A novel way to go whole-cell in patch-clamp experiments.
Inayat, Samsoon; Zhao, Yan; Cantrell, Donal R; Dikin, Dmitryi; Pinto, Lawrence H; Troy, John B
2010-11-01
With a conventional patch-clamp electrode, an Ag/AgCl wire sits stationary inside the pipette. To move from the gigaseal cell-attached configuration to whole-cell recording, suction is applied inside the pipette. We have designed and developed a novel Pushpen patch-clamp electrode, in which a W wire insulated and wound with Ag/AgCl wire can move linearly inside the pipette. The W wire has a conical tip, which can protrude from the pipette tip like a push pen, a procedure we call the Pushpen Operation. We use the Pushpen operation to impale the cell membrane in cell-attached configuration to go whole-cell without disruption of the gigaseal. We successfully recorded whole-cell currents from chinese hamster ovarian cells expressing influenza A virus protein A/M2, after obtaining whole-cell configuration with the Pushpen operation. This novel method of achieving whole-cell configuration may have a higher success rate than is the case with the conventional patch clamp technique.
QPatch: the missing link between HTS and ion channel drug discovery.
Mathes, Chris; Friis, Søren; Finley, Michael; Liu, Yi
2009-01-01
The conventional patch clamp has long been considered the best approach for studying ion channel function and pharmacology. However, its low throughput has been a major hurdle to overcome for ion channel drug discovery. The recent emergence of higher throughput, automated patch clamp technology begins to break this bottleneck by providing medicinal chemists with high-quality, information-rich data in a more timely fashion. As such, these technologies have the potential to bridge a critical missing link between high-throughput primary screening and meaningful ion channel drug discovery programs. One of these technologies, the QPatch automated patch clamp system developed by Sophion Bioscience, records whole-cell ion channel currents from 16 or 48 individual cells in a parallel fashion. Here, we review the general applicability of the QPatch to studying a wide variety of ion channel types (voltage-/ligand-gated cationic/anionic channels) in various expression systems. The success rate of gigaseals, formation of the whole-cell configuration and usable cells ranged from 40-80%, depending on a number of factors including the cell line used, ion channel expressed, assay development or optimization time and expression level in these studies. We present detailed analyses of the QPatch features and results in case studies in which secondary screening assays were successfully developed for a voltage-gated calcium channel and a ligand-gated TRP channel. The increase in throughput compared to conventional patch clamp with the same cells was approximately 10-fold. We conclude that the QPatch, combining high data quality and speed with user friendliness and suitability for a wide array of ion channels, resides on the cutting edge of automated patch clamp technology and plays a pivotal role in expediting ion channel drug discovery.
Giga-seal formation alters properties of sodium channels of human myoballs.
Fahlke, C; Rüdel, R
1992-03-01
The influence of giga-seal formation on the properties of the Na+ channels within the covered membrane patch was investigated with a whole-cell pipette and a patch pipette applied to the same cell. Current kinetics, current/voltage relation and channel densities were determined in three combinations: (i) voltage-clamping and current recording with the whole-cell pipette, (ii) voltage-clamping with the whole-cell pipette and current recording with the patch pipette and, (iii) voltage-clamping and current recording with the patch pipette. The Hodgkin-Huxley (1952) parameters tau m and tau h were smaller for the patch currents than for the whole cell, and the h infinity curve was shifted in the negative direction. The channel density was of the order of 10 times smaller. All effects were independent of the extracellular Ca2+ concentration. The capacitive current generated in the patch by the whole-cell Na+ current and its effect on the transmembrane voltage of the patch were evaluated. The kinetic parameters of the Na+ channels in the patch did not depend on whether the voltage was clamped with the whole-cell pipette or the patch pipette. Thus, the results are not due to spurious voltage.
Force-controlled patch clamp of beating cardiac cells.
Ossola, Dario; Amarouch, Mohamed-Yassine; Behr, Pascal; Vörös, János; Abriel, Hugues; Zambelli, Tomaso
2015-03-11
From its invention in the 1970s, the patch clamp technique is the gold standard in electrophysiology research and drug screening because it is the only tool enabling accurate investigation of voltage-gated ion channels, which are responsible for action potentials. Because of its key role in drug screening, innovation efforts are being made to reduce its complexity toward more automated systems. While some of these new approaches are being adopted in pharmaceutical companies, conventional patch-clamp remains unmatched in fundamental research due to its versatility. Here, we merged the patch clamp and atomic force microscope (AFM) techniques, thus equipping the patch-clamp with the sensitive AFM force control. This was possible using the FluidFM, a force-controlled nanopipette based on microchanneled AFM cantilevers. First, the compatibility of the system with patch-clamp electronics and its ability to record the activity of voltage-gated ion channels in whole-cell configuration was demonstrated with sodium (NaV1.5) channels. Second, we showed the feasibility of simultaneous recording of membrane current and force development during contraction of isolated cardiomyocytes. Force feedback allowed for a gentle and stable contact between AFM tip and cell membrane enabling serial patch clamping and injection without apparent cell damage.
Integration of autopatching with automated pipette and cell detection in vitro
Wu (吴秋雨), Qiuyu; Kolb, Ilya; Callahan, Brendan M.; Su, Zhaolun; Stoy, William; Kodandaramaiah, Suhasa B.; Neve, Rachael; Zeng, Hongkui; Boyden, Edward S.; Forest, Craig R.
2016-01-01
Patch clamp is the main technique for measuring electrical properties of individual cells. Since its discovery in 1976 by Neher and Sakmann, patch clamp has been instrumental in broadening our understanding of the fundamental properties of ion channels and synapses in neurons. The conventional patch-clamp method requires manual, precise positioning of a glass micropipette against the cell membrane of a visually identified target neuron. Subsequently, a tight “gigaseal” connection between the pipette and the cell membrane is established, and suction is applied to establish the whole cell patch configuration to perform electrophysiological recordings. This procedure is repeated manually for each individual cell, making it labor intensive and time consuming. In this article we describe the development of a new automatic patch-clamp system for brain slices, which integrates all steps of the patch-clamp process: image acquisition through a microscope, computer vision-based identification of a patch pipette and fluorescently labeled neurons, micromanipulator control, and automated patching. We validated our system in brain slices from wild-type and transgenic mice expressing channelrhodopsin 2 under the Thy1 promoter (line 18) or injected with a herpes simplex virus-expressing archaerhodopsin, ArchT. Our computer vision-based algorithm makes the fluorescent cell detection and targeting user independent. Compared with manual patching, our system is superior in both success rate and average trial duration. It provides more reliable trial-to-trial control of the patching process and improves reproducibility of experiments. PMID:27385800
Danker, Timm; Braun, Franziska; Silbernagl, Nikole; Guenther, Elke
2016-03-01
Manual patch clamp, the gold standard of electrophysiology, represents a powerful and versatile toolbox to stimulate, modulate, and record ion channel activity from membrane fragments and whole cells. The electrophysiological readout can be combined with fluorescent or optogenetic methods and allows for ultrafast solution exchanges using specialized microfluidic tools. A hallmark of manual patch clamp is the intentional selection of individual cells for recording, often an essential prerequisite to generate meaningful data. So far, available automation solutions rely on random cell usage in the closed environment of a chip and thus sacrifice much of this versatility by design. To parallelize and automate the traditional patch clamp technique while perpetuating the full versatility of the method, we developed an approach to automation, which is based on active cell handling and targeted electrode placement rather than on random processes. This is achieved through an automated pipette positioning system, which guides the tips of recording pipettes with micrometer precision to a microfluidic cell handling device. Using a patch pipette array mounted on a conventional micromanipulator, our automated patch clamp process mimics the original manual patch clamp as closely as possible, yet achieving a configuration where recordings are obtained from many patch electrodes in parallel. In addition, our implementation is extensible by design to allow the easy integration of specialized equipment such as ultrafast compound application tools. The resulting system offers fully automated patch clamp on purposely selected cells and combines high-quality gigaseal recordings with solution switching in the millisecond timescale.
Zhu, Yaohui; Huizinga, Jan D
2008-01-01
Abstract Nitrergic nerves are structurally and functionally associated with ICC. To further understand mechanisms of communication, the hypothesis was investigated that NO might affect large conductance K channels. To that end, we searched for IbTX-sensitive currents in ICC obtained through explant cultures from the mouse small intestine and studied effects of the NOS inhibitor omega N-nitro-L-arginine (LNNA) and the NO donor sodium nitroprusside (SNP). IbTX-sensitive currents acquired in the whole-cell configuration through nystatin perforated patches exhibited high noise levels but relatively low amplitude, whereas currents obtained in the conventional whole-cell configuration exhibited less noise and higher amplitudes; depolarization from −80 to + 40 mV evoked 357 ± 159 pA current in the nystatin perforated patch configuration and 1075 ± 597 pA using the conventional whole-cell configuration. Immunohistochemistry showed that ICC associated with ganglia and Auerbach's plexus nerve fibers were immunoreactive to BK antibodies. The IbTX-sensitive currents were increased by SNP and inhibited by LNNA. BK blockers suppressed spontaneous transit outward currents in ICC. After block of BK currents, or before these currents became prominent, calcium currents were activated by depolarization in the same cells. Their peak amplitude occurred at −25 mV and the currents were increased with increasing extracellular calcium and inhibited by cobalt. The hypothesis is warranted that nitrergic innervation inhibits ICC excitability in part through activation of BK channels. In addition, NO is an intracellular regulator of ICC excitability. PMID:18194464
Upadhye, Kalpesh V.; Candiello, Joseph E.; Davidson, Lance A.; Lin, Hai
2011-01-01
Patch clamp is a powerful tool for studying the properties of ion-channels and cellular membrane. In recent years, planar patch clamp chips have been fabricated from various materials including glass, quartz, silicon, silicon nitride, polydimethyl-siloxane (PDMS), and silicon dioxide. Planar patch clamps have made automation of patch clamp recordings possible. However, most planar patch clamp chips have limitations when used in combination with other techniques. Furthermore, the fabrication methods used are often expensive and require specialized equipments. An improved design as well as fabrication and characterization of a silicon-based planar patch clamp chip are described in this report. Fabrication involves true batch fabrication processes that can be performed in most common microfabrication facilities using well established MEMS techniques. Our planar patch clamp chips can form giga-ohm seals with the cell plasma membrane with success rate comparable to existing patch clamp techniques. The chip permits whole-cell voltage clamp recordings on variety of cell types including Chinese Hamster Ovary (CHO) cells and pheochromocytoma (PC12) cells, for times longer than most available patch clamp chips. When combined with a custom microfluidics chamber, we demonstrate that it is possible to perfuse the extra-cellular as well as intra-cellular buffers. The chamber design allows integration of planar patch clamp with atomic force microscope (AFM). Using our planar patch clamp chip and microfluidics chamber, we have recorded whole-cell mechanosensitive (MS) currents produced by directly stimulating human keratinocyte (HaCaT) cells using an AFM cantilever. Our results reveal the spatial distribution of MS ion channels and temporal details of the responses from MS channels. The results show that planar patch clamp chips have great potential for multi-parametric high throughput studies of ion channel proteins. PMID:22174731
Robotic multi-well planar patch-clamp for native and primary mammalian cells
Milligan, Carol J; Li, Jing; Sukumar, Piruthivi; Majeed, Yasser; Dallas, Mark L; English, Anne; Emery, Paul; Porter, Karen E; Smith, Andrew M; McFadzean, Ian; Beccano-Kelly, Dayne; Bahnasi, Yahya; Cheong, Alex; Naylor, Jacqueline; Zeng, Fanning; Liu, Xing; Gamper, Nikita; Jiang, Lin-Hua; Pearson, Hugh A; Peers, Chris; Robertson, Brian; Beech, David J
2009-01-01
Multi-well robotic planar patch-clamp has become common in drug development and safety programmes because it enables efficient and systematic testing of compounds against ion channels during voltage-clamp. It has not, however, been adopted significantly in other important areas of ion channel research, where conventional patch-clamp remains the favoured method. Here we show the wider potential of the multi-well approach with the capability for efficient intracellular solution exchange, describing protocols and success rates for recording from a range of native and primary mammalian cells derived from blood vessels, arthritic joints, and the immune and central nervous systems. The protocol involves preparing a suspension of single cells to be dispensed robotically into 4-8 microfluidic chambers each containing a glass chip with a small aperture. Under automated control, giga-seals and whole-cell access are achieved followed by pre-programmed routines of voltage paradigms and fast extracellular or intracellular solution exchange. Recording from 48 chambers usually takes 1-6 hr depending on the experimental design and yields 16-33 cell recordings. PMID:19197268
Open-access microfluidic patch-clamp array with raised lateral cell trapping sites.
Lau, Adrian Y; Hung, Paul J; Wu, Angela R; Lee, Luke P
2006-12-01
A novel open-access microfluidic patch-clamp array chip with lateral cell trapping sites raised above the bottom plane of the chip was developed by combining both a microscale soft-lithography and a macroscale polymer fabrication method. This paper demonstrates the capability of using such an open-access fluidic system for patch-clamp measurements. The surface of the open-access patch-clamp sites prepared by the macroscale hole patterning method of soft-state elastic polydimethylsiloxane (PDMS) is examined; the seal resistances are characterized and correlated with the aperture dimensions. Whole cell patch-clamp measurements are carried out with CHO cells expressing Kv2.1 ion channels. Kv2.1 ion channel blocker (TEA) dosage response is characterized and the binding activity is examined. The results demonstrate that the system is capable of performing whole cell measurements and drug profiling in a more efficient manner than the traditional patch-clamp set-up.
Veenstra, Richard D
2016-01-01
The development of the patch clamp technique has enabled investigators to directly measure gap junction conductance between isolated pairs of small cells with resolution to the single channel level. The dual patch clamp recording technique requires specialized equipment and the acquired skill to reliably establish gigaohm seals and the whole cell recording configuration with high efficiency. This chapter describes the equipment needed and methods required to achieve accurate measurement of macroscopic and single gap junction channel conductances. Inherent limitations with the dual whole cell recording technique and methods to correct for series access resistance errors are defined as well as basic procedures to determine the essential electrical parameters necessary to evaluate the accuracy of gap junction conductance measurements using this approach.
Robotic Automation of In Vivo Two-Photon Targeted Whole-Cell Patch-Clamp Electrophysiology.
Annecchino, Luca A; Morris, Alexander R; Copeland, Caroline S; Agabi, Oshiorenoya E; Chadderton, Paul; Schultz, Simon R
2017-08-30
Whole-cell patch-clamp electrophysiological recording is a powerful technique for studying cellular function. While in vivo patch-clamp recording has recently benefited from automation, it is normally performed "blind," meaning that throughput for sampling some genetically or morphologically defined cell types is unacceptably low. One solution to this problem is to use two-photon microscopy to target fluorescently labeled neurons. Combining this with robotic automation is difficult, however, as micropipette penetration induces tissue deformation, moving target cells from their initial location. Here we describe a platform for automated two-photon targeted patch-clamp recording, which solves this problem by making use of a closed loop visual servo algorithm. Our system keeps the target cell in focus while iteratively adjusting the pipette approach trajectory to compensate for tissue motion. We demonstrate platform validation with patch-clamp recordings from a variety of cells in the mouse neocortex and cerebellum. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Schramm, Adrien E; Marinazzo, Daniele; Gener, Thomas; Graham, Lyle J
2014-01-01
Whole-cell patch recording is an essential tool for quantitatively establishing the biophysics of brain function, particularly in vivo. This method is of particular interest for studying the functional roles of cortical glial cells in the intact brain, which cannot be assessed with extracellular recordings. Nevertheless, a reasonable success rate remains a challenge because of stability, recording duration and electrical quality constraints, particularly for voltage clamp, dynamic clamp or conductance measurements. To address this, we describe "Touch and Zap", an alternative method for whole-cell patch clamp recordings, with the goal of being simpler, quicker and more gentle to brain tissue than previous approaches. Under current clamp mode with a continuous train of hyperpolarizing current pulses, seal formation is initiated immediately upon cell contact, thus the "Touch". By maintaining the current injection, whole-cell access is spontaneously achieved within seconds from the cell-attached configuration by a self-limited membrane electroporation, or "Zap", as seal resistance increases. We present examples of intrinsic and visual responses of neurons and putative glial cells obtained with the revised method from cat and rat cortices in vivo. Recording parameters and biophysical properties obtained with the Touch and Zap method compare favourably with those obtained with the traditional blind patch approach, demonstrating that the revised approach does not compromise the recorded cell. We find that the method is particularly well-suited for whole-cell patch recordings of cortical glial cells in vivo, targeting a wider population of this cell type than the standard method, with better access resistance. Overall, the gentler Touch and Zap method is promising for studying quantitative functional properties in the intact brain with minimal perturbation of the cell's intrinsic properties and local network. Because the Touch and Zap method is performed semi-automatically, this approach is more reproducible and less dependent on experimenter technique.
Schramm, Adrien E.; Marinazzo, Daniele; Gener, Thomas; Graham, Lyle J.
2014-01-01
Whole-cell patch recording is an essential tool for quantitatively establishing the biophysics of brain function, particularly in vivo. This method is of particular interest for studying the functional roles of cortical glial cells in the intact brain, which cannot be assessed with extracellular recordings. Nevertheless, a reasonable success rate remains a challenge because of stability, recording duration and electrical quality constraints, particularly for voltage clamp, dynamic clamp or conductance measurements. To address this, we describe “Touch and Zap”, an alternative method for whole-cell patch clamp recordings, with the goal of being simpler, quicker and more gentle to brain tissue than previous approaches. Under current clamp mode with a continuous train of hyperpolarizing current pulses, seal formation is initiated immediately upon cell contact, thus the “Touch”. By maintaining the current injection, whole-cell access is spontaneously achieved within seconds from the cell-attached configuration by a self-limited membrane electroporation, or “Zap”, as seal resistance increases. We present examples of intrinsic and visual responses of neurons and putative glial cells obtained with the revised method from cat and rat cortices in vivo. Recording parameters and biophysical properties obtained with the Touch and Zap method compare favourably with those obtained with the traditional blind patch approach, demonstrating that the revised approach does not compromise the recorded cell. We find that the method is particularly well-suited for whole-cell patch recordings of cortical glial cells in vivo, targeting a wider population of this cell type than the standard method, with better access resistance. Overall, the gentler Touch and Zap method is promising for studying quantitative functional properties in the intact brain with minimal perturbation of the cell's intrinsic properties and local network. Because the Touch and Zap method is performed semi-automatically, this approach is more reproducible and less dependent on experimenter technique. PMID:24875855
Sidedness of Carbamazepine Accessibility to Voltage-Gated Sodium Channels
Jo, Sooyeon
2014-01-01
Voltage-gated sodium channels are inhibited by many local anesthetics, antiarrhythmics, and antiepileptic drugs. The local anesthetic lidocaine appears to be able to access its binding site in the sodium channel only from the membrane phase or from the internal face of the channel. In contrast, the antiepileptic drug carbamazepine was found to inhibit voltage-gated sodium channels only with external, but not internal, application, implying a major difference. We investigated this point using both whole-cell and inside-out patch recordings from human Nav1.7 channels in a stable cell line. In the whole-cell configuration, carbamazepine inhibited sodium current within seconds when applied externally, but had little or no effect when applied internally for up to 15 minutes, confirming previous results. However, carbamazepine inhibited sodium channels effectively and rapidly when applied to the internal face of the membrane using inside-out patch recording. We found that lidocaine also has little or no effect when applied intracellularly in whole-cell recording, but blocks effectively and rapidly when applied to the internal surface using inside-out patches. In contrast, the cationic lidocaine derivative QX-314 (N-ethyl-lidocaine) blocks effectively when applied internally with whole-cell dialysis, as well as when applied to inside-out patches. We conclude that carbamazepine and lidocaine access the sodium channel in similar ways and hypothesize that their lack of effect with internal dialysis in whole-cell recording reflects rapid exit through membrane near the pipette recording site. This effect likely limits the ability of any compound with significant membrane permeability to be applied intracellularly by whole-cell dialysis. PMID:24319110
Bradford, Barry M.; Reizis, Boris
2017-01-01
ABSTRACT After oral exposure, the early replication of certain prion strains upon stromal cell-derived follicular dendritic cells (FDC) in the Peyer's patches in the small intestine is essential for the efficient spread of disease to the brain. However, little is known of how prions are initially conveyed from the gut lumen to establish infection on FDC. Our previous data suggest that mononuclear phagocytes such as CD11c+ conventional dendritic cells play an important role in the initial propagation of prions from the gut lumen into Peyer's patches. However, whether these cells conveyed orally acquired prions toward FDC within Peyer's patches was not known. The chemokine CXCL13 is expressed by FDC and follicular stromal cells and modulates the homing of CXCR5-expressing cells toward the FDC-containing B cell follicles. Here, novel compound transgenic mice were created in which a CXCR5 deficiency was specifically restricted to CD11c+ cells. These mice were used to determine whether CXCR5-expressing conventional dendritic cells propagate prions toward FDC after oral exposure. Our data show that in the specific absence of CXCR5-expressing conventional dendritic cells the early accumulation of prions upon FDC in Peyer's patches and the spleen was impaired, and disease susceptibility significantly reduced. These data suggest that CXCR5-expressing conventional dendritic cells play an important role in the efficient propagation of orally administered prions toward FDC within Peyer's patches in order to establish host infection. IMPORTANCE Many natural prion diseases are acquired by oral consumption of contaminated food or pasture. Once the prions reach the brain they cause extensive neurodegeneration, which ultimately leads to death. In order for the prions to efficiently spread from the gut to the brain, they first replicate upon follicular dendritic cells within intestinal Peyer's patches. How the prions are first delivered to follicular dendritic cells to establish infection was unknown. Understanding this process is important since treatments which prevent prions from infecting follicular dendritic cells can block their spread to the brain. We created mice in which mobile conventional dendritic cells were unable to migrate toward follicular dendritic cells. In these mice the early accumulation of prions on follicular dendritic cells was impaired and oral prion disease susceptibility was reduced. This suggests that prions exploit conventional dendritic cells to facilitate their initial delivery toward follicular dendritic cells to establish host infection. PMID:28275192
2015-01-01
Detergents have several biological applications but present cytotoxicity concerns, since they can solubilize cell membranes. Using the IonFlux 16, an ensemble whole cell planar patch clamp, we observed that anionic sodium dodecyl sulfate (SDS), cationic cetyltrimethylammonium bromide (CTAB), and cationic, fluorescent octadecyl rhodamine B (ORB) increased the membrane permeability of cells substantially within a second of exposure, under superfusion conditions. Increased permeability was irreversible for 15 min. At subsolubilizing detergent concentrations, patched cells showed increased membrane currents that reached a steady state and were intact when imaged using fluorescence microscopy. SDS solubilized cells at concentrations of 2 mM (2× CMC), while CTAB did not solubilize cells even at concentrations of 10 mM (1000× CMC). The relative activity for plasma membrane current induction was 1:20:14 for SDS, CTAB, and ORB, respectively. Under quiescent conditions, the relative ratio of lipid to detergent in cell membranes at the onset of membrane permeability was 1:7:5 for SDS, CTAB, and ORB, respectively. The partition constants (K) for SDS, CTAB, and ORB were 23000, 55000, and 39000 M–1, respectively. Combining the whole cell patch clamp data and XTT viability data, SDS ≤ 0.2 mM and CTAB and ORB ≤ 1 mM induced cell membrane permeability without causing acute toxicity. PMID:24548291
Protein kinase C enhances the swelling-induced chloride current in human atrial myocytes.
Li, Ye-Tao; Du, Xin-Ling
2016-06-01
Swelling-activated chloride currents (ICl.swell) are thought to play a role in several physiologic and pathophysiologic processes and thus represent a target for therapeutic approaches. However, the mechanism of ICl.swell regulation remains unclear. In this study, we used the whole-cell patch-clamp technique to examine the role of protein kinase C (PKC) in the regulation of ICl.swell in human atrial myocytes. Atrial myocytes were isolated from the right atrial appendages of patients undergoing coronary artery bypass and enzymatically dissociated. ICl.swell was evoked in hypotonic solution and recorded using the whole-cell patch-clamp technique. The PKC agonist phorbol dibutyrate (PDBu) enhanced ICl.swell in a concentration-dependent manner, which was reversed in isotonic solution and by a chloride current inhibitor, 9-anthracenecarboxylicacid. Furthermore, the PKC inhibitor bis-indolylmaleimide attenuated the effect and 4α-PDBu, an inactive PDBu analog, had no effect on ICl.swell. These results, obtained using the whole-cell patch-clamp technique, demonstrate the ability of PKC to activate ICl,swell in human atrial myocytes. This observation was consistent with a previous study using a single-channel patch-clamp technique, but differed from some findings in other species.
Xu, Baojian; Ye, WeiWei; Zhang, Yu; Shi, JingYu; Chan, ChunYu; Yao, XiaoQiang; Yang, Mo
2014-03-15
This paper presents a microfluidic planar patch clamp system based on a hydrophilic polymer poly(ethylene glycol) diacrylate (PEGDA) for whole cell current recording. The whole chip is fabricated by UV-assisted molding method for both microfluidic channel structure and planar electrode partition. This hydrophilic patch clamp chip has demonstrated a relatively high gigaseal success rate of 44% without surface modification compared with PDMS based patch clamp devices. This chip also shows a capability of rapid intracellular and extracellular solution exchange with high stability of gigaseals. The capillary flow kinetic experiments demonstrate that the flow rates of PEGDA microfluidic channels are around two orders of magnitude greater than those for PDMS-glass channels with the same channel dimensions. This hydrophilic polymer based patch clamp chips have significant advantages over current PDMS elastomer based systems such as no need for surface modification, much higher success rate of cell gigaseals and rapid solution exchange with stable cell gigaseals. Our results indicate the potential of these devices to serve as useful tools for pharmaceutical screening and biosensing tasks. © 2013 Elsevier B.V. All rights reserved.
Properties of Single K+ and Cl− Channels in Asclepias tuberosa Protoplasts 1
Schauf, Charles L.; Wilson, Kathryn J.
1987-01-01
Potassium and chloride channels were characterized in Asclepias tuberosa suspension cell derived protoplasts by patch voltage-clamp. Whole-cell currents and single channels in excised patches had linear instantaneous current-voltage relations, reversing at the Nernst potentials for K+ and Cl−, respectively. Whole cell K+ currents activated exponentially during step depolarizations, while voltage-dependent Cl− channels were activated by hyperpolarizations. Single K+ channel conductance was 40 ± 5 pS with a mean open time of 4.5 milliseconds at 100 millivolts. Potassium channels were blocked by Cs+ and tetraethylammonium, but were insensitive to 4-aminopyridine. Chloride channels had a single-channel conductance of 100 ± 17 picosiemens, mean open time of 8.8 milliseconds, and were blocked by Zn2+ and ethacrynic acid. Whole-cell Cl− currents were inhibited by abscisic acid, and were unaffected by indole-3-acetic acid and 2,4-dichlorophenoxyacetic acid. Since internal and external composition can be controlled, patch-clamped protoplasts are ideal systems for studying the role of ion channels in plant physiology and development. Images Fig. 5 PMID:16665712
Preparation of Drosophila central neurons for in situ patch clamping.
Ryglewski, Stefanie; Duch, Carsten
2012-10-15
Short generation times and facile genetic techniques make the fruit fly Drosophila melanogaster an excellent genetic model in fundamental neuroscience research. Ion channels are the basis of all behavior since they mediate neuronal excitability. The first voltage gated ion channel cloned was the Drosophila voltage gated potassium channel Shaker(1,2). Toward understanding the role of ion channels and membrane excitability for nervous system function it is useful to combine powerful genetic tools available in Drosophila with in situ patch clamp recordings. For many years such recordings have been hampered by the small size of the Drosophila CNS. Furthermore, a robust sheath made of glia and collagen constituted obstacles for patch pipette access to central neurons. Removal of this sheath is a necessary precondition for patch clamp recordings from any neuron in the adult Drosophila CNS. In recent years scientists have been able to conduct in situ patch clamp recordings from neurons in the adult brain(3,4) and ventral nerve cord of embryonic(5,6), larval(7,8,9,10), and adult Drosophila(11,12,13,14). A stable giga-seal is the main precondition for a good patch and depends on clean contact of the patch pipette with the cell membrane to avoid leak currents. Therefore, for whole cell in situ patch clamp recordings from adult Drosophila neurons must be cleaned thoroughly. In the first step, the ganglionic sheath has to be treated enzymatically and mechanically removed to make the target cells accessible. In the second step, the cell membrane has to be polished so that no layer of glia, collagen or other material may disturb giga-seal formation. This article describes how to prepare an identified central neuron in the Drosophila ventral nerve cord, the flight motoneuron 5 (MN5(15)), for somatic whole cell patch clamp recordings. Identification and visibility of the neuron is achieved by targeted expression of GFP in MN5. We do not aim to explain the patch clamp technique itself.
Malysz, John; Afeli, Serge A. Y.; Provence, Aaron
2013-01-01
Mechanisms underlying ethanol (EtOH)-induced detrusor smooth muscle (DSM) relaxation and increased urinary bladder capacity remain unknown. We investigated whether the large conductance Ca2+-activated K+ (BK) channels or L-type voltage-dependent Ca2+ channels (VDCCs), major regulators of DSM excitability and contractility, are targets for EtOH by patch-clamp electrophysiology (conventional and perforated whole cell and excised patch single channel) and isometric tension recordings using guinea pig DSM cells and isolated tissue strips, respectively. EtOH at 0.3% vol/vol (∼50 mM) enhanced whole cell BK currents at +30 mV and above, determined by the selective BK channel blocker paxilline. In excised patches recorded at +40 mV and ∼300 nM intracellular Ca2+ concentration ([Ca2+]), EtOH (0.1–0.3%) affected single BK channels (mean conductance ∼210 pS and blocked by paxilline) by increasing the open channel probability, number of open channel events, and open dwell-time constants. The amplitude of single BK channel currents and unitary conductance were not altered by EtOH. Conversely, at ∼10 μM but not ∼2 μM intracellular [Ca2+], EtOH (0.3%) decreased the single BK channel activity. EtOH (0.3%) affected transient BK currents (TBKCs) by either increasing frequency or decreasing amplitude, depending on the basal level of TBKC frequency. In isolated DSM strips, EtOH (0.1–1%) reduced the amplitude and muscle force of spontaneous phasic contractions. The EtOH-induced DSM relaxation, except at 1%, was attenuated by paxilline. EtOH (1%) inhibited L-type VDCC currents in DSM cells. In summary, we reveal the involvement of BK channels and L-type VDCCs in mediating EtOH-induced urinary bladder relaxation accommodating alcohol-induced diuresis. PMID:24153429
Series resistance compensation for whole-cell patch-clamp studies using a membrane state estimator
Sherman, AJ; Shrier, A; Cooper, E
1999-01-01
Whole-cell patch-clamp techniques are widely used to measure membrane currents from isolated cells. While suitable for a broad range of ionic currents, the series resistance (R(s)) of the recording pipette limits the bandwidth of the whole-cell configuration, making it difficult to measure rapid ionic currents. To increase bandwidth, it is necessary to compensate for R(s). Most methods of R(s) compensation become unstable at high bandwidth, making them hard to use. We describe a novel method of R(s) compensation that overcomes the stability limitations of standard designs. This method uses a state estimator, implemented with analog computation, to compute the membrane potential, V(m), which is then used in a feedback loop to implement a voltage clamp; we refer to this as state estimator R(s) compensation. To demonstrate the utility of this approach, we built an amplifier incorporating state estimator R(s) compensation. In benchtop tests, our amplifier showed significantly higher bandwidths and improved stability when compared with a commercially available amplifier. We demonstrated that state estimator R(s) compensation works well in practice by recording voltage-gated Na(+) currents under voltage-clamp conditions from dissociated neonatal rat sympathetic neurons. We conclude that state estimator R(s) compensation should make it easier to measure large rapid ionic currents with whole-cell patch-clamp techniques. PMID:10545359
Flip the tip: an automated, high quality, cost-effective patch clamp screen.
Lepple-Wienhues, Albrecht; Ferlinz, Klaus; Seeger, Achim; Schäfer, Arvid
2003-01-01
The race for creating an automated patch clamp has begun. Here, we present a novel technology to produce true gigaseals and whole cell preparations at a high rate. Suspended cells are flushed toward the tip of glass micropipettes. Seal, whole-cell break-in, and pipette/liquid handling are fully automated. Extremely stable seals and access resistance guarantee high recording quality. Data obtained from different cell types sealed inside pipettes show long-term stability, voltage clamp and seal quality, as well as block by compounds in the pM range. A flexible array of independent electrode positions minimizes consumables consumption at maximal throughput. Pulled micropipettes guarantee a proven gigaseal substrate with ultra clean and smooth surface at low cost.
Yajuan, Xiao; Xin, Liang; Zhiyuan, Li
2012-01-01
The patch clamp technique is commonly used in electrophysiological experiments and offers direct insight into ion channel properties through the characterization of ion channel activity. This technique can be used to elucidate the interaction between a drug and a specific ion channel at different conformational states to understand the ion channel modulators’ mechanisms. The patch clamp technique is regarded as a gold standard for ion channel research; however, it suffers from low throughput and high personnel costs. In the last decade, the development of several automated electrophysiology platforms has greatly increased the screen throughput of whole cell electrophysiological recordings. New advancements in the automated patch clamp systems have aimed to provide high data quality, high content, and high throughput. However, due to the limitations noted above, automated patch clamp systems are not capable of replacing manual patch clamp systems in ion channel research. While automated patch clamp systems are useful for screening large amounts of compounds in cell lines that stably express high levels of ion channels, the manual patch clamp technique is still necessary for studying ion channel properties in some research areas and for specific cell types, including primary cells that have mixed cell types and differentiated cells that derive from induced pluripotent stem cells (iPSCs) or embryonic stem cells (ESCs). Therefore, further improvements in flexibility with regard to cell types and data quality will broaden the applications of the automated patch clamp systems in both academia and industry. PMID:23346269
Acidic pH modulation of Na+ channels in trigeminal mesencephalic nucleus neurons.
Kang, In-Sik; Cho, Jin-Hwa; Choi, In-Sun; Kim, Do-Yeon; Jang, Il-Sung
2016-12-07
Cell bodies of trigeminal mesencephalic nucleus (Vmes) neurons are located within the central nervous system, and therefore, peripheral as well as central acidosis can modulate the excitability of Vmes neurons. Here, we report the effect of acidic pH on voltage-gated Na channels in acutely isolated rat Vmes neurons using a conventional whole-cell patch clamp technique. Acidic pH (pH 6.0) slightly but significantly shifted both the activation and steady-state fast inactivation relationships toward depolarized potentials. However, acidic pH (pH 6.0) had a minor effect on the inactivation kinetics of voltage-gated Na channels. Less sensitivity of voltage-gated Na channels to acidic pH may allow Vmes neurons to transduce the precise proprioceptive information even under acidic pH conditions.
Localized Patch Clamping of Plasma Membrane of a Polarized Plant Cell 1
Taylor, Alison R.; Brownlee, Colin
1992-01-01
We used an ultraviolet laser to rupture a small region of cell wall of a polarized Fucus spiralis rhizoid cell and gained localized access to the plasma membrane at the growing apex. Careful control of cell turgor enabled a small portion of plasma membrane-bound cytoplasm to be exposed. Gigaohm seals allowing single-channel recordings were obtained with a high success rate using this method with conventional patch clamp techniques. ImagesFigure 1 PMID:16669092
Yoon, Jihwan; Leblanc, Normand; Zaklit, Josette; Vernier, P Thomas; Chatterjee, Indira; Craviso, Gale L
2016-10-01
Patch clamp electrophysiology serves as a powerful method for studying changes in plasma membrane ion conductance induced by externally applied high-intensity nanosecond electric pulses (NEPs). This paper describes an enhanced monitoring technique that minimizes the length of time between pulse exposure and data recording in a patch-clamped excitable cell. Whole-cell membrane currents were continuously recorded up to 11 ms before and resumed 8 ms after delivery of a 5-ns, 6 MV/m pulse by a pair of tungsten rod electrodes to a patched adrenal chromaffin cell maintained at a holding potential of -70 mV. This timing was achieved by two sets of relay switches. One set was used to disconnect the patch pipette electrode from the pre-amplifier and connect it to a battery to maintain membrane potential at -70 mV, and also to disconnect the reference electrode from the amplifier. The other set was used to disconnect the electrodes from the pulse generator until the time of NEP/sham exposure. The sequence and timing of both sets of relays were computer-controlled. Using this procedure, we observed that a 5-ns pulse induced an instantaneous inward current that decayed exponentially over the course of several minutes, that a second pulse induced a similar response, and that the current was carried, at least in part, by Na + . This approach for characterizing ion conductance changes in an excitable cell in response to NEPs will yield information essential for assessing the potential use of NEP stimulation for therapeutic applications.
Sabirov, R Z; Dutta, A K; Okada, Y
2001-09-01
In mouse mammary C127i cells, during whole-cell clamp, osmotic cell swelling activated an anion channel current, when the phloretin-sensitive, volume-activated outwardly rectifying Cl(-) channel was eliminated. This current exhibited time-dependent inactivation at positive and negative voltages greater than around +/-25 mV. The whole-cell current was selective for anions and sensitive to Gd(3)+. In on-cell patches, single-channel events appeared with a lag period of approximately 15 min after a hypotonic challenge. Under isotonic conditions, cell-attached patches were silent, but patch excision led to activation of currents that consisted of multiple large-conductance unitary steps. The current displayed voltage- and time-dependent inactivation similar to that of whole-cell current. Voltage-dependent activation profile was bell-shaped with the maximum open probability at -20 to 0 mV. The channel in inside-out patches had the unitary conductance of approximately 400 pS, a linear current-voltage relationship, and anion selectivity. The outward (but not inward) single-channel conductance was suppressed by extracellular ATP with an IC(50) of 12.3 mM and an electric distance (delta) of 0.47, whereas the inward (but not outward) conductance was inhibited by intracellular ATP with an IC(50) of 12.9 mM and delta of 0.40. Despite the open channel block by ATP, the channel was ATP-conductive with P(ATP)/P(Cl) of 0.09. The single-channel activity was sensitive to Gd(3)+, SITS, and NPPB, but insensitive to phloretin, niflumic acid, and glibenclamide. The same pharmacological pattern was found in swelling-induced ATP release. Thus, it is concluded that the volume- and voltage-dependent ATP-conductive large-conductance anion channel serves as a conductive pathway for the swelling-induced ATP release in C127i cells.
Diffusion-convection effects on drug distribution at the cell membrane level in a patch-clamp setup.
Baran, Irina; Iftime, Adrian; Popescu, Anca
2010-01-01
We present a model-based method for estimating the effective concentration of the active drug applied by a pressure pulse to an individual cell in a patch-clamp setup, which could be of practical use in the analysis of ligand-induced whole-cell currents recorded in patch-clamp experiments. Our modelling results outline several important factors which may be involved in the high variability of the electric response of the cells, and indicate that with a pressure pulse duration of 1s and diameter of the perfusion tip of 600 μm, elevated amounts of drug can accumulate locally between the pipette tip and the cell. Hence, the effective agonist concentration at the cell membrane level can be consistently higher than the initial concentration inside the perfusion tubes. We performed finite-difference and finite-element simulations to investigate the diffusion/convection effects on the agonist distribution on the cell membrane. Our model can explain the delay between the commencement of acetylcholine application and the onset of the whole-cell current that we recorded on human rhabdomyosarcoma TE671 cells, and reproduce quantitatively the decrease of signal latency with the concentration of agonist in the pipette. Results also show that not only the geometry of the bath chamber and pipette tip, but also the transport parameters of the diffusive and convective phenomena in the bath solution are determinant for the amplitude and kinetics of the recorded currents and have to be accounted for when analyzing patch-clamp data. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Yue, Jin-feng; Qiao, Guan-hua; Liu, Ni; Nan, Fa-jun; Gao, Zhao-bing
2016-01-01
Aim: To establish an improved, high-throughput screening techniques for identifying novel KCNQ2 channel activators. Methods: KCNQ2 channels were stably expressed in CHO cells (KCNQ2 cells). Thallium flux assay was used for primary screening, and 384-well automated patch-clamp IonWorks Barracuda was used for hit validation. Two validated activators were characterized using a conventional patch-clamp recording technique. Results: From a collection of 80 000 compounds, the primary screening revealed a total of 565 compounds that potentiated the fluorescence signals in thallium flux assay by more than 150%. When the 565 hits were examined in IonWorks Barracuda, 38 compounds significantly enhanced the outward currents recorded in KCNQ2 cells, and were confirmed as KCNQ2 activators. In the conventional patch-clamp recordings, two validated activators ZG1732 and ZG2083 enhanced KCNQ2 currents with EC50 values of 1.04±0.18 μmol/L and 1.37±0.06 μmol/L, respectively. Conclusion: The combination of thallium flux assay and IonWorks Barracuda assay is an efficient high-throughput screening (HTS) route for discovering KCNQ2 activators. PMID:26725738
Hardy, M E L; Lawrence, C L; Standen, N B; Rodrigo, G C
2006-01-01
Potential-sensitive dyes have primarily been used to optically record action potentials (APs) in whole heart tissue. Using these dyes to record drug-induced changes in AP morphology of isolated cardiac myocytes could provide an opportunity to develop medium throughout assays for the pharmaceutical industry. Ideally, this requires that the dye has a consistent and rapid response to membrane potential, is insensitive to movement, and does not itself affect AP morphology. We recorded the AP from isolated adult guinea-pig ventricular myocytes optically using di-8-ANEPPS in a single-excitation dual-emission ratiometric system, either separately in electrically field stimulated myocytes, or simultaneously with an electrical AP recorded with a patch electrode in the whole-cell bridge mode. The ratio of di-8-ANEPPS fluorescence signal was calibrated against membrane potential using a switch-clamp to voltage clamp the myocyte. Our data show that the ratio of the optical signals emitted at 560/620 nm is linearly related to voltage over the voltage range of an AP, producing a change in ratio of 7.5% per 100 mV, is unaffected by cell movement and is identical to the AP recorded simultaneously with a patch electrode. However, the APD90 recorded optically in myocytes loaded with di-8-ANEPPS was significantly longer than in unloaded myocytes recorded with a patch electrode (355.6+/-13.5 vs. 296.2+/-16.2 ms; p<0.01). Despite this effect, the apparent IC50 for cisapride, which prolongs the AP by blocking IKr, was not significantly different whether determined optically or with a patch electrode (91+/-46 vs. 81+/-20 nM). These data show that the optical AP recorded ratiometrically using di-8-ANEPPS from a single ventricular myocyte accurately follows the action potential morphology. This technique can be used to estimate the AP prolonging effects of a compound, although di-8-ANEPPS itself prolongs APD90. Optical dyes require less technical skills and are less invasive than conventional electrophysiological techniques and, when coupled to ventricular myocytes, decreases animal usage and facilitates higher throughput assays.
Patch-based Convolutional Neural Network for Whole Slide Tissue Image Classification
Hou, Le; Samaras, Dimitris; Kurc, Tahsin M.; Gao, Yi; Davis, James E.; Saltz, Joel H.
2016-01-01
Convolutional Neural Networks (CNN) are state-of-the-art models for many image classification tasks. However, to recognize cancer subtypes automatically, training a CNN on gigapixel resolution Whole Slide Tissue Images (WSI) is currently computationally impossible. The differentiation of cancer subtypes is based on cellular-level visual features observed on image patch scale. Therefore, we argue that in this situation, training a patch-level classifier on image patches will perform better than or similar to an image-level classifier. The challenge becomes how to intelligently combine patch-level classification results and model the fact that not all patches will be discriminative. We propose to train a decision fusion model to aggregate patch-level predictions given by patch-level CNNs, which to the best of our knowledge has not been shown before. Furthermore, we formulate a novel Expectation-Maximization (EM) based method that automatically locates discriminative patches robustly by utilizing the spatial relationships of patches. We apply our method to the classification of glioma and non-small-cell lung carcinoma cases into subtypes. The classification accuracy of our method is similar to the inter-observer agreement between pathologists. Although it is impossible to train CNNs on WSIs, we experimentally demonstrate using a comparable non-cancer dataset of smaller images that a patch-based CNN can outperform an image-based CNN. PMID:27795661
NASA Technical Reports Server (NTRS)
Miedema, H.; Henriksen, G. H.; Assmann, S. M.; Evans, M. L. (Principal Investigator)
1999-01-01
Application of patch clamp techniques to higher-plant cells has been subject to the limitation that the requisite contact of the patch electrode with the cell membrane necessitates prior enzymatic removal of the plant cell wall. Because the wall is an integral component of plant cells, and because cell-wall-degrading enzymes can disrupt membrane properties, such enzymatic treatments may alter ion channel behavior. We compared ion channel activity in enzymatically isolated protoplasts of Vicia faba guard cells with that found in membranes exposed by a laser microsurgical technique in which only a tiny portion of the cell wall is removed while the rest of the cell remains intact within its tissue environment. "Laser-assisted" patch clamping reveals a new category of high-conductance (130 to 361 pS) ion channels not previously reported in patch clamp studies on plant plasma membranes. These data indicate that ion channels are present in plant membranes that are not detected by conventional patch clamp techniques involving the production of individual plant protoplasts isolated from their tissue environment by enzymatic digestion of the cell wall. Given the large conductances of the channels revealed by laser-assisted patch clamping, we hypothesize that these channels play a significant role in the regulation of ion content and electrical signalling in guard cells.
Rivet, M; Bois, P; Cognard, C; Raymond, G
1990-10-01
The effect of the anticonvulsant diphenylhydantoin (phenytoin) was tested on the inward calcium currents of whole-cell patch-clamped cells from rat and human muscles and from frog atrium. A concentration of 10 microM phenytoin was required to obtain a threshold inhibitory effect and, even with high concentrations (100 microM), the inhibition was not complete. In skeletal muscle (rat and human cells in culture), phenytoin (30 microM) exerted a more potent effect on the high-threshold calcium current (ICa,L inhibition: 53 +/- 6% mean +/- SDn-1) rather than on the low-threshold one (ICa,T inhibition: 16 +/- 10%). Similar results were obtained on dissociated frog atrial cells. These data are to be contrasted with those previously reported on neuronal cells, where specific inhibition of ICa,T was reported. Thus, the action of phenytoin appears to be different in muscle and nerve so that phenytoin does not appear to be a specific inhibitor of ICa,T.
The Nano-Patch-Clamp Array: Microfabricated Glass Chips for High-Throughput Electrophysiology
NASA Astrophysics Data System (ADS)
Fertig, Niels
2003-03-01
Electrophysiology (i.e. patch clamping) remains the gold standard for pharmacological testing of putative ion channel active drugs (ICADs), but suffers from low throughput. A new ion channel screening technology based on microfabricated glass chip devices will be presented. The glass chips contain very fine apertures, which are used for whole-cell voltage clamp recordings as well as single channel recordings from mammalian cell lines. Chips containing multiple patch clamp wells will be used in a first bench-top device, which will allow perfusion and electrical readout of each well. This scalable technology will allow for automated, rapid and parallel screening on ion channel drug targets.
Salvador-Recatalà, Vicenta; Schneider, Toni; Greenberg, Robert M
2008-03-26
The function of voltage-gated calcium (Cav) channels greatly depends on coupling to cytoplasmic accessory beta subunits, which not only promote surface expression, but also modulate gating and kinetic properties of the alpha1 subunit. Schistosomes, parasitic platyhelminths that cause schistosomiasis, express two beta subunit subtypes: a structurally conventional beta subunit and a variant beta subunit with unusual functional properties. We have previously characterized the functional properties of the variant Cavbeta subunit. Here, we focus on the modulatory phenotype of the conventional Cavbeta subunit (SmCavbeta) using the human Cav2.3 channel as the substrate for SmCavbeta and the whole-cell patch-clamp technique. The conventional Schistosoma mansoni Cavbeta subunit markedly increases Cav2.3 currents, slows macroscopic inactivation and shifts steady state inactivation in the hyperpolarizing direction. However, currents produced by Cav2.3 in the presence of SmCavbeta run-down to approximately 75% of their initial amplitudes within two minutes of establishing the whole-cell configuration. This suppressive effect was independent of Ca2+, but dependent on intracellular Mg2+-ATP. Additional experiments revealed that SmCavbeta lends the Cav2.3/SmCavbeta complex sensitivity to Na+ ions. A mutant version of the Cavbeta subunit lacking the first forty-six amino acids, including a string of twenty-two acidic residues, no longer conferred sensitivity to intracellular Mg2+-ATP and Na+ ions, while continuing to show wild type modulation of current amplitude and inactivation of Cav2.3. The data presented in this article provide insights into novel mechanisms employed by platyhelminth Cavbeta subunits to modulate voltage-gated Ca2+ currents that indicate interactions between the Ca2+ channel complex and chelated forms of ATP as well as Na+ ions. These results have potentially important implications for understanding previously unknown mechanisms by which platyhelminths and perhaps other organisms modulate Ca2+ currents in excitable cells.
Corredor, Germán; Whitney, Jon; Arias, Viviana; Madabhushi, Anant; Romero, Eduardo
2017-01-01
Abstract. Computational histomorphometric approaches typically use low-level image features for building machine learning classifiers. However, these approaches usually ignore high-level expert knowledge. A computational model (M_im) combines low-, mid-, and high-level image information to predict the likelihood of cancer in whole slide images. Handcrafted low- and mid-level features are computed from area, color, and spatial nuclei distributions. High-level information is implicitly captured from the recorded navigations of pathologists while exploring whole slide images during diagnostic tasks. This model was validated by predicting the presence of cancer in a set of unseen fields of view. The available database was composed of 24 cases of basal-cell carcinoma, from which 17 served to estimate the model parameters and the remaining 7 comprised the evaluation set. A total of 274 fields of view of size 1024×1024 pixels were extracted from the evaluation set. Then 176 patches from this set were used to train a support vector machine classifier to predict the presence of cancer on a patch-by-patch basis while the remaining 98 image patches were used for independent testing, ensuring that the training and test sets do not comprise patches from the same patient. A baseline model (M_ex) estimated the cancer likelihood for each of the image patches. M_ex uses the same visual features as M_im, but its weights are estimated from nuclei manually labeled as cancerous or noncancerous by a pathologist. M_im achieved an accuracy of 74.49% and an F-measure of 80.31%, while M_ex yielded corresponding accuracy and F-measures of 73.47% and 77.97%, respectively. PMID:28382314
Benedusi, Mascia; Aquila, Marco; Milani, Alberto; Rispoli, Giorgio
2011-11-01
When performing whole-cell configuration recordings, it is important to minimize series resistance to reduce the time constant of charging the cell membrane capacitance and to reduce error in membrane potential control. To this end, an existing method was improved by widening the patch pipette shank through the calibrated combination of heat and air pressure. The heat was produced by passing current through a filament that was shaped appropriately to ensure a homogeneous heating of the pipette shank. Pressurized air was applied to the lumen of a pipette, pulled from a borosilicate glass microcap, via the pressure port of a modified commercial holder. The pipette reshaping was viewed on an LCD monitor connected to a contrast-intensified CCD camera and coupled to a modified bright-field stereomicroscope. By appropriately regulating the timing of air pressure and the application of heating, the pipette shank and, independently, the tip opening diameter were widened as desired. The methods illustrated here to fabricate and use the patch pipettes, using just one glass type, allowed the sealing of a wide variety of cell types isolated from different amphibian, reptilian, fish, and mammalian tissues as well as a variety of artificial membranes made with many different lipid mixtures. The access resistance yielded by pressure-polished pipettes was approximately one-fourth the size of the one attained with conventional pipettes; besides improving the electrical recordings, this minimized intracellular ion accumulation or depletion as well. Enlarged shank geometry allowed for fast intracellular perfusion as shown by fluorescence imaging, also via pulled quartz or plastic tubes, which could be inserted very close to the pipette tip.
Ning, N; Wen, Y; Li, Y; Li, J
2013-11-01
Nonsteroidal anti-inflammatory drugs (NSAIDs) are commonly used to manage the pain and inflammation. NSAIDs can cause serious side effects, including vision problems. However, the underlying mechanisms are still unclear. Therefore, we aimed to investigate the effect of meclofenamic acid (MFA) on retinal pigment epithelium (RPE). In our study, we applied image analysis and whole-cell patch clamp recording to directly measure the effect of MFA on the gap junctional coupling between RPE cells. Analysis of Lucifer yellow (LY) transfer revealed that the gap junction communication existed between RPE cells. Functional experiments using the whole-cell configuration of the patch clamp technique showed that a gap junction conductance also existed between this kind of cells. Importantly, MFA largely inhibited the gap junction conductance and induced the uncoupling of RPE cells. Other NSAIDs, like aspirin and flufenamic acid (FFA), had the same effect. The gap junction functionally existed in RPE cells, which can be blocked by MFA. These findings may explain, at least partially, the vision problems with certain clinically used NSAIDs.
Levy, Manuel; Schramm, Adrien E.; Kara, Prakash
2012-01-01
Uncovering the functional properties of individual synaptic inputs on single neurons is critical for understanding the computational role of synapses and dendrites. Previous studies combined whole-cell patch recording to load neurons with a fluorescent calcium indicator and two-photon imaging to map subcellular changes in fluorescence upon sensory stimulation. By hyperpolarizing the neuron below spike threshold, the patch electrode ensured that changes in fluorescence associated with synaptic events were isolated from those caused by back-propagating action potentials. This technique holds promise for determining whether the existence of unique cortical feature maps across different species may be associated with distinct wiring diagrams. However, the use of whole-cell patch for mapping inputs on dendrites is challenging in large mammals, due to brain pulsations and the accumulation of fluorescent dye in the extracellular milieu. Alternatively, sharp intracellular electrodes have been used to label neurons with fluorescent dyes, but the current passing capabilities of these high impedance electrodes may be insufficient to prevent spiking. In this study, we tested whether sharp electrode recording is suitable for mapping functional inputs on dendrites in the cat visual cortex. We compared three different strategies for suppressing visually evoked spikes: (1) hyperpolarization by intracellular current injection, (2) pharmacological blockade of voltage-gated sodium channels by intracellular QX-314, and (3) GABA iontophoresis from a perisomatic electrode glued to the intracellular electrode. We found that functional inputs on dendrites could be successfully imaged using all three strategies. However, the best method for preventing spikes was GABA iontophoresis with low currents (5–10 nA), which minimally affected the local circuit. Our methods advance the possibility of determining functional connectivity in preparations where whole-cell patch may be impractical. PMID:23248588
Alomari, Yazan M.; MdZin, Reena Rahayu
2015-01-01
Analysis of whole-slide tissue for digital pathology images has been clinically approved to provide a second opinion to pathologists. Localization of focus points from Ki-67-stained histopathology whole-slide tissue microscopic images is considered the first step in the process of proliferation rate estimation. Pathologists use eye pooling or eagle-view techniques to localize the highly stained cell-concentrated regions from the whole slide under microscope, which is called focus-point regions. This procedure leads to a high variety of interpersonal observations and time consuming, tedious work and causes inaccurate findings. The localization of focus-point regions can be addressed as a clustering problem. This paper aims to automate the localization of focus-point regions from whole-slide images using the random patch probabilistic density method. Unlike other clustering methods, random patch probabilistic density method can adaptively localize focus-point regions without predetermining the number of clusters. The proposed method was compared with the k-means and fuzzy c-means clustering methods. Our proposed method achieves a good performance, when the results were evaluated by three expert pathologists. The proposed method achieves an average false-positive rate of 0.84% for the focus-point region localization error. Moreover, regarding RPPD used to localize tissue from whole-slide images, 228 whole-slide images have been tested; 97.3% localization accuracy was achieved. PMID:25793010
Digital PCR to determine the number of transcripts from single neurons after patch-clamp recording.
Faragó, Nóra; Kocsis, Ágnes K; Lovas, Sándor; Molnár, Gábor; Boldog, Eszter; Rózsa, Márton; Szemenyei, Viktor; Vámos, Enikő; Nagy, Lajos I; Tamás, Gábor; Puskás, László G
2013-06-01
Whole-cell patch-clamp recording enables detection of electrophysiological signals from single neurons as well as harvesting of perisomatic RNA through the patch pipette for subsequent gene expression analysis. Amplification and profiling of RNA with traditional quantitative real-time PCR (qRT-PCR) do not provide exact quantitation due to experimental variation caused by the limited amount of nucleic acid in a single cell. Here we describe a protocol for quantifying mRNA or miRNA expression in individual neurons after patch-clamp recording using high-density nanocapillary digital PCR (dPCR). Expression of a known cell-type dependent marker gene (gabrd), as well as oxidative-stress related induction of hspb1 and hmox1 expression, was quantified in individual neurogliaform and pyramidal cells, respectively. The miRNA mir-132, which plays a role in neurodevelopment, was found to be equally expressed in three different types of neurons. The accuracy and sensitivity of this method were further validated using synthetic spike-in templates and by detecting genes with very low levels of expression.
Microchip amplifier for in vitro, in vivo, and automated whole cell patch-clamp recording
Kolb, Ilya; Kodandaramaiah, Suhasa B.; Chubykin, Alexander A.; Yang, Aimei; Bear, Mark F.; Boyden, Edward S.; Forest, Craig R.
2014-01-01
Patch clamping is a gold-standard electrophysiology technique that has the temporal resolution and signal-to-noise ratio capable of reporting single ion channel currents, as well as electrical activity of excitable single cells. Despite its usefulness and decades of development, the amplifiers required for patch clamping are expensive and bulky. This has limited the scalability and throughput of patch clamping for single-ion channel and single-cell analyses. In this work, we have developed a custom patch-clamp amplifier microchip that can be fabricated using standard commercial silicon processes capable of performing both voltage- and current-clamp measurements. A key innovation is the use of nonlinear feedback elements in the voltage-clamp amplifier circuit to convert measured currents into logarithmically encoded voltages, thereby eliminating the need for large high-valued resistors, a factor that has limited previous attempts at integration. Benchtop characterization of the chip shows low levels of current noise [1.1 pA root mean square (rms) over 5 kHz] during voltage-clamp measurements and low levels of voltage noise (8.2 μV rms over 10 kHz) during current-clamp measurements. We demonstrate the ability of the chip to perform both current- and voltage-clamp measurement in vitro in HEK293FT cells and cultured neurons. We also demonstrate its ability to perform in vivo recordings as part of a robotic patch-clamping system. The performance of the patch-clamp amplifier microchip compares favorably with much larger commercial instrumentation, enabling benchtop commoditization, miniaturization, and scalable patch-clamp instrumentation. PMID:25429119
Jonas, E A; Knox, R J; Kaczmarek, L K
1997-07-01
A method is outlined for obtaining giga-ohm seals on intracellular membranes in intact cells. The technique employs a variant of the patch-clamp technique: a concentric electrode arrangement protects an inner patch pipette during penetration of the plasma membrane, after which a seal can be formed on an internal organelle membrane. Using this technique, successful recordings can be obtained with the same frequency as with conventional patch clamping. To localize the position of the pipette within cells, lipophilic fluorescent dyes are included in the pipette solution. These dyes stain the membrane of internal organelles during seal formation and can then be visualized by video-enhanced or confocal imaging. The method can detect channels activated by inositol trisphosphate, as well as other types of intracellular membrane ion channel activity, and should facilitate studies of internal membranes in intact neurons and other cell types.
Ion channel drug discovery and research: the automated Nano-Patch-Clamp technology.
Brueggemann, A; George, M; Klau, M; Beckler, M; Steindl, J; Behrends, J C; Fertig, N
2004-01-01
Unlike the genomics revolution, which was largely enabled by a single technological advance (high throughput sequencing), rapid advancement in proteomics will require a broader effort to increase the throughput of a number of key tools for functional analysis of different types of proteins. In the case of ion channels -a class of (membrane) proteins of great physiological importance and potential as drug targets- the lack of adequate assay technologies is felt particularly strongly. The available, indirect, high throughput screening methods for ion channels clearly generate insufficient information. The best technology to study ion channel function and screen for compound interaction is the patch clamp technique, but patch clamping suffers from low throughput, which is not acceptable for drug screening. A first step towards a solution is presented here. The nano patch clamp technology, which is based on a planar, microstructured glass chip, enables automatic whole cell patch clamp measurements. The Port-a-Patch is an automated electrophysiology workstation, which uses planar patch clamp chips. This approach enables high quality and high content ion channel and compound evaluation on a one-cell-at-a-time basis. The presented automation of the patch process and its scalability to an array format are the prerequisites for any higher throughput electrophysiology instruments.
Design of Dual Band Microstrip Patch Antenna using Metamaterial
NASA Astrophysics Data System (ADS)
Rafiqul Islam, Md; Alsaleh Adel, A. A.; Mimi, Aminah W. N.; Yasmin, M. Sarah; Norun, Farihah A. M.
2017-11-01
Metamaterial has received great attention due to their novel electromagnetic properties. It consists of artificial metallic structures with negative permittivity (ɛ) and permeability (µ). The average cell size of metamaterial must be less than a quarter of wavelength, hence, size reduction for the metamaterial antenna is possible. In addition, metamaterial can be used to enhance the low gain and efficiency in conventional patch antenna, which is important in wireless communication. In this paper, dual band microstrip patch antenna design using metamaterial for mobile GSM and WiMax application is introduced. The antenna structure consists of microstrip feed line connected to a rectangular patch. An array of five split ring resonators (SRRs) unit cells is inserted under the patch. The presented antenna resonates at 1.8 GHz for mobile GSM and 2.4 GHz for WIMAX applications. The return loss in the FR4 antenna at 1.8 GHz is -22.5 dB. Using metamaterial the return loss has improved to -25 dB at 2.4 GHz and -23.5 dB at 1.8 GHz. A conventional microstrip patch antenna using pair of slots is also designed which resonates at 1.8 GHz and 2.4 GHz. The return loss at 1.8 GHz and 2.4 GHz were -12.1 dB and -21.8 dB respectively. The metamaterial antenna achieved results with major size reduction of 45%, better bandwidth and better returns loss if it is compared to the pair of slots antenna. The software used to design, simulate and optimize is CST microwave studio.
Ibey, Bennett L.; Xiao, Shu; Schoenbach, Karl H.; Murphy, Michael R.; Pakhomov, Andrei G.
2008-01-01
We explored how the effect of plasma membrane permeabilization by nanosecond-duration electric pulses (nsEP) depends on the physical characteristics of exposure. The resting membrane resistance (Rm) and membrane potential (MP) were measured in cultured GH3 and CHO cells by conventional whole-cell patch-clamp technique. Intact cells were exposed to a single nsEP (60 or 600 ns duration, 0-22 kV/cm), followed by patch-clamp measurements after a 2-3 min delay. Consistent with earlier findings, nsEP caused long-lasting Rm decrease, accompanied by the loss of MP. The threshold for these effects was about 6 kV/cm for 60 ns pulses, and about 1 kV/cm for 600 ns pulses. Further analysis established that it was neither pulse duration nor the E-field amplitude per se, but the absorbed dose that determined the magnitude of the biological effect. In other words, exposure to nsEP at either pulse duration caused equal effects if the absorbed doses were equal. The threshold absorbed dose to produce plasma membrane effects in either GH3 or CHO cells at either pulse duration was found to be at or below 10 mJ/g. Despite being determined by the dose, the nsEP effect clearly is not thermal, as the maximum heating at the threshold dose is less than 0.01 °C. The use of the absorbed dose as a universal exposure metric may help to compare and quantify nsEP sensitivity of different cell types and of cells in different physiological conditions. The absorbed dose may also prove to be a more useful metric than the incident E-field in determining safety limits for high peak, lowaverage power EMF emissions. PMID:18839412
Multi-neuron intracellular recording in vivo via interacting autopatching robots
Holst, Gregory L; Singer, Annabelle C; Han, Xue; Brown, Emery N
2018-01-01
The activities of groups of neurons in a circuit or brain region are important for neuronal computations that contribute to behaviors and disease states. Traditional extracellular recordings have been powerful and scalable, but much less is known about the intracellular processes that lead to spiking activity. We present a robotic system, the multipatcher, capable of automatically obtaining blind whole-cell patch clamp recordings from multiple neurons simultaneously. The multipatcher significantly extends automated patch clamping, or 'autopatching’, to guide four interacting electrodes in a coordinated fashion, avoiding mechanical coupling in the brain. We demonstrate its performance in the cortex of anesthetized and awake mice. A multipatcher with four electrodes took an average of 10 min to obtain dual or triple recordings in 29% of trials in anesthetized mice, and in 18% of the trials in awake mice, thus illustrating practical yield and throughput to obtain multiple, simultaneous whole-cell recordings in vivo. PMID:29297466
Laser-assisted patch clamping: a methodology
NASA Technical Reports Server (NTRS)
Henriksen, G. H.; Assmann, S. M.; Evans, M. L. (Principal Investigator)
1997-01-01
Laser microsurgery can be used to perform both cell biological manipulations, such as targeted cell ablation, and molecular genetic manipulations, such as genetic transformation and chromosome dissection. In this report, we describe a laser microsurgical method that can be used either to ablate single cells or to ablate a small area (1-3 microns diameter) of the extracellular matrix. In plants and microorganisms, the extracellular matrix consists of the cell wall. While conventional patch clamping of these cells, as well as of many animal cells, requires enzymatic digestion of the extracellular matrix, we illustrate that laser microsurgery of a portion of the wall enables patch clamp access to the plasma membrane of higher plant cells remaining situated in their tissue environment. What follows is a detailed description of the construction and use of an economical laser microsurgery system, including procedures for single cell and targeted cell wall ablation. This methodology will be of interest to scientists wishing to perform cellular or subcellular ablation with a high degree of accuracy, or wishing to study how the extracellular matrix affects ion channel function.
Dual patch voltage clamp study of low membrane resistance astrocytes in situ.
Ma, Baofeng; Xu, Guangjin; Wang, Wei; Enyeart, John J; Zhou, Min
2014-03-17
Whole-cell patch clamp recording has been successfully used in identifying the voltage-dependent gating and conductance properties of ion channels in a variety of cells. However, this powerful technique is of limited value in studying low membrane resistance cells, such as astrocytes in situ, because of the inability to control or accurately measure the real amplitude of command voltages. To facilitate the study of ionic conductances of astrocytes, we have developed a dual patch recording method which permits membrane current and membrane potential to be simultaneously recorded from astrocytes in spite of their extraordinarily low membrane resistance. The utility of this technique is demonstrated by measuring the voltage-dependent activation of the inwardly rectifying K+ current abundantly expressed in astrocytes and multiple ionic events associated with astrocytic GABAA receptor activation. This protocol can be performed routinely in the study of astrocytes. This method will be valuable for identifying and characterizing the individual ion channels that orchestrate the electrical activity of low membrane resistance cells.
2015-02-05
botulism or tetanus , whole-cell patch clamp electrophysiology was used to quantify spontaneous miniature excitory post-synaptic currents (mEPSCs) in...ESNs exposed to tetanus neurotoxin (TeNT) or botulinum neurotoxin (BoNT) serotypes / A-/G. In all cases, ESNs exhibited near-complete loss of synaptic
Patch-clamp amplifiers on a chip
Weerakoon, Pujitha; Culurciello, Eugenio; Yang, Youshan; Santos-Sacchi, Joseph; Kindlmann, Peter J.; Sigworth, Fred J.
2010-01-01
We present the first, fully-integrated, two-channel implementation of a patch-clamp measurement system. With this “PatchChip” two simultaneous whole-cell recordings can be obtained with rms noise of 8 pA in a 10 kHz bandwidth. The capacitance and series-resistance of the electrode can be compensated up to 10 pF and 100 MΩ respectively under computer control. Recordings of hERG and Nav 1.7 currents demonstrate the system's capabilities, which are on par with large, commercial patch-clamp instrumentation. By reducing patch-clamp amplifiers to a millimeter size micro-chip, this work paves the way to the realization of massively-parallel, high-throughput patch-clamp systems for drug screening and ion-channel research. The PatchChip is implemented in a 0.5 μm silicon-on-sapphire process; its size is 3 × 3 mm2 and the power consumption is 5 mW per channel with a 3.3 V power supply. PMID:20637803
Hristov, Kiril L.; Parajuli, Shankar P.; Provence, Aaron
2016-01-01
In addition to improving sexual function, testosterone has been reported to have beneficial effects in ameliorating lower urinary tract symptoms by increasing bladder capacity and compliance, while decreasing bladder pressure. However, the cellular mechanisms by which testosterone regulates detrusor smooth muscle (DSM) excitability have not been elucidated. Here, we used amphotericin-B perforated whole cell patch-clamp and single channel recordings on inside-out excised membrane patches to investigate the regulatory role of testosterone in guinea pig DSM excitability. Testosterone (100 nM) significantly increased the depolarization-induced whole cell outward currents in DSM cells. The selective pharmacological inhibition of the large-conductance voltage- and Ca2+-activated K+ (BK) channels with paxilline (1 μM) completely abolished this stimulatory effect of testosterone, suggesting a mechanism involving BK channels. At a holding potential of −20 mV, DSM cells exhibited transient BK currents (TBKCs). Testosterone (100 nM) significantly increased TBKC activity in DSM cells. In current-clamp mode, testosterone (100 nM) significantly hyperpolarized the DSM cell resting membrane potential and increased spontaneous transient hyperpolarizations. Testosterone (100 nM) rapidly increased the single BK channel open probability in inside-out excised membrane patches from DSM cells, clearly suggesting a direct BK channel activation via a nongenomic mechanism. Live-cell Ca2+ imaging showed that testosterone (100 nM) caused a decrease in global intracellular Ca2+ concentration, consistent with testosterone-induced membrane hyperpolarization. In conclusion, the data provide compelling mechanistic evidence that under physiological conditions, testosterone at nanomolar concentrations directly activates BK channels in DSM cells, independent from genomic testosterone receptors, and thus regulates DSM excitability. PMID:27605581
Stem cells are dispensable for lung homeostasis but restore airways after injury.
Giangreco, Adam; Arwert, Esther N; Rosewell, Ian R; Snyder, Joshua; Watt, Fiona M; Stripp, Barry R
2009-06-09
Local tissue stem cells have been described in airways of the lung but their contribution to normal epithelial maintenance is currently unknown. We therefore developed aggregation chimera mice and a whole-lung imaging method to determine the relative contributions of progenitor (Clara) and bronchiolar stem cells to epithelial maintenance and repair. In normal and moderately injured airways chimeric patches were small in size and not associated with previously described stem cell niches. This finding suggested that single, randomly distributed progenitor cells maintain normal epithelial homeostasis. In contrast we found that repair following severe lung injury resulted in the generation of rare, large clonal cell patches that were associated with stem cell niches. This study provides evidence that epithelial stem cells are dispensable for normal airway homeostasis. We also demonstrate that stem cell activation and robust clonal cellular expansion occur only during repair from severe lung injury.
Rivet, M; Cognard, C; Raymond, G
1989-01-01
The slow inward calcium current and the contractile response were simultaneously recorded in voltage clamped (whole cell patch clamp recording) rat myoballs in primary culture. The shape of the contraction(T)/potential(V) relationship and the application of the inorganic calcium channel blocker cadmium (1.5 mM), which suppresses a part of the contractile activity, demonstrate the existence of two components of contraction. One of them is related to the slow calcium current.
NASA Astrophysics Data System (ADS)
Morales-Reyes, I.; Seseña-Rubfiaro, A.; Acosta-García, M. C.; Batina, N.; Godínez-Fernández, R.
2016-08-01
It is well known that, in excitable cells, the dynamics of the ion currents (I i) is extremely important to determine both the magnitude and time course of an action potential (A p). To observe these two processes simultaneously, we cultured NG108-15 cells over a multi-walled carbon nanotubes electrode (MWCNTe) surface and arranged a two independent Patch Clamp system configuration (Bi-Patch Clamp). The first system was used in the voltage or current clamp mode, using a glass micropipette as an electrode. The second system was modified to connect the MWCNTe to virtual ground. While the A p was recorded through the micropipette electrode, the MWCNTe was used to measure the underlying whole-cell current. This configuration allowed us to record both the membrane voltage (V m) and the current changes simultaneously. Images acquired by atomic force microscopy (AFM) and scanning electron microscopy (SEM) indicate that cultured cells developed a complex network of neurites, which served to establish the necessary close contact and strong adhesion to the MWCNTe surface. These features were a key factor to obtain the recording of the whole-cell I i with a high signal to noise ratio (SNR). The experimental results were satisfactorily reproduced by a theoretical model developed to simulate the proposed system. Besides the contribution to a better understanding of the fundamental mechanisms involved in cell communication, the developed method could be useful in cell physiology studies, pharmacology and diseases diagnosis.
Effect of an N-terminus deletion on voltage-dependent gating of the ClC-2 chloride channel
Varela, Diego; Niemeyer, María Isabel; Cid, L Pablo; Sepúlveda, Francisco V
2002-01-01
ClC-2, a chloride channel widely expressed in mammalian tissues, is activated by hyperpolarisation and extracellular acidification. Deletion of amino acids 16–61 in rat ClC-2 abolishes voltage and pH dependence in two-electrode voltage-clamp experiments in amphibian oocytes. These results have been interpreted in terms of a ball-and-chain type of mechanism in which the N-terminus would behave as a ball that is removed from an inactivating site upon hyperpolarisation. We now report whole-cell patch-clamp measurements in mammalian cells showing hyperpolarization-activation of rClC-2Δ16–61 differing only in presenting faster opening and closing kinetics than rClC-2. The lack of time and voltage dependence observed previously was reproduced, however, in nystatin-perforated patch experiments. The behaviour of wild-type rClC-2 did not differ between conventional and nystatin-perforated patches. Similar results were obtained with ClC-2 from guinea-pig. One possible explanation of the results is that some diffusible component is able to lock the channel in an open state but does so only to the mutated channel. Alternative explanations involving the osmotic state of the cell and cytoskeleton structure are also considered. Low extracellular pH activates the wild-type channel but not rClC-2Δ16–61 when expressed in oocytes, a result that had been interpreted to suggest that protons affect the ball-and-chain mechanism. In our experiments no difference was seen in the effect of extracellular pH upon rClC-2 and rClC-2Δ16–61 in either recording configuration, suggesting that protons act independently from possible effects of the N-terminus on gating. Our observations of voltage-dependent gating of the N-terminal deleted ClC-2 are an argument against a ball-and-chain mechanism for this channel. PMID:12381811
Comparing reliabilities of strip and conventional patch testing.
Dickel, Heinrich; Geier, Johannes; Kreft, Burkhard; Pfützner, Wolfgang; Kuss, Oliver
2017-06-01
The standardized protocol for performing the strip patch test has proven to be valid, but evidence on its reliability is still missing. To estimate the parallel-test reliability of the strip patch test as compared with the conventional patch test. In this multicentre, prospective, randomized, investigator-blinded reliability study, 132 subjects were enrolled. Simultaneous duplicate strip and conventional patch tests were performed with the Finn Chambers ® on Scanpor ® tape test system and the patch test preparations nickel sulfate 5% pet., potassium dichromate 0.5% pet., and lanolin alcohol 30% pet. Reliability was estimated by the use of Cohen's kappa coefficient. Parallel-test reliability values of the three standard patch test preparations turned out to be acceptable, with slight advantages for the strip patch test. The differences in reliability were 9% (95%CI: -8% to 26%) for nickel sulfate and 23% (95%CI: -16% to 63%) for potassium dichromate, both favouring the strip patch test. The standardized strip patch test method for the detection of allergic contact sensitization in patients with suspected allergic contact dermatitis is reliable. Its application in routine clinical practice can be recommended, especially if the conventional patch test result is presumably false negative. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
The phosphoinositide sensitivity of the KV channel family
Kruse, Martin; Hille, Bertil
2013-01-01
Recently, we screened several KV channels for possible dependence on plasma membrane phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2). The channels were expressed in tsA-201 cells and the PI(4,5)P2 was depleted by several manipulations in whole-cell experiments with parallel measurements of channel activity. In contrast to reports on excised-patches using Xenopus laevis oocytes, we found only KV7, but none of the other tested KV channels, to be strongly dependent on PI(4,5)P2. We now have extended our study to KV1.2 channels, a KV channel we had not previously tested, because a new published study on excised patches showed regulation of the voltage-dependence of activation by PI(4,5)P2. In full agreement with those published results, we found a reduction of current amplitude by ~20% after depletion of PI(4,5)P2 and a small left shift in the activation curve of KV1.2 channels. We also found a small reduction of KV11.1 (hERG) currents that was not accompanied by a gating shift. In conclusion, our whole-cell methods yield a PI(4,5)P2-dependence of KV1.2 currents in tsA-201 cells that is comparable to findings from excised patches of Xenopus laevis oocytes. We discuss possible physiological rationales for PI(4,5)P2 sensitivity of some ion channels and insensitivity of others. PMID:23907203
Butera, R J; Wilson, C G; Delnegro, C A; Smith, J C
2001-12-01
We present a novel approach to implementing the dynamic-clamp protocol (Sharp et al., 1993), commonly used in neurophysiology and cardiac electrophysiology experiments. Our approach is based on real-time extensions to the Linux operating system. Conventional PC-based approaches have typically utilized single-cycle computational rates of 10 kHz or slower. In thispaper, we demonstrate reliable cycle-to-cycle rates as fast as 50 kHz. Our system, which we call model reference current injection (MRCI); pronounced merci is also capable of episodic logging of internal state variables and interactive manipulation of model parameters. The limiting factor in achieving high speeds was not processor speed or model complexity, but cycle jitter inherent in the CPU/motherboard performance. We demonstrate these high speeds and flexibility with two examples: 1) adding action-potential ionic currents to a mammalian neuron under whole-cell patch-clamp and 2) altering a cell's intrinsic dynamics via MRCI while simultaneously coupling it via artificial synapses to an internal computational model cell. These higher rates greatly extend the applicability of this technique to the study of fast electrophysiological currents such fast a currents and fast excitatory/inhibitory synapses.
Dissolving polymer microneedle patches for influenza vaccination.
Sullivan, Sean P; Koutsonanos, Dimitrios G; Del Pilar Martin, Maria; Lee, Jeong Woo; Zarnitsyn, Vladimir; Choi, Seong-O; Murthy, Niren; Compans, Richard W; Skountzou, Ioanna; Prausnitz, Mark R
2010-08-01
Influenza prophylaxis would benefit from a vaccination method enabling simplified logistics and improved immunogenicity without the dangers posed by hypodermic needles. Here we introduce dissolving microneedle patches for influenza vaccination using a simple patch-based system that targets delivery to skin's antigen-presenting cells. Microneedles were fabricated using a biocompatible polymer encapsulating inactivated influenza virus vaccine for insertion and dissolution in the skin within minutes. Microneedle vaccination generated robust antibody and cellular immune responses in mice that provided complete protection against lethal challenge. Compared to conventional intramuscular injection, microneedle vaccination resulted in more efficient lung virus clearance and enhanced cellular recall responses after challenge. These results suggest that dissolving microneedle patches can provide a new technology for simpler and safer vaccination with improved immunogenicity that could facilitate increased vaccination coverage.
Zhang, H; Bolton, T B
1995-01-01
1. Single-channel recordings were made from cell-attached and isolated patches, and whole-cell currents were recorded under voltage clamp from single smooth muscle cells obtained by enzymic digestion of a small branch of the rat mesenteric artery. 2. In single voltage-clamped cells 1 mM uridine diphosphate (UDP) or guanidine diphosphate (GDP) added to the pipette solution, or pinacidil (100 microM) a K-channel opener (KCO) applied in the bathing solution, evoked an outward current of up to 100pA which was blocked by glibenclamide (10 microM). In single cells from which recordings were made by the 'perforated patch' (nystatin pipette) technique, metabolic inhibition by 1 mM NaCN and 10 mM 2-deoxy-glucose also evoked a similar glibenclamide-sensitive current. 3. Single K-channel activity was observed in cell-attached patches only infrequently unless the metabolism of the cell was inhibited, whereupon channel activity blocked by glibenclamide was seen; pinacidil applied to the cell evoked similar glibenclamide-sensitive channel activity. If the patch was pulled off the cell to form an isolated inside-out patch, similar glibenclamide-sensitive single-channel currents were observed in the presence of UDP and/or pinacidil to those seen in cell-attached mode; channel conductance was 20 pS (60:130 K-gradient) and openings showed no voltage-dependence and noisy inward currents, typical of the nucleoside diphosphate (NDP) activated K-channel (KNDP) seen previously in rabbit portal vein. 4. Formation of an isolated inside-out patch into an ATP-free solution did not increase the probability of channel opening which declined with time even when some single-channel activity had occurred in the cell-attached mode before detachment. However, application of 1 mM UDP or GDP, but not ATP, to inside-out patches evoked single-channel activity. Application of ATP-free solution to isolated patches, previously exposed to ATP and in which channel activity had been seen, did not evoke channel activity. 5. It is concluded that small conductance K-channels (KNDP) open in smooth muscle cells from this small artery in response to UDP or GDP acting from the inside, or pinacidil acting from the outside; the same channels open during inhibition of metabolism presumably mainly due to the rise in nucleoside diphosphates, but a fall in the ATP concentration on the inside of the channel did not by itself evoke channel activity.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:7735693
Planar patch clamp: advances in electrophysiology.
Brüggemann, Andrea; Farre, Cecilia; Haarmann, Claudia; Haythornthwaite, Ali; Kreir, Mohamed; Stoelzle, Sonja; George, Michael; Fertig, Niels
2008-01-01
Ion channels have gained increased interest as therapeutic targets over recent years, since a growing number of human and animal diseases have been attributed to defects in ion channel function. Potassium channels are the largest and most diverse family of ion channels. Pharmaceutical agents such as Glibenclamide, an inhibitor of K(ATP) channel activity which promotes insulin release, have been successfully sold on the market for many years. So far, only a small group of the known ion channels have been addressed as potential drug targets. The functional testing of drugs on these ion channels has always been the bottleneck in the development of these types of pharmaceutical compounds.New generations of automated patch clamp screening platforms allow a higher throughput for drug testing and widen this bottleneck. Due to their planar chip design not only is a higher throughput achieved, but new applications have also become possible. One of the advantages of planar patch clamp is the possibility of perfusing the intracellular side of the membrane during a patch clamp experiment in the whole-cell configuration. Furthermore, the extracellular membrane remains accessible for compound application during the experiment.Internal perfusion can be used not only for patch clamp experiments with cell membranes, but also for those with artificial lipid bilayers. In this chapter we describe how internal perfusion can be applied to potassium channels expressed in Jurkat cells, and to Gramicidin channels reconstituted in a lipid bilayer.
Acosta-García, Ma Cristina; Morales-Reyes, Israel; Jiménez-Anguiano, Anabel; Batina, Nikola; Castellanos, N P; Godínez-Fernández, R
2018-02-01
This paper shows the simultaneous recording of electrical activity and the underlying ionic currents by using a gold substrate to culture NG108-15 cells. Cells grown on two different substrates (plastic Petri dishes and gold substrates) were characterized quantitatively through scanning electron microscopy (SEM) as well as qualitatively by optical and atomic force microscopy (AFM). No significant differences were observed between the surface area of cells cultured on gold substrates and Petri dishes, as indicated by measurements performed on SEM images. We also evaluated the electrophysiological compatibility of the cells through standard patch-clamp experiments by analyzing features such as the resting potential, membrane resistance, ionic currents, etc. Cells grown on both substrates showed no significant differences in their dependency on voltage, as well as in the magnitude of the Na+ and K+ current density; however, cells cultured on the gold substrate showed a lower membrane capacitance when compared to those grown on Petri dishes. By using two separate patch-clamp amplifiers, we were able to record the membrane current with the conventional patch-clamp technique and through the gold substrate simultaneously. Furthermore, the proposed technique allowed us to obtain simultaneous recordings of the electrical activity (such as action potentials firing) and the underlying membrane ionic currents. The excellent conductivity of gold makes it possible to overcome important difficulties found in conventional electrophysiological experiments such as those presented by the resistance of the electrolytic bath solution. We conclude that the technique here presented constitutes a solution to the problem of the simultaneous recording of electrical activity and the underlying ionic currents, which for decades, had been solved only partially.
NASA Astrophysics Data System (ADS)
Oiknine, Yaniv; August, Isaac Y.; Revah, Liat; Stern, Adrian
2016-05-01
Recently we introduced a Compressive Sensing Miniature Ultra-Spectral Imaging (CS-MUSI) system. The system is based on a single Liquid Crystal (LC) cell and a parallel sensor array where the liquid crystal cell performs spectral encoding. Within the framework of compressive sensing, the CS-MUSI system is able to reconstruct ultra-spectral cubes captured with only an amount of ~10% samples compared to a conventional system. Despite the compression, the technique is extremely complex computationally, because reconstruction of ultra-spectral images requires processing huge data cubes of Gigavoxel size. Fortunately, the computational effort can be alleviated by using separable operation. An additional way to reduce the reconstruction effort is to perform the reconstructions on patches. In this work, we consider processing on various patch shapes. We present an experimental comparison between various patch shapes chosen to process the ultra-spectral data captured with CS-MUSI system. The patches may be one dimensional (1D) for which the reconstruction is carried out spatially pixel-wise, or two dimensional (2D) - working on spatial rows/columns of the ultra-spectral cube, as well as three dimensional (3D).
Complex role of STIM1 in the activation of store-independent Orai1/3 channels
Zhang, Wei; González-Cobos, José C.; Jardin, Isaac; Romanin, Christoph; Matrougui, Khalid
2014-01-01
Orai proteins contribute to Ca2+ entry into cells through both store-dependent, Ca2+ release–activated Ca2+ (CRAC) channels (Orai1) and store-independent, arachidonic acid (AA)-regulated Ca2+ (ARC) and leukotriene C4 (LTC4)-regulated Ca2+ (LRC) channels (Orai1/3 heteromultimers). Although activated by fundamentally different mechanisms, CRAC channels, like ARC and LRC channels, require stromal interacting molecule 1 (STIM1). The role of endoplasmic reticulum–resident STIM1 (ER-STIM1) in CRAC channel activation is widely accepted. Although ER-STIM1 is necessary and sufficient for LRC channel activation in vascular smooth muscle cells (VSMCs), the minor pool of STIM1 located at the plasma membrane (PM-STIM1) is necessary for ARC channel activation in HEK293 cells. To determine whether ARC and LRC conductances are mediated by the same or different populations of STIM1, Orai1, and Orai3 proteins, we used whole-cell and perforated patch-clamp recording to compare AA- and LTC4-activated currents in VSMCs and HEK293 cells. We found that both cell types show indistinguishable nonadditive LTC4- and AA-activated currents that require both Orai1 and Orai3, suggesting that both conductances are mediated by the same channel. Experiments using a nonmetabolizable form of AA or an inhibitor of 5-lipooxygenase suggested that ARC and LRC currents in both cell types could be activated by either LTC4 or AA, with LTC4 being more potent. Although PM-STIM1 was required for current activation by LTC4 and AA under whole-cell patch-clamp recordings in both cell types, ER-STIM1 was sufficient with perforated patch recordings. These results demonstrate that ARC and LRC currents are mediated by the same cellular populations of STIM1, Orai1, and Orai3, and suggest a complex role for both ER-STIM1 and PM-STIM1 in regulating these store-independent Orai1/3 channels. PMID:24567509
Suspended Patch Antenna Array With Electromagnetically Coupled Inverted Microstrip Feed
NASA Technical Reports Server (NTRS)
Simons, Rainee N.
2000-01-01
The paper demonstrates a four-element suspended patch antenna array, with a parasitic patch layer and an electromagnetically coupled inverted microstrip feed, for linear polarization at K-Band frequencies. This antenna has the following advantages over conventional microstrip antennas: First, the inverted microstrip has lower attenuation than conventional microstrip; hence, conductor loss associated with the antenna corporate feed is lower resulting in higher gain and efficiency. Second, conventional proximity coupled patch antennas require a substrate for the feed and a superstrate for the patch. However, the inverted microstrip fed patch antenna makes use of a single substrate, and hence, is lightweight and low cost. Third, electromagnetic coupling results in wider bandwidth. Details regarding the design and fabrication will be presented as well as measured results including return loss, radiation patterns and cross-polarization levels.
McGuire, Rachel; Borem, Ryan; Mercuri, Jeremy
2017-12-01
One major limitation of intervertebral disc (IVD) repair is that no ideal biomaterial has been developed that effectively mimics the angle-ply collagen architecture and mechanical properties of the native annulus fibrosus (AF). Furthermore, it would be beneficial to devise a simple, scalable process by which to manufacture a biomimetic biomaterial that could function as a mechanical repair patch to be secured over a large defect in the outer AF that will support AF tissue regeneration. Such a biomaterial would: (1) enable the employment of early-stage interventional strategies to treat IVD degeneration (i.e. nucleus pulposus arthroplasty); (2) prevent IVD re-herniation in patients with large AF defects; and (3) serve as a platform to develop full-thickness AF and whole IVD tissue engineering strategies. Due to the innate collagen fibre alignment and mechanical strength of pericardium, a procedure was developed to assemble multi-laminate angle-ply AF patches derived from decellularized pericardial tissue. Patches were subsequently assessed histologically to confirm angle-ply microarchitecture, and mechanically assessed for biaxial burst strength and tensile properties. Additionally, patch cytocompatibility was evaluated following seeding with bovine AF cells. This study demonstrated the effective removal of porcine cell remnants from the pericardium, and the ability to reliably produce multi-laminate patches with angle-ply architecture using a simple assembly technique. Resultant patches demonstrated their inherent ability to resist biaxial burst pressures reminiscent of intradiscal pressures commonly borne by the AF, and exhibited tensile strength and modulus values reported for native human AF. Furthermore, the biomaterial supported AF cell viability, infiltration and proliferation. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Lishko, Polina; Clapham, David E.; Navarro, Betsy; Kirichok, Yuriy
2014-01-01
Sperm intracellular pH and calcium concentration ([Ca2+]i) are two central factors that control sperm activity within the female reproductive tract. As such, the ion channels of the sperm plasma membrane that alter intracellular sperm [Ca2+] and pH play important roles in sperm physiology and the process of fertilization. Indeed, sperm ion channels regulate sperm motility, control sperm chemotaxis toward the egg in some species, and may trigger the acrosome reaction. Until recently, our understanding of these important molecules was rudimentary due to the inability to patch-clamp spermatozoa and directly record the activity of these ion channels under voltage clamp. Recently, we overcame this technical barrier and developed a method for reproducible application of the patch-clamp technique to mouse and human spermatozoa. This chapter covers important aspects of application of the patch-clamp technique to spermatozoa, such as selection of the electrophysiological equipment, isolation of spermatozoa for patch-clamp experiments, formation of the gigaohm seal with spermatozoa, and transition into the whole-cell mode of recording. We also discuss potential pitfalls in application of the patch-clamp technique to flagellar ion channels. PMID:23522465
Zhou, Lushan; Zeng, Yuhan; Baker, Lane A; Hou, Jianghui
2015-01-01
Direct recording of tight junction permeability is of pivotal importance to many biologic fields. Previous approaches bear an intrinsic disadvantage due to the difficulty of separating tight junction conductance from nearby membrane conductance. Here, we propose the design of Double whole-cell Voltage Clamp - Ion Conductance Microscopy (DVC-ICM) based on previously demonstrated potentiometric scanning of local conductive pathways. As proposed, DVC-ICM utilizes two coordinated whole-cell patch-clamps to neutralize the apical membrane current during potentiometric scanning, which in models described here will profoundly enhance the specificity of tight junction recording. Several potential pitfalls are considered, evaluated and addressed with alternative countermeasures. PMID:26716077
NASA Astrophysics Data System (ADS)
Inamdar, Kirti; Kosta, Y. P.; Patnaik, S.
2014-10-01
In this paper, we present the design of a metamaterial-based microstrip patch antenna, optimized for bandwidth and multiple frequency operations. A criss-cross structure has been proposed, this shape has been inspired from the famous Jerusalem cross. The theory and design formulas to calculate various parameters of the proposed antenna have been presented. Design starts with the analysis of the proposed unit cell structure, and validating the response using software- HFSS Version 13, to obtain negative response of ε and μ- metamaterial. Following this, a metamaterial-based-microstrip-patch-antenna is designed. A detailed comparative study is conducted exploring the response of the designed patch made of metamaterial and that of the conventional patch. Finally, antenna parameters such as gain, bandwidth, radiation pattern, and multiple frequency responses are investigated and optimised for the same and present in table and response graphs. It is also observed that the physical dimension of the metamaterial-based patch antenna is smaller compared to its conventional counterpart operating at the same fundamental frequency. The challenging part was to develop metamaterial based on some signature structures and techniques that would offer advantage in terms of BW and multiple frequency operation, which is demonstrated in this paper. The unique shape proposed in this paper gives improvement in bandwidth without reducing the gain of the antenna.
Dietz, Shelby; Husch, Andreas; Harris-Warrick, Ronald M.
2012-01-01
Whole cell recordings (WCRs) are frequently used to study neuronal properties, but may be problematic when studying neuromodulatory responses, due to dialysis of the cell's cytoplasm. Perforated patch recordings (PPR) avoid cellular dialysis and might reveal additional modulatory effects that are lost during WCR. We have previously used WCR to characterize the responses of the V2a class of Chx10-expressing neurons to serotonin (5-HT) in the neonatal mouse spinal cord (Zhong et al., 2010). Here we directly compare multiple aspects of the responses to 5-HT using WCR and PPR in Chx10-eCFP neurons in spinal cord slices from 2 to 4 day old mice. Cellular properties recorded in PPR and WCR were similar, but high-quality PP recordings could be maintained for significantly longer. Both WCR and PPR cells could respond to 5-HT, and although neurons recorded by PPR showed a significantly greater response to 5-HT in some parameters, the absolute differences between PPR and WCR were small. We conclude that WCR is an acceptable recording method for short-term recordings of neuromodulatory effects, but the less invasive PPR is preferable for detailed analyses and is necessary for stable recordings lasting an hour or more. PMID:23060747
Novel 384-well population patch clamp electrophysiology assays for Ca2+-activated K+ channels.
John, Victoria H; Dale, Tim J; Hollands, Emma C; Chen, Mao Xiang; Partington, Leanne; Downie, David L; Meadows, Helen J; Trezise, Derek J
2007-02-01
Planar array electrophysiology techniques were applied to assays for modulators of recombinant hIK and hSK3 Ca2+-activated K+ channels. In CHO-hIK-expressing cells, under asymmetric K+ gradients, small-molecule channel activators evoked time- and voltage-independent currents characteristic of those previously described by classical patch clamp electrophysiology methods. In single-hole (cell) experiments, the large cell-to-cell heterogeneity in channel expression rendered it difficult to generate activator concentration-response curves. However, in population patch clamp mode, in which signals are averaged from up to 64 cells, well-to-well variation was substantially reduced such that concentration-response curves could be easily constructed. The absolute EC50 values and rank order of potency for a range of activators, including 1-EBIO and DC-EBIO, corresponded well with conventional patch clamp data. Activator responses of hIK and hSK3 channels could be fully and specifically blocked by the selective inhibitors TRAM-34 and apamin, with IC50 values of 0.31 microM and 3 nM, respectively. To demonstrate assay precision and robustness, a test set of 704 compounds was screened in a 384-well format of the hIK assay. All plates had Z' values greater than 0.6, and the statistical cutoff for activity was 8%. Eleven hits (1.6%) were identified from this set, in addition to the randomly spiked wells with known activators. Overall, our findings demonstrate that population patch clamp is a powerful and enabling method for screening Ca2+-activated K+ channels and provides significant advantages over single-cell electrophysiology (IonWorks(HT)) and other previously published approaches. Moreover, this work demonstrates for the 1st time the utility of population patch clamp for ion channel activator assays and for non-voltage-gated ion channels.
Wang, Zhi-Hong; Takada, Noriko; Uno, Hidetaka; Ishizuka, Toru; Yawo, Hiromu; Urisu, Tsuneo
2012-08-01
Positioning the sensor cell on the micropore of the sensor chip and keeping it there during incubation are problematic tasks for incubation type planar patch clamp biosensors. To solve these problems, we formed on the Si sensor chip's surface a cell trapping pattern consisting of a lattice pattern with a round area 5 μm deep and with the micropore at the center of the round area. The surface of the sensor chip was coated with extra cellular matrix collagen IV, and HEK293 cells on which a chimera molecule of channel-rhodopsin-wide-receiver (ChR-WR) was expressed, were then seeded. We examined the effects of this cell trapping pattern on the biosensor's operation. In the case of a flat sensor chip without a cell trapping pattern, it took several days before the sensor cell covered the micropore and formed an almost confluent state. As a result, multi-cell layers easily formed and made channel current measurements impossible. On the other hand, the sensor chip with cell trapping pattern easily trapped cells in the round area, and formed the colony consisted of the cell monolayer covering the micropore. A laser (473 nm wavelength) induced channel current was observed from the whole cell arrangement formed using the nystatin perforation technique. The observed channel current characteristics matched measurements made by using a pipette patch clamp. Copyright © 2012 Elsevier B.V. All rights reserved.
Planar patch clamp for neuronal networks--considerations and future perspectives.
Bosca, Alessandro; Martina, Marzia; Py, Christophe
2014-01-01
The patch-clamp technique is generally accepted as the gold standard for studying ion channel activity allowing investigators to either "clamp" membrane voltage and directly measure transmembrane currents through ion channels, or to passively monitor spontaneously occurring intracellular voltage oscillations. However, this resulting high information content comes at a price. The technique is labor-intensive and requires highly trained personnel and expensive equipment. This seriously limits its application as an interrogation tool for drug development. Patch-clamp chips have been developed in the last decade to overcome the tedious manipulations associated with the use of glass pipettes in conventional patch-clamp experiments. In this chapter, we describe some of the main materials and fabrication protocols that have been developed to date for the production of patch-clamp chips. We also present the concept of a patch-clamp chip array providing high resolution patch-clamp recordings from individual cells at multiple sites in a network of communicating neurons. On this chip, the neurons are aligned with the aperture-probes using chemical patterning. In the discussion we review the potential use of this technology for pharmaceutical assays, neuronal physiology and synaptic plasticity studies.
Obata, Takashi; Shibata, Naoko; Goto, Yoshiyuki; Ishikawa, Izumi; Sato, Shintaro; Kunisawa, Jun; Kiyono, Hiroshi
2013-07-15
Peyer's patches (PPs) simultaneously initiate active and quiescent immune responses in the gut. The immunological function is achieved by the rigid regulation of cell distribution and trafficking, but how the cell distribution is maintained remains to be elucidated. In this study, we show that binding of stromal cell-derived lymphoid chemokines to conventional dendritic cells (cDCs) is essential for the retention of naive CD4(+) T cells in the interfollicular region (IFR) of PPs. Transitory depletion of CD11c(high) cDCs in mice rapidly impaired the IFR structure in the PPs without affecting B cell follicles or germinal centers, lymphoid chemokine production from stromal cells, or the immigration of naive T cells into the IFRs of PPs. The cDC-orchestrated retention of naive T cells was mediated by heparinase-sensitive molecules that were expressed on cDCs and bound the lymphoid chemokine CCL21 produced from stromal cells. These data collectively reveal that interactions among cDCs, stromal cells, and naive T cells are necessary for the formation of IFRs in the PPs.
Hu, Fengqin; Mou, Paul P; Weiner, Jacob; Li, Shuo
2014-05-01
• There is an ongoing debate about the importance of whole-plant control vs. local modular mechanisms for root growth. We conducted a split-root experiment with different patch/background levels of nitrogen to examine whether local root growth and death are controlled by local resource levels or at the whole-plant level.• Three microrhizotrons with 0, 10, and 100 µg N/g growth medium levels (74 g growth medium each) were attached to pots of high or low soil N in which one Ailanthus altissima individual was growing. One fine root was guided into each of the microrhizotrons and photographed every 4 d. Plants were harvested after 28 d; root growth and mortality in the microrhizotrons were recorded. Changes in root length, number of laterals, and interlateral length were determined from the photos and analyzed.• While overall plant growth was influenced by background N level, both patch and background N levels influenced root growth and mortality in patches. Local roots proliferated most when the patch N level was high and background level low, and they proliferated least and showed highest mortality when patch N was low and the background level high.• The fate of roots growing in a patch is influenced by the resource environment of the plant's other roots as well as the resource levels in the patch itself. Thus, the growth and death of roots in patches is determined by both modular and whole-plant mechanisms. © 2014 Botanical Society of America, Inc.
NASA Astrophysics Data System (ADS)
Bhalla, Suresh; Srivastava, Shashank; Suresh, Rupali; Moharana, Sumedha; Kaur, Naveet; Gupta, Ashok
2015-03-01
This paper presents a case for extension of structural health monitoring (SHM) technologies to offer solutions for biomedical problems. SHM research has made remarkable progress during the last two/ three decades. These technologies are now being extended for possible applications in the bio-medical field. Especially, smart materials, such as piezoelectric ceramic (PZT) patches and fibre-Bragg grating (FBG) sensors, offer a new set of possibilities to the bio-medical community to augment their conventional set of sensors, tools and equipment. The paper presents some of the recent extensions of SHM, such as condition monitoring of bones, monitoring of dental implant post surgery and foot pressure measurement. Latest developments, such as non-bonded configuration of PZT patches for monitoring bones and possible applications in osteoporosis detection, are also discussed. In essence, there is a whole new gamut of new possibilities for SHM technologies making their foray into the bi-medical sector.
Elhamdani, Abdeladim; Azizi, Fouad; Artalejo, Cristina R
2006-03-15
Transient fusion ("kiss-and-run") is accepted as a mode of transmitter release both in central neurons and neuroendocrine cells, but the prevalence of this mechanism compared with full fusion is still in doubt. Using a novel double patch-clamp method (whole cell/cell attached), permitting the recording of unitary capacitance events while stimulating under a variety of conditions including action potentials, we show that transient fusion is the predominant (>90%) mode of secretion in calf adrenal chromaffin cells. Raising intracellular Ca2+ concentration ([Ca]i) from 10 to 200 microM increases the incidence of full fusion events at the expense of transient fusion. Blocking rapid endocytosis that normally terminates transient fusion events also promotes full fusion events. Thus, [Ca]i controls the transition between transient and full fusion, each of which is coupled to different modes of endocytosis.
Revaud, Julien; Unterfinger, Yves; Rol, Nicolas; Suleman, Muhammad; Shaw, Julia; Galea, Sandra; Gavard, Françoise; Lacour, Sandrine A.; Coulpier, Muriel; Versillé, Nicolas; Havenga, Menzo; Klonjkowski, Bernard; Zanella, Gina; Biacchesi, Stéphane; Cordonnier, Nathalie; Corthésy, Blaise; Ben Arous, Juliette; Richardson, Jennifer P.
2018-01-01
To define the bottlenecks that restrict antigen expression after oral administration of viral-vectored vaccines, we tracked vectors derived from the human adenovirus type 5 at whole body, tissue, and cellular scales throughout the digestive tract in a murine model of oral delivery. After intragastric administration of vectors encoding firefly luciferase or a model antigen, detectable levels of transgene-encoded protein or mRNA were confined to the intestine, and restricted to delimited anatomical zones. Expression of luciferase in the form of multiple small bioluminescent foci in the distal ileum, cecum, and proximal colon suggested multiple crossing points. Many foci were unassociated with visible Peyer's patches, implying that transduced cells lay in proximity to villous rather than follicle-associated epithelium, as supported by detection of transgene-encoded antigen in villous epithelial cells. Transgene-encoded mRNA but not protein was readily detected in Peyer's patches, suggesting that post-transcriptional regulation of viral gene expression might limit expression of transgene-encoded antigen in this tissue. To characterize the pathways by which the vector crossed the intestinal epithelium and encountered sentinel cells, a fluorescent-labeled vector was administered to mice by the intragastric route or inoculated into ligated intestinal loops comprising a Peyer's patch. The vector adhered selectively to microfold cells in the follicle-associated epithelium, and, after translocation to the subepithelial dome region, was captured by phagocytes that expressed CD11c and lysozyme. In conclusion, although a large number of crossing events took place throughout the intestine within and without Peyer's patches, multiple firewalls prevented systemic dissemination of vector and suppressed production of transgene-encoded protein in Peyer's patches. PMID:29423380
The bovine TRPV3 as a pathway for the uptake of Na+, Ca2+, and NH4+
Liebe, Franziska; Liebe, Hendrik
2018-01-01
Absorption of ammonia from the gastrointestinal tract results in problems that range from hepatic encephalopathy in humans to poor nitrogen efficiency of cattle with consequences for the global climate. Previous studies on epithelia and cells from the native ruminal epithelium suggest functional involvement of the bovine homologue of TRPV3 (bTRPV3) in ruminal NH4+ transport. Since the conductance of TRP channels to NH4+ has never been studied, bTRPV3 was overexpressed in HEK-293 cells and investigated using the patch-clamp technique and intracellular calcium imaging. Control cells contained the empty construct. Divalent cations blocked the conductance for monovalent cations in both cell types, with effects higher in cells expressing bTRPV3. In bTRPV3 cells, but not in controls, menthol, thymol, carvacrol, or 2-APB stimulated whole cell currents mediated by Na+, Cs+, NH4+, and K+, with a rise in intracellular Ca2+ observed in response to menthol. While only 25% of control patches showed single-channel events (with a conductance of 40.8 ± 11.9 pS for NH4+ and 25.0 ± 5.8 pS for Na+), 90% of bTRPV3 patches showed much larger conductances of 127.8 ± 4.2 pS for Na+, 240.1 ± 3.6 pS for NH4+, 34.0 ± 1.7 pS for Ca2+, and ~ 36 pS for NMDG+. Open probability, but not conductance, rose with time after patch excision. In conjunction with previous research, we suggest that bTRPV3 channels may play a role in the transport of Na+, K+, Ca2+ and NH4+ across the rumen with possible repercussions for understanding the function of TRPV3 in other epithelia. PMID:29494673
The bovine TRPV3 as a pathway for the uptake of Na+, Ca2+, and NH4.
Schrapers, Katharina T; Sponder, Gerhard; Liebe, Franziska; Liebe, Hendrik; Stumpff, Friederike
2018-01-01
Absorption of ammonia from the gastrointestinal tract results in problems that range from hepatic encephalopathy in humans to poor nitrogen efficiency of cattle with consequences for the global climate. Previous studies on epithelia and cells from the native ruminal epithelium suggest functional involvement of the bovine homologue of TRPV3 (bTRPV3) in ruminal NH4+ transport. Since the conductance of TRP channels to NH4+ has never been studied, bTRPV3 was overexpressed in HEK-293 cells and investigated using the patch-clamp technique and intracellular calcium imaging. Control cells contained the empty construct. Divalent cations blocked the conductance for monovalent cations in both cell types, with effects higher in cells expressing bTRPV3. In bTRPV3 cells, but not in controls, menthol, thymol, carvacrol, or 2-APB stimulated whole cell currents mediated by Na+, Cs+, NH4+, and K+, with a rise in intracellular Ca2+ observed in response to menthol. While only 25% of control patches showed single-channel events (with a conductance of 40.8 ± 11.9 pS for NH4+ and 25.0 ± 5.8 pS for Na+), 90% of bTRPV3 patches showed much larger conductances of 127.8 ± 4.2 pS for Na+, 240.1 ± 3.6 pS for NH4+, 34.0 ± 1.7 pS for Ca2+, and ~ 36 pS for NMDG+. Open probability, but not conductance, rose with time after patch excision. In conjunction with previous research, we suggest that bTRPV3 channels may play a role in the transport of Na+, K+, Ca2+ and NH4+ across the rumen with possible repercussions for understanding the function of TRPV3 in other epithelia.
Properties of glutamate-gated ion channels in horizontal cells of the perch retina.
Schmidt, K F
1997-08-01
The effect of two different concentrations of L-glutamate and kainate on the gating kinetics of amino acid-sensitive non-NMDA channels were studied in cultured teleost retinal horizontal cells by single-channel recording and by noise analysis of whole-cell currents. When the glutamate agonist kainate was applied clearly parabolic mean-variance relations of whole-cell membrane currents (up to 3000 pA) indicated that this agonist was acting on one type of channels with a conductance of 5-10 pS. The cells were less sensitive when L-glutamate was used as the agonist and in most cases whole-cell currents amounted to less than 200 pA. The mean-variance relation of glutamate induced currents was complex, indicating that more than one type of channel opening could be involved. Power spectra of whole-cell currents were fitted with two Lorentzians with time constants of approx. 1 and 5-20 msec. Effects on amplitudes and time constants of agonist concentrations are demonstrated. Two categories of unitary events with mean open times of approx. 1 and 7 msec and conductances of approx. 7 and 12 pS, respectively, were obtained in single-channel recordings from cell-attached patches at different concentrations of glutamate in the pipette.
Calcium channels in solitary retinal ganglion cells from post-natal rat.
Karschin, A; Lipton, S A
1989-01-01
1. Calcium currents from identified, post-natal retinal ganglion cell neurones from rat were studied with whole-cell and single-channel patch-clamp techniques. Na+ and K+ currents were suppressed with pharmacological agents, allowing isolation of current carried by either 10 mM-Ca2+ or Ba2- during whole-cell recordings. For cell-attached patch recordings, the recording pipette contained 96-110 mM-BaCl2 while the bath solution consisted of isotonic potassium aspartate in order to zero the neuronal membrane potential. 2. A transient component, present in approximately one-third of the whole-cell recordings resembles closely the T-type calcium current observed previously in other tissues. This component activates at low voltages (-40 to -50 mV from holding potentials negative to -80 mV), inactivates with a time constant of 10-30 ms at 35 degrees C, and is carried equally well by Ba2+ or Ca2+. In single-channel recordings small (8 pS) channels are observed whose aggregate microscopic kinetics correspond well to the macroscopic current obtained during whole-cell measurements. 3. During whole-cell recordings, a more prolonged component activates in all retinal ganglion cells at -40 to -20 mV from a holding potential of -90 mV. This component is substantially larger when equimolar Ba2+ replaces Ca2+ as the charge carrier, and is sensitive to the dihydropyridine agonist Bay K8644 (5 microM) and antagonists nifedipine (1-10 microM) and nimodipine (1-10 microM). Thus, the dihydropyridine pharmacology of this prolonged component resembles that of the L-type calcium current found in dorsal root ganglion neurones and in heart cells. Also reminiscent of the L-current, the prolonged component in this preparation is less inactivated at depolarized holding potentials (-60 to -40 mV) than the transient component. In cell-attached recordings, large (20 pS) channels are observed with activation properties similar to those of the prolonged portion of the whole-cell current. 4. omega-Conotoxin fraction GVIA (omega-CgTX VIA), a peptide from the venom of the snail Conus geographus, produces a readily reversible blockade of all components of the calcium current in these central mammalian neurones. This finding is in contrast to that of other preparations in which this toxin is responsible for an ephemeral block of T-current but a long-lasting block of other components of calcium current. 5. In summary, at least two components of calcium current with discrete underlying unitary events are present in post-natal retinal ganglion cells from rat. One component closely resembles the T or transient current observed in other cell types.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:2559971
Lee, Kang M; Driever, Steven M; Heuvelink, Ep; Rüger, Simon; Zimmermann, Ulrich; de Gelder, Arie; Marcelis, Leo F M
2012-12-01
Relative changes in cell turgor of leaves of well-watered tomato plants were evaluated using the leaf patch clamp pressure probe (LPCP) under dynamic greenhouse climate conditions. LPCP changes, a measure for relative changes in cell turgor, were monitored at three different heights of transpiring and non-transpiring leaves of tomato plants on sunny and cloudy days simultaneously with whole plant water uptake. Clear diel patterns were observed for relative changes of cell turgor of both transpiring and non-transpiring leaves, which were stronger on sunny days than on cloudy days. A clear effect of canopy height was also observed. Non-transpiring leaves showed relative changes in cell turgor that closely followed plant water uptake throughout the day. However, in the afternoon the relative changes of cell turgor of the transpiring leaves displayed a delayed response in comparison to plant water uptake. Subsequent recovery of cell turgor loss of transpiring leaves during the following night appeared insufficient, as the pre-dawn turgescent state similar to the previous night was not attained. Copyright © Physiologia Plantarum 2012.
Estacion, M; Sinkins, W G; Schilling, W P
2001-01-01
Patch clamp and fura-2 fluorescence were employed to characterize receptor-mediated activation of recombinant Drosophila TrpL channels expressed in Sf9 insect cells. TrpL was activated by receptor stimulation and by exogenous application of diacylglycerol (DAG) or poly-unsaturated fatty acids (PUFAs). Activation of TrpL was blocked more than 70% by U73122, suggesting that the effect of these agents was dependent upon phospholipase C (PLC). In fura-2 assays, extracellular application of bacterial phosphatidylinositol (PI)-PLC or phosphatidylcholine (PC)-PLC caused a transient increase in TrpL channel activity, the magnitude of which was significantly less than that observed following receptor stimulation. TrpL channels were also activated in excised inside-out patches by cytoplasmic application of mammalian PLC-b2, bacterial PI-PLC and PC-PLC, but not by phospholipase D (PLD). The phospholipases had little or no effect when examined in either whole-cell or cell-attached configurations.TrpL activity was inhibited by addition of phosphatidylinositol-4,5-bisphosphate (PIP2) to excised inside-out membrane patches exhibiting spontaneous channel activity or to patches pre-activated by treatment with PLC. The effect was reversible, specific for PIP2, and was not observed with phosphatidylethanolamine (PE), PI, PC or phosphatidylserine (PS). However, antibodies against PIP2 consistently failed to activate TrpL in inside-out patches. It is concluded that both the hydrolysis of PIP2 and the generation of DAG are required to rapidly activate TrpL following receptor stimulation, or that some other PLC-dependent mechanism plays a crucial role in the activation process.
Chung, I; Zhang, Y; Eubanks, J H; Zhang, L
1998-10-01
Hypoxia-induced outward currents (hyperpolarization) were examined in hippocampal CA1 neurons of rat brain slices, using the whole-cell recording technique. Hypoxic episodes were induced by perfusing slices with an artificial cerebrospinal fluid aerated with 5% CO2/95% N2 rather than 5% CO2/95% O2, for about 3 min. The hypoxic current was consistently and reproducibly induced in CA1 neurons dialysed with an ATP-free patch pipette solution. This current manifested as an outward shift in the holding current in association with increased conductance, and it reversed at -78 +/- 2.5 mV, with a linear I-V relation in the range of -100 to -40 mV. To provide extra energy resources to individual neurons recorded, agents were added to the patch pipette solution, including MgATP alone, MgATP + phosphocreatine + creatine kinase, or MgATP + creatine. In CA1 neurons dialysed with patch solutions including these agents, hypoxia produced small outward currents in comparison with those observed in CA1 neurons dialysed with the ATP-free solution. Among the above agents examined, whole-cell dialysis with MgATP + creatine was the most effective at decreasing the hypoxic outward currents. We suggest that the hypoxic hyperpolarization is closely related to energy metabolism in individual CA1 neurons, and that the energy supply provided by phosphocreatine metabolism may play a critical role during transient metabolic stress.
Design of a dual linear polarization antenna using split ring resonators at X-band
NASA Astrophysics Data System (ADS)
Ahmed, Sadiq; Chandra, Madhukar
2017-11-01
Dual linear polarization microstrip antenna configurations are very suitable for high-performance satellites, wireless communication and radar applications. This paper presents a new method to improve the co-cross polarization discrimination (XPD) for dual linear polarized microstrip antennas at 10 GHz. For this, three various configurations of a dual linear polarization antenna utilizing metamaterial unit cells are shown. In the first layout, the microstrip patch antenna is loaded with two pairs of spiral ring resonators, in the second model, a split ring resonator is placed between two microstrip feed lines, and in the third design, a complementary split ring resonators are etched in the ground plane. This work has two primary goals: the first is related to the addition of metamaterial unit cells to the antenna structure which permits compensation for an asymmetric current distribution flow on the microstrip antenna and thus yields a symmetrical current distribution on it. This compensation leads to an important enhancement in the XPD in comparison to a conventional dual linear polarized microstrip patch antenna. The simulation reveals an improvement of 7.9, 8.8, and 4 dB in the E and H planes for the three designs, respectively, in the XPD as compared to the conventional dual linear polarized patch antenna. The second objective of this paper is to present the characteristics and performances of the designs of the spiral ring resonator (S-RR), split ring resonator (SRR), and complementary split ring resonator (CSRR) metamaterial unit cells. The simulations are evaluated using the commercial full-wave simulator, Ansoft High-Frequency Structure Simulator (HFSS).
LIU, LI; CAI, SIYI; QIU, GUIXING; LIN, JIN
2016-01-01
ClC-3 is a volume-sensitive chloride channel that is responsible for cell volume adjustment and regulatory cell volume decrease (RVD). In order to evaluate the effects of fluid shear stress (FSS) stimulation on the osteoblast ClC-3 chloride channel, MC3T3-E1 cells were stimulated by FSS in the experimental group. Fluorescence quantitative polymerase chain reaction was used to detect changes in ClC-3 mRNA expression, the chloride ion fluorescent probe N-(ethoxycarbonylmethyl)-6-methoxyquinolinium bromide (MQAE) was used to detect the chloride channel activity, and whole-cell patch clamping was used to monitor the changes in the volume-sensitive chloride current activated by a hypotonic environment following mechanical stimulation. The results show that the expression of the osteoblast chloride channel ClC-3 was significantly higher in the FSS group compared with the control group. MQAE fluorescence intensity was significantly reduced in the FSS group compared to the control group, suggesting that mechanical stimulation increased chloride channel activity and increased the efflux of intracellular chloride ions. Image analysis of osteoblast volume changes showed that osteoblast RVD was enhanced by mechanical stimulation. Whole-cell patch clamping showed that the osteoblast volume-sensitive chloride current was larger in the stimulated group compared to the control group, suggesting that elevated ClC-3 chloride channel expression results in an increased volume-sensitive chloride current. In conclusion, FSS stimulation enhances the RVD of osteoblast cell by increasing the expression of the ClC-3 and enhancing the chloride channel activity. PMID:27073622
Effect of patch borders on coercivity in amorphous rare earth-transition metal thin films
NASA Technical Reports Server (NTRS)
Patterson, G.; Fu, H.; Giles, R. C.; Mansuripur, M.
1991-01-01
The coercivity at the micron scale is a very important property of magneto-optical media. It is a key factor that determines the magnetic domain wall movement and domain reversal. How the coercivity is influenced by a special type of patch borders is discussed. Patch formation is a general phenomenon in growth processes of amorphous rare earth transition metal thin films. Different patches may stem from different seeds and the patch borders are formed when they merge. Though little is known about the exact properties of the borders, we may expect that the exchange interaction at the patch border is weaker than that within a patch, since there is usually a spatial gap between two patches. Computer simulations were performed on a 2-D hexagonal lattice consisting of 37 complete patches with random shape and size. From the series of simulations we may conclude that the domain in the patch with borders of 30 percent exchange strength can expand most easily to the whole lattice, because the exchange strength can expand most easily to the whole lattice, because the exchange strength of the border is not too high to prevent the domain from growing within the patch and it is not too low to prevent the domain from expanding beyond the patch.
Szabó, László; Szentandrássy, Norbert; Kistamás, Kornél; Hegyi, Bence; Ruzsnavszky, Ferenc; Váczi, Krisztina; Horváth, Balázs; Magyar, János; Bányász, Tamás; Pál, Balázs; Nánási, Péter P
2013-03-01
Tacrolimus is a commonly used immunosuppressive agent which causes cardiovascular complications, e.g., hypertension and hypertrophic cardiomyopathy. In spite of it, there is little information on the cellular cardiac effects of the immunosuppressive agent tacrolimus in larger mammals. In the present study, therefore, the concentration-dependent effects of tacrolimus on action potential morphology and the underlying ion currents were studied in canine ventricular cardiomyocytes. Standard microelectrode, conventional whole cell patch clamp, and action potential voltage clamp techniques were applied in myocytes enzymatically dispersed from canine ventricular myocardium. Tacrolimus (3-30 μM) caused a concentration-dependent reduction of maximum velocity of depolarization and repolarization, action potential amplitude, phase-1 repolarization, action potential duration, and plateau potential, while no significant change in the resting membrane potential was observed. Conventional voltage clamp experiments revealed that tacrolimus concentrations ≥3 μM blocked a variety of ion currents, including I(Ca), I(to), I(K1), I(Kr), and I(Ks). Similar results were obtained under action potential voltage clamp conditions. These effects of tacrolimus developed rapidly and were fully reversible upon washout. The blockade of inward currents with the concomitant shortening of action potential duration in canine myocytes is the opposite of those observed previously with tacrolimus in small rodents. It is concluded that although tacrolimus blocks several ion channels at higher concentrations, there is no risk of direct interaction with cardiac ion channels when applying tacrolimus in therapeutic concentrations.
Regulation of the epithelial Na+ channel by membrane tension.
Awayda, M S; Subramanyam, M
1998-08-01
The sensitivity of alphabetagamma rat epithelial Na+ channel (rENaC) to osmotically or mechanically induced changes of membrane tension was investigated in the Xenopus oocyte expression system, using both dual electrode voltage clamp and cell-attached patch clamp methodologies. ENaC whole-cell currents were insensitive to mechanical cell swelling caused by direct injection of 90 or 180 nl of 100-mM KCl. Similarly, ENaC whole-cell currents were insensitive to osmotic cell swelling caused by a 33% decrease of bathing solution osmolarity. The lack of an effect of cell swelling on ENaC was independent of the status of the actin cytoskeleton, as ENaC remained insensitive to osmotic and mechanical cell swelling in oocytes pretreated with cytochalasin B for 2-5 h. This apparent insensitivity of ENaC to increased cell volume and changes of membrane tension was also observed at the single channel level in membrane patches subjected to negative or positive pressures of 5 or 10 in. of water. However, and contrary to the lack of an effect of cell swelling, ENaC currents were inhibited by cell shrinking. A 45-min incubation in a 260-mosmol solution (a 25% increase of solution osmolarity) caused a decrease of ENaC currents (at -100 mV) from -3.42 +/- 0.34 to -2.02 +/- 0.23 microA (n = 6). This decrease of current with cell shrinking was completely blocked by pretreatment of oocytes with cytochalasin B, indicating that these changes of current are not likely related to a direct effect of cell shrinking. We conclude that alpha beta gamma rENaC is not directly mechanosensitive when expressed in a system that can produce a channel with identical properties to those found in native epithelia.
Polonchuk, Liudmila
2012-01-01
The Patchliner® temperature-controlled automated patch clamp system was evaluated for testing drug effects on potassium currents through human ether-à-go-go related gene (hERG) channels expressed in Chinese hamster ovary cells at 35–37°C. IC50 values for a set of reference drugs were compared with those obtained using the conventional voltage clamp technique. The results showed good correlation between the data obtained using automated and conventional electrophysiology. Based on these results, the Patchliner® represents an innovative automated electrophysiology platform for conducting the hERG assay that substantially increases throughput and has the advantage of operating at physiological temperature. It allows fast, accurate, and direct assessment of channel function to identify potential proarrhythmic side effects and sets a new standard in ion channel research for drug safety testing. PMID:22303293
Buccal patches of atenolol formulated using fenugreek (Trigonella foenum-graecum L.) seed mucilage.
Adhikari, Surya Narayan Ratha; Panda, Satyabrata
2017-01-01
The use of mucoadhesive natural polymers in designing mucoadhesive patch systems has received much attention. The study involved the development and evaluation of buccal patches of atenolol using fenugreek (Trigonella foenum-graecum L.) seed mucilage with hydroxylpropyl methyl cellulose (HPMC K4M) and a backing membrane (ethyl cellulose 5% w/v). These atenolol-releasing buccal patches were prepared using a solvent casting technique. The buccal patches prepared were evaluated for average weight, thickness, drug content, folding endurance and moisture content. Ex vivo mucoadhesive strength, force of adhesion and bonding strength were determined using porcine buccal mucosa. The mucosal permeation of atenolol through the porcine buccal mucosa was carried out using a Franz diffusion cell in phosphate buffer saline, pH 6.8. These buccal patches were also characterized by SEM and FTIR spectroscopy. The average weight, thickness, drug content, folding endurance and moisture content of these atenolol-releasing buccal patches were found satisfactory for all the patches. Amongst all, the F-4 buccal patch showed maximum mucoadhesive strength (31.12 ±1.86 g), force of adhesion (30.53 × 10-2 N) and bond strength (1748.89 N/m2). Ex vivo atenolol permeation from the buccal patches showed drug permeation across the excised porcine buccal mucosa over 12 h. The F-4 buccal patch showed maximum permeation flux (29.12 μg/cm2/h). The developed atenolol-releasing buccal patches can be beneficial over the conventional drug delivery systems to decrease the dosing frequency and enhance patient compliance.
Sukhorukov, Vladimir L.; Zimmermann, Dirk
2013-01-01
Abstract Functional access to membrane proteins, for example, ion channels, of individual cells is an important prerequisite in drug discovery studies. The highly sophisticated patch-clamp method is widely used for electrogenic membrane proteins, but is demanding for the operator, and its automation remains challenging. The dielectrophoretically-accessed, intracellular membrane–potential measurement (DAIMM) method is a new technique showing high potential for automation of electrophysiological data recording in the whole-cell configuration. A cell suspension is brought between a mm-scaled planar electrode and a μm-scaled tip electrode, placed opposite to each other. Due to the asymmetric electrode configuration, the application of alternating electric fields (1–5 MHz) provokes a dielectrophoretic force acting on the target cell. As a consequence, the cell is accelerated and pierced by the tip electrode, hence functioning as the internal (working) electrode. We used the light-gated cation channel Channelrhodopsin-2 as a reporter protein expressed in HEK293 cells to characterize the DAIMM method in comparison with the patch-clamp technique. PMID:22994967
Biomimetic surface patterning for long-term transmembrane access
VanDersarl, Jules J.; Renaud, Philippe
2016-01-01
Here we present a planar patch clamp chip based on biomimetic cell membrane fusion. This architecture uses nanometer length-scale surface patterning to replicate the structure and function of membrane proteins, creating a gigaohm seal between the cell and a planar electrode array. The seal is generated passively during cell spreading, without the application of a vacuum to the cell surface. This interface can enable cell-attached and whole-cell recordings that are stable to 72 hours, and generates no visible damage to the cell. The electrodes can be very small (<5 μm) and closely packed, offering a high density platform for cellular measurement. PMID:27577519
Biomimetic surface patterning for long-term transmembrane access.
VanDersarl, Jules J; Renaud, Philippe
2016-08-31
Here we present a planar patch clamp chip based on biomimetic cell membrane fusion. This architecture uses nanometer length-scale surface patterning to replicate the structure and function of membrane proteins, creating a gigaohm seal between the cell and a planar electrode array. The seal is generated passively during cell spreading, without the application of a vacuum to the cell surface. This interface can enable cell-attached and whole-cell recordings that are stable to 72 hours, and generates no visible damage to the cell. The electrodes can be very small (<5 μm) and closely packed, offering a high density platform for cellular measurement.
Logan, A C; Chow, K P; George, A; Weinstein, P D; Cebra, J J
1991-03-01
Lymphoid tissue fragment cultures were established to analyze the differentiative processes among B cells in Peyer's patches (PP) and peripheral lymph nodes (PLN), especially those in germinal centers. PP cultures from both conventionally reared mice and formerly germ-free mice colonized with Morganella morganii could be maintained for greater than 12 days with continued B-cell division, especially among cells binding high levels of peanut agglutinin, a characteristic of germinal center cells. PLN cultures from conventionally reared mice injected with a heat-killed vaccine of M. morganii could be maintained for the same amount of time. Over this period, PP cultures continued to secrete immunoglobulin A (IgA) as well as smaller amounts of IgM. PP cultures from formerly germ-free mice colonized with M. morganii showed net increases of IgA antiphosphocholine (anti-PC) antibodies with avidities as high as those of the prototypic T15 monoclonal antibody. Similar PLN fragment cultures from conventionally reared mice given footpad injections of M. morganii showed net increases of IgM and IgG anti-PC antibodies in the culture fluid. Thus, although M. morganii stimulated lymphoid tissues in vivo to produce an anti-PC response in vitro when given by either the oral or the parenteral route, the antibody isotypes differed between PP and PLN fragment cultures. Fragment culturing may offer a complementary and simpler way to detect a local secretory IgA response than does either measuring IgA antibody in secretions or detecting IgA antibody in the cytoplasm of plasma cells in the lamina propria of gastrointestinal or respiratory tissue.
Novel nootropic dipeptide Noopept increases inhibitory synaptic transmission in CA1 pyramidal cells.
Kondratenko, Rodion V; Derevyagin, Vladimir I; Skrebitsky, Vladimir G
2010-05-31
Effects of newly synthesized nootropic and anxiolytic dipeptide Noopept on inhibitory synaptic transmission in hippocampal CA1 pyramidal cells were investigated using patch-clamp technique in whole-cell configuration. Bath application of Noopept (1 microM) significantly increased the frequency of spike-dependant spontaneous IPSCs whereas spike-independent mIPSCs remained unchanged. It was suggested that Noopept mediates its effect due to the activation of inhibitory interneurons terminating on CA1 pyramidal cells. Results of current clamp recording of inhibitory interneurons residing in stratum radiatum confirmed this suggestion. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.
Measurement of Single Channel Currents from Cardiac Gap Junctions
NASA Astrophysics Data System (ADS)
Veenstra, Richard D.; Dehaan, Robert L.
1986-08-01
Cardiac gap junctions consist of arrays of integral membrane proteins joined across the intercellular cleft at points of cell-to-cell contact. These junctional proteins are thought to form pores through which ions can diffuse from cytosol to cytosol. By monitoring whole-cell currents in pairs of embryonic heart cells with two independent patch-clamp circuits, the properties of single gap junction channels have been investigated. These channels had a conductance of about 165 picosiemens and underwent spontaneous openings and closings that were independent of voltage. Channel activity and macroscopic junctional conductance were both decreased by the uncoupling agent 1-octanol.
Reid, G; Amuzescu, B; Zech, E; Flonta, M L
2001-10-15
We describe a system for superfusing small groups of cells at a precisely controlled and rapidly adjustable local temperature. Before being applied to the cell or cells under study, solutions are heated or cooled in a chamber of small volume ( approximately 150 microl) and large surface area, sandwiched between four small Peltier elements. The current through the Peltier elements is controlled by a microprocessor using a PID (proportional-integral-derivative) feedback algorithm. The chamber can be heated to at least 60 degrees C and cooled to 0 degrees C, changing its temperature at a maximum rate of about 7 degrees C per second; temperature ramps can be followed under feedback control at up to 4 degrees C per second. Temperature commands can be applied from the digital-to-analogue converter of any laboratory interface or generated digitally by the microprocessor. The peak-to-peak noise contributed by the system does not exceed that contributed by a patch pipette, holder and headstage, making it suitable for single channel as well as whole cell recordings.
Isolation and functional characteristics of adherent phagocytic cells from mouse Peyer's patches.
MacDonald, T T; Carter, P B
1982-01-01
Attempts were made to isolate adherent phagocytic cells (macrophages) from mouse Peyer's patch cell suspensions. Cell suspensions prepared by teasing apart the Peyer's patches contained no adherent phagocytic cells. However, if Peyer's patch fragments were treated with collagenase to disrupt the tissue matrix, cells prepared in this way contained a subpopulation of adherent phagocytic cells. These cells comprised only 0.1-0.2% of the total nucleated cell population of the Peyer's patch. Similar cells could also be isolated from the Peyer's patches of germ-free mice, but as judged by their ability to ingest opsonized erythrocytes, these cells were less activated than cells from the Peyer's patches of normal mice. Adherent cells from the Peyer's patches of normal mice could present antigen (ovalbumin) to T cells, and Peyer's patches cell suspensions containing adherent cells could be stimulated in vitro to produce an anti-sheep red blood cell plaque-forming cell response in the absence of 2-mercaptoethanol. These studies show that although the frequency of phagocytic adherent cells is extremely low in Peyer's patches, these cells have functions consistent with that of adherent cells in other lymphoid tissues. PMID:7068173
Schmidt, K F; Kruse, M; Hatt, H
1994-01-01
The patch-clamp technique in combination with a fast liquid filament application system was used to study the effect of dopamine on the glutamate receptor desensitization in horizontal cells of the perch (Perca fluviatilis). Kinetics of ligand-gated ion channels in fish horizontal cells are modulated by dopamine. This modulation is presumably mediated by a cAMP-dependent protein phosphorylation. Before incubation with dopamine, the glutamate receptors of horizontal cells activate and desensitize with fast time constants. In the whole-cell recording mode, fast application of the agonists L-glutamate, quisqualate, or alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid prior to the dopamine incubation gives rise to fast transient currents with peak values of about 200 pA that desensitize within 100 ms. Kainate as agonist produced higher steady-state currents but no transient currents. After incubation of the cells with dopamine for 3 min, the desensitization was significantly reduced and the agonists L-glutamate, quisqualate, or alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid induced steady-state currents with amplitudes that were similar to the previously observed transient currents. Kainate-induced currents were only slightly affected. Fast desensitizing currents upon fast application of L-glutamate were also recorded from outside-out patches that were excised from horizontal cells before incubation with dopamine. The currents from excised patches desensitized to a steady-state level of about 0.2 of the peak amplitude with time constants of less than 2 ms. When the outside-out patches were excised from cells after dopamine incubation, steady-state currents were enhanced and no transient currents were observed. The results may indicate that the dopamine-dependent modulation of glutamate-induced currents, which is presumably mediated by a protein phosphorylation, is due to an alteration of the desensitization of the glutamate receptors. PMID:7520178
Beech, D. J.; Bolton, T. B.
1989-01-01
1. Single smooth muscle cells were isolated freshly from the rabbit portal vein and membrane currents were recorded by the whole-cell or excised patch configurations of the patch-clamp technique at room temperature. 2. Cromakalim (Ckm, 10 microM) induced a potassium current (ICkm) that showed no pronounced voltage-dependence and had low current noise. 3. This current, ICkm, was inhibited by (in order of potency): phencyclidine greater than quinidine greater than 4-aminopyridine greater than tetraethylammonium ions (TEA). These drugs inhibited the delayed rectifier current, IdK, which is activated by depolarization of the cell, with the same order of potency. 4. Large conductance calcium-activated potassium channels (LKCa) in isolated membrane patches were blocked by (in order of potency) quinidine greater than TEA approximately phencyclidine. 4-Aminopyridine was ineffective. A similar order of potency was found for block of spontaneous transient outward currents thought to represent bursts of openings of LKCa channels. 5. The low current noise of ICkm at positive potentials, and its susceptibility to inhibitors indicated that it was not carried by LKCa channels, and that it may be carried by channels which underlie IdK. It was observed that when ICkm was activated, IdK was reduced. However, in two experiments, ICkm was much more susceptible to glibenclamide than IdK; possible reasons for this are discussed. PMID:2590772
HTS techniques for patch clamp-based ion channel screening - advances and economy.
Farre, Cecilia; Fertig, Niels
2012-06-01
Ten years ago, the first publication appeared showing patch clamp recordings performed on a planar glass chip instead of using a conventional patch clamp pipette. "Going planar" proved to revolutionize ion channel drug screening as we know it, by allowing high quality measurements of ion channels and their effectors at a higher throughput and at the same time de-skilling the highly laborious technique. Over the years, platforms evolved in response to user requirements regarding experimental features, data handling plus storage, and suitable target diversity. This article gives a snapshot image of patch clamp-based ion channel screening with focus on platforms developed to meet requirements of high-throughput screening environments. The commercially available platforms are described, along with their benefits and drawbacks in ion channel drug screening. Automated patch clamp (APC) platforms allow faster investigation of a larger number of ion channel active compounds or cell clones than previously possible. Since patch clamp is the only method allowing direct, real-time measurements of ion channel activity, APC holds the promise of picking up high quality leads, where they otherwise would have been overseen using indirect methods. In addition, drug candidate safety profiling can be performed earlier in the drug discovery process, avoiding late-phase compound withdrawal due to safety liability issues, which is highly costly and inefficient.
Ugur, M; Drummond, R M; Zou, H; Sheng, P; Singer, J J; Walsh, J V
1997-01-01
1. Whole-cell and single-channel currents elicited by extracellular ATP were studied in freshly dissociated smooth muscle cells from the stomach of the toad Bufo marinus using standard patch clamp and microfluorimetric techniques. 2. This ATP-gated cation channel shares a number of pharmacological and functional properties with native rat myometrium receptors, certain native P2Z purinoceptors and the recently cloned P2X7 purinoceptor. But, unlike the last two, the ATP-gated channel does not mediate the formation of large non-specific pores. Thus, it may represent a novel member of the P2X or P2Z class. 3. Extracellular application of ATP (> or = 150 microM) elicited an inward whole-cell current at negative holding potentials that was inwardly rectifying and showed no sign of desensitization. Na+, Cs+ and, to a lesser degree, the organic cation choline served as charge carriers, but Cl- did not. Ratiometric fura-2 measurements indicated that the current is carried in part by Ca2+. The EC50 for ATP was 700 microM in solutions with a low divalent cation concentration. 4. ATP (> or = 100 microM) at the extracellular surface of cell-attached or excised patches elicited inwardly rectifying single-channel currents with a 22 pS conductance. Cl- did not serve as a charge carrier but both Na+ and Cs+ did, as did choline to a lesser extent. The mean open time of the channel was quite long, with a range in hundreds of milliseconds at a holding potential of -70 mV. 5. Mg2+ and Ca2+ decreased the magnitude of the ATP-induced whole-cell currents. Mg2+ decreased both the amplitude and the activity of ATP-activated single-channel currents. 6. ADP, UTP, P1, P5-di-adenosine pentaphosphate (AP5A), adenosine and alpha, beta-methylene ATP (alpha, beta-Me-ATP) did not induce significant whole-cell current. ATP-gamma-S and 2-methylthio ATP (2-Me-S-ATP) were significantly less effective than ATP in inducing whole-cell currents, whereas benzoylbenzoyl ATP (BzATP) was more effective. BzATP, alpha, beta-Me-ATP, ATP-gamma-S and 2-Me-S-ATP induced single-channel currents, but a higher concentration of alpha, beta-Me-ATP was required. 7. BzATP did not induce the formation of large non-specific pores, as assayed using mag-fura-2 as a high molecular mass probe. PMID:9032690
Rediscovering sperm ion channels with the patch-clamp technique
Kirichok, Yuriy; Lishko, Polina V.
2011-01-01
Upon ejaculation, mammalian spermatozoa have to undergo a sequence of physiological transformations within the female reproductive tract that will allow them to reach and fertilize the egg. These include initiation of motility, hyperactivation of motility and perhaps chemotaxis toward the egg, and culminate in the acrosome reaction that permits sperm to penetrate the protective vestments of the egg. These physiological responses are triggered through the activation of sperm ion channels that cause elevations of sperm intracellular pH and Ca2+ in response to certain cues within the female reproductive tract. Despite their key role in sperm physiology and their absolute requirement for the process of fertilization, sperm ion channels remain poorly understood due to the extreme difficulty in application of the patch-clamp technique to spermatozoa. This review covers the topic of sperm ion channels in the following order: first, we discuss how the intracellular Ca2+ and pH signaling mediated by sperm ion channels controls sperm behavior during the process of fertilization. Then, we briefly cover the history of the methodology to study sperm ion channels, which culminated in the recent development of a reproducible whole-cell patch-clamp technique for mouse and human cells. We further discuss the main approaches used to patch-clamp mature mouse and human spermatozoa. Finally, we focus on the newly discovered sperm ion channels CatSper, KSper (Slo3) and HSper (Hv1), identified by the sperm patch-clamp technique. We conclude that the patch-clamp technique has markedly improved and shifted our understanding of the sperm ion channels, in addition to revealing significant species-specific differences in these channels. This method is critical for identification of the molecular mechanisms that control sperm behavior within the female reproductive tract and make fertilization possible. PMID:21642646
Hosokawa, Masahito; Nishikawa, Yohei; Kogawa, Masato; Takeyama, Haruko
2017-07-12
Massively parallel single-cell genome sequencing is required to further understand genetic diversities in complex biological systems. Whole genome amplification (WGA) is the first step for single-cell sequencing, but its throughput and accuracy are insufficient in conventional reaction platforms. Here, we introduce single droplet multiple displacement amplification (sd-MDA), a method that enables massively parallel amplification of single cell genomes while maintaining sequence accuracy and specificity. Tens of thousands of single cells are compartmentalized in millions of picoliter droplets and then subjected to lysis and WGA by passive droplet fusion in microfluidic channels. Because single cells are isolated in compartments, their genomes are amplified to saturation without contamination. This enables the high-throughput acquisition of contamination-free and cell specific sequence reads from single cells (21,000 single-cells/h), resulting in enhancement of the sequence data quality compared to conventional methods. This method allowed WGA of both single bacterial cells and human cancer cells. The obtained sequencing coverage rivals those of conventional techniques with superior sequence quality. In addition, we also demonstrate de novo assembly of uncultured soil bacteria and obtain draft genomes from single cell sequencing. This sd-MDA is promising for flexible and scalable use in single-cell sequencing.
[Peptidergic modulation of the hippocampus synaptic activity].
Skrebitskiĭ, V G; Kondratenko, R V; Povarov, I S; Dereviagin, V I
2011-11-01
Effects of two newly synthesized nootropic and anxiolytic dipeptides: Noopept and Selank on inhibitory synaptic transmission in hippocampal CA1 pyramidal cells were investigated using patch-clamp technique in whole-cell configuration. Bath application of Noopept (1 microM) or Selank (2 microM) significantly increased the frequency of spike-dependent spontaneous m1PSCs, whereas spike-independent mlPSCs remained unchanged. It was suggested that both peptides mediated their effect sue to activation of inhibitory interneurons terminating on CA1 pyramidal cells. Results of current clamp recording of inhibitory interneurons residing in stratum radiatum confirmed this suggestion, at least for Noonent.
Methylene blue inhibits function of the 5-HT transporter
Oz, Murat; Isaev, Dmytro; Lorke, Dietrich E; Hasan, Muhammed; Petroianu, Georg; Shippenberg, Toni S
2012-01-01
BACKGROUND AND PURPOSE Methylene blue (MB) is commonly employed as a treatment for methaemoglobinaemia, malaria and vasoplegic shock. An increasing number of studies indicate that MB can cause 5-HT toxicity when administered with a 5-HT reuptake inhibitor. MB is a potent inhibitor of monoamine oxidases, but other targets that may contribute to MB toxicity have not been identified. Given the role of the 5-HT transporter (SERT) in the regulation of extracellular 5-HT concentrations, the present study aimed to characterize the effect of MB on SERT. EXPERIMENTAL APPROACH Live cell imaging, in conjunction with the fluorescent SERT substrate 4-(4-(dimethylamino)-styryl)-N-methylpyridinium (ASP+), [3H]5-HT uptake and whole-cell patch-clamp techniques were employed to examine the effects of MB on SERT function. KEY RESULTS In EM4 cells expressing GFP-tagged human SERT (hSERT), MB concentration-dependently inhibited ASP+ accumulation (IC50: 1.4 ± 0.3 µM). A similar effect was observed in N2A cells. Uptake of [3H]5-HT was decreased by MB pretreatment. Furthermore, patch-clamp studies in hSERT expressing cells indicated that MB significantly inhibited 5-HT-evoked ion currents. Pretreatment with 8-Br-cGMP did not alter the inhibitory effect of MB on hSERT activity, and intracellular Ca2+ levels remained unchanged during MB application. Further experiments revealed that ASP+ binding to cell surface hSERT was reduced after MB treatment. In whole-cell radioligand experiments, exposure to MB (10 µM; 10 min) did not alter surface binding of the SERT ligand [125I]RTI-55. CONCLUSIONS AND IMPLICATIONS MB modulated SERT function and suggested that SERT may be an additional target upon which MB acts to produce 5-HT toxicity. PMID:21542830
Dadak, Selma; Beall, Craig; Vlachaki Walker, Julia M; Soutar, Marc P M; McCrimmon, Rory J; Ashford, Michael L J
2017-03-27
The unsaturated fatty acid, oleate exhibits anorexigenic properties reducing food intake and hepatic glucose output. However, its mechanism of action in the hypothalamus has not been fully determined. This study investigated the effects of oleate and glucose on GT1-7 mouse hypothalamic cells (a model of glucose-excited (GE) neurons) and mouse arcuate nucleus (ARC) neurons. Whole-cell and perforated patch-clamp recordings, immunoblotting and cell energy status measures were used to investigate oleate- and glucose-sensing properties of mouse hypothalamic neurons. Oleate or lowered glucose concentration caused hyperpolarization and inhibition of firing of GT1-7 cells by the activation of ATP-sensitive K + channels (K ATP ). This effect of oleate was not dependent on fatty acid oxidation or raised AMP-activated protein kinase activity or prevented by the presence of the UCP2 inhibitor genipin. Oleate did not alter intracellular calcium, indicating that CD36/fatty acid translocase may not play a role. However, oleate activation of K ATP may require ATP metabolism. The short-chain fatty acid octanoate was unable to replicate the actions of oleate on GT1-7 cells. Although oleate decreased GT1-7 cell mitochondrial membrane potential there was no change in total cellular ATP or ATP/ADP ratios. Perforated patch and whole-cell recordings from mouse hypothalamic slices demonstrated that oleate hyperpolarized a subpopulation of ARC GE neurons by K ATP activation. Additionally, in a separate small population of ARC neurons, oleate application or lowered glucose concentration caused membrane depolarization. In conclusion, oleate induces K ATP- dependent hyperpolarization and inhibition of firing of a subgroup of GE hypothalamic neurons without altering cellular energy charge. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Landers, Maeran; Law, Sandra; Storrs, Frances J
2003-03-01
There is little literature regarding conventional patch tests and photopatch tests to oxybenzone resulting in both immediate- and delayed-type hypersensitivity reactions. A patient was patch-tested and photopatch-tested to various sunscreen chemicals. Both immediate- and delayed-type hypersensitivity reactions were observed with oxybenzone. The positive patch tests were also photoaccentuated. Oxybenzone, a common sunscreen allergen, can result in both contact urticaria and delayed-type hypersensitivity on both conventional patch testing and photopatch testing. Allergic contact dermatitis to sunscreen chemicals has traditionally included contact urticaria, allergic contact dermatitis, and photoallergic contact dermatitis. Due to the recognition of p-aminobenzoic acid (PABA) and its esters as sensitizers, the presence of benzophenones in "PABA-free" sunscreens has become more prevalent, especially in sunscreens with a sun protection factor (SPF) greater than 8. In our patient, immediate- and delayed-type hypersensitivity reactions were seen to oxybenzone (2-hydroxy-4-methoxybenzophenone, 2-benzoyl-5-methoxyphenol, benzophenone-3, Eusolex 4360, Escalol 567, EUSORB 228, Spectra-Sorb UV-9, Uvinul M-40) upon conventional patch testing and photopatch testing.
Renal proximal tubule function is preserved in Cftrtm2camΔF508 cystic fibrosis mice
Kibble, J D; Balloch, K J D; Neal, A M; Hill, C; White, S; Robson, L; Green, R; Taylor, C J
2001-01-01
Changes in proximal tubule function have been reported in cystic fibrosis patients. The aim of this study was to investigate proximal tubule function in the Cftrtm2camΔF508 cystic fibrosis (CF) mouse model. A range of techniques were used including renal clearance studies, in situ microperfusion, RT-PCR and whole-cell patch clamping. Renal Na+ clearance was similar in wild-type (1.4 ± 0.3 μl min−1, number of animals, N= 12) and CF mice (1.6 ± 0.4 μl min−1, N= 7) under control conditions. Acute extracellular volume expansion resulted in significant natriuresis in wild-type (7.0 ± 0.8 μl min−1, N= 8) and CF mice (9.3 ± 1.4 μl min−1, N= 9); no difference between genotypes was observed. In situ microperfusion revealed that fluid absorptive rate (Jv) was similar under control conditions between wild-type (2.2 ± 0.4 nl mm−1 min−1, n= 10) and CF mice (1.9 ± 0.3 nl mm−1 min−1, n= 11). Addition of a forskolin-dibutyryl cAMP (db-cAMP) cocktail to the perfusate caused no significant change in Jv in either wild-type (2.6 ± 0.7 nl mm−1 min−1, n= 10) or Cftrtm2camΔF508 mice (2.0 ± 0.5 nl mm−1 min−1, n= 10). CFTR expression was confirmed in samples of outer cortex using RT-PCR. However, no evidence for functional CFTR was obtained when outer cortical cells were stimulated with protein kinase A or forskolin-db-cAMP using whole-cell patch clamping. In conclusion, no functional deficit in proximal tubule function was found in Cftrtm2camΔF508 mice. This may be a consequence of a lack of whole-cell cAMP-dependent Cl− conductance in mouse proximal tubule cells. PMID:11306663
Orta, Gerardo; Ferreira, Gonzalo; José, Omar; Treviño, Claudia L; Beltrán, Carmen; Darszon, Alberto
2012-01-01
Motility, maturation and the acrosome reaction (AR) are fundamental functions of mammalian spermatozoa. While travelling through the female reproductive tract, spermatozoa must mature through a process named capacitation, so that they can reach the egg and undergo the AR, an exocytotic event necessary to fertilize the egg. Though Cl− is important for sperm capacitation and for the AR, not much is known about the molecular identity of the Cl− transporters involved in these processes. We implemented a modified perforated patch-clamp strategy to obtain whole cell recordings sealing on the head of mature human spermatozoa. Our whole cell recordings revealed the presence of a Ca2+-dependent Cl− current. The biophysical characteristics of this current and its sensitivity to niflumic acid (NFA) and 4,4′-diisothiocyano-2,2′-stilbene disulphonic acid (DIDIS) are consistent with those displayed by the Ca2+-dependent Cl− channel from the anoctamin family (TMEM16). Whole cell patch clamp recordings in the cytoplasmic droplet of human spermatozoa corroborated the presence of these currents, which were sensitive to NFA and to a small molecule TMEM16A inhibitor (TMEM16Ainh, an aminophenylthiazole). Importantly, the human sperm AR induced by a recombinant human glycoprotein from the zona pellucida, rhZP3, displayed a similar sensitivity to NFA, DIDS and TMEM16Ainh as the sperm Ca2+-dependent Cl− currents. Our findings indicate the presence of Ca2+-dependent Cl− currents in human spermatozoa, that TMEM16A may contribute to these currents and also that sperm Ca2+-dependent Cl− currents may participate in the rhZP3-induced AR. PMID:22473777
Kulkarni, Subhash; Zou, Bende; Hanson, Jesse; Micci, Maria-Adelaide; Tiwari, Gunjan; Becker, Laren; Kaiser, Martin; Xie, Xinmin Simon; Pasricha, Pankaj Jay
2011-10-01
Recent studies have explored the potential of central nervous system-derived neural stem cells (CNS-NSC) to repopulate the enteric nervous system. However, the exact phenotypic fate of gut-transplanted CNS-NSC has not been characterized. The aim of this study was to investigate the effect of the gut microenvironment on phenotypic fate of CNS-NSC in vitro. With the use of Transwell culture, differentiation of mouse embryonic CNS-NSC was studied when cocultured without direct contact with mouse intestinal longitudinal muscle-myenteric plexus preparations (LM-MP) compared with control noncocultured cells, in a differentiating medium. Differentiated cells were analyzed by immunocytochemistry and quantitative RT-PCR to assess the expression of specific markers and by whole cell patch-clamp studies for functional characterization of their phenotype. We found that LM-MP cocultured cells had a significant increase in the numbers of cells that were immune reactive against the panneuronal marker β-tubulin, neurotransmitters neuronal nitric oxide synthase (nNOS), choline acetyltransferase (ChAT), and neuropeptide vasoactive intestinal peptide (VIP) and showed an increase in expression of these genes, compared with control cells. Whole cell patch-clamp analysis showed that coculture with LM-MP decreases cell excitability and reduces voltage-gated Na(+) currents but significantly enhances A-current and late afterhyperpolarization (AHP) and increases the expression of the four AHP-generating Ca(2+)-dependent K(+) channel genes (KCNN), compared with control cells. In a separate experiment, differentiation of LM-MP cocultured CNS-NSC produced a significant increase in the numbers of cells that were immune reactive against the neurotransmitters nNOS, ChAT, and the neuropeptide VIP compared with CNS-NSC differentiated similarly in the presence of neonatal brain tissue. Our results show that the gut microenvironment induces CNS-NSC to produce neurons that share some of the characteristics of classical enteric neurons, further supporting the therapeutic use of these cells for gastrointestinal disorders.
Kirkpatrick, D C; McKinney, C J; Manis, P B; Wightman, R M
2016-08-02
Multi-modal recording describes the simultaneous collection of information across distinct domains. Compared to isolated measurements, such studies can more easily determine relationships between varieties of phenomena. This is useful for neurochemical investigations which examine cellular activity in response to changes in the local chemical environment. In this study, we demonstrate a method to perform simultaneous patch clamp measurements with fast-scan cyclic voltammetry (FSCV) using optically isolated instrumentation. A model circuit simulating concurrent measurements was used to predict the electrical interference between instruments. No significant impact was anticipated between methods, and predictions were largely confirmed experimentally. One exception was due to capacitive coupling of the FSCV potential waveform into the patch clamp amplifier. However, capacitive transients measured in whole-cell current clamp recordings were well below the level of biological signals, which allowed the activity of cells to be easily determined. Next, the activity of medium spiny neurons (MSNs) was examined in the presence of an FSCV electrode to determine how the exogenous potential impacted nearby cells. The activities of both resting and active MSNs were unaffected by the FSCV waveform. Additionally, application of an iontophoretic current, used to locally deliver drugs and other neurochemicals, did not affect neighboring cells. Finally, MSN activity was monitored during iontophoretic delivery of glutamate, an excitatory neurotransmitter. Membrane depolarization and cell firing were observed concurrently with chemical changes around the cell resulting from delivery. In all, we show how combined electrophysiological and electrochemical measurements can relate information between domains and increase the power of neurochemical investigations.
Functional MRI registration with tissue-specific patch-based functional correlation tensors.
Zhou, Yujia; Zhang, Han; Zhang, Lichi; Cao, Xiaohuan; Yang, Ru; Feng, Qianjin; Yap, Pew-Thian; Shen, Dinggang
2018-06-01
Population studies of brain function with resting-state functional magnetic resonance imaging (rs-fMRI) rely on accurate intersubject registration of functional areas. This is typically achieved through registration using high-resolution structural images with more spatial details and better tissue contrast. However, accumulating evidence has suggested that such strategy cannot align functional regions well because functional areas are not necessarily consistent with anatomical structures. To alleviate this problem, a number of registration algorithms based directly on rs-fMRI data have been developed, most of which utilize functional connectivity (FC) features for registration. However, most of these methods usually extract functional features only from the thin and highly curved cortical grey matter (GM), posing great challenges to accurate estimation of whole-brain deformation fields. In this article, we demonstrate that additional useful functional features can also be extracted from the whole brain, not restricted to the GM, particularly the white-matter (WM), for improving the overall functional registration. Specifically, we quantify local anisotropic correlation patterns of the blood oxygenation level-dependent (BOLD) signals using tissue-specific patch-based functional correlation tensors (ts-PFCTs) in both GM and WM. Functional registration is then performed by integrating the features from different tissues using the multi-channel large deformation diffeomorphic metric mapping (mLDDMM) algorithm. Experimental results show that our method achieves superior functional registration performance, compared with conventional registration methods. © 2018 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Zhou, Ying; Wang, Youhua; Liu, Runfeng; Xiao, Lin; Zhang, Qin; Huang, YongAn
2018-01-01
Epidermal electronics (e-skin) emerging in recent years offer the opportunity to noninvasively and wearably extract biosignals from human bodies. The conventional processes of e-skin based on standard microelectronic fabrication processes and a variety of transfer printing methods, nevertheless, unquestionably constrains the size of the devices, posing a serious challenge to collecting signals via skin, the largest organ in the human body. Herein we propose a multichannel noninvasive human-machine interface (HMI) using stretchable surface electromyography (sEMG) patches to realize a robot hand mimicking human gestures. Time-efficient processes are first developed to manufacture µm thick large-scale stretchable devices. With micron thickness, the stretchable µm thick sEMG patches show excellent conformability with human skin and consequently comparable electrical performance with conventional gel electrodes. Combined with the large-scale size, the multichannel noninvasive HMI via stretchable µm thick sEMG patches successfully manipulates the robot hand with eight different gestures, whose precision is as high as conventional gel electrodes array.
Rectangular Microstrip Antenna with Slot Embedded Geometry
NASA Astrophysics Data System (ADS)
Ambresh, P. A.; Hadalgi, P. M.; Hunagund, P. V.; Sujata, A. A.
2014-09-01
In this paper, a novel design that improves the performance of conventional rectangular microstrip antenna is discussed. Design adopts basic techniques such as probe feeding technique with rectangular inverted patch structure as superstrate, air filled dielectric medium as substrate and slot embedded patch. Prototype of the proposed antenna has been fabricated and various antenna performance parameters such as impedance bandwidth, return loss, radiation pattern and antenna gain are considered for Electromagnetic-study. The antennas are designed for the wireless application operating in the frequency range of 3.3 GHz to 3.6 GHz, and UK based fixed satellite service application (3 GHz to 4 GHz), and are named as single inverted patch conventional rectangular microstrip antenna (SIP-CRMSA) and slots embedded inverted patch rectangular microstrip antenna (SEIP-RMSA), respectively. Measurement outcomes for SEIP-RMSA1 and SEIP-RMSA2 showed the satisfactory performance with an achievable impedance bandwidth of 260 MHz (7 %) and 250 MHz (6.72 %), with return loss (RL) of -11.06 dB and -17.98 dB, achieved gain of 8.17 dB and 5.17 dB with 10% and 8% size reduction in comparison with the conventional patch antenna.
Visual patch clamp recording of neurons in thick portions of the adult spinal cord.
Munch, Anders Sonne; Smith, Morten; Moldovan, Mihai; Perrier, Jean-François
2010-07-15
The study of visually identified neurons in slice preparations from the central nervous system offers considerable advantages over in vivo preparations including high mechanical stability in the absence of anaesthesia and full control of the extracellular medium. However, because of their relative thinness, slices are not appropriate for investigating how individual neurons integrate synaptic inputs generated by large numbers of neurons. Here we took advantage of the exceptional resistance of the turtle to anoxia to make slices of increasing thicknesses (from 300 to 3000 microm) from the lumbar enlargement of the spinal cord. With a conventional upright microscope in which the light condenser was carefully adjusted, we could visualize neurons present at the surface of the slice and record them with the whole-cell patch clamp technique. We show that neurons present in the middle of the preparation remain alive and capable of generating action potentials. By stimulating the lateral funiculus we can evoke intense synaptic activity associated with large increases in conductance of the recorded neurons. The conductance increases substantially more in neurons recorded in thick slices suggesting that the size of the network recruited with the stimulation increases with the thickness of the slices. We also find that that the number of spontaneous excitatory postsynaptic currents (EPSCs) is higher in thick slices compared with thin slices while the number of spontaneous inhibitory postsynaptic currents (IPSCs) remains constant. These preliminary data suggest that inhibitory and excitatory synaptic connections are balanced locally while excitation dominates long-range connections in the spinal cord. Copyright 2010 Elsevier B.V. All rights reserved.
Hernández-Ochoa, Erick O.; Schneider, Martin F.
2012-01-01
Skeletal muscle excitation-contraction (E-C)1 coupling is a process composed of multiple sequential stages, by which an action potential triggers sarcoplasmic reticulum (SR)2 Ca2+ release and subsequent contractile activation. The various steps in the E-C coupling process in skeletal muscle can be studied using different techniques. The simultaneous recordings of sarcolemmal electrical signals and the accompanying elevation in myoplasmic Ca2+, due to depolarization-initiated SR Ca2+ release in skeletal muscle fibres, have been useful to obtain a better understanding of muscle function. In studying the origin and mechanism of voltage dependency of E-C coupling a variety of different techniques have been used to control the voltage in adult skeletal fibres. Pioneering work in muscles isolated from amphibians or crustaceans used microelectrodes or ‘high resistance gap’ techniques to manipulate the voltage in the muscle fibres. The development of the patch clamp technique and its variant, the whole-cell clamp configuration that facilitates the manipulation of the intracellular environment, allowed the use of the voltage clamp techniques in different cell types, including skeletal muscle fibres. The aim of this article is to present an historical perspective of the voltage clamp methods used to study skeletal muscle E-C coupling as well as to describe the current status of using the whole-cell patch clamp technique in studies in which the electrical and Ca2+ signalling properties of mouse skeletal muscle membranes are being investigated. PMID:22306655
Nicotinic acetylcholine receptors in porcine hypophyseal intermediate lobe cells.
Zhang, Z W; Feltz, P
1990-01-01
1. Acetylcholine (ACh) was found to depolarize isolated porcine intermediate lobe cells maintained in primary cells culture. We investigated the ACh-induced responses in both whole-cell and cell-attached configurations of the patch-clamp technique. 2. From noise analysis of ACh-evoked whole-cell currents, we estimated an elementary conductance of 20 pS and a channel open duration of about 1.7 ms at -60 mV. From single-channel recordings, we obtained a slope conductance of 26 pS and a mean open time of 1.8 ms at membrane potentials between -60 and -80 mV. 3. ACh-evoked responses were blocked by d-tubocurarine (d-TC), hexamethonium and mecamylamine, but were insensitive to alpha-bungarotoxin. These characteristics define a neuronal type of nicotinic receptors. 4. The whole-cell current induced by ACh showed a strong inward rectification with no outward current being obtained. This phenomenon was observed when the intracellular ion is either sodium or caesium, and even when Ca2+ and Mg2+ were totally removed from the intracellular medium. 5. ACh-gated channels in intermediate lobe cells were cation selective and were permeable to Na+ and Cs+. In Ca2(+)-free extracellular solution, single-channel conductances were much larger (46 pS) than in the presence of 2 mM-Ca2+ (26 pS). 6. The possibility of an excitatory cholinergic control of intermediate lobe cells is discussed. PMID:1693685
Pretreatment of pericardial patches with antibiotics does not alter patch healing in vivo.
Bai, Hualong; Kuwahara, Go; Wang, Mo; Brownson, Kirstyn E; Foster, Trenton R; Yamamoto, Kota; Xing, Ying; Dardik, Alan
2016-04-01
Pretreatment with antibiotics is commonly performed before surgical implantation of prosthetic materials. We previously showed that pericardial patches are infiltrated by macrophages and arterial stem cells after implantation into an artery. We hypothesized that antibiotic pretreatment would diminish the number of cells infiltrating into the patch, potentially affecting early neointimal formation. Bovine pericardial patches were pretreated with saline, bacitracin (500 U/mL), or cephalexin (10 mg/mL) for 30 minutes before implantation into the Wistar rat infrarenal aorta. Patches were retrieved on day 7 or day 30 and analyzed for histology and cell infiltration. Markers of proliferation, apoptosis, vascular cell identity, and M1 and M2 macrophage subtypes were examined using immunofluorescence and immunohistochemistry. Extracted proteins were analyzed by Western blot. At day 7, pericardial patches pretreated with bacitracin or cephalexin showed similar amounts of neointimal thickening (P = .55) and cellular infiltration (P = .42) compared with control patches. Patches pretreated with antibiotics showed similar proliferation (P = .09) and apoptosis (P = .84) as control patches. The cell composition of the neointima in pretreated patches was similar to control patches, with a thin endothelial layer overlying a thin layer of smooth muscle cells (P = .45), and containing similar numbers of CD34-positive (P = .26) and vascular endothelial growth factor receptor 2-positive (P = .31) cells. Interestingly, within the body of the patch, there were fewer macrophages (P = .0003) and a trend towards fewer endothelial progenitor cells (P = .051). No M1 macrophages were found in or around any of the patches. M2 macrophages were present around the patches, and there was no difference in numbers of M2 macrophages surrounding control patches and patches pretreated with antibiotics (P = .24). There was no difference in neointimal thickness at day 30 between control patches and patches pretreated with antibiotics (P = .52). Pretreatment of bovine pericardial patches with the antibiotics bacitracin or cephalexin has no detrimental effect on early patch healing, with similar neointimal thickness, cellular infiltration, and numbers of M2 macrophages compared with control patches. These results suggest that the host vessel response to patch angioplasty using pericardial patches is adaptive remodeling (eg, arterial healing). Published by Elsevier Inc.
QPatch: the past, present and future of automated patch clamp.
Mathes, Chris
2006-04-01
The QPatch 16 significantly increases throughput for gigaseal patch clamp experiments, making direct measurements in ion channel drug discovery and safety testing feasible. Released to the market in the Autumn of 2004 by Sophion Bioscience, the QPatch originated from work done at NeuroSearch (Denmark) in the early days of automated patch clamp. Today, the QPatch provides many unique features. For example, only the QPatch includes an automated cell preparation station making several hours of unattended operation possible. The 16-channel electrode array, called the QPlate, includes glass-coated microfluidic channels for less compound absorption and, hence, more accurate IC(50) values. The microfluidic pathways also allow for very small amounts of compound used for each experiment ( approximately 5 microl per addition). Only the QPatch has four independent pipetting heads for more efficient liquid handling (especially for ligand-gated ion channel experiments). Patch clamp recordings with the QPatch match the high quality of conventional patch clamp and in some cases the results are even better. For example, only the QPatch includes 100% series resistance compensation for the elimination of false positives due to voltage errors. Finally, the modular QPatch 16 was designed with more channels in mind. The upgrade pathway to 48-channels (the QPatch HT) will be discussed.
Expression and permeation properties of the K(+) channel Kir7.1 in the retinal pigment epithelium.
Shimura, M; Yuan, Y; Chang, J T; Zhang, S; Campochiaro, P A; Zack, D J; Hughes, B A
2001-03-01
Bovine Kir7.1 clones were obtained from a retinal pigment epithelium (RPE)-subtracted cDNA library. Human RPE cDNA library screening resulted in clones encoding full-length human Kir7.1. Northern blot analysis indicated that bovine Kir7.1 is highly expressed in the RPE. Human Kir7.1 channels were expressed in Xenopus oocytes and studied using the two-electrode voltage-clamp technique. The macroscopic Kir7.1 conductance exhibited mild inward rectification and an inverse dependence on extracellular K+ concentration ([K+]o). The selectivity sequence based on permeability ratios was K+ (1.0) approximately Rb+ (0.89) > Cs+ (0.013) > Na+ (0.003) approximately Li+ (0.001) and the sequence based on conductance ratios was Rb+ (9.5) > K+ (1.0) > Na+ (0.458) > Cs+ (0.331) > Li+ (0.139). Non-stationary noise analysis of Rb+ currents in cell-attached patches yielded a unitary conductance for Kir7.1 of approximately 2 pS. In whole-cell recordings from freshly isolated bovine RPE cells, the predominant current was a mild inwardly rectifying K+ current that exhibited an inverse dependence of conductance on [K+]o. The selectivity sequence based on permeability ratios was K+ (1.0) approximately Rb+ (0.89) > Cs+ (0.021) > Na+ (0.003) approximately Li+ (0.002) and the sequence based on conductance ratios was Rb+ (8.9) > K+ (1.0) > Na+ (0.59) > Cs+ (0.23) > Li+ (0.08). In cell-attached recordings with Rb+ in the pipette, inwardly rectifying currents were observed in nine of 12 patches of RPE apical membrane but in only one of 13 basolateral membrane patches. Non-stationary noise analysis of Rb+ currents in cell-attached apical membrane patches yielded a unitary conductance for RPE Kir of approximately 2 pS. On the basis of this molecular and electrophysiological evidence, we conclude that Kir7.1 channel subunits comprise the K+ conductance of the RPE apical membrane.
Hristov, Kiril L.; Smith, Amy C.; Parajuli, Shankar P.; Malysz, John; Rovner, Eric S.
2016-01-01
Transient receptor potential melastatin 4 (TRPM4) channels are Ca2+-activated nonselective cation channels that have been recently identified as regulators of detrusor smooth muscle (DSM) function in rodents. However, their expression and function in human DSM remain unexplored. We provide insights into the functional role of TRPM4 channels in human DSM under physiological conditions. We used a multidisciplinary experimental approach, including RT-PCR, Western blotting, immunohistochemistry and immunocytochemistry, patch-clamp electrophysiology, and functional studies of DSM contractility. DSM samples were obtained from patients without preoperative overactive bladder symptoms. RT-PCR detected mRNA transcripts for TRPM4 channels in human DSM whole tissue and freshly isolated single cells. Western blotting and immunohistochemistry with confocal microscopy revealed TRPM4 protein expression in human DSM. Immunocytochemistry further detected TRPM4 protein expression in DSM single cells. Patch-clamp experiments showed that 9-phenanthrol, a selective TRPM4 channel inhibitor, significantly decreased the transient inward cation currents and voltage step-induced whole cell currents in freshly isolated human DSM cells. In current-clamp mode, 9-phenanthrol hyperpolarized the human DSM cell membrane potential. Furthermore, 9-phenanthrol attenuated the spontaneous phasic, carbachol-induced and nerve-evoked contractions in human DSM isolated strips. Significant species-related differences in TRPM4 channel activity between human, rat, and guinea pig DSM were revealed, suggesting a more prominent physiological role for the TRPM4 channel in the regulation of DSM function in humans than in rodents. In conclusion, TRPM4 channels regulate human DSM excitability and contractility and are critical determinants of human urinary bladder function. Thus, TRPM4 channels could represent promising novel targets for the pharmacological or genetic control of overactive bladder. PMID:26791488
Integrated multiple patch-clamp array chip via lateral cell trapping junctions
NASA Astrophysics Data System (ADS)
Seo, J.; Ionescu-Zanetti, C.; Diamond, J.; Lal, R.; Lee, L. P.
2004-03-01
We present an integrated multiple patch-clamp array chip by utilizing lateral cell trapping junctions. The intersectional design of a microfluidic network provides multiple cell addressing and manipulation sites for efficient electrophysiological measurements at a number of patch sites. The patch pores consist of openings in the sidewall of a main fluidic channel, and a membrane patch is drawn into a smaller horizontal channel. This device geometry not only minimizes capacitive coupling between the cell reservoir and the patch channel, but also allows simultaneous optical and electrical measurements of ion channel proteins. Evidence of the hydrodynamic placement of mammalian cells at the patch sites as well as measurements of patch sealing resistance is presented. Device fabrication is based on micromolding of polydimethylsiloxane, thus allowing inexpensive mass production of disposable high-throughput biochips.
Isaacson, J S; Nicoll, R A
1991-01-01
Aniracetam is a nootropic drug that has been shown to selectively enhance quisqualate receptor-mediated responses in Xenopus oocytes injected with brain mRNA and in hippocampal pyramidal cells [Ito, I., Tanabe, S., Kohda, A. & Sugiyama, H. (1990) J. Physiol. (London) 424, 533-544]. We have used patch clamp recording techniques in hippocampal slices to elucidate the mechanism for this selective action. We find that aniracetam enhances glutamate-evoked currents in whole-cell recordings and, in outside-out patches, strongly reduces glutamate receptor desensitization. In addition, aniracetam selectively prolongs the time course and increases the peak amplitude of fast synaptic currents. These findings indicate that aniracetam slows the kinetics of fast synaptic transmission and are consistent with the proposal [Trussell, L. O. & Fischbach, G. D. (1989) Neuron 3, 209-218; Tang, C.-M., Dichter, M. & Morad, M. (1989) Science 243, 1474-1477] that receptor desensitization governs the strength of fast excitatory synaptic transmission in the brain. PMID:1660156
Isaacson, J S; Nicoll, R A
1991-12-01
Aniracetam is a nootropic drug that has been shown to selectively enhance quisqualate receptor-mediated responses in Xenopus oocytes injected with brain mRNA and in hippocampal pyramidal cells [Ito, I., Tanabe, S., Kohda, A. & Sugiyama, H. (1990) J. Physiol. (London) 424, 533-544]. We have used patch clamp recording techniques in hippocampal slices to elucidate the mechanism for this selective action. We find that aniracetam enhances glutamate-evoked currents in whole-cell recordings and, in outside-out patches, strongly reduces glutamate receptor desensitization. In addition, aniracetam selectively prolongs the time course and increases the peak amplitude of fast synaptic currents. These findings indicate that aniracetam slows the kinetics of fast synaptic transmission and are consistent with the proposal [Trussell, L. O. & Fischbach, G. D. (1989) Neuron 3, 209-218; Tang, C.-M., Dichter, M. & Morad, M. (1989) Science 243, 1474-1477] that receptor desensitization governs the strength of fast excitatory synaptic transmission in the brain.
Yeast Rsp5 ubiquitin ligase affects the actin cytoskeleton in vivo and in vitro.
Kaminska, Joanna; Spiess, Matthias; Stawiecka-Mirota, Marta; Monkaityte, Rasa; Haguenauer-Tsapis, Rosine; Urban-Grimal, Daniele; Winsor, Barbara; Zoladek, Teresa
2011-12-01
Yeast Rsp5 ubiquitin ligase is involved in several cellular processes, including endocytosis. Actin patches are sites of endocytosis, a process involving actin assembly and disassembly. Here we show Rsp5 localization in cortical patches and demonstrate its involvement in actin cytoskeleton organization and dynamics. We found that the Rsp5-F1-GFP2 N-terminal fragment and full length GFP-Rsp5 were recruited to peripheral patches that temporarily co-localized with Abp1-mCherry, a marker of actin patches. Actin cytoskeleton organization was defective in a strain lacking RSP5 or overexpressing RSP5, and this phenotype was accompanied by morphological abnormalities. Overexpression of RSP5 caused hypersensitivity of cells to Latrunculin A, an actin-depolymerizing drug and was toxic to cells lacking Las17, an activator of actin nucleation. Moreover, Rsp5 was required for efficient actin polymerization in a whole cell extract based in vitro system. Rsp5 interacted with Las17 and Las17-binding proteins, Lsb1 and Lsb2, in a GST-Rsp5-WW2/3 pull down assay. Rsp5 ubiquitinated Lsb1-HA and Lsb2-HA without directing them for degradation. Overexpression of RSP5 increased the cellular level of HA-Las17 in wild type and in lsb1Δ lsb2Δ strains in which the basal level of Las17 was already elevated. This increase was prevented in a strain devoid of Las17-binding protein Sla1 which is also a target of Rsp5 ubiquitination. Thus, Rsp5 together with Lsb1, Lsb2 and Sla1 regulate the level of Las17, an important activator of actin polymerization. Copyright © 2011 Elsevier GmbH. All rights reserved.
Development of Novel Faster-Dissolving Microneedle Patches for Transcutaneous Vaccine Delivery
Ono, Akihiko; Ito, Sayami; Sakagami, Shun; Saito, Mio; Quan, Ying-Shu; Kamiyama, Fumio; Hirobe, Sachiko; Okada, Naoki
2017-01-01
Microneedle (MN) patches are promising for transcutaneous vaccination because they enable vaccine antigens to physically penetrate the stratum corneum via low-invasive skin puncturing, and to be effectively delivered to antigen-presenting cells in the skin. In second-generation MN patches, the dissolving MNs release the loaded vaccine antigen into the skin. To shorten skin application time for clinical practice, this study aims to develop novel faster-dissolving MNs. We designed two types of MNs made from a single thickening agent, carboxymethylcellulose (CMC) or hyaluronan (HN). Both CMC-MN and HN-MN completely dissolved in rat skin after a 5-min application. In pre-clinical studies, both MNs could demonstrably increase antigen-specific IgG levels after vaccination and prolong antigen deposition compared with conventional injections, and deliver antigens into resected human dermal tissue. In clinical research, we demonstrated that both MNs could reliably and safely puncture human skin without any significant skin irritation from transepidermal water loss measurements and ICDRG (International Contact Dermatitis Research Group) evaluation results. PMID:28771172
Cholinergic modulation of dopaminergic neurons in the mouse olfactory bulb.
Pignatelli, Angela; Belluzzi, Ottorino
2008-04-01
Considerable evidence exists for an extrinsic cholinergic influence in the maturation and function of the main olfactory bulb. In this study, we addressed the muscarinic modulation of dopaminergic neurons in this structure. We used different patch-clamp techniques to characterize the diverse roles of muscarinic agonists on identified dopaminergic neurons in a transgenic animal model expressing a reporter protein (green fluorescent protein) under the tyrosine hydroxylase promoter. Bath application of acetylcholine (1 mM) in slices and in enzymatically dissociated cells reduced the spontaneous firing of dopaminergic neurons recorded in cell-attached mode. In whole-cell configuration no effect of the agonist was observed, unless using the perforated patch technique, thus suggesting the involvement of a diffusible second messenger. The effect was mediated by metabotropic receptors as it was blocked by atropine and mimicked by the m2 agonist oxotremorine (10 muM). The reduction of periglomerular cell firing by muscarinic activation results from a membrane-potential hyperpolarization caused by activation of a potassium conductance. This modulation of dopaminergic interneurons may be important in the processing of sensory information and may be relevant to understand the mechanisms underlying the olfactory dysfunctions occurring in neurodegenerative diseases affecting the dopaminergic and/or cholinergic systems.
Extinction risk in successional landscapes subject to catastrophic disturbances.
David Boughton; Urmila Malvadkar
2002-01-01
We explore the thesis that stochasticity in successional-disturbance systems can be an agent of species extinction. The analysis uses a simple model of patch dynamics for seral stages in an idealized landscape; each seral stage is assumed to support a specialist biota. The landscape as a whole is characterized by a mean patch birth rate, mean patch size, and mean...
Resistively Loaded Microstrip-Patch Antenna
NASA Technical Reports Server (NTRS)
Bailey, Marion C.
1993-01-01
Strips of thin resistive material added near two edges of conventional micro-strip-patch antenna. Bandwidth doubled by simple modification. Optimum bandwidth performance obtained by adjustment of shapes, resistances, and locations of resistive strips.
Megger, Dominik A; Pott, Leona L; Rosowski, Kristin; Zülch, Birgit; Tautges, Stephanie; Bracht, Thilo; Sitek, Barbara
2017-01-01
Tandem mass tags (TMT) are usually introduced at the levels of isolated proteins or peptides. Here, for the first time, we report the labeling of whole cells and a critical evaluation of its performance in comparison to conventional labeling approaches. The obtained results indicated that TMT protein labeling using intact cells is generally possible, if it is coupled to a subsequent enrichment using anti-TMT antibody. The quantitative results were similar to those obtained after labeling of isolated proteins and both were found to be slightly complementary to peptide labeling. Furthermore, when using NHS-based TMT, no specificity towards cell surface proteins was observed in the case of cell labeling. In summary, the conducted study revealed first evidence for the general possibility of TMT cell labeling and highlighted limitations of NHS-based labeling reagents. Future studies should therefore focus on the synthesis and investigation of membrane impermeable TMTs to increase specificity towards cell surface proteins.
Dospinescu, Ciprian; Widmer, Hélène; Rowe, Iain; Wainwright, Cherry; Cruickshank, Stuart F
2012-09-01
Hypoxia contracts the pulmonary vein, but the underlying cellular effectors remain unclear. Utilizing contractile studies and whole cell patch-clamp electrophysiology, we report for the first time a hypoxia-sensitive K(+) current in porcine pulmonary vein smooth muscle cells (PVSMC). Hypoxia induced a transient contractile response that was 56 ± 7% of the control response (80 mM KCl). This contraction required extracellular Ca(2+) and was sensitive to Ca(2+) channel blockade. Blockade of K(+) channels by tetraethylammonium chloride (TEA) or 4-aminopyridine (4-AP) reversibly inhibited the hypoxia-mediated contraction. Single-isolated PVSMC (typically 159.1 ± 2.3 μm long) had mean resting membrane potentials (RMP) of -36 ± 4 mV with a mean membrane capacitance of 108 ± 3.5 pF. Whole cell patch-clamp recordings identified a rapidly activating, partially inactivating K(+) current (I(KH)) that was hypoxia, TEA, and 4-AP sensitive. I(KH) was insensitive to Penitrem A or glyburide in PVSMC and had a time to peak of 14.4 ± 3.3 ms and recovered in 67 ms following inactivation at +80 mV. Peak window current was -32 mV, suggesting that I(KH) may contribute to PVSMC RMP. The molecular identity of the potassium channel is not clear. However, RT-PCR, using porcine pulmonary artery and vein samples, identified Kv(1.5), Kv(2.1), and BK, with all three being more abundant in the PV. Both artery and vein expressed STREX, a highly conserved and hypoxia-sensitive BK channel variant. Taken together, our data support the hypothesis that hypoxic inhibition of I(KH) would contribute to hypoxic-induced contraction in PVSMC.
Cardiovascular tissue engineering: where we come from and where are we now?
Smit, Francis E; Dohmen, Pascal M
2015-01-27
Abstract Tissue engineering was introduced by Vacanti and Langer in the 80's, exploring the potential of this new technology starting with the well-known "human ear on the mouse back". The goal is to create a substitute which supplies an individual therapy for patients with regeneration, remodeling and growth potential. The growth potential of these subjects is of special interest in congenital cardiac surgery, avoiding repeated interventions and surgery. Initial applications of tissue engineered created substitutes were relatively simple cardiovascular grafts seeded initially by end-differentiated autologous endothelial cells. Important data were collected from these initial clinical autologous endothelial cell seeded grafts in peripheral and coronary vessel disease. After these initial successfully implantation bone marrow cell were used to seed patches and pulmonary conduits were implanted in patients. Driven by the positive results of tissue engineered material implanted under low pressure circumstances, first tissue engineered patches were implanted in the systemic circulation followed by the implantation of tissue engineered aortic heart valves. Tissue engineering is an extreme dynamic technology with continuously modifications and improvements to optimize clinical products. New technologies are unified and so this has also be done with tissue engineering and new application features, so called transcatheter valve intervention. First studies are initiated to apply tissue engineered heart valves with this new transcatheter delivery system less invasive. Simultaneously studies have been started on tissue engineering of so-called whole organs since organ transplantation is restricted due to donor shortage and tissue engineering could overcome this problem. Initial studies of whole heart engineering in the rat model are promising and larger size models are initiated.
Kojima, Akiko; Kitagawa, Hirotoshi; Omatsu-Kanbe, Mariko; Matsuura, Hiroshi; Nosaka, Shuichi
2012-01-01
BACKGROUND AND PURPOSE The volatile anaesthetic sevoflurane affects heart rate in clinical settings. The present study investigated the effect of sevoflurane on sinoatrial (SA) node automaticity and its underlying ionic mechanisms. EXPERIMENTAL APPROACH Spontaneous action potentials and four ionic currents fundamental for pacemaking, namely, the hyperpolarization-activated cation current (If), T-type and L-type Ca2+ currents (ICa,T and ICa,L, respectively), and slowly activating delayed rectifier K+ current (IKs), were recorded in isolated guinea-pig SA node cells using perforated and conventional whole-cell patch-clamp techniques. Heart rate in guinea-pigs was recorded ex vivo in Langendorff mode and in vivo during sevoflurane inhalation. KEY RESULTS In isolated SA node cells, sevoflurane (0.12–0.71 mM) reduced the firing rate of spontaneous action potentials and its electrical basis, diastolic depolarization rate, in a qualitatively similar concentration-dependent manner. Sevoflurane (0.44 mM) reduced spontaneous firing rate by approximately 25% and decreased If, ICa,T, ICa,L and IKs by 14.4, 31.3, 30.3 and 37.1%, respectively, without significantly affecting voltage dependence of current activation. The negative chronotropic effect of sevoflurane was partly reproduced by a computer simulation of SA node cell electrophysiology. Sevoflurane reduced heart rate in Langendorff-perfused hearts, but not in vivo during sevoflurane inhalation in guinea-pigs. CONCLUSIONS AND IMPLICATIONS Sevoflurane at clinically relevant concentrations slowed diastolic depolarization and thereby reduced pacemaking activity in SA node cells, at least partly due to its inhibitory effect on If, ICa,T and ICa,L. These findings provide an important electrophysiological basis of alterations in heart rate during sevoflurane anaesthesia in clinical settings. PMID:22356456
NASA Astrophysics Data System (ADS)
Ghosh, S. K.; Varshney, S. K.; Chakraborty, S.; Singh, L. L. K.; Chattopadhyay, S.
2018-03-01
Microstrip patch antenna of semicircular geometry has been investigated in view of miniaturization of conventional circular geometry. The precise operating frequency of the semicircular microstrip patch antenna is the most significant parameter to be determined in order to design such antenna system to achieve the optimum performance. In the present investigation an improved formulation is presented for accurate determination of the resonant frequency of semicircular patch. Also, the radiation property of such patch is thoroughly investigated. Through comparisons are documented amongst the circular and semicircular patches. It is revealed that, the semicircular patch offers more better radiation performance compared to circular.
On Directional Selectivity in Vertebrate Retina: An Experimental and Computational Study
1992-01-01
Borg-Graham MIT Artificial Intelligence Laboratory Approved for public re•l•:sl i istzibu4 93-01232 98 1. 2 114- REPORT DOCUMENTATION PAGE OM[ B o J1...PAGE OF ABSTRACT UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED %S .4 _ ýB-. u5%Q (*j Block 13 continued: preparation and b ) a whole-cell patch...currents and b ) by re- moving ATP from the electrodes which, in turn, blocks the inhibitory input over time. This finding implies that the necessary and
Magistretti, Jacopo; Ragsdale, David S; Alonso, Angel
1999-01-01
Single Na+ channel activity was recorded in patch-clamp, cell-attached experiments performed on dendritic processes of acutely isolated principal neurones from rat entorhinal-cortex layer II. The distances of the recording sites from the soma ranged from ≈20 to ≈100 μm.Step depolarisations from holding potentials of −120 to −100 mV to test potentials of −60 to +10 mV elicited Na+ channel openings in all of the recorded patches (n= 16).In 10 patches, besides transient Na+ channel openings clustered within the first few milliseconds of the depolarising pulses, prolonged and/or late Na+ channel openings were also regularly observed. This ‘persistent’ Na+ channel activity produced net inward, persistent currents in ensemble-average traces, and remained stable over the entire duration of the experiments (≈9 to 30 min).Two of these patches contained <= 3 channels. In these cases, persistent Na+ channel openings could be attributed to the activity of one single channel.The voltage dependence of persistent-current amplitude in ensemble-average traces closely resembled that of whole-cell, persistent Na+ current expressed by the same neurones, and displayed the same characteristic low threshold of activation.Dendritic, persistent Na+ channel openings had relatively high single-channel conductance (≈20 pS), similar to what is observed for somatic, persistent Na+ channels.We conclude that a stable, persistent Na+ channel activity is expressed by proximal dendrites of entorhinal-cortex layer II principal neurones, and can contribute a significant low-threshold, persistent Na+ current to the dendritic processing of excitatory synaptic inputs. PMID:10601494
MATLAB-based automated patch-clamp system for awake behaving mice
Siegel, Jennifer J.; Taylor, William; Chitwood, Raymond A.; Johnston, Daniel
2015-01-01
Automation has been an important part of biomedical research for decades, and the use of automated and robotic systems is now standard for such tasks as DNA sequencing, microfluidics, and high-throughput screening. Recently, Kodandaramaiah and colleagues (Nat Methods 9: 585–587, 2012) demonstrated, using anesthetized animals, the feasibility of automating blind patch-clamp recordings in vivo. Blind patch is a good target for automation because it is a complex yet highly stereotyped process that revolves around analysis of a single signal (electrode impedance) and movement along a single axis. Here, we introduce an automated system for blind patch-clamp recordings from awake, head-fixed mice running on a wheel. In its design, we were guided by 3 requirements: easy-to-use and easy-to-modify software; seamless integration of behavioral equipment; and efficient use of time. The resulting system employs equipment that is standard for patch recording rigs, moderately priced, or simple to make. It is written entirely in MATLAB, a programming environment that has an enormous user base in the neuroscience community and many available resources for analysis and instrument control. Using this system, we obtained 19 whole cell patch recordings from neurons in the prefrontal cortex of awake mice, aged 8–9 wk. Successful recordings had series resistances that averaged 52 ± 4 MΩ and required 5.7 ± 0.6 attempts to obtain. These numbers are comparable with those of experienced electrophysiologists working manually, and this system, written in a simple and familiar language, will be useful to many cellular electrophysiologists who wish to study awake behaving mice. PMID:26084901
Patch Based Synthesis of Whole Head MR Images: Application to EPI Distortion Correction.
Roy, Snehashis; Chou, Yi-Yu; Jog, Amod; Butman, John A; Pham, Dzung L
2016-10-01
Different magnetic resonance imaging pulse sequences are used to generate image contrasts based on physical properties of tissues, which provide different and often complementary information about them. Therefore multiple image contrasts are useful for multimodal analysis of medical images. Often, medical image processing algorithms are optimized for particular image contrasts. If a desirable contrast is unavailable, contrast synthesis (or modality synthesis) methods try to "synthesize" the unavailable constrasts from the available ones. Most of the recent image synthesis methods generate synthetic brain images, while whole head magnetic resonance (MR) images can also be useful for many applications. We propose an atlas based patch matching algorithm to synthesize T 2 -w whole head (including brain, skull, eyes etc) images from T 1 -w images for the purpose of distortion correction of diffusion weighted MR images. The geometric distortion in diffusion MR images due to in-homogeneous B 0 magnetic field are often corrected by non-linearly registering the corresponding b = 0 image with zero diffusion gradient to an undistorted T 2 -w image. We show that our synthetic T 2 -w images can be used as a template in absence of a real T 2 -w image. Our patch based method requires multiple atlases with T 1 and T 2 to be registeLowRes to a given target T 1 . Then for every patch on the target, multiple similar looking matching patches are found on the atlas T 1 images and corresponding patches on the atlas T 2 images are combined to generate a synthetic T 2 of the target. We experimented on image data obtained from 44 patients with traumatic brain injury (TBI), and showed that our synthesized T 2 images produce more accurate distortion correction than a state-of-the-art registration based image synthesis method.
Mechanical Development of a Very Non-Standard Patch Array Antenna for Extreme Environments
NASA Technical Reports Server (NTRS)
Hughes, Richard; Chamberlain, Neil; Jakoboski, Julie; Petkov, Mihail
2012-01-01
This paper describes the mechanical development of patch antenna arrays for the Juno mission. The patch arrays are part of a six-frequency microwave radiometer instrument that will be used to measure thermal emissions from Jupiter. The very harsh environmental conditions in Jupiter orbit, as well as a demanding launch environment, resulted in a design that departs radically from conventional printed circuit patch antennas. The paper discusses the development and qualification of the Juno patch array antennas, with emphasis on the materials approach that was devised to mitigate the effects of electron charging in Jupiter orbit.
1994-01-01
Previous studies reveal that the pH of the apoplastic solution in the guard cell walls may vary between 7.2 and 5.1 in closed and open stomata, respectively. During these aperture and pH changes, massive K+ fluxes cross the cellular plasma membrane driving the osmotic turgor and volume changes of guard cells. Therefore, we examined the effect of extracellular pH on the depolarization-activated K channels (KD channels), which constitute the K+ efflux pathway, in the plasma membrane of Vicia faba guard cell protoplasts. We used patch clamp, both in whole cells as well as in excised outside-out membrane patches. Approximately 500 KD channels, at least, could be activated by depolarization in one protoplast (density: approximately 0.6 micron-2). Acidification from ph 8.1 to 4.4 decreased markedly the whole-cell conductance, GK, of the KD channels, shifted its voltage dependence, GK- EM, to the right on the voltage axis, slowed the rate of activation and increased the rate of deactivation, whereas the single channel conductance was not affected significantly. Based on the GK-EM shifts, the estimated average negative surface charge spacing near the KD channel is 39 A. To quantify the effects of protons on the rates of transitions between the hypothesized conformational states of the channels, we fitted the experimental macroscopic steady state conductance-voltage relationship and the voltage dependence of time constants of activation and deactivation, simultaneously, with a sequential three-state model CCO. In terms of this model, protonation affects the voltage-dependent properties via a decrease in localized, rather than homogeneous, surface charge sensed by the gating moieties. In terms of either the CO or CCO model, the protonation of a site with a pKa of 4.8 decreases the voltage-independent number of channels, N, that are available for activation by depolarization. PMID:8035163
Donnelly, Ryan F; McCarron, Paul A; Tunney, Michael M; David Woolfson, A
2007-01-03
Mucocutaneous oropharyngeal candidiasis is predominately caused by Candida albicans. The overall incidence of oral candidiasis in young adults has increased dramatically with the spread of HIV/AIDS. Conventional treatments have been shown to have a fungistatic rather than a fungicidal effect, resulting in an inadequate treatment outcome for patients. In addition, increasing resistance of C. albicans to antifungal agents has made effective treatment more difficult. Accordingly, interest has arisen in development of new prophylaxis/treatment regimens. One such alternative treatment is photodynamic antimicrobial chemotherapy (PACT), in which a combination of a photosensitising drug and visible light cause selective destruction of microbial cells. Due to the highly coloured nature of photosensitisers and the potential for staining of teeth, lips and buccal mucosa, administration of photosensitisers to humans as a liquid mouthwash is undesirable. Targeted delivery of the photosensitiser directly to the site of infection should be the aim. The current study, therefore, reports on a mucoadhesive patch containing toluidine blue O (TBO), as a potential delivery system for use in PACT of oropharyngeal candidiasis. Patches prepared from aqueous blends of poly(methyl vinyl ether/maleic anhydride) and tripropyleneglycol methyl ether possessed suitable properties for use as mucoadhesive drug delivery systems and were capable of resisting dissolution when immersed in artificial saliva. When releasing directly into an aqueous sink, patches containing 50 and 100mg TBO cm(-2) both generated receiver compartment concentrations exceeding the concentration (2.0-5.0 mg ml(-1)) required to produce high levels of kill (>90%) of both planktonic and biofilm-grown C. albicans upon illumination. However, the concentrations of TBO in the receiver compartments separated from patches by membranes intended to mimic biofilm structures were an order of magnitude below those inducing high levels of kill, even after 6h release. Therefore, short application times of TBO-containing mucoadhesive patches should allow treatment of recently-acquired oropharyngeal candidiasis, caused solely by planktonic cells. Longer patch application times may be required for persistent disease where biofilms are implicated.
Electrophysiological Recordings from Lobula Plate Tangential Cells in Drosophila.
Mauss, Alex S; Borst, Alexander
2016-01-01
Drosophila has emerged as an important model organism for the study of the neural basis of behavior. Its main asset is the experimental accessibility of identified neurons by genetic manipulation and physiological recordings. Drosophila therefore offers the opportunity to reach an integrative understanding of the development and neural underpinnings of behavior at all processing stages, from sensing to motor control, in a single species. Here, we will provide an account of the procedures involved in recording the electrical potential of individual neurons in the visual system of adult Drosophila using the whole-cell patch-clamp method. To this end, animals are fixed to a holder and mounted below a recording chamber. The head capsule is cut open and the glial sheath covering the brain is ruptured by a combination of shearing and enzymatic digest. Neuronal somata are thus exposed and targeted by low-resistance patch electrodes. After formation of a high resistance seal, electrical access to the cell is gained by small current pulses and suction. Stable recordings of large neurons are feasible for >1 h and can be combined with controlled visual stimulation as well as genetic and pharmacological manipulation of upstream circuit elements to infer circuit function in great detail.
Hydrocortisone and dexamethasone dose-dependently stabilize mast cells derived from rat peritoneum.
Mori, Tomohiro; Abe, Nozomu; Saito, Kazutomo; Toyama, Hiroaki; Endo, Yasuhiro; Ejima, Yutaka; Yamauchi, Masanori; Goto, Mariko; Mushiake, Hajime; Kazama, Itsuro
2016-12-01
Besides their anti-inflammatory properties, corticosteroid drugs exert anti-allergic effects. Exocytosis of mast cells is electrophysiologically detected as the increase in the whole-cell membrane capacitance (Cm). Therefore, the lack of such increase after exposure to the drugs suggests their mast cell-stabilizing effects. We examined the effects of 1, 10, 100 and 200μM hydrocortisone or dexamethasone on the degranulation from rat peritoneal mast cells. Employing the whole-cell patch-clamp recording technique, we also tested their effects on the Cm during exocytosis. At relatively lower concentrations (1, 10μM), both hydrocortisone and dexamethasone did not significantly affect the degranulation from mast cells and the increase in the Cm induced by GTP-γ-S. Nevertheless, at higher doses (100, 200μM), these drugs inhibited the degranulation from mast cells and markedly suppressed the GTP-γ-S-induced increase in the Cm. Our results provided electrophysiological evidence for the first time that corticosteroid drugs, such as hydrocortisone and dexamethasone, inhibited the exocytotic process of mast cells in a dose-dependent manner. The mast cell-stabilizing effects of these drugs may be attributable to their "non-genomic" action, by which they exert rapid anti-allergic effects. Copyright © 2016. Published by Elsevier Urban & Partner Sp. z o.o.
Contributions of Conventional and Heavy-Chain IgG to Immunity in Fetal, Neonatal, and Adult Alpacas▿
Daley-Bauer, L. P.; Purdy, S. R.; Smith, M. C.; Gagliardo, L. F.; Davis, W. C.; Appleton, J. A.
2010-01-01
In addition to conventional immunoglobulins, camelids produce antibodies that do not incorporate light chains into their structures. These so-called heavy-chain (HC) antibodies have incited great interest in the biomedical community, as they have considerable potential for biotechnological and therapeutic application. Recently, we have begun to elucidate the immunological functions of HC antibodies, yet little is known about their significance in maternal immunity or about the B lymphocytes that produce them. This study describes the application of isotype-specific reagents toward physiological assessments of camelid IgGs and the B cells that produce them. We document the specificities of monoclonal antibodies that distinguish two conventional IgG1 isotypes and two HC IgG3 variants produced by alpacas. Next, we report that the relative concentrations of five isotypes are similar in serum, milk, and colostrum; however, following passive transfer, the concentrations of HC IgG2 and IgG3 declined more rapidly than the concentration of conventional IgG1 in the sera of neonates. Finally, we assessed the distribution of B cells of distinct isotypes within lymphoid tissues during fetal and adult life. We detected IgG1, IgG2, and IgG3 in lymphocytes located in lymph node follicles, suggesting that HC B cells affinity mature and/or class switch. One IgG3 isotype was present in B cells located in ileal Peyer's patches, and one conventional IgG1 isotype was detected in splenic marginal zone B cells. Our findings contribute to the growing body of knowledge pertaining to HC antibodies and are compatible with functional specialization among conventional and HC IgGs in the alpaca. PMID:20926693
Cell-Detection Technique for Automated Patch Clamping
NASA Technical Reports Server (NTRS)
McDowell, Mark; Gray, Elizabeth
2008-01-01
A unique and customizable machinevision and image-data-processing technique has been developed for use in automated identification of cells that are optimal for patch clamping. [Patch clamping (in which patch electrodes are pressed against cell membranes) is an electrophysiological technique widely applied for the study of ion channels, and of membrane proteins that regulate the flow of ions across the membranes. Patch clamping is used in many biological research fields such as neurobiology, pharmacology, and molecular biology.] While there exist several hardware techniques for automated patch clamping of cells, very few of those techniques incorporate machine vision for locating cells that are ideal subjects for patch clamping. In contrast, the present technique is embodied in a machine-vision algorithm that, in practical application, enables the user to identify good and bad cells for patch clamping in an image captured by a charge-coupled-device (CCD) camera attached to a microscope, within a processing time of one second. Hence, the present technique can save time, thereby increasing efficiency and reducing cost. The present technique involves the utilization of cell-feature metrics to accurately make decisions on the degree to which individual cells are "good" or "bad" candidates for patch clamping. These metrics include position coordinates (x,y) in the image plane, major-axis length, minor-axis length, area, elongation, roundness, smoothness, angle of orientation, and degree of inclusion in the field of view. The present technique does not require any special hardware beyond commercially available, off-the-shelf patch-clamping hardware: A standard patchclamping microscope system with an attached CCD camera, a personal computer with an imagedata- processing board, and some experience in utilizing imagedata- processing software are all that are needed. A cell image is first captured by the microscope CCD camera and image-data-processing board, then the image data are analyzed by software that implements the present machine-vision technique. This analysis results in the identification of cells that are "good" candidates for patch clamping (see figure). Once a "good" cell is identified, a patch clamp can be effected by an automated patchclamping apparatus or by a human operator. This technique has been shown to enable reliable identification of "good" and "bad" candidate cells for patch clamping. The ultimate goal in further development of this technique is to combine artificial-intelligence processing with instrumentation and controls in order to produce a complete "turnkey" automated patch-clamping system capable of accurately and reliably patch clamping cells with a minimum intervention by a human operator. Moreover, this technique can be adapted to virtually any cellular-analysis procedure that includes repetitive operation of microscope hardware by a human.
Samarawickrama, Chameen; Samanta, Ayan; Liszka, Aneta; Fagerholm, Per; Buznyk, Oleksiy; Griffith, May; Allan, Bruce
2018-05-01
To describe the use of collagen-based alternatives to cyanoacrylate glue for the sealing of acute corneal perforations. A collagen analog comprising a collagen-like peptide conjugated to polyethylene glycol (CLP-PEG) and its chemical crosslinker were tested for biocompatibility. These CLP-PEG hydrogels, which are designed to act as a framework for corneal tissue regeneration, were then tested as potential fillers in ex vivo human corneas with surgically created full-thickness perforations. Bursting pressures were measured in each of 3 methods (n = 10 for each condition) of applying a seal: 1) cyanoacrylate glue with a polyethylene patch applied ab externo (gold standard); 2) a 100-μm thick collagen hydrogel patch applied ab interno, and 3) the same collagen hydrogel patch applied ab interno supplemented with CLP-PEG hydrogel molded in situ to fill the remaining corneal stromal defect. Cyanoacrylate gluing achieved a mean bursting pressure of 325.9 mm Hg, significantly higher than the ab interno patch alone (46.3 mm Hg) and the ab interno patch with the CLP-PEG filler (86.6 mm Hg). All experimental perforations were sealed effectively using 100 μm hydrogel sheets as an ab interno patch, whereas conventional ab externo patching with cyanoacrylate glue failed to provide a seal in 30% (3/10) cases. An ab interno patch system using CLP-PEG hydrogels designed to promote corneal tissue regeneration may be a viable alternative to conventional cyanoacrylate glue patching for the treatment of corneal perforation. Further experimentation and material refinement is required in advance of clinical trials.
Correlation of open cell-attached and excised patch clamp techniques.
Filipovic, D; Hayslett, J P
1995-11-01
The excised patch clamp configuration provides a unique technique for some types of single channel analyses, but maintenance of stable, long-lasting preparations may be confounded by rundown and/or rapid loss of seal. Studies were performed on the amiloride-sensitive Na+ channel, located on the apical surface of A6 cells, to determine whether the nystatin-induced open cell-attached patch could serve as an alternative configuration. Compared to excised inside-out patches, stable preparations were achieved more readily with the open cell-attached patch (9% vs. 56% of attempts). In both preparations, the current voltage (I-V) relation was linear, current amplitudes were equal at opposite equivalent clamped voltages, and Erev was zero in symmetrical Na+ solutions, indicating similar Na+ activities on the cytosolic and external surfaces of the patch. Moreover, there was no evidence that nystatin altered channel activity in the patch because slope conductance (3-4pS) and Erev (75 mV), when the bath was perfused with a high K:low Na solution (ENa = 80 mV), were nearly equal in both patch configurations. Our results therefore indicate that the nystatin-induced open cell-attached patch can serve as an alternative approach to the excised inside-out patch when experiments require modulation of univalent ions in the cytosol.
Arya, Jaya; Henry, Sebastien; Kalluri, Haripriya; McAllister, Devin V.; Pewin, Winston P.; Prausnitz, Mark R.
2017-01-01
To support translation of microneedle patches from pre-clinical development into clinical trials, this study examined the effect of microneedle patch application on local skin reactions, reliability of use and acceptability to patients. Placebo patches containing dissolving microneedles were administered to fifteen human participants. Microneedle patches were well tolerated in the skin with no pain or swelling and only mild erythema localized to the site of patch administration that resolved fully within seven days. Microneedle patches could be administered by hand without the need of an applicator and delivery efficiencies were similar for investigator-administration and self-administration. Microneedle patch administration was not considered painful and the large majority of subjects were somewhat or fully confident that they self-administered patches correctly. Microneedle patches were overwhelmingly preferred over conventional needle and syringe injection. Altogether, these results demonstrate that dissolving microneedle patches were well tolerated, easily usable and strongly accepted by human subjects, which will facilitate further clinical translation of this technology. PMID:28285193
Suzuki, Takashi; Nakamura, Kazuyoshi; Mayanagi, Taira; Sobue, Kenji; Kubokawa, Manabu
2017-07-22
The ROMK1 K + channel, a member of the ROMK channel family, is the major candidate for the K + secretion pathway in the renal cortical collecting duct (CCD). ROMK1 possesses a PDZ domain-binding motif at its C-terminus that is considered a modulator of ROMK1 expression via interaction with Na + /H + exchange regulatory factor (NHERF) 1 and NHERF2 scaffold protein. Although NHERF1 is a potential binding partner of the ROMK1 K + channel, the interaction between NHERF1 and K + channel activity remains unclear. Therefore, in this study, we knocked down NHERF1 in cultured M-1 cells derived from mouse CCD and investigated the surface expression and K + channel current in these cells after exogenous transfection with EGFP-ROMK1. NHERF1 knockdown resulted in reduced surface expression of ROMK1 as indicated by a cell biotinylation assay. Using the patch-clamp technique, we further found that the number of active channels per patched membrane and the Ba 2+ -sensitive whole-cell K + current were decreased in the knockdown cells, suggesting that reduced K + current was accompanied by decreased surface expression of ROMK1 in the NHERF1 knockdown cells. Our results provide evidence that NHERF1 mediates K + current activity through acceleration of the surface expression of ROMK1 K + channels in M-1 cells. Copyright © 2017 Elsevier Inc. All rights reserved.
Inward current activated by carbachol in rat intestinal smooth muscle cells.
Ito, S; Ohta, T; Nakazato, Y
1993-01-01
1. Carbachol (0.1 mM or 10 microM)-evoked inward currents were studied with standard and perforated whole-cell patch clamp techniques in smooth muscle cells isolated from rat small intestine. The intracellular free Ca2+ concentration was monitored simultaneously with the fura-2 method. 2. With a K(+)-containing pipette solution, carbachol produced an inward current at -60 mV and a large outward current at -20 mV. 3. When NaCl was substituted for KCl in the external and pipette solutions, carbachol elicited inward currents at holding potentials more inside-negative than 0 mV. The reversal potential of the carbachol-induced current altered when external chloride (-0.9 mV) was replaced by iodide (-21.2 mV), thiocyanate (-27.0 mV) and glutamate (18.2 mV). The carbachol-induced current at -60 mV was slightly decreased by the replacement of external NaCl with Tris-Cl. 4. The carbachol-induced inward current at -60 mV was accompanied by an increase in the intracellular concentration of free Ca2+. Both responses to carbachol were observed 2 min after exposure of the cells to a Ca(2+)-free solution containing 2 mM EGTA. 5. Intracellular application of heparin inhibited the inward current and Ca2+ transient responses to carbachol but not those to caffeine (10 mM). An inward current and Ca2+ transient were elicited after the patch membrane was ruptured at -60 mV, using a patch pipette containing inositol 1,4,5-trisphosphate (InsP3). 6. It is concluded that the carbachol-induced inward current is due to increases in membrane Cl- and Na+ conductances. Ca2+ released from InsP3-sensitive stores may play a role in increasing both conductances. PMID:7508506
Cellular defibrillation: interaction of micro-scale electric fields with voltage-gated ion channels.
Kargol, Armin; Malkinski, Leszek; Eskandari, Rahmatollah; Carter, Maya; Livingston, Daniel
2015-09-01
We study the effect of micro-scale electric fields on voltage-gated ion channels in mammalian cell membranes. Such micro- and nano-scale electric fields mimic the effects of multiferroic nanoparticles that were recently proposed [1] as a novel way of controlling the function of voltage-sensing biomolecules such as ion channels. This article describes experimental procedures and initial results that reveal the effect of the electric field, in close proximity of cells, on the ion transport through voltage-gated ion channels. We present two configurations of the whole-cell patch-clamping apparatus that were used to detect the effect of external stimulation on ionic currents and discuss preliminary results that indicate modulation of the ionic currents consistent with the applied stimulus.
Dukes, Madeline J; Ramachandra, Ranjan; Baudoin, Jean-Pierre; Gray Jerome, W; de Jonge, Niels
2011-06-01
Three-dimensional (3D) maps of proteins within the context of whole cells are important for investigating cellular function. However, 3D reconstructions of whole cells are challenging to obtain using conventional transmission electron microscopy (TEM). We describe a methodology to determine the 3D locations of proteins labeled with gold nanoparticles on whole eukaryotic cells. The epidermal growth factor receptors on COS7 cells were labeled with gold nanoparticles, and critical-point dried whole-mount cell samples were prepared. 3D focal series were obtained with aberration-corrected scanning transmission electron microscopy (STEM), without tilting the specimen. The axial resolution was improved with deconvolution. The vertical locations of the nanoparticles in a whole-mount cell were determined with a precision of 3nm. From the analysis of the variation of the axial positions of the labels we concluded that the cellular surface was ruffled. To achieve sufficient stability of the sample under electron beam irradiation during the recording of the focal series, the sample was carbon coated. A quantitative method was developed to analyze the stability of the ultrastructure after electron beam irradiation using TEM. The results of this study demonstrate the feasibility of using aberration-corrected STEM to study the 3D nanoparticle distribution in whole cells. Copyright © 2011 Elsevier Inc. All rights reserved.
Dukes, Madeline J.; Ramachandra, Ranjan; Baudoin, Jean-Pierre; Jerome, W. Gray; de Jonge, Niels
2011-01-01
Three-dimensional (3D) maps of proteins within the context of whole cells are important for investigating cellular function. However, 3D reconstructions of whole cells are challenging to obtain using conventional transmission electron microscopy (TEM). We describe a methodology to determine the 3D locations of proteins labeled with gold nanoparticles on whole eukaryotic cells. The epidermal growth factor receptors on COS7 cells were labeled with gold nanoparticles, and critical-point dried whole-mount cell samples were prepared. 3D focal series were obtained with aberration-corrected scanning transmission electron microscopy (STEM), without tilting the specimen. The axial resolution was improved with deconvolution. The vertical locations of the nanoparticles in a whole-mount cell were determined with a precision of 3 nm. From the analysis of the variation of the axial positions of the labels we concluded that the cellular surface was ruffled. To achieve sufficient stability of the sample under the electron beam irradiation during the recording of the focal series, the sample was carbon coated. A quantitative method was developed to analyze the stability of the ultrastructure after electron beam irradiation using TEM. The results of this study demonstrate the feasibility of using aberration-corrected STEM to study the 3D nanoparticle distribution in whole cells. PMID:21440635
Zhu, Wandi; Pewin, Winston; Wang, Chao; Luo, Yuan; Gonzalez, Gilbert X; Mohan, Teena; Prausnitz, Mark R; Wang, Bao-Zhong
2017-09-10
The biodegradable microneedle patch (MNP) is a novel technology for vaccine delivery that could improve the immunogenicity of vaccines. To broaden the protective efficiency of conventional influenza vaccines, a new 4M2e-tFliC fusion protein construct containing M2e sequences from different subtypes was generated. Purified fusion protein was encapsulate into MNPs with a biocompatible polymer for use as a boosting vaccine. The results demonstrated that mice receiving a conventional inactivated vaccine followed by a skin-applied dissolving 4M2e-tFliC MNP boost could better maintain the humoral antibody response than that by the conventional vaccine-prime alone. Compared with an intramuscular injection boost, mice receiving the MNP boost showed significantly enhanced cellular immune responses, hemagglutination-inhibition (HAI) titers, and neutralization titers. Increased frequency of antigen-specific plasma cells and long-lived bone marrow plasma cells was detected in the MNP boosted group as well, indicating that skin vaccination with 4M2e-tFliC facilitated a long-term antibody-mediated immunity. The 4M2e-tFliC MNP-boosted group also possessed enhanced protection against high lethal dose challenges against homologous A/PR/8/34 and A/Aichi/2/68 viruses and protection for a majority of immunized mice against a heterologous A/California/07/2009 H1N1 virus. High levels of M2e specific immune responses were observed in the 4M2e-tFliC MNP-boosted group as well. These results demonstrate that a skin-applied 4M2e-tFliC MNP boosting immunization to seasonal vaccine recipients may be a rapid approach for increasing the protective efficacy of seasonal vaccines in response to a significant drift seen in circulating viruses. The results also provide a new perspective for future exploration of universal influenza vaccines. Copyright © 2017 Elsevier B.V. All rights reserved.
cAMP-dependent kinase does not modulate the Slack sodium-activated potassium channel.
Nuwer, Megan O; Picchione, Kelly E; Bhattacharjee, Arin
2009-09-01
The Slack gene encodes a Na(+)-activated K(+) channel and is expressed in many different types of neurons. Like the prokaryotic Ca(2+)-gated K(+) channel MthK, Slack contains two 'regulator of K(+) conductance' (RCK) domains within its carboxy terminal, domains likely involved in Na(+) binding and channel gating. It also contains multiple consensus protein kinase C (PKC) and protein kinase A (PKA) phosphorylation sites and although regulated by protein kinase C (PKC) phosphorylation, modulation by PKA has not been determined. To test if PKA directly regulates Slack, nystatin-perforated patch whole-cell currents were recorded from a human embryonic kidney (HEK-293) cell line stably expressing Slack. Bath application of forskolin, an adenylate cyclase activator, caused a rapid and complete inhibition of Slack currents however, the inactive homolog of forskolin, 1,9-dideoxyforskolin caused a similar effect. In contrast, bath application of 8-bromo-cAMP did not affect the amplitude nor the activation kinetics of Slack currents. In excised inside-out patch recordings, direct application of the PKA catalytic subunit to patches did not affect the open probability of Slack channels nor was open probability affected by direct application of protein phosphatase 2B. Preincubation of cells with the protein kinase A inhibitor KT5720 also did not change current density. Finally, mutating the consensus phosphorylation site located between RCK domain 1 and domain 2 from serine to glutamate did not affect current activation kinetics. We conclude that unlike PKC, phosphorylation by PKA does not acutely modulate the function and gating activation kinetics of Slack channels.
Stern, Shani; Segal, Menahem; Moses, Elisha
2015-01-01
Down syndrome (DS) mouse models exhibit cognitive deficits, and are used for studying the neuronal basis of DS pathology. To understand the differences in the physiology of DS model neurons, we used dissociated neuronal cultures from the hippocampi of Ts65Dn and Tc1 DS mice. Imaging of [Ca2+]i and whole cell patch clamp recordings were used to analyze network activity and single neuron properties, respectively. We found a decrease of ~ 30% in both fast (A-type) and slow (delayed rectifier) outward potassium currents. Depolarization of Ts65Dn and Tc1 cells produced fewer spikes than diploid cells. Their network bursts were smaller and slower than diploids, displaying a 40% reduction in Δf / f0 of the calcium signals, and a 30% reduction in propagation velocity. Additionally, Ts65Dn and Tc1 neurons exhibited changes in the action potential shape compared to diploid neurons, with an increase in the amplitude of the action potential, a lower threshold for spiking, and a sharp decrease of about 65% in the after-hyperpolarization amplitude. Numerical simulations reproduced the DS measured phenotype by variations in the conductance of the delayed rectifier and A-type, but necessitated also changes in inward rectifying and M-type potassium channels and in the hyperpolarization-activated cyclic nucleotide-gated (HCN) channels. We therefore conducted whole cell patch clamp measurements of M-type potassium currents, which showed a ~ 90% decrease in Ts65Dn neurons, while HCN measurements displayed an increase of ~ 65% in Ts65Dn cells. Quantitative real-time PCR analysis indicates overexpression of 40% of KCNJ15, an inward rectifying potassium channel, contributing to the increased inhibition. We thus find that changes in several types of potassium channels dominate the observed DS model phenotype. PMID:26501103
Identification of acid-sensing ion channels in adenoid cystic carcinomas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ye Jinhai; Department of Oral and Maxillofacial Surgery, School of Stomatology, Nanjing Medical University, Research Institute of Stomatology, Nanjing 210029; Gao Jun
2007-04-20
Tissue acidosis is an important feature of tumor. The response of adenoid cystic carcinoma (ACC) cells to acidic solution was studied using whole-cell patch-clamp recording in the current study. An inward, amiloride-sensitive Na{sup +} current was identified in cultured ACC-2 cells while not in normal human salivary gland epithelial cells. Electrophysiological and pharmacological properties of the currents suggest that heteromeric acid-sensing ion channels (ASICs) containing 2a and 3 may be responsible for the proton-induced currents in the majority of ACC-2 cells. Consistent with it, analyses of RT-PCR and Western blotting demonstrated the presences of ASIC2a and 3 in ACC-2 cells.more » Furthermore, we observed the enhanced expression of ASIC2a and 3 in the sample of ACC tissues. These results indicate that the functional expression of ASICs is characteristic feature of ACC cells.« less
Modeling intrinsic electrophysiology of AII amacrine cells: preliminary results.
Apollo, Nick; Grayden, David B; Burkitt, Anthony N; Meffin, Hamish; Kameneva, Tatiana
2013-01-01
In patients who have lost their photoreceptors due to retinal degenerative diseases, it is possible to restore rudimentary vision by electrically stimulating surviving neurons. AII amacrine cells, which reside in the inner plexiform layer, split the signal from rod bipolar cells into ON and OFF cone pathways. As a result, it is of interest to develop a computational model to aid in the understanding of how these cells respond to the electrical stimulation delivered by a prosthetic implant. The aim of this work is to develop and constrain parameters in a single-compartment model of an AII amacrine cell using data from whole-cell patch clamp recordings. This model will be used to explore responses of AII amacrine cells to electrical stimulation. Single-compartment Hodgkin-Huxley-type neural models are simulated in the NEURON environment. Simulations showed successful reproduction of the potassium currentvoltage relationship and some of the spiking properties observed in vitro.
Ma, Ke-Tao; Li, Xin-Zhi; Li, Li; Jiang, Xue-Wei; Chen, Xin-Yan; Liu, Wei-Dong; Zhao, Lei; Zhang, Zhong-Shuang; Si, Jun-Qiang
2014-02-01
To investigate the effects of hypertension on the changes in gap junctions between vascular smooth muscle cells (VSMCs) in the mesenteric artery (MA) of spontaneously hypertensive rats (SHRs). Whole-cell patch clamp, pressure myography, real-time quantitative reverse transcription PCR (qRT-PCR), western blot analysis and transmission electron microscopy were used to examine the differences in expression and function of the gap junction between MA VSMCs of SHR and control normotensive Wistar-Kyoto (WKY) rats. (1) Whole-cell patch clamp measurements showed that the membrane capacitance and conductance of in-situ MA VSMCs of SHR were significantly greater than those of WKY rats (P<0.05), suggesting enhanced gap junction coupling between MA VSMCs of SHR. (2) The administration of phenylephrine (PE) and KCl (an endothelium-independent vasoconstrictor) initiated more pronounced vasoconstriction in SHR versus WKY rats (P<0.05). Furthermore, 2-APB (a gap junction inhibitor) attenuated PE- and KCl-induced vasoconstriction, and the inhibitory effects of 2-APB were significantly greater in SHR (P<0.05). (3) The expression of connexin 45 (Cx45) mRNA and protein in the MA was greater in SHR versus WKY rats (P<0.05). The level of phosphorylated Cx43 was significantly higher in SHR versus WKY rats (P<0.05), although the expression of total Cx43 mRNA and protein in the MA was equivalent between SHR and WKY rats. Electron microscopy revealed that the gap junctions were significantly larger in SHR versus WKY rats. Increases in the expression of Cx45 and phosphorylation of Cx43 may contribute to the enhancement of communication across gap junctions between MA VSMCs of SHR, which may increase the contractile response to agonists.
Cuppoletti, John; Chakrabarti, Jayati; Tewari, Kirti; Malinowska, Danuta H
2013-05-01
In clinical trials, methadone, but not morphine, appeared to prevent beneficial effects of lubiprostone, a ClC-2 Cl(-) channel activator, on opioid-induced constipation. Effects of methadone and morphine on lubiprostone-stimulated Cl(-) currents were measured by short circuit current (Isc) across T84 cells. Whole cell patch clamp of human ClC-2 (hClC-2) stably expressed in HEK293 cells and in a high expression cell line (HEK293EBNA) as well as human CFTR (hCFTR) stably expressed in HEK293 cells was used to study methadone and morphine effects on recombinant hClC-2 and hCFTR Cl(-) currents. Methadone but not morphine inhibited lubiprostone-stimulated Isc in T84 cells with half-maximal inhibition at 100 nM. Naloxone did not affect lubiprostone stimulation or methadone inhibition of Isc. Lubiprostone-stimulated Cl(-) currents in hClC-2/HEK293 cells, but not forskolin/IBMX-stimulated Cl(-) currents in hCFTR/HEK293 cells, were inhibited by methadone, but not morphine. HEK293EBNA cells expressing hClC-2 showed time-dependent, voltage-activated, CdCl2-inhibited Cl(-) currents in the absence (control) and the presence of lubiprostone. Methadone, but not morphine, inhibited control and lubiprostone-stimulated hClC-2 Cl(-) currents with half-maximal inhibition at 100 and 200-230 nM, respectively. Forskolin/IBMX-stimulated hClC-2 Cl(-) currents were also inhibited by methadone. Myristoylated protein kinase inhibitor (a specific PKA inhibitor) inhibited forskolin/IBMX- but not lubiprostone-stimulated hClC-2 Cl(-) currents. Methadone caused greater inhibition of lubiprostone-stimulated currents added before patching (66.1 %) compared with after patching (28.7 %). Methadone caused inhibition of lubiprostone-stimulated Cl(-) currents in T84 cells and control; lubiprostone- and forskolin/IBMX-stimulated recombinant hClC-2 Cl(-) currents may be the basis for reduced efficacy of lubiprostone in methadone-treated patients.
Lee, Myung Gwon; Shin, Joong Ho; Bae, Chae Yun; Choi, Sungyoung; Park, Je-Kyun
2013-07-02
We report a contraction-expansion array (CEA) microchannel device that performs label-free high-throughput separation of cancer cells from whole blood at low Reynolds number (Re). The CEA microfluidic device utilizes hydrodynamic field effect for cancer cell separation, two kinds of inertial effects: (1) inertial lift force and (2) Dean flow, which results in label-free size-based separation with high throughput. To avoid cell damages potentially caused by high shear stress in conventional inertial separation techniques, the CEA microfluidic device isolates the cells with low operational Re, maintaining high-throughput separation, using nondiluted whole blood samples (hematocrit ~45%). We characterized inertial particle migration and investigated the migration of blood cells and various cancer cells (MCF-7, SK-BR-3, and HCC70) in the CEA microchannel. The separation of cancer cells from whole blood was demonstrated with a cancer cell recovery rate of 99.1%, a blood cell rejection ratio of 88.9%, and a throughput of 1.1 × 10(8) cells/min. In addition, the blood cell rejection ratio was further improved to 97.3% by a two-step filtration process with two devices connected in series.
PVR: Patch-to-Volume Reconstruction for Large Area Motion Correction of Fetal MRI.
Alansary, Amir; Rajchl, Martin; McDonagh, Steven G; Murgasova, Maria; Damodaram, Mellisa; Lloyd, David F A; Davidson, Alice; Rutherford, Mary; Hajnal, Joseph V; Rueckert, Daniel; Kainz, Bernhard
2017-10-01
In this paper, we present a novel method for the correction of motion artifacts that are present in fetal magnetic resonance imaging (MRI) scans of the whole uterus. Contrary to current slice-to-volume registration (SVR) methods, requiring an inflexible anatomical enclosure of a single investigated organ, the proposed patch-to-volume reconstruction (PVR) approach is able to reconstruct a large field of view of non-rigidly deforming structures. It relaxes rigid motion assumptions by introducing a specific amount of redundant information that is exploited with parallelized patchwise optimization, super-resolution, and automatic outlier rejection. We further describe and provide an efficient parallel implementation of PVR allowing its execution within reasonable time on commercially available graphics processing units, enabling its use in the clinical practice. We evaluate PVR's computational overhead compared with standard methods and observe improved reconstruction accuracy in the presence of affine motion artifacts compared with conventional SVR in synthetic experiments. Furthermore, we have evaluated our method qualitatively and quantitatively on real fetal MRI data subject to maternal breathing and sudden fetal movements. We evaluate peak-signal-to-noise ratio, structural similarity index, and cross correlation with respect to the originally acquired data and provide a method for visual inspection of reconstruction uncertainty. We further evaluate the distance error for selected anatomical landmarks in the fetal head, as well as calculating the mean and maximum displacements resulting from automatic non-rigid registration to a motion-free ground truth image. These experiments demonstrate a successful application of PVR motion compensation to the whole fetal body, uterus, and placenta.
Bioreduction of α,β-unsaturated ketones and aldehydes by non-conventional yeast (NCY) whole-cells.
Goretti, Marta; Ponzoni, Chiara; Caselli, Elisa; Marchegiani, Elisabetta; Cramarossa, Maria Rita; Turchetti, Benedetta; Forti, Luca; Buzzini, Pietro
2011-03-01
The bioreduction of α,β-unsaturated ketones (ketoisophorone, 2-methyl- and 3-methyl-cyclopentenone) and aldehydes [(S)-(-)-perillaldehyde and α-methyl-cinnamaldehyde] by 23 "non-conventional" yeasts (NCYs) belonging to 21 species of the genera Candida, Cryptococcus, Debaryomyces, Hanseniaspora, Kazachstania, Kluyveromyces, Lindnera, Nakaseomyces, Vanderwaltozyma, and Wickerhamomyces was reported. The results highlight the potential of NCYs as whole-cell biocatalysts for selective biotransformation of electron-poor alkenes. A few NCYs exhibited extremely high (>90%) or even total ketoisophorone and 2-methyl-cyclopentenone bioconversion yields via asymmetric reduction of the conjugated CC bond catalyzed by enoate reductases. Catalytic efficiency declined after switching from ketones to aldehydes. High chemoselectivity due to low competing carbonyl reductases was also sometimes observed. Copyright © 2010 Elsevier Ltd. All rights reserved.
Hainsworth, Atticus H; Randall, Andrew D; Stefani, Alessandro
2005-01-01
Voltage-sensitive Ca(2+) channels (VSCC) play a central role in an extensive array of physiological processes. Their importance in cellular function arises from their ability both to sense membrane voltage and to conduct Ca(2+) ions, two facets that couple membrane excitability to a key intracellular second messenger. Through this relationship, activation of VSCCs is tightly coupled to the gamut of cellular functions dependent on intracellular Ca(2+), including muscle contraction, energy metabolism, gene expression, and exocytotic/endocytotic cycling.
Immunosuppressive and Anti-Inflammatory Effects of Nicotine Administered by Patch in an Animal Model
Kalra, Roma; Singh, Shashi P.; Pena-Philippides, Juan C.; Langley, Raymond J.; Razani-Boroujerdi, Seddigheh; Sopori, Mohan L.
2004-01-01
To study the immunological effects of nicotine, there are several rodent models for chronic nicotine administration. These models include subcutaneously implanted miniosmotic pumps, nicotine-spiked drinking water, and self-administration via jugular cannulae. Administration of nicotine via these routes affects the immune system. Smokers frequently use nicotine patches to quit smoking, and the immunological effects of nicotine patches are largely unknown. To determine whether the nicotine patch affects the immune system, nicotine patches were affixed daily onto the backs of Lewis rats for 3 to 4 weeks. The patches efficiently raised the levels of nicotine and cotinine in serum and strongly inhibited the antibody-forming cell response of spleen cells to sheep red blood cells. The nicotine patch also suppressed the concanavalin A-induced T-cell proliferation and mobilization of intracellular Ca2+ by spleen cells, as well as the fever response of animals to subcutaneous administration of turpentine. Moreover, immunosuppression was associated with chronic activation of protein tyrosine kinase and phospholipase C-γ1 activities. Thus, in this animal model of nicotine administration, the nicotine patch efficiently raises the levels of nicotine and cotinine in serum and impairs both the immune and inflammatory responses. PMID:15138183
Bai, Hualong; Lee, Jung Seok; Chen, Elizabeth; Wang, Mo; Xing, Ying; Fahmy, Tarek M.; Dardik, Alan
2017-01-01
Prosthetic grafts and patches are commonly used in cardiovascular surgery, however neointimal hyperplasia remains a significant concern, especially under low flow conditions. We hypothesized that delivery of rapamycin from nanoparticles (NP) covalently attached to patches allows sustained site-specific delivery of therapeutic agents targeted to inhibit localized neointimal hyperplasia. NP were covalently linked to pericardial patches using EDC/NHS chemistry and could deliver at least 360 ng rapamycin per patch without detectable rapamycin in serum; nanoparticles were detectable in the liver, kidney and spleen but no other sites within 24 hours. In a rat venous patch angioplasty model, control patches developed robust neointimal hyperplasia on the patch luminal surface characterized by Eph-B4-positive endothelium and underlying SMC and infiltrating cells such as macrophages and leukocytes. Patches delivering rapamycin developed less neointimal hyperplasia, less smooth muscle cell proliferation, and had fewer infiltrating cells but retained endothelialization. NP covalently linked to pericardial patches are a novel composite delivery system that allows sustained site-specific delivery of therapeutics; NP delivering rapamycin inhibit patch neointimal hyperplasia. NP linked to patches may represent a next generation of tissue engineered cardiovascular implants. PMID:28071663
NASA Astrophysics Data System (ADS)
Bai, Hualong; Lee, Jung Seok; Chen, Elizabeth; Wang, Mo; Xing, Ying; Fahmy, Tarek M.; Dardik, Alan
2017-01-01
Prosthetic grafts and patches are commonly used in cardiovascular surgery, however neointimal hyperplasia remains a significant concern, especially under low flow conditions. We hypothesized that delivery of rapamycin from nanoparticles (NP) covalently attached to patches allows sustained site-specific delivery of therapeutic agents targeted to inhibit localized neointimal hyperplasia. NP were covalently linked to pericardial patches using EDC/NHS chemistry and could deliver at least 360 ng rapamycin per patch without detectable rapamycin in serum; nanoparticles were detectable in the liver, kidney and spleen but no other sites within 24 hours. In a rat venous patch angioplasty model, control patches developed robust neointimal hyperplasia on the patch luminal surface characterized by Eph-B4-positive endothelium and underlying SMC and infiltrating cells such as macrophages and leukocytes. Patches delivering rapamycin developed less neointimal hyperplasia, less smooth muscle cell proliferation, and had fewer infiltrating cells but retained endothelialization. NP covalently linked to pericardial patches are a novel composite delivery system that allows sustained site-specific delivery of therapeutics; NP delivering rapamycin inhibit patch neointimal hyperplasia. NP linked to patches may represent a next generation of tissue engineered cardiovascular implants.
Miragoli, Michele; Moshkov, Alexey; Novak, Pavel; Shevchuk, Andrew; Nikolaev, Viacheslav O.; El-Hamamsy, Ismail; Potter, Claire M. F.; Wright, Peter; Kadir, S.H. Sheikh Abdul; Lyon, Alexander R.; Mitchell, Jane A.; Chester, Adrian H.; Klenerman, David; Lab, Max J.; Korchev, Yuri E.; Harding, Sian E.; Gorelik, Julia
2011-01-01
Cardiovascular diseases are complex pathologies that include alterations of various cell functions at the levels of intact tissue, single cells and subcellular signalling compartments. Conventional techniques to study these processes are extremely divergent and rely on a combination of individual methods, which usually provide spatially and temporally limited information on single parameters of interest. This review describes scanning ion conductance microscopy (SICM) as a novel versatile technique capable of simultaneously reporting various structural and functional parameters at nanometre resolution in living cardiovascular cells at the level of the whole tissue, single cells and at the subcellular level, to investigate the mechanisms of cardiovascular disease. SICM is a multimodal imaging technology that allows concurrent and dynamic analysis of membrane morphology and various functional parameters (cell volume, membrane potentials, cellular contraction, single ion-channel currents and some parameters of intracellular signalling) in intact living cardiovascular cells and tissues with nanometre resolution at different levels of organization (tissue, cellular and subcellular levels). Using this technique, we showed that at the tissue level, cell orientation in the inner and outer aortic arch distinguishes atheroprone and atheroprotected regions. At the cellular level, heart failure leads to a pronounced loss of T-tubules in cardiac myocytes accompanied by a reduction in Z-groove ratio. We also demonstrated the capability of SICM to measure the entire cell volume as an index of cellular hypertrophy. This method can be further combined with fluorescence to simultaneously measure cardiomyocyte contraction and intracellular calcium transients or to map subcellular localization of membrane receptors coupled to cyclic adenosine monophosphate production. The SICM pipette can be used for patch-clamp recordings of membrane potential and single channel currents. In conclusion, SICM provides a highly informative multimodal imaging platform for functional analysis of the mechanisms of cardiovascular diseases, which should facilitate identification of novel therapeutic strategies. PMID:21325316
Peckys, Diana B; Veith, Gabriel M; Joy, David C; de Jonge, Niels
2009-12-14
Nanoscale imaging techniques are needed to investigate cellular function at the level of individual proteins and to study the interaction of nanomaterials with biological systems. We imaged whole fixed cells in liquid state with a scanning transmission electron microscope (STEM) using a micrometer-sized liquid enclosure with electron transparent windows providing a wet specimen environment. Wet-STEM images were obtained of fixed E. coli bacteria labeled with gold nanoparticles attached to surface membrane proteins. Mammalian cells (COS7) were incubated with gold-tagged epidermal growth factor and fixed. STEM imaging of these cells resulted in a resolution of 3 nm for the gold nanoparticles. The wet-STEM method has several advantages over conventional imaging techniques. Most important is the capability to image whole fixed cells in a wet environment with nanometer resolution, which can be used, e.g., to map individual protein distributions in/on whole cells. The sample preparation is compatible with that used for fluorescent microscopy on fixed cells for experiments involving nanoparticles. Thirdly, the system is rather simple and involves only minimal new equipment in an electron microscopy (EM) laboratory.
Feiner, Ron; Engel, Leeya; Fleischer, Sharon; Malki, Maayan; Gal, Idan; Shapira, Assaf; Shacham-Diamand, Yosi; Dvir, Tal
2016-01-01
In cardiac tissue engineering approaches to treat myocardial infarction, cardiac cells are seeded within three-dimensional porous scaffolds to create functional cardiac patches. However, current cardiac patches do not allow for online monitoring and reporting of engineered-tissue performance, and do not interfere to deliver signals for patch activation or to enable its integration with the host. Here, we report an engineered cardiac patch that integrates cardiac cells with flexible, free-standing electronics and a 3D nanocomposite scaffold. The patch exhibited robust electronic properties, enabling the recording of cellular electrical activities and the on-demand provision of electrical stimulation for synchronizing cell contraction. We also show that electroactive polymers containing biological factors can be deposited on designated electrodes to release drugs in the patch microenvironment on-demand. We expect that the integration of complex electronics within cardiac patches will eventually provide therapeutic control and regulation of cardiac function. PMID:26974408
Feiner, Ron; Engel, Leeya; Fleischer, Sharon; Malki, Maayan; Gal, Idan; Shapira, Assaf; Shacham-Diamand, Yosi; Dvir, Tal
2016-06-01
In cardiac tissue engineering approaches to treat myocardial infarction, cardiac cells are seeded within three-dimensional porous scaffolds to create functional cardiac patches. However, current cardiac patches do not allow for online monitoring and reporting of engineered-tissue performance, and do not interfere to deliver signals for patch activation or to enable its integration with the host. Here, we report an engineered cardiac patch that integrates cardiac cells with flexible, freestanding electronics and a 3D nanocomposite scaffold. The patch exhibited robust electronic properties, enabling the recording of cellular electrical activities and the on-demand provision of electrical stimulation for synchronizing cell contraction. We also show that electroactive polymers containing biological factors can be deposited on designated electrodes to release drugs in the patch microenvironment on demand. We expect that the integration of complex electronics within cardiac patches will eventually provide therapeutic control and regulation of cardiac function.
Cevimeline enhances the excitability of rat superior salivatory neurons.
Ueda, Hirotaka; Mitoh, Yoshihiro; Ichikawa, Hiroyuki; Kobashi, Motoi; Yamashiro, Takashi; Matsuo, Ryuji
2009-01-01
Cevimeline, a therapeutic drug for xerostomia, is an agonist of muscarinic acetylcholine receptors (mAChRs), and directly stimulates the peripheral mAChRs of the salivary glands. Since cevimeline is distributed in the brain after its oral administration, it is possible that it affects the central nervous system. However, it is unknown how cevimeline affects the superior salivatory (SS) neurons, which control submandibular salivation. In the present study, we examined the effects of cevimeline on the SS neurons using the whole-cell patch-clamp technique in brain slices. In Wistar rats (6-10 days), the SS neurons were retrogradely labeled by Texas Red applied to the chorda-lingual nerve. Two days after injection, whole-cell recordings were obtained from the labeled cells, and miniature excitatory postsynaptic currents (mEPSCs) were examined. Cevimeline induced the inward currents dose-dependently and increased the frequency of mEPSCs. Therefore, it is suggested that cevimeline enhances the excitability via post- and presynaptic muscarinic receptors in the rat SS neurons. In conclusion, cevimeline may enhance the excitability of the SS neurons.
Electrically Small Microstrip Quarter-Wave Monopole Antennas
NASA Technical Reports Server (NTRS)
Young, W. Robert
2004-01-01
Microstrip-patch-style antennas that generate monopole radiation patterns similar to those of quarter-wave whip antennas can be designed to have dimensions smaller than those needed heretofore for this purpose, by taking advantage of a feed configuration different from the conventional one. The large sizes necessitated by the conventional feed configuration have, until now, made such antennas impractical for frequencies below about 800 MHz: for example, at 200 MHz, the conventional feed configuration necessitates a patch diameter of about 8 ft (.2.4 m) . too large, for example, for mounting on the roof of an automobile or on a small or medium-size aircraft. By making it possible to reduce diameters to between a tenth and a third of that necessitated by the conventional feed configuration, the modified configuration makes it possible to install such antennas in places where they could not previously be installed and thereby helps to realize the potential advantages (concealment and/or reduction of aerodynamic drag) of microstrip versus whip antennas. In both the conventional approach and the innovative approach, a microstrip-patch (or microstrip-patch-style) antenna for generating a monopole radiation pattern includes an electrically conductive patch or plate separated from an electrically conductive ground plane by a layer of electrically insulating material. In the conventional approach, the electrically insulating layer is typically a printed-circuit board about 1/16 in. (.1.6 mm) thick. Ordinarily, a coaxial cable from a transmitter, receiver, or transceiver is attached at the center on the ground-plane side, the shield of the cable being electrically connected to the ground plane. In the conventional approach, the coaxial cable is mated with a connector mounted on the ground plane. The center pin of this connector connects to the center of the coaxial cable and passes through a hole in the ground plane and a small hole in the insulating layer and then connects with the patch above one-third of the radial distance from the center. The modified feed configuration of the innovative approach is an inductive-short-circuit configuration that provides impedance matching and that has been used for many years on other antennas but not on microstrip-style monopole antennas. In this configuration, the pin is connected to both the conductive patch and the ground plane. As before, the shield of the coaxial cable is connected to the ground plane, but now the central conductor is connected to a point on the pin between the ground plane and the conductive plate (see figure). The location of the connection point on the pin is chosen so that together, the inductive short circuit and the conductive plate or patch act as components of a lumped-element resonant circuit that radiates efficiently at the resonance frequency and, at the resonance frequency, has an impedance that matches that of the coaxial cable. It should be noted that the innovative design entails two significant disadvantages. One disadvantage is that the frequency bandwidth for efficient operation is only about 1/20 to 1/15 that of a whip antenna designed for the same nominal frequency. The other disadvantage is that the estimated gain is between 3-1/2 and 4-1/2 dB below that of the whip antenna. However, if an affected radio-communication system used only a few adjacent frequency channels and the design of the components of the system other than the antenna provided adequate power or gain margin, then these disadvantages could be overcome.
Stable Expression of the Motor Protein Prestin in Chinese Hamster Ovary Cells
NASA Astrophysics Data System (ADS)
Iida, Koji; Konno, Kazuaki; Oshima, Takeshi; Tsumoto, Kouhei; Ikeda, Katsuhisa; Kumagai, Izumi; Kobayashi, Toshimitsu; Wada, Hiroshi
Mammalian hearing sensitivity relies on a mechanical amplification mechanism involving the outer hair cells (OHCs), which rapidly alter their longitudinal length in response to changes in their membrane potential. The molecular basis of this mechanism is thought to be a motor protein embedded in the lateral membrane of the OHCs. Recently, this motor protein was identified and termed prestin. Since then, prestin has been researched intensively to elucidate the behavior of the OHCs. However, little progress in the study of prestin at the molecular level has been made because no method of obtaining an adequate amount of prestin has been established. In this study, therefore, an attempt was made to construct a stable expression system of prestin using Chinese hamster ovary (CHO) cells. The expression of prestin in the transfected CHO cells and the activity of prestin on CHO cells were confirmed by immunofluorescence and whole-cell patch-clamp measurements, respectively.
Tetrodotoxin-sensitive, voltage-dependent sodium currents in hair cells from the alligator cochlea.
Evans, M G; Fuchs, P A
1987-10-01
We have used whole-cell patch clamp techniques to record from tall hair cells isolated from the apical half of the alligator cochlea. Some of these cells gave action potentials in response to depolarizing current injections. When the same cells were voltage clamped, large transient inward currents followed by smaller outward currents were seen in response to depolarizing steps. We studied the transient inward current after the outward current had been blocked by external tetraethylammonium (20 mM) or by replacing internal potassium with cesium. It was found to be a sodium current because it was abolished by either replacing external sodium with choline or by external application of tetrodotoxin (100 nM). The sodium current showed voltage-dependent activation and inactivation. Most of the spiking hair cells came from the apex of the cochlea, where they would be subject to low-frequency mechanical stimulation in vivo.
Liu, Wei; Zhang, Zhao-qin; Zhao, Xiao-min; Gao, Yun-sheng
2006-05-01
To investigate the effect of Uncaria rhynchophylla total alkaloids (RTA) pretreatment on the voltage-gated sodium currents of the rat hippocampal neurons after acute hypoxia. Primary cultured hippocampal neurons were divided into RTA pre-treated and non-pretreated groups. Patch clamp whole-cell recording was used to compare the voltage-gated sodium current amplitude and threshold with those before hypoxia. After acute hypoxia, sodium current amplitude was significantly decreased and its threshold was upside. RTA pretreatment could inhibit the reduction of sodium current amplitude. RTA pretreatment alleviates the acute hypoxia-induced change of sodium currents, which may be one of the mechanisms for protective effect of RTA on cells.
Clark, M A; Jepson, M A; Simmons, N L; Hirst, B H
1995-12-01
The in vivo interaction of the lectin Ulex europaeus agglutinin 1 with mouse Peyer's patch follicle-associated epithelial cells was studied in the mouse Peyer's patch gut loop model by immunofluorescence and electron microscopy. The lectin targets to mouse Peyer's patch M-cells and is rapidly endocytosed and transcytosed. These processes are accompanied by morphological changes in the M-cell microvilli and by redistribution of polymerised actin. The demonstration of selective binding and uptake of a lectin by intestinal M-cells in vivo suggests that M-cell-specific surface glycoconjugates might act as receptors for the selective adhesion/uptake of microorganisms.
Inhibition of telomerase recruitment and cancer cell death.
Nakashima, Mai; Nandakumar, Jayakrishnan; Sullivan, Kelly D; Espinosa, Joaquín M; Cech, Thomas R
2013-11-15
Continued proliferation of human cells requires maintenance of telomere length, usually accomplished by telomerase. Telomerase is recruited to chromosome ends by interaction with a patch of amino acids (the TEL patch, for TPP1 glutamate (E) and leucine (L)-rich patch) on the surface of telomere protein TPP1. In previous studies, interruption of this interaction by mutation prevented telomere extension in HeLa cells, but the cell culture continued to grow. We now show that the telomerase inhibitor BIBR1532 acts together with TEL patch mutations to inhibit the growth of HeLa cell lines and that apoptosis is a prominent mechanism of death of these cells. Survivor cells take over the population beginning around 40 days in culture. These cells no longer express the TEL patch mutant TPP1, apparently because of silencing of the expression cassette, a survival mechanism that would not be available to cancer cells. These results provide hope that inhibiting the binding of telomerase to the TEL patch of TPP1, perhaps together with a modest inhibition of the telomerase enzyme, could comprise an effective anticancer therapy for the ∼90% of human tumors that are telomerase-positive.
Yang, Ming-Chia; Chi, Nai-Hsin; Chou, Nai-Kuan; Huang, Yi-You; Chung, Tze-Wen; Chang, Yu-Lin; Liu, Hwa-Chang; Shieh, Ming-Jium; Wang, Shoei-Shen
2010-02-01
Since MSCs contain an abundant of CD44 surface markers, it is of interesting to investigate whether CD44 on rat MSC (rMSCs) influenced cell growth, fibronectin expression and cardiomyogenic differentiation on new SF/HA cardiac patches. For this investigation, we examined the influences of rMSCs with or without a CD44-blockage treatment on the aforementioned issues after they were cultivated, and further induced by 5-aza on SF and SF/HA patches. The results showed that the relative growth rates of rMSCs cultured on cultural wells, SF/HA patches without or with a CD44-blockage treatment were 100%, 208.9+/-7.1 (%) or 48.4+/-6.0 (%) (n=3, for all), respectively, after five days of cultivations. Moreover, rMSCs cultivated on SF/HA patches highly promoted fibronectin expressions (e.g., 1.8x10(5)/cell, in fluorescent intensity) while cells with a CD44-blockage treatment markedly diminished the expressions (e.g., 1.1x10(4)/cell, in fluorescent intensity) on same patches. For investigating possible influences of CD44 surface markers of rMSCs on their cardiomyogenic differentiation, the expressions of specific cardiac genes of cells were examined by using real-time PCR analysis. The results indicated that 5-aza inducing rMSCs significantly promoted the expressions of Gata4, Nkx2.5, Tnnt2 and Actc1 genes (all, P<0.01 or better, n=3) on SF/HA patches compared with those expressions on SF patches and for cells with a CD44-blockage treatment on SF/HA patches. Furthermore, the intensity of the expressions of cardiotin and connexin 43 of 5-aza inducing rMSCs were markedly higher than those of cells with a CD44-blockage treatment after they were cultured on SF/HA patches. Through this study, we reported that CD44 surface markers of rMSCs highly influenced the proliferations, fibronectin expressions and cardiomyogenic differentiation of rMSCs cultivated on cardiac SF/HA patches.
ATP-induced current in isolated outer hair cells of guinea pig cochlea.
Nakagawa, T; Akaike, N; Kimitsuki, T; Komune, S; Arima, T
1990-05-01
1. Electrical and pharmacologic properties of ATP-induced current in outer hair cells isolated from guinea pig cochlea were investigated in the whole-cell recording mode by the use of a conventional patch-clamp technique. 2. Under current-clamp conditions, rapid application of ATP depolarized the outer hair cells resulting in an increase in conductance. The ATP-induced response did not show any desensitization during a continuous application. 3. At a holding potential of -70 mV, the ATP-induced inward current increased in a sigmoidal fashion over the concentration range between 3 microM and 1 mM. The half-maximum concentration (EC50) was 12 microM and the Hill coefficient was 0.93. 4. The ATP-induced current had a reversal potential near 6 mV, which was close to the theoretical value (1 mV) calculated from the Goldman-Hodgkin-Katz equation for permeable intra- and extracellular cations. 5. In the current-voltage (I-V) relationship for the ATP response, a slight inward-going rectification was observed at more positive potentials than the reversal potential. 6. The substitution of extracellular Na+ by equimolar choline+ shifted the reversal potential of the ATP-induced current to more negative values. The substitution of Cs+ in the internal solution by N-methyl-D-glucamine+ (NMG+) shifted it in the positive direction. The reversal potential of ATP-induced current was also shifted to positive values with increasing extracellular Ca2+ concentration. A decrease of intracellular Cl- by gluconate- did not affect the reversal potential, thereby indicating that the ATP-induced current is carried through a large cation channel.(ABSTRACT TRUNCATED AT 250 WORDS)
Ota, F; Ota, M; Mahmud, Z H; Mohammad, A; Yamato, M; Kassu, A; Kato, Y; Tomotake, H; Batoni, G; Campa, M
2006-01-01
A set of monoclonal antibodies were prepared by the conventional cell fusion of myeloma cells (SP2/0-Ag14) with spleen cells from BALB/c mice immunised with whole cells of a strain of mutans streptococci. Their specificities were examined against 35 reference strains of mutans streptococci, 34 reference strains of other oral streptococci and 8 reference strains of other microorganisms often inhabiting the oral cavity. Specificity was examined by enzyme immunoassay using whole cells. A total of 52 strains, consisting of 19 strains isolated in Japan, 19 strains isolated in Italy and 14 strains isolated in England, were characterised by conventional physiological and biochemical tests and then serotyped by the use of 8 monoclonal antibodies with different specificities. They were also confirmed by guanine-plus-cytosine contents of their nucleic acid and DNA-DNA hybridisation test. The results indicated that all monoclonal antibodies are useful for identification of 8 serotypes of the mutans streptococci responsible for dental caries. They also suggest the existence of more serological varieties among mutans species.
Effect of clebopride, antidopaminergic gastrointestinal prokinetics, on cardiac repolarization.
Kim, Ki-Suk; Shin, Won-Ho; Park, Sang-joon; Kim, Eun-Joo
2007-01-01
The inhibition of the potassium current I(Kr) and QT prolongation has been known to be associated with drug-induced torsades de pointes arrhythmias (TdP) and sudden cardiac death. In this study, the authors investigated the cardiac electrophysiological effects of clebopride, a class of antidopaminergic gastrointestinal prokinetic, that has been reported to prolong the QT interval by using the conventional microelectrode recording techniques in isolated rabbit Purkinje fiber and whole-cell patch clamp techniques in human ether-à-go-go-related gene (hERG)-stably transfected Chinese hamster ovarian (CHO) cells. Clebopride at 10 microM significantly decreased the Vmax of phase 0 depolarization (p < .05) and significantly prolonged the action potential duration at 90% repolarization (APD90) (p < .01), whereas the action potential duration at 50% repolarization (APD50) was not prolonged. For hERG potassium channel currents, the IC50 value was 0.62 +/- 0.30 microM. Clebopride was found to have no effect on sodium channel currents. When these results were compared with Cmax (1.02 nM) of clinical dosage (1 mg, [p.o.]), it can be suggested that clebopride is safe at the clinical dosage of 1 mg from the electrophysiological aspect. These findings indicate that clebopride, an antidopaminergic gastrointestinal prokinetic drug, may provide a sufficient "safety factor" in terms of the electrophysiological threshold concentration. But, in a supratherapeutic concentration that might possibly be encountered during overdose or impaired metabolism, clebopride may have torsadogenic potency.
Electrophysiological safety of DW-286a, a novel fluoroquinolone antibiotic agent.
Kim, Eun-Joo; Kim, Ki-Suk; Shin, Won-Ho
2005-01-01
Inhibition of the potassium current I(Kr) and QT prolongation has been known to be associated with drug-induced torsades de pointes arrhythmias (TdP) and sudden cardiac death. We investigated the cardiac electrophysiological effects of DW-286a, a new class of fluoroquinolone antibiotics reported to prolong the QT interval. To investigate the electrophysiological safety of DW-286a, we used conventional microelectrode recording techniques in isolated guinea pig papillary muscles, whole-cell patch clamp techniques in human ether-à-go-go related gene (hERG)-transient transfected Chinese hamster ovary cells, and in vivo electrocardiogram (ECG) measurements in Sprague-Dawley (SD) rats by the use of a telemetry system. DW-286a at 300 microM significantly (P<0.01) prolonged action potentials at 50% repolarization (APD50) and 90% repolarization (APD90). For IHERG, the IC50 value was 89.00+/-37.85 microM with a Hill coefficient (nH) of -0.97+/-0.49. However, when DW-286a was orally administered to conscious SD rats at a high dose (1000 mg/kg), no significant effect on ECG in vivo was detected. From a previous study, we know that concentration at 19.8 microM is the antimicrobial end-point of DW-286a. Therefore, our data suggest that in the electrophysiological aspect, it can be thought that the effective concentrations of DW-286a are between 19.8 and 100 microM (concentration in serum).
Expression and function of K(V)2-containing channels in human urinary bladder smooth muscle.
Hristov, Kiril L; Chen, Muyan; Afeli, Serge A Y; Cheng, Qiuping; Rovner, Eric S; Petkov, Georgi V
2012-06-01
The functional role of the voltage-gated K(+) (K(V)) channels in human detrusor smooth muscle (DSM) is largely unexplored. Here, we provide molecular, electrophysiological, and functional evidence for the expression of K(V)2.1, K(V)2.2, and the electrically silent K(V)9.3 subunits in human DSM. Stromatoxin-1 (ScTx1), a selective inhibitor of K(V)2.1, K(V)2.2, and K(V)4.2 homotetrameric channels and of K(V)2.1/9.3 heterotetrameric channels, was used to examine the role of these channels in human DSM function. Human DSM tissues were obtained during open bladder surgeries from patients without a history of overactive bladder. Freshly isolated human DSM cells were studied using RT-PCR, immunocytochemistry, live-cell Ca(2+) imaging, and the perforated whole cell patch-clamp technique. Isometric DSM tension recordings of human DSM isolated strips were conducted using tissue baths. RT-PCR experiments showed mRNA expression of K(V)2.1, K(V)2.2, and K(V)9.3 (but not K(V)4.2) channel subunits in human isolated DSM cells. K(V)2.1 and K(V)2.2 protein expression was confirmed by Western blot analysis and immunocytochemistry. Perforated whole cell patch-clamp experiments revealed that ScTx1 (100 nM) inhibited the amplitude of the voltage step-induced K(V) current in freshly isolated human DSM cells. ScTx1 (100 nM) significantly increased the intracellular Ca(2+) level in DSM cells. In human DSM isolated strips, ScTx1 (100 nM) increased the spontaneous phasic contraction amplitude and muscle force, and enhanced the amplitude of the electrical field stimulation-induced contractions within the range of 3.5-30 Hz stimulation frequencies. These findings reveal that ScTx1-sensitive K(V)2-containing channels are key regulators of human DSM excitability and contractility and may represent new targets for pharmacological or genetic intervention for bladder dysfunction.
The human urothelium consists of multiple clonal units, each maintained by a stem cell.
Gaisa, Nadine T; Graham, Trevor A; McDonald, Stuart A C; Cañadillas-Lopez, Sagrario; Poulsom, Richard; Heidenreich, Axel; Jakse, Gerhard; Tadrous, Paul J; Knuechel, Ruth; Wright, Nicholas A
2011-10-01
Little is known about the clonal architecture of human urothelium. It is likely that urothelial stem cells reside within the basal epithelial layer, yet lineage tracing from a single stem cell as a means to show the presence of a urothelial stem cell has never been performed. Here, we identify clonally related cell areas within human bladder mucosa in order to visualize epithelial fields maintained by a single founder/stem cell. Sixteen frozen cystectomy specimens were serially sectioned. Patches of cells deficient for the mitochondrially encoded enzyme cytochrome c oxidase (CCO) were identified using dual-colour enzyme histochemistry. To show that these patches represent clonal proliferations, small CCO-proficient and -deficient areas were individually laser-capture microdissected and the entire mitochondrial genome (mtDNA) in each area was PCR amplified and sequenced to identify mtDNA mutations. Immunohistochemistry was performed for the different cell layers of the urothelium and adjacent mesenchyme. CCO-deficient patches could be observed in normal urothelium of all cystectomy specimens. The two-dimensional length of these negative patches varied from 2-3 cells (about 30 µm) to 4.7 mm. Each cell area within a CCO-deficient patch contained an identical somatic mtDNA mutation, indicating that the patch was a clonal unit. Patches contained all the mature cell differentiation stages present in the urothelium, suggesting the presence of a stem cell. Our results demonstrate that the normal mucosa of human bladder contains stem cell-derived clonal units that actively replenish the urothelium during ageing. The size of the clonal unit attributable to each stem cell was broadly distributed, suggesting replacement of one stem cell clone by another. Copyright © 2011 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Synergistic Effect of Light and Fusicoccin on Stomatal Opening 1
Assmann, Sarah M.; Schwartz, Amnon
1992-01-01
Upon incubation of epidermal peels of Commelina communis in 1 millimolar KCl, a synergistic effect of light and low fusicoccin (FC) concentrations on stomatal opening is observed. In 1 millimolar KCl, stomata remain closed even in the light. However, addition of 0.1 micromolar FC results in opening up to 12 micrometers. The same FC concentration stimulates less than 5 micrometers of opening in darkness. The synergistic effect (a) decreases with increasing FC or KCl concentrations; (b) is dark-reversible; (c) like stomatal opening in high KCl concentrations (120 millimolar) is partially inhibited by the K+ channel blocker, tetraethyl-ammonium+ (20 millimolar). In whole-cell patch-clamp experiments with guard cell protoplasts of Vicia faba, FC (1 or 10 micromolar) stimulates an increase in outward current that is essentially voltage independent between - 100 and +60 millivolts, and occurs even when the membrane potential is held at a voltage (−60 millivolts) at which K+ channels are inactivated. These results are indicative of FC activation of a H+ pump. FC effects on the magnitude of inward and outward K+ currents are not observed. Epidermal peel and patch clamp data are both consistent with the hypothesis that the plasma membrane H+ ATPase of guard cells is a primary locus for the FC effect on stomatal apertures. PMID:16668799
Khan, Mahmood; Xu, Yanyi; Hua, Serena; Johnson, Jed; Belevych, Andriy; Janssen, Paul M. L.; Gyorke, Sandor; Guan, Jianjun; Angelos, Mark G.
2015-01-01
Introduction Dilated cardiomyopathy is a major cause of progressive heart failure. Utilization of stem cell therapy offers a potential means of regenerating viable cardiac tissue. However, a major obstacle to stem cell therapy is the delivery and survival of implanted stem cells in the ischemic heart. To address this issue, we have developed a biomimetic aligned nanofibrous cardiac patch and characterized the alignment and function of human inducible pluripotent stem cell derived cardiomyocytes (hiPSC-CMs) cultured on this cardiac patch. This hiPSC-CMs seeded patch was compared with hiPSC-CMs cultured on standard flat cell culture plates. Methods hiPSC-CMs were cultured on; 1) a highly aligned polylactide-co-glycolide (PLGA) nanofiber scaffold (~50 microns thick) and 2) on a standard flat culture plate. Scanning electron microscopy (SEM) was used to determine alignment of PLGA nanofibers and orientation of the cells on the respective surfaces. Analysis of gap junctions (Connexin-43) was performed by confocal imaging in both the groups. Calcium cycling and patch-clamp technique were performed to measure calcium transients and electrical coupling properties of cardiomyocytes. Results SEM demonstrated >90% alignment of the nanofibers in the patch which is similar to the extracellular matrix of decellularized rat myocardium. Confocal imaging of the cardiomyocytes demonstrated symmetrical alignment in the same direction on the aligned nanofiber patch in sharp contrast to the random appearance of cardiomyocytes cultured on a tissue culture plate. The hiPSC-CMs cultured on aligned nanofiber cardiac patches showed more efficient calcium cycling compared with cells cultured on standard flat surface culture plates. Quantification of mRNA with qRT-PCR confirmed that these cardiomyocytes expressed α-actinin, troponin-T and connexin-43 in-vitro. Conclusions Overall, our results demonstrated changes in morphology and function of human induced pluripotent derived cardiomyocytes cultured in an anisotropic environment created by an aligned nanofiber patch. In this environment, these cells better approximate normal cardiac tissue compared with cells cultured on flat surface and can serve as the basis for bioengineering of an implantable cardiac patch. PMID:25993466
Khan, Mahmood; Xu, Yanyi; Hua, Serena; Johnson, Jed; Belevych, Andriy; Janssen, Paul M L; Gyorke, Sandor; Guan, Jianjun; Angelos, Mark G
2015-01-01
Dilated cardiomyopathy is a major cause of progressive heart failure. Utilization of stem cell therapy offers a potential means of regenerating viable cardiac tissue. However, a major obstacle to stem cell therapy is the delivery and survival of implanted stem cells in the ischemic heart. To address this issue, we have developed a biomimetic aligned nanofibrous cardiac patch and characterized the alignment and function of human inducible pluripotent stem cell derived cardiomyocytes (hiPSC-CMs) cultured on this cardiac patch. This hiPSC-CMs seeded patch was compared with hiPSC-CMs cultured on standard flat cell culture plates. hiPSC-CMs were cultured on; 1) a highly aligned polylactide-co-glycolide (PLGA) nanofiber scaffold (~50 microns thick) and 2) on a standard flat culture plate. Scanning electron microscopy (SEM) was used to determine alignment of PLGA nanofibers and orientation of the cells on the respective surfaces. Analysis of gap junctions (Connexin-43) was performed by confocal imaging in both the groups. Calcium cycling and patch-clamp technique were performed to measure calcium transients and electrical coupling properties of cardiomyocytes. SEM demonstrated >90% alignment of the nanofibers in the patch which is similar to the extracellular matrix of decellularized rat myocardium. Confocal imaging of the cardiomyocytes demonstrated symmetrical alignment in the same direction on the aligned nanofiber patch in sharp contrast to the random appearance of cardiomyocytes cultured on a tissue culture plate. The hiPSC-CMs cultured on aligned nanofiber cardiac patches showed more efficient calcium cycling compared with cells cultured on standard flat surface culture plates. Quantification of mRNA with qRT-PCR confirmed that these cardiomyocytes expressed α-actinin, troponin-T and connexin-43 in-vitro. Overall, our results demonstrated changes in morphology and function of human induced pluripotent derived cardiomyocytes cultured in an anisotropic environment created by an aligned nanofiber patch. In this environment, these cells better approximate normal cardiac tissue compared with cells cultured on flat surface and can serve as the basis for bioengineering of an implantable cardiac patch.
A metapopulation approach to African lion (Panthera leo) conservation.
Dolrenry, Stephanie; Stenglein, Jennifer; Hazzah, Leela; Lutz, R Scott; Frank, Laurence
2014-01-01
Due to anthropogenic pressures, African lion (Panthera leo) populations in Kenya and Tanzania are increasingly limited to fragmented populations. Lions living on isolated habitat patches exist in a matrix of less-preferred habitat. A framework of habitat patches within a less-suitable matrix describes a metapopulation. Metapopulation analysis can provide insight into the dynamics of each population patch in reference to the system as a whole, and these analyses often guide conservation planning. We present the first metapopulation analysis of African lions. We use a spatially-realistic model to investigate how sex-biased dispersal abilities of lions affect patch occupancy and also examine whether human densities surrounding the remaining lion populations affect the metapopulation as a whole. Our results indicate that male lion dispersal ability strongly contributes to population connectivity while the lesser dispersal ability of females could be a limiting factor. When populations go extinct, recolonization will not occur if distances between patches exceed female dispersal ability or if females are not able to survive moving across the matrix. This has profound implications for the overall metapopulation; the female models showed an intrinsic extinction rate from five-fold to a hundred-fold higher than the male models. Patch isolation is a consideration for even the largest lion populations. As lion populations continue to decline and with local extinctions occurring, female dispersal ability and the proximity to the nearest lion population are serious considerations for the recolonization of individual populations and for broader conservation efforts.
A Metapopulation Approach to African Lion (Panthera leo) Conservation
Dolrenry, Stephanie; Stenglein, Jennifer; Hazzah, Leela; Lutz, R. Scott; Frank, Laurence
2014-01-01
Due to anthropogenic pressures, African lion (Panthera leo) populations in Kenya and Tanzania are increasingly limited to fragmented populations. Lions living on isolated habitat patches exist in a matrix of less-preferred habitat. A framework of habitat patches within a less-suitable matrix describes a metapopulation. Metapopulation analysis can provide insight into the dynamics of each population patch in reference to the system as a whole, and these analyses often guide conservation planning. We present the first metapopulation analysis of African lions. We use a spatially-realistic model to investigate how sex-biased dispersal abilities of lions affect patch occupancy and also examine whether human densities surrounding the remaining lion populations affect the metapopulation as a whole. Our results indicate that male lion dispersal ability strongly contributes to population connectivity while the lesser dispersal ability of females could be a limiting factor. When populations go extinct, recolonization will not occur if distances between patches exceed female dispersal ability or if females are not able to survive moving across the matrix. This has profound implications for the overall metapopulation; the female models showed an intrinsic extinction rate from five-fold to a hundred-fold higher than the male models. Patch isolation is a consideration for even the largest lion populations. As lion populations continue to decline and with local extinctions occurring, female dispersal ability and the proximity to the nearest lion population are serious considerations for the recolonization of individual populations and for broader conservation efforts. PMID:24505385
Laser microsurgery of higher plant cell walls permits patch-clamp access
NASA Technical Reports Server (NTRS)
Henriksen, G. H.; Taylor, A. R.; Brownlee, C.; Assmann, S. M.; Evans, M. L. (Principal Investigator)
1996-01-01
Plasma membranes of guard cells in epidermal peels of Vicia faba and Commelina communis can be made accessible to a patch-clamp pipet by removing a small portion (1-3 micrometers in diameter) of the guard cell wall using a microbeam of ultraviolet light generated by a nitrogen laser. Using this laser microsurgical technique, we have measured channel activity across plasma membranes of V. faba guard cells in both cell-attached and isolated patch configurations. Measurements made in the inside-out patch configuration revealed two distinct K(+)-selective channels. Major advantages of the laser microsurgical technique include the avoidance of enzymatic protoplast isolation, the ability to study cell types that have been difficult to isolate as protoplasts or for which enzymatic isolation protocols result in protoplasts not amenable to patch-clamp studies, the maintenance of positional information in single-channel measurements, reduced disruption of cell-wall-mediated signaling pathways, and the ability to investigate intercellular signaling through studies of cells remaining situated within tissue.
Maffei, S; Pennarossa, G; Brevini, T A L; Arav, A; Gandolfi, F
2014-01-01
Does directional freezing improve the structural and functional integrity of ovarian fragments compared with conventional slow freezing and to whole ovary cryopreservation? Compared with slow freezing, the use of directional freezing significantly improves all structural and functional parameters of ovarian fragments assessed in vitro and, overall, whole ovaries were better preserved than ovarian fragments. Directional freezing has been developed to provide an alternative way to cryopreserve large biological samples and it is known to improve the structural and functional integrity of whole ovaries. Conventional slow freezing of ovarian fragments is the procedure more widely used in clinical settings but it causes substantial structural damage that limits the functional period after transfer back into the patient. We performed a 2 × 2 factorial design experiment on a total of 40 sheep ovaries, divided into four groups (n = 10 ovaries per group): (i) directional freezing of whole ovary (DFwo); (ii) directional freezing of ovarian fragments (DFof); (iii) conventional freezing of whole ovary (CFwo); (iv) conventional freezing of ovarian fragments (CFof). An additional eight ovaries were used as fresh controls. Ewe ovaries were randomly assigned to one of the experimental groups and frozen accordingly. Upon thawing, ovarian tissue was examined morphologically and cultured in vitro for 7 days. Samples were analyzed for cell proliferation and apoptosis, for DNA damage and repair activity, and for the presence of a panel of heat shock proteins (HSPs) by immunohistochemistry. Most studied parameters were significantly improved (P < 0.05) in all samples cryopreserved with directional compared with slow freezing. The proportion of primordial follicles, which developed to the primary stage in whole ovaries (53 ± 1.7%) and in ovarian fragments (44 ± 1.8%) cryopreserved with directional freezing, was greater than with slow frozen whole ovaries (6 ± 0.5%, P = 0.001) or fragments (32 ± 1.5%, P = 0.004). After 7 days of culture, cell proliferation in DFwo (28 ± 0.73%) was the highest of all groups (P < 0.05) followed by DFof (23 ± 0.81%), CFof (20 ± 0.79%) and CFwo (9 ± 0.85%). Directional freezing also resulted in a better preservation of the cell capacity to repair DNA damage compared with slow freezing both in whole ovaries and ovarian fragments. Apoptosis and HSP protein levels were significantly increased only in the CFwo group. Direct comparison demonstrated that, overall, DFwo had better parameters than DFof and was no different from the fresh controls. The study is limited to an in vitro evaluation and uses sheep ovaries, which are smaller than human ovaries and therefore may withstand the procedures better. Improved integrity of ovarian morphology may translate to improved outcomes after transplantation. Alternatively, the particularly good preservation of whole ovaries suggests they could provide a source of ovarian follicles for in vitro culture in those cases when the presence of malignant cells poses a substantial risk for the patient. Supported by: Associazione Italiana per la Ricerca sul Cancro (AIRC) IG 10376, Carraresi Foundation and by Legge 7 Regione Autonoma Sardegna (R.A.S). There are no conflicts of interest.
Microfabricated Patch Clamp Electrodes for Improved Ion Channel Protein Measurements
NASA Astrophysics Data System (ADS)
Klemic, James; Klemic, Kathryn; Reed, Mark; Sigworth, Frederick
2002-03-01
Ion channels are trans-membrane proteins that underlie many cell functions including hormone and neurotransmitter release, muscle contraction and cell signaling cascades. Ion channel proteins are commonly characterized via the patch clamp method in which an extruded glass tube containing ionic solution, manipulated by an expert technician, is brought into contact with a living cell to record ionic current through the cell membrane. Microfabricated planar patch electrodes, micromolded in the silicone elastomer poly-dimethylsiloxane (PDMS) from microlithographically patterned structures, have been developed that improve on this method. Microfabrication techniques allow arrays of patch electrodes to be fabricated, increasing the throughput of the measurement technique. Planar patch electrodes readily allow the automation of cell sealing, further increasing throughput. Microfabricated electrode arrays may be readily integrated with microfluidic structures to allow fast, in situ solution exchange. Miniaturization of the electrode geometry should increase both the signal to noise and the bandwidth of the measurement. Microfabricated patch electrode arrays have been fabricated and measurements have been taken.
The effects of platelet lysate patches on the activity of tendon-derived cells.
Costa-Almeida, Raquel; Franco, Albina R; Pesqueira, Tamagno; Oliveira, Mariana B; Babo, Pedro S; Leonor, Isabel B; Mano, João F; Reis, Rui L; Gomes, Manuela E
2018-03-01
Platelet-derived biomaterials are widely explored as cost-effective sources of therapeutic factors, holding a strong potential for endogenous regenerative medicine. Particularly for tendon repair, treatment approaches that shift the injury environment are explored to accelerate tendon regeneration. Herein, genipin-crosslinked platelet lysate (PL) patches are proposed for the delivery of human-derived therapeutic factors in patch augmentation strategies aiming at tendon repair. Developed PL patches exhibited a controlled release profile of PL proteins, including bFGF and PDGF-BB. Additionally, PL patches exhibited an antibacterial effect by preventing the adhesion, proliferation and biofilm formation by S. aureus, a common pathogen in orthopaedic surgical site infections. Furthermore, these patches supported the activity of human tendon-derived cells (hTDCs). Cells were able to proliferate over time and an up-regulation of tenogenic genes (SCX, COL1A1 and TNC) was observed, suggesting that PL patches may modify the behavior of hTDCs. Accordingly, hTDCs deposited tendon-related extracellular matrix proteins, namely collagen type I and tenascin C. In summary, PL patches can act as a reservoir of biomolecules derived from PL and support the activity of native tendon cells, being proposed as bioinstructive patches for tendon regeneration. Platelet-derived biomaterials hold great interest for the delivery of therapeutic factors for applications in endogenous regenerative medicine. In the particular case of tendon repair, patch augmentation strategies aiming at shifting the injury environment are explored to improve tendon regeneration. In this study, PL patches were developed with remarkable features, including the controlled release of growth factors and antibacterial efficacy. Remarkably, PL patches supported the activity of native tendon cells by up-regulating tenogenic genes and enabling the deposition of ECM proteins. This patch holds great potential towards simultaneously reducing post-implantation surgical site infections and promoting tendon regeneration for prospective in vivo applications. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Ko, Jina; Bhagwat, Neha; Yee, Stephanie S; Black, Taylor; Redlinger, Colleen; Romeo, Janae; O'Hara, Mark; Raj, Arjun; Carpenter, Erica L; Stanger, Ben Z; Issadore, David
2017-09-12
The use of microtechnology for the highly selective isolation and sensitive detection of circulating tumor cells has shown enormous promise. One challenge for this technology is that the small feature sizes - which are the key to this technology's performance - can result in low sample throughput and susceptibility to clogging. Additionally, conventional molecular analysis of CTCs often requires cells to be taken off-chip for sample preparation and purification before analysis, leading to the loss of rare cells. To address these challenges, we have developed a microchip platform that combines fast, magnetic micropore based negative immunomagnetic selection (>10 mL h -1 ) with rapid on-chip in situ RNA profiling (>100× faster than conventional RNA labeling). This integrated chip can isolate both rare circulating cells and cell clusters directly from whole blood and allow individual cells to be profiled for multiple RNA cancer biomarkers, achieving sample-to-answer in less than 1 hour for 10 mL of whole blood. To demonstrate the power of this approach, we applied our device to the circulating tumor cell based diagnosis of pancreatic cancer. We used a genetically engineered lineage-labeled mouse model of pancreatic cancer (KPCY) to validate the performance of our chip. We show that in a cohort of patient samples (N = 25) that this device can detect and perform in situ RNA analysis on circulating tumor cells in patients with pancreatic cancer, even in those with extremely sparse CTCs (<1 CTC mL -1 of whole blood).
Properties of the Nucleo-Olivary Pathway: An In Vivo Whole-Cell Patch Clamp Study
Bazzigaluppi, Paolo; Ruigrok, Tom; Saisan, Payam; De Zeeuw, Chris I.; de Jeu, Marcel
2012-01-01
The inferior olivary nucleus (IO) forms the gateway to the cerebellar cortex and receives feedback information from the cerebellar nuclei (CN), thereby occupying a central position in the olivo-cerebellar loop. Here, we investigated the feedback input from the CN to the IO in vivo in mice using the whole-cell patch-clamp technique. This approach allows us to study how the CN-feedback input is integrated with the activity of olivary neurons, while the olivo-cerebellar system and its connections are intact. Our results show how IO neurons respond to CN stimulation sequentially with: i) a short depolarization (EPSP), ii) a hyperpolarization (IPSP) and iii) a rebound depolarization. The latter two phenomena can also be evoked without the EPSPs. The IPSP is sensitive to a GABAA receptor blocker. The IPSP suppresses suprathreshold and subthreshold activity and is generated mainly by activation of the GABAA receptors. The rebound depolarization re-initiates and temporarily phase locks the subthreshold oscillations. Lack of electrotonical coupling does not affect the IPSP of individual olivary neurons, nor the sensitivity of its GABAA receptors to blockers. The GABAergic feedback input from the CN does not only temporarily block the transmission of signals through the IO, it also isolates neurons from the network by shunting the junction current and re-initiates the temporal pattern after a fixed time point. These data suggest that the IO not only functions as a cerebellar controlled gating device, but also operates as a pattern generator for controlling motor timing and/or learning. PMID:23029495
Processive movement of MreB-associated cell wall biosynthetic complexes in bacteria.
Domínguez-Escobar, Julia; Chastanet, Arnaud; Crevenna, Alvaro H; Fromion, Vincent; Wedlich-Söldner, Roland; Carballido-López, Rut
2011-07-08
The peptidoglycan cell wall and the actin-like MreB cytoskeleton are major determinants of cell shape in rod-shaped bacteria. The prevailing model postulates that helical, membrane-associated MreB filaments organize elongation-specific peptidoglycan-synthesizing complexes along sidewalls. We used total internal reflection fluorescence microscopy to visualize the dynamic relation between MreB isoforms and cell wall synthesis in live Bacillus subtilis cells. During exponential growth, MreB proteins did not form helical structures. Instead, together with other morphogenetic factors, they assembled into discrete patches that moved processively along peripheral tracks perpendicular to the cell axis. Patch motility was largely powered by cell wall synthesis, and MreB polymers restricted diffusion of patch components in the membrane and oriented patch motion.
Conserved size and periodicity of pyramidal patches in layer 2 of medial/caudal entorhinal cortex
Naumann, Robert K.; Ray, Saikat; Prokop, Stefan; Las, Liora; Heppner, Frank L.
2016-01-01
ABSTRACT To understand the structural basis of grid cell activity, we compare medial entorhinal cortex architecture in layer 2 across five mammalian species (Etruscan shrews, mice, rats, Egyptian fruit bats, and humans), bridging ∼100 million years of evolutionary diversity. Principal neurons in layer 2 are divided into two distinct cell types, pyramidal and stellate, based on morphology, immunoreactivity, and functional properties. We confirm the existence of patches of calbindin‐positive pyramidal cells across these species, arranged periodically according to analyses techniques like spatial autocorrelation, grid scores, and modifiable areal unit analysis. In rodents, which show sustained theta oscillations in entorhinal cortex, cholinergic innervation targeted calbindin patches. In bats and humans, which only show intermittent entorhinal theta activity, cholinergic innervation avoided calbindin patches. The organization of calbindin‐negative and calbindin‐positive cells showed marked differences in entorhinal subregions of the human brain. Layer 2 of the rodent medial and the human caudal entorhinal cortex were structurally similar in that in both species patches of calbindin‐positive pyramidal cells were superimposed on scattered stellate cells. The number of calbindin‐positive neurons in a patch increased from ∼80 in Etruscan shrews to ∼800 in humans, only an ∼10‐fold over a 20,000‐fold difference in brain size. The relatively constant size of calbindin patches differs from cortical modules such as barrels, which scale with brain size. Thus, selective pressure appears to conserve the distribution of stellate and pyramidal cells, periodic arrangement of calbindin patches, and relatively constant neuron number in calbindin patches in medial/caudal entorhinal cortex. J. Comp. Neurol. 524:783–806, 2016. © 2015 The Authors. The Journal of Comparative Neurology Published by Wiley Periodicals, Inc. PMID:26223342
Conserved size and periodicity of pyramidal patches in layer 2 of medial/caudal entorhinal cortex.
Naumann, Robert K; Ray, Saikat; Prokop, Stefan; Las, Liora; Heppner, Frank L; Brecht, Michael
2016-03-01
To understand the structural basis of grid cell activity, we compare medial entorhinal cortex architecture in layer 2 across five mammalian species (Etruscan shrews, mice, rats, Egyptian fruit bats, and humans), bridging ∼100 million years of evolutionary diversity. Principal neurons in layer 2 are divided into two distinct cell types, pyramidal and stellate, based on morphology, immunoreactivity, and functional properties. We confirm the existence of patches of calbindin-positive pyramidal cells across these species, arranged periodically according to analyses techniques like spatial autocorrelation, grid scores, and modifiable areal unit analysis. In rodents, which show sustained theta oscillations in entorhinal cortex, cholinergic innervation targeted calbindin patches. In bats and humans, which only show intermittent entorhinal theta activity, cholinergic innervation avoided calbindin patches. The organization of calbindin-negative and calbindin-positive cells showed marked differences in entorhinal subregions of the human brain. Layer 2 of the rodent medial and the human caudal entorhinal cortex were structurally similar in that in both species patches of calbindin-positive pyramidal cells were superimposed on scattered stellate cells. The number of calbindin-positive neurons in a patch increased from ∼80 in Etruscan shrews to ∼800 in humans, only an ∼10-fold over a 20,000-fold difference in brain size. The relatively constant size of calbindin patches differs from cortical modules such as barrels, which scale with brain size. Thus, selective pressure appears to conserve the distribution of stellate and pyramidal cells, periodic arrangement of calbindin patches, and relatively constant neuron number in calbindin patches in medial/caudal entorhinal cortex. © 2015 The Authors. The Journal of Comparative Neurology Published by Wiley Periodicals, Inc.
Melnyk, Mariia I; Dryn, Dariia O; Al Kury, Lina T; Zholos, Alexander V; Soloviev, Anatoly I
2018-04-19
The effects of quercetin-loaded liposomes (PCL-Q) and their constituents, that is, free quercetin (Q) and 'empty' phosphatidylcholine vesicles (PCL), on maxi-K channel activity were studied in single mouse ileal myocytes before and after H 2 O 2 -induced oxidative stress. Macroscopic Maxi-K channel currents were recorded using whole-cell patch clamp techniques, while single BK Ca channel currents were recorded in the cell-attached configuration. Bath application of PCL-Q (100 μg/ml of lipid and 3 μg/ml of quercetin) increased single Maxi-K channel activity more than threefold, from 0.010 ± 0.003 to 0.034 ± 0.004 (n = 5; p < 0.05), whereas single-channel conductance increased non-significantly from 138 to 146 pS. In the presence of PCL-Q multiple simultaneous channel openings were observed, with up to eight active channels in the membrane patch. Surprisingly, 'empty' PCL (100 μg/ml) also produced some channel activation, although it was less potent compared to PCL-Q, that is, these increased NPo from 0.010 ± 0.003 to 0.019 ± 0.003 (n = 5; p < 0.05) and did not affect single-channel conductance (139 pS). Application of PCL-Q restored macroscopic Maxi-K currents suppressed by H 2 O 2 -induced oxidative stress in ileal smooth muscle cells. We conclude that PCL-Q can activate Maxi-K channels in ileal myocytes mainly by increasing channel open probability, as well as maintain Maxi-K-mediated whole-cell current under the conditions of oxidative stress. While fusion of the 'pure' liposomes with the plasma membrane may indirectly activate Maxi-K channels by altering channel's phospholipids environment, the additional potentiating action of quercetin may be due to its better bioavailability.
Pucci, Angela; Mattioli, Claudia; Matteucci, Marco; Lorenzini, Daniele; Panvini, Francesca; Pacini, Simone; Ippolito, Chiara; Celiento, Michele; De Martino, Andrea; Dolfi, Amelio; Belgio, Beatrice; Bortolotti, Uberto; Basolo, Fulvio; Bartoloni, Giovanni
2018-05-22
Cardiac myxomas are rare tumors with a heterogeneous cell population including properly neoplastic (lepidic), endothelial and smooth muscle cells. The assessment of neoplastic (lepidic) cell differentiation pattern is rather difficult using conventional light microscopy immunohistochemistry and/or whole tissue extracts for mRNA analyses. In a preliminary study, we investigated 20 formalin-fixed and paraffin-embedded cardiac myxomas by means of conventional immunohistochemistry; in 10/20 cases, cell differentiation was also analyzed by real-time RT-PCR after laser capture microdissection of the neoplastic cells, whereas calretinin and endothelial antigen CD31 immunoreactivity was localized in 4/10 cases by double immunofluorescence confocal microscopy. Gene expression analyses of α-smooth muscle actin, endothelial CD31 antigen, alpha-cardiac actin, matrix metalloprotease-2 (MMP2) and tissue inhibitor of matrix metalloprotease-1 (TIMP1) was performed on cDNA obtained from either microdissected neoplastic cells or whole tumor sections. We found very little or absent CD31 and α-Smooth Muscle Actin expression in the microdissected cells as compared to the whole tumors, whereas TIMP1 and MMP2 genes were highly expressed in both ones, greater levels being found in patients with embolic phenomena. α-Cardiac Actin was not detected. Confocal microscopy disclosed two different signals corresponding to calretinin-positive myxoma cells and to endothelial CD31-positive cells, respectively. In conclusion, the neoplastic (lepidic) cells showed a distinct gene expression pattern and no consistent overlapping with endothelial and smooth muscle cells or cardiac myocytes; the expression of TIMP1 and MMP2 might be related to clinical presentation; larger series studies using also systematic transcriptome analysis might be useful to confirm the present results.
Tonantzitlolone is a Nanomolar Potency Activator of TRPC1/4/5 Channels.
Rubaiy, Hussein N; Ludlow, Melanie J; Siems, Karsten; Norman, Katherine; Foster, Richard; Wolf, Dietmar; Beutler, John A; Beech, David J
2018-06-02
The diterpene ester tonantzitlonone (TZL) is a natural product which displays cytotoxicity towards certain types of cancer cell such as renal cell carcinoma cells. The effect is similar to that of (-)-Englerin A (EA) and so, although it is chemically distinct, we investigated whether TZL also targets transient receptor potential canonical (TRPC) channels of the TRPC1, TRPC4 and TRPC5 type (TRPC1/4/5 channels). Renal cell carcinoma A498 cells natively expressing TRPC1 and TRPC4, modified HEK 293 cells over expressing TRPC4, TRPC5, TRPC4-TRPC1 or TRPC5-TRPC1 concatemer, TRPC3 or TRPM2 or CHO cells over expressing TRPV4 were studied by intracellular Ca 2+ measurement or whole-cell or excised membrane patch-clamp electrophysiology. TZL evoked intracellular Ca 2+ elevation in A498 cells, similar to that evoked by EA. TZL activated overexpressed channels with concentration for 50% activation (EC 50 ) at 123 nM (TRPC4), 83 nM (TRPC5), 140 nM (TRPC4-TRPC1) and 61 nM (TRPC5-TRPC1). Effects of TZL were reversible on wash-out and potently inhibited by the TRPC1/4/5 inhibitor Pico145. TZL activated TRPC5 channels when bath-applied to excised outside-out but not inside-out patches. TZL failed to activate endogenous store-operated Ca 2+ entry in HEK 293 cells or overexpressed TRPC3, TRPV4 or TRPM2 channels. TZL is a novel potent agonist for TRPC1/4/5 channels which should be useful for testing the functionality of this type of ion channel and understanding how TRPC1/4/5 agonists achieve selective cytotoxicity against certain types of cancer cell. This article is protected by copyright. All rights reserved.
Systems biology: A tool for charting the antiviral landscape.
Bowen, James R; Ferris, Martin T; Suthar, Mehul S
2016-06-15
The host antiviral programs that are initiated following viral infection form a dynamic and complex web of responses that we have collectively termed as "the antiviral landscape". Conventional approaches to studying antiviral responses have primarily used reductionist systems to assess the function of a single or a limited subset of molecules. Systems biology is a holistic approach that considers the entire system as a whole, rather than individual components or molecules. Systems biology based approaches facilitate an unbiased and comprehensive analysis of the antiviral landscape, while allowing for the discovery of emergent properties that are missed by conventional approaches. The antiviral landscape can be viewed as a hierarchy of complexity, beginning at the whole organism level and progressing downward to isolated tissues, populations of cells, and single cells. In this review, we will discuss how systems biology has been applied to better understand the antiviral landscape at each of these layers. At the organismal level, the Collaborative Cross is an invaluable genetic resource for assessing how genetic diversity influences the antiviral response. Whole tissue and isolated bulk cell transcriptomics serves as a critical tool for the comprehensive analysis of antiviral responses at both the tissue and cellular levels of complexity. Finally, new techniques in single cell analysis are emerging tools that will revolutionize our understanding of how individual cells within a bulk infected cell population contribute to the overall antiviral landscape. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Ricci, A. J.; Rennie, K. J.; Correia, M. J.
1996-01-01
Hair cells were dissociated from the semicircular canal, utricle, lagena and saccule of white king pigeons. Type I hair cells were identified morphologically based on the ratios of neck width to cuticular plate width (NPR < 0.72) as well as neck width to cell body width (NBR < 0.64). The perforated patch variant of the whole-cell recording technique was used to measure electrical properties from type I hair cells. In voltage-clamp, the membrane properties of all identified type I cells were dominated by a predominantly outward potassium current, previously characterized in semicircular canal as IKI. Zero-current potential, activation, deactivation, slope conductance, pharmacologic and steady-state properties of the complex currents were not statistically different between type I hair cells of different vestibular end organs. The voltage dependence causes a significant proportion of this conductance to be active about the cell's zero-current potential. The first report of the whole-cell activation kinetics of the conductance is presented, showing a voltage dependence that could be best fit by an equation for a single exponential. Results presented here are the first data from pigeon dissociated type I hair cells from utricle, saccule and lagena suggesting that the basolateral conductances of a morphologically identified population of type I hair cells are conserved between functionally different vestibular end organs; the major conductance being a delayed rectifier characterized previously in semicircular canal hair cells as IKI.
In vivo experimental study on laser welded ICG-loaded chitosan patches for vessel repair
NASA Astrophysics Data System (ADS)
Rossi, Francesca; Matteini, Paolo; Esposito, Giuseppe; Albanese, Alessio; Puca, Alfredo; Maira, Giulio; Rossi, Giacomo; Pini, Roberto
2011-03-01
Laser welding of microvessels provides several advantages over conventional suturing techniques: surgical times reduction, vascular healing process improvement, tissue damage reduction. We present the first application of biopolymeric patches in an in vivo laser assisted procedure for vessel repair. The study was performed in 20 New Zealand rabbits. After anesthesia, a 3-cm segment of the right common carotid artery was exposed and clamped proximally and distally. A linear lesion 3 mm in length was carried out. We used a diode laser emitting at 810 nm and equipped with a 300 μm diameter optical fiber. To close the cut, ICG-loaded chitosan films were prepared: chitosan is characterized by biodegradability, biocompatibility, antimicrobial, haemostatic and wound healing-promoting activity. ICG is an organic chromophore commonly used in the laser welding procedures to mediate the photothermal conversion at the basis of the welding effect. The membranes were used to wrap the whole length of the cut, and then they were welded in the correct position by delivering single laser spots to induce local patch/tissue adhesion. The result is an immediate closure of the wound, with no bleeding at clamps release. The animals were observed during follow-up and sacrificed after 2, 7, 30 and 90 days. All the repaired vessels were patent, no bleeding signs were documented. The carotid samples underwent histological examinations. The advantages of the proposed technique are: simplification of the surgical procedure and shortening of the operative time; good strength of the vessel repair; decreased foreign-body reaction, reduced inflammatory response and improved vascular healing process.
Duchen, M R; Smith, P A; Ashcroft, F M
1993-08-15
Microfluorimetric and patch-clamp techniques have been combined to determine the relationship between changes in mitochondrial metabolism, the activity of KATP channels and changes in intracellular free calcium concentration ([Ca2+]i) in isolated pancreatic beta-cells in response to glucose, ketoisocaproic acid (KIC) and the electron donor couple tetramethyl p-phenylenediamine (TMPD) and ascorbate. Exposure of cells to 20 mM glucose raised NAD(P)H autofluorescence after a delay of 28 +/- 1 s (mean +/- S.E.M., n = 30). The mitochondrial inner membrane potential, delta psi m (monitored using rhodamine 123 fluorescence), hyperpolarized with a latency of 49 +/- 6 s (n = 17), and the [Ca2+]i rose after 129 +/- 13 s (n = 5). The amplitudes of the metabolic changes were graded appropriately with glucose concentration over the range 2.5-20 mM. All variables responded to KIC with shorter latencies: NAD(P)H autofluorescence rose after a delay of 20 +/- 3 s (n = 5) and rhodamine 123 changed after 21 +/- 3 s (n = 6). The electron donor couple, TMPD with ascorbate, rapidly hyperpolarized delta psi m and raised [Ca2+]i. When [Ca2+]i was raised by sustained exposure to 20 mM glucose, TMPD had no further effect. TMPD also decreased whole-cell KATP currents and depolarized the cell membrane, measured with the perforated patch configuration. These data are consistent with a central role for mitochondrial oxidative phosphorylation in coupling changes in glucose concentration with the secretion of insulin.
Use of microstrip patch antennas in grain permittivity measurement
El Sabbagh, M.A.; Ramahi, O.M.; Trabelsi, S.; Nelson, S.O.; Khan, L.
2003-01-01
In this paper, a compact size free-space setup is proposed for the measurement of complex permittivity of granular materials. The horn antennas in the conventional setup are replaced by microstrip patch antennas which is a step toward system miniaturization. The experimental results obtained are in good agreement with those obtained with horn antennas.
Godkar, Praful B; Gordon, Richard K; Ravindran, Arippa; Doctor, Bhupendra P
2004-08-01
Aqueous extracts of Celastrus paniculatus (CP) seed have been reported to improve learning and memory in rats. In addition, these extracts were shown to have antioxidant properties, augmented endogenous antioxidant enzymes, and decreased lipid peroxidation in rat brain. However, water soluble extracts of CP seed (CP-WSE) have not been evaluated for their neuroprotective effects. In the study reported here, we used enriched forebrain primary neuronal cell (FBNC) cultures to study the neuroprotective effects of three CP-WSE extracts (a room temperature, WF; a hot water, HF; and an acid, AF) on glutamate-induced toxicity. FBNC were pre-treated with the CP-WSE and then with glutamate to evaluate the protection afforded against excitatory amino acid-induced toxicity. The criteria for neuroprotection were based on the effects of CP-WSE on a mitochondrial function test following glutamate-induced neurotoxicity. Pre-treatment of neuronal cells with CP-WSE significantly attenuated glutamate-induced neuronal death. To understand the molecular mechanism of action of CP-WSE, we conducted electrophysiological studies using patch-clamp techniques on N-methyl-D-aspartate (NMDA)-activated whole-cell currents in FBNC. WSE significantly and reversibly inhibited whole-cell currents activated by NMDA. The results suggest that CP-WSE protected neuronal cells against glutamate-induced toxicity by modulating glutamate receptor function.
Peckys, Diana B.; Veith, Gabriel M.; Joy, David C.; de Jonge, Niels
2009-01-01
Nanoscale imaging techniques are needed to investigate cellular function at the level of individual proteins and to study the interaction of nanomaterials with biological systems. We imaged whole fixed cells in liquid state with a scanning transmission electron microscope (STEM) using a micrometer-sized liquid enclosure with electron transparent windows providing a wet specimen environment. Wet-STEM images were obtained of fixed E. coli bacteria labeled with gold nanoparticles attached to surface membrane proteins. Mammalian cells (COS7) were incubated with gold-tagged epidermal growth factor and fixed. STEM imaging of these cells resulted in a resolution of 3 nm for the gold nanoparticles. The wet-STEM method has several advantages over conventional imaging techniques. Most important is the capability to image whole fixed cells in a wet environment with nanometer resolution, which can be used, e.g., to map individual protein distributions in/on whole cells. The sample preparation is compatible with that used for fluorescent microscopy on fixed cells for experiments involving nanoparticles. Thirdly, the system is rather simple and involves only minimal new equipment in an electron microscopy (EM) laboratory. PMID:20020038
Cell counting in whole mount tissue volumes using expansion OCT (Conference Presentation)
NASA Astrophysics Data System (ADS)
Liu, Yehe; Gu, Shi; Watanabe, Michiko; Rollins, Andrew M.; Jenkins, Michael W.
2017-02-01
Abnormal cell proliferation and migration during heart development can lead to severe congenital heart defects (CHDs). Studying the spatial distribution of cells during embryonic development helps our understanding of how the heart develops and the etiology of certain CHDs. However, imaging large groups of single cells in intact tissue volumes is challenging. No current technique can accomplish this task in both a time-efficient and cost-effective manner. OCT has potential with its large field of view and micron-scale resolution, but even the highest resolution OCT systems have poor contrast for counting cells and have a small field of view compared to conventional OCT. We propose using a conventional OCT system and processing the sample to enhance cellular contrast. Inspired by the recently developed Expansion Microscopy, we permeated whole-mount embryonic tissue with a superabsorbent monomer solution and polymerized into a hydrogel. When hydrated in DI water, the tissue-hydrogel complex was uniformly enlarged ( 5X in all dimensions) without distorting the microscopic structure. This had a twofold effect: it increased the resolution by a factor of 5 and decreased scattering, which allowed us to resolve cellular level features deep in the tissue with high contrast using conventional OCT. We noted that cell nuclei caused significantly more backscattering than the other subcellular structures after expansion. Based on this property, we were able to distinguish individual cell nuclei, and thus count cells, in expanded OCT images with simple intensity thresholding. We demonstrate the technique with embryonic quail hearts at various developmental stages.
High-Throughput Patch Clamp Screening in Human α6-Containing Nicotinic Acetylcholine Receptors
Armstrong, Lucas C.; Kirsch, Glenn E.; Fedorov, Nikolai B.; Wu, Caiyun; Kuryshev, Yuri A.; Sewell, Abby L.; Liu, Zhiqi; Motter, Arianne L.; Leggett, Carmine S.; Orr, Michael S.
2017-01-01
Nicotine, the addictive component of tobacco products, is an agonist at nicotinic acetylcholine receptors (nAChRs) in the brain. The subtypes of nAChR are defined by their α- and β-subunit composition. The α6β2β3 nAChR subtype is expressed in terminals of dopaminergic neurons that project to the nucleus accumbens and striatum and modulate dopamine release in brain regions involved in nicotine addiction. Although subtype-dependent selectivity of nicotine is well documented, subtype-selective profiles of other tobacco product constituents are largely unknown and could be essential for understanding the addiction-related neurological effects of tobacco products. We describe the development and validation of a recombinant cell line expressing human α6/3β2β3V273S nAChR for screening and profiling assays in an automated patch clamp platform (IonWorks Barracuda). The cell line was pharmacologically characterized by subtype-selective and nonselective reference agonists, pore blockers, and competitive antagonists. Agonist and antagonist effects detected by the automated patch clamp approach were comparable to those obtained by conventional electrophysiological assays. A pilot screen of a library of Food and Drug Administration–approved drugs identified compounds, previously not known to modulate nAChRs, which selectively inhibited the α6/3β2β3V273S subtype. These assays provide new tools for screening and subtype-selective profiling of compounds that act at α6β2β3 nicotinic receptors. PMID:28298165
Dual-slit confocal light sheet microscopy for in vivo whole-brain imaging of zebrafish
Yang, Zhe; Mei, Li; Xia, Fei; Luo, Qingming; Fu, Ling; Gong, Hui
2015-01-01
In vivo functional imaging at single-neuron resolution is an important approach to visualize biological processes in neuroscience. Light sheet microscopy (LSM) is a cutting edge in vivo imaging technique that provides micron-scale spatial resolution at high frame rate. Due to the scattering and absorption of tissue, however, conventional LSM is inadequate to resolve cells because of the attenuated signal to noise ratio (SNR). Using dual-beam illumination and confocal dual-slit detection, here a dual-slit confocal LSM is demonstrated to obtain the SNR enhanced images with frame rate twice as high as line confocal LSM method. Through theoretical calculations and experiments, the correlation between the slit’s width and SNR was determined to optimize the image quality. In vivo whole brain structural imaging stacks and the functional imaging sequences of single slice were obtained for analysis of calcium activities at single-cell resolution. A two-fold increase in imaging speed of conventional confocal LSM makes it possible to capture the sequence of the neurons’ activities and help reveal the potential functional connections in the whole zebrafish’s brain. PMID:26137381
Cserni, Tamas; O' Donnel, Annemarie; Paran, Sri; Puri, Prem
2009-03-01
Nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) staining can be used in the enteric nervous system to determine nitrergic neuronal counts, critical in motility disorders such as intestinal neuronal dysplasia and hypoganglionosis. The reported incubation periods of specimens with NADPH-d staining solution has varied from 2 to 24 h. The aim of this study is to investigate the impact of the incubation period on the overall NADPH-d positive cell counts in porcine rectal submucosal plexus. The submucosal plexus of rectal specimens from 12-week-old pigs (n = 5) were studied. Conventional frozen sections were used to identify nitrergic neurons while whole-mount preparations were used to quantify the effect of prolonged duration of incubation on positively identified ganglion cells with NADPH-d histochemistry. The same submucosal ganglia on the conventional sections, and a minimum of 12 ganglia per whole-mount preparation specimen were photographed sequentially at 2, 6, and 24 h and used to count the number of nitrergic cells per ganglion. The same staining solution was used throughout the experiment. Results were analysed using a one-way ANOVA test. Prolonged incubation with the staining solution revealed new NADPH-d positive cells in the ganglia on the conventional sections. The total number of neurons counted in the 12 adjacent ganglia in the whole-mount specimens was 180 +/- 55, the mean neuronal cell per ganglion was 15 +/- 8 after 2 h of incubation. This increased to 357 +/- 17, and to 29 +/- 12 after 6 h (p < 0.05). A further increase was observed of 515 +/- 19 and 43 +/- 17 after 24 h (p < 0.05). When the photomicrographs were retrospectively analysed, not even the outline of the neuronal cells that stained with prolonged incubation was evident at the earlier time points. NADPH-d positive cell counts increase in proportion to the duration of incubation in NADPH-d histochemistry. Comparative studies attempting to quantify nitrergic cell counts in dysmotility disorders must take into account the variability in NADPH-d positive cell count associated with prolonged incubation in NADPH-d histochemistry.
A calcium-permeable cGMP-activated cation conductance in hippocampal neurons
NASA Technical Reports Server (NTRS)
Leinders-Zufall, T.; Rosenboom, H.; Barnstable, C. J.; Shepherd, G. M.; Zufall, F.
1995-01-01
Whole-cell patch clamp recordings detected a previously unidentified cGMP-activated membrane conductance in cultured rat hippocampal neurons. This conductance is nonselectively permeable for cations and is completely but reversibly blocked by external Cd2+. The Ca2+ permeability of the hippocampal cGMP-activated conductance was examined in detail, indicating that the underlying ion channels display a high relative permeability for Ca2+. The results indicate that hippocampal neurons contain a cGMP-activated membrane conductance that has some properties similar to the cyclic nucleotide-gated channels previously shown in sensory receptor cells and retinal neurons. In hippocampal neurons this conductance similarly could mediate membrane depolarization and Ca2+ fluxes in response to intracellular cGMP elevation.
Rapid communication between neurons and astrocytes in primary cortical cultures.
Murphy, T H; Blatter, L A; Wier, W G; Baraban, J M
1993-06-01
The identification of neurotransmitter receptors and voltage-sensitive ion channels on astrocytes (reviewed by Barres, 1991) has renewed interest in how these cells respond to neuronal activity. To investigate the physiology of neuron astrocyte signaling, we have employed primary cortical cultures that contain both neuronal and glial cells. As the neurons in these cultures exhibit synchronous spontaneous synaptic activity, we have used both calcium imaging and whole-cell recording techniques to identify physiological activity in astrocytes related to neuronal activity. Whole-cell voltage-clamp records from astrocytes revealed rapid inward currents that coincide with bursts of electrical activity in neighboring neurons. Calcium imaging studies demonstrate that these currents in astrocytes are not always associated with slowly propagating calcium waves. Inclusion of the dye Lucifer yellow within patch pipettes confirmed that astrocytes are extensively coupled to each other but not to adjacent neurons, indicating that the currents observed are not due to gap junction connections between these cell types. These currents do not reflect widespread diffusion of glutamate or potassium released during neuronal activity since a population of small, round, multipolar presumed glial cells that are not dye coupled to adjacent cells did not display electrical currents coincident with neuronal firing, even though they respond to locally applied glutamate and potassium. These findings indicate that, in addition to the relatively slow signaling conveyed by calcium waves, astrocytes also display rapid electrical responses to neuronal activity.
Loff, Steffan; Wirth, Hartmut; Jester, Iwgo; Hosie, Stuart; Wollmann, Carmen; Schaible, Thomas; Ataman, Ozge; Waag, Karl-Ludwig
2005-11-01
Large defects in patients with congenital diaphragmatic hernia (CDH) are frequently closed with a polytetrafluoroethylene patch (PTFE). Intraoperative problems include lack of abdominal domain for the reduction of organs and closure of the abdominal wall. Main surgical postoperative complication is the recurrence of the hernia. We suggest a new and easy method of patch implantation, improving these problems, and report first follow-up results. In our clinic, 103 children with CDH were treated, and 87 children underwent reconstruction of the diaphragm in the 5 years between 1998 and 2002. In 52 patients, a patch implantation had to be performed. We have been optimizing our complete pediatric and surgical procedure and present a new standardized technique of preparation and implantation of a PTFE patch. The flat patch is folded to a 90 degrees cone. The cone is fixed in its form with few single stitches. It is implanted with an overlapping border of 1 cm circumferentially. The border is separately fixed with absorbable single stitches to keep from rolling up. The rough side of the patch points toward the rim of the diaphragm to enable ingrowth of the connective tissue. In a 1-year follow-up study, the recurrences in the 3 following groups of PTFE patches were studied: conventional implantation (simple patch without overlapping border), patch with separately fixed overlapping border, and cone-shaped patch with overlapping separately fixed border. Thirty-three patients were included in the study. After conventional PTFE-patch implantation, 6 (46%) of 13 patients developed reherniation. After PTFE-patch implantation with separately fixed overlapping border, 1 (11%) of 9 patients had a recurrent hernia. In the group with the PTFE-cone implantation, 1 (9%) of 11 patients developed a recurrence. Meanwhile, another 20 CDH patients received implantation of a cone-shaped patch, and no further recurrence occurred up to now. With the additional space (20 mL) provided by the cone-shaped patch, the closure of the abdomen was easier, and the fundus had intraoperatively a physiological position. This optimized patch implantation technique in large diaphragmatic defects offers considerable advantages especially regarding recurrence of the hernia and closure of the abdomen, which are currently the most challenging surgical problems. 1. The cone-shaped 3-dimensional patch increases abdominal capacity. 2. Redundant chest capacity is reduced, and the reconstructed diaphragm shows a physiological shape. 3. The dome of the patch allows a physiological position of the gastric fundus and a normal Hiss angle, thus preventing gastroesophageal reflux. 4. Additional safety of the implantation is achieved by separate fixation of the overlapping border of the cone, preventing recurrence.
Analysis of whole-cell currents by patch clamp of guinea-pig myenteric neurones in intact ganglia
Rugiero, François; Gola, Maurice; Kunze, Wolf A A; Reynaud, Jean-Claude; Furness, John B; Clerc, Nadine
2002-01-01
Whole-cell patch-clamp recordings taken from guinea-pig duodenal myenteric neurones within intact ganglia were used to determine the properties of S and AH neurones. Major currents that determine the states of AH neurones were identified and quantified. S neurones had resting potentials of −47 ± 6 mV and input resistances (Rin) of 713 ± 49 MΩ at voltages ranging from −90 to −40 mV. At more negative levels, activation of a time-independent, caesium-sensitive, inward-rectifier current (IKir) decreased Rin to 103 ± 10 MΩ. AH neurones had resting potentials of −57 ± 4 mV and Rin was 502 ± 27 MΩ. Rin fell to 194 ± 16 MΩ upon hyperpolarization. This decrease was attributable mainly to the activation of a cationic h current, Ih, and to IKir. Resting potential and Rin exhibited a low sensitivity to changes in [K+]o in both AH and S neurones. This indicates that both cells have a low background K+ permeability. The cationic current, Ih, contributed about 20 % to the resting conductance of AH neurones. It had a half-activation voltage of −72 ± 2 mV, and a voltage sensitivity of 8.2 ± 0.7 mV per e-fold change. Ih has relatively fast, voltage-dependent kinetics, with on and off time constants in the range of 50–350 ms. AH neurones had a previously undescribed, low threshold, slowly inactivating, sodium-dependent current that was poorly sensitive to TTX. In AH neurones, the post-action-potential slow hyperpolarizing current, IAHP, displayed large variation from cell to cell. IAHP appeared to be highly Ca2+ sensitive, since its activation with either membrane depolarization or caffeine (1 mm) was not prevented by perfusing the cell with 10 mm BAPTA. We determined the identity of the Ca2+ channels linked to IAHP. Action potentials of AH neurones that were elongated by TEA (10 mm) were similarly shortened and IAHP was suppressed with each of the three Ω-conotoxins GVIA, MVIIA and MVIIC (0.3–0.5 μm), but not with Ω-agatoxin IVA (0.2 μm). There was no additivity between the effects of the three conotoxins, which indicates the presence of N- but not of P/Q-type Ca2+ channels. A residual Ca2+ current, resistant to all toxins, but blocked by 0.5 mm Cd2+, could not generate IAHP. This patch-clamp study, performed on intact ganglia, demonstrates that the AH neurones of the guinea-pig duodenum are under the control of four major currents, IAHP, Ih, an N-type Ca2+ current and a slowly inactivating Na+ current. PMID:11790812
Kihira, T; Kawanishi, H
1995-08-01
The objective of this study was to demonstrate in vitro that bone marrow-derived pro/pre-B cells bearing mu mRNA can switch their Ig heavy-chain isotype to that of alpha mRNA-expressing B cells after contact with Peyer's patches-derived activated autoreactive CD4+ T cells. Bone marrow-derived pro/pre-B cells and activated autoreactive Peyer's patch, mesenteric lymph node, or spleen CD4+ T cells were co-cultured in the presence of recombinant (r) IL-2, rIL-7, and Con A for 3 days. The mixed cultured cells were isolated for preparation of total RNA. Dot/slot hybridization, using murine C mu (pu3741) and C alpha (P alpha J558) Ig heavy-chain cDNA probes, detected C mu and C alpha Ig heavy-chain mRNA transcripts. The magnitude of each mRNA expression was measured demsitometrically. In addition, the secreted class-specific Ig contents from the co-cultured supernatants were measured. The results indicate that activated autoreactive Peyer's patch and mesenteric lymph node CD4+ T cells provide a specific Ig heavy-chain switch from mu to alpha (Peyer's patch CD4+ T cells > mesenteric lymph node CD4+ T cells) in bone marrow-derived pro/pre-B cells and also assist to develop IgA-secreting plasma cells. The alpha heavy-chain switch and IgA production do not occur in the presence of activated autoreactive spleen CD4+ T cells. These results support the view that autoreactive gut Peyer's patch CD4+ T cells, at least, regulate IgA B cell heavy-chain switching and terminal differentiation during gut mucosal B cell development.
Yang, Chao; Sodian, Ralf; Fu, Ping; Lüders, Cora; Lemke, Thees; Du, Jing; Hübler, Michael; Weng, Yuguo; Meyer, Rudolf; Hetzer, Roland
2006-01-01
One approach to tissue engineering has been the development of in vitro conditions for the fabrication of functional cardiovascular structures intended for implantation. In this experiment, we developed a pulsatile flow system that provides biochemical and biomechanical signals in order to regulate autologous, human patch-tissue development in vitro. We constructed a biodegradable patch scaffold from porous poly-4-hydroxy-butyrate (P4HB; pore size 80 to 150 microm). The scaffold was seeded with pediatric aortic cells. The cell-seeded patch constructs were placed in a self-developed bioreactor for 7 days to observe potential tissue formation under dynamic cell culture conditions. As a control, cell-seeded scaffolds were not conditioned in the bioreactor system. After maturation in vitro, the analysis of the tissue engineered constructs included biochemical, biomechanical, morphologic, and immunohistochemical examination. Macroscopically, all tissue engineered constructs were covered by cells. After conditioning in the bioreactor, the cells were mostly viable, had grown into the pores, and had formed tissue on the patch construct. Electron microscopy showed confluent smooth surfaces. Additionally, we demonstrated the capacity to generate collagen and elastin under in vitro pulsatile flow conditions in biochemical examination. Biomechanical testing showed mechanical properties of the tissue engineered human patch tissue without any statistical differences in strength or resistance to stretch between the static controls and the conditioned patches. Immunohistochemical examination stained positive for alpha smooth muscle actin, collagen type I, and fibronectin. There was minor tissue formation in the nonconditioned control samples. Porous P4HB may be used to fabricate a biodegradable patch scaffold. Human vascular cells attached themselves to the polymeric scaffold, and extracellular matrix formation was induced under controlled biomechanical and biodynamic stimuli in a self-developed pulsatile bioreactor system.
Micromachined patch-clamp apparatus
Okandan, Murat
2012-12-04
A micromachined patch-clamp apparatus is disclosed for holding one or more cells and providing electrical, chemical, or mechanical stimulation to the cells during analysis with the patch-clamp technique for studying ion channels in cell membranes. The apparatus formed on a silicon substrate utilizes a lower chamber formed from silicon nitride using surface micromachining and an upper chamber formed from a molded polymer material. An opening in a common wall between the chambers is used to trap and hold a cell for analysis using the patch-clamp technique with sensing electrodes on each side of the cell. Some embodiments of the present invention utilize one or more electrostatic actuators formed on the substrate to provide mechanical stimulation to the cell being analyzed, or to provide information about mechanical movement of the cell in response to electrical or chemical stimulation.
Corazza, Monica; Virgili, Annarosa
2005-05-01
In patients suspected of allergic contact dermatitis because of topical ophthalmic medicaments, patch tests performed with patients' own products are often negative. The irritant anionic surfactant sodium lauryl sulfate (SLS) may alter the stratum corneum and increase antigen penetration. Pre-treatment of the skin with SLS 0.5% for 24 h was performed in the sites of patch tests with patients' own products in 15 selected patients. In patients previously negative to their own products tested with conventional patch tests, SLS pre-treatment showed 6 new relevant positive reactions and induced a stronger positive reaction in 1 patient. SLS pre-treatment could be proposed as an alternative promising method, which may increase sensitivity of patch tests with patients' own products.
Formaldehyde fixation is detrimental to actin cables in glucose-depleted S. cerevisiae cells
Vasicova, Pavla; Rinnerthaler, Mark; Haskova, Danusa; Novakova, Lenka; Malcova, Ivana; Breitenbach, Michael; Hasek, Jiri
2016-01-01
Actin filaments form cortical patches and emanating cables in fermenting cells of Saccharomyces cerevisiae. This pattern has been shown to be depolarized in glucose-depleted cells after formaldehyde fixation and staining with rhodamine-tagged phalloidin. Loss of actin cables in mother cells was remarkable. Here we extend our knowledge on actin in live glucose-depleted cells co-expressing the marker of actin patches (Abp1-RFP) with the marker of actin cables (Abp140-GFP). Glucose depletion resulted in appearance of actin patches also in mother cells. However, even after 80 min of glucose deprivation these cells showed a clear network of actin cables labeled with Abp140-GFP in contrast to previously published data. In live cells with a mitochondrial dysfunction (rho0 cells), glucose depletion resulted in almost immediate appearance of Abp140-GFP foci partially overlapping with Abp1-RFP patches in mother cells. Residual actin cables were clustered in patch-associated bundles. A similar overlapping “patchy” pattern of both actin markers was observed upon treatment of glucose-deprived rho+ cells with FCCP (the inhibitor of oxidative phosphorylation) and upon treatment with formaldehyde. While the formaldehyde-targeted process stays unknown, our results indicate that published data on yeast actin cytoskeleton obtained from glucose-depleted cells after fixation should be considered with caution. PMID:28357356
Treating angina pectoris by acupuncture therapy.
Xu, Lixian; Xu, Hao; Gao, Wei; Wang, Wei; Zhang, Hui; Lu, Dominic P
2013-01-01
Acupuncture therapy on PC 6 (Neiguan) has a therapeutic effect on cardiac and chest ailments including angina pectoris. Additional beneficial acupuncture points are PC 4 (Ximen), HT 7 (Shenmen point), PC 7 (Daling point), PC 5 (Jianshi point), PC 3 (Quze point), CV 17 (Danzhong point), CV 6 (Qihai point), BL 15 (Xinshu point), L 20 (Pishu point), BL 17 (Geshu point), BL23 (Shenshu point), BL18 (Ganshu point), HT 5 (Tongli point), and ST36 (Zusanli point). Acupuncture not only quickly relieve the symptoms of acute angina pectoris, but also improve nitroglycerine's therapeutic effects. Therefore, it is an efficient simple therapeutic method used for emergency and for regular angina treatment. Review of studies on acupuncture therapy has shown effectiveness were between 80% to 96.2% that are almost as effective as conventional drug regimen. When compared with conventional medical treatment, the acupuncture therapy shows the obvious advantage of lacking, adverse side effects commonly associated with the Western anti-anginal drugs such as 1) Nitroglycerine (headache--63% with nitroglycerine patch and 50% with spray; syncope--4%; and dizziness--8% with patch; hypotension--4% with patch; and increased angina 2% with patch). 2) Isosorbide mononitrate (dizziness--3 to 5%; nausea/vomiting--2 to 4% and other reactions including hypotension, and syncope even with small doses). 3) Propranolol (bradycardia, chest pain, hypotension, worsening of AV conduction disturbance, Raynaud's syndrome, mental depression, hyperglycemia, etc.). Many conventional anti-anginal medications cause inter-drug reactions with other medications the patients taking for other diseases. Whereas, acupuncture therapy does not pose such an interference with patient's medications. Nevertheless, surgery is still the treatment of choice when acupuncture or conventional drug therapy fails. Combination of conventional drug therapy and acupuncture would considerably decrease the frequency and the required dosage of drug taking, thereby decreasing the unpleasant side effects of the drug therapy.
Characterization of Na+ and Ca2+ Channels in Zebrafish Dorsal Root Ganglion Neurons
Won, Yu-Jin; Ono, Fumihito; Ikeda, Stephen R.
2012-01-01
Background Dorsal root ganglia (DRG) somata from rodents have provided an excellent model system to study ion channel properties and modulation using electrophysiological investigation. As in other vertebrates, zebrafish (Danio rerio) DRG are organized segmentally and possess peripheral axons that bifurcate into each body segment. However, the electrical properties of zebrafish DRG sensory neurons, as compared with their mammalian counterparts, are relatively unexplored because a preparation suitable for electrophysiological studies has not been available. Methodology/Principal Findings We show enzymatically dissociated DRG neurons from juvenile zebrafish expressing Isl2b-promoter driven EGFP were easily identified with fluorescence microscopy and amenable to conventional whole-cell patch-clamp studies. Two kinetically distinct TTX-sensitive Na+ currents (rapidly- and slowly-inactivating) were discovered. Rapidly-inactivating INa were preferentially expressed in relatively large neurons, while slowly-inactivating INa was more prevalent in smaller DRG neurons. RT-PCR analysis suggests zscn1aa/ab, zscn8aa/ab, zscn4ab and zscn5Laa are possible candidates for these INa components. Voltage-gated Ca2+ currents (ICa) were primarily (87%) comprised of a high-voltage activated component arising from ω-conotoxin GVIA-sensitive CaV2.2 (N-type) Ca2+ channels. A few DRG neurons (8%) displayed a miniscule low-voltage-activated component. ICa in zebrafish DRG neurons were modulated by neurotransmitters via either voltage-dependent or -independent G-protein signaling pathway with large cell-to-cell response variability. Conclusions/Significance Our present results indicate that, as in higher vertebrates, zebrafish DRG neurons are heterogeneous being composed of functionally distinct subpopulations that may correlate with different sensory modalities. These findings provide the first comparison of zebrafish and rodent DRG neuron electrical properties and thus provide a basis for future studies. PMID:22880050
[Technologies for hair reconstruction and their applicability for pharmaceutical research].
Matsuzaki, Takashi
2008-01-01
Hair follicles are the organs that produce hair shafts. They periodically regenerate throughout the life of the organisms, which is called the hair cycle. To develop new drugs to treat hair disorders and diseases, reproducible and high throughput assays or screening methods have been required to estimate the efficacy of various factors on hair follicle function. Although organ culture of hair follicles is one of the useful ways to carry out such research, it is not suitable for manipulating the genes or cells present in hair follicles. Patch assay is a method used to reconstruct hair follicles from enzymatically dissociated skin cells and has many advantages compared to the conventional Chamber method. Using the Patch method, transferring genes into follicular cells becomes easier than ever before. Chimeric follicles could be produced with dissociated cells by modifying the combination of cells or by simply merging cells of different origins. These applications certainly help the progress of hair research. However, we recently found that some functions of dermal papillae and follicular epithelia change during the growing phase (anagen) of the hair cycle. Dermal papillae produce different factors in early anagen and mid anagen. The signals from dermal papillae in early anagen could produce hair bulbs with clonogenic epithelial precursors but not with dormant epithelial precursors. On the other hand, the signals from dermal papillae in mid anagen strongly promote hair formation with dormant epithelial precursors. Therefore, more attention should be given to the hair cycle stages when using organ culture of hair follicles and conducting reconstruction experiments with follicularly derived cells.
Morizaki, Yutaka; Zhao, Chunfeng; An, Kai-Nan; Amadio, Peter C.
2010-01-01
Purpose In this study we investigated the effect of platelet-rich plasma (PRP) and bone-marrow derived stromal cell (BMSC)-seeded interposition in an in vitro canine tendon repair model. Methods Bone marrow, peripheral blood, and tendons were harvested from mixed breed dogs. BMSC were cultured and passaged from adherent cells of bone marrow suspension. PRP was purified from peripheral blood using a commercial kit. 192 flexor digitorum profundus tendons were used for the study. Tendons repaired with a simple suture were used as a control group. In treatment groups, a collagen gel patch was interposed at the tendon repair site prior to suture. There were three treatment groups according to the type of collagen patch; a patch with PRP, a patch with BMSC, and a patch with PRP and BMSC. The repaired tendons were evaluated by biomechanical testing and by histological survey after 2 and 4 weeks in tissue culture. To evaluate viability, cells were labeled with PKH26 and surveyed under confocal microscopy after culture. Results The maximum breaking strength and stiffness of the healing tendons with the BMSC-seeded PRP patch was significantly higher than the healing tendons without a patch or with a cell-seeded patch (p<0.02). Viable BMSC were present at both 2 and 4 weeks. Conclusions PRP enhanced the effect of BMSC-seeded collagen gel interposition in this in vitro model. Based on these results we now plan to investigate this effect in vivo. PMID:20951509
Color standardization in whole slide imaging using a color calibration slide
Bautista, Pinky A.; Hashimoto, Noriaki; Yagi, Yukako
2014-01-01
Background: Color consistency in histology images is still an issue in digital pathology. Different imaging systems reproduced the colors of a histological slide differently. Materials and Methods: Color correction was implemented using the color information of the nine color patches of a color calibration slide. The inherent spectral colors of these patches along with their scanned colors were used to derive a color correction matrix whose coefficients were used to convert the pixels’ colors to their target colors. Results: There was a significant reduction in the CIELAB color difference, between images of the same H & E histological slide produced by two different whole slide scanners by 3.42 units, P < 0.001 at 95% confidence level. Conclusion: Color variations in histological images brought about by whole slide scanning can be effectively normalized with the use of the color calibration slide. PMID:24672739
Kashiwayanagi, M; Shimano, K; Kurihara, K
1996-11-04
The responses of single bullfrog olfactory neurons to various odorants were measured with the whole-cell patch clamp which offers direct information on cellular events and with the ciliary recording technique to obtain stable quantitative data from many neurons. A large portion of single olfactory neurons (about 64% and 79% in the whole-cell recording and in the ciliary recording, respectively) responded to many odorants with quite diverse molecular structures, including both odorants previously indicated to be cAMP-dependent (increasing) and independent odorants. One odorant elicited a response in many cells; e.g. hedione and citralva elicited the response in 100% and 92% of total neurons examined with the ciliary recording technique. To confirm that a single neuron carries different receptors or transduction pathways, the cross-adaptation technique was applied to single neurons. Application of hedione to a single neuron after desensitization of the current in response to lyral or citralva induced an inward current with a similar magnitude to that applied alone. It was suggested that most single olfactory neurons carry multiple receptors and at least dual transduction pathways.
Westhoff, Connie M.; Uy, Jon Michael; Aguad, Maria; Smeland‐Wagman, Robin; Kaufman, Richard M.; Rehm, Heidi L.; Green, Robert C.; Silberstein, Leslie E.
2015-01-01
BACKGROUND There are 346 serologically defined red blood cell (RBC) antigens and 33 serologically defined platelet (PLT) antigens, most of which have known genetic changes in 45 RBC or six PLT genes that correlate with antigen expression. Polymorphic sites associated with antigen expression in the primary literature and reference databases are annotated according to nucleotide positions in cDNA. This makes antigen prediction from next‐generation sequencing data challenging, since it uses genomic coordinates. STUDY DESIGN AND METHODS The conventional cDNA reference sequences for all known RBC and PLT genes that correlate with antigen expression were aligned to the human reference genome. The alignments allowed conversion of conventional cDNA nucleotide positions to the corresponding genomic coordinates. RBC and PLT antigen prediction was then performed using the human reference genome and whole genome sequencing (WGS) data with serologic confirmation. RESULTS Some major differences and alignment issues were found when attempting to convert the conventional cDNA to human reference genome sequences for the following genes: ABO, A4GALT, RHD, RHCE, FUT3, ACKR1 (previously DARC), ACHE, FUT2, CR1, GCNT2, and RHAG. However, it was possible to create usable alignments, which facilitated the prediction of all RBC and PLT antigens with a known molecular basis from WGS data. Traditional serologic typing for 18 RBC antigens were in agreement with the WGS‐based antigen predictions, providing proof of principle for this approach. CONCLUSION Detailed mapping of conventional cDNA annotated RBC and PLT alleles can enable accurate prediction of RBC and PLT antigens from whole genomic sequencing data. PMID:26634332
Fentanyl patches: preventable overdose.
2010-02-01
Fentanyl is a potent opioid analgesic marketed for the treatment of stable intense chronic pain, particularly in the form of a transdermal patch. These delivery devices carry the same risk of adverse effects and drug interactions as conventional formulations of opioids. The patches carry an added risk of fentanyl overdose because they contain very high doses, both before and after use. High-risk situations for overdose were identified by examining the results of pharmacovigilance studies and medication error prevention programmes, as well as an observational study, case reports, and a French legal action. The main situations exposing patients to a risk of overdose are: confusion between two dose strengths, forgetting to remove the patch; accidental transfer of the patch to another person, application of more than one patch, cutting the patches, self-medication, and ingestion. Increased skin temperature facilitates fentanyl absorption and thus increases the risk of overdose; high-risk situations include fever, electric blankets, and intense physical exercise. In practice, the precautions for treatment and patch disposal must be followed exactly if this delivery system is to serve as a valid alternative to morphine for selected patients with stable intense chronic pain.
Kistamás, Kornél; Szentandrássy, Norbert; Hegyi, Bence; Ruzsnavszky, Ferenc; Váczi, Krisztina; Bárándi, László; Horváth, Balázs; Szebeni, Andrea; Magyar, János; Bányász, Tamás; Kecskeméti, Valéria; Nánási, Péter P
2013-06-15
Despite its widespread therapeutical use there is little information on the cellular cardiac effects of the antidiabetic drug pioglitazone in larger mammals. In the present study, therefore, the concentration-dependent effects of pioglitazone on ion currents and action potential configuration were studied in isolated canine ventricular myocytes using standard microelectrode, conventional whole cell patch clamp, and action potential voltage clamp techniques. Pioglitazone decreased the maximum velocity of depolarization and the amplitude of phase-1 repolarization at concentrations ≥3 μM. Action potentials were shortened by pioglitazone at concentrations ≥10 μM, which effect was accompanied with significant reduction of beat-to-beat variability of action potential duration. Several transmembrane ion currents, including the transient outward K(+) current (Ito), the L-type Ca(2+) current (ICa), the rapid and slow components of the delayed rectifier K(+) current (IKr and IKs, respectively), and the inward rectifier K(+) current (IK1) were inhibited by pioglitazone under conventional voltage clamp conditions. Ito was blocked significantly at concentrations ≥3 μM, ICa, IKr, IKs at concentrations ≥10 μM, while IK1 at concentrations ≥30 μM. Suppression of Ito, ICa, IKr, and IK1 has been confirmed also under action potential voltage clamp conditions. ATP-sensitive K(+) current, when activated by lemakalim, was effectively blocked by pioglitazone. Accordingly, action potentials were prolonged by 10 μM pioglitazone when the drug was applied in the presence of lemakalim. All these effects developed rapidly and were readily reversible upon washout. In conclusion, pioglitazone seems to be a harmless agent at usual therapeutic concentrations. Copyright © 2013 Elsevier B.V. All rights reserved.
Baker, Lindsay B; Ungaro, Corey T; Sopeña, Bridget C; Nuccio, Ryan P; Reimel, Adam J; Carter, James M; Stofan, John R; Barnes, Kelly A
2018-05-01
This study determined the relations between regional (REG) and whole body (WB) sweating rate (RSR and WBSR, respectively) as well as REG and WB sweat Na + concentration ([Na + ]) during exercise. Twenty-six recreational athletes (17 men, 9 women) cycled for 90 min while WB sweat [Na + ] was measured using the washdown technique. RSR and REG sweat [Na + ] were measured from nine regions using absorbent patches. RSR and REG sweat [Na + ] from all regions were significantly ( P < 0.05) correlated with WBSR ( r = 0.58-0.83) and WB sweat [Na + ] ( r = 0.74-0.88), respectively. However, the slope and y-intercept of the regression lines for most models were significantly different than 1 and 0, respectively. The coefficients of determination ( r 2 ) were 0.44-0.69 for RSR predicting WBSR [best predictors: dorsal forearm ( r 2 = 0.62) and triceps ( r 2 = 0.69)] and 0.55-0.77 for REG predicting WB sweat [Na + ] [best predictors: ventral forearm ( r 2 = 0.73) and thigh ( r 2 = 0.77)]. There was a significant ( P < 0.05) effect of day-to-day variability on the regression model predicting WBSR from RSR at most regions but no effect on predictions of WB sweat [Na + ] from REG. Results suggest that REG cannot be used as a direct surrogate for WB sweating responses. Nonetheless, the use of regression equations to predict WB sweat [Na + ] from REG can provide an estimation of WB sweat [Na + ] with an acceptable level of accuracy, especially using the forearm or thigh. However, the best practice for measuring WBSR remains conventional WB mass balance calculations since prediction of WBSR from RSR using absorbent patches does not meet the accuracy or reliability required to inform fluid intake recommendations. NEW & NOTEWORTHY This study developed a body map of regional sweating rate and regional (REG) sweat electrolyte concentrations and determined the effect of within-subject (bilateral and day-to-day) and between-subject (sex) factors on the relations between REG and the whole body (WB). Regression equations can be used to predict WB sweat Na + concentration from REG, especially using the forearm or thigh. However, prediction of WB sweating rate from REG sweating rate using absorbent patches does not reach the accuracy or reliability required to inform fluid intake recommendations.
Zhang, D; Spielmann, A; Wang, L; Ding, G; Huang, F; Gu, Q; Schwarz, W
2012-01-01
A characteristic of mast cells is the degranulation in response to various stimuli. Here we have investigated the effects of various physical stimuli in the human mast-cell line HMC-1. We have shown that HMC-1 express the transient receptor potential channels TRPV1, TRPV2 and TRPV4. In the whole-cell patch-clamp configuration, increasing mechanical stress applied to the mast cell by hydrostatic pressure (-30 to -90 cm H(2)O applied via the patch pipette) induced a current that could be inhibited by 10 microM of ruthenium red. This current was also inhibited by 20 microM SKF96365, an inhibitor that is among TRPV channels specific for the TRPV2. A characteristic of TRPV2 is its activation by high noxious temperature; temperatures exceeding 50 °C induced a similar ruthenium-red-sensitive current. As another physical stimulus, we applied laser light of 640 nm. Here we have shown for the first time that the application of light (at 48 mW for 20 min) induced an SKF96365-sensitive current. All three physical stimuli that led to activation of SKF96365-sensitive current also induced pronounced degranulation in the mast cells, which could be blocked by ruthenium red or SKF96365. The results suggest that TRPV2 is activated by the three different types of physical stimuli. Activation of TRPV2 allows Ca(2+) ions to enter the cell, which in turn will induce degranulation. We, therefore, suggest that TRPV2 plays a key role in mast-cell degranulation in response to mechanical, heat and red laser-light stimulation.
Multiple Sparse Representations Classification
Plenge, Esben; Klein, Stefan S.; Niessen, Wiro J.; Meijering, Erik
2015-01-01
Sparse representations classification (SRC) is a powerful technique for pixelwise classification of images and it is increasingly being used for a wide variety of image analysis tasks. The method uses sparse representation and learned redundant dictionaries to classify image pixels. In this empirical study we propose to further leverage the redundancy of the learned dictionaries to achieve a more accurate classifier. In conventional SRC, each image pixel is associated with a small patch surrounding it. Using these patches, a dictionary is trained for each class in a supervised fashion. Commonly, redundant/overcomplete dictionaries are trained and image patches are sparsely represented by a linear combination of only a few of the dictionary elements. Given a set of trained dictionaries, a new patch is sparse coded using each of them, and subsequently assigned to the class whose dictionary yields the minimum residual energy. We propose a generalization of this scheme. The method, which we call multiple sparse representations classification (mSRC), is based on the observation that an overcomplete, class specific dictionary is capable of generating multiple accurate and independent estimates of a patch belonging to the class. So instead of finding a single sparse representation of a patch for each dictionary, we find multiple, and the corresponding residual energies provides an enhanced statistic which is used to improve classification. We demonstrate the efficacy of mSRC for three example applications: pixelwise classification of texture images, lumen segmentation in carotid artery magnetic resonance imaging (MRI), and bifurcation point detection in carotid artery MRI. We compare our method with conventional SRC, K-nearest neighbor, and support vector machine classifiers. The results show that mSRC outperforms SRC and the other reference methods. In addition, we present an extensive evaluation of the effect of the main mSRC parameters: patch size, dictionary size, and sparsity level. PMID:26177106
Okaty, Benjamin W; Miller, Mark N; Sugino, Ken; Hempel, Chris M; Nelson, Sacha B
2009-01-01
Fast-spiking (FS) interneurons are important elements of neocortical circuitry that constitute the primary source of synaptic inhibition in adult cortex and impart temporal organization on ongoing cortical activity. The highly specialized intrinsic membrane and firing properties that allow cortical FS interneurons to perform these functions are due to equally specialized gene expression, which is ultimately coordinated by cell-type-specific transcriptional regulation. While embryonic transcriptional events govern the initial steps of cell-type specification in most cortical interneurons, including FS cells, the electrophysiological properties that distinguish adult cortical cell types emerge relatively late in postnatal development, and the transcriptional events that drive this maturational process are not known. To address this, we used mouse whole-genome microarrays and whole-cell patch clamp to characterize the transcriptional and electrophysiological maturation of cortical FS interneurons between postnatal day 7 (P7) and P40. We found that the intrinsic and synaptic physiology of FS cells undergoes profound regulation over the first four postnatal weeks, and that these changes are correlated with largely monotonic but bidirectional transcriptional regulation of thousands of genes belonging to multiple functional classes. Using our microarray screen as a guide, we discovered that upregulation of 2-pore K+ leak channels between P10 and P25 contributes to one of the major differences between the intrinsic membrane properties of immature and adult FS cells, and found a number of other candidate genes that likely confer cell-type specificity on mature FS cells. PMID:19474331
Electroporation of DC-3F cells is a dual process.
Wegner, Lars H; Frey, Wolfgang; Silve, Aude
2015-04-07
Treatment of biological material by pulsed electric fields is a versatile technique in biotechnology and biomedicine used, for example, in delivering DNA into cells (transfection), ablation of tumors, and food processing. Field exposure is associated with a membrane permeability increase usually ascribed to electroporation, i.e., formation of aqueous membrane pores. Knowledge of the underlying processes at the membrane level is predominantly built on theoretical considerations and molecular dynamics (MD) simulations. However, experimental data needed to monitor these processes with sufficient temporal resolution are scarce. The whole-cell patch-clamp technique was employed to investigate the effect of millisecond pulsed electric fields on DC-3F cells. Cellular membrane permeabilization was monitored by a conductance increase. For the first time, to our knowledge, it could be established experimentally that electroporation consists of two clearly separate processes: a rapid membrane poration (transient electroporation) that occurs while the membrane is depolarized or hyperpolarized to voltages beyond so-called threshold potentials (here, +201 mV and -231 mV, respectively) and is reversible within ∼100 ms after the pulse, and a long-term, or persistent, permeabilization covering the whole voltage range. The latter prevailed after the pulse for at least 40 min, the postpulse time span tested experimentally. With mildly depolarizing or hyperpolarizing pulses just above threshold potentials, the two processes could be separated, since persistent (but not transient) permeabilization required repetitive pulse exposure. Conductance increased stepwise and gradually with depolarizing and hyperpolarizing pulses, respectively. Persistent permeabilization could also be elicited by single depolarizing/hyperpolarizing pulses of very high field strength. Experimental measurements of propidium iodide uptake provided evidence of a real membrane phenomenon, rather than a mere patch-clamp artifact. In short, the response of DC-3F cells to strong pulsed electric fields was separated into a transient electroporation and a persistent permeabilization. The latter dominates postpulse membrane properties but to date has not been addressed by electroporation theory or MD simulations. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Bacteria as living patchy colloids: Phenotypic heterogeneity in surface adhesion
Hermes, Michiel; Schwarz-Linek, Jana; Poon, Wilson C. K.
2018-01-01
Understanding and controlling the surface adhesion of pathogenic bacteria is of urgent biomedical importance. However, many aspects of this process remain unclear (for example, microscopic details of the initial adhesion and possible variations between individual cells). Using a new high-throughput method, we identify and follow many single cells within a clonal population of Escherichia coli near a glass surface. We find strong phenotypic heterogeneities: A fraction of the cells remain in the free (planktonic) state, whereas others adhere with an adhesion strength that itself exhibits phenotypic heterogeneity. We explain our observations using a patchy colloid model; cells bind with localized, adhesive patches, and the strength of adhesion is determined by the number of patches: Nonadherers have no patches, weak adherers bind with a single patch only, and strong adherers bind via a single or multiple patches. We discuss possible implications of our results for controlling bacterial adhesion in biomedical and other applications. PMID:29719861
NASA Astrophysics Data System (ADS)
Matteini, Paolo; Banchelli, Martina; Cottat, Maximilien; Osticioli, Iacopo; de Angelis, Marella; Rossi, Francesca; Pini, Roberto
2016-03-01
In previous works a minimally invasive laser-assisted technique for vascular repair was presented. The technique rests on the photothermal adhesion of a biocompatible and bioresorbable patch containing Indocyanine Green that is brought into contact with the site to be repaired. Afterward the use of NIR millisecond-long light pulses generates a strong welding effect between the patch and the underlying tissue and in turn the repair of the wound. This technique was shown to be effective in animal model and provides several advantages over conventional suturing methods. Here we investigate and discuss the optical stability of the ICG-biopolymeric patches and the photothermal effects induced to the irradiated tissue.
Hoogenkamp, Henk R; Pot, Michiel W; Hafmans, Theo G; Tiemessen, Dorien M; Sun, Yi; Oosterwijk, Egbert; Feitz, Wout F; Daamen, Willeke F; van Kuppevelt, Toin H
2016-10-01
The field of regenerative medicine has developed promising techniques to improve current neobladder strategies used for radical cystectomies or congenital anomalies. Scaffolds made from molecularly defined biomaterials are instrumental in the regeneration of tissues, but are generally confined to small flat patches and do not comprise the whole organ. We have developed a simple, one-step casting method to produce a seamless large hollow collagen-based scaffold, mimicking the shape of the whole bladder, and with integrated anastomotic sites for ureters and urethra. The hollow bladder scaffold is highly standardized, with uniform wall thickness and a unidirectional pore structure to facilitate cell infiltration in vivo. Human and porcine bladder urothelial and smooth muscle cells were able to attach to the scaffold and maintained their phenotype in vitro. The closed luminal side and the porous outside of the scaffold facilitated the formation of an urothelial lining and infiltration of smooth muscle cells, respectively. The cells aligned according to the provided scaffold template. The technology used is highly adjustable (shape, size, materials) and may be used as a starting point for research to an off-the-shelf medical device suitable for neobladders. In this study, we describe the development of a simple, one-step casting method to produce a seamless large hollow collagen-based scaffold mimicking the shape of the whole bladder with integrated anastomotic sites for ureters and urethra. The hollow bladder scaffold is highly standardized with uniform wall thickness and a unidirectional pore structure to facilitate cell infiltration in vivo. The closed luminal surface and the porous exterior of the scaffold facilitated the formation of a urothelial lining and infiltration of smooth muscle cells, respectively. The applied technology is highly adjustable (shape, size, materials) and can be the starting point for research to an off-the-shelf medical device suitable for neobladders. Copyright © 2016. Published by Elsevier Ltd.
Roura, Santiago; Soler-Botija, Carolina; Bagó, Juli R; Llucià-Valldeperas, Aida; Férnandez, Marco A; Gálvez-Montón, Carolina; Prat-Vidal, Cristina; Perea-Gil, Isaac; Blanco, Jerónimo; Bayes-Genis, Antoni
2015-08-01
Considerable research has been dedicated to restoring myocardial cell slippage and limiting ventricular remodeling after myocardial infarction (MI). We examined the ability of a three-dimensional (3D) engineered fibrin patch filled with human umbilical cord blood-derived mesenchymal stem cells (UCBMSCs) to induce recovery of cardiac function after MI. The UCBMSCs were modified to coexpress luciferase and fluorescent protein reporters, mixed with fibrin, and applied as an adhesive, viable construct (fibrin-cell patch) over the infarcted myocardium in mice (MI-UCBMSC group). The patch adhered well to the heart. Noninvasive bioluminescence imaging demonstrated early proliferation and differentiation of UCBMSCs within the construct in the postinfarct mice in the MI-UCBMSC group. The implanted cells also participated in the formation of new, functional microvasculature that connected the fibrin-cell patch to both the subjacent myocardial tissue and the host circulatory system. As revealed by echocardiography, the left ventricular ejection fraction and fractional shortening at sacrifice were improved in MI-UCBMSC mice and were markedly reduced in mice treated with fibrin alone and untreated postinfarction controls. In conclusion, a 3D engineered fibrin patch composed of UCBMSCs attenuated infarct-derived cardiac dysfunction when transplanted locally over a myocardial wound. ©AlphaMed Press.
Tzeng, Huei-Ping; Fan, Jinping; Vallejo, Jesus G.; Dong, Jian Wen; Chen, Xiongwen; Houser, Steven R.; Mann, Douglas L.
2013-01-01
HMGB1 released from necrotic cells or macrophages functions as a late inflammatory mediator, and has been shown to induce cardiovascular collapse during sepsis. Thus far, however, the effect(s) of HMGB1 in the heart are not known. We determined the effects of HMGB1 on isolated feline cardiac myocytes by measuring sarcomere shortening in contracting cardiac myocytes, intracellular Ca2+ transients using fluo-3, and L-type calcium currents using whole cell perforate configuration of the patch clamp technique. Treatment of isolated myocytes with HMGB1 (100 ng/ml) resulted in a 70% decrease in sarcomere shortening and a 50% decrease in the height of the peak Ca++ transient within 5 min (p <0.01). The immediate negative inotropic effects HMGB1 on cell contractility and calcium homeostasis were partially reversible upon washout of HMGB1. A significant inhibition of the inward L-type calcium currents also was documented by the patch clamp technique. HMGB1 induced the PKCε translocation and a PKC inhibitor significantly attenuated the negative inotropic effects of HMGB1. These studies show for the first time that HMGB1 impairs sarcomere shortening by decreasing calcium availability in cardiac myocytes through modulating membrane calcium influx, and suggest that HMGB1 maybe act as a novel myocardial depressant factor during cardiac injury. PMID:18223193
Nutter, Thomas J; Cooper, Brian Y
2014-06-15
Many veterans of the 1991 Gulf War (GW) returned from that conflict with a widespread chronic pain affecting deep tissues. Recently, we have shown that a 60day exposure to the insecticides permethrin, chlorpyrifos, and pyridostigmine bromide (NTPB) had little influence on nociceptor action potential forming Nav1.8, but increased Kv7 mediated inhibitory currents 8weeks after treatment. Using the same exposure regimen, we used whole cell patch methods to examine whether the influences of NTPB could be observed on Nav1.9 expressed in muscle and vascular nociceptors. During a 60day exposure to NTPB, rats exhibited lowered muscle pain thresholds and increased rest periods, but these measures subsequently returned to normal levels. Eight and 12weeks after treatments ceased, DRG neurons were excised from the sensory ganglia. Whole cell patch studies revealed little change in voltage dependent activation and deactivation of Nav1.9, but significant increases in the amplitude of Nav1.9 were observed 8weeks after exposure. Cellular studies, at the 8week delay, revealed that NTPB also significantly prolonged action potential duration and afterhyperpolarization (22°C). Acute application of permethrin (10μM) also increased the amplitude of Nav1.9 in skin, muscle and vascular nociceptors. In conclusion, chronic exposure to Gulf War agents produced long term changes in the amplitude of Nav1.9 expressed in muscle and vascular nociceptors. The reported increases in Kv7 amplitude may have been an adaptive response to increased Nav1.9, and effectively suppressed behavioral pain measures in the post treatment period. Factors that alter the balance between Nav1.9 and Kv7 could release spontaneous discharge and produce chronic deep tissue pain. Copyright © 2014 Elsevier Inc. All rights reserved.
Selective block of late Na+ current by local anaesthetics in rat large sensory neurones
Baker, Mark D
2000-01-01
The actions of lignocaine and benzocaine on transient and late Na+ current generated by large diameter (⩾50 μm) adult rat dorsal root ganglion neurones, were studied using patch-clamp techniques.Both drugs blocked whole-cell late Na+ current in a concentration-dependent manner. At 200 ms following the onset of a clamp step from −110 to −40 mV, the apparent K for block of late Na+ current by lignocaine was 57.8±15 μM (mean±s.e.mean, n=4). The value for benzocaine was 24.9±3.3 μM, (mean±s.e.mean, n=3).The effect of lignocaine on transient current, in randomly selected neurones, appeared variable (n=8, half-block from ∼50 to 400 μM). Half-block by benzocaine was not attained, but both whole-cell (n=11) and patch data suggested a high apparent K,>250 μM. Transient current always remained after late current was blocked.The voltage-dependence of residual late current steady-state inactivation was not shifted by 20 μM benzocaine (n=3), whereas 200 μM benzocaine shifted the voltage-dependence of transient current steady-state inactivation by −18.7±5.9 mV (mean±s.e.mean, n=4).In current-clamp, benzocaine (250 μM) could block subthreshold, voltage-dependent inward current, increasing the threshold for eliciting action potentials, without preventing their generation (n=2).Block of late Na+ current by systemic local anaesthetic may play a part in preventing ectopic impulse generation in sensory neurones. PMID:10780966
Liang, Tan; Chen, Qianwei; Li, Qiang; Li, Rongwei; Tang, Jun; Hu, Rong; Zhong, Jun; Ge, Hongfei; Liu, Xin; Hua, Feng
2017-01-01
Therapeutic hypothermia is widely applied as a neuroprotective measure on intracerebral hemorrhage (ICH). However, several clinical trials regarding physical hypothermia encountered successive failures because of its side-effects in recent years. Increasing evidences indicate that chemical hypothermia that targets hypothalamic 5-HT1a has potential to down-regulate temperature set point without major side-effects. Thus, this study examined the efficacy and safety of 5-HT1a stimulation in PO/AH area for treating ICH rats. First, the relationship between head temperature and clinical outcomes was investigated in ICH patients and rat models, respectively. Second, the expression and distribution of 5-HT1a receptor in PO/AH area was explored by using whole-cell patch and confocal microscopy. In the meantime, the whole-cell patch was subsequently applied to investigate the involvement of 5-HT1a receptors in temperature regulation. Third, we compared the efficacy between traditional PH and 5-HT1a activation-induced hypothermia for ICH rats. Our data showed that more severe perihematomal edema (PHE) and neurological deficits was associated with increased head temperature following ICH. 5-HT1a receptor was located on warm-sensitive neurons in PO/AH area and 8-OH-DPAT (5-HT1a receptor agonist) significantly enhanced the firing rate of warm-sensitive neurons. 8-OH-DPAT treatment provided a steadier reduction in brain temperature without a withdrawal rebound, which also exhibited a superior neuroprotective effect on ICH-induced neurological dysfunction, white matter injury and BBB damage compared with physical hypothermia. These findings suggest that chemical hypothermia targeting 5-HT1a receptor in PO/AH area could act as a novel therapeutic manner against ICH, which may provide a breakthrough for therapeutic hypothermia. PMID:29088731
Yin, Hua; Yang, Eun Ju; Park, Soo Joung
2011-01-01
Shilajit, a medicine herb commonly used in Ayurveda, has been reported to contain at least 85 minerals in ionic form that act on a variety of chemical, biological, and physical stressors. The substantia gelatinosa (SG) neurons of the trigeminal subnucleus caudalis (Vc) are involved in orofacial nociceptive processing. Shilajit has been reported to be an injury and muscular pain reliever but there have been few functional studies of the effect of Shilajit on the SG neurons of the Vc. Therefore, whole cell and gramicidin-perfotrated patch clamp studies were performed to examine the action mechanism of Shilajit on the SG neurons of Vc from mouse brainstem slices. In the whole cell patch clamp mode, Shilajit induced short-lived and repeatable inward currents under the condition of a high chloride pipette solution on all the SG neurons tested. The Shilajit-induced inward currents were concentration dependent and maintained in the presence of tetrodotoxin (TTX), a voltage gated Na+ channel blocker, CNQX, a non-NMDA glutamate receptor antagonist, and AP5, an NMDA receptor antagonist. The Shilajit-induced responses were partially suppressed by picrotoxin, a GABAA receptor antagonist, and totally blocked in the presence of strychnine, a glycine receptor antagonist, however not affected by mecamylamine hydrochloride (MCH), a nicotinic acetylcholine receptor antagonist. Under the potassium gluconate pipette solution at holding potential 0 mV, Shilajit induced repeatable outward current. These results show that Shilajit has inhibitory effects on the SG neurons of Vc through chloride ion channels by activation of the glycine receptor and GABAA receptor, indicating that Shilajit contains sedating ingredients for the central nervous system. These results also suggest that Shilajit may be a potential target for modulating orofacial pain processing. PMID:22128261
Yin, Hua; Yang, Eun Ju; Park, Soo Joung; Han, Seong Kyu
2011-10-01
Shilajit, a medicine herb commonly used in Ayurveda, has been reported to contain at least 85 minerals in ionic form that act on a variety of chemical, biological, and physical stressors. The substantia gelatinosa (SG) neurons of the trigeminal subnucleus caudalis (Vc) are involved in orofacial nociceptive processing. Shilajit has been reported to be an injury and muscular pain reliever but there have been few functional studies of the effect of Shilajit on the SG neurons of the Vc. Therefore, whole cell and gramicidin-perfotrated patch clamp studies were performed to examine the action mechanism of Shilajit on the SG neurons of Vc from mouse brainstem slices. In the whole cell patch clamp mode, Shilajit induced short-lived and repeatable inward currents under the condition of a high chloride pipette solution on all the SG neurons tested. The Shilajit-induced inward currents were concentration dependent and maintained in the presence of tetrodotoxin (TTX), a voltage gated Na(+) channel blocker, CNQX, a non-NMDA glutamate receptor antagonist, and AP5, an NMDA receptor antagonist. The Shilajit-induced responses were partially suppressed by picrotoxin, a GABA(A) receptor antagonist, and totally blocked in the presence of strychnine, a glycine receptor antagonist, however not affected by mecamylamine hydrochloride (MCH), a nicotinic acetylcholine receptor antagonist. Under the potassium gluconate pipette solution at holding potential 0 mV, Shilajit induced repeatable outward current. These results show that Shilajit has inhibitory effects on the SG neurons of Vc through chloride ion channels by activation of the glycine receptor and GABA(A) receptor, indicating that Shilajit contains sedating ingredients for the central nervous system. These results also suggest that Shilajit may be a potential target for modulating orofacial pain processing.
Anaesthetic modulation of nicotinic ion channel kinetics in bovine chromaffin cells.
Charlesworth, P; Richards, C D
1995-01-01
1. We have investigated the action of the anaesthetics methoxyflurane, methohexitone and etomidate on the nicotinic acetylcholine receptor channel of bovine adrenal chromaffin cells using the whole cell patch clamp technique. 2. Spectral analysis of macroscopic currents evoked by 25 microM carbachol revealed that each of the agents tested reduced the lifetime of the channel open state in a dose-dependent manner. The whole cell current was inhibited in a concentration-dependent fashion by each agent. 3. Channel gating parameters were calculated from single channel studies and the results used to test models explaining the modulation of nicotinic acetylcholine receptor channels by anaesthetics. 4. Each of the agents studied reduced the mean channel open time in a concentration-dependent manner. Anaesthetic concentrations reducing mean open time by 50% were: 370 microM methoxyflurane, 30 microM methohexitone or 23 microM etomidate. 5. Methohexitone and etomidate produced an increase in the number of brief closures within bursts, while no such increase was observed with methoxyflurane. Despite these inter-burst gaps, mean burst length was reduced by each of the agents tested. 6. It is concluded that a simple sequential blocking model fails to account for the action of these anaesthetics. An extended model, in which blocked channels can close, may be applicable. PMID:7773553
The interaction of spatial scale and predator-prey functional response
Blaine, T.W.; DeAngelis, D.L.
1997-01-01
Predator-prey models with a prey-dependent functional response have the property that the prey equilibrium value is determined only by predator characteristics. However, in observed natural systems (for instance, snail-periphyton interactions in streams) the equilibrium periphyton biomass has been shown experimentally to be influenced by both snail numbers and levels of available limiting nutrient in the water. Hypothesizing that the observed patchiness in periphyton in streams may be part of the explanation for the departure of behavior of the equilibrium biomasses from predictions of the prey-dependent response of the snail-periphyton system, we developed and analyzed a spatially-explicit model of periphyton in which snails were modeled as individuals in their movement and feeding, and periphyton was modeled as patches or spatial cells. Three different assumptions on snail movement were used: (1) random movement between spatial cells, (2) tracking by snails of local abundances of periphyton, and (3) delayed departure of snails from cells to reduce costs associated with movement. Of these assumptions, only the third strategy, based on an herbivore strategy of staying in one patch until local periphyton biomass concentration falls below a certain threshold amount, produced results in which both periphyton and snail biomass increased with nutrient input. Thus, if data are averaged spatially over the whole system, we expect that a ratio-dependent functional response may be observed if the herbivore behaves according to the third assumption. Both random movement and delayed cell departure had the result that spatial heterogeneity of periphyton increased with nutrient input.
Reducible dictionaries for single image super-resolution based on patch matching and mean shifting
NASA Astrophysics Data System (ADS)
Rasti, Pejman; Nasrollahi, Kamal; Orlova, Olga; Tamberg, Gert; Moeslund, Thomas B.; Anbarjafari, Gholamreza
2017-03-01
A single-image super-resolution (SR) method is proposed. The proposed method uses a generated dictionary from pairs of high resolution (HR) images and their corresponding low resolution (LR) representations. First, HR images and the corresponding LR ones are divided into patches of HR and LR, respectively, and then they are collected into separate dictionaries. Afterward, when performing SR, the distance between every patch of the input LR image and those of available LR patches in the LR dictionary is calculated. The minimum distance between the input LR patch and those in the LR dictionary is taken, and its counterpart from the HR dictionary is passed through an illumination enhancement process. By this technique, the noticeable change of illumination between neighbor patches in the super-resolved image is significantly reduced. The enhanced HR patch represents the HR patch of the super-resolved image. Finally, to remove the blocking effect caused by merging the patches, an average of the obtained HR image and the interpolated image obtained using bicubic interpolation is calculated. The quantitative and qualitative analyses show the superiority of the proposed technique over the conventional and state-of-art methods.
Somogyi, O; Zelko, R
Although the non-conventional dosage forms (e.g. modified release per oral systems or transdermal patches) have more significant advantages than other conventional dosage forms, the pa- tients have to apply them correctly in their home medicine using to reach the effective and safe therapy. A guideline of relevant application instructions contribute to development of an effective pharmaceutical counseling in community pharmacies. The counseling and advices can improve the patients' knowledge concerning application rules of different new dosage forms (health- literacy) with patient adherence. Finally it will result more effective and safer therapies. The aim of our Hungarian questionnaire surveys was to explore the patients' drug application habits or application errors and improve special verbal counseling of mentioned non-conventional dosage forms in community pharmacies. Understandable patient information leaflets were developed about application rules and besides the levels of patients' reading comprehension was evaluated in case of the leaflet of medicinal patches. The results show that a properly developed text is useful for the majority of patients but they need the verbal explanation as well, moreover there is a demand for the verbal counseling in community pharmacies. The most common application errors were explored and the most effective instructions or application rules were collected for the pharmacists and patients concerning the modified release tablets or capsules and transdermal patches.
NASA Astrophysics Data System (ADS)
Morin, T. H.; Rey Sanchez, C.; Bohrer, G.; Riley, W. J.; Angle, J.; Mekonnen, Z. A.; Stefanik, K. C.; Wrighton, K. C.
2016-12-01
Estimates of wetland greenhouse gas (GHG) budgets currently have large uncertainties. While wetlands are the largest source of natural methane (CH4) emissions worldwide, they are also important carbon dioxide (CO2) sinks. Determining the GHG budget of a wetland is challenging, particularly because wetlands have intrinsically temporally and spatially heterogeneous land cover patterns and complex dynamics of CH4 production and emissions. These issues pose challenges to both measuring and modeling GHG budgets from wetlands. To improve wetland GHG flux predictability, we utilized the ecosys model to predict CH4 fluxes from a natural temperate estuarine wetland in northern Ohio. Multiple patches of terrain (that included Typha spp. and Nelumbo lutea) were represented as separate grid cells in the model. Cells were initialized with measured values but were allowed to dynamically evolve in response to meteorological, hydrological, and thermodynamic conditions. Trace gas surface emissions were predicted as the end result of microbial activity, physical transport, and plant processes. Corresponding to each model gridcell, measurements of dissolved gas concentrations were conducted with pore-water dialysis samplers (peepers). The peeper measurements were taken via a series of tubes, providing an undisturbed observation of the pore water concentrations of in situ dissolved gases along a vertical gradient. Non-steady state chambers and a flux tower provided both patch level and integrated site-level fluxes of CO2 and CH4. New Typha chambers were also developed to enclose entire plants and segregate the plant fluxes from soil/water fluxes. We expect ecosys to predict the seasonal and diurnal fluxes of CH4 from within each land cover type and to resolve where CH4 is generated within the soil column and its transmission mechanisms. We demonstrate the need for detailed information at both the patch and site level when using models to predict whole wetland ecosystem-scale GHG budgets.
Qi, Shan-Shan; Wang, Wen-Hui; Gao, Qiang; Xu, Xiao-Hong; He, Wan-Hong; Zhaxi, Ying-Pai; Tai, Li-Feng
2011-08-01
The distribution, size, and appearance of Peyer's patches vary according to species. In order to determine the anatomical characteristics of Peyer's patches in small intestine of Bactrian camel, and age-related changes in the number of Peyer's patches, 40 Bactrian camels of the following four age groups were studied: young (0.5-2 years), pubertal (3-5 years), middle-aged (6-16 years), and old (17-20 years). The exact number of Peyer's patches was recorded, and the appearance of Peyer's patches was described in detail. The results indicated that Peyer's patches of Bactrian camels not only have a particular anatomical location and distinct appearance but also change with age. They were distributed in the whole small intestine and there were four distinct types of Peyer's patches: nodular, faviform, cup-shaped, and cystic form Peyer's patches. However, the nodular and cystic form Peyer's patches are specific to Bactrian camel, which have not been found in other animals including Dromedary camel. In addition, the distribution density of Peyer's patches in ileum was the maximum, then was jejunum and duodenum. Further statistical analysis showed that the number of Peyer's patches was altered with age. The number peaked in 5-year-old camels and declined subsequently with age. However, there was little change in the size of Peyer's patches in different age groups; no age-related macroscopic variations in the shape or size of the Peyer's patches were found. Results obtained from this study provide the basic information to further study on the gastrointestinal mucosal immunity of Bactrian camel.
Zhang, Jian Heng; Huo, Yuan Zi; Zhang, Zheng Long; Yu, Ke Feng; He, Qing; Zhang, Lin Hui; Yang, Li Li; Xu, Ren; He, Pei Min
2013-12-01
Since 2007, the world's largest macroalgal blooms have occurred along the coastal area of the Yellow Sea for 6 consecutive years. In 2012, shipboard surveying and satellite remote sensing were used to monitor the whole blooming process. The blooms originated in Rudong sea area of the South Yellow Sea where bloom patches were of dark green and filamentous thalli were the dominant morphology. The scale of the blooms reached its peak size in Rizhao sea area of the North Yellow Sea, and decreased promptly and became insignificant in Qingdao coast where the blooms turned yellow, mostly with air sac blades. Meanwhile, vegetative cells of the green tide algae changed into cytocysts gradually from which germ cells were released as the blooms drifted northward. Additionally, chlorophyll contents and fluorescence activity of free-floating thalli in the North Yellow Sea were both significantly lower than that in the South Yellow Sea. Those studies presented here contributed to increasing our understanding about how the green tide declined gradually in the North Yellow Sea. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Dormer, James D.; Halicek, Martin; Ma, Ling; Reilly, Carolyn M.; Schreibmann, Eduard; Fei, Baowei
2018-02-01
Cardiovascular disease is a leading cause of death in the United States. The identification of cardiac diseases on conventional three-dimensional (3D) CT can have many clinical applications. An automated method that can distinguish between healthy and diseased hearts could improve diagnostic speed and accuracy when the only modality available is conventional 3D CT. In this work, we proposed and implemented convolutional neural networks (CNNs) to identify diseased hears on CT images. Six patients with healthy hearts and six with previous cardiovascular disease events received chest CT. After the left atrium for each heart was segmented, 2D and 3D patches were created. A subset of the patches were then used to train separate convolutional neural networks using leave-one-out cross-validation of patient pairs. The results of the two neural networks were compared, with 3D patches producing the higher testing accuracy. The full list of 3D patches from the left atrium was then classified using the optimal 3D CNN model, and the receiver operating curves (ROCs) were produced. The final average area under the curve (AUC) from the ROC curves was 0.840 +/- 0.065 and the average accuracy was 78.9% +/- 5.9%. This demonstrates that the CNN-based method is capable of distinguishing healthy hearts from those with previous cardiovascular disease.
Compact Microscope Imaging System With Intelligent Controls Improved
NASA Technical Reports Server (NTRS)
McDowell, Mark
2004-01-01
The Compact Microscope Imaging System (CMIS) with intelligent controls is a diagnostic microscope analysis tool with intelligent controls for use in space, industrial, medical, and security applications. This compact miniature microscope, which can perform tasks usually reserved for conventional microscopes, has unique advantages in the fields of microscopy, biomedical research, inline process inspection, and space science. Its unique approach integrates a machine vision technique with an instrumentation and control technique that provides intelligence via the use of adaptive neural networks. The CMIS system was developed at the NASA Glenn Research Center specifically for interface detection used for colloid hard spheres experiments; biological cell detection for patch clamping, cell movement, and tracking; and detection of anode and cathode defects for laboratory samples using microscope technology.
Engineering Novel and Improved Biocatalysts by Cell Surface Display
Smith, Mason R.; Khera, Eshita; Wen, Fei
2017-01-01
Biocatalysts, especially enzymes, have the ability to catalyze reactions with high product selectivity, utilize a broad range of substrates, and maintain activity at low temperature and pressure. Therefore, they represent a renewable, environmentally friendly alternative to conventional catalysts. Most current industrial-scale chemical production processes using biocatalysts employ soluble enzymes or whole cells expressing intracellular enzymes. Cell surface display systems differ by presenting heterologous enzymes extracellularly, overcoming some of the limitations associated with enzyme purification and substrate transport. Additionally, coupled with directed evolution, cell surface display is a powerful platform for engineering enzymes with enhanced properties. In this review, we will introduce the molecular and cellular principles of cell surface display and discuss how it has been applied to engineer enzymes with improved properties as well as to develop surface-engineered microbes as whole-cell biocatalysts. PMID:29056821
Membrane properties and cell ultrastructure of taste receptor cells in Necturus lingual slices.
Bigiani, A; Kim, D J; Roper, S D
1996-05-01
1. Whole cell patch-clamp recordings and electron micrographs were obtained from cells in Necturus taste buds in lingual slices to study their membrane properties and to correlate these properties with cell ultrastructure. 2. Two different populations of taste receptor cells could be identified: one type possessed voltage-gated Na+ and K+ (noninactivating) currents (group 1 cells); the other type possessed only K+ (inactivating) currents (group 2 cells). 3. The zero-current ("resting") potential (Vo) and whole cell resistance (Ro) of these two types of taste cells differed significantly. For group 1 cells, on average, Vo = -75 mV and Ro = 24.6 G omega, and for group 2 cells, Vo = -49 mV and Ro = 48.9 G omega. The difference in Ro was not explained completely by differences in cell sizes, suggesting that intrinsic membrane properties differed between the populations. 4. Cells injected with biocytin were the electron microscope after tissues were reacted with majority (14 of 16) of cells with voltage-gated Na+ and K+ currents (group 1 cells) were characterized by abundant rough endoplasmic reticulum and dense granular packets in the apical process. These are features of dark cells. All the cells that only possessed K+ currents (group 2 cells) were characterize by well-developed smooth endoplasmic reticulum and an absence granular packets. These features characterize light cells. 5. These findings indicate that there is a good, although not exact, correlation between electrophysiological properties and cell morphotype in Necturus taste bud cells. All dark cells possessed Na+ and K+ currents and thus would be expected to be capable of generating action potentials. Most light cells only possessed outward K+ currents and thus would be incapable of generating action potentials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andreasen, Daniel, E-mail: dana@dtu.dk; Van Leemput, Koen; Hansen, Rasmus H.
Purpose: In radiotherapy (RT) based on magnetic resonance imaging (MRI) as the only modality, the information on electron density must be derived from the MRI scan by creating a so-called pseudo computed tomography (pCT). This is a nontrivial task, since the voxel-intensities in an MRI scan are not uniquely related to electron density. To solve the task, voxel-based or atlas-based models have typically been used. The voxel-based models require a specialized dual ultrashort echo time MRI sequence for bone visualization and the atlas-based models require deformable registrations of conventional MRI scans. In this study, we investigate the potential of amore » patch-based method for creating a pCT based on conventional T{sub 1}-weighted MRI scans without using deformable registrations. We compare this method against two state-of-the-art methods within the voxel-based and atlas-based categories. Methods: The data consisted of CT and MRI scans of five cranial RT patients. To compare the performance of the different methods, a nested cross validation was done to find optimal model parameters for all the methods. Voxel-wise and geometric evaluations of the pCTs were done. Furthermore, a radiologic evaluation based on water equivalent path lengths was carried out, comparing the upper hemisphere of the head in the pCT and the real CT. Finally, the dosimetric accuracy was tested and compared for a photon treatment plan. Results: The pCTs produced with the patch-based method had the best voxel-wise, geometric, and radiologic agreement with the real CT, closely followed by the atlas-based method. In terms of the dosimetric accuracy, the patch-based method had average deviations of less than 0.5% in measures related to target coverage. Conclusions: We showed that a patch-based method could generate an accurate pCT based on conventional T{sub 1}-weighted MRI sequences and without deformable registrations. In our evaluations, the method performed better than existing voxel-based and atlas-based methods and showed a promising potential for RT of the brain based only on MRI.« less
Acute effects of gentamicin on the ionic currents of semicircular canal hair cells in the frog.
Martini, Marta; Canella, Rita; Prigioni, Ivo; Russo, Giancarlo; Tavazzani, Elisa; Fesce, Riccardo; Rossi, Maria Lisa
2011-12-01
The effects of acute gentamicin application on hair cells isolated from the frog semicircular canals have been tested by using the patch-clamp technique in the whole-cell configuration. Extracellular gentamicin (1 mM) mostly affected the Ca(2+) macrocurrent, I(Ca), and the Ca-dependent K(+) current, I(KCa). The drug, applied to the hair cell basolateral membrane through a fast perfusion system, produced a rapid and relevant decrease (∼34%) of I(Ca) amplitude, without apparently affecting its activation-deactivation kinetics. The I(KCa) component of the delayed I(KD) was similarly affected: peak and steady-state mean amplitudes were significantly reduced, by about 47 and 54%, respectively, whereas the time constant of the mono-exponential current rising phase did not change. The Ca(2+) independent fraction of I(KD), I(KV), and the fast IA current were unaffected. Transduction channels (permeable to and blocked by gentamicin) are not available in the isolated hair cell, so the effect of intracellular gentamicin was tested by applying the drug through the patch pipette (1 mM in the pipette): again, it significantly reduced both I(Ca) and I(KD) amplitude, without affecting currents kinetics. IA properties were also unaffected. The drug did not affect the onset and removal of I(KD) inactivation, although the changes were scaled to the reduced I(KD) amplitude. From these observations, it is expected that hair cells exposed to gentamicin 'in vivo' become unresponsive to physiological stimulation (block of the transduction channels) and transmitter release at the cytoneural junction be drastically depressed due to reduced Ca(2+) inflow. In particular, functional impairment ensues much earlier than biochemical events that lead to hair cell apoptosis. Copyright © 2011 Elsevier B.V. All rights reserved.
Faust, Andrew C; Terpolilli, Ralph; Hughes, Darrel W
2011-01-01
Purpose. Fentanyl is available as a transdermal system for the treatment of chronic pain in opioid-tolerant patients; however, it carries a black box warning due to both the potency of the product and the potential for abuse. In this report, we describe a case of transbuccal and gastrointestinal ingestion of fentanyl patches and the management of such ingestion. Summary. A 32-year-old man was brought to the emergency department (ED) via emergency medical services for toxic ingestion and suicide attempt. The patient chewed and ingested two illegally purchased transdermal fentanyl patches. In the ED, the patient was obtunded, dizzy and drowsy. Initial vital signs showed the patient to be afebrile and normotensive with a heart rate of 63, respiratory rate of 16, and oxygen saturation of 100% on 2 liters nasal cannula after administration of 2 milligrams of intravenous naloxone. The patient was treated with whole bowel irrigation and continuous intravenous naloxone infusion for approximately 48 hours without complications. Conclusion. Despite numerous case reports describing oral ingestion of fentanyl patches, information on the management of such intoxication is lacking. We report successful management of such a case utilizing whole bowel irrigation along with intravenous push and continuous infusion naloxone.
Management of an Oral Ingestion of Transdermal Fentanyl Patches: A Case Report and Literature Review
Faust, Andrew C.; Terpolilli, Ralph; Hughes, Darrel W.
2011-01-01
Purpose. Fentanyl is available as a transdermal system for the treatment of chronic pain in opioid-tolerant patients; however, it carries a black box warning due to both the potency of the product and the potential for abuse. In this report, we describe a case of transbuccal and gastrointestinal ingestion of fentanyl patches and the management of such ingestion. Summary. A 32-year-old man was brought to the emergency department (ED) via emergency medical services for toxic ingestion and suicide attempt. The patient chewed and ingested two illegally purchased transdermal fentanyl patches. In the ED, the patient was obtunded, dizzy and drowsy. Initial vital signs showed the patient to be afebrile and normotensive with a heart rate of 63, respiratory rate of 16, and oxygen saturation of 100% on 2 liters nasal cannula after administration of 2 milligrams of intravenous naloxone. The patient was treated with whole bowel irrigation and continuous intravenous naloxone infusion for approximately 48 hours without complications. Conclusion. Despite numerous case reports describing oral ingestion of fentanyl patches, information on the management of such intoxication is lacking. We report successful management of such a case utilizing whole bowel irrigation along with intravenous push and continuous infusion naloxone. PMID:21629807
Micromolded PDMS planar electrode allows patch clamp electrical recordings from cells.
Klemic, Kathryn G; Klemic, James F; Reed, Mark A; Sigworth, Fred J
2002-06-01
The patch clamp method measures membrane currents at very high resolution when a high-resistance 'gigaseal' is established between the glass microelectrode and the cell membrane (Pflugers Arch. 391 (1981) 85; Neuron 8 (1992) 605). Here we describe the first use of the silicone elastomer, poly(dimethylsiloxane) (PDMS), for patch clamp electrodes. PDMS is an attractive material for patch clamp recordings. It has low dielectric loss and can be micromolded (Annu. Rev. Mat. Sci. 28 (1998) 153) into a shape that mimics the tip of the glass micropipette. Also, the surface chemistry of PDMS may be altered to mimic the hydrophilic nature of glass (J. Appl. Polym. Sci. 14 (1970) 2499; Annu. Rev. Mat. Sci. 28 (1998) 153), thereby allowing a high-resistance seal to a cell membrane. We present a planar electrode geometry consisting of a PDMS partition with a small aperture sealed between electrode and bath chambers. We demonstrate that a planar PDMS patch electrode, after oxidation of the elastomeric surface, permits patch clamp recording on Xenopus oocytes. Our results indicate the potential for high-throughput patch clamp recording with a planar array of PDMS electrodes.
Adachi, Daisuke; Koh, FookHee; Hama, Shinji; Ogino, Chiaki; Kondo, Akihiko
2013-05-10
To develop a robust whole-cell biocatalyst that works well at moderately high temperature (40-50°C) with organic solvents, a thermostable lipase from Geobacillus thermocatenulatus (BTL2) was introduced into an Aspergillus oryzae whole-cell biocatalyst. The lipase-hydrolytic activity of the immobilized A. oryzae (r-BTL) was highest at 50°C and was maintained even after an incubation of 24-h at 60°C. In addition, r-BTL was highly tolerant to 30% (v/v) organic solvents (dimethyl carbonate, ethanol, methanol, 2-propanol or acetone). The attractive characteristics of r-BTL also worked efficiently on palm oil methanolysis, resulting in a nearly 100% conversion at elevated temperature from 40 to 50°C. Moreover, r-BTL catalyzed methanolysis at a high methanol concentration without a significant loss of lipase activity. In particular, when 2 molar equivalents of methanol were added 2 times, a methyl ester content of more than 90% was achieved; the yield was higher than those of conventional whole-cell biocatalyst and commercial Candida antarctica lipase (Novozym 435). On the basis of the results regarding the excellent lipase characteristics and efficient biodiesel production, the developed whole-cell biocatalyst would be a promising biocatalyst in a broad range of applications including biodiesel production. Copyright © 2013 Elsevier Inc. All rights reserved.
Stimulation of the BKCa channel in cultured smooth muscle cells of human trachea by magnolol
Wu, S; Chen, C; Li, H; Lo, Y; Chen, S; Chiang, H
2002-01-01
Background: Magnolol, a compound isolated from the cortex of Magnolia officinalis, has been found to possess anti-allergic and anti-asthmatic activity. Methods: The effect of magnolol on ionic currents was studied in cultured smooth muscle cells of human trachea with the aid of the patch clamp technique. Results: In whole cell current recordings magnolol reversibly increased the amplitude of K+ outward currents. The increase in outward current caused by magnolol was sensitive to inhibition by iberiotoxin (200 nM) or paxilline (1 µM) but not by glibenclamide (10 µM). In inside out patches, magnolol added to the bath did not modify single channel conductance but effectively enhanced the activity of large conductance Ca2+ activated K+ (BKCa) channels. Magnolol increased the probability of these channel openings in a concentration dependent manner with an EC50 value of 1.5 µM. The magnolol stimulated increase in the probability of channels opening was independent of internal Ca2+. The application of magnolol also shifted the activation curve of BKCa channels to less positive membrane potentials. The change in the kinetic behaviour of BKCa channels caused by magnolol in these cells is the result of an increase in dissociation and gating constants. Conclusions: These results provide evidence that, in addition to the presence of antioxidative activity, magnolol is potent in stimulating BKCa channel activity in tracheal smooth muscle cells. The direct stimulation of these BKCa channels by magnolol may contribute to the underlying mechanism by which it acts as an anti-asthmatic compound. PMID:11809993
Wang, Yong-Jian; Shi, Xue-Ping; Meng, Xue-Feng; Wu, Xiao-Jing; Luo, Fang-Li; Yu, Fei-Hai
2016-01-01
Spatial heterogeneity in two co-variable resources such as light and water availability is common and can affect the growth of clonal plants. Several studies have tested effects of spatial heterogeneity in the supply of a single resource on competitive interactions of plants, but none has examined those of heterogeneous distribution of two co-variable resources. In a greenhouse experiment, we grew one (without intraspecific competition) or nine isolated ramets (with competition) of a rhizomatous herb Iris japonica under a homogeneous environment and four heterogeneous environments differing in patch arrangement (reciprocal and parallel patchiness of light and soil water) and patch scale (large and small patches of light and water). Intraspecific competition significantly decreased the growth of I. japonica, but at the whole container level there were no significant interaction effects of competition by spatial heterogeneity or significant effect of heterogeneity on competitive intensity. Irrespective of competition, the growth of I. japonica in the high and the low water patches did not differ significantly in the homogeneous treatments, but it was significantly larger in the high than in the low water patches in the heterogeneous treatments with large patches. For the heterogeneous treatments with small patches, the growth of I. japonica was significantly larger in the high than in the low water patches in the presence of competition, but such an effect was not significant in the absence of competition. Furthermore, patch arrangement and patch scale significantly affected competitive intensity at the patch level. Therefore, spatial heterogeneity in light and water supply can alter intraspecific competition at the patch level and such effects depend on patch arrangement and patch scale. PMID:27375630
Wang, Yong-Jian; Shi, Xue-Ping; Meng, Xue-Feng; Wu, Xiao-Jing; Luo, Fang-Li; Yu, Fei-Hai
2016-01-01
Spatial heterogeneity in two co-variable resources such as light and water availability is common and can affect the growth of clonal plants. Several studies have tested effects of spatial heterogeneity in the supply of a single resource on competitive interactions of plants, but none has examined those of heterogeneous distribution of two co-variable resources. In a greenhouse experiment, we grew one (without intraspecific competition) or nine isolated ramets (with competition) of a rhizomatous herb Iris japonica under a homogeneous environment and four heterogeneous environments differing in patch arrangement (reciprocal and parallel patchiness of light and soil water) and patch scale (large and small patches of light and water). Intraspecific competition significantly decreased the growth of I. japonica, but at the whole container level there were no significant interaction effects of competition by spatial heterogeneity or significant effect of heterogeneity on competitive intensity. Irrespective of competition, the growth of I. japonica in the high and the low water patches did not differ significantly in the homogeneous treatments, but it was significantly larger in the high than in the low water patches in the heterogeneous treatments with large patches. For the heterogeneous treatments with small patches, the growth of I. japonica was significantly larger in the high than in the low water patches in the presence of competition, but such an effect was not significant in the absence of competition. Furthermore, patch arrangement and patch scale significantly affected competitive intensity at the patch level. Therefore, spatial heterogeneity in light and water supply can alter intraspecific competition at the patch level and such effects depend on patch arrangement and patch scale.
Chen, Qin; Yim, Peter D.; Yuan, Nina; Johnson, Juliette; Cook, James M.; Smith, Steve; Ionescu-Zanetti, Cristian; Wang, Zhi-Jian; Arnold, Leggy A.
2012-01-01
Abstract Ensemble recording and microfluidic perfusion are recently introduced techniques aimed at removing the laborious nature and low recording success rates of manual patch clamp. Here, we present assay characteristics for these features integrated into one automated electrophysiology platform as applied to the study of GABAA channels. A variety of cell types and methods of GABAA channel expression were successfully studied (defined as IGABA>500 pA), including stably transfected human embryonic kidney (HEK) cells expressing α1β3γ2 GABAA channels, frozen ready-to-assay (RTA) HEK cells expressing α1β3γ2 or α3β3γ2 GABAA channels, transiently transfected HEK293T cells expressing α1β3γ2 GABAA channels, and immortalized cultures of human airway smooth muscle cells endogenously expressing GABAA channels. Current measurements were successfully studied in multiple cell types with multiple modes of channel expression in response to several classic GABAA channel agonists, antagonists, and allosteric modulators. We obtained success rates above 95% for transiently or stably transfected HEK cells and frozen RTA HEK cells expressing GABAA channels. Tissue-derived immortalized cultures of airway smooth muscle cells exhibited a slightly lower recording success rate of 75% using automated patch, which was much higher than the 5% success rate using manual patch clamp technique by the same research group. Responses to agonists, antagonists, and allosteric modulators compared well to previously reported manual patch results. The data demonstrate that both the biophysics and pharmacologic characterization of GABAA channels in a wide variety of cell formats can be performed using this automated patch clamp system. PMID:22574655
Chen, Yi-Jen; Chen, Yao-Chang; Tai, Ching-Tai; Yeh, Hung-I; Lin, Cheng-I; Chen, Shih-Ann
2006-01-01
Angiotensin II receptor blockers (AIIRBs) have been shown to prevent atrial fibrillation. The pulmonary veins (PVs) are the most important focus for the generation of atrial fibrillation. The aim of this study was to evaluate whether angiotensin II or AIIRB may change the arrhythmogenic activity of the PVs. Conventional microelectrodes and whole-cell patch clamps were used to investigate the action potentials (APs) and ionic currents in isolated rabbit PV tissue and single cardiomyocytes before and after administering angiotensin II or losartan (AIIRB). In the tissue preparations, angiotensin II induced delayed after-depolarizations (1, 10, and 100 nM) and accelerated the automatic rhythm (10 and 100 nM). Angiotensin II (100 nM) prolonged the AP duration and increased the contractile force (10 and 100 nM). Losartan (1 and 10 microM) inhibited the automatic rhythm. Losartan (10 microM) prolonged the AP duration and reduced the contractile force (1 and 10 microM). Angiotensin II reduced the transient outward potassium current (I(to)) but increased the L-type calcium, delayed rectifier potassium (I(K)), transient inward (I(ti)), pacemaker, and Na(+)-Ca(2+) exchanger (NCX) currents in the PV cardiomyocytes. Losartan decreased the I(to), I(K), I(ti), and NCX currents. In conclusion, angiotensin II and AIIRB modulate the PV electrical activity, which may play a role in the pathophysiology of atrial fibrillation.
Multi-walled carbon nanotubes suppress potassium channel activities in PC12 cells
NASA Astrophysics Data System (ADS)
Xu, Haifei; Bai, Juan; Meng, Jie; Hao, Wei; Xu, Haiyan; Cao, Ji-Min
2009-07-01
The advancement in nanotechnology has produced technological and conceptual breakthroughs but the effects nanomaterials have on organisms at the cellular level are poorly understood. Here we report that carboxyl-terminated multi-walled carbon nanotubes (MWCNTs) act as antagonists of three types of potassium channels as assessed by whole-cell patch clamp electrophysiology on undifferentiated pheochromocytoma (PC12) cells. Our results showed that carboxyl-terminated MWCNTs suppress the current densities of Ito, IK and IK1 in a time-dependent and irreversible manner. The suppressions were most distinct 24 h after incubation with MWCNTs. However, MWCNTs did not significantly change the expression levels of reactive oxygen species (ROS) or intracellular free calcium and also did not alter the mitochondrial membrane potential (ΔΨm) in PC12 cells. These results suggest that oxidative stress was not involved in the MWCNTs suppression of Ito, IK and IK1 current densities. Nonetheless, the suppression of potassium currents by MWCNTs will impact on electrical signaling of excitable cells such as neurons and muscles.
NASA Astrophysics Data System (ADS)
Harasztosi, Csaba; Gummer, Anthony W.
2011-11-01
The voltage-dependent chloride-channel blocker anthracene-9-carboxylic acid (9AC) has been found to reduce the imaginary but not the real part of the mechanical impedance of the organ of Corti, suggesting that the effective stiffness of outer hair cells (OHCs) is reduced by 9AC. To examine whether 9AC interacts directly with the motor protein prestin to reduce the membrane component of the impedance, the patch-clamp technique in whole-cell configuration was used to measure the nonlinear capacitance (NLC) of isolated OHCs and, as control, prestin-transfected human embryonic kidney 293 (HEK293) cells. Extracellular application of 9AC significantly reduced the NLC of both OHCs and HEK293 cells. Intracellular 9AC did not influence the blocking effect of the extracellular applied drug. These results suggest that 9AC interacts directly with prestin, reducing the effective stiffness of the motor, and that the interaction is extracellular.
He, Qiyang; Xia, Qianjun; Wang, Yuejiao; Li, Xun; Zhang, Yu; Hu, Bo; Wang, Fei
2016-07-28
Rhizopus chinensis cells immobilized on loofah (Luffa cylindrica) sponges were used to produce biodiesel via the transesterification of soybean oil. In whole-cell immobilization, loofah sponge is considered to be a superior alternative to conventional biomass carriers because of its biodegradable and renewable properties. During cell cultivation, Rhizopus chinensis mycelia can spontaneously and firmly adhere to the surface of loofah sponge particles. The optimal conditions for processing 9.65 g soybean oil at 40°C and 180 rpm using a 3:1 methanol-to-oil molar ratio were found to be 8% cell addition and 3-10% water content (depending on the oil's weight). Under optimal conditions, an over 90% methyl ester yield was achieved after the first reaction batch. The operational stability of immobilized Rhizopus chinensis cells was assayed utilizing a 1:1 methanol-to-oil molar ratio, thus resulting in a 16.5-fold increase in half-life when compared with immobilized cells of the widely studied Rhizopus oryzae. These results suggest that transesterification of vegetable oil using Rhizopus chinensis whole cells immobilized onto loofah sponge is an effective approach for biodiesel production.
Goniakowska-Witalińska, L; Zaccone, G; Fasulo, S; Mauceri, A; Licata, A; Youson, J
1995-01-01
Neuroendocrine (NE) cells were localized by electron microscopy and immunocytochemistry in the gill epithelium of bowfin Amia calva. The NE cells are dispersed in whole epithelium of the gill as solitary cells without intraepithelial innervation. All the observed NE cells do not reach the surface of the epithelium. The NE cells are characterized by a large nucleus with patches of condensed chromatin, numerous mitochondria, a well developed Golgi apparatus and a few dense core vesicles of various size scattered in the cytoplasm. Dense core vesicles range from 100 to 560 nm in diameter, while a clear space between the electron dense core ant the limiting membrane ranges from 20 to 240 nm. Immunocytochemical observations reveal the presence of general neuroendocrine markers such as neuro-specific enolase and bioactive substances: serotonin, leu-enkephalin and met-enkephalin. we demonstrated the presence of endothelin - for the first time in fish - and suggested a local paracrine role for the NE cells. Some ultrastructural aspects and the immunocytochemical characteristics of NE cells of bowfin gills are common with those encountered in such cells of other lower vertebrate species.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anand, S., E-mail: anand.s.krishna@gmail.com, E-mail: darak.mayur@gmail.com, E-mail: srk@nitt.edu; Darak, Mayur Sudesh, E-mail: anand.s.krishna@gmail.com, E-mail: darak.mayur@gmail.com, E-mail: srk@nitt.edu; Kumar, D. Sriram, E-mail: anand.s.krishna@gmail.com, E-mail: darak.mayur@gmail.com, E-mail: srk@nitt.edu
2014-10-15
In this paper, a fluorine-doped tin oxide based optically transparent E-shaped patch antenna is designed and its radiation performance is analyzed in the 705 – 804 GHz band. As optically transparent antennas can be mounted on optical display, they facilitate the reduction of overall system size. The proposed antenna design is simulated using electromagnetic solver - Ansys HFSS and its characteristics such as impedance bandwidth, directivity, radiation efficiency and gain are observed. Results show that the fluorine-doped tin oxide based optically transparent patch antenna overcomes the conventional patch antenna limitations and thus the same can be used for solar cellmore » antenna used in satellite systems.« less
ω-Conotoxin GVIA Mimetics that Bind and Inhibit Neuronal Cav2.2 Ion Channels
Tranberg, Charlotte Elisabet; Yang, Aijun; Vette, Irina; McArthur, Jeffrey R.; Baell, Jonathan B.; Lewis, Richard J.; Tuck, Kellie L.; Duggan, Peter J.
2012-01-01
The neuronal voltage-gated N-type calcium channel (Cav2.2) is a validated target for the treatment of neuropathic pain. A small library of anthranilamide-derived ω-Conotoxin GVIA mimetics bearing the diphenylmethylpiperazine moiety were prepared and tested using three experimental measures of calcium channel blockade. These consisted of a 125I-ω-conotoxin GVIA displacement assay, a fluorescence-based calcium response assay with SH-SY5Y neuroblastoma cells, and a whole-cell patch clamp electrophysiology assay with HEK293 cells stably expressing human Cav2.2 channels. A subset of compounds were active in all three assays. This is the first time that compounds designed to be mimics of ω-conotoxin GVIA and found to be active in the 125I-ω-conotoxin GVIA displacement assay have also been shown to block functional ion channels in a dose-dependent manner. PMID:23170089
Synchronization of action potentials during low-magnesium-induced bursting
Johnson, Sarah E.; Hudson, John L.
2015-01-01
The relationship between mono- and polysynaptic strength and action potential synchronization was explored using a reduced external Mg2+ model. Single and dual whole cell patch-clamp recordings were performed in hippocampal cultures in three concentrations of external Mg2+. In decreased Mg2+ medium, the individual cells transitioned to spontaneous bursting behavior. In lowered Mg2+ media the larger excitatory synaptic events were observed more frequently and fewer transmission failures occurred, suggesting strengthened synaptic transmission. The event synchronization was calculated for the neural action potentials of the cell pairs, and it increased in media where Mg2+ concentration was lowered. Analysis of surrogate data where bursting was present, but no direct or indirect connections existed between the neurons, showed minimal action potential synchronization. This suggests the synchronization of action potentials is a product of the strengthening synaptic connections within neuronal networks. PMID:25609103
Synchronization of action potentials during low-magnesium-induced bursting.
Johnson, Sarah E; Hudson, John L; Kapur, Jaideep
2015-04-01
The relationship between mono- and polysynaptic strength and action potential synchronization was explored using a reduced external Mg(2+) model. Single and dual whole cell patch-clamp recordings were performed in hippocampal cultures in three concentrations of external Mg(2+). In decreased Mg(2+) medium, the individual cells transitioned to spontaneous bursting behavior. In lowered Mg(2+) media the larger excitatory synaptic events were observed more frequently and fewer transmission failures occurred, suggesting strengthened synaptic transmission. The event synchronization was calculated for the neural action potentials of the cell pairs, and it increased in media where Mg(2+) concentration was lowered. Analysis of surrogate data where bursting was present, but no direct or indirect connections existed between the neurons, showed minimal action potential synchronization. This suggests the synchronization of action potentials is a product of the strengthening synaptic connections within neuronal networks. Copyright © 2015 the American Physiological Society.
Chan, Chu-Fang; Kuo, Tzu-Wei; Weng, Ju-Yun; Lin, Yen-Chu; Chen, Ting-Yu; Cheng, Jen-Kun; Lien, Cheng-Chang
2013-01-01
Glutamatergic transmission onto oligodendrocyte precursor cells (OPCs) may regulate OPC proliferation, migration and differentiation. Dendritic integration of excitatory postsynaptic potentials (EPSPs) is critical for neuronal functions, and mechanisms regulating dendritic propagation and summation of EPSPs are well understood. However, little is known about EPSP attenuation and integration in OPCs. We developed realistic OPC models for synaptic integration, based on passive membrane responses of OPCs obtained by simultaneous dual whole-cell patch-pipette recordings. Compared with neurons, OPCs have a very low value of membrane resistivity, which is largely mediated by Ba2+- and bupivacaine-sensitive background K+ conductances. The very low membrane resistivity not only leads to rapid EPSP attenuation along OPC processes but also sharpens EPSPs and narrows the temporal window for EPSP summation. Thus, background K+ conductances regulate synaptic responses and integration in OPCs, thereby affecting activity-dependent neuronal control of OPC development and function. PMID:23940377
Assembly and Function of the Actin Cytoskeleton of Yeast: Relationships between Cables and Patches
Karpova, Tatiana S.; McNally, James G.; Moltz, Samuel L.; Cooper, John A.
1998-01-01
Actin in eukaryotic cells is found in different pools, with filaments being organized into a variety of supramolecular assemblies. To investigate the assembly and functional relationships between different parts of the actin cytoskeleton in one cell, we studied the morphology and dynamics of cables and patches in yeast. The fine structure of actin cables and the manner in which cables disassemble support a model in which cables are composed of a number of overlapping actin filaments. No evidence for intrinsic polarity of cables was found. To investigate to what extent different parts of the actin cytoskeleton depend on each other, we looked for relationships between cables and patches. Patches and cables were often associated, and their polarized distributions were highly correlated. Therefore, patches and cables do appear to depend on each other for assembly and function. Many cell types show rearrangements of the actin cytoskeleton, which can occur via assembly or movement of actin filaments. In our studies, dramatic changes in actin polarization did not include changes in filamentous actin. In addition, the concentration of actin patches was relatively constant as cells grew. Therefore, cells do not have bursts of activity in which new parts of the actin cytoskeleton are created. PMID:9744880
Takahashi, Kei; Toyota, Taro
2015-01-01
The cytosol of amoeba cells controls the membrane deformation during their motion in vivo. To investigate such ability of the cytosol of amoeba cell, Dictyostelium discoideum (Dictyostelium), in vitro, we used lipids extracted from Dictyostelium and commercially available phospholipids, and prepared substrate-supported lipid membrane patches on the micrometer scale by spin coating. We found that the spin coater holder, which has pores (pore size = 3.1 mm) of negative pressure to hold the cover glass induced the concave surface of the cover glass. The membrane lipid patches were formed at each position in the vicinity of the holder pores and their sizes were in the range of 2.7 to 3.2 × 10(4) μm(2). After addition of the cytosol extracted from Dictyostelium to the lipid membrane patches, through time-lapse observation with a confocal laser scanning fluorescence microscope, we observed an autonomous buckling of the Dictyostelium lipid patches and localized behaviours of proteins found within. The current method serves as the novel technique for the preparation of film patches in which the positions of patches are controlled by the holder pores without fabricating, modifying, and arranging the chemical properties of the solution components of lipids. The findings imply that lipid-binding proteins in the cytosol were adsorbed and accumulated within the Dictyostelium lipid patches, inducing the transformation of the cell-sized patch.
Fraser, Kathleen; Abbas, Mariam; Hull, Peter R
2014-01-01
We previously demonstrated that repeated intradermal steroid injections administered at weekly intervals into positive patch-test sites induce hyposensitization and desensitization. To examine changes in CD4CD25CD127lo/ regulatory T cells during the attenuation of the patch-test response. Ten patients with known allergic contact dermatitis were patch tested weekly for 10 weeks. The patch-test site was injected intradermally with 2 mg triamcinolone. At weeks 1 and 7, a biopsy was performed on the patch-test site in 6 patients, and flow cytometry was performed assessing CD4CD25CD127lo/ regulatory T cells. Secondary outcomes were clinical score, reaction size, erythema, and temperature. Statistical analysis included regression, correlation, and repeated-measures analysis of variance. The percentage of CD4CD25CD127lo/ regulatory T cells, measured by flow cytometry, increased from week 1 to week 7 by an average of 19.2%. The average grade of patch-test reaction decreased from +++ (vesicular reaction) to ++ (palpable erythema). The mean drop in temperature following treatment was 0.28°C per week. The mean area decreased 8.6 mm/wk over 10 weeks. Intradermal steroid injections of weekly patch-test reactions resulted in hyposensitization of the allergic contact dermatitis reaction. CD4CD25CD127lo/ regulatory T cells showed a tendency to increase; however, further studies are needed to determine if this is significant.
Li, Jun; Zhu, Kai; Yang, Shan; Wang, Yulin; Guo, Changfa; Yin, Kanhua; Wang, Chunsheng; Lai, Hao
2015-05-01
Bone marrow mesenchymal stem cells (BMSCs), tissue-engineered cardiac patch, and therapeutic gene have all been proposed as promising therapy strategies for cardiac repair after myocardial infarction. In our study, BMSCs were modified with insulin-like growth factor-1 (IGF-1) gene, loaded into a fibrin patch, and then transplanted into a porcine model of ischemia/reperfusion (I/R) myocardium injury. The results demonstrated that IGF-1 gene overexpression could promote proliferation of endothelial cells and cardiomyocyte-like differentiation of BMSCs in vitro. Four weeks after transplantation of fibrin patch loaded with gene-modified BMSCs, IGF-1 overexpression could successfully promote angiogenesis, inhibit remodeling, increase grafted cell survival and reduce apoptosis. In conclusion, the integrated strategy, which combined fibrin patch with IGF-1 gene modified BMSCs, could promote the histological cardiac repair for a clinically relevant porcine model of I/R myocardium injury. © 2015 by the Society for Experimental Biology and Medicine.
Development of a self-stressing NiTiNb shape memory alloy (SMA)/fiber reinforced polymer (FRP) patch
NASA Astrophysics Data System (ADS)
El-Tahan, M.; Dawood, M.; Song, G.
2015-06-01
The objective of this research is to develop a self-stressing patch using a combination of shape memory alloys (SMAs) and fiber reinforced polymer (FRP) composites. Prestressed carbon FRP patches are emerging as a promising alternative to traditional methods to repair cracked steel structures and civil infrastructure. However, prestressing these patches typically requires heavy and complex fixtures, which is impractical in many applications. This paper presents a new approach in which the prestressing force is applied by restraining the shape memory effect of NiTiNb SMA wires. The wires are subsequently embedded in an FRP overlay patch. This method overcomes the practical challenges associated with conventional prestressing. This paper presents the conceptual development of the self-stressing patch with the support of experimental observations. The bond between the SMA wires and the FRP is evaluated using pull-out tests. The paper concludes with an experimental study that evaluates the patch response during activation subsequent monotonic tensile loading. The results demonstrate that the self-stressing patch with NiTiNb SMA is capable of generating a significant prestressing force with minimal tool and labor requirements.
Polonchuk, Liudmila
2014-01-01
Patch-clamping is a powerful technique for investigating the ion channel function and regulation. However, its low throughput hampered profiling of large compound series in early drug development. Fortunately, automation has revolutionized the area of experimental electrophysiology over the past decade. Whereas the first automated patch-clamp instruments using the planar patch-clamp technology demonstrated rather a moderate throughput, few second-generation automated platforms recently launched by various companies have significantly increased ability to form a high number of high-resistance seals. Among them is SyncroPatch(®) 96 (Nanion Technologies GmbH, Munich, Germany), a fully automated giga-seal patch-clamp system with the highest throughput on the market. By recording from up to 96 cells simultaneously, the SyncroPatch(®) 96 allows to substantially increase throughput without compromising data quality. This chapter describes features of the innovative automated electrophysiology system and protocols used for a successful transfer of the established hERG assay to this high-throughput automated platform.
Natarajan, A; Molnar, P; Sieverdes, K; Jamshidi, A; Hickman, J J
2006-04-01
The threat of environmental pollution, biological warfare agent dissemination and new diseases in recent decades has increased research into cell-based biosensors. The creation of this class of sensors could specifically aid the detection of toxic chemicals and their effects in the environment, such as pyrethroid pesticides. Pyrethroids are synthetic pesticides that have been used increasingly over the last decade to replace other pesticides like DDT. In this study we used a high-throughput method to detect pyrethroids by using multielectrode extracellular recordings from cardiac cells. The data from this cell-electrode hybrid system was compared to published results obtained with patch-clamp electrophysiology and also used as an alternative method to further understand pyrethroid effects. Our biosensor consisted of a confluent monolayer of cardiac myocytes cultured on microelectrode arrays (MEA) composed of 60 substrate-integrated electrodes. Spontaneous activity of these beating cells produced extracellular field potentials in the range of 100 microV to nearly 1200 microV with a beating frequency of 0.5-4 Hz. All of the tested pyrethroids; alpha-Cypermethrin, Tetramethrin and Tefluthrin, produced similar changes in the electrophysiological properties of the cardiac myocytes, namely reduced beating frequency and amplitude. The sensitivity of our toxin detection method was comparable to earlier patch-clamp studies, which indicates that, in specific applications, high-throughput extracellular methods can replace single-cell studies. Moreover, the similar effect of all three pyrethroids on the measured parameters suggests, that not only detection of the toxins but, their classification might also be possible with this method. Overall our results support the idea that whole cell biosensors might be viable alternatives when compared to current toxin detection methods.
Intrinsic and synaptic properties of vertical cells of the mouse dorsal cochlear nucleus
Kuo, Sidney P.; Lu, Hsin-Wei
2012-01-01
Multiple classes of inhibitory interneurons shape the activity of principal neurons of the dorsal cochlear nucleus (DCN), a primary target of auditory nerve fibers in the mammalian brain stem. Feedforward inhibition mediated by glycinergic vertical cells (also termed tuberculoventral or corn cells) is thought to contribute importantly to the sound-evoked response properties of principal neurons, but the cellular and synaptic properties that determine how vertical cells function are unclear. We used transgenic mice in which glycinergic neurons express green fluorescent protein (GFP) to target vertical cells for whole cell patch-clamp recordings in acute slices of DCN. We found that vertical cells express diverse intrinsic spiking properties and could fire action potentials at high, sustained spiking rates. Using paired recordings, we directly examined synapses made by vertical cells onto fusiform cells, a primary DCN principal cell type. Vertical cell synapses produced unexpectedly small-amplitude unitary currents in fusiform cells, and additional experiments indicated that multiple vertical cells must be simultaneously active to inhibit fusiform cell spike output. Paired recordings also revealed that a major source of inhibition to vertical cells comes from other vertical cells. PMID:22572947
[Low extracellular pH increases the persistent sodium current in guinea pig ventricular myocytes].
Ma, Ji-Hua; Luo, An-Tao; Wang, Wei-Ping; Zhang, Pei-Hua
2007-04-25
Whole-cell and cell-attached patch-clamp techniques were used to record the changes of persistent sodium current (I(Na.P)) in ventricular myocytes of guinea pig to investigate the effect of low extracellular pH on I(Na.P) and its mechanism. The results showed that low extracellular pH (7.0, 6.8 and 6.5) obviously increased the amplitude of whole-cell I(Na.P) in a [H(+)] concentration-dependent manner. Under the condition of extracellular pH 6.5, I(Na.P) was markedly augmented from control (pH 7.4) value of (0.347+/-0.067) pA/pF to (0.817+/- 0.137) pA/pF (P<0.01, n=6), whereas the reducing agent dithiothreitiol (DTT, 1 mmol/L) reversed the increased IN(Na.P) from (0.817+/-0.137) pA/pF to (0.233+/-0.078) pA/pF (P<0.01 vs pH 6.5, n=6). Decreasing extracellular pH to 6.5 also increased the persistent sodium channel activity in cell-attached patches. The mean open probability and mean open time were increased from control value of 0.021+/-0.007 and (0.899+/-0.074) ms to 0.205+/-0.023 and (1.593+/-0.158) ms, respectively (both P<0.01, n=6), and such enhancement was reversed by application of 1 mmol/L DTT [to 0.019+/-0.005 and (0.868+/-0.190) ms, both P<0.01 vs pH 6.5, n=6]. Furthermore, protein kinase C (PKC) inhibitor bisindolylmaleimide (BIM, 5 micromol/L) reduced the enhanced mean open probability and mean open time at pH 6.5 from 0.214+/-0.024 and (1.634+/-0.137) ms to 0.025+/-0.006 and (0.914+/-0.070) ms, respectively (both P<0.01 vs pH 6.5, n=6). The results demonstrate that low extracellular pH markedly increases I(Na.P) in guinea pig ventricular myocytes, in which activation of PKC may be involved.
Modulation of K(Ca)3.1 channels by eicosanoids, omega-3 fatty acids, and molecular determinants.
Kacik, Michael; Oliván-Viguera, Aida; Köhler, Ralf
2014-01-01
Cytochrome P450- and ω-hydrolase products (epoxyeicosatrienoic acids (EETs), hydroxyeicosatetraeonic acid (20-HETE)), natural omega-3 fatty acids (ω3), and pentacyclic triterpenes have been proposed to contribute to a wide range of vaso-protective and anti-fibrotic/anti-cancer signaling pathways including the modulation of membrane ion channels. Here we studied the modulation of intermediate-conductance Ca(2+)/calmodulin-regulated K(+) channels (K(Ca)3.1) by EETs, 20-HETE, ω3, and pentacyclic triterpenes and the structural requirements of these fatty acids to exert channel blockade. We studied modulation of cloned human hK(Ca)3.1 and the mutant hK(Ca)3.1(V275A) in HEK-293 cells, of rK(Ca)3.1 in aortic endothelial cells, and of mK(Ca)3.1 in 3T3-fibroblasts by inside-out and whole-cell patch-clamp experiments, respectively. In inside-out patches, Ca(2+)-activated hK(Ca)3.1 were inhibited by the ω3, DHA and α-LA, and the ω6, AA, in the lower µmolar range and with similar potencies. 5,6-EET, 8,9-EET, 5,6-DiHETE, and saturated arachidic acid, had no appreciable effects. In contrast, 14,15-EET, its stable derivative, 14,15-EEZE, and 20-HETE produced channel inhibition. 11,12-EET displayed less inhibitory activity. The K(Ca)3.1(V275A) mutant channel was insensitive to any of the blocking EETs. Non-blocking 5,6-EET antagonized the inhibition caused by AA and augmented cloned hK(Ca)3.1 and rK(Ca)3.1 whole-cell currents. Pentacyclic triterpenes did not modulate K(Ca)3.1 currents. Inhibition of K(Ca)3.1 by EETs (14,15-EET), 20-HETE, and ω3 critically depended on the presence of electron double bonds and hydrophobicity within the 10 carbons preceding the carboxyl-head of the molecules. From the physiological perspective, metabolism of AA to non-blocking 5,6,- and 8,9-EET may cause AA-de-blockade and contribute to cellular signal transduction processes influenced by these fatty acids.
Lightness of an object under two illumination levels.
Zdravković, Suncica; Economou, Elias; Gilchrist, Alan
2006-01-01
Anchoring theory (Gilchrist et al, 1999 Psychological Review 106 795-834) predicts a wide range of lightness errors, including failures of constancy in multi-illumination scenes and a long list of well-known lightness illusions seen under homogeneous illumination. Lightness values are computed both locally and globally and then averaged together. Local values are computed within a given region of homogeneous illumination. Thus, for an object that extends through two different illumination levels, anchoring theory produces two values, one for the patch in brighter illumination and one for the patch in dimmer illumination. Observers can give matches for these patches separately, but they can also give a single match for the whole object. Anchoring theory in its current form is unable to predict these object matches. We report eight experiments in which we studied the relationship between patch matches and object matches. The results show that the object match represents a compromise between the match for the patch in the field of highest illumination and the patch in the largest field of illumination. These two principles are parallel to the rules found for anchoring lightness: highest luminance rule and area rule.
[Dynamic changes of landscape pattern during desertification in Duolun County of Inner Mongolia].
Aruhan; Yang, Chi
2007-11-01
By using landscape analyzing software Fragstats 3.3 and the interpretation results of remote-sensing images of 1960, 1975, 1987, 1995, 2000 and 2005, this paper analyzed the dynamic changes of landscape pattern during the desertification in Duolun County of Inner Mongolia in 1960-2005. The results showed that in 1960-1995, the desertification area appeared a tendency of increasing first and decreasing then, with a total increase of 212.7 km2. The numbers of desertification landscape patches decreased after an initial increase, landscape diversity and evenness increased, and the shapes of light-, moderate-, and heavy desertification patches tended to be simplex. From 1995 to 2005, the numbers of desertification patches increased greatly, landscape diversity and evenness decreased, and the shapes of light-, moderate-, and heavy desertification patches tended to be complex. Since 1960, the shapes of severe desertification patches had been inclined to complication. In the study period, the whole desertification landscape showed a trend of integrity-broken-integrity-broken, and the broken degree of the patch types of desertification landscape was gradually from light down to severe.
Living cardiac patch: the elixir for cardiac regeneration.
Lakshmanan, Rajesh; Krishnan, Uma Maheswari; Sethuraman, Swaminathan
2012-12-01
A thorough understanding of the cellular and muscle fiber orientation in left ventricular cardiac tissue is of paramount importance for the generation of artificial cardiac patches to treat the ischemic myocardium. The major challenge faced during cardiac patch engineering is to choose a perfect combination of three entities; cells, scaffolds and signaling molecules comprising the tissue engineering triad for repair and regeneration. This review provides an overview of various scaffold materials, their mechanical properties and fabrication methods utilized in cardiac patch engineering. Stem cell therapies in clinical trials and the commercially available cardiac patch materials were summarized in an attempt to provide a recent perspective in the treatment of heart failure. Various tissue engineering strategies employed thus far to construct viable thick cardiac patches is schematically illustrated. Though many strategies have been proposed for fabrication of various cardiac scaffold materials, the stage and severity of the disease condition demands the incorporation of additional cues in a suitable scaffold material. The scaffold may be nanofibrous patch, hydrogel or custom designed films. Integration of stem cells and biomolecular cues along with the scaffold may provide the right microenvironment for the repair of unhealthy left ventricular tissue as well as promote its regeneration.
A procedure of landscape services assessment based on mosaics of patches and boundaries.
Martín de Agar, Pilar; Ortega, Marta; de Pablo, Carlos L
2016-09-15
We develop a procedure for assessing the environmental value of landscape mosaics that simultaneously considers the values of land use patches and the values of the boundaries between them. These boundaries indicate the ecological interactions between the patches. A landscape mosaic is defined as a set of patches and the boundaries between them and corresponds to a spatial pattern of ecological interactions. The procedure is performed in two steps: (i) an environmental assessment of land use patches by means of a function that integrates values based on the goods and services the patches provide, and (ii) an environmental valuation of mosaics using a function that integrates the environmental values of their patches and the types and frequencies of the boundaries between them. This procedure allows us to measure how changes in land uses or in their spatial arrangement cause variations in the environmental value of landscape mosaics and therefore in that of the whole landscape. The procedure was tested in the Sierra Norte of Madrid (central Spain). The results show that the environmental values of the landscape depend not only on the land use patches but also on the values associated with the pattern of the boundaries within the mosaics. The results also highlight the importance of the boundaries between land use patches as determinants of the goods and services provided by the landscape. Copyright © 2016 Elsevier Ltd. All rights reserved.
Aouadi, Souha; Vasic, Ana; Paloor, Satheesh; Torfeh, Tarraf; McGarry, Maeve; Petric, Primoz; Riyas, Mohamed; Hammoud, Rabih; Al-Hammadi, Noora
2017-10-01
To create a synthetic CT (sCT) from conventional brain MRI using a patch-based method for MRI-only radiotherapy planning and verification. Conventional T1 and T2-weighted MRI and CT datasets from 13 patients who underwent brain radiotherapy were included in a retrospective study whereas 6 patients were tested prospectively. A new contribution to the Non-local Means Patch-Based Method (NMPBM) framework was done with the use of novel multi-scale and dual-contrast patches. Furthermore, the training dataset was improved by pre-selecting the closest database patients to the target patient for computation time/accuracy balance. sCT and derived DRRs were assessed visually and quantitatively. VMAT planning was performed on CT and sCT for hypothetical PTVs in homogeneous and heterogeneous regions. Dosimetric analysis was done by comparing Dose Volume Histogram (DVH) parameters of PTVs and organs at risk (OARs). Positional accuracy of MRI-only image-guided radiation therapy based on CBCT or kV images was evaluated. The retrospective (respectively prospective) evaluation of the proposed Multi-scale and Dual-contrast Patch-Based Method (MDPBM) gave a mean absolute error MAE=99.69±11.07HU (98.95±8.35HU), and a Dice in bones DI bone =83±0.03 (0.82±0.03). Good agreement with conventional planning techniques was obtained; the highest percentage of DVH metric deviations was 0.43% (0.53%) for PTVs and 0.59% (0.75%) for OARs. The accuracy of sCT/CBCT or DRR sCT /kV images registration parameters was <2mm and <2°. Improvements with MDPBM, compared to NMPBM, were significant. We presented a novel method for sCT generation from T1 and T2-weighted MRI potentially suitable for MRI-only external beam radiotherapy in brain sites. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Rossi, Francesca; Matteini, Paolo; Ratto, Fulvio; Pini, Roberto; Iacoangeli, Maurizio; Giannoni, Luca; Fortuna, Damiano; Di Cicco, Emiliano; Corbara, Sylwia; Dallari, Stefano
2014-05-01
Laser bonding is a promising minimally invasive approach, emerging as a valid alternative to conventional suturing techniques. It shows widely demonstrated advantages in wound treatment: immediate closuring effect, minimal inflammatory response and scar formation, reduced healing time. This laser based technique can overcome the difficulties in working through narrow surgical corridors (e.g. the modern "key-hole" surgery as well as the endoscopy setting) or in thin tissues that are impossible to treat with staples and/or stitches. We recently proposed the use of chitosan matrices, stained with conventional chromophores, to be used in laser bonding of vascular tissue. In this work we propose the same procedure to perform laser bonding of vocal folds and dura mater repair. Laser bonding of vocal folds is proposed to avoid the development of adhesions (synechiae), after conventional or CO2 laser surgery. Laser bonding application in neurosurgery is proposed for the treatment of dural defects being the Cerebro Spinal Fluid leaks still a major issue. Vocal folds and dura mater were harvested from 9-months old porks and used in the experimental sessions within 4 hours after sacrifice. In vocal folds treatment, an IdocyanineGreen-infused chitosan patch was applied onto the anterior commissure, while the dura mater was previously incised and then bonded. A diode laser emitting at 810 nm, equipped with a 600 μm diameter optical fiber was used to weld the patch onto the tissue, by delivering single laser spots to induce local patch/tissue adhesion. The result is an immediate adhesion of the patch to the tissue. Standard histology was performed, in order to study the induced photothermal effect at the bonding sites. This preliminary experimental activity shows the advantages of the proposed technique in respect to standard surgery: simplification of the procedure; decreased foreign-body reaction; reduced inflammatory response; reduced operating times and better handling in depth.
Lonchamp, Etienne; Dupont, Jean-Luc; Wioland, Laetitia; Courjaret, Raphaël; Mbebi-Liegeois, Corinne; Jover, Emmanuel; Doussau, Frédéric; Popoff, Michel R; Bossu, Jean-Louis; de Barry, Jean; Poulain, Bernard
2010-09-30
Epsilon toxin (ET) produced by C. perfringens types B and D is a highly potent pore-forming toxin. ET-intoxicated animals express severe neurological disorders that are thought to result from the formation of vasogenic brain edemas and indirect neuronal excitotoxicity. The cerebellum is a predilection site for ET damage. ET has been proposed to bind to glial cells such as astrocytes and oligodendrocytes. However, the possibility that ET binds and attacks the neurons remains an open question. Using specific anti-ET mouse polyclonal antibodies and mouse brain slices preincubated with ET, we found that several brain structures were labeled, the cerebellum being a prominent one. In cerebellar slices, we analyzed the co-staining of ET with specific cell markers, and found that ET binds to the cell body of granule cells, oligodendrocytes, but not astrocytes or nerve endings. Identification of granule cells as neuronal ET targets was confirmed by the observation that ET induced intracellular Ca(2+) rises and glutamate release in primary cultures of granule cells. In cultured cerebellar slices, whole cell patch-clamp recordings of synaptic currents in Purkinje cells revealed that ET greatly stimulates both spontaneous excitatory and inhibitory activities. However, pharmacological dissection of these effects indicated that they were only a result of an increased granule cell firing activity and did not involve a direct action of the toxin on glutamatergic nerve terminals or inhibitory interneurons. Patch-clamp recordings of granule cell somata showed that ET causes a decrease in neuronal membrane resistance associated with pore-opening and depolarization of the neuronal membrane, which subsequently lead to the firing of the neuronal network and stimulation of glutamate release. This work demonstrates that a subset of neurons can be directly targeted by ET, suggesting that part of ET-induced neuronal damage observed in neuronal tissue is due to a direct effect of ET on neurons.
Lonchamp, Etienne; Dupont, Jean-Luc; Wioland, Laetitia; Courjaret, Raphaël; Mbebi-Liegeois, Corinne; Jover, Emmanuel; Doussau, Frédéric; Popoff, Michel R.; Bossu, Jean-Louis; de Barry, Jean; Poulain, Bernard
2010-01-01
Epsilon toxin (ET) produced by C. perfringens types B and D is a highly potent pore-forming toxin. ET-intoxicated animals express severe neurological disorders that are thought to result from the formation of vasogenic brain edemas and indirect neuronal excitotoxicity. The cerebellum is a predilection site for ET damage. ET has been proposed to bind to glial cells such as astrocytes and oligodendrocytes. However, the possibility that ET binds and attacks the neurons remains an open question. Using specific anti-ET mouse polyclonal antibodies and mouse brain slices preincubated with ET, we found that several brain structures were labeled, the cerebellum being a prominent one. In cerebellar slices, we analyzed the co-staining of ET with specific cell markers, and found that ET binds to the cell body of granule cells, oligodendrocytes, but not astrocytes or nerve endings. Identification of granule cells as neuronal ET targets was confirmed by the observation that ET induced intracellular Ca2+ rises and glutamate release in primary cultures of granule cells. In cultured cerebellar slices, whole cell patch-clamp recordings of synaptic currents in Purkinje cells revealed that ET greatly stimulates both spontaneous excitatory and inhibitory activities. However, pharmacological dissection of these effects indicated that they were only a result of an increased granule cell firing activity and did not involve a direct action of the toxin on glutamatergic nerve terminals or inhibitory interneurons. Patch-clamp recordings of granule cell somata showed that ET causes a decrease in neuronal membrane resistance associated with pore-opening and depolarization of the neuronal membrane, which subsequently lead to the firing of the neuronal network and stimulation of glutamate release. This work demonstrates that a subset of neurons can be directly targeted by ET, suggesting that part of ET-induced neuronal damage observed in neuronal tissue is due to a direct effect of ET on neurons. PMID:20941361
Ravindranath, T; Al-Ghoul, W; Namak, S; Fazal, N; Durazo-Arvizu, R; Choudhry, M; Sayeed, M M
2001-12-01
To evaluate the effect of burn injury with and without an Escherichia coliseptic complication on T-cell proliferation, interleukin-2 production, and Ca(2+) signaling responses in intestinal Peyer's patch and splenic T cells. Prospective, randomized, sham-controlled animal study. University medical center research laboratory. Adult male Sprague-Dawley rats. Rats were subjected to a 30% total body surface area, full skin thickness burn. Infection in rats was induced via intraperitoneal inoculation of E. coli, 10(9) colony forming units/kg, with or without a prior burn. Rat Peyer's patch and splenic T lymphocytes were isolated by using a nylon wool cell purification protocol. T-cell proliferation, interleukin-2 production, and Ca(2+) signaling responses were measured after stimulation of cells with the mitogen, concanavalin A. T-cell proliferation was determined by measuring incorporation of (3)H-thymidine into T-cell cultures. Interleukin-2 production by T-cell cultures was measured by using enzyme-linked immunosorbent assay. Intracellular T-cell Ca2(+ )concentration, [Ca(2+)](i), was measured by the use of Ca(2+)-specific fluorescent label, fura-2, and its fluorometric quantification. [Ca(2+)](i) was also evaluated by the use of digital video imaging of fura-2 loaded individual T cells. T-cell proliferation and interleukin-2 production were suppressed substantially in both Peyer's patch and splenic T cells 3 days after either the initial burn alone or burn followed by the E. coli inoculation at 24 hrs after the initial burn. There seemed to be no demonstrable additive effects of E. coli infection on the effects produced by burn injury alone. The T-cell proliferation and interleukin-2 production suppressions with burn or burn-plus-infection insults were correlated with attenuated Ca(2+) signaling. E. coli infection alone suppressed T-cell proliferation in Peyer's patch but not in splenic T cells at 2 days postbacterial inoculation; E. coli infection had no effect on Peyer's patch or splenic T cells at 1 day postinjury. On the other hand, burn injury alone caused a substantial T-cell proliferative suppression at 2 days postburn in both Peyer's patch and splenic cells and a significant suppression in T-cell proliferation on day 1 postburn in Peyer's patch but not in the spleen. An initial burn injury suppressed T-cell proliferation at a level that it would not be further affected by a subsequent infection even if the infection by itself has the potential of suppressing T-cell proliferation. An earlier onset of T-cell suppression in Peyer's patch cells than in the spleen with burn could be attributable to an initial hypoperfusion-related intestinal mucosal tissue injury. Overall, our study supports the concept that burn injury per se can significantly suppress T-cell mediated immunity and that the intestine is an early tissue site of such suppression.
Permeation and gating properties of the L-type calcium channel in mouse pancreatic beta cells
1993-01-01
Ba2+ currents through L-type Ca2+ channels were recorded from cell- attached patches on mouse pancreatic beta cells. In 10 mM Ba2+, single- channel currents were recorded at -70 mV, the beta cell resting membrane potential. This suggests that Ca2+ influx at negative membrane potentials may contribute to the resting intracellular Ca2+ concentration and thus to basal insulin release. Increasing external Ba2+ increased the single-channel current amplitude and shifted the current-voltage relation to more positive potentials. This voltage shift could be modeled by assuming that divalent cations both screen and bind to surface charges located at the channel mouth. The single- channel conductance was related to the bulk Ba2+ concentration by a Langmuir isotherm with a dissociation constant (Kd(gamma)) of 5.5 mM and a maximum single-channel conductance (gamma max) of 22 pS. A closer fit to the data was obtained when the barium concentration at the membrane surface was used (Kd(gamma) = 200 mM and gamma max = 47 pS), which suggests that saturation of the concentration-conductance curve may be due to saturation of the surface Ba2+ concentration. Increasing external Ba2+ also shifted the voltage dependence of ensemble currents to positive potentials, consistent with Ba2+ screening and binding to membrane surface charge associated with gating. Ensemble currents recorded with 10 mM Ca2+ activated at more positive potentials than in 10 mM Ba2+, suggesting that external Ca2+ binds more tightly to membrane surface charge associated with gating. The perforated-patch technique was used to record whole-cell currents flowing through L-type Ca2+ channels. Inward currents in 10 mM Ba2+ had a similar voltage dependence to those recorded at a physiological Ca2+ concentration (2.6 mM). BAY-K 8644 (1 microM) increased the amplitude of the ensemble and whole-cell currents but did not alter their voltage dependence. Our results suggest that the high divalent cation solutions usually used to record single L-type Ca2+ channel activity produce a positive shift in the voltage dependence of activation (approximately 32 mV in 100 mM Ba2+). PMID:7687645
Carey, John B.; Pearson, Frances E.; Vrdoljak, Anto; McGrath, Marie G.; Crean, Abina M.; Walsh, Patrick T.; Doody, Timothy; O'Mahony, Conor; Hill, Adrian V. S.; Moore, Anne C.
2011-01-01
Background Vaccine delivery into the skin has received renewed interest due to ease of access to the immune system and microvasculature, however the stratum corneum (SC), must be breached for successful vaccination. This has been achieved by removing the SC by abrasion or scarification or by delivering the vaccine intradermally (ID) with traditional needle-and-syringes or with long microneedle devices. Microneedle patch-based transdermal vaccine studies have predominantly focused on antibody induction by inactivated or subunit vaccines. Here, our principal aim is to determine if the design of a microneedle patch affects the CD8+ T cell responses to a malaria antigen induced by a live vaccine. Methodology and Findings Recombinant modified vaccinia virus Ankara (MVA) expressing a malaria antigen was percutaneously administered to mice using a range of silicon microneedle patches, termed ImmuPatch, that differed in microneedle height, density, patch area and total pore volume. We demonstrate that microneedle arrays that have small total pore volumes induce a significantly greater proportion of central memory T cells that vigorously expand to secondary immunization. Microneedle-mediated vaccine priming induced significantly greater T cell immunity post-boost and equivalent protection against malaria challenge compared to ID vaccination. Notably, unlike ID administration, ImmuPatch-mediated vaccination did not induce inflammatory responses at the site of immunization or in draining lymph nodes. Conclusions/Significance This study demonstrates that the design of microneedle patches significantly influences the magnitude and memory of vaccine-induced CD8+ T cell responses and can be optimised for the induction of desired immune responses. Furthermore, ImmuPatch-mediated delivery may be of benefit to reducing unwanted vaccine reactogenicity. In addition to the advantages of low cost and lack of pain, the development of optimised microneedle array designs for the induction of T cell responses by live vaccines aids the development of solutions to current obstacles of immunization programmes. PMID:21799855
Single Image Super-Resolution Using Global Regression Based on Multiple Local Linear Mappings.
Choi, Jae-Seok; Kim, Munchurl
2017-03-01
Super-resolution (SR) has become more vital, because of its capability to generate high-quality ultra-high definition (UHD) high-resolution (HR) images from low-resolution (LR) input images. Conventional SR methods entail high computational complexity, which makes them difficult to be implemented for up-scaling of full-high-definition input images into UHD-resolution images. Nevertheless, our previous super-interpolation (SI) method showed a good compromise between Peak-Signal-to-Noise Ratio (PSNR) performances and computational complexity. However, since SI only utilizes simple linear mappings, it may fail to precisely reconstruct HR patches with complex texture. In this paper, we present a novel SR method, which inherits the large-to-small patch conversion scheme from SI but uses global regression based on local linear mappings (GLM). Thus, our new SR method is called GLM-SI. In GLM-SI, each LR input patch is divided into 25 overlapped subpatches. Next, based on the local properties of these subpatches, 25 different local linear mappings are applied to the current LR input patch to generate 25 HR patch candidates, which are then regressed into one final HR patch using a global regressor. The local linear mappings are learned cluster-wise in our off-line training phase. The main contribution of this paper is as follows: Previously, linear-mapping-based conventional SR methods, including SI only used one simple yet coarse linear mapping to each patch to reconstruct its HR version. On the contrary, for each LR input patch, our GLM-SI is the first to apply a combination of multiple local linear mappings, where each local linear mapping is found according to local properties of the current LR patch. Therefore, it can better approximate nonlinear LR-to-HR mappings for HR patches with complex texture. Experiment results show that the proposed GLM-SI method outperforms most of the state-of-the-art methods, and shows comparable PSNR performance with much lower computational complexity when compared with a super-resolution method based on convolutional neural nets (SRCNN15). Compared with the previous SI method that is limited with a scale factor of 2, GLM-SI shows superior performance with average 0.79 dB higher in PSNR, and can be used for scale factors of 3 or higher.
Park, Emily S; Jin, Chao; Guo, Quan; Ang, Richard R; Duffy, Simon P; Matthews, Kerryn; Azad, Arun; Abdi, Hamidreza; Todenhöfer, Tilman; Bazov, Jenny; Chi, Kim N; Black, Peter C; Ma, Hongshen
2016-04-13
Circulating tumor cells (CTCs) offer tremendous potential for the detection and characterization of cancer. A key challenge for their isolation and subsequent analysis is the extreme rarity of these cells in circulation. Here, a novel label-free method is described to enrich viable CTCs directly from whole blood based on their distinct deformability relative to hematological cells. This mechanism leverages the deformation of single cells through tapered micrometer scale constrictions using oscillatory flow in order to generate a ratcheting effect that produces distinct flow paths for CTCs, leukocytes, and erythrocytes. A label-free separation of circulating tumor cells from whole blood is demonstrated, where target cells can be separated from background cells based on deformability despite their nearly identical size. In doping experiments, this microfluidic device is able to capture >90% of cancer cells from unprocessed whole blood to achieve 10(4) -fold enrichment of target cells relative to leukocytes. In patients with metastatic castration-resistant prostate cancer, where CTCs are not significantly larger than leukocytes, CTCs can be captured based on deformability at 25× greater yield than with the conventional CellSearch system. Finally, the CTCs separated using this approach are collected in suspension and are available for downstream molecular characterization. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Oi, Hanako; Chiba, Chikafumi; Saito, Takehiko
2003-12-01
Changes in the gap junctional coupling and maturation of voltage-activated Na(+) currents during regeneration of newt retinas were examined by whole-cell patch-clamping in slice preparations. Progenitor cells in regenerating retinas did not exhibit Na(+) currents but showed prominent electrical and tracer couplings. Cells identified by LY-fills were typically slender. Na(+) currents were detected in premature ganglion cells with round somata in the 'intermediate-II' regenerating retina. No electrical and tracer couplings were observed between these cells. Mature ganglion cells did not exhibit electrical coupling, but showed tracer coupling. On average, the maximum Na(+) current amplitude recorded from premature ganglion cells was roughly 2.5-fold smaller than that of mature ganglion cells. In addition, the activation threshold of the Na(+) current was nearly 11 mV more positive than that of mature cells. We provide morphological and physiological evidence showing that loss of gap junctions between progenitor cells is associated with ganglion cell differentiation during retinal regeneration and that new gap junctions are recreated between mature ganglion cells. Also we provide evidence suggesting that the loss of gap junctions correlates with the appearance of voltage-activated Na(+) currents in ganglion cells.
NASA Astrophysics Data System (ADS)
Brew, Helen; Attwell, David
1987-06-01
Glutamate is taken up avidly by glial cells in the central nervous system1. Glutamate uptake may terminate the transmitter action of glutamate released from neurons1, and keep extracellular glutamate at concentrations below those which are neurotoxic. We report here that glutamate evokes a large inward current in retinal glial cells which have their membrane potential and intracellular ion concentrations controlled by the whole-cell patch-clamp technique2. This current seems to be due to an electrogenic glutamate uptake carrier, which transports at least two sodium ions with every glutamate anion carried into the cell. Glutamate uptake is strongly voltage-dependent, decreasing at depolarized potentials: when fully activated, it contributes almost half of the conductance in the part of the glial cell membrane facing the retinal neurons. The spatial localization, glutamate affinity and magnitude of the uptake are appropriate for terminating the synaptic action of glutamate released from photoreceptors and bipolar cells. These data challenge present explanations of how the b-wave of the electroretinogram is generated, and suggest a mechanism for non-vesicular voltage-dependent release of glutamate from neurons.
Sheng, Anqi; Hong, Jiangru; Zhang, Lulu; Zhang, Yan; Zhang, Guangqin
2018-03-29
Voltage-gated K + (K V ) currents play a crucial role in regulating pain by controlling neuronal excitability, and are divided into transient A-type currents (I A ) and delayed rectifier currents (I K ). The dorsal root ganglion (DRG) neurons are heterogeneous and the subtypes of K V currents display different levels in distinct cell sizes. To observe correlations of the subtypes of K V currents with DRG cell sizes, K V currents were recorded by whole-cell patch clamp in freshly isolated mouse DRG neurons. Results showed that I A occupied a high proportion in K V currents in medium- and large-diameter DRG neurons, whereas I K possessed a larger proportion of K V currents in small-diameter DRG neurons. A lower correlation was found between the proportion of I A or I K in K V currents and cell sizes. These data suggest that I A channels are mainly expressed in medium and large cells and I K channels are predominantly expressed in small cells.
Cocaine acute "binge" administration results in altered thalamocortical interactions in mice.
Urbano, Francisco J; Bisagno, Verónica; Wikinski, Silvia I; Uchitel, Osvaldo D; Llinás, Rodolfo R
2009-10-15
Abnormalities in both thalamic and cortical areas have been reported in human cocaine addicts with noninvasive functional magnetic resonance imaging. Given the substantial involvement of the thalamocortical system in sensory processing and perception, we defined electrophysiology-based protocols to attempt a characterization of cocaine effects on thalamocortical circuits. Thalamocortical function was studied in vivo and in vitro in mice after cocaine "binge" administration. In vivo awake electroencephalography (EEG) was implemented in mice injected with saline, 1 hour or 24 hours after the last cocaine "binge" injection. In vitro current- and voltage-clamp whole-cell patch-clamp recordings were performed from slices including thalamic relay ventrobasal (VB) neurons. In vivo EEG recordings after cocaine "binge" administration showed a significant increment, compared with saline, in low frequencies while observing no changes in high-frequency gamma activity. In vitro patch recordings from VB neurons after cocaine "binge" administration showed low threshold spikes activation at more negative membrane potentials and increments in both I(h) and low voltage activated T-type calcium currents. Also, a 10-mV negative shift on threshold activation level of T-type current and a remarkable increment in both frequency and amplitudes of gamma-aminobutyric acid-A-mediated minis were observed. Our data indicate that thalamocortical dysfunctions observed in cocaine abusers might be due to two distinct but additive events: 1) increased low frequency oscillatory thalamocortical activity, and 2) overinhibition of VB neurons that can abnormally "lock" the whole thalamocortical system at low frequencies.
Prominent role for plasmacytoid dendritic cells in mucosal T cell-independent IgA induction.
Tezuka, Hiroyuki; Abe, Yukiko; Asano, Jumpei; Sato, Taku; Liu, Jiajia; Iwata, Makoto; Ohteki, Toshiaki
2011-02-25
Although both conventional dendritic cells (cDCs) and plasmacytoid dendritic cells (pDCs) are present in the gut-associated lymphoid tissues (GALT), the roles of pDCs in the gut remain largely unknown. Here we show a critical role for pDCs in T cell-independent (TI) IgA production by B cells in the GALT. When pDCs of the mesenteric lymph nodes (MLNs) and Peyer's patches (PPs) (which are representative GALT) were cultured with naive B cells to induce TI IgA class switch recombination (CSR), IgA production was substantially higher than in cocultures of these cells with cDCs. IgA production was dependent on APRIL and BAFF production by pDCs. Importantly, pDC expression of APRIL and BAFF was dependent on stromal cell-derived type I IFN signaling under steady-state conditions. Our findings provide insight into the molecular basis of pDC conditioning to induce mucosal TI IgA production, which may lead to improvements in vaccination strategies and treatment for mucosal-related disorders. Copyright © 2011 Elsevier Inc. All rights reserved.
Singh, Milind; Sandhu, Brindar; Scurto, Aaron; Berkland, Cory; Detamore, Michael S.
2009-01-01
Shape-specific, macroporous tissue engineering scaffolds were fabricated and homogeneously seeded with cells in a single step. This method brings together CO2 polymer processing and microparticle-based scaffolds in a manner that allows each to solve the key limitation of the other. Specifically, microparticle-based scaffolds have suffered from the limitation that conventional microsphere sintering methods (e.g., heat, solvents) are not cytocompatible, yet we have shown that cell viability was sustained with sub-critical (i.e., gaseous) CO2 sintering of microspheres in the presence of cells at near-ambient temperatures. On the other hand, the fused microspheres provided the pore interconnectivity that has eluded supercritical CO2 foaming approaches. Here, fused poly(lactide-co-glycolide) microsphere scaffolds were seeded with human umbilical cord mesenchymal stromal cells to demonstrate the feasibility of utilizing these matrices for cartilage regeneration. We also demonstrated that the approach may be modified to produce thin cell-loaded patches as a promising alternative for skin tissue engineering applications. PMID:19660579
Lipid Domain Structure of the Plasma Membrane Revealed by Patching of Membrane Components
Harder, Thomas; Scheiffele, Peter; Verkade, Paul; Simons, Kai
1998-01-01
Lateral assemblies of glycolipids and cholesterol, “rafts,” have been implicated to play a role in cellular processes like membrane sorting, signal transduction, and cell adhesion. We studied the structure of raft domains in the plasma membrane of non-polarized cells. Overexpressed plasma membrane markers were evenly distributed in the plasma membrane. We compared the patching behavior of pairs of raft markers (defined by insolubility in Triton X-100) with pairs of raft/non-raft markers. For this purpose we cross-linked glycosyl-phosphatidylinositol (GPI)-anchored proteins placental alkaline phosphatase (PLAP), Thy-1, influenza virus hemagglutinin (HA), and the raft lipid ganglioside GM1 using antibodies and/or cholera toxin. The patches of these raft markers overlapped extensively in BHK cells as well as in Jurkat T–lymphoma cells. Importantly, patches of GPI-anchored PLAP accumulated src-like protein tyrosine kinase fyn, which is thought to be anchored in the cytoplasmic leaflet of raft domains. In contrast patched raft components and patches of transferrin receptor as a non-raft marker were sharply separated. Taken together, our data strongly suggest that coalescence of cross-linked raft elements is mediated by their common lipid environments, whereas separation of raft and non-raft patches is caused by the immiscibility of different lipid phases. This view is supported by the finding that cholesterol depletion abrogated segregation. Our results are consistent with the view that raft domains in the plasma membrane of non-polarized cells are normally small and highly dispersed but that raft size can be modulated by oligomerization of raft components. PMID:9585412
Control of cerebellar granule cell output by sensory-evoked Golgi cell inhibition
Duguid, Ian; Branco, Tiago; Chadderton, Paul; Arlt, Charlotte; Powell, Kate; Häusser, Michael
2015-01-01
Classical feed-forward inhibition involves an excitation–inhibition sequence that enhances the temporal precision of neuronal responses by narrowing the window for synaptic integration. In the input layer of the cerebellum, feed-forward inhibition is thought to preserve the temporal fidelity of granule cell spikes during mossy fiber stimulation. Although this classical feed-forward inhibitory circuit has been demonstrated in vitro, the extent to which inhibition shapes granule cell sensory responses in vivo remains unresolved. Here we combined whole-cell patch-clamp recordings in vivo and dynamic clamp recordings in vitro to directly assess the impact of Golgi cell inhibition on sensory information transmission in the granule cell layer of the cerebellum. We show that the majority of granule cells in Crus II of the cerebrocerebellum receive sensory-evoked phasic and spillover inhibition prior to mossy fiber excitation. This preceding inhibition reduces granule cell excitability and sensory-evoked spike precision, but enhances sensory response reproducibility across the granule cell population. Our findings suggest that neighboring granule cells and Golgi cells can receive segregated and functionally distinct mossy fiber inputs, enabling Golgi cells to regulate the size and reproducibility of sensory responses. PMID:26432880
Ji, Yuan; Veldhuis, Marlieke G; Zandvoort, Jantien; Romunde, Fee L; Houtman, Marien J C; Duran, Karen; van Haaften, Gijs; Zangerl-Plessl, Eva-Maria; Takanari, Hiroki; Stary-Weinzinger, Anna; van der Heyden, Marcel A G
2017-07-15
The inward rectifier potassium current I K1 contributes to a stable resting membrane potential and phase 3 repolarization of the cardiac action potential. KCNJ2 gain-of-function mutations V93I and D172N associate with increased I K1 , short QT syndrome type 3 and congenital atrial fibrillation. Pentamidine-Analogue 6 (PA-6) is an efficient (IC 50 = 14 nM with inside-out patch clamp methodology) and specific I K1 inhibitor that interacts with the cytoplasmic pore region of the K IR 2.1 ion channel, encoded by KCNJ2. At 10 μM, PA-6 increases wild-type (WT) K IR 2.1 expression in HEK293T cells upon chronic treatment. We hypothesized that PA-6 will interact with and inhibit V93I and D172N K IR 2.1 channels, whereas impact on channel expression at the plasma membrane requires higher concentrations. Molecular modelling was performed with the human K IR 2.1 closed state homology model using FlexX. WT and mutant K IR 2.1 channels were expressed in HEK293 cells. Patch-clamp single cell electrophysiology measurements were performed in the whole cell and inside-out mode of the patch clamp method. K IR 2.1 expression level and localization were determined by western blot analysis and immunofluorescence microscopy, respectively. PA-6 docking in the V93I/D172N double mutant homology model of K IR 2.1 demonstrated that mutations and drug-binding site are >30 Å apart. PA-6 inhibited WT and V93I outward currents with similar potency (IC 50 = 35.5 and 43.6 nM at +50 mV for WT and V93I), whereas D172N currents were less sensitive (IC 50 = 128.9 nM at +50 mV) using inside-out patch-clamp electrophysiology. In whole cell mode, 1 μM of PA-6 inhibited outward I K1 at -50 mV by 28 ± 36%, 18 ± 20% and 10 ± 6%, for WT, V93I and D172N channels respectively. Western blot analysis demonstrated that PA-6 (5 μM, 24 h) increased K IR 2.1 expression levels of WT (6.3 ± 1.5 fold), and V93I (3.9 ± 0.9) and D172N (4.8 ± 2.0) mutants. Immunofluorescent microscopy demonstrated dose-dependent intracellular K IR 2.1 accumulation following chronic PA-6 application (24 h, 1 and 5 μM). 1) KCNJ2 gain-of-function mutations V93I and D172N in the K IR 2.1 ion channel do not impair PA-6 mediated inhibition of I K1 , 2) PA-6 elevates K IR 2.1 protein expression and induces intracellular K IR 2.1 accumulation, 3) PA-6 is a strong candidate for further preclinical evaluation in treatment of congenital SQT3 and AF.
Autoimmune autonomic ganglionopathy
Wang, Z.; Low, P.A.; Jordan, J.; Freeman, R.; Gibbons, C.H.; Schroeder, C.; Sandroni, P.; Vernino, S.
2008-01-01
Background Autoimmune autonomic ganglionopathy (AAG) is an acquired immune-mediated form of diffuse autonomic failure. Many patients have serum antibodies that bind to the ganglionic acetylcholine receptors (AChRs) that mediate fast synaptic transmission in autonomic ganglia. Previous clinical studies and observations in animal models suggest that AAG is an antibody-mediated neurologic disorder. Methods Using whole-cell patch clamp techniques, we recorded ganglionic AChR currents in cultured human IMR-32 cells and examined the effects of bath application of IgG derived from patients with AAG. Results IgG from seven patients with AAG all produced a progressive decline in whole-cell ganglionic AChR current, whereas IgG from control subjects had no effect. The effect was abolished at low temperature. Fab antibody fragments had no effect unless a secondary antibody was added concurrently. IgG from one patient also produced a more immediate reduction of ganglionic AChR current. Conclusions The characteristics of antibody-mediated inhibition of ganglionic acetylcholine receptor (AChR) current are consistent with modulation and blocking of the membrane AChR, analogous to the effects of muscle AChR antibodies in myasthenia gravis. Our observations demonstrate that antibodies in patients with autoimmune autonomic ganglionopathy (AAG) cause physiologic changes in ganglionic AChR function and confirm that AAG is an antibody-mediated disorder. PMID:17536048
Zolpidem modulation of phasic and tonic GABA currents in the rat dorsal motor nucleus of the vagus
Gao, Hong; Smith, Bret N.
2010-01-01
Zolpidem is a widely prescribed sleep aid with relative selectivity for GABAA receptors containing α1–3 subunits. We examined the effects of zolpidem on the inhibitory currents mediated by GABAA receptors using whole-cell patch-clamp recordings from DMV neurons in transverse brainstem slices from rat. Zolpidem prolonged the decay time of mIPSCs and of muscimol-evoked whole-cell GABAergic currents, and it occasionally enhanced the amplitude of mIPSCs. The effects were blocked by flumazenil, a benzodiazepine antagonist. Zolpidem also hyperpolarized the resting membrane potential, with a concomitant decrease in input resistance and action potential firing activity in a subset of cells. Zolpidem did not clearly alter the GABAA receptor-mediated tonic current (Itonic) under baseline conditions, but after elevating extracellular GABA concentration with nipecotic acid, a non-selective GABA transporter blocker, zolpidem consistently and significantly increased the tonic GABA current. This increase was suppressed by flumazenil and gabazine. These results suggest that α1–3 subunits are expressed in synaptic GABAA receptors on DMV neurons. The baseline tonic GABA current is likely not mediated by these same low affinity, zolpidem-sensitive GABAA receptors. However, when the extracellular GABA concentration is increased, zolpidem-sensitive extrasynaptic GABAA receptors containing α1–3 subunits contribute to the Itonic. PMID:20226798
Sosan, Arifa; Svistunenko, Dimitri; Straltsova, Darya; Tsiurkina, Katsiaryna; Smolich, Igor; Lawson, Tracy; Subramaniam, Sunitha; Golovko, Vladimir; Anderson, David; Sokolik, Anatoliy; Colbeck, Ian; Demidchik, Vadim
2016-01-01
Silver nanoparticles (Ag NPs) are the world's most important nanomaterial and nanotoxicant. The aim of this study was to determine the early stages of interactions between Ag NPs and plant cells, and to investigate their physiological roles. We have shown that the addition of Ag NPs to cultivation medium, at levels above 300 mg L(-1) , inhibited Arabidopsis thaliana root elongation and leaf expansion. This also resulted in decreased photosynthetic efficiency and the extreme accumulation of Ag in tissues. Acute application of Ag NPs induced a transient elevation of [Ca(2+) ]cyt and the accumulation of reactive oxygen species (ROS; partially generated by NADPH oxidase). Whole-cell patch-clamp measurements on root cell protoplasts demonstrated that Ag NPs slightly inhibited plasma membrane K(+) efflux and Ca(2+) influx currents, or caused membrane breakdown; however, in excised outside-out patches, Ag NPs activated Gd(3+) -sensitive Ca(2+) influx channels with unitary conductance of approximately 56 pS. Bulk particles did not modify the plasma membrane currents. Tests with electron paramagnetic resonance spectroscopy showed that Ag NPs were not able to catalyse hydroxyl radical generation, but that they directly oxidized the major plant antioxidant, l-ascorbic acid. Overall, the data presented shed light on mechanisms of the impact of nanosilver on plant cells, and show that these include the induction of classical stress signalling reactions (mediated by [Ca(2+) ]cyt and ROS) and a specific effect on the plasma membrane conductance and the reduced ascorbate. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.
Large Variations in HIV-1 Viral Load Explained by Shifting-Mosaic Metapopulation Dynamics
Lythgoe, Katrina A.; Blanquart, François
2016-01-01
The viral population of HIV-1, like many pathogens that cause systemic infection, is structured and differentiated within the body. The dynamics of cellular immune trafficking through the blood and within compartments of the body has also received wide attention. Despite these advances, mathematical models, which are widely used to interpret and predict viral and immune dynamics in infection, typically treat the infected host as a well-mixed homogeneous environment. Here, we present mathematical, analytical, and computational results that demonstrate that consideration of the spatial structure of the viral population within the host radically alters predictions of previous models. We study the dynamics of virus replication and cytotoxic T lymphocytes (CTLs) within a metapopulation of spatially segregated patches, representing T cell areas connected by circulating blood and lymph. The dynamics of the system depend critically on the interaction between CTLs and infected cells at the within-patch level. We show that for a wide range of parameters, the system admits an unexpected outcome called the shifting-mosaic steady state. In this state, the whole body’s viral population is stable over time, but the equilibrium results from an underlying, highly dynamic process of local infection and clearance within T-cell centers. Notably, and in contrast to previous models, this new model can explain the large differences in set-point viral load (SPVL) observed between patients and their distribution, as well as the relatively low proportion of cells infected at any one time, and alters the predicted determinants of viral load variation. PMID:27706164
A mechanically activated TRPC1-like current in white adipocytes.
El Hachmane, Mickaël F; Olofsson, Charlotta S
2018-04-15
Ca 2+ impacts a large array of cellular processes in every known cell type. In the white adipocyte, Ca 2+ is involved in regulation of metabolic processes such as lipolysis, glucose uptake and hormone secretion. Although the importance of Ca 2+ in control of white adipocyte function is clear, knowledge is still lacking regarding the control of dynamic Ca 2+ alterations within adipocytes and mechanisms inducing intracellular Ca 2+ changes remain elusive. Own work has recently demonstrated the existence of store-operated Ca 2+ entry (SOCE) in lipid filled adipocytes. We defined stromal interaction molecule 1 (STIM1) and the calcium release-activated calcium channel protein 1 (ORAI1) as the key players involved in this process and we showed that the transient receptor potential (TRP) channel TRPC1 contributed to SOCE. Here we have aimed to further characterised SOCE in the white adipocyte by use of single cell whole-cell patch clamp recordings. The electrophysiological measurements show the existence of a seemingly constitutively active current that is inhibited by known store-operated Ca 2+ channel (SOCC) blockers. We demonstrate that the mechanical force applied to the plasma membrane upon patching leads to an elevation of the cytoplasmic Ca 2+ concentration and that this elevation can be reversed by SOCC antagonists. We conclude that a mechanically activated current with properties similar to TRPC1 is present in white adipocytes. Activation of TRPC1 by membrane tension/stretch may be specifically important for the function of this cell type, since adipocytes can rapidly increase or decrease in size. Copyright © 2018 Elsevier Inc. All rights reserved.
NATARAJAN, ANUPAMA; CHUN, CHANGJU; HICKMAN, JAMES J.; MOLNAR, PETER
2010-01-01
Biodegradable scaffolds such as poly(lactic acid) (PLA), poly(lactic-co-glycolic acid) (PLGA) or poly(glycolic acid) (PGA) are commonly used materials in tissue engineering. The chemical composition of these scaffolds changes during degradation which provides a changing environment for the seeded cells. In this study we have developed a simple and relatively high-throughput method in order to test the physiological effects of this varying chemical environment on rat embryonic cardiac myocytes. In order to model the different degradation stages of the scaffold, glass coverslips were functionalized with 11-mercaptoundecanoic acid (MUA) and 11-mercapto-1-undecanol (MUL) as carboxyl- and hydroxyl-group presenting surfaces and also with trimethoxysilylpropyldiethylenetriamine (DETA) and (3-aminopropyl)triethoxysilane (APTES) as controls. Embryonic cardiac myocytes formed beating islands on all tested surfaces but the number of attached cells and beating patches was significantly lower on MUL compared to any of the other functionalized surfaces. Moreover, whole cell patch clamp experiments showed that the average length of action potentials generated by the beating cardiac myocytes were significantly longer on MUL compared to the other surfaces. Our results, using our simple test system, are in agreement with earlier observations that utilized the complex 3D biodegradable scaffold. Thus, surface functionalization with self-assembled monolayers combined with histological/physiological testing could be a relatively high throughput method for biocompatibility studies and for the optimization of the material/tissue interface in tissue engineering. PMID:18854125
Van Belle, Goedele; Vanduffel, Wim; Rossion, Bruno; Vogels, Rufin
2014-01-01
It is widely believed that face processing in the primate brain occurs in a network of category-selective cortical regions. Combined functional MRI (fMRI)-single-cell recording studies in macaques have identified high concentrations of neurons that respond more to faces than objects within face-selective patches. However, cells with a preference for faces over objects are also found scattered throughout inferior temporal (IT) cortex, raising the question whether face-selective cells inside and outside of the face patches differ functionally. Here, we compare the properties of face-selective cells inside and outside of face-selective patches in the IT cortex by means of an image manipulation that reliably disrupts behavior toward face processing: inversion. We recorded IT neurons from two fMRI-defined face-patches (ML and AL) and a region outside of the face patches (herein labeled OUT) during upright and inverted face stimulation. Overall, turning faces upside down reduced the firing rate of face-selective cells. However, there were differences among the recording regions. First, the reduced neuronal response for inverted faces was independent of stimulus position, relative to fixation, in the face-selective patches (ML and AL) only. Additionally, the effect of inversion for face-selective cells in ML, but not those in AL or OUT, was impervious to whether the neurons were initially searched for using upright or inverted stimuli. Collectively, these results show that face-selective cells differ in their functional characteristics depending on their anatomicofunctional location, suggesting that upright faces are preferably coded by face-selective cells inside but not outside of the fMRI-defined face-selective regions of the posterior IT cortex. PMID:25520434
Kwag, Jeehyun; Paulsen, Ole
2009-08-26
Precisely controlled spike times relative to theta-frequency network oscillations play an important role in hippocampal memory processing. Here we study how inhibitory synaptic input during theta oscillation contributes to the control of spike timing. Using whole-cell patch-clamp recordings from CA1 pyramidal cells in vitro with dynamic clamp to simulate theta-frequency oscillation (5 Hz), we show that gamma-aminobutyric acid-A (GABA(A)) receptor-mediated inhibitory postsynaptic potentials (IPSPs) can not only delay but also advance the postsynaptic spike depending on the timing of the inhibition relative to the oscillation. Spike time advancement with IPSP was abolished by the h-channel blocker ZD7288 (10 microM), suggesting that IPSPs can interact with intrinsic membrane conductances to yield bidirectional control of spike timing.
Toga, Tetsuo; Kohmura, Yumi; Kawatsu, Ryoichi
2007-10-01
The blocking effect of three 5-HT(4) agonists, cisapride, mosapride, and the newly discovered CJ-033466 on the human ether-a-go-go-related gene (hERG) channel was studied using a whole cell patch-clamp technique in HEK293 cells. Cisapride was found to be the most potent of the hERG blockers. CJ-033466 had the widest safety margin between its hERG blocking activity and 5-HT(4) agonism among the tested compounds. This suggests a lower clinical risk of cardiac arrhythmia in CJ-033466 compared with the other 2 agonists. Therefore, CJ-033466 has the potential to be a drug with higher therapeutic efficacy and less cardiac risk than both cisapride and mosapride.
NASA Technical Reports Server (NTRS)
Duncan, R. L.; Kizer, N.; Barry, E. L.; Friedman, P. A.; Hruska, K. A.
1996-01-01
By patch-clamp analysis, we have shown that chronic, intermittent mechanical strain (CMS) increases the activity of stretch-activated cation channels of osteoblast-like UMR-106.01 cells. CMS also produces a swelling-activated whole-cell conductance (Gm) regulated by varying strain levels. We questioned whether the swelling-activated conductance was produced by stretch-activated cation channel activity. We have identified a gene involved in the increase in conductance by using antisense oligodeoxynucleotides (ODN) derived from the alpha 1-subunit genes of calcium channels found in UMR-106.01 cells (alpha1S, alpha1C, and alpha1D). We demonstrate that alpha 1C antisense ODNs abolish the increase in Gm in response to hypotonic swelling following CMS. Antisense ODNs to alpha1S and alpha1D, sense ODNs to alpha1C, and sham permeabilization had no effect on the conductance increase. In addition, during cell-attached patch-clamp studies, antisense ODNs to alpha1c completely blocked the swelling-activated and stretch-activated nonselective cation channel response to strain. Antisense ODNs to alpha1S treatment produced no effect on either swelling-activated or stretch-activated cation channel activity. There were differences in the stretch-activated and swelling-activated cation channel activity, but whether they represent different channels could not be determined from our data. Our data indicate that the alpha1C gene product is involved in the Gm and the activation of the swelling-activated cation channels induced by CMS. The possibility that swelling-activated cation channel genes are members of the calcium channel superfamily exists, but if alpha1c is not the swelling-activated cation channel itself, then its expression is required for induction of swelling-activated cation channel activity by CMS.
Fatehi, M; Rowan, E G; Harvey, A L
2002-01-01
The effects of Pa-1G, a phospholipase A(2) (PLA(2)) from the venom of the Australian king brown snake (Pseudechis australis) were determined on the release of acetylcholine, muscle resting membrane potential and motor nerve terminal action potential at mouse neuromuscular junction. Intracellular recording from endplate regions of mouse triangularis sterni nerve-muscle preparations revealed that Pa-1G (800 nM) significantly reduced the amplitude of endplate potentials within 10 min exposure. The quantal content of endplate potentials was decreased to 58+/-6% of control after 30 min exposure to 800 nM Pa-1G. The toxin also caused a partial depolarisation of mouse muscle fibres within 60 min exposure. Extracellular recording of action potentials at motor nerve terminals showed that Pa-1G reduced the waveforms associated with both sodium and potassium conductances. To investigate whether this was a direct or indirect effect of the toxin on these ionic currents, whole cell patch clamp experiments were performed using human neuroblastoma (SK-N-SH) cells and B82 mouse fibroblasts stably transfected with rKv1.2. Patch clamp recording experiments confirmed that potassium currents sensitive to alpha-dendrotoxin recorded from B82 cells and sodium currents in SK-N-SH cells were not affected by the toxin. Since neither facilitation of acetylcholine release at mouse neuromuscular junction nor depression of potassium currents in B82 cells has been observed, the apparent blockade of potassium currents at mouse motor nerve endings induced by the toxin is unlikely to be due to a selective block of potassium channels.
NASA Astrophysics Data System (ADS)
Mironava, Tatsiana; Applebaum, Ariella; Applebaum, Eliana; Guterman, Shoshana; Applebaum, Kayla; Grossman, Daniel; Gordon, Chris; Brink, Peter; Wang, H. Z.; Rafailovich, Miriam
2013-03-01
The importance of titanium dioxide (TiO2) and zinc oxide (ZnO), inorganic metal oxides nanoparticles (NPs) stems from their ubiquitous applications in personal care products, solar cells and food whitening agents. Hence, these NPs come in direct contact with the skin, digestive tracts and are absorbed into human tissues. Currently, TiO2 and ZnO are considered safe commercial ingredients by the material safety data sheets with no reported evidence of carcinogenicity or ecotoxicity, and do not classify either NP as a toxic substance. This study examined the direct effects of TiO2 and ZnO on HeLa cells, a human cervical adenocarcinonma cell line, and their membrane mechanics. The whole cell patch-clamp technique was used in addition to immunohistochemistry staining, TEM and atomic force microscopy (AFM). Additionally, we examined the effects of dexamethasone (DXM), a glucocorticoid steroid known to have an effect on cell membrane mechanics. Overall, TiO2 and ZnO seemed to have an adverse effect on cell membrane mechanics by effecting cell proliferation, altering cellular structure, decreasing cell-cell adhesion, activating existing ion channels, increasing membrane permeability, and possibly disrupting cell signaling.
Chokeshai-u-saha, Kaj; Buranapraditkun, Supranee; Jacquet, Alain; Nguyen, Catherine; Ruxrungtham, Kiat
2012-09-01
To study the role of human naïve B cells in antigen presentation and stimulation to naïve CD4+ T cell, a suitable method to reproducibly isolate sufficient naïve B cells is required. To improve the purity of isolated naive B cells obtained from a conventional one-step magnetic bead method, we added a rosetting step to enrich total B cell isolates from human whole blood samples prior to negative cell sorting by magnetic beads. The acquired naïve B cells were analyzed for phenotypes and for their role in Staphylococcal enterotoxin B (SEB) presentation to naïve CD4+ T cells. The mean (SD) naïve B cell (CD19+/CD27-) purity obtained from this two-step method compared with the one-step method was 97% (1.0) versus 90% (1.2), respectively. This two-step method can be used with a sample of whole blood as small as 10 ml. The isolated naive B cells were phenotypically at a resting state and were able to prime naïve CD4+ T cell activation by Staphylococcal enterotoxin B (SEB) presentation. This two-step non-flow cytometry-based approach improved the purity of isolated naïve B cells compared with conventional one-step magnetic bead method. It also worked well with a small blood volume. In addition, this study showed that the isolated naïve B cells can present a super-antigen "SEB" to activate naïve CD4 cells. These methods may thus be useful for further in vitro characterization of human naïve B cells and their roles as antigen presenting cells in various diseases.
Portable Holographic Interferometry Testing System: Application to crack patching quality control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heslehurst, R.B.; Baird, J.P.; Williamson, H.M.
Over recent years the repair of metallic structures has been improved through the use of patches fabricated from composite materials and adhesively bonded to the damaged area. This technology is termed crack patching, and has been successfully and extensively used by the RAAF and the USAF. However, application of the technology to civilian registered aircraft has had limited success due to the apparent lack of suitable quality assurance testing methods and the airworthiness regulators concern overpatch adhesion integrity. Holographic interferometry has previously shown the advantages of detecting out-of-plane deformations of the order of the wavelength of light (1{mu}). Evidence willmore » be presented that holography is able to detect changes in load path due to debonds and weakened adhesion in an adhesively bonded patch. A Portable Holographic Interferometry Testing System (PHITS) which overcomes the vibration isolation problem associated with conventional holography techniques has been developed. The application of PHITS to crack patching technology now provides a suitable method to verify the integrity of bonded patches in-situ.« less
Niemeyer, María Isabel; Hougaard, Charlotte; Hoffmann, Else K; Jørgensen, Finn; Stutzin, Andrés; Sepúlveda, Francisco V
2000-01-01
The K+ and Cl− currents activated by hypotonic cell swelling were studied in Ehrlich ascites tumour cells using the whole-cell recording mode of the patch-clamp technique. Currents were measured in the absence of added intracellular Ca2+ and with strong buffering of Ca2+. K+ current activated by cell swelling was measured as outward current at the Cl− equilibrium potential (ECl) under quasi-physiological gradients. It could be abolished by replacing extracellular Na+ with K+, thereby cancelling the driving force. Replacement with other cations suggested a selectivity sequence of K+ > Rb+ > NH4≈ Na+≈ Li+; Cs+ appeared to be inhibitory. The current-voltage relationship of the volume-sensitive K+ current was well fitted with the Goldman-Hodgkin-Katz current equation between -130 and +20 mV with a permeability coefficient of around 10−6 cm s−1 with both physiological and high-K+ extracellular solutions. The class III antiarrhythmic drug clofilium blocked the volume-sensitive K+ current in a voltage-independent manner with an IC50 of 32 μM. Clofilium was also found to be a strong inhibitor of the regulatory volume decrease response of Ehrlich cells. Cell swelling-activated K+ currents of Ehrlich cells are voltage and calcium insensitive and are resistant to a range of K+ channel inhibitors. These characteristics are similar to those of the so-called background K+ channels. Noise analysis of whole-cell current was consistent with a unitary conductance of 5.5 pS for the single channels underlying the K+ current evoked by cell swelling, measured at 0 mV under a quasi-physiological K+ gradient. PMID:10790156
Hafke, Jens B; Höll, Sabina-Roxana; Kühn, Christina; van Bel, Aart J E
2013-01-01
Apart from cut aphid stylets in combination with electrophysiology, no attempts have been made thus far to measure in vivo sucrose-uptake properties of sieve elements. We investigated the kinetics of sucrose uptake by single sieve elements and phloem parenchyma cells in Vicia faba plants. To this end, microelectrodes were inserted into free-lying phloem cells in the main vein of the youngest fully-expanded leaf, half-way along the stem, in the transition zone between the autotrophic and heterotrophic part of the stem, and in the root axis. A top-to-bottom membrane potential gradient of sieve elements was observed along the stem (-130 mV to -110 mV), while the membrane potential of the phloem parenchyma cells was stable (approx. -100 mV). In roots, the membrane potential of sieve elements dropped abruptly to -55 mV. Bathing solutions having various sucrose concentrations were administered and sucrose/H(+)-induced depolarizations were recorded. Data analysis by non-linear least-square data fittings as well as by linear Eadie-Hofstee (EH) -transformations pointed at biphasic Michaelis-Menten kinetics (2 MM, EH: K m1 1.2-1.8 mM, K m2 6.6-9.0 mM) of sucrose uptake by sieve elements. However, Akaike's Information Criterion (AIC) favored single MM kinetics. Using single MM as the best-fitting model, K m values for sucrose uptake by sieve elements decreased along the plant axis from 1 to 7 mM. For phloem parenchyma cells, higher K m values (EH: K m1 10 mM, K m2 70 mM) as compared to sieve elements were found. In preliminary patch-clamp experiments with sieve-element protoplasts, small sucrose-coupled proton currents (-0.1 to -0.3 pA/pF) were detected in the whole-cell mode. In conclusion (a) K m values for sucrose uptake measured by electrophysiology are similar to those obtained with heterologous systems, (b) electrophysiology provides a useful tool for in situ determination of K m values, (c) As yet, it remains unclear if one or two uptake systems are involved in sucrose uptake by sieve elements, (d) Affinity for sucrose uptake by sieve elements exceeds by far that by phloem parenchyma cells, (e) Patch-clamp studies provide a feasible basis for quantification of sucrose uptake by single cells. The consequences of the findings for whole-plant carbohydrate partitioning are discussed.
Hafke, Jens B.; Höll, Sabina-Roxana; Kühn, Christina; van Bel, Aart J. E.
2013-01-01
Apart from cut aphid stylets in combination with electrophysiology, no attempts have been made thus far to measure in vivo sucrose-uptake properties of sieve elements. We investigated the kinetics of sucrose uptake by single sieve elements and phloem parenchyma cells in Vicia faba plants. To this end, microelectrodes were inserted into free-lying phloem cells in the main vein of the youngest fully-expanded leaf, half-way along the stem, in the transition zone between the autotrophic and heterotrophic part of the stem, and in the root axis. A top-to-bottom membrane potential gradient of sieve elements was observed along the stem (−130 mV to −110 mV), while the membrane potential of the phloem parenchyma cells was stable (approx. −100 mV). In roots, the membrane potential of sieve elements dropped abruptly to −55 mV. Bathing solutions having various sucrose concentrations were administered and sucrose/H+-induced depolarizations were recorded. Data analysis by non-linear least-square data fittings as well as by linear Eadie–Hofstee (EH) -transformations pointed at biphasic Michaelis–Menten kinetics (2 MM, EH: Km1 1.2–1.8 mM, Km2 6.6–9.0 mM) of sucrose uptake by sieve elements. However, Akaike's Information Criterion (AIC) favored single MM kinetics. Using single MM as the best-fitting model, Km values for sucrose uptake by sieve elements decreased along the plant axis from 1 to 7 mM. For phloem parenchyma cells, higher Km values (EH: Km1 10 mM, Km2 70 mM) as compared to sieve elements were found. In preliminary patch-clamp experiments with sieve-element protoplasts, small sucrose-coupled proton currents (−0.1 to −0.3 pA/pF) were detected in the whole-cell mode. In conclusion (a) Km values for sucrose uptake measured by electrophysiology are similar to those obtained with heterologous systems, (b) electrophysiology provides a useful tool for in situ determination of Km values, (c) As yet, it remains unclear if one or two uptake systems are involved in sucrose uptake by sieve elements, (d) Affinity for sucrose uptake by sieve elements exceeds by far that by phloem parenchyma cells, (e) Patch-clamp studies provide a feasible basis for quantification of sucrose uptake by single cells. The consequences of the findings for whole-plant carbohydrate partitioning are discussed. PMID:23914194
Kim, Sung Hwan; Jeung, Woonhee; Choi, Il-Dong; Jeong, Ji-Woong; Lee, Dong Eun; Huh, Chul-Sung; Kim, Geun-Bae; Hong, Seong Soo; Shim, Jae-Jung; Lee, Jung Lyoul; Sim, Jae-Hun; Ahn, Young-Tae
2016-06-28
To evaluate the effects of lactic acid bacteria (LAB) on Peyer's patch cells, mice were treated with a high dose of kanamycin to disturb the gut microbial environment. The overarching goal was to explore the potential of LAB for use as a dietary probiotic that buffers the negative consequences of antibiotic treatment. In vitro, LAB stimulated the production of immunoglobulin A (IgA) from isolated Peyer's patch cells. Inflammation-related genes (TNF-α, IL-1β, and IL-8) were up-regulated in Caco-2 cells stimulated with lipopolysaccharide (LPS), while tight-junction-related genes (ZO-1 and occludin) were down-regulated; the effects of LPS on inflammatory gene and tight-junction gene expression were reversed by treatment with LAB. Mice treated with a high dose of kanamycin showed increased serum IgE levels and decreases in serum IgA and fecal IgA levels; the number of Peyer's patch cells decreased with kanamycin treatment. However, subsequent LAB treatment was effective in reducing the serum IgE level and recovering the serum IgA and fecal IgA levels, as well as the number of Peyer's patch cells. In addition, ZO-1 and occludin mRNA levels were up-regulated in the ileum tissues of mice receiving LAB treatment. Lactic acid bacteria can enhance the intestinal immune system by improving the integrity of the intestinal barrier and increasing the production of IgA in Peyer's patches. Lactic acid bacteria should be considered a potential probiotic candidate for improving intestinal immunity, particularly in mitigating the negative consequences of antibiotic use.
Dima, V F; Ionescu, M D; Palade, R; Balotescu, C; Becheanu, G; Dima, S V
2001-01-01
In this study, we have searched for an effective mucosal vaccine. An oral enterotoxigenic E. coli vaccine containing colonization factor antigen (CFA/I) associated with inactivated whole-cell V. cholerae vaccine (WCV) has been tested for safety and immunogenicity in animals. Five groups of animals were used. The results showed the following: (a) vaccine containing CFA/I antigen entrapped in liposomes and associated with WCV (batch C) had increased titers of specific antibodies to CFA/I antigen in 15 to 18 (83.3%) animals; (b) specific Peyer's patches (PP), lymph nodes (LN) and spleen (SPL) lymphocytes proliferation was detected following in vitro restimulation with CFA/I antigen or WCV. This response gradually increased to the highest value by the 35th postimmunization day. Moreover, lower PP, LN and spleen (SPL) proliferation was observed in rabbits receiving soluble CFA/I antigen (S-CFA/I) or free liposomes (F-L) alone; (c) adhesion of E. coli H10407 strain labelled with 3H-leucine in immunized and control animals revealed the following local effects: (i) protection of rabbit intestinal mucosa against virulent E. coli cells; (ii) inhibition of adhesion of ETEC bacteria to intestinal mucosa and (iii) significantly faster release of E. coli H 10407 strain labelled with 3H-leucine from the intestinal tract of immunized animals. The histopathological and electron microscope findings confirmed the above results. The experimental results point out an efficient protection against infection with E. coli strains (ETEC), after mucosal vaccination with CFA/I antigen entrapped in liposomes associated with inactivated whole-cell Vibrio cholerae as immunological adjuvant.
Yalici-Armagan, Basak; Elcin, Gonca
2016-04-01
Effective treatment options for alopecia areata (AA) are missing. Whether lasers might be effective is a topic of debate. We aimed to evaluate whether neodymium: yttrium aluminum garnet (Nd:YAG) or fractional carbon dioxide lasers might stimulate the development of new hair. Thirty-two patients who had long-standing and treatment refractory diseases were recruited for the study. Three different patches on the scalp were selected, 1 of which served as control. The mean outcome measure was the hair count, which was calculated with the digital phototrichogram. Response was defined as at least 25% increase in the mean hair count at the treated patch compared with the control patch. At the end of the study, there was no statistically significant difference in the mean hair count for the 3 patches. In 7 of 32 patients (22%), an increase in the mean hair count was observed on the whole scalp including the control patch, which resulted in an improved Severity of Alopecia Tool (SALT) score. We have observed that Nd:YAG or fractional carbon dioxide lasers did not increase the mean hair count on the treated AA patches when compared with the control patch. However, an SALT score improvement in 22% of the patients suggested spontaneous remission.
Martín, Pedro; Enrique, Nicolás; Palomo, Ana R. Roldán; Rebolledo, Alejandro; Milesi, Veronica
2012-01-01
Bupivacaine is a local anesthetic compound belonging to the amino amide group. Its anesthetic effect is commonly related to its inhibitory effect on voltage-gated sodium channels. However, several studies have shown that this drug can also inhibit voltage-operated K+ channels by a different blocking mechanism. This could explain the observed contractile effects of bupivacaine on blood vessels. Up to now, there were no previous reports in the literature about bupivacaine effects on large conductance voltage- and Ca2+-activated K+ channels (BKCa). Using the patch-clamp technique, it is shown that bupivacaine inhibits single-channel and whole-cell K+ currents carried by BKCa channels in smooth muscle cells isolated from human umbilical artery (HUA). At the single-channel level bupivacaine produced, in a concentration- and voltage-dependent manner (IC50 324 µM at +80 mV), a reduction of single-channel current amplitude and induced a flickery mode of the open channel state. Bupivacaine (300 µM) can also block whole-cell K+ currents (~45% blockage) in which, under our working conditions, BKCa is the main component. This study presents a new inhibitory effect of bupivacaine on an ion channel involved in different cell functions. Hence, the inhibitory effect of bupivacaine on BKCa channel activity could affect different physiological functions where these channels are involved. Since bupivacaine is commonly used during labor and delivery, its effects on umbilical arteries, where this channel is highly expressed, should be taken into account. PMID:22688134
Fast detection of extrasynaptic GABA with a whole-cell sniffer.
Christensen, Rasmus K; Petersen, Anders V; Schmitt, Nicole; Perrier, Jean-François
2014-01-01
Gamma-amino-butyric acid (GABA) is the main inhibitory transmitter of the brain. It operates by binding to specific receptors located both inside and outside synapses. The extrasynaptic receptors are activated by spillover from GABAergic synapses and by ambient GABA in the extracellular space. Ambient GABA is essential for adjusting the excitability of neurons. However, due to the lack of suitable methods, little is known about its dynamics. Here we describe a new technique that allows detection of GABA transients and measurement of the steady state GABA concentration with high spatial and temporal resolution. We used a human embryonic kidney (HEK) cell line that stably expresses GABAA receptors composed of α1, β2, and γ2 subunits. We recorded from such a HEK cell with the whole-cell patch-clamp technique. The presence of GABA near the HEK cell generated a measurable electric current whose magnitude increased with concentration. A fraction of the current did not inactivate during prolonged exposition to GABA. This technique, which we refer to as a "sniffer" allows the measurement of ambient GABA concentration inside nervous tissue with a resolution of few tens of nanomolars. In addition, the sniffer detects variations in the extrasynaptic GABA concentration with millisecond time resolution. Pilot experiments demonstrate that the sniffer is able to report spillover of GABA induced by synaptic activation in real time. This is the first report on a GABA sensor that combines the ability to detect fast transients and to measure steady concentrations.
Fast detection of extrasynaptic GABA with a whole-cell sniffer
Christensen, Rasmus K.; Petersen, Anders V.; Schmitt, Nicole; Perrier, Jean-François
2014-01-01
Gamma-amino-butyric acid (GABA) is the main inhibitory transmitter of the brain. It operates by binding to specific receptors located both inside and outside synapses. The extrasynaptic receptors are activated by spillover from GABAergic synapses and by ambient GABA in the extracellular space. Ambient GABA is essential for adjusting the excitability of neurons. However, due to the lack of suitable methods, little is known about its dynamics. Here we describe a new technique that allows detection of GABA transients and measurement of the steady state GABA concentration with high spatial and temporal resolution. We used a human embryonic kidney (HEK) cell line that stably expresses GABAA receptors composed of α1, β2, and γ2 subunits. We recorded from such a HEK cell with the whole-cell patch-clamp technique. The presence of GABA near the HEK cell generated a measurable electric current whose magnitude increased with concentration. A fraction of the current did not inactivate during prolonged exposition to GABA. This technique, which we refer to as a “sniffer” allows the measurement of ambient GABA concentration inside nervous tissue with a resolution of few tens of nanomolars. In addition, the sniffer detects variations in the extrasynaptic GABA concentration with millisecond time resolution. Pilot experiments demonstrate that the sniffer is able to report spillover of GABA induced by synaptic activation in real time. This is the first report on a GABA sensor that combines the ability to detect fast transients and to measure steady concentrations. PMID:24860433
Owen, R L; Bhalla, D K
1983-10-01
M cells in Peyer's patch follicle epithelium endocytose and transport luminal materials to intraepithelial lymphocytes. We examined (1) enzymatic characteristics of the epithelium covering mouse and rat Peyer's patches by using cytochemical techniques, (2) distribution of lectin-binding sites by peroxidase-labeled lectins, and (3) anionic site distribution by using cationized ferritin to develop a profile of M cell surface properties. Alkaline phosphatase activity resulted in deposits of dense reaction product over follicle surfaces but was markedly reduced over M cells, unlike esterase which formed equivalent or greater product over M cells. Concanavalin A, ricinus communis agglutinin, wheat germ agglutinin and peanut agglutinin reacted equally with M cells and with surrounding enterocytes over follicle surfaces. Cationized ferritin distributed in a random fashion along microvillus membranes of both M cells and enterocytes, indicating equivalent anionic site distribution. Staining for alkaline phosphatase activity provides a new approach for distinguishing M cells from enterocytes at the light microscopic level. Identical binding of lectins indicates that M cells and enterocytes share common glycoconjugates even though molecular groupings may differ. Lectin binding and anionic charge similarities of M cells and enterocytes may facilitate antigen sampling by M cells of particles and compounds that adhere to intestinal surfaces in non-Peyer's patch areas.
Aversa, Daniela; Martini, Alessandro; Guatteo, Ezia; Pisani, Antonio; Mercuri, Nicola Biagio; Berretta, Nicola
2018-06-22
One of the hallmarks of ventral midbrain dopamine (DA)-releasing neurons is membrane hyperpolarization in response to somato-dendritic D 2 receptors (D 2 Rs) stimulation. At early postnatal age, under sustained DA, this inhibitory response is followed by a slow recovery, resulting in dopamine inhibition reversal (DIR). In the present investigation we aimed to get a better insight onto the cellular mechanisms underlying DIR. We performed single unit extracellular recordings with a multi-electrode array (MEA) device and conventional patch-clamp recordings on midbrain mouse slices. While continuous DA (100 μM) perfusion gave rise to firing inhibition that recovered in 10 to 15 min, the same effect was not obtained with the D 2 R agonist quinpirole (100 nM). Moreover, firing inhibition caused by the GABA B receptor agonist baclofen (300 nM), was reverted by DA (100 μM), albeit D 2 Rs had been blocked by sulpiride (10 μM). Conversely, the block of the DA transporter (DAT) with cocaine (30 μM) prevented firing recovery by DA under GABA B receptor stimulation. Accordingly, in whole cell recordings from single cells the baclofen-induced outward current was counteracted by DA (100 μM) in the presence of sulpiride (10 μM), and this effect was prevented by the DAT antagonists cocaine (30 μM) and GBR12909 (2 μM). Our results indicate a major role played by DAT in causing DIR under conditions of sustained DA exposure and point to DAT as an important target for pharmacological therapies leading to prolonged enhancement of the DAergic signal. This article is protected by copyright. All rights reserved.
NASA Astrophysics Data System (ADS)
Obara, Shin'ya; Kudo, Kazuhiko
Reduction in fuel cell capacity linked to a fuel cell network system is considered. When the power demand of the whole network is small, some of the electric power generated by the fuel cell is supplied to a water electrolysis device, and hydrogen and oxygen gases are generated. Both gases are compressed with each compressor and they are stored in cylinders. When the electric demand of the whole network is large, both gases are supplied to the network, and fuel cells are operated by these hydrogen and oxygen gases. Furthermore, an optimization plan is made to minimize the quantity of heat release of the hot water piping that connects each building. Such an energy network is analyzed assuming connection of individual houses, a hospital, a hotel, a convenience store, an office building, and a factory. Consequently, compared with the conventional system, a reduction of 46% of fuel cell capacity is expected.
Pita, Ricardo; Mira, António; Beja, Pedro
2013-01-01
The ability of patchy populations to persist in human-dominated landscapes is often assessed using focal patch approaches, in which the local occurrence or abundance of a species is related to the properties of individual patches and the surrounding landscape context. However, useful additional insights could probably be gained through broader, mosaic-level approaches, whereby whole land mosaics with contrasting patch-network and matrix characteristics are the units of investigation. In this study we addressed this issue, analysing how the southern water vole (Arvicola sapidus) responds to variables describing patch-network and matrix properties within replicated Mediterranean farmland mosaics, across a gradient of agricultural intensification. Patch-network characteristics had a dominant effect, with the total amount of habitat positively influencing both the occurrence of water voles and the proportion of area occupied in land mosaics. The proportions of patches and area occupied by the species were positively influenced by mean patch size, and negatively so by patch isolation. Matrix effects were weak, although there was a tendency for a higher proportion of occupied patches in more intensive, irrigated agricultural landscapes, particularly during the dry season. In terms of conservation, results suggest that water voles may be able to cope well with, or even be favoured by, the on-going expansion of irrigated agriculture in Mediterranean dry-lands, provided that a number of patches of wet herbaceous vegetation are maintained within the farmland mosaic. Overall, our study suggests that the mosaic-level approach may provide a useful framework to understand the responses of patchy populations to land use change.
Conductive polymer nanotube patch for fast and controlled ex vivo transdermal drug delivery.
Nguyen, Thao M; Lee, Sebin; Lee, Sang Bok
2014-10-01
To uptake and release hydrophilic model drugs and insulin in a novel conductive polymer (CP) nanotube transdermal patch. The externally controlled transdermal delivery of model drugs and insulin were tested ex vivo and results were compared with CP films. The unique intrinsic properties of CPs provide electrostatic interaction between the model drugs and polymer backbone. When a pulsed potential was applied, the drug delivery release profile mimics that of injection delivery. With a constant potential applied, the release rate constants of the patch system were up to three-times faster than the control (0 V) and released approximately 80% more drug molecules over 24 h. The CP nanotube transdermal patch represents a new and promising drug method, specifically for hydrophilic molecules, which have been a large obstacle for conventional transdermal drug delivery systems.
Lidocaine-loaded fish scale-nanocellulose biopolymer composite microneedles.
Medhi, Pangkhi; Olatunji, Ololade; Nayak, Atul; Uppuluri, Chandra Teja; Olsson, Richard T; Nalluri, Buchi N; Das, Diganta B
2017-07-01
Microneedle (MN) technology has emerged as an effective drug delivery system, and it has tremendous potential as a patient friendly substitute for conventional methods for transdermal drug delivery (TDD). In this paper, we report on the preparation of lidocaine-loaded biodegradable microneedles, which are manufactured from fish scale-derived collagen. Lidocaine, a common tissue numbing anaesthetic, is loaded in these microneedles with an aim of delivering the drug with controlled skin permeation. Evaluation of lidocaine permeation in porcine skin has been successfully performed using Franz diffusion cell (FDC) which has shown that the drug permeation rate increases from 2.5 to 7.5% w/w after 36 h and pseudo steady state profile is observed from 5.0 to 10.0% w/w lidocaine-loaded microneedle. Swelling experiments have suggested that the microneedles have negligible swellability which implies that the patch would stick to the tissue when inserted. The experiments on MN dissolution have depicted that the lidocaine loaded in the patch is lower than the theoretical loading, which is expected as there can be losses of the drug during initial process manufacture.
Limsirichaikul, Siripan; Niimi, Atsuko; Fawcett, Heather; Lehmann, Alan; Yamashita, Shunichi; Ogi, Tomoo
2009-03-01
Xeroderma pigmentosum (XP) is an autosomal recessive genetic disorder. Afflicted patients show extreme sun-sensitivity and skin cancer predisposition. XP is in most cases associated with deficient nucleotide excision repair (NER), which is the process responsible for removing photolesions from DNA. Measuring NER activity by nucleotide incorporation into repair patches, termed 'unscheduled DNA synthesis (UDS)', is one of the most commonly used assays for XP-diagnosis and NER research. We have established a rapid and accurate procedure for measuring UDS by replacement of thymidine with 5-ethynyl-2'-deoxyuridine (EdU). EdU incorporated into repair patches can be directly conjugated to fluorescent azide derivatives, thereby obviating the need for either radiolabeled thymidine or denaturation and antibody detection of incorporated bromodeoxyuridine (BrdU). We demonstrate that the EdU incorporation assay is compatible with conventional techniques such as immunofluorescent staining and labeling of cells with micro-latex beads. Importantly, we can complete the entire UDS assay within half a day from preparation of the assay coverslips; this technique may prove useful as a method for XP diagnosis.
Hamodi, Ali S; Pratt, Kara G
2015-01-01
The Xenopus tadpole optic tectum is a multisensory processing center that receives direct visual input as well as nonvisual mechanosensory input. The tectal neurons that comprise the optic tectum are organized into layers. These neurons project their dendrites laterally into the neuropil where visual inputs target the distal region of the dendrite and nonvisual inputs target the proximal region of the same dendrite. The Xenopus tadpole tectum is a popular model to study the development of sensory circuits. However, whole cell patch-clamp electrophysiological studies of the tadpole tectum (using the whole brain or in vivo preparations) have focused solely on the deep-layer tectal neurons because only neurons of the deep layer are visible and accessible for whole cell electrophysiological recordings. As a result, whereas the development and plasticity of these deep-layer neurons has been well-studied, essentially nothing has been reported about the electrophysiology of neurons residing beyond this layer. Hence, there exists a large gap in our understanding about the functional development of the amphibian tectum as a whole. To remedy this, we developed a novel isolated brain preparation that allows visualizing and recording from all layers of the tectum. We refer to this preparation as the "horizontal brain slice preparation." Here, we describe the preparation method and illustrate how it can be used to characterize the electrophysiology of neurons across all of the layers of the tectum as well as the spatial pattern of synaptic input from the different sensory modalities. Copyright © 2015 the American Physiological Society.
Patch-based image reconstruction for PET using prior-image derived dictionaries
NASA Astrophysics Data System (ADS)
Tahaei, Marzieh S.; Reader, Andrew J.
2016-09-01
In PET image reconstruction, regularization is often needed to reduce the noise in the resulting images. Patch-based image processing techniques have recently been successfully used for regularization in medical image reconstruction through a penalized likelihood framework. Re-parameterization within reconstruction is another powerful regularization technique in which the object in the scanner is re-parameterized using coefficients for spatially-extensive basis vectors. In this work, a method for extracting patch-based basis vectors from the subject’s MR image is proposed. The coefficients for these basis vectors are then estimated using the conventional MLEM algorithm. Furthermore, using the alternating direction method of multipliers, an algorithm for optimizing the Poisson log-likelihood while imposing sparsity on the parameters is also proposed. This novel method is then utilized to find sparse coefficients for the patch-based basis vectors extracted from the MR image. The results indicate the superiority of the proposed methods to patch-based regularization using the penalized likelihood framework.
PlenoPatch: Patch-Based Plenoptic Image Manipulation.
Zhang, Fang-Lue; Wang, Jue; Shechtman, Eli; Zhou, Zi-Ye; Shi, Jia-Xin; Hu, Shi-Min
2017-05-01
Patch-based image synthesis methods have been successfully applied for various editing tasks on still images, videos and stereo pairs. In this work we extend patch-based synthesis to plenoptic images captured by consumer-level lenselet-based devices for interactive, efficient light field editing. In our method the light field is represented as a set of images captured from different viewpoints. We decompose the central view into different depth layers, and present it to the user for specifying the editing goals. Given an editing task, our method performs patch-based image synthesis on all affected layers of the central view, and then propagates the edits to all other views. Interaction is done through a conventional 2D image editing user interface that is familiar to novice users. Our method correctly handles object boundary occlusion with semi-transparency, thus can generate more realistic results than previous methods. We demonstrate compelling results on a wide range of applications such as hole-filling, object reshuffling and resizing, changing object depth, light field upscaling and parallax magnification.
Spatial effects in meta-foodwebs.
Barter, Edmund; Gross, Thilo
2017-08-30
In ecology it is widely recognised that many landscapes comprise a network of discrete patches of habitat. The species that inhabit the patches interact with each other through a foodweb, the network of feeding interactions. The meta-foodweb model proposed by Pillai et al. combines the feeding relationships at each patch with the dispersal of species between patches, such that the whole system is represented by a network of networks. Previous work on meta-foodwebs has focussed on landscape networks that do not have an explicit spatial embedding, but in real landscapes the patches are usually distributed in space. Here we compare the dispersal of a meta-foodweb on Erdős-Rényi networks, that do not have a spatial embedding, and random geometric networks, that do have a spatial embedding. We found that local structure and large network distances in spatially embedded networks, lead to meso-scale patterns of patch occupation by both specialist and omnivorous species. In particular, we found that spatial separations make the coexistence of competing species more likely. Our results highlight the effects of spatial embeddings for meta-foodweb models, and the need for new analytical approaches to them.
NASA Astrophysics Data System (ADS)
Schwiebert, Erik M.; Kizer, Neil; Gruenert, Dieter C.; Stanton, Bruce A.
1992-11-01
Cystic fibrosis (CF) is a genetic disease characterized, in part, by defective regulation of Cl^- secretion by airway epithelial cells. In CF, cAMP does not activate Cl^- channels in the apical membrane of airway epithelial cells. We report here whole-cell patch-clamp studies demonstrating that pertussis toxin, which uncouples heterotrimeric GTP-binding proteins (G proteins) from their receptors, and guanosine 5'-[β-thio]diphosphate, which prevents G proteins from interacting with their effectors, increase Cl^- currents and restore cAMP-activated Cl^- currents in airway epithelial cells isolated from CF patients. In contrast, the G protein activators guanosine 5'-[γ-thio]triphosphate and AlF^-_4 reduce Cl^- currents and inhibit cAMP from activating Cl^- currents in normal airway epithelial cells. In CF cells treated with pertussis toxin or guanosine 5'-[β-thio]diphosphate and in normal cells, cAMP activates a Cl^- conductance that has properties similar to CF transmembrane-conductance regulator Cl^- channels. We conclude that heterotrimeric G proteins inhibit cAMP-activated Cl^- currents in airway epithelial cells and that modulation of the inhibitory G protein signaling pathway may have the therapeutic potential for improving cAMP-activated Cl^- secretion in CF.
Outside-out "sniffer-patch" clamp technique for in situ measures of neurotransmitter release.
Muller-Chrétien, Emilie
2014-01-01
The mechanism underlying neurotransmitter release is a critical research domain for the understanding of neuronal network function; however, few techniques are available for the direct detection and measurement of neurotransmitter release. To date, the sniffer-patch clamp technique is mainly used to investigate these mechanisms from individual cultured cells. In this study, we propose to adapt the sniffer-patch clamp technique to in situ detection of neurosecretion. Using outside-out patches from donor cells as specific biosensors plunged in acute cerebral slices, this technique allows for proper detection and quantification of neurotransmitter release at the level of the neuronal network.
Yuan, Nina Y.; Poe, Michael M.; Witzigmann, Christopher; Cook, James M.; Stafford, Douglas; Arnold, Leggy A.
2016-01-01
Introduction Automated patch clamp is a recent but widely used technology to assess pre-clinical drug safety. With the availability of human neurons derived from pluripotent stem cells, this technology can be extended to determine CNS effects of drug candidates, especially those acting on the GABAA receptor. Methods iCell Neurons (Cellular Dynamics International, A Fujifilm Company) were cultured for ten days and analyzed by patch clamp in the presence of agonist GABA or in combination with positive allosteric GABAA receptor modulators. Both efficacy and affinity were determined. In addition, mRNA of GABAA receptor subunits were quantified by qRT-PCR. Results We have shown that iCell Neurons are compatible with the IonFlux microfluidic system of the automated patch clamp instrument. Resistance ranging from 15-25 MΩ was achieved for each trap channel of patch clamped cells in a 96-well plate format. GABA induced a robust change of current with an EC50 of 0.43 μM. Positive GABAA receptor modulators diazepam, HZ166, and CW-04-020 exhibited EC50 values of 0.42 μM, 1.56 μM, and 0.23 μM, respectively. The α2/α3/α5 selective compound HZ166-induced the highest potentiation (efficacy) of 810% of the current induced by 100 nM GABA. Quantification of GABAA receptor mRNA in iCell Neurons revealed high levels of α5 and β3 subunits and low levels of α1, which is similar to the configuration in human neonatal brain. Discussion iCell Neurons represent a new cellular model to characterize GABAergic compounds using automated patch clamp. These cells have excellent representation of cellular GABAA receptor distribution that enable determination of total small molecule efficacy and affinity as measured by cell membrane current change. PMID:27544543
Gene manipulated peritoneal cell patch repairs infarcted myocardium
Huang, Wei; Zhang, Dongsheng; Millard, Ronald W.; Wang, Tao; Zhao, Tiemin; Fan, Guo-Chang; Ashraf, Atif; Xu, Meifeng; Ashraf, Muhammad; Wang, Yigang
2010-01-01
A gene manipulated cell patch using a homologous peritoneum substrate was developed and applied after myocardial infarction to repair scarred myocardium. We genetically engineered male rat mesenchymal stem cells (MSC) using adenoviral transduction to over-express CXCR4/green fluorescent protein (GFP) (MSCCXCR4) or MSCNull or siRNA targeting CXCR4 (MSCsiRNA). Gene expression was studied by real-time quantitative PCR (qPCR) and enzyme-linked immunosorbent assay (ELISA). Cells were cultured on excised peritoneum for 9 days. Two weeks after left anterior descending (LAD) coronary artery ligation in female hearts, the peritoneum patch was applied over the scarred myocardium, cell side down. Efficacy of engraftment was determined by presence of GFP positive cells. One month after cell implantation, echocardiography was performed and hearts were harvested for histological analysis. Left ventricle (LV) fibrosis, LV anterior wall thickness (AWT) and blood vessel density at the margins of the graft were measured. There was significant up-regulation of the chemokines in the MSCCXCR4 group cultured under normoxic conditions when compared to the MSCNull group and a further increase was observed after exposure to hypoxia. One month after cell transplantation with the peritoneum patch, substantial numbers of GFP-positive cells were observed in and around the infarcted myocardium in MSCCXCR4 group. LV AWT, LV fibrosis and LV function were significantly improved in the MSCCXCR4 group as compared to these same variables in the MSCNull control. These salutary effects were absent in MSCsiRNA group. The gene manipulated MSC-seeded peritoneum patch promotes tissue nutrition (angiogenesis), reduces myocardial remodeling, and enhances heart function after myocardial infarction. PMID:19913551
2014-01-01
Background Old Yellow Enzymes (OYEs) are flavin-dependent enoate reductases (EC 1.6.99.1) that catalyze the stereoselective hydrogenation of electron-poor alkenes. Their ability to generate up to two stereocenters by the trans-hydrogenation of the C = C double bond is highly demanded in asymmetric synthesis. Isolated redox enzymes utilization require the addition of cofactors and systems for their regeneration. Microbial whole-cells may represent a valid alternative combining desired enzymatic activity and efficient cofactor regeneration. Considerable efforts were addressed at developing novel whole-cell OYE biocatalysts, based on recombinant Saccharomyces cerevisiae expressing OYE genes. Results Recombinant S. cerevisiae BY4741∆Oye2 strains, lacking endogenous OYE and expressing nine separate OYE genes from non-conventional yeasts, were used as whole-cell biocatalysts to reduce substrates with an electron-poor double bond activated by different electron-withdrawing groups. Ketoisophorone, α-methyl-trans-cinnamaldehyde, and trans-β-methyl-β-nitrostyrene were successfully reduced with high rates and selectivity. A series of four alkyl-substituted cyclohex-2-enones was tested to check the versatility and efficiency of the biocatalysts. Reduction of double bond occurred with high rates and enantioselectivity, except for 3,5,5-trimethyl-2-cyclohexenone. DFT (density functional theory) computational studies were performed to investigate whether the steric hindrance and/or the electronic properties of the substrates were crucial for reactivity. The three-dimensional structure of enoate reductases from Kluyveromyces lodderae and Candida castellii, predicted through comparative modeling, resulted similar to that of S. cerevisiae OYE2 and revealed the key role of Trp116 both in substrate specificity and stereocontrol. All the modeling studies indicate that steric hindrance was a major determinant in the enzyme reactivity. Conclusions The OYE biocatalysts, based on recombinant S. cerevisiae expressing OYE genes from non-conventional yeasts, were able to differently reduce the activated double bond of enones, enals and nitro-olefins, exhibiting a wide range of substrate specificity. Moreover whole-cells biocatalysts bypassed the necessity of the cofactor recycling and, tuning reaction parameters, allowed the synthetic exploitation of endogenous carbonyl reductases. Molecular modeling studies highlighted key structural features for further improvement of catalytic properties of OYE enzymes. PMID:24767246
Improved two-photon imaging of living neurons in brain tissue through temporal gating
Gautam, Vini; Drury, Jack; Choy, Julian M. C.; Stricker, Christian; Bachor, Hans-A.; Daria, Vincent R.
2015-01-01
We optimize two-photon imaging of living neurons in brain tissue by temporally gating an incident laser to reduce the photon flux while optimizing the maximum fluorescence signal from the acquired images. Temporal gating produces a bunch of ~10 femtosecond pulses and the fluorescence signal is improved by increasing the bunch-pulse energy. Gating is achieved using an acousto-optic modulator with a variable gating frequency determined as integral multiples of the imaging sampling frequency. We hypothesize that reducing the photon flux minimizes the photo-damage to the cells. Our results, however, show that despite producing a high fluorescence signal, cell viability is compromised when the gating and sampling frequencies are equal (or effectively one bunch-pulse per pixel). We found an optimum gating frequency range that maintains the viability of the cells while preserving a pre-set fluorescence signal of the acquired two-photon images. The neurons are imaged while under whole-cell patch, and the cell viability is monitored as a change in the membrane’s input resistance. PMID:26504651
Changes in intrinsic excitability of ganglion cells in degenerated retinas of RCS rats.
Ren, Yi-Ming; Weng, Chuan-Huang; Zhao, Cong-Jian; Yin, Zheng-Qin
2018-01-01
To evaluate the intrinsic excitability of retinal ganglion cells (RGCs) in degenerated retinas. The intrinsic excitability of various morphologically defined RGC types using a combination of patch-clamp recording and the Lucifer yellow tracer in retinal whole-mount preparations harvested from Royal College of Surgeons (RCS) rats, a common retinitis pigmentosa (RP) model, in a relatively late stage of retinal degeneration (P90) were investigated. Several parameters of RGC morphologies and action potentials (APs) were measured and compared to those of non-dystrophic control rats, including dendritic stratification, dendritic field diameter, peak amplitude, half width, resting membrane potential, AP threshold, depolarization to threshold, and firing rates. Compared with non-dystrophic control RGCs, more depolarizations were required to reach the AP threshold in RCS RGCs with low spontaneous spike rates and in RCS OFF cells (especially A2o cells), and RCS RGCs maintained their dendritic morphologies, resting membrane potentials and capabilities to generate APs. RGCs are relatively well preserved morphologically and functionally, and some cells are more susceptible to decreased excitability during retinal degeneration. These findings provide valuable considerations for optimizing RP therapeutic strategies.
Roussis, Ioannis M; Guille, Matthew; Myers, Fiona A; Scarlett, Garry P
2016-01-01
Techniques for studying RNA-protein interactions have lagged behind those for DNA-protein complexes as a consequence of the complexities associated with working with RNA. Here we present a method for the modification of the existing In Situ Hybridisation-Proximity Ligation Assay (ISH-PLA) protocol to adapt it to the study of RNA regulation (rISH-PLA). As proof of principle we used the well-characterised interaction of the Xenopus laevis Staufen RNA binding protein with Vg1 mRNA, the complex of which co-localises to the vegetal pole of Xenopus oocytes. The applicability of both the Stau1 antibody and the Locked Nucleic Acid probe (LNA) recognising Vg1 mRNA were independently validated by whole-mount Immunohistochemistry and whole-mount in situ hybridisation assays respectively prior to combining them in the rISH-PLA assay. The rISH-PLA assay allows the identification of a given RNA-protein complex at subcellular and single cell resolution, thus avoiding the lack of spatial resolution and sensitivity associated with assaying heterogenous cell populations from which conventional RNA-protein interaction detection techniques suffer. This technique will be particularly usefully for studying the activity of RNA binding proteins (RBPs) in complex mixtures of cells, for example tissue sections or whole embryos.
A patch-based pseudo-CT approach for MRI-only radiotherapy in the pelvis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andreasen, Daniel, E-mail: dana@dtu.dk
Purpose: In radiotherapy based only on magnetic resonance imaging (MRI), knowledge about tissue electron densities must be derived from the MRI. This can be achieved by converting the MRI scan to the so-called pseudo-computed tomography (pCT). An obstacle is that the voxel intensities in conventional MRI scans are not uniquely related to electron density. The authors previously demonstrated that a patch-based method could produce accurate pCTs of the brain using conventional T{sub 1}-weighted MRI scans. The method was driven mainly by local patch similarities and relied on simple affine registrations between an atlas database of the co-registered MRI/CT scan pairsmore » and the MRI scan to be converted. In this study, the authors investigate the applicability of the patch-based approach in the pelvis. This region is challenging for a method based on local similarities due to the greater inter-patient variation. The authors benchmark the method against a baseline pCT strategy where all voxels inside the body contour are assigned a water-equivalent bulk density. Furthermore, the authors implement a parallelized approximate patch search strategy to speed up the pCT generation time to a more clinically relevant level. Methods: The data consisted of CT and T{sub 1}-weighted MRI scans of 10 prostate patients. pCTs were generated using an approximate patch search algorithm in a leave-one-out fashion and compared with the CT using frequently described metrics such as the voxel-wise mean absolute error (MAE{sub vox}) and the deviation in water-equivalent path lengths. Furthermore, the dosimetric accuracy was tested for a volumetric modulated arc therapy plan using dose–volume histogram (DVH) point deviations and γ-index analysis. Results: The patch-based approach had an average MAE{sub vox} of 54 HU; median deviations of less than 0.4% in relevant DVH points and a γ-index pass rate of 0.97 using a 1%/1 mm criterion. The patch-based approach showed a significantly better performance than the baseline water pCT in almost all metrics. The approximate patch search strategy was 70x faster than a brute-force search, with an average prediction time of 20.8 min. Conclusions: The authors showed that a patch-based method based on affine registrations and T{sub 1}-weighted MRI could generate accurate pCTs of the pelvis. The main source of differences between pCT and CT was positional changes of air pockets and body outline.« less
Peckys, Diana B; de Jonge, Niels
2014-02-01
The size of gold nanoparticles (AuNPs) can influence various aspects of their cellular uptake. Light microscopy is not capable of resolving most AuNPs, while electron microscopy (EM) is not practically capable of acquiring the necessary statistical data from many cells and the results may suffer from various artifacts. Here, we demonstrate the use of a fast EM method for obtaining high-resolution data from a much larger population of cells than is usually feasible with conventional EM. A549 (human lung carcinoma) cells were subjected to uptake protocols with 10, 15, or 30 nm diameter AuNPs with adsorbed serum proteins. After 20 min, 24 h, or 45 h, the cells were fixed and imaged in whole in a thin layer of liquid water with environmental scanning electron microscopy equipped with a scanning transmission electron microscopy detector. The fast preparation and imaging of 145 whole cells in liquid allowed collection of nanoscale data within an exceptionally small amount of time of ~80 h. Analysis of 1,041 AuNP-filled vesicles showed that the long-term AuNP storing lysosomes increased their average size by 80 nm when AuNPs with 30 nm diameter were uptaken, compared to lysosomes of cells incubated with AuNPs of 10 and 15 nm diameter.
Immunoisolation Patch System for Cellular Transplantation
NASA Technical Reports Server (NTRS)
Wang, Taylor G. (Inventor)
2014-01-01
An immunoisolation patch system, and particularly a patch system comprising multiple immunoisolation microcapsules, each encapsulating biological material such as cells for transplantation, which can be used in the prophylactic and therapeutic treatment of disease in large animals and humans without the need for immunosuppression.
Age-related increase of sIAHP in prefrontal pyramidal cells of monkeys: relationship to cognition
Luebke, Jennifer I.; Amatrudo, Joseph M.
2010-01-01
Reduced excitability, due to an increase in the slow afterhyperpolarization (and its underlying current sIAHP), occurs in CA1 pyramidal cells in aged cognitively-impaired, but not cognitively-unimpaired, rodents. We sought to determine whether similar age-related changes in the sIAHP occur in pyramidal cells in the rhesus monkey dorsolateral prefrontal cortex (dlPFC). Whole-cell patch-clamp recordings were obtained from layer 3 (L3) and layer 5 (L5) pyramidal cells in dlPFC slices prepared from young (9.6 ± 0.7 years old) and aged (22.3 ± 0.7 years old) behaviorally characterized subjects. The amplitude of the sIAHP was significantly greater in L3 (but not L5) cells from aged-impaired compared to both aged-unimpaired and young monkeys, which did not differ. Aged L3, but not L5, cells exhibited significantly increased action potential firing rates, but there was no relationship between sIAHP and firing rate. Thus, in monkey dlPFC L3 cells, an increase in sIAHP is associated with age-related cognitive decline; however, this increase is not associated with a reduction in excitability. PMID:20727620
A half millimeter thick coplanar flexible battery with wireless recharging capability.
Kim, Joo-Seong; Ko, Dongah; Yoo, Dong-Joo; Jung, Dae Soo; Yavuz, Cafer T; Kim, Nam-In; Choi, In-Suk; Song, Jae Yong; Choi, Jang Wook
2015-04-08
Most of the existing flexible lithium ion batteries (LIBs) adopt the conventional cofacial cell configuration where anode, separator, and cathode are sequentially stacked and so have difficulty in the integration with emerging thin LIB applications, such as smart cards and medical patches. In order to overcome this shortcoming, herein, we report a coplanar cell structure in which anodes and cathodes are interdigitatedly positioned on the same plane. The coplanar electrode design brings advantages of enhanced bending tolerance and capability of increasing the cell voltage by in series-connection of multiple single-cells in addition to its suitability for the thickness reduction. On the basis of these structural benefits, we develop a coplanar flexible LIB that delivers 7.4 V with an entire cell thickness below 0.5 mm while preserving stable electrochemical performance throughout 5000 (un)bending cycles (bending radius = 5 mm). Also, even the pouch case serves as barriers between anodes and cathodes to prevent Li dendrite growth and short-circuit formation while saving the thickness. Furthermore, for convenient practical use wireless charging via inductive electromagnetic energy transfer and solar cell integration is demonstrated.
Neuman, Krystina M; Molina-Campos, Elizabeth; Musial, Timothy F; Price, Andrea L; Oh, Kwang-Jin; Wolke, Malerie L; Buss, Eric W; Scheff, Stephen W; Mufson, Elliott J; Nicholson, Daniel A
2015-11-01
Alzheimer's disease (AD) is associated with alterations in the distribution, number, and size of inputs to hippocampal neurons. Some of these changes are thought to be neurodegenerative, whereas others are conceptualized as compensatory, plasticity-like responses, wherein the remaining inputs reactively innervate vulnerable dendritic regions. Here, we provide evidence that the axospinous synapses of human AD cases and mice harboring AD-linked genetic mutations (the 5XFAD line) exhibit both, in the form of synapse loss and compensatory changes in the synapses that remain. Using array tomography, quantitative conventional electron microscopy, immunogold electron microscopy for AMPARs, and whole-cell patch-clamp physiology, we find that hippocampal CA1 pyramidal neurons in transgenic mice are host to an age-related synapse loss in their distal dendrites, and that the remaining synapses express more AMPA-type glutamate receptors. Moreover, the number of axonal boutons that synapse with multiple spines is significantly reduced in the transgenic mice. Through serial section electron microscopic analyses of human hippocampal tissue, we further show that putative compensatory changes in synapse strength are also detectable in axospinous synapses of proximal and distal dendrites in human AD cases, and that their multiple synapse boutons may be more powerful than those in non-cognitively impaired human cases. Such findings are consistent with the notion that the pathophysiology of AD is a multivariate product of both neurodegenerative and neuroplastic processes, which may produce adaptive and/or maladaptive responses in hippocampal synaptic strength and plasticity.
Lv, Yankun; Wang, Yanjun; Zhu, Xiaoran; Zhang, Hua
2018-01-01
We have previously shown that aldosterone downregulates delayed rectifier potassium currents (I Ks ) via activation of the mineralocorticoid receptor (MR) in adult guinea pig cardiomyocytes. Here, we investigate whether angiotensin II/angiotensin type 1 receptor (AngII/AT1R) and intracellular calcium also play a role in these effects. Ventricular cardiomyocytes were isolated from adult guinea pigs and incubated with aldosterone (1 μmol·L -1 ) either alone or in combination with enalapril (1 μmol·L -1 ), losartan (1 μmol·L -1 ), nimodipine (1 μmol·L -1 ), or BAPTA-AM (2.5 μmol·L -1 ) for 24 h. We used the conventional whole cell patch-clamp technique to record the I Ks component. In addition, we evaluated expression of the I Ks subunits KCNQ1 and KCNE1 using Western blotting. Our results showed that both enalapril and losartan, but not nimodipine or BAPTA-AM, completely reversed the aldosterone-induced inhibition of I Ks and its effects on KCNQ1/KCNE1 protein levels. Furthermore, we found that AngII/AT1R mediates the inhibitory effects of aldosterone on I Ks . Finally, the downregulation of I Ks induced by aldosterone did not occur secondarily to a change in intracellular calcium concentrations. Taken together, our findings demonstrate that crosstalk between MR and AT1R underlies the effects of aldosterone, and provide new insights into the mechanism underlying potassium channels.
Li, Li; Zhao, Lei; Wang, Yang; Ma, Ke-tao; Shi, Wen-yan; Wang, Ying-zi; Si, Jun-qiang
2015-02-01
The mechanism underlying the modulatory effect of substance P (SP) on GABA-activated response in rat dorsal root ganglion (DRG) neurons was investigated. In freshly dissociated rat DRG neurons, whole-cell patch-clamp technique was used to record GABA-activated current and sharp electrode intracellular recording technique was used to record GABA-induced membrane depolarization. Application of GABA (1-1000 μmol/L) induced an inward current in a concentration-dependent manner in 114 out of 127 DRG neurons (89.8 %) examined with whole-cell patch-clamp recordings. Bath application of GABA (1-1000 μmol/L) evoked a depolarizing response in 236 out of 257 (91.8%) DRG neurons examined with intracellular recordings. Application of SP (0.001-1 μmol/L) suppressed the GABA-activated inward current and membrane depolarization. The inhibitory effects were concentration-dependent and could be blocked by the selective neurokinin 1 (NK1) receptors antagonist spantide but not by L659187 and SR142801 (1 μmol/L, n=7), selective antagonists of NK2 and NK3. The inhibitory effect of SP was significantly reduced by the calcium chelator BAPTA-AM, phospholipase C (PLC) inhibitor U73122, and PKC inhibitor chelerythrine, respectively. The PKA inhibitor H-89 did not affect the SP effect. Remarkably, the inhibitory effect of SP on GABA-activated current was nearly completely removed by a selective PKCε inhibitor epilon-V1-2 but not by safingol and LY333531, selective inhibitors of PKCα and PKCβ. Our results suggest that NK1 receptor mediates SP-induced inhibition of GABA-activated current and membrane depolarization by activating intracellular PLC-Ca²⁺-PKCε cascade. SP might regulate the excitability of peripheral nociceptors through inhibition of the "pre-synaptic inhibition" evoked by GABA, which may explain its role in pain and neurogenic inflammation.
Grzelka, Katarzyna; Kurowski, Przemysław; Gawlak, Maciej; Szulczyk, Paweł
2017-01-01
The medial prefrontal cortex (mPFC) receives dense noradrenergic projections from the locus coeruleus. Adrenergic innervation of mPFC pyramidal neurons plays an essential role in both physiology (control of memory formation, attention, working memory, and cognitive behavior) and pathophysiology (attention deficit hyperactivity disorder, posttraumatic stress disorder, cognitive deterioration after traumatic brain injury, behavioral changes related to addiction, Alzheimer's disease and depression). The aim of this study was to elucidate the mechanism responsible for adrenergic receptor-mediated control of the resting membrane potential in layer V mPFC pyramidal neurons. The membrane potential or holding current of synaptically isolated layer V mPFC pyramidal neurons was recorded in perforated-patch and classical whole-cell configurations in slices from young rats. Application of noradrenaline (NA), a neurotransmitter with affinity for all types of adrenergic receptors, evoked depolarization or inward current in the tested neurons irrespective of whether the recordings were performed in the perforated-patch or classical whole-cell configuration. The effect of noradrenaline depended on β 1 - and not α 1 - or α 2 -adrenergic receptor stimulation. Activation of β 1 -adrenergic receptors led to an increase in inward Na + current through hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, which carry a mixed Na + /K + current. The protein kinase A- and C-, glycogen synthase kinase-3β- and tyrosine kinase-linked signaling pathways were not involved in the signal transduction between β 1 -adrenergic receptors and HCN channels. The transduction system operated in a membrane-delimited fashion and involved the βγ subunit of G-protein. Thus, noradrenaline controls the resting membrane potential and holding current in mPFC pyramidal neurons through β 1 -adrenergic receptors, which in turn activate HCN channels via a signaling pathway involving the βγ subunit.
Grzelka, Katarzyna; Kurowski, Przemysław; Gawlak, Maciej; Szulczyk, Paweł
2017-01-01
The medial prefrontal cortex (mPFC) receives dense noradrenergic projections from the locus coeruleus. Adrenergic innervation of mPFC pyramidal neurons plays an essential role in both physiology (control of memory formation, attention, working memory, and cognitive behavior) and pathophysiology (attention deficit hyperactivity disorder, posttraumatic stress disorder, cognitive deterioration after traumatic brain injury, behavioral changes related to addiction, Alzheimer’s disease and depression). The aim of this study was to elucidate the mechanism responsible for adrenergic receptor-mediated control of the resting membrane potential in layer V mPFC pyramidal neurons. The membrane potential or holding current of synaptically isolated layer V mPFC pyramidal neurons was recorded in perforated-patch and classical whole-cell configurations in slices from young rats. Application of noradrenaline (NA), a neurotransmitter with affinity for all types of adrenergic receptors, evoked depolarization or inward current in the tested neurons irrespective of whether the recordings were performed in the perforated-patch or classical whole-cell configuration. The effect of noradrenaline depended on β1- and not α1- or α2-adrenergic receptor stimulation. Activation of β1-adrenergic receptors led to an increase in inward Na+ current through hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, which carry a mixed Na+/K+ current. The protein kinase A- and C-, glycogen synthase kinase-3β- and tyrosine kinase-linked signaling pathways were not involved in the signal transduction between β1-adrenergic receptors and HCN channels. The transduction system operated in a membrane-delimited fashion and involved the βγ subunit of G-protein. Thus, noradrenaline controls the resting membrane potential and holding current in mPFC pyramidal neurons through β1-adrenergic receptors, which in turn activate HCN channels via a signaling pathway involving the βγ subunit. PMID:29209170
Identification of DNA-Binding Proteins Using Structural, Electrostatic and Evolutionary Features
Nimrod, Guy; Szilágyi, András; Leslie, Christina; Ben-Tal, Nir
2009-01-01
Summary DNA binding proteins (DBPs) often take part in various crucial processes of the cell's life cycle. Therefore, the identification and characterization of these proteins are of great importance. We present here a random forests classifier for identifying DBPs among proteins with known three-dimensional structures. First, clusters of evolutionarily conserved regions (patches) on the protein's surface are detected using the PatchFinder algorithm; previous studies showed that these regions are typically the proteins' functionally important regions. Next, we train a classifier using features like the electrostatic potential, cluster-based amino acid conservation patterns and the secondary structure content of the patches, as well as features of the whole protein including its dipole moment. Using 10-fold cross validation on a dataset of 138 DNA-binding proteins and 110 proteins which do not bind DNA, the classifier achieved a sensitivity and a specificity of 0.90, which is overall better than the performance of previously published methods. Furthermore, when we tested 5 different methods on 11 new DBPs which did not appear in the original dataset, only our method annotated all correctly. The resulting classifier was applied to a collection of 757 proteins of known structure and unknown function. Of these proteins, 218 were predicted to bind DNA, and we anticipate that some of them interact with DNA using new structural motifs. The use of complementary computational tools supports the notion that at least some of them do bind DNA. PMID:19233205
Identification of DNA-binding proteins using structural, electrostatic and evolutionary features.
Nimrod, Guy; Szilágyi, András; Leslie, Christina; Ben-Tal, Nir
2009-04-10
DNA-binding proteins (DBPs) participate in various crucial processes in the life-cycle of the cells, and the identification and characterization of these proteins is of great importance. We present here a random forests classifier for identifying DBPs among proteins with known 3D structures. First, clusters of evolutionarily conserved regions (patches) on the surface of proteins were detected using the PatchFinder algorithm; earlier studies showed that these regions are typically the functionally important regions of proteins. Next, we trained a classifier using features like the electrostatic potential, cluster-based amino acid conservation patterns and the secondary structure content of the patches, as well as features of the whole protein, including its dipole moment. Using 10-fold cross-validation on a dataset of 138 DBPs and 110 proteins that do not bind DNA, the classifier achieved a sensitivity and a specificity of 0.90, which is overall better than the performance of published methods. Furthermore, when we tested five different methods on 11 new DBPs that did not appear in the original dataset, only our method annotated all correctly. The resulting classifier was applied to a collection of 757 proteins of known structure and unknown function. Of these proteins, 218 were predicted to bind DNA, and we anticipate that some of them interact with DNA using new structural motifs. The use of complementary computational tools supports the notion that at least some of them do bind DNA.
Rubi, Lena; Eckert, Daniel; Boehm, Stefan; Hilber, Karlheinz; Koenig, Xaver
2017-04-01
Ibogaine is a plant alkaloid used as anti-addiction drug in dozens of alternative medicine clinics worldwide. Recently, alarming reports of life-threatening cardiac arrhythmias and cases of sudden death associated with the ingestion of ibogaine have accumulated. Using whole-cell patch clamp recordings, we assessed the effects of ibogaine and its main metabolite noribogaine on action potentials in human ventricular-like cardiomyocytes derived from induced pluripotent stem cells. Therapeutic concentrations of ibogaine and its long-lived active metabolite noribogaine significantly retarded action potential repolarization in human cardiomyocytes. These findings represent the first experimental proof that ibogaine application entails a cardiac arrhythmia risk for humans. In addition, they explain the clinically observed delayed incidence of cardiac adverse events several days after ibogaine intake. We conclude that therapeutic concentrations of ibogaine retard action potential repolarization in the human heart. This may give rise to a prolongation of the QT interval in the electrocardiogram and cardiac arrhythmias.
Martina, Marzia; Turcotte, Marie-Eve B; Halman, Samantha; Bergeron, Richard
2007-01-01
The sigma receptor (σR), once considered a subtype of the opioid receptor, is now described as a distinct pharmacological entity. Modulation of N-methyl-d-aspartate receptor (NMDAR) functions by σR-1 ligands is well documented; however, its mechanism is not fully understood. Using patch-clamp whole-cell recordings in CA1 pyramidal cells of rat hippocampus and (+)pentazocine, a high-affinity σR-1 agonist, we found that σR-1 activation potentiates NMDAR responses and long-term potentiation (LTP) by preventing a small conductance Ca2+-activated K+ current (SK channels), known to shunt NMDAR responses, to open. Therefore, the block of SK channels and the resulting increased Ca2+ influx through the NMDAR enhances NMDAR responses and LTP. These results emphasize the importance of the σR-1 as postsynaptic regulator of synaptic transmission. PMID:17068104
Martina, Marzia; Turcotte, Marie-Eve B; Halman, Samantha; Bergeron, Richard
2007-01-01
The sigma receptor (sigmaR), once considered a subtype of the opioid receptor, is now described as a distinct pharmacological entity. Modulation of N-methyl-D-aspartate receptor (NMDAR) functions by sigmaR-1 ligands is well documented; however, its mechanism is not fully understood. Using patch-clamp whole-cell recordings in CA1 pyramidal cells of rat hippocampus and (+)pentazocine, a high-affinity sigmaR-1 agonist, we found that sigmaR-1 activation potentiates NMDAR responses and long-term potentiation (LTP) by preventing a small conductance Ca2+-activated K+ current (SK channels), known to shunt NMDAR responses, to open. Therefore, the block of SK channels and the resulting increased Ca2+ influx through the NMDAR enhances NMDAR responses and LTP. These results emphasize the importance of the sigmaR-1 as postsynaptic regulator of synaptic transmission.
Cellular Functions of the Autism Risk Factor PTCHD1 in Mice.
Tora, David; Gomez, Andrea M; Michaud, Jean-Francois; Yam, Patricia T; Charron, Frédéric; Scheiffele, Peter
2017-12-06
The gene patched domain containing 1 ( PTCHD1 ) is mutated in patients with autism spectrum disorders and intellectual disabilities and has been hypothesized to contribute to Sonic hedgehog (Shh) signaling and synapse formation. We identify a panel of Ptchd1-interacting proteins that include postsynaptic density proteins and the retromer complex, revealing a link to critical regulators of dendritic and postsynaptic trafficking. Ptchd1 knock-out (KO) male mice exhibit cognitive alterations, including defects in a novel object recognition task. To test whether Ptchd1 is required for Shh-dependent signaling, we examined two Shh-dependent cell populations that express high levels of Ptchd1 mRNA: cerebellar granule cell precursors and dentate granule cells in the hippocampus. We found that proliferation of these neuronal precursors was not altered significantly in Ptchd1 KO male mice. We used whole-cell electrophysiology and anatomical methods to assess synaptic function in Ptchd1-deficient dentate granule cells. In the absence of Ptchd1, we observed profound disruption in excitatory/inhibitory balance despite normal dendritic spine density on dentate granule cells. These findings support a critical role of the Ptchd1 protein in the dentate gyrus, but indicate that it is not required for structural synapse formation in dentate granule cells or for Shh-dependent neuronal precursor proliferation. SIGNIFICANCE STATEMENT The mechanisms underlying neuronal and cellular alterations resulting from patched domain containing 1 ( Ptchd1 ) gene mutations are unknown. The results from this study support an association with dendritic trafficking complexes of Ptchd1. Loss-of-function experiments do not support a role in sonic hedgehog-dependent signaling, but reveal a disruption of synaptic transmission in the mouse dentate gyrus. The findings will help to guide ongoing efforts to understand the etiology of neurodevelopmental disorders arising from Ptchd1 deficiency. Copyright © 2017 the authors 0270-6474/17/3711993-13$15.00/0.
Hakimi, O; Murphy, R; Stachewicz, U; Hislop, S; Carr, A J
2012-10-23
Rotator cuff tendon pathology is thought to account for 30-70 % of all shoulder pain. For cases that have failed conservative treatment, surgical re-attachment of the tendon to the bone with a non-absorbable suture is a common option. However, the failure rate of these repairs is high, estimated at up to 75 %. Studies have shown that in late disease stages the tendon itself is extremely degenerate, with reduced cell numbers and poor matrix organisation. Thus, it has been suggested that adding biological factors such as platelet rich plasma (PRP) and mesenchymal stem cells could improve healing. However, the articular capsule of the glenohumeral joint and the subacromial bursa are large spaces, and injecting beneficial factors into these sites does not ensure localisation to the area of tendon damage. Thus, the aim of this study was to develop a biocompatible patch for improving the healing rates of rotator cuff repairs. The patch will create a confinement around the repair area and will be used to guide injections to the vicinity of the surgical repair. Here, we characterised and tested a preliminary prototype of the patch utilising in vitro tools and primary tendon-derived cells, showing exceptional biocompatibility despite rapid degradation, improved cell attachment and that cells could migrate across the patch towards a chemo-attractant. Finally, we showed the feasibility of detecting the patch using ultrasound and injecting liquid into the confinement ex vivo. There is a potential for using this scaffold in the surgical repair of interfaces such as the tendon insertion in the rotator cuff, in conjunction with beneficial factors.
Nanowired three-dimensional cardiac patches
NASA Astrophysics Data System (ADS)
Dvir, Tal; Timko, Brian P.; Brigham, Mark D.; Naik, Shreesh R.; Karajanagi, Sandeep S.; Levy, Oren; Jin, Hongwei; Parker, Kevin K.; Langer, Robert; Kohane, Daniel S.
2011-11-01
Engineered cardiac patches for treating damaged heart tissues after a heart attack are normally produced by seeding heart cells within three-dimensional porous biomaterial scaffolds. These biomaterials, which are usually made of either biological polymers such as alginate or synthetic polymers such as poly(lactic acid) (PLA), help cells organize into functioning tissues, but poor conductivity of these materials limits the ability of the patch to contract strongly as a unit. Here, we show that incorporating gold nanowires within alginate scaffolds can bridge the electrically resistant pore walls of alginate and improve electrical communication between adjacent cardiac cells. Tissues grown on these composite matrices were thicker and better aligned than those grown on pristine alginate and when electrically stimulated, the cells in these tissues contracted synchronously. Furthermore, higher levels of the proteins involved in muscle contraction and electrical coupling are detected in the composite matrices. It is expected that the integration of conducting nanowires within three-dimensional scaffolds may improve the therapeutic value of current cardiac patches.
Ion channel pharmacology under flow: automation via well-plate microfluidics.
Spencer, C Ian; Li, Nianzhen; Chen, Qin; Johnson, Juliette; Nevill, Tanner; Kammonen, Juha; Ionescu-Zanetti, Cristian
2012-08-01
Automated patch clamping addresses the need for high-throughput screening of chemical entities that alter ion channel function. As a result, there is considerable utility in the pharmaceutical screening arena for novel platforms that can produce relevant data both rapidly and consistently. Here we present results that were obtained with an innovative microfluidic automated patch clamp system utilizing a well-plate that eliminates the necessity of internal robotic liquid handling. Continuous recording from cell ensembles, rapid solution switching, and a bench-top footprint enable a number of assay formats previously inaccessible to automated systems. An electro-pneumatic interface was employed to drive the laminar flow of solutions in a microfluidic network that delivered cells in suspension to ensemble recording sites. Whole-cell voltage clamp was applied to linear arrays of 20 cells in parallel utilizing a 64-channel voltage clamp amplifier. A number of unique assays requiring sequential compound applications separated by a second or less, such as rapid determination of the agonist EC(50) for a ligand-gated ion channel or the kinetics of desensitization recovery, are enabled by the system. In addition, the system was validated via electrophysiological characterizations of both voltage-gated and ligand-gated ion channel targets: hK(V)2.1 and human Ether-à-go-go-related gene potassium channels, hNa(V)1.7 and 1.8 sodium channels, and (α1) hGABA(A) and (α1) human nicotinic acetylcholine receptor receptors. Our results show that the voltage dependence, kinetics, and interactions of these channels with pharmacological agents were matched to reference data. The results from these IonFlux™ experiments demonstrate that the system provides high-throughput automated electrophysiology with enhanced reliability and consistency, in a user-friendly format.
Direct block of native and cloned (Kir2.1) inward rectifier K+ channels by chloroethylclonidine
Barrett-Jolley, R; Dart, C; Standen, N B
1999-01-01
We have investigated the inhibition of inwardly rectifying potassium channels by the α-adrenergic agonist/antagonist chloroethylclonidine (CEC). We used two preparations; two-electrode voltage-clamp of rat isolated flexor digitorum brevis muscle and whole-cell patch-clamp of cell lines transfected with Kir2.1 (IRK1).In skeletal muscle and at a membrane potential of −50 mV, chloroethylclonidine (CEC), an agonist at α2-adrenergic receptors and an antagonist at α1x-receptors, was found to inhibit the inward rectifier current with a Ki of 30 μM.The inhibition of skeletal muscle inward rectifier current by CEC was not mimicked by clonidine, adrenaline or noradrenaline and was not sensitive to high concentrations of α1-(prazosin) or α2-(rauwolscine) antagonists.The degree of current inhibition by CEC was found to vary with the membrane potential (approximately 70% block at −50 mV c.f. ∼10% block at −190 mV). The kinetics of this voltage dependence were further investigated using recombinant inward rectifier K+ channels (Kir2.1) expressed in the MEL cell line. Using a two pulse protocol, we calculated the time constant for block to be ∼8 s at 0 mV, and the rate of unblock was described by the relationship τ=exp((Vm+149)/22) s.This block was effective when CEC was applied to either the inside or the outside of patch clamped cells, but ineffective when a polyamine binding site (aspartate 172) was mutated to asparagine.The data suggest that the clonidine-like imidazoline compound, CEC, inhibits inward rectifier K+ channels independently of α-receptors by directly blocking the channel pore, possibly at an intracellular polyamine binding site. PMID:10516659
A High Sensitivity Three-Dimensional-Shape Sensing Patch Prepared by Lithography and Inkjet Printing
Huang, Yi-Ren; Kuo, Sheng-An; Stach, Michal; Liu, Chia-Hsing; Liao, Kuan-Hsun; Lo, Cheng-Yao
2012-01-01
A process combining conventional photolithography and a novel inkjet printing method for the manufacture of high sensitivity three-dimensional-shape (3DS) sensing patches was proposed and demonstrated. The supporting curvature ranges from 1.41 to 6.24 × 10−2 mm−1 and the sensing patch has a thickness of less than 130 μm and 20 × 20 mm2 dimensions. A complete finite element method (FEM) model with simulation results was calculated and performed based on the buckling of columns and the deflection equation. The results show high compatibility of the drop-on-demand (DOD) inkjet printing with photolithography and the interferometer design also supports bi-directional detection of deformation. The 3DS sensing patch can be operated remotely without any power consumption. It provides a novel and alternative option compared with other optical curvature sensors. PMID:22666025
Classification of MR brain images by combination of multi-CNNs for AD diagnosis
NASA Astrophysics Data System (ADS)
Cheng, Danni; Liu, Manhua; Fu, Jianliang; Wang, Yaping
2017-07-01
Alzheimer's disease (AD) is an irreversible neurodegenerative disorder with progressive impairment of memory and cognitive functions. Its early diagnosis is crucial for development of future treatment. Magnetic resonance images (MRI) play important role to help understand the brain anatomical changes related to AD. Conventional methods extract the hand-crafted features such as gray matter volumes and cortical thickness and train a classifier to distinguish AD from other groups. Different from these methods, this paper proposes to construct multiple deep 3D convolutional neural networks (3D-CNNs) to learn the various features from local brain images which are combined to make the final classification for AD diagnosis. First, a number of local image patches are extracted from the whole brain image and a 3D-CNN is built upon each local patch to transform the local image into more compact high-level features. Then, the upper convolution and fully connected layers are fine-tuned to combine the multiple 3D-CNNs for image classification. The proposed method can automatically learn the generic features from imaging data for classification. Our method is evaluated using T1-weighted structural MR brain images on 428 subjects including 199 AD patients and 229 normal controls (NC) from Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Experimental results show that the proposed method achieves an accuracy of 87.15% and an AUC (area under the ROC curve) of 92.26% for AD classification, demonstrating the promising classification performances.
Pita, Ricardo; Mira, António; Beja, Pedro
2013-01-01
The ability of patchy populations to persist in human-dominated landscapes is often assessed using focal patch approaches, in which the local occurrence or abundance of a species is related to the properties of individual patches and the surrounding landscape context. However, useful additional insights could probably be gained through broader, mosaic-level approaches, whereby whole land mosaics with contrasting patch-network and matrix characteristics are the units of investigation. In this study we addressed this issue, analysing how the southern water vole (Arvicola sapidus) responds to variables describing patch-network and matrix properties within replicated Mediterranean farmland mosaics, across a gradient of agricultural intensification. Patch-network characteristics had a dominant effect, with the total amount of habitat positively influencing both the occurrence of water voles and the proportion of area occupied in land mosaics. The proportions of patches and area occupied by the species were positively influenced by mean patch size, and negatively so by patch isolation. Matrix effects were weak, although there was a tendency for a higher proportion of occupied patches in more intensive, irrigated agricultural landscapes, particularly during the dry season. In terms of conservation, results suggest that water voles may be able to cope well with, or even be favoured by, the on-going expansion of irrigated agriculture in Mediterranean dry-lands, provided that a number of patches of wet herbaceous vegetation are maintained within the farmland mosaic. Overall, our study suggests that the mosaic-level approach may provide a useful framework to understand the responses of patchy populations to land use change. PMID:23875014
Zach, Gernot J.; Peneder, Stefan; Strodl, Markus A.; Schausberger, Peter
2012-01-01
Background In group-living animals, social interactions and their effects on other life activities such as foraging are commonly determined by discrimination among group members. Accordingly, many group-living species evolved sophisticated social recognition abilities such as the ability to recognize familiar individuals, i.e. individuals encountered before. Social familiarity may affect within-group interactions and between-group movements. In environments with patchily distributed prey, group-living predators must repeatedly decide whether to stay with the group in a given prey patch or to leave and search for new prey patches and groups. Methodology/Principal Findings Based on the assumption that in group-living animals social familiarity allows to optimize the performance in other tasks, as for example predicted by limited attention theory, we assessed the influence of social familiarity on prey patch exploitation, patch-leaving, and inter-patch distribution of the group-living, plant-inhabiting predatory mite Phytoseiulus persimilis. P. persimilis is highly specialized on herbivorous spider mite prey such as the two-spotted spider mite Tetranychus urticae, which is patchily distributed on its host plants. We conducted two experiments with (1) groups of juvenile P. persimilis under limited food on interconnected detached leaflets, and (2) groups of adult P. persimilis females under limited food on whole plants. Familiar individuals of both juvenile and adult predator groups were more exploratory and dispersed earlier from a given spider mite patch, occupied more leaves and depleted prey more quickly than individuals of unfamiliar groups. Moreover, familiar juvenile predators had higher survival chances than unfamiliar juveniles. Conclusions/Significance We argue that patch-exploitation and -leaving, and inter-patch dispersion were more favorably coordinated in groups of familiar than unfamiliar predators, alleviating intraspecific competition and improving prey utilization and suppression. PMID:22900062
Zach, Gernot J; Peneder, Stefan; Strodl, Markus A; Schausberger, Peter
2012-01-01
In group-living animals, social interactions and their effects on other life activities such as foraging are commonly determined by discrimination among group members. Accordingly, many group-living species evolved sophisticated social recognition abilities such as the ability to recognize familiar individuals, i.e. individuals encountered before. Social familiarity may affect within-group interactions and between-group movements. In environments with patchily distributed prey, group-living predators must repeatedly decide whether to stay with the group in a given prey patch or to leave and search for new prey patches and groups. Based on the assumption that in group-living animals social familiarity allows to optimize the performance in other tasks, as for example predicted by limited attention theory, we assessed the influence of social familiarity on prey patch exploitation, patch-leaving, and inter-patch distribution of the group-living, plant-inhabiting predatory mite Phytoseiulus persimilis. P. persimilis is highly specialized on herbivorous spider mite prey such as the two-spotted spider mite Tetranychus urticae, which is patchily distributed on its host plants. We conducted two experiments with (1) groups of juvenile P. persimilis under limited food on interconnected detached leaflets, and (2) groups of adult P. persimilis females under limited food on whole plants. Familiar individuals of both juvenile and adult predator groups were more exploratory and dispersed earlier from a given spider mite patch, occupied more leaves and depleted prey more quickly than individuals of unfamiliar groups. Moreover, familiar juvenile predators had higher survival chances than unfamiliar juveniles. We argue that patch-exploitation and -leaving, and inter-patch dispersion were more favorably coordinated in groups of familiar than unfamiliar predators, alleviating intraspecific competition and improving prey utilization and suppression.
Automated patch clamp on mESC-derived cardiomyocytes for cardiotoxicity prediction.
Stoelzle, Sonja; Haythornthwaite, Alison; Kettenhofen, Ralf; Kolossov, Eugen; Bohlen, Heribert; George, Michael; Brüggemann, Andrea; Fertig, Niels
2011-09-01
Cardiovascular side effects are critical in drug development and have frequently led to late-stage project terminations or even drug withdrawal from the market. Physiologically relevant and predictive assays for cardiotoxicity are hence strongly demanded by the pharmaceutical industry. To identify a potential impact of test compounds on ventricular repolarization, typically a variety of ion channels in diverse heterologously expressing cells have to be investigated. Similar to primary cells, in vitro-generated stem cell-derived cardiomyocytes simultaneously express cardiac ion channels. Thus, they more accurately represent the native situation compared with cell lines overexpressing only a single type of ion channel. The aim of this study was to determine if stem cell-derived cardiomyocytes are suited for use in an automated patch clamp system. The authors show recordings of cardiac ion currents as well as action potential recordings in readily available stem cell-derived cardiomyocytes. Besides monitoring inhibitory effects of reference compounds on typical cardiac ion currents, the authors revealed for the first time drug-induced modulation of cardiac action potentials in an automated patch clamp system. The combination of an in vitro cardiac cell model with higher throughput patch clamp screening technology allows for a cost-effective cardiotoxicity prediction in a physiologically relevant cell system.
Provence, Aaron; Angoli, Damiano; Petkov, Georgi V
2018-01-01
Voltage-gated K V 7 channels (K V 7.1 to K V 7.5) are important regulators of the cell membrane potential in detrusor smooth muscle (DSM) of the urinary bladder. This study sought to further the current knowledge of K V 7 channel function at the molecular, cellular, and tissue levels in combination with pharmacological tools. We used isometric DSM tension recordings, ratiometric fluorescence Ca 2+ imaging, amphotericin-B perforated patch-clamp electrophysiology, and in situ proximity ligation assay (PLA) in combination with the novel compound N -(2,4,6-trimethylphenyl)-bicyclo[2.2.1]heptane-2-carboxamide (ML213), an activator of K V 7.2, K V 7.4, and K V 7.5 channels, to examine their physiologic roles in guinea pig DSM function. ML213 caused a concentration-dependent (0.1-30 µ M) inhibition of spontaneous phasic contractions in DSM isolated strips; effects blocked by the K V 7 channel inhibitor XE991 (10 µ M). ML213 (0.1-30 µ M) also reduced pharmacologically induced and nerve-evoked contractions in DSM strips. Consistently, ML213 (10 µ M) decreased global intracellular Ca 2+ concentrations in Fura-2-loaded DSM isolated strips. Perforated patch-clamp electrophysiology revealed that ML213 (10 µ M) caused an increase in the amplitude of whole-cell K V 7 currents. Further, in current-clamp mode of the perforated patch clamp, ML213 hyperpolarized DSM cell membrane potential in a manner reversible by washout or XE991 (10 µ M), consistent with ML213 activation of K V 7 channel currents. Preapplication of XE991 (10 µ M) not only depolarized the DSM cells, but also blocked ML213-induced hyperpolarization, confirming ML213 selectivity for K V 7 channel subtypes. In situ PLA revealed colocalization and expression of heteromeric K V 7.4/K V 7.5 channels in DSM isolated cells. These combined results suggest that ML213-sensitive K V 7.4- and K V 7.5-containing channels are essential regulators of DSM excitability and contractility. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.
Patch forest: a hybrid framework of random forest and patch-based segmentation
NASA Astrophysics Data System (ADS)
Xie, Zhongliu; Gillies, Duncan
2016-03-01
The development of an accurate, robust and fast segmentation algorithm has long been a research focus in medical computer vision. State-of-the-art practices often involve non-rigidly registering a target image with a set of training atlases for label propagation over the target space to perform segmentation, a.k.a. multi-atlas label propagation (MALP). In recent years, the patch-based segmentation (PBS) framework has gained wide attention due to its advantage of relaxing the strict voxel-to-voxel correspondence to a series of pair-wise patch comparisons for contextual pattern matching. Despite a high accuracy reported in many scenarios, computational efficiency has consistently been a major obstacle for both approaches. Inspired by recent work on random forest, in this paper we propose a patch forest approach, which by equipping the conventional PBS with a fast patch search engine, is able to boost segmentation speed significantly while retaining an equal level of accuracy. In addition, a fast forest training mechanism is also proposed, with the use of a dynamic grid framework to efficiently approximate data compactness computation and a 3D integral image technique for fast box feature retrieval.
Huang, Chin-Wei; Huang, Chao-Ching; Huang, Mei-Han; Wu, Sheng-Nan; Hsieh, Yi-Jung
2005-03-29
We investigated the chemical toxic agent sodium cyanate (NaOCN) on the large conductance calcium-activated potassium channels (BK(Ca)) on hippocampal neuron-derived H19-7 cells. The whole-cell and cell-attach configuration of patch-clamp technique were applied to investigate the BK(Ca) currents in H19-7 cells in the presence of NaOCN (0.3 mM). NaOCN activated BK(Ca) channels on H19-7 cells. The single-channel conductance of BK(Ca) channels was 138+/-7pS. The presence of NaOCN (0.3 mM) caused an obvious increase in open probability of BK(Ca) channels. NaOCN did not exert effect on the slope of the activation curve and stimulated the activity of BK(Ca) channels in a voltage-dependent fashion in H19-7 cells. The presence of paxilline or EGTA significantly reduced the BK(Ca) amplitude, in comparison with the presence of NaOCN. These findings suggest that during NaOCN exposure, the activation of BK(Ca) channels in neurons could be one of the ionic mechanisms underlying the decreased neuronal excitability and neurological disorders.
NASA Astrophysics Data System (ADS)
Wagner, John A.; Cozens, Alison L.; Schulman, Howard; Gruenert, Dieter C.; Stryer, Lubert; Gardner, Phyllis
1991-02-01
CYSTIC fibrosis is associated with defective regulation of apical membrane chloride channels in airway epithelial cells. These channels in normal cells are activated by cyclic AMP-dependent protein kinase1,2 and protein kinase C3,4. In cystic fibrosis these kinases fail to activate otherwise normal Cl- channels1-4. But Cl- flux in cystic fibrosis cells, as in normal cells, can be activated by raising intracellular Ca2+ (refs 5-10). We report here whole-cell patch clamp studies of normal and cystic fibrosis-derived airway epithelial cells showing that Cl- channel activation by Ca2+ is mediated by multifunctional Ca2+/calmodulin-dependent protein kinase. We find that intracellular application of activated kinase and ATP activates a Cl- current similar to that activated by a Ca2+ ionophore, that peptide inhibitors of either the kinase or calmodulin block Ca2+-dependent activation of Cl- channels, and that a peptide inhibitor of protein kinase C does not block Ca2+-dependent activation. Ca2+/calmodulin activation of Cl- channels presents a pathway with therapeutic potential for circumventing defective regulation of Cl- channels in cystic fibrosis.
Electric field distribution on surface of the artificial magnetic conductor: miniaturization process
NASA Astrophysics Data System (ADS)
Ramos, Welyson T. S.; Mesquita, Renato C.; Silva, Elson J.
2017-08-01
This paper presents a study of the influence of the geometric shape on the resonance frequency of the artificial magnetic conductor (AMC) by analysis of the electric field distributions on top of the surface metallic patch inside the unit cell. It is known that various parameters such as geometry, dielectric substrate thickness, gap between patches, length and width of patch, size of unit cell, permittivity and permeability strongly affect the resonance frequency. In attempts to elucidate the miniaturization process, as reference, a metallic square patch with a unit cell of size 10 mm × 10 mm was simulated and a resonance frequency of 5.75 GHz was obtained. The device has illuminated by a plane wave with polarization in the y direction. Additionally, different geometries were performed such as triangle, hexagon, circle and cross of Jerusalem. We realized that the field distribution can be used as an physical insight to understand the AMC miniaturization process. In particular, bow-tie geometry provided considerable electrical miniaturization compared with square patch, about 1.5 GHz. The results are supported by finite element method. Our findings suggest that shift at resonant frequency may be interpreted as a variation in the net induced electric polarizability on the surface of the metallic patches.
Fronius, Maria; Cirina, Licia; Ackermann, Hanns; Kohnen, Thomas; Diehl, Corinna M
2014-10-01
The notion of a limited, early period of plasticity of the visual system has been challenged by more recent research demonstrating functional enhancement even into adulthood. In amblyopia ("lazy eye") it is still unclear to what extent the reduced effect of treatment after early childhood is due to declining plasticity or lower compliance with prescribed patching. The aim of this study was to determine the dose-response relationship and treatment efficiency from acuity gain and electronically recorded patching dose rates, and to infer from these parameters on a facet of age dependence of functional plasticity related to occlusion for amblyopia. The Occlusion Dose Monitor was used to record occlusion in 27 participants with previously untreated strabismic and/or anisometropic amblyopia aged between 5.4 and 15.8 (mean 9.2) years during 4months of conventional treatment. Group data showed improvement of acuity throughout the age span, but significantly more in patients younger than 7years despite comparable patching dosages. Treatment efficiency declined with age, with the most pronounced effects before the age of 7years. Thus, electronic recording allowed this first quantitative insight into occlusion treatment spanning the age range from within to beyond the conventional age for patching. Though demonstrating improvement in over 7year old patients, it confirmed the importance of early detection and treatment of amblyopia. Treatment efficiency is presented as a tool extending insight into age-dependent functional plasticity of the visual system, and providing a basis for comparisons of effects of patching vs. emerging alternative treatment approaches for amblyopia. Copyright © 2014 Elsevier Ltd. All rights reserved.
Assier, Haudrey; Valeyrie-Allanore, Laurence; Gener, Gwendeline; Verlinde Carvalh, Muriel; Chosidow, Olivier; Wolkenstein, Pierre
2017-11-01
Patch testing following a standardized protocol is reliable for identifying the culprit drug in cutaneous adverse drug reactions (CADRs). However, these patch tests (PTs) require pharmaceutical material and staff, which are not always easily available. To evaluate an extemporaneous PT method in CADRs. We retrospectively analysed data for all patients referred to our department between March 2009 and June 2013 for patch testing after a non-immediate CADR. The patients who supplied their own suspected drugs were tested both with extemporaneous PTs and with conventional PTs. Extemporaneous PTs involved a nurse crushing and diluting the drug in pet. in a ratio of approximately one-third to two-thirds. Standardized PTs were performed according to guidelines, with commercial drugs diluted to 30% or with active ingredients diluted to 10%. We analysed the data for the two PT methods in terms of the number of positive test reactions, drugs tested, and type of CADR for patients in whom the two PT methods were used. In total, 75 of 156 patients underwent the two PT procedures, including 91 double tests. Overall, 21 tests gave positive reactions with the two methods, and 69 other tests gave negative results with the two methods. Our series yielded results similar to those of published series concerning the types of CADR and the drugs responsible. Our results suggest that, for CADRs, if a patient supplies a suspected drug but if the pharmaceutical material and staff are not available for conventional PTs, extemporaneous PTs performed by the nurse with the commercial drug used by the patient can be useful and reliable. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Three-dimensional intracellular structure of a whole rice mesophyll cell observed with FIB-SEM.
Oi, Takao; Enomoto, Sakiko; Nakao, Tomoyo; Arai, Shigeo; Yamane, Koji; Taniguchi, Mitsutaka
2017-07-01
Ultrathin sections of rice leaf blades observed two-dimensionally using a transmission electron microscope (TEM) show that the chlorenchyma is composed of lobed mesophyll cells, with intricate cell boundaries, and lined with chloroplasts. The lobed cell shape and chloroplast positioning are believed to enhance the area available for the gas exchange surface for photosynthesis in rice leaves. However, a cell image revealing the three-dimensional (3-D) ultrastructure of rice mesophyll cells has not been visualized. In this study, a whole rice mesophyll cell was observed using a focused ion beam scanning electron microscope (FIB-SEM), which provides many serial sections automatically, rapidly and correctly, thereby enabling 3-D cell structure reconstruction. Rice leaf blades were fixed chemically using the method for conventional TEM observation, embedded in resin and subsequently set in the FIB-SEM chamber. Specimen blocks were sectioned transversely using the FIB, and block-face images were captured using the SEM. The sectioning and imaging were repeated overnight for 200-500 slices (each 50 nm thick). The resultant large-volume image stacks ( x = 25 μm, y = 25 μm, z = 10-25 μm) contained one or two whole mesophyll cells. The 3-D models of whole mesophyll cells were reconstructed using image processing software. The reconstructed cell models were discoid shaped with several lobes around the cell periphery. The cell shape increased the surface area, and the ratio of surface area to volume was twice that of a cylinder having the same volume. The chloroplasts occupied half the cell volume and spread as sheets along the cell lobes, covering most of the inner cell surface, with adjacent chloroplasts in close contact with each other. Cellular and sub-cellular ultrastructures of a whole mesophyll cell in a rice leaf blade are demonstrated three-dimensionally using a FIB-SEM. The 3-D models and numerical information support the hypothesis that rice mesophyll cells enhance their CO 2 absorption with increased cell surface and sheet-shaped chloroplasts. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Yachnev, Igor L; Plakhova, Vera B; Podzorova, Svetlana A; Shelykh, Tatiana N; Rogachevsky, Ilya V; Krylov, Boris V
2012-01-01
Effects of infrared (IR) radiation generated by a low-power CO2-laser on the membrane of cultured dissociated nociceptive neurons of newborn rat spinal ganglia were investigated using the whole-cell patch-clamp method. Low-power IR radiation diminished the voltage sensitivity of activation gating machinery of slow sodium channels (Na(v)1.8). Ouabain known to block both transducer and pumping functions of Na+,K+-ATPase eliminated IR irradiation effects. The molecular mechanism of interaction of CO2-laser radiation with sensory membrane was proposed. The primary event of this interaction is the process of energy absorption by ATP molecules. The transfer of vibrational energy from Na+,K+- ATPase-bound and vibrationally excited ATP molecules to Na+,K+-ATPase activates this enzyme and converts it into a signal transducer. This effect leads to a decrease in the voltage sensitivity of Na(v)1.8 channels. The effect of IR-radiation was elucidated by the combined application of a very sensitive patch-clamp method and an optical facility with a controlled CO2-laser. As a result, the mechanism of interaction of non-thermal low-power IR radiation with the nociceptive neuron membrane is suggested.
Robust multi-atlas label propagation by deep sparse representation
Zu, Chen; Wang, Zhengxia; Zhang, Daoqiang; Liang, Peipeng; Shi, Yonghong; Shen, Dinggang; Wu, Guorong
2016-01-01
Recently, multi-atlas patch-based label fusion has achieved many successes in medical imaging area. The basic assumption in the current state-of-the-art approaches is that the image patch at the target image point can be represented by a patch dictionary consisting of atlas patches from registered atlas images. Therefore, the label at the target image point can be determined by fusing labels of atlas image patches with similar anatomical structures. However, such assumption on image patch representation does not always hold in label fusion since (1) the image content within the patch may be corrupted due to noise and artifact; and (2) the distribution of morphometric patterns among atlas patches might be unbalanced such that the majority patterns can dominate label fusion result over other minority patterns. The violation of the above basic assumptions could significantly undermine the label fusion accuracy. To overcome these issues, we first consider forming label-specific group for the atlas patches with the same label. Then, we alter the conventional flat and shallow dictionary to a deep multi-layer structure, where the top layer (label-specific dictionaries) consists of groups of representative atlas patches and the subsequent layers (residual dictionaries) hierarchically encode the patchwise residual information in different scales. Thus, the label fusion follows the representation consensus across representative dictionaries. However, the representation of target patch in each group is iteratively optimized by using the representative atlas patches in each label-specific dictionary exclusively to match the principal patterns and also using all residual patterns across groups collaboratively to overcome the issue that some groups might be absent of certain variation patterns presented in the target image patch. Promising segmentation results have been achieved in labeling hippocampus on ADNI dataset, as well as basal ganglia and brainstem structures, compared to other counterpart label fusion methods. PMID:27942077
Robust multi-atlas label propagation by deep sparse representation.
Zu, Chen; Wang, Zhengxia; Zhang, Daoqiang; Liang, Peipeng; Shi, Yonghong; Shen, Dinggang; Wu, Guorong
2017-03-01
Recently, multi-atlas patch-based label fusion has achieved many successes in medical imaging area. The basic assumption in the current state-of-the-art approaches is that the image patch at the target image point can be represented by a patch dictionary consisting of atlas patches from registered atlas images. Therefore, the label at the target image point can be determined by fusing labels of atlas image patches with similar anatomical structures. However, such assumption on image patch representation does not always hold in label fusion since (1) the image content within the patch may be corrupted due to noise and artifact; and (2) the distribution of morphometric patterns among atlas patches might be unbalanced such that the majority patterns can dominate label fusion result over other minority patterns. The violation of the above basic assumptions could significantly undermine the label fusion accuracy. To overcome these issues, we first consider forming label-specific group for the atlas patches with the same label. Then, we alter the conventional flat and shallow dictionary to a deep multi-layer structure, where the top layer ( label-specific dictionaries ) consists of groups of representative atlas patches and the subsequent layers ( residual dictionaries ) hierarchically encode the patchwise residual information in different scales. Thus, the label fusion follows the representation consensus across representative dictionaries. However, the representation of target patch in each group is iteratively optimized by using the representative atlas patches in each label-specific dictionary exclusively to match the principal patterns and also using all residual patterns across groups collaboratively to overcome the issue that some groups might be absent of certain variation patterns presented in the target image patch. Promising segmentation results have been achieved in labeling hippocampus on ADNI dataset, as well as basal ganglia and brainstem structures, compared to other counterpart label fusion methods.
Label-Free, Flow-Imaging Methods for Determination of Cell Concentration and Viability.
Sediq, A S; Klem, R; Nejadnik, M R; Meij, P; Jiskoot, Wim
2018-05-30
To investigate the potential of two flow imaging microscopy (FIM) techniques (Micro-Flow Imaging (MFI) and FlowCAM) to determine total cell concentration and cell viability. B-lineage acute lymphoblastic leukemia (B-ALL) cells of 2 different donors were exposed to ambient conditions. Samples were taken at different days and measured with MFI, FlowCAM, hemocytometry and automated cell counting. Dead and live cells from a fresh B-ALL cell suspension were fractionated by flow cytometry in order to derive software filters based on morphological parameters of separate cell populations with MFI and FlowCAM. The filter sets were used to assess cell viability in the measured samples. All techniques gave fairly similar cell concentration values over the whole incubation period. MFI showed to be superior with respect to precision, whereas FlowCAM provided particle images with a higher resolution. Moreover, both FIM methods were able to provide similar results for cell viability as the conventional methods (hemocytometry and automated cell counting). FIM-based methods may be advantageous over conventional cell methods for determining total cell concentration and cell viability, as FIM measures much larger sample volumes, does not require labeling, is less laborious and provides images of individual cells.
Lei, Kin-Fong; Hsieh, Yi-Zheng; Chiu, Yi-Yuan; Wu, Min-Hsien
2015-07-31
This study reports a piezoelectric poly(vinylidene fluoride) (PVDF) polymer-based sensor patch for respiration detections in dynamic walking condition. The working mechanism of respiration signal generation is based on the periodical deformations on a human chest wall during the respiratory movements, which in turn mechanically stretch the piezoelectric PVDF film to generate the corresponding electrical signals. In this study, the PVDF sensing film was completely encapsulated within the sensor patch forming a mass-spring-damper mechanical system to prevent the noises generated in a dynamic condition. To verify the design of sensor patch to prevent dynamic noises, experimental investigations were carried out. Results demonstrated the respiration signals generated and the respiratory rates measured by the proposed sensor patch were in line with the same measurements based on a commercial respiratory effort transducer both in a static (e.g., sitting) or dynamic (e.g., walking) condition. As a whole, this study has developed a PVDF-based sensor patch which is capable of monitoring respirations in a dynamic walking condition with high fidelity. Other distinctive features include its small size, light weight, ease of use, low cost, and portability. All these make it a promising sensing device to monitor respirations particularly in home care units.
MO-DE-207A-11: Sparse-View CT Reconstruction Via a Novel Non-Local Means Method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Z; Qi, H; Wu, S
2016-06-15
Purpose: Sparse-view computed tomography (CT) reconstruction is an effective strategy to reduce the radiation dose delivered to patients. Due to its insufficiency of measurements, traditional non-local means (NLM) based reconstruction methods often lead to over-smoothness in image edges. To address this problem, an adaptive NLM reconstruction method based on rotational invariance (RIANLM) is proposed. Methods: The method consists of four steps: 1) Initializing parameters; 2) Algebraic reconstruction technique (ART) reconstruction using raw projection data; 3) Positivity constraint of the image reconstructed by ART; 4) Update reconstructed image by using RIANLM filtering. In RIANLM, a novel similarity metric that is rotationalmore » invariance is proposed and used to calculate the distance between two patches. In this way, any patch with similar structure but different orientation to the reference patch would win a relatively large weight to avoid over-smoothed image. Moreover, the parameter h in RIANLM which controls the decay of the weights is adaptive to avoid over-smoothness, while it in NLM is not adaptive during the whole reconstruction process. The proposed method is named as ART-RIANLM and validated on Shepp-Logan phantom and clinical projection data. Results: In our experiments, the searching neighborhood size is set to 15 by 15 and the similarity window is set to 3 by 3. For the simulated case with a resolution of 256 by 256 Shepp-Logan phantom, the ART-RIANLM produces higher SNR (35.38dB<24.00dB) and lower MAE (0.0006<0.0023) reconstructed image than ART-NLM. The visual inspection demonstrated that the proposed method could suppress artifacts or noises more effectively and preserve image edges better. Similar results were found for clinical data case. Conclusion: A novel ART-RIANLM method for sparse-view CT reconstruction is presented with superior image. Compared to the conventional ART-NLM method, the SNR and MAE from ART-RIANLM increases 47% and decreases 74%, respectively.« less
Video denoising using low rank tensor decomposition
NASA Astrophysics Data System (ADS)
Gui, Lihua; Cui, Gaochao; Zhao, Qibin; Wang, Dongsheng; Cichocki, Andrzej; Cao, Jianting
2017-03-01
Reducing noise in a video sequence is of vital important in many real-world applications. One popular method is block matching collaborative filtering. However, the main drawback of this method is that noise standard deviation for the whole video sequence is known in advance. In this paper, we present a tensor based denoising framework that considers 3D patches instead of 2D patches. By collecting the similar 3D patches non-locally, we employ the low-rank tensor decomposition for collaborative filtering. Since we specify the non-informative prior over the noise precision parameter, the noise variance can be inferred automatically from observed video data. Therefore, our method is more practical, which does not require knowing the noise variance. The experimental on video denoising demonstrates the effectiveness of our proposed method.
Insulin activates single amiloride-blockable Na channels in a distal nephron cell line (A6).
Marunaka, Y; Hagiwara, N; Tohda, H
1992-09-01
Using the patch-clamp technique, we studied the effect of insulin on an amiloride-blockable Na channel in the apical membrane of a distal nephron cell line (A6) cultured on permeable collagen films for 10-14 days. NPo (N, number of channels per patch membrane; Po, average value of open probability of individual channels in the patch) under baseline conditions was 0.88 +/- 0.12 (SE)(n = 17). After making cell-attached patches on the apical membrane which contained Na channels, insulin (1 mU/ml) was applied to the serosal bath. While maintaining the cell-attached patch, NPo significantly increased to 1.48 +/- 0.19 (n = 17; P less than 0.001) after 5-10 min of insulin application. The open probability of Na channels was 0.39 +/- 0.01 (n = 38) under baseline condition, and increased to 0.66 +/- 0.03 (n = 38, P less than 0.001) after addition of insulin. The baseline single-channel conductance was 4pS, and neither the single-channel conductance nor the current-voltage relationship was significantly changed by insulin. These results indicate that insulin increases Na absorption in the distal nephron by increasing the open probability of the amiloride-blockable Na channel.
Pozdnyakov, Ilya; Matantseva, Olga; Negulyaev, Yuri; Skarlato, Sergei
2014-09-05
Ion channels are tightly involved in various aspects of cell physiology, including cell signaling, proliferation, motility, endo- and exo-cytosis. They may be involved in toxin production and release by marine dinoflagellates, as well as harmful algal bloom proliferation. So far, the patch-clamp technique, which is the most powerful method to study the activity of ion channels, has not been applied to dinoflagellate cells, due to their complex cellulose-containing cell coverings. In this paper, we describe a new approach to overcome this problem, based on the preparation of spheroplasts from armored bloom-forming dinoflagellate Prorocentrum minimum. We treated the cells of P. minimum with a cellulose synthesis inhibitor, 2,6-dichlorobenzonitrile (DCB), and found out that it could also induce ecdysis and arrest cell shape maintenance in these microalgae. Treatment with 100-250 µM DCB led to an acceptable 10% yield of P. minimum spheroplasts and was independent of the incubation time in the range of 1-5 days. We show that such spheroplasts are suitable for patch-clamping in the cell-attached mode and can form 1-10 GOhm patch contact with a glass micropipette, allowing recording of ion channel activity. The first single-channel recordings of dinoflagellate ion channels are presented.
Pozdnyakov, Ilya; Matantseva, Olga; Negulyaev, Yuri; Skarlato, Sergei
2014-01-01
Ion channels are tightly involved in various aspects of cell physiology, including cell signaling, proliferation, motility, endo- and exo-cytosis. They may be involved in toxin production and release by marine dinoflagellates, as well as harmful algal bloom proliferation. So far, the patch-clamp technique, which is the most powerful method to study the activity of ion channels, has not been applied to dinoflagellate cells, due to their complex cellulose-containing cell coverings. In this paper, we describe a new approach to overcome this problem, based on the preparation of spheroplasts from armored bloom-forming dinoflagellate Prorocentrum minimum. We treated the cells of P. minimum with a cellulose synthesis inhibitor, 2,6-dichlorobenzonitrile (DCB), and found out that it could also induce ecdysis and arrest cell shape maintenance in these microalgae. Treatment with 100–250 µM DCB led to an acceptable 10% yield of P. minimum spheroplasts and was independent of the incubation time in the range of 1–5 days. We show that such spheroplasts are suitable for patch-clamping in the cell-attached mode and can form 1–10 GOhm patch contact with a glass micropipette, allowing recording of ion channel activity. The first single-channel recordings of dinoflagellate ion channels are presented. PMID:25199048
Integrating the Allen Brain Institute Cell Types Database into Automated Neuroscience Workflow.
Stockton, David B; Santamaria, Fidel
2017-10-01
We developed software tools to download, extract features, and organize the Cell Types Database from the Allen Brain Institute (ABI) in order to integrate its whole cell patch clamp characterization data into the automated modeling/data analysis cycle. To expand the potential user base we employed both Python and MATLAB. The basic set of tools downloads selected raw data and extracts cell, sweep, and spike features, using ABI's feature extraction code. To facilitate data manipulation we added a tool to build a local specialized database of raw data plus extracted features. Finally, to maximize automation, we extended our NeuroManager workflow automation suite to include these tools plus a separate investigation database. The extended suite allows the user to integrate ABI experimental and modeling data into an automated workflow deployed on heterogeneous computer infrastructures, from local servers, to high performance computing environments, to the cloud. Since our approach is focused on workflow procedures our tools can be modified to interact with the increasing number of neuroscience databases being developed to cover all scales and properties of the nervous system.
Prostaglandin E1 inhibits endocytosis in the β-cell endocytosis.
Zhao, Ying; Fang, Qinghua; Straub, Susanne G; Lindau, Manfred; Sharp, Geoffrey W G
2016-06-01
Prostaglandins inhibit insulin secretion in a manner similar to that of norepinephrine (NE) and somatostatin. As NE inhibits endocytosis as well as exocytosis, we have now examined the modulation of endocytosis by prostaglandin E1 (PGE1). Endocytosis following exocytosis was recorded by whole-cell patch clamp capacitance measurements in INS-832/13 cells. Prolonged depolarizing pulses producing a high level of Ca(2+) influx were used to stimulate maximal exocytosis and to deplete the readily releasable pool (RRP) of granules. This high Ca(2+) influx eliminates the inhibitory effect of PGE1 on exocytosis and allows specific characterization of the inhibitory effect of PGE1 on the subsequent compensatory endocytosis. After stimulating exocytosis, endocytosis was apparent under control conditions but was inhibited by PGE1 in a Pertussis toxin-sensitive (PTX)-insensitive manner. Dialyzing a synthetic peptide mimicking the C-terminus of the α-subunit of the heterotrimeric G-protein Gz into the cells blocked the inhibition of endocytosis by PGE1, whereas a control-randomized peptide was without effect. These results demonstrate that PGE1 inhibits endocytosis and Gz mediates the inhibition. © 2016 Society for Endocrinology.
Analysis of the K+ current in human CD4+ T lymphocytes in hypercholesterolemic state.
Somodi, Sándor; Balajthy, András; Szilágyi, Orsolya; Pethő, Zoltán; Harangi, Mariann; Paragh, György; Panyi, György; Hajdu, Péter
2013-01-01
Atherosclerosis involves immune mechanisms: T lymphocytes are found in atherosclerotic plaques, suggesting their activation during atherogenesis. The predominant voltage-gated potassium channel of T cells, Kv1.3 is a key regulator of the Ca(2+)-dependent activation pathway. In the present experiments we studied the proliferation capacity and functional changes of Kv1.3 channels in T cells from healthy and hypercholestaeremic patients. By means of CFSE-assay (carboxyfluorescein succinimidyl ester) we showed that spontaneous activation rate of lymphocytes in hypercholesterolemia was elevated and the antiCD3/antiCD28 co-stimulation was less effective as compared to the healthy group. Using whole-cell patch-clamping we obtained that the activation and deactivation kinetics of Kv1.3 channels were faster in hypercholesterolemic state but no change in other parameters of Kv1.3 were found (inactivation kinetics, steady-state activation, expression level). We suppose that incorporation of oxLDL species via its raft-rupturing effect can modify proliferative rate of T cells as well as the gating of Kv1.3 channels. Copyright © 2013 Elsevier Inc. All rights reserved.
Lu, Yong; Dang, Shaokang; Wang, Xu; Zhang, Junli; Zhang, Lin; Su, Qian; Zhang, Huiping; Lin, Tianwei; Zhang, Xiaoxiao; Zhang, Yurong; Sun, Hongli; Zhu, Zhongliang; Li, Hui
2018-01-01
Ghrelin is a peptide hormone that plays an important role in promoting appetite, regulating distribution and rate of use of energy, cognition, and mood disorders, but the relevant neural mechanisms of these function are still not clear. In this study, we examined the effect of ghrelin on voltage-dependent potassium (K + ) currents in hippocampal cells of 1-3 days SD rats by whole-cell patch-clamp technique, and discussed whether NO was involved in this process. The results showed that ghrelin significantly inhibited the voltage-dependent K + currents in hippocampal cells, and the inhibitory effect was more significant when l-arginine was co-administered. In contrast, N-nitro- l-arginine methyl ester increased the ghrelin inhibited K + currents and attenuated the inhibitory effect of ghrelin. While d-arginine (D-AA) showed no significant impact on the ghrelin-induced decrease in K + current. These results show that ghrelin may play a physiological role by inhibiting hippocampal voltage dependent K + currents, and the NO pathway may be involved in this process. Copyright © 2017 Elsevier B.V. All rights reserved.
Involvement of mitochondrial Na+–Ca2+ exchange in intestinal pacemaking activity
Kim, Byung Joo; Jun, Jae Yeoul; So, Insuk; Kim, Ki Whan
2006-01-01
AIM: Interstitial cells of Cajal (ICCs) are the pacemaker cells that generate slow waves in the gastrointestinal (GI) tract. We have aimed to investigate the involvement of mitochondrial Na+-Ca2+ exchange in intestinal pacemaking activity in cultured interstitial cells of Cajal. METHODS: Enzymatic digestions were used to dissociate ICCs from the small intestine of a mouse. The whole-cell patch-clamp configuration was used to record membrane currents (voltage clamp) and potentials (current clamp) from cultured ICCs. RESULTS: Clonazepam and CGP37157 inhibited the pacemaking activity of ICCs in a dose-dependent manner. Clonazepam from 20 to 60 µmol/L and CGP37157 from 10 to 30 µmol/L effectively inhibited Ca2+ efflux from mitochondria in pacemaking activity of ICCs. The IC50s of clonazepam and CGP37157 were 37.1 and 18.2 µmol/L, respectively. The addition of 20 µmol/L NiCl2 to the internal solution caused a “wax and wane” phenomenon of pacemaking activity of ICCs. CONCLUSION: These results suggest that mitochondrial Na+-Ca2+ exchange has an important role in intestinal pacemaking activity. PMID:16521198
Bondarenko, Alexander I; Panasiuk, Olga; Okhai, Iryna; Montecucco, Fabrizio; Brandt, Karim J; Mach, Francois
2017-06-15
Endocannabinoid anandamide induces endothelium-dependent relaxation commonly attributed to stimulation of the G-protein coupled endothelial anandamide receptor. The study addressed the receptor-independent effect of anandamide on large conductance Ca 2+ -dependent K + channels expressed in endothelial cell line EA.hy926. Under resting conditions, 10µM anandamide did not significantly influence the resting membrane potential. In a Ca 2+ -free solution the cells were depolarized by ~10mV. Further administration of 10µM anandamide hyperpolarized the cells by ~8mV. In voltage-clamp mode, anandamide elicited the outwardly rectifying whole-cell current sensitive to paxilline but insensitive to GDPβS, a G-protein inhibitor. Administration of 70µM Mn 2+ , an agent used to promote integrin clustering, reversibly stimulated whole-cell current, but failed to further facilitate the anandamide-stimulated current. In an inside-out configuration, anandamide (0.1-30µM) facilitated single BK Ca channel activity in a concentration-dependent manner within a physiological Ca 2+ range and a wide range of voltages, mainly by reducing mean closed time. The effect is essentially eliminated following chelation of Ca 2+ from the cytosolic face and pre-exposure to cholesterol-reducing agent methyl-β-cyclodextrin. O-1918 (3µM), a cannabidiol analog used as a selective antagonist of endothelial anandamide receptor, reduced BK Ca channel activity in inside-out patches. These results do not support the existence of endothelial cannabinoid receptor and indicate that anandamide acts as a direct BK Ca opener. The action does not require cell integrity or integrins and is caused by direct modification of BK Ca channel activity. Copyright © 2017 Elsevier B.V. All rights reserved.
Parajuli, Shankar P; Hristov, Kiril L; Soder, Rupal P; Kellett, Whitney F; Petkov, Georgi V
2013-01-01
Background and Purpose Overactive bladder (OAB) is often associated with abnormally increased detrusor smooth muscle (DSM) contractions. We used NS309, a selective and potent opener of the small or intermediate conductance Ca2+-activated K+ (SK or IK, respectively) channels, to evaluate how SK/IK channel activation modulates DSM function. Experimental Approach We employed single-cell RT-PCR, immunocytochemistry, whole cell patch-clamp in freshly isolated rat DSM cells and isometric tension recordings of isolated DSM strips to explore how the pharmacological activation of SK/IK channels with NS309 modulates DSM function. Key Results We detected SK3 but not SK1, SK2 or IK channels expression at both mRNA and protein levels by RT-PCR and immunocytochemistry in DSM single cells. NS309 (10 μM) significantly increased the whole cell SK currents and hyperpolarized DSM cell resting membrane potential. The NS309 hyperpolarizing effect was blocked by apamin, a selective SK channel inhibitor. NS309 inhibited the spontaneous phasic contraction amplitude, force, frequency, duration and tone of isolated DSM strips in a concentration-dependent manner. The inhibitory effect of NS309 on spontaneous phasic contractions was blocked by apamin but not by TRAM-34, indicating no functional role of the IK channels in rat DSM. NS309 also significantly inhibited the pharmacologically and electrical field stimulation-induced DSM contractions. Conclusions and Implications Our data reveal that SK3 channel is the main SK/IK subtype in rat DSM. Pharmacological activation of SK3 channels with NS309 decreases rat DSM cell excitability and contractility, suggesting that SK3 channels might be potential therapeutic targets to control OAB associated with detrusor overactivity. PMID:23145946
Nowakowski, Maciej; Sheehan, Matthew; Neal, Daniel; Goncharov, Alexander V.
2012-01-01
Conventional optical systems usually provide best image quality on axis, while showing unavoidable gradual decrease in image quality towards the periphery of the field. The optical system of the human eye is not an exception. Within a limiting boundary the image quality can be considered invariant with field angle, and this region is known as the isoplanatic patch. We investigate the isoplanatic patch of eight healthy eyes and measure the wavefront aberration along the pupillary axis compared to the line of sight. The results are used to discuss methods of ocular aberration correction in wide-field retinal imaging with particular application to multi-conjugate adaptive optics systems. PMID:22312578
Vrdoljak, Anto; Allen, Evin A; Ferrara, Francesca; Temperton, Nigel J; Crean, Abina M; Moore, Anne C
2016-03-10
Dissolvable microneedle (DMN) patches for immunization have multiple benefits, including vaccine stability and ease-of-use. However, conventional DMN fabrication methods have several drawbacks. Here we describe a novel, microfluidic, drop dispensing-based dissolvable microneedle production method that overcomes these issues. Uniquely, heterogeneous arrays, consisting of microneedles of diverse composition, can be easily produced on the same patch. Robustness of the process was demonstrated by incorporating and stabilizing adenovirus and MVA vaccines. Clinically-available trivalent inactivated influenza vaccine (TIV) in DMN patches is fully stable for greater than 6months at 40°C. Immunization using low dose TIV-loaded DMN patches induced significantly higher antibody responses compared to intramuscular-based immunization in mice. TIV-loaded patches also induced a broader, heterosubtypic neutralizing antibody response. By addressing issues that will be faced in large-scale fill-finish DMN fabrication processes and demonstrating superior thermostable characteristics and immunogenicity, this study progresses the translation of this microneedle platform to eventual clinical deployment. Copyright © 2016 Elsevier B.V. All rights reserved.
A Flexible and Wearable Human Stress Monitoring Patch
Yoon, Sunghyun; Sim, Jai Kyoung; Cho, Young-Ho
2016-01-01
A human stress monitoring patch integrates three sensors of skin temperature, skin conductance, and pulsewave in the size of stamp (25 mm × 15 mm × 72 μm) in order to enhance wearing comfort with small skin contact area and high flexibility. The skin contact area is minimized through the invention of an integrated multi-layer structure and the associated microfabrication process; thus being reduced to 1/125 of that of the conventional single-layer multiple sensors. The patch flexibility is increased mainly by the development of flexible pulsewave sensor, made of a flexible piezoelectric membrane supported by a perforated polyimide membrane. In the human physiological range, the fabricated stress patch measures skin temperature with the sensitivity of 0.31 Ω/°C, skin conductance with the sensitivity of 0.28 μV/0.02 μS, and pulse wave with the response time of 70 msec. The skin-attachable stress patch, capable to detect multimodal bio-signals, shows potential for application to wearable emotion monitoring. PMID:27004608
NASA Astrophysics Data System (ADS)
Bi, ChuanXing; Jing, WenQian; Zhang, YongBin; Xu, Liang
2015-02-01
The conventional nearfield acoustic holography (NAH) is usually based on the assumption of free-field conditions, and it also requires that the measurement aperture should be larger than the actual source. This paper is to focus on the problem that neither of the above-mentioned requirements can be met, and to examine the feasibility of reconstructing the sound field radiated by partial source, based on double-layer pressure measurements made in a non-free field by using patch NAH combined with sound field separation technique. And also, the sensitivity of the reconstructed result to the measurement error is analyzed in detail. Two experiments involving two speakers in an exterior space and one speaker inside a car cabin are presented. The experimental results demonstrate that the patch NAH based on single-layer pressure measurement cannot obtain a satisfied result due to the influences of disturbing sources and reflections, while the patch NAH based on double-layer pressure measurements can successfully remove these influences and reconstruct the patch sound field effectively.
Shin, Woong-Hee; Kihara, Daisuke
2018-01-01
Virtual screening is a computational technique for predicting a potent binding compound for a receptor protein from a ligand library. It has been a widely used in the drug discovery field to reduce the efforts of medicinal chemists to find hit compounds by experiments.Here, we introduce our novel structure-based virtual screening program, PL-PatchSurfer, which uses molecular surface representation with the three-dimensional Zernike descriptors, which is an effective mathematical representation for identifying physicochemical complementarities between local surfaces of a target protein and a ligand. The advantage of the surface-patch description is its tolerance on a receptor and compound structure variation. PL-PatchSurfer2 achieves higher accuracy on apo form and computationally modeled receptor structures than conventional structure-based virtual screening programs. Thus, PL-PatchSurfer2 opens up an opportunity for targets that do not have their crystal structures. The program is provided as a stand-alone program at http://kiharalab.org/plps2 . We also provide files for two ligand libraries, ChEMBL and ZINC Drug-like.
Patch-Based Super-Resolution of MR Spectroscopic Images: Application to Multiple Sclerosis
Jain, Saurabh; Sima, Diana M.; Sanaei Nezhad, Faezeh; Hangel, Gilbert; Bogner, Wolfgang; Williams, Stephen; Van Huffel, Sabine; Maes, Frederik; Smeets, Dirk
2017-01-01
Purpose: Magnetic resonance spectroscopic imaging (MRSI) provides complementary information to conventional magnetic resonance imaging. Acquiring high resolution MRSI is time consuming and requires complex reconstruction techniques. Methods: In this paper, a patch-based super-resolution method is presented to increase the spatial resolution of metabolite maps computed from MRSI. The proposed method uses high resolution anatomical MR images (T1-weighted and Fluid-attenuated inversion recovery) to regularize the super-resolution process. The accuracy of the method is validated against conventional interpolation techniques using a phantom, as well as simulated and in vivo acquired human brain images of multiple sclerosis subjects. Results: The method preserves tissue contrast and structural information, and matches well with the trend of acquired high resolution MRSI. Conclusions: These results suggest that the method has potential for clinically relevant neuroimaging applications. PMID:28197066
Electrophysiological responses of dissociated type I cells of the rabbit carotid body to cyanide.
Biscoe, T J; Duchen, M R
1989-01-01
1. The carotid body is the major peripheral sensor of arterial PO2 in the mammal and is excited by cyanide (CN-). Type I cells, the presumed sites for transduction, were freshly dissociated from the carotid body of the adult rabbit and studied with the whole-cell patch clamp technique. 2. Type I cells were hyperpolarized by CN-, the action potential was shortened, and there was an increased after-hyperpolarization. 3. Under voltage clamp control, CN- increased a voltage-dependent outward current, which showed pronounced outward rectification. Tail currents increased by CN- reversed close to the predicted EK, the reversal potential of the CN--induced current depended on extracellular [K+], and the current was blocked by intracellular TEA+ and Cs+. 4. The i-V relation of the CN--induced conductance strongly mirrored that of voltage-gated Ca2+ entry, and the response was abolished by removal of extracellular Ca2+. We conclude that the increased gK is Ca2+ -dependent (gK(Ca]. 5. The Ca2+ current was attenuated by CN-, and showed an increased rate of inactivation. Thus, the increased gK(Ca) must result from an alteration in Ca2+ homeostasis independent of the Ca2+ current, and not an increased Ca2+ entry through voltage-activated channels. 6. Carbachol also hyperpolarized cells and increased a K+ conductance. 7. At depolarized holding potentials a steady-state outward current was increased by CN-. The current reversed close to EK, and was associated with increased current fluctuations. Noise analysis showed that a channel conductance of 3 pS carries the current. 8. The response to CN- was not impaired by the inclusion of 5 mM-MgATP in the patch pipette. 9. If signals to the CNS are initiated by the calcium-dependent release of transmitters from type I cells, transduction would appear to be the direct consequence of the energy dependence of Ca2+ homeostasis. PMID:2557439
Chloride currents activated by caffeine in rat intestinal smooth muscle cells.
Ohta, T; Ito, S; Nakazato, Y
1993-01-01
1. Current responses to caffeine in single smooth muscle cells isolated from rat intestine were studied with the whole-cell patch clamp technique. Intracellular calcium concentration, [Ca2+]i, was simultaneously monitored with fura-2 (0.1 mM) introduced into the cell through a patch pipette. 2. With a potassium-containing pipette solution, caffeine (10 mM) produced an outward current at a holding potential of 0 mV and an inward current at -60 mV, both of which were accompanied by parallel increases in [Ca2+]i. The outward current response disappeared after the removal of K+ from pipette solutions, indicating that caffeine activates a Ca(2+)-activated K+ conductance. 3. When NaCl was present in both pipette and external solutions as the major constituent, caffeine evoked an inward current at -60 mV simultaneously with a rise in [Ca2+]i. The reversal potential (Er) of this current was about 0 mV. 4. Substitution of Tris+ or choline+ for external Na+ did not alter the Er. When external Cl- was replaced by thiocyanate-, iodide- or glutamate-, the Er changed to respectively -55, -38 and +35 mV. 5. The current response to caffeine decreased with increasing concentration of EGTA in the pipette solution. The caffeine-induced current and the intracellular Ca2+ transient was still observed for a few minutes after exposure of the cells to Ca(2+)-free external solution containing 2 mM EGTA. Caffeine failed to produce an inward current and Ca2+ transient after treatment with extracellular ryanodine. 6. It is concluded that caffeine caused an increase in membrane Cl- conductance and in K+ conductance resulting from a rise in [Ca2+]i derived from ryanodine-sensitive intracellular Ca2+ stores in isolated smooth muscle cells of the rat intestine. PMID:8229831
Sasmal, Dibyendu Kumar; Yadav, Rajeev; Lu, H Peter
2016-07-20
N-methyl-d-aspartate (NMDA) receptor ion channel is activated by the binding of two pairs of glycine and glutamate along with the application of action potential. Binding and unbinding of ligands changes its conformation that plays a critical role in the open-close activities of NMDA receptor. Conformation states and their dynamics due to ligand binding are extremely difficult to characterize either by conventional ensemble experiments or single-channel electrophysiology method. Here we report the development of a new correlated technical approach, single-molecule patch-clamp FRET anisotropy imaging and demonstrate by probing the dynamics of NMDA receptor ion channel and kinetics of glycine binding with its ligand binding domain. Experimentally determined kinetics of ligand binding with receptor is further verified by computational modeling. Single-channel patch-clamp and four-channel fluorescence measurement are recorded simultaneously to get correlation among electrical on and off states, optically determined conformational open and closed states by FRET, and binding-unbinding states of the glycine ligand by anisotropy measurement at the ligand binding domain of GluN1 subunit. This method has the ability to detect the intermediate states in addition to electrical on and off states. Based on our experimental results, we have proposed that NMDA receptor gating goes through at least one electrically intermediate off state, a desensitized state, when ligands remain bound at the ligand binding domain with the conformation similar to the fully open state.
Kim, Hoon; Zheng, Siyuan; Amini, Seyed S.; Virk, Selene M.; Mikkelsen, Tom; Brat, Daniel J.; Grimsby, Jonna; Sougnez, Carrie; Muller, Florian; Hu, Jian; Sloan, Andrew E.; Cohen, Mark L.; Van Meir, Erwin G.; Scarpace, Lisa; Laird, Peter W.; Weinstein, John N.; Lander, Eric S.; Gabriel, Stacey; Getz, Gad; Meyerson, Matthew; Chin, Lynda; Barnholtz-Sloan, Jill S.
2015-01-01
Glioblastoma (GBM) is a prototypical heterogeneous brain tumor refractory to conventional therapy. A small residual population of cells escapes surgery and chemoradiation, resulting in a typically fatal tumor recurrence ∼7 mo after diagnosis. Understanding the molecular architecture of this residual population is critical for the development of successful therapies. We used whole-genome sequencing and whole-exome sequencing of multiple sectors from primary and paired recurrent GBM tumors to reconstruct the genomic profile of residual, therapy resistant tumor initiating cells. We found that genetic alteration of the p53 pathway is a primary molecular event predictive of a high number of subclonal mutations in glioblastoma. The genomic road leading to recurrence is highly idiosyncratic but can be broadly classified into linear recurrences that share extensive genetic similarity with the primary tumor and can be directly traced to one of its specific sectors, and divergent recurrences that share few genetic alterations with the primary tumor and originate from cells that branched off early during tumorigenesis. Our study provides mechanistic insights into how genetic alterations in primary tumors impact the ensuing evolution of tumor cells and the emergence of subclonal heterogeneity. PMID:25650244
Pearson, Frances E.; McNeilly, Celia L.; Crichton, Michael L.; Primiero, Clare A.; Yukiko, Sally R.; Fernando, Germain J. P.; Chen, Xianfeng; Gilbert, Sarah C.; Hill, Adrian V. S.; Kendall, Mark A. F.
2013-01-01
The disadvantages of needle-based immunisation motivate the development of simple, low cost, needle-free alternatives. Vaccine delivery to cutaneous environments rich in specialised antigen-presenting cells using microprojection patches has practical and immunological advantages over conventional needle delivery. Additionally, stable coating of vaccine onto microprojections removes logistical obstacles presented by the strict requirement for cold-chain storage and distribution of liquid vaccine, or lyophilised vaccine plus diluent. These attributes make these technologies particularly suitable for delivery of vaccines against diseases such as malaria, which exerts its worst effects in countries with poorly-resourced healthcare systems. Live viral vectors including adenoviruses and poxviruses encoding exogenous antigens have shown significant clinical promise as vaccines, due to their ability to generate high numbers of antigen-specific T cells. Here, the simian adenovirus serotype 63 and the poxvirus modified vaccinia Ankara – two vectors under evaluation for the delivery of malaria antigens to humans – were formulated for coating onto Nanopatch microprojections and applied to murine skin. Co-formulation with the stabilising disaccharides trehalose and sucrose protected virions during the dry-coating process. Transgene-specific CD8+ T cell responses following Nanopatch delivery of both vectors were similar to intradermal injection controls after a single immunisation (despite a much lower delivered dose), though MVA boosting of pre-primed responses with Nanopatch was found to be less effective than the ID route. Importantly, disaccharide-stabilised ChAd63 could be stored for 10 weeks at 37°C with less than 1 log10 loss of viability, and retained single-dose immunogenicity after storage. These data support the further development of microprojection patches for the deployment of live vaccines in hot climates. PMID:23874462
Pearson, Frances E; McNeilly, Celia L; Crichton, Michael L; Primiero, Clare A; Yukiko, Sally R; Fernando, Germain J P; Chen, Xianfeng; Gilbert, Sarah C; Hill, Adrian V S; Kendall, Mark A F
2013-01-01
The disadvantages of needle-based immunisation motivate the development of simple, low cost, needle-free alternatives. Vaccine delivery to cutaneous environments rich in specialised antigen-presenting cells using microprojection patches has practical and immunological advantages over conventional needle delivery. Additionally, stable coating of vaccine onto microprojections removes logistical obstacles presented by the strict requirement for cold-chain storage and distribution of liquid vaccine, or lyophilised vaccine plus diluent. These attributes make these technologies particularly suitable for delivery of vaccines against diseases such as malaria, which exerts its worst effects in countries with poorly-resourced healthcare systems. Live viral vectors including adenoviruses and poxviruses encoding exogenous antigens have shown significant clinical promise as vaccines, due to their ability to generate high numbers of antigen-specific T cells. Here, the simian adenovirus serotype 63 and the poxvirus modified vaccinia Ankara--two vectors under evaluation for the delivery of malaria antigens to humans--were formulated for coating onto Nanopatch microprojections and applied to murine skin. Co-formulation with the stabilising disaccharides trehalose and sucrose protected virions during the dry-coating process. Transgene-specific CD8(+) T cell responses following Nanopatch delivery of both vectors were similar to intradermal injection controls after a single immunisation (despite a much lower delivered dose), though MVA boosting of pre-primed responses with Nanopatch was found to be less effective than the ID route. Importantly, disaccharide-stabilised ChAd63 could be stored for 10 weeks at 37°C with less than 1 log10 loss of viability, and retained single-dose immunogenicity after storage. These data support the further development of microprojection patches for the deployment of live vaccines in hot climates.
Imaging of single cells and tissue using MeV ions
NASA Astrophysics Data System (ADS)
Watt, F.; Bettiol, A. A.; van Kan, J. A.; Ynsa, M. D.; Minqin, Ren; Rajendran, R.; Huifang, Cui; Fwu-Shen, Sheu; Jenner, A. M.
2009-06-01
With the attainment of sub-100 nm high energy (MeV) ion beams, comes the opportunity to image cells and tissue at nano-dimensions. The advantage of MeV ion imaging is that the ions will penetrate whole cells, or relatively thick tissue sections, without any significant loss of resolution. In this paper, we demonstrate that whole cells (cultured N2A neuroblastoma cells ATCC) and tissue sections (rabbit pancreas tissue) can be imaged at sub-100 nm resolutions using scanning transmission ion microscopy (STIM), and that sub-cellular structural details can be identified. In addition to STIM imaging we have also demonstrated for the first time, that sub-cellular proton induced fluorescence imaging (on cultured N2A neuroblastoma cells ATCC) can also be carried out at resolutions of 200 nm, compared with 300-400 nm resolutions achieved by conventional optical fluorescence imaging. The combination of both techniques offers a potentially powerful tool in the quest for elucidating cell function, particularly when it should be possible in the near future to image down to sub-50 nm.
Electron tomography of whole cultured cells using novel transmission electron imaging technique.
Okumura, Taiga; Shoji, Minami; Hisada, Akiko; Ominami, Yusuke; Ito, Sukehiro; Ushiki, Tatsuo; Nakajima, Masato; Ohshima, Takashi
2018-01-01
Since a three-dimensional (3D) cellular ultrastructure is significant for biological functions, it has been investigated using various electron microscopic techniques. Although transmission electron microscopy (TEM)-based techniques are traditionally used, cells must be embedded in resin and sliced into ultrathin sections in sample preparation processes. Block-face observation using a scanning electron microscope (SEM) has also been recently applied to 3D observation of cellular components, but this is a destructive inspection and does not allow re-examination. Therefore, we developed electron tomography using a transmission electron imaging technique called Plate-TEM. With Plate-TEM, the cells cultured directly on a scintillator plate are inserted into a conventional SEM equipped with a Plate-TEM observation system, and their internal structures are observed by detecting scintillation light produced by electrons passing through the cells. This technology has the following four advantages. First, the cells cultured on the plate can be observed at electron-microscopic resolution since they remain on the plate. Second, both surface and internal information can be obtained simultaneously by using electron- and photo-detectors, respectively, because a Plate-TEM detector is installed in an SEM. Third, the cells on the scintillator plate can also be inspected using light microscopy because the plate has transparent features. Finally, correlative observation with other techniques, such as conventional TEM, is possible after Plate-TEM observation because Plate-TEM is a non-destructive analysis technique. We also designed a sample stage to tilt the samples for tomography with Plate-TEM, by which 3D organization of cellular structures can be visualized as a whole cell. In the present study, Mm2T cells were investigated using our tomography system, resulting in 3D visualization of cell organelles such as mitochondria, lipid droplets, and microvilli. Correlative observations with various imaging techniques were also conducted by successive observations with light microscopy, SEM, Plate-TEM, and conventional TEM. Consequently, the Plate-TEM tomography technique encourages understanding of cellular structures at high resolution, which can contribute to cellular biological research. Copyright © 2017 Elsevier Ltd. All rights reserved.
Steinhäuser, C; Kressin, K; Kuprijanova, E; Weber, M; Seifert, G
1994-10-01
In the present study, we were interested in a quantitative analysis of voltage-activated channels in a subpopulation of hippocampal glial cells, termed "complex" cells. The patch-clamp technique in the whole-cell mode was applied to identified cells in situ and to glial cells acutely isolated from tissue slices. The outward current was composed of two components: a sustained and a transient current. The transient K+ channel had electrophysiological and pharmacological properties resembling those of the channel through which the A-currents pass. In addition, this glial A-type current possessed a significant Ca2+ dependence. The current parameters determined in situ or in isolated cells corresponded well. Due to space clamp problems in situ, properties of voltage-dependent Na+ currents were only analysed in suspended glial cells. The tetrodotoxin (TTX) sensitivity and the stationary and kinetic characteristics of this current were similar to corresponding properties of hippocampal neurons. These quantitative data demonstrate that at an early postnatal stage of central nervous system maturation, glial cells in situ express a complex pattern of voltage-gated ion channels. The results are compared to findings in other preparations and the possible consequences of transmitter-mediated channel modulation in glial cells are discussed.
Huys, Roeland; Braeken, Dries; Jans, Danny; Stassen, Andim; Collaert, Nadine; Wouters, Jan; Loo, Josine; Severi, Simone; Vleugels, Frank; Callewaert, Geert; Verstreken, Kris; Bartic, Carmen; Eberle, Wolfgang
2012-04-07
To cope with the growing needs in research towards the understanding of cellular function and network dynamics, advanced micro-electrode arrays (MEAs) based on integrated complementary metal oxide semiconductor (CMOS) circuits have been increasingly reported. Although such arrays contain a large number of sensors for recording and/or stimulation, the size of the electrodes on these chips are often larger than a typical mammalian cell. Therefore, true single-cell recording and stimulation remains challenging. Single-cell resolution can be obtained by decreasing the size of the electrodes, which inherently increases the characteristic impedance and noise. Here, we present an array of 16,384 active sensors monolithically integrated on chip, realized in 0.18 μm CMOS technology for recording and stimulation of individual cells. Successful recording of electrical activity of cardiac cells with the chip, validated with intracellular whole-cell patch clamp recordings are presented, illustrating single-cell readout capability. Further, by applying a single-electrode stimulation protocol, we could pace individual cardiac cells, demonstrating single-cell addressability. This novel electrode array could help pave the way towards solving complex interactions of mammalian cellular networks. This journal is © The Royal Society of Chemistry 2012
Heterogeneous expression of Ca(2+) handling proteins in rabbit sinoatrial node.
Musa, Hanny; Lei, Ming; Honjo, Hauro; Jones, Sandra A; Dobrzynski, Halina; Lancaster, Mathew K; Takagishi, Yoshiko; Henderson, Zaineb; Kodama, Itsuo; Boyett, Mark R
2002-03-01
We investigated the densities of the L-type Ca(2+) current, i(Ca,L), and various Ca(2+) handling proteins in rabbit sinoatrial (SA) node. The density of i(Ca,L), recorded with the whole-cell patch-clamp technique, varied widely in sinoatrial node cells. The density of i(Ca,L) was significantly (p<0.001) correlated with cell capacitance (measure of cell size) and the density was greater in larger cells (likely to be from the periphery of the SA node) than in smaller cells (likely to be from the center of the SA node). Immunocytochemical labeling of the L-type Ca(2+) channel, Na(+)-Ca(2+) exchanger, sarcoplasmic reticulum Ca(2+) release channel (RYR2), and sarcoplasmic reticulum Ca(2+) pump (SERCA2) also varied widely in SA node cells. In all cases there was significantly (p<0.05) denser labeling of cells from the periphery of the SA node than of cells from the center. In contrast, immunocytochemical labeling of the Na(+)-K(+) pump was similar in peripheral and central cells. We conclude that Ca(2+) handling proteins are sparse and poorly organized in the center of the SA node (normally the leading pacemaker site), whereas they are more abundant in the periphery (at the border of the SA node with the surrounding atrial muscle).
Comprehensive study of the intestinal stage of listeriosis in a rat ligated ileal loop system.
Pron, B; Boumaila, C; Jaubert, F; Sarnacki, S; Monnet, J P; Berche, P; Gaillard, J L
1998-02-01
The intestinal stage of listeriosis was studied in a rat ligated ileal loop system. Listeria monocytogenes translocated to deep organs with similar efficiencies after inoculation of loops with or without Peyer's patches. Bacterial seeding of deep organs was demonstrated as early as 15 min after inoculation. It was dose dependent and nonspecific, as the delta inlAB, the delta hly, and the delta actA L. monocytogenes mutants and the nonpathogenic species, Listeria innocua, translocated similarly to wild-type L. monocytogenes strains. The levels of uptake of listeriae by Peyer's patches and villous intestine were similar and low, 50 to 250 CFU per cm2 of tissue. No listeria cells crossing the epithelial sheet of Peyer's patches and villous intestine were observed by transmission electron microscopy. The lack of significant interaction of listeriae and the follicle-associated epithelium of Peyer's patches was confirmed by scanning electron microscopy. The follicular tissue of Peyer's patches was a preferential site of Listeria replication. With all doses tested, the rate of bacterial growth was 10 to 20 times higher in Peyer's patches than in villous intestine. At early stages of Peyer's patch infection, listeriae were observed inside mononuclear cells of the dome area. Listeriae then disseminated throughout the follicular tissue except for the germinal center. The virulence determinants hly and, to a lesser extent, actA, but not inlAB, were required for the completion of this process. This study suggests that Peyer's patches are preferential sites for replication rather than for entry of L. monocytogenes, due to the presence of highly permissive mononuclear cells whose nature remains to be defined.
Comprehensive Study of the Intestinal Stage of Listeriosis in a Rat Ligated Ileal Loop System
Pron, Benedicte; Boumaila, Claire; Jaubert, Francis; Sarnacki, Sabine; Monnet, Jean-Paul; Berche, Patrick; Gaillard, Jean-Louis
1998-01-01
The intestinal stage of listeriosis was studied in a rat ligated ileal loop system. Listeria monocytogenes translocated to deep organs with similar efficiencies after inoculation of loops with or without Peyer’s patches. Bacterial seeding of deep organs was demonstrated as early as 15 min after inoculation. It was dose dependent and nonspecific, as the ΔinlAB, the Δhly, and the ΔactA L. monocytogenes mutants and the nonpathogenic species, Listeria innocua, translocated similarly to wild-type L. monocytogenes strains. The levels of uptake of listeriae by Peyer’s patches and villous intestine were similar and low, 50 to 250 CFU per cm2 of tissue. No listeria cells crossing the epithelial sheet of Peyer’s patches and villous intestine were observed by transmission electron microscopy. The lack of significant interaction of listeriae and the follicle-associated epithelium of Peyer’s patches was confirmed by scanning electron microscopy. The follicular tissue of Peyer’s patches was a preferential site of Listeria replication. With all doses tested, the rate of bacterial growth was 10 to 20 times higher in Peyer’s patches than in villous intestine. At early stages of Peyer’s patch infection, listeriae were observed inside mononuclear cells of the dome area. Listeriae then disseminated throughout the follicular tissue except for the germinal center. The virulence determinants hly and, to a lesser extent, actA, but not inlAB, were required for the completion of this process. This study suggests that Peyer’s patches are preferential sites for replication rather than for entry of L. monocytogenes, due to the presence of highly permissive mononuclear cells whose nature remains to be defined. PMID:9453636
Chiang, Po-Chieh; Tanady, Kevin; Huang, Ling-Ting; Chao, Ling
2017-11-09
Being able to directly obtain micron-sized cell blebs, giant plasma membrane vesicles (GPMVs), with native membrane proteins and deposit them on a planar support to form supported plasma membranes could allow the membrane proteins to be studied by various surface analytical tools in native-like bilayer environments. However, GPMVs do not easily rupture on conventional supports because of their high protein and cholesterol contents. Here, we demonstrate the possibility of using compression generated by the air-water interface to efficiently rupture GPMVs to form micron-sized supported membranes with native plasma membrane proteins. We demonstrated that not only lipid but also a native transmembrane protein in HeLa cells, Aquaporin 3 (AQP3), is mobile in the supported membrane platform. This convenient method for generating micron-sized supported membrane patches with mobile native transmembrane proteins could not only facilitate the study of membrane proteins by surface analytical tools, but could also enable us to use native membrane proteins for bio-sensing applications.
Thayer, S A; Miller, R J
1990-01-01
1. Simultaneous whole-cell patch-clamp and Fura-2 microfluorimetric recordings of calcium currents (ICa) and the intracellular free Ca2+ concentration ([Ca2+]i) were made from neurones grown in primary culture from the dorsal root ganglion of the rat. 2. Cells held at -80 mV and depolarized to 0 mV elicited a ICa that resulted in an [Ca2+]i transient which was not significantly buffered during the voltage step and lasted long after the cell had repolarized and the current ceased. The process by which the cell buffered [Ca2+]i back to basal levels could best be described with a single-exponential equation. 3. The membrane potential versus ICa and [Ca2+]i relationship revealed that the peak of the [Ca2+]i transient evoked at a given test potential closely paralleled the magnitude of the ICa suggesting that neither voltage-dependent nor Ca2(+)-induced Ca2+ release from intracellular stores made a significant contribution to the [Ca2+]i transient. 4. When the cell was challenged with Ca2+ loads of different magnitude by varying the duration or potential of the test pulse, [Ca2+]i buffering was more effective for larger Ca2+ loads. The relationship between the integrated ICa and the peak of the [Ca2+]i transient reached an asymptote at large Ca2+ loads indicating that Ca2(+)-dependent processes became more efficient or that low-affinity processes had been recruited. 5. Inhibition of Ca2+ influx with neuropeptide Y demonstrated that inhibition of a large ICa produced minor alterations in the peak of the [Ca2+]i transient, while inhibition of smaller currents produced corresponding decreases in the [Ca2+]i transient. Thus, inhibition of the ICa was reflected by a change in the peak [Ca2+]i only when submaximal Ca2+ loads were applied to the cell, implying that modulation of [Ca2+]i is dependent on the activation state of the cells. 6. Intracellular dialysis with the mitochondrial Ca2+ uptake blocker Ruthenium Red in whole-cell patch-clamp experiments removed the buffering component which was responsible for the more efficient removal of [Ca2+]i observed when large Ca2+ loads were applied to the cell. 7. When cells were superfused with 50 mM-K+, [Ca2+]i transients recorded from the cell soma returned to control levels very slowly. Pharmacological studies indicated that mitochondria were cycling Ca2+ during this sustained elevation in [Ca2+]i. In contrast, [Ca2+]i transients recorded from cell processes returned to basal levels relatively rapidly. 8. Extracellular Na(+)-dependent Ca2+ efflux did not significantly contribute to buffering [Ca2+]i transients in dorsal root ganglion neurone cell bodies.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:2213592
Djamiatun, K; Faubert, G M
1998-01-01
The role that T and B lymphocytes play in the clearance of Giardia muris in the mouse model is well known, but the cytokines produced by CD4+ T cells in response to Giardia antigenic stimulation are unknown. In this study, we have determined how Giardia trophozoite antigenic crude extract and T cell mitogens can trigger the production of cytokines by Peyer's patch and spleen cells removed from infected animals. When Giardia trophozoite proteins were used to challenge the cells in vitro, IL-4, IL-5 and IFN-gamma were not detected in the culture supernatant. When the cells were challenged with Con-A, all three cytokines were released in vitro. However, the level of each cytokine released by the spleen or Peyer's patch cells varied with the latent, acute and elimination phases of the infection. The high levels of IL-4 and IL-5 released by Peyer's patch cells confirm the importance of IgA in the control of the infection. However, we propose that the relative success of G. muris in completing its life cycle in a primary infection might be due, in part, to the stimulation of a Th2-type response (IL-4, IL-5). A stronger Th1 response (IFN-gamma) may lead to a better control of the primary infection.
Soil organic carbon response to shrub encroachment regulated by soil aggregates
NASA Astrophysics Data System (ADS)
Zhu, Y.; Li, H.; Shen, H.; Feng, Y.; Fang, J.
2017-12-01
Shrub encroachment leads to change in soil organic carbon content, but there still exists a lot of uncertainty in its mechanism as it relates to deep soil research. Soil organic carbon is usually associated with stable aggregate quantity. In this study, we conducted a field investigation for typical steppe and desert steppe in Inner Mongolia with the view to examining the impact of shrub encroachment on soil organic carbon with soil aggregate at a depth of 0-500 cm. The results show that in the desert steppe, the particle size of soil aggregate content level in different depth are presented the trend of shrub patches is lower than the herb matrix, organic carbon content of soil aggregate under 50 cm deeper presents the trend of shrub patches is higher than herb matrix, eventually leading to shrub patches whole soil organic carbon in the 0 to 50 cm depth lower than the herb matrix, and in deeper soil below 50 cm higher than the herb matrix. In the typical steppe, there is no significant difference between soil aggregate structure of shrub patches and herb matrix, but organic carbon content of soil aggregate, especially large aggregate organic carbon content in the shrub patches is significantly higher than the herb matrix, so that the whole soil organic carbon content in the shrub patches is significantly higher than herb matrix. The rate of soil organic carbon content change (0-100 cm) by shrub encroachment showed significant negative correlation with the mean weight diameter of soil aggregate of herb matrix. We also found that the variations of soil organic carbon in desert steppe is not dominant by aggregates of some size, but the change of the typical steppe soil organic carbon mainly contributed by > 0.25 mm and 0.053-0.25 mm aggregates. The results suggested that the effects of shrub encroachment on soil organic carbon is regulated by soil aggregate, but it is varied for different type of grassland, which should provide some insights into our understanding on regional carbon budget under global environment change.
Patch-test reactions to plastic and glue allergens.
Kanerva, L; Jolanki, R; Alanko, K; Estlander, T
1999-07-01
Plastics and glues are common causes of occupational dermatoses, but only few reports have dealt with patch-test reactions caused by plastic and glue allergens. Patients exposed to plastics and remitted to an occupational dermatology clinic, were patch-tested with 50-53 plastic and glue allergens during a 6-year period. Conventional patch-test techniques were used. The most common causes of allergic patch-test reactions in 360 patients were novolac epoxy resin (5.1%), phenol formaldehyde resin (3.1%), 4-tert-butylcatechol (2.6%), phenyl glycidyl ether (2.6%), diaminodiphenyl methane (2.2%), benzoyl peroxide (2.2%), hexamethylene tetramine (2.0%) and o-cresyl glycidyl ether (1.6%). The allergens that most often elicited irritant patch-test reactions were: benzoyl peroxide (9.5%), abitol alcohol (3.6%), hydroquinone (3.1%), acid-catalyzed phenol formaldehyde resin (2.5%) and toluene diisocyanate (1.9%). Twenty-six out of 53 chemicals caused no allergic reaction during the 6-year period. Plastic allergens in the standard series provoked allergic reactions with formaldehyde (5.8%), diglycidyl ether of bisphenol A (3.2%), 4-tert-butylphenol-formaldehyde-resin (1.1%), toluene sulphonamide formaldehyde-resin (1.1%) and triethylenglycol diacrylate (0.4%). Although half of the plastic chemicals gave no allergic patch-test reactions during a 6-year period, with unusual allergens this low yield needs to be accepted, because otherwise rare allergies will not be detected. Also a negative reaction has diagnostic value.
Low-dose CT reconstruction with patch based sparsity and similarity constraints
NASA Astrophysics Data System (ADS)
Xu, Qiong; Mou, Xuanqin
2014-03-01
As the rapid growth of CT based medical application, low-dose CT reconstruction becomes more and more important to human health. Compared with other methods, statistical iterative reconstruction (SIR) usually performs better in lowdose case. However, the reconstructed image quality of SIR highly depends on the prior based regularization due to the insufficient of low-dose data. The frequently-used regularization is developed from pixel based prior, such as the smoothness between adjacent pixels. This kind of pixel based constraint cannot distinguish noise and structures effectively. Recently, patch based methods, such as dictionary learning and non-local means filtering, have outperformed the conventional pixel based methods. Patch is a small area of image, which expresses structural information of image. In this paper, we propose to use patch based constraint to improve the image quality of low-dose CT reconstruction. In the SIR framework, both patch based sparsity and similarity are considered in the regularization term. On one hand, patch based sparsity is addressed by sparse representation and dictionary learning methods, on the other hand, patch based similarity is addressed by non-local means filtering method. We conducted a real data experiment to evaluate the proposed method. The experimental results validate this method can lead to better image with less noise and more detail than other methods in low-count and few-views cases.
Ion channel electrophysiology via integrated planar patch-clamp chip with on-demand drug exchange.
Chen, Chang-Yu; Tu, Ting-Yuan; Jong, De-Shien; Wo, Andrew M
2011-06-01
Planar patch clamp has revolutionized characterization of ion channel behavior in drug discovery primarily via advancement in high throughput. Lab use of planar technology, however, addresses different requirements and suffers from inflexibility to enable wide range of interrogation via a single cell. This work presents integration of planar patch clamp with microfluidics, achieving multiple solution exchanges for tailor-specific measurement and allowing rapid replacement of the cell-contacting aperture. Studies via endogenously expressed ion channels in HEK 293T cells were commenced to characterize the device. Results reveal the microfluidic concentration generator produces distinct solution/drug combination/concentrations on-demand. Volume-regulated chloride channel and voltage-gated potassium channels in HEK 293T cells immersed in generated solutions under various osmolarities or drug concentrations show unique channel signature under specific condition. Excitation and blockage of ion channels in a single cell was demonstrated via serial solution exchange. Robustness of the reversible bonding and ease of glass substrate replacement were proven via repeated usage of the integrated device. The present approach reveals the capability and flexibility of integrated microfluidic planar patch-clamp system for ion channel assays. Copyright © 2011 Wiley Periodicals, Inc.
Lu, T Z; Kostelecki, W; Sun, C L F; Dong, N; Pérez Velázquez, J L; Feng, Z-P
2016-12-01
The spontaneous rhythmic firing of action potentials in pacemaker neurons depends on the biophysical properties of voltage-gated ion channels and background leak currents. The background leak current includes a large K + and a small Na + component. We previously reported that a Na + -leak current via U-type channels is required to generate spontaneous action potential firing in the identified respiratory pacemaker neuron, RPeD1, in the freshwater pond snail Lymnaea stagnalis. We further investigated the functional significance of the background Na + current in rhythmic spiking of RPeD1 neurons. Whole-cell patch-clamp recording and computational modeling approaches were carried out in isolated RPeD1 neurons. The whole-cell current of the major ion channel components in RPeD1 neurons were characterized, and a conductance-based computational model of the rhythmic pacemaker activity was simulated with the experimental measurements. We found that the spiking rate is more sensitive to changes in the Na + leak current as compared to the K + leak current, suggesting a robust function of Na + leak current in regulating spontaneous neuronal firing activity. Our study provides new insight into our current understanding of the role of Na + leak current in intrinsic properties of pacemaker neurons. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Padula, Cristina; Pescina, Silvia; Nicoli, Sara; Santi, Patrizia
2018-02-15
The aim of this work was to characterize in vitro and ex vivo the performances of Durogesic and of two bioequivalent generic products, by evaluating: (a) fentanyl release; (b) fentanyl permeation across porcine skin and (c) fentanyl ease of extraction. Additional characteristics studied are the effect of temperature and skin integrity, applied individually or combined, to check a possible synergism. The two generic patches resulted equivalent to the originator according to the new Guideline. Nevertheless, the same data reported in a different way, i.e. considering the total amount of drug permeated from the whole patch over the application time, highlight differences among the patches. The additional tests performed showed that skin integrity does not represent a barrier for fentanyl permeation across the skin, regardless of the type and complexity of the patch. The effect of temperature resulted critical for two out of three patches, probably due to the different composition and to the different structure. The combination of skin damage and elevated temperature did not produce a synergistic effect. Fentanyl extraction was different for the different products and variable according to the conditions used. The results reported in the present work underline the influence of patch composition and complexity on fentanyl extraction, release and skin permeation, in particular in conditions that can be critical, such as elevated temperature. In particular, the effect of critical variables, such as skin integrity and temperature, should be addressed to in the development of a new or new generic patch and new discriminant tests should be developed. Copyright © 2017 Elsevier B.V. All rights reserved.
Enhanced Stability of Inactivated Influenza Vaccine Encapsulated in Dissolving Microneedle Patches
Chu, Leonard Y.; Ye, Ling; Dong, Ke; Compans, Richard W.; Yang, Chinglai; Prausnitz, Mark R.
2015-01-01
Purpose This study tested the hypothesis that encapsulation of influenza vaccine in microneedle patches increases vaccine stability during storage at elevated temperature. Methods Whole inactivated influenza virus vaccine (A/Puerto Rico/8/34) was formulated into dissolving microneedle patches and vaccine stability was evaluated by in vitro and in vivo assays of antigenicity and immunogenicity after storage for up to 3 months at 4, 25, 37 and 45°C. Results While liquid vaccine completely lost potency as determined by hemagglutination (HA) activity within 1–2 weeks outside of refrigeration, vaccine in microneedle patches lost 40–50% HA activity during or shortly after fabrication, but then had no significant additional loss of activity over 3 months of storage, independent of temperature. This level of stability required reduced humidity by packaging with desiccant, but was not affected by presence of oxygen. This finding was consistent with additional stability assays, including antigenicity of the vaccine measured by ELISA, virus particle morphological structure captured by transmission electron microscopy and protective immune responses by immunization of mice in vivo. Conclusions These data show that inactivated influenza vaccine encapsulated in dissolving microneedle patches has enhanced stability during extended storage at elevated temperatures. PMID:26620313
Subject-Specific Sparse Dictionary Learning for Atlas-Based Brain MRI Segmentation.
Roy, Snehashis; He, Qing; Sweeney, Elizabeth; Carass, Aaron; Reich, Daniel S; Prince, Jerry L; Pham, Dzung L
2015-09-01
Quantitative measurements from segmentations of human brain magnetic resonance (MR) images provide important biomarkers for normal aging and disease progression. In this paper, we propose a patch-based tissue classification method from MR images that uses a sparse dictionary learning approach and atlas priors. Training data for the method consists of an atlas MR image, prior information maps depicting where different tissues are expected to be located, and a hard segmentation. Unlike most atlas-based classification methods that require deformable registration of the atlas priors to the subject, only affine registration is required between the subject and training atlas. A subject-specific patch dictionary is created by learning relevant patches from the atlas. Then the subject patches are modeled as sparse combinations of learned atlas patches leading to tissue memberships at each voxel. The combination of prior information in an example-based framework enables us to distinguish tissues having similar intensities but different spatial locations. We demonstrate the efficacy of the approach on the application of whole-brain tissue segmentation in subjects with healthy anatomy and normal pressure hydrocephalus, as well as lesion segmentation in multiple sclerosis patients. For each application, quantitative comparisons are made against publicly available state-of-the art approaches.
Fieber, L A; Adams, D J
1991-01-01
1. The properties of acetylcholine (ACh)-activated ion channels of parasympathetic neurones from neonatal rat cardiac ganglia grown in tissue culture were examined using patch clamp recording techniques. Membrane currents evoked by ACh were mimicked by nicotine, attenuated by neuronal bungarotoxin, and unaffected by atropine, suggesting that the ACh-induced currents are mediated by nicotinic receptor activation. 2. The current-voltage (I-V) relationship for whole-cell ACh-evoked currents exhibited strong inward rectification and a reversal (zero current) potential of -3 mV (NaCl outside, CsCl inside). The rectification was not alleviated by changing the main permeant cation or by removal of divalent cations from the intracellular or extracellular solutions. Unitary ACh-activated currents exhibited a linear I-V relationship with slope conductances of 32 pS in cell-attached membrane patches and 38 pS in excised membrane patches with symmetrical CsCl solutions. 3. Acetylcholine-induced currents were reversibly inhibited in a dose-dependent manner by the ganglionic antagonists, mecamylamine (Kd = 37 nM) and hexamethonium (IC50 approximately 1 microM), as well as by the neuromuscular relaxant, d-tubocurarine (Kd = 3 microM). Inhibition of ACh-evoked currents by hexamethonium could not be described by a simple blocking model for drug-receptor interaction. 4. The amplitude of the ionic current through the open channel was dependent on the extracellular Na+ concentration. The direction of the shift in reversal potential upon replacement of NaCl by mannitol indicates that the neuronal nicotinic receptor channel is cation selective and the magnitude suggests a high cation to anion permeability ratio. The cation permeability (PX/PNa) followed the ionic selectivity sequence Cs+ (1.06) greater than Na+ (1.0) greater than Ca2+ (0.93). Anion substitution experiments showed a relative anion permeability, PCl/PNa less than or equal to 0.05. 5. The nicotinic ACh-activated channels described mediate the responses of postganglionic parasympathetic neurones of the mammalian heart to vagal stimulation. PMID:1708819
Biological cell controllable patch-clamp microchip
NASA Astrophysics Data System (ADS)
Penmetsa, Siva; Nagrajan, Krithika; Gong, Zhongcheng; Mills, David; Que, Long
2010-12-01
A patch-clamp (PC) microchip with cell sorting and positioning functions is reported, which can avoid drawbacks of random cell selection or positioning for a PC microchip. The cell sorting and positioning are enabled by air bubble (AB) actuators. AB actuators are pneumatic actuators, in which air pressure is generated by microheaters within sealed microchambers. The sorting, positioning, and capturing of 3T3 cells by this type of microchip have been demonstrated. Using human breast cancer cells MDA-MB-231 as the model, experiments have been demonstrated by this microchip as a label-free technical platform for real-time monitoring of the cell viability.
Liao, Jing-Fong; Lee, Jin-Ching; Lin, Chun-Kuang; Wei, Kuo-Chen; Chen, Pin-Yuan; Yang, Hung-Wei
2017-01-01
The strong immunogenicity induction is the powerful weapon to prevent the virus infections. This study demonstrated that one-step synthesis of DNA polyplex vaccine in microneedle (MN) patches can induce high immunogenicity through intradermal vaccination and increase the vaccine stability for storage outside the cold chain. More negative charged DNA vaccine was entrapped into the needle region of MNs followed by DNA polyplex formation with branched polyethylenimine (bPEI) pre-coated in the cavities of polydimethylsiloxane (PDMS) molds that can deliver more DNA vaccine to immune-cell rich epidermis with high transfection efficiency. Our data in this study support the safety and immunogenicity of the MN-based vaccine; the MN patch delivery system induced an immune response 3.5-fold as strong as seen with conventional intramuscular administration; the DNA polyplex formulation provided excellent vaccine stability at high temperature (could be stored at 45ºC for at least 4 months); the DNA vaccine is expected to be manufactured at low cost and not generate sharps waste. We think this study is significant to public health because there is a pressing need for an effective vaccination in developing countries.
High-throughput electrophysiological assays for voltage gated ion channels using SyncroPatch 768PE.
Li, Tianbo; Lu, Gang; Chiang, Eugene Y; Chernov-Rogan, Tania; Grogan, Jane L; Chen, Jun
2017-01-01
Ion channels regulate a variety of physiological processes and represent an important class of drug target. Among the many methods of studying ion channel function, patch clamp electrophysiology is considered the gold standard by providing the ultimate precision and flexibility. However, its utility in ion channel drug discovery is impeded by low throughput. Additionally, characterization of endogenous ion channels in primary cells remains technical challenging. In recent years, many automated patch clamp (APC) platforms have been developed to overcome these challenges, albeit with varying throughput, data quality and success rate. In this study, we utilized SyncroPatch 768PE, one of the latest generation APC platforms which conducts parallel recording from two-384 modules with giga-seal data quality, to push these 2 boundaries. By optimizing various cell patching parameters and a two-step voltage protocol, we developed a high throughput APC assay for the voltage-gated sodium channel Nav1.7. By testing a group of Nav1.7 reference compounds' IC50, this assay was proved to be highly consistent with manual patch clamp (R > 0.9). In a pilot screening of 10,000 compounds, the success rate, defined by > 500 MΩ seal resistance and >500 pA peak current, was 79%. The assay was robust with daily throughput ~ 6,000 data points and Z' factor 0.72. Using the same platform, we also successfully recorded endogenous voltage-gated potassium channel Kv1.3 in primary T cells. Together, our data suggest that SyncroPatch 768PE provides a powerful platform for ion channel research and drug discovery.
The Development of M Cells in Peyer’s Patches Is Restricted to Specialized Dome-Associated Crypts
Gebert, Andreas; Fassbender, Susanne; Werner, Kerstin; Weissferdt, Annikka
1999-01-01
It is controversial whether the membranous (M) cells of the Peyer’s patches represent a separate cell line or develop from enterocytes under the influence of lymphocytes on the domes. To answer this question, the crypts that produce the dome epithelial cells were studied and the distribution of M cells over the domes was determined in mice. The Ulex europaeus agglutinin was used to detect M cells in mouse Peyer’s patches. Confocal microscopy with lectin-gold labeling on ultrathin sections, scanning electron microscopy, and laminin immuno-histochemistry were combined to characterize the cellular composition and the structure of the dome-associated crypts and the dome epithelium. In addition, the sites of lymphocyte invasion into the dome epithelium were studied after removal of the epithelium using scanning electron microscopy. The domes of Peyer’s patches were supplied with epithelial cells that derived from two types of crypt: specialized dome-associated crypts and ordinary crypts differing not only in shape, size, and cellular composition but also in the presence of M cell precursors. When epithelial cells derived from ordinary crypts entered the domes, they formed converging radial strips devoid of M cells. In contrast to the M cells, the sites where lymphocytes invaded the dome epithelium were not arranged in radial strips, but randomly distributed over the domes. M cell development is restricted to specialized dome-associated crypts. Only dome epithelial cells that derive from these specialized crypts differentiate into M cells. It is concluded that M cells represent a separate cell line that is induced in the dome-associated crypts by still unknown, probably diffusible lymphoid factors. PMID:10329609
Experimental Fatigue Study of Composite Patch Repaired Steel Plates with Cracks
NASA Astrophysics Data System (ADS)
Karatzas, Vasileios A.; Kotsidis, Elias A.; Tsouvalis, Nicholas G.
2015-10-01
Cracks are among the most commonly encountered defects in metallic structures operating at sea. Composite patch repairing is a repair method which is gaining popularity as it counters most of the problems faced by conventional renewal repairs. Extensive studies can be found in the literature addressing the efficiency of this novel repair method using techniques which meet higher performance and monitoring standards than these commonly found in naval applications. In this work the efficiency of practices widely used in the ship repair industry for the implementation of composite patch repairing is addressed. To this end, steel plates repaired with composite patches were tested under fatigue loading. The composite patches consisted of carbon fibers in epoxy matrix and were directly laminated to the steel surface using the vacuum infusion method. Two different surface preparation methods, namely grit-blasting and mechanical treatment with the use of a needle gun were studied. In addition, in order to account for the harsh environmental conditions during the operating life of the structure and to study its effect on the repair, two different aging scenarios were considered. Non-destructive evaluation of the patches was performed so as to assess the quality of the repair, and the evolution of debonding during testing.
4D Infant Cortical Surface Atlas Construction using Spherical Patch-based Sparse Representation.
Wu, Zhengwang; Li, Gang; Meng, Yu; Wang, Li; Lin, Weili; Shen, Dinggang
2017-09-01
The 4D infant cortical surface atlas with densely sampled time points is highly needed for neuroimaging analysis of early brain development. In this paper, we build the 4D infant cortical surface atlas firstly covering 6 postnatal years with 11 time points (i.e., 1, 3, 6, 9, 12, 18, 24, 36, 48, 60, and 72 months), based on 339 longitudinal MRI scans from 50 healthy infants. To build the 4D cortical surface atlas, first , we adopt a two-stage groupwise surface registration strategy to ensure both longitudinal consistency and unbiasedness. Second , instead of simply averaging over the co-registered surfaces, a spherical patch-based sparse representation is developed to overcome possible surface registration errors across different subjects. The central idea is that, for each local spherical patch in the atlas space, we build a dictionary, which includes the samples of current local patches and their spatially-neighboring patches of all co-registered surfaces, and then the current local patch in the atlas is sparsely represented using the built dictionary. Compared to the atlas built with the conventional methods, the 4D infant cortical surface atlas constructed by our method preserves more details of cortical folding patterns, thus leading to boosted accuracy in registration of new infant cortical surfaces.
WMSA for wireless communication applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vats, Monika; Agarwal, Alok, E-mail: alokagarwal26@yahoo.com; Kumar, Ravindra
2016-03-09
Modified rectangular compact microstrip patch antenna having finite ground plane is proposed in this paper. Wideband Microstrip Antenna (WMSA) is achieved by corner cut and inserting air gaps inside the edges of the radiating patch having finite ground plane. The obtained impedance bandwidth for 10 dB return loss for the operating frequency f{sub 0} = 2.09 GHz is 28.7 % (600 MHz), which is very high as compared to the bandwidth obtained for the conventional microstrip antenna. Compactness with wide bandwidth of this antenna is practically useful for the wireless communication systems.
Yanagibashi, Tsutomu; Hosono, Akira; Oyama, Akihito; Tsuda, Masato; Hachimura, Satoshi; Takahashi, Yoshimasa; Itoh, Kikuji; Hirayama, Kazuhiro; Takahashi, Kyoko; Kaminogawa, Shuichi
2009-02-01
The gut mucosal immune system is crucial in host defense against infection by pathogenic microbacteria and viruses via the production of IgA. Previous studies have shown that intestinal commensal bacteria enhance mucosal IgA production. However, it is poorly understood how these bacteria induce IgA production and which genera of intestinal commensal bacteria induce IgA production effectively. In this study, we compared the immunomodulatory effects of Bacteroides and Lactobacillus on IgA production by Peyer's patches lymphocytes. IgA production by Peyer's patches lymphocytes co-cultured with Bacteroides was higher than with Lactobacillus. In addition, the expression of activation-induced cytidine deaminase increased in co-culture with Bacteroides but not with Lactobacillus. We found that intestinal commensal bacteria elicited IgA production. In particular, Bacteroides induced the differentiation of Peyer's patches B cell into IgA(+) B cells by increasing activation-induced cytidine deaminase expression.
Visualization of Ca2+-Induced Phospholipid Domains
NASA Astrophysics Data System (ADS)
Haverstick, Doris M.; Glaser, Michael
1987-07-01
Large vesicles (5-15 μ m) were formed by hydrating a dried lipid film containing phospholipids labeled with a fluorophore in one fatty acid chain. By using a fluorescence microscope attached to a low-light-intensity charge-coupled-device camera and digital-image processor, the vesicles were easily viewed and initially showed uniform fluorescence intensity across the surface. The fluorescence pattern of vesicles made with a fluorophore attached to phosphatidylcholine or phosphatidylethanolamine was unaffected by the presence of divalent cations such as Ca2+, Mg2+, Mn2+, Zn2+, or Cd2+. The fluorescence pattern of vesicles containing a fluorophore attached to the acidic phospholipids phosphatidylserine or phosphatidic acid showed distinct differences when treated with Ca2+ or Cd2+, although they were unaffected by Mg2+, Mn2+, or Zn2+. Treatment with 2.0 mM Ca2+ or Cd2+ resulted in the movement of the fluorophore to a single large patch on the surface of the vesicle. When vesicles were formed in the presence of 33 mol% cholesterol, patching was seen at a slightly lower Ca2+ concentration (1.0 mM). The possibility of interactions between Ca2+ and acidic phospholipids in plasma membranes was investigated by labeling erythrocytes and erythrocyte ghosts with fluorescent phosphatidic acid. When Ca2+ was added, multiple (five or six) small patches were seen per individual cell. The same pattern was observed when vesicles formed from whole lipid extracts of erythrocytes were labeled with fluorescent phosphatidic acid and then treated with Ca2+. This shows that the size and distribution of the Ca2+-induced domains depend on phospholipid composition.
Model for capping of membrane receptors based on boundary surface effects
Gershon, N. D.
1978-01-01
Crosslinking of membrane surface receptors may lead to their segregation into patches and then into a single large aggregate at one pole of the cell. This process is called capping. Here, a novel explanation of such a process is presented in which the membrane is viewed as a supersaturated solution of receptors in the lipid bilayer and the adjacent two aqueous layers. Without a crosslinking agent, a patch of receptors that is less than a certain size cannot stay in equilibrium with the solution and thus should dissolve. Patches greater than a certain size are stable and can, in principle, grow by the precipitation of the remaining dissolved receptors from the supersaturated solution. The task of the crosslinking molecules is to form such stable patches. These considerations are based on a qualitative thermodynamic calculation that takes into account the existence of a boundary tension in a patch (in analogy to the surface tension of a droplet). Thermodynamically, these systems should cap spontaneously after the patches have reached a certain size. But, in practice, such a process can be very slow. A suspension of patches may stay practically stable. The ways in which a cell may abolish this metastable equilibrium and thus achieve capping are considered and possible effects of capping inhibitors are discussed. PMID:274724
Kimura, S; Yamakami-Kimura, M; Obata, Y; Hase, K; Kitamura, H; Ohno, H; Iwanaga, T
2015-05-01
The microfold (M) cell residing in the follicle-associated epithelium is a specialized epithelial cell that initiates mucosal immune responses by sampling luminal antigens. The differentiation process of M cells remains unclear due to limitations of analytical methods. Here we found that M cells were classified into two functionally different subtypes based on the expression of Glycoprotein 2 (GP2) by newly developed image cytometric analysis. GP2-high M cells actively took up luminal microbeads, whereas GP2-negative or low cells scarcely ingested them, even though both subsets equally expressed the other M-cell signature genes, suggesting that GP2-high M cells represent functionally mature M cells. Further, the GP2-high mature M cells were abundant in Peyer's patch but sparse in the cecal patch: this was most likely due to a decrease in the nuclear translocation of RelB, a downstream transcription factor for the receptor activator of nuclear factor-κB signaling. Given that murine cecum contains a protrusion of beneficial commensals, the restriction of M-cell activity might contribute to preventing the onset of any excessive immune response to the commensals through decelerating the M-cell-dependent uptake of microorganisms.
Kurata, Ryuichiro; Futaki, Sugiko; Nakano, Itsuko; Fujita, Fumitaka; Tanemura, Atsushi; Murota, Hiroyuki; Katayama, Ichiro; Okada, Fumihiro
2017-01-01
Because sweat secretion is facilitated by mechanical contraction of sweat gland structures, understanding their structure-function relationship could lead to more effective treatments for patients with sweat gland disorders such as heat stroke. Conventional histological studies have shown that sweat glands are three-dimensionally coiled tubular structures consisting of ducts and secretory portions, although their detailed structural anatomy remains unclear. To better understand the details of the three-dimensional (3D) coiled structures of sweat glands, a whole-mount staining method was employed to visualize 3D coiled gland structures with sweat gland markers for ductal luminal, ductal basal, secretory luminal, and myoepithelial cells. Imaging the 3D coiled gland structures demonstrated that the ducts and secretory portions were comprised of distinct tubular structures. Ductal tubules were occasionally bent, while secretory tubules were frequently bent and formed a self-entangled coiled structure. Whole-mount staining of complex coiled gland structures also revealed the detailed 3D cellular arrangements in the individual sweat gland compartments. Ducts were composed of regularly arranged cuboidal shaped cells, while secretory portions were surrounded by myoepithelial cells longitudinally elongated along entangled secretory tubules. Whole-mount staining was also used to visualize the spatial arrangement of blood vessels and nerve fibers, both of which facilitate sweat secretion. The blood vessels ran longitudinally parallel to the sweat gland tubules, while nerve fibers wrapped around secretory tubules, but not ductal tubules. Taken together, whole-mount staining of sweat glands revealed the 3D cell shapes and arrangements of complex coiled gland structures and provides insights into the mechanical contraction of coiled gland structures during sweat secretion. PMID:28636607
Changes in intrinsic excitability of ganglion cells in degenerated retinas of RCS rats
Ren, Yi-Ming; Weng, Chuan-Huang; Zhao, Cong-Jian; Yin, Zheng-Qin
2018-01-01
AIM To evaluate the intrinsic excitability of retinal ganglion cells (RGCs) in degenerated retinas. METHODS The intrinsic excitability of various morphologically defined RGC types using a combination of patch-clamp recording and the Lucifer yellow tracer in retinal whole-mount preparations harvested from Royal College of Surgeons (RCS) rats, a common retinitis pigmentosa (RP) model, in a relatively late stage of retinal degeneration (P90) were investigated. Several parameters of RGC morphologies and action potentials (APs) were measured and compared to those of non-dystrophic control rats, including dendritic stratification, dendritic field diameter, peak amplitude, half width, resting membrane potential, AP threshold, depolarization to threshold, and firing rates. RESULTS Compared with non-dystrophic control RGCs, more depolarizations were required to reach the AP threshold in RCS RGCs with low spontaneous spike rates and in RCS OFF cells (especially A2o cells), and RCS RGCs maintained their dendritic morphologies, resting membrane potentials and capabilities to generate APs. CONCLUSION RGCs are relatively well preserved morphologically and functionally, and some cells are more susceptible to decreased excitability during retinal degeneration. These findings provide valuable considerations for optimizing RP therapeutic strategies. PMID:29862172
A monolithic patch-clamping amplifier with capacitive feedback.
Prakash, J; Paulos, J J; Jensen, D N
1989-03-01
Patch-clamping is an established method for directly measuring ionic transport through cellular membranes with sufficient resolution to observe open/close transitions of individual channel molecules. This paper describes an alternative technique for patch-clamping which uses a capacitor as the transimpedance element. This approach eliminates bandwidth and saturation limitations experienced with resistive patch-clamping amplifiers. A complete monolithic design featuring an on-chip operational amplifier, a capacitor array with gain-ranging from 30 pF down to 0.03 pF, and reset and gain ranging switches has been fabricated using 5 microns CMOS technology. It is shown that the voltage noise of the CMOS operational amplifier limits the overall noise performance, but that performance competitive with conventional instruments can be achieved over a 10 kHz bandwidth, at least for small input capacitances (less than or equal to 5 pF). Results are presented along with an analysis and comparison of noise performance using both resistive and capacitive elements.
A Patch-Based Approach for the Segmentation of Pathologies: Application to Glioma Labelling.
Cordier, Nicolas; Delingette, Herve; Ayache, Nicholas
2016-04-01
In this paper, we describe a novel and generic approach to address fully-automatic segmentation of brain tumors by using multi-atlas patch-based voting techniques. In addition to avoiding the local search window assumption, the conventional patch-based framework is enhanced through several simple procedures: an improvement of the training dataset in terms of both label purity and intensity statistics, augmented features to implicitly guide the nearest-neighbor-search, multi-scale patches, invariance to cube isometries, stratification of the votes with respect to cases and labels. A probabilistic model automatically delineates regions of interest enclosing high-probability tumor volumes, which allows the algorithm to achieve highly competitive running time despite minimal processing power and resources. This method was evaluated on Multimodal Brain Tumor Image Segmentation challenge datasets. State-of-the-art results are achieved, with a limited learning stage thus restricting the risk of overfit. Moreover, segmentation smoothness does not involve any post-processing.
Planar microstrip YAGI antenna array
NASA Technical Reports Server (NTRS)
Huang, John (Inventor)
1993-01-01
A directional microstrip antenna includes a driven patch surrounded by an isolated reflector and one or more coplanar directors, all separated from a ground plane on the order of 0.1 wavelength or less to provide end fire beam directivity without requiring power dividers or phase shifters. The antenna may be driven at a feed point a distance from the center of the driven patch in accordance with conventional microstrip antenna design practices for H-plane coupled or horizontally polarized signals. The feed point for E-plane coupled or vertically polarized signals is at a greater distance from the center than the first distance. This feed point is also used for one of the feed signals for circularly polarized signals. The phase shift between signals applied to feed points for circularly polarized signals must be greater than the conventionally required 90 degrees and depends upon the antenna configuration.
Stimulus features coded by single neurons of a macaque body category selective patch.
Popivanov, Ivo D; Schyns, Philippe G; Vogels, Rufin
2016-04-26
Body category-selective regions of the primate temporal cortex respond to images of bodies, but it is unclear which fragments of such images drive single neurons' responses in these regions. Here we applied the Bubbles technique to the responses of single macaque middle superior temporal sulcus (midSTS) body patch neurons to reveal the image fragments the neurons respond to. We found that local image fragments such as extremities (limbs), curved boundaries, and parts of the torso drove the large majority of neurons. Bubbles revealed the whole body in only a few neurons. Neurons coded the features in a manner that was tolerant to translation and scale changes. Most image fragments were excitatory but for a few neurons both inhibitory and excitatory fragments (opponent coding) were present in the same image. The fragments we reveal here in the body patch with Bubbles differ from those suggested in previous studies of face-selective neurons in face patches. Together, our data indicate that the majority of body patch neurons respond to local image fragments that occur frequently, but not exclusively, in bodies, with a coding that is tolerant to translation and scale. Overall, the data suggest that the body category selectivity of the midSTS body patch depends more on the feature statistics of bodies (e.g., extensions occur more frequently in bodies) than on semantics (bodies as an abstract category).
Stimulus features coded by single neurons of a macaque body category selective patch
Popivanov, Ivo D.; Schyns, Philippe G.; Vogels, Rufin
2016-01-01
Body category-selective regions of the primate temporal cortex respond to images of bodies, but it is unclear which fragments of such images drive single neurons’ responses in these regions. Here we applied the Bubbles technique to the responses of single macaque middle superior temporal sulcus (midSTS) body patch neurons to reveal the image fragments the neurons respond to. We found that local image fragments such as extremities (limbs), curved boundaries, and parts of the torso drove the large majority of neurons. Bubbles revealed the whole body in only a few neurons. Neurons coded the features in a manner that was tolerant to translation and scale changes. Most image fragments were excitatory but for a few neurons both inhibitory and excitatory fragments (opponent coding) were present in the same image. The fragments we reveal here in the body patch with Bubbles differ from those suggested in previous studies of face-selective neurons in face patches. Together, our data indicate that the majority of body patch neurons respond to local image fragments that occur frequently, but not exclusively, in bodies, with a coding that is tolerant to translation and scale. Overall, the data suggest that the body category selectivity of the midSTS body patch depends more on the feature statistics of bodies (e.g., extensions occur more frequently in bodies) than on semantics (bodies as an abstract category). PMID:27071095
Generative adversarial networks for brain lesion detection
NASA Astrophysics Data System (ADS)
Alex, Varghese; Safwan, K. P. Mohammed; Chennamsetty, Sai Saketh; Krishnamurthi, Ganapathy
2017-02-01
Manual segmentation of brain lesions from Magnetic Resonance Images (MRI) is cumbersome and introduces errors due to inter-rater variability. This paper introduces a semi-supervised technique for detection of brain lesion from MRI using Generative Adversarial Networks (GANs). GANs comprises of a Generator network and a Discriminator network which are trained simultaneously with the objective of one bettering the other. The networks were trained using non lesion patches (n=13,000) from 4 different MR sequences. The network was trained on BraTS dataset and patches were extracted from regions excluding tumor region. The Generator network generates data by modeling the underlying probability distribution of the training data, (PData). The Discriminator learns the posterior probability P (Label Data) by classifying training data and generated data as "Real" or "Fake" respectively. The Generator upon learning the joint distribution, produces images/patches such that the performance of the Discriminator on them are random, i.e. P (Label Data = GeneratedData) = 0.5. During testing, the Discriminator assigns posterior probability values close to 0.5 for patches from non lesion regions, while patches centered on lesion arise from a different distribution (PLesion) and hence are assigned lower posterior probability value by the Discriminator. On the test set (n=14), the proposed technique achieves whole tumor dice score of 0.69, sensitivity of 91% and specificity of 59%. Additionally the generator network was capable of generating non lesion patches from various MR sequences.
Cell attachment functionality of bioactive conducting polymers for neural interfaces.
Green, Rylie A; Lovell, Nigel H; Poole-Warren, Laura A
2009-08-01
Bioactive coatings for neural electrodes that are tailored for cell interactions have the potential to produce superior implants with improved charge transfer capabilities. In this study synthetically produced anionically modified laminin peptides DEDEDYFQRYLI and DCDPGYIGSR were used to dope poly(3,4-ethylenedioxythiophene) (PEDOT) electrodeposited on platinum (Pt) electrodes. Performance of peptide doped films was compared to conventional polymer PEDOT/paratoluene sulfonate (pTS) films using SEM, XPS, cyclic voltammetry, impedance spectroscopy, mechanical hardness and adherence. Bioactivity of incorporated peptides and their affect on cell growth was assessed using a PC12 neurite outgrowth assay. It was demonstrated that large peptide dopants produced softer PEDOT films with a minimal decrease in electrochemical stability, compared to the conventional dopant, pTS. Cell studies revealed that the YFQRYLI ligand retained neurite outgrowth bioactivity when DEDEDYFQRYLI was used as a dopant, but the effect was strongly dependant on initial cell attachment. Alternate peptide dopant, DCDPGYIGSR was found to impart superior cell attachment properties when compared to DEDEDYFQRYLI, but attachment on both peptide doped polymers could be enhanced by coating with whole native laminin.
Effect of cholesterol depletion on the pore dilation of TRPV1.
Jansson, Erik T; Trkulja, Carolina L; Ahemaiti, Aikeremu; Millingen, Maria; Jeffries, Gavin Dm; Jardemark, Kent; Orwar, Owe
2013-01-02
The TRPV1 ion channel is expressed in nociceptors, where pharmacological modulation of its function may offer a means of alleviating pain and neurogenic inflammation processes in the human body. The aim of this study was to investigate the effects of cholesterol depletion of the cell on ion-permeability of the TRPV1 ion channel. The ion-permeability properties of TRPV1 were assessed using whole-cell patch-clamp and YO-PRO uptake rate studies on a Chinese hamster ovary (CHO) cell line expressing this ion channel. Prolonged capsaicin-induced activation of TRPV1 with N-methyl-D-glucamine (NMDG) as the sole extracellular cation, generated a biphasic current which included an initial outward current followed by an inward current. Similarly, prolonged proton-activation (pH 5.5) of TRPV1 under hypocalcemic conditions also generated a biphasic current including a fast initial current peak followed by a larger second one. Patch-clamp recordings of reversal potentials of TRPV1 revealed an increase of the ion-permeability for NMDG during prolonged activation of this ion channel under hypocalcemic conditions. Our findings show that cholesterol depletion inhibited both the second current, and the increase in ion-permeability of the TRPV1 channel, resulting from sustained agonist-activation with capsaicin and protons (pH 5.5). These results were confirmed with YO-PRO uptake rate studies using laser scanning confocal microscopy, where cholesterol depletion was found to decrease TRPV1 mediated uptake rates of YO-PRO. Hence, these results propose a novel mechanism by which cellular cholesterol depletion modulates the function of TRPV1, which may constitute a novel approach for treatment of neurogenic pain.
Choisy, Stéphanie C; Cheng, Hongwei; Orchard, Clive H; James, Andrew F; Hancox, Jules C
2015-01-01
The atrioventricular node (AVN) is a key component of the cardiac pacemaker-conduction system. This study investigated the electrophysiology of cells isolated from the AVN region of adult mouse hearts, and compared murine ionic current magnitude with that of cells from the more extensively studied rabbit AVN. Whole-cell patch-clamp recordings of ionic currents, and perforated-patch recordings of action potentials (APs), were made at 35–37°C. Hyperpolarizing voltage commands from −40 mV elicited a Ba2+-sensitive inward rectifier current that was small at diastolic potentials. Some cells (Type 1; 33.4 ± 2.2 pF; n = 19) lacked the pacemaker current, If, whilst others (Type 2; 34.2 ± 1.5 pF; n = 21) exhibited a clear If, which was larger than in rabbit AVN cells. On depolarization from −40 mV L-type Ca2+ current, ICa,L, was elicited with a half maximal activation voltage (V0.5) of −7.6 ± 1.2 mV (n = 24). ICa,L density was smaller than in rabbit AVN cells. Rapid delayed rectifier (IKr) tail currents sensitive to E-4031 (5 μmol/L) were observed on repolarization to −40 mV, with an activation V0.5 of −10.7 ± 4.7 mV (n = 8). The IKr magnitude was similar in mouse and rabbit AVN. Under Na-Ca exchange selective conditions, mouse AVN cells exhibited 5 mmol/L Ni-sensitive exchange current that was inwardly directed negative to the holding potential (−40 mV). Spontaneous APs (5.2 ± 0.5 sec−1; n = 6) exhibited an upstroke velocity of 37.7 ± 16.2 V/s and ceased following inhibition of sarcoplasmic reticulum Ca2+ release by 1 μmol/L ryanodine, implicating intracellular Ca2+ cycling in murine AVN cell electrogenesis. PMID:26607172
TRPM4 non-selective cation channels influence action potentials in rabbit Purkinje fibres.
Hof, Thomas; Sallé, Laurent; Coulbault, Laurent; Richer, Romain; Alexandre, Joachim; Rouet, René; Manrique, Alain; Guinamard, Romain
2016-01-15
The transient receptor potential melastatin 4 (TRPM4) inhibitor 9-phenanthrol reduces action potential duration in rabbit Purkinje fibres but not in ventricle. TRPM4-like single channel activity is observed in isolated rabbit Purkinje cells but not in ventricular cells. The TRPM4-like current develops during the notch and early repolarization phases of the action potential in Purkinje cells. Transient receptor potential melastatin 4 (TRPM4) Ca(2+)-activated non-selective cation channel activity has been recorded in cardiomyocytes and sinus node cells from mammals. In addition, TRPM4 gene mutations are associated with human diseases of cardiac conduction, suggesting that TRPM4 plays a role in this aspect of cardiac function. Here we evaluate the TRPM4 contribution to cardiac electrophysiology of Purkinje fibres. Ventricular strips with Purkinje fibres were isolated from rabbit hearts. Intracellular microelectrodes recorded Purkinje fibre activity and the TRPM4 inhibitor 9-phenanthrol was applied to unmask potential TRPM4 contributions to the action potential. 9-Phenanthrol reduced action potential duration measured at the point of 50 and 90% repolarization with an EC50 of 32.8 and 36.1×10(-6) mol l(-1), respectively, but did not modulate ventricular action potentials. Inside-out patch-clamp recordings were used to monitor TRPM4 activity in isolated Purkinje cells. TRPM4-like single channel activity (conductance = 23.8 pS; equal permeability for Na(+) and K(+); sensitivity to voltage, Ca(2+) and 9-phenanthrol) was observed in 43% of patches from Purkinje cells but not from ventricular cells (0/16). Action potential clamp experiments performed in the whole-cell configuration revealed a transient inward 9-phenanthrol-sensitive current (peak density = -0.65 ± 0.15 pA pF(-1); n = 5) during the plateau phases of the Purkinje fibre action potential. These results show that TRPM4 influences action potential characteristics in rabbit Purkinje fibres and thus could modulate cardiac conduction and be involved in triggering arrhythmias. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.
Neuman, Krystina M.; Molina-Campos, Elizabeth; Musial, Timothy F.; Price, Andrea L.; Oh, Kwang-Jin; Wolke, Malerie L.; Buss, Eric W.; Scheff, Stephen W.; Mufson, Elliott J.; Nicholson, Daniel A.
2014-01-01
Alzheimer’s disease (AD) is associated with alterations in the distribution, number, and size of inputs to hippocampal neurons. Some of these changes are thought to be neurodegenerative, whereas others are conceptualized as compensatory, plasticity-like responses, wherein the remaining inputs reactively innervate vulnerable dendritic regions. Here, we provide evidence that the axospinous synapses of human AD cases and mice harboring AD-linked genetic mutations (the 5XFAD line) exhibit both, in the form of synapse loss and compensatory changes in the synapses that remain. Using array tomography, quantitative conventional electron microscopy, immunogold electron microscopy for AMPARs, and whole-cell patch-clamp physiology, we find that hippocampal CA1 pyramidal neurons in transgenic mice are host to an age-related synapse loss in their distal dendrites, and that the remaining synapses express more AMPA-type glutamate receptors. Moreover, the number of axonal boutons that synapse with multiple spines is significantly reduced in the transgenic mice. Through serial section electron microscopic analyses of human hippocampal tissue, we further show that putative compensatory changes in synapse strength are also detectable in axospinous synapses of proximal and distal dendrites in human AD cases, and that their multiple synapse boutons may be more powerful than those in non-cognitively impaired human cases. Such findings are consistent with the notion that the pathophysiology of AD is a multivariate product of both neurodegenerative and neuroplastic processes, which may produce adaptive and/or maladaptive responses in hippocampal synaptic strength and plasticity. PMID:25031178
Effects of sildenafil on cardiac repolarization.
Chiang, Chern-En; Luk, Hsiang-Ning; Wang, Tsui-Min; Ding, Philip Yu-An
2002-08-01
Sudden death has occasionally been reported in patients taking sildenafil. The objective of this study was to investigate the effect of sildenafil on cardiac repolarization. We used conventional microelectrode recording technique in isolated guinea pig papillary muscles and canine Purkinje fibers, whole-cell patch clamp techniques in guinea pig ventricular myocytes, and in vivo ECG measurements in guinea pigs. Action potential duration at 90% repolarization (APD(90)) was not affected by sildenafil in the therapeutic ranges (< or =1 microM), but shortened by higher concentration (> or =10 microM) in both guinea pig papillary muscles and canine Purkinje fibers. D-Sotalol prolonged APD(90) in the same preparations with concentrations > or =1 microM in a reverse frequency-dependent manner. Co-administration of sildenafil (10 and 30 microM) abolished the APD-prolonging effects of D-sotalol (30 microM) and amiodarone (100 microM). Sildenafil, with concentrations up to 30 microM, had no significant effect on both the rapid (I(Kr)) and the slow (I(Ks)) components of the delayed rectifier potassium currents in guinea pig ventricular myocytes. Sildenafil dose-dependently blocked L-type Ca(2+) current (I(Ca,L)), but had no effect on persistent Na(+) current in guinea pig ventricular myocytes. ECG recordings in intact guinea pigs revealed significant shortening of QTc interval by sildenafil (10 and 30 mg/kg orally). The QT-prolonging effects by D,L-sotalol (50 mg/kg) and amiodarone (100 mg/kg) were abolished by sildenafil (30 mg/kg). Sildenafil does not prolong cardiac repolarization. Instead, in supra-therapeutic concentrations, it accelerates cardiac repolarization, presumably through its blocking effect on I(Ca,L).
Bandwidth enhancement of a microstrip patch antenna for ultra-wideband applications
NASA Astrophysics Data System (ADS)
Anum, Khanda; Singh, Milind Saurabh; Mishra, Rajan; Tripathi, G. S.
2018-04-01
The microstrip antennas are used where size, weight, cost, and performance are constraints. Microstrip antennas (MSA) are being used in many government and commercial applications among which it is mostly used in wireless communication. The proposed antenna is designed for Ultra-wideband (UWB), it is designed on FR4 substrate material with ɛr = 4.3 and 0.0025 loss tangent. The shape and size of patch in microstrip patch antenna plays an important role in its performance. In the proposed antenna design the respective changes have been introduced which includes slotting the feedline,adding a curved slot in patch and change in patch shape itself to improve the bandwidth of the conventional antenna. The simulated results of proposed antenna shows impedance bandwidth (defined by 10 dB return loss) of 2-11.1GHz, VSWR<2 for entire bandwidth of antenna and peak gain is 5.2 dB. Thus the antenna covers the UWB range and it can also be used for bands such as 2.4/3.6/5 -GHz WLAN bands, 2.5/3.5/5.5GHz WiMAX bands and X band satellite communication at 7.25-8.395 GHz.
Ghatpande, A S; Rao, S; Sikdar, S K
2001-01-01
Tetrapentylammonium (TPeA) block of rat brain type IIA sodium channel α subunit was studied using whole cell patch clamp. Results indicate that TPeA blocks the inactivating brain sodium channel in a potential and use-dependent manner similar to that of the cardiac sodium channel. Removal of inactivation using chloramine-T (CT) unmasks a time-dependent block by TPeA consistent with slow blocking kinetics. On the other hand, no time dependence is observed when inactivation is abolished by modification with veratridine. TPeA does not bind in a potential-dependent fashion to veratridine-modified channels and does not significantly affect gating of veratridine-modified channels suggesting that high affinity binding of TPeA to the brain sodium channel is lost after veratridine modification. PMID:11309247
Pore forming properties of cecropin-melittin hybrid peptide in a natural membrane.
Milani, Alberto; Benedusi, Mascia; Aquila, Marco; Rispoli, Giorgio
2009-12-11
The pore forming properties of synthetic cecropin-melittin hybrid peptide (Acetyl-KWKLFKKIGAVLKVL-CONH(2); CM15) were investigated by using photoreceptor rod outer segments (OS) isolated from frog retinae obtained by using the whole-cell configuration of the patch-clamp technique. CM15 was applied (and removed) to (from) the OS in approximately 50 ms with a computer-controlled microperfusion system. Once the main OS endogenous conductance was blocked with light, the OS membrane resistance was >or=1 G Omega, allowing high resolution, low-noise recordings. Different to alamethicines, CM15 produced voltage-independent membrane permeabilisation, repetitive peptide application caused a progressive permeabilisation increase, and no single-channel events were detected at low peptide concentrations. Collectively, these results indicate a toroidal mechanism of pore formation by CM15.
In vivo robotics: the automation of neuroscience and other intact-system biological fields
Kodandaramaiah, Suhasa B.; Boyden, Edward S.; Forest, Craig R.
2013-01-01
Robotic and automation technologies have played a huge role in in vitro biological science, having proved critical for scientific endeavors such as genome sequencing and high-throughput screening. Robotic and automation strategies are beginning to play a greater role in in vivo and in situ sciences, especially when it comes to the difficult in vivo experiments required for understanding the neural mechanisms of behavior and disease. In this perspective, we discuss the prospects for robotics and automation to impact neuroscientific and intact-system biology fields. We discuss how robotic innovations might be created to open up new frontiers in basic and applied neuroscience, and present a concrete example with our recent automation of in vivo whole cell patch clamp electrophysiology of neurons in the living mouse brain. PMID:23841584
Zhang, Lichun; Engler, Sina; Koepcke, Lena; Steenken, Friederike; Köppl, Christine
2018-07-01
The Mongolian gerbil is a classic animal model for age-related hearing loss. As a prerequisite for studying age-related changes, we characterized cochlear afferent synaptic morphology in young adult gerbils, using immunolabeling and quantitative analysis of confocal microscopic images. Cochlear wholemounts were triple-labeled with a hair-cell marker, a marker of presynaptic ribbons, and a marker of postsynaptic AMPA-type glutamate receptors. Seven cochlear positions covering an equivalent frequency range from 0.5 - 32 kHz were evaluated. The spatial positions of synapses were determined in a coordinate system with reference to their individual inner hair cell. Synapse numbers confirmed previous reports for gerbils (on average, 20-22 afferents per inner hair cell). The volumes of presynaptic ribbons and postsynaptic glutamate receptor patches were positively correlated: larger ribbons associated with larger receptor patches and smaller ribbons with smaller patches. Furthermore, the volumes of both presynaptic ribbons and postsynaptic receptor patches co-varied along the modiolar-pillar and the longitudinal axes of their hair cell. The gradients in ribbon volume are consistent with previous findings in cat, guinea pig, mouse and rat and further support a role in differentiating the physiological properties of type I afferents. However, the positive correlation between the volumes of pre- and postsynaptic elements in the gerbil is different to the opposing gradients found in the mouse, suggesting species-specific differences in the postsynaptic AMPA receptors that are unrelated to the fundamental classes of type I afferents. Copyright © 2018 Elsevier B.V. All rights reserved.
Colazo, M G; Whittaker, P; Macmillan, K; Bignell, D; Boender, G; de Carvalho Guimaraes, R; Mapletoft, R J
2018-05-31
The main objective was to compare pregnancy per AI (P/AI) between sex-selected and conventional semen in cyclic beef heifers subjected to a 5-day Co-synch plus CIDR protocol and evaluated the usefulness of an estrus detection (ED) aid to identify heifers that were most likely to conceive. This study also determined if the expression of estrus before timed-AI (TAI) would be associated with increased P/AI in acyclic heifers inseminated with conventional semen. Heifers (n = 1690; 320-523 kg of body weight, and 13-15 mo of age) at three locations over 2 years were scanned by ultrasonography to determine cyclicity (presence of luteal tissue) and reproductive tract normalcy. Cyclic heifers (n = 1331) received a progesterone releasing device (CIDR) on Day 0, CIDR removal and 500 μg of cloprostenol (PGF) on Day 5, and 100 μg of GnRH along with TAI on Day 8. Acyclic heifers (n = 275) received the same treatment with the addition of GnRH on Day 0. On Day 5, all heifers received ED patches (Estrotect™) that were scored from 0 to 3, based on color change between initial application and Day 8; 0 = unchanged, 1 = ≤ 50% color change, 2 = > 50% color change, 3 = missing. Estrus was defined to have occurred when an ED patch was scored 2 or 3. Cyclic heifers were inseminated with either frozen-thawed sex-selected or conventional semen from either of three sires available commercially (two per year). Acyclic heifers were inseminated with conventional semen. Pregnancy diagnosis was performed by transrectal ultrasonography 28 or 48 d after TAI, depending on management. The percentage of cyclic heifers was 83.9% and the average estrus response was 63.8%. P/AI was greater (P < 0.01) in cyclic compared to acyclic heifers (53.3 vs. 36.0%) and tended to be greater (P = 0.07) for conventional semen (52.3 vs. 47.6%), despite all acyclic heifers being inseminated with conventional semen. Heifers with an ED patch scored 2 (61.1%) or 3 (58.6%) had greater (P < 0.01) P/AI than those scored 0 (31.8%) or 1 (33.1%), regardless of semen type. Pregnancy per AI was greater (P < 0.01) for heifers detected in estrus (60.6 vs. 32.3%). In cyclic heifers that did not exhibit estrus, P/AI was lower (P < 0.01) in those inseminated with sex-selected semen (27.8 vs. 45.9%), while in heifers that exhibited estrus, P/AI only tended to be lower (P = 0.08; 56.7 vs. 65.5%). In summary, P/AI was greater in cyclic heifers, in those inseminated with conventional semen and in those exhibiting estrus before TAI. The ED patches were considered useful to identify animals for TAI with sex-selected semen and could be used to increase the adoption of this technology in beef herds. Copyright © 2018. Published by Elsevier Inc.
D'Aiuto, Leonardo; Zhi, Yun; Kumar Das, Dhanjit; Wilcox, Madeleine R; Johnson, Jon W; McClain, Lora; MacDonald, Matthew L; Di Maio, Roberto; Schurdak, Mark E; Piazza, Paolo; Viggiano, Luigi; Sweet, Robert; Kinchington, Paul R; Bhattacharjee, Ayantika G; Yolken, Robert; Nimgaonka, Vishwajit L; Nimgaonkar, Vishwajit L
2014-01-01
Induced pluripotent stem cell (iPSC)-based technologies offer an unprecedented opportunity to perform high-throughput screening of novel drugs for neurological and neurodegenerative diseases. Such screenings require a robust and scalable method for generating large numbers of mature, differentiated neuronal cells. Currently available methods based on differentiation of embryoid bodies (EBs) or directed differentiation of adherent culture systems are either expensive or are not scalable. We developed a protocol for large-scale generation of neuronal stem cells (NSCs)/early neural progenitor cells (eNPCs) and their differentiation into neurons. Our scalable protocol allows robust and cost-effective generation of NSCs/eNPCs from iPSCs. Following culture in neurobasal medium supplemented with B27 and BDNF, NSCs/eNPCs differentiate predominantly into vesicular glutamate transporter 1 (VGLUT1) positive neurons. Targeted mass spectrometry analysis demonstrates that iPSC-derived neurons express ligand-gated channels and other synaptic proteins and whole-cell patch-clamp experiments indicate that these channels are functional. The robust and cost-effective differentiation protocol described here for large-scale generation of NSCs/eNPCs and their differentiation into neurons paves the way for automated high-throughput screening of drugs for neurological and neurodegenerative diseases.
Optimal compliance for amblyopia therapy: occlusion with a translucent tape on the lens.
Beneish, Raquel G; Polomeno, Robert C; Flanders, Michael E; Koenekoop, Robert K
2009-10-01
To demonstrate that optimal compliance to amblyopia therapy and a better visual outcome can be achieved by occluding the lens over the preferred eye with a translucent tape. Prospective study of amblyopic children. Eighty-four amblyopic children recruited from 2000 to 2006 at the Montreal Children's Vision Centre. A group of bilateral ametropes (mean age 3.8 years) were treated with glasses and occlusion of the sound eye with a translucent tape on the lens over the preferred eye, or an adhesive patch. The translucent tape reduced vision to hand motion at 0.3 m in the sound eye. Patients were divided into 2 groups depending on the treatment received. Group 1 (n = 36) was occluded with a translucent tape, and group 2 (n = 48) with a conventional adhesive patch, later replaced by the translucent tape. Twenty-five previously reported patients, treated with the conventional adhesive patch only, were used as controls (group 3). The mean amblyopic visual acuity was 20/100-2. Compliance was good in 36 patients (group 1), and was poor or deteriorated in 24/48 patients (group 2). Substituting the adhesive patch with a translucent tape permitted uninterrupted and prolonged occlusion, with a successful visual outcome. The amblyopic eye achieved a significantly better final vision (20/30+2; groups 1+2) than the controls (20/40+1; group 3) (p = 0.04). Sixty-four (76.19%) patients achieved >or=20/30. The translucent tape optimizes compliance and yields better vision by lengthening the duration of occlusion therapy and reducing the number of treatment failures due to noncompliance.
Emerging microengineering tools for functional analysis and phenotyping of blood cells
Li, Xiang; Chen, Weiqiang; Li, Zida; Li, Ling; Gu, Hongchen; Fu, Jianping
2014-01-01
The available techniques for assessing blood cell functions are limited considering the various types of blood cells and their diverse functions. In the past decade, rapid advancement in microengineering has enabled an array of blood cell functional measurements that are difficult or impossible to achieve using conventional bulk platforms. Such miniaturized blood cell assay platforms also provide attractive capabilities of reducing chemical consumption, cost, assay time, as well as exciting opportunities of device integration, automation, and assay standardization. This review summarizes these contemporary microengineering tools and discusses their promising potential for constructing accurate in vitro models and rapid clinical diagnosis using minimal amount of whole blood samples. PMID:25283971
Epidermal electronics for electromyography: An application to swallowing therapy.
Constantinescu, Gabriela; Jeong, Jae-Woong; Li, Xinda; Scott, Dylan K; Jang, Kyung-In; Chung, Hyun-Joong; Rogers, John A; Rieger, Jana
2016-08-01
Head and neck cancer treatment alters the anatomy and physiology of patients. Resulting swallowing difficulties can lead to serious health concerns. Surface electromyography (sEMG) is used as an adjuvant to swallowing therapy exercises. sEMG signal collected from the area under the chin provides visual biofeedback from muscle contractions and is used to help patients perform exercises correctly. However, conventional sEMG adhesive pads are relatively thick and difficult to effectively adhere to a patient's altered chin anatomy, potentially leading to poor signal acquisition in this population. Here, the emerging technology of epidermal electronics is introduced, where ultra-thin geometry allows for close contouring of the chin. The two objectives of this study were to (1) assess the potential of epidermal electronics technology for use with swallowing therapy and (2) assess the significance of the reference electrode placement. This study showed comparative signals between the new epidermal sEMG patch and the conventional adhesive patches used by clinicians. Furthermore, an integrated reference yielded optimal signal for clinical use; this configuration was more robust to head movements than when an external reference was used. Improvements for future iterations of epidermal sEMG patches specific to day-to-day clinical use are suggested. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.
Patch Network for Power Allocation and Distribution in Smart Materials
NASA Technical Reports Server (NTRS)
Golembiewski, Walter T.
2000-01-01
The power allocation and distribution (PAD) circuitry is capable of allocating and distributing a single or multiple sources of power over multi-elements of a power user grid system. The purpose of this invention is to allocate and distribute power that is collected by individual patch rectennas to a region of specific power-user devices, such as actuators. The patch rectenna converts microwave power into DC power. Then this DC power is used to drive actuator devices. However, the power from patch rectennas is not sufficient to drive actuators unless all the collected power is effectively used to drive another group by allocation and distribution. The power allocation and distribution (PAD) circuitry solves the shortfall of power for devices in a large array. The PAD concept is based on the networked power control in which power collected over the whole array of rectennas is allocated to a sub domain where a group of devices is required to be activated for operation. Then the allocated power is distributed to individual element of power-devices in the sub domain according to a selected run-mode.
NASA Astrophysics Data System (ADS)
Byun, Aram; Jeong, Eun Seon; Kim, Jin Woong
2014-03-01
Microgels are colloidal gel particles that consist of chemically cross-linked three-dimensional polymer networks. They play an essential role in delivery and release of active ingredients in medicine, cosmetics, food, and even autonomic self-healing applications. Despite their wide applicability, permeability control through the hydrogel phase is limited due to its intrinsic loose network nature. Herein, we introduce generation of hollow-structured microgel particles whose interfaces were patched with graphene oxide (GO) sheets. The whole fabrication procedure was carried out in a microcapillary device in a single step. GO sheets have an ability to adhere to both O/W and W/O interfaces. Taking advantages of this behavior, we generated monodisperse O/W/O double emulsion whose interfaces were patched with GO sheets. Solidification of the aqueous middle phase to the hydrogel phase gave rise to uniform GO-patched microgel shell particles. Furthermore, we demonstrated that the permeation of molecules through the shell could be controlled even to small molecular length scales due to the adsorption of GO.
Zhang, Man; Zang, Kai-Hong; Luo, Jia-Lie; Leung, Fung-Ping; Huang, Yu; Lin, Cheng-Yuan; Yang, Zhi-Jun; Lu, Ai-Ping; Tang, Xu-Dong; Xu, Hong-Xi; Sung, Joseph Jao-yiu; Bian, Zhao-Xiang
2013-11-15
This study aimed to investigate the effect of magnolol (5,5'-diallyl-2,2'-biphenyldiol) on contraction in distal colonic segments of rats and the underlying mechanisms. Colonic segments were mounted in organ baths for isometric force measurement. Whole-cell voltage-sensitive L-type Ca(2+) currents were recorded on isolated single colonic smooth muscle cells using patch-clamp technique. The spontaneous contractions and acetylcholine (ACh)- and Bay K 8644-induced contractions were inhibited by magnolol (3-100 μM). In the presence of Bay K8644 (100 nM), magnolol (10-100 μM) inhibited the contraction induced by 10 μM ACh. By contrast, tetrodotoxin (100 nM) and Nώ-nitro-L-arginine methyl ester (L-NAME 100 μM) did not change the inhibitory effect of magnolol (10 μM). In addition, magnolol (3-100 μM) inhibited the L-type Ca(2+) currents. The present results suggest that magnolol inhibits colonic smooth muscle contraction through downregulating L-type Ca(2+) channel activity. Copyright © 2013 Elsevier GmbH. All rights reserved.
Sustained and transient calcium currents in horizontal cells of the white bass retina.
Sullivan, J M; Lasater, E M
1992-01-01
Calcium currents were recorded from cultured horizontal cells (HCs) isolated from adult white bass retinas, using the whole-cell patch-clamp technique. Ca2+ currents were enhanced using 10 mM extracellular Ca2+, while Na+ and K+ currents were pharmacologically suppressed. Two components of the Ca2+ current, one transient, the other sustained, were found. The large transient component of the Ca2+ current, which has not been seen before in HCs, is similar, but not identical, to the T-type Ca2+ current described previously in a variety of preparations. The sustained component of the Ca2+ current is similar, but not identical, to the L-type current described in other preparations. FTX, a factor isolated from the venom of the funnel-web spider, Agelenopsis aperta, preferentially and irreversibly blocks the sustained component of the Ca2+ current at very dilute concentrations. The sustained component of the Ca2+ current inactivates slowly, over the course of 15-60 s, in some HCs. This inactivation of the sustained Ca2+ current, when present, is primarily voltage dependent rather than Ca2+ dependent.
Sustained and transient calcium currents in horizontal cells of the white bass retina
1992-01-01
Calcium currents were recorded from cultured horizontal cells (HCs) isolated from adult white bass retinas, using the whole-cell patch- clamp technique. Ca2+ currents were enhanced using 10 mM extracellular Ca2+, while Na+ and K+ currents were pharmacologically suppressed. Two components of the Ca2+ current, one transient, the other sustained, were found. The large transient component of the Ca2+ current, which has not been seen before in HCs, is similar, but not identical, to the T-type Ca2+ current described previously in a variety of preparations. The sustained component of the Ca2+ current is similar, but not identical, to the L-type current described in other preparations. FTX, a factor isolated from the venom of the funnel-web spider, Agelenopsis aperta, preferentially and irreversibly blocks the sustained component of the Ca2+ current at very dilute concentrations. The sustained component of the Ca2+ current inactivates slowly, over the course of 15- 60 s, in some HCs. This inactivation of the sustained Ca2+ current, when present, is primarily voltage dependent rather than Ca2+ dependent. PMID:1371309
Li, Chang-Lin; Li, Kai-Cheng; Wu, Dan; Chen, Yan; Luo, Hao; Zhao, Jing-Rong; Wang, Sa-Shuang; Sun, Ming-Ming; Lu, Ying-Jin; Zhong, Yan-Qing; Hu, Xu-Ye; Hou, Rui; Zhou, Bei-Bei; Bao, Lan; Xiao, Hua-Sheng; Zhang, Xu
2016-01-01
Sensory neurons are distinguished by distinct signaling networks and receptive characteristics. Thus, sensory neuron types can be defined by linking transcriptome-based neuron typing with the sensory phenotypes. Here we classify somatosensory neurons of the mouse dorsal root ganglion (DRG) by high-coverage single-cell RNA-sequencing (10 950 ± 1 218 genes per neuron) and neuron size-based hierarchical clustering. Moreover, single DRG neurons responding to cutaneous stimuli are recorded using an in vivo whole-cell patch clamp technique and classified by neuron-type genetic markers. Small diameter DRG neurons are classified into one type of low-threshold mechanoreceptor and five types of mechanoheat nociceptors (MHNs). Each of the MHN types is further categorized into two subtypes. Large DRG neurons are categorized into four types, including neurexophilin 1-expressing MHNs and mechanical nociceptors (MNs) expressing BAI1-associated protein 2-like 1 (Baiap2l1). Mechanoreceptors expressing trafficking protein particle complex 3-like and Baiap2l1-marked MNs are subdivided into two subtypes each. These results provide a new system for cataloging somatosensory neurons and their transcriptome databases. PMID:26691752
Separate Cl^- Conductances Activated by cAMP and Ca2+ in Cl^--Secreting Epithelial Cells
NASA Astrophysics Data System (ADS)
Cliff, William H.; Frizzell, Raymond A.
1990-07-01
We studied the cAMP- and Ca2+-activated secretory Cl^- conductances in the Cl^--secreting colonic epithelial cell line T84 using the whole-cell patch-clamp technique. Cl^- and K^+ currents were measured under voltage clamp. Forskolin or cAMP increased Cl^- current 2-15 times with no change in K^+ current. The current-voltage relation for cAMP-activated Cl^- current was linear from -100 to +100 mV and showed no time-dependent changes in current during voltage pulses. Ca2+ ionophores or increased pipette Ca2+ increased both Cl^- and K^+ currents 2-30 times. The Ca2+-activated Cl^- current was outwardly rectified, activated during depolarizing voltage pulses, and inactivated during hyperpolarizing voltage pulses. Addition of ionophore after forskolin further increased Cl^- conductance 1.5-5 times, and the current took on the time-dependent characteristics of that stimulated by Ca2+. Thus, cAMP and Ca2+ activate Cl^- conductances with different properties, implying that these second messengers activate different Cl^- channels or that they induce different conductive and kinetic states in the same Cl^- channel.
Robello, M; Amico, C; Cupello, A
1999-12-20
GABA(A) receptors of rat cerebellar granule cells in culture have been studied by the whole cell patch clamp technique. The biphasic desensitization kinetic observed could be due either to different desensitization mechanisms of a single receptor population or to different receptor populations. The overall data indicate that the latter hypothesis is most probably the correct one. In fact, the fast desensitizing component was selectively potentiated by a benzodiazepine agonist and preferentially down-regulated by activation of the protein serine/threonine kinases A and G, as a consequence of the latter characteristic that receptor population was preferentially down-regulated by previous activation of N-methyl-d-aspartate glutamate receptors, via production of nitric oxide and PKG activation, most probably in dendrites. The other population is benzodiazepine insensitive and not influenced by activation of PKA or PKG. This slowly desensitizing population may correspond to the extrasynaptic delta subunit containing GABA(A) receptors described by other authors. Instead, the rapidly desensitizing population appears to represent dendritic synaptic GABA(A) receptors. Copyright 1999 Academic Press.
Kim, Hoon; Zheng, Siyuan; Amini, Seyed S; Virk, Selene M; Mikkelsen, Tom; Brat, Daniel J; Grimsby, Jonna; Sougnez, Carrie; Muller, Florian; Hu, Jian; Sloan, Andrew E; Cohen, Mark L; Van Meir, Erwin G; Scarpace, Lisa; Laird, Peter W; Weinstein, John N; Lander, Eric S; Gabriel, Stacey; Getz, Gad; Meyerson, Matthew; Chin, Lynda; Barnholtz-Sloan, Jill S; Verhaak, Roel G W
2015-03-01
Glioblastoma (GBM) is a prototypical heterogeneous brain tumor refractory to conventional therapy. A small residual population of cells escapes surgery and chemoradiation, resulting in a typically fatal tumor recurrence ∼ 7 mo after diagnosis. Understanding the molecular architecture of this residual population is critical for the development of successful therapies. We used whole-genome sequencing and whole-exome sequencing of multiple sectors from primary and paired recurrent GBM tumors to reconstruct the genomic profile of residual, therapy resistant tumor initiating cells. We found that genetic alteration of the p53 pathway is a primary molecular event predictive of a high number of subclonal mutations in glioblastoma. The genomic road leading to recurrence is highly idiosyncratic but can be broadly classified into linear recurrences that share extensive genetic similarity with the primary tumor and can be directly traced to one of its specific sectors, and divergent recurrences that share few genetic alterations with the primary tumor and originate from cells that branched off early during tumorigenesis. Our study provides mechanistic insights into how genetic alterations in primary tumors impact the ensuing evolution of tumor cells and the emergence of subclonal heterogeneity. © 2015 Kim et al.; Published by Cold Spring Harbor Laboratory Press.
Light-evoked currents in retinal ganglion cells from dystrophic RCS rats.
Liu, Kang; Wang, Yi; Yin, Zhengqin; Weng, Chuanhuang
2013-01-01
To study the electrophysiological properties of the light-evoked currents in ganglion cells in situations of retinal degeneration. We investigated light-evoked currents in ganglion cells by performing whole-cell patch-clamp recordings from ganglion cells using a retina-stretched preparation from Royal College of Surgeons (RCS) rats, a model of retinal degeneration and congenic controls at different ages. Pharmacological inhibitors of the AMPA receptor (NBQX), GABA receptor (BMI), and sodium channels (TTX) were used to identify the components of the light-evoked currents in ON, OFF and ON-OFF retinal ganglion cells. We found that the light-evoked currents in ganglion cells from control rats were inhibited by NBQX, BMI and TTX, suggesting that AMPA receptors, GABA receptors and sodium channels contribute to these currents in ganglion cells. However, only AMPA receptor-mediated currents were recorded in RCS rats. Light-evoked inward currents were absent in the majority of ganglion cells from RCS rats, particularly at the later stages of retinal degeneration. At earlier stages of retinal degeneration, we found that both the timing and amplitude of light-evoked currents are significantly different in ganglion cells from RCS and control rats. Our study furthers the understanding of the electrophysiological characteristics of retinal ganglion cells during retinal degeneration, and provides insight into the optimal timing for the treatment of retinal degeneration. Copyright © 2013 S. Karger AG, Basel.
Alzamora, Rodrigo; O’Mahony, Fiona; Ko, Wing-Hung; Yip, Tiffany Wai-Nga; Carter, Derek; Irnaten, Mustapha; Harvey, Brian Joseph
2011-01-01
Berberine is a plant alkaloid with multiple pharmacological actions, including antidiarrhoeal activity and has been shown to inhibit Cl− secretion in distal colon. The aims of this study were to determine the molecular signaling mechanisms of action of berberine on Cl− secretion and the ion transporter targets. Monolayers of T84 human colonic carcinoma cells grown in permeable supports were placed in Ussing chambers and short-circuit current measured in response to secretagogues and berberine. Whole-cell current recordings were performed in T84 cells using the patch-clamp technique. Berberine decreased forskolin-induced short-circuit current in a concentration-dependent manner (IC50 80 ± 8 μM). In apically permeabilized monolayers and whole-cell current recordings, berberine inhibited a cAMP-dependent and chromanol 293B-sensitive basolateral membrane K+ current by 88%, suggesting inhibition of KCNQ1 K+ channels. Berberine did not affect either apical Cl− conductance or basolateral Na+–K+-ATPase activity. Berberine stimulated p38 MAPK, PKCα and PKA, but had no effect on p42/p44 MAPK and PKCδ. However, berberine pre-treatment prevented stimulation of p42/p44 MAPK by epidermal growth factor. The inhibitory effect of berberine on Cl− secretion was partially blocked by HBDDE (∼65%), an inhibitor of PKCα and to a smaller extent by inhibition of p38 MAPK with SB202190 (∼15%). Berberine treatment induced an increase in association between PKCα and PKA with KCNQ1 and produced phosphorylation of the channel. We conclude that berberine exerts its inhibitory effect on colonic Cl− secretion through inhibition of basolateral KCNQ1 channels responsible for K+ recycling via a PKCα-dependent pathway. PMID:21747769
Zhang, Chao; Li, Haiyan; Xiong, Xin; Zhai, Suodi; Wei, Yudong; Zhang, Shuang; Zhang, Yuanyuan; Xu, Lin; Liu, Li
2017-01-01
We investigated the pharmacokinetics and safety profiles of a newly developed combined ethinylestradiol (EE)/gestodene (GSD) transdermal contraceptive patch after a single-dose administration and compared with the market available tablet formulation in healthy adult subjects. An open-label, two-period comparative study was conducted in 12 healthy women volunteers. A single dose of the study combined EE/GE transdermal contraceptive patch and oral tablet (Milunet ® ) were administered. Blood samples at different time points after dose were collected, and concentrations were analyzed. A reliable, highly sensitive and accurate high-performance liquid chromatography coupled with tandem mass spectrometry (HPLC/MS/MS) assay method was developed in this study to determine the plasma concentrations of EE and GSD. Compared to the tablet, the study patch had a significantly decreased maximum plasma concentration ( C max ), extended time to reach the C max and half-life, as well as increased clearance and apparent volume of distribution. The half-lives of EE and GSD of the patch were 3.3 and 2.2 times, respectively, than the half-life of the tablet. The areas under the plasma concentration-time curve (AUCs) of EE and GSD of the patch were 8.0 and 16.2 times, respectively, than the AUC of the tablet. No severe adverse event was observed during the whole study, and the general safety was acceptable. In conclusion, compared to the oral tablet Milunet, the study contraceptive patch was well tolerated and showed potent drug exposure, significant extended half-life and stable drug concentrations.
Retinal patching: a new approach to the management of selected retinal breaks.
Gilbert, C E; Grierson, I; McLeod, D
1989-01-01
Restoration of retinal continuity by a patching technique is proposed as a new means of treating selected rhegmatogenous retinal detachments where established techniques frequently fail. The patch consists of a substrate and adhesive applied to the inner surface of the retina surrounding the retinal break. Bovine eye cup experiments have been performed to explore the effectiveness of a range of adhesives, and cyanoacrylates and Tisseel have been found to be effective. Studies of these adhesives on confluent cultures of bovine retinal pigment epithelial cells and glia revealed temporary cyanoacrylate toxicity and stimulation of proliferation by Tisseel. Substrate biocompatability was investigated by observing the growth of cells on various substrates in tissue culture; biological substrates such as lens capsule supported cell growth whereas synthetic membranes only did so if pretreated with fibronectin.
Hirai, Yasuharu; Nishino, Eri
2015-01-01
Despite its widespread use, high-resolution imaging with multiphoton microscopy to record neuronal signals in vivo is limited to the surface of brain tissue because of limited light penetration. Moreover, most imaging studies do not simultaneously record electrical neural activity, which is, however, crucial to understanding brain function. Accordingly, we developed a photometric patch electrode (PME) to overcome the depth limitation of optical measurements and also enable the simultaneous recording of neural electrical responses in deep brain regions. The PME recoding system uses a patch electrode to excite a fluorescent dye and to measure the fluorescence signal as a light guide, to record electrical signal, and to apply chemicals to the recorded cells locally. The optical signal was analyzed by either a spectrometer of high light sensitivity or a photomultiplier tube depending on the kinetics of the responses. We used the PME in Oregon Green BAPTA-1 AM-loaded avian auditory nuclei in vivo to monitor calcium signals and electrical responses. We demonstrated distinct response patterns in three different nuclei of the ascending auditory pathway. On acoustic stimulation, a robust calcium fluorescence response occurred in auditory cortex (field L) neurons that outlasted the electrical response. In the auditory midbrain (inferior colliculus), both responses were transient. In the brain-stem cochlear nucleus magnocellularis, calcium response seemed to be effectively suppressed by the activity of metabotropic glutamate receptors. In conclusion, the PME provides a powerful tool to study brain function in vivo at a tissue depth inaccessible to conventional imaging devices. PMID:25761950
Hirai, Yasuharu; Nishino, Eri; Ohmori, Harunori
2015-06-01
Despite its widespread use, high-resolution imaging with multiphoton microscopy to record neuronal signals in vivo is limited to the surface of brain tissue because of limited light penetration. Moreover, most imaging studies do not simultaneously record electrical neural activity, which is, however, crucial to understanding brain function. Accordingly, we developed a photometric patch electrode (PME) to overcome the depth limitation of optical measurements and also enable the simultaneous recording of neural electrical responses in deep brain regions. The PME recoding system uses a patch electrode to excite a fluorescent dye and to measure the fluorescence signal as a light guide, to record electrical signal, and to apply chemicals to the recorded cells locally. The optical signal was analyzed by either a spectrometer of high light sensitivity or a photomultiplier tube depending on the kinetics of the responses. We used the PME in Oregon Green BAPTA-1 AM-loaded avian auditory nuclei in vivo to monitor calcium signals and electrical responses. We demonstrated distinct response patterns in three different nuclei of the ascending auditory pathway. On acoustic stimulation, a robust calcium fluorescence response occurred in auditory cortex (field L) neurons that outlasted the electrical response. In the auditory midbrain (inferior colliculus), both responses were transient. In the brain-stem cochlear nucleus magnocellularis, calcium response seemed to be effectively suppressed by the activity of metabotropic glutamate receptors. In conclusion, the PME provides a powerful tool to study brain function in vivo at a tissue depth inaccessible to conventional imaging devices. Copyright © 2015 the American Physiological Society.
Experimental Clostridium perfringens type D enterotoxemia in goats.
Uzal, F A; Kelly, W R
1998-03-01
The effects of intraduodenal administration of Clostridium perfringens cultures and culture products in goats were evaluated to develop a reliable experimental model of enterotoxemia in this species. Five conventionally reared, 11-16-week-old Angora goat kids were dosed intraduodenally with whole cultures of C. perfringens type D; five similar animals were dosed with C. perfringens type D filtered culture supernatant; and a third group of five kids was dosed with C. perfringens type D washed cells. Two kids were used as controls and received sterile, nontoxic culture medium intraduodenally. All animals received starch solution into the abomasum. All five kids inoculated with whole culture and three of five dosed with culture supernatant and with washed cells developed central nervous system signs. Diarrhea was observed in two of five kids inoculated with whole culture, in all five of those dosed with culture supernatant, and in three of five of those that received washed cells. The most striking postmortem findings consisted of lung edema, necrotizing pseudomembranous colitis, and cerebral vasogenic edema. The protocol thus provided a reasonable model of naturally occurring enterotoxemia in goats, producing a range of clinical signs and postmortem changes similar to those observed in the natural disease.
Patchwork sampling of stochastic differential equations
NASA Astrophysics Data System (ADS)
Kürsten, Rüdiger; Behn, Ulrich
2016-03-01
We propose a method to sample stationary properties of solutions of stochastic differential equations, which is accurate and efficient if there are rarely visited regions or rare transitions between distinct regions of the state space. The method is based on a complete, nonoverlapping partition of the state space into patches on which the stochastic process is ergodic. On each of these patches we run simulations of the process strictly truncated to the corresponding patch, which allows effective simulations also in rarely visited regions. The correct weight for each patch is obtained by counting the attempted transitions between all different patches. The results are patchworked to cover the whole state space. We extend the concept of truncated Markov chains which is originally formulated for processes which obey detailed balance to processes not fulfilling detailed balance. The method is illustrated by three examples, describing the one-dimensional diffusion of an overdamped particle in a double-well potential, a system of many globally coupled overdamped particles in double-well potentials subject to additive Gaussian white noise, and the overdamped motion of a particle on the circle in a periodic potential subject to a deterministic drift and additive noise. In an appendix we explain how other well-known Markov chain Monte Carlo algorithms can be related to truncated Markov chains.
Image denoising by a direct variational minimization
NASA Astrophysics Data System (ADS)
Janev, Marko; Atanacković, Teodor; Pilipović, Stevan; Obradović, Radovan
2011-12-01
In this article we introduce a novel method for the image de-noising which combines a mathematically well-posdenes of the variational modeling with the efficiency of a patch-based approach in the field of image processing. It based on a direct minimization of an energy functional containing a minimal surface regularizer that uses fractional gradient. The minimization is obtained on every predefined patch of the image, independently. By doing so, we avoid the use of an artificial time PDE model with its inherent problems of finding optimal stopping time, as well as the optimal time step. Moreover, we control the level of image smoothing on each patch (and thus on the whole image) by adapting the Lagrange multiplier using the information on the level of discontinuities on a particular patch, which we obtain by pre-processing. In order to reduce the average number of vectors in the approximation generator and still to obtain the minimal degradation, we combine a Ritz variational method for the actual minimization on a patch, and a complementary fractional variational principle. Thus, the proposed method becomes computationally feasible and applicable for practical purposes. We confirm our claims with experimental results, by comparing the proposed method with a couple of PDE-based methods, where we get significantly better denoising results specially on the oscillatory regions.
Disorganized Cortical Patches Suggest Prenatal Origin of Autism
... 2014 Disorganized cortical patches suggest prenatal origin of autism NIH-funded study shows disrupted cell layering process ... study suggests that brain irregularities in children with autism can be traced back to prenatal development. “While ...
Wijayawardhane, Nayana; Shonesy, Brian C; Vaglenova, Julia; Vaithianathan, Thirumalini; Carpenter, Mark; Breese, Charles R; Dityatev, Alexander; Suppiramaniam, Vishnu
2007-06-01
Aniracetam is a nootropic compound and an allosteric modulator of AMPA receptors (AMPARs) which mediate synaptic mechanisms of learning and memory. Here we analyzed impairments in AMPAR-mediated synaptic transmission caused by moderate prenatal ethanol exposure and investigated the effects of postnatal aniracetam treatment on these abnormalities. Pregnant Sprague-Dawley rats were gavaged with ethanol or isocaloric sucrose throughout pregnancy, and subsequently the offspring were treated with aniracetam on postnatal days (PND) 18 to 27. Hippocampal slices prepared from these pups on PND 28 to 34 were used for the whole-cell patch-clamp recordings of AMPAR-mediated spontaneous and miniature excitatory postsynaptic currents in CA1 pyramidal cells. Our results indicate that moderate ethanol exposure during pregnancy results in impaired hippocampal AMPAR-mediated neurotransmission, and critically timed aniracetam treatment can abrogate this deficiency. These results highlight the possibility that aniracetam treatment can restore synaptic transmission and ameliorate cognitive deficits associated with the fetal alcohol syndrome.
Zhang, Jun; Liu, Cheng; Feng, Fuling; Wang, Dawei; Lu, Shuaishuai; Wei, Guo; Mo, Hong; Qiao, Tong
2017-12-01
Composite vascular patches have gained increasingly attention due to the limited availability of autologous patches (vascular graft materials made from the blood vessels of the same recipient), the lack of growth capability of nonautologous patches (vascular graft materials made from the blood vessels of a different donor) and the disadvantages of synthetic patches. In this study, we report a highly biocompatible phosphatidylcholine-polyurethane nanoparticle/polyurethane/decellularized scaffold composite vascular patch (PCVP). It was fabricated by a facile method - cosedimentation. Its in vitro blood and cell compatibility including hemolysis, plasma recalcification time, coagulation time, platelet adhesion and cytotoxicity was evaluated. The surface modified with phosphatidylcholine-polyurethane (PC-PU) nanoparticles exhibited the improved anticoagulation activity. The in vivo performance of the PCVP was investigated in a mouse model. The nanopatterned surface that resembled the concave-convex structure of the luminal surface of native blood vessels enhanced cell attachment, proliferation, migration and differentiation. The decellularized scaffold had the mechanical property similar to that of the targeted blood vessels, which could withstand in vivo dynamic blood pressure. The overall performance of the PCVP was synergistically optimized by each layer of the multilayer design. The patched artery remained patent and the formation of endothelial tissue - endothelialization was achieved 30days after the in vivo implantation in a mouse model. Copyright © 2017 Elsevier B.V. All rights reserved.
Virelli, A; Zironi, I; Pasi, F; Ceccolini, E; Nano, R; Facoetti, A; Gavoçi, E; Fiore, M R; Rocchi, F; Mostacci, D; Cucchi, G; Castellani, G; Sumini, M; Orecchia, R
2015-09-01
A comparative study has been performed on the effects of high-dose-rate (DR) X-ray beams produced by a plasma focus device (PFMA-3), to exploit its potential medical applications (e.g. radiotherapy), and low-DR X-ray beams produced by a conventional source (XRT). Experiments have been performed at 0.5 and 2 Gy doses on a human glioblastoma cell line (T98G). Cell proliferation rate and potassium outward currents (IK) have been investigated by time lapse imaging and patch clamp recordings. The results showed that PFMA-3 irradiation has a greater capability to reduce the proliferation rate activity with respect to XRT, while it does not affect IK of T98G cells at any of the dose levels tested. XRT irradiation significantly reduces the mean IK amplitude of T98G cells only at 0.5 Gy. This work confirms that the DR, and therefore the source of radiation, is crucial for the planning and optimisation of radiotherapy applications. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
The effect of retinal pigment epithelial cell patch size on growth factor expression
Vargis, Elizabeth A.; Peterson, Cristen B.; Morrell-Falvey, Jennifer L.; ...
2014-01-30
The spatial organization of retinal pigment epithelial (RPE) cells grown in culture was controlled using micropatterning techniques in order to examine the effect of patch size on cell health and differentiation. Understanding this effect is a critical step in the development of multiplexed high throughput fluidic assays and provides a model for replicating disease states associated with the deterioration of retinal tissue during age-related macular degeneration (AMD). Microcontact printing of fibronectin on polystyrene and glass substrates was used to promote cell attachment, forming RPE patches of controlled size and shape. These colonies mimic the effect of atrophy and loss-of-function thatmore » occurs in the retina during degenerative diseases such as AMD. After 72 hours of cell growth, levels of vascular endothelial growth factor (VEGF), an important biomarker of AMD, were measured. Cells were counted and morphological indicators of cell viability and tight junction formation were assessed via fluorescence microscopy. As a result, up to a twofold increase of VEGF expression per cell was measured as colony size decreased, suggesting that the local microenvironment of, and connections between, RPE cells influences growth factor expression leading to the initiation and progression of diseases such as AMD.« less
River systems consist of hydrogeomorphic patches (HPs) that emerge at multiple spatiotemporal scales. Functional process zones (FPZs) are HPs that exist at the river valley scae and are important strata for fraing whole-watershed research questions and management plans. Hierarchi...
Samuels, Noah; Saffer, Aron; Wexler, Isaiah D; Oberbaum, Menachem
2012-01-01
Sites of inflammation were identified on subjects with moderate-to-severe chronic periodontitis, and were allocated to either patch placement or untreated controls, both for 24 hours. Conventional treatment with scaling and root planing was postponed during the study period. Inflammation was evaluated measuring neutrophilic activity using gingival crevicular fluid (GCF) beta-glucuronidase (b-glu) levels, and clinical response was evaluated using the gingival index (GI). A total of 26 patients were recruited and 36 sites examined, with 22 sites on which the patch was placed and 14 controls. GCF b-glu levels at 24 hours were reduced following patch placement, significantly more so than with controls (17/22 vs. 3/14 sites, respectively; p = 0.002). The patch placement resulted in a significant reduction in mean b-glu levels (-2.52 +/- 1.62), with a reduction from baseline of 29.7%. This compared to untreated controls, for whom the mean b-glu levels and percent change from baseline increased (2.14 +/- 0.89 and 33%, respectively). At 24 hours, GI response rate for treated sites was better than for control sites (18/21 vs. 7/14; p = 0.053). No adverse events were reported in either group. This pilot study indicates that a topical gingival patch promotes reduction of gingival inflammation. Further clinical testing of this novel treatment of gingival inflammation is warranted.
Targeting of Chitin Synthase 3 to Polarized Growth Sites in Yeast Requires Chs5p and Myo2p
Santos, Beatriz; Snyder, Michael
1997-01-01
Chitin is an essential structural component of the yeast cell wall whose deposition is regulated throughout the yeast life cycle. The temporal and spatial regulation of chitin synthesis was investigated during vegetative growth and mating of Saccharomyces cerevisiae by localization of the putative catalytic subunit of chitin synthase III, Chs3p, and its regulator, Chs5p. Immunolocalization of epitope-tagged Chs3p revealed a novel localization pattern that is cell cycledependent. Chs3p is polarized as a diffuse ring at the incipient bud site and at the neck between the mother and bud in small-budded cells; it is not found at the neck in large-budded cells containing a single nucleus. In large-budded cells undergoing cytokinesis, it reappears as a ring at the neck. In cells responding to mating pheromone, Chs3p is found throughout the projection. The appearance of Chs3p at cortical sites correlates with times that chitin synthesis is expected to occur. In addition to its localization at the incipient bud site and neck, Chs3p is also found in cytoplasmic patches in cells at different stages of the cell cycle. Epitope-tagged Chs5p also localizes to cytoplasmic patches; these patches contain Kex2p, a late Golgi-associated enzyme. Unlike Chs3p, Chs5p does not accumulate at the incipient bud site or neck. Nearly all Chs3p patches contain Chs5p, whereas some Chs5p patches lack detectable Chs3p. In the absence of Chs5p, Chs3p localizes in cytoplasmic patches, but it is no longer found at the neck or the incipient bud site, indicating that Chs5p is required for the polarization of Chs3p. Furthermore, Chs5p localization is not affected either by temperature shift or by the myo2-66 mutation, however, Chs3p polarization is affected by temperature shift and myo2-66. We suggest a model in which Chs3p polarization to cortical sites in yeast is dependent on both Chs5p and the actin cytoskeleton/Myo2p. PMID:9008706