 2011-07-01 false Must I prepare a waste management plan... 20, 1996 Waste Management Plan § 62.14430 Must I prepare a waste management plan? Yes. All HMIWI owners or operators must have a waste management plan. ...

  9. 40 CFR 62.14430 - Must I prepare a waste management plan?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 9 2012-07-01 2012-07-01 false Must I prepare a waste management plan... 20, 1996 Waste Management Plan § 62.14430 Must I prepare a waste management plan? Yes. All HMIWI owners or operators must have a waste management plan. ...

  10. Disaster waste management: a review article.

    PubMed

    Brown, Charlotte; Milke, Mark; Seville, Erica

    2011-06-01

    Depending on their nature and severity, disasters can create large volumes of debris and waste. The waste can overwhelm existing solid waste management facilities and impact on other emergency response and recovery activities. If poorly managed, the waste can have significant environmental and public health impacts and can affect the overall recovery process. This paper presents a system overview of disaster waste management based on existing literature. The main literature available to date comprises disaster waste management plans or guidelines and isolated case studies. There is ample discussion on technical management options such as temporary storage sites, recycling, disposal, etc.; however, there is little or no guidance on how these various management options are selected post-disaster. The literature does not specifically address the impact or appropriateness of existing legislation, organisational structures and funding mechanisms on disaster waste management programmes, nor does it satisfactorily cover the social impact of disaster waste management programmes. It is envisaged that the discussion presented in this paper, and the literature gaps identified, will form a basis for future comprehensive and cohesive research on disaster waste management. In turn, research will lead to better preparedness and response to disaster waste management problems. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Disaster waste management: A review article

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Charlotte, E-mail: charlotte.brown@pg.canterbury.ac.nz; Milke, Mark, E-mail: mark.milke@canterbury.ac.nz; Seville, Erica, E-mail: erica.seville@canterbury.ac.nz

    2011-06-15

    Depending on their nature and severity, disasters can create large volumes of debris and waste. The waste can overwhelm existing solid waste management facilities and impact on other emergency response and recovery activities. If poorly managed, the waste can have significant environmental and public health impacts and can affect the overall recovery process. This paper presents a system overview of disaster waste management based on existing literature. The main literature available to date comprises disaster waste management plans or guidelines and isolated case studies. There is ample discussion on technical management options such as temporary storage sites, recycling, disposal, etc.;more » however, there is little or no guidance on how these various management options are selected post-disaster. The literature does not specifically address the impact or appropriateness of existing legislation, organisational structures and funding mechanisms on disaster waste management programmes, nor does it satisfactorily cover the social impact of disaster waste management programmes. It is envisaged that the discussion presented in this paper, and the literature gaps identified, will form a basis for future comprehensive and cohesive research on disaster waste management. In turn, research will lead to better preparedness and response to disaster waste management problems.« less

  12. Waste Management Improvement Initiatives at Atomic Energy of Canada Limited - 13091

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, Nicholas; Adams, Lynne; Wong, Pierre

    2013-07-01

    Atomic Energy of Canada Limited's (AECL) Chalk River Laboratories (CRL) has been in operation for over 60 years. Radioactive, mixed, hazardous and non-hazardous wastes have been and continue to be generated at CRL as a result of research and development, radioisotope production, reactor operation and facility decommissioning activities. AECL has implemented several improvement initiatives at CRL to simplify the interface between waste generators and waste receivers: - Introduction of trained Waste Officers representing their facilities or activities at CRL; - Establishment of a Waste Management Customer Support Service as a Single-Point of Contact to provide guidance to waste generators formore » all waste management processes; and - Implementation of a streamlined approach for waste identification with emphasis on early identification of waste types and potential disposition paths. As a result of implementing these improvement initiatives, improvements in waste management and waste transfer efficiencies have been realized at CRL. These included: 1) waste generators contacting the Customer Support Service for information or guidance instead of various waste receivers; 2) more clear and consistent guidance provided to waste generators for waste management through the Customer Support Service; 3) more consistent and correct waste information provided to waste receivers through Waste Officers, resulting in reduced time and resources required for waste management (i.e., overall cost); 4) improved waste minimization and segregation approaches, as identified by in-house Waste Officers; and 5) enhanced communication between waste generators and waste management groups. (authors)« less

  13. Health-care waste management in India.

    PubMed

    Patil, A D; Shekdar, A V

    2001-10-01

    Health-care waste management in India is receiving greater attention due to recent regulations (the Biomedical Wastes (Management & Handling) Rules, 1998). The prevailing situation is analysed covering various issues like quantities and proportion of different constituents of wastes, handling, treatment and disposal methods in various health-care units (HCUs). The waste generation rate ranges between 0.5 and 2.0 kg bed-1 day-1. It is estimated that annually about 0.33 million tonnes of waste are generated in India. The solid waste from the hospitals consists of bandages, linen and other infectious waste (30-35%), plastics (7-10%), disposable syringes (0.3-0.5%), glass (3-5%) and other general wastes including food (40-45%). In general, the wastes are collected in a mixed form, transported and disposed of along with municipal solid wastes. At many places, authorities are failing to install appropriate systems for a variety of reasons, such as non-availability of appropriate technologies, inadequate financial resources and absence of professional training on waste management. Hazards associated with health-care waste management and shortcomings in the existing system are identified. The rules for management and handling of biomedical wastes are summarised, giving the categories of different wastes, suggested storage containers including colour-coding and treatment options. Existing and proposed systems of health-care waste management are described. A waste-management plan for health-care establishments is also proposed, which includes institutional arrangements, appropriate technologies, operational plans, financial management and the drawing up of appropriate staff training programmes.

  14. HCH contamination from former pesticide production in Brazil--a challenge for the Stockholm Convention implementation.

    PubMed

    Torres, J P M; Fróes-Asmus, C I R; Weber, R; Vijgen, J M H

    2013-04-01

    Hexachlorocyclohexane (HCH) isomers (α-, β- and γ- HCH [lindane]) were recently added to the list of persistent organic pollutants regulated by the Stockholm Convention, and therefore, the legacy of HCH and lindane production has become an issue of global relevance. The production of lindane with the much larger quantities of associated waste isomers has generated large waste deposits and contaminated sites. This article presents an overview of HCH-polluted sites in Brazil as a basis for further activities related to the Stockholm Convention. The locations of HCH stockpiles and contaminated sites in Brazil arising from production and formulation have been compiled and mapped. This shows that the measures taken over the past 25 years have not resulted in remediation of the HCH pollution. An exposure risk study has been summarised for one major site and is included to demonstrate the contemporary relevance of the contamination. Major site remediation efforts are planned at one site but people live close to several other sites, and there is an urgent need of further assessments and remediation to ensure the protection of human health and the environment. The Stockholm Convention requires a systematic approach and should be adopted for the assessment of all sites and appropriate isolation/remediation measures should be facilitated. The appropriate planning of these activities for the production site in Rio de Janeiro could be a positive contribution for Rio+20 highlighting that green economy and sustainable production also include the appropriate management of legacies of historic production of an industrial sector (here the organochlorine industry).

  15. Healthcare waste management status in Lagos State, Nigeria: a case study from selected healthcare facilities in Ikorodu and Lagos metropolis.

    PubMed

    Longe, Ezechiel O

    2012-06-01

    A survey of healthcare waste management practices and their implications for health and the environment was carried out. The study assessed waste management practices in 20 healthcare facilities ranging in capacity from 40 to 600 beds in Ikorodu and metropolitan Lagos, Lagos State, Nigeria. The prevailing healthcare waste management status was analysed. Management issues on quantities and proportion of different constituents of waste, segregation, collection, handling, transportation, treatment and disposal methods were assessed. The waste generation averaged 0.631 kg bed(-1) day(-1) over the survey area. The waste stream from the healthcare facilities consisted of general waste (59.0%), infectious waste (29.7%), sharps and pathological (8.9%), chemical (1.45%) and others (0.95%). Sharps/pathological waste includes disposable syringes. In general, the waste materials were collected in a mixed form, transported and disposed of along with municipal solid waste with attendant risks to health and safety. Most facilities lacked appropriate treatment systems for a variety of reasons that included inadequate funding and little or no priority for healthcare waste management as well as a lack of professionally competent waste managers among healthcare providers. Hazards associated with healthcare waste management and shortcomings in the existing system were identified.

  16. Economic assessment and energy model scenarios of municipal solid waste incineration and gas turbine hybrid dual-fueled cycles in Thailand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Udomsri, Seksan, E-mail: seksan.udomsri@energy.kth.s; Martin, Andrew R.; Fransson, Torsten H.

    Finding environmentally benign methods related to sound municipal solid waste (MSW) management is of highest priority in Southeast Asia. It is very important to study new approaches which can reduce waste generation and simultaneously enhance energy recovery. One concrete example of particular significance is the concept of hybrid dual-fuel power plants featuring MSW and another high-quality fuel like natural gas. The hybrid dual-fuel cycles provide significantly higher electrical efficiencies than a composite of separate single-fuel power plant (standalone gas turbine combined cycle and MSW incineration). Although hybrid versions are of great importance for energy conversion from MSW, an economic assessmentmore » of these systems must be addressed for a realistic appraisal of these technologies. This paper aims to further examine an economic assessment and energy model analysis of different conversion technologies. Energy models are developed to further refine the expected potential of MSW incineration with regards to energy recovery and environmental issues. Results show that MSW incineration can play role for greenhouse gas reduction, energy recovery and waste management. In Bangkok, the electric power production via conventional incineration and hybrid power plants can cover 2.5% and 8% of total electricity consumption, respectively. The hybrid power plants have a relative short payback period (5 years) and can further reduce the CO{sub 2} levels by 3% in comparison with current thermal power plants.« less

  17. Economic assessment and energy model scenarios of municipal solid waste incineration and gas turbine hybrid dual-fueled cycles in Thailand.

    PubMed

    Udomsri, Seksan; Martin, Andrew R; Fransson, Torsten H

    2010-07-01

    Finding environmentally benign methods related to sound municipal solid waste (MSW) management is of highest priority in Southeast Asia. It is very important to study new approaches which can reduce waste generation and simultaneously enhance energy recovery. One concrete example of particular significance is the concept of hybrid dual-fuel power plants featuring MSW and another high-quality fuel like natural gas. The hybrid dual-fuel cycles provide significantly higher electrical efficiencies than a composite of separate single-fuel power plant (standalone gas turbine combined cycle and MSW incineration). Although hybrid versions are of great importance for energy conversion from MSW, an economic assessment of these systems must be addressed for a realistic appraisal of these technologies. This paper aims to further examine an economic assessment and energy model analysis of different conversion technologies. Energy models are developed to further refine the expected potential of MSW incineration with regards to energy recovery and environmental issues. Results show that MSW incineration can play role for greenhouse gas reduction, energy recovery and waste management. In Bangkok, the electric power production via conventional incineration and hybrid power plants can cover 2.5% and 8% of total electricity consumption, respectively. The hybrid power plants have a relative short payback period (5 years) and can further reduce the CO(2) levels by 3% in comparison with current thermal power plants. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  18. 40 CFR 60.2899 - What is a waste management plan?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false What is a waste management plan? 60... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Preconstruction Siting Analysis Waste Management Plan § 60.2899 What is a waste management plan? A waste management plan is a written plan that...

  19. 40 CFR 60.2899 - What is a waste management plan?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false What is a waste management plan? 60... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Preconstruction Siting Analysis Waste Management Plan § 60.2899 What is a waste management plan? A waste management plan is a written plan that...

  20. 40 CFR 60.2620 - What is a waste management plan?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false What is a waste management plan? 60... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Emissions Guidelines and Compliance Times for..., 1999 Model Rule-Waste Management Plan § 60.2620 What is a waste management plan? A waste management...

  1. 40 CFR 60.3010 - What is a waste management plan?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false What is a waste management plan? 60... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for... Rule-Waste Management Plan § 60.3010 What is a waste management plan? A waste management plan is a...

  2. Sustainability assessment and prioritisation of bottom ash management in Macao.

    PubMed

    Sou, W I; Chu, Andrea; Chiueh, P T

    2016-12-01

    In Macao, about 7200 t yr -1 of bottom ash (BA) is generated and conventionally landfilled with construction waste. Because the properties of BA are similar to those of natural aggregates, it is suitable to be recycled as construction material. However, pre-treatment processes for BA reuse may require more resource input and may generate additional environmental impacts. Life cycle assessment, multi-media transport model analysis, cost-benefit analysis and the analytical hierarchy process were conducted to evaluate the impacts of current and potential BA management scenarios regarding environmental, economic, social and regulatory aspects. The five analysed scenarios are as follows: (0) BA buried with construction and demolition waste (current system); (1) pre-treated BA used to replace 25% of the natural aggregate in asphalt concrete; (2) pre-treated BA used to replace 25% of the natural aggregate in cement concrete; (3) pre-treated BA used to replace 25% of cement in cement concrete; and (4) pre-treated BA sent to China, blended with municipal solid waste for landfill. The results reveal the following ranking of the scenarios: 3 > 2 > 0 > 1 > 4. Scenario 3 shows the best conditions for BA recycling, because the quantity of cement concrete output is the highest and this brings the greatest economic benefits. Our use of integrated analysis provides multi-aspect investigations for BA management systems, particularly in accounting for site-specific characteristics. This approach is suitable for application in other non-western regions. © The Author(s) 2016.

  3. Current status of waste management in Botswana: A mini-review.

    PubMed

    Mmereki, Daniel

    2018-05-01

    Effective waste management practices are not all about legislative solutions, but a combination of the environmental, social, technical, technically skilled human resources, financial and technological resources, resource recycling, environmental pollution awareness programmes and public participation. As a result of insufficient resources, municipal solid waste (MSW) in transition and developing countries like Botswana remains a challenge, and it is often not yet given highest priority. In Botswana, the environment, public health and other socio-economic aspects are threatened by waste management practices due to inadequate implementation and enforcement mechanisms of waste management policy. This mini-review paper describes the panorama of waste management practices in Botswana and provides information to competent authorities responsible for waste management and to researchers to develop and implement an effective waste management system. Waste management practices in Botswana are affected by: lack of effective implementation of national waste policy, fragmented tasks and overlapping mandates among relevant institutions; lack of clear guidelines on the responsibilities of the generators and public authorities and on the associated economic incentives; and lack of consistent and comprehensive solid waste management policies; lack of intent by decision-makers to prepare national waste management plans and systems, and design and implement an integrated sustainable municipal solid waste management system. Due to these challenges, there are concerns over the growing trend of the illegal dumping of waste, creating mini dumping sites all over the country, and such actions jeopardize the efforts of lobbying investors and tourism business. Recommendations for concerted efforts are made to support decision makers to re-organize a sustainable waste management system, and this paper provides a reference to other emerging economies in the region and the world.

  4. Long term analysis of the biomass content in the feed of a waste-to-energy plant with oxygen-enriched combustion air.

    PubMed

    Fellner, Johann; Cencic, Oliver; Zellinger, Günter; Rechberger, Helmut

    2011-10-01

    Thermal utilization of municipal solid waste and commercial wastes has become of increasing importance in European waste management. As waste materials are generally composed of fossil and biogenic materials, a part of the energy generated can be considered as renewable and is thus subsidized in some European countries. Analogously, CO(2) emissions of waste incinerators are only partly accounted for in greenhouse gas inventories. A novel approach for determining these fractions is the so-called balance method. In the present study, the implementation of the balance method on a waste-to-energy plant using oxygen-enriched combustion air was investigated. The findings of the 4-year application indicate on the one hand the general applicability and robustness of the method, and on the other hand the importance of reliable monitoring data. In particular, measured volume flows of the flue gas and the oxygen-enriched combustion air as well as corresponding O(2) and CO(2) contents should regularly be validated. The fraction of renewable (biogenic) energy generated throughout the investigated period amounted to between 27 and 66% for weekly averages, thereby denoting the variation in waste composition over time. The average emission factor of the plant was approximately 45 g CO(2) MJ(-1) energy input or 450 g CO(2) kg(-1) waste incinerated. The maximum error of the final result was about 16% (relative error), which was well above the error (<8%) of the balance method for plants with conventional oxygen supply.

  5. 76 FR 55846 - Hazardous Waste Management System: Identification and Listing of Hazardous Waste: Carbon Dioxide...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-09

    ... 2050-AG60 Hazardous Waste Management System: Identification and Listing of Hazardous Waste: Carbon... hazardous waste management under the Resource Conservation and Recovery Act (RCRA) to conditionally exclude... and recordkeeping requirements. 40 CFR Part 261 Environmental protection, Hazardous waste, Solid waste...

  6. Hazardous and toxic waste management in Botswana: practices and challenges.

    PubMed

    Mmereki, Daniel; Li, Baizhan; Meng, Liu

    2014-12-01

    Hazardous and toxic waste is a complex waste category because of its inherent chemical and physical characteristics. It demands for environmentally sound technologies and know-how as well as clean technologies that simultaneously manage and dispose it in an environmentally friendly way. Nevertheless, Botswana lacks a system covering all the critical steps from importation to final disposal or processing of hazardous and toxic waste owing to limited follow-up of the sources and types of hazardous and toxic waste, lack of modern and specialised treatment/disposal facilities, technical know-how, technically skilled manpower, funds and capabilities of local institutions to take lead in waste management. Therefore, because of a lack of an integrated system, there are challenges such as lack of cooperation among all the stakeholders about the safe management of hazardous and toxic waste. Furthermore, Botswana does not have a systematic regulatory framework regarding monitoring and hazardous and toxic waste management. In addition to the absence of a systematic regulatory framework, inadequate public awareness and dissemination of information about hazardous and toxic waste management, slower progress to phase-out persistent and bio-accumulative waste, and lack of reliable and accurate information on hazardous and toxic waste generation, sources and composition have caused critical challenges to effective hazardous and toxic waste management. It is, therefore, important to examine the status of hazardous and toxic waste as a waste stream in Botswana. By default; this mini-review article presents an overview of the current status of hazardous and toxic waste management and introduces the main challenges in hazardous and toxic waste management. Moreover, the article proposes the best applicable strategies to achieve effective hazardous and toxic waste management in the future. © The Author(s) 2014.

  7. Life Cycle Assessment of landfill biogas management: sensitivity to diffuse and combustion air emissions.

    PubMed

    Beylot, Antoine; Villeneuve, Jacques; Bellenfant, Gaël

    2013-02-01

    GOAL AND SCOPE: The life cycle inventory of landfill emissions is a key point in Life Cycle Assessment (LCA) of waste management options and is highly subject to discussion. Result sensitivity to data inventory is accounted for through the implementation of scenarios that help examine how waste landfilling should be modeled in LCA. Four landfill biogas management options are environmentally evaluated in a Life Cycle Assessment perspective: (1) no biogas management (open dump), conventional landfill with (2) flaring, (3) combined heat and power (CHP) production in an internal combustion engine and (4) biogas upgrading for use as a fuel in buses. Average, maximum and minimum literature values are considered both for combustion emission factors in flares and engines and for trace pollutant concentrations in biogas. Biogas upgrading for use as a fuel in buses appears as the most relevant option with respect to most non-toxic impact categories and ecotoxicity, when considering average values for trace gas concentrations and combustion emission factors. Biogas combustion in an engine for CHP production shows the best performances in terms of climate change, but generates significantly higher photochemical oxidant formation and marine eutrophication impact potentials than flaring or biogas upgrading for use as a fuel in buses. However the calculated environmental impact potentials of landfill biogas management options depend largely on the trace gas concentrations implemented in the model. The use of average or extreme values reported in the literature significantly modifies the impact potential of a given scenario (up to two orders of magnitude for open dumps with respect to human toxicity). This should be taken into account when comparing landfilling with other waste management options. Also, the actual performances of a landfill top cover (in terms of oxidation rates) and combustion technology (in terms of emission factors) appear as key parameters affecting the ranking of biogas management options. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Expanding worldwide urban solid waste recycling: The Brazilian social technology in waste pickers inclusion.

    PubMed

    Rutkowski, Jacqueline E; Rutkowski, Emília W

    2015-12-01

    'If an integrated urban waste management system includes the informal recycling sector (IRS), there is a good chance that more solid waste is recycled' is common sense. However, informal integration brings additional social, environmental, and economic benefits, such as reduction of operational costs and environmental impacts of landfilling. Brazil is a global best practice example in terms of waste picker inclusion, and has received international recognition for its recycling levels. In addition to analysing the results of inclusive recycling approaches, this article evaluates a selection of the best Brazilian inclusive recycling practices and summaries and presents the resulting knowledge. The objective is to identify processes that enable the replication of the inclusion of the informal recycling sector model as part of municipal solid waste management. Qualitative and quantitative data have been collected in 25 Brazilian cities that have contracted waste pickers co-operatives for door-to-door selective collection of recyclables. Field data was collected in action research projects that worked with waste pickers co-operatives between 2006 and 2013. The Brazilian informal recycling sector integration model improves municipal solid waste recycling indicators: it shows an increase in the net tonness recycled, from 140 to 208 t month(-1), at a much lower cost per tonne than conventional selective collection systems. Inclusive systems show costs of US$35 per tonne of recyclables collected, well below the national average of US$195.26. This inclusive model improves the quality of collected material and the efficiency of municipal selective collection. It also diminishes the negative impacts of informal recycling, by reducing child labour, and by improving the conditions of work, occupational health and safety, and uncontrolled pollution. Although treating the Brazilian experience as a blueprint for transfer of experience in every case is unrealistic, the results suggest that this approach to informal sector integration can be considered among the global best practices for informal sector integration. The article closes with recommendations for deploying technology in other urban areas throughout the world. © The Author(s) 2015.

  9. Waste management outlook for mountain regions: Sources and solutions.

    PubMed

    Semernya, Larisa; Ramola, Aditi; Alfthan, Björn; Giacovelli, Claudia

    2017-09-01

    Following the release of the global waste management outlook in 2015, the United Nations Environment Programme (UN Environment), through its International Environmental Technology Centre, is elaborating a series of region-specific and thematic waste management outlooks that provide policy recommendations and solutions based on current practices in developing and developed countries. The Waste Management Outlook for Mountain Regions is the first report in this series. Mountain regions present unique challenges to waste management; while remoteness is often associated with costly and difficult transport of waste, the potential impact of waste pollutants is higher owing to the steep terrain and rivers transporting waste downstream. The Outlook shows that waste management in mountain regions is a cross-sectoral issue of global concern that deserves immediate attention. Noting that there is no 'one solution fits all', there is a need for a more landscape-type specific and regional research on waste management, the enhancement of policy and regulatory frameworks, and increased stakeholder engagement and awareness to achieve sustainable waste management in mountain areas. This short communication provides an overview of the key findings of the Outlook and highlights aspects that need further research. These are grouped per source of waste: Mountain communities, tourism, and mining. Issues such as waste crime, plastic pollution, and the linkages between exposure to natural disasters and waste are also presented.

  10. 40 CFR 62.14585 - When must I submit my waste management plan?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 8 2010-07-01 2010-07-01 false When must I submit my waste management... Commenced Construction On or Before November 30, 1999 Waste Management Plan § 62.14585 When must I submit my waste management plan? You must submit a waste management plan no later than April 5, 2004. ...

  11. 40 CFR 60.2055 - What is a waste management plan?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false What is a waste management plan? 60... Which Modification or Reconstruction Is Commenced on or After June 1, 2001 Waste Management Plan § 60.2055 What is a waste management plan? A waste management plan is a written plan that identifies both...

  12. 40 CFR 60.3011 - When must I submit my waste management plan?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false When must I submit my waste management... Model Rule-Waste Management Plan § 60.3011 When must I submit my waste management plan? You must submit a waste management plan no later than 60 days following the initial performance test as specified in...

  13. 40 CFR 62.14585 - When must I submit my waste management plan?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 9 2014-07-01 2014-07-01 false When must I submit my waste management... Commenced Construction On or Before November 30, 1999 Waste Management Plan § 62.14585 When must I submit my waste management plan? You must submit a waste management plan no later than April 5, 2004. ...

  14. 40 CFR 62.14580 - What is a waste management plan?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 9 2014-07-01 2014-07-01 false What is a waste management plan? 62... Construction On or Before November 30, 1999 Waste Management Plan § 62.14580 What is a waste management plan? A waste management plan is a written plan that identifies both the feasibility and the methods used to...

  15. 40 CFR 60.3011 - When must I submit my waste management plan?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false When must I submit my waste management... Model Rule-Waste Management Plan § 60.3011 When must I submit my waste management plan? You must submit a waste management plan no later than 60 days following the initial performance test as specified in...

  16. 40 CFR 60.2899 - What is a waste management plan?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false What is a waste management plan? 60... Modification or Reconstruction is Commenced on or After June 16, 2006 Waste Management Plan § 60.2899 What is a waste management plan? A waste management plan is a written plan that identifies both the feasibility...

  17. 40 CFR 60.2900 - When must I submit my waste management plan?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false When must I submit my waste management... Modification or Reconstruction is Commenced on or After June 16, 2006 Waste Management Plan § 60.2900 When must I submit my waste management plan? You must submit a waste management plan prior to commencing...

  18. 40 CFR 62.14585 - When must I submit my waste management plan?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 9 2013-07-01 2013-07-01 false When must I submit my waste management... Commenced Construction On or Before November 30, 1999 Waste Management Plan § 62.14585 When must I submit my waste management plan? You must submit a waste management plan no later than April 5, 2004. ...

  19. 40 CFR 60.3011 - When must I submit my waste management plan?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false When must I submit my waste management... Model Rule-Waste Management Plan § 60.3011 When must I submit my waste management plan? You must submit a waste management plan no later than 60 days following the initial performance test as specified in...

  20. 40 CFR 60.2055 - What is a waste management plan?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false What is a waste management plan? 60... Which Modification or Reconstruction Is Commenced on or After June 1, 2001 Waste Management Plan § 60.2055 What is a waste management plan? A waste management plan is a written plan that identifies both...

  1. 40 CFR 60.2900 - When must I submit my waste management plan?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false When must I submit my waste management... Modification or Reconstruction is Commenced on or After June 16, 2006 Waste Management Plan § 60.2900 When must I submit my waste management plan? You must submit a waste management plan prior to commencing...

  2. 40 CFR 60.2899 - What is a waste management plan?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false What is a waste management plan? 60... Modification or Reconstruction is Commenced on or After June 16, 2006 Waste Management Plan § 60.2899 What is a waste management plan? A waste management plan is a written plan that identifies both the feasibility...

  3. 40 CFR 62.14585 - When must I submit my waste management plan?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 9 2012-07-01 2012-07-01 false When must I submit my waste management... Commenced Construction On or Before November 30, 1999 Waste Management Plan § 62.14585 When must I submit my waste management plan? You must submit a waste management plan no later than April 5, 2004. ...

  4. 40 CFR 62.14580 - What is a waste management plan?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 9 2012-07-01 2012-07-01 false What is a waste management plan? 62... Construction On or Before November 30, 1999 Waste Management Plan § 62.14580 What is a waste management plan? A waste management plan is a written plan that identifies both the feasibility and the methods used to...

  5. 40 CFR 60.3011 - When must I submit my waste management plan?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false When must I submit my waste management... Model Rule-Waste Management Plan § 60.3011 When must I submit my waste management plan? You must submit a waste management plan no later than 60 days following the initial performance test as specified in...

  6. 40 CFR 62.14580 - What is a waste management plan?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 9 2013-07-01 2013-07-01 false What is a waste management plan? 62... Construction On or Before November 30, 1999 Waste Management Plan § 62.14580 What is a waste management plan? A waste management plan is a written plan that identifies both the feasibility and the methods used to...

  7. National information network and database system of hazardous waste management in China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma Hongchang

    1996-12-31

    Industries in China generate large volumes of hazardous waste, which makes it essential for the nation to pay more attention to hazardous waste management. National laws and regulations, waste surveys, and manifest tracking and permission systems have been initiated. Some centralized hazardous waste disposal facilities are under construction. China`s National Environmental Protection Agency (NEPA) has also obtained valuable information on hazardous waste management from developed countries. To effectively share this information with local environmental protection bureaus, NEPA developed a national information network and database system for hazardous waste management. This information network will have such functions as information collection, inquiry,more » and connection. The long-term objective is to establish and develop a national and local hazardous waste management information network. This network will significantly help decision makers and researchers because it will be easy to obtain information (e.g., experiences of developed countries in hazardous waste management) to enhance hazardous waste management in China. The information network consists of five parts: technology consulting, import-export management, regulation inquiry, waste survey, and literature inquiry.« less

  8. Status of waste tyres and management practice in Botswana.

    PubMed

    Mmereki, Daniel; Machola, Bontle; Mokokwe, Kentlafetse

    2017-02-22

    Waste tyres (WTs) are becoming a significant environmental, economical and technological challenge due to their high contents of combustible composition and potential for valuable materials and energy resources. Fewer studies in developing and even developed countries have been carried out to assess the challenges regarding waste tyres management, and suggested the best alternative solutions for managing this waste stream. While developed countries made progress in waste tyres management needs by implementing more efficient innovative recovery and recycling methods, and restrictive regulations regarding the management of used tyres, in many developing countries the management of waste tyres has not received adequate interest, and the processing, treatment and disposal of waste tyre is still nascent. In recent years, worldwide, several methods for managing used tyres, including other principal alternatives for managing end-of-life tyres defined in the 4Rs, reduction, re-use, recovery and recycling have been adopted and applied to minimize serious threats to both the natural environment environment and human. The paper attempted to establish stakeholders' action that has the responsibility in waste tyre management in Botswana. This study also analyzed important aspects on waste tyres management in Botswana. A synthesis of approaches was employed in the present investigation to determine the factors influencing effective performance of waste tyres management practice in Botswana. Data for the present study was obtained using relevant published literature, scientific journals, other third sector sources, academic sources, and research derived from governments and other agencies and field observations. Group discussions with the participants and semi-structured interviews with professionals were carried out. The outcomes of this investigation are a wide-range outline concerning the participants that are important in waste tyres management, and a set of aspects affecting the management of waste tyres. The information provided by this study is very critical for reviewing and updating the methods and tools to update waste tyres data and trends to improve waste tyres management efficiency, suggesting innovative methods of recovering and recycling this waste stream in Botswana.

  9. Hazardous Waste: Learn the Basics of Hazardous Waste

    MedlinePlus

    ... to set up a framework for the proper management of hazardous waste. Need More Information on Hazardous Waste? The RCRA Orientation Manual provides ... facility management standards, specific provisions governing hazardous waste management units ... information on the final steps in EPA’s hazardous waste ...

  10. Biodegradable and compostable alternatives to conventional plastics

    PubMed Central

    Song, J. H.; Murphy, R. J.; Narayan, R.; Davies, G. B. H.

    2009-01-01

    Packaging waste forms a significant part of municipal solid waste and has caused increasing environmental concerns, resulting in a strengthening of various regulations aimed at reducing the amounts generated. Among other materials, a wide range of oil-based polymers is currently used in packaging applications. These are virtually all non-biodegradable, and some are difficult to recycle or reuse due to being complex composites having varying levels of contamination. Recently, significant progress has been made in the development of biodegradable plastics, largely from renewable natural resources, to produce biodegradable materials with similar functionality to that of oil-based polymers. The expansion in these bio-based materials has several potential benefits for greenhouse gas balances and other environmental impacts over whole life cycles and in the use of renewable, rather than finite resources. It is intended that use of biodegradable materials will contribute to sustainability and reduction in the environmental impact associated with disposal of oil-based polymers. The diversity of biodegradable materials and their varying properties makes it difficult to make simple, generic assessments such as biodegradable products are all ‘good’ or petrochemical-based products are all ‘bad’. This paper discusses the potential impacts of biodegradable packaging materials and their waste management, particularly via composting. It presents the key issues that inform judgements of the benefits these materials have in relation to conventional, petrochemical-based counterparts. Specific examples are given from new research on biodegradability in simulated ‘home’ composting systems. It is the view of the authors that biodegradable packaging materials are most suitable for single-use disposable applications where the post-consumer waste can be locally composted. PMID:19528060

  11. 40 CFR 60.35e - Waste management guidelines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Waste management guidelines. 60.35e... Hospital/Medical/Infectious Waste Incinerators § 60.35e Waste management guidelines. For approval, a State plan shall include the requirements for a waste management plan at least as protective as those...

  12. 40 CFR 60.35e - Waste management guidelines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Waste management guidelines. 60.35e... Hospital/Medical/Infectious Waste Incinerators § 60.35e Waste management guidelines. For approval, a State plan shall include the requirements for a waste management plan at least as protective as those...

  13. 40 CFR 60.35e - Waste management guidelines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Waste management guidelines. 60.35e... Hospital/Medical/Infectious Waste Incinerators § 60.35e Waste management guidelines. For approval, a State plan shall include the requirements for a waste management plan at least as protective as those...

  14. 40 CFR 60.35e - Waste management guidelines.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Waste management guidelines. 60.35e... Hospital/Medical/Infectious Waste Incinerators § 60.35e Waste management guidelines. For approval, a State plan shall include the requirements for a waste management plan at least as protective as those...

  15. 40 CFR 62.14590 - What should I include in my waste management plan?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... in my waste management plan? A waste management plan must include consideration of the reduction or separation of waste-stream elements such as paper, cardboard, plastics, glass, batteries, or metals; or the... waste management measures already in place, the costs of additional measures, the emissions reductions...

  16. E-waste management in India: A mini-review.

    PubMed

    Awasthi, Abhishek Kumar; Wang, Mengmeng; Wang, Zhishi; Awasthi, Mrigendra Kumar; Li, Jinhui

    2018-05-01

    Environmental deterioration and health risk due to improper e-waste management has become a serious issue in India. The major portion of e-waste reaches an unorganized e-waste recycling sector and is then treated by using crude methods. This review article presents a brief highlight on e-waste management status, legislation, and technology uses in India. The present e-waste management needs to be more focused on environmentally sound management, by more active support from all the participants involved in the e-waste flow chain in India.

  17. Clinical laboratory waste management in Shiraz, Iran.

    PubMed

    Askarian, Mehrdad; Motazedian, Nasrin; Palenik, Charles John

    2012-06-01

    Clinical laboratories are significant generators of infectious waste, including microbiological materials, contaminated sharps, and pathologic wastes such as blood specimens and blood products. Most waste produced in laboratories can be disposed of in the general solid waste stream. However, improper management of infectious waste, including mixing general wastes with infectious wastes and improper handling or storage, could lead to disease transmission. The aim of this study was to assess waste management processes used at clinical laboratories in Shiraz, Iran. One hundred and nine clinical laboratories participated In this cross sectional study, Data collection was by questionnaire and direct observation. Of the total amount of waste generated, 52% (by weight) was noninfectious domestic waste, 43% was non-sharps infectious waste and 5% consisted of sharps. There was no significant relationship between laboratory staff or manager education and the score for quality of waste collection and disposal at clinical laboratories. Improvements in infectious waste management processes should involve clearer, more uniformly accepted definitions of infectious waste and increased staff training.

  18. 40 CFR 62.14432 - When must my waste management plan be completed?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 8 2010-07-01 2010-07-01 false When must my waste management plan be... Before June 20, 1996 Waste Management Plan § 62.14432 When must my waste management plan be completed? As specified in §§ 62.14463 and 62.14464, you must submit your waste management plan with your initial report...

  19. 40 CFR 62.14432 - When must my waste management plan be completed?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 8 2011-07-01 2011-07-01 false When must my waste management plan be... Before June 20, 1996 Waste Management Plan § 62.14432 When must my waste management plan be completed? As specified in §§ 62.14463 and 62.14464, you must submit your waste management plan with your initial report...

  20. 40 CFR 62.14432 - When must my waste management plan be completed?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 9 2014-07-01 2014-07-01 false When must my waste management plan be... Before December 1, 2008 Waste Management Plan § 62.14432 When must my waste management plan be completed? As specified in §§ 62.14463 and 62.14464, you must submit your waste management plan with your...

  1. 40 CFR 60.2625 - When must I submit my waste management plan?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false When must I submit my waste management... or Before November 30, 1999 Model Rule-Waste Management Plan § 60.2625 When must I submit my waste management plan? You must submit a waste management plan no later than the date specified in table 1 of this...

  2. 40 CFR 62.14432 - When must my waste management plan be completed?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 9 2012-07-01 2012-07-01 false When must my waste management plan be... Before June 20, 1996 Waste Management Plan § 62.14432 When must my waste management plan be completed? As specified in §§ 62.14463 and 62.14464, you must submit your waste management plan with your initial report...

  3. Environmental and health impacts of using food waste as animal feed: a comparative analysis of food waste management options.

    PubMed

    Salemdeeb, Ramy; Zu Ermgassen, Erasmus K H J; Kim, Mi Hyung; Balmford, Andrew; Al-Tabbaa, Abir

    2017-01-01

    The disposal of food waste is a large environmental problem. In the United Kingdom (UK), approximately 15 million tonnes of food are wasted each year, mostly disposed of in landfill, via composting, or anaerobic digestion (AD). European Union (EU) guidelines state that food waste should preferentially be used as animal feed though for most food waste this practice is currently illegal, because of disease control concerns. Interest in the potential diversion of food waste for animal feed is however growing, with a number of East Asian states offering working examples of safe food waste recycling - based on tight regulation and rendering food waste safe through heat treatment. This study investigates the potential benefits of diverting food waste for pig feed in the UK. A hybrid, consequential life cycle assessment (LCA) was conducted to compare the environmental and health impacts of four technologies for food waste processing: two technologies of South Korean style-animal feed production (as a wet pig feed and a dry pig feed) were compared with two widespread UK disposal technologies: AD and composting. Results of 14 mid-point impact categories show that the processing of food waste as a wet pig feed and a dry pig feed have the best and second-best scores, respectively, for 13/14 and 12/14 environmental and health impacts. The low impact of food waste feed stems in large part from its substitution of conventional feed, the production of which has substantial environmental and health impacts. While the re-legalisation of the use of food waste as pig feed could offer environmental and public health benefits, this will require support from policy makers, the public, and the pig industry, as well as investment in separated food waste collection which currently occurs in only a minority of regions.

  4. Water Balance Covers For Waste Containment: Principles and Practice

    EPA Science Inventory

    Water Balance Covers for Waste Containment: Principles and Practices introduces water balance covers and compares them with conventional approaches to waste containment. The authors provided detailed analysis of the fundamentals of soil physics and design issues, introduce appl...

  5. Study of methanogenesis during bioutilization of plant residuals

    NASA Astrophysics Data System (ADS)

    Ilyin, V. K.; Korniushenkova, I. N.; Starkova, L. V.; Lauriniavichius, K. S.

    2005-02-01

    The waste management strategy for the future should meet the benefits of human safety, respect principles of planet ecology, and compatibility with other habitability systems. For these purposes waste management technologies relevant to application of the biodegradation properties of bacteria are of great value. Biological treatment method is based on the biodegradation of organic substances by various microorganisms. The objectives of our study were: to evaluate the effectiveness of microbial biodegradation of vegetable non-edible residual, using artificial inoculum, and to study the peculiarities of biogas, and possibilities of optimizing or reducing the share of methane. The diminution rate of organic gained 76% from initial mass within 9 days of fermentation. The biogas production achieved 46 l/kg of substrate. The microbial studies of biodegradation process revealed the following peculiarities: (i) gradual quantitative increase of Lactobacillus sp. (from 103 to 105 colony-forming units (CFU) per ml); (ii) activation of Clostridia sp. (from 102 to 10 4 CFU/ml); and (iii) elimination of aerobic conventional pathogens (Enterobacteriaceae, Protea sp., Staphylococci). Chromatography analysis revealed the constant presence of carbon dioxide (up to 90.9%). The methane content measures revealed traces 0.1-0.4%. However, when we optimized the methane production in "boiling layer" using methanogenic granules, the amount of methane in biogas reached 80-90%. Based on the results obtained the artificial inoculum was created which was capable of initiating biodegradation of vegetable wastes. This inoculum consisted of active sludge adapted to wastes mixed with excretea of insects which consume plant wastes. Using this inoculum the biodegradation process takes less time than that using active sludge. Regulation of methane concentration from traces to 90% may be achieved by adding methane reactor to the plant digester.

  6. Tribal Waste Management Program

    EPA Pesticide Factsheets

    The EPA’s Tribal Waste Management Program encourages environmentally sound waste management practices that promote resource conservation through recycling, recovery, reduction, clean up, and elimination of waste.

  7. Management of construction and demolition wastes as secondary building resources

    NASA Astrophysics Data System (ADS)

    Manukhina, Lyubov; Ivanova, Irina

    2017-10-01

    The article analyzes the methods of management of construction and demolition wastes. The authors developed suggestions for improving the management system of the turnover of construction and demolition wastes. Today the issue of improving the management of construction and demolition wastes is of the same importance as problems of protecting the life-support field from pollution and of preserving biological and land resources. The authors educed the prospective directions and methods for improving the management of the turnover processes for construction and demolition wastes, including the evaluation of potential of wastes as secondary raw materials and the formation of a centralized waste management system.

  8. 40 CFR 273.13 - Waste management.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... immediately closed after removal): (i) Sorting batteries by type; (ii) Mixing battery types in one container... Waste management. (a) Universal waste batteries. A small quantity handler of universal waste must manage universal waste batteries in a way that prevents releases of any universal waste or component of a universal...

  9. 40 CFR 273.13 - Waste management.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... immediately closed after removal): (i) Sorting batteries by type; (ii) Mixing battery types in one container... Waste management. (a) Universal waste batteries. A small quantity handler of universal waste must manage universal waste batteries in a way that prevents releases of any universal waste or component of a universal...

  10. 40 CFR 273.33 - Waste management.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... immediately closed after removal): (i) Sorting batteries by type; (ii) Mixing battery types in one container... Waste management. (a) Universal waste batteries. A large quantity handler of universal waste must manage universal waste batteries in a way that prevents releases of any universal waste or component of a universal...

  11. 40 CFR 273.33 - Waste management.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... immediately closed after removal): (i) Sorting batteries by type; (ii) Mixing battery types in one container... Waste management. (a) Universal waste batteries. A large quantity handler of universal waste must manage universal waste batteries in a way that prevents releases of any universal waste or component of a universal...

  12. 40 CFR 273.13 - Waste management.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... immediately closed after removal): (i) Sorting batteries by type; (ii) Mixing battery types in one container... Waste management. (a) Universal waste batteries. A small quantity handler of universal waste must manage universal waste batteries in a way that prevents releases of any universal waste or component of a universal...

  13. 40 CFR 273.13 - Waste management.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... immediately closed after removal): (i) Sorting batteries by type; (ii) Mixing battery types in one container... Waste management. (a) Universal waste batteries. A small quantity handler of universal waste must manage universal waste batteries in a way that prevents releases of any universal waste or component of a universal...

  14. 40 CFR 273.33 - Waste management.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... immediately closed after removal): (i) Sorting batteries by type; (ii) Mixing battery types in one container... Waste management. (a) Universal waste batteries. A large quantity handler of universal waste must manage universal waste batteries in a way that prevents releases of any universal waste or component of a universal...

  15. 40 CFR 273.33 - Waste management.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... immediately closed after removal): (i) Sorting batteries by type; (ii) Mixing battery types in one container... Waste management. (a) Universal waste batteries. A large quantity handler of universal waste must manage universal waste batteries in a way that prevents releases of any universal waste or component of a universal...

  16. Optimised management of orphan wastes in the UK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doudou, Slimane; McTeer, Jennifer; Wickham, Stephen

    2013-07-01

    Orphan wastes have properties preventing them from being managed according to existing or currently planned management routes, or lack characterisation so that their management is uncertain. The identification of new management opportunities for orphan wastes could realise significant benefits by reducing the number of processing facilities required, reducing waste volumes, reducing hazard or leading to the development of centres of excellence for the processing of certain types of orphan wastes. Information on the characteristics of orphan waste existing at nuclear licensed sites across the UK has been collated and a database developed to act as a repository for the informationmore » gathered. The database provides a capability to analyse the data and to explore possible treatment technologies for each orphan waste type. Thirty five distinct orphan waste types have been defined and possible treatment options considered. Treatment technologies (including chemical, high temperature, immobilisation and physical technologies) that could be applied to one or more of the generic orphan waste streams have been identified. Wiring diagrams have been used to highlight the waste treatment / lifecycle management options that are available for each of the generic orphan groups as well as identifying areas for further research and development. This work has identified the potential for optimising the management of orphan wastes in a number of areas, and many potential opportunities were identified. Such opportunities could be investigated by waste managers at waste producing nuclear sites, to facilitate the development of new management routes for orphan wastes. (authors)« less

  17. A sustainable and resilient approach through biochar addition in wood polymer composites.

    PubMed

    Das, Oisik; Sarmah, Ajit K; Bhattacharyya, Debes

    2015-04-15

    Biocomposites have been used for sustainability for a few years now and considerable advancements have been made to perfect the physical and mechanical properties. However, there still remain some considerable disadvantages (such as inferior mechanical strength, thickness swell, and rotting) which restrict their proper utilization in wider markets. Attempts have been made to remedy these drawbacks but still further investigation is required to address all the issues and alleviate as many shortcomings as possible. Additionally, concerns related to landfill gas emission prompted the necessity for effective utilization of organic wastes. Lignocellulosic wastes can be valorized by thermo-chemical conversion to form a carbonaceous and renewable material called biochar. Keeping these two problems in mind, a relatively novel idea is recommended for the manufacture of biocomposites where biochar made from pyrolysis of waste could be added with wood and plastic. It is expected to mitigate the general disadvantages of conventional wood plastic composites (WPCs) and at the same time manage landfill wastes giving rise to a potential new breed of improved next generation biocomposites. Furthermore, a 'resilient' perspective is conferred where the long term viability of the state-of-the-art product could be ensured. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Study of Methanogenesis while Bioutilisation of Plant Residuals

    NASA Astrophysics Data System (ADS)

    Ilyin, V. K.; Korniushenkova, I. N.; Starkova, L. V.; Lauriniavichius, K. S.

    respect principals of planet ecology, and compatibility with other habitability systems. For these purpose the waste management technologies, relevant to application of the biodegradation properties of bacteria are of great value. Biological treatment method is based upon the biodegradation of organic substances by various microorganisms. vegetable non-edible residual, using artificial inoculum; to study peculiarities of biogas, possibilities to optimize or to reduce the share of methane. fermentation. The biogas production achieved 46 l per 1 kg of substrate. The microbial studies of biodegradation process revealed following peculiarities: (i)gradual quantitative increasing of Lactobacillus sp. (from 103 to 105 colony forming units (CFU) per ml); (ii)activation of Clostridia sp. (from 102 to 104 CFU/ml); (iii) elimination of aerobic conventional pathogens (Enterobacteriaceae sp., Protea sp., staphylococci). methane content measures revealed traces 0.1-0.4%. granules, the amount of methane in biogas reached 80-90%. biodegradation of vegetable wastes. This inoculum consists of active sludge adapted to wastes mixed with excretes of insects which consume plant wastes. Using this inoculum the biodegradation process takes less time, then that using active sludge. Regulation of methane concentration from traces to 90% may be achieved by adding of methane reactor to the plant digester.

  19. Hazardous healthcare waste management in the Kingdom of Bahrain.

    PubMed

    Mohamed, L F; Ebrahim, S A; Al-Thukair, A A

    2009-08-01

    Hazardous healthcare waste has become an environmental concern for many developing countries including the Kingdom of Bahrain. There have been several significant obstacles facing the Kingdom in dealing with this issue including; limited documentation regarding generation, handling, management, and disposal of waste. This in turn hinders efforts to plan better healthcare waste management. In this paper, hazardous waste management status in the Kingdom has been investigated through an extensive survey carried out on selected public and private healthcare premises. Hazardous waste management practices including: waste generation, segregation, storage, collection, transportation, treatment, and disposal were determined. The results of this study along with key findings are discussed and summarized. In addition; several effective recommendations and improvements of hazardous waste management are suggested.

  20. Hazardous healthcare waste management in the Kingdom of Bahrain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohamed, L.F.; Ebrahim, S.A.; Al-Thukair, A.A.

    2009-08-15

    Hazardous healthcare waste has become an environmental concern for many developing countries including the Kingdom of Bahrain. There have been several significant obstacles facing the Kingdom in dealing with this issue including; limited documentation regarding generation, handling, management, and disposal of waste. This in turn hinders efforts to plan better healthcare waste management. In this paper, hazardous waste management status in the Kingdom has been investigated through an extensive survey carried out on selected public and private healthcare premises. Hazardous waste management practices including: waste generation, segregation, storage, collection, transportation, treatment, and disposal were determined. The results of this studymore » along with key findings are discussed and summarized. In addition; several effective recommendations and improvements of hazardous waste management are suggested.« less

  1. Waste Generation Overview Refresher, Course 21464

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simpson, Lewis Edward

    This course, Waste Generation Overview Refresher (COURSE 21464), provides an overview of federal and state waste management regulations, as well as Los Alamos National Laboratory (LANL) policies and procedures for waste management operations. The course covers the activities involved in the cradle-to- grave waste management process and focuses on waste characterization, waste compatibility determinations and classification, and the storage requirements for temporary waste accumulation areas at LANL.

  2. [Management of hazardous waste in a hospital].

    PubMed

    Neveu C, Alejandra; Matus C, Patricia

    2007-07-01

    An inadequate management of hospital waste, that have toxic, infectious and chemical wastes, is a risk factor for humans and environment. To identify, quantify and assess the risk associated to the management of hospital residues. A cross sectional assessment of the generation of hazardous waste from a hospital, between June and August 2005, was performed. The environmental risk associated to the management of non-radioactive hospital waste was assessed and the main problems related to solid waste were identified. The rate of generation of hazardous non-radioactive waste was 1.35 tons per months or 0.7 kg/bed/day. Twenty five percent of hazardous liquid waste were drained directly to the sewage system. The drug preparation unit of the pharmacy had the higher environmental risk associated to the generation of hazardous waste. The internal transport of hazardous waste had a high risk due to the lack of trip planning. The lack of training of personnel dealing with these waste was another risk factor. Considering that an adequate management of hospital waste should minimize risks for patients, the hospital that was evaluated lacks an integral management system for its waste.

  3. 40 CFR 60.2755 - When must I submit my waste management plan?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false When must I submit my waste management... waste management plan? You must submit the waste management plan no later than the date specified in... Compliance Times for Commercial and Industrial Solid Waste Incineration Units that Commenced Construction On...

  4. 40 CFR 62.14715 - When must I submit my waste management plan?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 8 2010-07-01 2010-07-01 false When must I submit my waste management... submit my waste management plan? You must submit the waste management plan no later than April 5, 2004. ... POLLUTANTS Federal Plan Requirements for Commercial and Industrial Solid Waste Incineration Units That...

  5. 40 CFR 62.14715 - When must I submit my waste management plan?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 9 2013-07-01 2013-07-01 false When must I submit my waste management... submit my waste management plan? You must submit the waste management plan no later than April 5, 2004. ... POLLUTANTS Federal Plan Requirements for Commercial and Industrial Solid Waste Incineration Units That...

  6. 40 CFR 60.2755 - When must I submit my waste management plan?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false When must I submit my waste management... waste management plan? You must submit the waste management plan no later than the date specified in... Compliance Times for Commercial and Industrial Solid Waste Incineration Units that Commenced Construction On...

  7. 40 CFR 62.14715 - When must I submit my waste management plan?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 9 2014-07-01 2014-07-01 false When must I submit my waste management... submit my waste management plan? You must submit the waste management plan no later than April 5, 2004. ... POLLUTANTS Federal Plan Requirements for Commercial and Industrial Solid Waste Incineration Units That...

  8. 40 CFR 62.14715 - When must I submit my waste management plan?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 9 2012-07-01 2012-07-01 false When must I submit my waste management... submit my waste management plan? You must submit the waste management plan no later than April 5, 2004. ... POLLUTANTS Federal Plan Requirements for Commercial and Industrial Solid Waste Incineration Units That...

  9. 40 CFR 62.14715 - When must I submit my waste management plan?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... POLLUTANTS Federal Plan Requirements for Commercial and Industrial Solid Waste Incineration Units That... 40 Protection of Environment 8 2011-07-01 2011-07-01 false When must I submit my waste management... submit my waste management plan? You must submit the waste management plan no later than April 5, 2004. ...

  10. 40 CFR 62.14580 - What is a waste management plan?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Federal Plan Requirements for Commercial and Industrial Solid Waste Incineration Units That Commenced Construction On or Before November 30, 1999 Waste Management Plan § 62.14580 What is a waste management plan? A... 40 Protection of Environment 8 2011-07-01 2011-07-01 false What is a waste management plan? 62...

  11. 40 CFR 62.14432 - When must my waste management plan be completed?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 9 2013-07-01 2013-07-01 false When must my waste management plan be... POLLUTANTS Federal Plan Requirements for Hospital/Medical/Infectious Waste Incinerators Constructed On Or Before December 1, 2008 Waste Management Plan § 62.14432 When must my waste management plan be completed...

  12. Waste Management Information System (WMIS) User Guide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R. E. Broz

    2008-12-22

    This document provides the user of the Waste Management Information System (WMIS) instructions on how to use the WMIS software. WMIS allows users to initiate, track, and close waste packages. The modular design supports integration and utilization of data throuh the various stages of waste management. The phases of the waste management work process include generation, designation, packaging, container management, procurement, storage, treatment, transportation, and disposal.

  13. Hospital waste management in developing countries: A mini review.

    PubMed

    Ali, Mustafa; Wang, Wenping; Chaudhry, Nawaz; Geng, Yong

    2017-06-01

    Health care activities can generate different kinds of hazardous wastes. Mismanagement of these wastes can result in environmental and occupational health risks. Developing countries are resource-constrained when it comes to safe management of hospital wastes. This study summarizes the main issues faced in hospital waste management in developing countries. A review of the existing literature suggests that regulations and legislations focusing on hospital waste management are recent accomplishments in many of these countries. Implementation of these rules varies from one hospital to another. Moreover, wide variations exist in waste generation rates within as well as across these countries. This is mainly attributable to a lack of an agreement on the definitions and the methodology among the researchers to measure such wastes. Furthermore, hospitals in these countries suffer from poor waste segregation, collection, storage, transportation and disposal practices, which can lead to occupational and environmental risks. Knowledge and awareness regarding proper waste management remain low in the absence of training for hospital staff. Moreover, hospital sanitary workers, and scavengers, operate without the provision of safety equipment or immunization. Unsegregated waste is illegally recycled, leading to further safety risks. Overall, hospital waste management in developing countries faces several challenges. Sustainable waste management practices can go a long way in reducing the harmful effects of hospital wastes.

  14. Current practices of construction waste reduction through 3R practice among contractors in malaysia: Case study in penang

    NASA Astrophysics Data System (ADS)

    Ng, L. S.; Tan, L. W.; Seow, T. W.

    2017-11-01

    The effectiveness of the implementation of construction waste reduction through 3R reflects the sustainability in construction waste management. Weak implementation of construction waste reduction through 3R among contractors will lead to unsustainable construction waste management. Increase in construction waste on landfills is critical especially on islands where land is very limited for solid waste disposal. This aim of this paper is to investigate current practice of construction waste reduction through 3R practice among contractors in Penang, Malaysia. The findings reported herein is based on feedbacks from 143 construction contractors of grade CIDB G7, G6 and G5 in Penang and experts from Penang Local Authority, CIDB in Penang and its Headquarters, National Solid Waste Management Department, and Headquarters of Solid Waste and Public Cleansing Management Corporation. Interviews and questionnaire surveys have been found that 3R practice is not mandatory in construction waste management in Penang. Only 39.8% construction contractors practiced 3R in managing their waste. Therefore, 3R practices should be emphasized in construction industry. Reducing wastes through 3R practices in construction industry is a way forward towards sustainable construction waste management especially in expanding the lifetime of landfill.

  15. Solid waste management in Thailand: an overview and case study (Tha Khon Yang sub-district).

    PubMed

    Yukalang, Nachalida; Clarke, Beverley Dawn; Ross, Kirstin Elizabeth

    2017-09-26

    Due to rapid urbanization, solid waste management (SWM) has become a significant issue in several developing countries including Thailand. Policies implemented by the Central Thai Government to manage SWM issues have had only limited success. This article reviews current municipal waste management plans in Thailand and examines municipal waste management at the local level, with focus on the Tha Khon Yang sub-district surrounding Mahasarakham University in Mahasarakham Province. Within two decades this area has been converted from a rural to an urban landscape featuring accommodation for over 45,000 university students and a range of business facilities. This development and influx of people has outpaced the government's ability to manage municipal solid waste (MSW). There are significant opportunities to improve local infrastructure and operational capacity; but there are few mechanisms to provide and distribute information to improve community participation in waste management. Many community-based waste management projects, such as waste recycling banks, the 3Rs (reduce, reuse and recycle), and waste-to-biogas projects have been abandoned. Additionally, waste from Tha Kon Yang and its surrounding areas has been transferred to unsanitary landfills; there is also haphazard dumping and uncontrolled burning of waste, which exacerbate current pollution issues.

  16. Frequent Questions on International Agreements on Transboundary Shipments of Waste

    EPA Pesticide Factsheets

    Answers FAQs such as How does the OECD control the shipment of hazardous waste between Member countries? Where do I find the green and amber lists of waste? Why hasn't the United States ratified the Basel Convention?

  17. WHO collaboration in hazardous waste management in the Western Pacific Region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ogawa, Hisashi

    Since April 1989 when the World Health Organization`s (WHO`s) activities in hazardous waste management in the Western Pacific Region were presented at the Pacific Basin Conference in Singapore, WHO and its Member States have carried out a number of collaborative activities in hazardous waste management. These activities focused on three main areas: national capacity building in the management of toxic chemicals and hazardous wastes in rapidly industrializing countries, management of clinical or medical waste, and hazardous waste management in Pacific Island countries. This paper summarizes these collaborative activities, identifies the main problems and issues encountered, and discusses future prospects ofmore » WHO collaboration with its Member States in the area of hazardous waste management. 1 fig., 1 tab.« less

  18. Enumerating actinomycetes in compost bioaerosols at source—Use of soil compost agar to address plate 'masking'

    NASA Astrophysics Data System (ADS)

    Taha, M. P. M.; Drew, G. H.; Tamer Vestlund, A.; Aldred, D.; Longhurst, P. J.; Pollard, S. J. T.

    Actinomycetes are the dominant bacteria isolated from bioaerosols sampled at composting facilities. Here, a novel method for the isolation of actinomycetes is reported, overcoming masking of conventional agar plates, as well as reducing analysis time and costs. Repeatable and reliable actinomycetes growth was best achieved using a soil compost media at an incubation temperature of 44 °C and 7 days' incubation. The results are of particular value to waste management operators and their advisors undertaking regulatory risk assessments that support environmental approvals for compost facilities.

  19. Waste management/waste certification plan for the Oak Ridge National Laboratory Environmental Restoration Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, C. Jr.; Hunt-Davenport, L.D.; Cofer, G.H.

    1995-03-01

    This Waste Management/Waste Certification (C) Plan, written for the Environmental Restoration (ER) Program at Oak Ridge National Laboratory (ORNL), outlines the criteria and methodologies to be used in the management of waste generated during ORNL ER field activities. Other agreed upon methods may be used in the management of waste with consultation with ER and Waste Management Organization. The intent of this plan is to provide information for the minimization, handling, and disposal of waste generated by ER activities. This plan contains provisions for the safe and effective management of waste consistent with the U.S. Environmental Protection Agency`s (EPA`s) guidance.more » Components of this plan have been designed to protect the environment and the health and safety of workers and the public. It, therefore, stresses that investigation derived waste (IDW) and other waste be managed to ensure that (1) all efforts be made to minimize the amount of waste generated; (2) costs associated with sampling storage, analysis, transportation, and disposal are minimized; (3) the potential for public and worker exposure is not increased; and (4) additional contaminated areas are not created.« less

  20. A model to minimize joint total costs for industrial waste producers and waste management companies.

    PubMed

    Tietze-Stöckinger, Ingela; Fichtner, Wolf; Rentz, Otto

    2004-12-01

    The model LINKopt is a mixed-integer, linear programming model for mid- and long-term planning of waste management options on an inter-company level. There has been a large increase in the transportation of waste material in Germany, which has been attributed to the implementation of the European Directive 75/442/EEC on waste. Similar situations are expected to emerge in other European countries. The model LINKopt has been developed to determine a waste management system with minimal decision-relevant costs considering transportation, handling, storage and treatment of waste materials. The model can serve as a tool to evaluate various waste management strategies and to obtain the optimal combination of investment options. In addition to costs, ecological aspects are considered by determining the total mileage associated with the waste management system. The model has been applied to a German case study evaluating different investment options for a co-operation between Daimler-Chrysler AG at Rastatt, its suppliers, and the waste management company SITA P+R GmbH. The results show that the installation of waste management facilities at the premises of the waste producer would lead to significant reductions in costs and transportation.

  1. Integrated management of hazardous waste generated from community sources in Thailand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yodnane, P.; Spaeder, D.J.

    A system for the collection, transport, disposal and recycling of hazardous waste was developed as part of an overall master plan for the management of hazardous waste generated from community sources in Thailand. Results of a waste generation survey conducted as part of the study indicated that over 300 million kilograms per year of hazardous waste is generated from non-industrial, community sources such as automotive repair shops, gas stations, hospitals, farms, and households in Thailand. Hazardous waste from community sources consists primarily of used oils, lead-acid and dry cell batteries, cleaning chemicals, pesticides, medical wastes, solvents and fuels. Most ofmore » this waste was found to be mismanaged by codisposing with municipal waste in burning, unlined dumps, dumping directly to land or water courses, dumping into sewers, or recycling improperly, all of which pose serious threats to human health and the environment. The survey data on waste generation quantities and data from a reconnaissance survey of the conditions and operations of 86 existing waste disposal facilities was incorporated into a nationwide Geographic Information System (GIS) database. Based on this data, problems associated with hazardous waste were identified and needs for waste management systems were tabulated. A system was developed for ranking geographic regions according to hazardous waste management problems and needs, in order to prioritize implementation of waste management programs. The data were also used in developing solutions for hazardous waste management, which addressed methods for storing, collecting, transporting, disposing, and recycling the waste. It was recommended that centralized waste management facilities be utilized which included hazardous waste and medical waste incinerators, waste stabilization units, and secure landfills.« less

  2. A total quality management approach to healthcare waste management in Namazi Hospital, Iran.

    PubMed

    Askarian, Mehrdad; Heidarpoor, Peigham; Assadian, Ojan

    2010-11-01

    Healthcare waste comprises all wastes generated at healthcare facilities, medical research centers and laboratories. Although 75-90% of these wastes are classified as household waste posing no potential risk, 10-25% are deemed to be hazardous, representing a potential threat to healthcare workers, patients, the environment and even the general population, if not disposed of appropriately. If hazardous and non-hazardous waste is mixed and not segregated prior to disposal, costs will increase substantially. Medical waste management is a worldwide issue. In Iran, the majority of problems are associated with an exponential growth in the healthcare sector together with low- or non-compliance with guidelines and recommendations. The aim of this study was to reduce the amounts of infectious waste by clear definition and segregation of waste at the production site in Namazi Hospital in Shiraz, Iran. Namazi Hospital was selected as a study site with an aim to achieving a significant decrease in infectious waste and implementing a total quality management (TQM) method. Infectious and non-infectious waste was weighed at 29 admission wards over a 1-month period. Before the introduction of the new guidelines and the new waste management concept, weight of total waste was 6.67 kg per occupied bed per day (kg/occupied bed/day), of which 73% was infectious and 27% non-infectious waste. After intervention, total waste was reduced to 5.92 kg/occupied bed/day, of which infectious waste represented 61% and non-infectious waste 30%. The implementation of a new waste management concept achieved a 26% reduction in infectious waste. A structured waste management concept together with clear definitions and staff training will result in waste reduction, consequently leading to decreased expenditure in healthcare settings. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. 40 CFR 60.2755 - When must I submit my waste management plan?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false When must I submit my waste management... Compliance Times for Commercial and Industrial Solid Waste Incineration Units Model Rule-Recordkeeping and Reporting § 60.2755 When must I submit my waste management plan? You must submit the waste management plan...

  4. 76 FR 63252 - Hazardous and Solid Waste Management System: Identification and Listing of Special Wastes...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-12

    ...-2011-0392; FRL-9476-6] RIN 2050-AE81 Hazardous and Solid Waste Management System: Identification and... Protection Agency (Agency or EPA) in conjunction with the proposed rule: Hazardous and Solid Waste Management...-0392. (4) Mail: Send two copies of your comments to Hazardous and Solid Waste Management System...

  5. 40 CFR 60.3011 - When must I submit my waste management plan?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false When must I submit my waste management... Times for Other Solid Waste Incineration Units That Commenced Construction On or Before December 9, 2004 Model Rule-Waste Management Plan § 60.3011 When must I submit my waste management plan? You must submit...

  6. The Development of a Contextual Information Framework Model as a Potential IAEA Strategy to Maintain Radioactive Waste Knowledge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Upshall, I.R.; McCarthy, G.J.

    A contextual framework comprises 'entities' that exhibit one or more definable relationships with a particular 'event'. People, organisations, concepts, ideas, places, natural phenomena, events themselves, cultural artefacts including records, books, works of art can all be conceptualised as entities. If these entities are registered in an information management system where the relationships between them can be defined and systematically managed then it is possible to create a contextual information framework that represents a particular view of what occurs in real life. The careful identifying and mapping of the relationships between these entities and the selected event can lead rapidly tomore » the creation of an information network that closely reflects the human approach to knowledge acquisition and application. The 'event' referred to in this paper is the safe management of radioactive waste. It is widely accepted that society will expect that knowledge about the waste will be maintained for many decades, if not centuries. Delivering on this expectation will demand the application of management approaches that are both innovative and sustainable. Effective inter-generational transfer of information using many 'conventional' techniques will be highly dependent on societal stability - something that cannot be guaranteed over such long periods of time. Consequently, alternative approaches should be explored and, where appropriate, implemented to give reasonable assurance that future generations of waste custodians will not be unduly burdened by the need to recreate information about the waste long after its disposal. In actual fact, the contextual information framework model is not 'new technology' but simply a means for rationalising and representing the way humans naturally tend to use information in the pursuit of knowledge enhancement. By making use of multiple information entities and their relationships, it is often possible to convert otherwise impossibly complex socio-technical environments into information architectures or networks with remarkable and useful properties. The International Atomic Energy Agency, in its ongoing work to encourage the application of systems to manage radioactive waste information over the long term, has embraced the contextual information framework as a potentially viable approach to this particular challenge. To this end, it invited Member States to contribute to the production of a Safety Report that used the contextual information framework model, building on the wealth of existing IAEA guidance. The report focuses, not on the important area of records management, but on the benefits that can arise from the development of an information management approach that increases the likelihood that future generations will recognise the significance and value of the information contained in these records. Our understanding of 'inter-generational transfer' should extend beyond the simple physical transfer of records into an archival repository towards the establishment of a working culture that places sufficient contemporary information into a form that ensures it remains accessible, and ultimately enhances, the knowledge of future generations. Making information accessible is therefore the key and whilst the use of stable records media, storage environments and quality assurance are important elements, they cannot be considered solutions in themselves. This paper articulates some of the lessons that have been learned about using the contextual information framework model when applied to the long term management of radioactive waste. The draft IAEA Safety Report entitled 'Preservation and Transfer to Future Generations of Information Important to the Safety of Waste Disposal Facilities', on which this paper is based, is expected to be published in 2007. (authors)« less

  7. Arsenic: a roadblock to potential animal waste management solutions.

    PubMed

    Nachman, Keeve E; Graham, Jay P; Price, Lance B; Silbergeld, Ellen K

    2005-09-01

    The localization and intensification of the poultry industry over the past 50 years have incidentally created a largely ignored environmental management crisis. As a result of these changes in poultry production, concentrated animal feeding operations (CAFOs) produce far more waste than can be managed by land disposal within the regions where it is produced. As a result, alternative waste management practices are currently being implemented, including incineration and pelletization of waste. However, organic arsenicals used in poultry feed are converted to inorganic arsenicals in poultry waste, limiting the feasibility of waste management alternatives. The presence of inorganic arsenic in incinerator ash and pelletized waste sold as fertilizer creates opportunities for population exposures that did not previously exist. The removal of arsenic from animal feed is a critical step toward safe poultry waste management.

  8. 40 CFR 62.14431 - What must my waste management plan include?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... waste management plan must identify both the feasibility of, and the approach for, separating certain components of solid waste from the health care waste stream in order to reduce the amount of toxic emissions from incinerated waste. The waste management plan you develop may address, but is not limited to, paper...

  9. 40 CFR 62.14431 - What must my waste management plan include?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... waste management plan must identify both the feasibility of, and the approach for, separating certain components of solid waste from the health care waste stream in order to reduce the amount of toxic emissions from incinerated waste. The waste management plan you develop may address, but is not limited to, paper...

  10. Implementation of SAP Waste Management System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frost, M.L.; LaBorde, C.M.; Nichols, C.D.

    2008-07-01

    The Y-12 National Security Complex (Y-12) assumed responsibility for newly generated waste on October 1, 2005. To ensure effective management and accountability of newly generated waste, Y-12 has opted to utilize SAP, Y-12's Enterprise Resource Planning (ERP) tool, to track low-level radioactive waste (LLW), mixed waste (MW), hazardous waste, and non-regulated waste from generation through acceptance and disposal. SAP Waste will include the functionality of the current waste tracking system and integrate with the applicable modules of SAP already in use. The functionality of two legacy systems, the Generator Entry System (GES) and the Waste Information Tracking System (WITS), andmore » peripheral spreadsheets, databases, and e-mail/fax communications will be replaced by SAP Waste. Fundamentally, SAP Waste will promote waste acceptance for certification and disposal, not storage. SAP Waste will provide a one-time data entry location where waste generators can enter waste container information, track the status of their waste, and maintain documentation. A benefit of the new system is that it will provide a single data repository where Y-12's Waste Management organization can establish waste profiles, verify and validate data, maintain inventory control utilizing hand-held data transfer devices, schedule and ship waste, manage project accounting, and report on waste handling activities. This single data repository will facilitate the production of detailed waste generation reports for use in forecasting and budgeting, provide the data for required regulatory reports, and generate metrics to evaluate the performance of the Waste Management organization and its subcontractors. SAP Waste will replace the outdated and expensive legacy system, establish tools the site needs to manage newly generated waste, and optimize the use of the site's ERP tool for integration with related business processes while promoting disposition of waste. (authors)« less

  11. Factors influencing household participation in solid waste management (Case study: Waste Bank Malang)

    NASA Astrophysics Data System (ADS)

    Maryati, S.; Arifiani, N. F.; Humaira, A. N. S.; Putri, H. T.

    2018-03-01

    Solid waste management is very important measure in order to reduce the amount of waste. One of solid waste management form in Indonesia is waste banks. This kind of solid waste management required high level of participation of the community. The objective of this study is to explore factors influencing household participation in waste banks. Waste bank in Malang City (WBM) was selected as case study. Questionnaires distribution and investigation in WBM were conducted to identify problems of participation. Quantitative analysis was used to analyze the data. The research reveals that education, income, and knowledge about WBM have relationship with participation in WBM.

  12. A mathematical model for municipal solid waste management - A case study in Hong Kong.

    PubMed

    Lee, C K M; Yeung, C L; Xiong, Z R; Chung, S H

    2016-12-01

    With the booming economy and increasing population, the accumulation of waste has become an increasingly arduous issue and has aroused the attention from all sectors of society. Hong Kong which has a relative high daily per capita domestic waste generation rate in Asia has not yet established a comprehensive waste management system. This paper conducts a review of waste management approaches and models. Researchers highlight that mathematical models provide useful information for decision-makers to select appropriate choices and save cost. It is suggested to consider municipal solid waste management in a holistic view and improve the utilization of waste management infrastructures. A mathematical model which adopts integer linear programming and mixed integer programming has been developed for Hong Kong municipal solid waste management. A sensitivity analysis was carried out to simulate different scenarios which provide decision-makers important information for establishing Hong Kong waste management system. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Practices and challenges of infectious waste management: A qualitative descriptive study from tertiary care hospitals in Pakistan

    PubMed Central

    Kumar, Ramesh; Shaikh, Babar Tasneem; Somrongthong, Ratana; Chapman, Robert S

    2015-01-01

    Background and Objective: Infectious waste management practices among health care workers in the tertiary care hospitals have been questionable. The study intended to identify issues that impede a proper infectious waste management. Methods: Besides direct observation, in-depths interviews were conducted with the hospital administrators and senior management involved in healthcare waste management during March 2014. We looked at the processes related to segregation, collection, storage and disposal of hospital waste, and identified variety of issues in all the steps. Results: Serious gaps and deficiencies were observed related to segregation, collection, storage and disposal of the hospital wastes, hence proving to be hazardous to the patients as well as the visitors. Poor safety, insufficient budget, lack of trainings, weak monitoring and supervision, and poor coordination has eventually resulted in improper waste management in the tertiary hospitals of Rawalpindi. Conclusion: Study has concluded that the poor resources and lack of healthcare worker’s training in infectious waste results in poor waste management at hospitals. PMID:26430405

  14. Towards Sustainable Ambon Bay: Evaluation of Solid Waste Management in Ambon City

    NASA Astrophysics Data System (ADS)

    Maryati, S.; Miharja, M.; Iscahyono, A. F.; Arsallia, S.; Humaira, AN S.

    2017-07-01

    Ambon Bay is a strategic area in the context of regional economic development, however it also faced environmental problems due to economic development and the growth of population. One of the environmental problems in the Ambon Bay is the growing solid waste which in turn lowers the quality of the water. The purpose of this study is to evaluate solid waste management in the Ambon City and propose recommendation in order to reduce solid waste in the Ambon Bay. The analytical method used is descriptive analysis by comparing a number of criteria based on the concept of solid waste management in coastal region with the current conditions of solid waste management in Ambon City. Criteria for waste management are divided into generation, storage, collection, transport, transfer and disposal. From the results of analysis, it can be concluded that the components of solid waste management at transport, transfer, and disposal level are generally still adequate, but solid waste management at source, storage and collection level have to be improved.

  15. 40 CFR 60.2899 - What is a waste management plan?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false What is a waste management plan? 60.2899 Section 60.2899 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... Management Plan § 60.2899 What is a waste management plan? A waste management plan is a written plan that...

  16. Thirty-year solid waste generation forecast for facilities at SRS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-07-01

    The information supplied by this 30-year solid waste forecast has been compiled as a source document to the Waste Management Environmental Impact Statement (WMEIS). The WMEIS will help to select a sitewide strategic approach to managing present and future Savannah River Site (SRS) waste generated from ongoing operations, environmental restoration (ER) activities, transition from nuclear production to other missions, and decontamination and decommissioning (D&D) programs. The EIS will support project-level decisions on the operation of specific treatment, storage, and disposal facilities within the near term (10 years or less). In addition, the EIS will provide a baseline for analysis ofmore » future waste management activities and a basis for the evaluation of the specific waste management alternatives. This 30-year solid waste forecast will be used as the initial basis for the EIS decision-making process. The Site generates and manages many types and categories of waste. With a few exceptions, waste types are divided into two broad groups-high-level waste and solid waste. High-level waste consists primarily of liquid radioactive waste, which is addressed in a separate forecast and is not discussed further in this document. The waste types discussed in this solid waste forecast are sanitary waste, hazardous waste, low-level mixed waste, low-level radioactive waste, and transuranic waste. As activities at SRS change from primarily production to primarily decontamination and decommissioning and environmental restoration, the volume of each waste s being managed will change significantly. This report acknowledges the changes in Site Missions when developing the 30-year solid waste forecast.« less

  17. Waste management system

    NASA Technical Reports Server (NTRS)

    Sauer, R. L.; Jorgensen, G. K.

    1975-01-01

    The function of the waste management system was to control the disposition of solid and liquid wastes and waste stowage gases. The waste management system consisting of a urine subsystem and a fecal subsystem is described in detail and its overall performance is evaluated. Recommendations for improvement are given.

  18. Solid waste management in the hospitality industry: a review.

    PubMed

    Pirani, Sanaa I; Arafat, Hassan A

    2014-12-15

    Solid waste management is a key aspect of the environmental management of establishments belonging to the hospitality sector. In this study, we reviewed literature in this area, examining the current status of waste management for the hospitality sector, in general, with a focus on food waste management in particular. We specifically examined the for-profit subdivision of the hospitality sector, comprising primarily of hotels and restaurants. An account is given of the causes of the different types of waste encountered in this sector and what strategies may be used to reduce them. These strategies are further highlighted in terms of initiatives and practices which are already being implemented around the world to facilitate sustainable waste management. We also recommended a general waste management procedure to be followed by properties of the hospitality sector and described how waste mapping, an innovative yet simple strategy, can significantly reduce the waste generation of a hotel. Generally, we found that not many scholarly publications are available in this area of research. More studies need to be carried out on the implementation of sustainable waste management for the hospitality industry in different parts of the world and the challenges and opportunities involved. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Solid waste management challenges for cities in developing countries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abarca Guerrero, Lilliana, E-mail: l.abarca.guerrero@tue.nl; Maas, Ger, E-mail: g.j.maas@tue.nl; Hogland, William, E-mail: william.hogland@lnu.se

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer Stakeholders. Black-Right-Pointing-Pointer Factors affecting performance waste management systems. Black-Right-Pointing-Pointer Questionnaire as Annex for waste management baseline assessment. - Abstract: Solid waste management is a challenge for the cities' authorities in developing countries mainly due to the increasing generation of waste, the burden posed on the municipal budget as a result of the high costs associated to its management, the lack of understanding over a diversity of factors that affect the different stages of waste management and linkages necessary to enable the entire handling system functioning. An analysis of literature on the work done and reported mainly in publicationsmore » from 2005 to 2011, related to waste management in developing countries, showed that few articles give quantitative information. The analysis was conducted in two of the major scientific journals, Waste Management Journal and Waste Management and Research. The objective of this research was to determine the stakeholders' action/behavior that have a role in the waste management process and to analyze influential factors on the system, in more than thirty urban areas in 22 developing countries in 4 continents. A combination of methods was used in this study in order to assess the stakeholders and the factors influencing the performance of waste management in the cities. Data was collected from scientific literature, existing data bases, observations made during visits to urban areas, structured interviews with relevant professionals, exercises provided to participants in workshops and a questionnaire applied to stakeholders. Descriptive and inferential statistic methods were used to draw conclusions. The outcomes of the research are a comprehensive list of stakeholders that are relevant in the waste management systems and a set of factors that reveal the most important causes for the systems' failure. The information provided is very useful when planning, changing or implementing waste management systems in cities.« less

  20. Tribal Decisions-Makers Guide to Solid Waste Management: Chapter 2 - Developing Solid Waste Management Plans

    EPA Pesticide Factsheets

    Solid waste management plans offer a host of benefits for tribes and Alaskan Native villages. Through the preparation of these plans, you can assess your cur-rent and future waste management needs, set priorities, and allocate resources accordingly.

  1. Greening MSW management systems by saving footprint: The contribution of the waste transportation.

    PubMed

    Peri, G; Ferrante, P; La Gennusa, M; Pianello, C; Rizzo, G

    2018-08-01

    Municipal solid waste (MSW) management constitutes a highly challenging issue to cope with in order of moving towards more sustainable urban policies. Despite new Standards call for recycling and reusing materials contained in the urban waste, several municipalities still use landfilling as a waste disposal method. Other than the environmental pressure exerted by these plants, waste transportation from the collection points to the landfill needs a specific attention to correctly assess the whole burden of the waste management systems. In this paper, the Ecological Footprint (EF) indicator is applied to the actual MSW of the city of Palermo (Sicily). Results show that the effects produced by the involved transportation vehicles are not negligible, compared to those generated by the other segments of the waste management system. This issue is further deepened by analysing the role of transportation in an upgraded waste management system that is represented by the newly designed waste management plan of Palermo. The computed saved ecological footprint is used here for suitably comparing the environmental performances of the MSW system in both scenarios. Finally, the suitability of the EF method to address not only complete waste management plans but also single segments of the waste management system, is also discussed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. The Integrated Waste Tracking System - A Flexible Waste Management Tool

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Robert Stephen

    2001-02-01

    The US Department of Energy (DOE) Idaho National Engineering and Environmental Laboratory (INEEL) has fully embraced a flexible, computer-based tool to help increase waste management efficiency and integrate multiple operational functions from waste generation through waste disposition while reducing cost. The Integrated Waste Tracking System (IWTS)provides comprehensive information management for containerized waste during generation,storage, treatment, transport, and disposal. The IWTS provides all information necessary for facilities to properly manage and demonstrate regulatory compliance. As a platformindependent, client-server and Web-based inventory and compliance system, the IWTS has proven to be a successful tracking, characterization, compliance, and reporting tool that meets themore » needs of both operations and management while providing a high level of management flexibility.« less

  3. Medical Waste Management in Community Health Centers.

    PubMed

    Tabrizi, Jafar Sadegh; Rezapour, Ramin; Saadati, Mohammad; Seifi, Samira; Amini, Behnam; Varmazyar, Farahnaz

    2018-02-01

    Non-standard management of medical waste leads to irreparable side effects. This issue is of double importance in health care centers in a city which are the most extensive system for providing Primary Health Care (PHC) across Iran cities. This study investigated the medical waste management standards observation in Tabriz community health care centers, northwestern Iran. In this triangulated cross-sectional study (qualitative-quantitative), data collecting tool was a valid checklist of waste management process developed based on Iranian medical waste management standards. The data were collected in 2015 through process observation and interviews with the health center's staff. The average rate of waste management standards observance in Tabriz community health centers, Tabriz, Iran was 29.8%. This case was 22.8% in dimension of management and training, 27.3% in separating and collecting, 31.2% in transport and temporary storage, and 42.9% in sterilization and disposal. Lack of principal separation of wastes, inappropriate collecting and disposal cycle of waste and disregarding safety tips (fertilizer device performance monitoring, microbial cultures and so on) were among the observed defects in health care centers supported by quantitative data. Medical waste management was not in a desirable situation in Tabriz community health centers. The expansion of community health centers in different regions and non-observance of standards could predispose to incidence the risks resulted from medical wastes. So it is necessary to adopt appropriate policies to promote waste management situation.

  4. Frequent Questions About Universal Waste

    EPA Pesticide Factsheets

    Frequent questions such as Who is affected by the universal waste regulations? What is “mercury-containing equipment”? How are waste batteries managed under universal waste? How are waste pesticides managed under universal waste?

  5. Microbial Characterization of Solid-Wastes Treated with Heat Melt Compaction Technology

    NASA Technical Reports Server (NTRS)

    Strayer, Richard F.; Hummerick, Mary E.; Richards, Jeffrey T.; McCoy, LaShelle E.; Roberts, Michael S.; Wheeler, Raymond M.

    2011-01-01

    The research purpose of the project was to determine the fate of microorganisms in space-generated solid wastes after processing by a Heat Melt Compactor (HMC), which is a candidate solid waste treatment technology. Five HMC product disks were generated at Ames Research Center (ARC), Waste Management Systems element. The feed for two was simulated space-generated trash and feed for three was Volume F compartment wet waste returned on STS 130. Conventional microbiological methods were used to detect and enumerate microorganisms in HMC disks and in surface swab samples of HMC hardware before and after operation. Also, biological indicator test strips were added to the STS trash prior to compaction to test if HMC processing conditions, 150 C for approx 3 hr and dehydration, were sufficient to eliminate the test bacteria on the strips. During sample acquisition at KSC, the HMC disk surfaces were sanitized with 70% alcohol to prevent contamination of disk interiors. Results from microbiological assays indicated that numbers of microbes were greatly reduced but not eliminated by the 70% alcohol. Ten 1.25 cm diameter cores were aseptically cut from each disk to sample the disk interior. The core material was run through the microbial characterization analyses after dispersal in sterile diluent. Low counts of viable bacteria (5 to 50 per core) were found but total direct counts were 6 to 8 orders of magnitude greater. These results indicate that the HMC operating conditions might not be sufficient for complete waste sterilization, but the vast majority of microbes present in the wastes were dead or non-cultivable after HMC treatment. The results obtained from analyses of the commercial spore test strips that had been added fo the wastes prior to HMC operation further indicated that the HMC was sterilizing the wastes. Nearly all strips were recovered from the HMC disks and all of these were negative for spore growth when run through the manufacturer's protocol. The 10(exp 6) or so spores impregnated into the strips were no longer viable. Control test strips, i.e., not exposed to the HMC conditions, were all strongly positive. All isolates from the cultivable counts were identified, leading to one concern: several were identified as Staphylococcus aureus, a human pathogen. The project reported here provides microbial characterization support to the Waste Management Systems element of the Life Support and Habitation Systems program.

  6. Leachate from market refuse and biomethanation study.

    PubMed

    Mukherjee, S N; Kumar, Sunil

    2007-12-01

    The market place is considered to be an important centre of daily life of campus community. In India, as in Europe and the USA, other forms of shopping have emerged significantly and now predominate, for instance department stores and supermarkets. Though, it is suffered from poor waste management, but the place could be a potential source for obtaining non-conventional energy. The present study examined the quality of market waste management of the Indian Institute of Technology Campus along with the feasibility of biogas production from leachate generated in the waste. Solid wastes from different storage locations of the market place were collected and analyzed. The characteristics of solid wastes were found to be degradable in nature. The wastes, composed of 85% of vegetable origin, were placed in a container and water was added to to generate leachate. The self-purification efficiency of leachate was also studied in the Indian environment and compared with research findings in the USA under an identical moisture application rate. Leachate characterization was investigated both under saturated and submerged conditions. The treatability of leachate was studied in a laboratory-scale up-flow anaerobic filter with hollow burnt clay rings as packing media. It was observed that 4,000-6,000 mg/l would be the optimum range of inlet chemical oxygen demand (COD) concentration for leachate treatment because of the inhibitory effect of ammonia, sulphide, volatile fatty acids and toxic metals in high concentrations at higher strengths of leachate. The gas production rate was found to be at a maximum at 38 degrees C and containing 70-75% methane. From experimental data, it was revealed that 83% COD was removed with input COD concentration of 5,475 mg/l at 2 days hydraulic retention time with biogas yield coefficients of 0.61. The present study also investigated the removal efficiency of chloride, ammonia, sulphide and nitrate.

  7. Electronic waste management approaches: An overview

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kiddee, Peeranart; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, Mawson Lakes Campus, Adelaide, SA 5095; Naidu, Ravi, E-mail: ravi.naidu@crccare.com

    2013-05-15

    Highlights: ► Human toxicity of hazardous substances in e-waste. ► Environmental impacts of e-waste from disposal processes. ► Life Cycle Assessment (LCA), Material Flow Analysis (MFA), Multi Criteria Analysis (MCA) and Extended Producer Responsibility (EPR) to and solve e-waste problems. ► Key issues relating to tools managing e-waste for sustainable e-waste management. - Abstract: Electronic waste (e-waste) is one of the fastest-growing pollution problems worldwide given the presence if a variety of toxic substances which can contaminate the environment and threaten human health, if disposal protocols are not meticulously managed. This paper presents an overview of toxic substances present inmore » e-waste, their potential environmental and human health impacts together with management strategies currently being used in certain countries. Several tools including Life Cycle Assessment (LCA), Material Flow Analysis (MFA), Multi Criteria Analysis (MCA) and Extended Producer Responsibility (EPR) have been developed to manage e-wastes especially in developed countries. The key to success in terms of e-waste management is to develop eco-design devices, properly collect e-waste, recover and recycle material by safe methods, dispose of e-waste by suitable techniques, forbid the transfer of used electronic devices to developing countries, and raise awareness of the impact of e-waste. No single tool is adequate but together they can complement each other to solve this issue. A national scheme such as EPR is a good policy in solving the growing e-waste problems.« less

  8. Towards the effective plastic waste management in Bangladesh: a review.

    PubMed

    Mourshed, Monjur; Masud, Mahadi Hasan; Rashid, Fazlur; Joardder, Mohammad Uzzal Hossain

    2017-12-01

    The plastic-derived product, nowadays, becomes an indispensable commodity for different purposes. A huge amount of used plastic causes environmental hazards that turn in danger for marine life, reduces the fertility of soil, and contamination of ground water. Management of this enormous plastic waste is challenging in particular for developing countries like Bangladesh. Lack of facilities, infrastructure development, and insufficient budget for waste management are some of the prime causes of improper plastic management in Bangladesh. In this study, the route of plastic waste production and current plastic waste management system in Bangladesh have been reviewed extensively. It emerges that no technical and improved methods are adapted in the plastic management system. A set of the sustainable plastic management system has been proposed along with the challenges that would emerge during the implementation these strategies. Successful execution of the proposed systems would enhance the quality of plastic waste management in Bangladesh and offers enormous energy from waste.

  9. 77 FR 59879 - Idaho: Incorporation by Reference of Approved State Hazardous Waste Management Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-01

    ...: Incorporation by Reference of Approved State Hazardous Waste Management Program AGENCY: Environmental Protection... ``Approved State Hazardous Waste Management Programs,'' Idaho's authorized hazardous waste program. The EPA... Federal Register, the EPA is codifying and incorporating by reference the State's hazardous waste program...

  10. 77 FR 46994 - Oklahoma: Incorporation by Reference of State Hazardous Waste Management Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-07

    ... State regulations that are authorized and that the EPA will enforce under the Solid Waste Disposal Act...: Incorporation by Reference of State Hazardous Waste Management Program AGENCY: Environmental Protection Agency... ``Approved State Hazardous Waste Management Programs'', Oklahoma's authorized hazardous waste program. The...

  11. 77 FR 29275 - Oklahoma: Incorporation by Reference of State Hazardous Waste Management Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-17

    ... State regulations that are authorized and that the EPA will enforce under the Solid Waste Disposal Act...: Incorporation by Reference of State Hazardous Waste Management Program AGENCY: Environmental Protection Agency... ``Approved State Hazardous Waste Management Programs'', Oklahoma's authorized hazardous waste program. The...

  12. 75 FR 36609 - Oklahoma: Incorporation by Reference of State Hazardous Waste Management Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-28

    ...: Incorporation by Reference of State Hazardous Waste Management Program AGENCY: Environmental Protection Agency... ``Approved State Hazardous Waste Management Programs'', Oklahoma's authorized hazardous waste program. The... State regulations that are authorized and that the EPA will enforce under the Solid Waste Disposal Act...

  13. 77 FR 3224 - New Mexico: Incorporation by Reference of State Hazardous Waste Management Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-23

    ... Mexico: Incorporation by Reference of State Hazardous Waste Management Program AGENCY: Environmental... entitled ``Approved State Hazardous Waste Management Programs,'' New Mexico's authorized hazardous waste... of the State regulations that are authorized and that the EPA will enforce under the Solid Waste...

  14. Municipal solid waste development phases: Evidence from EU27.

    PubMed

    Vujić, Goran; Gonzalez-Roof, Alvaro; Stanisavljević, Nemanja; Ragossnig, Arne M

    2015-12-01

    Many countries in the European Union (EU) have very developed waste management systems. Some of its members have managed to reduce their landfilled waste to values close to zero during the last decade. Thus, European Union legislation is very stringent regarding waste management for their members and candidate countries, too. This raises the following questions: Is it possible for developing and developed countries to comply with the European Union waste legislation, and under what conditions? How did waste management develop in relation to the economic development in the countries of the European Union? The correlation between waste management practices and economic development was analysed for 27 of the European Union Member States for the time period between 1995 and 2007. In addition, a regression analysis was performed to estimate landfilling of waste in relation to gross domestic product for every country. The results showed a strong correlation between the waste management variables and the gross domestic product of the EU27 members. The definition of the municipal solid waste management development phases followed a closer analysis of the relation between gross domestic product and landfilled waste. The municipal solid waste management phases are characterised by high landfilling rates at low gross domestic product levels, and landfilling rates near zero at high gross domestic product levels. Hence the results emphasize the importance of wider understanding of what is required for developing countries to comply with the European Union initiatives, and highlight the importance of allowing developing countries to make their own paths of waste management development. © The Author(s) 2015.

  15. 75 FR 20942 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Removal of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-22

    ... of the waste generation and management information for saccharin and its salts, which demonstrate... partnership with the States, biennially collects information regarding the generation, management, and final... Based on the Available Toxicological Information and Waste Generation and Management Information for...

  16. 77 FR 60919 - Tennessee: Final Authorization of State Hazardous Waste Management Program Revisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-05

    ...: Final Authorization of State Hazardous Waste Management Program Revisions AGENCY: Environmental..., Division of Solid Waste Management, 5th Floor, L & C Tower, 401 Church Street, Nashville, Tennessee 37243... RCRA hazardous waste management program. We granted authorization for changes to Tennessee's program on...

  17. Oak Ridge Reservation Waste Management Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turner, J.W.

    1995-02-01

    This report presents the waste management plan for the Oak Ridge Reservation facilities. The primary purpose is to convey what facilities are being used to manage wastes, what forces are acting to change current waste management systems, and what plans are in store for the coming fiscal year.

  18. 40 CFR 60.2060 - When must I submit my waste management plan?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false When must I submit my waste management plan? 60.2060 Section 60.2060 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Management Plan § 60.2060 When must I submit my waste management plan? You must submit a waste management...

  19. 40 CFR 60.2060 - When must I submit my waste management plan?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false When must I submit my waste management plan? 60.2060 Section 60.2060 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Management Plan § 60.2060 When must I submit my waste management plan? You must submit a waste management...

  20. 40 CFR 60.2060 - When must I submit my waste management plan?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false When must I submit my waste management plan? 60.2060 Section 60.2060 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Management Plan § 60.2060 When must I submit my waste management plan? You must submit a waste management...

  1. Efficient nitrogen recycling through sustainable use of organic wastes in agriculture - an Australian case study

    NASA Astrophysics Data System (ADS)

    Rigby, Hannah; Landman, Michael; Collins, David; Walton, Katrina; Penney, Nancy; Pritchard, Deborah

    2014-05-01

    The effective recycling of nutrients in treated sewage sludge (biosolids) domestic (e.g. source separated food waste), agricultural, and commercial and industrial (C&I) biowastes (e.g. food industry wastes, papermill sludge) for use on land, generally following treatment (e.g. composting, anaerobic digestion or thermal conversion technologies) as alternatives to conventional mineral fertilisers in Australia can have economic benefits, ensure food security, and close the nutrient loop. In excess of 75% of Australian agricultural soils have less than 1% organic matter (OM), and, with 40 million tonnes of solid waste per year potentially available as a source of OM, biowastes also build soil carbon (C) stocks that improve soil structure, fertility and productivity, and enhance soil ecosystem services. In recent years, the increasing cost of conventional mineral fertilisers, combined with changing weather patterns have placed additional pressure on regional and rural communities. Nitrogen (N) is generally the most limiting nutrient to crop production, and the high-energy required and GHGs associated with its manufacture mean that, additionally, it is critical to use N efficiently and recycle N resources where possible. Biosolids and biowastes have highly variable organic matter (OM) and nutrient contents, with N often present in a variety of forms only some of which are plant-available. The N value is further influenced by treatment process, storage and fundamental soil processes. The correct management of N in biowastes is essential to reduce environmental losses through leaching or runoff and negative impacts on drinking water sources and aquatic ecosystems. Gaseous N emissions also impact upon atmospheric quality and climate change. Despite the body of work to investigate N supply from biosolids, recent findings indicate that historic and current management of agricultural applications of N from biosolids and biowastes in Australia may still be inefficient leading to nutrient losses to air and water. This paper discusses the sustainable recycling N resources in biosolids and biowastes in agriculture in Australia using specific recent research examples from Western Australia, including lime amended biosolids, alum sludge and dewatered biosolids cake, and from Tasmania, papermill sludge. The primary focus is the N fertiliser replacement value of different biosolids and biowaste types under different environmental conditions, and management issues relating to the sustainable recycling of N. Experimental work included field trials and soil incubation studies. The findings are compared with research findings conducted in different climatic regions and soil types across Australia (Queensland, Victoria, New South Wales) and internationally.

  2. Development of sustainable waste management toward zero landfill waste for the petrochemical industry in Thailand using a comprehensive 3R methodology: A case study.

    PubMed

    Usapein, Parnuwat; Chavalparit, Orathai

    2014-06-01

    Sustainable waste management was introduced more than ten years ago, but it has not yet been applied to the Thai petrochemical industry. Therefore, under the philosophy of sustainable waste management, this research aims to apply the reduce, reuse, and recycle (3R) concept at the petrochemical factory level to achieve a more sustainable industrial solid waste management system. Three olefin plants in Thailand were surveyed for the case study. The sources and types of waste and existing waste management options were identified. The results indicate that there are four sources of waste generation: (1) production, (2) maintenance, (3) waste treatment, and (4) waste packaging, which correspond to 45.18%, 36.71%, 9.73%, and 8.37% of the waste generated, respectively. From the survey, 59 different types of industrial wastes were generated from the different factory activities. The proposed 3R options could reduce the amount of landfill waste to 79.01% of the amount produced during the survey period; this reduction would occur over a period of 2 years and would result in reduced disposal costs and reduced consumption of natural resources. This study could be used as an example of an improved waste management system in the petrochemical industry. © The Author(s) 2014.

  3. The radioactive waste management policy and practice in the Czech Republic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kucerka, M.

    1996-12-31

    In recent period, the new Czech Atomic Law is in the final stage of preparation, and the author expects that Parliament of the Czech Republic will approve it in the first half of the year 1996. Partly the law deals with new distribution of responsibilities among bodies involved in utilization of nuclear energy and ionizing radiation, the state and local authorities. The new provisions include also radioactive waste management activities. These provisions clarify the relations between radioactive waste generators and state, and define explicitly duties of waste generators. One of the most important duties is to cover all expenses formore » radioactive waste management now and in the future, including radioactive waste disposal and decommissioning of nuclear facilities. The law establishes radioactive waste management and decommissioning funds and the new, on waste generators independent radioactive waste management organization, controlled by state, to ensure the safety of inhabitants and the environment, and a optimization of expenses. Parallel to the preparation of the law, the Ministry of Industry and Trade prepares drafts of a statute of the radioactive waste management organization and its control board, and of the methodology and rules of management the radioactive waste fund. First drafts of these documents are expected to be complete in January 1996. The paper will describe recent practice and policy of the radioactive waste management including uranium mining and milling tailings, amounts of waste and its activities, economical background, and safety. A special attention will be paid to description of expected changes in connection with the new Atomic Law and expected steps and time schedule of reorganization of the radioactive waste management structure in the Czech Republic.« less

  4. About the Managing and Transforming Waste Streams Tool

    EPA Pesticide Factsheets

    The Managing and Transforming Waste Streams Tool was developed by a team of zero waste consultants and solid waste program managers making informed observations from hands-on work in communities, with contributions from EPA.

  5. 76 FR 4823 - Hazardous Waste Management System; Identifying and Listing Hazardous Waste Exclusion

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-27

    ... Waste Management System; Identifying and Listing Hazardous Waste Exclusion AGENCY: Environmental... hazardous wastes. The Agency has decided to grant the petition based on an evaluation of waste-specific... excludes the petitioned waste from the requirements of hazardous waste regulations under the Resource...

  6. 40 CFR 60.55c - Waste management plan.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... plan. The owner or operator of an affected facility shall prepare a waste management plan. The waste management plan shall identify both the feasibility and the approach to separate certain components of solid waste from the health care waste stream in order to reduce the amount of toxic emissions from...

  7. 40 CFR 60.55c - Waste management plan.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... plan. The owner or operator of an affected facility shall prepare a waste management plan. The waste management plan shall identify both the feasibility and the approach to separate certain components of solid waste from the health care waste stream in order to reduce the amount of toxic emissions from...

  8. Nuclear waste management. Semiannual progress report, October 1982-March 1983

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chikalla, T.D.; Powell, J.A.

    1983-06-01

    This document is one of a series of technical progress reports designed to report radioactive waste management programs at the Pacific Northwest Laboratory. Accomplishments in the following programs are reported: waste stabilization; Materials Characterization Center; waste isolation; low-level waste management; remedial action; and supporting studies.

  9. Biomedical waste management in Ayurveda hospitals - current practices & future prospectives.

    PubMed

    Rajan, Renju; Robin, Delvin T; M, Vandanarani

    2018-03-16

    Biomedical waste management is an integral part of traditional and contemporary system of health care. The paper focuses on the identification and classification of biomedical wastes in Ayurvedic hospitals, current practices of its management in Ayurveda hospitals and its future prospective. Databases like PubMed (1975-2017 Feb), Scopus (1960-2017), AYUSH Portal, DOAJ, DHARA and Google scholar were searched. We used the medical subject headings 'biomedical waste' and 'health care waste' for identification and classification. The terms 'biomedical waste management', 'health care waste management' alone and combined with 'Ayurveda' or 'Ayurvedic' for current practices and recent advances in the treatment of these wastes were used. We made a humble attempt to categorize the biomedical wastes from Ayurvedic hospitals as the available data about its grouping is very scarce. Proper biomedical waste management is the mainstay of hospital cleanliness, hospital hygiene and maintenance activities. Current disposal techniques adopted for Ayurveda biomedical wastes are - sewage/drains, incineration and land fill. But these methods are having some merits as well as demerits. Our review has identified a number of interesting areas for future research such as the logical application of bioremediation techniques in biomedical waste management and the usage of effective micro-organisms and solar energy in waste disposal. Copyright © 2017 Transdisciplinary University, Bangalore and World Ayurveda Foundation. Published by Elsevier B.V. All rights reserved.

  10. Rules and management of biomedical waste at Vivekananda Polyclinic: A case study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, Saurabh; Boojh, Ram; Mishra, Ajai

    Hospitals and other healthcare establishments have a 'duty of care' for the environment and for public health, and have particular responsibilities in relation to the waste they produce (i.e., biomedical waste). Negligence, in terms of biomedical waste management, significantly contributes to polluting the environment, affects the health of human beings, and depletes natural and financial resources. In India, in view of the serious situation of biomedical waste management, the Ministry of Environment and Forests, within the Government of India, ratified the Biomedical Waste (Management and Handling) Rules, in July 1998. The present paper provides a brief description of the biomedicalmore » waste (Management and Handling) Rules 1998, and the current biomedical waste management practices in one of the premier healthcare establishments of Lucknow, the Vivekananda Polyclinic. The objective in undertaking this study was to analyse the biomedical waste management system, including policy, practice (i.e., storage, collection, transportation and disposal), and compliance with the standards prescribed under the regulatory framework. The analysis consisted of interviews with medical authorities, doctors, and paramedical staff involved in the management of the biomedical wastes in the Polyclinic. Other important stakeholders that were consulted and interviewed included environmental engineers (looking after the Biomedical Waste Cell) of the State Pollution Control Board, and randomly selected patients and visitors to the Polyclinic. A general survey of the facilities of the Polyclinic was undertaken to ascertain the efficacy of the implemented measures. The waste was quantified based on random samples collected from each ward. It was found that, although the Polyclinic in general abides by the prescribed regulations for the treatment and disposal of biomedical waste, there is a need to further build the capacity of the Polyclinic and its staff in terms of providing state-of-the-art facilities and on-going training in order to develop a model biomedical waste management system in the Polyclinic. There is also a need to create awareness among all other stakeholders about the importance of biomedical waste management and related regulations. Furthermore, healthcare waste management should go beyond data compilation, enforcement of regulations, and acquisition of better equipment. It should be supported through appropriate education, training, and the commitment of the healthcare staff and management and healthcare managers within an effective policy and legislative framework.« less

  11. Rules and management of biomedical waste at Vivekananda Polyclinic: a case study.

    PubMed

    Gupta, Saurabh; Boojh, Ram; Mishra, Ajai; Chandra, Hem

    2009-02-01

    Hospitals and other healthcare establishments have a "duty of care" for the environment and for public health, and have particular responsibilities in relation to the waste they produce (i.e., biomedical waste). Negligence, in terms of biomedical waste management, significantly contributes to polluting the environment, affects the health of human beings, and depletes natural and financial resources. In India, in view of the serious situation of biomedical waste management, the Ministry of Environment and Forests, within the Government of India, ratified the Biomedical Waste (Management and Handling) Rules, in July 1998. The present paper provides a brief description of the biomedical waste (Management and Handling) Rules 1998, and the current biomedical waste management practices in one of the premier healthcare establishments of Lucknow, the Vivekananda Polyclinic. The objective in undertaking this study was to analyse the biomedical waste management system, including policy, practice (i.e., storage, collection, transportation and disposal), and compliance with the standards prescribed under the regulatory framework. The analysis consisted of interviews with medical authorities, doctors, and paramedical staff involved in the management of the biomedical wastes in the Polyclinic. Other important stakeholders that were consulted and interviewed included environmental engineers (looking after the Biomedical Waste Cell) of the State Pollution Control Board, and randomly selected patients and visitors to the Polyclinic. A general survey of the facilities of the Polyclinic was undertaken to ascertain the efficacy of the implemented measures. The waste was quantified based on random samples collected from each ward. It was found that, although the Polyclinic in general abides by the prescribed regulations for the treatment and disposal of biomedical waste, there is a need to further build the capacity of the Polyclinic and its staff in terms of providing state-of-the-art facilities and on-going training in order to develop a model biomedical waste management system in the Polyclinic. There is also a need to create awareness among all other stakeholders about the importance of biomedical waste management and related regulations. Furthermore, healthcare waste management should go beyond data compilation, enforcement of regulations, and acquisition of better equipment. It should be supported through appropriate education, training, and the commitment of the healthcare staff and management and healthcare managers within an effective policy and legislative framework.

  12. The effect of food waste disposers on municipal waste and wastewater management.

    PubMed

    Marashlian, Natasha; El-Fadel, Mutasem

    2005-02-01

    This paper examines the feasibility of introducing food waste disposers as a waste minimization option within urban waste management schemes, taking the Greater Beirut Area (GBA) as a case study. For this purpose, the operational and economic impacts of food disposers on the solid waste and wastewater streams are assessed. The integration of food waste disposers can reduce the total solid waste to be managed by 12 to 43% under market penetration ranging between 25 and 75%, respectively. While the increase in domestic water consumption (for food grinding) and corresponding increase in wastewater flow rates are relatively insignificant, wastewater loadings increased by 17 to 62% (BOD) and 1.9 to 7.1% (SS). The net economic benefit of introducing food disposers into the waste and wastewater management systems constitutes 7.2 to 44.0% of the existing solid waste management cost under the various scenarios examined. Concerns about increased sludge generation persist and its potential environmental and economic implications may differ with location and therefore area-specific characteristics must be taken into consideration when contemplating the adoption of a strategy to integrate food waste disposers in the waste-wastewater management system.

  13. 75 FR 76691 - Oregon; Correction of Federal Authorization of the State's Hazardous Waste Management Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-09

    ...; Correction of Federal Authorization of the State's Hazardous Waste Management Program AGENCY: Environmental... to the State of Oregon's federally authorized RCRA hazardous waste management program. On January 7... changes the State of Oregon made to its federally authorized RCRA Hazardous Waste Management Program...

  14. 75 FR 918 - Oregon: Final Authorization of State Hazardous Waste Management Program Revision

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-07

    ... Authorization of State Hazardous Waste Management Program Revision AGENCY: Environmental Protection Agency (EPA... hazardous waste management program under the Resource Conservation and Recovery Act, as amended (RCRA). On... has decided that the revisions to the Oregon hazardous waste management program satisfy all of the...

  15. Laboratory Waste Management. A Guidebook.

    ERIC Educational Resources Information Center

    American Chemical Society, Washington, DC.

    A primary goal of the American Chemical Society Task Force on Laboratory Waste Management is to provide laboratories with the information necessary to develop effective strategies and training programs for managing laboratory wastes. This book is intended to present a fresh look at waste management from the laboratory perspective, considering both…

  16. 76 FR 63509 - Small Business Size Standards: Administrative and Support, Waste Management and Remediation Services

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-12

    ... Small Business Size Standards: Administrative and Support, Waste Management and Remediation Services... Standards: Administrative and Support, Waste Management and Remediation Services AGENCY: U.S. Small Business...) Sector 56, Administrative and Support, Waste Management and Remediation Services. As part of its ongoing...

  17. Building Staff Competencies and Selecting Communications Methods for Waste Management Programs.

    ERIC Educational Resources Information Center

    Richardson, John G.

    The Waste Management Institute provided in-service training to interested County Extension agents in North Carolina to enable them to provide leadership in developing and delivering a comprehensive county-level waste management program. Training included technical, economic, environmental, social, and legal aspects of waste management presented in…

  18. Management of solid waste

    NASA Astrophysics Data System (ADS)

    Thompson, W. T.; Stinton, L. H.

    1980-04-01

    Compliance with the latest regulatory requirements addressing disposal of radioactive, hazardous, and sanitary solid waste criteria in the selection, design, and operation of solid waste management facilities. Due to the state of flux of these regulatory requirements from EPA and NRC, several waste management options were of solid waste. The current regulatory constraints and the design and operational requirements for construction of both storage and disposal facilities for use in management of DOE-ORO solid waste are highlighted. Capital operational costs are included for both disposal and storage options.

  19. Household waste compositional analysis variation from insular communities in the framework of waste prevention strategy plans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zorpas, Antonis A., E-mail: antonis.zorpas@ouc.ac.cy; Lasaridi, Katia, E-mail: klasaridi@hua.gr; Voukkali, Irene

    Highlights: • Waste framework directive has set clear waste prevention procedures. • Household Compositional analysis. • Waste management plans. • Zero waste approach. • Waste generation. - Abstract: Waste management planning requires reliable data regarding waste generation, affecting factors on waste generation and forecasts of waste quantities based on facts. In order to decrease the environmental impacts of waste management the choice of prevention plan as well as the treatment method must be based on the features of the waste that are produced in a specific area. Factors such as culture, economic development, climate, and energy sources have an impactmore » on waste composition; composition influences the need of collecting waste more or less frequently of waste collection and disposition. The research question was to discover the main barriers concerning the compositional analysis in Insular Communities under warm climate conditions and the findings from this study enabled the main contents of a waste management plan to be established. These included advice to residents on waste minimisation, liaison with stakeholders and the expansion of kerbside recycling schemes.« less

  20. Greener approach for the extraction of copper metal from electronic waste.

    PubMed

    Jadhao, Prashant; Chauhan, Garima; Pant, K K; Nigam, K D P

    2016-11-01

    Technology innovations resulted into a major move from agricultural to industrial economy in last few decades. Consequently, generation of waste electronic and electrical equipments (WEEE) has been increased at a significant rate. WEEE contain large amount of precious and heavy metals and therefore, can be considered a potential secondary resource to overcome the scarcity of metals. Also, presence of these metals may affect the ecosystem due to lack of adequate management of WEEE. Building upon our previous experimental investigations for metal extraction from spent catalyst, present study explores the concept of green technology for WEEE management. Efforts have been made to recover base metal from a printed circuit board using eco-friendly chelation technology and results were compared with the conventional acid leaching method. 83.8% recovery of copper metal was achieved using chelation technology whereas only 27% could be recovered using acid leaching method in absence of any oxidant at optimum reaction conditions. Various characterization studies (energy dispersive X-ray analysis, scanning electron microscopy, X-ray diffraction, inductive coupled plasma spectrophotometry) of Printed Circuit Board (PCB) and residues were performed for qualitative and quantitative analysis of samples. Significant metal extraction, more than 96% recovery of chelating agent, recycling of reactant in next chelation cycle and nearly zero discharge to the environment are the major advantages of the proposed green process which articulate the transcendency of chelation technology over other conventional approaches. Kinetic investigation suggests diffusion controlled process as the rate determining step for the chelate assisted recovery of copper from WEEE with activation energy of 22kJ/mol. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Implementation of spatial smart waste management system in malaysia

    NASA Astrophysics Data System (ADS)

    Omar, M. F.; Termizi, A. A. A.; Zainal, D.; Wahap, N. A.; Ismail, N. M.; Ahmad, N.

    2016-06-01

    One of the challenges to innovate and create an IoT -enabled solution is in monitoring and management of the environment. Waste collection utilizing the Internet of Things (IoT) with the technology of smart wireless sensors will able to gather fill-level data from waste containers hence providing a waste monitoring solution that brings up savings in waste collection costs. One of the challenges to the local authority is how to monitor the works of contractor effective and efficiently in waste management. This paper will propose to the local authority the implementation of smart waste management in Malaysia to improve the city management and to provide better services to the public towards smart city applications.

  2. Identifying potential environmental impacts of waste handling strategies in textile industry.

    PubMed

    Yacout, Dalia M M; Hassouna, M S

    2016-08-01

    Waste management is a successful instrument to minimize generated waste and improve environmental conditions. In spite of the large share of developing countries in the textile industry, limited information is available concerning the waste management strategies implemented for textiles on those countries and their environmental impacts. In the current study, two waste management approaches for hazardous solid waste treatment of acrylic fibers (landfill and incineration) were investigated. The main research questions were: What are the different impacts of each waste management strategy? Which waste management strategy is more ecofriendly? Life cycle assessment was employed in order to model the environmental impacts of each waste streaming approach separately then compare them together. Results revealed that incineration was the more ecofriendly approach. Highest impacts of both approaches were on ecotoxicity and carcinogenic potentials due to release of metals from pigment wastes. Landfill had an impact of 46.8 % on human health as compared to 28 % by incineration. Incineration impact on ecosystem quality was higher than landfill impact (68.4 and 51.3 %, respectively). As for resources category, incineration had a higher impact than landfill (3.5 and 2.0 %, respectively). Those impacts could be mitigated if state-of-the-art landfill or incinerator were used and could be reduced by applying waste to energy approaches for both management systems In conclusion, shifting waste treatment from landfill to incineration would decrease the overall environmental impacts and allow energy recovery. The potential of waste to energy approach by incineration with heat recovery could be considered in further studies. Future research is needed in order to assess the implementation of waste management systems and the preferable waste management strategies in the textile industry on developing countries.

  3. Nitrogen fertilizer recommendations for corn grown on soils amended with oily food waste.

    PubMed

    Rashid, M T; Voroney, R P

    2005-01-01

    Soil and plant indices of soil fertility status have traditionally been developed using conventional soil and crop management practices. Data on managing N fertilizer for corn (Zea mays L.) produced on soils amended with C-rich organic materials, such as oily food waste (OFW) is scarce. Identification of a reliable method for making N fertilizer recommendations under these conditions is imperative. The objective of this research was to evaluate soil NO(3)-N (0- to 30-cm depth) at preplant and presidedress (PSNT) times of sampling for predicting N requirements for corn grown on fields receiving OFW. Experiments were conducted at two locations in Ontario, Canada over 3 yr (1995-1997) where OFW was applied at different rates (0, 10, and 20 Mg ha(-1)), times (fall and spring), and slope positions (upper, mid, and lower) within the same field. Presidedress soil NO(3)-N contents were higher compared with preplant time of sampling under all OFW management conditions. Corn grain yields were significantly affected by OFW management and N fertilizer application rates. Maximum economic rate of N application (MERN) varied depending on OFW management conditions. Presidedress soil NO(3)-N contents had a higher inverse relationship with MERN (r = -0.88) compared with soil NO(3)-N at preplant (r = -0.74) time of sampling. A linear regression model (Y = 180.1 - 8.22 NO(3)-N at PSNT) is proposed for making N fertilizer recommendations to corn grown on soils amended with OFW in this geographical region.

  4. Environmental evaluation of municipal waste prevention

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gentil, Emmanuel C.; Gallo, Daniele; Christensen, Thomas H., E-mail: thho@env.dtu.dk

    Highlights: > Influence of prevention on waste management systems, excluding avoided production, is relatively minor. > Influence of prevention on overall supply chain, including avoided production is very significant. > Higher relative benefits of prevention are observed in waste management systems relying mainly on landfills. - Abstract: Waste prevention has been addressed in the literature in terms of the social and behavioural aspects, but very little quantitative assessment exists of the environmental benefits. Our study evaluates the environmental consequences of waste prevention on waste management systems and on the wider society, using life-cycle thinking. The partial prevention of unsolicited mail,more » beverage packaging and food waste is tested for a 'High-tech' waste management system relying on high energy and material recovery and for a 'Low-tech' waste management system with less recycling and relying on landfilling. Prevention of 13% of the waste mass entering the waste management system generates a reduction of loads and savings in the waste management system for the different impacts categories; 45% net reduction for nutrient enrichment and 12% reduction for global warming potential. When expanding our system and including avoided production incurred by the prevention measures, large savings are observed (15-fold improvement for nutrient enrichment and 2-fold for global warming potential). Prevention of food waste has the highest environmental impact saving. Prevention generates relatively higher overall relative benefit for 'Low-tech' systems depending on landfilling. The paper provides clear evidence of the environmental benefits of waste prevention and has specific relevance in climate change mitigation.« less

  5. Developing Tribal Integrated Waste Management Plans

    EPA Pesticide Factsheets

    An IWMP outlines how the tribe will reduce, manage, and dispose of its waste. It identifies existing waste systems, assesses needs, and sets forth the ways to design, implement, and monitor a more effective and sustainable waste management program.

  6. Theoretical Framework for Plastic Waste Management in Ghana through Extended Producer Responsibility: Case of Sachet Water Waste.

    PubMed

    Quartey, Ebo Tawiah; Tosefa, Hero; Danquah, Kwasi Asare Baffour; Obrsalova, Ilona

    2015-08-20

    Currently, use and disposal of plastic by consumers through waste management activities in Ghana not only creates environmental problems, but also reinforces the notion of a wasteful society. The magnitude of this problem has led to increasing pressure from the public for efficient and practical measures to solve the waste problem. This paper analyses the impact of plastic use and disposal in Ghana. It emphasizes the need for commitment to proper management of the impacts of plastic waste and effective environmental management in the country. Sustainable Solid Waste Management (SSWM) is a critical problem for developing countries with regards to climate change and greenhouse gas emission, and also the general wellbeing of the populace. Key themes of this paper are producer responsibility and management of products at end of life. The paper proposes two theatrical recovery models that can be used to address the issue of sachet waste in Ghana.

  7. Utilisation of Waste Marble Dust as Fine Aggregate in Concrete

    NASA Astrophysics Data System (ADS)

    Vigneshpandian, G. V.; Aparna Shruthi, E.; Venkatasubramanian, C.; Muthu, D.

    2017-07-01

    Concrete is the important construction material and it is used in the construction industry due to its high compressive strength and its durability. Now a day’s various studies have been conducted to make concrete with waste material with the intention of reducing cost and unavailability of conventional materials. This paper investigates the strength properties of concrete specimens cast using waste marble dust as replacement of fine aggregate. The marble pieces are finely crushed to powdered and the gradation is compared with conventional fine aggregate. Concrete specimen were cast using wmd in the laboratory with different proportion (25%, 50% and 100%) by weight of cement and from the studies it reveals that addition of waste marble dust as a replacement of fine aggregate marginally improves compressive, tensile and flexural strength in concrete.

  8. Persistent toxic substances released from uncontrolled e-waste recycling and actions for the future.

    PubMed

    Man, Ming; Naidu, Ravi; Wong, Ming H

    2013-10-01

    The Basel Convention on the Control of Transboundary Movement of Hazardous Wastes and their Disposal was adopted on March 22, 1989 and enforced on May 5, 1992. Since then, the USA, one of the world's largest e-waste producers, has not ratified this Convention or the Basel Ban Amendment. Communities are still debating the legal loophole, which permits the export of whole products to other countries provided it is not for recycling. In January 2011, China's WEEE Directive was implemented, providing stricter control over e-waste imports to China, including Hong Kong, while emphasizing that e-waste recycling is the producers' responsibility. China is expected to supersede the USA as the principal e-waste producer, by 2020, according to the UNEP. Uncontrolled e-waste recycling activities generate and release heavy metals and POPs into the environment, which may be re-distributed, bioaccumulated and biomagnified, with potentially adverse human health effects. Greater efforts and scientific approaches are needed for future e-product designs of minimal toxic metal and compound use, reaping greater benefits than debating the definition and handling responsibilities of e-waste recycling. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Solid industrial wastes and their management in Asegra (Granada, Spain)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casares, M.L.; Ulierte, N.; Mataran, A.

    ASEGRA is an industrial area in Granada (Spain) with important waste management problems. In order to properly manage and control waste production in industry, one must know the quantity, type, and composition of industrial wastes, as well as the management practices of the companies involved. In our study, questionnaires were used to collect data regarding methods of waste management used in 170 of the 230 businesses in the area of study. The majority of these companies in ASEGRA are small or medium-size, and belong to the service sector, transport, and distribution. This was naturally a conditioning factor in both themore » type and management of the wastes generated. It was observed that paper and cardboard, plastic, wood, and metals were the most common types of waste, mainly generated from packaging (49% of the total volume), as well as material used in containers and for wrapping products. Serious problems were observed in the management of these wastes. In most cases they were disposed of by dumping, and very rarely did businesses resort to reuse, recycling or valorization. Smaller companies encountered greater difficulties when it came to effective waste management. The most frequent solution for the disposal of wastes in the area was dumping.« less

  10. Management of radioactive waste in Belgium: ONDRAF/NIRAS and Belgoprocess as major actors of the waste acceptance system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaelen, Gunter van; Verheyen, Annick

    2007-07-01

    The management of radioactive waste in Belgium is undertaken by the national agency for radioactive waste and enriched fissile materials, ONDRAF/NIRAS, and its industrial partner Belgoprocess. ONDRAF/NIRAS has set up a management system designed to guarantee that the general public and the environment are protected against the potential hazards arising from radioactive waste. Belgoprocess is a private company, founded in 1984 and located in Dessel, Belgium. It is a subsidiary of ONDRAF/NIRAS and its activities focus on the safe processing and storage of radioactive waste. The management system of ONDRAF/NIRAS includes two aspects: a) an integrated system and b) anmore » acceptance system. The integrated system covers all aspects of management ranging from the origin of waste to its transport, processing, interim storage and long-term management. The safety of radioactive waste management not only depends on the quality of the design and construction of the processing, temporary storage or disposal infrastructure, but also on the quality of the waste accepted by ONDRAF/NIRAS. In order to be manage d safely, both in the short and the long term, the waste transferred to ONDRAF/NIRAS must meet certain specific requirements. To that end, ONDRAF/NIRAS has developed an acceptance system. (authors)« less

  11. Joint Assessment of Renewable Energy and Water Desalination Research Center (REWDC) Program Capabilities and Facilities In Radioactive Waste Management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bissani, M; Fischer, R; Kidd, S

    2006-04-03

    The primary goal of this visit was to perform a joint assessment of the Renewable Energy and Water Desalination Center's (REWDC) program in radioactive waste management. The visit represented the fourth technical and scientific interaction with Libya under the DOE/NNSA Sister Laboratory Arrangement. Specific topics addressed during the visit focused on Action Sheet P-05-5, ''Radioactive Waste Management''. The Team, comprised of Mo Bissani (Team Lead), Robert Fischer, Scott Kidd, and Jim Merrigan, consulted with REWDC management and staff. The team collected information, discussed particulars of the technical collaboration and toured the Tajura facility. The tour included the waste treatment facility,more » waste storage/disposal facility, research reactor facility, hot cells and analytical labs. The assessment team conducted the first phase of Task A for Action Sheet 5, which involved a joint assessment of the Radioactive Waste Management Program. The assessment included review of the facilities dedicated to the management of radioactive waste at the Tourja site, the waste management practices, proposed projects for the facility and potential impacts on waste generation and management.« less

  12. Resource Management, Coexistence, and Balance--The Fundamentals of Teaching Waste Management.

    ERIC Educational Resources Information Center

    Donovan, Connie

    1998-01-01

    Argues for the need for courses in waste management in departments other than civil engineering. Points out that although waste management is a business administration function, it is best performed from an environmental management perspective. (DDR)

  13. Alternative Fuels Data Center: Seattle's Waste Haulers are Going Green

    Science.gov Websites

    -hauling companies in the Puget Sound region, Waste Management and CleanScapes, were the first two private revolution in Washington's waste-hauling industry. Eager to win the Seattle contract, both Waste Management per year of greenhouse gas emissions reductions. Waste Management continues to rise to the challenge

  14. 40 CFR 267.101 - What must I do to address corrective action for solid waste management units?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... action for solid waste management units? 267.101 Section 267.101 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE FACILITIES OPERATING UNDER A STANDARDIZED PERMIT Releases from Solid Waste Management Units § 267.101 What...

  15. 40 CFR 267.101 - What must I do to address corrective action for solid waste management units?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... action for solid waste management units? 267.101 Section 267.101 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE FACILITIES OPERATING UNDER A STANDARDIZED PERMIT Releases from Solid Waste Management Units § 267.101 What...

  16. 40 CFR 267.101 - What must I do to address corrective action for solid waste management units?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... action for solid waste management units? 267.101 Section 267.101 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE FACILITIES OPERATING UNDER A STANDARDIZED PERMIT Releases from Solid Waste Management Units § 267.101 What...

  17. 40 CFR 267.101 - What must I do to address corrective action for solid waste management units?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... action for solid waste management units? 267.101 Section 267.101 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE FACILITIES OPERATING UNDER A STANDARDIZED PERMIT Releases from Solid Waste Management Units § 267.101 What...

  18. 40 CFR 267.101 - What must I do to address corrective action for solid waste management units?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... action for solid waste management units? 267.101 Section 267.101 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE FACILITIES OPERATING UNDER A STANDARDIZED PERMIT Releases from Solid Waste Management Units § 267.101 What...

  19. TOOLS FOR DETERMINING SUSTAINABLE WASTE MANAGEMENT THROUGH APPLICATION OF LIFE-CYCLE ASSESSMENT: UPDATE ON U.S. RESEARCH

    EPA Science Inventory

    The paper is an update on U.S. research to develop tools and information for evaluating integrated solid waste management strategies. In the past, waste management systems consisted primarily of waste collection and disposal at a local landfill. Today's municipal solid waste ma...

  20. Radiological protection from radioactive waste management in existing exposure situations resulting from a nuclear accident.

    PubMed

    Sugiyama, Daisuke; Hattori, Takatoshi

    2013-01-01

    In environmental remediation after nuclear accidents, radioactive wastes have to be appropriately managed in existing exposure situations with contamination resulting from the emission of radionuclides by such accidents. In this paper, a framework of radiation protection from radioactive waste management in existing exposure situations for application to the practical and reasonable waste management in contaminated areas, referring to related ICRP recommendations was proposed. In the proposed concept, intermediate reference levels for waste management are adopted gradually according to the progress of the reduction in the existing ambient dose in the environment on the basis of the principles of justification and optimisation by taking into account the practicability of the management of radioactive waste and environmental remediation. It is essential to include the participation of relevant stakeholders living in existing exposure situations in the selection of reference levels for the existing ambient dose and waste management.

  1. Radiological protection from radioactive waste management in existing exposure situations resulting from a nuclear accident

    PubMed Central

    Sugiyama, Daisuke; Hattori, Takatoshi

    2013-01-01

    In environmental remediation after nuclear accidents, radioactive wastes have to be appropriately managed in existing exposure situations with contamination resulting from the emission of radionuclides by such accidents. In this paper, a framework of radiation protection from radioactive waste management in existing exposure situations for application to the practical and reasonable waste management in contaminated areas, referring to related ICRP recommendations was proposed. In the proposed concept, intermediate reference levels for waste management are adopted gradually according to the progress of the reduction in the existing ambient dose in the environment on the basis of the principles of justification and optimisation by taking into account the practicability of the management of radioactive waste and environmental remediation. It is essential to include the participation of relevant stakeholders living in existing exposure situations in the selection of reference levels for the existing ambient dose and waste management. PMID:22719047

  2. Tribal Waste Journal: What Is an Integrated Waste Management Plan (Issue 7)

    EPA Pesticide Factsheets

    Integrated Waste Management Plans (IWMPs) may offer tribes an efficient and cost-effective way to reduce open dumping, effectively manage solid waste, and protect human health and the environment for this generation and the next.

  3. 40 CFR 273.8 - Applicability-household and conditionally exempt small quantity generator waste.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... managing the wastes listed below may, at their option, manage them under the requirements of this part: (1... section together with universal waste regulated under this part must manage the commingled waste under the...

  4. 40 CFR 273.8 - Applicability-household and conditionally exempt small quantity generator waste.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... managing the wastes listed below may, at their option, manage them under the requirements of this part: (1... section together with universal waste regulated under this part must manage the commingled waste under the...

  5. 40 CFR 273.8 - Applicability-household and conditionally exempt small quantity generator waste.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... managing the wastes listed below may, at their option, manage them under the requirements of this part: (1... section together with universal waste regulated under this part must manage the commingled waste under the...

  6. 40 CFR 273.8 - Applicability-household and conditionally exempt small quantity generator waste.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... managing the wastes listed below may, at their option, manage them under the requirements of this part: (1... section together with universal waste regulated under this part must manage the commingled waste under the...

  7. 40 CFR 273.8 - Applicability-household and conditionally exempt small quantity generator waste.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... managing the wastes listed below may, at their option, manage them under the requirements of this part: (1... section together with universal waste regulated under this part must manage the commingled waste under the...

  8. Analysis of the energy potential of municipal solid waste for the thermal treatment technology development in Poland

    NASA Astrophysics Data System (ADS)

    Midor, Katarzyna; Jąderko, Karolina

    2017-11-01

    The problem of overproduction of waste has been a local issue for many years. Since the new environment law came into effect, the current approach to waste management has changed significantly. The accessible technological possibilities of thermal waste treatment with the energy recovery set a new area of research over the process of choosing effective and rational way of calorific waste management. The objective of this article is to provide assessment results of the analysed energy potential in waste management system in the form of calorific waste stream. In includes all the activities and actions required to manage municipal solid waste from its inception to its final disposal i.e. collection, transport, treatment and disposal. The graphical representation of waste flow indicates the lost opportunities of waste energy recovery. Visual research method was supported and founded on value stream mapping. On the basis of the results were presented the directions of further improvement of calorific waste stream mapping for the purposes of implementation the thermal treatment technology in the selected waste management region.

  9. 40 CFR 62.14580 - What is a waste management plan?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 8 2010-07-01 2010-07-01 false What is a waste management plan? 62.14580 Section 62.14580 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Construction On or Before November 30, 1999 Waste Management Plan § 62.14580 What is a waste management plan? A...

  10. 76 FR 6564 - Florida: Final Authorization of State Hazardous Waste Management Program Revisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-07

    ...: Final Authorization of State Hazardous Waste Management Program Revisions AGENCY: Environmental... implement the RCRA hazardous waste management program. We granted authorization for changes to their program..., 06/ 62-730.185(1) F.A.C. Universal Waste Management. 29/07. State Initiated Changes to the 62-730.210...

  11. 40 CFR 60.3012 - What should I include in my waste management plan?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... management plan? 60.3012 Section 60.3012 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Compliance Times for Other Solid Waste Incineration Units That Commenced Construction On or Before December 9, 2004 Model Rule-Waste Management Plan § 60.3012 What should I include in my waste management plan? A...

  12. An overview of the sustainability of solid waste management at military installations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borglin, S.; Shore, J.; Worden, H.

    2009-08-15

    Sustainable municipal solid waste management at military solutions necessitates a combined approach that includes waste reduction, alternative disposal techniques, and increased recycling. Military installations are unique because they often represent large employers in the region in which they are located, thereby making any practices they employ impact overall waste management strategies of the region. Solutions for waste sustainability will be dependent on operational directives and base location, availability of resources such as water and energy, and size of population. Presented in this paper are descriptions of available waste strategies that can be used to support sustainable waste management. Results presentedmore » indicate source reduction and recycling to be the most sustainable solutions. However, new waste-to-energy plants and composting have potential to improve on these well proven techniques and allow military installations to achieve sustainable waste management.« less

  13. Sound Waste Management Plan environmental operations, and used oil management system: Restoration project 97115. Exxon Valdez oil spill restoration project final report: Volumes 1 and 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-06-01

    This project constitutes Phase 2 of the Sound Waste Management Plan and created waste oil collection and disposal facilities, bilge water collection and disposal facilities, recycling storage, and household hazardous waste collection and storage, and household hazardous waste collection and storage facilities in Prince William Sound. A wide range of waste streams are generated within communities in the Sound including used oil generated from vehicles and vessels, and hazardous wastes generated by households. This project included the design and construction of Environmental Operations Stations buildings in Valdez, Cordova, Whittier, Chenega Bay and Tatitlek to improve the overall management of oilymore » wastes. They will house new equipment to facilitate oily waste collection, treatment and disposal. This project also included completion of used oil management manuals.« less

  14. The use of multi-criteria decision analysis to tackle waste management problems: a literature review.

    PubMed

    Achillas, Charisios; Moussiopoulos, Nicolas; Karagiannidis, Avraam; Banias, Georgias; Perkoulidis, George

    2013-02-01

    Problems in waste management have become more and more complex during recent decades. The increasing volumes of waste produced and social environmental consciousness present prominent drivers for environmental managers towards the achievement of a sustainable waste management scheme. However, in practice, there are many factors and influences - often mutually conflicting - criteria for finding solutions in real-life applications. This paper presents a review of the literature on multi-criteria decision aiding in waste management problems for all reported waste streams. Despite limitations, which are clearly stated, most of the work published in this field is reviewed. The present review aims to provide environmental managers and decision-makers with a thorough list of practical applications of the multi-criteria decision analysis techniques that are used to solve real-life waste management problems, as well as the criteria that are mostly employed in such applications according to the nature of the problem under study. Moreover, the paper explores the advantages and disadvantages of using multi-criteria decision analysis techniques in waste management problems in comparison to other available alternatives.

  15. Assessing knowledge, performance, and efficiency for hospital waste management-a comparison of government and private hospitals in Pakistan.

    PubMed

    Ali, Mustafa; Wang, Wenping; Chaudhry, Nawaz; Geng, Yong; Ashraf, Uzma

    2017-04-01

    Proper management of healthcare waste is a critical concern in many countries of the world. Rapid urbanization and population growth rates pose serious challenges to healthcare waste management infrastructure in such countries. This study was aimed at assessing the situation of hospital waste management in a major city of Pakistan. Simple random sampling was used to select 12 government and private hospitals in the city. Field visits, physical measurements, and questionnaire survey method were used for data collection. Information was obtained regarding hospital waste generation, segregation, collection, storage, transportation, and disposal. Data envelopment analysis (DEA) was used to classify the hospitals on the basis of their relative waste management efficiencies. The weighted average total waste generation at the surveyed hospitals was discovered to be 1.53 kg/patient/day of which 75.15% consisted of general waste and the remaining consisted of biomedical waste. Of the total waste, 24.54% came from the public hospital and the remaining came from the private hospitals. DEA showed that seven of the surveyed hospitals had scale or pure technical inefficiencies in their waste management activities. The public hospital was relatively less efficient than most of the private hospitals in these activities. Results of the questionnaire survey showed that none of the surveyed hospitals was carrying out waste management in strict compliance with government regulations. Moreover, hospital staff at all the surveyed hospitals had low level of knowledge regarding safe hospital waste management practices. The current situation should be rectified in order to avoid environmental and epidemiological risks.

  16. A system dynamics-based environmental performance simulation of construction waste reduction management in China.

    PubMed

    Ding, Zhikun; Yi, Guizhen; Tam, Vivian W Y; Huang, Tengyue

    2016-05-01

    A huge amount of construction waste has been generated from increasingly higher number of construction activities than in the past, which has significant negative impacts on the environment if they are not properly managed. Therefore, effective construction waste management is of primary importance for future sustainable development. Based on the theory of planned behaviors, this paper develops a system dynamic model of construction waste reduction management at the construction phase to simulate the environmental benefits of construction waste reduction management. The application of the proposed model is shown using a case study in Shenzhen, China. Vensim is applied to simulate and analyze the model. The simulation results indicate that source reduction is an effective waste reduction measure which can reduce 27.05% of the total waste generation. Sorting behaviors are a premise for improving the construction waste recycling and reuse rates which account for 15.49% of the total waste generated. The environmental benefits of source reduction outweigh those of sorting behaviors. Therefore, to achieve better environmental performance of the construction waste reduction management, attention should be paid to source reduction such as low waste technologies and on-site management performance. In the meantime, sorting behaviors encouragement such as improving stakeholders' waste awareness, refining regulations, strengthening government supervision and controlling illegal dumping should be emphasized. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Study of waste management towards sustainable green campus in Universitas Gadjah Mada

    NASA Astrophysics Data System (ADS)

    Setyowati, Mega; Kusumawanto, Arif; Prasetya, Agus

    2018-05-01

    Waste management is a part of the green campus achievement program. Universitas Gadjah Mada has a Standard Operating Procedure for managing produced waste. Waste produced by each building or work unit is temporarily accommodated in the waste depot before dumped into the landfill. This research aims to study the waste management system in UGM, in accordance with the concept of a green campus. The concept of green campus to improve the efficiency of waste management needs to be supported by various parties. The success of the green campus program relies on an integrated approach, a sustainable implementation that involves stakeholders of the university. In actualizing the concept of a green campus, the university has its own waste processing system. The organic produced waste is processed into compost, while plastic waste is converted into alternative fuel. Overall, the waste management system that UGM owns is ineffective and inefficient, it was proved by the fact that there is still much waste dumped into the landfill. UGM provides a laboratory that is specialized to process waste that is produced by UGM. It is planned to be able to reduce the amount of waste that is dumped into the landfill. According to the results, vermicomposting technology, the manufacture of liquid fertilizer from leachate, and the manufacture of the composite from a mixture of leaves and paper were offered as solutions.

  18. Experimental investigation of wood combustion in a fixed bed with hot air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Markovic, Miladin, E-mail: m.markovic@utwente.nl; Bramer, Eddy A.; Brem, Gerrit

    Highlights: • Upward combustion is a new combustion concept with ignition by hot primary air. • Upward combustion has three stages: short drying, rapid devolatilization and char combustion. • Variation of fuel moisture and inert content have little influence on the combustion. • Experimental comparison between conventional and upward combustion is presented. - Abstract: Waste combustion on a grate with energy recovery is an important pillar of municipal solid waste (MSW) management in the Netherlands. In MSW incinerators fresh waste stacked on a grate enters the combustion chamber, heats up by radiation from the flame above the layer and ignitionmore » occurs. Typically, the reaction zone starts at the top of the waste layer and propagates downwards, producing heat for drying and devolatilization of the fresh waste below it until the ignition front reaches the grate. The control of this process is mainly based on empiricism. MSW is a highly inhomogeneous fuel with continuous fluctuating moisture content, heating value and chemical composition. The resulting process fluctuations may cause process control difficulties, fouling and corrosion issues, extra maintenance, and unplanned stops. In the new concept the fuel layer is ignited by means of preheated air (T > 220 °C) from below without any external ignition source. As a result a combustion front will be formed close to the grate and will propagate upwards. That is why this approach is denoted by upward combustion. Experimental research has been carried out in a batch reactor with height of 4.55 m, an inner diameter of 200 mm and a fuel layer height up to 1 m. Due to a high quality two-layer insulation adiabatic conditions can be assumed. The primary air can be preheated up to 350 °C, and the secondary air is distributed via nozzles above the waste layer. During the experiments, temperatures along the height of the reactor, gas composition and total weight decrease are continuously monitored. The influence of the primary air speed, fuel moisture and inert content on the combustion characteristics (ignition rate, combustion rate, ignition front speed and temperature of the reaction zone) is evaluated. The upward combustion concept decouples the drying, devolatilization and burnout phase. In this way the moisture and inert content of the waste have almost no influence on the combustion process. In this paper an experimental comparison between conventional and reversed combustion is presented.« less

  19. Impact of intervention on healthcare waste management practices in a tertiary care governmental hospital of Nepal.

    PubMed

    Sapkota, Binaya; Gupta, Gopal Kumar; Mainali, Dhiraj

    2014-09-26

    Healthcare waste is produced from various therapeutic procedures performed in hospitals, such as chemotherapy, dialysis, surgery, delivery, resection of gangrenous organs, autopsy, biopsy, injections, etc. These result in the production of non-hazardous waste (75-95%) and hazardous waste (10-25%), such as sharps, infectious, chemical, pharmaceutical, radioactive waste, and pressurized containers (e.g., inhaler cans). Improper healthcare waste management may lead to the transmission of hepatitis B, Staphylococcus aureus and Pseudomonas aeruginosa. This evaluation of waste management practices was carried out at gynaecology, obstetrics, paediatrics, medicine and orthopaedics wards at Government of Nepal Civil Service Hospital, Kathmandu from February 12 to October 15, 2013, with the permission from healthcare waste management committee at the hospital. The Individualized Rapid Assessment tool (IRAT), developed by the United Nations Development Program Global Environment Facility project, was used to collect pre-interventional and post-interventional performance scores concerning waste management. The healthcare waste management committee was formed of representing various departments. The study included responses from focal nurses and physicians from the gynaecology, obstetrics, paediatrics, medicine and orthopaedics wards, and waste handlers during the study period. Data included average scores from 40 responders. Scores were based on compliance with the IRAT. The waste management policy and standard operating procedure were developed after interventions, and they were consistent with the national and international laws and regulations. The committee developed a plan for recycling or waste minimization. Health professionals, such as doctors, nurses and waste handlers, were trained on waste management practices. The programs included segregation, collection, handling, transportation, treatment and disposal of waste, as well as occupational health and safety issues. The committee developed a plan for treatment and disposal of chemical and pharmaceutical waste. Pretest and posttest evaluation scores were 26% and 86% respectively. During the pre-intervention period, the hospital had no HCWM Committee, policy, standard operating procedure or proper color coding system for waste segregation, collection, transportation and storage and the specific well-trained waste handlers. Doctors, nurses and waste handlers were trained on HCWM practices, after interventions. Significant improvements were observed between the pre- and post-intervention periods.

  20. Health care waste management practice in a hospital.

    PubMed

    Paudel, R; Pradhan, B

    2010-10-01

    Health-care waste is a by-product of health care. Its poor management exposes health-care workers, waste handlers and the community to infections, toxic effects and injuries including damage of the environment. It also creates opportunities for the collection of disposable medical equipment, its re-sale and potential re-use without sterilization, which causes an important burden of disease worldwide. The purpose of this study was to find out health care waste management practice in hospital. A cross-sectional study was conducted in Narayani Sub-Regional Hospital, Birgunj from May to October 2006 using both qualitative and quantitative methods. Study population was four different departments of the hospital (Medical/Paediatric, Surgical/Ortho, Gynae/Obstetric and Emergency), Medical Superintendent, In-charges of four different departments and all sweepers. Data was collected using interview, group discussion, observation and measurement by weight and volume. Total health-care waste generated was 128.4 kg per day while 0.8 kg per patient per day. The composition of health care waste was found to be 96.8 kg (75.4%) general waste, 24.1 kg (8.8%) hazardous waste and 7.5 kg (5.8%) sharps per day by weight. Health staffs and sweepers were not practicing the waste segregation. Occupational health and safety was not given due attention. Majority of the sweepers were unaware of waste management and need of safety measures to protect their own health. Health care waste management practice in the hospital was unsatisfactory because of the lack of waste management plan and carelessness of patients, visitors and staffs. Therefore the hospital should develop the waste management plan and strictly follow the National Health Care Waste Management Guideline.

  1. SEMINAR PUBLICATION: ORGANIC AIR EMISSIONS FROM WASTE MANAGEMENT FACILITIES

    EPA Science Inventory

    The organic chemicals contained in wastes processed during waste management operations can volatilize into the atmosphere and cause toxic or carcinogenic effects or contribute to ozone formation. Because air emissions from waste management operations pose a threat to human health...

  2. Influencing factors and kinetics analysis on the leaching of iron from boron carbide waste-scrap with ultrasound-assisted method.

    PubMed

    Li, Xin; Xing, Pengfei; Du, Xinghong; Gao, Shuaibo; Chen, Chen

    2017-09-01

    In this paper, the ultrasound-assisted leaching of iron from boron carbide waste-scrap was investigated and the optimization of different influencing factors had also been performed. The factors investigated were acid concentration, liquid-solid ratio, leaching temperature, ultrasonic power and frequency. The leaching of iron with conventional method at various temperatures was also performed. The results show the maximum iron leaching ratios are 87.4%, 94.5% for 80min-leaching with conventional method and 50min-leaching with ultrasound assistance, respectively. The leaching of waste-scrap with conventional method fits the chemical reaction-controlled model. The leaching with ultrasound assistance fits chemical reaction-controlled model, diffusion-controlled model for the first stage and second stage, respectively. The assistance of ultrasound can greatly improve the iron leaching ratio, accelerate the leaching rate, shorten leaching time and lower the residual iron, comparing with conventional method. The advantages of ultrasound-assisted leaching were also confirmed by the SEM-EDS analysis and elemental analysis of the raw material and leached solid samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Measurement of polychlorinated biphenyls in solid waste such as transformer insulation paper by supercritical fluid extraction and gas chromatography electron capture detection.

    PubMed

    Chikushi, Hiroaki; Fujii, Yuka; Toda, Kei

    2012-09-21

    In this work, a method for measuring polychlorinated biphenyls (PCBs) in contaminated solid waste was investigated. This waste includes paper that is used in electric transformers to insulate electric components. The PCBs in paper sample were extracted by supercritical fluid extraction and analyzed by gas chromatography-electron capture detection. The recoveries with this method (84-101%) were much higher than those with conventional water extraction (0.08-14%), and were comparable to those with conventional organic solvent extraction. Limit of detection was 0.0074 mg kg(-1) and measurable up to 2.5 mg kg(-1) for 0.5 g of paper sample. Data for real insulation paper by the proposed method agreed well with those by the conventional organic solvent extraction. Extraction from wood and concrete was also investigated and good performance was obtained as well as for paper samples. The supercritical fluid extraction is simpler, faster, and greener than conventional organic solvent extraction. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Municipal waste management in Sicily: practices and challenges.

    PubMed

    Messineo, Antonio; Panno, Domenico

    2008-01-01

    There are numerous problems yet to be solved in waste management and although efforts towards waste recovery and recycling have been made, landfills are still the most common method used in the EU and many other industrialised countries. Thermal disposal, particularly incineration, is a tested and viable alternative. In 2004, only 11% of the annual waste production of Italy was incinerated. Sicily, with over five million inhabitants, is the second largest region in Italy where waste management is now a critical problem. The use of landfills can no longer be considered a satisfactory environmental solution; therefore, new methods have to be chosen and waste-to-energy plants could provide an answer. This paper gives details of municipal solid waste management in Sicily following a new Waste Management Plan. Four waste-to-energy plants will generate electricity through a steam cycle; the feedstock will become the residue after material recovery, which is calculated as 20-40% weight of the collected municipal solid waste.

  5. Utilization of construction and agricultural waste in Malaysia for development of Green Concrete: A Review

    NASA Astrophysics Data System (ADS)

    Tambichik, M. A.; Mohamad, N.; Samad, A. A. A.; Bosro, M. Z. M.; Iman, M. A.

    2018-04-01

    Green Concrete (GC) is defined as a concrete that utilize a waste material for at least one of its component. The production of GC has been increasing due to the drawback of conventional concrete that create many environmental problems. In Malaysia, the amount of waste generates from agricultural and construction industries were increasing every year. Hence, one of the solutions to reduce the impact of conventional concrete and limited landfill spaces due to excessive waste is by utilizing it in concrete. This paper reviews the possible use of construction waste (Recycle Concrete Aggregate) and agricultural waste (Palm Oil Fuel Ash, Rice Husk Ash and Palm Oil Fibre) as partial replacement for the basic material in a concrete to produce an innovative Green Concrete. The optimum replacement level for each type of waste was also been review. Green Concrete also has the potential to reduce environmental pollution and solve the depletion of natural sources. The result from this review shows that the addition of agricultural waste or construction waste in concrete indicate positive and satisfactory strength when compared to normal concrete. Finally, a mass production of Green Concrete can fulfil the Construction Industry Transformation Plan (CITP) 2016-2020 made by CIDB that emphasizes on a construction system which is environmentally sustainable.

  6. Organic Laboratory Experiments: Micro vs. Conventional.

    ERIC Educational Resources Information Center

    Chloupek-McGough, Marge

    1989-01-01

    Presents relevant statistics accumulated in a fall organic laboratory course. Discusses laboratory equipment setup to lower the amount of waste. Notes decreased solid wastes were produced compared to the previous semester. (MVL)

  7. Comparison of infectious waste management in European hospitals.

    PubMed

    Mühlich, M; Scherrer, M; Daschner, F D

    2003-12-01

    A research project sponsored by the EC-LIFE programme was conducted to compare waste management in five different European hospitals. A comparison of the regulations governing current waste management revealed different strategies for defining infectious hospital waste. The differences in the infrastructure were examined and the consequences for waste segregation and disposal were discussed under economic and ecological aspects. In this context the definition of infectious waste is very important.

  8. RCRA Sustainable Materials Management Information

    EPA Pesticide Factsheets

    This asset includes a broad variety of documents, descriptive data, technical analyses and guidance materials relative to voluntary improvements in resource conservation, the beneficial use of sustainable materials and the management of non-hazardous wastes and materials. Included in this asset are participant information and outreach materials of various voluntary programs relating to better materials and waste management programs. An example is the WasteWise program and Sustainable Materials Management (SMM) Challenges, which help organizations and businesses apply sustainable materials management practices to reduce municipal and select industrial wastes. Also included in this asset are guidance materials to assist municipalities in recycling and reuse of municipal solid waste, including diverting materials to composting, and the use of conversion methods such as anaerobic digestion. Another component are the data necessary to compile reports on the characterization of municipal solid waste (including such waste streams as food waste, yard and wood waste, discarded electronics, and household non-hazardous waste), the recycled content of manufactured goods, and other analyses performed using such tools as the Waste Assessment Reduction Model (WARM).For industrial non-hazardous waste, this asset includes guidance and outreach materials on industrial materials recycling and waste minimization. Finally, this asset includes research analyses on sustainable materia

  9. Food waste and the food-energy-water nexus: A review of food waste management alternatives.

    PubMed

    Kibler, Kelly M; Reinhart, Debra; Hawkins, Christopher; Motlagh, Amir Mohaghegh; Wright, James

    2018-04-01

    Throughout the world, much food produced is wasted. The resource impact of producing wasted food is substantial; however, little is known about the energy and water consumed in managing food waste after it has been disposed. Herein, we characterize food waste within the Food-Energy-Water (FEW) nexus and parse the differential FEW effects of producing uneaten food and managing food loss and waste. We find that various food waste management options, such as waste prevention, landfilling, composting, anaerobic digestion, and incineration, present variable pathways for FEW impacts and opportunities. Furthermore, comprehensive sustainable management of food waste will involve varied mechanisms and actors at multiple levels of governance and at the level of individual consumers. To address the complex food waste problem, we therefore propose a "food-waste-systems" approach to optimize resources within the FEW nexus. Such a framework may be applied to devise strategies that, for instance, minimize the amount of edible food that is wasted, foster efficient use of energy and water in the food production process, and simultaneously reduce pollution externalities and create opportunities from recycled energy and nutrients. Characterization of FEW nexus impacts of wasted food, including descriptions of dynamic feedback behaviors, presents a significant research gap and a priority for future work. Large-scale decision making requires more complete understanding of food waste and its management within the FEW nexus, particularly regarding post-disposal impacts related to water. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Waste management facility accident analysis (WASTE ACC) system: software for analysis of waste management alternatives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kohout, E.F.; Folga, S.; Mueller, C.

    1996-03-01

    This paper describes the Waste Management Facility Accident Analysis (WASTE{underscore}ACC) software, which was developed at Argonne National Laboratory (ANL) to support the US Department of Energy`s (DOE`s) Waste Management (WM) Programmatic Environmental Impact Statement (PEIS). WASTE{underscore}ACC is a decision support and database system that is compatible with Microsoft{reg_sign} Windows{trademark}. It assesses potential atmospheric releases from accidents at waste management facilities. The software provides the user with an easy-to-use tool to determine the risk-dominant accident sequences for the many possible combinations of process technologies, waste and facility types, and alternative cases described in the WM PEIS. In addition, its structure willmore » allow additional alternative cases and assumptions to be tested as part of the future DOE programmatic decision-making process. The WASTE{underscore}ACC system demonstrates one approach to performing a generic, systemwide evaluation of accident risks at waste management facilities. The advantages of WASTE{underscore}ACC are threefold. First, the software gets waste volume and radiological profile data that were used to perform other WM PEIS-related analyses directly from the WASTE{underscore}MGMT system. Second, the system allows for a consistent analysis across all sites and waste streams, which enables decision makers to understand more fully the trade-offs among various policy options and scenarios. Third, the system is easy to operate; even complex scenario runs are completed within minutes.« less

  11. 40 CFR 60.2625 - When must I submit my waste management plan?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false When must I submit my waste management... Compliance Times for Commercial and Industrial Solid Waste Incineration Units that Commenced Construction On or Before November 30, 1999 Model Rule-Waste Management Plan § 60.2625 When must I submit my waste...

  12. Greenhouse gas emissions from solid waste in Beijing: The rising trend and the mitigation effects by management improvements.

    PubMed

    Yu, Yongqiang; Zhang, Wen

    2016-04-01

    Disposal of solid waste poses great challenges to city managements. Changes in solid waste composition and disposal methods, along with urbanisation, can certainly affect greenhouse gas emissions from municipal solid waste. In this study, we analysed the changes in the generation, composition and management of municipal solid waste in Beijing. The changes of greenhouse gas emissions from municipal solid waste management were thereafter calculated. The impacts of municipal solid waste management improvements on greenhouse gas emissions and the mitigation effects of treatment techniques of greenhouse gas were also analysed. Municipal solid waste generation in Beijing has increased, and food waste has constituted the most substantial component of municipal solid waste over the past decade. Since the first half of 1950s, greenhouse gas emission has increased from 6 CO2-eq Gg y(-1)to approximately 200 CO2-eq Gg y(-1)in the early 1990s and 2145 CO2-eq Gg y(-1)in 2013. Landfill gas flaring, landfill gas utilisation and energy recovery in incineration are three techniques of the after-emission treatments in municipal solid waste management. The scenario analysis showed that three techniques might reduce greenhouse gas emissions by 22.7%, 4.5% and 9.8%, respectively. In the future, if waste disposal can achieve a ratio of 4:3:3 by landfill, composting and incineration with the proposed after-emission treatments, as stipulated by the Beijing Municipal Waste Management Act, greenhouse gas emissions from municipal solid waste will decrease by 41%. © The Author(s) 2016.

  13. Backcasting to identify food waste prevention and mitigation opportunities for infant feeding in maternity services.

    PubMed

    Ryan-Fogarty, Yvonne; Becker, Genevieve; Moles, Richard; O'Regan, Bernadette

    2017-03-01

    Food waste in hospitals is of major concern for two reasons: one, healthcare needs to move toward preventative and demand led models for sustainability and two, food system sustainability needs to seek preventative measures such as diet adaptation and waste prevention. The impact of breast-milk substitute use on health services are well established in literature in terms of healthcare implications, cost and resourcing, however as a food demand and waste management issue little has been published to date. This paper presents the use of a desk based backcasting method to analyse food waste prevention, mitigation and management options within the Irish Maternity Service. Best practice in healthcare provision and waste management regulations are used to frame solutions. Strategic problem orientation revealed that 61% of the volume of ready to use breast-milk substitutes purchased by maternity services remains unconsumed and ends up as waste. Thirteen viable strategies to prevent and manage this waste were identified. Significant opportunities exist to prevent waste and also decrease food demand leading to both positive health and environmental outcomes. Backcasting methods display great promise in delivering food waste management strategies in healthcare settings, especially where evidenced best practice policies exist to inform solution forming processes. In terms of food waste prevention and management, difficulties arise in distinguishing between demand reduction, waste prevention and waste reduction measures under the current Waste Management Hierarchy definitions. Ultimately demand reduction at source requires prioritisation, a strategy which is complimentary to health policy on infant feeding. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. ANALYSIS OF THE POTENTIAL EFFECTS OF TOXICS ON MUNICIPAL SOLID WASTE MANAGEMENT OPTIONS

    EPA Science Inventory

    Many alternative waste management practices and strategies are available to manage the large quantities of MSW generated every year. hese management alternatives include recycling, composting, waste-to-fuel/energy recovery, and landfilling. n choosing the best possible management...

  15. Waste Management in Universities and Colleges. Workshop Proceedings (Madison, Wisconsin, July 9-11, 1980).

    ERIC Educational Resources Information Center

    Association of Physical Plant Administrators of Universities and Colleges, Washington, DC.

    In response to a request from the Wisconsin Department of Natural Resources, Region V of the United States Environmental Protection Agency (EPA) sponsored a workshop on waste management in universities and colleges. It consisted of four sessions: (1) managing general university waste and regulatory concerns; (2) chemical waste management; (3)…

  16. [Assessment of medical waste management in a Palestinian hospital].

    PubMed

    Al-Khatib, I A; Khatib, R A

    2006-01-01

    We studied medical waste management in a Palestinian hospital in the West Bank and the role of municipality in this management. In general, "good management practices" were inadequate; there was insufficient separation between hazardous and non-hazardous wastes, an absence of necessary rules and regulations for the collection of wastes from the hospital wards and the on-site transport to a temporary storage location inside and outside the hospital and inadequate waste treatment and disposal of hospital wastes along with municipal garbage. Moreover, training of personnel was lacking and protective equipment and measures for staff were not available. No special landfills for hazardous wastes were found within the municipality.

  17. 77 FR 65351 - Missouri: Authorization of State Hazardous Waste Management Program Revisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-26

    ...: Authorization of State Hazardous Waste Management Program Revisions AGENCY: Environmental Protection Agency (EPA... Jackson-Johnson, Environmental Protection Agency, Waste Enforcement & Materials Management Branch, 11201... its hazardous waste program under the Resource Conservation and Recovery Act (RCRA). EPA proposes to...

  18. Caught between the global economy and local bureaucracy: the barriers to good waste management practice in South Africa.

    PubMed

    Godfrey, Linda; Scott, Dianne; Trois, Cristina

    2013-03-01

    Empirical research shows that good waste management practice in South Africa is not always under the volitional control of those tasked with its implementation. While intention to act may exist, external factors, within the distal and proximal context, create barriers to waste behaviour. In addition, these barriers differ for respondents in municipalities, private industry and private waste companies. The main barriers to implementing good waste management practice experienced by respondents in municipalities included insufficient funding for waste management and resultant lack of resources; insufficient waste knowledge; political interference in decision-making; a slow decision-making process; lack of perceived authority to act by waste staff; and a low priority afforded to waste. Barriers experienced by respondents in private industry included insufficient funding for waste and the resultant lack of resources; insufficient waste knowledge; and government bureaucracy. Whereas, barriers experienced in private waste companies included increasing costs; government bureaucracy; global markets; and availability of waste for recycling. The results suggest that respondents in public and private waste organizations are subject to different structural forces that shape, enable and constrain waste behaviour.

  19. Dental solid and hazardous waste management and safety practices in developing countries: Nablus district, Palestine.

    PubMed

    Al-Khatib, Issam A; Monou, Maria; Mosleh, Salem A; Al-Subu, Mohammed M; Kassinos, Despo

    2010-05-01

    This study investigated the dental waste management practices and safety measures implemented by dentists in the Nablus district, Palestine. A comprehensive survey was conducted for 97 of the 134 dental clinics to assess the current situation. Focus was placed on hazardous waste produced by clinics and the handling, storage, treatment and disposal measures taken. Mercury, found in dental amalgam, is one of the most problematic hazardous waste. The findings revealed that there is no proper separation of dental waste by classification as demanded by the World Health Organization. Furthermore, medical waste is often mixed with general waste during production, collection and disposal. The final disposal of waste ends up in open dumping sites sometimes close to communities where the waste is burned. Correct management and safety procedures that could be effectively implemented in developing countries were examined. It was concluded that cooperation between dental associations, government-related ministries and authorities needs to be established, to enhance dental waste management and provide training and capacity building programs for all professionals in the medical waste management field.

  20. Solid waste management in Abuja, Nigeria.

    PubMed

    Imam, A; Mohammed, B; Wilson, D C; Cheeseman, C R

    2008-01-01

    The new city of Abuja provided an opportunity to avoid some of the environmental problems associated with other major cities in Africa. The current status of solid waste management in Abuja has been reviewed and recommendations for improvements are made. The existing solid waste management system is affected by unfavourable economic, institutional, legislative, technical and operational constraints. A reliable waste collection service is needed and waste collection vehicles need to be appropriate to local conditions. More vehicles are required to cope with increasing waste generation. Wastes need to be sorted at source as much as possible, to reduce the amount requiring disposal. Co-operation among communities, the informal sector, the formal waste collectors and the authorities is necessary if recycling rates are to increase. Markets for recycled materials need to be encouraged. Despite recent improvements in the operation of the existing dumpsite, a properly sited engineered landfill should be constructed with operation contracted to the private sector. Wastes dumped along roads, underneath bridges, in culverts and in drainage channels need to be cleared. Small-scale waste composting plants could promote employment, income generation and poverty alleviation. Enforcement of waste management legislation and a proper policy and planning framework for waste management are required. Unauthorized use of land must be controlled by enforcing relevant clauses in development guidelines. Accurate population data is necessary so that waste management systems and infrastructure can be properly planned. Funding and affordability remain major constraints and challenges.

  1. Knowledge and technology transfer to improve the municipal solid waste management system of Durango City, Mexico.

    PubMed

    Valencia-Vázquez, Roberto; Pérez-López, Maria E; Vicencio-de-la-Rosa, María G; Martínez-Prado, María A; Rubio-Hernández, Rubén

    2014-09-01

    As society evolves its welfare level increases, and as a consequence the amount of municipal solid waste increases, imposing great challenges to municipal authorities. In developed countries, municipalities have established integrated management schemes to handle, treat, and dispose of municipal solid waste in an economical and environmentally sound manner. Municipalities of developing and transition countries are not exempted from the challenges involving municipal solid waste handling, but their task is not easy to accomplish since they face budget deficits, lack of knowledge, and deficiencies in infrastructure and equipment. In the northern territory of Mexico, the municipality of Durango is facing the challenge of increased volumes of waste with a lack of adequate facilities and infrastructure. This article analyses the evolution of the municipal solid waste management of Durango city, which includes actions such as proper facilities construction, equipment acquisition, and the implementation of social programmes. The World Bank, offering courses to municipal managers on landfill operation and waste management, promoted the process of knowledge and technology transfer. Thereafter, municipal authorities attended regional and some international workshops on waste management. In addition they followed suggestions of international contractors and equipment dealers with the intention to improve the situation of the waste management of the city. After a 15-year period, transfer of knowledge and technology resulted in a modern municipal solid waste management system in Durango municipality. The actual system did not reach the standard levels of an integrated waste management system, nevertheless, a functional evaluation shows clear indications that municipality actions have put them on the right pathway. © The Author(s) 2014.

  2. Effects of conventional and no-tillage soil management and compost and sludge amendment on soil CO2 fluxes and microbial activities

    NASA Astrophysics Data System (ADS)

    Garcia-Gil, Juan Carlos; Haller, Isabel; Soler-Rovira, Pedro; Polo, Alfredo

    2010-05-01

    Soil management exerts a significant influence on the dynamic of soil organic matter, which is a key issue to enhance soil quality and its ecological functions, but also affects to greenhouse gas emissions and C sequestration processes. The objective of the present research was to determine the influence of soil management (conventional deep-tillage and no-tillage) and the application of two different organic amendment -thermally-dry sewage sludge (TSL) and municipal waste compost (MWC)- on soil CO2 fluxes and microbial activities in a long-term field experiment under semi-arid conditions. Both organic amendments were applied at a rate of 30 t ha-1 prior to sowing a barley crop. The experiment was conducted on an agricultural soil (Calcic Luvisol) from the experimental farm "La Higueruela" (Santa Olalla, Toledo). Unamended soils were used as control in both conventional and no-tillage management. During the course of the experiment, soil CO2 fluxes, microbial biomass C (MBC) and enzyme activities involved in the biogeochemical cycles of C, N and P were monitored during 12 months. The results obtained during the experiment for soil CO2 fluxes showed a great seasonal fluctuation due to semi-arid climate conditions. Overall, conventional deep-tillage soils exhibited higher CO2 fluxes, which was particularly larger during the first hours after deep-tillage was performed, and smaller MBC content and significantly lower dehydrogenase, beta-glucosidase, phosphatase, urease and BAA protease activities than no-tillage soils. Both MWC and TSL amendments provoked a significant increase of CO2 fluxes in both conventional and no-tillage soils, which was larger in TSL amended soils and particularly in no-tillage soils. The application of these organic amendments also enhanced MBC content and the overall enzyme activities in amended soils, which indicate a global revitalization of soil microbial metabolism in response to the fresh input of organic compounds that are energy sources for microbial growing, especially with TSL that is a raw organic material with no stabilization treatment.

  3. Site Selection and Geological Research Connected with High Level Waste Disposal Programme in the Czech Republic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomas, J.

    2003-02-25

    Attempts to solve the problem of high-level waste disposal including the spent fuel from nuclear power plants have been made in the Czech Republic for over the 10 years. Already in 1991 the Ministry of Environment entitled The Czech Geological Survey to deal with the siting of the locality for HLW disposal and the project No. 3308 ''The geological research of the safe disposal of high level waste'' had started. Within this project a sub-project ''A selection of perspective HLW disposal sites in the Bohemian Massif'' has been elaborated and 27 prospective areas were identified in the Czech Republic. Thismore » selection has been later narrowed to 8 areas which are recently studied in more detail. As a parallel research activity with siting a granitic body Melechov Massif in Central Moldanubian Pluton has been chosen as a test site and the 1st stage of research i.e. evaluation and study of its geological, hydrogeological, geophysical, tectonic and structural properties has been already completed. The Melechov Massif was selected as a test site after the recommendation of WATRP (Waste Management Assessment and Technical Review Programme) mission of IAEA (1993) because it represents an area analogous with the host geological environment for the future HLW and spent fuel disposal in the Czech Republic, i.e. variscan granitoids. It is necessary to say that this site would not be in a locality where the deep repository will be built, although it is a site suitable for oriented research for the sampling and collection of descriptive data using up to date and advanced scientific methods. The Czech Republic HLW and spent fuel disposal programme is now based on The Concept of Radioactive Waste and Spent Nuclear Fuel Management (''Concept'' hereinafter) which has been prepared in compliance with energy policy approved by Government Decree No. 50 of 12th January 2000 and approved by the Government in May 2002. Preparation of the Concept was required, amongst other reasons in connection with preparations for the Czech Republic's accession to the European Union and in connection with the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management adopted under the auspices of the International Atomic Energy Agency, which was signed by the Czech Republic in 1997. According to the approved Concept it is expected that a deep geological repository in the Czech Republic will be built in granitic rocks.« less

  4. Greenhouse gas emissions of waste management processes and options: A case study.

    PubMed

    de la Barrera, Belen; Hooda, Peter S

    2016-07-01

    Increasing concern about climate change is prompting organisations to mitigate their greenhouse gas emissions. Waste management activities also contribute to greenhouse gas emissions. In the waste management sector, there has been an increasing diversion of waste sent to landfill, with much emphasis on recycling and reuse to prevent emissions. This study evaluates the carbon footprint of the different processes involved in waste management systems, considering the entire waste management stream. Waste management data from the Royal Borough of Kingston upon Thames, London (UK), was used to estimate the carbon footprint for its (Royal Borough of Kingston upon Thames) current source segregation system. Second, modelled full and partial co-mingling scenarios were used to estimate carbon emissions from these proposed waste management approaches. The greenhouse gas emissions from the entire waste management system at Royal Borough of Kingston upon Thames were 12,347 t CO2e for the source-segregated scenario, and 11,907 t CO2e for the partial co-mingled model. These emissions amount to 203.26 kg CO2e t(-1) and 196.02 kg CO2e t(-1) municipal solid waste for source-segregated and partial co-mingled, respectively. The change from a source segregation fleet to a partial co-mingling fleet reduced the emissions, at least partly owing to a change in the number and type of vehicles. © The Author(s) 2016.

  5. Areas on which to focus when seeking to reduce the greenhouse gas emissions of commercial waste management. A case study of a hypermarket, Finland.

    PubMed

    Hupponen, M; Grönman, K; Horttanainen, M

    2018-03-22

    This study focuses on commercial waste, which has received less attention than household waste in regards to greenhouse gas emission research. First, the global warming potential (GWP) of commercial waste management was calculated. Second, the impacts of different waste fractions and the processes of waste management were recognised. Third, the key areas on which to focus when aiming to reduce the greenhouse gas emissions of commercial waste management were determined. This study was conducted on the waste generated by a real hypermarket in South-East Finland and included eight different waste fractions. The waste treatment plants were selected based on the actual situation. Three different scenarios were employed to evaluate the environmental impact of managing mixed waste: landfilling, combustion and more accurate source separation. The GaBi software and impact assessment methodology CML 2001 were used to perform a life cycle assessment of the environmental impacts associated with the waste management. The results indicated that the total GWP of commercial waste management could be reduced by 93% by directing the mixed waste to combustion instead of landfill. A further 5% GWP reduction could be achieved by more accurate source separation of the mixed waste. Utilisation of energy waste had the most significant influence (41-52%) on the total GWP (-880 to -860 kgCO 2 -eq./t), followed by landfilling of mixed waste (influence 15-23% on the total GWP, 430 kgCO 2 -eq./t), recycling polyethylene (PE) plastic (influence 18-21% on the total GWP, -1800 kgCO 2 -eq./t) and recycling cardboard (influence 11-13% on the total GWP, 51 kgCO 2 -eq./t). A key focus should be placed on treatment processes and substitutions, especially in terms of substitutions of energy waste and PE plastic. This study also clarified the importance of sorting PE plastic, even though the share of this waste fraction was not substantial. The results of this paper were compared to those of previous studies. The output of this analysis indicated that the total GWP can be significantly reduced by identifying an alternative recycling or incineration location for cardboard where it is used to substitute virgin material or replace fossil fuels respectively. In conclusion, it is essential to note that waste management companies have a notable influence on the emissions of commercial waste management because they choose the places at which the waste fractions are treated and utilised. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Occupational Risks Associated with Solid Waste Management in the Informal Sector of Gweru, Zimbabwe

    PubMed Central

    Jerie, Steven

    2016-01-01

    This study identifies and analyses the occupational risks associated with solid waste management practices in the informal enterprises of Gweru. Many concerns have been raised about the potential harm from waste to the environment and the general public, but the risks and consequent costs of occupational hazards in waste management have received little attention in the rush to adopt or adapt technologies such as composting. A multimethods research design that triangulates qualitative and quantitative research paradigms is employed in this study. The quantitative design involves physical characterisation of solid waste through material component separation and measurements as well as a questionnaire survey that investigates the risks associated with waste management. The qualitative component includes interviews, open-ended questionnaires, and field observations. Occupational risks occur at every stage in the waste management process, from the point where workers handle waste in the enterprises for collection or recycling to the point of ultimate disposal. Key findings from the study revealed that solid waste management practices are dominated by manual handling tasks hence the higher incidents of muscular-skeletal disorders. Other safety and health hazards associated with waste management in the informal enterprises of Gweru include incidents of diarrhoea, viral hepatitis, and higher incidents of obstructive and restrictive disorders. PMID:27418935

  7. Occupational Risks Associated with Solid Waste Management in the Informal Sector of Gweru, Zimbabwe.

    PubMed

    Jerie, Steven

    2016-01-01

    This study identifies and analyses the occupational risks associated with solid waste management practices in the informal enterprises of Gweru. Many concerns have been raised about the potential harm from waste to the environment and the general public, but the risks and consequent costs of occupational hazards in waste management have received little attention in the rush to adopt or adapt technologies such as composting. A multimethods research design that triangulates qualitative and quantitative research paradigms is employed in this study. The quantitative design involves physical characterisation of solid waste through material component separation and measurements as well as a questionnaire survey that investigates the risks associated with waste management. The qualitative component includes interviews, open-ended questionnaires, and field observations. Occupational risks occur at every stage in the waste management process, from the point where workers handle waste in the enterprises for collection or recycling to the point of ultimate disposal. Key findings from the study revealed that solid waste management practices are dominated by manual handling tasks hence the higher incidents of muscular-skeletal disorders. Other safety and health hazards associated with waste management in the informal enterprises of Gweru include incidents of diarrhoea, viral hepatitis, and higher incidents of obstructive and restrictive disorders.

  8. A multi-criteria decision-making approach to rank supplier selection criteria for hospital waste management: A case from Pakistan.

    PubMed

    Ishtiaq, Palvisha; Khan, Sharfuddin Ahmed; Haq, Moiz-Ul

    2018-04-01

    To address environmental issues and cost effectiveness, waste management is necessary for healthcare facilities. Most importantly, segregation of hazardous and non-hazardous waste must be done as in many developing countries; disposal of both types of healthcare waste is done together, which is an unsafe practice. Waste generated in hospitals needs proper management to minimise hazards for patient and healthcare workers. At the same time, it is quite difficult for hospitals to find a systematic way to select appropriate suppliers for hospital waste management. Therefore, the purpose of this article is to identify, validate, and rank criteria that are essential for hospital waste management suppliers' selection. The analytical hierarchal process approach has been used and a survey from Pakistan's largest city (Karachi) has been considered to rank the most appropriate criteria that is necessary to select the supplier, especially in a developing country like Pakistan. Results show that waste management cost (45.5%) and suppliers' details (31.5%) are the top two main criteria for supplier selection; and storage cost (15.7%), waste handling cost (14.7%), and qualification of the suppliers (10.9%) are the top three most important overall sub-criteria for supplier selection for hospital waste management.

  9. Sustainable waste management in the UK: the public health role.

    PubMed

    Mohan, R; Spiby, J; Leonardi, G S; Robins, A; Jefferis, S

    2006-10-01

    This paper discusses waste management in the UK and its relationship with health. It aims to outline the role of health professionals in the promotion of waste management, and argues for a change in their role in waste management regulation to help make the process more sustainable. The most common definition of sustainable development is that by the Brundtland commission, i.e. "development that meets the needs of the present without compromising the ability of future generations to meet their own needs". Managing waste sites in a manner that minimises toxic impacts on the current and future generations is obviously a crucial part of this. Although the management of waste facilities is extremely complex, the Integrated Pollution Prevention and Control regime, which requires the input of public health professionals on the regulation of such sites, means that all waste management installations should now be operating in a fashion that minimises any toxicological risks to human health. However, the impacts upon climate change, resource use and health inequalities, as well as the effects of waste transportation, are currently not considered to be part of public health professionals' responsibilities when dealing with these sites. There is also no requirement for public health professionals to become involved in waste management planning issues. The fact that public health professionals are not involved in any of these issues makes it unlikely that the potential impacts upon health are being considered fully, and even more unlikely that waste management will become more sustainable. This paper aims to show that by only considering direct toxicological impacts, public health professionals are not fully addressing all the health issues and are not contributing towards sustainability. There is a need for a change in the way that health professionals deal with waste management issues.

  10. Application of Life Cycle Assessment on Electronic Waste Management: A Review.

    PubMed

    Xue, Mianqiang; Xu, Zhenming

    2017-04-01

    Electronic waste is a rich source of both valuable materials and toxic substances. Management of electronic waste is one of the biggest challenges of current worldwide concern. As an effective and prevailing environmental management tool, life cycle assessment can evaluate the environmental performance of electronic waste management activities. Quite a few scientific literatures reporting life cycle assessment of electronic waste management with significant outcomes have been recently published. This paper reviewed the trends, characteristics, research gaps, and challenges of these studies providing detailed information for practitioners involved in electronic waste management. The results showed that life cycle assessment studies were most carried out in Europe, followed by Asia and North America. The research subject of the studies mainly includes monitors, waste printed circuit boards, mobile phones, computers, printers, batteries, toys, dishwashers, and light-emitting diodes. CML was the most widely used life cycle impact assessment method in life cycle assessment studies on electronic waste management, followed by EI99. Furthermore, 40% of the reviewed studies combined with other environmental tools, including life cycle cost, material flow analysis, multi-criteria decision analysis, emergy analysis, and hazard assessment which came to more comprehensive conclusions from different aspects. The research gaps and challenges including uneven distribution of life cycle assessment studies, life cycle impact assessment methods selection, comparison of the results, and uncertainty of the life cycle assessment studies were examined. Although life cycle assessment of electronic waste management facing challenges, their results will play more and more important role in electronic waste management practices.

  11. Application of Life Cycle Assessment on Electronic Waste Management: A Review

    NASA Astrophysics Data System (ADS)

    Xue, Mianqiang; Xu, Zhenming

    2017-04-01

    Electronic waste is a rich source of both valuable materials and toxic substances. Management of electronic waste is one of the biggest challenges of current worldwide concern. As an effective and prevailing environmental management tool, life cycle assessment can evaluate the environmental performance of electronic waste management activities. Quite a few scientific literatures reporting life cycle assessment of electronic waste management with significant outcomes have been recently published. This paper reviewed the trends, characteristics, research gaps, and challenges of these studies providing detailed information for practitioners involved in electronic waste management. The results showed that life cycle assessment studies were most carried out in Europe, followed by Asia and North America. The research subject of the studies mainly includes monitors, waste printed circuit boards, mobile phones, computers, printers, batteries, toys, dishwashers, and light-emitting diodes. CML was the most widely used life cycle impact assessment method in life cycle assessment studies on electronic waste management, followed by EI99. Furthermore, 40% of the reviewed studies combined with other environmental tools, including life cycle cost, material flow analysis, multi-criteria decision analysis, emergy analysis, and hazard assessment which came to more comprehensive conclusions from different aspects. The research gaps and challenges including uneven distribution of life cycle assessment studies, life cycle impact assessment methods selection, comparison of the results, and uncertainty of the life cycle assessment studies were examined. Although life cycle assessment of electronic waste management facing challenges, their results will play more and more important role in electronic waste management practices.

  12. Developing a monitoring and evaluation framework to integrate and formalize the informal waste and recycling sector: the case of the Philippine National Framework Plan.

    PubMed

    Serrona, Kevin Roy B; Yu, Jeongsoo; Aguinaldo, Emelita; Florece, Leonardo M

    2014-09-01

    The Philippines has been making inroads in solid waste management with the enactment and implementation of the Republic Act 9003 or the Ecological Waste Management Act of 2000. Said legislation has had tremendous influence in terms of how the national and local government units confront the challenges of waste management in urban and rural areas using the reduce, reuse, recycle and recovery framework or 4Rs. One of the sectors needing assistance is the informal waste sector whose aspiration is legal recognition of their rank and integration of their waste recovery activities in mainstream waste management. To realize this, the Philippine National Solid Waste Management Commission initiated the formulation of the National Framework Plan for the Informal Waste Sector, which stipulates approaches, strategies and methodologies to concretely involve the said sector in different spheres of local waste management, such as collection, recycling and disposal. What needs to be fleshed out is the monitoring and evaluation component in order to gauge qualitative and quantitative achievements vis-a-vis the Framework Plan. In the process of providing an enabling environment for the informal waste sector, progress has to be monitored and verified qualitatively and quantitatively and measured against activities, outputs, objectives and goals. Using the Framework Plan as the reference, this article developed monitoring and evaluation indicators using the logical framework approach in project management. The primary objective is to institutionalize monitoring and evaluation, not just in informal waste sector plans, but in any waste management initiatives to ensure that envisaged goals are achieved. © The Author(s) 2014.

  13. Developing a master plan for hospital solid waste management: A case study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karamouz, Mohammad; Zahraie, Banafsheh; Kerachian, Reza

    2007-07-01

    Disposal of about 1750 tons of solid wastes per day is the result of a rapid population growth in the province of Khuzestan in the south west of Iran. Most of these wastes, especially hospital solid wastes which have contributed to the pollution of the environment in the study area, are not properly managed considering environmental standards and regulations. In this paper, the framework of a master plan for managing hospital solid wastes is proposed considering different criteria which are usually used for evaluating the pollution of hospital solid waste loads. The effectiveness of the management schemes is also evaluated.more » In order to rank the hospitals and determine the share of each hospital in the total hospital solid waste pollution load, a multiple criteria decision making technique, namely analytical hierarchy process (AHP), is used. A set of projects are proposed for solid waste pollution control and reduction in the proposed framework. It is partially applied for hospital solid waste management in the province of Khuzestan, Iran. The results have shown that the hospitals located near the capital city of the province, Ahvaz, produce more than 43% of the total hospital solid waste pollution load of the province. The results have also shown the importance of improving management techniques rather than building new facilities. The proposed methodology is used to formulate a master plan for hospital solid waste management.« less

  14. Geographic information system-based healthcare waste management planning for treatment site location and optimal transportation routeing.

    PubMed

    Shanmugasundaram, Jothiganesh; Soulalay, Vongdeuane; Chettiyappan, Visvanathan

    2012-06-01

    In Lao People's Democratic Republic (Lao PDR), a growth of healthcare centres, and the environmental hazards and public health risks typically accompanying them, increased the need for healthcare waste (HCW) management planning. An effective planning of an HCW management system including components such as the treatment plant siting and an optimized routeing system for collection and transportation of waste is deemed important. National government offices at developing countries often lack the proper tools and methodologies because of the high costs usually associated with them. However, this study attempts to demonstrate the use of an inexpensive GIS modelling tool for healthcare waste management in the country. Two areas were designed for this study on HCW management, including: (a) locating centralized treatment plants and designing optimum travel routes for waste collection from nearby healthcare facilities; and (b) utilizing existing hospital incinerators and designing optimum routes for collecting waste from nearby healthcare facilities. Spatial analysis paved the way to understand the spatial distribution of healthcare wastes and to identify hotspots of higher waste generating locations. Optimal route models were designed for collecting and transporting HCW to treatment plants, which also highlights constraints in collecting and transporting waste for treatment and disposal. The proposed model can be used as a decision support tool for the efficient management of hospital wastes by government healthcare waste management authorities and hospitals.

  15. Improving integrated waste management at the regional level: the case of Lombardia.

    PubMed

    Rigamonti, Lucia; Falbo, Alida; Grosso, Mario

    2013-09-01

    The article summarises the main results of the 'Gestione Rifiuti in Lombardia: Analisi del ciclo di vita' (Waste management in Lombardia region: Life cycle assessment; GERLA) project. Life cycle assessment (LCA) has been selected by Regione Lombardia as a strategic decision support tool in the drafting of its new waste management programme. The goal was to use the life cycle thinking approach to assess the current regional situation and thus to give useful strategic indications for the future waste management. The first phase of the study consisted of the LCA of the current management of municipal waste in the Lombardia region (reference year: 2009). The interpretation of such results has allowed the definition of four possible waste management scenarios for the year 2020, with the final goal being to improve the environmental performance of the regional system. The results showed that the current integrated waste management of Lombardia region is already characterised by good energy and environmental performances. However, there is still room for further improvement: actions based, on the one hand, on a further increase in recycling rates and, on the other hand, on a series of technological modifications, especially in food waste and residual waste management, can be undertaken to improve the overall system.

  16. 40 CFR 272.1851 - Oklahoma State-administered program: Final authorization.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Oklahoma § 272.1851...)(1)(i) of this section are incorporated by reference as part of the hazardous waste management... Approved Oklahoma Statutory and Regulatory Requirements Applicable to the Hazardous Waste Management...

  17. 40 CFR 272.1351 - Montana State-Administered Program: Final Authorization.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Montana § 272.1351... its hazardous waste management program. However, EPA retains the authority to exercise its inspection... this section are incorporated by reference as part of the hazardous waste management program under...

  18. Theoretical Framework for Plastic Waste Management in Ghana through Extended Producer Responsibility: Case of Sachet Water Waste

    PubMed Central

    Quartey, Ebo Tawiah; Tosefa, Hero; Danquah, Kwasi Asare Baffour; Obrsalova, Ilona

    2015-01-01

    Currently, use and disposal of plastic by consumers through waste management activities in Ghana not only creates environmental problems, but also reinforces the notion of a wasteful society. The magnitude of this problem has led to increasing pressure from the public for efficient and practical measures to solve the waste problem. This paper analyses the impact of plastic use and disposal in Ghana. It emphasizes the need for commitment to proper management of the impacts of plastic waste and effective environmental management in the country. Sustainable Solid Waste Management (SSWM) is a critical problem for developing countries with regards to climate change and greenhouse gas emission, and also the general wellbeing of the populace. Key themes of this paper are producer responsibility and management of products at end of life. The paper proposes two theatrical recovery models that can be used to address the issue of sachet waste in Ghana. PMID:26308016

  19. Waste management in small hospitals: trouble for environment.

    PubMed

    Pant, Deepak

    2012-07-01

    Small hospitals are the grassroots for the big hospital structures, so proper waste management practices require to be initiated from there. Small hospitals contribute a lot in the health care facilities, but due to their poor waste management practices, they pose serious biomedical waste pollution. A survey was conducted with 13 focus questions collected from the 100 hospital present in Dehradun. Greater value of per day per bed waste was found among the small hospitals (178 g compared with 114 g in big hospitals), indicating unskilled waste management practices. Small hospitals do not follow the proper way for taking care of segregation of waste generated in the hospital, and most biomedical wastes were collected without segregation into infectious and noninfectious categories.

  20. Assessing and monitoring soil quality at agricultural waste disposal areas-Soil Indicators

    NASA Astrophysics Data System (ADS)

    Doula, Maria; Kavvadias, Victor; Sarris, Apostolos; Lolos, Polykarpos; Liakopoulou, Nektaria; Hliaoutakis, Aggelos; Kydonakis, Aris

    2014-05-01

    The necessity of elaborating indicators is one of the priorities identified by the United Nations Convention to Combat Desertification (UNCCD). The establishment of an indicator monitoring system for environmental purposes is dependent on the geographical scale. Some indicators such as rain seasonality or drainage density are useful over large areas, but others such as soil depth, vegetation cover type, and land ownership are only applicable locally. In order to practically enhance the sustainability of land management, research on using indicators for assessing land degradation risk must initially focus at local level because management decisions by individual land users are taken at this level. Soils that accept wastes disposal, apart from progressive degradation, may cause serious problems to the surrounding environment (humans, animals, plants, water systems, etc.), and thus, soil quality should be necessarily monitored. Therefore, quality indicators, representative of the specific waste type, should be established and monitored periodically. Since waste composition is dependent on their origin, specific indicators for each waste type should be established. Considering agricultural wastes, such a specification, however, could be difficult, since almost all agricultural wastes are characterized by increased concentrations of the same elements, namely, phosphorous, nitrogen, potassium, sulfur, etc.; contain large amounts of organic matter; and have very high values of chemical oxygen demand (COD), biochemical oxygen demand (BOD), and electrical conductivity. Two LIFE projects, namely AgroStrat and PROSODOL are focused on the identification of soil indicators for the assessment of soil quality at areas where pistachio wastes and olive mill wastes are disposed, respectively. Many soil samples were collected periodically for 2 years during PROSODOL and one year during AgroStrat (this project is in progress) from waste disposal areas and analyzed for 23 parameters. Results indicate that there are soil parameters that can be used as indictors to assess soil quality at such areas. For the two cases, i.e pistachio wastes and olive oil mill wastes, different soil parameters were identified as potential indicators. In specific, for OMW the proposed indicators are: organic matter, electrical conductivity, total N, total polyphenols, exchangeable K, DTPA-available Fe, available P and pH (for the cases of acid soils). For pistachio wastes, it seems that the most appropriate indictors are: organic matter, electrical conductivity, exchangeable Mg, DTPA-available Fe, DTPA-available Cu, available B. A monitoring system was developed which may assist authorities and policy makers to continuously monitor the disposal areas or areas where wastes are used for fertilization/irrigation. For this, soil parameters were mapped with respect to the depth, date and temporal variations of their spatial distribution (spatial surfaces). Interpolated surfaces based on the Inverse Distance Weighted method (IDW) were created and integrated within a geospatial web based map application tool.

  1. Waste management barriers in developing country hospitals: Case study and AHP analysis.

    PubMed

    Delmonico, Diego V de Godoy; Santos, Hugo H Dos; Pinheiro, Marco Ap; de Castro, Rosani; de Souza, Regiane M

    2018-01-01

    Healthcare waste management is an essential field for both researchers and practitioners. Although there have been few studies using statistical methods for its evaluation, it has been the subject of several studies in different contexts. Furthermore, the known precarious practices for waste management in developing countries raise questions about its potential barriers. This study aims to investigate the barriers in healthcare waste management and their relevance. For this purpose, this paper analyses waste management practices in two Brazilian hospitals by using case study and the Analytic Hierarchy Process method. The barriers were organized into three categories - human factors, management, and infrastructure, and the main findings suggest that cost and employee awareness were the most significant barriers. These results highlight the main barriers to more sustainable waste management, and provide an empirical basis for multi-criteria evaluation of the literature.

  2. Design of concrete waste basin in Integrated Temporarily Sanitary Landfill (ITSL) in Siosar, Karo Regency, Indonesia on supporting clean environment and sustainable fertilizers for farmers

    NASA Astrophysics Data System (ADS)

    Ginting, N.; Siahaan, J.; Tarigan, A. P.

    2018-03-01

    A new settlement in Siosar village of Karo Regency has been developed for people whose villages have been completely destroyed by the prolong eruptions of Sinabung. An integrated temporarily sanitary landfill (ITSL) was built there to support the new living environment. The objective of this study is to investigate the organic waste decomposing in order to improve the design of the conventional concrete waste basin installed in the ITSL. The study was last from May until August 2016. The used design was Completely Randomized Design (CRD) in which organic waste was treated using decomposer with five replications in three composter bins. Decomposting process lasted for three weeks. Research parameters were pH, temperature, waste reduction in weight, C/N, and organic fertilizer production(%). The results of waste compost as follows : pH was 9.45, ultimate temperature was 31.6°C, C/N was in the range of 10.5-12.4, waste reduction was 53% and organic fertilizer production was 47%. Based on the decomposting process and the analysis, it is recommended that the conventional concrete waste basin should be divided into three colums and each column would be filled with waste when previous column is fulled. It is predicted that when the third column is fully occupied then the waste in the first column already become a sustainable fertilizer.

  3. Municipal solid waste management in Malaysia: practices and challenges.

    PubMed

    Manaf, Latifah Abd; Samah, Mohd Armi Abu; Zukki, Nur Ilyana Mohd

    2009-11-01

    Rapid economic development and population growth, inadequate infrastructure and expertise, and land scarcity make the management of municipal solid waste become one of Malaysia's most critical environmental issues. The study is aimed at evaluating the generation, characteristics, and management of solid waste in Malaysia based on published information. In general, the per capita generation rate is about 0.5-0.8 kg/person/day in which domestic waste is the primary source. Currently, solid waste is managed by the Ministry of Housing and Local Government, with the participation of the private sector. A new institutional and legislation framework has been structured with the objectives to establish a holistic, integrated, and cost-effective solid waste management system, with an emphasis on environmental protection and public health. Therefore, the hierarchy of solid waste management has given the highest priority to source reduction through 3R, intermediate treatment and final disposal.

  4. Municipal solid waste management planning for Xiamen City, China: a stochastic fractional inventory-theory-based approach.

    PubMed

    Chen, Xiujuan; Huang, Guohe; Zhao, Shan; Cheng, Guanhui; Wu, Yinghui; Zhu, Hua

    2017-11-01

    In this study, a stochastic fractional inventory-theory-based waste management planning (SFIWP) model was developed and applied for supporting long-term planning of the municipal solid waste (MSW) management in Xiamen City, the special economic zone of Fujian Province, China. In the SFIWP model, the techniques of inventory model, stochastic linear fractional programming, and mixed-integer linear programming were integrated in a framework. Issues of waste inventory in MSW management system were solved, and the system efficiency was maximized through considering maximum net-diverted wastes under various constraint-violation risks. Decision alternatives for waste allocation and capacity expansion were also provided for MSW management planning in Xiamen. The obtained results showed that about 4.24 × 10 6  t of waste would be diverted from landfills when p i is 0.01, which accounted for 93% of waste in Xiamen City, and the waste diversion per unit of cost would be 26.327 × 10 3  t per $10 6 . The capacities of MSW management facilities including incinerators, composting facility, and landfills would be expanded due to increasing waste generation rate.

  5. Financial implications of compliance with EU waste management goals: Feasibility and consequences in a transition country.

    PubMed

    Mihajlović, Višnja; Vujić, Goran; Stanisavljević, Nemanja; Batinić, Bojan

    2016-09-01

    This paper outlines the approach that can assist decision makers to have first preliminary insights regarding costs of complying with requested European Union municipal waste management goals in transition and developing countries. Serbia, as a joining member of European Union, must confront itself with the challenges resulting from European Union waste management directives. Implementation of waste separation units and the construction of sanitary landfills is already in place in Serbia. However, new waste management practice will need additional transformation and will require implementation of waste treatment technologies for additional management of generated waste. Implementation of analyzed best available technology/techniques for waste treatment can support the country's effort in reaching the policy goals. However, the question here is how much will the implementation of additional waste treatments influence the overall waste management costs? Results of the scenario's financial viability show that composting and sanitary landfill are the most viable solutions regarding the costs, even under increasing discount rates. Although different discount rates influence the overall gate fees and net present values, the level of affordability for different scenarios remains the same. © The Author(s) 2016.

  6. From Centralized Disassembly to Life Cycle Management: Status and Progress of E-waste Treatment System in China

    NASA Astrophysics Data System (ADS)

    Song, Xiaolong; Yang, Jianxin; Lu, Bin; Yang, Dong

    2017-01-01

    China is now facing e-waste problems from both growing domestic generation and illegal imports. Many stakeholders are involved in the e-waste treatment system due to the complexity of e-waste life cycle. Beginning with the state of the e-waste treatment industry in China, this paper summarizes the latest progress in e-waste management from such aspects as the new edition of the China RoHS Directive, new Treatment List, new funding subsidy standard, and eco-design pilots. Thus, a conceptual model for life cycle management of e-waste is generalized. The operating procedure is to first identify the life cycle stages of the e-waste and extract the important life cycle information. Then, life cycle tools can be used to conduct a systematic analysis to help decide how to maximize the benefits from a series of life cycle engineering processes. Meanwhile, life cycle thinking is applied to improve the legislation relating to e-waste so as to continuously improve the sustainability of the e-waste treatment system. By providing an integrative framework, the life cycle management of e-waste should help to realize sustainable management of e-waste in developing countries.

  7. Food Waste to Energy: An Overview of Sustainable Approaches for Food Waste Management and Nutrient Recycling

    PubMed Central

    Paritosh, Kunwar; Kushwaha, Sandeep K.; Yadav, Monika; Pareek, Nidhi; Chawade, Aakash

    2017-01-01

    Food wastage and its accumulation are becoming a critical problem around the globe due to continuous increase of the world population. The exponential growth in food waste is imposing serious threats to our society like environmental pollution, health risk, and scarcity of dumping land. There is an urgent need to take appropriate measures to reduce food waste burden by adopting standard management practices. Currently, various kinds of approaches are investigated in waste food processing and management for societal benefits and applications. Anaerobic digestion approach has appeared as one of the most ecofriendly and promising solutions for food wastes management, energy, and nutrient production, which can contribute to world's ever-increasing energy requirements. Here, we have briefly described and explored the different aspects of anaerobic biodegrading approaches for food waste, effects of cosubstrates, effect of environmental factors, contribution of microbial population, and available computational resources for food waste management researches. PMID:28293629

  8. Food Waste to Energy: An Overview of Sustainable Approaches for Food Waste Management and Nutrient Recycling.

    PubMed

    Paritosh, Kunwar; Kushwaha, Sandeep K; Yadav, Monika; Pareek, Nidhi; Chawade, Aakash; Vivekanand, Vivekanand

    2017-01-01

    Food wastage and its accumulation are becoming a critical problem around the globe due to continuous increase of the world population. The exponential growth in food waste is imposing serious threats to our society like environmental pollution, health risk, and scarcity of dumping land. There is an urgent need to take appropriate measures to reduce food waste burden by adopting standard management practices. Currently, various kinds of approaches are investigated in waste food processing and management for societal benefits and applications. Anaerobic digestion approach has appeared as one of the most ecofriendly and promising solutions for food wastes management, energy, and nutrient production, which can contribute to world's ever-increasing energy requirements. Here, we have briefly described and explored the different aspects of anaerobic biodegrading approaches for food waste, effects of cosubstrates, effect of environmental factors, contribution of microbial population, and available computational resources for food waste management researches.

  9. 40 CFR 270.230 - May I perform remediation waste management activities under a RAP at a location removed from the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... management activities under a RAP at a location removed from the area where the remediation wastes originated... management activities under a RAP at a location removed from the area where the remediation wastes originated? (a) You may request a RAP for remediation waste management activities at a location removed from the...

  10. 40 CFR 270.230 - May I perform remediation waste management activities under a RAP at a location removed from the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... management activities under a RAP at a location removed from the area where the remediation wastes originated... management activities under a RAP at a location removed from the area where the remediation wastes originated? (a) You may request a RAP for remediation waste management activities at a location removed from the...

  11. Approach to training of personnel to manage radioactive wastes offered by education training Centre at Moscow Sia Radon under sponsorship of IAEA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Batyukhnova, O.G.; Dmitriev, S.A.; Ojovan, M.I.

    The availability of qualified personnel is crucial to the licensing and efficient and safe operation of waste management facilities and for the improvement of the existing waste management practices. The countries with some degree of waste management activities are of special concerns, since their narrow waste management experience and personal capabilities may be a limiting factor to manage radioactive waste in a safe and technically optimal manner. The International Education Training Centre (IETC) at Moscow State Unitary Enterprise Scientific and Industrial Association 'Radon' (SIA 'Radon'), in co-operation with the International Atomic Energy Agency (IAEA), has developed expertise and provided trainingmore » to waste management personnel for the last 10 years. During this period, more than 300 specialists from 26 European and Asian countries, (mostly) sponsored by the IAEA, have increased their knowledge and skills in radioactive waste management. The current experience of the SIA 'Radon' in the organisation of the IAEA sponsored training is summarized and an outline of some strategic educational elements, which IETC will continue to pursue in the coming years, is provided. (authors)« less

  12. E-waste scenario in India, its management and implications.

    PubMed

    Wath, Sushant B; Dutt, P S; Chakrabarti, T

    2011-01-01

    Electronic waste or E-waste comprises of old, end-of-life electronic appliances such as computers, laptops, TVs, DVD players, refrigerators, freezers, mobile phones, MP3 players, etc., which have been disposed of by their original users. E-waste contains many hazardous constituents that may negatively impact the environment and affect human health if not properly managed. Various organizations, bodies, and governments of many countries have adopted and/or developed the environmentally sound options and strategies for E-waste management to tackle the ever growing threat of E-waste to the environment and human health. This paper presents E-waste composition, categorization, Global and Indian E-waste scenarios, prospects of recoverable, recyclable, and hazardous materials found in the E-waste, Best Available Practices, recycling, and recovery processes followed, and their environmental and occupational hazards. Based on the discussion, various challenges for E-waste management particularly in India are delineated, and needed policy interventions were discussed.

  13. Sustainable WEE management in Malaysia: present scenarios and future perspectives

    NASA Astrophysics Data System (ADS)

    Rezaul Hasan Shumon, Md; Ahmed, S.

    2013-12-01

    Technological advances have resulted development of a lot of electronic products for continuously increasing number of customers. As the customer taste and features of these products change rapidly, the life cycles have come down tremendously. Therefore, a large volume of e-wastes are now emanated every year. This scenario is very much predominant in Malaysia. On one hand e-wastes are becoming environmental hazards and affecting the ecological imbalance. On the other, these wastes are remaining still economically valuable. In Malaysia, e-waste management system is still in its nascent state. This paper describes the current status of e-waste generation and recycling and explores issues for future e-waste management system in Malaysia from sustainable point of view. As to draw some factual comparisons, this paper reviews the e-waste management system in European Union, USA, Japan, as a benchmark. Then it focuses on understanding the Malaysian culture, consumer discarding behavior, flow of the materials in recycling, e-waste management system, and presents a comparative view with the Swiss e-waste system. Sustainable issues for e-waste management in Malaysia are also presented. The response adopted so far in collection and recovery activities are covered in later phases. Finally, it investigates the barriers and challenges of e-waste system in Malaysia.

  14. Management in the system of waste utilization of production and consumption

    NASA Astrophysics Data System (ADS)

    Azimov, U. I.; Gilmanshin, I. R.; Krainova, D. R.; Galeev, I. A.

    2017-09-01

    The main problems of waste management in accordance with the legislation are considered in the article. The economic benefits of separate waste collection are listed. The necessity of transition to a new level of waste management in the Republic of Tatarstan is determined.

  15. 40 CFR 272.2501 - Wisconsin State-administered program; final authorization.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Wisconsin § 272.2501... cited in this paragraph are incorporated by reference as part of the hazardous waste management program... Applicable to the Hazardous Waste Management Program, (dated August 9, 1993). (2) EPA Approved Wisconsin...

  16. A review on current status of municipal solid waste management in India.

    PubMed

    Gupta, Neha; Yadav, Krishna Kumar; Kumar, Vinit

    2015-11-01

    Municipal solid waste management is a major environmental issue in India. Due to rapid increase in urbanization, industrialization and population, the generation rate of municipal solid waste in Indian cities and towns is also increased. Mismanagement of municipal solid waste can cause adverse environmental impacts, public health risk and other socio-economic problem. This paper presents an overview of current status of solid waste management in India which can help the competent authorities responsible for municipal solid waste management and researchers to prepare more efficient plans. Copyright © 2015. Published by Elsevier B.V.

  17. Improvement of the material and transport component of the system of construction waste management

    NASA Astrophysics Data System (ADS)

    Kostyshak, Mikhail; Lunyakov, Mikhail

    2017-10-01

    Relevance of the topic of selected research is conditioned with the growth of construction operations and growth rates of construction and demolition wastes. This article considers modern approaches to the management of turnover of construction waste, sequence of reconstruction or demolition processes of the building, information flow of the complete cycle of turnover of construction and demolition waste, methods for improvement of the material and transport component of the construction waste management system. Performed analysis showed that mechanism of management of construction waste allows to increase efficiency and environmental safety of this branch and regions.

  18. Comparison of Greenhouse Gas Emissions between Two Dairy Farm Systems (Conventional vs. Organic Management) in New Hampshire Using the Manure DNDC Biogeochemical Model

    NASA Astrophysics Data System (ADS)

    Dorich, C.; Contosta, A.; Li, C.; Brito, A.; Varner, R. K.

    2013-12-01

    Agriculture contributes 20 to 25 % of the total anthropogenic greenhouse gas (GHG) emissions globally. These agricultural emissions are primarily in the form of methane (CH4) and nitrous oxide (N2O) with these GHG accounting for roughly 40 and 80 % of the total anthropogenic emissions of CH4 and N2O, respectively. Due to varied management and the complexities of agricultural ecosystems, it is difficult to estimate these CH4 and N2O emissions. The IPCC emission factors can be used to yield rough estimates of CH4 and N2O emissions but they are often based on limited data. Accurate modeling validated by measurements is needed in order to identify potential mitigation areas, reduce GHG emissions from agriculture, and improve sustainability of farming practices. The biogeochemical model Manure DNDC was validated using measurements from two dairy farms in New Hampshire, USA in order to quantify GHG emissions under different management systems. One organic and one conventional dairy farm operated by the University of New Hampshire's Agriculture Experiment Station were utilized as the study sites for validation of Manure DNDC. Compilation of management records started in 2011 to provide model inputs. Model results were then compared to field collected samples of soil carbon and nitrogen, above-ground biomass, and GHG fluxes. Fluxes were measured in crop, animal, housing, and waste management sites on the farms in order to examine the entire farm ecosystem and test the validity of the model. Fluxes were measured by static flux chambers, with enteric fermentation measurements being conducted by the SF6 tracer test as well as a new method called Greenfeeder. Our preliminary GHG flux analysis suggests higher emissions than predicted by IPCC emission factors and equations. Results suggest that emissions from manure management is a key concern at the conventional dairy farm while bedded housing at the organic dairy produced large quantities of GHG.

  19. The analysis of the program to develop the Nuclear Waste Management System: Allocated requirements for the Office of Civilian Radioactive Waste Management Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woods, T.W.

    1991-09-01

    This report is volume 3, part B, of the program to satisfy the allocated requirements of the Office of Civilian Radioactive Waste Management Program, in the development of the nuclear waste management system. The report is divided into the following sections: regulatory compliance; external relations; international programs; strategic and contingency planning; contract business management; and administrative services. (CS)

  20. 75 FR 58346 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-24

    ... Chemical Company-Texas Operations (Eastman) to exclude (or delist) certain solid wastes generated by its Longview, Texas, facility from the lists of hazardous wastes. EPA used the Delisting Risk Assessment... Waste Management System; Identification and Listing of Hazardous Waste AGENCY: Environmental Protection...

  1. Energy performance of an integrated bio-and-thermal hybrid system for lignocellulosic biomass waste treatment.

    PubMed

    Kan, Xiang; Yao, Zhiyi; Zhang, Jingxin; Tong, Yen Wah; Yang, Wenming; Dai, Yanjun; Wang, Chi-Hwa

    2017-03-01

    Lignocellulosic biomass waste, a heterogeneous complex of biodegradables and non-biodegradables, accounts for large proportion of municipal solid waste. Due to limitation of single-stage treatment, a two-stage hybrid AD-gasification system was proposed in this work, in which AD acted as pre-treatment to convert biodegradables into biogas followed by gasification converting solid residue into syngas. Energy performance of single and two-stage systems treating 3 typical lignocellulosic wastes was studied using both experimental and numerical methods. In comparison with conventional single-stage gasification treatment, this hybrid system could significantly improve the quality of produced gas for all selected biomass wastes and show its potential in enhancing total gas energy production by a maximum value of 27% for brewer's spent grain treatment at an organic loading rate (OLR) of 3gVS/L/day. The maximum overall efficiency of the hybrid system for horticultural waste treatment was 75.2% at OLR of 11.3gVS/L/day, 5.5% higher than conventional single-stage system. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. 1989 Report to Congress: Management of Hazardous Wastes from Educational Institutions

    EPA Pesticide Factsheets

    Report identifying the statutory and regulatory requirements, examining current hazardous waste management practices, and identifying possible ways for educational institutions to improve hazardous waste management.

  3. Improving waste segregation while reducing costs in a tertiary-care hospital in a lower-middle-income country in Central America.

    PubMed

    Johnson, Kyle M; González, Miriam L; Dueñas, Lourdes; Gamero, Mario; Relyea, George; Luque, Laura E; Caniza, Miguela A

    2013-07-01

    Healthcare waste (HCW) management and segregation are essential to ensure safety, environmental protection and cost control. Poor HCW management increase risks and costs for healthcare institutions. On-going surveillance and training are important to maintain good HCW practices. Our objectives were to evaluate and improve HCW practices at Hospital Bloom, San Salvador, El Salvador. We studied HCW disposal practices by observing waste containers, re-segregating waste placed in biohazardous waste bags, and administering a seven-itemsknowledge survey before and after training in waste management at Hospital Bloom. The training was based on national and international standards. We followed total biohazardous waste production before and after the training. The hospital staff was knowledgeable about waste segregation practices, but had poor compliance with national policies. Re-segregating waste in biohazardous waste bags showed that 61% of this waste was common waste, suggesting that the staff was possibly unaware of the cost of mis-segregating healthcare waste. After staff training in HCW management, the correct responses increased by 44% and biohazardous waste disposal at the hospital reduced by 48%. Better segregation of biohazardous waste and important savings can be obtained by HCW management education of hospital staff. Hospitals can benefit from maximising the use of available resources by sustaining best practices of HCW, especially those in hospitals in lower-middle-income countries.

  4. Assessing the management of healthcare waste in Hawassa city, Ethiopia.

    PubMed

    Israel Deneke Haylamicheal; Mohamed Aqiel Dalvie; Biruck Desalegn Yirsaw; Hanibale Atsbeha Zegeye

    2011-08-01

    Inadequate management of healthcare waste is a serious concern in many developing countries due to the risks posed to human health and the environment. This study aimed to evaluate healthcare waste management in Hawassa city, Ethiopia. The study was conducted in nine healthcare facilities (HCFs) including hospitals (four), health centres (two) and higher clinics (three) in two phases, first to assess the waste management aspect and second to determine daily waste generation rate. The result showed that the median quantity of waste generated at the facilities was 3.46 kg bed(-1) day(-1) (range: 1.48-8.19 kg bed(-1) day(-1)). The quantity of waste per day generated at a HCF increased as occupancy increased (p < 0.001). The percentage hazardous waste generated at government HCFs was more than at private HCFs (p < 0.05). The proportion of hazardous waste (20-63.1%) generated at the different HCFs was much higher than the WHO recommendation (10-25%). There was no waste segregation in most HCFs and only one used a complete color coding system. Solid waste and wastewater were stored, transported, treated and disposed inappropriately at all HCFs. Needle-stick injuries were prevalent in 25-100% of waste handlers employed at these HCFs. Additionally, low levels of training and awareness of waste legislation was prevalent amongst staff. The study showed that management of healthcare waste at HCFs to be poor. Waste management practices need to be improved through improved legislation and enforcement, and training of staff in the healthcare facilities in Hawassa.

  5. Facilitating the improved management of waste in South Africa through a national waste information system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Godfrey, Linda

    2008-07-01

    Developing a waste information system (WIS) for a country is more than just about collecting routine data on waste; it is about facilitating the improved management of waste by providing timely, reliable information to the relevant role-players. It is a means of supporting the waste governance challenges facing South Africa - challenges ranging from strategic waste management issues at national government to basic operational challenges at local government. The paper addresses two hypotheses. The first is that the identified needs of government can provide a platform from which to design a national WIS framework for a developing country such asmore » South Africa, and the second is that the needs for waste information reflect greater, currently unfulfilled challenges in the sustainable management of waste. Through a participatory needs analysis process, it is shown that waste information is needed by the three spheres of government, to support amongst others, informed planning and decision-making, compliance monitoring and enforcement, community participation through public access to information, human, infrastructure and financial resource management and policy development. These needs for waste information correspond closely with key waste management challenges currently facing the country. A shift in governments approach to waste, in line with national and international policy, is evident from identified current and future waste information needs. However, the need for information on landfilling remains entrenched within government, possibly due to the poor compliance of landfill sites in South Africa and the problems around the illegal disposal of both general and hazardous waste.« less

  6. Analysis of waste management issues arising from a field study evaluating decontamination of a biological agent from a building.

    PubMed

    Lemieux, P; Wood, J; Drake, J; Minamyer, S; Silvestri, E; Yund, C; Nichols, T; Ierardi, M; Amidan, B

    2016-01-01

    The Bio-response Operational Testing and Evaluation (BOTE) Project was a cross-government effort designed to operationally test and evaluate a response to a biological incident (release of Bacillus anthracis [Ba] spores, the causative agent for anthrax) from initial public health and law enforcement response through environmental remediation. The BOTE Project was designed to address site remediation after the release of a Ba simulant, Bacillus atrophaeus spp. globigii (Bg), within a facility, drawing upon recent advances in the biological sampling and decontamination areas. A key component of response to a biological contamination incident is the proper management of wastes and residues, which is woven throughout all response activities. Waste is generated throughout the response and includes items like sampling media packaging materials, discarded personal protective equipment, items removed from the facility either prior to or following decontamination, aqueous waste streams, and materials generated through the application of decontamination technologies. The amount of residual contaminating agent will impact the available disposal pathways and waste management costs. Waste management is an integral part of the decontamination process and should be included through "Pre-Incident" response planning. Overall, the pH-adjusted bleach decontamination process generated the most waste from the decontamination efforts, and fumigation with chlorine dioxide generated the least waste. A majority of the solid waste generated during pH-adjusted bleach decontamination was the nonporous surfaces that were removed, bagged, decontaminated ex situ, and treated as waste. The waste during the two fumigation rounds of the BOTE Project was associated mainly with sampling activities. Waste management activities may represent a significant contribution to the overall cost of the response/recovery operation. This paper addresses the waste management activities for the BOTE field test. Management of waste is a critical element of activities dealing with remediation of buildings and outdoor areas following a biological contamination incident. Waste management must be integrated into the overall remediation process, along with sampling, decontamination, resource management, and other important response elements, rather than being a stand-alone activity. The results presented in this paper will provide decision makers and emergency planners at the federal/state/tribal/local level information that can be used to integrate waste management into an overall systems approach to planning and response activities.

  7. Affecting Factors on Local Waste Management in Penyangkringan Village, Weleri: an Identification

    NASA Astrophysics Data System (ADS)

    Puspita Adriyanti, Nadia; Candra Dewi, Ova; Gamal, Ahmad; Joko Romadhon, Mohammad; Raditya

    2018-03-01

    Villages in Indonesia usually does not have proper waste management and it is affecting the environmental and social condition in those places. Local governments have been trying to implement many kinds of solid waste management systems and yet many of them does not bear fruit. We argue that the failure of the waste management implementation in Indonesian villages is due to several aspects: the geographic condition of the villages, the social conditions, and the availability of facilities and infrastructures in those villages. Waste management should be modeled in accordance to those three aspects.

  8. Bio-Medical Waste Managment in a Tertiary Care Hospital: An Overview.

    PubMed

    Pandey, Anita; Ahuja, Sanjiv; Madan, Molly; Asthana, Ajay Kumar

    2016-11-01

    Bio-Medical Waste (BMW) management is of utmost importance as its improper management poses serious threat to health care workers, waste handlers, patients, care givers, community and finally the environment. Simultaneously, the health care providers should know the quantity of waste generated in their facility and try to reduce the waste generation in day-to-day work because lesser amount of BMW means a lesser burden on waste disposal work and cost saving. To have an overview of management of BMW in a tertiary care teaching hospital so that effective interventions and implementations can be carried out for better outcome. The observational study was carried out over a period of five months from January 2016 to May 2016 in Chhatrapati Shivaji Subharti Hospital, Meerut by the Infection Control Team (ICT). Assessment of knowledge was carried out by asking set of questions individually and practice regarding awareness of BMW Management among the Health Care Personnel (HCP) was carried out by direct observation in the workplace. Further, the total BMW generated from the present setup in kilogram per bed per day was calculated by dividing the mean waste generated per day by the number of occupied beds. Segregation of BMW was being done at the site of generation in almost all the areas of the hospital in color coded polythene bags as per the hospital protocol. The different types of waste being collected were infectious solid waste in red bag, soiled infectious waste in yellow bag and sharp waste in puncture proof container and blue bag. Though awareness (knowledge) about segregation of BMW was seen in 90% of the HCP, 30%-35% did not practice. Out of the total waste generated (57912 kg.), 8686.8 kg. (15%) was infectious waste. Average infectious waste generated was 0.341 Kg per bed per day. The transport, treatment and disposal of each collected waste were outsourced and carried out by 'Synergy' waste management Pvt. Ltd. The practice of BMW Management was lacking in 30-35% HCP which may lead to mixing of the 15% infectious waste with the remaining non-infectious. Therefore, training courses and awareness programs about BMW management will be carried out every month targeting smaller groups.

  9. Assessment of medical waste management in seven hospitals in Lagos, Nigeria.

    PubMed

    Awodele, Olufunsho; Adewoye, Aishat Abiodun; Oparah, Azuka Cyril

    2016-03-15

    Medical waste (MW) can be generated in hospitals, clinics and places where diagnosis and treatment are conducted. The management of these wastes is an issue of great concern and importance in view of potential public health risks associated with such wastes. The study assessed the medical waste management practices in selected hospitals and also determined the impact of Lagos Waste Management Authority (LAWMA) intervention programs. A descriptive cross-sectional survey method was used. Data were collected using three instrument (questionnaire, site visitation and in -depth interview). Two public (hospital A, B) and five private (hospital C, D, E, F and G) which provide services for low, middle and high income earners were used. Data analysis was done with SPSS version 20. Chi-squared test was used to determine level of significance at p < 0.05. The majority 56 (53.3%) of the respondents were females with mean age of 35.46 (±1.66) years. The hospital surveyed, except hospital D, disposes both general and medical waste separately. All the facilities have the same process of managing their waste which is segregation, collection/on-site transportation, on-site storage and off-site transportation. Staff responsible for collecting medical waste uses mainly hand gloves as personal protective equipment. The intervention programs helped to ensure compliance and safety of the processes; all the hospitals employ the services of LAWMA for final waste disposal and treatment. Only hospital B offered on-site treatment of its waste (sharps only) with an incinerator while LAWMA uses hydroclave to treat its wastes. There are no policies or guidelines in all investigated hospitals for managing waste. An awareness of proper waste management amongst health workers has been created in most hospitals through the initiative of LAWMA. However, hospital D still mixes municipal and hazardous wastes. The treatment of waste is generally done by LAWMA using hydroclave, to prevent environmental hazards except hospital B that treats its sharp with an incinerator. In order to enhance uniform and appropriate waste management practices in the entire State, there is need for capacity building at all levels and also policies and guidelines formulations.

  10. 1987 Oak Ridge model conference: Proceedings: Volume I, Part 3, Waste Management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1987-01-01

    A conference sponsored by the United States Department of Energy (DOE), was held on waste management. Topics of discussion were transuranic waste management, chemical and physical treatment technologies, waste minimization, land disposal technology and characterization and analysis. Individual projects are processed separately for the data bases. (CBS)

  11. 78 FR 70225 - West Virginia: Final Authorization of State Hazardous Waste Management Program Revisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-25

    ... Department of Environmental Protection, (WVDEP), Division of Water and Waste Management, 601 57th Street SE...] West Virginia: Final Authorization of State Hazardous Waste Management Program Revisions AGENCY... for final authorization of revisions to its hazardous waste program under the Resource Conservation...

  12. 40 CFR 272.151 - Arizona State-administered program: Final authorization.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Arizona § 272.151... the hazardous waste management program under Subtitle C of RCRA, 42 U.S.C. 6921 et seq. (i) EPA Approved Arizona Statutory Requirements Applicable to the Hazardous Waste Management Program, June 1995...

  13. 40 CFR 272.151 - Arizona State-administered program: Final authorization.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Arizona § 272.151... the hazardous waste management program under Subtitle C of RCRA, 42 U.S.C. 6921 et seq. (i) EPA Approved Arizona Statutory Requirements Applicable to the Hazardous Waste Management Program, June 1995...

  14. 40 CFR 272.1301 - State-administered program; Final authorization.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Missouri § 272.1301 State... incorporated by reference as part of the hazardous waste management program under subtitle C of RCRA, 42 U.S.C. 6921 et seq. (i) Missouri Statutory Requirements Applicable to the Hazardous Waste Management Program...

  15. 40 CFR 272.1301 - State-administered program; Final authorization.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Missouri § 272.1301 State... incorporated by reference as part of the hazardous waste management program under subtitle C of RCRA, 42 U.S.C. 6921 et seq. (i) Missouri Statutory Requirements Applicable to the Hazardous Waste Management Program...

  16. 40 CFR 272.1301 - State-administered program; Final authorization.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Missouri § 272.1301 State... incorporated by reference as part of the hazardous waste management program under subtitle C of RCRA, 42 U.S.C. 6921 et seq. (i) Missouri Statutory Requirements Applicable to the Hazardous Waste Management Program...

  17. 40 CFR 272.151 - Arizona State-administered program: Final authorization.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Arizona § 272.151... the hazardous waste management program under Subtitle C of RCRA, 42 U.S.C. 6921 et seq. (i) EPA Approved Arizona Statutory Requirements Applicable to the Hazardous Waste Management Program, June 1995...

  18. 40 CFR 272.751 - Indiana state-administered program: Final authorization.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Indiana § 272.751... the hazardous waste management program under subtitle C of RCRA, 42 U.S.C. 6921 et seq. This... Applicable to the Hazardous Waste Management Program, dated March 2001. (ii) The EPA approved Indiana...

  19. 40 CFR 272.751 - Indiana state-administered program: Final authorization.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Indiana § 272.751... the hazardous waste management program under subtitle C of RCRA, 42 U.S.C. 6921 et seq. This... Applicable to the Hazardous Waste Management Program, dated March 2001. (ii) The EPA approved Indiana...

  20. 40 CFR 272.501 - Florida State-administered program: Final authorization.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Florida § 272.501... part of the hazardous waste management program under Subtitle C of RCRA, 42 U.S.C. 6921 et seq. (i) EPA Approved Florida's Statutory Requirements Applicable to the Hazardous Waste Management Program, dated...

  1. 40 CFR 272.1301 - State-administered program; Final authorization.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Missouri § 272.1301 State... incorporated by reference as part of the hazardous waste management program under subtitle C of RCRA, 42 U.S.C. 6921 et seq. (i) Missouri Statutory Requirements Applicable to the Hazardous Waste Management Program...

  2. 40 CFR 272.151 - Arizona State-administered program: Final authorization.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Arizona § 272.151... the hazardous waste management program under Subtitle C of RCRA, 42 U.S.C. 6921 et seq. (i) EPA Approved Arizona Statutory Requirements Applicable to the Hazardous Waste Management Program, June 1995...

  3. 40 CFR 272.501 - Florida State-administered program: Final authorization.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Florida § 272.501... part of the hazardous waste management program under Subtitle C of RCRA, 42 U.S.C. 6921 et seq. (i) EPA Approved Florida's Statutory Requirements Applicable to the Hazardous Waste Management Program, dated...

  4. 40 CFR 272.501 - Florida State-administered program: Final authorization.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Florida § 272.501... part of the hazardous waste management program under Subtitle C of RCRA, 42 U.S.C. 6921 et seq. (i) EPA Approved Florida's Statutory Requirements Applicable to the Hazardous Waste Management Program, dated...

  5. 40 CFR 272.751 - Indiana state-administered program: Final authorization.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Indiana § 272.751... the hazardous waste management program under subtitle C of RCRA, 42 U.S.C. 6921 et seq. This... Applicable to the Hazardous Waste Management Program, dated March 2001. (ii) The EPA approved Indiana...

  6. 40 CFR 272.501 - Florida State-administered program: Final authorization.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Florida § 272.501... part of the hazardous waste management program under Subtitle C of RCRA, 42 U.S.C. 6921 et seq. (i) EPA Approved Florida's Statutory Requirements Applicable to the Hazardous Waste Management Program, dated...

  7. Solid-waste management in Jalandhar city and its impact on community health

    PubMed Central

    Puri, Avinash; Kumar, Manoj; Johal, Eonkar

    2008-01-01

    In this study, solid-waste management practices were evaluated in order to find out its link with occurrence of vector-borne disease. Strategies for solid-waste management were employed as practical model to solve the problems regarding pollution which is originated by solid-waste. PMID:20040983

  8. 76 FR 58543 - Draft Policy Statement on Volume Reduction and Low-Level Radioactive Waste Management

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-21

    ...-Level Radioactive Waste Management AGENCY: Nuclear Regulatory Commission. ACTION: Reopening of comment... for public comment a draft Policy Statement on Volume Reduction and Low-Level Radioactive Waste Management that updates the 1981 Policy Statement on Low-Level Waste Volume Reduction. The revised Policy...

  9. 40 CFR 60.35e - Waste management guidelines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Waste management guidelines. 60.35e... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Hospital/Medical/Infectious Waste Incinerators § 60.35e Waste management guidelines. For approval, a State...

  10. 40 CFR 272.501 - Florida State-administered program: Final authorization.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Florida § 272.501... part of the hazardous waste management program under Subtitle C of RCRA, 42 U.S.C. 6921 et seq. (i) EPA Approved Florida's Statutory Requirements Applicable to the Hazardous Waste Management Program, dated...

  11. 40 CFR 272.1301 - State-administered program; Final authorization.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Missouri § 272.1301 State... incorporated by reference as part of the hazardous waste management program under subtitle C of RCRA, 42 U.S.C. 6921 et seq. (i) Missouri Statutory Requirements Applicable to the Hazardous Waste Management Program...

  12. 40 CFR 272.151 - Arizona State-administered program: Final authorization.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Arizona § 272.151... the hazardous waste management program under Subtitle C of RCRA, 42 U.S.C. 6921 et seq. (i) EPA Approved Arizona Statutory Requirements Applicable to the Hazardous Waste Management Program, June 1995...

  13. 40 CFR 272.1801 - State-administered program: Final authorization.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Ohio § 272.1801 State... regulations are incorporated by reference and codified as part of the hazardous waste management program under..., 1989, is codified as part of the authorized hazardous waste management program under Subtitle C of RCRA...

  14. 75 FR 81187 - South Dakota: Final Authorization of State Hazardous Waste Management Program Revision

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-27

    ...: Final Authorization of State Hazardous Waste Management Program Revision AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed Rule. SUMMARY: The Solid Waste Disposal Act, as amended, commonly... Agency (EPA) to authorize states to operate their hazardous waste management programs in lieu of the...

  15. 40 CFR 272.1201 - Minnesota State-administered program; Final authorization.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Minnesota § 272.1201... incorporated by reference as part of the hazardous waste management program under subtitle C of RCRA, 42 U.S.C... the Hazardous Waste Management Program, dated April 5, 1994. (2) The following statutes and...

  16. 40 CFR 270.110 - What must I include in my application for a RAP?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... EPA identification number of the remediation waste management site; (b) The name, address, and... States Geological Survey (USGS) or county map showing the location of the remediation waste management site; (e) A scaled drawing of the remediation waste management site showing: (1) The remediation waste...

  17. Solar-powered aeration and disinfection, anaerobic co-digestion, biological CO2 scrubbing and biofuel production: the energy and carbon management opportunities of waste stabilisation ponds.

    PubMed

    Shilton, A N; Mara, D D; Craggs, R; Powell, N

    2008-01-01

    Waste stabilisation pond (WSP) technology offers some important advantages and interesting possibilities when viewed in the light of sustainable energy and carbon management. Pond systems stand out as having significant advantages due to simple construction; low (or zero) operating energy requirements; and the potential for bio-energy generation. Conventional WSP requires little or no electrical energy for aerobic treatment as a result of algal photosynthesis. Sunlight enables WSP to disinfect wastewaters very effectively without the need for any chemicals or electricity consumption and their associated CO(2) emissions. The energy and carbon emission savings gained over electromechanical treatment systems are immense. Furthermore, because algal photosynthesis consumes CO(2), WSP can be utilised as CO(2) scrubbers. The environmental and financial benefits of pond technology broaden further when considering the low-cost, energy production opportunities of anaerobic ponds and the potential of algae as a biofuel. As we assess future best practice in wastewater treatment technology, perhaps one of the greatest needs is an improved consideration of the carbon footprint and the implications of future increases in the cost of electricity and the value of biogas. (c) IWA Publishing 2008.

  18. 40 CFR 266.220 - What does a storage and treatment conditional exemption do?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF SPECIFIC HAZARDOUS WASTES AND SPECIFIC TYPES OF HAZARDOUS WASTE MANAGEMENT FACILITIES Conditional Exemption for Low-Level Mixed Waste Storage... exemption exempts your low-level mixed waste from the regulatory definition of hazardous waste in 40 CFR 261...

  19. 40 CFR 266.305 - What does the transportation and disposal conditional exemption do?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF SPECIFIC HAZARDOUS WASTES AND SPECIFIC TYPES OF HAZARDOUS WASTE MANAGEMENT FACILITIES Conditional Exemption for Low-Level... exemption exempts your waste from the regulatory definition of hazardous waste in 40 CFR 261.3 if your waste...

  20. Solid Waste Management Solutions for a Rapidly Urbanizing Area in Thailand: Recommendations Based on Stakeholder Input.

    PubMed

    Yukalang, Nachalida; Clarke, Beverley; Ross, Kirstin

    2018-06-21

    Municipal solid waste is a significant problem, particularly in developing countries that lack sufficient infrastructure and useable land mass to process it in an appropriate manner. Some developing nations are experiencing a combination of issues that prevent proper management of solid waste. This paper reviews the management of municipal solid waste in northeast Thailand, using the Tha Khon Yang Sub-district Municipality (TKYSM) in Maha Sarakham Province as a case study. The combination of rapid population and economic growth and its associated affluence has led to an increase in the use of consumer items and a concomitant increase in the production of municipal solid waste. In the TKYSM there is pressure on local government to establish a suitable waste management program to resolve the escalating waste crisis. The aim of this study is to provide viable solutions to waste management challenges in the TKYSM, and potentially to offer guidance to other similar localities also facing the same challenges. It is well established that successful changes to waste management require an understanding of local context and consideration of specific issues within a region. Therefore, extensive community consultation and engagement with local experts was undertaken to develop an understanding of the particular waste management challenges of the TKYSM. Research methods included observations, one-on-one interviews and focus groups with a range of different stakeholders. The outcomes of this research highlight a number of opportunities to improve local infrastructure and operational capacity around solid waste management. Waste management in rural and urban areas needs to be approached differently. Solutions include: development of appropriate policy and implementation plans (based around the recommendations of this paper); reduction of the volume of waste going to landfill by establishing a waste separation system; initiation of a collection service that supports waste separation at source; educating the citizens of the municipality; and the local government staff, and for the local government to seek external support from the local temples and expertise from the nearby university.

  1. Safety and Waste Management for SAM Pathogen Methods

    EPA Pesticide Factsheets

    The General Safety and Waste Management page offers section-specific safety and waste management details for the pathogens included in EPA's Selected Analytical Methods for Environmental Remediation and Recovery (SAM).

  2. Safety and Waste Management for SAM Biotoxin Methods

    EPA Pesticide Factsheets

    The General Safety and Waste Management page offers section-specific safety and waste management details for the biotoxins included in EPA's Selected Analytical Methods for Environmental Remediation and Recovery (SAM).

  3. 40 CFR Table 18 to Subpart G of... - Information for Waste Management Units To Be Submitted With Notification of Compliance Status a,b

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Information for Waste Management Units... Subpart G of Part 63—Information for Waste Management Units To Be Submitted With Notification of Compliance Status a,b Waste management unit identification c Description d Wastewater stream(s) received or...

  4. 40 CFR Table 18 to Subpart G of... - Information for Waste Management Units To Be Submitted With Notification of Compliance Status a,b

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 9 2011-07-01 2011-07-01 false Information for Waste Management Units... Subpart G of Part 63—Information for Waste Management Units To Be Submitted With Notification of Compliance Status a,b Waste management unit identification c Description d Wastewater stream(s) received or...

  5. 40 CFR Table 18 to Subpart G of... - Information for Waste Management Units To Be Submitted With Notification of Compliance Status a,b

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 10 2012-07-01 2012-07-01 false Information for Waste Management Units... Subpart G of Part 63—Information for Waste Management Units To Be Submitted With Notification of Compliance Status a,b Waste management unit identification c Description d Wastewater stream(s) received or...

  6. 40 CFR Table 18 to Subpart G of... - Information for Waste Management Units To Be Submitted With Notification of Compliance Status a,b

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 10 2013-07-01 2013-07-01 false Information for Waste Management Units... Subpart G of Part 63—Information for Waste Management Units To Be Submitted With Notification of Compliance Status a,b Waste management unit identification c Description d Wastewater stream(s) received or...

  7. 40 CFR Table 18 to Subpart G of... - Information for Waste Management Units To Be Submitted With Notification of Compliance Status a b

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 10 2014-07-01 2014-07-01 false Information for Waste Management Units... Subpart G of Part 63—Information for Waste Management Units To Be Submitted With Notification of Compliance Status a b Waste management unit identification c Description d Wastewater stream(s) received or...

  8. Between hype and veracity; privatization of municipal solid waste management and its impacts on the informal waste sector.

    PubMed

    Sandhu, Kiran; Burton, Paul; Dedekorkut-Howes, Aysin

    2017-01-01

    The informal waste recycling sector has been an indispensable but ironically invisible part of the waste management systems in developing countries as India, often completely disregarded and overlooked by decision makers and policy frameworks. The turn towards liberalization of economy since 1991 in India opened the doors for privatization of urban services and the waste sector found favor with private companies facilitated by the local governments. In joining the privatization bandwagon, the local governments aim to create an image of a progressive city demonstrated most visibly through apt management of municipal solid waste. Resultantly, the long important stakeholder, the informal sector has been sidelined and left to face the adverse impacts of privatization. There is hardly any recognition of its contributions or any attempt to integrate it within the formal waste management systems. The study investigates the impacts of privatization on the waste pickers in waste recycling operations. Highlighting the other dimension of waste collection and management in urban India the study focuses on the waste pickers and small time informal scrap dealers and this is done by taking the case study of Amritsar city, which is an important historic centre and a metropolitan city in the state of Punjab, India. The paper develops an analytical framework, drawing from literature review to analyze the impacts. In conclusion, it supports the case for involving informal waste sector towards achieving sustainable waste management in the city. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Estimation of construction waste generation and management in Thailand.

    PubMed

    Kofoworola, Oyeshola Femi; Gheewala, Shabbir H

    2009-02-01

    This study examines construction waste generation and management in Thailand. It is estimated that between 2002 and 2005, an average of 1.1 million tons of construction waste was generated per year in Thailand. This constitutes about 7.7% of the total amount of waste disposed in both landfills and open dumpsites annually during the same period. Although construction waste constitutes a major source of waste in terms of volume and weight, its management and recycling are yet to be effectively practiced in Thailand. Recently, the management of construction waste is being given attention due to its rapidly increasing unregulated dumping in undesignated areas, and recycling is being promoted as a method of managing this waste. If effectively implemented, its potential economic and social benefits are immense. It was estimated that between 70 and 4,000 jobs would have been created between 2002 and 2005, if all construction wastes in Thailand had been recycled. Additionally it would have contributed an average savings of about 3.0 x 10(5) GJ per year in the final energy consumed by the construction sector of the nation within the same period based on the recycling scenario analyzed. The current national integrated waste management plan could enhance the effective recycling of construction and demolition waste in Thailand when enforced. It is recommended that an inventory of all construction waste generated in the country be carried out in order to assess the feasibility of large scale recycling of construction and demolition waste.

  10. Integration of Cleaner Production and Waste Water Treatment on Tofu Small Industry for Biogas Production using AnSBR Reactor

    NASA Astrophysics Data System (ADS)

    Rahayu, Suparni Setyowati; Budiyono; Purwanto

    2018-02-01

    A research on developing a system that integrates clean production and waste water treatment for biogas production in tofu small industry has been conducted. In this research, tofu waste water was turned into biogas using an AnSBR reactor. Mud from the sewage system serves as the inoculums. This research involved: (1) workshop; (2) supervising; (3) technical meeting; (4) network meeting, and (5) technical application. Implementation of clean production integrated with waste water treatment reduced the amount of waste water to be treated in a treatment plant. This means less cost for construction and operation of waste water treatment plants, as inherent limitations associated with such plants like lack of fund, limited area, and technological issues are inevitable. Implementation of clean production prior to waste water treatment reduces pollution figures down to certain levels that limitations in waste water treatment plants can be covered. Results show that biogas in 16 days HRT in an AnSBR reactor contains CH4(78.26 %) and CO2 (20.16 %). Meanwhile, treatments using a conventional bio-digester result in biogas with 72.16 % CH4 and 18.12 % CO2. Hence, biogas efficiency for the AnSBR system is 2.14 times greater than that of a conventional bio-digester.

  11. VEGETATIVE COVERS FOR WASTE CONTAINMENT

    EPA Science Inventory

    Disposal of municipal ahd hazardous waste in the United States is primarily accomplished by containment in lined and capped landfills. Evapotranspiration cover systems offer an alternative to conventional landfill cap systems. These covers work on completely different principles ...

  12. Solar Energy a Path to India's Prosperity

    NASA Astrophysics Data System (ADS)

    Chandra, Yogender Pal; Singh, Arashdeep; Kannojiya, Vikas; Kesari, J. P.

    2018-05-01

    Solar energy technology has grabbed a worldwide interest and attention these days. India also, having a huge solar influx and potential, is not falling back to feed its energy demand through non-conventional energy sources such as concentrating solar power (CSP) and photovoltaic (PV). This work will try to add some comprehensive insight on solar energy framework, policy, outlook and socio-economic challenges of India. This includes its prominent areas of working such as grid independent and `utility-scale' power production using CSP or PV power plants, rural as well as urban electrification using PV, solar powered public transportation systems, solar power in agrarian society—water pumping, irrigation, waste management and so on and so forth. Despite the fact that, a vast legion of furtherance and advancement has been done during the last decade of solar energy maturation and proliferation, improvements could be suggested so as to augment the solar energy usage in contrast to conventional energy sources in India.

  13. Combined Natural Gas and Solar Technologies for Heating and Cooling in the City of NIS in Serbia

    NASA Astrophysics Data System (ADS)

    Stefanović, Velimir P.; Bojić, Milorad Lj.

    2010-06-01

    The use of conventional systems for heat and electricity production in Niš and Serbia means a constant waste of energy, and money. This problem is present in both industrial and public sector. Using conventional systems, means not only low-energy efficient systems, and technologies, but also using very "dirty" technologies, which cause heavy environment pollution. The lack of electricity in our country, and region is also present. The gas pipeline in Niš was finished not long ago, and second gas pipeline is about to be made in the next couple of years. This opens a door for implementing new technologies and the use of new methods for production of heat and electricity, while preserving our environment. This paper reports discussion of this technology with management of public institutions, which use both heat and electricity.

  14. Current status of solid waste management in small island developing states: A review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohee, Romeela; Mauthoor, Sumayya, E-mail: sumayya.mauthoor@umail.uom.ac.mu; Bundhoo, Zumar M.A.

    Highlights: • Waste management is a matter of great concern for small island developing states. • On average, waste generation rate in these islands amounts to 1.29 kg/capita/day. • Illegal dumping and landfilling prevail in most small island developing states. • Sustainable waste management practices, previously absent, are now emerging. • However, many challenges still hinder the implementation of these practices. - Abstract: This article reviews the current status of waste management in Small Island Developing States (SIDS) and the challenges that are faced in solid waste management. The waste generation rates of SIDS were compared within the three geographicmore » regions namely Caribbean SIDS, Pacific SIDS and Atlantic, Indian Ocean, Mediterranean and South China (AIMS) SIDS and with countries of the Organisation for Economic Co-Operation and Development (OECD). Only Pacific SIDS had a waste generation rate less than 1 kg/capita/day. The waste generation rates for the three SIDS regions averaged 1.29 kg/capita/day while that for OECD countries was at a mean value of 1.35 kg/capita/day. The waste compositions in the different SIDS regions were almost similar owing to comparable consumption patterns while these differed to a large extent with wastes generated in OECD countries. In SIDS, the major fraction of MSW comprised of organics (44%) followed by recyclables namely paper, plastics, glass and metals (total: 43%). In contrast, MSW in OECD countries consisted mainly of recyclables (43%) followed by organics (37%). This article also reviewed the other functional elements of the waste management systems in SIDS. Several shortcomings were noted in the process of waste collection, transfer and transport namely the fact of having outdated collection vehicles and narrow roads which are inaccessible. Among the waste management practices in SIDS, waste disposal via landfilling, illegal dumping and backyard burning were favoured most of the time at the expense of sustainable waste treatment technologies such as composting, anaerobic digestion and recycling.« less

  15. Public Health Risks from Mismanagement of Healthcare Wastes in Shinyanga Municipality Health Facilities, Tanzania

    PubMed Central

    Kuchibanda, Kizito; Mayo, Aloyce W.

    2015-01-01

    The increase of healthcare facilities in Shinyanga municipality has resulted in an increase of healthcare wastes, which poses serious threats to the environment, health workers, and the general public. This research was conducted to investigate management practices of healthcare wastes in Shinyanga municipality with a view of assessing health risks to health workers and the general public. The study, which was carried out in three hospitals, involved the use of questionnaires, in-depth interview, and observation checklist. The results revealed that healthcare wastes are not quantified or segregated in all the three hospitals. Healthcare wastes at the Shinyanga Regional Referral Hospital are disposed of by on-site incineration and burning and some wastes are disposed off-site. At Kolandoto DDH only on-site burning and land disposal are practiced, while at Kambarage UHC healthcare solid wastes are incinerated, disposed of on land disposal, and burned. Waste management workers do not have formal training in waste management techniques and the hospital administrations pay very little attention to appropriate management of healthcare wastes. In light of this, it is evident that management of healthcare solid wastes is not practiced in accordance with the national and WHO's recommended standards. PMID:26779565

  16. [Biomedical waste management in five hospitals in Dakar, Senegal].

    PubMed

    Ndiaye, M; El Metghari, L; Soumah, M M; Sow, M L

    2012-10-01

    Biomedical waste is currently a real health and environmental concern. In this regard, a study was conducted in 5 hospitals in Dakar to review their management of biomedical waste and to formulate recommendations. This is a descriptive cross-sectional study conducted from 1 April to 31 July 2010 in five major hospitals of Dakar. A questionnaire administered to hospital managers, heads of departments, residents and heads of hospital hygiene departments as well as interviews conducted with healthcare personnel and operators of waste incinerators made it possible to assess mechanisms and knowledge on biomedical waste management. Content analysis of interviews, observations and a data sheet allowed processing the data thus gathered. Of the 150 questionnaires distributed, 98 responses were obtained representing a response rate of 65.3%. An interview was conducted with 75 employees directly involved in the management of biomedical waste and observations were made on biomedical waste management in 86 hospital services. Sharps as well as blood and liquid waste were found in all services except in pharmacies, pharmaceutical waste in 66 services, infectious waste in 49 services and anatomical waste in 11 services. Sorting of biomedical waste was ill-adapted in 53.5% (N = 46) of services and the use of the colour-coding system effective in 31.4% (N = 27) of services. Containers for the safe disposal of sharps were available in 82.5% (N = 71) of services and were effectively utilized in 51.1% (N = 44) of these services. In most services, an illadapted packaging was observed with the use of plastic bottles and bins for waste collection and overfilled containers. With the exception of Hôpital Principal, the main storage area was in open air, unsecured, with biomedical waste littered on the floor and often mixed with waste similar to household refuse. The transfer of biomedical waste to the main storage area was done using trolleys or carts in 67.4% (N = 58) of services and wheelbarrows in 33.7% (N = 29). Biomedical waste was disposed of in old incinerators or in artisanal ovens with a great deal of smoke emanating from these. Working conditions were deemed poor by 81.3% (N = 61) of employees interviewed and personal protection equipment was available in 45.3% (N = 39) of services. Knowledge about biomedical waste management was deemed satisfactory by 62.6% (N = 47) of interviewees and 80% (N = 60) were aware of the health risks related to biomedical waste. The poor management of biomedical waste is a reality in hospital facilities in Dakar. This can be addressed by increasing the awareness of managers for an effective application of the legislation, implementing realistic management programmes and providing the appropriate on-the-job training to staff members.

  17. Anaerobic digestion of municipal solid waste: Technical developments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rivard, C.J.

    1996-01-01

    The anaerobic biogasification of organic wastes generates two useful products: a medium-Btu fuel gas and a compost-quality organic residue. Although commercial-scale digestion systems are used to treat municipal sewage wastes, the disposal of solid organic wastes, including municipal solid wastes (MSW), requires a more cost-efficient process. Modern biogasification systems employ high-rate, high-solids fermentation methods to improve process efficiency and reduce capital costs. The design criteria and development stages are discussed. These systems are also compared with conventional low-solids fermentation technology.

  18. A roadmap for development of sustainable E-waste management system in India.

    PubMed

    Wath, Sushant B; Vaidya, Atul N; Dutt, P S; Chakrabarti, Tapan

    2010-12-01

    The problem of E-waste has forced Environmental agencies of many countries to innovate, develop and adopt environmentally sound options and strategies for E-waste management, with a view to mitigate and control the ever growing threat of E-waste to the environment and human health. E-waste management is given the top priority in many developed countries, but in rapid developing countries like India, it is difficult to completely adopt or replicate the E-waste management system in developed countries due to many country specific issues viz. socio-economic conditions, lack of infrastructure, absence of appropriate legislations for E-waste, approach and commitments of the concerned, etc. This paper presents a review and assessment of the E-waste management system of developed as well as developing countries with a special emphasis on Switzerland, which is the first country in the world to have established and implemented a formal E-waste management system and has recycled 11kg/capita of WEEE against the target of 4kg/capita set by EU. And based on the discussions of various approaches, laws, legislations, practices of different countries, a road map for the development of sustainable and effective E-waste management system in India for ensuring environment, as well as, occupational safety and health, is proposed. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. Safety and Waste Management for SAM Chemistry Methods

    EPA Pesticide Factsheets

    The General Safety and Waste Management page offers section-specific safety and waste management details for the chemical analytes included in EPA's Selected Analytical Methods for Environmental Remediation and Recovery (SAM).

  20. Safety and Waste Management for SAM Radiochemical Methods

    EPA Pesticide Factsheets

    The General Safety and Waste Management page offers section-specific safety and waste management details for the radiochemical analytes included in EPA's Selected Analytical Methods for Environmental Remediation and Recovery (SAM).

Top