Sample records for convergent plate boundary

  1. Composite transform-convergent plate boundaries: description and discussion

    USGS Publications Warehouse

    Ryan, H.F.; Coleman, P.J.

    1992-01-01

    The leading edge of the overriding plate at an obliquely convergent boundary is commonly sliced by a system of strike-slip faults. This fault system is often structurally complex, and may show correspondingly uneven strain effects, with great vertical and translational shifts of the component blocks of the fault system. The stress pattern and strain effects vary along the length of the system and change through time. These margins are considered to be composite transform-convergent (CTC) plate boundaries. Examples are given of structures formed along three CTC boundaries: the Aleutian Ridge, the Solomon Islands, and the Philippines. The dynamism of the fault system along a CTC boundary can enhance vertical tectonism and basin formation. This concept provides a framework for the evaluation of petroleum resources related to basin formation, and mineral exploration related to igneous activity associated with transtensional processes. ?? 1992.

  2. Crustal gravitational potential energy change at the convergent plate boundary near Taiwan

    NASA Astrophysics Data System (ADS)

    Lo, C.; Hsu, S.

    2003-12-01

    The Taiwan orogen has formed due to the convergence between the Philippine Sea plate and Eurasian plate. Numerous earthquakes are occurring along the active convergent plate boundary in eastern Taiwan. To the northeast, the Philippine Sea plates is subducting northwards beneath the Ryukyu Arc. To the south, the Eurasian plate is subducting eastwards beneath the Luzon Arc. The plate interaction has caused crustal deformation and produced earthquakes. The earthquakes have caused radial permanent displacement of the crust and have altered the crustal gravitational potential energy. Here we use the earthquake source mechanisms, determined by the Broadband Array in Taiwan for Seismology (BATs) from 1995 to 2003, to calculate the crustal gravitational potential energy (GPE) change and discuss their tectonic implication along the convergent plate boundary. In Ilan Plain, the westernmost Okinawa Trough, it shows a crustal GPE loss. It is related to the crustal subsidence because of the backarc extension of the Okinawa Trough. In contrast, due to the Philippine Sea plate subucting northwards beneath Eurasian Plate, the Ryukyu convergent boundary shows systematic crustal GPE gain. Near Taiwan, the crustal GPE change is gained, indicating the collisional convergence of the Luzon Arc. To the south of Taiwan, along the Luzon Arc the crustal GPE is also gain, representing the initial uplifting of the Taiwan mountain belt.

  3. The proximity of hotspots to convergent and divergent plate boundaries

    NASA Technical Reports Server (NTRS)

    Weinstein, Stuart A.; Olson, Peter L.

    1989-01-01

    An analysis of four different hotspot distributions, ranging from Morgan's (1972) original list of 19 to Vogt's (1981) list of 117 reveals that the hotspots are preferentially located near divergent plate boundaries. The probability of this proximity occurring by chance alone is quite remote, less than 0.01 for all four hotspot distributions. The same analysis also reveals that the hotspots are preferentially excluded from regions near convergent plate boundaries. The probability of this exclusion occurring by chance alone is 0.1 or less for three out of the four distributions examined. We interpret this behavior as being a consequence of the effects of large scale convective circulation on ascending mantle plumes. Mantle thermal plumes, the most probable source of hotspots, arise from instabilities in a basal thermal boundary layer. Plumes are suppressed from regions beneath convergent boundaries by descending flow and are entrained into the upwelling flow beneath spreading centers. Plate-scale convective circulation driven by subduction may also advect mantle thermal plumes toward spreading centers.

  4. Tectono-magmatic relationships along an obliquely convergent plate boundary: Sumatra, Indonesia.

    NASA Astrophysics Data System (ADS)

    Acocella, Valerio; Bellier, Olivier

    2017-04-01

    The tectono-magmatic relationships along divergent and orthogonally convergent plate boundaries have been defined in several aspects. However, much less is known along obliquely convergent plate boundaries, where the strain partitioning promotes strike-slip structures along the volcanic arc. Here it is unclear if and, in case, how strike-slip structures may control arc volcanism, in terms of processes, distribution and size. To better define these features, we review the available tectonic, structural and volcanological data on Sumatra (Indonesia), which provides the ideal case study. The Sumatra volcanic arc consists of 48 major active volcanoes. Of these, 46% lie within 10 km from the dextral Great Sumatra Fault (GSF), which carries most of the strike-slip displacement on the overriding plate, whereas 27% of the volcanoes lie at >20 km from the GSF. Considering the volcanoes lying within 10 km from GSF, 76% show some possible structural relation to the GSF, whereas only 28% (7 volcanoes) show a clear structural relation to the GSF, being located in pull-apart or releasing bends between dextral segments. However, these localized areas of extension do not seem to promote the development of magmatic segments, similarly to orthogonally convergent plate boundaries. Many volcanoes lie to the west of the GSF, largely following the shallower portions of the slab, which reaches its average partial melting depth (130±30 km) more westward. There is a preferred volcano alignment and elongation along the N30-N40°E trend, almost parallel to the convergence vector; this trend coincides with the direction of the extensional structures found along the arc. Other volcanoes are elongated parallel to the GSF, possibly resulting from the co- and post-seismic across-arc extension, as observed during the 2004 mega-earthquake. Finally, there is no relationship between the slip rate along GSF and the erupted volumes along the arc: the highest productivity of Toba caldera may be

  5. Locking, mass flux and topographic response at convergent plate boundaries - the Chilean case

    NASA Astrophysics Data System (ADS)

    Oncken, Onno

    2016-04-01

    On the long term, convergent plate boundaries have been shown to be controlled by either accretion/underplating or by subduction erosion. Vertical surface motion is coupled to convergence rate - typically with an uplift rate of the coastal area ranging from 0 to +50% of convergence rate in accretive systems, and -20 to +30% in erosive systems. Vertical kinematics, however, are not necessarily linked to horizontal strain mode, i.e. upper plate shortening or extension, in a simple way. This range of kinematic behaviors - as well as their acceleration where forearcs collide with oceanic ridges/plateau - is well expressed along the Chilean plate margin. Towards the short end of the time scale, deformation appears to exhibit a close correlation with the frictional properties and geodetic locking at the plate interface. Corroborating analogue experiments of strain accumulation during multiple earthquake cycles, forearc deformation and uplift focus above the downdip and updip end of seismic coupling and slip and are each related to a particular stage of the seismic cycle, but with opposite trends for both domains. Similarly, barriers separating locked domains along strike appear to accumulate most upper plate faulting interseismically. Hence, locking patters are reflected in topography. From the long-term memory contained in the forearc topography the relief of the Chilean forearc seems to reflect long term stability of the observed heterogeneity of locking at the plate interface. This has fundamental implications for spatial and temporal distribution of seismic hazard. Finally, the nature of locking at the plate interface controlling the above kinematic behavior appears to be strongly controlled by the degree of fluid overpressuring at the plate interface suggesting that the hydraulic system at the interface takes a key role for the forearc response.

  6. Earthquake-induced gravitational potential energy change at convergent plate boundary near Taiwan

    NASA Astrophysics Data System (ADS)

    Lo, C.; Hsu, S.

    2004-12-01

    The coseismic displacement induced by earthquakes will change the gravitational potential energy (GPE). Okamoto and Tanimoto (2002) have shown that the gain of {Δ GPE} corresponds to the compressional stress regime while the loss of {Δ GPE} corresponds to the extensional stress regime. Here we show an example at a convergent plate boundary near Taiwan. The Philippine Sea Plate is converging against the Eurasian Plate with a velocity of 7-8 cm/yr near Taiwan, which has caused the active Taiwan orogeny and induced abundant earthquakes. We have examined the corresponding change of gravitational potential energy by using 757 earthquakes from the earthquake catalogue of the Broadband Array in Taiwan for Seismology (BATS) from July 1995 to December 2003. The results show that the variation of the crustal Δ GPE strongly correlates with the different stage of the orogenesis. Except for the western Okinawa Trough and the southern Taiwan, most of the Taiwan convergent region exhibits a gain of crustal Δ GPE. In contrast, the lithospheric Δ GPE in the Taiwan region exhibits a reverse pattern. For the whole Taiwan region, the earthquake-induced crustal Δ GPE and the lithospheric Δ GPE during the observation period are 1.03×1017 joules and -1.15×1017 joules, respectively. The average rate of the whole Δ GPE in the Taiwan region is very intense and equal to -2.07×1010 watts, corresponding to about one percent of the global Δ GPE loss induced by earthquakes.

  7. Convergent Plate Boundary Processes in the Archean: Evidence from Greenland

    NASA Astrophysics Data System (ADS)

    Polat, A.

    2014-12-01

    The structural, magmatic and metamorphic characteristics of Archean greenstone belts and associated TTG (tonalite, trondhjemite and granodiorite) gneisses in southern West Greenland are comparable to those of Phanerozoic convergent plate margins, suggesting that Archean continents grew mainly at subduction zones. These greenstone belts are composed mainly of tectonically juxtaposed fragments of oceanic crust including mafic to ultramafic rocks, with minor sedimentary rocks. Volcanic rocks in the greenstone belts are characterized mainly by island arc tholeiitic basalts, picrites, and boninites. The style of deformation and geometry of folds in 10 cm to 5 m wide shear zones are comparable to those occur on 1 to 50 km scale in the greenstone belts and TTG gneisses, suggesting that compressional tectonic processes operating at convergent plate boundaries were the driving force of Archean crustal accretion and growth. Field observations and trace element data suggest that Archean continental crust grew through accretion of mainly island arcs and melting of metamorphosed mafic rocks (amphibolites) in thickened arcs during multiple tectonothermal events. Fold patterns on cm to km scale are consistent with at least three phases of deformation and multiple melting events generating TTG melts that intruded mainly along shear zones in accretionary prism and magmatic arcs. It is suggested that Archean TTGs were produced by three main processes: (1) melting of thickened oceanic island arcs; (2) melting of subducted oceanic crust; and (3) differentiation of basaltic melts originating from metasomatized sub-arc mantle wedge peridotites.

  8. Plate convergence at the westernmost Philippine Sea Plate

    NASA Astrophysics Data System (ADS)

    Wu, Wen-Nan; Hsu, Shu-Kun; Lo, Chung-Liang; Chen, How-Wei; Ma, Kuo-Fong

    2009-03-01

    To understand the convergent characteristics of the westernmost plate boundary between the Philippine Sea Plate (PSP) and Eurasian Plate (EP), we have calculated the stress states of plate motion by focal mechanisms. Cataloged by the Harvard centroid moment tensor solutions (Harvard CMT) and the Broadband Array in Taiwan (BATS) moment tensor, 251 focal mechanisms are used to determine the azimuths of the principal stress axes. We first used all the data to derive the mean stress tensor of the study area. The inversion result shows that the stress regime has a maximum compression along the direction of azimuth N299°. This result is consistent with the general direction of the rigid plate motion between the PSP and EP in the study area. In order to understand the spatial variation of the regional stress pattern, we divided the study area into six sub-areas (blocks A to F) based on the feature of the free-air gravity anomaly. We compare the compressive directions obtained from the stress inversion with the plate motions calculated by the Euler pole and the Global Positioning System (GPS) analysis. As a result, the azimuth of the maximum stress axis, σ1, generally agrees with the directions of the theoretical plate motion and GPS velocity vectors except block C (Lanhsu region) and block F (Ilan plain region). The discrepancy of convergent direction near the Ilan plain region is probably caused by the rifting of the Okinawa Trough. The deviation of the σ1 azimuth in the Lanhsu region could be attributed to a southwestward extrusion of the Luzon Arc (LA) block between 21°N and 22°N whose northern boundary may be associated with the right-lateral NE-SW trending fault (i.e. Huatung Fault, HF) along the Taitung Canyon. Comparing the σ1 stress patterns between block C and block D, great strain energy along HF may not be completely released yet. Alternatively, the upper crust of block C may significantly have decoupled from its lower crust or uppermost mantle.

  9. An updated digital model of plate boundaries

    NASA Astrophysics Data System (ADS)

    Bird, Peter

    2003-03-01

    A global set of present plate boundaries on the Earth is presented in digital form. Most come from sources in the literature. A few boundaries are newly interpreted from topography, volcanism, and/or seismicity, taking into account relative plate velocities from magnetic anomalies, moment tensor solutions, and/or geodesy. In addition to the 14 large plates whose motion was described by the NUVEL-1A poles (Africa, Antarctica, Arabia, Australia, Caribbean, Cocos, Eurasia, India, Juan de Fuca, Nazca, North America, Pacific, Philippine Sea, South America), model PB2002 includes 38 small plates (Okhotsk, Amur, Yangtze, Okinawa, Sunda, Burma, Molucca Sea, Banda Sea, Timor, Birds Head, Maoke, Caroline, Mariana, North Bismarck, Manus, South Bismarck, Solomon Sea, Woodlark, New Hebrides, Conway Reef, Balmoral Reef, Futuna, Niuafo'ou, Tonga, Kermadec, Rivera, Galapagos, Easter, Juan Fernandez, Panama, North Andes, Altiplano, Shetland, Scotia, Sandwich, Aegean Sea, Anatolia, Somalia), for a total of 52 plates. No attempt is made to divide the Alps-Persia-Tibet mountain belt, the Philippine Islands, the Peruvian Andes, the Sierras Pampeanas, or the California-Nevada zone of dextral transtension into plates; instead, they are designated as "orogens" in which this plate model is not expected to be accurate. The cumulative-number/area distribution for this model follows a power law for plates with areas between 0.002 and 1 steradian. Departure from this scaling at the small-plate end suggests that future work is very likely to define more very small plates within the orogens. The model is presented in four digital files: a set of plate boundary segments; a set of plate outlines; a set of outlines of the orogens; and a table of characteristics of each digitization step along plate boundaries, including estimated relative velocity vector and classification into one of 7 types (continental convergence zone, continental transform fault, continental rift, oceanic spreading ridge

  10. Weak tectono-magmatic relationships along an obliquely convergent plate boundary: Sumatra, Indonesia

    NASA Astrophysics Data System (ADS)

    Acocella, Valerio; Bellier, Olivier; Sandri, Laura; Sébrier, Michel; Pramumijoyo, Subagyo

    2018-02-01

    The tectono-magmatic relationships along obliquely convergent plate boundaries, where strain partitioning promotes strike-slip structures along the volcanic arc, are poorly known. Here it is unclear if and, in case, how the strike-slip structures control volcanic processes, distribution and size. To better define the possible tectono-magmatic relationships along strike-slip arcs, we merge available information on the case study of Sumatra (Indonesia) with field structural data. The Sumatra arc (entire volcanic belt) consists of 48 active volcanoes. Of these, 46% lie within 10 km from the dextral Great Sumatra Fault (GSF), which carries most horizontal displacement on the overriding plate, whereas 27% lie at >20 km from the GSF. Among the volcanoes at <10 km from GSF, 48% show a possible structural relation to the GSF, whereas only 28% show a clear structural relation, lying in pull-aparts or releasing bends; these localized areas of transtension (local extensional zone) do not develop magmatic segments. There is no relation between the GSF along-strike slip rate variations and the volcanic productivity. The preferred N30°-N40°E volcano alignment and elongation are subparallel to the convergence vector or to the GSF. The structural field data, collected in the central and southern GSF, show, in addition to the dextral motions along NW-SE to N-S striking faults, also normal motions (extending WNW-ESE or NE-SW), suggesting local reactivations of the GSF. Overall, the collected data suggest a limited tectonic control on arc volcanism. The tectonic control is mostly expressed by the mean depth of the slab surface below the volcanoes (130±20 km) and, subordinately, local extension along the GSF. The latter, when WNW-ESE oriented (more common), may be associated with the overall tectonic convergence, as suggested by the structural data; conversely, when NE-SW oriented (less common), the extension may result from co- and post-seismic arc normal extension, as supported

  11. Origin of methane-rich natural gas at the West Pacific convergent plate boundary.

    PubMed

    Sano, Yuji; Kinoshita, Naoya; Kagoshima, Takanori; Takahata, Naoto; Sakata, Susumu; Toki, Tomohiro; Kawagucci, Shinsuke; Waseda, Amane; Lan, Tefang; Wen, Hsinyi; Chen, Ai-Ti; Lee, Hsiaofen; Yang, Tsanyao F; Zheng, Guodong; Tomonaga, Yama; Roulleau, Emilie; Pinti, Daniele L

    2017-11-15

    Methane emission from the geosphere is generally characterized by a radiocarbon-free signature and might preserve information on the deep carbon cycle on Earth. Here we report a clear relationship between the origin of methane-rich natural gases and the geodynamic setting of the West Pacific convergent plate boundary. Natural gases in the frontal arc basin (South Kanto gas fields, Northeast Japan) show a typical microbial signature with light carbon isotopes, high CH 4 /C 2 H 6 and CH 4 / 3 He ratios. In the Akita-Niigata region - which corresponds to the slope stretching from the volcanic-arc to the back-arc -a thermogenic signature characterize the gases, with prevalence of heavy carbon isotopes, low CH 4 /C 2 H 6 and CH 4 / 3 He ratios. Natural gases from mud volcanoes in South Taiwan at the collision zone show heavy carbon isotopes, middle CH 4 /C 2 H 6 ratios and low CH 4 / 3 He ratios. On the other hand, those from the Tokara Islands situated on the volcanic front of Southwest Japan show the heaviest carbon isotopes, middle CH 4 /C 2 H 6 ratios and the lowest CH 4 / 3 He ratios. The observed geochemical signatures of natural gases are clearly explained by a mixing of microbial, thermogenic and abiotic methane. An increasing contribution of abiotic methane towards more tectonically active regions of the plate boundary is suggested.

  12. Plate convergence and deformation, North Luzon Ridge, Philippines

    NASA Astrophysics Data System (ADS)

    Lewis, Stephen D.; Hayes, Dennis E.

    1989-10-01

    Marine geophysical and earthquake seismology data indicate that the North Luzon Ridge, a volcano-capped bathymetrie ridge system that extends between Luzon and Taiwan, is presently undergoing deformation in response to the relative motion between the Asian and Philippine Sea plates. Plate motion models predict convergence along the western side of the Philippine Sea plate, from Japan in the north to Indonesia in the south, and most of this plate margin is defined by active subduction zones. However, the western boundary of the Philippine Sea plate adjacent to the North Luzon Ridge shows no evidence of an active WNW-dipping subduction zone; this is in marked contrast to the presence of both the Philippine Trench/East Luzon Trough subduction zones to the south and the Ryukyu Trench subduction zone to the north. Crustal shortening, in response to ongoing plate convergence in the North Luzon Ridge region, apparently takes place through a complex pattern of strike-slip and thrust faulting, rather than by the typical subduction of oceanic lithosphere along a discreet zone. The curvilinear bathymetrie trends within the North Luzon Ridge represent the traces of active faults. The distribution of these faults, mapped by both multichannel and single-channel seismic reflection methods and earthquake seismicity patterns and focal mechanism solutions, suggest that right-lateral, oblique-slip faulting occurs along NE-trending faults, and left-lateral, oblique-slip faulting takes place on N- and NNW-trending faults. The relative plate convergence accommodated by the deformation of the North Luzon Ridge will probably be taken up in the future by the northward-propagating East Luzon Trough subduction zone.

  13. Cenozoic forearc tectonics in northeastern Japan: Relationships between outer forearc subsidence and plate boundary kinematics

    NASA Astrophysics Data System (ADS)

    Regalla, Christine

    Here we investigate the relationships between outer forearc subsidence, the timing and kinematics of upper plate deformation and plate convergence rate in Northeast Japan to evaluate the role of plate boundary dynamics in driving forearc subsidence. The Northeastern Japan margin is one of the first non-accretionary subduction zones where regional forearc subsidence was argued to reflect tectonic erosion of large volumes of upper crustal rocks. However, we propose that a significant component of forearc subsidence could be the result of dynamic changes in plate boundary geometry. We provide new constraints on the timing and kinematics of deformation along inner forearc faults, new analyses of the evolution of outer forearc tectonic subsidence, and updated calculations of plate convergence rate. These data collectively reveal a temporal correlation between the onset of regional forearc subsidence, the initiation of upper plate extension, and an acceleration in local plate convergence rate. A similar analysis of the kinematic evolution of the Tonga, Izu-Bonin, and Mariana subduction zones indicates that the temporal correlations observed in Japan are also characteristic of these three non-accretionary margins. Comparison of these data with published geodynamic models suggests that forearc subsidence is the result of temporal variability in slab geometry due to changes in slab buoyancy and plate convergence rate. These observations suggest that a significant component of forearc subsidence at these four margins is not the product of tectonic erosion, but instead reflects changes in plate boundary dynamics driven by variable plate kinematics.

  14. Simulating faults and plate boundaries with a transversely isotropic plasticity model

    NASA Astrophysics Data System (ADS)

    Sharples, W.; Moresi, L. N.; Velic, M.; Jadamec, M. A.; May, D. A.

    2016-03-01

    In mantle convection simulations, dynamically evolving plate boundaries have, for the most part, been represented using an visco-plastic flow law. These systems develop fine-scale, localized, weak shear band structures which are reminiscent of faults but it is a significant challenge to resolve the large- and the emergent, small-scale-behavior. We address this issue of resolution by taking into account the observation that a rock element with embedded, planar, failure surfaces responds as a non-linear, transversely isotropic material with a weak orientation defined by the plane of the failure surface. This approach partly accounts for the large-scale behavior of fine-scale systems of shear bands which we are not in a position to resolve explicitly. We evaluate the capacity of this continuum approach to model plate boundaries, specifically in the context of subduction models where the plate boundary interface has often been represented as a planar discontinuity. We show that the inclusion of the transversely isotropic plasticity model for the plate boundary promotes asymmetric subduction from initiation. A realistic evolution of the plate boundary interface and associated stresses is crucial to understanding inter-plate coupling, convergent margin driven topography, and earthquakes.

  15. A Plate Tectonic Model for the Neoproterozoic with Evolving Plate Boundaries

    NASA Astrophysics Data System (ADS)

    Merdith, Andrew; Collins, Alan; Williams, Simon; Pisarevsky, Sergei; Müller, Dietmar

    2017-04-01

    The Neoproterozoic was dominated by the formation of the supercontinent Rodinia, its break-up and the subsequent amalgamation of Gondwana, during which, the planet experienced large climatic variations and the emergence of complex life. Here we present a topological plate model of the Neoproterozoic based on a synthesis of available geological and palaeomagnetic data. Subduction zones, which are well preserved in the geological record, are used as a proxy for convergent margins; evidence for mid-ocean ridges and transform motion is less clearly preserved, though passive margins are used as a proxy for spreading centres, and evidence for strike-slip motions are used to model transform boundaries. We find that the model presented here only predicts 70% of the total length of subduction active today, though it models similar lengths of both transform and divergent boundaries, suggesting that we have produced a conservative model and are probably underestimating the amount of subduction. Where evidence for convergent, divergent or transform motion is not preserved, we interpret the locations of plate boundaries based on the relative motions of cratonic crust as suggested through either palaeomagnetic data or the geological record. Using GPlates, we tie these boundaries together to generate a plate model that depicts the motion of tectonic plates through the Neoproterozoic. We omit India and South China from Rodinia completely, due to long-lived subduction preserved on margins of India and conflicting palaeomagnetic data for the Cryogenian, but tie them together due to similar Tonian aged accretionary patterns along their respective (present-day) north-western and northern margins, such that these two cratons act as a "lonely wanderer" for much of the Neoproterozoic, and form their own tectonic plate. We also introduce a Tonian-Cryogenian aged rotation of the Congo-São Francisco Craton relative to Rodinia to better fit palaeomagnetic data and account for thick passive

  16. Uplift of Zagros Mountains slows plate convergence

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2013-05-01

    Research has indicated that mountain ranges can slow down the convergence between two tectonic plates on timescales as short as a few million years, as the growing mountains provide enough tectonic force to impact plate motions. Focusing on the convergence of the Arabian and Eurasian plates at the Zagros mountain range, which runs across Iran and Iraq, Austermann and Iaffaldano reconstructed the relative motion of the plates using published paleomagnetic data covering the past 13 million years, as well as current geodetic measurements. They show that the convergence of the two plates has decreased by about 30% over the past 5 million years. Looking at the geological record to infer past topography and using a computer model of the mantle-lithosphere system, the authors examined whether the recent uplift across the Zagros Mountains could have caused the observed slowdown. They also considered several other geological events that might have influenced the convergence rate, but the authors were able to rule those out as dominant controls. The authors conclude that the uplift across the Zagros Mountains in the past 5 million years did indeed play a key role in slowing down the convergence between the Eurasian and Arabian plates. (Tectonics, doi:10.1002/tect.20027, 2013)

  17. Deformation of the Pacific/North America plate boundary at Queen Charlotte Fault: The possible role of rheology

    USGS Publications Warehouse

    ten Brink, Uri S.; Miller, Nathaniel; Andrews, Brian; Brothers, Daniel; Haeussler, Peter J.

    2018-01-01

    The Pacific/North America (PA/NA) plate boundary between Vancouver Island and Alaska is similar to the PA/NA boundary in California in its kinematic history and the rate and azimuth of current relative motion, yet their deformation styles are distinct. The California plate boundary shows a broad zone of parallel strike slip and thrust faults and folds, whereas the 49‐mm/yr PA/NA relative plate motion in Canada and Alaska is centered on a single, narrow, continuous ~900‐km‐long fault, the Queen Charlotte Fault (QCF). Using gravity analysis, we propose that this plate boundary is centered on the continent/ocean boundary (COB), an unusual location for continental transform faults because plate boundaries typically localize within the continental lithosphere, which is weaker. Because the COB is a boundary between materials of contrasting elastic properties, once a fault is established there, it will probably remain stable. We propose that deformation progressively shifted to the COB in the wake of Yakutat terrane's northward motion along the margin. Minor convergence across the plate boundary is probably accommodated by fault reactivation on Pacific crust and by an eastward dipping QCF. Underthrusting of Pacific slab under Haida Gwaii occurs at convergence angles >14°–15° and may have been responsible for the emergence of the archipelago. The calculated slab entry dip (5°–8°) suggests that the slab probably does not extend into the asthenosphere. The PA/NA plate boundary at the QCF can serve as a structurally simple site to investigate the impact of rheology and composition on crustal deformation and the initiation of slab underthrusting.

  18. Tracking the India-Arabia Transform Plate Boundary during Paleogene Times.

    NASA Astrophysics Data System (ADS)

    Rodriguez, M.; Huchon, P.; Chamot-Rooke, N. R. A.; Fournier, M.; Delescluse, M.

    2014-12-01

    The Zagros and Himalaya mountain belts are the most prominent reliefs built by continental collision. They respectively result from Arabia and India collision with Eurasia. Convergence motions at mountain belts induced most of plate reorganization events in the Indian Ocean during the Cenozoic. Although critical for paleogeographic reconstructions, the way relative motion between Arabia and India was accommodated prior to the formation of the Sheba ridge in the Gulf of Aden remains poorly understood. The India-Arabia plate-boundary belongs to the category of long-lived (~90-Ma) oceanic transform faults, thus providing a good case study to investigate the role of major kinematic events over the structural evolution of a long-lived transform system. A seismic dataset crossing the Owen Fracture Zone, the Owen Basin, and the Oman Margin was acquired to track the past locations of the India-Arabia plate boundary. We highlight the composite age of the Owen Basin basement, made of Paleocene oceanic crust drilled on its eastern part, and composed of pre-Maastrichtian continental crust overlaid by Early Paleocene ophiolites on its western side. A major transform fault system crossing the Owen Basin juxtaposed these two slivers of lithosphere of different ages, and controlled the uplift of marginal ridges along the Oman Margin. This transform system deactivated ~40 Ma ago, coeval with the onset of ultra-slow spreading at the Carlsberg Ridge. The transform boundary then jumped to the edge of the present-day Owen Ridge during the Late Eocene-Oligocene period, before seafloor spreading began at the Sheba Ridge. This migration of the plate boundary involved the transfer of a part of the Indian oceanic lithosphere accreted at the Carlsberg Ridge to the Arabian plate. The episode of plate transfer at the India-Arabia plate boundary during the Late Eocene-Oligocene interval is synchronous with a global plate reorganization event corresponding to geological events at the Zagros and

  19. Attractors for non-dissipative irrotational von Karman plates with boundary damping

    NASA Astrophysics Data System (ADS)

    Bociu, Lorena; Toundykov, Daniel

    Long-time behavior of solutions to a von Karman plate equation is considered. The system has an unrestricted first-order perturbation and a nonlinear damping acting through free boundary conditions only. This model differs from those previously considered (e.g. in the extensive treatise (Chueshov and Lasiecka, 2010 [11])) because the semi-flow may be of a non-gradient type: the unique continuation property is not known to hold, and there is no strict Lyapunov function on the natural finite-energy space. Consequently, global bounds on the energy, let alone the existence of an absorbing ball, cannot be a priori inferred. Moreover, the free boundary conditions are not recognized by weak solutions and some helpful estimates available for clamped, hinged or simply-supported plates cannot be invoked. It is shown that this non-monotone flow can converge to a global compact attractor with the help of viscous boundary damping and appropriately structured restoring forces acting only on the boundary or its collar.

  20. Plate tectonics beyond plate boundaries: the role of ancient structures in intraplate orogenesis

    NASA Astrophysics Data System (ADS)

    Heron, Philip; Pysklywec, Russell; Stephenson, Randell

    2015-04-01

    The development of orogens that occur at a distance from plate boundaries (i.e., `intraplate' deformation) cannot be adequately explained through conventional plate tectonic theory. Intraplate deformation infers a more complex argument for lithospheric and mantle interaction than plate tectonic theory allows. As a result, the origins of intraplate orogenesis are enigmatic. One hypothesis is the amalgamation of continental material (i.e., micro-plates) leaves inherent scars on the crust and mantle lithosphere. Previous studies into continent-continent collisions identify a number of scenarios from accretionary tectonics that affect the crust and mantle (namely, the development of a Rayleigh-Taylor instability, lithospheric underplating, lithospheric delamination, and lithospheric subduction). Any of these processes may weaken the lithosphere allowing episodic reactivation of faults within continental interiors. Hence, continental convergence (i.e., shortening) at a time after continental collision may cause the already weakened crust and mantle lithosphere to produce intraplate deformation. In order to better understand the processes involved in deformation away from plate boundaries, we present suites of continental shortening models (using the high-resolution thermal-mechanical modelling code SOPALE) to identify the preferred style of deformation. We model ancient structures by applying weak subduction scarring, changing the rheological conditions, and modifying the thermal structure within the lithosphere. To highlight the role of surface processes on plate and lithosphere deformation, the effect of climate-driven erosion and deposition on the tectonic structure of intraplate deformation is also addressed. We explore the relevance of the models to previously studied regions of intraplate orogenesis, including the Pyrenees in Europe, the Laramide orogen in North America, Tien Shan orogen in Central Asia, and Central Australia. The findings of the simulations with

  1. Slab dragging and the recent geodynamic evolution of the western Mediterranean plate boundary region

    NASA Astrophysics Data System (ADS)

    Spakman, Wim; Chertova, Maria V.; van den Berg, Arie P.; Thieulot, Cedric; van Hinsbergen, Douwe J. J.

    2016-04-01

    The Tortonian-Present geodynamic evolution of the plate boundary between North Africa and Iberia is characterized by first-order enigmas. This concerns, e.g., the diffuse tectonic activity of the plate boundary; the crustal thickening below the Rif; the closing of the northern Moroccan marine gateways prior to the Messinian Salinity Crisis; crustal extension of the central to eastern Betics; the origin and sense of motion of the large left-lateral Trans Alboran Shear Zone (TASZ) and Eastern Betic Shear Zone (EBSZ); and lithosphere delamination of the North African continental edge. Many explanations have been given for each of these seemingly disparate tectonic features, which invariably have been addressed in the plate tectonic context of the NW-SE relative plate convergence between the major plates since the Tortonian, mostly independently from each other. Usually there is no clear role for the subducted slab underlying the region, except for presumed rollback, either to SW or to the W, depending on the type of observations that require explanation. Here we integrate the dynamic role of the slab with the NW-SE relative plate convergence by 3-D numerical modelling of the slab evolution constrained by absolute plate motions (Chertova et al., JGR,2014 & Gcubed 2014). By combining observations and predictions from seismology, geology, and geodesy, with our numerical 3-D slab-mantle dynamics modelling, we developed a new and promising geodynamic framework that provides explanations of all noted tectonic enigmas in a coherent and connected way. From the Tortonian until today, we propose that mantle-resisted slab dragging combines with the NW-SE plate convergence across the (largely) unbroken plate boundary to drive the crustal deformation of the region. Slab dragging is the lateral transport, pushing or pulling, of slab through the mantle by the absolute motion of the subducting plate (Chertova et al., Gcubed, 2014). Because the slab is connected to both the Iberian

  2. Initiation of the Pyrenean plate boundary fault and its effect on the near- and far-field deformation of the European plate

    NASA Astrophysics Data System (ADS)

    Dielforder, Armin; Frasca, Gianluca; Ford, Mary

    2017-04-01

    The European plate was affected by contractional deformation events in Late Cretaceous time. This is recorded by inception of thrusting and foreland basin subsidence in the Pyrenean realm, and inversion of Mesozoic rift systems in the interior of the European plate. It is widely accepted that the plate-wide deformation resulted from the onset of NE-directed convergence of Africa-Iberia relative to Europe, and a strong mechanical coupling of the plates, which allowed the transfer of stresses far into Europe. Geological data from both the Pyrenean orogen and the interior of the European plate indicate, however, that these conditions persisted only for 15-20 Myr and that Europe experienced a plate-wide stress relaxation during Paleocene time. Although a slow down in plate convergence between Africa and Europe and North Atlantic continental rifting were proposed as potential causes for the stress relaxation, the subject has remained controversial. In particular, none of the mechanisms seem to be suitable to explain the required changes in the mechanical coupling of Iberian and European plates and the associated stress transfer. Here we propose a new model for the Upper Cretaceous to Paleocene tectonic evolution of the European plate, which takes the temporal evolution of the Pyrenean plate boundary fault into account. Based on plate reconstructions, geological field-data, and restored cross-sections we argue that the plate boundary fault initiated during the Upper Cretaceous within the exhumed mantle domain situated between the rifted margins of the Iberian and European plates. At the transition from the Late Cretaceous to Paleocene, the mantle domain was closed and the rifted margins collided. This evolution was associated with a substantial change in the fault rheology leading to an overall decrease in the plate coupling force. During Paleocene time, the plate coupling force was efficiently balanced by the gravitational push of the European plate, leading to a near

  3. Spatio-temporal mapping of plate boundary faults in California using geodetic imaging

    USGS Publications Warehouse

    Donnellan, Andrea; Arrowsmith, Ramon; DeLong, Stephen B.

    2017-01-01

    The Pacific–North American plate boundary in California is composed of a 400-km-wide network of faults and zones of distributed deformation. Earthquakes, even large ones, can occur along individual or combinations of faults within the larger plate boundary system. While research often focuses on the primary and secondary faults, holistic study of the plate boundary is required to answer several fundamental questions. How do plate boundary motions partition across California faults? How do faults within the plate boundary interact during earthquakes? What fraction of strain accumulation is relieved aseismically and does this provide limits on fault rupture propagation? Geodetic imaging, broadly defined as measurement of crustal deformation and topography of the Earth’s surface, enables assessment of topographic characteristics and the spatio-temporal behavior of the Earth’s crust. We focus here on crustal deformation observed with continuous Global Positioning System (GPS) data and Interferometric Synthetic Aperture Radar (InSAR) from NASA’s airborne UAVSAR platform, and on high-resolution topography acquired from lidar and Structure from Motion (SfM) methods. Combined, these measurements are used to identify active structures, past ruptures, transient motions, and distribution of deformation. The observations inform estimates of the mechanical and geometric properties of faults. We discuss five areas in California as examples of different fault behavior, fault maturity and times within the earthquake cycle: the M6.0 2014 South Napa earthquake rupture, the San Jacinto fault, the creeping and locked Carrizo sections of the San Andreas fault, the Landers rupture in the Eastern California Shear Zone, and the convergence of the Eastern California Shear Zone and San Andreas fault in southern California. These examples indicate that distribution of crustal deformation can be measured using interferometric synthetic aperture radar (InSAR), Global Navigation

  4. Prototypical Concepts and Misconceptions of Plate Tectonic Boundaries

    NASA Astrophysics Data System (ADS)

    Sibley, D. F.; Patino, L. C.

    2003-12-01

    Students of geology encounter many prototypical/exemplar concepts* that include representative, but not necessarily defining, features and characteristics. This study of students' prototypical representations of plate tectonic boundaries indicates that their representations are rich sources of information about their misconceptions about plate tectonics. After lectures in plate tectonics and mountain building, 353 students in a general education geology class were asked to draw a continent-continent convergent boundary. For this study, a correct answer is defined as having the major features in correct proportions as depicted in the plate boundary diagrams on the USGS web. Fifty-two percent of the drawings were either incorrect or incomplete such that they could not be interpreted. Only 48% were readily interpretable, and of these 22% drew the boundary correctly, showing a thickening of crust where two continents collide. Thirty-three percent drew the boundary showing concave slabs of continental crust as one might imagine two pieces of firm rubber pushed together on a rigid surface and 45% depicted mountains as one might imagine inverted ice cream cones on a rigid plank. Twenty-one senior class geology majors and graduate students were given the same assignment. Forty-eight percent rendered a correct drawing, whereas 38% drew the same ice cream cone on a plank type picture that 45% of the general education students drew. In a second class of 12 geology majors, only 1 student drew a cross section of a continent-ocean boundary similar to standard representation. Four of 12 drew mountains on the top of continental crust over a subduction zone but did not draw a compensating mass within the crust or lithosphere. Prototypical drawings provide more information about students' concepts than do most multiple-choice questions. For example, sixty-two percent of theses students who drew mountains similar to foam rubber pads pushed together on a desk or ice cream cones on a

  5. 3D Thermal/Mechanical Evolution Of The Plate Boundary Corner In SE Alaska

    NASA Astrophysics Data System (ADS)

    Barker, A.; Koons, P.; Upton, P.; Pavlis, T.; Chapman, J.

    2007-12-01

    The St Elias orogen of southeast Alaska forms part of an actively deforming plate boundary corner. The corner accommodates the transition from a strike-slip lateral boundary to a convergent normal boundary. Oblique convergence of the Yakutat microplate into the corner generates early stage tectonic characteristics associated with other corner systems (e.g. Himalayan Eastern Syntaxis). In combination with the high relief, the extreme erosive processes of the region redistribute crustal material, partition tectonic strain, and influence the advection of deep crustal material. The evolution of the convergent corner is investigated using 3D numerical models and sandbox analog models. Preliminary model results indicate the deformation partitions into a narrow two-sided orogen along the lateral boundary. The pattern transitions into a wider zone of shortening bounded by inboard and outboard directed thrusts along the frontal boundary. The inclusion of erosion boundary conditions leads to nascent tectonic aneurysm behavior, involving increased strain localization and focused vertical advection of deep crustal material. Thermal models, using the 3D velocity field from these mechanical solutions, show a vertical deflection (towards the surface) of isotherms beneath the eroding region. Sensitivity of the aneurysm behavior is related to the efficiency of the imposed erosion rate (i.e. greater erosion rates led to greater bedrock uplift rates). Higher erosion rates are localized within zones containing major glacier systems in SE Alaska: Bering Glacier, Bagley Icefield, Malaspina Glacier, and Seward Glacier. Combined thermal/mechanical solutions identify the glacier valleys as rheological weakspots, defined by localized strain and differential advection of deep crustal material.

  6. Crustal deformation and volcanism at active plate boundaries

    NASA Astrophysics Data System (ADS)

    Geirsson, Halldor

    Most of Earth's volcanoes are located near active tectonic plate boundaries, where the tectonic plates move relative to each other resulting in deformation. Likewise, subsurface magma movement and pressure changes in magmatic systems can cause measurable deformation of the Earth's surface. The study of the shape of Earth and therefore studies of surface deformation is called geodesy. Modern geodetic techniques allow precise measurements (˜1 mm accuracy) of deformation of tectonic and magmatic systems. Because of the spatial correlation between tectonic boundaries and volcanism, the tectonic and volcanic deformation signals can become intertwined. Thus it is often important to study both tectonic and volcanic deformation processes simultaneously, when one is trying to study one of the systems individually. In this thesis, I present research on crustal deformation and magmatic processes at active plate boundaries. The study areas cover divergent and transform plate boundaries in south Iceland and convergent and transform plate boundaries in Central America, specifically Nicaragua and El Salvador. The study is composed of four main chapters: two of the chapters focus on the magma plumbing system of Hekla volcano, Iceland and the plate boundary in south Iceland; one chapter focuses on shallow controls of explosive volcanism at Telica volcano, Nicaragua; and the fourth chapter focuses on co- and post-seismic deformation from a Mw = 7.3 earthquake which occurred offshore El Salvador in 2012. Hekla volcano is located at the intersection of a transform zone and a rift zone in Iceland and thus is affected by a combination of shear and extensional strains, in addition to co-seismic and co-rifting deformation. The inter-eruptive deformation signal from Hekla is subtle, as observed by a decade (2000-2010) of GPS data in south Iceland. A simultaneous inversion of this data for parameters describing the geometry and source characteristics of the magma chamber at Hekla, and

  7. Iberian plate kinematics: A jumping plate boundary between Eurasia and Africa

    USGS Publications Warehouse

    Srivastava, S.P.; Schouten, Hans; Roest, W.R.; Klitgord, Kim D.; Kovacs, L.C.; Verhoef, J.; Macnab, R.

    1990-01-01

    THE rotation of Iberia and its relation to the formation of the Pyrenees has been difficult to decipher because of the lack of detailed sea-floor spreading data, although several models have been proposed1-7. Here we use detailed aeromagnetic measurements from the sea floor offshore of the Grand Banks of Newfoundland to show that Iberia moved as part of the African plate from late Cretaceous to mid-Eocene time, with a plate boundary extending westward from the Bay of Biscay. When motion along this boundary ceased, a boundary linking extension in the King's Trough to compression along the Pyrenees came into existence. Finally, since the late Oligocene, Iberia has been part of the Eurasian plate, with the boundary between Eurasia and Africa situated along the Azores-Gibraltar fracture zone.

  8. Inherited segmentation of the Iberian-African margins and tectonic reconstruction of a diffuse plate boundary.

    NASA Astrophysics Data System (ADS)

    Fernàndez, Manel; Torne, Montserrat; Vergés, Jaume; Casciello, Emilio

    2016-04-01

    Diffuse plate-boundary regions are characterized by non-well defined contacts between tectonic plates thus making difficult their reconstruction through time. The Western Mediterranean is one of these regions, where the convergence between the African and Iberian plates since Late Cretaceous resulted in the Betic-Rif arcuate orogen, the Gulf of Cadiz imbricate wedge, and the Alboran back-arc basin. Whereas the Iberia-Africa plate boundary is well defined west to the Gorringe Bank and along the Gloria Fault, it becomes much more diffuse eastwards with seismicity spreading over both the south-Iberian and north-African margins. Gravity data, when filtered for short wavelengths, show conspicuous positive Bouguer anomalies associated with the Gorringe Bank, the Gulf of Cadiz High and the Ronda/Beni-Bousera peridotitic massifs reflecting an inherited Jurassic margin segmentation. The subsequent Alpine convergence between Africa and Iberia reactivated these domains, producing crustal-scale thrusting in the Atlantic segments and eventually subduction in the proto-Mediterranean segments. The Jurassic segmentation of the Iberia-Africa margins substantiates the double-polarity subduction model proposed for the region characterized by a change from SE-dipping polarity in the Gorringe, Gulf of Cadiz and Betic-Rif domains, to NW-dipping polarity in the proto-Algerian domain. Therefore, the Algerian and Tyrrhenian basins in the east and the Alboran basin in the west are the result of SSE-E and NW-W retreating slabs of oceanic and/or hyper-extended Tethyan domains, respectively.

  9. Earthquakes along the Azores-Iberia plate boundary revisited

    NASA Astrophysics Data System (ADS)

    Batlló, Josep; Matos, Catarina; Torres, Ricardo; Cruz, Jorge; Custódio, Susana

    2017-04-01

    The plate boundary that separates the Eurasian and African plates between the Azores triple junction and Gibraltar has unleashed some of the highest magnitude earthquakes in Europe in the historical and instrumental periods, including the 1755 great Lisbon earthquake with an estimated magnitude of M8.5-8.7, a M8.3 earthquake in 1941 in a transform oceanic fault, a M8.1 fault in 1975 in an oceanic intraplate domain, and a M7.9 earthquake in 1969 offshore SW Portugal. The plate boundary evolves from a divergent boundary in the east - the Azores domain - through a strike-slip domain at the center - the Gloria fault domain - to an oblique convergence domain in the west - west Iberia and its oceanic margin. A proper mapping of the seismicity along this plate boundary is key to better understanding it. Prior to the early eighties, many earthquakes with epicentre in the Atlantic and even in mainland Portugal were undetected or not located instrumentally. However knowledge of the occurrence and location of earthquakes prior to this period is critical to understanding the seismicity of the region and for the assessment of seismic hazard and risk. The relocation of events recorded instrumentally until 1960 is particularly difficult due to the poor sensitivity of the seismographs, few available stations, incompleteness of the reports and lack of accuracy of station chronometers. Thus, different catalogues often provide different locations for the same event, with no information about how they were obtained. On the other hand, there are also conspicuous gaps in the instrumental records of some Portuguese stations. For many earthquakes of the studied period records rely solely on felt effects. In general, a good control on the accuracy or quality of epicenters lacks. Here we present a review of the locations of instrumental earthquakes of the Azores-west Iberia region in the period 1900-1960. In total, we reviewed around 350 earthquakes. More than 160 additional events have

  10. Oblique collision and accretion of the Netherlands Leeward Antilles island arc: A structural analysis of the Caribbean-South American plate boundary zone

    NASA Astrophysics Data System (ADS)

    Beardsley, Amanda Gail

    2007-12-01

    The Netherlands Leeward Antilles volcanic island arc is an ideal natural laboratory to study the evolution of the Caribbean-South American plate boundary. The Leeward Antilles islands (Aruba, Curacao, and Bonaire) are located offshore western Venezuela, within the obliquely convergent diffuse plate boundary zone. Outcrop analysis, microthermometry, and 2D marine seismic reflection data provide evidence of three generations of regional deformation since the Late Cretaceous. Outcrop analysis of structural features, including faults, joints, and veins, characterizes the kinematic history of the islands. Fluid inclusion analysis of quartz and calcite veins coupled with apatite fission-track dating provides the island exhumation history. Finally, marine reflection seismic data processing and interpretation of newly acquired data elucidates offshore structures to integrate with our onshore results. The oldest regional deformation, resulting in both ductile (D1) and brittle (F 1) structures, is attributed to displacement partitioning along the arcuate Caribbean plate boundary. Associated crustal thinning initiated island exhumation, at a rate of 0.18 km/my, from a maximum burial depth of 6 km in the Late Cretaceous (˜89 Ma). Coeval with D1/F1 deformation and exhumation, stretching of the island arc resulted in extensive basin rifting that separated the island blocks. At ˜55 Ma, a change in the relative motion of the Caribbean plate altered plate boundary dynamics. Displacement along the right-lateral Caribbean transform fault and Oca - San Sebastian - El Pilar strike-slip fault system created a wrench tectonic regime within the diffuse plate boundary zone. A second generation of brittle structures (F2) developed while the islands were at a maximum burial depth of 2 km during the Paleocene/Eocene. Since ˜45 Ma, continued motion along the strike-slip fault systems and oblique plate convergence resulted in the youngest generation of structural features (F3). Regional

  11. Crustal deformation evidences for viscous coupling and fragmented lithosphere at the Nubia-Iberia plate boundary (Western Mediterranean)

    NASA Astrophysics Data System (ADS)

    Palano, Mimmo; González, Pablo J.; Fernández, José

    2016-04-01

    A spatially dense crustal velocity field, based on up to 15 years of GNSS observations at more than 380 sites and extensively covering the Iberian Peninsula and Northern Africa, allow us to provide new insights into two main tectonic processes currently occurring in this area. We detected a slow large-scale clockwise rotation of the Iberian Peninsula with respect to a local pole located closely to the northwestern sector of the Pyrenean mountain range (Palano et al., 2015). Although this crustal deformation pattern could suggest a rigid rotating lithosphere block, this model would predict significant shortening along the Western (off-shore Lisbon) and North Iberian margin which cannot totally ruled out but currently is not clearly observed. Conversely, we favour the interpretation that this pattern reflects the quasi-continuous straining of the ductile lithosphere in some sectors of South and Western Iberia in response to viscous coupling of the NW Nubia and Iberian plate boundary in the Gulf of Cádiz. Furthermore, the western Mediterranean basin appears fragmented into independent crustal tectonic blocks, which delimited by inherited lithospheric shear structures and trapped within the Nubia-Eurasia collision, are currently accommodating most of the plate convergence rate. Among these blocks, an (oceanic-like western) Algerian one is currently transferring a significant fraction of the Nubia-Eurasia convergence rate into the Eastern Betics (SE Iberia) and likely causing the eastward motion of the Baleares Promontory. Most of the observed crustal ground deformation can be attributed to processes driven by spatially variable lithospheric plate forces imposed along the Nubia-Eurasia convergence boundary. Nevertheless, the observed deformation field infers a very low convergence rates as observed also at the eastern side of the western Mediterranean, along the Calabro Peloritan Arc, by space geodesy (e.g. Palano, 2015). References Palano M. (2015). On the present

  12. Interseismic deformation at the leading edge of obliquely converging Burmese plate in densely populated Bangladesh.

    NASA Astrophysics Data System (ADS)

    Akhter, S. H.; Steckler, M. S.; Seeber, L.; Mondal, D. R.; Goodbred, S. L., Jr.

    2016-12-01

    Densely populated Bangladesh sits at the juncture of 3-tectonic plates, India to the west and southwest, Eurasia to the north and non-rigid Burma platelet to the east. Moreover, the plate boundary between India and Burma passes through Bangladesh - the eastern part belongs to Burma plate while the western part belongs to Indian plate. Eastern Bangladesh, northeastern India and western Myanmar is characterized by the up to 250 km wide and 1400 km long Indo-Burma fold and thrust belt resulting from the oblique convergence of India-Burma plates. The northern extension of the Sumatra-Andaman subduction zone evolved from typical oceanic subduction in the Paleogene to the present subaerial subduction of the Ganges-Brahmaputra Delta. Subduction of the thick sedimentary pile has created the broad accretionary prism that prograding westward in Bangladesh. The deformation front runs near the low elevation Meghna estuary to the south and Sylhet marshes to the north. It is further demarcated by the westernmost buried anticlines of the fold and thrust belt, the Shahbazpur, Muladi, Kamta structures west of the Meghna River and Chatak structure in Sylhet. This position is reinforced by variations in the depth of the Holocene/Pleistocene boundary from shallow drilling. Recent GPS analysis demonstrates that the Indo-Burman subduction in deltaic Bangladesh is still active with convergence of 13 to 17 mm/y and that the décollement beneath the fold-thrust belt is locked (Steckler et. al., 2016). A megathrust earthquake occurred along Chittagong-Arakan coast in 1762 and a great earthquake in Upper Assam in 1548 brought remarkable changes in topography of these regions. A seismic gap exists between these two regions, i.e., in the Chittagong-Sylhet segment. The amount of elastic energy that has been stored in this seismic gap for at least 400 years is likely to slip >6m of the megathrust with a potential earthquake of Mw 8.2+ although it is unknown if the megathrust is seismogenic up to

  13. Rigid and non-rigid micro-plates: Philippines and Myanmar-Andaman case studies

    NASA Astrophysics Data System (ADS)

    Rangin, Claude

    2016-01-01

    Generally, tectonic plates are considered as rigid. Oblique plate convergence favors the development of micro-plates along the converging boundaries. The north-south-trending Philippines archipelago (here named Philippine Mobile Belt, PMB), a few hundreds kilometers wide, is one of such complex tectonic zones. We show here that it is composed of rigid rotating crustal blocks (here called platelets). In Myanmar, the northernmost tip of the Sumatra-Andaman subduction system is another complex zone made of various crustal blocks in-between convergent plates. Yet, contrary to PMB, it sustains internal deformation with platelet buckling, altogether indicative of a non-rigid behavior. Therefore, the two case studies, Philippine Mobile Belt and Myanmar-Andaman micro-plate (MAS), illustrate the complexity of micro-plate tectonics and kinematics at convergent plate boundaries.

  14. Shallow repeating slow-slip-events along the convergent block boundary in northern Hokkaido, Japan

    NASA Astrophysics Data System (ADS)

    Ikeda, S.; Heki, K.; Kimura, T.

    2015-12-01

    The Japanese Islands are divided into several crustal blocks [e.g. Loveless and Meade, 2010 JGR]. In the Northern Hokkaido, the boundary between the Amurian and the North American Plates run north-south between 44.0N and 45.4N. The east-west block convergence is considered to be as fast as ~1 cm/year there, but few large earthquakes are known to have occurred along this boundary. Recently, a slow slip event (SSE) is reported to have occurred in a segment at ~45.0N over a 4 months period from 2012 summer to the early 2013 [Ohzono et al., 2014 GJI]. The maximum surface movements was about 15 mm, and the moment magnitude of the SSE would not exceed 6.0 (fault slip is estimated as 10 cm). This suggests that plate convergence takes place as episodic SSEs in this block boundary. In this research, we looked for signatures of repeating SSEs along this block boundary using continuous GNSS data of the dense array GEONET in Japan. In order to detect faint signatures of SSEs in the coordinate time series, we adopted the method using AIC (Akaike's Information Criterion) similar to Nishimura et al. [2013 JGR] and Nishimura [2014 PEPS]. As a result, we were able to find numbers of SSE signals in various segments along the boundary. The detected SSEs are all fairly small, and surface movements did not exceed a few millimeters (except the 2012-2013 SSE reported in Ohzono et al. [2014]). We also searched earthquakes that may have triggered these SSEs. Although the 2012 SSE seems to have been triggered by a deep earthquake beneath Sakhalin on Aug. 14, 2012, no clear triggering earthquakes were identified for other SSEs. SSEs in subduction zones are known to recur fairly regularly, e.g. biannually repeating SSE in the SW part of the Ryukyu Arc [Heki and Kataoka, 2008 JGR]. However, shallow SSEs along the block boundary in the northern Hokkaido did not show such regular occurrences. We plan to confirm these SSE occurrences by comparing GNSS data with the Hi-Net tiltmeter records.

  15. Plate convergence and long-term crustal deformation in central Japan

    NASA Astrophysics Data System (ADS)

    Heki, Kosuke; Miyazaki, Shin'ichi

    Surveys by continuous Global Positioning System in and around Japan revealed that the Amurian Plate collides with the North American Plate in central Japan by ∼2 cm/yr. Long-term crustal deformation seems to be influenced mainly by this collision although subduction of oceanic plates governs short-term elastic deformation over the arc. Here we study the long-term deformation field by carefully removing the short-term signals inferred from a-priori plate convergence vectors and coupling strengths predicted by a thermal model. The obtained field shows that the change in velocities occurs along the longitude 135° ∼ 137°, and there exist a relatively rigid block and zones accommodating strains. Characteristic compressional deformation is found northwest of Izu due possibly to the collision of the Izu-Bonin arc with Honshu. Plate convergence rate along the Nankai-Suruga Trough is considerably smaller in eastern parts, due partly to the transition from the Amurian to the North American Plate of the landward side, and partly to the motion of the Izu Microplate relative to the Philippine Sea Plate. This accounts for longer recurrence intervals of interplate earthquakes in the Suruga Trough where the Tokai earthquake is anticipated to occur.

  16. Viscoelastic deformation near active plate boundaries

    NASA Technical Reports Server (NTRS)

    Ward, S. N.

    1986-01-01

    Model deformations near the active plate boundaries of Western North America using space-based geodetic measurements as constraints are discussed. The first six months of this project were spent gaining familarity with space-based measurements, accessing the Crustal Dynamics Data Information Computer, and building time independent deformation models. The initial goal was to see how well the simplest elastic models can reproduce very long base interferometry (VLBI) baseline data. From the Crustal Dynamics Data Information Service, a total of 18 VLBI baselines are available which have been surveyed on four or more occasions. These data were fed into weighted and unweighted inversions to obtain baseline closure rates. Four of the better quality lines are illustrated. The deformation model assumes that the observed baseline rates result from a combination of rigid plate tectonic motions plus a component resulting from elastic strain build up due to a failure of the plate boundary to slip at the full plate tectonic rate. The elastic deformation resulting from the locked plate boundary is meant to portray interseismic strain accumulation. During and shortly after a large interplate earthquake, these strains are largely released, and points near the fault which were previously retarded suddenly catch up to the positions predicted by rigid plate models. Researchers judge the quality of fit by the sum squares of weighted residuals, termed total variance. The observed baseline closures have a total variance of 99 (cm/y)squared. When the RM2 velocities are assumed to model the data, the total variance increases to 154 (cm/y)squared.

  17. Swath sonar mapping of Earth's submarine plate boundaries

    NASA Astrophysics Data System (ADS)

    Carbotte, S. M.; Ferrini, V. L.; Celnick, M.; Nitsche, F. O.; Ryan, W. B. F.

    2014-12-01

    The recent loss of Malaysia Airlines flight MH370 in an area of the Indian Ocean where less than 5% of the seafloor is mapped with depth sounding data (Smith and Marks, EOS 2014) highlights the striking lack of detailed knowledge of the topography of the seabed for much of the worlds' oceans. Advances in swath sonar mapping technology over the past 30 years have led to dramatic improvements in our capability to map the seabed. However, the oceans are vast and only an estimated 10% of the seafloor has been mapped with these systems. Furthermore, the available coverage is highly heterogeneous and focused within areas of national strategic priority and community scientific interest. The major plate boundaries that encircle the globe, most of which are located in the submarine environment, have been a significant focus of marine geoscience research since the advent of swath sonar mapping. While the location of these plate boundaries are well defined from satellite-derived bathymetry, significant regions remain unmapped at the high-resolutions provided by swath sonars and that are needed to study active volcanic and tectonic plate boundary processes. Within the plate interiors, some fossil plate boundary zones, major hotspot volcanoes, and other volcanic provinces have been the focus of dedicated research programs. Away from these major tectonic structures, swath mapping coverage is limited to sparse ocean transit lines which often reveal previously unknown deep-sea channels and other little studied sedimentary structures not resolvable in existing low-resolution global compilations, highlighting the value of these data even in the tectonically quiet plate interiors. Here, we give an overview of multibeam swath sonar mapping of the major plate boundaries of the globe as extracted from public archives. Significant quantities of swath sonar data acquired from deep-sea regions are in restricted-access international archives. Open access to more of these data sets would

  18. Crustal motion studies in the southwest Pacific: Geodetic measurements of plate convergence in Tonga, Vanuatu and the Solomon Islands

    NASA Astrophysics Data System (ADS)

    Phillips, David A.

    The southwest Pacific is one of the most tectonically dynamic regions on Earth. This research focused on crustal motion studies in three regions of active Pacific-Australia plate convergence in the southwest Pacific: Tonga, the New Hebrides (Vanuatu) and the Solomons Islands. In Tonga, new and refined velocity estimates based on more than a decade of Global Positioning System (GPS) measurements and advanced analysis techniques are much more accurate than previously reported values. Convergence rates of 80 to 165 mm/yr at the Tonga trench represent the fastest plate motions observed on Earth. For the first time, rotation of the Fiji platform relative to the Australian plate is observed, and anomalous deformation of the Tonga ridge was also detected. In the New Hebrides, a combined GPS dataset with a total time series of more than ten years led to new and refined velocity estimates throughout the island arc. Impingement of large bathymetric features has led to arc fragmentation, and four distinct tectonic segments are identified. The central New Hebrides arc segment is being shoved eastward relative to the rest of the arc as convergence is partitioned between the forearc (Australian plate) and the backarc (North Fiji Basin) boundaries due to impingement of the d'Entrecasteaux Ridge and associated Bougainville seamount. The southern New Hebrides arc converges with the Australian plate more rapidly than predicted due to backarc extension. The first measurements of convergence in the northern and southernmost arc segments were also made. In the Solomon Islands, a four-year GPS time series was used to generate the first geodetic estimates of crustal velocity in the New Georgia Group, with 57--84 mm/yr of Australia-Solomon motion and 19--39 mm/yr of Pacific-Solomon motion being observed. These velocities are 20--40% lower than predicted Australia-Pacific velocities. Two-dimensional dislocation models suggest that most of this discrepancy can be attributed to locking of

  19. Seismic behaviour of mountain belts controlled by plate convergence rate

    NASA Astrophysics Data System (ADS)

    Dal Zilio, Luca; van Dinther, Ylona; Gerya, Taras V.; Pranger, Casper C.

    2018-01-01

    The relative contribution of tectonic and kinematic processes to seismic behaviour of mountain belts is still controversial. To understand the partitioning between these processes we developed a model that simulates both tectonic and seismic processes in a continental collision setting. These 2D seismo-thermo-mechanical (STM) models obtain a Gutenberg-Richter frequency-magnitude distribution due to spontaneous events occurring throughout the orogen. Our simulations suggest that both the corresponding slope (b value) and maximum earthquake magnitude (MWmax) correlate linearly with plate convergence rate. By analyzing 1D rheological profiles and isotherm depths we demonstrate that plate convergence rate controls the brittle strength through a rheological feedback with temperature and strain rate. Faster convergence leads to cooler temperatures and also results in more larger seismogenic domains, thereby increasing both MWmax and the relative number of large earthquakes (decreasing b value). This mechanism also predicts a more seismogenic lower crust, which is confirmed by a transition from uni- to bi-modal hypocentre depth distributions in our models. This transition and a linear relation between convergence rate and b value and MWmax is supported by our comparison of earthquakes recorded across the Alps, Apennines, Zagros and Himalaya. These results imply that deformation in the Alps occurs in a more ductile manner compared to the Himalayas, thereby reducing its seismic hazard. Furthermore, a second set of experiments with higher temperature and different orogenic architecture shows the same linear relation with convergence rate, suggesting that large-scale tectonic structure plays a subordinate role. We thus propose that plate convergence rate, which also controls the average differential stress of the orogen and its linear relation to the b value, is the first-order parameter controlling seismic hazard of mountain belts.

  20. The behavior of a convergent plate boundary - Crustal deformation in the South Kanto district, Japan

    NASA Technical Reports Server (NTRS)

    Scholz, C. H.; Kato, T.

    1978-01-01

    The northwesternmost part of the Sagami trough, a part of the Philippine Sea-Eurasian plate boundary, was ruptured during the great South Kanto earthquake in 1923. Very extensive and frequent geodetic measurements of crustal deformation have been made in the South Kanto district since the 1890's, and these constitute the most complete data set on crustal movements in the world. These data were reanalyzed and interpreted and according to our interpretation indicate the following sequence of events. The coseismic movements were due to oblique thrust and right lateral slip of about 8 m on a fault outcropping at the base of the Sagami trough. This was followed by postseismic deformation resulting from reversed afterslip of 20-60 cm that occurred at an exponentially decaying rate in time. The interseismic deformation is produced by steady subduction at a rate of about 1.8 cm/yr. During subduction the top 10-15 km of the plate boundary is apparently locked, while deeper parts slip aseismically at an irregular rate. No significant precursory deformation was observed. The recurrence time for 1923 type earthquakes is 200-300 years. The Boso and Miura peninsulas are broken into a series of fault-bound blocks that move semi-independently of the surrounding region. The subduction zone itself, where it is exposed on land, is shown to be a wide zone encompassing several faults that are active at different times.

  1. Accelerated plate tectonics.

    PubMed

    Anderson, D L

    1975-03-21

    The concept of a stressed elastic lithospheric plate riding on a viscous asthenosphere is used to calculate the recurrence interval of great earthquakes at convergent plate boundaries, the separation of decoupling and lithospheric earthquakes, and the migration pattern of large earthquakes along an arc. It is proposed that plate motions accelerate after great decoupling earthquakes and that most of the observed plate motions occur during short periods of time, separated by periods of relative quiescence.

  2. Tectonics of the Easter plate

    NASA Technical Reports Server (NTRS)

    Engeln, J. F.; Stein, S.

    1984-01-01

    A new model for the Easter plate is presented in which rift propagation has resulted in the formation of a rigid plate between the propagating and dying ridges. The distribution of earthquakes, eleven new focal mechanisms, and existing bathymetric and magnetic data are used to describe the tectonics of this area. Both the Easter-Nazca and Easter-Pacific Euler poles are sufficiently close to the Easter plate to cause rapid changes in rates and directions of motion along the boundaries. The east and west boundaries are propagating and dying ridges; the southwest boundary is a slow-spreading ridge and the northern boundary is a complex zone of convergent and transform motion. The Easter plate may reflect the tectonics of rift propagation on a large scale, where rigid plate tectonics requires boundary reorientation. Simple schematic models to illustrate the general features and processes which occur at plates resulting from large-scale rift propagation are used.

  3. Inter-plate aseismic slip on the subducting plate boundaries estimated from repeating earthquakes

    NASA Astrophysics Data System (ADS)

    Igarashi, T.

    2015-12-01

    Sequences of repeating earthquakes are caused by repeating slips of small patches surrounded by aseismic slip areas at plate boundary zones. Recently, they have been detected in many regions. In this study, I detected repeating earthquakes which occurred in Japan and the world by using seismograms observed in the Japanese seismic network, and investigated the space-time characteristics of inter-plate aseismic slip on the subducting plate boundaries. To extract repeating earthquakes, I calculate cross-correlation coefficients of band-pass filtering seismograms at each station following Igarashi [2010]. I used two data-set based on USGS catalog for about 25 years from May 1990 and JMA catalog for about 13 years from January 2002. As a result, I found many sequences of repeating earthquakes in the subducting plate boundaries of the Andaman-Sumatra-Java and Japan-Kuril-Kamchatka-Aleutian subduction zones. By applying the scaling relations among a seismic moment, recurrence interval and slip proposed by Nadeau and Johnson [1998], they indicate the space-time changes of inter-plate aseismic slips. Pairs of repeating earthquakes with the longest time interval occurred in the Solomon Islands area and the recurrence interval was about 18.5 years. The estimated slip-rate is about 46 mm/year, which correspond to about half of the relative plate motion in this area. Several sequences with fast slip-rates correspond to the post-seismic slips after the 2004 Sumatra-Andaman earthquake (M9.0), the 2006 Kuril earthquake (M8.3), the 2007 southern Sumatra earthquake (M8.5), and the 2011 Tohoku-oki earthquake (M9.0). The database of global repeating earthquakes enables the comparison of the inter-plate aseismic slips of various plate boundary zones of the world. I believe that I am likely to detect more sequences by extending analysis periods in the area where they were not found in this analysis.

  4. Medical sociology and epidemiology: convergences, divergences and legitimate boundaries.

    PubMed

    Spruit, I P; Kromhout, D

    1987-01-01

    For the purpose of exploring the existence of problem areas that may give rise to the question whether there is a tendency to (illegitimately) trespass across boundaries between medical sociology and epidemiology, important convergences and divergences between both disciplines are described. To assemble arguments for the legitimacy of fields of study we trace comparatively the history of both disciplines, definitions of their fields under study and aims of study, as well as characteristic concepts and constructs. Current research themes are taken from international journals; divergent interests are briefly described and potential 'trespassing' of boundaries is discussed, referring to themes showing convergences of interest.

  5. Repeating Earthquakes on the Queen Charlotte Plate Boundary

    NASA Astrophysics Data System (ADS)

    Hayward, T. W.; Bostock, M. G.

    2015-12-01

    The Queen Charlotte Fault (QCF) is a major plate boundary located off the northwest coast of North America that has produced large earthquakes in 1949 (M8.1) and more recently in October, 2012 (M7.8). The 2012 event was dominated by thrusting despite the fact that plate motions at the boundary are nearly transcurrent. It is now widely believed that the plate boundary comprises the QCF (i.e., a dextral strike-slip fault) as well as an element of subduction of the Pacific Plate beneath the North American Plate. Repeating earthquakes and seismic tremor have been observed in the vicinity of the QCF; providing insight into the spatial and temporal characteristics of repeating earthquakes is the goal of this research. Due to poor station coverage and data quality, traditional methods of locating earthquakes are not applicable to these events. Instead, we have implemented an algorithm to locate local (i.e., < 100 km distance to epicenter) earthquakes using a single, three-component seismogram. This algorithm relies on the P-wave polarization and, through comparison with larger local events in the Geological Survey of Canada catalogue, is shown to yield epicentral locations accurate to within 5-10 km. A total of 24 unique families of repeating earthquakes has been identified, and 4 of these families have been located with high confidence. Their epicenters locate directly on the trace of the QCF and their depths are shallow (i.e., 5-15 km), consistent with the proposed depth of the QCF. Analysis of temporal recurrence leading up to the 2012 M7.8 event reveals a non-random pattern, with an approximately 15 day periodicity. Further analysis is planned to study whether this behaviour persists after the 2012 event and to gain insight into the effects of the 2012 event on the stress field and frictional properties of the plate boundary.

  6. Plate-tectonic boundary formation by grain-damage and pinning

    NASA Astrophysics Data System (ADS)

    Bercovici, David

    2015-04-01

    Shear weakening in the lithosphere is an essential ingredient for understanding how and why plate tectonics is generated from mantle convection on terrestrial planets. I present continued work on a theoretical model for lithospheric shear-localization and plate generation through damage, grain evolution and Zener pinning in two-phase (polycrystalline) lithospheric rocks. Grain size evolves through the competition between coarsening, which drives grain-growth, with damage, which drives grain reduction. The interface between phases controls Zener pinning, which impedes grain growth. Damage to the interface enhances the Zener pinning effect, which then reduces grain-size, forcing the rheology into the grain-size-dependent diffusion creep regime. This process thus allows damage and rheological weakening to co-exist, providing a necessary shear-localizing feedback. Moreover, because pinning inhibits grain-growth it promotes shear-zone longevity and plate-boundary inheritance. This theory has been applied recently to the emergence of plate tectonics in the Archean by transient subduction and accumulation of plate boundaries over 1Gyr, as well as to rapid slab detachment and abrupt tectonic changes. New work explores the saturation of interface damage at low interface curvature (e.g., because it is associated with larger grains that take up more of the damage, and/or because interface area is reduced). This effect allows three possible equilibrium grain-sizes for a given stress; a small-grain-size high-shear state in diffusion creep, a large grain-size low shear state in dislocation creep, and an intermediate state (often near the deformation map phase-boundary). The low and high grain-size states are stable, while the intermediate one is unstable. This implies that a material deformed at a given stress can acquire two stable deformation regimes, a low- and high- shear state; these are indicative of plate-like flows, i.e, the coexistence of both slowly deforming plates

  7. Long-distance multistep sediment transfer at convergent plate margins (Barbados, Lesser Antilles)

    NASA Astrophysics Data System (ADS)

    Limonta, Mara; Garzanti, Eduardo; Resentini, Alberto; Andò, Sergio; Boni, Maria; Bechstädt, Thilo

    2015-04-01

    We present a regional provenance study of the compositional variability and long distance multicyclic transport of terrigenous sediments along the convergent and transform plate boundaries of Central America, from the northern termination of the Andes to the Lesser Antilles arc-trench system. We focus on high-resolution bulk-petrography and heavy-mineral analyses of modern beach and fluvial sediments and Cenozoic sandstones of Barbados island, one of the places in the world where an active accretionary prism is subaerially exposed (Speed et al., 2012). The main source of siliciclastic sediment in the Barbados accretionary prism is off-scraped quartzose to feldspatho-litho-quartzose metasedimentaclastic turbidites, ultimately supplied from South America chiefly via the Orinoco fluvio-deltaic system. Modern sand on Barbados island is either quartzose with depleted heavy-mineral suites recycled from Cenozoic turbidites and including epidote, zircon, tourmaline, andalusite, garnet, staurolite and chloritoid, or calcareous and derived from Pleistocene coral reefs. The ubiquitous occurrence of clinopyroxene and hypersthene, associated with green-brown kaersutitic hornblende in the north or olivine in the south, points to reworking of ash-fall tephra erupted from andesitic (St. Lucia) and basaltic (St. Vincent) volcanic centers in the Lesser Antilles arc transported by the prevailing anti-trade winds in the upper troposphere. Modern sediments on Barbados island and those shed by other accretionary prisms such as the Indo- Burman Ranges and Andaman-Nicobar Ridge (Garzanti et al., 2013) define the distinctive mineralogical signature of Subduction Complex Provenance, which is invariably composite. Detritus recycled dominantly from accreted turbidites and oceanic mudrocks is mixed in various proportions with detritus from the adjacent volcanic arc or carbonate reefs widely developed at tropical latitudes. Ophiolitic detritus may be locally prominent. Quantitative provenance

  8. Movies of Finite Deformation within Western North American Plate Boundary Zone

    NASA Astrophysics Data System (ADS)

    Holt, W. E.; Birkes, B.; Richard, G. A.

    2004-12-01

    Animations of finite strain within deforming continental zones can be an important tool for both education and research. We present finite strain models for western North America. We have found that these moving images, which portray plate motions, landform uplift, and subsidence, are highly useful for enabling students to conceptualize the dramatic changes that can occur within plate boundary zones over geologic time. These models use instantaneous rates of strain inferred from both space geodetic observations and Quaternary fault slip rates. Geodetic velocities and Quaternary strain rates are interpolated to define a continuous, instantaneous velocity field for western North America. This velocity field is then used to track topography points and fault locations through time (both backward and forward in time), using small time steps, to produce a 6 million year image. The strain rate solution is updated at each time step, accounting for changes in boundary conditions of plate motion, and changes in fault orientation. Assuming zero volume change, Airy isostasy, and a ratio of erosion rate to tectonic uplift rate, the topography is also calculated as a function of time. The animations provide interesting moving images of the transform boundary, highlighting ongoing extension and subsidence, convergence and uplift, and large translations taking place within the strike-slip regime. Moving images of the strain components, uplift volume through time, and inferred erosion volume through time, have also been produced. These animations are an excellent demonstration for education purposes and also hold potential as an important tool for research enabling the quantification of finite rotations of fault blocks, potential erosion volume, uplift volume, and the influence of climate on these parameters. The models, however, point to numerous shortcomings of taking constraints from instantaneous calculations to provide insight into time evolution and reconstruction models

  9. Composite and Component Plates, Plate Non-rigidity, and the Steadiness of Plate Motion From Marine Geophysical and Space Geodetic Data

    NASA Astrophysics Data System (ADS)

    Gordon, R. G.; Argus, D. F.; DeMets, C.

    2017-12-01

    detail it appears, however, that plate velocities over the past few decades have in several cases been significantly different from plate motions averaged over geologic time. Some of the largest changes have been decreases in rates across convergent plate boundaries: Nazca-South America and the velocities of Nubia, Arabia, and India relative to Eurasia.

  10. Crustal Deformation at the Arabian Plate-Boundary observed by InSAR

    NASA Astrophysics Data System (ADS)

    Jonsson, S.; Cavalié, O.; Akoglu, A. M.; Wang, T.; Xu, W.; Feng, G.; Dutta, R.; Abdullin, A. K.

    2013-12-01

    The Arabian plate is bounded by a variety of active plate boundaries, with extension in the Red Sea and Gulf of Aden to the south, compression in Turkey and Iran to the north, and transform faults to the west and to the east. Internally, however, the Arabian plate has been shown to be tectonically rather stable, despite evidence of recent volcanism and earthquake faulting. We use InSAR observations to study recent tectonic and volcanic activity at several locations at the Arabian plate boundary as well within the plate itself. The region near the triple junction between the Arabian, Eurasian, and Anatolian plates has often been the focus of studies on continental deformation behavior and interseismic deformation. Here we use large-scale InSAR data processing to map the deformation near the triple junction and find the deformation to be focused on major faults with little intra-plate deformation. The eastern part of the East Anatolian Fault appears to have a very shallow locking depth with limited fault-normal deformation. Several major earthquakes that have occurred in recent years on the Arabian plate boundary, including the 2011 magnitude 7.1 Van earthquake in eastern Turkey. It occurred as a result of convergence of the Arabian plate towards Eurasia and caused significant surface deformation that we have analyzed with multiple coseismic InSAR, GPS, and coastal uplift observations. We use high-resolution Cosmo-Skymed and TerraSAR-X data to derive 3D coseismic displacements from offsets alone, as some of the interferograms are almost completely incoherent. By identifying point-like targets within the images, we were able to derive accurate pixel offsets between SAR sub-images containing such targets, which we used to estimate the 3D coseismic displacements. The derived 3D displacement field helped in constraining the causative northward dipping thrust-fault. The Qadimah fault is a recently discovered fault located on the Red Sea coast north of Jeddah and under the

  11. Abbot Ice Shelf, the Amundsen Sea Continental Margin and the Southern Boundary of the Bellingshausen Plate Seaward of West Antarctica

    NASA Astrophysics Data System (ADS)

    Cochran, J. R.; Tinto, K. J.; Bell, R. E.

    2014-12-01

    The Abbot Ice Shelf extends 450 km along the coast of West Antarctica between 103°W and 89°W and straddles the boundary between the Bellingshausen Sea continental margin, which overlies a former subduction zone, and Amundsen Sea rifted continental margin. Inversion of NASA Operation IceBridge airborne gravity data for sub-ice bathymetry shows that the western part of the ice shelf, as well as Cosgrove Ice Shelf to the south, are underlain by a series of east-west trending rift basins. The eastern boundary of the rifted terrain coincides with the eastern boundary of rifting between Antarctica and Zealandia and the rifts formed during the early stages of this rifting. Extension in these rifts is minor as rifting quickly jumped north of Thurston Island. The southern boundary of the Cosgrove Rift is aligned with the southern boundary of a sedimentary basin under the Amundsen Embayment continental shelf to the west, also formed by Antarctica-Zealandia rifting. The shelf basin has an extension factor, β, of 1.5 - 1.7 with 80 -100 km of extension occurring in an area now ~250 km wide. Following this extension early in the rifting process, rifting centered to the north of the present shelf edge and proceeded to continental rupture. Since then, the Amundsen Embayment continental shelf has been tectonically quiescent and has primarily been shaped though subsidence, sedimentation and the passage of the West Antarctic Ice Sheet back and forth across it. The former Bellingshausen Plate was located seaward of the Amundsen Sea margin prior to its incorporation into the Antarctic Plate at ~62 Ma. During the latter part of its existence, Bellingshausen plate motion had a clockwise rotational component relative to Antarctica producing convergence between the Bellingshausen and Antarctic plates east of 102°W. Seismic reflection and gravity data show that this convergence is expressed by an area of intensely deformed sediments beneath the continental slope from 102°W to 95°W and

  12. Structural acoustic control of plates with variable boundary conditions: design methodology.

    PubMed

    Sprofera, Joseph D; Cabell, Randolph H; Gibbs, Gary P; Clark, Robert L

    2007-07-01

    A method for optimizing a structural acoustic control system subject to variations in plate boundary conditions is provided. The assumed modes method is used to build a plate model with varying levels of rotational boundary stiffness to simulate the dynamics of a plate with uncertain edge conditions. A transducer placement scoring process, involving Hankel singular values, is combined with a genetic optimization routine to find spatial locations robust to boundary condition variation. Predicted frequency response characteristics are examined, and theoretically optimized results are discussed in relation to the range of boundary conditions investigated. Modeled results indicate that it is possible to minimize the impact of uncertain boundary conditions in active structural acoustic control by optimizing the placement of transducers with respect to those uncertainties.

  13. Lower plate deformation structures along the Costa Rica erosive plate boundary - results from IODP Expedition 344 (CRISP 2)

    NASA Astrophysics Data System (ADS)

    Brandstätter, Jennifer; Kurz, Walter; Micheuz, Peter; Krenn, Kurt

    2015-04-01

    The primary objective of Integrated Ocean Drilling Program (IODP) Expedition 344 offshore the Osa Peninsula in Costa Rica was to sample and quantify the material entering the seismogenic zone of the Costa Rican erosive subduction margin. Fundamental to this objective is an understanding of the nature of both the subducting Cocos plate crust and of the overriding Caribbean plate. The subducting Cocos plate is investigated trying to define its hydrologic system and thermal state. The forearc structures recorded by the sediment deposited on the forearc, instead, document periods of uplift and subsidence and provide important information about the process of tectonic erosion that characterizes the Costa Rica margin. Offshore the western margin of Costa Rica, the oceanic Cocos plate subducts under the Caribbean plate, forming the southern end of the Middle America Trench. Subduction parameters including the age, convergence rate, azimuth, obliquity, morphology, and slab dip all vary along strike. The age of the Cocos plate at the Middle America Trench decreases from 24 Ma offshore the Nicoya Peninsula to 15 Ma offshore the Osa Peninsula. Subduction rates vary from 70 mm/y offshore Guatemala to 90 mm/y offshore southern Costa Rica. Convergence obliquity across the trench varies from offshore Nicaragua, where it is as much as 25° oblique, to nearly orthogonal southeast of the Nicoya Peninsula. Passage of the Cocos plate over the Galapagos hotspot created the aseismic Cocos Ridge, an overthickened welt of oceanic crust. This ridge is ~25 km thick, greater than three times normal oceanic crustal thickness. During IODP Expedition 344, the incoming Cocos plate was drilled at sites U1381 and U1414. Site U1381 is located ~4.5 km seaward of the deformation front offshore the Osa Peninsula and Caño Island. It is located on a local basement high. Basement relief often focuses fluid flow, so data from this site are likely to document the vigor of fluid flow in this area. Site U

  14. Radiocarbon evidence for extensive plate-boundary rupture about 300 years ago at the Cascadia subduction zone

    USGS Publications Warehouse

    Nelson, A.R.; Atwater, B.F.; Bobrowsky, P.T.; Bradley, L.A.; Clague, J.J.; Carver, G.A.; Darienzo, M.E.; Grant, W.C.; Krueger, H.W.; Sparks, R.; Stafford, Thomas W.; Stuiver, M.

    1995-01-01

    THE Cascadia subduction zone, a region of converging tectonic plates along the Pacific coast of North America, has a geological history of very large plate-boundary earthquakes1,2, but no such earthquakes have struck this region since Euro-American settlement about 150 years ago. Geophysical estimates of the moment magnitudes (Mw) of the largest such earthquakes range from 8 (ref. 3).to 91/2 (ref. 4). Radiocarbon dating of earthquake-killed vegetation can set upper bounds on earthquake size by constraining the length of plate boundary that ruptured in individual earthquakes. Such dating has shown that the most recent rupture, or series of ruptures, extended at least 55 km along the Washington coast within a period of a few decades about 300 years ago5. Here we report 85 new 14C ages, which suggest that this most recent rupture (or series) extended at least 900 km between southern British Columbia and northern California. By comparing the 14C ages with written records of the past 150 years, we conclude that a single magnitude 9 earthquake, or a series of lesser earthquakes, ruptured most of the length of the Cascadia subduction zone between the late 1600s and early 1800s, and probably in the early 1700s.

  15. Intermittent Granular Dynamics at a Seismogenic Plate Boundary

    NASA Astrophysics Data System (ADS)

    Meroz, Yasmine; Meade, Brendan J.

    2017-09-01

    Earthquakes at seismogenic plate boundaries are a response to the differential motions of tectonic blocks embedded within a geometrically complex network of branching and coalescing faults. Elastic strain is accumulated at a slow strain rate on the order of 10-15 s-1 , and released intermittently at intervals >100 yr , in the form of rapid (seconds to minutes) coseismic ruptures. The development of macroscopic models of quasistatic planar tectonic dynamics at these plate boundaries has remained challenging due to uncertainty with regard to the spatial and kinematic complexity of fault system behaviors. The characteristic length scale of kinematically distinct tectonic structures is particularly poorly constrained. Here, we analyze fluctuations in Global Positioning System observations of interseismic motion from the southern California plate boundary, identifying heavy-tailed scaling behavior. Namely, we show that, consistent with findings for slowly sheared granular media, the distribution of velocity fluctuations deviates from a Gaussian, exhibiting broad tails, and the correlation function decays as a stretched exponential. This suggests that the plate boundary can be understood as a densely packed granular medium, predicting a characteristic tectonic length scale of 91 ±20 km , here representing the characteristic size of tectonic blocks in the southern California fault network, and relating the characteristic duration and recurrence interval of earthquakes, with the observed sheared strain rate, and the nanosecond value for the crack tip evolution time scale. Within a granular description, fault and blocks systems may rapidly rearrange the distribution of forces within them, driving a mixture of transient and intermittent fault slip behaviors over tectonic time scales.

  16. The seismotectonics of plate boundaries

    NASA Technical Reports Server (NTRS)

    Berger, J.; Brune, J. N.; Goodkind, J.; Wyatt, F.; Agnew, D. C.; Beaumont, C.

    1981-01-01

    Research on the seismotectonics of plate boundaries is summarized. Instrumental development and an observational program designed to study various aspects of the seismotectonics of southern California and the northern Gulf of California are described. A unique superconducting gravimeter was further developed and supported under this program for deployment and operation at several sites. Work on Earth tides is also discussed.

  17. Block structure and geodynamics of the continental lithosphere on plate boundaries

    NASA Astrophysics Data System (ADS)

    Gatinsky, Yu. G.; Prokhorova, T. V.; Romanyuk, T. V.; Vladova, G. L.

    2009-04-01

    Division of the Earth lithosphere on large plates must be considered only as the first and most general approximation in its structure hierarchy. Some transit zones or difuuse boundaries after other authors take place in lithosphere plate boundaries. The tectonic tension of plate interaction is transferred and relaxed within these zones, which consist of blocks limited by seismoactive faults. Vectors of block horizontal displacements often don't coincide with vectors of main plates and change together with changing block rigidity. As a rule the intensity the seismic energy at plate and transit zone boundaries decreases linearly with distancing from these boundaries and correlates with decreasing of velocities of block horizontal displacements. But sometimes the maximum of the energy manifestation takes place in inner parts of transit zones. Some relatively tight interblock zones established in central and east Asia are the most seismically active. They limited such blocks as Pamir, Tien Shan, Bayanhar, Shan, Japanese-Korean, as well as the north boundary of the Indian Plate. A seismic energy intensity of these zones can be compared with the energy of Pacific subduction zones. It is worthy to note that the majority catastrophic earthquakes took place in Central Asia just within interblock zones. A level of block displacement is situated mainly in the bottom or inside the Earth crust, more rare in the lithosphere mantle. Blocks with the most thick lithosphere roots (SE China, Amurian) are the most rigid and weakly deformed.

  18. Seismic link at plate boundary

    NASA Astrophysics Data System (ADS)

    Ramdani, Faical; Kettani, Omar; Tadili, Benaissa

    2015-06-01

    Seismic triggering at plate boundaries has a very complex nature that includes seismic events at varying distances. The spatial orientation of triggering cannot be reduced to sequences from the main shocks. Seismic waves propagate at all times in all directions, particularly in highly active zones. No direct evidence can be obtained regarding which earthquakes trigger the shocks. The first approach is to determine the potential linked zones where triggering may occur. The second step is to determine the causality between the events and their triggered shocks. The spatial orientation of the links between events is established from pre-ordered networks and the adapted dependence of the spatio-temporal occurrence of earthquakes. Based on a coefficient of synchronous seismic activity to grid couples, we derive a network link by each threshold. The links of high thresholds are tested using the coherence of time series to determine the causality and related orientation. The resulting link orientations at the plate boundary conditions indicate that causal triggering seems to be localized along a major fault, as a stress transfer between two major faults, and parallel to the geothermal area extension.

  19. Extending Alaska's plate boundary: tectonic tremor generated by Yakutat subduction

    USGS Publications Warehouse

    Wech, Aaron G.

    2016-01-01

    The tectonics of the eastern end of the Alaska-Aleutian subduction zone are complicated by the inclusion of the Yakutat microplate, which is colliding into and subducting beneath continental North America at near-Pacific-plate rates. The interaction among these plates at depth is not well understood, and further east, even less is known about the plate boundary or the source of Wrangell volcanism. The drop-off in Wadati-Benioff zone (WBZ) seismicity could signal the end of the plate boundary, the start of aseismic subduction, or a tear in the downgoing plate. Further compounding the issue is the possible presence of the Wrangell slab, which is faintly outlined by an anemic, eastward-dipping WBZ beneath the Wrangell volcanoes. In this study, I performed a search for tectonic tremor to map slow, plate-boundary slip in south-central Alaska. I identified ∼11,000 tremor epicenters, which continue 85 km east of the inferred Pacific plate edge marked by WBZ seismicity. The tremor zone coincides with the edges of the downgoing Yakutat terrane, and tremors transition from periodic to continuous behavior as they near the aseismic Wrangell slab. I interpret tremor to mark slow, semicontinuous slip occurring at the interface between the Yakutat and North America plates. The slow slip region lengthens the megathrust interface beyond the WBZ and may provide evidence for a connection between the Yakutat slab and the aseismic Wrangell slab.

  20. Intermittent Granular Dynamics at a Seismogenic Plate Boundary.

    PubMed

    Meroz, Yasmine; Meade, Brendan J

    2017-09-29

    Earthquakes at seismogenic plate boundaries are a response to the differential motions of tectonic blocks embedded within a geometrically complex network of branching and coalescing faults. Elastic strain is accumulated at a slow strain rate on the order of 10^{-15}  s^{-1}, and released intermittently at intervals >100  yr, in the form of rapid (seconds to minutes) coseismic ruptures. The development of macroscopic models of quasistatic planar tectonic dynamics at these plate boundaries has remained challenging due to uncertainty with regard to the spatial and kinematic complexity of fault system behaviors. The characteristic length scale of kinematically distinct tectonic structures is particularly poorly constrained. Here, we analyze fluctuations in Global Positioning System observations of interseismic motion from the southern California plate boundary, identifying heavy-tailed scaling behavior. Namely, we show that, consistent with findings for slowly sheared granular media, the distribution of velocity fluctuations deviates from a Gaussian, exhibiting broad tails, and the correlation function decays as a stretched exponential. This suggests that the plate boundary can be understood as a densely packed granular medium, predicting a characteristic tectonic length scale of 91±20  km, here representing the characteristic size of tectonic blocks in the southern California fault network, and relating the characteristic duration and recurrence interval of earthquakes, with the observed sheared strain rate, and the nanosecond value for the crack tip evolution time scale. Within a granular description, fault and blocks systems may rapidly rearrange the distribution of forces within them, driving a mixture of transient and intermittent fault slip behaviors over tectonic time scales.

  1. Seismotectonics and recent evolution of the Eurasia-North America Plate Boundary in Northeastern Russia

    NASA Astrophysics Data System (ADS)

    Imaev, V. S.; Imaeva, L. P.; Kozmin, B. M.; Fujita, K. T.; Mackey, K. G.

    2009-04-01

    In contrast to oceanic plate boundaries which are usually well defined by earthquake locations and magnetic anomalies, the present and past kinematics of plate boundaries in the continents remains problematic in many settings. One particularly vexing such boundary is the one that separates Eurasia from North America in Northeast Russia. In the earliest plate models it was evident that the mid-Atlantic spreading ridge continues in the Arctic as the Gakkel ridge which then runs almost perpendicularly into the continental shelf of Russia in the Laptev sea. On the shelf, and further south on land, the narrow belt of seismicity that is found along the Gakkel ridge broadens into a diffuse swath of earthquakes which is in places more than 800 km wide and extends along the Chersky Range towards the coast of the Okhotsk sea and northern Kamchatka The fact that the Okhotsk sea is aseismic but is surrounded by seismic belts has to lead the interpretation that it is an independent microplate that lies between the Eurasian, North American, Pacific and Amur plates (Cook et al., 1986).Unravelling the kinematics of the Eurasia-Okhotsk-North America Plate boundaries has proven difficult. This is in part due to the paucity of geological and geophysical data from this remote region, and to the fact that the Eurasia-North America pole of rotation lies in close vicinity to the plate boundary itself. Cook et al. (1986), using earthquake slip vectors, placed the current pole of rotation near the Lena river delta, that is, in the area where Eurasia-North America plate boundary comes on shore ). As a consequence, spreading along the Gakkel ridge north of the pole of rotation, should change into convergence or strike-slip to the south depending on the orientation of the boundary. Making specific predictions for fault kinematics in the area has been hampered by the fact that different geophysical and geodetic data-sets have yielded different locations for the Eurasia-North America pole of

  2. Plate convergence, transcurrent faults and internal deformation adjacent to Southeast Asia and the western Pacific

    NASA Technical Reports Server (NTRS)

    Fitch, T. J.

    1971-01-01

    A model for oblique convergence between plates of lithosphere is proposed in which at least a fraction of slip parallel to the plate margin results in transcurrent movements on a nearly vertical fault which is located on the continental side of a zone of plate consumption. In an extreme case of complete decoupling only the component of slip normal to the plate margin can be inferred from underthrusting. Recent movements in the western Sunda region provide the most convincing evidence for decoupling of slip, which in this region is thought to be oblique to the plate margin. A speculative model for convergence along the margins of the Philippine Sea is constructed from an inferred direction of oblique slip in the Philippine region. This model requires that the triple point formed by the junction of the Japanese and Izu-Bonin trenches and the Nankai trough migrate along the Sagami trough.

  3. Analysis of turbulent free-convection boundary layer on flat plate

    NASA Technical Reports Server (NTRS)

    Eckert, E R G; Jackson, Thomas W

    1950-01-01

    A calculation was made for the flow and heat transfer in the turbulent free-convection boundary layer on a vertical flat plate. Formulas for the heat-transfer coefficient, boundary layer thickness, and the maximum velocity in the boundary layer were obtained.

  4. Role of Transtension in Rifting at the Pacific-North America Plate Boundary

    NASA Astrophysics Data System (ADS)

    Stock, J. M.

    2011-12-01

    Transtensional plate motion can be accommodated either in a localized zone of transtensional rifting or over a broader region. Broader zones of deformation can be classified either as diffuse deformation or strain partitioning (one or more major strike-slip shear zones geographically offset from a region of a extensional faulting). The Pacific-North America plate boundary in southwestern North America was transtensional during much of its history and has exhibited the full range of these behaviors at different spatial scales and in different locations, as recorded by fault motions and paleomagnetic rotations. Here we focus on the northern Gulf of California part of the plate boundary (Upper and Lower Delfin basin segments), which has been in a zone of transtensional Pacific-North America plate boundary motion ever since the middle Miocene demise of adjacent Farallon-derived microplates. Prior to the middle Miocene, during the time of microplate activity, this sector of North America experienced basin-and-range normal faults (core complexes) in Sonora. However there is no evidence of continued extensional faulting nor of a Gulf-related topographic depression until after ca 12 Ma when a major ignimbrite (Tuff of San Felipe/ Ignimbrite of Hermosillo) was deposited across the entire region of the future Gulf of California rift in this sector. After 12 Ma, faults disrupted this marker bed in eastern Baja California and western Sonora, and some major NNW-striking right-lateral faults are inferred to have developed near the Sonoran coast causing offset of some of the volcanic facies. However, there are major tectonic rotations of the volcanic rocks in NE Baja California between 12 and 6 Ma, suggesting that the plate boundary motion was still occurring over a broad region. By contrast, after about 6 Ma, diminished rotations in latest Miocene and Pliocene volcanic rocks, as well as fault slip histories, show that plate boundary deformation became localized to a narrower

  5. Discovering the plates boundaries in the Mediterranean sea

    NASA Astrophysics Data System (ADS)

    Marinelli, Maurizio

    2017-04-01

    During the 8th class the students learn geology. We analyze the earth's layers, the earthquakes, the volcanoes and other natural phenomena like subduction and orogeny. We start with a global study but our goal is to focus on the crust to discover the plates boundaries, particularly the boundary between Eurasian and African Plate in the Mediterranean sea. It's very simple for the students to discover all the information using the Internet or the science book, but I want to make with them an exploration of earth science with the help of the natural phenomena we studied during the year. We connect with Istituto Nazionale di Geofisica e Vulcanologia ( http://www.ingv.it/en/ ) where we can find a map with the earthquakes happened in the last years in Italy and in the Mediterranean sea and the list of the main volcanoes. In this way we can draw a map of the mediterranean plates and we can talk about the past and the future of the Mediterranean sea, Europe and Africa based on our maps and on the Alps orogeny. Using youtube we can have a confirm of our hypothesis about the future of the Mediterranean sea (https://www.youtube.com/watch?v=uGcDed4xVD4 ). A good observation for the students is given by the fact that we live in Europe but actually we stay on the African plate. The boundary is 5 km north of our school and we can go and visit the place where it is possible to see the different height of the two plates.

  6. A diffuse plate boundary model for Indian Ocean tectonics

    NASA Technical Reports Server (NTRS)

    Wiens, D. A.; Demets, C.; Gordon, R. G.; Stein, S.; Argus, D.

    1985-01-01

    It is suggested that motion along the virtually aseismic Owen fracture zone is negligible, so that Arabia and India are contained within a single Indo-Arabian plate divided from the Australian plate by a diffuse boundary. The boundary is a zone of concentrated seismicity and deformation commonly characterized as 'intraplate'. The rotation vector of Australia relative to Indo-Arabia is consistent with the seismologically observed 2 cm/yr of left-lateral strike-slip along the Ninetyeast Ridge, north-south compression in the Central Indian Ocean, and the north-south extension near Chagos.

  7. Lagrangian analysis of the laminar flat plate boundary layer

    NASA Astrophysics Data System (ADS)

    Gabr, Mohammad

    2016-10-01

    The flow properties at the leading edge of a flat plate represent a singularity to the Blasius laminar boundary layer equations; by applying the Lagrangian approach, the leading edge velocity profiles of the laminar boundary layer over a flat plate are studied. Experimental observations as well as the theoretical analysis show an exact Gaussian distribution curve as the original starting profile of the laminar flow. Comparisons between the Blasius solution and the Gaussian curve solution are carried out providing a new insight into the physics of the laminar flow.

  8. Planar induction of convergence and extension of the neural plate by the organizer of Xenopus.

    PubMed

    Keller, R; Shih, J; Sater, A K; Moreno, C

    1992-03-01

    This paper demonstrates that convergence and extension within the neural plate of Xenopus laevis are regulated by planar inductive interactions with the adjacent Spemann organizer. The companion article (Keller et al.: Developmental Dynamics 193:199-217, 1992) showed that the prospective hindbrain and spinal cord occupy a very short and very wide area just above the Spemann organizer in the early gastrula and that these regions converge and extend greatly during gastrulation and neurulation, using a sequence of radial and mediolateral cell intercalations. In this article, we show that "planar" contact of these regions with the organizer at their vegetal edge until stage 11 is sufficient to induce convergence and extension, after which their convergence and extension become autonomous. Grafts of the organizer in planar contact with uninduced ectodermal tissues induce these ectodermal tissues to converge and extend by a planar inductive signal from the organizer. Labeling of the inducing or responding tissues confirms that only planar interactions occur. Neural convergence and extension are actually hindered in explants deliberately constructed so that vertical interactions occur. These results show unambiguously that the Spemann organizer induces the extraordinary and precocious convergence and extension movements of the Xenopus neural plate by planar interactions acting over short distances.

  9. Oceanic broad multifault transform plate boundaries

    NASA Astrophysics Data System (ADS)

    Ligi, Marco; Bonatti, Enrico; Gasperini, Luca; Poliakov, Alexei N. B.

    2002-01-01

    Oceanic transform plate boundaries consist of a single, narrow (a few kilometers wide) strike-slip seismic zone offsetting two mid-ocean ridge segments. However, we define here a new class of oceanic transform boundaries, with broad complex multifault zones of deformation, similar to some continental strike-slip systems. Examples are the 750-km- long, 120-km-wide Andrew Bain transform on the Southwest Indian Ridge, and the Romanche transform, where the Mid-Atlantic Ridge is offset by a lens-shaped, ˜900-km- long, ˜100-km-wide sliver of deformed lithosphere bound by two major transform valleys. One of the valleys is seismically highly active and constitutes the present-day principal transform boundary. However, strike-slip seismic events also occur in the second valley and elsewhere in the deformed zone. Some of these events may be triggered by earthquakes from the principal boundary. Numerical modeling predicts the development of wide multiple transform boundaries when the age offset is above a threshold value of ˜30 m.y., i.e., in extra-long (>500 km) slow-slip transforms. Multiple boundaries develop so that strike-slip ruptures avoid very thick and strong lithosphere.

  10. Water Release from Cold Serpentinized Forearc Mantle During Subduction Associated with Changes in Incoming Oceanic Plate Thermal Structure and Plate Boundary Kinematics: New Insights into Serpentinite Belts and Plate-Boundary Rheology

    NASA Astrophysics Data System (ADS)

    Kirby, Stephen

    2016-04-01

    Kirby, Wang, and Brocher (Earth Planets and Space, 2014) recently showed how the change in kinematics of the California margin from subduction motion to continental transform motion with the birth and growth of the San Andreas Fault System (SAFS) beginning at about 33 Ma BP likely led to a warming of the former forearc mantle and the release of water from serpentinized mantle by dehydration and a likely increase in fluid pressures along the SAFS. Such a mantle source of pressurized water gives insights into both the low sliding resistance for the SAFS and the mobilization and ascent of some serpentinized mantle peridotites through the crust. Thermal modeling by others has also shown that changes in the incoming plate age and subduction rate can also lead to warming of the forearc mantle during subduction. This development gives insights into the Mesozoic and Paleogene ages of emplacement of some, but not all, California serpentinites. Recent mineralogical and geochemical observations of serpentinite blocks in serpentinize mélange bodies in the San Francisco Bay Area (Uno and Kirby, 2014 AGU Meeting and Lewis and Kirby, 2015 AGU Meeting) suggest that these rocks sustained multiple stages of serpentinization that are broadly consistent with the model of Kirby et al. (2014). A new development comes from interpretation of investigations in the literature of localized late-stage silica-carbonate-water alteration of serpentinite bodies in California that this alteration occurred largely in Neogene time when the highest rates of water release from the former forearc mantle probably occurred. This presentation also suggests that the occurrence of serpentinite belts emplaced in Cenozoic time during changing plate-boundary kinematics, such as the Cenozoic closing of the Tethys Ocean bordering Eurasia by subduction and collision and arc reversal and decreasing convergence rates under the Greater Antilles and Colombia and New Guinea, may give insights into the serpentinite

  11. Using Global Plate Velocity Boundary Conditions for Embedded Regional Geodynamic Models

    NASA Astrophysics Data System (ADS)

    Taramon Gomez, Jorge; Morgan, Jason; Perez-Gussinye, Marta

    2015-04-01

    The treatment of far-field boundary conditions is one of the most poorly resolved issues for regional modeling of geodynamic processes. In viscous flow, the choice of far-field boundary conditions often strongly shapes the large-scale structure of a geosimulation. The mantle velocity field along the sidewalls and base of a modeling region is typically much more poorly known than the geometry of past global motions of the surface plates as constrained by global plate motion reconstructions. For regional rifting models it has become routine to apply highly simplified 'plate spreading' or 'uniform rifting' boundary conditions to a 3-D model that limits its ability to simulate the geodynamic evolution of a specific rifted margin. One way researchers are exploring the sensitivity of regional models to uncertain boundary conditions is to use a nested modeling approach in which a global model is used to determine a large-scale flow pattern that is imposed as a constraint along the boundaries of the region to be modeled. Here we explore the utility of a different approach that takes advantage of the ability of finite element models to use unstructured meshes than can embed much higher resolution sub-regions within a spherical global mesh. In our initial project to validate this approach, we create a global spherical mesh in which a higher resolution sub-region is created around the nascent South Atlantic Rifting Margin. Global Plate motion BCs and plate boundaries are applied for the time of the onset of rifting, continuing through several 10s of Ma of rifting. Thermal, compositional, and melt-related buoyancy forces are only non-zero within the high-resolution subregion, elsewhere, motions are constrained by surface plate-motion constraints. The total number of unknowns needed to solve an embedded regional model with this approach is less than 1/3 larger than that needed for a structured-mesh solution on a Cartesian or spherical cap sub-regional mesh. Here we illustrate

  12. Air flow in the boundary layer near a plate

    NASA Technical Reports Server (NTRS)

    Dryden, Hugh L

    1937-01-01

    The published data on the distribution of speed near a thin flat plate with sharp leading edge placed parallel to the flow (skin friction plate) are reviewed and the results of some additional measurements are described. The purpose of the experiments was to study the basic phenomena of boundary-layer flow under simple conditions.

  13. Numerical modeling of the transitional boundary layer over a flat plate

    NASA Astrophysics Data System (ADS)

    Ivanov, Dimitry; Chorny, Andrei

    2015-11-01

    Our example is connected with fundamental research on understanding how an initially laminar boundary layer becomes turbulent. We have chosen the flow over a flat plate as a prototype for boundary-layer flows around bodies. Special attention was paid to the near-wall region in order to capture all levels of the boundary layer. In this study, the numerical software package OpenFOAM has been used in order to solve the flow field. The results were used in a comparative study with data obtained from Large Eddy Simulation (LES). The composite SGS-wall model is presently incorporated into a computer code suitable for the LES of developing flat-plate boundary layers. Presently this model is extended to the LES of the zero-pressure gradient, flat-plate turbulent boundary layer. In current study the time discretization is based on a second order Crank-Nicolson/Adams-Bashforth method. LES solver using Smagorinsky and the one-equation LES turbulence models. The transition models significantly improve the prediction of the onset location compared to the fully turbulent models.LES methods appear to be the most promising new tool for the design and analysis of flow devices including transition regions of the turbulent flow.

  14. Flat Plate Boundary Layer Stimulation Using Trip Wires and Hama Strips

    NASA Astrophysics Data System (ADS)

    Peguero, Charles; Henoch, Charles; Hrubes, James; Fredette, Albert; Roberts, Raymond; Huyer, Stephen

    2017-11-01

    Water tunnel experiments on a flat plate at zero angle of attack were performed to investigate the effect of single roughness elements, i.e., trip wires and Hama strips, on the transition to turbulence. Boundary layer trips are traditionally used in scale model testing to force a boundary layer to transition from laminar to turbulent flow at a single location to aid in scaling of flow characteristics. Several investigations of trip wire effects exist in the literature, but there is a dearth of information regarding the influence of Hama strips on the flat plate boundary layer. The intent of this investigation is to better understand the effects of boundary layer trips, particularly Hama strips, and to investigate the pressure-induced drag of both styles of boundary layer trips. Untripped and tripped boundary layers along a flat plate at a range of flow speeds were characterized with multiple diagnostic measurements in the NUWC/Newport 12-inch water tunnel. A wide range of Hama strip and wire trip thicknesses were used. Measurements included dye flow visualization, direct skin friction and parasitic drag force, boundary layer profiles using LDV, wall shear stress fluctuations using hot film anemometry, and streamwise pressure gradients. Test results will be compared to the CFD and boundary layer model results as well as the existing body of work. Conclusions, resulting in guidance for application of Hama strips in model scale experiments and non-dimensional predictions of pressure drag will be presented.

  15. Inverse methods-based estimation of plate coupling in a plate motion model governed by mantle flow

    NASA Astrophysics Data System (ADS)

    Ratnaswamy, V.; Stadler, G.; Gurnis, M.

    2013-12-01

    Plate motion is primarily controlled by buoyancy (slab pull) which occurs at convergent plate margins where oceanic plates undergo deformation near the seismogenic zone. Yielding within subducting plates, lateral variations in viscosity, and the strength of seismic coupling between plate margins likely have an important control on plate motion. Here, we wish to infer the inter-plate coupling for different subduction zones, and develop a method for inferring it as a PDE-constrained optimization problem, where the cost functional is the misfit in plate velocities and is constrained by the nonlinear Stokes equation. The inverse models have well resolved slabs, plates, and plate margins in addition to a power law rheology with yielding in the upper mantle. Additionally, a Newton method is used to solve the nonlinear Stokes equation with viscosity bounds. We infer plate boundary strength using an inexact Gauss-Newton method with line search for backtracking. Each inverse model is applied to two simple 2-D scenarios (each with three subduction zones), one with back-arc spreading and one without. For each case we examine the sensitivity of the inversion to the amount of surface velocity used: 1) full surface velocity data and 2) surface velocity data simplified using a single scalar average (2-D equivalent to an Euler pole) for each plate. We can recover plate boundary strength in each case, even in the presence of highly nonlinear flow with extreme variations in viscosity. Additionally, we ascribe an uncertainty in each plate's velocity and perform an uncertainty quantification (UQ) through the Hessian of the misfit in plate velocities. We find that as plate boundaries become strongly coupled, the uncertainty in the inferred plate boundary strength decreases. For very weak, uncoupled subduction zones, the uncertainty of inferred plate margin strength increases since there is little sensitivity between plate margin strength and plate velocity. This result is significant

  16. Control of boundary layer transition location and plate vibration in the presence of an external acoustic field

    NASA Technical Reports Server (NTRS)

    Maestrello, L.; Grosveld, F. W.

    1991-01-01

    The experiment is aimed at controlling the boundary layer transition location and the plate vibration when excited by a flow and an upstream sound source. Sound has been found to affect the flow at the leading edge and the response of a flexible plate in a boundary layer. Because the sound induces early transition, the panel vibration is acoustically coupled to the turbulent boundary layer by the upstream radiation. Localized surface heating at the leading edge delays the transition location downstream of the flexible plate. The response of the plate excited by a turbulent boundary layer (without sound) shows that the plate is forced to vibrate at different frequencies and with different amplitudes as the flow velocity changes indicating that the plate is driven by the convective waves of the boundary layer. The acoustic disturbances induced by the upstream sound dominate the response of the plate when the boundary layer is either turbulent or laminar. Active vibration control was used to reduce the sound induced displacement amplitude of the plate.

  17. Structure and lithology of the Japan Trench subduction plate boundary fault

    NASA Astrophysics Data System (ADS)

    Kirkpatrick, James D.; Rowe, Christie D.; Ujiie, Kohtaro; Moore, J. Casey; Regalla, Christine; Remitti, Francesca; Toy, Virginia; Wolfson-Schwehr, Monica; Kameda, Jun; Bose, Santanu; Chester, Frederick M.

    2015-01-01

    The 2011 Mw9.0 Tohoku-oki earthquake ruptured to the trench with maximum coseismic slip located on the shallow portion of the plate boundary fault. To investigate the conditions and physical processes that promoted slip to the trench, Integrated Ocean Drilling Program Expedition 343/343T sailed 1 year after the earthquake and drilled into the plate boundary ˜7 km landward of the trench, in the region of maximum slip. Core analyses show that the plate boundary décollement is localized onto an interval of smectite-rich, pelagic clay. Subsidiary structures are present in both the upper and lower plates, which define a fault zone ˜5-15m thick. Fault rocks recovered from within the clay-rich interval contain a pervasive scaly fabric defined by anastomosing, polished, and lineated surfaces with two predominant orientations. The scaly fabric is crosscut in several places by discrete contacts across which the scaly fabric is truncated and rotated, or different rocks are juxtaposed. These contacts are inferred to be faults. The plate boundary décollement therefore contains structures resulting from both distributed and localized deformation. We infer that the formation of both of these types of structures is controlled by the frictional properties of the clay: the distributed scaly fabric formed at low strain rates associated with velocity-strengthening frictional behavior, and the localized faults formed at high strain rates characterized by velocity-weakening behavior. The presence of multiple discrete faults resulting from seismic slip within the décollement suggests that rupture to the trench may be characteristic of this margin.

  18. Simulating wave-turbulence on thin elastic plates with arbitrary boundary conditions

    NASA Astrophysics Data System (ADS)

    van Rees, Wim M.; Mahadevan, L.

    2016-11-01

    The statistical characteristics of interacting waves are described by the theory of wave turbulence, with the study of deep water gravity wave turbulence serving as a paradigmatic physical example. Here we consider the elastic analog of this problem in the context of flexural waves arising from vibrations of a thin elastic plate. Such flexural waves generate the unique sounds of so-called thunder machines used in orchestras - thin metal plates that make a thunder-like sound when forcefully shaken. Wave turbulence in elastic plates is typically investigated numerically using spectral simulations with periodic boundary conditions, which are not very realistic. We will present the results of numerical simulations of the dynamics of thin elastic plates in physical space, with arbitrary shapes, boundary conditions, anisotropy and inhomogeneity, and show first results on wave turbulence beyond the conventionally studied rectangular plates. Finally, motivated by a possible method to measure ice-sheet thicknesses in the open ocean, we will further discuss the behavior of a vibrating plate when floating on an inviscid fluid.

  19. Geological process of the slow earthquakes -A hypothesis from an ancient plate boundary fault rock

    NASA Astrophysics Data System (ADS)

    Kitamura, Y.; Kimura, G.; Kawabata, K.

    2012-12-01

    We present an integrated model of the deformation along the subduction plate boundary from the trench to the seismogenic zone. Over years of field based research in the Shimanto Belt accretionary complex, southwest Japan, yielded breaking-through discoveries on plate boundary processes, for example, the first finding of pseudotachylyte in the accretionary prism (Ikesawa et al., 2003). Our aim here is to unveil the geological aspects of slow earthquakes and the related plate boundary processes. Studied tectonic mélanges in the Shimanto Belt are regarded as fossils of plate boundary fault zone in subduction zone. We traced material from different depths along subduction channel using samples from on-land outcrops and ocean drilling cores. As a result, a series of progressive deformation down to the down-dip limit of the seismogenic zone was revealed. Detailed geological survey and structural analyses enabled us to separate superimposed deformation events during subduction. Material involved in the plate boundary deformation is mainly an alternation of sand and mud. As they have different competency and are suffered by simple shear stress field, sandstones break apart in flowing mudstones. We distinguished several stages of these deformations in sandstones and recognized progress in the intensity of deformation with increment of underthrusting. It is also known that the studied Mugi mélange bears pseudotachylyte in its upper bounding fault. Our conclusion illustrates that the subduction channel around the depth of the seismogenic zone forms a thick plate boundary fault zone, where there is a clear segregation in deformation style: a fast and episodic slip at the upper boundary fault and a slow and continuous deformation within the zone. The former fast deformation corresponds to the plate boundary earthquakes and the latter to the slow earthquakes. We further examined numerically whether this plate boundary fault rock is capable of releasing seismic moment enough to

  20. Upper plate contraction north of the migrating Mendocino triple junction northern California: Implications for partitioning of strain

    USGS Publications Warehouse

    McCrory, P.A.

    2000-01-01

    Geologic measurement of permanent contraction across the Cascadia subduction margin constrains one component of the tectonic deformation along the convergent plate boundary, the component critical for the seismic hazard assessment of crustal faults. A comprehensive survey of active faults in onshore subduction margin rocks at the southern end of the Cascadia subduction zone indicates that these thrust faults accommodate ??10 mm/yr of convergence oriented 020??-045??. Seismotectonic models of subduction zones typically assign this upper plate strain to the estimate of aseismic slip on the megathrust. Geodetic models include this permanent crustal strain within estimates of elastic strain accumulation on the megathrust. Both types of models underestimate the seismic hazard associated with crustal faults. Subtracting the observed contraction from the plate convergence rate (40-50 mm/yr; directed 040??-055??) leaves 30-40 mm/yr of convergence to be partitioned between slip on the megathrust, contraction within the southern Juan de Fuca plate, and crustal contraction outside the subduction complex rocks. This simple estimate of slip partitioning neglects the discrepancy between the plate convergence and contraction directions in the vicinity of the Mendocino triple junction. The San Andreas and Cascadia limbs of the Mendocino triple junction are not collinear. The eastern edge of the broad San Andreas boundary is ??85 km east of the Cascadia subduction boundary, and across this zone the Pacific plate converges directly with the North America plate. The skewed orientation of crustal structures just north of the leading edge of the Pacific plate suggests that they are deforming in a hybrid stress field resulting from both Juan de Fuca-North America motion and Pacific-North America motion. The composite convergence direction (50 mm/yr: directed 023??) is consistent with the compressive stress axis (020??) inferred from focal mechanisms of crustal earthquakes in the

  1. Weak incident shock interactions with Mach 8 laminar boundary layers. [of flat plate

    NASA Technical Reports Server (NTRS)

    Kaufman, L. G., II; Johnson, C. B.

    1974-01-01

    Weak shock-wave interactions with boundary layers on a flat plate were investigated experimentally in Mach 8 variable-density tunnel for plate-length Reynolds numbers. The undisturbed boundary layers were laminar over the entire plate length. Pressure and heat-transfer distributions were obtained for wedge-generated incident shock waves that resulted in pressure rises ranging from 1.36 to 4.46 (both nonseparated and separated boundary-layer flows). The resulting heat-transfer amplifications ranged from 1.45 to 14. The distributions followed established trends for nonseparated flows, for incipient separation, and for laminar free-interaction pressure rises. The experimental results corroborated established trends for the extent of the pressure rise and for certain peak heat-transfer correlations.

  2. Owen Fracture Zone: The Arabia-India plate boundary unveiled

    NASA Astrophysics Data System (ADS)

    Fournier, M.; Chamot-Rooke, N.; Rodriguez, M.; Huchon, P.; Petit, C.; Beslier, M. O.; Zaragosi, S.

    2011-02-01

    We surveyed the Owen Fracture Zone at the boundary between the Arabia and India plates in the NW Indian Ocean using a high-resolution multibeam echo-sounder (Owen cruise, 2009) for search of active faults. Bathymetric data reveal a previously unrecognized submarine fault scarp system running for over 800 km between the Sheba Ridge in the Gulf of Aden and the Makran subduction zone. The primary plate boundary structure is not the bathymetrically high Owen Ridge, but is instead a series of clearly delineated strike-slip fault segments separated by several releasing and restraining bends. Despite an abundant sedimentary supply by the Indus River flowing from the Himalaya, fault scarps are not obscured by recent deposits and can be followed over hundreds of kilometres, pointing to very active tectonics. The total strike-slip displacement of the fault system is 10-12 km, indicating that it has been active for the past ~ 3 to 6 Ma if its current rate of motion of 3 ± 1 mm yr- 1 has remained stable. We describe the geometry of this recent fault system, including a major pull-apart basin at the latitude 20°N, and we show that it closely follows an arc of small circle centred on the Arabia-India pole of rotation, as expected for a transform plate boundary.

  3. Interplay of plate convergence and arc migration in the central Mediterranean (Sicily and Calabria)

    NASA Astrophysics Data System (ADS)

    Nijholt, Nicolai; Govers, Rob; Wortel, Rinus

    2016-04-01

    velocities in the Sicily-Calabria region. In these models, we combine far-field velocity boundary conditions, GPE-related body forces, and slab pull/trench suction at the subduction contacts. The location and nature of model faults are based on geological and seismicity observations, and as these faults do not fully enclose blocks our models require both fault slip and distributed strain. We vary fault friction in the models. Extrapolating the (short term) model results to geological time scales, we are able to make a first-order assessment of the regional strain and block rotations resulting from the interplay of arc migration and plate convergence during the evolution of this complex region.

  4. BOLIVAR: the Caribbean-South America plate boundary between 60W and 71W as imaged by seismic reflection data

    NASA Astrophysics Data System (ADS)

    Magnani, M.; Mann, P.; Clark, S. A.; Escalona, A.; Zelt, C. A.; Christeson, G. L.; Levander, A.

    2007-12-01

    We present the results of ~6000km of marine multi-channel seismic (MCS) reflection data collected offshore Venezuela as part of the Broadband Ocean Land Investigation of Venezuela and the Antilles arc Region project (BOLIVAR). The imaged area spans almost 12 degrees of longitude and 5 degrees of latitude and encompasses the diffuse plate boundary between South America (SA) and the SE Caribbean plate (CAR). This plate boundary has been evolving for at least the past 55My when the volcanic island arc that borders the CAR plate started colliding obliquely with the SA continent: the collision front has migrated from west to east. BOLIVAR MCS data show that the crustal architecture of the present plate boundary is dominated by the eastward motion of the Caribbean plate with respect to SA and is characterized by a complex combination of convergent and strike-slip tectonics. To the north, the reflection data image the South Caribbean Deformed Belt (SCDB) and the structures related to the thrusting of the CAR plate under the Leeward Antilles volcanic arc region. The data show that the CAR underthrusting continues as far east as the southern edge of the Aves ridge and detailed stratigraphic dating of the Venezuela basin and trench deposits suggests that the collision began in the Paleogene. The amount of shortening along the SCDB decreases toward the east, in part due to the geometry of plate motion vectors and in part as a result of the NNE escape of the Maracaibo block in western Venezuela. South of the SCDB the MCS profiles cross the Leeward Antilles island arc and Cenozoic sedimentary basins, revealing a complex history of Paleogene-Neogene multiphase extension, compression, and tectonic inversion, as well as the influence of the tectonic activity along the right-lateral El Pilar - San Sebastian fault system. East of the Bonaire basin the MCS data image the southern end of the Aves Ridge abandoned volcanic island arc and the southwestern termination of the Grenada basin

  5. Formation of plate boundaries: The role of mantle volatilization

    NASA Astrophysics Data System (ADS)

    Seno, Tetsuzo; Kirby, Stephen H.

    2014-02-01

    In the early Earth, convection occurred with the accumulation of thick crust over a weak boundary layer downwelling into the mantle (Davies, G.F., 1992. On the emergence of plate tectonics. Geology 20, 963-966.). This would have transitioned to stagnant-lid convection as the mantle cooled (Solomatov, V.S., Moresi, L.-N., 1997. Three regimes of mantle convection with non-Newtonian viscosity and stagnant lid convection on the terrestrial planets. Geophys. Res. Lett. 24, 1907-1910.) or back to a magma ocean as the mantle heated (Sleep, N., 2000. Evolution of the mode of convection within terrestrial planets. J. Geophys. Res. 105(E7): 17563-17578). Because plate tectonics began operating on the Earth, subduction must have been initiated, thus avoiding these shifts. Based on an analogy with the continental crust subducted beneath Hindu Kush and Burma, we propose that the lithosphere was hydrated and/or carbonated by H2O-CO2 vapors released from magmas generated in upwelling plumes and subsequently volatilized during underthrusting, resulting in lubrication of the thrust above, and subduction of the lithosphere along with the overlying thick crust. Once subduction had been initiated, serpentinized forearc mantle may have formed in a wedge-shaped body above a dehydrating slab. In relict arcs, suture zones, or rifted margins, any agent that warms and dehydrates the wedge would weaken the region surrounding it, and form various types of plate boundaries depending on the operating tectonic stress. Thus, once subduction is initiated, formation of plate boundaries might be facilitated by a major fundamental process: weakening due to the release of pressurized water from the warming serpentinized forearc mantle.

  6. Features on Venus generated by plate boundary processes

    NASA Technical Reports Server (NTRS)

    Mckenzie, Dan; Ford, Peter G.; Johnson, Catherine; Parsons, Barry; Sandwell, David; Saunders, Stephen; Solomon, Sean C.

    1992-01-01

    Various observations suggest that there are processes on Venus that produce features similar to those associated with plate boundaries on earth. Synthetic aperture radar images of Venus, taken with a radar whose wavelength is 12.6 cm, are compared with GLORIA images of active plate boundaries, obtained with a sound source whose wavelength is 23 cm. Features similar to transform faults and to abyssal hills on slow and fast spreading ridges can be recognized within the Artemis region of Venus but are not clearly visible elsewhere. The composition of the basalts measured by the Venera 13 and 14 and the Vega 2 spacecraft corresponds to that expected from adiabatic decompression, like that which occurs beneath spreading ridges on earth. Structures that resemble trenches are widespread on Venus and show the same curvature and asymmetry as they do on earth. These observations suggest that the same simple geophysical models that have been so successfully used to understand the tectonics of earth can also be applied to Venus.

  7. The inducement of planetary boundary layer mass convergence associated with varying vorticity beneath tropospheric wind maximum

    NASA Technical Reports Server (NTRS)

    Johnson, D. R.

    1984-01-01

    The effects of the vorticity distribution are applied to study planetary boundary layer mass convergence beneath free tropospheric wind maximum. For given forcing by viscous and pressure gradient forces beneath a wind maximum, boundary layer cross stream mass transport is increased by anticyclonic vorticity on the right flank and decreased by cyclonic vorticity on the left flank. Such frictionally forced mass transport induces boundary layer mass convergence beneath the relative wind maximum. This result is related to the empirical rule that the most intense convection and severe weather frequently develop beneath the 500 mb zero relative vorticity isopleth.

  8. Imaging the ascent path of fluids and partial melts at convergent plate boundaries by geophysical characteristics

    NASA Astrophysics Data System (ADS)

    Luehr, B. G.; Koulakov, I.; Kopp, H.; Rabbel, W.; Zschau, J.

    2011-12-01

    During the last decades many investigations were carried out at active continental margins to understand the link between the subduction of the fluid saturated oceanic plate and the process of ascent of fluids and partial melts forming a magmatic system that leads to volcanism at the earth surface. For this purpose structural information are needed about the slap itself, the part above it, the ascent paths as well as the storage of fluids and partial melts in the mantle and the crust above the down going slap up to the volcanoes on the surface. If we consider statistically the distance between the trench and the volcanic chain as well as the inclination angle of the down going plate, then the mean value of the depth distance down to the Wadati Benioff zone results of approximately 100 kilometers. Surprisingly, this depth range shows pronounced seismicity at most of all subduction zones. Additionally, mineralogical investigations in the lab have shown that the diving plate is maximal dehydrated around 100 km depth because of temperature and pressure conditions at this depth range. However, assuming a vertical fluid ascent there are exceptions. For instance at the Sunda Arc beneath Central Java the vertical distance results in approximately 150 km. But, in this case seismic investigations have shown that the fluids do not ascend vertically, but inclined even from a source area at around the 100 km depth. The ascent of the fluids and the appearance of partial melts as well as the distribution of these materials in the crust can be proved by seismic and seismological methods. With the seismic tomography these areas are imaged by lowered seismic velocities, high Vp/Vs ratios, as well as increased attenuation of seismic shear waves. But, to explore plate boundaries large and complex amphibious experiments are required, in which active and passive seismic investigations should be combined. They have to recover a range from before the trench to far behind the volcanic

  9. Geophysical constraints on geodynamic processes at convergent margins: A global perspective

    NASA Astrophysics Data System (ADS)

    Artemieva, Irina; Thybo, Hans; Shulgin, Alexey

    2016-04-01

    Convergent margins, being the boundaries between colliding lithospheric plates, form the most disastrous areas in the world due to intensive, strong seismicity and volcanism. We review global geophysical data in order to illustrate the effects of the plate tectonic processes at convergent margins on the crustal and upper mantle structure, seismicity, and geometry of subducting slab. We present global maps of free-air and Bouguer gravity anomalies, heat flow, seismicity, seismic Vs anomalies in the upper mantle, and plate convergence rate, as well as 20 profiles across different convergent margins. A global analysis of these data for three types of convergent margins, formed by ocean-ocean, ocean-continent, and continent-continent collisions, allows us to recognize the following patterns. (1) Plate convergence rate depends on the type of convergent margins and it is significantly larger when, at least, one of the plates is oceanic. However, the oldest oceanic plate in the Pacific ocean has the smallest convergence rate. (2) The presence of an oceanic plate is, in general, required for generation of high-magnitude (M N 8.0) earthquakes and for generating intermediate and deep seismicity along the convergent margins. When oceanic slabs subduct beneath a continent, a gap in the seismogenic zone exists at depths between ca. 250 km and 500 km. Given that the seismogenic zone terminates at ca. 200 km depth in case of continent-continent collision, we propose oceanic origin of subducting slabs beneath the Zagros, the Pamir, and the Vrancea zone. (3) Dip angle of the subducting slab in continent-ocean collision does not correlate neither with the age of subducting oceanic slab, nor with the convergence rate. For ocean-ocean subduction, clear trends are recognized: steeply dipping slabs are characteristic of young subducting plates and of oceanic plates with high convergence rate, with slab rotation towards a near-vertical dip angle at depths below ca. 500 km at very high

  10. Actively dewatering fluid-rich zones along the Costa Rica plate boundary fault

    NASA Astrophysics Data System (ADS)

    Bangs, N. L.; McIntosh, K. D.; Silver, E. A.; Kluesner, J. W.; Ranero, C. R.; von Huene, R.

    2012-12-01

    New 3D seismic reflection data reveal distinct evidence for active dewatering above a 12 km wide segment of the plate boundary fault within the Costa Rica subduction zone NW of the Osa Peninsula. In the spring of 2011 we acquired a 11 x 55 km 3D seismic reflection data set on the R/V Langseth using four 6,000 m streamers and two 3,300 in3 airgun arrays to examine the structure of the Costa Rica margin from the trench into the seismogenic zone. We can trace the plate-boundary interface from the trench across our entire survey to where the plate-boundary thrust lies > 10 km beneath the margin shelf. Approximately 20 km landward of the trench beneath the mid slope and at the updip edge of the seismogenic zone, a 12 km wide zone of the plate-boundary interface has a distinctly higher-amplitude seismic reflection than deeper or shallower segments of the fault. Directly above and potentially directly connected with this zone are high-amplitude, reversed-polarity fault-plane reflections that extend through the margin wedge and into overlying slope sediment cover. Within the slope cover, high-amplitude reversed-polarity reflections are common within the network of closely-spaced nearly vertical normal faults and several broadly spaced, more gently dipping thrust faults. These faults appear to be directing fluids vertically toward the seafloor, where numerous seafloor fluid flow indicators, such as pockmarks, mounds and ridges, and slope failure features, are distinct in multibeam and backscatter images. There are distinctly fewer seafloor and subsurface fluid flow indicators both updip and downdip of this zone. We believe these fluids come from a 12 km wide fluid-rich segment of the plate-boundary interface that is likely overpressured and has relatively low shear stress.

  11. Subcontinental-scale crustal velocity changes along the Pacific-North America plate boundary.

    PubMed

    Davis, J L; Wernicke, B P; Bisnath, S; Niemi, N A; Elósegui, P

    2006-06-29

    Transient tectonic deformation has long been noted within approximately 100 km of plate boundary fault zones and within active volcanic regions, but it is unknown whether transient motions also occur at larger scales within plates. Relatively localized transients are known to occur as both seismic and episodic aseismic events, and are generally ascribed to motions of magma bodies, aseismic creep on faults, or elastic or viscoelastic effects associated with earthquakes. However, triggering phenomena and systematic patterns of seismic strain release at subcontinental (approximately 1,000 km) scale along diffuse plate boundaries have long suggested that energy transfer occurs at larger scale. Such transfer appears to occur by the interaction of stresses induced by surface wave propagation and magma or groundwater in the crust, or from large-scale stress diffusion within the oceanic mantle in the decades following clusters of great earthquakes. Here we report geodetic evidence for a coherent, subcontinental-scale change in tectonic velocity along a diffuse approximately 1,000-km-wide deformation zone. Our observations are derived from continuous GPS (Global Positioning System) data collected over the past decade across the Basin and Range province, which absorbs approximately 25 per cent of Pacific-North America relative plate motion. The observed changes in site velocity define a sharp boundary near the centre of the province oriented roughly parallel to the north-northwest relative plate motion vector. We show that sites to the west of this boundary slowed relative to sites east of it by approximately 1 mm yr(-1) starting in late 1999.

  12. Tectonics of the Nazca-Antarctic plate boundary

    NASA Technical Reports Server (NTRS)

    Anderson-Fontana, Sandra; Larson, Roger L.; Engeln, Joseph F.; Lundgren, Paul; Stein, Seth

    1987-01-01

    A new bathymetric chart of part of the Chile transform system is constructed, based mainly on an R/V Endeavor survey from 100 deg W to its intersection with the East Ridge of the Juan Fernandez microplate. A generally continuous lineated trend can be followed through the entire region, with the transform valley being relatively narrow and well-defined from 109 deg W to approximately 104 deg 30 min W. The fracture zone then widens to the east, with at least two probable en echelon offsets to the south at 104 deg and 102 deg W. Six new strike-slip mechanisms along the Chile Transform and one normal fault mechanism near the northern end of the Chile Rise, inverted together with other plate-motion data from the eastern portion of the boundary, produce a new best-fit Euler pole for the Nazca-Antarctic plate pair, providing tighter constraints on the relative plate motions.

  13. Tectonics of the Scotia-Antarctica plate boundary constrained from seismic and seismological data

    NASA Astrophysics Data System (ADS)

    Civile, D.; Lodolo, E.; Vuan, A.; Loreto, M. F.

    2012-07-01

    The plate boundary between the Scotia and Antarctic plates runs along the broadly E-W trending South Scotia Ridge. It is a mainly transcurrent margin that juxtaposes thinned continental and transitional crust elements with restricted oceanic basins and deep troughs. Seismic profiles and regional-scale seismological constraints are used to define the peculiarities of the crustal structures in and around the southern Scotia Sea, and focal solutions from recent earthquakes help to understand the present-day geodynamic setting. The northern edge of the western South Scotia Ridge is marked by a sub-vertical, left-lateral master fault. Locally, a narrow wedge of accreted sediments is present at the base of the slope. This segment represents the boundary between the Scotia plate and the independent South Shetland continental block. Along the northern margin of the South Orkney microcontinent, the largest fragment of the South Scotia Ridge, an accretionary prism is present at the base of the slope, which was possibly created by the eastward drift of the South Orkney microcontinent and the consequent subduction of the transitional crust present to the north. East of the South Orkney microcontinent, the physiography and structure of the plate boundary are less constrained. Here the tectonic regime exhibits mainly strike-slip behavior with some grade of extensional component, and the plate boundary is segmented by a series of NNW-SSE trending release zones which favored the fragmentation and dispersion of the crustal blocks. Seismic data have also identified, along the north-western edge of the South Scotia Ridge, an elevated region - the Ona Platform - which can be considered, along with the Terror Rise, as the conjugate margin of the Tierra del Fuego, before the Drake Passage opening. We propose here an evolutionary sketch for the plate boundary (from the Late Oligocene to the present) encompassing the segment from the Elephant Island platform to the Herdman Bank.

  14. Hidden Earthquake Potential in Plate Boundary Transition Zones

    NASA Astrophysics Data System (ADS)

    Furlong, Kevin P.; Herman, Matthew; Govers, Rob

    2017-04-01

    Plate boundaries can exhibit spatially abrupt changes in their long-term tectonic deformation (and associated kinematics) at triple junctions and other sites of changes in plate boundary structure. How earthquake behavior responds to these abrupt tectonic changes is unclear. The situation may be additionally obscured by the effects of superimposed deformational signals - juxtaposed short-term (earthquake cycle) kinematics may combine to produce a net deformational signal that does not reflect intuition about the actual strain accumulation in the region. Two examples of this effect are in the vicinity of the Mendocino triple junction (MTJ) along the west coast of North America, and at the southern end of the Hikurangi subduction zone, New Zealand. In the region immediately north of the MTJ, GPS-based observed crustal displacements (relative to North America (NAm)) are intermediate between Pacific and Juan de Fuca (JdF) motions. With distance north, these displacements rotate to become more aligned with JdF - NAm displacements, i.e. to motions expected along a coupled subduction interface. The deviation of GPS motions from the coupled subduction interface signal near the MTJ has been previously interpreted to reflect clock-wise rotation of a coastal, crustal block and/or reduced coupling at the southern Cascadia margin. The geologic record of crustal deformation near the MTJ reflects the combined effects of northward crustal shortening (on geologic time scales) associated with the MTJ Crustal Conveyor (Furlong and Govers, 1999) overprinted onto the subduction earthquake cycle signal. With this interpretation, the Cascadia subduction margin appears to be well-coupled along its entire length, consistent with paleo-seismic records of large earthquake ruptures extending to its southern limit. At the Hikurangi to Alpine Fault transition in New Zealand, plate interactions switch from subduction to oblique translation as a consequence of changes in lithospheric structure of

  15. Florida: A Jurassic transform plate boundary

    USGS Publications Warehouse

    Klitgord, Kim D.; Popenoe, Peter; Schouten, Hans

    1984-01-01

    Magnetic, gravity, seismic, and deep drill hole data integrated with plate tectonic reconstructions substantiate the existence of a transform plate boundary across southern Florida during the Jurassic. On the basis of this integrated suite of data the pre-Cretaceous Florida-Bahamas region can be divided into the pre-Jurassic North American plate, Jurassic marginal rift basins, and a broad Jurassic transform zone including stranded blocks of pre-Mesozoic continental crust. Major tectonic units include the Suwannee basin in northern Florida containing Paleozoic sedimentary rocks, a central Florida basement complex of Paleozoic age crystalline rock, the west Florida platform composed of stranded blocks of continental crust, the south Georgia rift containing Triassic sedimentary rocks which overlie block-faulted Suwannee basin sedimentary rocks, the Late Triassic-Jurassic age Apalachicola rift basin, and the Jurassic age south Florida, Bahamas, and Blake Plateau marginal rift basins. The major tectonic units are bounded by basement hinge zones and fracture zones (FZ). The basement hinge zone represents the block-faulted edge of the North American plate, separating Paleozoic and older crustal rocks from Jurassic rifted crust beneath the marginal basins. Fracture zones separate Mesozoic marginal sedimentary basins and include the Blake Spur FZ, Jacksonville FZ, Bahamas FZ, and Cuba FZ, bounding the Blake Plateau, Bahamas, south Florida, and southeastern Gulf of Mexico basins. The Bahamas FZ is the most important of all these features because its northwest extension coincides with the Gulf basin marginal fault zone, forming the southern edge of the North American plate during the Jurassic. The limited space between the North American and the South American/African plates requires that the Jurassic transform zone, connecting the Central Atlantic and the Gulf of Mexico spreading systems, was located between the Bahamas and Cuba FZ's in the region of southern Florida. Our

  16. Transitional and turbulent flat-plate boundary layers with heat transfer

    NASA Astrophysics Data System (ADS)

    Wu, Xiaohua; Moin, Parviz

    2010-11-01

    We report on our direct numerical simulation of two incompressible, nominally zero-pressure-gradient flat-plate boundary layers from momentum thickness Reynolds number 80 to 1950. Heat transfer between the constant-temperature solid surface and the free-stream is also simulated with molecular Prandtl number=1. Throughout the entire flat-plate, the ratio of Stanton number and skin-friction St/Cfdeviates from the exact Reynolds analogy value of 0.5 by less than 1.5%. Turbulent Prandtl number t peaks at the wall. Preponderance of hairpin vortices is observed in both the transitional and turbulent regions of the boundary layers. In particular, the internal structure of merged turbulent spots is hairpin forest; the internal structure of infant turbulent spots is hairpin packet. Numerous hairpin vortices are readily detected in both the near-wall and outer regions of the boundary layers up to momentum thickness Reynolds number 1950. This suggests that the hairpin vortices in the turbulent region are not simply the aged hairpin forests convected from the upstream transitional region. Temperature iso-surfaces in the companion thermal boundary layers are found to be a useful tracer in identifying hairpin vortex structures.

  17. Seismic Velocity and Elastic Properties of Plate Boundary Faults

    NASA Astrophysics Data System (ADS)

    Jeppson, Tamara N.

    The elastic properties of fault zone rock at depth play a key role in rupture nucleation, propagation, and the magnitude of fault slip. Materials that lie within major plate boundary fault zones often have very different material properties than standard crustal rock values. In order to understand the mechanics of faulting at plate boundaries, we need to both measure these properties and understand how they govern the behavior of different types of faults. Mature fault zones tend to be identified in large-scale geophysical field studies as zones with low seismic velocity and/or electrical resistivity. These anomalous properties are related to two important mechanisms: (1) mechanical or diagenetic alteration of the rock materials and/or (2) pore fluid pressure and stress effects. However, in remotely-sensed and large-length-scale data it is difficult to determine which of these mechanisms are affecting the measured properties. The objective of this dissertation research is to characterize the seismic velocity and elastic properties of fault zone rocks at a range of scales, with a focus on understanding why the fault zone properties are different from those of the surrounding rock and the potential effects on earthquake rupture and fault slip. To do this I performed ultrasonic velocity experiments under elevated pressure conditions on drill core and outcrops samples from three plate boundary fault zones: the San Andreas Fault, California, USA; the Alpine Fault, South Island, New Zealand; and the Japan Trench megathrust, Japan. Additionally, I compared laboratory measurements to sonic log and large-scale seismic data to examine the scale-dependence of the measured properties. The results of this study provide the most comprehensive characterization of the seismic velocities and elastic properties of fault zone rocks currently available. My work shows that fault zone rocks at mature plate boundary faults tend to be significantly more compliant than surrounding crustal

  18. Buckling transition and boundary layer in non-Euclidean plates.

    PubMed

    Efrati, Efi; Sharon, Eran; Kupferman, Raz

    2009-07-01

    Non-Euclidean plates are thin elastic bodies having no stress-free configuration, hence exhibiting residual stresses in the absence of external constraints. These bodies are endowed with a three-dimensional reference metric, which may not necessarily be immersible in physical space. Here, based on a recently developed theory for such bodies, we characterize the transition from flat to buckled equilibrium configurations at a critical value of the plate thickness. Depending on the reference metric, the buckling transition may be either continuous or discontinuous. In the infinitely thin plate limit, under the assumption that a limiting configuration exists, we show that the limit is a configuration that minimizes the bending content, among all configurations with zero stretching content (isometric immersions of the midsurface). For small but finite plate thickness, we show the formation of a boundary layer, whose size scales with the square root of the plate thickness and whose shape is determined by a balance between stretching and bending energies.

  19. Kinematic signature of India/Australia plates break-up

    NASA Astrophysics Data System (ADS)

    Iaffaldano, G.; Bunge, H.

    2008-12-01

    The paradigm of Plate Tectonics states that the uppermost layer of the Earth is made of a number of quasi- rigid blocks moving at different rates in different directions, while most of the deformation is focused along their boundaries. Perhaps one of the most interesting and intriguing processes in Plate Tectonics is the generation of new plate boundaries. The principle of inertia implies that any such event would invariably trigger changes in plate motions, because the budget of mantle basal-drag and plate-boundary forces would be repartitioned. A recent episode is thought to have occurred in the Indian Ocean, where a variety of evidences - including localized seismicity along the Nienty East Ridge, compression-generated unconformities of ocean-floor sediments, and identified paleomagnetic isochrones - suggest the genesis of a boundary separating the India and Australia plates. Here we use global numerical models of the coupled mantle/lithosphere system to show for the first time that an event of separation between India and Australia, having occurred sometime between 11 and 8 Myrs ago, has left a distinct signature in the observed record of plate motions. Specifically, while motions of India and Australia relative to fixed Eurasia are almost indistinguishable prior to 11 Myrs ago, their convergence to Eurasia since then differs significantly, by as much as 2 cm/yr. Finally, we speculate about possible causes for the separation between India and Australia plates.

  20. Kinematic signature of India/Australia plates break-up

    NASA Astrophysics Data System (ADS)

    Iaffaldano, G.; Bunge, H.-P.

    2009-04-01

    The paradigm of Plate Tectonics states that the uppermost layer of the Earth is made of a number of quasi-rigid blocks moving at different rates in different directions, while most of the deformation is focused along their boundaries. Perhaps one of the most interesting and intriguing processes in Plate Tectonics is the generation of new plate boundaries. The principle of inertia implies that any such event would invariably trigger changes in plate motions, because the budget of mantle basal-drag and plate-boundary forces would be repartitioned. A recent episode is thought to have occurred in the Indian Ocean, where a variety of evidences - including localized seismicity along the Nienty East Ridge, compression-generated unconformities of ocean-floor sediments, and identified paleomagnetic isochrones - suggest the genesis of a boundary separating the India and Australia plates. Here we use global numerical models of the coupled mantle/lithosphere system to show for the first time that an event of separation between India and Australia, having occurred sometime between 11 and 8 Myrs ago, has left a distinct signature in the observed record of plate motions. Specifically, while motions of India and Australia relative to fixed Eurasia are almost indistinguishable prior to 11 Myrs ago, their convergence to Eurasia since then differs significantly, by as much as 2 cm/yr. Finally, we speculate about possible causes for the separation between India and Australia plates.

  1. The Iceland Plate Boundary Zone: Propagating Rifts, Migrating Transforms, and Rift-Parallel Strike-Slip Faults

    NASA Astrophysics Data System (ADS)

    Karson, J. A.

    2017-11-01

    Unlike most of the Mid-Atlantic Ridge, the North America/Eurasia plate boundary in Iceland lies above sea level where magmatic and tectonic processes can be directly investigated in subaerial exposures. Accordingly, geologic processes in Iceland have long been recognized as possible analogs for seafloor spreading in the submerged parts of the mid-ocean ridge system. Combining existing and new data from across Iceland provides an integrated view of this active, mostly subaerial plate boundary. The broad Iceland plate boundary zone includes segmented rift zones linked by transform fault zones. Rift propagation and transform fault migration away from the Iceland hotspot rearrange the plate boundary configuration resulting in widespread deformation of older crust and reactivation of spreading-related structures. Rift propagation results in block rotations that are accommodated by widespread, rift-parallel, strike-slip faulting. The geometry and kinematics of faulting in Iceland may have implications for spreading processes elsewhere on the mid-ocean ridge system where rift propagation and transform migration occur.

  2. Pliocene eclogite exhumation at plate tectonic rates in eastern Papua New Guinea.

    PubMed

    Baldwin, Suzanne L; Monteleone, Brian D; Webb, Laura E; Fitzgerald, Paul G; Grove, Marty; Hill, E June

    2004-09-16

    As lithospheric plates are subducted, rocks are metamorphosed under high-pressure and ultrahigh-pressure conditions to produce eclogites and eclogite facies metamorphic rocks. Because chemical equilibrium is rarely fully achieved, eclogites may preserve in their distinctive mineral assemblages and textures a record of the pressures, temperatures and deformation the rock was subjected to during subduction and subsequent exhumation. Radioactive parent-daughter isotopic variations within minerals reveal the timing of these events. Here we present in situ zircon U/Pb ion microprobe data that dates the timing of eclogite facies metamorphism in eastern Papua New Guinea at 4.3 +/- 0.4 Myr ago, making this the youngest documented eclogite exposed at the Earth's surface. Eclogite exhumation from depths of approximately 75 km was extremely rapid and occurred at plate tectonic rates (cm yr(-1)). The eclogite was exhumed within a portion of the obliquely convergent Australian-Pacific plate boundary zone, in an extending region located west of the Woodlark basin sea floor spreading centre. Such rapid exhumation (> 1 cm yr(-1)) of high-pressure and, we infer, ultrahigh-pressure rocks is facilitated by extension within transient plate boundary zones associated with rapid oblique plate convergence.

  3. When Boundary Layers Collide: Plumes v. Subduction Zones

    NASA Astrophysics Data System (ADS)

    Moresi, L. N.; Betts, P. G.; Miller, M. S.; Willis, D.; O'Driscoll, L.

    2014-12-01

    Many subduction zones retreat while hotspots remain sufficiently stable in the mantle to provide an approximate reference frame. As a consequence, the mantle can be thought of as an unusual convecting system which self-organises to promote frequent collisions of downgoing material with upwellings. We present three 3D numerical models of subduction where buoyant material from a plume head and an associated ocean-island chain or plateau produce flat slab subduction and deformation of the over-riding plate. We observe transient instabilities of the convergent margin including: contorted trench geometry; trench migration parallel with the plate margin; folding of the subducting slab and orocline development at the convergent margin; and transfer of the plateau to the overriding plate. The presence of plume material beneath the oceanic plateau causes flat subduction above the plume, resulting in a "bowed" shaped subducting slab. In the absence of a plateau at the surface, the slab can remain uncoupled from the over-riding plate during very shallow subduction and hence there is very little shortening at the surface or advance of the plate boundary. In plateau-only models, plateau accretion at the edge of the overriding plate results in trench migration around the edge of the plateau before subduction re-establishes directly behind the trailing edge of the plateau. The plateau shortens during accretion and some plateau material subducts. In a plateau-plus-plume model, accretion is associated with rapid trench advance as the flat slab drives the plateau into the margin. This indentation stops once a new convergent boundary forms close to the original trench location. A slab window formed beneath the accreted plateau allows plume material to flow from beneath the subducting plate to the underside of the overriding plate. In all of these models the subduction zone maintains a relatively stable configuration away from the buoyancy anomalies within the downgoing plate. The

  4. Receptivity of Flat-Plate Boundary Layer in a Non-Uniform Free Stream (Vorticity Normal to the Plate)

    NASA Technical Reports Server (NTRS)

    Kogan, M. N.; Ustinov, M. V.

    1997-01-01

    Work is devoted to study of free-stream vorticity normal to leading edge interaction with boundary layer over plate and resulting flow distortion influence on laminar-turbulent transition. In experiments made the wake behind the vertically stretched wire was used as a source of vortical disturbances and its effect on the boundary layer over the horizontally mounted plate with various leading edge shapes was investigated. The purpose of experiments was to check the predictions of theoretical works of M.E. Goldstein, et. al. This theory shows that small free-stream inhomogeneity interacting with leading edge produces considerable distortion of boundary layer flow. In general, results obtained confirms predictions of Goldstein's theory, i.e., the amplification of steady vortical disturbances in boundary layer caused by vortex lines stretching was observed. Experimental results fully coincide with predictions of theory for large Reynolds number, relatively sharp leading edge and small disturbances. For large enough disturbances the flow distortion caused by symmetric wake unexpectedly becomes antisymmetric in spanwise direction. If the leading edge is too blunt the maximal distortion takes place immediately at the nose and no further amplification was observed. All these conditions and results are beyond the scope of Goldstein's theory.

  5. Nubia-Arabia-Eurasia plate motions and the dynamics of Mediterranean and Middle East tectonics

    NASA Astrophysics Data System (ADS)

    Reilinger, Robert; McClusky, Simon

    2011-09-01

    We use geodetic and plate tectonic observations to constrain the tectonic evolution of the Nubia-Arabia-Eurasia plate system. Two phases of slowing of Nubia-Eurasia convergence, each of which resulted in an ˜50 per cent decrease in the rate of convergence, coincided with the initiation of Nubia-Arabia continental rifting along the Red Sea and Somalia-Arabia rifting along the Gulf of Aden at 24 ± 4 Ma, and the initiation of oceanic rifting along the full extent of the Gulf of Aden at 11 ± 2 Ma. In addition, both the northern and southern Red Sea (Nubia-Arabia plate boundary) underwent changes in the configuration of extension at 11 ± 2 Ma, including the transfer of extension from the Suez Rift to the Gulf of Aqaba/Dead Sea fault system in the north, and from the central Red Sea Basin (Bab al Mandab) to the Afar volcanic zone in the south. While Nubia-Eurasia convergence slowed, the rate of Arabia-Eurasia convergence remained constant within the resolution of our observations, and is indistinguishable from the present-day global positioning system rate. The timing of the initial slowing of Nubia-Eurasia convergence (24 ± 4 Ma) corresponds to the initiation of extensional tectonics in the Mediterranean Basin, and the second phase of slowing to changes in the character of Mediterranean extension reported at ˜11 Ma. These observations are consistent with the hypothesis that changes in Nubia-Eurasia convergence, and associated Nubia-Arabia divergence, are the fundamental cause of both Mediterranean and Middle East post-Late Oligocene tectonics. We speculate about the implications of these kinematic relationships for the dynamics of Nubia-Arabia-Eurasia plate interactions, and favour the interpretation that slowing of Nubia-Eurasia convergence, and the resulting tectonic changes in the Mediterranean Basin and Middle East, resulted from a decrease in slab pull from the Arabia-subducted lithosphere across the Nubia-Arabia, evolving plate boundary.

  6. High-density convergent plasma sputtering device for a liquid metal target using an unheated glass plate

    NASA Astrophysics Data System (ADS)

    Motomura, T.; Tabaru, T.

    2018-06-01

    A high-density convergent plasma sputtering device has been developed for a liquid metal target, using an unheated glass plate. The convergent magnetic field lines, which are produced by an external solenoid coil and a permanent magnet positioned behind the liquid metal target, effectively transport high-density plasmas near the target. In this study, a liquid gallium target was sputtered with nitrogen plasmas, without additive gas required for depositing gallium nitride films on the unheated substrates. The deposition rate of the GaN film was estimated at ˜13 nm/min at a gas pressure of 0.2 Pa. A strong diffraction peak was observed along the GaN (002) axis, with the use of an unheated glass plate and a target-substrate distance of ˜45 mm.

  7. Measurements of strain at plate boundaries using space based geodetic techniques

    NASA Technical Reports Server (NTRS)

    Robaudo, Stefano; Harrison, Christopher G. A.

    1993-01-01

    We have used the space based geodetic techniques of Satellite Laser Ranging (SLR) and VLBI to study strain along subduction and transform plate boundaries and have interpreted the results using a simple elastic dislocation model. Six stations located behind island arcs were analyzed as representative of subduction zones while 13 sites located on either side of the San Andreas fault were used for the transcurrent zones. The length deformation scale was then calculated for both tectonic margins by fitting the relative strain to an exponentially decreasing function of distance from the plate boundary. Results show that space-based data for the transcurrent boundary along the San Andreas fault help to define better the deformation length scale in the area while fitting nicely the elastic half-space earth model. For subduction type bonndaries the analysis indicates that there is no single scale length which uniquely describes the deformation. This is mainly due to the difference in subduction characteristics for the different areas.

  8. Interaction between the Dauki and the Indo-Burman convergence boundaries from teleseismic and locally recorded earthquake data

    NASA Astrophysics Data System (ADS)

    Howe, M.; Moulik, P.; Seeber, L.; Kim, W.; Steckler, M. S.

    2012-12-01

    The Himalayan and the Burma Arcs converge onto the Indian plate from opposite sides near their syntaxial juncture and have reduced it to a sliver. Both geology and seismicity point to recent internal deformation and high seismogenic potential within this sliver. Large historical earthquakes, including the Great Indian earthquake of 1897 (Mw ~8.1), along with the recent seismicity, suggest that the cratonic blocks in the region are bounded by active faults. The most prominent is the E-W trending Dauki Fault, a deeply-rooted, north-dipping thrust fault, situated between the Shillong massif to the north and the Sylhet Basin to the south. Along the Burma Arc, the subducted seismogenic slab of the Indian plate is continuous north to the syntaxis. Yet the Naga and Tripura segments of the accretionary fold belt, respectively north and south of the easterly extrapolation of the Dauki fault, are distinct. Accretion has advanced far westward into the foredeep of the Dauki structure along the front of the Tripura segment, while it has remained stunted facing the uplifted Shillong massif along the Naga segment. Moreover, the Dauki topographic front can be traced eastwards across the Burma Arc separating the two segments. Recent earthquakes support the hypothesis that the Dauki convergence structure continues below the Burma accretionary belt. Using teleseismic and regional data from the deployment of a local network, we explore the interaction of the Dauki thrust fault with the Burma Arc subduction zone. Preliminary observations include: While seismicity is concentrated in the slab at the eastward extrapolation of the Dauki fault, shallow seismicity is diffuse and does not illuminate the Dauki fault itself. P-axes in moment-tensor solutions of earthquakes within the Indian plate tend to be directed N-S and are locally parallel to the India-Burma boundary, particularly in the slab. T-axes tend to be oriented E-W with a strong tendency to follow the slab down dip. This pattern

  9. Relaxation of the accelerating-gas boundary layer to the test-gas boundary layer on a flat plate in an expansion tube

    NASA Technical Reports Server (NTRS)

    Gupta, R. N.; Trimpi, R. L.

    1973-01-01

    An analytic investigation of the relaxation of the accelerating-gas boundary layer to the test-gas boundary layer over a flat plate mounted in an expansion tube has been conducted. In this treatment, nitrogen has been considered as the test gas and helium as the accelerating gas. The problem is analyzed in two conically similar limits: (1) when the time lag between the arrival of the shock and the interface at the leading edge of the plate is very large, and (2) when this time lag is negligible. The transient laminar boundary-layer equations of a perfect binary-gas mixture are taken as the flow governing equations. These coupled equations have been solved numerically by Gauss-Seidel line-relaxation method. The results predict the transient behavior as well as the time required for an all-helium accelerating-gas boundary layer to relax to an all-nitrogen boundary layer.

  10. The roof plate boundary is a bi-directional organiser of dorsal neural tube and choroid plexus development.

    PubMed

    Broom, Emma R; Gilthorpe, Jonathan D; Butts, Thomas; Campo-Paysaa, Florent; Wingate, Richard J T

    2012-11-01

    The roof plate is a signalling centre positioned at the dorsal midline of the central nervous system and generates dorsalising morphogenic signals along the length of the neuraxis. Within cranial ventricles, the roof plate gives rise to choroid plexus, which regulates the internal environment of the developing and adult brain and spinal cord via the secretion of cerebrospinal fluid. Using the fourth ventricle as our model, we show that the organiser properties of the roof plate are determined by its boundaries with the adjacent neuroepithelium. Through a combination of in ovo transplantation, co-culture and electroporation techniques in chick embryos between embryonic days 3 and 6, we demonstrate that organiser properties are maintained by interactions between the non-neural roof plate and the neural rhombic lip. At the molecular level, this interaction is mediated by Delta-Notch signalling and upregulation of the chick homologue of Hes1: chairy2. Gain- and loss-of-function approaches reveal that cdelta1 is both necessary and sufficient for organiser function. Our results also demonstrate that while chairy2 is specifically required for the maintenance of the organiser, its ectopic expression is not sufficient to recapitulate organiser properties. Expression of atonal1 in the rhombic lip adjacent at the roof plate boundary is acutely dependent on both boundary cell interactions and Delta-Notch signalling. Correspondingly, the roof plate boundary organiser also signals to the roof plate itself to specify the expression of early choroid plexus markers. Thus, the roof plate boundary organiser signals bi-directionally to acutely coordinate the development of adjacent neural and non-neural tissues.

  11. Dynamic behaviour of thin composite plates for different boundary conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sprintu, Iuliana, E-mail: sprintui@yahoo.com, E-mail: rotaruconstantin@yahoo.com; Rotaru, Constantin, E-mail: sprintui@yahoo.com, E-mail: rotaruconstantin@yahoo.com

    2014-12-10

    In the context of composite materials technology, which is increasingly present in industry, this article covers a topic of great interest and theoretical and practical importance. Given the complex design of fiber-reinforced materials and their heterogeneous nature, mathematical modeling of the mechanical response under different external stresses is very difficult to address in the absence of simplifying assumptions. In most structural applications, composite structures can be idealized as beams, plates, or shells. The analysis is reduced from a three-dimensional elasticity problem to a oneor two-dimensional problem, based on certain simplifying assumptions that can be made because the structure is thin.more » This paper aims to validate a mathematical model illustrating how thin rectangular orthotropic plates respond to the actual load. Thus, from the theory of thin plates, new analytical solutions are proposed corresponding to orthotropic rectangular plates having different boundary conditions. The proposed analytical solutions are considered both for solving equation orthotropic rectangular plates and for modal analysis.« less

  12. Global isostatic geoid anomalies for plate and boundary layer models of the lithosphere

    NASA Technical Reports Server (NTRS)

    Hager, B. H.

    1981-01-01

    Commonly used one dimensional geoid models predict that the isostatic geoid anomaly over old ocean basins for the boundary layer thermal model of the lithosphere is a factor of two greater than that for the plate model. Calculations presented, using the spherical analogues of the plate and boundary layer thermal models, show that for the actual global distribution of plate ages, one dimensional models are not accurate and a spherical, fully three dimensional treatment is necessary. The maximum difference in geoid heights predicted for the two models is only about two meters. The thermal structure of old lithosphere is unlikely to be resolvable using global geoid anomalies. Stripping the effects of plate aging and a hypothetical uniform, 35 km, isostatically-compensated continental crust from the observed geoid emphasizes that the largest-amplitude geoid anomaly is the geoid low of almost 120 m over West Antarctica, a factor of two greater than the low of 60 m over Ceylon.

  13. In-Flight Boundary-Layer Transition of a Large Flat Plate at Supersonic Speeds

    NASA Technical Reports Server (NTRS)

    Banks, D. W.; Frederick, M. A.; Tracy, R. R.; Matisheck, J. R.; Vanecek, N. D.

    2012-01-01

    A flight experiment was conducted to investigate the pressure distribution, local-flow conditions, and boundary-layer transition characteristics on a large flat plate in flight at supersonic speeds up to Mach 2.00. The tests used a NASA testbed aircraft with a bottom centerline mounted test fixture. The primary objective of the test was to characterize the local flow field in preparation for future tests of a high Reynolds number natural laminar flow test article. A second objective was to determine the boundary-layer transition characteristics on the flat plate and the effectiveness of using a simplified surface coating. Boundary-layer transition was captured in both analog and digital formats using an onboard infrared imaging system. Surface pressures were measured on the surface of the flat plate. Flow field measurements near the leading edge of the test fixture revealed the local flow characteristics including downwash, sidewash, and local Mach number. Results also indicated that the simplified surface coating did not provide sufficient insulation from the metallic structure, which likely had a substantial effect on boundary-layer transition compared with that of an adiabatic surface. Cold wall conditions were predominant during the acceleration to maximum Mach number, and warm wall conditions were evident during the subsequent deceleration.

  14. The roof plate boundary is a bi-directional organiser of dorsal neural tube and choroid plexus development

    PubMed Central

    Broom, Emma R.; Gilthorpe, Jonathan D.; Butts, Thomas; Campo-Paysaa, Florent; Wingate, Richard J. T.

    2012-01-01

    The roof plate is a signalling centre positioned at the dorsal midline of the central nervous system and generates dorsalising morphogenic signals along the length of the neuraxis. Within cranial ventricles, the roof plate gives rise to choroid plexus, which regulates the internal environment of the developing and adult brain and spinal cord via the secretion of cerebrospinal fluid. Using the fourth ventricle as our model, we show that the organiser properties of the roof plate are determined by its boundaries with the adjacent neuroepithelium. Through a combination of in ovo transplantation, co-culture and electroporation techniques in chick embryos between embryonic days 3 and 6, we demonstrate that organiser properties are maintained by interactions between the non-neural roof plate and the neural rhombic lip. At the molecular level, this interaction is mediated by Delta-Notch signalling and upregulation of the chick homologue of Hes1: chairy2. Gain- and loss-of-function approaches reveal that cdelta1 is both necessary and sufficient for organiser function. Our results also demonstrate that while chairy2 is specifically required for the maintenance of the organiser, its ectopic expression is not sufficient to recapitulate organiser properties. Expression of atonal1 in the rhombic lip adjacent at the roof plate boundary is acutely dependent on both boundary cell interactions and Delta-Notch signalling. Correspondingly, the roof plate boundary organiser also signals to the roof plate itself to specify the expression of early choroid plexus markers. Thus, the roof plate boundary organiser signals bi-directionally to acutely coordinate the development of adjacent neural and non-neural tissues. PMID:23052907

  15. Global plate boundary evolution and kinematics since the late Paleozoic

    NASA Astrophysics Data System (ADS)

    Matthews, Kara J.; Maloney, Kayla T.; Zahirovic, Sabin; Williams, Simon E.; Seton, Maria; Müller, R. Dietmar

    2016-11-01

    Many aspects of deep-time Earth System models, including mantle convection, paleoclimatology, paleobiogeography and the deep Earth carbon cycle, require high-resolution plate motion models that include the evolution of the mosaic of plate boundaries through time. We present the first continuous late Paleozoic to present-day global plate model with evolving plate boundaries, building on and extending two previously published models for the late Paleozoic (410-250 Ma) and Mesozoic-Cenozoic (230-0 Ma). We ensure continuity during the 250-230 Ma transition period between the two models, update the absolute reference frame of the Mesozoic-Cenozoic model and add a new Paleozoic reconstruction for the Baltica-derived Alexander Terrane, now accreted to western North America. This 410-0 Ma open access model provides a framework for deep-time whole Earth modelling and acts as a base for future extensions and refinement. We analyse the model in terms of the number of plates, predicted plate size distribution, plate and continental root mean square (RMS) speeds, plate velocities and trench migration through time. Overall model trends share many similarities to those for recent times, which we use as a first order benchmark against which to compare the model and identify targets for future model refinement. Except for during the period 260-160 Ma, the number of plates (16-46) and ratio of "large" plates (≥ 107.5 km2) to smaller plates ( 2.7-6.6) are fairly similar to present-day values (46 and 6.6, respectively), with lower values occurring during late Paleozoic assembly and growth of Pangea. This temporal pattern may also reflect difficulties in reconstructing small, now subducted oceanic plates further back in time, as well as whether a supercontinent is assembling or breaking up. During the 260-160 Ma timeframe the model reaches a minima in the number of plates, in contrast to what we would expect during initial Pangea breakup and thus highlighting the need for refinement

  16. Rayleigh phase velocities in the upper mantle of the Pacific-North American plate boundary in southern California

    NASA Astrophysics Data System (ADS)

    Escobar, L.; Weeraratne, D. S.; Kohler, M. D.

    2013-05-01

    The Pacific-North America plate boundary, located in Southern California, presents an opportunity to study a unique tectonic process that has been shaping the plate tectonic setting of the western North American and Mexican Pacific margin since the Miocene. This is one of the few locations where the interaction between a migrating oceanic spreading center and a subduction zone can be studied. The rapid subduction of the Farallon plate outpaced the spreading rate of the East Pacific Rise rift system causing it to be subducted beneath southern California and northern Mexico 30 Ma years ago. The details of microplate capture, reorganization, and lithospheric deformation on both the Pacific and North American side of this boundary is not well understood, but may have important implications for fault activity, stresses, and earthquake hazard analysis both onshore and offshore. We use Rayleigh waves recorded by an array of 34 ocean bottom seismometers deployed offshore southern California for a 12 month duration from August 2010 to 2011. Our array recorded teleseismic earthquakes at distances ranging from 30° to 120° with good signal-to-noise ratios for magnitudes Mw ≥ 5.9. The events exhibit good azimuthal distribution and enable us to solve simultaneously for Rayleigh wave phase velocities and azimuthal anisotropy. Fewer events occur at NE back-azimuths due to the lack of seismicity in central North America. We consider seismic periods between 18 - 90 seconds. The inversion technique considers non-great circle path propagation by representing the arriving wave field as two interfering plane waves. This takes advantage of statistical averaging of a large number of paths that travel offshore southern California and northern Mexico allowing for improved resolution and parameterization of lateral seismic velocity variations at lithospheric and sublithospheric depths. We present phase velocity results for periods sampling mantle structure down to 150 km depth along the

  17. Gradual unlocking of plate boundary controlled initiation of the 2014 Iquique earthquake.

    PubMed

    Schurr, Bernd; Asch, Günter; Hainzl, Sebastian; Bedford, Jonathan; Hoechner, Andreas; Palo, Mauro; Wang, Rongjiang; Moreno, Marcos; Bartsch, Mitja; Zhang, Yong; Oncken, Onno; Tilmann, Frederik; Dahm, Torsten; Victor, Pia; Barrientos, Sergio; Vilotte, Jean-Pierre

    2014-08-21

    On 1 April 2014, Northern Chile was struck by a magnitude 8.1 earthquake following a protracted series of foreshocks. The Integrated Plate Boundary Observatory Chile monitored the entire sequence of events, providing unprecedented resolution of the build-up to the main event and its rupture evolution. Here we show that the Iquique earthquake broke a central fraction of the so-called northern Chile seismic gap, the last major segment of the South American plate boundary that had not ruptured in the past century. Since July 2013 three seismic clusters, each lasting a few weeks, hit this part of the plate boundary with earthquakes of increasing peak magnitudes. Starting with the second cluster, geodetic observations show surface displacements that can be associated with slip on the plate interface. These seismic clusters and their slip transients occupied a part of the plate interface that was transitional between a fully locked and a creeping portion. Leading up to this earthquake, the b value of the foreshocks gradually decreased during the years before the earthquake, reversing its trend a few days before the Iquique earthquake. The mainshock finally nucleated at the northern end of the foreshock area, which skirted a locked patch, and ruptured mainly downdip towards higher locking. Peak slip was attained immediately downdip of the foreshock region and at the margin of the locked patch. We conclude that gradual weakening of the central part of the seismic gap accentuated by the foreshock activity in a zone of intermediate seismic coupling was instrumental in causing final failure, distinguishing the Iquique earthquake from most great earthquakes. Finally, only one-third of the gap was broken and the remaining locked segments now pose a significant, increased seismic hazard with the potential to host an earthquake with a magnitude of >8.5.

  18. Plate coupling across the northern Manila subduction zone deduced from mantle lithosphere buoyancy

    NASA Astrophysics Data System (ADS)

    Lo, Chung-Liang; Doo, Wen-Bin; Kuo-Chen, Hao; Hsu, Shu-Kun

    2017-12-01

    The Manila subduction zone is located at the plate boundary where the Philippine Sea plate (PSP) moves northwestward toward the Eurasian plate (EU) with a high convergence rate. However, historically, no large earthquakes greater than Mw7 have been observed across the northern Manila subduction zone. The poorly understood plate interaction between these two plates in this region creates significant issues for evaluating the seismic hazard. Therefore, the variation of mantle lithospheric buoyancy is calculated to evaluate the plate coupling status across the northern Manila subduction zone, based on recently published forward gravity modeling constrained by the results of the P-wave seismic crustal structure of the TAIGER (Taiwan Integrated Geodynamic Research) project. The results indicate weak plate coupling between the PSP and EU, which could be related to the release of the overriding PSP from the descending EU's dragging force, which was deduced from the higher elevation of the Luzon arc and the fore-arc basin northward toward the Taiwan orogen. Moreover, serpentinized peridotite is present above the plate boundary and is distributed more widely and thickly closer to offshore southern Taiwan orogen. We suggest that low plate coupling may facilitate the uplifting of serpentinized mantle material up to the plate boundary.

  19. The Continental Margin of East Asia: a collage of multiple plates formed by convergence and extension from multiple directions

    NASA Astrophysics Data System (ADS)

    Mao, J.; Wang, T.; Ludington, S.; Qiu, Z.; Li, Z.

    2017-12-01

    East Asia is one of the most complex regions in the world. Its margin was divided into 4 parts: Northeast Asia, North China, South China and Southeast Asia. During the Phanerozoic, continental plates of East Asia have interacted successively with a) the Paleo Tethyan Ocean, b) the Tethyan and Paleo Pacific Oceans and c) the Pacific and Indian. In the Early Mesozoic, the Indosinian orogeny is characterized by the convergence and extension within multiple continental plates, whereas the Late Mesozoic Yanshanian orogeny is characterized by both convergence and compression due to oceanic subduction and by widespread extension. We propose this combination as "East Asia Continental Margin type." Except in Northeast Asia, where Jurassic and Cretaeous accretionary complexes are common, most magmatic rocks are the result of reworking of ancient margins of small continental plates; and oceanic island arc basalts and continental margin arc andesites are largely absent. Because South China is adjacent to the western margin of the Pacific Plate, some effects of its westward subduction must be unavoidable, but juvenile arc-related crust has not been identified. The East Asian Continental Margin is characterized by magmatic rocks that are the result of post-convergent tectonics, which differs markedly from the active continental margins of both South and North America. In summary, the chief characteristics of the East Asian Continental Margin are: 1) In Mesozoic, the periphery of multiple blocks experienced magmatism caused by lithospheric delamination and thinning in response to extension punctuated by shorter periods of convergence. 2) The main mechanism of magma generation was the partial melting of crustal rocks, due to underplating by upwelling mafic magma associated with the collapse of orogenic belts and both extension and compression between small continental blocks. 3) During orogeny, mostly high Sr/Y arc-related granitoids formed, whereas during post-orogenic times, A

  20. Using Remote Sensing Data to Constrain Models of Fault Interactions and Plate Boundary Deformation

    NASA Astrophysics Data System (ADS)

    Glasscoe, M. T.; Donnellan, A.; Lyzenga, G. A.; Parker, J. W.; Milliner, C. W. D.

    2016-12-01

    Determining the distribution of slip and behavior of fault interactions at plate boundaries is a complex problem. Field and remotely sensed data often lack the necessary coverage to fully resolve fault behavior. However, realistic physical models may be used to more accurately characterize the complex behavior of faults constrained with observed data, such as GPS, InSAR, and SfM. These results will improve the utility of using combined models and data to estimate earthquake potential and characterize plate boundary behavior. Plate boundary faults exhibit complex behavior, with partitioned slip and distributed deformation. To investigate what fraction of slip becomes distributed deformation off major faults, we examine a model fault embedded within a damage zone of reduced elastic rigidity that narrows with depth and forward model the slip and resulting surface deformation. The fault segments and slip distributions are modeled using the JPL GeoFEST software. GeoFEST (Geophysical Finite Element Simulation Tool) is a two- and three-dimensional finite element software package for modeling solid stress and strain in geophysical and other continuum domain applications [Lyzenga, et al., 2000; Glasscoe, et al., 2004; Parker, et al., 2008, 2010]. New methods to advance geohazards research using computer simulations and remotely sensed observations for model validation are required to understand fault slip, the complex nature of fault interaction and plate boundary deformation. These models help enhance our understanding of the underlying processes, such as transient deformation and fault creep, and can aid in developing observation strategies for sUAV, airborne, and upcoming satellite missions seeking to determine how faults behave and interact and assess their associated hazard. Models will also help to characterize this behavior, which will enable improvements in hazard estimation. Validating the model results against remotely sensed observations will allow us to better

  1. A model for the motion of the Philippine Sea plate consistent with NUVEL-1 and geological data

    NASA Technical Reports Server (NTRS)

    Seno, Tetsuzo; Stein, Seth; Gripp, Alice E.

    1993-01-01

    We investigate angular velocity vectors of the Philippine Sea (PH) plate relative to the adjacent major plates, Eurasia (EU) and Pacific (PA), and the smaller Caroline (CR) plate. Earthquake slip vector data along the Philippine Sea plate are inverted, subject to the constraint that EU-PA motion equals that predicted by the global relative plate model NUVEL-1. The resulting solution fails to satisfy geological constraints along the Caroline-Pacific boundary: convergence along the Mussau Trench and divergence along the Sorol Trough. We then seek solutions satisfying both the CR-PA boundary conditions and the Philippine Sea slip vector data, by adjusting the PA-PH and EU-PH best fitting poles within their error ellipses. We also consider northern Honshu to be part of the North American plate and impose the constraint that the Philippine Sea plate subducts beneath northern Honshu along the Sagmi Trough in a NNW-NW direction. Of the solutions satisfying these conditions, we select the best EU-PH as 48.2 deg N, 157.0 deg E, 1.09 deg/my, corresponding to a pole far from Japan and south of Kamchatka, and PA-PH, 1.2 deg N, 134.2 deg E, 1.00 deg/my. Predicted NA-PH and EU-PH convergence rates in central Honshu are consistent with estimated seismic slip rates. Previous estimates of the EU-PH pole close to central Honshu are inconsistent with extension within the Bonin backarc implied by earthquake slip vectors and NNW-NW convergence of the Bonin forearc at the Sagami Trough.

  2. a Lattice Boltzmann Study of the 2d Boundary Layer Created by AN Oscillating Plate

    NASA Astrophysics Data System (ADS)

    Cappietti, L.; Chopard, B.

    We study the applicability of the Lattice Boltzmann Method (LBM) to simulate the 2D laminar boundary layer induced by an oscillating flat plate. We also investigate the transition to the disturbed laminar regime that occurs with a rough oscillating plate. The simulations were performed in two cases: first with a fluid otherwise at rest and second in presence of superimposed current. The generation of coherent vortex structures and their evolution are commented. The accuracy of the method was checked by comparisons with the exact analytical solution of the Navier-Stokes equations for the so-called Stokes' Second Problem. The comparisons show that LBM reproduces this time varying flow with first order accuracy. In the case of the wavy-plate, the results show that a mechanism of vortex-jet formations, low speed-streak and shear instability sustain a systems of stationary vortices outside the boundary layer. The vortex-jet takes place at the end of the decelerating phase whereas the boundary layer turns out to be laminar when the plate accelerates. In the presence of the superimposed current, the vortex-jet mechanism is still effective but the vortices outside the boundary layer are only present during part of the oscillating period. During the remaining part, the flow turns out to be laminar although a wave perturbation in the velocity field is present.

  3. Ancient plate kinematics derived from the deformation pattern of continental crust: Paleo- and Neo-Tethys opening coeval with prolonged Gondwana-Laurussia convergence

    NASA Astrophysics Data System (ADS)

    Kroner, Uwe; Roscher, Marco; Romer, Rolf L.

    2016-06-01

    Province and the opening of Neo-Tethys at ca. 300 Ma. The Euler pole for the final closure of the Rheic Ocean is positioned near Oslo (Laurussia). Thus, the concomitant formation of convergent and divergent plate boundaries during the assembly of Pangea is due to the relocation of the particular rotational axis. From a geodynamic point of view, coupled collisional (western Pangea) and extensional tectonics (eastern Pangea) due to plate tectonic reorganization is fully explained by slab pull and ridge push forces.

  4. Boundary-layer transition on a plate subjected to simultaneous spanwise and chordwise pressure gradients

    NASA Technical Reports Server (NTRS)

    Boldman, D. R.; Brinich, P. F.

    1974-01-01

    The boundary-layer transition on a short plate was studied by means of the china-clay visual technique. The plate model was mounted in a wind tunnel so that it was subjected to small simultaneous spanwise and chordwise pressure gradients. Results of the experimental study, which was performed at three subsonic velocities, indicated that the transition pattern was appreciably curved in the spanwise direction but quite smooth and well behaved. Reasonable comparisons between predictions of transition and experiment were obtained from two finite-difference two-dimensional boundary-layer calculation methods which incorporated transition models based on the concept of a transition intermittency factor.

  5. On the frequency-magnitude distribution of converging boundaries

    NASA Astrophysics Data System (ADS)

    Marzocchi, W.; Laura, S.; Heuret, A.; Funiciello, F.

    2011-12-01

    The occurrence of the last mega-thrust earthquake in Japan has clearly remarked the high risk posed to society by such events in terms of social and economic losses even at large spatial scale. The primary component for a balanced and objective mitigation of the impact of these earthquakes is the correct forecast of where such kind of events may occur in the future. To date, there is a wide range of opinions about where mega-thrust earthquakes can occur. Here, we aim at presenting some detailed statistical analysis of a database of worldwide interplate earthquakes occurring at current subduction zones. The database has been recently published in the framework of the EURYI Project 'Convergent margins and seismogenesis: defining the risk of great earthquakes by using statistical data and modelling', and it provides a unique opportunity to explore in detail the seismogenic process in subducting lithosphere. In particular, the statistical analysis of this database allows us to explore many interesting scientific issues such as the existence of different frequency-magnitude distributions across the trenches, the quantitative characterization of subduction zones that are able to produce more likely mega-thrust earthquakes, the prominent features that characterize converging boundaries with different seismic activity and so on. Besides the scientific importance, such issues may lead to improve our mega-thrust earthquake forecasting capability.

  6. In-Flight Boundary-Layer Transition on a Large Flat Plate at Supersonic Speeds

    NASA Technical Reports Server (NTRS)

    Banks, Daniel W.; Fredericks, Michael Alan; Tracy, Richard R.; Matisheck, Jason R.; Vanecek, Neal D.

    2012-01-01

    A flight experiment was conducted to investigate the pressure distribution, local flow conditions, and boundary-layer transition characteristics on a large flat plate in flight at supersonic speeds up to Mach 2.0. The primary objective of the test was to characterize the local flow field in preparation for future tests of a high Reynolds number natural laminar flow test article. The tests used a F-15B testbed aircraft with a bottom centerline mounted test fixture. A second objective was to determine the boundary-layer transition characteristics on the flat plate and the effectiveness of using a simplified surface coating for future laminar flow flight tests employing infrared thermography. Boundary-layer transition was captured using an onboard infrared imaging system. The infrared imagery was captured in both analog and digital formats. Surface pressures were measured with electronically scanned pressure modules connected to 60 surface-mounted pressure orifices. The local flow field was measured with five 5-hole conical probes mounted near the leading edge of the test fixture. Flow field measurements revealed the local flow characteristics including downwash, sidewash, and local Mach number. Results also indicated that the simplified surface coating did not provide sufficient insulation from the metallic structure, which likely had a substantial effect on boundary-layer transition compared with that of an adiabatic surface. Cold wall conditions were predominant during the acceleration to maximum Mach number, and warm wall conditions were evident during the subsequent deceleration. The infrared imaging system was able to capture shock wave impingement on the surface of the flat plate in addition to indicating laminar-to-turbulent boundary-layer transition.

  7. Comments on the Parameters and Processes that Affect the Preservation Potential and Style of Oblique-Divergent Plate Boundaries

    NASA Astrophysics Data System (ADS)

    Umhoefer, P. J.

    2014-12-01

    Oblique-divergent or transtensional zones present particular challenges in ancient belts because of the poor preservation potential of the thinned continental crust and young oceanic crust. Many oblique belts will preferentially preserve their boundary zones that lie within continents rather than the main plate boundary zone, which will be at a much lower elevation and composed of denser crust. Zones of tectonic escape or strike-slip overprinting of arcs or plateaus deform continental crust and may be better preserved. Here I highlight parameters and processes that have major effects on oblique divergent belts. Strain partitioning is common, but not ubiquitous, along and across oblique boundaries; the causes of partitioning are not always clear and make this especially vexing for work in ancient belts. Partitioning causes complexity in the patterns of structures at all scales. Inherited structures commonly determine the orientation and style of structures along oblique boundaries and can control the pattern of faults across transtensional belts. Regionally, inherited trends of arcs or other 1000-km-scale features can control boundary structures. Experiments and natural examples suggest that oblique boundary zones contain less of a record of strike-slip faulting and more extensional structures. The obliquity of divergence produces predictable families of structures that typify (i) strike-slip dominated zones (obliquity <~20°), (ii) mixed zones (~20° - ~35°), and (iii) extension dominated zones (>~35°). The combination of partitioning and mixed structures in oblique zones means that the boundaries of belts with large-magnitude strike-slip faulting will commonly preserve little of no record of that faulting history. Plate boundaries localize strain onto the main plate boundary structures from the broader plate boundary and therefore the boundary zones commonly preserve the earlier structures more than later structures, a major problem in interpreting ancient belts

  8. Investigation of Perforated Convergent-divergent Diffusers with Initial Boundary Layer

    NASA Technical Reports Server (NTRS)

    Weinstein, Maynard I

    1950-01-01

    An experimental investigation was made at Mach number 1.90 of the performance of a series of perforated convergent-divergent supersonic diffusers operating with initial boundary layer, which was induced and controlled by lengths of cylindrical inlets affixed to the diffusers. Supercritical mass-flow and peak total-pressure recoveries were decreased slightly by use of the longest inlets (4 inlet diameters in length). Combinations of cylindrical inlets, perforated diffusers, and subsonic diffuser were evaluated as simulated wind tunnels having second throats. Comparisons with noncontracted configurations of similar scale indicated conservatively computed power reductions of 25 percent.

  9. The boundary between the Indian and Asian tectonic plates below Tibet

    PubMed Central

    Zhao, Junmeng; Yuan, Xiaohui; Liu, Hongbing; Kumar, Prakash; Pei, Shunping; Kind, Rainer; Zhang, Zhongjie; Teng, Jiwen; Ding, Lin; Gao, Xing; Xu, Qiang; Wang, Wei

    2010-01-01

    The fate of the colliding Indian and Asian tectonic plates below the Tibetan high plateau may be visualized by, in addition to seismic tomography, mapping the deep seismic discontinuities, like the crust-mantle boundary (Moho), the lithosphere-asthenosphere boundary (LAB), or the discontinuities at 410 and 660 km depth. We herein present observations of seismic discontinuities with the P and S receiver function techniques beneath central and western Tibet along two new profiles and discuss the results in connection with results from earlier profiles, which did observe the LAB. The LAB of the Indian and Asian plates is well-imaged by several profiles and suggests a changing mode of India-Asia collision in the east-west direction. From eastern Himalayan syntaxis to the western edge of the Tarim Basin, the Indian lithosphere is underthrusting Tibet at an increasingly shallower angle and reaching progressively further to the north. A particular lithospheric region was formed in northern and eastern Tibet as a crush zone between the two colliding plates, the existence of which is marked by high temperature, low mantle seismic wavespeed (correlating with late arriving signals from the 410 discontinuity), poor Sn propagation, east and southeast oriented global positioning system displacements, and strikingly larger seismic (SKS) anisotropy. PMID:20534567

  10. The boundary between the Indian and Asian tectonic plates below Tibet.

    PubMed

    Zhao, Junmeng; Yuan, Xiaohui; Liu, Hongbing; Kumar, Prakash; Pei, Shunping; Kind, Rainer; Zhang, Zhongjie; Teng, Jiwen; Ding, Lin; Gao, Xing; Xu, Qiang; Wang, Wei

    2010-06-22

    The fate of the colliding Indian and Asian tectonic plates below the Tibetan high plateau may be visualized by, in addition to seismic tomography, mapping the deep seismic discontinuities, like the crust-mantle boundary (Moho), the lithosphere-asthenosphere boundary (LAB), or the discontinuities at 410 and 660 km depth. We herein present observations of seismic discontinuities with the P and S receiver function techniques beneath central and western Tibet along two new profiles and discuss the results in connection with results from earlier profiles, which did observe the LAB. The LAB of the Indian and Asian plates is well-imaged by several profiles and suggests a changing mode of India-Asia collision in the east-west direction. From eastern Himalayan syntaxis to the western edge of the Tarim Basin, the Indian lithosphere is underthrusting Tibet at an increasingly shallower angle and reaching progressively further to the north. A particular lithospheric region was formed in northern and eastern Tibet as a crush zone between the two colliding plates, the existence of which is marked by high temperature, low mantle seismic wavespeed (correlating with late arriving signals from the 410 discontinuity), poor Sn propagation, east and southeast oriented global positioning system displacements, and strikingly larger seismic (SKS) anisotropy.

  11. Architectural Blueprint for Plate Boundary Observatories based on interoperable Data Management Platforms

    NASA Astrophysics Data System (ADS)

    Kerschke, D. I.; Häner, R.; Schurr, B.; Oncken, O.; Wächter, J.

    2014-12-01

    Interoperable data management platforms play an increasing role in the advancement of knowledge and technology in many scientific disciplines. Through high quality services they support the establishment of efficient and innovative research environments. Well-designed research environments can facilitate the sustainable utilization, exchange, and re-use of scientific data and functionality by using standardized community models. Together with innovative 3D/4D visualization, these concepts provide added value in improving scientific knowledge-gain, even across the boundaries of disciplines. A project benefiting from the added value is the Integrated Plate boundary Observatory in Chile (IPOC). IPOC is a European-South American network to study earthquakes and deformation at the Chilean continental margin and to monitor the plate boundary system for capturing an anticipated great earthquake in a seismic gap. In contrast to conventional observatories that monitor individual signals only, IPOC captures a large range of different processes through various observation methods (e.g., seismographs, GPS, magneto-telluric sensors, creep-meter, accelerometer, InSAR). For IPOC a conceptual design has been devised that comprises an architectural blueprint for a data management platform based on common and standardized data models, protocols, and encodings as well as on an exclusive use of Free and Open Source Software (FOSS) including visualization components. Following the principles of event-driven service-oriented architectures, the design enables novel processes by sharing and re-using functionality and information on the basis of innovative data mining and data fusion technologies. This platform can help to improve the understanding of the physical processes underlying plate deformations as well as the natural hazards induced by them. Through the use of standards, this blueprint can not only be facilitated for other plate observing systems (e.g., the European Plate

  12. The lithosphere-asthenosphere boundary beneath the South Island of New Zealand

    NASA Astrophysics Data System (ADS)

    Hua, Junlin; Fischer, Karen M.; Savage, Martha K.

    2018-02-01

    Lithosphere-asthenosphere boundary (LAB) properties beneath the South Island of New Zealand have been imaged by Sp receiver function common-conversion point stacking. In this transpressional boundary between the Australian and Pacific plates, dextral offset on the Alpine fault and convergence have occurred for the past 20 My, with the Alpine fault now bounded by Australian plate subduction to the south and Pacific plate subduction to the north. Using data from onland seismometers, especially the 29 broadband stations of the New Zealand permanent seismic network (GeoNet), we obtained 24,971 individual receiver functions by extended-time multi-taper deconvolution, and mapped them to three-dimensional space using a Fresnel zone approximation. Pervasive strong positive Sp phases are observed in the LAB depth range indicated by surface wave tomography. These phases are interpreted as conversions from a velocity decrease across the LAB. In the central South Island, the LAB is observed to be deeper and broader to the northwest of the Alpine fault. The deeper LAB to the northwest of the Alpine fault is consistent with models in which oceanic lithosphere attached to the Australian plate was partially subducted, or models in which the Pacific lithosphere has been underthrust northwest past the Alpine fault. Further north, a zone of thin lithosphere with a strong and vertically localized LAB velocity gradient occurs to the northwest of the fault, juxtaposed against a region of anomalously weak LAB conversions to the southeast of the fault. This structure could be explained by lithospheric blocks with contrasting LAB properties that meet beneath the Alpine fault, or by the effects of Pacific plate subduction. The observed variations in LAB properties indicate strong modification of the LAB by the interplay of convergence and strike-slip deformation along and across this transpressional plate boundary.

  13. A globally convergent and closed analytical solution of the Blasius equation with beneficial applications

    NASA Astrophysics Data System (ADS)

    Zheng, Jun; Han, Xinyue; Wang, ZhenTao; Li, Changfeng; Zhang, Jiazhong

    2017-06-01

    For about a century, people have been trying to seek for a globally convergent and closed analytical solution (CAS) of the Blasius Equation (BE). In this paper, we proposed a formally satisfied solution which could be parametrically expressed by two power series. Some analytical results of the laminar boundary layer of a flat plate, that were not analytically given in former studies, e.g. the thickness of the boundary layer and higher order derivatives, could be obtained based on the solution. Besides, the heat transfer in the laminar boundary layer of a flat plate with constant temperature could also be analytically formulated. Especially, the solution of the singular situation with Prandtl number Pr=0, which seems impossible to be analyzed in prior studies, could be given analytically. The method for finding the CAS of Blasius equation was also utilized in the problem of the boundary layer regulation through wall injection and slip velocity on the wall surface.

  14. Current Plate Motion Across the Southwest Indian Ridge: Implications for the Diffuse Oceanic Plate Boundary Between Nubia and Somalia

    NASA Astrophysics Data System (ADS)

    Horner-Johnson, B. C.; Cowles, S. M.; Gordon, R. G.; Argus, D. F.

    2001-12-01

    Prior studies of plate motion data along the Southwest Indian Ridge (SWIR) have produced results that conflict in detail. Chu & Gordon [1999], from an analysis of 59 spreading rates averaged over 3 Myr and of the azimuths of active transform faults, found that the data are most consistent with a diffuse Nubia-Somalia plate boundary where it intersects the SWIR. When they solve for the best-fitting hypothetical narrow boundary, they find that it lies near 37° E, east of the Prince Edward fracture zone. They find a Nubia-Somalia pole of rotation near the east coast of South Africa. In contrast, Lemaux, Gordon, and Royer [2001], from an analysis of 237 crossings of marine magnetic anomaly 5 (11 Ma), find that most of the motion is accommodated in a narrow zone, most likely along the ``inactive'' trace of the Andrew Bain fracture zone complex (ABFZC), which intersects the SWIR near 32° E. They find a pole well to the west of, and probably to the southwest of, the pole of rotation found by Chu & Gordon. Their pole indicates mainly strike-slip motion along the ``inactive'' ABFZC. To resolve these conflicting results, we determined a new greatly expanded and spatially much denser set of 243 spreading rates and analyzed available bathymetric data of active transform faults along the SWIR. The data show that the African oceanic lithosphere spreading away from the SWIR cannot simply be two plates divided by a single narrow boundary. Our interpretation of the data is as follows. Near the SWIR, there is a diffuse boundary with a western limit near the ABFZC and an eastern limit near 63.5° E. Slip is partitioned in this wide boundary. Somewhere near the ABFZC (most likely the ABFZC itself) is a concentrated locus of right-lateral shearing parallel to the ABFZC whereas contraction perpendicular to the ABFZC is accommodated east of the ABFZC, perhaps over a very broad zone.

  15. Abbot Ice Shelf, structure of the Amundsen Sea continental margin and the southern boundary of the Bellingshausen Plate seaward of West Antarctica.

    PubMed

    Cochran, James R; Tinto, Kirsty J; Bell, Robin E

    2015-05-01

    Inversion of NASA Operation IceBridge airborne gravity over the Abbot Ice Shelf in West Antarctica for subice bathymetry defines an extensional terrain made up of east-west trending rift basins formed during the early stages of Antarctica/Zealandia rifting. Extension is minor, as rifting jumped north of Thurston Island early in the rifting process. The Amundsen Sea Embayment continental shelf west of the rifted terrain is underlain by a deeper, more extensive sedimentary basin also formed during rifting between Antarctica and Zealandia. A well-defined boundary zone separates the mildly extended Abbot extensional terrain from the deeper Amundsen Embayment shelf basin. The shelf basin has an extension factor, β , of 1.5-1.7 with 80-100 km of extension occurring across an area now 250 km wide. Following this extension, rifting centered north of the present shelf edge and proceeded to continental rupture. Since then, the Amundsen Embayment continental shelf appears to have been tectonically quiescent and shaped by subsidence, sedimentation, and the advance and retreat of the West Antarctic Ice Sheet. The Bellingshausen Plate was located seaward of the Amundsen Sea margin prior to incorporation into the Antarctic Plate at about 62 Ma. During the latter part of its independent existence, Bellingshausen plate motion had a clockwise rotational component relative to Antarctica producing convergence across the north-south trending Bellingshausen Gravity Anomaly structure at 94°W and compressive deformation on the continental slope between 94°W and 102°W. Farther west, the relative motion was extensional along an east-west trending zone occupied by the Marie Byrd Seamounts. Abbot Ice Shelf is underlain by E-W rift basins created at ∼90 Ma Amundsen shelf shaped by subsidence, sedimentation, and passage of the ice sheet Bellingshausen plate boundary is located near the base of continental slope and rise.

  16. Abbot Ice Shelf, structure of the Amundsen Sea continental margin and the southern boundary of the Bellingshausen Plate seaward of West Antarctica

    PubMed Central

    Cochran, James R; Tinto, Kirsty J; Bell, Robin E

    2015-01-01

    Inversion of NASA Operation IceBridge airborne gravity over the Abbot Ice Shelf in West Antarctica for subice bathymetry defines an extensional terrain made up of east-west trending rift basins formed during the early stages of Antarctica/Zealandia rifting. Extension is minor, as rifting jumped north of Thurston Island early in the rifting process. The Amundsen Sea Embayment continental shelf west of the rifted terrain is underlain by a deeper, more extensive sedimentary basin also formed during rifting between Antarctica and Zealandia. A well-defined boundary zone separates the mildly extended Abbot extensional terrain from the deeper Amundsen Embayment shelf basin. The shelf basin has an extension factor, β, of 1.5–1.7 with 80–100 km of extension occurring across an area now 250 km wide. Following this extension, rifting centered north of the present shelf edge and proceeded to continental rupture. Since then, the Amundsen Embayment continental shelf appears to have been tectonically quiescent and shaped by subsidence, sedimentation, and the advance and retreat of the West Antarctic Ice Sheet. The Bellingshausen Plate was located seaward of the Amundsen Sea margin prior to incorporation into the Antarctic Plate at about 62 Ma. During the latter part of its independent existence, Bellingshausen plate motion had a clockwise rotational component relative to Antarctica producing convergence across the north-south trending Bellingshausen Gravity Anomaly structure at 94°W and compressive deformation on the continental slope between 94°W and 102°W. Farther west, the relative motion was extensional along an east-west trending zone occupied by the Marie Byrd Seamounts. Key Points: Abbot Ice Shelf is underlain by E-W rift basins created at ∼90 Ma Amundsen shelf shaped by subsidence, sedimentation, and passage of the ice sheet Bellingshausen plate boundary is located near the base of continental slope and rise PMID:26709352

  17. Focal Mechanisms at the convergent plate boundary in Southern Aegean, Greece.

    NASA Astrophysics Data System (ADS)

    Moshou, Alexandra; Papadimitriou, Eleftheria; Drakatos, George; Evangelidis, Christos; Karakostas, Vasilios; Vallianatos, Filippos; Makropoulos, Konstantinos

    2014-05-01

    Greece is characterized by high seismicity, mainly due to the collision between the European and the African lithospheric plates and the dextral strike slip motion along the North Anatolia Fault zone and North Aegean Trough. The subduction of the Eastern Mediterranean oceanic plate along the Hellenic Arc under the Aegean microplate along with the accompanied roll back of the descending slab is considered the main tectonic feature of the region (Papazachos and Comninakis 1971; Makropoulos and Burton 1984; Papazachos et al. 2000a, b). The divergent motion between the Aegean block and mainland Europe is indicated by an extension zone in the northern Aegean, with Crete and Aegean diverging from mainland Europe at a rate of about 3.5 cm yr-1 with Africa moving northward relative to Europe at a rate of about 1 cm yr-1 (Dewey et al., 1989; Papazachos et al., 1998; Mc-Clusky et al., 2000; Reilinger et al., 2006). In this tectonically complicated area diverge types of deformation are manifested, in addition to the dominant subduction processes. Aiming to shed more light in the seismotectonic properties and faulting seismological data from the Hellenic Unified Seismological Network (HUSN) were selected and analyzed for determining focal mechanisms using the method of moment tensor inversion, additional to the ones being available from the routine moment tensor solutions and several publications. Thus, 31 new fault plane solutions for events with magnitude M>4.0, are presented in this study, by using the software of Ammon (Randall et al., 1995). For this scope the data from at least 4 stations were used with an adequate azimuthal coverage and with an epicentral distance not more than 350 km. The preparation of the data includes the deconvolution of instruments response, then the velocity was integrated to displacement and finally the horizontal components were rotated to radial and transverse. Following, the signal was inverted using the reflectivity method of Kennett (1983

  18. Laminar-Boundary-Layer Oscillations and Transition on a Flat Plate

    NASA Technical Reports Server (NTRS)

    Schubauer, G B; Skramstad, H K

    1948-01-01

    This is an account of an investigation in which oscillations were discovered in the laminar boundary layer along a flat plate. These oscillations were found during the course of an experiment in which transition from laminar to turbulent flow was being studied on the plate as the turbulence in the wind stream was being reduced to unusually low values by means of damping screens. The first part of the paper deals with experimental methods and apparatus, measurements of turbulence and sound, and studies of transition. A description is then given of the manner in which oscillations were discovered and how they were found to be related to transition, and then how controlled oscillations were produced and studied in detail.

  19. Motion of the Rivera plate since 10 Ma relative to the Pacific and North American plates and the mantle

    NASA Astrophysics Data System (ADS)

    DeMets, Charles; Traylen, Stephen

    2000-03-01

    To better understand the influence of Rivera plate kinematics on the geodynamic evolution of western Mexico, we use more than 1400 crossings of seafloor spreading magnetic lineations along the Pacific-Rivera rise and northern Mathematician ridge to solve for rotations of the Rivera plate relative to the underlying mantle and the Pacific and North American plates at 14 times since 9.9 Ma. Our comparison of magnetic anomaly crossings from the undeformed Pacific plate to their counterparts on the Rivera plate indicates that significant areas of the Rivera plate have deformed since 9.9 Ma. Dextral shear along the southern edge of the plate from 3.3-2.2 Ma during a regional plate boundary reorganization deformed the Rivera plate farther into its interior than previously recognized. In addition, seafloor located north of two rupture zones within the Rivera plate sutured to North America after 1.5 Ma. Anomaly crossings from these two deformed regions thus cannot be used to reconstruct motion of the Rivera plate. Finite rotations that best reconstruct Pacific plate anomaly crossings onto their undeformed counterparts on the Rivera plate yield stage spreading rates that decrease gradually by 10% between 10 and 3.6 Ma, decrease rapidly by 20% after ˜3.6 Ma, and recover after 1 Ma. The slowdown in Pacific-Rivera seafloor spreading at 3.6 Ma coincided with the onset of dextral shear across the then-incipient southern boundary of the Rivera plate with the Pacific plate. The available evidence indicates that the Rivera plate has been an independent microplate since at least 10 Ma, contrary to published assertions that it fragmented from the Cocos plate at ˜5 Ma. Motion of the Rivera plate relative to North America has changed significantly since 10 Ma, in concert with significant changes in Pacific-Rivera motion. A significant and robust feature of Rivera-North America motion not previously recognized is the cessation of margin-normal convergence and thus subduction from 2

  20. Virtual Research Expeditions along Plate Margins: Examples from an Online Oceanography Course

    NASA Astrophysics Data System (ADS)

    Reed, D. L.; Moore, G. F.; Bangs, N. L.; Tobin, H. J.

    2010-12-01

    An undergraduate online course in oceanography is based on the participation of each student in a series of virtual, at-sea, research expeditions, two of which are used to examine the tectonic processes at plate boundaries. The objective is to leverage the results of major federal research initiatives in the ocean sciences into effective learning tools with a long lifespan for use in undergraduate geoscience courses. These web-based expeditions examine: (1) hydrothermal vents along the divergent plate boundary at the Explorer Ridge and (2) the convergent plate boundary fault along the Nankai Trough, which is the objective of the multi-year NanTroSEIZE drilling program. Here we focus on the convergent plate boundary in NanTroSEIZE 3-D, which is based on a seismic survey supported through NSF-MARGINS, IODP and CDEX in Japan to study the properties of the plate boundary fault system in the upper limit of the seismogenic zone off Japan. The virtual voyage can be used in undergraduate classes at anytime, since it is not directly tied to the finite duration of a specific seagoing project, and comes in two versions, one that is being used in geoscience major courses and the other in non-major courses, such as the oceanography course mentioned above and a lower-division global studies course with a science emphasis. NanTroSEIZE in 3-D places undergraduate learning in an experiential framework as students participate on the expedition and carry out research on the structure of the plate boundary fault. Students learn the scientific background of the program, especially the critical role of international collaboration, and meet the chief scientists before joining the 3-D seismic imaging expedition to identify the active faults that were the likely sources of devastating earthquakes and tsunamis in Japan in 1944 and 1948. The initial results of phase I ODP drilling that began in 2007 are also reviewed. Students document their research on a worksheet that accompanies the

  1. Plate boundary deformation at the latitude of the Salton Trough - northern Gulf of California (Invited)

    NASA Astrophysics Data System (ADS)

    Stock, J. M.

    2013-12-01

    Along the Pacific-North America plate boundary zone, the segment including the southern San Andreas fault to Salton Trough and northern Gulf of California basins has been transtensional throughout its evolution, based on Pacific-North America displacement vectors calculated from the global plate circuit (900 × 20 km at N54°W since 20 Ma; 460 × 20 km at N48°W since 11 Ma). Nevertheless, active seismicity and focal mechanisms show a broad zone of plate boundary deformation within which the inferred stress regime varies locally (Yang & Hauksson 2013 GJI), and fault patterns in some regions suggest ongoing tectonic rotation. Similar behavior is inferred to have occurred in this zone over most of its history. Crustal structure in this region is constrained by surface geology, geophysical experiments (e.g., the 2011 Salton Seismic Imaging Project (SSIP), USGS Imperial Valley 1979, PACE), and interdisciplinary marine and onland studies in Mexico (e.g., NARS-Baja, Cortes, and surveys by PEMEX). Magnetic data (e.g., EMAG-2) aids in the recognition of large-scale crustal provinces and fault boundaries in regions lacking detailed geophysical surveys. Consideration of existing constraints on crustal thickness and architecture, and fault and basin evolution suggests that to reconcile geological deformation with plate motion history, the following additional factors need to be taken into account. 1) Plate boundary displacement via interacting systems of rotating blocks, coeval with slip on steep strike slip faults, and possibly related to slip on low angle extensional faults (e.g, Axen & Fletcher 1998 IGR) may be typical prior to the onset of seafloor spreading. This fault style may have accommodated up to 150 km of plate motion in the Mexican Continental Borderland and north of the Vizcaino Peninsula, likely between 12 and 15 Ma, as well as explaining younger rotations adjacent to the Gulf of California and current deformation southwest of the Salton Sea. 2) Geophysical

  2. Boundary layer flow of air over water on a flat plate

    NASA Technical Reports Server (NTRS)

    Nelson, John; Alving, Amy E.; Joseph, Daniel D.

    1993-01-01

    A non-similar boundary layer theory for air blowing over a water layer on a flat plate is formulated and studied as a two-fluid problem in which the position of the interface is unknown. The problem is considered at large Reynolds number (based on x), away from the leading edge. A simple non-similar analytic solution of the problem is derived for which the interface height is proportional to x(sub 1/4) and the water and air flow satisfy the Blasius boundary layer equations, with a linear profile in the water and a Blasius profile in the air. Numerical studies of the initial value problem suggests that this asymptotic, non-similar air-water boundary layer solution is a global attractor for all initial conditions.

  3. Seismicity of the Earth 1900-2007, Nazca Plate and South America

    USGS Publications Warehouse

    Rhea, Susan; Hayes, Gavin P.; Villaseñor, Antonio; Furlong, Kevin P.; Tarr, Arthur C.; Benz, Harley

    2010-01-01

    The South American arc extends over 7,000 km, from the Chilean triple junction offshore of southern Chile to its intersection with the Panama fracture zone, offshore the southern coast of Panama in Central America. It marks the plate boundary between the subducting Nazca plate and the South America plate, where the oceanic crust and lithosphere of the Nazca plate begin their decent into the mantle beneath South America. The convergence associated with this subduction process is responsible for the uplift of the Andes Mountains, and for the active volcanic chain present along much of this deformation front. Relative to a fixed South America plate the Nazca plate moves slightly north of eastwards at a rate varying from approximately 80 mm/yr in the south to approximately 70mm/yr in the north.

  4. Prediction and measurement of heat transfer rates for the shock-induced unsteady laminar boundary layer on a flat plate

    NASA Technical Reports Server (NTRS)

    Cook, W. J.

    1972-01-01

    The unsteady laminar boundary layer induced by the flow-initiating shock wave passing over a flat plate mounted in a shock tube was theoretically and experimentally studied in terms of heat transfer rates to the plate for shock speeds ranging from 1.695 to 7.34 km/sec. The theory presented by Cook and Chapman for the shock-induced unsteady boundary layer on a plate is reviewed with emphasis on unsteady heat transfer. A method of measuring time-dependent heat-transfer rates using thin-film heat-flux gages and an associated data reduction technique are outlined in detail. Particular consideration is given to heat-flux measurement in short-duration ionized shocktube flows. Experimental unsteady plate heat transfer rates obtained in both air and nitrogen using thin-film heat-flux gages generally agree well with theoretical predictions. The experimental results indicate that the theory continues to predict the unsteady boundary layer behavior after the shock wave leaves the trailing edge of the plate even though the theory is strictly applicable only for the time interval in which the shock remains on the plate.

  5. Finite-Difference Solutions for Compressible Laminar Boundary-Layer Flows of a Dusty Gas over a Semi-Infinite Flat Plate.

    DTIC Science & Technology

    1986-08-01

    AD-A174 952 FINITE - DIFFERENCE SOLUTIONS FOR CONPRESSIBLE LANINAR 1/2 BOUNDARY-LAYER FLOUS (U) TORONTO UNIV DOWNSVIEW (ONTARIO) INST FOR AEROSPACE...dilute dusty gas over a semi-infinite flat plate. Details are given of the impliit finite , difference schemes as well as the boundary conditions... FINITE - DIFFERENCE SOLUTIONS FOR COMPRESSIBLE LAMINAR BOUNDARY-LAYER FLOWS OF A DUSTY GAS OVER A SEMI-INFINITE FLAT PLATE by B. Y. Wang and I. I

  6. Seismotectonics of the Lwandle-Nubia plate boundary between South Africa and the Southwest Indian Ridge

    NASA Astrophysics Data System (ADS)

    Hartnady, Chris; Okal, Emile; Calais, Eric; Stamps, Sarah; Saria, Elifuraha

    2013-04-01

    The Lwandle (LW) plate shares a boundary with the Nubia (NU) plate, extending from a diffuse triple junction with the Rovuma plate in Southern Mozambique to a triple junction with the Antarctic plate along a segment of the Southwest Indian Ridge (SWIR). The LW-NU boundary terminates in the ~750 km-long, complex transform of the Andrew Bain Fracture Zone (ABFZ), but its exact locus is still unclear. Recent works locate it along the eastern boundary of the submarine Mozambique Ridge, parallel to the pre-existing, oceanic transform-fault fabric. However, an early concept of the LW block ('ambiguous region' of Hartnady, 1990, Fig. 2) indicates a more westerly trajectory in the north that includes parts of South Africa, with a southerly extension across old oceanic crust of the submarine Natal Valley and Transkei Basin. This proposed boundary is marked by several, aligned epicentres of moderate to strong earthquakes (1941, 1942, 1956, 1969, 1972, 1975, 1981 and 1989). Our re-examination of seismographic records from the 1975 'intraplate' earthquake (-37.62°N, 30.98°E, mb5.0), in the oceanic crust of the distal Transkei Basin, shows a thrust-faulting focal mechanism along a nodal plane striking N272°E. The largest (ML4.2) of a series of three small earthquakes in the Natal Valley in 2009, close to a zone of recent seafloor deformation mapped in 1992, has similar first-motion patterns at Southern African seismograph stations. When the 1975 slip-vector result (N173°E) is combined with a normal-faulting slip vector (N078°E) from a 1986 onland earthquake (-30.53°N, 28.84°E, mb5.0) near the Lesotho-KZN border, and both are incorporated into the wider data-set previously used to solve for East African Rift kinematics, they produce a LW-NU rotation pole that is located south of Africa, near the Agulhas Plateau, and approximately 950 km from the Natal Valley deformation zone. The modeled low rate of right-lateral, LW-NU slip (~0.50-0.75 mm/yr) across this LW-NU boundary

  7. On approximating guided waves in plates with thin anisotropic coatings by means of effective boundary conditions

    PubMed

    Niklasson; Datta; Dunn

    2000-09-01

    In this paper, effective boundary conditions for elastic wave propagation in plates with thin coatings are derived. These effective boundary conditions are used to obtain an approximate dispersion relation for guided waves in an isotropic plate with thin anisotropic coating layers. The accuracy of the effective boundary conditions is investigated numerically by comparison with exact solutions for two different material systems. The systems considered consist of a metallic core with thin superconducting coatings. It is shown that for wavelengths long compared to the coating thickness there is excellent agreement between the approximate and exact solutions for both systems. Furthermore, numerical results presented might be used to characterize coating properties by ultrasonic techniques.

  8. Stress rotation across the Cascadia megathrust requires a weak subduction plate boundary at seismogenic depths

    NASA Astrophysics Data System (ADS)

    Li, Duo; McGuire, Jeffrey J.; Liu, Yajing; Hardebeck, Jeanne L.

    2018-03-01

    The Mendocino Triple Junction region is the most seismically active part of the Cascadia Subduction Zone. The northward moving Pacific plate collides with the subducting Gorda plate causing intense internal deformation within it. Here we show that the stress field rotates rapidly with depth across the thrust interface from a strike-slip regime within the subducting plate, reflecting the Pacific plate collision, to a thrust regime in the overriding plate. We utilize a dense focal mechanism dataset, including observations from the Cascadia Initiative ocean bottom seismograph experiment, to constrain the stress orientations. To quantify the implications of this rotation for the strength of the plate boundary, we designed an inversion that solves for the absolute stress tensors in a three-layer model subject to assumptions about the strength of the subducting mantle. Our results indicate that the shear stress on the plate boundary fault is likely no more than about ∼50 MPa at ∼20 km depth. Regardless of the assumed mantle strength, we infer a relatively weak megathrust fault with an effective friction coefficient of ∼0 to 0.2 at seismogenic depths. Such a low value for the effective friction coefficient requires a combination of high fluid pressures and/or fault-zone minerals with low inherent friction in the region where a great earthquake is expected in Cascadia.

  9. Stress rotation across the Cascadia megathrust requires a weak subduction plate boundary at seismogenic depths

    USGS Publications Warehouse

    Li, Duo; McGuire, Jeffrey J.; Liu, Yajing; Hardebeck, Jeanne L.

    2018-01-01

    The Mendocino Triple Junction region is the most seismically active part of the Cascadia Subduction Zone. The northward moving Pacific plate collides with the subducting Gorda plate causing intense internal deformation within it. Here we show that the stress field rotates rapidly with depth across the thrust interface from a strike-slip regime within the subducting plate, reflecting the Pacific plate collision, to a thrust regime in the overriding plate. We utilize a dense focal mechanism dataset, including observations from the Cascadia Initiative ocean bottom seismograph experiment, to constrain the stress orientations. To quantify the implications of this rotation for the strength of the plate boundary, we designed an inversion that solves for the absolute stress tensors in a three-layer model subject to assumptions about the strength of the subducting mantle. Our results indicate that the shear stress on the plate boundary fault is likely no more than about ∼50 MPa at ∼20 km depth. Regardless of the assumed mantle strength, we infer a relatively weak megathrust fault with an effective friction coefficient of ∼0 to 0.2 at seismogenic depths. Such a low value for the effective friction coefficient requires a combination of high fluid pressures and/or fault-zone minerals with low inherent friction in the region where a great earthquake is expected in Cascadia.

  10. Near Continuum Velocity and Temperature Coupled Compressible Boundary Layer Flow over a Flat Plate

    NASA Astrophysics Data System (ADS)

    He, Xin; Cai, Chunpei

    2017-04-01

    The problem of a compressible gas flows over a flat plate with the velocity-slip and temperature-jump boundary conditions are being studied. The standard single- shooting method is applied to obtain the exact solutions for velocity and temperature profiles when the momentum and energy equations are weakly coupled. A double-shooting method is applied if these two equations are closely coupled. If the temperature affects the velocity directly, more significant velocity slip happens at locations closer to the plate's leading edge, and inflections on the velocity profiles appear, indicating flows may become unstable. As a consequence, the temperature-jump and velocity-slip boundary conditions may trigger earlier flow transitions from a laminar to a turbulent flow state.

  11. An Alternative Estimate of the Motion of the Capricorn Plate

    NASA Astrophysics Data System (ADS)

    Burris, S. G.; Gordon, R. G.

    2013-12-01

    Diffuse plate boundaries cover ~15% of Earth's surface and can exceed 1000 km in across-strike width. Deforming oceanic lithosphere in the equatorial Indian Ocean accommodates the motion between the India and Capricorn plates and serves as their mutual diffuse plate boundary. This deforming lithosphere lies between the Central Indian Ridge to the west and the Sumatra trench to the east; the plates diverge to the west of ≈74°E and converge to the east of it. Many data have shown that the pole of rotation between the India and Capricorn plates lies within this diffuse plate boundary [1,2]. Surprisingly, however, the recently estimated angular velocity in the MORVEL global set of angular velocities [3] places this pole of rotation north of prior poles by several degrees, and north of the diffuse plate boundary. The motion between the India and Capricorn plates can only be estimated indirectly by differencing the motion of the India plate relative to the Somalia plate, on the one hand, and the motion of the Capricorn plate relative to Somalia plate, on the other. While the MORVEL India-Somalia angular velocity is similar to prior estimates, the MORVEL Capricorn-Somalia pole of rotation lies northwest of its predecessors. The difference is not caused by new transform azimuth data incorporated into MORVEL or by the new application of a correction to spreading rates for outward displacement. Instead the difference appears to be caused by a few anomalous spreading rates near the northern end of the Capricorn-Somalia plate boundary along the Central Indian Ridge. Rejecting these data leads to consistency with prior results. Implications for the motion of the Capricorn plate relative to Australia will be discussed. [1] DeMets, C., R. G. Gordon, and J.-Y. Royer, 2005. Motion between the Indian, Capricorn, and Somalian plates since 20 Ma: implications for the timing and magnitude of distributed deformation in the equatorial Indian ocean, Geophys. J. Int., 161, 445-468. [2

  12. Evidence of displacement-driven maturation along the San Cristobal Trough transform plate boundary

    NASA Astrophysics Data System (ADS)

    Neely, James S.; Furlong, Kevin P.

    2018-03-01

    The San Cristobal Trough (SCT), formed by the tearing of the Australia plate as it subducts under the Pacific plate near the Solomon Islands, provides an opportunity to study the transform boundary development process. Recent seismicity (2013-2016) along the 280 km long SCT, known as a Subduction-Transform Edge Propagator (STEP) fault, highlights the tearing process and ongoing development of the plate boundary. The region's earthquakes reveal two key characteristics. First, earthquakes at the western terminus of the SCT, which we interpret to indicate the Australia plate tearing, display disparate fault geometries. These events demonstrate that plate tearing is accommodated via multiple intersecting planes rather than a single through-going fault. Second, the SCT hosts sequences of Mw ∼7 strike-slip earthquakes that migrate westward through a rapid succession of events. Sequences in 1993 and 2015 both began along the eastern SCT and propagated west, but neither progression ruptured into or nucleated a large earthquake within the region near the tear. Utilizing b-value and Coulomb Failure Stress analyses, we examine these along-strike variations in the SCT's seismicity. b-Values are highest along the youngest, western end of the SCT and decrease with increasing distance from the tear. This trend may reflect increasing strain localization with increasing displacement. Coulomb Failure Stress analyses indicate that the stress conditions were conducive to continued western propagation of the 1993 and 2015 sequences suggesting that the unruptured western SCT may have fault geometries or properties that inhibit continued rupture. Our results indicate a displacement-driven fault maturation process. The multi-plane Australia plate tearing likely creates a western SCT with diffuse strain accommodated along a network of disorganized faults. After ∼90 km of cumulative displacement (∼900,000 yr of plate motion), strain localizes and faults align, allowing the SCT to host

  13. Quantifying Arabia-Eurasia convergence accommodated in the Greater Caucasus by paleomagnetic reconstruction

    NASA Astrophysics Data System (ADS)

    van der Boon, A.; van Hinsbergen, D. J. J.; Rezaeian, M.; Gürer, D.; Honarmand, M.; Pastor-Galán, D.; Krijgsman, W.; Langereis, C. G.

    2018-01-01

    Since the late Eocene, convergence and subsequent collision between Arabia and Eurasia was accommodated both in the overriding Eurasian plate forming the Greater Caucasus orogen and the Iranian plateau, and by subduction and accretion of the Neotethys and Arabian margin forming the East Anatolian plateau and the Zagros. To quantify how much Arabia-Eurasia convergence was accommodated in the Greater Caucasus region, we here provide new paleomagnetic results from 97 volcanic sites (∼500 samples) in the Talysh Mountains of NW Iran, that show ∼15° net clockwise rotation relative to Eurasia since the Eocene. We apply a first-order kinematic restoration of the northward convex orocline that formed to the south of the Greater Caucasus, integrating our new data with previously published constraints on rotations of the Eastern Pontides and Lesser Caucasus. This suggests that north of the Talysh ∼120 km of convergence must have been accommodated. North of the Eastern Pontides and Lesser Caucasus this is significantly more: 200-280 km. Our reconstruction independently confirms previous Caucasus convergence estimates. Moreover, we show for the first time a sharp contrast of convergence between the Lesser Caucasus and the Talysh. This implies that the ancient Paleozoic-Mesozoic transform plate boundary, preserved between the Iranian and East-Anatolian plateaus, was likely reactivated as a right-lateral transform fault since late Eocene time.

  14. Tectonic lineaments in the cenozoic volcanics of southern Guatemala: Evidence for a broad continental plate boundary zone

    NASA Technical Reports Server (NTRS)

    Baltuck, M.; Dixon, T. H.

    1984-01-01

    The northern Caribbean plate boundary has been undergoing left lateral strike slip motion since middle Tertiary time. The western part of the boundary occurs in a complex tectonic zone in the continental crust of Guatemala and southernmost Mexico, along the Chixoy-Polochic, Motogua and possibly Jocotan-Chamelecon faults. Prominent lineaments visible in radar imagery in the Neogene volcanic belt of southern Guatemala and western El Salvador were mapped and interpreted to suggest southwest extensions of this already broad plate boundary zone. Because these extensions can be traced beneath Quaternary volcanic cover, it is thought that this newly mapped fault zone is active and is accommodating some of the strain related to motion between the North American and Caribbean plates. Onshore exposures of the Motoqua-Polochic fault systems are characterized by abundant, tectonically emplaced ultramafic rocks. A similar mode of emplacement for these off shore ultramafics, is suggested.

  15. Strength and Deformation Rate of Plate Boundaries: The Rheological Effects of Grain Size Reduction, Structure, and Serpentinization.

    NASA Astrophysics Data System (ADS)

    Montesi, L.; Gueydan, F.

    2016-12-01

    Global strain rate maps reveal 1000-fold contrasts between plate interiors, oceanic or continental diffuse plate boundaries and narrow plate boundaries. Here, we show that rheological models based on the concepts of shear zone localization and the evolution of rock structure upon strain can explain these strain rate contrasts. Ductile shear zones constitute a mechanical paradox in the lithosphere. As every plastic deformation mechanism is strain-rate-hardening, ductile rocks are expected to deform at low strain rate and low stress (broad zone of deformation). Localized ductile shear zones require either a localized forcing (locally high stress) or a thermal or structural anomaly in the shear zone; either can be inherited or develop progressively as rocks deform. We previously identified the most effective process at each depth level of the lithosphere. In the upper crust and middle crust, rocks fabric controls localization. Grain size reduction is the most efficient mechanism in the uppermost mantle. This analysis can be generalized to consider a complete lithospheric section. We assume strain rate does not vary with depth and that the depth-integrated strength of the lithospheric does not change over time, as the total force is controlled by external process such as mantle convection and plate and slab buoyancy. Reducing grain size from a coarse value typical of undeformed peridotite to a value in agreement with the stress level (piezometer) while letting that stress vary from depth to depth (the integrated stress remains the same) increases the lithospheric strain rate by about a factor of 1000. This can explain the development of diffuse plate boundaries. The slightly higher strain rate of continental plate boundary may reflect development of a layered rock fabric in the middle crust. Narrow plate boundaries require additional weakening process. The high heat flux near mid-ocean ridge implies a thin lithosphere, which enhances stress (for constant integrated

  16. How do long-offset oceanic transforms adapt to plate motion changes? The example of the Western Pacific-Antarctic plate boundary

    NASA Astrophysics Data System (ADS)

    Lodolo, Emanuele; Coren, Franco; Ben-Avraham, Zvi

    2013-03-01

    Oceanic transform faults respond to changes in the direction of relative plate motion. Studies have shown that short-offset transforms generally adjust with slight bends near the ridge axis, while long-offset ones have a remarkably different behavior. The western Pacific-Antarctic plate boundary highlights these differences. A set of previously unpublished seismic profiles, in combination with magnetic anomaly identifications, shows how across a former, ~1250 km long transform (the Emerald Fracture Zone), plate motion changes have produced a complex geometric readjustment. Three distinct sections are recognized along this plate boundary: an eastern section, characterized by parallel, multiple fault strand lineaments; a central section, shallower than the rest of the ridge system, overprinted by a mantle plume track; and a western section, organized in a cascade of short spreading axes/transform lineaments. This configuration was produced by changes that occurred since 30 Ma in the Australia-Pacific relative plate motion, combined with a gradual clockwise change in Pacific-Antarctic plate motion. These events caused extension along the former Emerald Fracture Zone, originally linking the Pacific-Antarctic spreading ridge system with the Southeast Indian ridge. Then an intra-transform propagating ridge started to develop in response to a ~6 Ma change in the Pacific-Antarctic spreading direction. The close proximity of the Euler poles of rotation amplified the effects of the geometric readjustments that occurred along the transform system. This analysis shows that when a long-offset transform older than 20 Ma is pulled apart by changes in spreading velocity vectors, it responds with the development of multiple discrete, parallel fault strands, whereas in younger lithosphere, locally modified by thermal anisotropies, tensional stresses generate an array of spreading axes offset by closely spaced transforms.

  17. Linkages Between the Megathrust and Upper-plate Deformation: Lessons From the Deformational Dichotomy of the 2016 Kaikoura New Zealand Earthquake

    NASA Astrophysics Data System (ADS)

    Furlong, K. P.; Herman, M. W.

    2017-12-01

    Following the 2016 Mw 7.8 Kaikoura earthquake, the nature of the coseismic rupture was unclear. Seismological and tsunami evidence pointed to significant involvement of the subduction megathrust, while geodetic and field observations pointed to a shallow set of intra-crustal faults as the main participants during the earthquake. It now appears that the Kaikoura earthquake produced synchronous faulting on the plate boundary subduction interface - the megathrust - and on a suite of crustal faults above the rupture zone in the overlying plate. This Kaikoura-style earthquake, involving synchronous ruptures on multiple components of the plate boundary, may be an important mode of plate boundary deformation affecting seismic hazard along subduction zones. Here we propose a model to explain how these upper-plate faults are loaded during the periods between megathrust earthquakes and subsequently can rupture synchronously with the megathrust. Between megathrust earthquakes, horizontal compression, driven by plate convergence, locks the upper-plate faults, particularly those at higher angles to the convergence direction and the oblique plate motion of the subducting Pacific plate deforms the upper-plate in bulk shear. During the time interval of megathrust rupture, two things happen which directly affect the stress conditions acting on these upper-plate faults: (1) slip on the megathrust and the associated `rebound' of the upper plate reduces the compressive or normal stress acting on the upper plate faults, and (2) the base of the upper plate faults (and the upper plate itself) is decoupled from the slab in the region above rupture area. The reduction in normal stress acting on these faults increases their Coulomb Stress state to strongly favor strike-slip fault slip, and the basal decoupling of the upper plate allows it to undergo nearly complete stress recovery in that region; enabling the occurrence of very large offsets on these faults - offsets that exceed the slip on

  18. The Fairway-Aotea Basin and the New Caledonia Trough, witnesses of the Pacific-Australian plate boundary evolution : from mid-Cretaceous cessation of subduction to Eocene subduction renewal

    NASA Astrophysics Data System (ADS)

    Collot, J.; Geli, L. B.; Lafoy, Y.; Sutherland, R.; Herzer, R. H.; Roest, W. R.

    2009-12-01

    which the system, initially shallow during Cretaceous (phase 1), would have greatly subsided during Eocene-Oligocene, giving birth to the NCT, as the renewal of the Australia-Pacific convergent plate boundary took place. This renewal of convergence at 45 Ma would have driven the lithosphere of the system to thicken (uplift), leading to a root instability and to its detachment in the mantle (subsidence). Superposed on these two main phases, some local effects, controlled by the geometry of the plate boundary, also appear. Particularly, latest late Eocene local deformation of the Northern NCB is documented, synchronously with the New Caledonian obduction. This asymmetrical deformation which lasted less than a few million years led to the uplift of the Fairway Ridge and the subsidence of the Eastern margin of the basin along NC’s western coast (10 km vertical amplitude). We suggest that as the oceanic crust of the South Loyalty Basin was being obducted onto the Norfolk Ridge at 37 Ma, the NCB subsided under the effect of the overloading and underthrusted to accommodate the compressional deformation as a foreland flexural basin.

  19. Effect of plate permeability on nonlinear stability of the asymptotic suction boundary layer.

    PubMed

    Wedin, Håkan; Cherubini, Stefania; Bottaro, Alessandro

    2015-07-01

    The nonlinear stability of the asymptotic suction boundary layer is studied numerically, searching for finite-amplitude solutions that bifurcate from the laminar flow state. By changing the boundary conditions for disturbances at the plate from the classical no-slip condition to more physically sound ones, the stability characteristics of the flow may change radically, both for the linearized as well as the nonlinear problem. The wall boundary condition takes into account the permeability K̂ of the plate; for very low permeability, it is acceptable to impose the classical boundary condition (K̂=0). This leads to a Reynolds number of approximately Re(c)=54400 for the onset of linearly unstable waves, and close to Re(g)=3200 for the emergence of nonlinear solutions [F. A. Milinazzo and P. G. Saffman, J. Fluid Mech. 160, 281 (1985); J. H. M. Fransson, Ph.D. thesis, Royal Institute of Technology, KTH, Sweden, 2003]. However, for larger values of the plate's permeability, the lower limit for the existence of linear and nonlinear solutions shifts to significantly lower Reynolds numbers. For the largest permeability studied here, the limit values of the Reynolds numbers reduce down to Re(c)=796 and Re(g)=294. For all cases studied, the solutions bifurcate subcritically toward lower Re, and this leads to the conjecture that they may be involved in the very first stages of a transition scenario similar to the classical route of the Blasius boundary layer initiated by Tollmien-Schlichting (TS) waves. The stability of these nonlinear solutions is also investigated, showing a low-frequency main unstable mode whose growth rate decreases with increasing permeability and with the Reynolds number, following a power law Re(-ρ), where the value of ρ depends on the permeability coefficient K̂. The nonlinear dynamics of the flow in the vicinity of the computed finite-amplitude solutions is finally investigated by direct numerical simulations, providing a viable scenario for

  20. The Plate Boundary Observatory: Community Focused Web Services

    NASA Astrophysics Data System (ADS)

    Matykiewicz, J.; Anderson, G.; Lee, E.; Hoyt, B.; Hodgkinson, K.; Persson, E.; Wright, J.; Torrez, D.; Jackson, M.

    2006-12-01

    The Plate Boundary Observatory (PBO), part of the NSF-funded EarthScope project, is designed to study the three-dimensional strain field resulting from deformation across the active boundary zone between the Pacific and North American plates in the western United States. To meet these goals, PBO will install 852 continuous GPS stations, 103 borehole strainmeter stations, 28 tiltmeters, and five laser strainmeters, as well as manage data for 209 previously existing continuous GPS stations. UNAVCO provides access to data products from these stations, as well as general information about the PBO project, via the PBO web site (http://pboweb.unavco.org). GPS and strainmeter data products can be found using a variety of channels, including map searches, text searches, and station specific data retrieval. In addition, the PBO construction status is available via multiple mapping interfaces, including custom web based map widgets and Google Earth. Additional construction details can be accessed from PBO operational pages and station specific home pages. The current state of health for the PBO network is available with the statistical snap-shot, full map interfaces, tabular web based reports, and automatic data mining and alerts. UNAVCO is currently working to enhance the community access to this information by developing a web service framework for the discovery of data products, interfacing with operational engineers, and exposing data services to third party participants. In addition, UNAVCO, through the PBO project, provides advanced data management and monitoring systems for use by the community in operating geodetic networks in the United States and beyond. We will demonstrate these systems during the AGU meeting, and we welcome inquiries from the community at any time.

  1. Transpressional Tectonics across the N. American-Caribbean Plate Boundary: Preliminary Results of a Multichannel Seismic Survey of Lake Azuei, Haiti.

    NASA Astrophysics Data System (ADS)

    Hearn, C. K.; Cormier, M. H.; Sloan, H.; Wattrus, N. J.; Boisson, D.; Brown, B.; Guerrier, K.; King, J. W.; Knotts, P.; Momplaisir, R.; Sorlien, C. C.; Stempel, R.; Symithe, S. J.; Ulysse, S. M. J.

    2017-12-01

    On January 12, 2010, a Mw 7.0 earthquake struck Haiti, killing over 200,000 people and devastating the Capital city of Port-au-Prince and the surrounding regions. It ruptured a previously unknown blind-thrust fault that abuts the Enriquillo Plantain Garden Fault (EPGF), one of two transform faults that define the North American-Caribbean plate boundary. That earthquake highlighted how transpression across this complex boundary is accommodated by slip partitioning into strike-slip and compressional structures. Because the seismic hazard is higher for a rupture on a reverse or oblique-slip fault than on a vertical strike-slip fault, the need to characterize the geometry of that fault system is clear. Lake Azuei overlies this plate boundary 60 km east of the 2010 epicenter. The lake's 23 km long axis trends NW-SE, parallel to the Haitian fold-and-thrust belt and oblique to the EPGF. This tectonic context makes it an ideal target for investigating the partitioning of plate motion between strike-slip and compressional structures. In January 2017, we acquired 222 km of multichannel seismic (MCS) profiles in the lake, largely concurrent with subbottom seismic (CHIRP) profiles. The MCS data were acquired using a high-frequency BubbleGun source and a 75 m-long, 24-channel streamer, achieving a 24 seismic fold with a penetration of 200 m below lakebed. With the goal of resolving tectonic structures in 3-D, survey lines were laid out in a grid with profiles spaced 1.2 km apart. Additional profiles were acquired at the SE end of the lake where most of the tectonic activity is presumably occurring. The co-located CHIRP and MCS profiles document the continuity of tectonic deformation between the surficial sediments and the deeper strata. Preliminary processing suggests that a SW-dipping blind thrust fault, expressed updip as a large monocline fold, may control the western edge of the lake. Gentle, young folds that protrude from the flat lakebed are also imaged with the CHIRP

  2. Stress Rotation Across the Cascadia Megathrust Requires a Weak Subduction Plate Boundary at Seismogenic Depths

    NASA Astrophysics Data System (ADS)

    Li, D.; McGuire, J. J.; Liu, Y.; Hardebeck, J.

    2017-12-01

    Despite the great effort spent investigating subduction zones, there are very limited constraints on the stress state on the plate boundary fault at the depth of megathrust earthquakes. Here we utilize a focal mechanism dataset, including observations from the Cascadia Initiative ocean bottom seismograph experiment, to constrain the stress orientations. We present a high-resolution inversion for the principal stress orientations both above and below the thrust interface in the southern Cascadia Subduction zone. The distinctive stresses above and below the interface require a significant stress rotation within 10 km of the plate boundary. To quantify the implications of this rotation for the strength of the plate boundary, we designed an inversion that solves for the absolute stress tensors in a three-layer model subject to assumptions about the strength of the subducting mantle. Our approach utilizes the continuous traction boundary conditions between layers as well as the observed principal stress orientations and the relative magnitude ratios in the crust and subducting mantle as constraints. Our results indicate that the shear stress on the plate boundary fault is likely no more than about 50 MPa at 20 km depth. Regardless of the assumed upper mantle strength, we infer a relatively weak megathrust fault with an effective friction coefficient of 0 to 0.2 at seismogenic depths. The central question for the Cascadia subduction zone is why it remains seismically quiet despite the 300+ years of stress accumulation since the last megathrust earthquake. For example, we also document that no thrust earthquakes were recorded by the 2-year Cascadia Initiative expedition down to magnitude 2.0, despite the stress perturbation generated by a nearby Mw5.7 earthquake on Jan 28th, 2015, on the Mendocino Transform fault. To help answer that question, we provide a new and fundamental constraint on the absolute level of stress accumulation to date in the current seismic cycle. Our

  3. Investigating the deformation of upper crustal faults at the N-Chilean convergent plate boundary at different scales using high-resolution topography datasets and creepmeter measurements

    NASA Astrophysics Data System (ADS)

    Ewiak, O.; Victor, P.; Ziegenhagen, T.; Oncken, O.

    2012-04-01

    The Chilean convergent plate boundary is one of the tectonically most active regions on earth and prone to large megathrust earthquakes as e. g. the 2010 Mw 8.8 Maule earthquake which ruptured a mature seismic gap in south-central Chile. In northern Chile historical data suggests the existence of a seismic gap between Arica and Mejillones Peninsula (MP), which has not ruptured since 1877. Further south, the 1995 Mw 8.0 Antofagasta earthquake ruptured the subduction interface between MP and Taltal. In this study we investigate the deformation at four active upper plate faults (dip-slip and strike-slip) located above the coupling zone of the subduction interface. The target faults (Mejillones Fault - MF, Salar del Carmen Fault - SCF, Cerro Fortuna Fault - CFF, Chomache Fault - CF) are situated in forearc segments, which are in different stages of the megathrust seismic cycle. The main question of this study is how strain is accumulated in the overriding plate, what is the response of the target faults to the megathrust seismic cycle and what are the mechanisms / processes involved. The hyper arid conditions of the Atacama desert and the extremely low erosion rates enable us to investigate geomorphic markers, e .g. fault scarps and knickpoints, which serve as a record for upper crustal deformation and fault activity about ten thousands years into the past. Fault scarp data has been acquired with Differential-GPS by measuring high-resolution topographic profiles perpendicular to the fault scarps and along incised gullies. The topographic data show clear variations between the target faults which possibly result from their position within the forearc. The surveyed faults, e. g. the SCF, exhibit clear along strike variations in the morphology of surface ruptures attributed to seismic events and can be subdivided into individual segments. The data allows us to distinguish single, composite and multiple fault scarps and thus to detect differences in fault growth initiated

  4. Identifying Fault Connections of the Southern Pacific-North American Plate Boundary Using Triggered Slip and Crustal Velocities

    NASA Astrophysics Data System (ADS)

    Donnellan, A.; Grant Ludwig, L.; Rundle, J. B.; Parker, J. W.; Granat, R.; Heflin, M. B.; Pierce, M. E.; Wang, J.; Gunson, M.; Lyzenga, G. A.

    2017-12-01

    The 2010 M7.2 El Mayor - Cucapah earthquake caused extensive triggering of slip on faults proximal to the Salton Trough in southern California. Triggered slip and postseismic motions that have continued for over five years following the earthquake highlight connections between the El Mayor - Cucapah rupture and the network of faults that branch out along the southern Pacific - North American Plate Boundary. Coseismic triggering follows a network of conjugate faults from the northern end of the rupture to the Coachella segment of the southernmost San Andreas fault. Larger aftershocks and postseismic motions favor connections to the San Jacinto and Elsinore faults further west. The 2012 Brawley Swarm can be considered part of the branching on the Imperial Valley or east side of the plate boundary. Cluster analysis of long-term GPS velocities using Lloyds Algorithm, identifies bifurcation of the Pacific - North American plate boundary; The San Jacinto fault joins with the southern San Andreas fault, and the Salton Trough and Coachella segment of the San Andreas fault join with the Eastern California Shear Zone. The clustering analysis does not identify throughgoing deformation connecting the Coachella segment of the San Andreas fault with the rest of the San Andreas fault system through the San Gorgonio Pass. This observation is consistent with triggered slip from both the 1992 Landers and 2010 El Mayor - Cucapah earthquakes that follows the plate boundary bifurcation and with paleoseismic evidence of smaller earthquakes in the San Gorgonio Pass.

  5. Effective strength of incoming sediments and its implications for plate boundary propagation: Nankai and Costa Rica as type examples of accreting vs. erosive convergent margins

    NASA Astrophysics Data System (ADS)

    Kopf, Achim

    2013-11-01

    The location of the seaward tip of a subduction thrust controls material transfer at convergent plate margins, and hence global mass balances. At approximately half of those margins, the material of the subducting plate is completely underthrust so that no accretion or even subduction erosion takes place. Along the remaining margins, material is scraped off the subducting plate and added to the upper plate by frontal accretion. We here examine the physical properties of subducting sediments off Costa Rica and Nankai, type examples for an erosional and an accretionary margin, to investigate which parameters control the level where the frontal thrust cuts into the incoming sediment pile. A series of rotary-shear experiments to measure the frictional strength of the various lithologies entering the two subduction zones were carried out. Results include the following findings: (1) At Costa Rica, clay-rich strata at the top of the incoming succession have the lowest strength (μres = 0.19) while underlying calcareous ooze, chalk and diatomite are strong (up to μres = 0.43; μpeak = 0.56). Hence the entire sediment package is underthrust. (2) Off Japan, clay-rich deposits within the lower Shikoku Basin inventory are weakest (μres = 0.13-0.19) and favour the frontal proto-thrust to migrate into one particular horizon between sandy, competent turbidites below and ash-bearing mud above. (3) Taking in situ data and earlier geotechnical testing into account, it is suggested that mineralogical composition rather than pore-pressure defines the position of the frontal thrust, which locates in the weakest, clay mineral-rich (up to 85 wt.%) materials. (4) Smectite, the dominant clay mineral phase at either margin, shows rate strengthening and stable sliding in the frontal 50 km of the subduction thrust (0.0001-0.1 mm/s, 0.5-25 MPa effective normal stress). (5) Progressive illitization of smectite cannot explain seismogenesis, because illite-rich samples also show velocity

  6. EarthScope Plate Boundary Observatory Data in the College Classroom (Invited)

    NASA Astrophysics Data System (ADS)

    Eriksson, S. C.; Olds, S. E.

    2009-12-01

    The Plate Boundary Observatory (PBO) is the geodetic component of the EarthScope project, designed to study the 3-D strain field across the active boundary zone between the Pacific and North American tectonics plates in the western United States. All PBO data are freely available to scientific and educational communities and have been incorporated into a variety of activities for college and university classrooms. UNAVCO Education and Outreach program staff have worked closely with faculty users, scientific researchers, and facility staff to create materials that are scientifically and technically accurate as well as useful to the classroom user. Availability of processed GPS data is not new to the geoscience community. However, PBO data staff have worked with education staff to deliver data that are readily accessible to educators. The UNAVCO Data for Educators webpage, incorporating an embedded Google Map with PBO GPS locations and providing current GPS time series plots and downloadable data, extends and updates the datasets available to our community. Google Earth allows the visualization GPS data with other types of datasets, e.g. LiDAR, while maintaining the self-contained and easy-to-use interface of UNAVCO’s Jules Verne Voyager map tools, which have multiple sets of geological and geophysical data. Curricular materials provide scaffolds for using EarthScope data in a variety of forms for different learning goals. Simple visualization of earthquake epicenters and locations of volcanoes can be used with velocity vectors to make simple deductions of plate boundary behaviors. Readily available time series plots provide opportunities for additional science skills, and there are web and paper-based support materials for downloading data, manipulating tables, and using plotting programs for processed GPS data. Scientists have provided contextual materials to explore the importance of these data in interpreting the structure and dynamics of the Earth. These data

  7. Numerical analysis of eccentric orifice plate using ANSYS Fluent software

    NASA Astrophysics Data System (ADS)

    Zahariea, D.

    2016-11-01

    In this paper the eccentric orifice plate is qualitative analysed as compared with the classical concentric orifice plate from the point of view of sedimentation tendency of solid particles in the fluid whose flow rate is measured. For this purpose, the numerical streamlines pattern will be compared for both orifice plates. The numerical analysis has been performed using ANSYS Fluent software. The methodology of CFD analysis is presented: creating the 3D solid model, fluid domain extraction, meshing, boundary condition, turbulence model, solving algorithm, convergence criterion, results and validation. Analysing the numerical streamlines, for the concentric orifice plate can be clearly observed two circumferential regions of separated flows, upstream and downstream of the orifice plate. The bottom part of these regions are the place where the solid particles could sediment. On the other hand, for the eccentric orifice plate, the streamlines pattern suggest that no sedimentation will occur because at the bottom area of the pipe there are no separated flows.

  8. Optimally growing boundary layer disturbances in a convergent nozzle preceded by a circular pipe

    NASA Astrophysics Data System (ADS)

    Uzun, Ali; Davis, Timothy B.; Alvi, Farrukh S.; Hussaini, M. Yousuff

    2017-06-01

    We report the findings from a theoretical analysis of optimally growing disturbances in an initially turbulent boundary layer. The motivation behind this study originates from the desire to generate organized structures in an initially turbulent boundary layer via excitation by disturbances that are tailored to be preferentially amplified. Such optimally growing disturbances are of interest for implementation in an active flow control strategy that is investigated for effective jet noise control. Details of the optimal perturbation theory implemented in this study are discussed. The relevant stability equations are derived using both the standard decomposition and the triple decomposition. The chosen test case geometry contains a convergent nozzle, which generates a Mach 0.9 round jet, preceded by a circular pipe. Optimally growing disturbances are introduced at various stations within the circular pipe section to facilitate disturbance energy amplification upstream of the favorable pressure gradient zone within the convergent nozzle, which has a stabilizing effect on disturbance growth. Effects of temporal frequency, disturbance input and output plane locations as well as separation distance between output and input planes are investigated. The results indicate that optimally growing disturbances appear in the form of longitudinal counter-rotating vortex pairs, whose size can be on the order of several times the input plane mean boundary layer thickness. The azimuthal wavenumber, which represents the number of counter-rotating vortex pairs, is found to generally decrease with increasing separation distance. Compared to the standard decomposition, the triple decomposition analysis generally predicts relatively lower azimuthal wavenumbers and significantly reduced energy amplification ratios for the optimal disturbances.

  9. Viscoelastic Postseismic Rebound to Strike-Slip Earthquakes in Regions of Oblique Plate Convergence

    NASA Technical Reports Server (NTRS)

    Cohen, Steven C.

    1999-01-01

    According to the slip partitioning concept, the trench parallel component of relative plate motion in regions of oblique convergence is accommodated by strike-slip faulting in the overriding continental lithosphere. The pattern of postseismic surface deformation due to viscoelastic flow in the lower crust and asthenosphere following a major earthquake on such a fault is modified from that predicted from the conventual elastic layer over viscoelastic halfspace model by the presence of the subducting slab. The predicted effects, such as a partial suppression of the postseismic velocities by 1 cm/yr or more immediately following a moderate to great earthquake, are potentially detectable using contemporary geodetic techniques.

  10. Seismicity of the Earth 1900-2012 Philippine Sea plate and vicinity

    USGS Publications Warehouse

    Smoczyk, Gregory M.; Hayes, Gavin P.; Hamburger, Michael W.; Benz, Harley M.; Villaseñor, Antonio; Furlong, Kevin P.

    2013-01-01

    The complex tectonics surrounding the Philippine Islands are dominated by the interactions of the Pacific, Sunda, and Eurasia plates with the Philippine Sea plate (PSP). The latter is unique because it is almost exclusively surrounded by zones of plate convergence. At its eastern and southeastern edges, the Pacific plate is subducted beneath the PSP at the Izu-Bonin, Mariana, and Yap trenches. Here, the subduction zone exhibits high rates of seismic activity to depths of over 600 km, though no great earthquakes (M>8.0) have been observed, likely because of weak coupling along the plate interface. In the northeast, the PSP subducts beneath Japan and the eastern margin of the Eurasia plate at the Nankai and Ryukyu trenches, extending westward to Taiwan. The Nankai portion of this subduction zone has hosted some of the largest earthquakes along the margins of the PSP, including a pair of Mw8.1 megathrust events in 1944 and 1946. Along its western margin, the convergence of the PSP and the Sunda plate is responsible for a broad and active plate boundary system extending along both sides of the Philippine Islands chain. The region is characterized by opposite-facing subduction systems on the east and west sides of the islands, and the archipelago is cut by a major transform structure: the Philippine Fault. Subduction of the Philippine Sea plate occurs at the eastern margin of the islands along the Philippine Trench and its northern extension, the East Luzon Trough. On the west side of Luzon, the Sunda Plate subducts eastward along a series of trenches, including the Manila Trench in the north, the smaller Negros Trench in the central Philippines, and the Sulu and Cotabato trenches in the south. Twentieth and early twentyfirst century seismic activity along the boundaries of the Philippine Sea plate has produced seven great (M>8.0) earthquakes and 250 large (M>7) events. Among the most destructive events were the 1923 Kanto, the 1948 Fukui, and the 1995 Kobe, Japan

  11. Diapir versus along-channel ascent of crustal material during plate convergence: constrained by the thermal structure of subduction zones

    NASA Astrophysics Data System (ADS)

    Liu, M. Q.; Li, Z. H.

    2017-12-01

    Crustal rocks can be subducted to mantle depths, interact with the mantle wedge, and then exhume to the crustal depth again, which is generally considered as the mechanism for the formation of ultrahigh-pressure metamorphic rocks in nature. The crustal rocks undergo dehydration and melting at subarc depths, giving rise to fluids that metasomatize and weaken the overlying mantle wedge. There are generally two ways for the material ascent from subarc depths: one is along subduction channel; the other is through the mantle wedge by diapir. In order to study the conditions and dynamics of these contrasting material ascent modes, systematic petrological-thermo-mechanical numerical models are constructed with variable thicknesses of the overriding and subducting continental plates, ages of the subducting oceanic plate, as well as the plate convergence rates. The model results suggest that the thermal structures of subduction zones control the thermal condition and fluid/melt activity at the slab-mantle interface in subcontinental subduction channels, which further strongly affect the material transportation and ascent mode. Thick overriding continental plate and low-angle subduction style induced by young subducting oceanic plate both contribute to the formation of relatively cold subduction channels with strong overriding mantle wedge, where the along-channel exhumation occurs exclusively to result in the exhumation of HP-UHP metamorphic rocks. In contrast, thin overriding lithosphere and steep subduction style induced by old subducting oceanic plate are the favorable conditions for hot subduction channels, which lead to significant hydration and metasomatism, melting and weakening of the overriding mantle wedge and thus cause the ascent of mantle wedge-derived melts by diapir through the mantle wedge. This may corresponds to the origination of continental arc volcanism from mafic to ultramafic metasomatites in the bottom of the mantle wedge. In addition, the plate

  12. The Lithosphere-asthenosphere Boundary beneath the South Island of New Zealand

    NASA Astrophysics Data System (ADS)

    Hua, J.; Fischer, K. M.; Savage, M. K.

    2017-12-01

    Lithosphere-asthenosphere boundary (LAB) properties beneath the South Island of New Zealand have been imaged by Sp receiver function common-conversion point stacking. In this transpressional boundary between the Australian and Pacific plates, dextral offset on the Alpine fault and convergence have occurred for the past 20 My, with the Alpine fault now bounded by Australian plate subduction to the south and Pacific plate subduction to the north. This study takes advantage of the long-duration and high-density seismometer networks deployed on or near the South Island, especially 29 broadband stations of the New Zealand permanent seismic network (GeoNet). We obtained 24,980 individual receiver functions by extended-time multi-taper deconvolution, mapping to three-dimensional space using a Fresnel zone approximation. Pervasive strong positive Sp phases are observed in the LAB depth range indicated by surface wave tomography (Ball et al., 2015) and geochemical studies. These phases are interpreted as conversions from a velocity decrease across the LAB. In the central South Island, the LAB is observed to be deeper and broader to the west of the Alpine fault. The deeper LAB to the west of the Alpine fault is consistent with oceanic lithosphere attached to the Australian plate that was partially subducted while also translating parallel to the Alpine fault (e.g. Sutherland, 2000). However, models in which the Pacific lithosphere has been underthrust to the west past the Alpine fault cannot be ruled out. Further north, a zone of thin lithosphere with a strong and vertically localized LAB velocity gradient occurs to the west of the fault, juxtaposed against a region of anomalously weak LAB conversions to the east of the fault. This structure, similar to results of Sp imaging beneath the central segment of the San Andreas fault (Ford et al., 2014), also suggests that lithospheric blocks with contrasting LAB properties meet beneath the Alpine fault. The observed variations in

  13. Introduction to the special issue on the 2012 Haida Gwaii and 2013 Craig earthquakes at the Pacific–North America plate boundary (British Columbia and Alaska)

    USGS Publications Warehouse

    James, Thomas S.; Cassidy, John F.; Rogers, Garry C.; Haeussler, Peter J.

    2015-01-01

    The 27 October 2012 Mw 7.8 Haida Gwaii thrust earthquake and the 5 January 2013 Mw 7.5 Craig strike‐slip earthquake are the focus of this special issue. They occurred along the transform boundary between the Pacific and North American plates (Fig. 1). The most identifiable feature of the plate boundary, the strike‐slip Queen Charlotte fault, might be viewed as typical of continent–ocean transform faults because it separates the continental crust of the North American plate from oceanic crust of the Pacific plate for most of its length. However, the current relative plate motion of about 5  cm/yr is highly oblique to the Queen Charlotte fault, causing a transpressive plate boundary in the region.

  14. An analytical study of the free and forced vibration response of a ribbed plate with free boundary conditions

    NASA Astrophysics Data System (ADS)

    Lin, Tian Ran; Zhang, Kai

    2018-05-01

    An analytical study to predict the vibration response of a ribbed plate with free boundary conditions is presented. The analytical solution was derived using a double cosine integral transform technique and then utilized to study the free and forced vibration of the ribbed plate, as well as the effect of the rib on the modal response of the uniform plate. It is shown that in addition to the three zero-frequency rigid body modes of the plate, the vibration modes of the uniform plate can be classified into four mode groups according to the symmetric properties of the plate with respect to the two orthogonal middle lines parallel to the plate edges. The four mode groups correspond to a double symmetric group, a double anti-symmetric group and two symmetric/anti-symmetric groups. Whilst the inclusion of the rib to the plate is shown to cause distortion to the distribution of vibration modes, most modes can still be traced back to the original modes of the uniform plate. Both the mass and stiffness of the rib are shown to affect the modal vibration of the uniform plate, whereby a dominant effect from the rib mass leads to a decrease in the modal frequency of the plate, whereas a dominant effect from the rib stiffness leads to an increase in plate modal frequency. When the stiffened rib behaves as an effective boundary to the plate vibration, an original plate mode becomes a pair of degenerate modes, whereby one mode has a higher frequency and the other mode has a lower frequency than that of the original mode.

  15. Determination of elastic constants of a generally orthotropic plate by modal analysis

    NASA Astrophysics Data System (ADS)

    Lai, T. C.; Lau, T. C.

    1993-01-01

    This paper describes a method of finding the elastic constants of a generally orthotropic composite thin plate through modal analysis based on a Rayleigh-Ritz formulation. The natural frequencies and mode shapes for a plate with free-free boundary conditions are obtained with chirp excitation. Based on the eigenvalue equation and the constitutive equations of the plate, an iteration scheme is derived using the experimentally determined natural frequencies to arrive at a set of converged values for the elastic constants. Four sets of experimental data are required for the four independent constants: namely the two Young's moduli E1 and E2, the in-plane shear modulus G12, and one Poisson's ratio nu12. The other Poisson's ratio nu21 can then be determined from the relationship among the constants. Comparison with static test results indicate good agreement. Choosing the right combinations of natural modes together with a set of reasonable initial estimates for the constants to start the iteration has been found to be crucial in achieving convergence.

  16. Extension and gold mineralisation in the hanging walls of active convergent continental shear zones

    NASA Astrophysics Data System (ADS)

    Upton, Phaedra; Craw, Dave

    2014-07-01

    Orogenic gold-bearing quartz veins form in mountain belts adjacent to convergent tectonic boundaries. The vein systems, hosted in extensional structures within compressively deformed rocks, are a widespread feature of these orogens. In many cases the extensional structures that host gold-bearing veins have been superimposed on, and locally controlled by, compressional structures formed within the convergent orogen. Exploring these observations within the context of a three-dimensional mechanical model allows prediction of mechanisms and locations of extensional zones within convergent orogens. Our models explore the effect of convergence angle and mid-crustal strength on stress states and compare them to the Southern Alps and Taiwan. The dilatation zones coincide with the highest mountains, in the hanging walls of major plate boundary faults, and can extend as deep as the brittle-ductile transition. Extensional deformation is favoured in the topographic divide region of oblique orogens with mid-lower crustal rheology that promotes localisation rather than diffuse deformation. In the near surface, topography influences the stress state to a depth approximately equal to the topographic relief, bringing the rock closer to failure and rotating σ1 to near vertical. The distribution of gold-bearing extensional veins may indicate the general position of the topographic divide within exhumed ancient orogens.

  17. Paleomagnetic Quantification of Neogene Block Rotations within an Active Transtensional Plate Boundary, Baja California, Mexico

    NASA Astrophysics Data System (ADS)

    Weber, J.; Umhoefer, P. J.; Pérez Venzor, J. A.; Bachtadse, V.

    2009-12-01

    Compared to oceanic plate boundaries which are generally narrow zones of deformation, continental plate boundaries appear as widespread areas with complex and poorly understood kinematics. Motion of crustal blocks within these “diffuse plate boundaries” causes rather small-scale lithospheric deformation within the boundary zone, while the main plates behave more rigid. Complex deformation patterns of interacting terranes separated by a variety of active faults are the consequence. To study the dynamic implications of boundary zone deformation, the southern part of the Baja California peninsula, Mexico (Baja) has been chosen as target for a detailed paleomagnetic study. In combination with geodetic measurements it is tried to characterize rigid block rotations and temporal changes in rotation rates. Up to now, little paleomagnetic work directed toward vertical axis rotations has been done in Baja California, despite its location in a major active transtensional zone. To address this problem, a total of 501 cores from 63 sites in the southern part of Baja - including sites on San José Island, San Francisco Island and Cerralvo Island - has been taken from volcanic and sedimentary rocks covering the last 25 million years in time. The analysis of paleomagnetic declinations and comparison to coeval data from North America and stable areas of Baja California allow evaluating the long-term kinematics of the region and the effects of oblique-rifting in the Gulf of California to the east. Nearly all sampled sites indicate vertical axis rotation up to 30-40 degrees with an average of about 20-25 degrees. Depending on the location these rotations have been either clockwise or counter-clockwise and are correlated with the opening of the Gulf of California and the translation of the Baja California peninsula to the North. Results of the paleomagnetic investigation are compared to geodetic data of the last few years in order to address the problem how strain is partitioned

  18. Experimental Results from a Flat Plate, Turbulent Boundary Layer Modified for the Purpose of Drag Reduction

    NASA Astrophysics Data System (ADS)

    Elbing, Brian R.

    2006-11-01

    Recent experiments on a flat plate, turbulent boundary layer at high Reynolds numbers (>10^7) were performed to investigate various methods of reducing skin friction drag. The methods used involved injecting either air or a polymer solution into the boundary layer through a slot injector. Two slot injectors were mounted on the model with one located 1.4 meters downstream of the nose and the second located 3.75 meters downstream. This allowed for some synergetic experiments to be performed by varying the injections from each slot and comparing the skin friction along the plate. Skin friction measurements were made with 6 shear stress sensors flush mounted along the stream-wise direction of the model.

  19. A seismic gap along an accreting plate boundary : Example of the Djibouti Ridge, Afar, East Africa

    NASA Astrophysics Data System (ADS)

    Ruegg, Jean-Claude; Lépine, Jean-Claude

    1983-05-01

    A segment of the Gulf of Tadjoura (Djibouti, East-Africa) accreting plate boundary, shows a period of quiescence in the seismic activity since 1974. This segment corresponds to the extension area of the aftershock activity that has occured after a cluster of magnitude 5.5 earthquakes in April 1973. From this example we propose that the seismic gap concept can be extended to moderate earthquakes occuring at extensional plate boundaries. The magnitude of the largest earthquakes at the spreading axis is limited by the size of the rupture length and by the strength of the brittle lithosphere. In the case of the Djibouti ridge recurrence time of 10-20 years are found for earthquakes of about M =6.

  20. Structure and composition of the plate-boundary slip zone for the 2011 Tohoku-Oki earthquake.

    PubMed

    Chester, Frederick M; Rowe, Christie; Ujiie, Kohtaro; Kirkpatrick, James; Regalla, Christine; Remitti, Francesca; Moore, J Casey; Toy, Virginia; Wolfson-Schwehr, Monica; Bose, Santanu; Kameda, Jun; Mori, James J; Brodsky, Emily E; Eguchi, Nobuhisa; Toczko, Sean

    2013-12-06

    The mechanics of great subduction earthquakes are influenced by the frictional properties, structure, and composition of the plate-boundary fault. We present observations of the structure and composition of the shallow source fault of the 2011 Tohoku-Oki earthquake and tsunami from boreholes drilled by the Integrated Ocean Drilling Program Expedition 343 and 343T. Logging-while-drilling and core-sample observations show a single major plate-boundary fault accommodated the large slip of the Tohoku-Oki earthquake rupture, as well as nearly all the cumulative interplate motion at the drill site. The localization of deformation onto a limited thickness (less than 5 meters) of pelagic clay is the defining characteristic of the shallow earthquake fault, suggesting that the pelagic clay may be a regionally important control on tsunamigenic earthquakes.

  1. Unsteady heat-flux measurements of second-mode instability waves in a hypersonic flat-plate boundary layer

    NASA Astrophysics Data System (ADS)

    Kegerise, Michael A.; Rufer, Shann J.

    2016-08-01

    In this paper, we report on the application of the atomic layer thermopile (ALTP) heat-flux sensor to the measurement of laminar-to-turbulent transition in a hypersonic flat-plate boundary layer. The centerline of the flat-plate model was instrumented with a streamwise array of ALTP sensors, and the flat-plate model was exposed to a Mach 6 freestream over a range of unit Reynolds numbers. Here, we observed an unstable band of frequencies that are associated with second-mode instability waves in the laminar boundary layer that forms on the flat-plate surface. The measured frequencies, group velocities, phase speeds, and wavelengths of these instability waves are consistent with data previously reported in the literature. Heat flux time series, and the Morlet wavelet transforms of them, revealed the wave-packet nature of the second-mode instability waves. In addition, a laser-based radiative heating system was used to measure the frequency response functions (FRF) of the ALTP sensors used in the wind tunnel test. These measurements were used to assess the stability of the sensor FRFs over time and to correct spectral estimates for any attenuation caused by the finite sensor bandwidth.

  2. Divergent plate boundaries and crustal spreading on Venus: Evidence from Aphrodite Terra

    NASA Technical Reports Server (NTRS)

    Crumpler, L. S.; Head, James W.

    1989-01-01

    The modes of lithospheric heat transfer and the tectonic styles may differ between Earth and Venus, depending on how the high surface temperature (700 K = 430 C), dense and opaque atmosphere (approx. 10 MPa = 100 bars), lack of water oceans, and the other known ways in which Venus differs from Earth, influence basic lithospheric processes, thermal gradient, upper mantle temperature, thermal and chemical evolution, and convection. A fundamental question is whether the lithosphere of Venus is horizontally stable, like the other terrestrial planets, or is mobile like that on Earth. The variety of characteristics, their integrated relationships, and their predictable behavior throughout Western Aphrodite Terra are similar to those features known to occur in association with the terrestrial seafloor at spreading centers and divergent plate boundaries. It is concluded that Western Aphrodite Terra represents the site of crustal spreading centers and divergent plate boundaries. The extent of similar characteristics and processes elsewhere on Venus outside of the 13,000 km long Western and Eastern Aphrodite Terra rise is unknown at the present, but their presence in other areas of the equatorial highlands, suggested from recent analysis, may be tested with forthcoming Magellan data.

  3. Global Plate Velocities from the Global Positioning System

    NASA Technical Reports Server (NTRS)

    Larson, Kristine M.; Freymueller, Jeffrey T.; Philipsen, Steven

    1997-01-01

    We have analyzed 204 days of Global Positioning System (GPS) data from the global GPS network spanning January 1991 through March 1996. On the basis of these GPS coordinate solutions, we have estimated velocities for 38 sites, mostly located on the interiors of the Africa, Antarctica, Australia, Eurasia, Nazca, North America, Pacific, and South America plates. The uncertainties of the horizontal velocity components range from 1.2 to 5.0 mm/yr. With the exception of sites on the Pacific and Nazca plates, the GPS velocities agree with absolute plate model predictions within 95% confidence. For most of the sites in North America, Antarctica, and Eurasia, the agreement is better than 2 mm/yr. We find no persuasive evidence for significant vertical motions (less than 3 standard deviations), except at four sites. Three of these four were sites constrained to geodetic reference frame velocities. The GPS velocities were then used to estimate angular velocities for eight tectonic plates. Absolute angular velocities derived from the GPS data agree with the no net rotation (NNR) NUVEL-1A model within 95% confidence except for the Pacific plate. Our pole of rotation for the Pacific plate lies 11.5 deg west of the NNR NUVEL-1A pole, with an angular speed 10% faster. Our relative angular velocities agree with NUVEL-1A except for some involving the Pacific plate. While our Pacific-North America angular velocity differs significantly from NUVEL-1A, our model and NUVEL-1A predict very small differences in relative motion along the Pacific-North America plate boundary itself. Our Pacific-Australia and Pacific- Eurasia angular velocities are significantly faster than NUVEL-1A, predicting more rapid convergence at these two plate boundaries. Along the East Pacific Pise, our Pacific-Nazca angular velocity agrees in both rate and azimuth with NUVFL-1A.

  4. Plane wave diffraction by a finite plate with impedance boundary conditions.

    PubMed

    Nawaz, Rab; Ayub, Muhammad; Javaid, Akmal

    2014-01-01

    In this study we have examined a plane wave diffraction problem by a finite plate having different impedance boundaries. The Fourier transforms were used to reduce the governing problem into simultaneous Wiener-Hopf equations which are then solved using the standard Wiener-Hopf procedure. Afterwards the separated and interacted fields were developed asymptotically by using inverse Fourier transform and the modified stationary phase method. Detailed graphical analysis was also made for various physical parameters we were interested in.

  5. Nonlinear vibrations of thin arbitrarily laminated composite plates subjected to harmonic excitations using DKT elements

    NASA Astrophysics Data System (ADS)

    Chiang, C. K.; Xue, David Y.; Mei, Chuh

    1993-04-01

    A finite element formulation is presented for determining the large-amplitude free and steady-state forced vibration response of arbitrarily laminated anisotropic composite thin plates using the Discrete Kirchhoff Theory (DKT) triangular elements. The nonlinear stiffness and harmonic force matrices of an arbitrarily laminated composite triangular plate element are developed for nonlinear free and forced vibration analyses. The linearized updated-mode method with nonlinear time function approximation is employed for the solution of the system nonlinear eigenvalue equations. The amplitude-frequency relations for convergence with gridwork refinement, triangular plates, different boundary conditions, lamination angles, number of plies, and uniform versus concentrated loads are presented.

  6. Nonlinear vibrations of thin arbitrarily laminated composite plates subjected to harmonic excitations using DKT elements

    NASA Technical Reports Server (NTRS)

    Chiang, C. K.; Xue, David Y.; Mei, Chuh

    1993-01-01

    A finite element formulation is presented for determining the large-amplitude free and steady-state forced vibration response of arbitrarily laminated anisotropic composite thin plates using the Discrete Kirchhoff Theory (DKT) triangular elements. The nonlinear stiffness and harmonic force matrices of an arbitrarily laminated composite triangular plate element are developed for nonlinear free and forced vibration analyses. The linearized updated-mode method with nonlinear time function approximation is employed for the solution of the system nonlinear eigenvalue equations. The amplitude-frequency relations for convergence with gridwork refinement, triangular plates, different boundary conditions, lamination angles, number of plies, and uniform versus concentrated loads are presented.

  7. Seismicity of the Earth 1900-2010 eastern margin of the Australia plate

    USGS Publications Warehouse

    Benz, Harley M.; Herman, Matthew; Tarr, Arthur C.; Hayes, Gavin P.; Furlong, Kevin P.; Villaseñor, Antonio; Dart, Richard L.; Rhea, Susan

    2011-01-01

    The eastern margin of the Australia plate is one of the most seismically active areas of the world due to high rates of convergence between the Australia and Pacific plates. In the region of New Zealand, the 3,000 km long Australia-Pacific plate boundary extends from south of Macquarie Island to the southern Kermadec Island chain. It includes an oceanic transform (the Macquarie Ridge), two oppositely verging subduction zones (Puysegur and Hikurangi), and a transpressive continental transform, the Alpine Fault through South Island, New Zealand. Since 1900, there have been 15 M7.5+ earthquakes recorded near New Zealand. Nine of these, and the four largest, occurred along or near the Macquarie Ridge, including the 1989 M8.2 event on the ridge itself, and the 2004 M8.1 event 200 km to the west of the plate boundary, reflecting intraplate deformation. The largest recorded earthquake in New Zealand itself was the 1931 M7.8 Hawke's Bay earthquake, which killed 256 people. The last M7.5+ earthquake along the Alpine Fault was 170 years ago; studies of the faults' strain accumulation suggest that similar events are likely to occur again.

  8. Reconstruction of Northeast Asian Deformation Integrated with Western Pacific Plate Subduction since 200 Ma

    NASA Astrophysics Data System (ADS)

    Liu, S.; Gurnis, M.; Ma, P.; Zhang, B.

    2017-12-01

    The configuration and kinematics of continental deformation and its marginal plate tectonics on the Earth's surface are intrinsic manifestations of plate-mantle coupling. The complex interactions of plate boundary forces result in plate motions that are dominated by slab pull and ridge push forces and the effects of mantle drag; these interactions also result in continental deformation with a complex basin-mountain architecture and evolution. The kinematics and evolution of the western Pacific subduction and northeast Asian continental-margin deformation are a first-order tectonic process whose nature and chronology remains controversial. This paper implements a "deep-time" reconstruction of the western Pacific subduction, continental accretion or collision and basin-mountain deformation in northeast Asia since 200 Ma based on a newly revised global plate model. The results demonstrate a NW-SE-oriented shortening from 200-137 Ma, a NWW-SEE-oriented extension from 136-101 Ma, a nearly N-S-oriented extension and uplift with a short-term NWW-SEE-oriented compressional inversion in northeast China from 100-67 Ma, and a NW-SE- and nearly N-S-oriented extension from 66 Ma to the present day. The western Pacific oceanic plate subducted forward under East Asia along Mudanjiang-Honshu Island during the Jurassic, and the trenches retreated to the Sikhote-Alin, North Shimanto, and South Shimanto zones from ca. 137-128 Ma, ca. 130-90 Ma, and in ca. 60 Ma, respectively. Our time-dependent analysis of plate motion and continental deformation coupling suggests that the multi-plate convergent motion and ocean-continent convergent orogeny were induced by advance subduction during the Jurassic and earliest Cretaceous. Our analysis also indicates that the intra-continent rifting and back-arc extension were triggered by trench retreat during the Cretaceous and that the subduction of oceanic ridge and arc were triggered by trench retreat during the Cenozoic. Therefore, reconstructing

  9. Plate boundary reorganization in the active Banda Arc-continent collision: Insights from new GPS measurements

    NASA Astrophysics Data System (ADS)

    Nugroho, Hendro; Harris, Ron; Lestariya, Amin W.; Maruf, Bilal

    2009-12-01

    New GPS measurements reveal that large sections of the SE Asian Plate are progressively accreting to the edge of the Australian continent by distribution of strain away from the deformation front to forearc and backarc plate boundary segments. The study was designed to investigate relative motions across suspected plate boundary segments in the transition from subduction to collision. The oblique nature of the collision provides a way to quantify the spatial and temporal distribution of strain from the deformation front to the back arc. The 12 sites we measured from Bali to Timor included some from an earlier study and 7 additional stations, which extended the epoch of observation to ten years at many sites. The resulting GPS velocity field delineates at least three Sunda Arc-forearc regions around 500 km in strike-length that shows different amounts of coupling to the Australian Plate. Movement of these regions relative to SE Asia increases from 21% to 41% to 63% eastward toward the most advanced stages of collision. The regions are bounded by the deformation front to the south, the Flores-Wetar backarc thrust system to the north, and poorly defined structures on the sides. The suture zone between the NW Australian continental margin and the Sunda-Banda Arcs is still evolving with more than 20 mm/yr of movement measured across the Timor Trough deformation front between Timor and Australia.

  10. Diapir versus along-channel ascent of crustal material during plate convergence: Constrained by the thermal structure of subduction zones

    NASA Astrophysics Data System (ADS)

    Liu, Ming-Qi; Li, Zhong-Hai; Yang, Shao-Hua

    2017-09-01

    Subduction channel processes are crucial for understanding the material and energy exchange between the Earth's crust and mantle. Crustal rocks can be subducted to mantle depths, interact with the mantle wedge, and then exhume to the crustal depth again, which is generally considered as the mechanism for the formation of ultrahigh-pressure metamorphic rocks in nature. In addition, the crustal rocks generally undergo dehydration and melting at subarc depths, giving rise to fluids that metasomatize and weaken the overlying mantle wedge. There are generally two ways for the material ascent from subarc depths: one is along subduction channels; the other is through the mantle wedge by diapir. In order to study the conditions and dynamics of these contrasting material ascent modes, systematic petrological-thermo-mechanical numerical models are constructed with variable thicknesses of the overriding and subducting continental plates, ages of the subducting oceanic plate, as well as the plate convergence rates. The model results suggest that the thermal structures of subduction zones control the thermal condition and fluid/melt activity at the slab-mantle interface in subcontinental subduction channels, which further strongly affect the material transportation and ascent mode. The thick overriding continental plate and the low-angle subduction style induced by young subducting oceanic plate both contribute to the formation of relatively cold subduction channels with strong overriding mantle wedge, where the along-channel exhumation occurs exclusively to result in the exhumation of HP-UHP metamorphic rocks. In contrast, the thin overriding lithosphere and the steep subduction style induced by old subducting oceanic plate are the favorable conditions for hot subduction channels, which lead to significant hydration and metasomatism, melting and weakening of the overriding mantle wedge and thus cause the ascent of mantle wedge-derived melts by diapir through the mantle wedge

  11. Seismicity and Seismic Hazard along the Western part of the Eurasia-Nubia plate boundary

    NASA Astrophysics Data System (ADS)

    Bezzeghoud, Mourad; Fontiela, João; Ferrão, Celia; Borges, José Fernando; Caldeira, Bento; Dib, Assia; Ousadou, Farida

    2016-04-01

    The seismic phenomenon is the most damaging natural hazard known in the Mediterranean area. The western part of the Eurasia-Nubia plate boundary extends from the Azores to the Mediterranean region. The oceanic part of the plate boundary is well delimited from the Azores Islands, along the Azores-Gibraltar fault to approximately 12°W (west of the Strait of Gibraltar). From 12°W to 3.5°E, including the Iberia-Nubia region and extending to the western part of Algeria, the boundary is more diffuse and forms a wider area of deformation. The boundary between the Iberia and Nubia plates is the most complex part of the margin. This region corresponds to the transition from an oceanic boundary to a continental boundary, where Iberia and Nubia collide. Although most earthquakes along this plate boundary are shallow and generally have magnitudes less than 5.5, there have been several high-magnitude events. Many devastating earthquakes, some of them tsunami-triggering, inflicted heavy loss and considerable economic damage to the region. From 1920 to present, three earthquakes with magnitudes of about 8.0 (Mw 8.2, 25 November 1941; Ms 8.0, 25 February 1969; and Mw 7.9, 26 May 1975) occurred in the oceanic region, and four earthquakes with magnitudes of about 7.0 (Mw 7.1, 8 May 1939, Santa Maria Island and Mw 7.1, January 1980, Terceira and Graciosa Islands, both in the Azores; Ms 7.1, 20 May 1931, Azores-Gibraltar fracture zone; and Mw 7.3, 10 October 1980, El Asnam, Algeria) occurred along the western part of the Eurasia-Nubia plate boundary. In general, large earthquakes (M ≥7) occur within the oceanic region, with the exception of the El Asnam (Algeria) earthquakes. Some of these events caused extensive damage. The 1755 Lisbon earthquake (˜Mw 9) on the Portugal Atlantic margin, about 200 km W-SW of Cape St. Vincent, was followed by a tsunami and fires that caused the near-total destruction of Lisbon and adjacent areas. Estimates of the death toll in Lisbon alone (~70

  12. Svecofennian orogeny in an evolving convergent margin setting

    NASA Astrophysics Data System (ADS)

    Korja, Annakaisa

    2015-04-01

    The dominant tectonic mode changes from extension to convergence at around 1.9 Ga in Fennoscandian. The lithological record suggests short lived subduction-related magmatic events followed by deformation and low-pressure high temperature metamorphism. At around 1.8 Ga the subduction systems seem to have stabilized implying continuous supply of oceanic lithosphere. The evolution of the convergent margin is recorded in the rock record and crustal architecture of the long lived Svecofennian orogeny (1.9-1.7 Ga). A closer look at the internal structure of the Svecofennian orogen reveals distinct regional differences. The northern and central parts of the Svecofennian orogen that have been formed during the initial accretionary phase - or compilation of the nucleus - have a thick three-layer crust and with thick mafic lower crust (10-30 km) and block-like internal architecture. Reflection profiles (FIRE1-3) image listric structures flattening on crustal scale décollement zones at the upper-middle crust and middle-upper crust boundaries. The crustal architecture together with large volumes of exposed granitoid rocks suggests spreading of the orogen and the development of an orogenic plateau west of the continental convergence boundary. The architecture is reminiscent of a large hot orogen. Within the western and southwestern part of the Svecofennian orogen (BABEL B, 1, 2, 3&4), which have been envisioned to have formed during continuous subduction phase, the crust is thinner (45-50 km) and it is hosting crustal blocks having one to two crustal layers. Layering is poorly developed in crustal blocks that are found S-SW of NE-dipping mantle reflections previously interpreted as paleo-subduction zones. Within these blocks, the crustal scale reflective structures dip NE (prowedge) or form pop-up wedges (uplifted plug) above the paleo-subduction zones. Crustal blocks with well-developed two-layer crust are located NE of the paleo-subduction zone. The architecture can be

  13. Origin of the oceanic basalt basement of the Solomon Islands arc and its relationship to the Ontong Java Plateau-insights from Cenozoic plate motion models

    USGS Publications Warehouse

    Wells, R.E.

    1989-01-01

    Cenozoic global plate motion models based on a hotspot reference frame may provide a useful framework for analyzing the tectonic evolution of the Solomon Islands convergent margin. A postulated late Miocene collision of the Ontong Java Plateau (OJP) with a NE-facing arc is consistent with the predicted path of the OJP across the Pacific Basin and its Miocene arrival at the trench. Late-stage igneous activity (65-30 Ma) predicted for the OJP as it rode over the Samoan hotspot occurred in correlative stratigraphic sections on Malaita, the supposed accreted flake of OJP in the Solomon Islands arc. Convergence similar to the present velocities between Australia and the Pacific plates was characteristic of the last 43 million years. Prior to 43 Ma Pacific-Australia plate motions were divergent, seemingly at odds with geologic evidence for early Tertiary convergence, particularly in Papua New Guinea. A postulated South Pacific plate may have existed between Australia and the Pacific plate and would have allowed implied northward subduction along the northeastern Australia plate boundary that lasted into the early Eocene. Subsequent reorganization of plate motions in the middle Eocene correlates with middle Eocene marginal basin formation along ridges oblique to the main plate boundary. Cessation of spreading on the Pacific-South Pacific Ridge and its subsequent subduction beneath Asia followed the change in Pacific plate motion at 43 Ma. A trapped remnant of the extinct, NW-trending ridge may still lie beneath the western Philippine Sea. The terminal deformation, metamorphism and ophiolite obduction in the Eocene orogen of the southwest Pacific also correlates with the major change in Pacific plate motion at 43 Ma and the subsequent compression of the dying Eocene arc against outlying continental and oceanic crustal blocks of the Australian plate. The Solomon Islands oceanic basement may represent juxtaposition of oceanic plateaus of the Australian plate beneath

  14. North America-Pacific plate boundary, an elastic-plastic megashear - Evidence from very long baseline interferometry

    NASA Technical Reports Server (NTRS)

    Ward, Steven N.

    1988-01-01

    Data obtained by Mark III VLBI measurements of radio signals from permanent and mobile VLBI sites for 5.5 years of observations, starting in October 1982, were used to derive a picture of the earth crust deformation near the North America-Pacific plate boundary. The data, which included the vector positions of the VLBI sites and their rate of change, were used for comparison with a number of lithospheric deformation models based upon the concept that the motions of points near the North America-Pacific plate boundary are a linear combination of North America and Pacific velocities. The best of these models were found to fit 95 percent of the variance in 139 VLBI length and transverse velocity observations. Instantaneous shear deformation associated with plate tectonics is apparently developing in a zone 450 km wide paralleling the San Andreas Fault; some of this deformation will be recovered through elastic rebound, while the rest will be permanently set through plastic processes. Because the VLBI data have not been collected for a significant fraction of the earthquake cycle, they cannot discriminate between elastic and plastic behaviors.

  15. Rates and mechanics of rapid frontal accretion along the very obliquely convergent southern Hikurangi margin, New Zealand

    NASA Astrophysics Data System (ADS)

    Barnes, Philip M.; de Lépinay, Bernard Mercier

    1997-11-01

    Analysis of seismic reflection profiles, swath bathymetry, side-scan sonar imagery, and sediment samples reveal the three-dimensional structure, morphology, and stratigraphic evolution of the central to southern Hikurangi margin accretionary wedge, which is developing in response to thick trench fill sediment and oblique convergence between the Australian and Pacific plates. A seismic stratigraphy of the trench fill turbidites and frontal part of the wedge is constrained by seismic correlations to an already established stratigraphic succession nearby, by coccolith and foraminifera biostratigraphy of three core and dredge samples, and by estimates of stratigraphic thicknesses and rates of accumulation of compacted sediment. Structural and stratigraphic analyses of the frontal part of the wedge yield quantitative data on the timing of inception of thrust faults and folds, on the growth and mechanics of frontal accretion under variable convergence obliquity, and on the amounts and rates of horizontal shortening. The data place constraints on the partitioning of geological strain across the entire southern Hikurangi margin. The principal deformation front at the toe of the wedge is discontinuous and represented by right-stepping thrust faulted and folded ridges up to 1 km high, which develop initially from discontinuous protothrusts. In the central part of the margin near 41°S, where the convergence obliquity is 50°, orthogonal convergence rate is slow (27 mm/yr), and about 75% of the total 4 km of sediment on the Pacific Plate is accreted frontally, the seismically resolvable structures within 30 km of the deformation front accommodate about 6 km of horizontal shortening. At least 80% of this shortening has occurred within the last 0.4±0.1 m.y. at an average rate of 12±3 mm/yr. This rate indicates that the frontal 30 km of the wedge accounts for about 33-55% of the predicted orthogonal contraction across the entire plate boundary zone. Despite plate convergence

  16. Receptivity of flat-plate boundary layer in a non-uniform free stream (vorticity normal to the plate)

    NASA Technical Reports Server (NTRS)

    Kogan, M. N.

    1994-01-01

    Recent progress in both the linear and nonlinear aspects of stability theory has highlighted the importance of the receptivity problem. One of the most unclear aspects of receptivity study is the receptivity of boundary-layer flow normal to vortical disturbances. Some experimental and theoretical results permit the proposition that quasi-steady outer-flow vortical disturbances may trigger by-pass transition. In present work such interaction is investigated for vorticity normal to a leading edge. The interest in these types of vortical disturbances arise from theoretical work, where it was shown that small sinusoidal variations of upstream velocity along the spanwise direction can produce significant variations in the boundary-layer profile. In the experimental part of this work, such non-uniform flow was created and the laminar-turbulent transition in this flow was investigated. The experiment was carried out in a low-turbulence direct-flow wind tunnel T-361 at the Central Aerohydrodynamic Institute (TsAGI). The non-uniform flow was produced by laminar or turbulent wakes behind a wire placed normal to the plate upstream of the leading edge. The theoretical part of the work is devoted to studying the unstable disturbance evolution in a boundary layer with strongly non-uniform velocity profiles similar to that produced by outer-flow vorticity. Specifically, the Tollmien-Schlichting wave development in the boundary layer flow with spanwise variations of velocity is investigated.

  17. Generalized wall function and its application to compressible turbulent boundary layer over a flat plate

    NASA Astrophysics Data System (ADS)

    Liu, J.; Wu, S. P.

    2017-04-01

    Wall function boundary conditions including the effects of compressibility and heat transfer are improved for compressible turbulent boundary flows. Generalized wall function formulation at zero-pressure gradient is proposed based on coupled velocity and temperature profiles in the entire near-wall region. The parameters in the generalized wall function are well revised. The proposed boundary conditions are integrated into Navier-Stokes computational fluid dynamics code that includes the shear stress transport turbulence model. Numerical results are presented for a compressible boundary layer over a flat plate at zero-pressure gradient. Compared with experimental data, the computational results show that the generalized wall function reduces the first grid spacing in the directed normal to the wall and proves the feasibility and effectivity of the generalized wall function method.

  18. Extension and transtension in the plate boundary zone of the northeastern Caribbean

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Speed, R.C.; Larue, D.K.

    1991-03-01

    The authors propose that the Caribbean (Ca)-North American (NA) plate boundary zone (pbz) from the Puerto Rico Trench to the Venezuelan Basin from Mona Canyon east has been in left-transtension over the last 15-20 ma. A boundary-normal component of extension occurs throughout the pbz and is a principal cause of the Puerto Rico Trench. Such extension is due to WNW velocity of NA-Ca and the northward pullaway of NA from its S-dipping slab, which is below Puerto Rico. Strike slip motion may be taken up among terranes in the pbz by rigid CCW rotation and by oblique slip at theirmore » boundaries. Rotation of the largest terrane, Puerto Rico-Virgin Islands (PRVI), has caused such major structures as the Muertos thrust and Anegada Passage. The model implies NA-Ca velocity estimated from Cayman transforms is more accurate than that from slip vectors from seisms in the NA slab.« less

  19. 3-D Simulation of Tectonic Evolution in Mariana with a Coupled Model of Plate Subduction and Back-Arc Spreading

    NASA Astrophysics Data System (ADS)

    Hashima, A.; Matsu'Ura, M.

    2006-12-01

    We obtained the expressions for internal deformation fields due to a moment tensor in an elastic-viscoelastic layered holf-space. This unified formulation of internal deformation fields for shear faulting and crack opening enabled us to deal with the problem of tectonic deformation at a composite type of plate boundary zones. The tectonic deformation can be ascribed to mechanical interaction at plate boundaries, which make a closed circuit with the mode of relative plate motion changing from divergence to convergence through transcurrent motion. One of the rational ways to represent mechanical interaction at plate boundaries is specifying the increase rates of normal or tangential displacement discontinuity across plate interfaces. On the basis of such a basic idea we developed a 3-D simulation model for the nonlinear, coupled system of plate subduction and back-arc spreading in Mariana. Through numerical simulations we revealed the evolution process of back-arc spreading. At the first stage, steady plate subduction (shear faulting at a plate interface) gradually forms tensile stress fields in the back-arc region of the overriding plate. When the accumulated tensile stress reaches a critical level, back-arc spreading (crack opening) starts at a structurally weak portion of the overriding plate. The horizontal motion of the frontal part of the overriding plate due to back-arc spreading pushes out the plate boundary toward the oceanic plate. In steady-state plate subduction the shear stress acting on a plate interface must balance with the maximum frictional resistance (shear strength) of the plate interface. Therefore, the increase of shear stress at the plate interface leads to the increase of slip rate at the plate interface. The local increase of slip rate at the plate interface produces the additional tensile stress in the back-arc region. The increased tensile stress must be canceled out by the additional crack opening. Such a feedback mechanism between plate

  20. Unsteady laminar boundary-layer calculations on oscillating configurations including backflow. Part 1: Flat plate, oscillating in its own plane

    NASA Technical Reports Server (NTRS)

    Geissler, W.

    1983-01-01

    A finite difference method has been developed to calculate the unsteady boundary layer over an oscillating flat plate. Low- and high frequency approximations were used for comparison with numerical results. Special emphasis was placed on the behavior of the flow and on the numerical calculation procedure as soon as reversed flow has occurred over part of the oscillation cycle. The numerical method displayed neither problems nor singular behavior at the beginning of or within the reversed flow region. Calculations, however, came to a limit where the back-flow region reached the plate's leading edge in the case of high oscillation amplitudes. It is assumed that this limit is caused by the special behavior of the flow at the plate's leading edge where the boundary layer equations are not valid.

  1. Kinematics of the New Zealand plate boundary: Relative motion by GPS across networks of 1000 km and 50 km spacing

    NASA Technical Reports Server (NTRS)

    Meertens, Charles M.; Rocken, Christian; Perin, Barbara; Walcott, Richard

    1993-01-01

    The NASA/DOSE 'Kinematics of the New Zealand Plate Boundary' experiment is a four-year cooperative Global Positioning System (GPS) experiment involving 6 universities and institutions in New Zealand and the United States. The investigation covers two scales, the first on the scale of plates (approximately 1000 km) and the second is on the scale of the plate boundary zone (approximately 50 km). In the first portion of the experiment, phase A, the objective is to make direct measurements of tectonic plate motion between the Australian and Pacific plates using GPS in order to determine the Euler vector of this plate pair. The phase A portion of this experiment was initiated in December 1992 with the first-epoch baseline measurements on the large scale network. The network will be resurveyed two years later to obtain velocities. The stations which were observed for phase A are shown and listed. Additional regional stations which will be used for this study are listed and are part of either CIGNET or other global tracking networks. The phase A portion of the experiment is primarily the responsibility of the UNAVCO investigators. Therefore, this report concentrates on phase A. The first year of NASA funding for phase A included only support for the field work. Processing and analysis will take place with the second year of funding. The second part of the experiemnt measured relative motion between the Australian and Pacific plates across the pate boundary zone between Hokitika and Christchurch on the South Island of New Zealand. The extent and rate of deformation will be determined by comparisons with historical, conventional surveys and by repeated GPS measurements to be made in two years. This activity was the emphasis of the LDGO portion of the study. An ancillary experiment, phase C, concentrated on plate boundary deformation in the vicinity of Wellington and was done as part of training during the early portion of the field campaign. Details of the objectives of the

  2. Relict basin closure accommodates continental convergence with minimal crustal shortening or deceleration of plate motion as inferred from detrital zircon provenance in the Caucasus

    NASA Astrophysics Data System (ADS)

    Cowgill, E.; Forte, A. M.; Niemi, N. A.; Avdeev, B.; Tye, A. R.; Trexler, C. C.; Javakhishvili, Z.; Elashvili, M.; Godoladze, T.

    2016-12-01

    Comparison of plate convergence with the timing and magnitude of upper-crustal shortening in collisional orogens indicates both shortening deficits (200-1700 km) and significant (30-40%) plate deceleration during collision, the cause(s) for which remain debated. The Greater Caucasus Mountains, which result from post-collisional Cenozoic closure of a relict Mesozoic back-arc basin on the northern margin of the Arabia-Eurasia collision zone, help reconcile these debates. Here we use U-Pb detrital zircon provenance data and the regional geology of the Caucasus to investigate the width of the now-consumed Mesozoic back-arc basin and its closure history. The provenance data record distinct southern and northern provenance domains that persisted until at least the Miocene; maximum basin width was likely 350-400 km. We propose that closure of the back-arc basin initiated at 35 Ma, coincident with initial (soft) Arabia-Eurasia collision along the Bitlis suture, eventually leading to 5 Ma (hard) collision between the Lesser Caucasus arc and the Scythian platform to form the Greater Caucasus Mountains. Final basin closure triggered deceleration of plate convergence and tectonic reorganization throughout the collision. Post-collisional subduction of such small (500-1000 km wide) relict ocean basins can account for both shortening deficits and delays in plate deceleration by accommodating convergence via subduction/underthrusting, although such shortening is easily missed if it occurs along structures hidden within flysch/slate belts. Relict-basin closure is likely typical early in continental collision at the end of a Wilson cycle due to the irregularity of colliding margins and extensive back-arc basin development during closure of long-lived ocean basins.

  3. Cretaceous to present kinematics of the Indian, African and Seychelles plates

    NASA Astrophysics Data System (ADS)

    Eagles, Graeme; Hoang, Ha H.

    2014-01-01

    An iterative inverse model of seafloor spreading data from the Mascarene and Madagascar basins and the flanks of the Carlsberg Ridge describes a continuous history of Indian-African Plate divergence since 84 Ma. Visual-fit modelling of conjugate magnetic anomaly data from near the Seychelles platform and Laxmi Ridge documents rapid rotation of a Seychelles Plate about a nearby Euler pole in Palaeocene times. As the Euler pole migrated during this rotation, the Amirante Trench on the western side of the plate accommodated first convergence and later divergence with the African Plate. The unusual present-day morphology of the Amirante Trench and neighbouring Amirante Banks can be related to crustal thickening by thrusting and folding during the convergent phase and the subsequent development of a spreading centre with a median valley during the divergent phase. The model fits FZ trends in the north Arabian and east Somali basins, suggesting that they formed in India-Africa Plate divergence. Seafloor fabric in and between the basins shows that they initially hosted a segmented spreading ridge that accommodated slow plate divergence until 71-69 Ma, and that upon arrival of the Deccan-Réunion plume and an increase to faster plate divergence rates in the period 69-65 Ma, segments of the ridge lengthened and propagated. Ridge propagation into the Indian continental margin led first to the formation of the Laxmi Basin, which accompanied extensive volcanism onshore at the Deccan Traps and offshore at the Saurashtra High and Somnath Ridge. A second propagation episode initiated the ancestral Carlsberg Ridge at which Seychelles-India and India-Africa Plate motions were accommodated. With the completion of this propagation, the plate boundaries in the Mascarene Basin were abandoned. Seafloor spreading between this time and the present has been accommodated solely at the Carlsberg Ridge.

  4. Generation of plate tectonics via grain-damage and pinning

    NASA Astrophysics Data System (ADS)

    Bercovici, D.; Ricard, Y. R.

    2012-12-01

    Weakening and shear localization in the lithosphere are essential ingredients for understanding how and whether plate tectonics is generated from mantle convection on terrestrial planets. The grain-damage and pinning mechanism of Bercovici & Ricard (2012) for lithospheric shear--localization proposes that damage to the interface between phases in a polycrystalline material like peridotite (composed primarily of olivine and pyroxene) increases the number of small Zener pinning surfaces that constrain mineral grains to ever smaller sizes regardless of creep mechanism. This effect allows a self-softening feedback in which damage and grain-reduction can co-exist with a grain-size dependent diffusion creep rheology; moreoever, grain growth and weak-zone healing are greatly impeded by Zener pinning thereby leading to long-lived relic weak zones. This mechanism is employed in two-dimensional flow calculations to test its ability to generate toroidal (strike-slip) motion from convective type flow and to influence plate evolution. The fluid dynamical calculations employ source-sink driven flow as a proxy for convective poloidal flow (upwelling/downwelling and divergent/convergent motion), and the coupling of this flow with non-linear rheological mechanisms excites toroidal or strike-slip motion. The numerical experiments show that pure dislocation-creep rheology, and grain-damage without Zener pinning (as occurs in a single-phase assemblages) permit only weak localization and toroidal flow; however, the full grain-damage with pinning readily allows focussed localization and intense, plate-like toroidal motion and strike-slip deformation. Rapid plate motion changes are also tested with abrupt rotations of the source-sink field after a plate-like configuration is developed; the post-rotation flow and material property fields are found to never recover or lose memory of the original configuration, leading to suboptimally aligned plate boundaries (e.g., strike-slip margins non

  5. Jet-boundary and Plan-form Corrections for Partial-Span Models with Reflection-Plane, End-Plate, or No End-Plate in a Closed Circular Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Sivells, James C; Deters, Owen J

    1946-01-01

    A method is presented for determining the jet-boundary and plan-form corrections necessary for application to test data for a partial-span model with a reflection plane, an end plate, or no end plate in a closed circular wind tunnel. Examples are worked out for a partial-span model with each of the three end conditions in the Langley 19-foot pressure tunnel and the corrections are applied to measured values of lift, drag, pitching-moment, rolling-moment, and yawing-moment coefficients.

  6. Prehistoric earthquakes on the Caribbean-South American plate boundary, central Range Fault, Trinidad

    USGS Publications Warehouse

    Prentice, Carol S.; Crosby, Christopher J.; Weber, John C.; Ragona, Daniel

    2010-01-01

    Recent geodetic studies suggest that the Central Range fault is the principal plate-boundary structure accommodating strike-slip motion between the Caribbean and South American plates. Our study shows that the fault forms a topographically prominent lineament in central Trinidad. Results from a paleoseismic investigation at a site where Holocene sediments have been deposited across the Central Range fault indicate that it ruptured the ground surface most recently between 2710 and 550 yr B.P. If the geodetic slip rate of 9–15 mm/yr is representative of Holocene slip rates, our paleoseismic data suggest that at least 4.9 m of potential slip may have accumulated on the fault and could be released during a future large earthquake (M > 7).

  7. Prehistoric earthquakes on the Caribbean-South American plate boundary, central range fault, Trinidad

    USGS Publications Warehouse

    Prentice, C.S.; Weber, J.C.; Crosby, C.J.; Ragona, D.

    2010-01-01

    Recent geodetic studies suggest that the Central Range fault is the principal plate-boundary structure accommodating strike-slip motion between the Caribbean and South American plates. Our study shows that the fault forms a topographically prominent lineament in central Trinidad. Results from a paleoseismic investigation at a site where Holocene sediments have been deposited across the Central Range fault indicate that it ruptured the ground surface most recently between 2710 and 550 yr B.P. If the geodetic slip rate of 9-15 mm/yr is representative of Holocene slip rates, our paleoseismic data suggest that at least 4.9 m of potential slip may have accumulated on the fault and could be released during a future large earthquake (M > 7). ?? 2010 Geological Society of America.

  8. Lithospheric strength in the active boundary between the Pacific Plate and Baja California microplate constrained from lower crustal and upper mantle xenoliths

    NASA Astrophysics Data System (ADS)

    Chatzaras, Vasileios; van der Werf, Thomas; Kriegsman, Leo M.; Kronenberg, Andreas; Tikoff, Basil; Drury, Martyn R.

    2017-04-01

    The lower crust is the most poorly understood of the lithospheric layers in terms of its rheology, particularly at active plate boundaries. We studied naturally deformed lower crustal xenoliths within an active plate boundary, in order to link their microstructures and rheological parameters to the well-defined active tectonic context. The Baja California shear zone (BCSZ), located at the western boundary of the Baja California microplate, comprises the active boundary accommodating the relative motion between the Pacific plate and Baja California microplate. The basalts of the Holocene San Quintin volcanic field carry lower crustal and upper mantle xenoliths, which sample the Baja California microplate lithosphere in the vicinity of the BCSZ. The lower crustal xenoliths range from undeformed gabbros to granoblastic two-pyroxene granulites. Two-pyroxene geothermometry shows that the granulites equilibrated at temperatures of 690-920 oC. Phase equilibria (P-T pseudosections using Perple_X) indicate that symplectites with intergrown pyroxenes, plagioclase, olivine and spinel formed at 3.6-5.4 kbar, following decompression from pressures exceeding 6 kbar. FTIR spectroscopy shows that the water content of plagioclase varies among the analyzed xenoliths; plagioclase is relatively dry in two xenoliths while one xenolith contains hydrated plagioclase grains. Microstructural observations and analysis of the crystallographic texture provide evidence for deformation of plagioclase by a combination of dislocation creep and grain boundary sliding. To constrain the strength of the lower crust and upper mantle near the BCSZ we estimated the differential stress using plagioclase and olivine grain size paleopiezomtery, respectively. Differential stress estimates for plagioclase range from 10 to 32 MPa and for olivine are 30 MPa. Thus the active microplate boundary records elevated crustal temperatures, heterogeneous levels of hydration, and low strength in both the lower crust and

  9. Duration of convergence at the Pacific-Gondwana plate margin: insights from accessory phase petrochronology of the Alpine Schist, New Zealand

    NASA Astrophysics Data System (ADS)

    Briggs, S. I.; Cottle, J. M.; Smit, M. A.; Arnush, N. F.

    2016-12-01

    The timing, duration and along-strike synchroneity of metamorphism and anataxis in the Alpine Schist of New Zealand is a matter of considerable debate. Our preliminary data indicate that metamorphism resulting in garnet growth occurred from 97 - 75 Ma, and anatectic melting occurred from 80 - 51 Ma. These events are contemporaneous with rifting of Zealandia from East Gondwana, and Tasman Sea spreading from 83 - 52 Ma. An important implication of these results is that Late Cretaceous convergence along the Zealandia segment of the Pacific-Gondwana plate margin may have persisted much later than previously thought, and that convergence and extension occurred coevally in adjacent areas. This poses the question: for how long did convergence continue along the Pacific-Gondwana plate margin during East Gondwana breakup? To fully decipher the multiple stages of the complex metamorphic history recorded in the Alpine Schist, we combine Lu-Hf garnet geochronology with U-Th/Pb and REE analyses of zircon and monazite. We use the newly developed `single-shot laser ablation split stream' (SS-LASS) analysis method to obtain depth profiles through 5-10 µm metamorphic zircon overgrowths at 100 nm depth resolution to constrain both the timing and petrological context of discrete metamorphic zircon (re-)crystallization events recorded in the Alpine Schist. We also employ high spatial resolution LASS analysis to target rare 5 - 20 µm monazite in thin section to augment garnet and zircon data. Our multi-accessory phase petrochronology approach is capable of resolving discrete short-duration thermal events, strengthening the geological interpretation of `mean' Lu-Hf garnet ages and discerning between an episodic versus a prolonged history of metamorphism. In addition, comparison with geochronology from anatectic pegmatites clarifies the temporal relationship between metamorphism and melting in the Alpine Schist, while providing direct constraints on the timing and duration of

  10. Summary of the stratigraphy and structural elements related to plate convergence of the Quetta-Muslim Bagh-Sibi region, Balochistan, west-central Pakistan

    USGS Publications Warehouse

    Maldonado, Florian; Mengal, Jan M.; Khan, Shahid H.; Warwick, Peter D.

    2011-01-01

    The four major faults that bound the structural terrane are the Frontal (F), Ghazaband-Zhob (GZ), Gwal-Bagh (GB), and Chaman (C) faults. Four major periods of deformation are recognized: (1) emplacement of ophiolitic rocks onto the continental margin of the India plate; (2) convergence of the India-Eurasia plates; (3) deposition of Tertiary-Quaternary molasse units followed by major folding and thrusting, and formation of strike-slip faults; and (4) deposition of Pleistocene molasse units with subsequent folding, thrusting, and strike-slip motion that continues to the present.

  11. The interpretation of crustal dynamics data in terms of plate interactions and active tectonics of the Anatolian plate and surrounding regions in the Middle East

    NASA Technical Reports Server (NTRS)

    Toksoz, M. Nafi; Reilinger, Robert

    1992-01-01

    A detailed study was made of the consequences of the Arabian plate convergence against Eurasia and its effects on the tectonics of Anatolia and surrounding regions of the eastern Mediterranean. A primary source of information is time rates of change of baseline lengths and relative heights determined by repeated SLR measurements. These SLR observations are augmented by a network of GPS stations in Anatolia, Aegea, and Greece, established and twice surveyed since 1988. The existing SLR and GPS networks provide the spatial resolution necessary to reveal the details of ongoing tectonic processes in this area of continental collision. The effort has involved examining the state of stress in the lithosphere and relative plate motions as revealed by these space based geodetic measurements, seismicity, and earthquake mechanisms as well as the aseismic deformations of the plates from conventional geodetic data and geological evidence. These observations are used to constrain theoretical calculations of the relative effects of: (1) the push of the Arabian plate; (2) high topography of Eastern Anatolia; (3) the geometry and properties of African-Eurasian plate boundary; (4) subduction under the Hellenic Arc and southwestern Turkey; and (5) internal deformation and rotation of the Anatolian plate.

  12. An eddy-viscosity treatment of the unsteady turbulent boundary layer on a flat plate in an expansion tube

    NASA Technical Reports Server (NTRS)

    Gupta, R. N.; Trimpi, R. L.

    1974-01-01

    An analysis is presented for the relaxation of a turbulent boundary layer on a semiinfinite flat plate after passage of a shock wave and a trailing driver gas-driven gas interface. The problem has special application to expansion tube flows. The flow-governing equations have been transformed into the Lamcrocco variables. The numerical results indicate that a fully turbulent boundary layer relaxes faster to the final steady-state values of heat transfer and skin-friction than a fully laminar boundary layer.

  13. Plate boundary and major fault system in the overriding plate within the Shumagin gap at the Alaska-Aleutian subduction zone

    NASA Astrophysics Data System (ADS)

    Becel, A.; Shillington, D. J.; Nedimovic, M. R.; Keranen, K. M.; Li, J.; Webb, S. C.; Kuehn, H.

    2013-12-01

    Structure in the overriding plate is one of the parameters that may increase the tsunamigenic potential of a subduction zone but also influence the seismogenic behavior and segmentation of great earthquake rupture. The Alaska-Aleutian margin is characterized by along-strike changes in plate interface coupling over relatively small distances. Here, we present trench normal multichannel seismic (MCS) profiles acquired across the Shumagin gap that has not broken in many decades and appears to be weakly coupled. The high fold, deep penetration (636 channel, 8-km long streamer, 6600 cu.in airgun source) MCS data were acquired as part of the ALEUT project. This dataset gives us critical new constraints on the interplate boundary that can be traced over ~100 km distance beneath the forearc with high variation in its reflection response with depth. These profiles also reveal the detailed upper plate fault structure and forearc morphology. Clear reflections in the overriding plate appear to delineate one or more large faults that cross the shelf and the upper slope. These faults are observed 75 km back from the trench and seem to branch at depth and connect to the plate interface within this gap at ~11 s twtt. We compare the reflective structure of these faults to that of the plate boundary and examine where it intersects the megathrust with respect of the expected downdip limit of coupling. We also compare this major structure with the seismicity recorded in this sector. The imaged fault system is associated with a large deep basin (~6s twt) that is an inherited structure formed during the pre-Aleutian period. Basins faults appear to have accommodated primarily normal motion, although folding of sediments near the fault and complicated fault geometries in the shallow section may indicate that this fault has accommodated other types of motion during its history that may reflect the stress-state at the megathrust over time. The deformation within the youngest sediment also

  14. The Caribbean-South American plate boundary at 65°W: Results from wide-angle seismic data

    NASA Astrophysics Data System (ADS)

    Bezada, M. J.; Magnani, M. B.; Zelt, C. A.; Schmitz, M.; Levander, A.

    2010-08-01

    We present the results of the analysis of new wide-angle seismic data across the Caribbean-South American plate boundary in eastern Venezuela at about 65°W. The ˜500 km long profile crosses the boundary in one of the few regions dominated by extensional structures, as most of the southeastern Caribbean margin is characterized by the presence of fold and thrust belts. A combination of first-arrival traveltime inversion and simultaneous inversion of PmP and Pn arrivals was used to develop a P wave velocity model of the crust and the uppermost mantle. At the main strike-slip fault system, we image the Cariaco Trough, a major pull-apart basin along the plate boundary. The crust under the Southern Caribbean Deformed Belt exhibits a thickness of ˜15 km, suggesting that the Caribbean Large Igneous Province extends to this part of the Caribbean plate. The velocity structures of basement highs and offshore sedimentary basins imaged by the profile are comparable to those of features found in other parts of the margin, suggesting similarities in their tectonic history. We do not image an abrupt change in Moho depth or velocity structure across the main strike-slip system, as has been observed elsewhere along the margin. It is possible that a terrane of Caribbean island arc origin was accreted to South America at this site and was subsequently bisected by the strike-slip fault system. The crust under the continental portion of the profile is thinner than observed elsewhere along the margin, possibly as a result of thinning during Jurassic rifting.

  15. Semantic Convergence in the Bilingual Lexicon

    ERIC Educational Resources Information Center

    Ameel, Eef; Malt, Barbara C.; Storms, Gert; Van Assche, Fons

    2009-01-01

    Bilinguals' lexical mappings for their two languages have been found to converge toward a common naming pattern. The present paper investigates in more detail how semantic convergence is manifested in bilingual lexical knowledge. We examined how semantic convergence affects the centers and boundaries of lexical categories for common household…

  16. The International Plate Boundary Observatory Chile (IPOC) in the northern Chile seismic gap

    NASA Astrophysics Data System (ADS)

    Schurr, B.; Asch, A.; Sodoudi, F.; Manzanares, A.; Ritter, O.; Klotz, J.; Chong-Diaz, G.; Barrientos, S.; Villotte, J.-P.; Oncken, O.

    2009-04-01

    Fast convergence between the oceanic Nazca and the continental South American plate is accommodated by recurrent rupture of large segments of the two plates' interface. The resulting earthquakes are among the largest and, for their sizes, most frequent on Earth. Along the Chilean and southern Peruvian margin, all segments have ruptured at least once in the past 150 years for which there exist historic and/or instrumental records. The one segment that is most mature for re-rupture stretches for more than 500 km along the northernmost Chilean coast between roughly -23° and -18° latitude. It last broke in 1877 in a magnitude ~8.8 earthquake, triggering a major Tsunami. From the historical record, it has been known to have a recurrence cycle of approximately 110 years. The adjoining segments to the north and south broke rather recently in 1995 and 2001 in M>8 earthquakes and an M 7.7 earthquake encroached the southern part of the gap in 2007. The IPOC project intends to investigate this segment of the Nazca-South American plate boundary, on which a strong to devastating earthquake is expected to occur within the next years, by monitoring at a variety of time-scales deformation, seismicity, and magnetotelluric fields in the subduction zone at the closing stages of the interseismic cycle before and possibly during occurrence of a big earthquake. For that purpose, installation of long-term observatories in Northern Chile started in 2006 in a close cooperation of the Universidad de Chile (Santiago, Chile), the Universidad Catolica del Norte (Antofagasta, Chile), the Institut de Physique du Globe de Paris (Paris, France), and the German Research Centre for Geosciences (GFZ, Potsdam, Germany). Currently we are operating 14 modern seismological stations equipped with STS-2 broadband seismometers and accelerometers (EPI sensor). At least two more stations will be installed in the near future. To cope with the high resolution and dynamic of the sensors and data acquisition

  17. Calculation of oblique-shock-wave laminar-boundary-layer interaction on a flat plate

    NASA Technical Reports Server (NTRS)

    Goldberg, U.; Reshotko, E.

    1980-01-01

    A finite difference solution to the problem of the interaction between an impinging oblique shock wave and the laminar boundary layer on a flat plate is presented. The boundary layer equations coupled with the Prandtl-Meyer relation for the external flow are used to calculate the flow field. A method for the calculation of the separated flow region is presented and discussed. Comparisons between this theory and the experimental results of other investigators show fairly good agreement. Results are presented for the case of a cooled wall with an oncoming flow at Mach number 2.0 without and with suction. The results show that a small amount of suction greatly reduces the extent of the separated region in the vicinity of the shock impingement location.

  18. Effects of Periodic Unsteady Wake Flow and Pressure Gradient on Boundary Layer Transition Along the Concave Surface of a Curved Plate. Part 3

    NASA Technical Reports Server (NTRS)

    Schobeiri, M. T.; Radke, R. E.

    1996-01-01

    Boundary layer transition and development on a turbomachinery blade is subjected to highly periodic unsteady turbulent flow, pressure gradient in longitudinal as well as lateral direction, and surface curvature. To study the effects of periodic unsteady wakes on the concave surface of a turbine blade, a curved plate was utilized. On the concave surface of this plate, detailed experimental investigations were carried out under zero and negative pressure gradient. The measurements were performed in an unsteady flow research facility using a rotating cascade of rods positioned upstream of the curved plate. Boundary layer measurements using a hot-wire probe were analyzed by the ensemble-averaging technique. The results presented in the temporal-spatial domain display the transition and further development of the boundary layer, specifically the ensemble-averaged velocity and turbulence intensity. As the results show, the turbulent patches generated by the wakes have different leading and trailing edge velocities and merge with the boundary layer resulting in a strong deformation and generation of a high turbulence intensity core. After the turbulent patch has totally penetrated into the boundary layer, pronounced becalmed regions were formed behind the turbulent patch and were extended far beyond the point they would occur in the corresponding undisturbed steady boundary layer.

  19. Thermochronology of mid-Cretaceous dioritic granulites adjacent "Big Bend" in Australia-Pacific plate boundary, northern South Island, New Zealand

    NASA Astrophysics Data System (ADS)

    Sagar, M.; Seward, D.; Heizler, M. T.; Palin, J. M.; Toy, V. G.; Tulloch, A. J.

    2012-12-01

    rate in the Paleogene-early Neogene and was at the surface (before reburial) at least 5 Ma earlier than the WFO. These differences are in part considered to reflect the influence of the Big Bend, which caused relatively early localised exhumation of the Glenroy Complex by local 'pop-up' mechanisms during a time when there was no significant component of overall convergence across the Pacific-Australian plate boundary and the Alpine Fault was dominantly strike-slip.

  20. Seismicity of the Earth 1900-2013, seismotectonics of South America (Nazca Plate Region)

    USGS Publications Warehouse

    Hayes, Gavin P.; Smoczyk, Gregory M.; Benz, Harley M.; Furlong, Kevin P.; Villaseñor, Antonio

    2015-01-01

    The South American arc extends over 7,000 kilometers (km), from the Chilean margin triple junction offshore of southern Chile, to its intersection with the Panama fracture zone, offshore of the southern coast of Panama in Central America. It marks the plate boundary between the subducting Nazca plate and the South America plate, where the oceanic crust and lithosphere of the Nazca plate begin their descent into the mantle beneath South America. The convergence associated with this subduction process is responsible for the uplift of the Andes Mountains, and for the active volcanic chain present along much of this deformation front. Relative to a fixed South America plate, the Nazca plate moves slightly north of eastwards at a rate varying from approximately 80 millimeters/year (mm/yr) in the south, to approximately 65 mm/yr in the north. Although the rate of subduction varies little along the entire arc, there are complex changes in the geologic processes along the subduction zone that dramatically influence volcanic activity, crustal deformation, earthquake generation and occurrence all along the western edge of South America.

  1. Pacific-North America plate boundary reorganization in response to a change in relative plate motion: Offshore Canada

    NASA Astrophysics Data System (ADS)

    Rohr, K. M. M.; Tryon, A. J.

    2010-06-01

    The transition from subduction in Cascadia to the transform Queen Charlotte fault along western Canada is often drawn as a subduction zone, yet recent studies of GPS and earthquake data from northern Vancouver Island are not consistent with that model. In this paper we synthesize seismic reflection and gravity interpretations with microseismicity data in order to test models of (1) microplate subduction and (2) reorganization of the preexisting strike-slip plate boundary. We focus on the critical region of outer Queen Charlotte Sound and the adjacent offshore. On much of the continental shelf, several million years of subsidence above thin crust are a counterindicator for subduction. An undated episode of compression uplifted the southernmost shelf, but subsidence patterns offshore show that recent subduction is unlikely to be responsible. Previously unremarked near-vertical faults and a mix of extensional and compressional faults offshore indicate that strike-slip faulting has been a significant mode of deformation. Seismicity in the last 18 years is dominantly strike-slip and shows large amounts of moment release on the Revere-Dellwood fault and its overlap with the Queen Charlotte fault. The relative plate motion between the Pacific and North American plates rotated clockwise ˜6 Ma and appears to have triggered formation of an evolving array of structures. We suggest that the paleo-Queen Charlotte fault which had defined this continental margin retreated northward as offshore distributed shear and the newly formed Revere Dellwood fault propagated to the northwest.

  2. Crustal Structure and Evolution of the Eastern Himalayan Plate Boundary System, Northeast India

    NASA Astrophysics Data System (ADS)

    Mitra, S.; Priestley, K. F.; Borah, Kajaljyoti; Gaur, V. K.

    2018-01-01

    We use data from 24 broadband seismographs located south of the Eastern Himalayan plate boundary system to investigate the crustal structure beneath Northeast India. P wave receiver function analysis reveals felsic continental crust beneath the Brahmaputra Valley, Shillong Plateau and Mikir Hills, and mafic thinned passive margin transitional crust (basement layer) beneath the Bengal Basin. Within the continental crust, the central Shillong Plateau and Mikir Hills have the thinnest crust (30 ± 2 km) with similar velocity structure, suggesting a unified origin and uplift history. North of the plateau and Mikir Hills the crustal thickness increases sharply by 8-10 km and is modeled by ˜30∘ north dipping Moho flexure. South of the plateau, across the ˜1 km topographic relief of the Dawki Fault, the crustal thickness increases abruptly by 12-13 km and is modeled by downfaulting of the plateau crust, overlain by 13-14 km thick sedimentary layer/rocks of the Bengal Basin. Farther south, beneath central Bengal Basin, the basement layer is thinner (20-22 km) and has higher Vs (˜4.1 km s-1) indicating a transitional crystalline crust, overlain by the thickest sedimentary layer/rocks (18-20 km). Our models suggest that the uplift of the Shillong Plateau occurred by thrust faulting on the reactivated Dawki Fault, a continent margin paleorift fault, and subsequent back thrusting on the south dipping Oldham Fault, in response to flexural loading of the Eastern Himalaya. Our estimated Dawki Fault offset combined with timing of surface uplift of the plateau reveals a reasonable match between long-term uplift and convergence rate across the Dawki Fault with present-day GPS velocities.

  3. Intra-continental subduction and contemporaneous lateral extrusion of the upper plate: insights into Alps-Adria interactions

    NASA Astrophysics Data System (ADS)

    van Gelder, Inge; Willingshofer, Ernst; Sokoutis, Dimitrios; Cloetingh, Sierd

    2017-04-01

    A series of physical analogue experiments were performed to simulate intra-continental subduction contemporaneous with lateral extrusion of the upper plate to study the interferences between these two processes at crustal levels and in the lithospheric mantle. The lithospheric-scale models are specifically designed to represent the collision of the Adriatic microplate with the Eastern Alps, simulated by an intra-continental weak zone to initiate subduction and a weak confined margin perpendicular to the direction of convergence in order to allow for extrusion of the lithosphere. The weak confined margin is the analog for the opening of the Pannonian back-arc basin adjacent to the Eastern Alps with the direction of extension perpendicular to the strike of the orogen. The models show that intra-continental subduction and coeval lateral extrusion of the upper plate are compatible processes. The obtained deformation structures within the extruding region are similar compared to the classical setup where lateral extrusion is provoked by lithosphere-scale indentation. In the models a strong coupling across the subduction boundary allows for the transfer of abundant stresses to the upper plate, leading to laterally varying strain regimes that are characterized by crustal thickening near a confined margin and dominated by lateral displacement of material near a weak lateral confinement. During ongoing convergence the strain regimes propagate laterally, thereby creating an area of overlap characterized by transpression. In models with oblique subduction, with respect to the convergence direction, less deformation of the upper plate is observed and as a consequence the amount of lateral extrusion decreases. Additionally, strain is partitioned along the oblique plate boundary leading to less subduction in expense of right lateral displacement close to the weak lateral confinement. Both oblique and orthogonal subduction models have a strong resemblance to lateral extrusion

  4. An integral wall model for Large Eddy Simulation (iWMLES) and applications to developing boundary layers over smooth and rough plates

    NASA Astrophysics Data System (ADS)

    Yang, Xiang; Sadique, Jasim; Mittal, Rajat; Meneveau, Charles

    2014-11-01

    A new wall model for Large-Eddy-Simulations is proposed. It is based on an integral boundary layer method that assumes a functional form for the local mean velocity profile. The method, iWMLES, evaluates required unsteady and advective terms in the vertically integrated boundary layer equations analytically. The assumed profile contains a viscous or roughness sublayer, and a logarithmic layer with an additional linear term accounting for inertial and pressure gradient effects. The iWMLES method is tested in the context of a finite difference LES code. Test cases include developing turbulent boundary layers on a smooth flat plate at various Reynolds numbers, over flat plates with unresolved roughness, and a sample application to boundary layer flow over a plate that includes resolved roughness elements. The elements are truncated cones acting as idealized barnacle-like roughness elements that often occur in biofouling of marine surfaces. Comparisons with data show that iWMLES provides accurate predictions of near-wall velocity profiles in LES while, similarly to equilibrium wall models, its cost remains independent of Reynolds number and is thus significantly lower compared to standard zonal or hybrid wall models. This work is funded by ONR Grant N00014-12-1-0582 (Dr. R. Joslin, program manager).

  5. Relaxation of an unsteady turbulent boundary layer on a flat plate in an expansion tube

    NASA Technical Reports Server (NTRS)

    Gurta, R. N.; Trimpi, R. L.

    1974-01-01

    An analysis is presented for the relaxation of a turbulent boundary layer on a semi-infinite flat plate after passage of a shock wave and a trailing driver gas-driven gas interface. The problem has special application to expansion-tube flows. The flow-governing equations have been transformed into the Crocco variables, and a time-similar solution is presented in terms of the dimensionless distance-time variable alpha and the dimensionless velocity variable beta. An eddy-viscosity model, similar to that of time-steady boundary layers, is applied to the inner and outer regions of the boundary layer. A turbulent Prandtl number equal to the molecular Prandtl number is used to relate the turbulent heat flux to the eddy viscosity. The numerical results, obtained by using the Gauss-Seidel line-relaxation method, indicate that a fully turbulent boundary layer relaxes faster to the final steady-state values of heat transfer and skin friction than a laminar boundary layer. The results also give a fairly good estimate of the local skin friction and heat transfer for near steady-flow conditions.

  6. Direct simulation of flat-plate boundary layer with mild free-stream turbulence

    NASA Astrophysics Data System (ADS)

    Wu, Xiaohua; Moin, Parviz

    2014-11-01

    Spatially evolving direct numerical simulation of the flat-plate boundary layer has been performed. The momentum thickness Reynolds number develops from 80 to 3000 with a free-stream turbulence intensity decaying from 3 percent to 0.8 percent. Predicted skin-friction is in agreement with the Blasius solution prior to breakdown, follows the well-known T3A bypass transition data during transition, and agrees with the Erm and Joubert Melbourne wind-tunnel data after the completion of transition. We introduce the concept of bypass transition in the narrow sense. Streaks, although present, do not appear to be dynamically important during the present bypass transition as they occur downstream of infant turbulent spots. For the turbulent boundary layer, viscous scaling collapses the rate of dissipation profiles in the logarithmic region at different Reynolds numbers. The ratio of Taylor microscale and the Kolmogorov length scale is nearly constant over a large portion of the outer layer. The ratio of large-eddy characteristic length and the boundary layer thickness scales very well with Reynolds number. The turbulent boundary layer is also statistically analyzed using frequency spectra, conditional-sampling, and two-point correlations. Near momentum thickness Reynolds number of 2900, three layers of coherent vortices are observed: the upper and lower layers are distinct hairpin forests of large and small sizes respectively; the middle layer consists of mostly fragmented hairpin elements.

  7. Subduction dynamics: From the trench to the core-mantle boundary

    NASA Astrophysics Data System (ADS)

    Kincaid, Chris

    1995-07-01

    Subduction occurs along convergent plate boundaries where one of the colliding lithospheric plates descends into the mantle. Subduction zones are recognized where plates converge at ˜2-15 cm/yr, although well developed trenches and volcanic arcs (e.g. the line of active volcanoes lying parallel to most ocean trenches, such as the Aleutian Islands in the North Pacific) occur when convergence rates are higher, 4-10 cm/yr. This report is meant to provide a brief review on the general topic of subduction dynamics. A recent spin on subduction studies is the growing realization that the need to understand this global Earth process may be argued not only on purely scientific grounds, but also in terms of societal relevance. While subducting slabs of oceanic lithosphere clearly provide the dominant driving force for mantle dynamics and plate tectonics, over half of the Earth's present 40,000 km of subduction zones are associated with continental margins where a large and rapidly increasing percentage of the Earth's population resides. Subductioninduced hazards along active continental margins include those associated with volcanic hazards (Blong, 1984; Tilling, 1989) such as lava flows, pyroclastic flows and ash fallout and tectonic processes, such as faulting, tsunamis and earthquakes. With regards to earthquake hazards, all of the great (magnitude >9) earthquakes in recorded history have occurred at subduction zones, with 50% of all energy released since 1900 being in four events (1964-Alaska; 1960-Chile; 1957- Aleutians; 1952-Kamchatka). Subduction zone hazards have significant impact on long time scales, such as contributions to global climate change (Robock, 1991; Simarski, 1992; Johnson, 1993; Bluth et al., 1993) and short time scales such as airline safety (Casadevall, 1992). Moreover, accretionary wedges are important in terms of resource potential and trenches have occasionally been suggested as nuclear waste disposal sites.

  8. Plate-boundary kinematics in the Alps: Motion in the Arosa suture zone

    NASA Astrophysics Data System (ADS)

    Ring, Uwe; Ratschbacher, Lothar; Frisch, Wolfgang

    1988-08-01

    The Arosa zone forms a melange complex along the Penninic/Austroalpine boundary and belongs to the main Alpine suture zone. Accretion and plate collision occurred during Cretaceous and lower Tertiary time. A mixture of ophiolitic rocks and pelagic sediments is imbricated with flysch and blocks of Austroalpine (continental) derivation. We present a description of deformation structures, an analysis of strain, and a kinematic interpretation based on structural work. Deformation histories of imbricates show a translation path that was west-directed between ca. 110 and 50 Ma and north-directed thereafter. The kinematics of the Arosa zone agrees with the recently deduced displacement history of the Austroalpine units in the Eastern Alps during the Cretaceous orogeny. This calls for a predominantly top-to-the-west imbrication of Austroalpine and Penninic units and is in contradiction to what is inferred in most models of the Eastern Alps. A direct relation between the deformation along the Austroalpine margin and relative plate motion existed.

  9. A preliminary investigation of boundary-layer transition along a flat plate with adverse pressure gradient

    NASA Technical Reports Server (NTRS)

    Von Doenhoff, Albert E

    1938-01-01

    Boundary-layer surveys were made throughout the transition region along a smooth flat plate placed in an airstream of practically zero turbulence and with an adverse pressure gradient. The boundary-layer Reynolds number at the laminar separation point was varied from 1,800 to 2,600. The test data, when considered in the light of certain theoretical deductions, indicated that transition probably began with separation of the laminar boundary layer. The extent of the transition region, defined as the distance from a calculated laminar separation point to the position of the first fully developed turbulent boundary-layer profile, could be expressed as a constant Reynolds number run of approximately 70,000. Some speculations are presented concerning the application of the foregoing concepts, after certain assumptions have been made, to the problem of the connection between transition on the upper surface of an airfoil at high angles of attack and the maximum lift.

  10. The effect of plate-scale rheology and plate interactions on intraplate seismicity

    NASA Astrophysics Data System (ADS)

    So, Byung-Dal; Capitanio, Fabio A.

    2017-11-01

    We use finite element modeling to investigate on the stress loading-unloading cycles and earthquakes occurrence in the plate interiors, resulting from the interactions of tectonic plates along their boundary. We model a visco-elasto-plastic plate embedding a single or multiple faults, while the tectonic stress is applied along the plate boundary by an external loading visco-elastic plate, reproducing the tectonic setting of two interacting lithospheres. Because the two plates deform viscously, the timescale of stress accumulation and release on the faults is self-consistently determined, from the boundary to the interiors, and seismic recurrence is an emerging feature. This approach overcomes the constraints on recurrence period imposed by stress (stress-drop) and velocity boundary conditions, while here it is unconstrained. We illustrate emerging macroscopic characteristics of this system, showing that the seismic recurrence period τ becomes shorter as Γ and Θ decreases, where Γ =ηI /ηL, the viscosity ratio of the viscosities of the internal fault-embedded to external loading plates, respectively, and Θ =σY /σL the stress ratio of the elastic limit of the fault to far-field loading stress. When the system embeds multiple, randomly distributed faults, stress transfer results in recurrence period deviations, however the time-averaged recurrence period of each fault show the same dependence on Γ and Θ, illustrating a characteristic collective behavior. The control of these parameters prevails even when initial pre-stress was randomly assigned in terms of the spatial arrangement and orientation on the internal plate, mimicking local fluctuations. Our study shows the relevance of macroscopic rheological properties of tectonic plates on the earthquake occurrence in plate interiors, as opposed to local factors, proposing a viable model for the seismic behavior of continent interiors in the context of large-scale, long-term deformation of interacting tectonic

  11. MHD Free Convective Boundary Layer Flow of a Nanofluid past a Flat Vertical Plate with Newtonian Heating Boundary Condition

    PubMed Central

    Uddin, Mohammed J.; Khan, Waqar A.; Ismail, Ahmed I.

    2012-01-01

    Steady two dimensional MHD laminar free convective boundary layer flows of an electrically conducting Newtonian nanofluid over a solid stationary vertical plate in a quiescent fluid taking into account the Newtonian heating boundary condition is investigated numerically. A magnetic field can be used to control the motion of an electrically conducting fluid in micro/nano scale systems used for transportation of fluid. The transport equations along with the boundary conditions are first converted into dimensionless form and then using linear group of transformations, the similarity governing equations are developed. The transformed equations are solved numerically using the Runge-Kutta-Fehlberg fourth-fifth order method with shooting technique. The effects of different controlling parameters, namely, Lewis number, Prandtl number, buoyancy ratio, thermophoresis, Brownian motion, magnetic field and Newtonian heating on the flow and heat transfer are investigated. The numerical results for the dimensionless axial velocity, temperature and nanoparticle volume fraction as well as the reduced Nusselt and Sherwood number have been presented graphically and discussed. It is found that the rate of heat and mass transfer increase as Newtonian heating parameter increases. The dimensionless velocity and temperature distributions increase with the increase of Newtonian heating parameter. The results of the reduced heat transfer rate is compared for convective heating boundary condition and found an excellent agreement. PMID:23166688

  12. Geophysical study of the structure and processes of the continental convergence zones: Alpine-Himalayan Belt

    NASA Technical Reports Server (NTRS)

    Toksoez, M. N.

    1981-01-01

    The seismic wave velocity structure in the crust and upper mantle region beneath the Tibetan plateau was studied in detail. Also, a preliminary study of the uppermost mantle P wave velocity beneath Iran and Turkey was carried out, and the results are compared with those for the Tibetan plateau. These two studies compose the bulk of the efforts on the observational aspects of continental collision zones in addition to satellite derived data. On the theoretical aspects the thermal evolution of converging plate boundaries was explored using a finite difference scheme.

  13. Thermally stratified squeezed flow between two vertical Riga plates with no slip conditions

    NASA Astrophysics Data System (ADS)

    Farooq, M.; Mansoor, Zahira; Ijaz Khan, M.; Hayat, T.; Anjum, A.; Mir, N. A.

    2018-04-01

    This paper demonstrates the mixed convective squeezing nanomaterials flow between two vertical plates, one of which is a Riga plate embedded in a thermally stratified medium subject to convective boundary conditions. Heat transfer features are elaborated with viscous dissipation. Single-wall and multi-wall carbon nanotubes are taken as nanoparticles to form a homogeneous solution in the water. A non-linear system of differential equations is obtained for the considered flow by using suitable transformations. Convergence analysis for velocity and temperature is computed and discussed explicitly through BVPh 2.0. Residual errors are also computed by BVPh 2.0 for the dimensionless governing equations. We introduce two undetermined convergence control parameters, i.e. \\hslash_{θ} and \\hslashf , to compute the lowest entire error. The average residual error for the k -th-order approximation is given in a table. The effects of different flow variables on temperature and velocity distributions are sketched graphically and discussed comprehensively. Furthermore the coefficient of skin friction and the Nusselt number are also analyzed through graphical data.

  14. Polynomial decay rate of a thermoelastic Mindlin-Timoshenko plate model with Dirichlet boundary conditions

    NASA Astrophysics Data System (ADS)

    Grobbelaar-Van Dalsen, Marié

    2015-02-01

    In this article, we are concerned with the polynomial stabilization of a two-dimensional thermoelastic Mindlin-Timoshenko plate model with no mechanical damping. The model is subject to Dirichlet boundary conditions on the elastic as well as the thermal variables. The work complements our earlier work in Grobbelaar-Van Dalsen (Z Angew Math Phys 64:1305-1325, 2013) on the polynomial stabilization of a Mindlin-Timoshenko model in a radially symmetric domain under Dirichlet boundary conditions on the displacement and thermal variables and free boundary conditions on the shear angle variables. In particular, our aim is to investigate the effect of the Dirichlet boundary conditions on all the variables on the polynomial decay rate of the model. By once more applying a frequency domain method in which we make critical use of an inequality for the trace of Sobolev functions on the boundary of a bounded, open connected set we show that the decay is slower than in the model considered in the cited work. A comparison of our result with our polynomial decay result for a magnetoelastic Mindlin-Timoshenko model subject to Dirichlet boundary conditions on the elastic variables in Grobbelaar-Van Dalsen (Z Angew Math Phys 63:1047-1065, 2012) also indicates a correlation between the robustness of the coupling between parabolic and hyperbolic dynamics and the polynomial decay rate in the two models.

  15. Crustal and upper mantle investigations of the Caribbean-South American plate boundary

    NASA Astrophysics Data System (ADS)

    Bezada, Maximiliano J.

    The evolution of the Caribbean --- South America plate boundary has been a matter of vigorous debate for decades and many questions remain unresolved. In this work, and in the framework of the BOLIVAR project, we shed light on some aspects of the present state and the tectonic history of the margin by using different types of geophysical data sets and techniques. An analysis of controlled-source traveltime data collected along a boundary-normal profile at ˜65°W was used to build a 2D P-wave velocity model. The model shows that the Caribbean Large Igenous Province is present offshore eastern Venezuela and confirms the uniformity of the velocity structure along the Leeward Antilles volcanic belt. In contrast with neighboring profiles, at this longitude we see no change in velocity structure or crustal thickness across the San Sebastian - El Pilar fault system. A 2D gravity modeling methodology that uses seismically derived initial density models was developed as part of this research. The application of this new method to four of the BOLIVAR boundary-normal profiles suggests that the uppermost mantle is denser under the South American continental crust and the island arc terranes than under the Caribbean oceanic crust. Crustal rocks of the island arc and extended island arc terranes of the Leeward Antilles have a relatively low density, given their P-wave velocity. This may be caused by low iron content, relative to average magmatic arc rocks. Finally, an analysis of teleseismic traveltimes with frequency-dependent kernels produced a 3D P-wave velocity perturbation model. The model shows the structure of the mantle lithosphere under the study area and clearly images the subduction of the Atlantic slab and associated partial removal of the lower lithosphere under northern South America. We also image the subduction of a section of the Caribbean plate under South America with an east-southeast direction. Both the Atlantic and Caribbean subducting slabs penetrate the

  16. Flowfield measurements in a separated and reattached flat plate turbulent boundary layer

    NASA Technical Reports Server (NTRS)

    Patrick, William P.

    1987-01-01

    The separation and reattachment of a large-scale, two-dimensional turbulent boundary layer at low subsonic speed on a flat plate has been studied experimentally. The separation bubble was 55 cm long and had a maximum bubble thickness, measured to the height of the mean dividing streamline, of 17 cm, which was twice the thickness of the inlet boundary layer. A combination of laser velocimetry, hot-wire anemometry, pneumatic probing techniques, and flow visualization were used as diagnostics. Principal findings were that an outer inviscid rotational flow was defined which essentially convected over the blockage associated with the inner, viscously dominated bubble recirculation region. A strong backflow region in which the flow moved upstream 100 percent of the time was measured near the test surface over the central 35 percent of the bubble. A laminar backflow boundary layer having pseudo-turbulent characteristics including a log-linear velocity profile was generated under the highly turbulent backflow. Velocity profile shapes in the reversed flow region matched a previously developed universal backflow profile at the upstream edge of the separation region but not in the steady backflow region downstream. A smoke flow visualization movie and hot-film measurements revealed low frequency nonperiodic flapping at reattachment. However, forward flow fraction data at reattachment and mean velocity profiles in the redeveloping boundary layer downstream of reattachment correlated with backward-facing step data when the axial dimension was scaled by the distance from the maximum bubble thickness to reattachment.

  17. A viscoplastic shear-zone model for deep (15-50 km) slow-slip events at plate convergent margins

    NASA Astrophysics Data System (ADS)

    Yin, An; Xie, Zhoumin; Meng, Lingsen

    2018-06-01

    A key issue in understanding the physics of deep (15-50 km) slow-slip events (D-SSE) at plate convergent margins is how their initially unstable motion becomes stabilized. Here we address this issue by quantifying a rate-strengthening mechanism using a viscoplastic shear-zone model inspired by recent advances in field observations and laboratory experiments. The well-established segmentation of slip modes in the downdip direction of a subduction shear zone allows discretization of an interseismic forearc system into the (1) frontal segment bounded by an interseismically locked megathrust, (2) middle segment bounded by episodically locked and unlocked viscoplastic shear zone, and (3) interior segment that slips freely. The three segments are assumed to be linked laterally by two springs that tighten with time, and the increasing elastic stress due to spring tightening eventually leads to plastic failure and initial viscous shear. This simplification leads to seven key model parameters that dictate a wide range of mechanical behaviors of an idealized convergent margin. Specifically, the viscoplastic rheology requires the initially unstable sliding to be terminated nearly instantaneously at a characteristic velocity, which is followed by stable sliding (i.e., slow-slip). The characteristic velocity, which is on the order of <10-7 m/s for the convergent margins examined in this study, depends on the (1) effective coefficient of friction, (2) thickness, (3) depth, and (4) viscosity of the viscoplastic shear zone. As viscosity decreases exponentially with temperature, our model predicts faster slow-slip rates, shorter slow-slip durations, more frequent slow-slip occurrences, and larger slow-slip magnitudes at warmer convergent margins.

  18. The Plate Boundary Observatory Cascadia Network: Development and Installation of a Large Scale Real-time GPS Network

    NASA Astrophysics Data System (ADS)

    Austin, K. E.; Blume, F.; Berglund, H. T.; Feaux, K.; Gallaher, W. W.; Hodgkinson, K. M.; Mattioli, G. S.; Mencin, D.

    2014-12-01

    The EarthScope Plate Boundary Observatory (PBO), through a NSF-ARRA supplement, has enhanced the geophysical infrastructure in in the Pacific Northwest by upgrading a total of 282 Plate Boundary Observatory GPS stations to allow the collection and distribution of high-rate (1 Hz), low-latency (<1 s) data streams (RT-GPS). These upgraded stations supplemented the original 100 RT-GPS stations in the PBO GPS network. The addition of the new RT-GPS sites in Cascadia should spur new volcano and earthquake research opportunities in an area of great scientific interest and high geophysical hazard. Streaming RT-GPS data will enable researchers to detect and investigate strong ground motion during large geophysical events, including a possible plate-interface earthquake, which has implications for earthquake hazard mitigation. A Mw 6.9 earthquake occurred on March 10, 2014, off the coast of northern California. As a response, UNAVCO downloaded high-rate GPS data from Plate Boundary Observatory stations within 500 km of the epicenter of the event, providing a good test of network performance.In addition to the 282 stations upgraded to real-time, 22 new meteorological instruments were added to existing PBO stations. Extensive testing of BGAN satellite communications systems has been conducted to support the Cascadia RT-GPS upgrades and the installation of three BGAN satellite fail over systems along the Cascadia margin will allow for the continuation of data flow in the event of a loss of primary communications during in a large geophysical event or other interruptions in commercial cellular networks. In summary, with these additional upgrades in the Cascadia region, the PBO RT-GPS network will increase to 420 stations. Upgrades to the UNAVCO data infrastructure included evaluation and purchase of the Trimble Pivot Platform, servers, and additional hardware for archiving the high rate data, as well as testing and implementation of GLONASS and Trimble RTX positioning on the

  19. First geodetic measurement of convergence across the Java Trench

    NASA Technical Reports Server (NTRS)

    Tregoning, P.; Brunner, F. K.; Bock, Y.; Puntodewo, S. S. O.; Mccraffrey, R.; Genrich, J. F.; Calais, E.; Rais, J.; Subarya, C.

    1994-01-01

    Convergence across the Java Trench has been estimated for the first time, from annual Global Positioning System (GPS) measurements commencing in 1989. The directions of motion of Christmas and Cocos Island are within 1 deg of that predicted by the No-Net Rotation (NNR) NUVEL-1 plate motion model for the Australian plate although their rates are 25% and 37% less than predcited, respectively. The motion of West Java differs significantly from the NNR NUVEL-1 prediction for the Eurasian plate with a 1 deg difference in direction and a 40% increase in rate. We infer that either West Java moves with a distinct Southeast Asian plate or this region experiences plate margin deformation. The convergence of Christmas Island with respect to West Java is 67 +/- mm/yr in a direction N11 deg E +/- 4 deg which is orthogonal to the trench. The magnitude of convergence agrees well with rescaled NUVEL-1 relative plate model which predicts a value of 71 mm/yr between Australia and Eurasia. The direction of motion matches the direction inferred from earthquake slip vectors at the trench but may be more northerly than the N20 deg E +/- 3 deg predicted by NUVEL-1. On June 2, 1994, almost a year after the last GPS survey, an M(sub W) = 7.5 earthquake with slip vector direction N5 deg occurred south of central Java.

  20. Abbot Ice Shelf, structure of the Amundsen Sea continental margin and the southern boundary of the Bellingshausen Plate seaward of West Antarctica

    NASA Astrophysics Data System (ADS)

    Cochran, James R.; Tinto, Kirsty J.; Bell, Robin E.

    2015-05-01

    Inversion of NASA Operation IceBridge airborne gravity over the Abbot Ice Shelf in West Antarctica for subice bathymetry defines an extensional terrain made up of east-west trending rift basins formed during the early stages of Antarctica/Zealandia rifting. Extension is minor, as rifting jumped north of Thurston Island early in the rifting process. The Amundsen Sea Embayment continental shelf west of the rifted terrain is underlain by a deeper, more extensive sedimentary basin also formed during rifting between Antarctica and Zealandia. A well-defined boundary zone separates the mildly extended Abbot extensional terrain from the deeper Amundsen Embayment shelf basin. The shelf basin has an extension factor, β, of 1.5-1.7 with 80-100 km of extension occurring across an area now 250 km wide. Following this extension, rifting centered north of the present shelf edge and proceeded to continental rupture. Since then, the Amundsen Embayment continental shelf appears to have been tectonically quiescent and shaped by subsidence, sedimentation, and the advance and retreat of the West Antarctic Ice Sheet. The Bellingshausen Plate was located seaward of the Amundsen Sea margin prior to incorporation into the Antarctic Plate at about 62 Ma. During the latter part of its independent existence, Bellingshausen plate motion had a clockwise rotational component relative to Antarctica producing convergence across the north-south trending Bellingshausen Gravity Anomaly structure at 94°W and compressive deformation on the continental slope between 94°W and 102°W. Farther west, the relative motion was extensional along an east-west trending zone occupied by the Marie Byrd Seamounts. The copyright line for this article was changed on 5 JUN 2015 after original online publication.

  1. Plane elasto-plastic analysis of v-notched plate under bending by boundary integral equation method. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Rzasnicki, W.

    1973-01-01

    A method of solution is presented, which, when applied to the elasto-plastic analysis of plates having a v-notch on one edge and subjected to pure bending, will produce stress and strain fields in much greater detail than presently available. Application of the boundary integral equation method results in two coupled Fredholm-type integral equations, subject to prescribed boundary conditions. These equations are replaced by a system of simultaneous algebraic equations and solved by a successive approximation method employing Prandtl-Reuss incremental plasticity relations. The method is first applied to number of elasto-static problems and the results compared with available solutions. Good agreement is obtained in all cases. The elasto-plastic analysis provides detailed stress and strain distributions for several cases of plates with various notch angles and notch depths. A strain hardening material is assumed and both plane strain and plane stress conditions are considered.

  2. Application of chaotic attractor analysis in crack assessment of plates

    NASA Astrophysics Data System (ADS)

    Jalili, Sina; Daneshmehr, A. R.

    2018-03-01

    Part-through crack presence with limited length is one of the prevalent defects in plate structures. However, this type of damage has only a slight effect on the dynamic response of the structures. In this paper the modified line spring method (MLSM) is used to develop a nonlinear multi-degree of freedom model of part through cracked rectangular plate and chaotic interrogation is implemented to assess crack-induced degradation in the nonlinear model. After a convergence study of the proposed model in time series domain in which the plate subjected to Lorenz-type chaotic excitation, the tuning of interrogation is conducted by crossing the Lyapunov exponents' spectrums of the nonlinear model of the plate and chaotic signal. In this research nonlinear prediction error (NPE) is proposed as a damage sensitive feature which deals with the chaotic attractor of the excited system response. It is found that there are ranges of tuning parameter that result in higher damage sensitivity of the NPE. Damage characteristics such as: length, angle, location and depth of crack are considered as parameters to be varied to scrutinize the response of the plates. Results show that NPE generally has significantly higher sensitivity in comparison with conventional frequency-based methods; however this property has different levels for various boundary conditions.

  3. An Investigation into the Application of Generalized Differential Quadrature Method to Bending Analysis of Composite Sandwich Plates

    NASA Astrophysics Data System (ADS)

    Ghassemi, Aazam; Yazdani, Mostafa; Hedayati, Mohamad

    2017-12-01

    In this work, based on the First Order Shear Deformation Theory (FSDT), an attempt is made to explore the applicability and accuracy of the Generalized Differential Quadrature Method (GDQM) for bending analysis of composite sandwich plates under static loading. Comparative studies of the bending behavior of composite sandwich plates are made between two types of boundary conditions for different cases. The effects of fiber orientation, ratio of thickness to length of the plate, the ratio of thickness of core to thickness of the face sheet are studied on the transverse displacement and moment resultants. As shown in this study, the role of the core thickness in deformation of these plates can be reversed by the stiffness of the core in comparison with sheets. The obtained graphs give very good results due to optimum design of sandwich plates. In Comparison with existing solutions, fast convergent rates and high accuracy results can be achieved by the GDQ method.

  4. Stress Transfer Processes during Great Plate Boundary Thrusting Events: A Study from the Andaman and Nicobar Segments

    NASA Astrophysics Data System (ADS)

    Andrade, V.; Rajendran, K.

    2010-12-01

    The response of subduction zones to large earthquakes varies along their strike, both during the interseismic and post-seismic periods. The December 26, 2004 earthquake nucleated at 3° N latitude and its rupture propagated northward, along the Andaman-Sumatra subduction zone, terminating at 15°N. Rupture speed was estimated at about 2.0 km per second in the northern part under the Andaman region and 2.5 - 2.7 km per second under southern Nicobar and North Sumatra. We have examined the pre and post-2004 seismicity to understand the stress transfer processes within the subducting plate, in the Andaman (10° - 15° N ) and Nicobar (5° - 10° N) segments. The seismicity pattern in these segments shows distinctive characteristics associated with the outer rise, accretionary prism and the spreading ridge, all of which are relatively better developed in the Andaman segment. The Ninety East ridge and the Sumatra Fault System are significant tectonic features in the Nicobar segment. The pre-2004 seismicity in both these segments conform to the steady-state conditions wherein large earthquakes are fewer and compressive stresses dominate along the plate interface. Among the pre-2004 great earthquakes are the 1881 Nicobar and 1941 Andaman events. The former is considered to be a shallow thrust event that generated a small tsunami. Studies in other subduction zones suggest that large outer-rise tensional events follow great plate boundary breaking earthquakes due to the the up-dip transfer of stresses within the subducting plate. The seismicity of the Andaman segment (1977-2004) concurs with the steady-state stress conditions where earthquakes occur dominantly by thrust faulting. The post-2004 seismicity shows up-dip migration along the plate interface, with dominance of shallow normal faulting, including a few outer rise events and some deeper (> 100 km) strike-slip faulting events within the subducting plate. The September 13, 2002, Mw 6.5 thrust faulting earthquake at

  5. Hierarchic models for laminated plates. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Actis, Ricardo Luis

    1991-01-01

    Structural plates and shells are three-dimensional bodies, one dimension of which happens to be much smaller than the other two. Thus, the quality of a plate or shell model must be judged on the basis of how well its exact solution approximates the corresponding three-dimensional problem. Of course, the exact solution depends not only on the choice of the model but also on the topology, material properties, loading and constraints. The desired degree of approximation depends on the analyst's goals in performing the analysis. For these reasons models have to be chosen adaptively. Hierarchic sequences of models make adaptive selection of the model which is best suited for the purposes of a particular analysis possible. The principles governing the formulation of hierarchic models for laminated plates are presented. The essential features of the hierarchic models described models are: (1) the exact solutions corresponding to the hierarchic sequence of models converge to the exact solution of the corresponding problem of elasticity for a fixed laminate thickness; and (2) the exact solution of each model converges to the same limit as the exact solution of the corresponding problem of elasticity with respect to the laminate thickness approaching zero. The formulation is based on one parameter (beta) which characterizes the hierarchic sequence of models, and a set of constants whose influence was assessed by a numerical sensitivity study. The recommended selection of these constants results in the number of fields increasing by three for each increment in the power of beta. Numerical examples analyzed with the proposed sequence of models are included and good correlation with the reference solutions was found. Results were obtained for laminated strips (plates in cylindrical bending) and for square and rectangular plates with uniform loading and with homogeneous boundary conditions. Cross-ply and angle-ply laminates were evaluated and the results compared with those of

  6. An analysis of the relaxation of laminar boundary layer on a flat plate after passage of an interface with application to expansion-tube flows

    NASA Technical Reports Server (NTRS)

    Gupta, R. N.

    1972-01-01

    The relaxation of the accelerating-gas boundary layer to the test-gas boundary layer over a flat plate in an expansion tube is analyzed. Several combinations of test gas and acceleration gas are considered. The problem is treated in two conically similar limits: (1) when the time lag between the arrival of the shock and the interface at the leading edge of the plate is very large, and (2) when this lag is negligible. The time-dependent laminar-boundary-layer equations of a binary mixture of perfect gases are taken as the flow-governing equations. This coupled set of differential equations, written in terms of the Lam-Crocco variables, has been solved by a line-relaxation finite-difference techniques. The results presented include the Stanton number and the local skin-friction coefficient as functions of shock Mach number and the nondimensional distance-time variable. The results indicate that more than 95 percent of the test-gas boundary layer exists over a length, measured from the leading edge of the plate, equal to about three-tenths of the distance traversed by the interface in the free stream.

  7. Late Mesozoic- Cenozoic plate boundaries in the North Atlantic – Arctic: Quantitative reconstructions using Hellinger criterion in GPlates

    NASA Astrophysics Data System (ADS)

    Gaina, Carmen; Watson, Robin; Cirbus, Juraj

    2015-04-01

    uncertainties are combined with a regional model and used to infer the plate boundaries during the formation of Labrador Sea and Baffin Bay. Challenges for establishing the continuation of these plate boundaries the Arctic domain are also discussed. References Chang, T. (1988), Estimating the relative rotation of two tectonic plates from boundary crossings, J. Am. Stat. Assoc., 83, 1178-1183. Hellinger, S. J. (1981), The uncertainties of finite rotations in plate tectonics, J Geophys Res, 86, 9312-9318. Hanna, M.S and T. Chang (1990), On graphically representing the confidence region for an unknown rotation in three dimensions. Computers & Geosciences 16 (2), 163-194. Royer, J. Y., and T. Chang (1991), Evidence for Relative Motions between the Indian and Australian Plates during the Last 20 My from Plate Tectonic Reconstructions - Implications for the Deformation of the Indo-Australian Plate, J Geophys Res, 96(B7), 11779-11802.

  8. Generation of plate tectonics with two-phase grain-damage and pinning: Source-sink model and toroidal flow

    NASA Astrophysics Data System (ADS)

    Bercovici, David; Ricard, Yanick

    2013-03-01

    The grain-damage and pinning mechanism of Bercovici and Ricard (2012) for lithospheric shear-localization is employed in two-dimensional flow calculations to test its ability to generate toroidal (strike-slip) motion and influence plate evolution. This mechanism posits that damage to the interface between phases in a polycrystalline material like peridotite (composed primarily of olivine and pyroxene) increases the number of small Zener pinning surfaces, which then constrain mineral grains to ever smaller sizes, regardless of creep mechanism. This effect allows a self-softening feedback in which damage and grain-reduction can co-exist with a grain-size dependent diffusion creep rheology; moreover, grain growth and weak-zone healing are greatly impeded by Zener pinning thereby leading to long-lived relic weak zones. The fluid dynamical calculations employ source-sink driven flow as a proxy for convective poloidal flow (upwelling/downwelling and divergent/convergent motion), and the coupling of this flow with non-linear rheological mechanisms excites toroidal or strike-slip motion. The numerical experiments show that pure dislocation-creep rheology, and grain-damage without Zener pinning (as occurs in a single-phase assemblages) permit only weak localization and toroidal flow; however, the full grain-damage with pinning readily allows focussed localization and intense, plate-like toroidal motion and strike-slip deformation. Rapid plate motion changes are also tested with abrupt rotations of the source-sink field after a plate-like configuration is developed; the post-rotation flow and material property fields retain memory of the original configuration for extensive periods, leading to suboptimally aligned plate boundaries (e.g., strike-slip margins non-parallel to plate motion), oblique subduction, and highly localized, weak and long lived acute plate-boundary junctions such as at what is observed at the Aleutian-Kurile intersection. The grain-damage and pinning

  9. Deleterious localized stress fields: the effects of boundaries and stiffness tailoring in anisotropic laminated plates

    PubMed Central

    Weaver, P. M.

    2016-01-01

    The safe design of primary load-bearing structures requires accurate prediction of stresses, especially in the vicinity of geometric discontinuities where deleterious three-dimensional stress fields can be induced. Even for thin-walled structures significant through-thickness stresses arise at edges and boundaries, and this is especially precarious for laminates of advanced fibre-reinforced composites because through-thickness stresses are the predominant drivers in delamination failure. Here, we use a higher-order equivalent single-layer model derived from the Hellinger–Reissner mixed variational principle to examine boundary layer effects in laminated plates comprising constant-stiffness and variable-stiffness laminae and deforming statically in cylindrical bending. The results show that zigzag deformations, which arise due to layerwise differences in the transverse shear moduli, drive boundary layers towards clamped edges and are therefore critically important in quantifying localized stress gradients. The relative significance of the boundary layer scales with the degree of layerwise anisotropy and the thickness to characteristic length ratio. Finally, we demonstrate that the phenomenon of alternating positive and negative transverse shearing deformation through the thickness of composite laminates, previously only observed at clamped boundaries, can also occur at other locations as a result of smoothly varying the material properties over the in-plane dimensions of the laminate. PMID:27843401

  10. Skin friction drag reduction on a flat plate turbulent boundary layer using synthetic jets

    NASA Astrophysics Data System (ADS)

    Belanger, Randy; Boom, Pieter D.; Hanson, Ronald E.; Lavoie, Philippe; Zingg, David W.

    2017-11-01

    In these studies, we investigate the effect of mild synthetic jet actuation on a flat plate turbulent boundary layer with the goal of interacting with the large scales in the log region of the boundary layer and manipulating the overall skin friction. Results will be presented from both large eddy simulations (LES) and wind tunnel experiments. In the experiments, a large parameter space of synthetic jet frequency and amplitude was studied with hot film sensors at select locations behind a pair of synthetic jets to identify the parameters that produce the greatest changes in the skin friction. The LES simulations were performed for a selected set of parameters and provide a more complete evaluation of the interaction between the boundary layer and synthetic jets. Five boundary layer thicknesses downstream, the skin friction between the actuators is generally found to increase, while regions of reduced skin friction persist downstream of the actuators. This pattern is reversed for forcing at low frequency. Overall, the spanwise-averaged skin friction is increased by the forcing, except when forcing at high frequency and low amplitude, for which a net skin friction reduction persists downstream. The physical interpretation of these results will be discussed. The financial support of Airbus is gratefully acknowledged.

  11. Plate tectonics and crustal deformation around the Japanese Islands

    NASA Technical Reports Server (NTRS)

    Hashimoto, Manabu; Jackson, David D.

    1993-01-01

    We analyze over a century of geodetic data to study crustal deformation and plate motion around the Japanese Islands, using the block-fault model for crustal deformation developed by Matsu'ura et al. (1986). We model the area including the Japanese Islands with 19 crustal blocks and 104 faults based on the distribution of active faults and seismicity. Geodetic data are used to obtain block motions and average slip rates of faults. This geodetic model predicts that the Pacific plate moves N deg 69 +/- 2 deg W at about 80 +/- 3 mm/yr relative to the Eurasian plate which is much lower than that predicted in geologic models. Substantial aseismic slip occurs on the subduction boundaries. The block containing the Izu Peninsula may be separated from the rigid part of the Philippine Sea plate. The faults on the coast of Japan Sea and the western part of the Median Tectonic Line have slip rates exceeding 4 mm/yr, while the Fossa Magna does not play an important role in the tectonics of the central Japan. The geodetic model requires the division of northeastern Japan, contrary to the hypothesis that northeastern Japan is a part of the North American plate. Owing to rapid convergence, the seismic risk in the Nankai trough may be larger than that of the Tokai gap.

  12. Numerical Boundary Condition Procedures

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Topics include numerical procedures for treating inflow and outflow boundaries, steady and unsteady discontinuous surfaces, far field boundaries, and multiblock grids. In addition, the effects of numerical boundary approximations on stability, accuracy, and convergence rate of the numerical solution are discussed.

  13. Optimum stacking sequence design of laminated composite circular plates with curvilinear fibres by a layer-wise optimization method

    NASA Astrophysics Data System (ADS)

    Guenanou, A.; Houmat, A.

    2018-05-01

    The optimum stacking sequence design for the maximum fundamental frequency of symmetrically laminated composite circular plates with curvilinear fibres is investigated for the first time using a layer-wise optimization method. The design variables are two fibre orientation angles per layer. The fibre paths are constructed using the method of shifted paths. The first-order shear deformation plate theory and a curved square p-element are used to calculate the objective function. The blending function method is used to model accurately the geometry of the circular plate. The equations of motion are derived using Lagrange's method. The numerical results are validated by means of a convergence test and comparison with published values for symmetrically laminated composite circular plates with rectilinear fibres. The material parameters, boundary conditions, number of layers and thickness are shown to influence the optimum solutions to different extents. The results should serve as a benchmark for optimum stacking sequences of symmetrically laminated composite circular plates with curvilinear fibres.

  14. Geophysical surveys of the Queen Charlotte Fault plate boundary off SE Alaska: Preliminary results

    NASA Astrophysics Data System (ADS)

    Ten Brink, U. S.; Brothers, D. S.; Andrews, B. D.; Kluesner, J.; Haeussler, P. J.; Miller, N. C.; Watt, J. T.; Dartnell, P.; East, A. E.

    2016-12-01

    Recent multibeam sonar and high-resolution seismic surveys covering the northern 400-km-long segment of Queen Charlotte Fault off SE Alaska, indicate that the entire 50 mm/yr right-lateral Pacific-North America plate motion is currently accommodated by a single fault trace. The trace is remarkably straight rarely interrupted by step-overs, and is often <100 m wide. It runs along the shelf edge dropping into the slope only in the southern end of the mapped area. The straight and narrow surficial fault expression and its location with respect to the shelf may be due to high sedimentation rate during the collapse of the SE Alaska ice cap 17,000 yr ago, which obliterated the previous surficial deformation. Gravity data suggests that the fault may separate the 15-20 Ma oceanic crust of the Pacific plate from continental forearc and arc terrains of a former subduction zone. This unusual setting for a transform plate boundary might have resulted from the northward passage of the thick crust of the Yakutat Terrane during the Late Cenozoic. A step-over at the mouth of Chatham Strait has formed a 20-km-long 1.6-km-wide pull-apart basin composed of 3 sub-basins. Internal basin stratigraphy indicates possible southward migration of the step-over with time. Slight outward curving of the southern strand may suggest the presence of a deeper barrier there, which could have terminated the northward super-shear rupture of the 2013 M7.5 Craig Earthquake. Whether this possible barrier is related to the intersection of the Aja Fracture Zone with the plate boundary is unclear. No other surficial impediments to rupture were observed along the 315 km trace between this fault step-over and a 20° bend near Icy Point, where the fault extends onshore and becomes highly transpressional. An enigmatic oval depression, 1.5-2 km wide and 500 m deep, south of the step-over and a possible mud volcano north of the step-over, may attest to possible vigorous gas and fluid upwelling along the fault

  15. Interaction between central volcanoes and regional tectonics along divergent plate boundaries: Askja, Iceland

    NASA Astrophysics Data System (ADS)

    Trippanera, Daniele; Ruch, Joël; Acocella, Valerio; Thordarson, Thor; Urbani, Stefano

    2018-01-01

    Activity within magmatic divergent plate boundaries (MDPB) focuses along both regional fissure swarms and central volcanoes. An ideal place to investigate their mutual relationship is the Askja central volcano in Iceland. Askja consists of three nested calderas (namely Kollur, Askja and Öskjuvatn) located within a hyaloclastite massif along the NNE-SSW trending Icelandic MDPB. We performed an extensive field-based structural analysis supported by a remote sensing study of tectonic and volcanic features of Askja's calderas and of the eastern flank of the hyaloclastite massif. In the massif, volcano-tectonic structures trend N 10° E to N 40° E, but they vary around the Askja caldera being both parallel to the caldera rim and cross-cutting on the Western side. Structural trends around the Öskjuvatn caldera are typically rim parallel. Volcanic vents and dikes are preferentially distributed along the caldera ring faults; however, they follow the NNE-SSW regional structures when located outside the calderas. Our results highlight that the Askja volcano displays a balanced amount of regional (fissure-swarm related) and local (shallow-magma-chamber related) tectonic structures along with a mutual interaction among these. This is different from Krafla volcano (to the north of Askja) dominated by regional structures and Grímsvötn (to the South) dominated by local structures. Therefore, Askja represents an intermediate tectono-magmatic setting for volcanoes located in a slow divergent plate boundary. This is also likely in accordance with a northward increase in the spreading rate along the Icelandic MDPB.

  16. Lasting mantle scars lead to perennial plate tectonics.

    PubMed

    Heron, Philip J; Pysklywec, Russell N; Stephenson, Randell

    2016-06-10

    Mid-ocean ridges, transform faults, subduction and continental collisions form the conventional theory of plate tectonics to explain non-rigid behaviour at plate boundaries. However, the theory does not explain directly the processes involved in intraplate deformation and seismicity. Recently, damage structures in the lithosphere have been linked to the origin of plate tectonics. Despite seismological imaging suggesting that inherited mantle lithosphere heterogeneities are ubiquitous, their plate tectonic role is rarely considered. Here we show that deep lithospheric anomalies can dominate shallow geological features in activating tectonics in plate interiors. In numerical experiments, we found that structures frozen into the mantle lithosphere through plate tectonic processes can behave as quasi-plate boundaries reactivated under far-field compressional forcing. Intraplate locations where proto-lithospheric plates have been scarred by earlier suturing could be regions where latent plate boundaries remain, and where plate tectonics processes are expressed as a 'perennial' phenomenon.

  17. Simulating Roll Clouds associated with Low-Level Convergence.

    NASA Astrophysics Data System (ADS)

    Prasad, A. A.; Sherwood, S. C.

    2015-12-01

    Convective initiation often takes place when features such as fronts and/or rolls collide, merge or otherwise meet. Rolls indicate boundary layer convergence and may initiate thunderstorms. These are often seen in satellite and radar imagery prior to the onset of deep convection. However, links between convergence driven rolls and convection are poor in global models. The poor representation of convection is the source of many model biases, especially over the Maritime Continent in the Tropics. We simulate low-level convergence lines over north-eastern Australia using the Weather Research and Forecasting (WRF) Model (version 3.7). The simulations are events from September-October 2002 driven by sea breeze circulations. Cloud lines associated with bore-waves that form along the low-level convergence lines are thoroughly investigated in this study with comparisons from satellite and surface observations. Initial simulations for a series of cloud lines observed on 4th October, 2002 over the Gulf of Carpentaria showed greater agreement in the timing and propagation of the disturbance and the low-level convergence, however the cloud lines or streets of roll clouds were not properly captured by the model. Results from a number of WRF simulations with different microphysics, cumulus and planetary boundary layer schemes, resolution and boundary conditions will also be discussed.

  18. Small amplitude, transverse vibrations of circular plates with an eccentric rectangular perforation elastically restrained against rotation and translation on both edges

    NASA Astrophysics Data System (ADS)

    Laura, P. A. A.; Avalos, D. R.

    2008-05-01

    The Rayleigh-Ritz variational method is applied to the determination of the first four frequency coefficients for small amplitude, transverse vibrations of circular plates with an eccentric, rectangular perforation that is elastically restrained against rotation and translation on both edges. Coordinate functions are used which identically satisfy the boundary conditions at the outer circular edge, while the restraining boundary conditions at the inner edge of the cutout are dealt with directly through the energetic terms in the functional expressions. The procedure seems to show very good numerical stability and convergence properties. As an added bonus, the method allows for increased flexibility in dealing with boundary conditions at the edge of the cutout.

  19. Nonlinear Radiation Heat Transfer Effects in the Natural Convective Boundary Layer Flow of Nanofluid Past a Vertical Plate: A Numerical Study

    PubMed Central

    Mustafa, Meraj; Mushtaq, Ammar; Hayat, Tasawar; Ahmad, Bashir

    2014-01-01

    The problem of natural convective boundary layer flow of nanofluid past a vertical plate is discussed in the presence of nonlinear radiative heat flux. The effects of magnetic field, Joule heating and viscous dissipation are also taken into consideration. The governing partial differential equations are transformed into a system of coupled nonlinear ordinary differential equations via similarity transformations and then solved numerically using the Runge–Kutta fourth-fifth order method with shooting technique. The results reveal an existence of point of inflection for the temperature distribution for sufficiently large wall to ambient temperature ratio. Temperature and thermal boundary layer thickness increase as Brownian motion and thermophoretic effects intensify. Moreover temperature increases and heat transfer from the plate decreases with an increase in the radiation parameter. PMID:25251242

  20. Data Access and Web Services at the EarthScope Plate Boundary Observatory

    NASA Astrophysics Data System (ADS)

    Matykiewicz, J.; Anderson, G.; Henderson, D.; Hodgkinson, K.; Hoyt, B.; Lee, E.; Persson, E.; Torrez, D.; Smith, J.; Wright, J.; Jackson, M.

    2007-12-01

    The EarthScope Plate Boundary Observatory (PBO) at UNAVCO, Inc., part of the NSF-funded EarthScope project, is designed to study the three-dimensional strain field resulting from deformation across the active boundary zone between the Pacific and North American plates in the western United States. To meet these goals, PBO will install 880 continuous GPS stations, 103 borehole strainmeter stations, and five laser strainmeters, as well as manage data for 209 previously existing continuous GPS stations and one previously existing laser strainmeter. UNAVCO provides access to data products from these stations, as well as general information about the PBO project, via the PBO web site (http://pboweb.unavco.org). GPS and strainmeter data products can be found using a variety of access methods, incuding map searches, text searches, and station specific data retrieval. In addition, the PBO construction status is available via multiple mapping interfaces, including custom web based map widgets and Google Earth. Additional construction details can be accessed from PBO operational pages and station specific home pages. The current state of health for the PBO network is available with the statistical snap-shot, full map interfaces, tabular web based reports, and automatic data mining and alerts. UNAVCO is currently working to enhance the community access to this information by developing a web service framework for the discovery of data products, interfacing with operational engineers, and exposing data services to third party participants. In addition, UNAVCO, through the PBO project, provides advanced data management and monitoring systems for use by the community in operating geodetic networks in the United States and beyond. We will demonstrate these systems during the AGU meeting, and we welcome inquiries from the community at any time.

  1. Recording Plate Boundary Deformation Processes Around The San Jacinto Fault, California

    NASA Astrophysics Data System (ADS)

    Hodgkinson, K.; Mencin, D.; Borsa, A.; Fox, O.; Walls, C.; Van Boskirk, E.

    2012-04-01

    The San Jacinto Fault is one of the major faults which form the San Andreas Fault System in southern California. The fault, which lies to the west of the San Andreas, is one of the most active in the region. While strain rates are higher along the San Andreas, 23-37 mm/yr compared to 12-22 mm/yr along the San Jacinto, there have been 11 earthquakes of M6 and greater along the San Jacinto in the past 150 years while there have been none of this magnitude on the San Andreas in this region. UNAVCO has installed an array of geodetic and seismic instruments along the San Jacinto as part of the Plate Boundary Observatory (PBO). The network includes 25 GPS stations within 20 km of the surface trace with a concentration of borehole instrumentation in the Anza region where there are nine boreholes sites. Most of the borehole sites contain a GTSM21 4-component strainmeter, a Sonde-2 seismometer, a MEMS accelerometer and a pore pressure sensor. Thus, the array has the capability to capture plate boundary deformation processes with periods of milliseconds (seismic) to decades (GPS). On July 7th 2010 a M5.4 earthquake occurred on the Coyote Creek segment of the fault. The event was preceded by a M4.9 earthquake in the same area four weeks earlier and four earthquakes of M5 and greater within a 20 km radius of the epicenter in the past 50 years. In this study we will present the signals recorded by the different instrument types for the July 7th 2010 event and will compare the coseismic displacements recorded by the GPS and strainmeters with the displacement field predicted by Okada [1992]. All data recorded as part of the PBO observatory are publically available from the UNAVCO, the IRIS Data Management Center and the Northern California Earthquake Data Center.

  2. Seismicity of the Earth 1900–2010 Australia plate and vicinity

    USGS Publications Warehouse

    Benz, Harley M.; Herman, Matthew; Tarr, Arthur C.; Hayes, Gavin P.; Furlong, Kevin P.; Villaseñor, Antonio; Dart, Richard L.; Rhea, Susan

    2011-01-01

    This map shows details of the Australia plate and vicinity not presented in Tarr and others (2010). The boundary of the Australia plate includes all fundamental plate boundary components: mid-ocean ridges, subduction zones, arc-continent collisions, and large-offset transform faults. Along the southern edge of the plate the mid-ocean ridge separates the Australia and Antarctica plates and its behavior is straightforward. In contrast, the other boundary segments that ring the Australia plate represent some of the most seismically active elements of the global plate boundary system, and some of the most rapidly evolving plate interactions. As a result, there are some very complex structures which host many large and great earthquakes

  3. Lasting mantle scars lead to perennial plate tectonics

    PubMed Central

    Heron, Philip J.; Pysklywec, Russell N.; Stephenson, Randell

    2016-01-01

    Mid-ocean ridges, transform faults, subduction and continental collisions form the conventional theory of plate tectonics to explain non-rigid behaviour at plate boundaries. However, the theory does not explain directly the processes involved in intraplate deformation and seismicity. Recently, damage structures in the lithosphere have been linked to the origin of plate tectonics. Despite seismological imaging suggesting that inherited mantle lithosphere heterogeneities are ubiquitous, their plate tectonic role is rarely considered. Here we show that deep lithospheric anomalies can dominate shallow geological features in activating tectonics in plate interiors. In numerical experiments, we found that structures frozen into the mantle lithosphere through plate tectonic processes can behave as quasi-plate boundaries reactivated under far-field compressional forcing. Intraplate locations where proto-lithospheric plates have been scarred by earlier suturing could be regions where latent plate boundaries remain, and where plate tectonics processes are expressed as a ‘perennial' phenomenon. PMID:27282541

  4. Unsteady Boundary-Layer Flow over Jerked Plate Moving in a Free Stream of Viscoelastic Fluid

    PubMed Central

    Mehmood, Ahmer; Ali, Asif; Saleem, Najma

    2014-01-01

    This study aims to investigate the unsteady boundary-layer flow of a viscoelastic non-Newtonian fluid over a flat surface. The plate is suddenly jerked to move with uniform velocity in a uniform stream of non-Newtonian fluid. Purely analytic solution to governing nonlinear equation is obtained. The solution is highly accurate and valid for all values of the dimensionless time 0 ≤ τ < ∞. Flow properties of the viscoelastic fluid are discussed through graphs. PMID:24892060

  5. Large-Eddy Simulation of the Flat-plate Turbulent Boundary Layer at High Reynolds numbers

    NASA Astrophysics Data System (ADS)

    Inoue, Michio

    The near-wall, subgrid-scale (SGS) model [Chung and Pullin, "Large-eddy simulation and wall-modeling of turbulent channel flow'', J. Fluid Mech. 631, 281--309 (2009)] is used to perform large-eddy simulations (LES) of the incompressible developing, smooth-wall, flat-plate turbulent boundary layer. In this model, the stretched-vortex, SGS closure is utilized in conjunction with a tailored, near-wall model designed to incorporate anisotropic vorticity scales in the presence of the wall. The composite SGS-wall model is presently incorporated into a computer code suitable for the LES of developing flat-plate boundary layers. This is then used to study several aspects of zero- and adverse-pressure gradient turbulent boundary layers. First, LES of the zero-pressure gradient turbulent boundary layer are performed at Reynolds numbers Retheta based on the free-stream velocity and the momentum thickness in the range Retheta = 103-1012. Results include the inverse skin friction coefficient, 2/Cf , velocity profiles, the shape factor H, the Karman "constant", and the Coles wake factor as functions of Re theta. Comparisons with some direct numerical simulation (DNS) and experiment are made, including turbulent intensity data from atmospheric-layer measurements at Retheta = O (106). At extremely large Retheta , the empirical Coles-Fernholz relation for skin-friction coefficient provides a reasonable representation of the LES predictions. While the present LES methodology cannot of itself probe the structure of the near-wall region, the present results show turbulence intensities that scale on the wall-friction velocity and on the Clauser length scale over almost all of the outer boundary layer. It is argued that the LES is suggestive of the asymptotic, infinite Reynolds-number limit for the smooth-wall turbulent boundary layer and different ways in which this limit can be approached are discussed. The maximum Retheta of the present simulations appears to be limited by machine

  6. DSMC simulations of leading edge flat-plate boundary layer flows at high Mach number

    NASA Astrophysics Data System (ADS)

    Pradhan, Sahadev, , Dr.

    2017-04-01

    The flow over a 2D leading-edge flat plate is studied at Mach number Ma =(Uinf / \\setmn √{kBTinf / m}) in the range plate boundary layer at high Mach number. Here, LT is the characteristic dimension, Uinfand Tinfare the free stream velocity and temperature, rhoinf is the free stream density, m is the molecular mass, muinf is the molecular viscosity based on the free stream temperature Tinf , and kB is the Boltzmann constant. The variation of streamwise velocity, temperature, number-density, and mean free path along the wall normal direction away from the plate surface is studied. The qualitative nature of the streamwise velocity at high Mach number is similar to those in the incompressible limit (parabolic profile). However, there are important differences. The amplitudes of the streamwise velocity increase as the Mach number increases and turned into a more flatter profile near the wall. There is significant velocity and temperature slip at the surface of the plate, and the slip increases as the Mach number is increased. It is interesting to note that for the highest Mach numbers considered here, the streamwise velocity at the wall exceeds the sound speed, and the flow is supersonic throughout the flow domain.

  7. DSMC simulations of leading edge flat-plate boundary layer flows at high Mach number

    NASA Astrophysics Data System (ADS)

    Pradhan, Sahadev, , Dr.

    2016-11-01

    The flow over a 2D leading-edge flat plate is studied at Mach number Ma = (Uinf /√{kBTinf / m }) in the range plate boundary layer at high Mach number. Here, LT is the characteristic dimension, Uinf and Tinf are the free stream velocity and temperature, ρinf is the free stream density, mis the molecular mass, μinf is the molecular viscosity based on the free stream temperature Tinf, and kB is the Boltzmann constant. The variation of streamwise velocity, temperature, number-density, and mean free path along the wall normal direction away from the plate surface is studied. The qualitative nature of the streamwise velocity at high Mach number is similar to those in the incompressible limit (parabolic profile). However, there are important differences. The amplitudes of the streamwise velocity increase as the Mach number increases and turned into a more flatter profile near the wall. There is significant velocity and temperature slip at the surface of the plate, and the slip increases as the Mach number is increased. It is interesting to note that for the highest Mach numbers considered here, the streamwise velocity at the wall exceeds the sound speed, and the flow is supersonic throughout the flow domain.

  8. DSMC simulations of leading edge flat-plate boundary layer flows at high Mach number

    NASA Astrophysics Data System (ADS)

    Pradhan, Sahadev, , Dr.

    2017-01-01

    The flow over a 2D leading-edge flat plate is studied at Mach number Ma = (Uinf /√{kBTinf / m }) in the range plate boundary layer at high Mach number. Here, LT is the characteristic dimension, Uinf and Tinf are the free stream velocity and temperature, rhoinf is the free stream density, m is the molecular mass, muinf is the molecular viscosity based on the free stream temperature Tinf , and kB is the Boltzmann constant. The variation of streamwise velocity, temperature, number-density, and mean free path along the wall normal direction away from the plate surface is studied. The qualitative nature of the streamwise velocity at high Mach number is similar to those in the incompressible limit (parabolic profile). However, there are important differences. The amplitudes of the streamwise velocity increase as the Mach number increases and turned into a more flatter profile near the wall. There is significant velocity and temperature slip at the surface of the plate, and the slip increases as the Mach number is increased. It is interesting to note that for the highest Mach numbers considered here, the streamwise velocity at the wall exceeds the sound speed, and the flow is supersonic throughout the flow domain.

  9. DSMC simulations of leading edge flat-plate boundary layer flows at high Mach number

    NASA Astrophysics Data System (ADS)

    Pradhan, Sahadev

    2016-10-01

    The flow over a 2D leading-edge flat plate is studied at Mach number Ma = (Uinf / {kBTinf /m}) in the range plate boundary layer at high Mach number. Here, LT is the characteristic dimension, Uinf and Tinf are the free stream velocity and temperature, rhoinf is the free stream density, m is the molecular mass, muinf is the molecular viscosity based on the free stream temperature Tinf , and kB is the Boltzmann constant. The variation of streamwise velocity, temperature, number-density, and mean free path along the wall normal direction away from the plate surface is studied. The qualitative nature of the streamwise velocity at high Mach number is similar to those in the incompressible limit (parabolic profile). However, there are important differences. The amplitudes of the streamwise velocity increase as the Mach number increases and turned into a more flatter profile near the wall. There is significant velocity and temperature slip at the surface of the plate, and the slip increases as the Mach number is increased. It is interesting to note that for the highest Mach numbers considered here, the streamwise velocity at the wall exceeds the sound speed, and the flow is supersonic throughout the flow domain.

  10. DSMC simulations of leading edge flat-plate boundary layer flows at high Mach number

    NASA Astrophysics Data System (ADS)

    Pradhan, Sahadev, , Dr.

    The flow over a 2D leading-edge flat plate is studied at Mach number Ma = (Uinf / ∖ sqrt{kBTinf / m})in the range plate boundary layer at high Mach number. Here, LTis the characteristic dimension, Uinfand Tinfare the free stream velocity and temperature, rhoinf is the free stream density, mis the molecular mass, muinf is the molecular viscosity based on the free stream temperature Tinf , and kBis the Boltzmann constant. The variation of streamwise velocity, temperature, number-density, and mean free path along the wall normal direction away from the plate surface is studied. The qualitative nature of the streamwise velocity at high Mach number is similar to those in the incompressible limit (parabolic profile). However, there are important differences. The amplitudes of the streamwise velocity increase as the Mach number increases and turned into a more flatter profile near the wall. There is significant velocity and temperature slip at the surface of the plate, and the slip increases as the Mach number is increased. It is interesting to note that for the highest Mach numbers considered here, the streamwise velocity at the wall exceeds the sound speed, and the flow is supersonic throughout the flow domain. Indian Institute of Science Bangalore-560 012, India.

  11. Vibration characteristics of functionally graded carbon nanotube reinforced composite rectangular plates on Pasternak foundation with arbitrary boundary conditions and internal line supports

    NASA Astrophysics Data System (ADS)

    Zhong, Rui; Wang, Qingshan; Tang, Jinyuan; Shuai, Cijun; Liang, Qian

    2018-02-01

    This paper presents the first known vibration characteristics of moderately thick functionally graded carbon nanotube reinforced composite rectangular plates on Pasternak foundation with arbitrary boundary conditions and internal line supports on the basis of the firstorder shear deformation theory. Different distributions of single walled carbon nanotubes (SWCNTs) along the thickness are considered. Uniform and other three kinds of functionally graded distributions of carbon nanotubes along the thickness direction of plates are studied. The solutions carried out using an enhanced Ritz method mainly include the following three points: Firstly, create the Lagrange energy function by the energy principle; Secondly, as the main innovation point, the modified Fourier series are chosen as the basic functions of the admissible functions of the plates to eliminate all the relevant discontinuities of the displacements and their derivatives at the edges; Lastly, solve the natural frequencies as well as the associated mode shapes by means of the Ritz-variational energy method. In this study, the influences of the volume fraction of CNTs, distribution type of CNTs, boundary restrain parameters, location of the internal line supports, foundation coefficients on the natural frequencies and mode shapes of the FG-CNT reinforced composite rectangular plates are presented.

  12. The effect of energy accumulation and boundary slip on laminar flow between rotating plates

    NASA Astrophysics Data System (ADS)

    Wu, Zhenpeng; Zeng, Liangcai; Chen, Keying; Jin, Xiaohong; Wu, Shiqian

    2018-02-01

    The poor operating conditions of fluid lubrication equipment during the start-up process are due to the resistance of the high-viscosity lubricating liquid. Moreover, the excessive reduction in fluid viscosity due to the elevated temperature resulting from power consumption during prolonged operation is not conducive to the generation of dynamic pressure. In this study, we examine the effect of energy accumulation and boundary slip on the laminar flow of a liquid between a pair of rotating plates. The experiments are conducted using a rotary rheometer, with polymethyl methacrylate (PMMA) as the thermal insulation material and polytetrafluoroethylene (PTFE) as the slip drag reduction material, and a three-dimensional simulation model is established. This model is derived by combining the energy equation including the slip length and the heat conduction equation. Thus, the temperature changes over time are predicted by this model, and the model accuracy is verified by experiments. The results reveal the following points: 1) boundary slips function as a drag reduction mechanism for short-time continuous operation; 2) under prolonged operation, the slip reduces the extent of the oil viscosity decrease and clear control of the elevated temperature by the boundary slip is observed.

  13. Relative Motion of the Nazca (farallon) and South American Plates Since Late Cretaceous Time

    NASA Astrophysics Data System (ADS)

    Pardo-Casas, Federico; Molnar, Peter

    1987-06-01

    By combining reconstructions of the South American and African plates, the African and Antarctic plates, the Antarctic and Pacific plates, and the Pacific and Nazca plates, we calculated the relative positions and history of convergence of the Nazca and South American plates. Despite variations in convergence rates along the Andes, periods of rapid convergence (averaging more than 100 mm/a) between the times of anomalies 21 (49.5 Ma) and 18 (42 Ma) and since anomaly 7 (26 Ma) coincide with two phases of relatively intense tectonic activity in the Peruvian Andes, known as the late Eocene Incaic and Mio-Pliocene Quechua phases. The periods of relatively slow convergence (50 to 55 ± 30 mm/a at the latitude of Peru and less farther south) between the times of anomalies 30-31 (68.5 Ma) and 21 and between those of anomalies 13 (36 Ma) and 7 correlate with periods during which tectonic activity was relatively quiescent. Thus these reconstructions provide quantitative evidence for a correlation of the intensity of tectonic activity in the overriding plate at subduction zones with variations in the convergence rate.

  14. Extrusional Tectonics at Plate Corner: an Example in Northern Taiwan

    NASA Astrophysics Data System (ADS)

    Lu, C. Y.; Lee, J. C.; Li, Z.; Yeh, C. H.; Lee, C. A.

    2015-12-01

    In northern Taiwan, contraction, transcurrent shearing, block rotation and extension are four essential tectonic deformation mechanisms involved in the progressive deformation of this arcuate collision mountain belt. The neotectonic evolution of the Taiwan mountain belt is mainly controlled not only by the oblique convergence between the Eurasian plate and the Philippine Sea plate but also the corner shape of the plate boundary. Based on field observations and analyses, and taking geophysical data (mostly GPS) and experimental modelling into account, we interpret the curved belt of northern Taiwan as a result of of contractional deformation (with compression, thrust-sheet stacking & folding, back thrust duplex & back folding) that induced vertical extrusion, combined with increasing transcurrent & rotational deformation (with transcurrent faulting, bookshelf-type strike-slip faulting and block rotation) that induced transcurrent/rotational extrusion and extension deformation which in turn induced extensional extrusion. As a consequence, a special type of extrusional folds was formed in association with contractional, transcurrent & rotational and extensional extrusions subsequently. The extrusional tectonics in northern Taiwan reflect a single, albeit complicated, regional pattern of deformation. The crescent-shaped mountain belt of Northeastern Taiwan develops in response to oblique indentation by an asymmetric wedge indenter and opening of the Okinawa trough at plate corner.

  15. Using Global Plate Velocity Boundary Conditions for Embedded Regional Geodynamic Models: Application to 3-D Modeling of the Early Rifting of the South Atlantic

    NASA Astrophysics Data System (ADS)

    Taramón, Jorge M.; Morgan, Jason P.; Pérez-Gussinyé, Marta

    2016-04-01

    The treatment of far-field boundary conditions is one of the most poorly resolved issues for regional modeling of geodynamic processes. In viscous flow, the choice of far-field boundary conditions often strongly shapes the large-scale structure of a geosimulation. The mantle velocity field along the sidewalls and base of a modeling region is typically much more poorly known than the geometry of past global motions of the surface plates as constrained by global plate motion reconstructions. For regional rifting models it has become routine to apply highly simplified 'plate spreading' or 'uniform rifting' boundary conditions to a 3-D model that limits its ability to simulate the geodynamic evolution of a specific rifted margin. One way researchers are exploring the sensitivity of regional models to uncertain boundary conditions is to use a nested modeling approach in which a global model is used to determine a large-scale flow pattern that is imposed as a constraint along the boundaries of the region to be modeled. Here we explore the utility of a different approach that takes advantage of the ability of finite element models to use unstructured meshes than can embed much higher resolution sub-regions. Here we demonstrate the workflow and code tools that we created to generate this unstructured mesh: solver based on springs, guide-mesh and routines to improve the quality, e.g., closeness to a regular tetrahedron, of the tetrahedral elements of the mesh. Note that the same routines are used to generate a new mesh in the remeshing of a distorted Lagrangian mesh. In our initial project to validate this approach, we create a global spherical shell mesh in which a higher resolution sub-region is created around the nascent South Atlantic Rifting Margin. Global Plate motion BCs and plate boundaries are applied for the time of the onset of rifting, continuing through several 10s of Ma of rifting. Thermal, compositional, and melt-related buoyancy forces are only non

  16. Upper-Mantel Earthquakes in the Australia-Pacific Plate Boundary Zone and the Roots of the Alpine Fault

    NASA Astrophysics Data System (ADS)

    Boese, C. M.; Warren-Smith, E.; Townend, J.; Stern, T. A.; Lamb, S. H.

    2016-12-01

    Seismicity in the upper mantle in continental collision zones is relatively rare, but observed around the world. Temporary seismometer deployments have repeatedly detected mantle earthquakes at depths of 40-100 km within the Australia-Pacific plate boundary zone beneath the South Island of New Zealand. Here, the transpressive Alpine Fault constitutes the primary plate boundary structure linking subduction zones of opposite polarity farther north and south. The Southern Alps Microearthquake Borehole Array (SAMBA) has been operating continuously since November 2008 along a 50 km-long section of the central Alpine Fault, where the rate of uplift of the Southern Alps is highest. To date it has detected more than 40 small to moderate-sized mantle events (1≤ML≤3.9). The Central Otago Seismic Array (COSA) has been in operation since late 2012 and detected 15 upper mantle events along the sub-vertical southern Alpine Fault. Various mechanisms have been proposed to explain the occurrence of upper mantle seismicity in the South Island, including intra-continental subduction (Reyners 1987, Geology); high shear-strain gradients due to depressed geotherms and viscous deformation of mantle lithosphere (Kohler and Eberhart-Phillips 2003, BSSA); high strain rates resulting from plate bending (Boese et al. 2013, EPSL), and underthrusting of the Australian plate (Lamb et al. 2015, G3). Focal mechanism analysis reveals a variety of mechanisms for the upper mantle events but predominantly strike-slip and reverse faulting. In this study, we apply spectral analysis to better constrain source parameters for these mantle events. These results are interpreted in conjunction with new information about crustal structure and low-frequency earthquakes near the Moho and in light of existing velocity, attenuation and resistivity models.

  17. Numerical investigation of hypersonic flat-plate boundary layer transition mechanism induced by different roughness shapes

    NASA Astrophysics Data System (ADS)

    Zhou, Yunlong; Zhao, Yunfei; Xu, Dan; Chai, Zhenxia; Liu, Wei

    2016-10-01

    The roughness-induced laminar-turbulent boundary layer transition is significant for high-speed aerospace applications. The transition mechanism is closely related to the roughness shape. In this paper, high-order numerical method is used to investigate the effect of roughness shape on the flat-plate laminar-to-turbulent boundary layer transition. Computations are performed in both the supersonic and hypersonic regimes (free-stream Mach number from 3.37 up to 6.63) for the square, cylinder, diamond and hemisphere roughness elements. It is observed that the square and diamond roughness elements are more effective in inducing transition compared with the cylinder and hemisphere ones. The square roughness element has the longest separated region in which strong unsteadiness exists and the absolute instability is formed, thus resulting in the earliest transition. The diamond roughness element has a maximum width of the separated region leading to the widest turbulent wake region far downstream. Furthermore, transition location moves backward as the Mach number increases, which indicates that the compressibility significantly suppresses the roughness-induced boundary layer transition.

  18. Experimental constraints and theoretical bases for microstructural damage in plate boundary shear zones

    NASA Astrophysics Data System (ADS)

    Skemer, P. A.; Cross, A. J.; Bercovici, D.

    2016-12-01

    (Ultra)mylonites from plate boundary shear zones are characterized by severe grain-size reduction and well-mixed mineral phases. The evolution from relatively undeformed tectonite protoliths to highly deformed (ultra)mylonites via the formation of new grain and phase boundaries is described as microstructural `damage.' Microstructural damage is important for two reasons: grain-size reduction is thought to result in significant rheological weakening, while phase mixing inhibits mechanical recovery and preserves the zone of weakness to be reactivated repeatedly throughout the tectonic cycle. Grain-size reduction by dynamic recrystallization has been studied extensively in both geologic and engineered materials, yet the progressive mixing of mineral phases during high pressure/temperature shear - the other essential element of damage or mylonitization - is not well understood. In this contribution we present new experimental results and theory related to two distinct phase mixing processes. First, we describe high strain torsion experiments on calcite and anhydrite mixtures and a simple geometric mixing model related to the stretching and thinning of monophase domains. Second, we describe a grain-switching mechanism that is driven by the surface-tension driven migration of newly formed interphase triple junctions. Unlike dynamic recrystallization, which occurs at relatively small strains, both phase mixing mechanisms described here appear to require extremely large strains, a prediction that is consistent with geologic observations. These data suggest that ductile shear zones experience long, transient intervals of microstructural evolution during which rheology is not at steady state. Microstructural damage may be interpreted as the product of several interconnected physical processes, which are collectively essential to the preservation of long-lived, Earth-like plate tectonics.

  19. Fluid flow and heat transfer of carbon nanotubes along a flat plate with Navier slip boundary

    NASA Astrophysics Data System (ADS)

    Khan, W. A.; Khan, Z. H.; Rahi, M.

    2014-06-01

    Homogeneous flow model is used to study the flow and heat transfer of carbon nanotubes (CNTs) along a flat plate subjected to Navier slip and uniform heat flux boundary conditions. This is the first paper on the flow and heat transfer of CNTs along a flat plate. Two types of CNTs, namely, single- and multi-wall CNTs are used with water, kerosene or engine oil as base fluids. The empirical correlations are used for the thermophysical properties of CNTs in terms of the solid volume fraction of CNTs. For the effective thermal conductivity of CNTs, Xue (Phys B Condens Matter 368:302-307, 2005) model has been used and the results are compared with the existing theoretical models. The governing partial differential equations and boundary conditions are converted into a set of nonlinear ordinary differential equations using suitable similarity transformations. These equations are solved numerically using a very efficient finite difference method with shooting scheme. The effects of the governing parameters on the dimensionless velocity, temperature, skin friction, and Nusselt numbers are investigated and presented in graphical and tabular forms. The numerical results of skin friction and Nusselt numbers are compared with the available data for special cases and are found in good agreement.

  20. The memory of the accreting plate boundary and the continuity of fracture zones

    USGS Publications Warehouse

    Schouten, Hans; Klitgord, Kim D.

    1982-01-01

    A detailed aeromagnetic anomaly map of the Mesozoic seafloor-spreading lineations southwest of Bermuda reveals the dominant magnetic grain of the oceanic crust and the character of the accreting boundary at the time of crustal formation. The magnetic anomaly pattern is that of a series of elongate lobes perpendicular to the fracture zone (flowline) trends. The linear sets of magnetic anomaly peaks and troughs have narrow regions of reduced amplitude anomalies associated with the fracture zones. During the period of Mesozoic geomagnetic polarity reversals (when 1200 km of central North Atlantic seafloor formed), the Atlantic accreting boundary consisted of stationary, elongate, spreading center cells that maintained their independence even though sometimes only minor spatial offsets existed between cells. Normal oceanic crustal structure was formed in the spreading center cells, but structural anomalies and discontinuities characteristic of fracture zones were formed at their boundaries, which parallel flowlines of Mesozoic relative plate motion in the central North Atlantic. We suggest that the memory for a stationary pattern of independent spreading center cells resides in the young brittle lithosphere at the accreting boundary where the lithosphere is weakest; here, each spreading center cell independently goes through its cylce of stress buildup, stress release, and crustal accretion, after which its memory is refreshed. The temporal offset between the peaks of the accretionary activity that takes place within each cell may provide the mechanism for maintaining the independence of adjacent spreading center cells through times when no spatial offset between the cells exists.

  1. Boundary-Layer Bypass Transition Over Large-Scale Bodies

    DTIC Science & Technology

    2016-12-16

    shape of the streamwise velocity profile compared to the flat- plate boundary layer. The research showed that the streamwise wavenumber plays a key role...many works on the suppression of the transitional boundary layer. Most of the results in the literature are for the flat- plate boundary layer but the...behaviour of the velocity and pressure changes with the curvature. This work aims to extend the results of the flat- plate boundary layer to a Rankine

  2. The Convergence Years

    ERIC Educational Resources Information Center

    Kolodzy, Janet; Grant, August E.; DeMars, Tony R.; Wilkinson, Jeffrey S.

    2014-01-01

    The emergence of the Internet, social media, and digital technologies in the twenty-first century accelerated an evolution in journalism and communication that fit under the broad term of convergence. That evolution changed the relationship between news producers and consumers. It broke down the geographical boundaries in defining our communities,…

  3. The Malpelo Plate Hypothesis and Implications for Non-closure of the Cocos-Nazca-Pacific Plate Motion Circuit

    NASA Astrophysics Data System (ADS)

    Zhang, T.; Gordon, R. G.; Mishra, J. K.; Wang, C.

    2017-12-01

    The non-closure of the Cocos-Nazca-Pacific plate motion circuit by 15.0 mm a-1± 3.8 mm a-1 (95% confidence limits throughout this abstract) [DeMets et al. 2010] represents a daunting challenge to the central tenet of plate tectonics—that the plates are rigid. This misfit is difficult to explain from known processes of intraplate deformation, such as horizontal thermal contraction [Collette, 1974; Kumar and Gordon, 2009; Kreemer and Gordon, 2014; Mishra and Gordon, 2016] or movement of plates over a non-spherical Earth [McKenzie, 1972; Turcotte and Oxburgh, 1973]. Possibly there are one or more unrecognized plate boundaries in the circuit, but no such boundary has been found to date. To make progress on this problem, we present three new Cocos-Nazca transform fault azimuths from multibeam data now available through Geomapapp's global multi-resolution topography [Ryan et al., 2009]. We determine a new Cocos-Nazca best-fitting angular velocity from the three new transform-fault azimuths combined with the spreading rates of DeMets et al. [2010]. The new direction of relative plate motion is 3.3° ±1.8° clockwise of prior estimates and is 4.9° ±2.7° clockwise of the azimuth of the Panama transform fault, demonstrating that the Panama transform fault does not parallel Nazca-Cocos plate motion. We infer that the plate east of the Panama transform fault is not the Nazca plate, but instead is a microplate that we term the Malpelo plate. We hypothesize that a diffuse plate boundary separates the Malpelo plate from the much larger Nazca plate. The Malpelo plate extends only as far north as ≈6°N where seismicity marks another boundary with a previously recognized microplate, the Coiba plate [Pennington, 1981, Adamek et al., 1988]. The Malpelo plate moves 5.9 mm a-1 relative to the Nazca plate along the Panama transform fault. When we sum the Cocos-Pacific and Pacific-Nazca best-fitting angular velocities of DeMets et al. [2010] with our new Nazca-Cocos best

  4. An asymptotic Reissner-Mindlin plate model

    NASA Astrophysics Data System (ADS)

    Licht, Christian; Weller, Thibaut

    2018-06-01

    A mathematical study via variational convergence of a periodic distribution of classical linearly elastic thin plates softly abutted together shows that it is not necessary to use a different continuum model nor to make constitutive symmetry hypothesis as starting points to deduce the Reissner-Mindlin plate model.

  5. Elastostatic stress analysis of orthotropic rectangular center-cracked plates

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, G. S.; Mendelson, A.

    1972-01-01

    A mapping-collocation method was developed for the elastostatic stress analysis of finite, anisotropic plates with centrally located traction-free cracks. The method essentially consists of mapping the crack into the unit circle and satisfying the crack boundary conditions exactly with the help of Muskhelishvili's function extension concept. The conditions on the outer boundary are satisfied approximately by applying the method of least-squares boundary collocation. A parametric study of finite-plate stress intensity factors, employing this mapping-collocation method, is presented. It shows the effects of varying material properties, orientation angle, and crack-length-to-plate-width and plate-height-to-plate-width ratios for rectangular orthotropic plates under constant tensile and shear loads.

  6. Temperature field determination in slabs, circular plates and spheres with saw tooth heat generating sources

    NASA Astrophysics Data System (ADS)

    Diestra Cruz, Heberth Alexander

    The Green's functions integral technique is used to determine the conduction heat transfer temperature field in flat plates, circular plates, and solid spheres with saw tooth heat generating sources. In all cases the boundary temperature is specified (Dirichlet's condition) and the thermal conductivity is constant. The method of images is used to find the Green's function in infinite solids, semi-infinite solids, infinite quadrants, circular plates, and solid spheres. The saw tooth heat generation source has been modeled using Dirac delta function and Heaviside step function. The use of Green's functions allows obtain the temperature distribution in the form of an integral that avoids the convergence problems of infinite series. For the infinite solid and the sphere, the temperature distribution is three-dimensional and in the cases of semi-infinite solid, infinite quadrant and circular plate the distribution is two-dimensional. The method used in this work is superior to other methods because it obtains elegant analytical or quasi-analytical solutions to complex heat conduction problems with less computational effort and more accuracy than the use of fully numerical methods.

  7. 3D geometry of a plate boundary fault related to the 2016 Off-Mie earthquake in the Nankai subduction zone, Japan

    NASA Astrophysics Data System (ADS)

    Tsuji, Takeshi; Minato, Shohei; Kamei, Rie; Tsuru, Tetsuro; Kimura, Gaku

    2017-11-01

    We used recent seismic data and advanced techniques to investigate 3D fault geometry over the transition from the partially coupled to the fully coupled plate interface inboard of the Nankai Trough off the Kii Peninsula, Japan. We found that a gently dipping plate boundary décollement with a thick underthrust layer extends beneath the entire Kumano forearc basin. The 1 April 2016 Off-Mie earthquake (Mw6.0) and its aftershocks occurred, where the plate boundary décollement steps down close to the oceanic crust surface. This location also lies beneath the trenchward edge of an older accretionary prism (∼14 Ma) developed along the coast of the Kii peninsula. The strike of the 2016 rupture plane was similar to that of a formerly active splay fault system in the accretionary prism. Thus, the fault planes of the 2016 earthquake and its aftershocks were influenced by the geometry of the plate interface as well as splay faulting. The 2016 earthquake occurred within the rupture area of large interplate earthquakes such as the 1944 Tonankai earthquake (Mw8.1), although the 2016 rupture area was much smaller than that of the 1944 event. Whereas the hypocenter of the 2016 earthquake was around the underplating sequence beneath the younger accretionary prism (∼6 Ma), the 1944 great earthquake hypocenter was close to oceanic crust surface beneath the older accretionary prism. The variation of fault geometry and lithology may influence the degree of coupling along the plate interface, and such coupling variation could hinder slip propagation toward the deeper plate interface in the 2016 event.

  8. An EarthScope Plate Boundary Observatory Progress Report

    NASA Astrophysics Data System (ADS)

    Jackson, M.; Anderson, G.; Blume, F.; Walls, C.; Coyle, B.; Feaux, K.; Friesen, B.; Phillips, D.; Hafner, K.; Johnson, W.; Mencin, D.; Pauk, B.; Dittmann, T.

    2007-12-01

    UNAVCO is building and operating the Plate Boundary Observatory (PBO), part of the NSF-funded EarthScope project to understand the structure, dynamics, and evolution of the North American continent. When complete in October 2008, the 875 GPS, 103 strain and seismic, and 28 tiltmeters stations will comprise the largest integrated geodetic and seismic network in United States and the second largest in the world. Data from the PBO network will facilitate research into plate boundary deformation with unprecedented scope and detail. As of 1 September 2007, UNAVCO had completed 680 PBO GPS stations and had upgraded 89% of the planned PBO Nucleus stations. Highlights of the past year's work include the expansion of the Alaska subnetwork to 95 continuously-operating stations, including coverage of Akutan and Augustine volcanoes and reconnaissance for future installations on Unimak Island; the installation of nine new stations on Mt. St. Helens; and the arrival of 33 permits for station installations on BLM land in Nevada. The Augustine network provided critical data on magmatic and volcanic processes associated with the 2005-2006 volcanic crisis, and has expanded to a total of 11 stations. Please visit http://pboweb.unavco.org/?pageid=3 for further information on PBO GPS network construction activities. As of September 2007, 41 PBO borehole stations had been installed and three laser strainmeter stations were operating, with a total of 60 borehole stations and 4 laser strainmeters expected by October 2007. In response to direction from the EarthScope community, UNAVCO installed a dense network of six stations along the San Jacinto Fault near Anza, California; installed three of four planned borehole strainmeter stations on Mt. St. Helens; and has densified coverage of the Parkfield area. Please visit http://pboweb.unavco.org/?pageid=8 for more information on PBO strainmeter network construction progress. The combined PBO/Nucleus GPS network provides 350 GB of raw standard

  9. A Long-term Slip Model for the San Ramón Fault, Santiago de Chile, from Tectonically Reconcilable Boundary Conditions

    NASA Astrophysics Data System (ADS)

    Aron, F.; Estay, N.; Cembrano, J. M.; Yanez, G. A.

    2016-12-01

    We constructed a 3D Boundary Elements model simulating subduction of the Nazca plate underneath South America, from 29° to 38° S, to compute long-term surface deformation and slip rates on crustal faults imbedded in the upper-plate wedge of the Andean orogen. We tested our model on the San Ramón Fault (SRF), a major E-dipping, thrust structure limiting the western front of the Main Cordillera with surface expression along the entire, 40 km long, extension of the Santiago de Chile basin. Long-lived thrusting has produced more than 2 km of differential uplift of the mountains. Given its proximity to the country's largest city, this potentially seismogenic fault —dormant during historic times— has drawn increasing public attention. We used earthquake hypocenters captured over a one-year seismic deployment, 2D resistivity profiles, and published geologic cross-sections to determine the geometry of the SRF. The base of the lithosphere and plate interface surfaces were defined based on average Andean values and the Slab1.0 model. The simulation reproduces plate convergence and mechanic decoupling of the lithospheric plates across the subduction seismic cycle using mixed boundary conditions. Relative plate motion is achieved prescribing uniform, far-field horizontal displacement over the depth extension of both the oceanic and continental lithospheric plates. Long-term deformation is carried out in two steps. First, the modeled surfaces are allowed to slip freely emulating continuous slip on the subduction megathrust; subsequently, zero displacement is prescribed on the locking zone of the megathrust down to 40 km depth, while keeping the rest of the surfaces traction free, mimicking interseismic conditions. Long-term slip rate fields obtained for the SRF range between 0.1 and 1% the plate convergence rate, with maximum values near the surface. Interestingly, at an estimated 76-77 mm/yr relative plate motion velocity, those rates agree well with what has been

  10. DSMC simulations of leading edge flat-plate boundary layer flows at high Mach number

    NASA Astrophysics Data System (ADS)

    Pradhan, Sahadev

    2016-09-01

    The flow over a 2D leading-edge flat plate is studied at Mach number Ma = (Uinf /√{kBTinf / m }) in the range plate boundary layer at high Mach number. Here, LT is the characteristic dimension, Uinf and Tinf are the free stream velocity and temperature, rhoinf is the free stream density, m is the molecular mass, muinfis the molecular viscosity based on the free stream temperature Tinf , and kB is the Boltzmann constant. The variation of streamwise velocity, temperature, number-density, and mean free path along the wall normal direction away from the plate surface is studied. The qualitative nature of the streamwise velocity at high Mach number is similar to those in the incompressible limit (parabolic profile). However, there are important differences. The amplitudes of the streamwise velocity increase as the Mach number increases and turned into a more flatter profile near the wall. There is significant velocity and temperature slip ((Pradhan and Kumaran, J. Fluid Mech-2011); (Kumaran and Pradhan, J. Fluid Mech-2014)) at the surface of the plate, and the slip increases as the Mach number is increased. It is interesting to note that for the highest Mach numbers considered here, the streamwise velocity at the wall exceeds the sound speed, and the flow is supersonic throughout the flow domain.

  11. Tectonic activity evolution of the Scotia-Antarctic Plate boundary from mass transport deposit analysis

    NASA Astrophysics Data System (ADS)

    Pérez, Lara F.; Bohoyo, Fernando; Hernández-Molina, F. Javier; Casas, David; Galindo-Zaldívar, Jesús; Ruano, Patricia; Maldonado, Andrés.

    2016-04-01

    The spatial distribution and temporal occurrence of mass transport deposits (MTDs) in the sedimentary infill of basins and submerged banks near the Scotia-Antarctic plate boundary allowed us to decode the evolution of the tectonic activity of the relevant structures in the region from the Oligocene to present day. The 1020 MTDs identified in the available data set of multichannel seismic reflection profiles in the region are subdivided according to the geographic and chronological distributions of these features. Their spatial distribution reveals a preferential location along the eastern margins of the eastern basins. This reflects local deformation due to the evolution of the Scotia-Antarctic transcurrent plate boundary and the impact of oceanic spreading along the East Scotia Ridge (ESR). The vertical distribution of the MTDs in the sedimentary record evidences intensified regional tectonic deformation from the middle Miocene to Quaternary. Intensified deformation started at about 15 Ma, when the ESR progressively replaces the West Scotia Ridge (WSR) as the main oceanic spreading center in the Scotia Sea. Coevally with the WSR demise at about 6.5 Ma, increased spreading rates of the ESR and numerous MTDs were formed. The high frequency of MTDs during the Pliocene, mainly along the western basins, is also related to greater tectonic activity due to uplift of the Shackleton Fracture Zone by tectonic inversion and extinction of the Antarctic-Phoenix Ridge and involved changes at late Pliocene. The presence of MTDs in the southern Scotia Sea basins is a relevant indicator of the interplay between sedimentary instability and regional tectonics.

  12. Links Between Clay Dehydration and Plate Boundary Earthquakes Along the Costa Rica Subduction Megathrust

    NASA Astrophysics Data System (ADS)

    Lauer, R. M.; Saffer, D. M.; Harris, R. N.

    2016-12-01

    The transformation of smectite to illite is one leading hypothesis to explain the upper transition from stable aseismic slip to seismogenesis along subduction megathrusts, through its influence on both fluid pressure and fault zone frictional properties. Here, we document a well-defined spatial correlation between plate boundary seismicity and smectite transformation at the Costa Rican subduction zone, consistent with the idea that clay transformation and associated silica deposition condition the fault for locking and stick-slip behavior. Previous efforts to explore this relationship have been impeded by a lack of studies that precisely locate seismicity at margins where the thermal structure is well-constrained. We take advantage of new results from Costa Rica that together provide a clear view of both seismicity and thermal conditions on the Middle-America megathrust. These results allow a thorough evaluation of the links between smectite dehydration and fault-slip behavior. We simulate smectite transformation using a kinetic model to assess reaction progress and quantify fluid production at the plate boundary, along 16-transects that span a 500-km length along strike. We find that large (Mw≥7.0) earthquakes are located down-dip of peak fluid production and in regions where the reaction is >50% complete. The earthquake ruptures, however, extend up-dip into the zone of peak reaction. We suggest that silica cementation that accompanies the reaction promotes lithification, embrittlement, and slip-weakening behavior that together enable the initiation of unstable slip, which can then propagate updip into fluid-rich and weak regions of the megathrust that coincide with the peak dehydration window.

  13. Tectonics and Current Plate Motions of Northern Vancouver Island and the Adjacent Mainland

    NASA Astrophysics Data System (ADS)

    Jiang, Y.; Leonard, L. J.; Henton, J.; Hyndman, R. D.

    2016-12-01

    Northern Vancouver Island comprises a complex transition zone along the western margin of the North America plate, between the subducting Juan de Fuca plate to the south and the transcurrent Queen Charlotte Fault to the north off Haida Gwaii. The tectonic history and seismic potential for this region are unclear. Here we present current plate motions for northern Vancouver Island and the adjacent mainland, determined from continuous and campaign GPS measurements processed in a consistent manner. Immediately to the north of the mid-Vancouver Island Nootka Fault Zone, the northern limit of Juan de Fuca plate subduction, GPS velocity vectors show slower Explorer plate subduction than the Juan de Fuca Plate. Off northernmost Vancouver Island, the Winona Block is possibly converging at a slow rate that decreases northward to zero. We find a constant northward margin-parallel translation of up to 5 mm/year from northern Vancouver Island extending to Alaska. The southern limit of this translation coincides with areas of high heat flow that may reflect extension and the northern limit of episodic tremor and slip (ETS) on the Cascadia megathrust. The origin of the northward translation is poorly understood. We find a mainland coastal shear zone extends as far south as northern Vancouver Island where the offshore plate boundary is likely subduction. The pattern of the observed coastal shear cannot reflect interseismic locking on a major offshore transcurrent fault. The geodetically determined mainland coastal zone velocities decrease landward from 5 to 0 mm/yr across a region where no active faults have been identified and there is very little current seismicity. In Haida Gwaii, oblique convergence is apparent in the GPS data, consistent with partitioning between margin-parallel and margin-perpendicular strain. After removing the margin parallel translation from the data, we determine an average maximum locking depth of 15 km for the Queen Charlotte transcurrent fault

  14. Inflow/Outflow Boundary Conditions with Application to FUN3D

    NASA Technical Reports Server (NTRS)

    Carlson, Jan-Renee

    2011-01-01

    Several boundary conditions that allow subsonic and supersonic flow into and out of the computational domain are discussed. These boundary conditions are demonstrated in the FUN3D computational fluid dynamics (CFD) code which solves the three-dimensional Navier-Stokes equations on unstructured computational meshes. The boundary conditions are enforced through determination of the flux contribution at the boundary to the solution residual. The boundary conditions are implemented in an implicit form where the Jacobian contribution of the boundary condition is included and is exact. All of the flows are governed by the calorically perfect gas thermodynamic equations. Three problems are used to assess these boundary conditions. Solution residual convergence to machine zero precision occurred for all cases. The converged solution boundary state is compared with the requested boundary state for several levels of mesh densities. The boundary values converged to the requested boundary condition with approximately second-order accuracy for all of the cases.

  15. Convergence to equilibrium of renormalised solutions to nonlinear chemical reaction–diffusion systems

    NASA Astrophysics Data System (ADS)

    Fellner, Klemens; Tang, Bao Quoc

    2018-06-01

    The convergence to equilibrium for renormalised solutions to nonlinear reaction-diffusion systems is studied. The considered reaction-diffusion systems arise from chemical reaction networks with mass action kinetics and satisfy the complex balanced condition. By applying the so-called entropy method, we show that if the system does not have boundary equilibria, i.e. equilibrium states lying on the boundary of R_+^N, then any renormalised solution converges exponentially to the complex balanced equilibrium with a rate, which can be computed explicitly up to a finite-dimensional inequality. This inequality is proven via a contradiction argument and thus not explicitly. An explicit method of proof, however, is provided for a specific application modelling a reversible enzyme reaction by exploiting the specific structure of the conservation laws. Our approach is also useful to study the trend to equilibrium for systems possessing boundary equilibria. More precisely, to show the convergence to equilibrium for systems with boundary equilibria, we establish a sufficient condition in terms of a modified finite-dimensional inequality along trajectories of the system. By assuming this condition, which roughly means that the system produces too much entropy to stay close to a boundary equilibrium for infinite time, the entropy method shows exponential convergence to equilibrium for renormalised solutions to complex balanced systems with boundary equilibria.

  16. Lithospheric strength variations as a control on new plate boundaries: examples from the northern Red Sea region

    NASA Astrophysics Data System (ADS)

    Steckler, Michael S.; ten Brink, Uri S.

    1986-08-01

    The complex plate boundary between Arabia and Africa at the northern end of the Red Sea includes the Gulf of Suez rift and the Gulf of Aqaba—Dead Sea transform. Geologic evidence indicates that during the earliest phase of rifting the Red Sea propagated NNW towards the Mediterranean Sea creating the Gulf of Suez. Subsequently, the majority of the relative movement between the plates shifted eastward to the Dead Sea transform. We propose that an increase in the strength of the lithosphere across the Mediterranean continental margin acted as a barrier to the propagation of the rift. A new plate boundary, the Dead Sea transform formed along a zone of minimum strength. We present an analysis of lithospheric strength variations across the Mediterranean continental margin. The main factors controlling these variations are the geotherm, crustal thickness and composition, and sediment thickness. The analysis predicts a characteristic strength profile at continental margins which consists of a marked increase in strength seaward of the hinge zone and a strength minimum landward of the hinge zone. This strength profile also favors the creation of thin continental slivers such as the Levant west of the Dead Sea transform and the continental promontory containing Socotra Island at the mouth of the Gulf of Aden. Calculations of strength variations based on changes of crustal thickness, geotherm and sediment thickness can be extended to other geologic settings as well. They can explain the location of rerifting events at intracratonic basins, of backarc basins and of major continental strike-slip zones.

  17. Influence of increasing convergence obliquity and shallow slab geometry onto tectonic deformation and seismogenic behavior along the Northern Lesser Antilles zone

    NASA Astrophysics Data System (ADS)

    Laurencin, M.; Graindorge, D.; Klingelhoefer, F.; Marcaillou, B.; Evain, M.

    2018-06-01

    In subduction zones, the 3D geometry of the plate interface is one of the key parameters that controls margin tectonic deformation, interplate coupling and seismogenic behavior. The North American plate subducts beneath the convex Northern Lesser Antilles margin. This convergent plate boundary, with a northward increasing convergence obliquity, turns into a sinistral strike-slip limit at the northwestern end of the system. This geodynamic context suggests a complex slab geometry, which has never been imaged before. Moreover, the seismic activity and particularly the number of events with thrust focal mechanism compatible with subduction earthquakes, increases northward from the Barbuda-Anguilla segment to the Anguilla-Virgin Islands segment. One of the major questions in this area is thus to analyze the influence of the increasing convergence obliquity and the slab geometry onto tectonic deformation and seismogenic behavior of the subduction zone. Based on wide-angle and multichannel reflection seismic data acquired during the Antithesis cruises (2013-2016), we decipher the deep structure of this subduction zone. Velocity models derived from wide-angle data acquired across the Anegada Passage are consistent with the presence of a crust of oceanic affinity thickened by hotspot magmatism and probably affected by the Upper Cretaceous-Eocene arc magmatism forming the 'Great Arc of the Caribbean'. The slab is shallower beneath the Anguilla-Virgin Islands margin segment than beneath the Anguilla-Barbuda segment which is likely to be directly related to the convex geometry of the upper plate. This shallower slab is located under the forearc where earthquakes and partitioning deformations increase locally. Thus, the shallowing slab might result in local greater interplate coupling and basal friction favoring seismic activity and tectonic partitioning beneath the Virgin Islands platform.

  18. Validation of High-Speed Turbulent Boundary Layer and Shock-Boundary Layer Interaction Computations with the OVERFLOW Code

    NASA Technical Reports Server (NTRS)

    Oliver, A. B.; Lillard, R. P.; Blaisdell, G. A.; Lyrintizis, A. S.

    2006-01-01

    The capability of the OVERFLOW code to accurately compute high-speed turbulent boundary layers and turbulent shock-boundary layer interactions is being evaluated. Configurations being investigated include a Mach 2.87 flat plate to compare experimental velocity profiles and boundary layer growth, a Mach 6 flat plate to compare experimental surface heat transfer,a direct numerical simulation (DNS) at Mach 2.25 for turbulent quantities, and several Mach 3 compression ramps to compare computations of shock-boundary layer interactions to experimental laser doppler velocimetry (LDV) data and hot-wire data. The present paper describes outlines the study and presents preliminary results for two of the flat plate cases and two small-angle compression corner test cases.

  19. Unsteady boundary layer flow and heat transfer of a Casson fluid past an oscillating vertical plate with Newtonian heating.

    PubMed

    Hussanan, Abid; Zuki Salleh, Mohd; Tahar, Razman Mat; Khan, Ilyas

    2014-01-01

    In this paper, the heat transfer effect on the unsteady boundary layer flow of a Casson fluid past an infinite oscillating vertical plate with Newtonian heating is investigated. The governing equations are transformed to a systems of linear partial differential equations using appropriate non-dimensional variables. The resulting equations are solved analytically by using the Laplace transform method and the expressions for velocity and temperature are obtained. They satisfy all imposed initial and boundary conditions and reduce to some well-known solutions for Newtonian fluids. Numerical results for velocity, temperature, skin friction and Nusselt number are shown in various graphs and discussed for embedded flow parameters. It is found that velocity decreases as Casson parameters increases and thermal boundary layer thickness increases with increasing Newtonian heating parameter.

  20. Krylov subspace iterative methods for boundary element method based near-field acoustic holography.

    PubMed

    Valdivia, Nicolas; Williams, Earl G

    2005-02-01

    The reconstruction of the acoustic field for general surfaces is obtained from the solution of a matrix system that results from a boundary integral equation discretized using boundary element methods. The solution to the resultant matrix system is obtained using iterative regularization methods that counteract the effect of noise on the measurements. These methods will not require the calculation of the singular value decomposition, which can be expensive when the matrix system is considerably large. Krylov subspace methods are iterative methods that have the phenomena known as "semi-convergence," i.e., the optimal regularization solution is obtained after a few iterations. If the iteration is not stopped, the method converges to a solution that generally is totally corrupted by errors on the measurements. For these methods the number of iterations play the role of the regularization parameter. We will focus our attention to the study of the regularizing properties from the Krylov subspace methods like conjugate gradients, least squares QR and the recently proposed Hybrid method. A discussion and comparison of the available stopping rules will be included. A vibrating plate is considered as an example to validate our results.

  1. Modeling the Geometry of Plate Boundary and Seismic Structure in the Southern Ryukyu Trench Subduction Zone, Japan, Using Amphibious Seismic Observations

    NASA Astrophysics Data System (ADS)

    Yamamoto, Y.; Takahashi, T.; Ishihara, Y.; Kaiho, Y.; Arai, R.; Obana, K.; Nakanishi, A.; Miura, S.; Kodaira, S.; Kaneda, Y.

    2018-02-01

    Here we present the new model, the geometry of the subducted Philippine Sea Plate interface beneath the southern Ryukyu Trench subduction zone, estimated from seismic tomography and focal mechanism estimation by using passive and active data from a temporary amphibious seismic network and permanent land stations. Using relocated low-angle thrust-type earthquakes, repeating earthquakes, and structural information, we constrained the geometry of plate boundary from the trench axis to a 60 km depth with uncertainties of less than 5 km. The estimated plate geometry model exhibited large variation, including a pronounced convex structure that may be evidence of a subducted seamount in the eastern portion of study area, whereas the western part appeared smooth. We also found that the active earthquake region near the plate boundary, defined by the distance from our plate geometry model, was clearly separated from the area dominated by short-term slow-slip events (SSEs). The oceanic crust just beneath the SSE-dominant region, the western part of the study area, showed high Vp/Vs ratios (>1.8), whereas the eastern side showed moderate or low Vp/Vs (<1.75). We interpreted this as an indication that high fluid pressures near the surface of the slab are contributing to the SSE activities. Within the toe of the mantle wedge, P and S wave velocities (<7.5 and <4.2 km/s, respectively) lower than those observed through normal mantle peridotite might suggest that some portions of the mantle may be at least 40% serpentinized.

  2. Irregular earthquake recurrence patterns and slip variability on a plate-boundary Fault

    NASA Astrophysics Data System (ADS)

    Wechsler, N.; Rockwell, T. K.; Klinger, Y.

    2015-12-01

    The Dead Sea fault in the Levant represents a simple, segmented plate boundary from the Gulf of Aqaba northward to the Sea of Galilee, where it changes its character into a complex plate boundary with multiple sub-parallel faults in northern Israel, Lebanon and Syria. The studied Jordan Gorge (JG) segment is the northernmost part of the simple section, before the fault becomes more complex. Seven fault-crossing buried paleo-channels, offset by the Dead Sea fault, were investigated using paleoseismic and geophysical methods. The mapped offsets capture the long-term rupture history and slip-rate behavior on the JG fault segment for the past 4000 years. The ~20 km long JG segment appears to be more active (in term of number of earthquakes) than its neighboring segments to the south and north. The rate of movement on this segment varies considerably over the studied period: the long-term slip-rate for the entire 4000 years is similar to previously observed rates (~4 mm/yr), yet over shorter time periods the rate varies from 3-8 mm/yr. Paleoseismic data on both timing and displacement indicate a high COV >1 (clustered) with displacement per event varying by nearly an order of magnitude. The rate of earthquake production does not produce a time predictable pattern over a period of 2 kyr. We postulate that the seismic behavior of the JG fault is influenced by stress interactions with its neighboring faults to the north and south. Coulomb stress modelling demonstrates that an earthquake on any neighboring fault will increase the Coulomb stress on the JG fault and thus promote rupture. We conclude that deriving on-fault slip-rates and earthquake recurrence patterns from a single site and/or over a short time period can produce misleading results. The definition of an adequately long time period to resolve slip-rate is a question that needs to be addressed and requires further work.

  3. Plate tectonics, damage and inheritance.

    PubMed

    Bercovici, David; Ricard, Yanick

    2014-04-24

    The initiation of plate tectonics on Earth is a critical event in our planet's history. The time lag between the first proto-subduction (about 4 billion years ago) and global tectonics (approximately 3 billion years ago) suggests that plates and plate boundaries became widespread over a period of 1 billion years. The reason for this time lag is unknown but fundamental to understanding the origin of plate tectonics. Here we suggest that when sufficient lithospheric damage (which promotes shear localization and long-lived weak zones) combines with transient mantle flow and migrating proto-subduction, it leads to the accumulation of weak plate boundaries and eventually to fully formed tectonic plates driven by subduction alone. We simulate this process using a grain evolution and damage mechanism with a composite rheology (which is compatible with field and laboratory observations of polycrystalline rocks), coupled to an idealized model of pressure-driven lithospheric flow in which a low-pressure zone is equivalent to the suction of convective downwellings. In the simplest case, for Earth-like conditions, a few successive rotations of the driving pressure field yield relic damaged weak zones that are inherited by the lithospheric flow to form a nearly perfect plate, with passive spreading and strike-slip margins that persist and localize further, even though flow is driven only by subduction. But for hotter surface conditions, such as those on Venus, accumulation and inheritance of damage is negligible; hence only subduction zones survive and plate tectonics does not spread, which corresponds to observations. After plates have developed, continued changes in driving forces, combined with inherited damage and weak zones, promote increased tectonic complexity, such as oblique subduction, strike-slip boundaries that are subparallel to plate motion, and spalling of minor plates.

  4. Scattering of antiplane shear waves by a circular cylinder in a traction-free plate

    PubMed

    Wang; Ying; Li

    2000-09-01

    Following a well-established formula used by many researchers, the scattering of an anti-plane shear wave by an infinite elastic cylinder of arbitrary relative radius centered in a traction-free two-dimensional isotropic plate has been examined. The plate is divided into three regions by introducing two imaginary planes located symmetrically away from the surface of the cylinder and perpendicular to surfaces of the plate. The wave field is expanded into cylinder wave modes in the central bounded region containing the cylinder, while the fields in the other two outer regions are expanded into plate wave modes. A system of equations determining the expansion coefficients is obtained according to the traction-free boundary conditions on the plate walls and the stress and displacement continuity conditions across the imaginary planes. By taking an appropriate finite number of terms of the infinite expansion series and a few selected points on the two properly chosen virtual planes and the surfaces of the plate through convergence and precision tests, a matrix equation to numerically evaluate the expansion coefficients is found. The method of how to choose the locations of the imaginary planes and the terms of the expansion series as well as the points on each respective boundary is given in Sec. III in detail. Curves of the reflection and transmission coefficients against the relative radius of the cylinder in welded and slip or cracked interfacial conditions are shown. Analysis on the contrast variations of the reflection and transmission coefficients for a cylinder in bonded and debonded interfacial situations is made. The relative errors estimated by the deviation of the numerical results from the principle of the conservation of energy are found to be less than 2%.

  5. Linking Incoming Plate Faulting and Intermediate Depth Seismicity

    NASA Astrophysics Data System (ADS)

    Kwong, K. B.; van Zelst, I.; Tong, X.; Eimer, M. O.; Naif, S.; Hu, Y.; Zhan, Z.; Boneh, Y.; Schottenfels, E.; Miller, M. S.; Moresi, L. N.; Warren, J. M.; Wiens, D. A.

    2017-12-01

    Intermediate depth earthquakes, occurring between 70-350 km depth, are often attributed to dehydration reactions within the subducting plate. It is proposed that incoming plate normal faulting associated with plate bending at the trench may control the amount of hydration in the plate by producing large damage zones that create pathways for the infiltration of seawater deep into the subducting mantle. However, a relationship between incoming plate seismicity, faulting, and intermediate depth seismicity has not been established. We compiled a global dataset consisting of incoming plate earthquake moment tensor (CMT) solutions, focal depths, bend fault spacing and offset measurements, along with plate age and convergence rates. In addition, a global intermediate depth seismicity dataset was compiled with parameters such as the maximum seismic moment and seismicity rate, as well as thicknesses of double seismic zones. The maximum fault offset in the bending region has a strong correlation with the intermediate depth seismicity rate, but a more modest correlation with other parameters such as convergence velocity and plate age. We estimated the expected rate of seismic moment release for the incoming plate faults using mapped fault scarps from bathymetry. We compare this with the cumulative moment from normal faulting earthquakes in the incoming plate from the global CMT catalog to determine whether outer rise fault movement has an aseismic component. Preliminary results from Tonga and the Middle America Trench suggest there may be an aseismic component to incoming plate bending faulting. The cumulative seismic moment calculated for the outer rise faults will also be compared to the cumulative moment from intermediate depth earthquakes to assess whether these parameters are related. To support the observational part of this study, we developed a geodynamic numerical modeling study to systematically explore the influence of parameters such as plate age and convergence

  6. Coeval emplacement and orogen-parallel transport of gold in oblique convergent orogens

    NASA Astrophysics Data System (ADS)

    Upton, Phaedra; Craw, Dave

    2016-12-01

    Varying amounts of gold mineralisation is occurring in all young and active collisional mountain belts. Concurrently, these syn-orogenic hydrothermal deposits are being eroded and transported to form placer deposits. Local extension occurs in convergent orogens, especially oblique orogens, and facilitates emplacement of syn-orogenic gold-bearing deposits with or without associated magmatism. Numerical modelling has shown that extension results from directional variations in movement rates along the rock transport trajectory during convergence, and is most pronounced for highly oblique convergence with strong crustal rheology. On-going uplift during orogenesis exposes gold deposits to erosion, transport, and localised placer concentration. Drainage patterns in variably oblique convergent orogenic belts typically have an orogen-parallel or sub-parallel component; the details of which varies with convergence obliquity and the vagaries of underlying geological controls. This leads to lateral transport of eroded syn-orogenic gold on a range of scales, up to > 100 km. The presence of inherited crustal blocks with contrasting rheology in oblique orogenic collision zones can cause perturbations in drainage patterns, but numerical modelling suggests that orogen-parallel drainage is still a persistent and robust feature. The presence of an inherited block of weak crust enhances the orogen-parallel drainage by imposition of localised subsidence zones elongated along a plate boundary. Evolution and reorientation of orogen-parallel drainage can sever links between gold placer deposits and their syn-orogenic sources. Many of these modelled features of syn-orogenic gold emplacement and varying amounts of orogen-parallel detrital gold transport can be recognised in the Miocene to Recent New Zealand oblique convergent orogen. These processes contribute little gold to major placer goldfields, which require more long-term recycling and placer gold concentration. Most eroded syn

  7. Geometry and structure of the pull-apart basins developed along the western South American-Scotia plate boundary (SW Atlantic Ocean)

    NASA Astrophysics Data System (ADS)

    Esteban, F. D.; Tassone, A.; Isola, J. I.; Lodolo, E.; Menichetti, M.

    2018-04-01

    The South American-Scotia plate boundary is a left-lateral fault system which runs roughly E-W for more than 3000 km across the SW Atlantic Ocean and the Tierra del Fuego Island, reaching to the west the southern Chile Trench. Analyses of a large dataset of single- and multi-channel seismic reflection profiles acquired offshore has allowed to map the trace of the plate boundary from Tierra del Fuego to the Malvinas Trough, a tectonic depression located in the eastern part of the fault system, and to reconstruct the shape and geometry of the basins formed along the principal displacement zone of the fault system. Three main Neogene pull-apart basins that range from 70 to 100 km in length, and from 12 to 22 km in width, have been identified along this segment of the plate boundary. These basins have elongated shapes with their major axes parallel to the ENE-WSW direction of the fault zone. The sedimentary architecture and the infill geometry of the basins suggest that they represent mostly strike-slip dominated transtension basins which propagated from E to W. The basins imaged by seismic data show in some cases geometrical and structural features linked to the possible reactivation of previous wedge-top basins and inherited structures pertaining to the external front of the Magallanes fold-and-thrust compression belt, along which the South American-Scotia fault system has been superimposed. It is suggested that the sequence of the elongated basins occur symmetrically to a thorough going strike-slip fault, in a left-stepping geometrical arrangement, in a manner similar to those basins seen in other transcurrent environments.

  8. Anomalous Buckling Characteristics of Laminated Metal-Matrix Composite Plates with Central Square Holes

    NASA Technical Reports Server (NTRS)

    Ko, William L.

    1998-01-01

    Compressive buckling analysis was performed on metal-matrix composite (MMC) plates with central square holes. The MMC plates have varying aspect ratios and hole sizes and are supported under different boundary conditions. The finite-element structural analysis method was used to study the effects of plate boundary conditions, plate aspect ratio, hole size, and the composite stacking sequence on the compressive buckling strengths of the perforated MMC plates. Studies show that by increasing the hole sizes, compressive buckling strengths of the perforated MMC plates could be considerably increased under certain boundary conditions and aspect ratios ("anomalous" buckling behavior); and that the plate buckling mode could be symmetrical or antisymmetrical, depending on the plate boundary conditions, aspect ratio, and the hole size. For same-sized plates with same-sized holes, the compressive buckling strengths of the perforated MMC plates with [90/0/0/90]2 lamination could be as much as 10 percent higher or lower than those of the [45/- 45/- 45/45]2 laminations, depending on the plate boundary conditions, plate aspect ratios, and the hole size. Clamping the plate edges induces far stronger "anomalous" buckling behavior (enhancing compressive buckling strengths at increasing hole sizes) of the perforated MMC plates than simply supporting the plate edges.

  9. On the relationship between tectonic plates and thermal mantle plume morphology

    NASA Technical Reports Server (NTRS)

    Lenardic, A.; Kaula, W. M.

    1993-01-01

    Models incorporating plate-like behavior, i.e., near uniform surface velocity and deformation concentrated at plate boundaries, into a convective system, heated by a mix of internal and basal heating and allowing for temperature dependent viscosity, were constructed and compared to similar models not possessing plate-like behavior. The simplified numerical models are used to explore how plate-like behavior in a convective system can effect the lower boundary layer from which thermal plumes form. A principal conclusion is that plate-like behavior can significantly increase the temperature drop across the lower thermal boundary layer. This temperature drop affects the morphology of plumes by determining the viscosity drop across the boundary layer. Model results suggest that plumes on planets possessing plate-like behavior, e.g., the Earth, may differ in morphologic type from plumes on planets not possessing plate-like behavior, e.g., Venus and Mars.

  10. Plate tectonics of the Mediterranean region.

    PubMed

    McKenzie, D P

    1970-04-18

    The seismicity and fault plane solutions in the Mediterranean area show that two small rapidly moving plates exist in the Eastern Mediterranean, and such plates may be a common feature of contracting ocean basins. The results show that the concepts of plate tectonics apply to instantaneous motions across continental plate boundaries.

  11. The Malpelo Plate Hypothesis and implications for nonclosure of the Cocos-Nazca-Pacific plate motion circuit

    NASA Astrophysics Data System (ADS)

    Zhang, Tuo; Gordon, Richard G.; Mishra, Jay K.; Wang, Chengzu

    2017-08-01

    Using global multiresolution topography, we estimate new transform-fault azimuths along the Cocos-Nazca plate boundary and show that the direction of relative plate motion is 3.3° ± 1.8° (95% confidence limits) clockwise of prior estimates. The new direction of Cocos-Nazca plate motion is, moreover, 4.9° ± 2.7° (95% confidence limits) clockwise of the azimuth of the Panama transform fault. We infer that the plate east of the Panama transform fault is not the Nazca plate but instead is a microplate that we term the Malpelo plate. With the improved transform-fault data, the nonclosure of the Nazca-Cocos-Pacific plate motion circuit is reduced from 15.0 mm a-1 ± 3.8 mm a-1 to 11.6 mm a-1 ± 3.8 mm a-1 (95% confidence limits). The nonclosure seems too large to be due entirely to horizontal thermal contraction of oceanic lithosphere and suggests that one or more additional plate boundaries remain to be discovered.

  12. Anatomy of a Plate Boundary at Shallow Crustal Levels: a Composite Section from the Alpine Fault, New Zealand

    NASA Astrophysics Data System (ADS)

    Barth, N. C.; Toy, V. G.; Boulton, C. J.; Carpenter, B. M.

    2010-12-01

    New Zealand's Alpine Fault is mostly a moderately SE-dipping dextral reverse plate boundary structure, but at its southern end, strike-slip-normal motion is indicated by offset of recent surfaces, juxtaposition of sediments, and both brittle and ductile shear sense indicators. At the location of uplift polarity reversal fault rocks exhumed from both the hangingwall Pacific and footwall Australian Plates are juxtaposed, offering a remarkably complete cross section of the plate boundary at shallow crustal levels. We describe Alpine Fault damage zone and fault core structures overprinted on Pacific and Australian plate mylonites of a variety of compositions, in a fault-strike perpendicular composite section spanning the reversal in dip-slip polarity. The damage zone is asymmetric; on the Australian Plate 160m of quartzose paragneiss-derived mylonites are overprinted by brittle faults and fractures that increase in density towards the principal slip surface (PSS). This damage zone fabric consists of 1-10m-spaced, moderately to steeply-dipping, 1-20cm-thick gouge-filled faults, overprinted on and sub-parallel to a mylonitic foliation sub-parallel to the PSS. On the Pacific Plate, only 40m of the 330m section of volcaniclastic-derived mylonites have brittle damage in the form of unhealed fractures and faults, as well as a pervasive greenschist facies hydrothermal alteration absent in the footwall. These damage-related structures comprise a network of small-offset faults and fractures with increasing density and intensity towards the PSS. The active Pacific Plate fault core is composed of ~1m of cataclasite grading into folded protocataclasite that is less folded and fractured with increasing distance from the PSS. The active Australian Plate fault core is <1.5m wide and consists of 3 distinct foliated clay gouges, as well as a 4cm thick brittle ultracataclasite immediately adjacent to the active PSS. The Australian Plate foliated clay gouge contains stringers of quartz

  13. Dynamics of Mid-Palaeocene North Atlantic rifting linked with European intra-plate deformations.

    PubMed

    Nielsen, Søren B; Stephenson, Randell; Thomsen, Erik

    2007-12-13

    The process of continental break-up provides a large-scale experiment that can be used to test causal relations between plate tectonics and the dynamics of the Earth's deep mantle. Detailed diagnostic information on the timing and dynamics of such events, which are not resolved by plate kinematic reconstructions, can be obtained from the response of the interior of adjacent continental plates to stress changes generated by plate boundary processes. Here we demonstrate a causal relationship between North Atlantic continental rifting at approximately 62 Myr ago and an abrupt change of the intra-plate deformation style in the adjacent European continent. The rifting involved a left-lateral displacement between the North American-Greenland plate and Eurasia, which initiated the observed pause in the relative convergence of Europe and Africa. The associated stress change in the European continent was significant and explains the sudden termination of a approximately 20-Myr-long contractional intra-plate deformation within Europe, during the late Cretaceous period to the earliest Palaeocene epoch, which was replaced by low-amplitude intra-plate stress-relaxation features. The pre-rupture tectonic stress was large enough to have been responsible for precipitating continental break-up, so there is no need to invoke a thermal mantle plume as a driving mechanism. The model explains the simultaneous timing of several diverse geological events, and shows how the intra-continental stratigraphic record can reveal the timing and dynamics of stress changes, which cannot be resolved by reconstructions based only on plate kinematics.

  14. Seismotectonics of the Eastern Himalayan System and Indo-Burman Convergence Zone Using Seismic Waveform Inversion

    NASA Astrophysics Data System (ADS)

    Kumar, A.; Mitra, S.; Suresh, G.

    2014-12-01

    The Eastern Himalayan System (east of 88°E) is distinct from the rest of the India-Eurasia continental collision, due to a wider zone of distributed deformation, oblique convergence across two orthogonal plate boundaries and near absence of foreland basin sedimentary strata. To understand the seismotectonics of this region we study the spatial distribution and source mechanism of earthquakes originating within Eastern Himalaya, northeast India and Indo-Burman Convergence Zone (IBCZ). We compute focal mechanism of 32 moderate-to-large earthquakes (mb >=5.4) by modeling teleseismic P- and SH-waveforms, from GDSN stations, using least-squares inversion algorithm; and 7 small-to-moderate earthquakes (3.5<= mb <5.4) by modeling local P- and S-waveforms, from the NorthEast India Telemetered Network, using non-linear grid search algorithm. We also include source mechanisms from previous studies, either computed by waveform inversion or by first motion polarity from analog data. Depth distribution of modeled earthquakes reveal that the seismogenic layer beneath northeast India is ~45km thick. From source mechanisms we observe that moderate earthquakes in northeast India are spatially clustered in five zones with distinct mechanisms: (a) thrust earthquakes within the Eastern Himalayan wedge, on north dipping low angle faults; (b) thrust earthquakes along the northern edge of Shillong Plateau, on high angle south dipping fault; (c) dextral strike-slip earthquakes along Kopili fault zone, between Shillong Plateau and Mikir Hills, extending southeast beneath Naga Fold belts; (d) dextral strike-slip earthquakes within Bengal Basin, immediately south of Shillong Plateau; and (e) deep focus (>50 km) thrust earthquakes within IBCZ. Combining with GPS geodetic observations, it is evident that the N20E convergence between India and Tibet is accommodated as elastic strain both within eastern Himalaya and regions surrounding the Shillong Plateau. We hypothesize that the strike

  15. Active faults and minor plates in NE Asia

    NASA Astrophysics Data System (ADS)

    Kozhurin, Andrey I.; Zelenin, Egor A.

    2014-05-01

    Stated nearly 40 yr ago the uncertainty with plate boundaries location in NE Asia (Chapman, Solomon, 1976) still remains unresolved. Based on the prepositions that a plate boundary must, first, reveal itself in linear sets of active structures, and, second, be continuous and closed, we have undertaken interpretation of medium-resolution KH-9 Hexagon satellite imageries, mostly in stereoscopic regime, for nearly the entire region of NE Asia. Main findings are as follows. There are two major active fault zones in the region north of the Bering Sea. One of them, the Khatyrka-Vyvenka zone, stretches NE to ENE skirting the Bering Sea from the Kamchatka isthmus to the Navarin Cape. Judging by the kinematics of the Olyutorsky 2006 earthquake fault, the fault zones move both right-laterally and reversely. The second active fault zone, the Lankovaya-Omolon zone, starts close to the NE margin of the Okhotsk Sea and extends NE up to nearly the margin of the Chukcha Sea. The fault zone is mostly right-lateral, with topographically expressed cumulative horizontal offsets amounting to 2.5-2.6 km. There may be a third NE-SW zone between the major two coinciding with the Penzhina Range as several active faults found in the southern termination of the Range indicate. The two active fault zones divide the NE Asia area into two large domains, which both could be parts of the Bering Sea plate internally broken and with uncertain western limit. Another variant implies the Khatyrka-Vyvenka zone as the Bering Sea plate northern limit, and the Lankovaya-Omolon zone as separating an additional minor plate from the North-American plate. The choice is actually not crucial, and more important is that both variants leave the question of where the Bering Sea plate boundary is in Alaska. The Lankovaya-Omolon zone stretches just across the proposed northern boundary of the Okhorsk Sea plate. NW of the zone, there is a prominent left-lateral Ulakhan fault, which is commonly interpreted to be a

  16. Changes in Flat Plate Wake Characteristics Obtained With Decreasing Plate Thickness

    NASA Technical Reports Server (NTRS)

    Rai, Man Mohan

    2016-01-01

    The near and very near wake of a flat plate with a circular trailing edge is investigated with data from direct numerical simulations. Computations were performed for four different Reynolds numbers based on plate thickness (D) and at constant plate length. The value of ?/D varies by a factor of approximately 20 in the computations (? being the boundary layer momentum thickness at the trailing edge). The separating boundary layers are turbulent in all the cases. One objective of the study is to understand the changes in wake characteristics as the plate thickness is reduced (increasing ?/D). Vortex shedding is vigorous in the low ?/D cases with a substantial decrease in shedding intensity in the largest ?/D case (for all practical purposes shedding becomes almost intermittent). Other characteristics that are significantly altered with increasing ?/D are the roll-up of the detached shear layers and the magnitude of fluctuations in shedding period. These effects are explored in depth. The effects of changing ?/D on the distributions of the time-averaged, near-wake velocity statistics are discussed.

  17. The Nazca-South American convergence rate and the recurrence of the great 1960 Chilean earthquake

    NASA Technical Reports Server (NTRS)

    Stein, S.; Engeln, J. F.; Demets, C.; Gordon, R. G.; Woods, D.

    1986-01-01

    The seismic slip rate along the Chile Trench estimated from the slip in the great 1960 earthquake and the recurrence history of major earthquakes has been interpreted as consistent with the subduction rate of the Nazca plate beneath South America. The convergence rate, estimated from global relative plate motion models, depends significantly on closure of the Nazca - Antarctica - South America circuit. NUVEL-1, a new plate motion model which incorporates recently determined spreading rates on the Chile Rise, shows that the average convergence rate over the last three million years is slower than previously estimated. If this time-averaged convergence rate provides an appropriate upper bound for the seismic slip rate, either the characteristic Chilean subduction earthquake is smaller than the 1960 event, the average recurrence interval is greater than observed in the last 400 years, or both. These observations bear out the nonuniformity of plate motions on various time scales, the variability in characteristic subduction zone earthquake size, and the limitations of recurrence time estimates.

  18. Extrusional Tectonics over Plate Corner: an Example in Northern Taiwan

    NASA Astrophysics Data System (ADS)

    Lu, Chia-Yu; Lee, Jian-Cheng; Li, Zhinuo; Lee, Ching-An; Yeh, Chia-Hung

    2016-04-01

    In northern Taiwan, contraction, transcurrent shearing, block rotation and extension are four essential tectonic deformation mechanisms involved in the progressive deformation of this arcuate collision mountain belt. The neotectonic evolution of the Taiwan mountain belt is mainly controlled not only by the oblique convergence between the Eurasian plate and the Philippine Sea plate but also the corner shape of the plate boundary. Based on field observations and analyses, and taking geophysical data (mostly GPS) and experimental modelling into account, we interpret the curved belt of northern Taiwan as a result of of contractional deformation (with compression, thrust-sheet stacking & folding, back thrust duplex & back folding) that induced vertical extrusion, combined with increasing transcurrent & rotational deformation (with transcurrent faulting, bookshelf-type strike-slip faulting and block rotation) that induced transcurrent/rotational extrusion and extension deformation which in turn induced extensional extrusion. As a consequence, a special type of extrusional folds was formed in association with contractional, transcurrent & rotational and extensional extrusions subsequently. The extrusional tectonics in northern Taiwan reflect a single, albeit complicated, regional pattern of deformation. The crescent-shaped mountain belt of Northeastern Taiwan develops in response to oblique indentation by an asymmetric wedge indenter, retreat of Ryukyu trench and opening of the Okinawa trough.

  19. Introducing tectonically and thermo-mechanically realistic lithosphere in the models of plume head -lithosphere interactions (PLI) including intra-continental plate boundaries.

    NASA Astrophysics Data System (ADS)

    Guillou-Frottier, L.; Burov, E.; Cloetingh, S.

    2007-12-01

    Plume-Lithosphere Interactions (PLI) in continets have complex topographic and magmatic signatures and are often identified near boundaries between younger plates (e.g., orogenic) and older stable plates (e.g., cratons), which represent important geometrical, thermal and rheological barriers that interact with the emplacement of the plume head (e.g., Archean West Africa, East Africa, Pannonian - Carpathian system). The observable PLI signatures are conditioned by plume dynamics but also by complex rheology and structure of continental lithosphere. We address this problem by considering a new free-surface thermo-mechanical numerical model of PLI with two stratified elasto-viscous-plastic (EVP) continental plates of contrasting age, thickness and structure. The results show that: (1) surface deformation is poly-harmonic and contains smaller wavelengths (50-500 km) than that associated with the plume head (>1000 km). (2) below intra-plate boundaries, plume head flattening is asymmetric, it is blocked from one side by the cold vertical boundary of the older plate, which leads to mechanical decoupling of crust from mantle lithosphere, and to localized faulting at the cratonic margin; (2) the return flow from the plume head results in sub-vertical down-thrusting (delamination) of the lithosphere at the margin, producing sharp vertical cold boundary down to the 400 km depth; (3) plume head flattening and migration towards the younger plate results in concurrent surface extension above the centre of the plume and in compression (pushing), down-thrusting and magmatic events at the cratonic margin (down-thrusting is also produced at the opposite border of the younger plate); these processes may result in continental growth at the "craton side"; (4) topographic signatures of PLI show basin-scale uplifts and subsidences preferentially located at cratonic margins. Negative Rayleigh-Taylor instabilities in the lithosphere above the plume head provide a mechanism for crustal

  20. Neotectonics and seismicity of a slowly deforming segment of the Adria-Europe convergence zone - the northern Dinarides fold-and-thrust belt

    NASA Astrophysics Data System (ADS)

    Ustaszewski, Kamil; Herak, Marijan; Tomljenović, Bruno; Herak, Davorka; Matej, Srebrenka

    2014-05-01

    With GPS-derived shortening rates of c. 3-5 mm/a, the Adria-Europe convergence zone across the fold-and-thrust belt of the Dinarides (Balkan Peninsula) is a slowly deforming plate boundary by global standards. We have analysed the active tectonics and instrumental seismicity of the northernmost segment of this fold-and-thrust belt at its border to the Pannonian Basin. This area hosts a Maastrichtian collisional suture formed by closure of Mesozoic fragments of the Neotethys, overprinted by Miocene back-arc extension, which led to the exhumation of greenschist- to amphibolite-grade rocks in several core complexes. Geological, geomorphological and reflection seismic data provide evidence for a compressive or transpressive reactivation of extensional faults after about 5 Ma. The study area represents the seismically most active region of the Dinarides apart from the Adriatic Sea coast and the area around Zagreb. The strongest instrumentally recorded earthquake (27 October 1969) affected the city of Banja Luka (northern Bosnia and Herzegovina). Fault plane solutions for the main shock (ML 6.4) and its largest foreshock (ML 6.0) indicate reverse faulting along ESE-WNW-striking nodal planes and generally N-S trending pressure axes. The spatial distribution of epicentres and focal depths, analyses of the macroseismic field and fault-plane solutions for several smaller events suggest on-going shortening in the internal Dinarides. Our results therefore imply that current Adria-Europe convergence is widely distributed across c. 300 km, rendering the entire Dinarides fold-and-thrust belt a slowly deforming plate boundary.

  1. New Evidence for Quaternary Strain Partitioning Along the Queen Charlotte Fault System, Southeastern Alaska

    NASA Astrophysics Data System (ADS)

    Walton, M. A. L.; Miller, N. C.; Brothers, D. S.; Kluesner, J.; Haeussler, P. J.; Conrad, J. E.; Andrews, B. D.; Ten Brink, U. S.

    2017-12-01

    The Queen Charlotte Fault (QCF) is a fast-moving ( 53 mm/yr) transform plate boundary fault separating the Pacific Plate from the North American Plate along western Canada and southeastern Alaska. New high-resolution bathymetric data along the fault show that the QCF main trace accommodates nearly all strike-slip plate motion along a single narrow deformation zone, though questions remain about how and where smaller amounts of oblique convergence are accommodated along-strike. Obliquity and convergence rates are highest in the south, where the 2012 Haida Gwaii, British Columbia MW 7.8 thrust earthquake was likely caused by Pacific underthrusting. In the north, where obliquity is lower, aftershocks from the 2013 Craig, Alaska MW 7.5 strike-slip earthquake also indicate active convergent deformation on the Pacific (west) side of the plate boundary. Off-fault structures previously mapped in legacy crustal-scale seismic profiles may therefore be accommodating part of the lesser amounts of Quaternary convergence north of Haida Gwaii. Between 2015 and 2017, the USGS acquired more than 8,000 line-km of offshore high-resolution multichannel seismic (MCS) data along the QCF to better understand plate boundary deformation. The new MCS data show evidence for Quaternary deformation associated with a series of elongate ridges located within 30 km of the QCF main trace on the Pacific side. These ridges are anticlinal structures flanked by growth faults, with recent deformation and active fluid flow characterized by seafloor scarps and seabed gas seeps at ridge crests. Structural and morphological evidence for contractional deformation decreases northward along the fault, consistent with a decrease in Pacific-North America obliquity along the plate boundary. Preliminary interpretations suggest that plate boundary transpression may be partitioned into distinctive structural domains, in which convergent stress is accommodated by margin-parallel thrust faulting, folding, and ridge

  2. Grid Convergence for Turbulent Flows(Invited)

    NASA Technical Reports Server (NTRS)

    Diskin, Boris; Thomas, James L.; Rumsey, Christopher L.; Schwoppe, Axel

    2015-01-01

    A detailed grid convergence study has been conducted to establish accurate reference solutions corresponding to the one-equation linear eddy-viscosity Spalart-Allmaras turbulence model for two dimensional turbulent flows around the NACA 0012 airfoil and a flat plate. The study involved three widely used codes, CFL3D (NASA), FUN3D (NASA), and TAU (DLR), and families of uniformly refined structured grids that differ in the grid density patterns. Solutions computed by different codes on different grid families appear to converge to the same continuous limit, but exhibit different convergence characteristics. The grid resolution in the vicinity of geometric singularities, such as a sharp trailing edge, is found to be the major factor affecting accuracy and convergence of discrete solutions, more prominent than differences in discretization schemes and/or grid elements. The results reported for these relatively simple turbulent flows demonstrate that CFL3D, FUN3D, and TAU solutions are very accurate on the finest grids used in the study, but even those grids are not sufficient to conclusively establish an asymptotic convergence order.

  3. A class of convergent neural network dynamics

    NASA Astrophysics Data System (ADS)

    Fiedler, Bernold; Gedeon, Tomáš

    1998-01-01

    We consider a class of systems of differential equations in Rn which exhibits convergent dynamics. We find a Lyapunov function and show that every bounded trajectory converges to the set of equilibria. Our result generalizes the results of Cohen and Grossberg (1983) for convergent neural networks. It replaces the symmetry assumption on the matrix of weights by the assumption on the structure of the connections in the neural network. We prove the convergence result also for a large class of Lotka-Volterra systems. These are naturally defined on the closed positive orthant. We show that there are no heteroclinic cycles on the boundary of the positive orthant for the systems in this class.

  4. Motion of the Scotia sea plates

    USGS Publications Warehouse

    Thomas, C.; Livermore, R.; Pollitz, F.

    2003-01-01

    Earthquake data from the Scotia Arc to early 2002 are reviewed in the light of satellite gravity and other data in order to derive a model for the motion of plates in the Scotia Sea region. Events with magnitude ???5, which occurred on or near the boundaries of the Scotia and Sandwich plates, and for which Centroid Moment Tensor (CMT) solutions are available, are examined. The newer data fill some of the previous sampling gaps along the boundaries of the Scotia and Sandwich plates, and provide tighter constraints on relative motions. Variations in the width of the Brunhes anomaly on evenly spaced marine magnetic profiles over the East Scotia Ridge provide new estimates of Scotia-Sandwich plate spreading rates. Since there are no stable fracture zones in the east Scotia Sea, the mean azimuth of sea floor fabric mapped by sidescan is used to constrain the direction of spreading. 18 new rate estimates and four azimuths from the East Scotia Ridge are combined with 68 selected earthquake slip vectors from the boundaries of the Scotia Sea in a least-squares inversion for the best-fitting set of Euler poles and angular rotation rates describing the 'present-day' motions of the Scotia and Sandwich plates relative to South America and Antarctica. Our preferred model (TLP2003) gives poles that are similar to previous estimates, except for Scotia Plate motion with respect to South America, which is significantly different from earlier estimates; predicted rates of motion also differ slightly. Our results are much more robust than earlier work. We examine the implications of the model for motion and deformation along the various plate boundaries, with particular reference to the North and South Scotia Ridges, where rates are obtained by closure.

  5. Source and sink of fluid in pelagic siliceous sediments along a cold subduction plate boundary

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Asuka; Hina, Shoko; Hamada, Yohei; Kameda, Jun; Hamahashi, Mari; Kuwatani, Tatsu; Shimizu, Mayuko; Kimura, Gaku

    2016-08-01

    Subduction zones where old oceanic plate underthrusting occurs are characterized by thick pelagic sediments originating from planktonic ooze as well as cold thermal conditions. For a better understanding of dehydration from pelagic sediments and fluid behavior, which would play a key role in controlling the dynamics in the shallow portion of the subduction zone, as observed in the 2011 Tohoku earthquake and tsunami, we investigate cherts in a Jurassic accretionary complex in Japan. The microstructure and microchemistry of these cherts indicate dissolution of SiO2 from a pressure solution seam and precipitation of SiO2 to the ;white chert layer,; which would act as a fluid conduit. The amount of water necessary to precipitate SiO2 in the white chert is 102 times larger than that produced by compaction and silica/clay diagenesis. Other fluid sources, such as hydrated oceanic crust or oceanic mantle, are necessary to account for this discrepancy in the fluid budget. A large amount of external fluid likely contributed to rising pore pressure along cold plate boundaries.

  6. Thermochronology and tectonics of the Leeward Antilles: Evolution of the southern Caribbean Plate boundary zone

    USGS Publications Warehouse

    van der Lelij, Roelant; Spikings, Richard A.; Kerr, Andrew C.; Kounov, Alexandre; Cosca, Michael; Chew, David; Villagomez, Diego

    2010-01-01

    Tectonic reconstructions of the Caribbean Plate are severely hampered by a paucity of geochronologic and exhumation constraints from anastomosed basement blocks along its southern margin. New U/Pb, 40Ar/39Ar, apatite fission track, and apatite (U-Th)/He data constrain quantitative thermal and exhumation histories, which have been used to propose a model for the tectonic evolution of the emergent parts of the Bonaire Block and the southern Caribbean Plate boundary zone. An east facing arc system intruded through an oceanic plateau during ~90 to ~87 Ma and crops out on Aruba. Subsequent structural displacements resulted in >80°C of cooling on Aruba during 70–60 Ma. In contrast, exhumation of the island arc sequence exposed on Bonaire occurred at 85–80 Ma and 55–45 Ma. Santonian exhumation on Bonaire occurred immediately subsequent to burial metamorphism and may have been driven by the collision of a west facing island arc with the Caribbean Plate. Island arc rocks intruded oceanic plateau rocks on Gran Roque at ~65 Ma and exhumed rapidly at 55–45 Ma. We attribute Maastrichtian-Danian exhumation on Aruba and early Eocene exhumation on Bonaire and Gran Roque to sequential diachronous accretion of their basement units to the South American Plate. Widespread unconformities indicate late Eocene subaerial exposure. Late Oligocene–early Miocene dextral transtension within the Bonaire Block drove subsidence and burial of crystalline basement rocks of the Leeward Antilles to ≤1 km. Late Miocene–recent transpression caused inversion and ≤1 km of exhumation, possibly as a result of the northward escape of the Maracaibo Block.

  7. Effect of inherited structures on strike-slip plate boundaries: insight from analogue modelling of the central Levant Fracture System, Lebanon

    NASA Astrophysics Data System (ADS)

    Ghalayini, Ramadan; Daniel, Jean-Marc; Homberg, Catherine; Nader, Fadi

    2015-04-01

    Analogue sandbox modeling is a tool to simulate deformation style and structural evolution of sedimentary basins. The initial goal is to test what is the effect of inherited and crustal structures on the propagation, evolution, and final geometry of major strike-slip faults at the boundary between two tectonic plates. For this purpose, we have undertaken a series of analogue models to validate and reproduce the structures of the Levant Fracture System, a major NNE-SSW sinistral strike-slip fault forming the boundary between the Arabian and African plates. Onshore observations and recent high quality 3D seismic data in the Levant Basin offshore Lebanon demonstrated that Mesozoic ENE striking normal faults were reactivated into dextral strike-slip faults during the Late Miocene till present day activity of the plate boundary which shows a major restraining bend in Lebanon with a ~ 30°clockwise rotation in its trend. Experimental parameters consisted of a silicone layer at the base simulating the ductile crust, overlain by intercalated quartz sand and glass sand layers. Pre-existing structures were simulated by creating a graben in the silicone below the sand at an oblique (>60°) angle to the main throughgoing strike-slip fault. The latter contains a small stepover at depth to create transpression during sinistral strike-slip movement and consequently result in mountain building similarly to modern day Lebanon. Strike-slip movement and compression were regulated by steady-speed computer-controlled engines and the model was scanned using a CT-scanner continuously while deforming to have a final 4D model of the system. Results showed that existing normal faults were reactivated into dextral strike-slip faults as the sinistral movement between the two plates accumulated. Notably, the resulting restraining bend is asymmetric and segmented into two different compartments with differing geometries. One compartment shows a box fold anticline, while the second shows an

  8. Repeating Deep Very Low Frequency Earthquakes: An Evidence of Transition Zone between Brittle and Ductile Zone along Plate Boundary

    NASA Astrophysics Data System (ADS)

    Ishihara, Y.; Yamamoto, Y.; Arai, R.

    2017-12-01

    Recently slow or low frequency seismic and geodetic events are focused under recognition of important role in tectonic process. The most western region of Ryukyu trench, Yaeyama Islands, is very active area of these type events. It has semiannual-like slow slip (Heki et.al., 2008; Nishimura et.al.,2014) and very frequent shallow very low frequency earthquakes near trench zone (Ando et.al.,2012; Nakamura et.al.,2014). Arai et.al.(2016) identified clear reverse phase discontinuity along plate boundary by air-gun survey, suggesting existence of low velocity layer including fluid. The subducting fluid layer is considered to control slip characteristics. On the other hand, deep low frequency earthquake and tremor observed at south-western Honshu and Shikoku of Japan are not identified well due to lack of high-quality seismic network. A broadband seismic station(ISG/PS) of Pacific21 network is operating in last 20 years that locates on occurrence potential area of low frequency earthquake. We tried to review continuous broadband record, searching low frequency earthquakes. In pilot survey, we found three very low frequency seismic events which are dominant in less than 0.1Hz component and are not listed in earthquake catalogue. Source locates about 50km depth and at transition area between slow slip event and active area of general earthquake along plate boundary. To detect small and/or hidden very low frequency earthquake, we applied matched filter analysis to continuous three components waveform data using pre-reviewed seismogram as template signal. 12 events with high correlation are picked up in last 10 years. Most events have very similar waveform, which means characteristics of repeating deep very low frequency earthquake. The event history of very low frequency earthquake is not related with one of slow slip event in this region. In Yaeyama region, low frequency earthquake, general earthquake and slow slip event occur dividing in space and have apparent

  9. Vortical structures and development of laminar flow over convergent-divergent riblets

    NASA Astrophysics Data System (ADS)

    Xu, Fang; Zhong, Shan; Zhang, Shanying

    2018-05-01

    In this work, the development of a laminar boundary layer over a rectangular convergent-divergent riblet section with a finite streamwise length is studied experimentally using dye visualization and particle image velocimetry in a water flume. The flow topology over this highly directional spanwise roughness is established from this study. It is shown that convergent-divergent riblets generate a spanwise flow above the riblets from the diverging line toward the adjacent converging line. This consequently leads to the formation of a weak recirculating secondary flow in cross-stream planes across the boundary layer that creates a downwash motion over the diverging line and an upwash motion over the converging line. It is found that the fluid inside the riblet valley follows a helicoidal path and it also interacts with the crossflow boundary layer hence playing a key role in determining the structure of the secondary flow across the boundary layer. The impact of riblet wavelength on vortical structures is also revealed for the first time. A larger riblet wavelength is seen to produce a stronger upwash/downwash and hence a more intense secondary flow as well as a stronger deceleration effect on the crossflow. Furthermore, the streamwise development of the flow over the riblet section can be divided into a developing stage followed by a developed stage. In the developing stage, the magnitude of induced streamwise velocity and vorticity over the converging line continues to increase, whereas in the developed stage the values of these parameters remain essentially unchanged.

  10. Logistical Support for the Installation of the Plate Boundary Observatory GPS and Borehole Strainmeter Networks

    NASA Astrophysics Data System (ADS)

    Kurnik, C.; Austin, K.; Coyle, B.; Dittmann, T.; Feaux, K.; Friesen, B.; Johnson, W.; Mencin, D.; Pauk, B.; Walls, C.

    2007-12-01

    The Plate Boundary Observatory (PBO), part of the NSF-funded EarthScope project, is designed to study the three- dimensional strain field resulting from deformation across the active boundary zone between the Pacific and North American plates in the western United States. To meet these goals, UNAVCO will install 880 continuous GPS stations, 103 borehole strainmeter stations, 28 tiltmeters, and five laser strainmeters by October 2008. Such a broad network presents significant logisitical challenges, including moving supplies, equipment, and personnel around 6 million square kilometers, and this requires accurate tracking and careful planning. The PBO logistics chain includes the PBO headquarters at UNAVCO in Boulder, Colorado and five regional offices in the continental United States and Alaska, served by dozens of suppliers spread across the globe. These offices are responsible for building and maintaining sites in their region. Most equipment and supplies first arrive in Boulder, where they are tagged and entered into a UNAVCO-wide equipment database, assembled and quality checked as necessary, and sent on to the appropriate regional office. Larger items which are costly to store and ship from Boulder, such as batteries or long sections of stainless steel pipe and bar required for monuments, are shipped directly from the supplier to each region as needed. These supplies and equipment are also tracked through the ordering, delivery, installation, and maintenance cycle via Earned Value Management techniques which allow us to meet NSF and other Federal procurement rules. Early prototypes and assembly configurations aid the development of material and supply budgets. A thorough understanding of Federal procurement rules at project start up is critical as the project moves forward.

  11. Mixed finite-difference scheme for analysis of simply supported thick plates.

    NASA Technical Reports Server (NTRS)

    Noor, A. K.

    1973-01-01

    A mixed finite-difference scheme is presented for the stress and free vibration analysis of simply supported nonhomogeneous and layered orthotropic thick plates. The analytical formulation is based on the linear, three-dimensional theory of orthotropic elasticity and a Fourier approach is used to reduce the governing equations to six first-order ordinary differential equations in the thickness coordinate. The governing equations possess a symmetric coefficient matrix and are free of derivatives of the elastic characteristics of the plate. In the finite difference discretization two interlacing grids are used for the different fundamental unknowns in such a way as to reduce both the local discretization error and the bandwidth of the resulting finite-difference field equations. Numerical studies are presented for the effects of reducing the interior and boundary discretization errors and of mesh refinement on the accuracy and convergence of solutions. It is shown that the proposed scheme, in addition to a number of other advantages, leads to highly accurate results, even when a small number of finite difference intervals is used.

  12. Thermal stresses and deflections of cross-ply laminated plates using refined plate theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khdeir, A.A.; Reddy, J.N.

    1991-12-01

    Exact analytical solutions of refined plate theories are developed to study the thermal stresses and deflections of cross-ply rectangular plates. The state-space approach in conjunction with the Levy method is used to solve exactly the governing equations of the theories under various boundary conditions. Numerical results of the higher-order theory of Reddy for thermal stresses and deflections are compared with those obtained using the classical and first-order plate theories. 14 refs.

  13. Thermal stresses and deflections of cross-ply laminated plates using refined plate theories

    NASA Technical Reports Server (NTRS)

    Khdeir, A. A.; Reddy, J. N.

    1991-01-01

    Exact analytical solutions of refined plate theories are developed to study the thermal stresses and deflections of cross-ply rectangular plates. The state-space approach in conjunction with the Levy method is used to solve exactly the governing equations of the theories under various boundary conditions. Numerical results of the higher-order theory of Reddy for thermal stresses and deflections are compared with those obtained using the classical and first-order plate theories.

  14. ADOPT: A tool for automatic detection of tectonic plates at the surface of convection models

    NASA Astrophysics Data System (ADS)

    Mallard, C.; Jacquet, B.; Coltice, N.

    2017-08-01

    Mantle convection models with plate-like behavior produce surface structures comparable to Earth's plate boundaries. However, analyzing those structures is a difficult task, since convection models produce, as on Earth, diffuse deformation and elusive plate boundaries. Therefore we present here and share a quantitative tool to identify plate boundaries and produce plate polygon layouts from results of numerical models of convection: Automatic Detection Of Plate Tectonics (ADOPT). This digital tool operates within the free open-source visualization software Paraview. It is based on image segmentation techniques to detect objects. The fundamental algorithm used in ADOPT is the watershed transform. We transform the output of convection models into a topographic map, the crest lines being the regions of deformation (plate boundaries) and the catchment basins being the plate interiors. We propose two generic protocols (the field and the distance methods) that we test against an independent visual detection of plate polygons. We show that ADOPT is effective to identify the smaller plates and to close plate polygons in areas where boundaries are diffuse or elusive. ADOPT allows the export of plate polygons in the standard OGR-GMT format for visualization, modification, and analysis under generic softwares like GMT or GPlates.

  15. Experimental study of boundary layer transition with elevated freestream turbulence on a heated flat plate

    NASA Technical Reports Server (NTRS)

    Sohn, Ki-Hyeon; Reshotko, Eli

    1991-01-01

    A detailed investigation to document momentum and thermal development of boundary layers undergoing natural transition on a heated flat plate was performed. Experimental results of both overall and conditionally sampled characteristics of laminar, transitional, and low Reynolds number turbulent boundary layers are presented. Measurements were acquired in a low-speed, closed-loop wind tunnel with a freestream velocity of 100 ft/s and zero pressure gradient over a range of freestream turbulence intensities (TI) from 0.4 to 6 percent. The distributions of skin friction, heat transfer rate and Reynolds shear stress were all consistent with previously published data. Reynolds analogy factors for R(sub theta) is less than 2300 were found to be well predicted by laminar and turbulent correlations which accounted for an unheated starting length. The measured laminar value of Reynolds analogy factor was as much as 53 percent higher than the Pr(sup -2/3). A small dependence of turbulent results on TI was observed. Conditional sampling performed in the transitional boundary layer indicated the existence of a near-wall drop in intermittency, pronounced at certain low intermittencies, which is consistent with the cross-sectional shape of turbulent spots observed by others. Non-turbulent intervals were observed to possess large magnitudes of near-wall unsteadiness and turbulent intervals had peak values as much as 50 percent higher than were measured at fully turbulent stations. Non-turbulent and turbulent profiles in transitional boundary layers cannot be simply treated as Blasius and fully turbulent profiles, respectively. The boundary layer spectra indicate predicted selective amplification of T-S waves for TI is approximately 0.4 percent. However, for TI is approximately 0.8 and 1.1 percent, T-S waves are localized very near the wall and do not play a dominant role in transition process.

  16. Is There Really A North American Plate?

    NASA Astrophysics Data System (ADS)

    Krill, A.

    2011-12-01

    Lithospheric plates are typically identified from earthquake epicenters and evidence such as GPS movements. But no evidence indicates a plate boundary between the North American and South American Plates. Some plate maps show them separated by a transform boundary, but it is only a fracture zone. Other maps show an "undefined plate boundary" or put no boundary between these two plates (check Google images). Early plate maps showed a single large American Plate, quite narrow east of the Caribbean Plate (Le Pichon 1968, Morgan 1968). The North and South American Plates became established by the leading textbook Earth (Press & Siever 1974). On their map, from a Scientific American article by John Dewey (1972), these new plates were separated by an "uncertain plate boundary." The reasons for postulating a North American Plate were probably more psychological than geological. Each of the other continents of the world had its own plate, and North American geologists naturally wanted theirs. Similarly, European geographers used to view Europe as its own continent. A single large plate should again be hypothesized. But the term American Plate would now be ambiguous ("Which plate, North or South?") Perhaps future textbook authors could call it the "Two-American Plate." Textbook authors ultimately decide such global-tectonic matters. I became aware of textbook authors' opinions and influence from my research into the history of Alfred Wegener's continental drift (see Fixists vs. Mobilists by Krill 2011). Leading textbook author Charles Schuchert realized that continental drift would abolish his cherished paleogeographic models of large east-west continents (Eria, Gondwana) and small oceans (Poseiden, Nereis). He and his junior coauthors conspired to keep drift evidence out of their textbooks, from the 1934-editions until the 1969-editions (Physical Geology by Longwell et al. 1969, Historical Geology by Dunbar & Waage 1969). Their textbooks ruled in America. Textbooks

  17. Does permanent extensional deformation in lower forearc slopes indicate shallow plate-boundary rupture?

    NASA Astrophysics Data System (ADS)

    Geersen, J.; Ranero, C. R.; Kopp, H.; Behrmann, J. H.; Lange, D.; Klaucke, I.; Barrientos, S.; Diaz-Naveas, J.; Barckhausen, U.; Reichert, C.

    2018-05-01

    Seismic rupture of the shallow plate-boundary can result in large tsunamis with tragic socio-economic consequences, as exemplified by the 2011 Tohoku-Oki earthquake. To better understand the processes involved in shallow earthquake rupture in seismic gaps (where megathrust earthquakes are expected), and investigate the tsunami hazard, it is important to assess whether the region experienced shallow earthquake rupture in the past. However, there are currently no established methods to elucidate whether a margin segment has repeatedly experienced shallow earthquake rupture, with the exception of mechanical studies on subducted fault-rocks. Here we combine new swath bathymetric data, unpublished seismic reflection images, and inter-seismic seismicity to evaluate if the pattern of permanent deformation in the marine forearc of the Northern Chile seismic gap allows inferences on past earthquake behavior. While the tectonic configuration of the middle and upper slope remains similar over hundreds of kilometers along the North Chilean margin, we document permanent extensional deformation of the lower slope localized to the region 20.8°S-22°S. Critical taper analyses, the comparison of permanent deformation to inter-seismic seismicity and plate-coupling models, as well as recent observations from other subduction-zones, including the area that ruptured during the 2011 Tohoku-Oki earthquake, suggest that the normal faults at the lower slope may have resulted from shallow, possibly near-trench breaking earthquake ruptures in the past. In the adjacent margin segments, the 1995 Antofagasta, 2007 Tocopilla, and 2014 Iquique earthquakes were limited to the middle and upper-slope and the terrestrial forearc, and so are upper-plate normal faults. Our findings suggest a seismo-tectonic segmentation of the North Chilean margin that seems to be stable over multiple earthquake cycles. If our interpretations are correct, they indicate a high tsunami hazard posed by the yet un

  18. A direct numerical method for predicting concentration profiles in a turbulent boundary layer over a flat plate. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Dow, J. W.

    1972-01-01

    A numerical solution of the turbulent mass transport equation utilizing the concept of eddy diffusivity is presented as an efficient method of investigating turbulent mass transport in boundary layer type flows. A FORTRAN computer program is used to study the two-dimensional diffusion of ammonia, from a line source on the surface, into a turbulent boundary layer over a flat plate. The results of the numerical solution are compared with experimental data to verify the results of the solution. Several other solutions to diffusion problems are presented to illustrate the versatility of the computer program and to provide some insight into the problem of mass diffusion as a whole.

  19. Earthquake-driven fluid flow rates inferred from borehole temperature measurements within the Japan Trench plate boundary fault zone

    NASA Astrophysics Data System (ADS)

    Fulton, P. M.; Brodsky, E. E.

    2016-12-01

    Using borehole sub-seafloor temperature measurements, we have recently identified signatures suggestive of earthquake-driven fluid pulses within the Japan Trench plate boundary fault zone during a major aftershock sequence. Here we use numerical models to show that these signatures are consistent with time-varying fluid flow rates out of permeable zones within the formation into the borehole annulus. In addition, we also identify an apparent time-varying sensitivity of whether suspected fluid pulses occur in response to earthquakes of a given magnitude and distance. The results suggest a damage and healing process and therefore provides a mechanism to allow for a disproportionate amount of heat and chemical transport in the short time frame after an earthquake. Our observations come from an observatory installed across the main plate boundary fault as part of IODP's Japan Trench Fast Drilling Project (JFAST) following the March 2011 Mw 9.0 Tohoku-oki earthquake. It operated from July 2012 - April 2013 during which a Mw 7.3 earthquake and numerous aftershocks occurred. High-resolution temperature time series data reveal spatially correlated transients in response to earthquakes with distinct patterns interpreted to reflect advection by transient pulses of fluid flow from permeable zones into the borehole annulus. Typical transients involve perturbations over 12 m with increases of 10 mK that build over 0.1 days at shallower depths and decreases at deeper depths. They are consistently centered around 792.5 m below seafloor (mbsf) where a secondary fault and permeable zone have been independently identified within the damage zone above the main plate boundary fault at 820 mbsf . Model simulations suggest transient flow rates of up to 10-3m/s from the formation that quickly decrease. Comparison of characteristics of earthquakes identified in nearby ocean bottom pressure measurements suggest there is not a clear relationship between fluid pulses and static strain. There

  20. Boundary states at reflective moving boundaries

    NASA Astrophysics Data System (ADS)

    Acosta Minoli, Cesar A.; Kopriva, David A.

    2012-06-01

    We derive and evaluate boundary states for Maxwell's equations, the linear, and the nonlinear Euler gas-dynamics equations to compute wave reflection from moving boundaries. In this study we use a Discontinuous Galerkin Spectral Element method (DGSEM) with Arbitrary Lagrangian-Eulerian (ALE) mapping for the spatial approximation, but the boundary states can be used with other methods, like finite volume schemes. We present four studies using Maxwell's equations, one for the linear Euler equations, and one more for the nonlinear Euler equations. These are: reflection of light from a plane mirror moving at constant velocity, reflection of light from a moving cylinder, reflection of light from a vibrating mirror, reflection of sound from a plane wall and dipole sound generation by an oscillating cylinder in an inviscid flow. The studies show that the boundary states preserve spectral convergence in the solution and in derived quantities like divergence and vorticity.

  1. Scalar Casimir densities and forces for parallel plates in cosmic string spacetime

    NASA Astrophysics Data System (ADS)

    Bezerra de Mello, E. R.; Saharian, A. A.; Abajyan, S. V.

    2018-04-01

    We analyze the Green function, the Casimir densities and forces associated with a massive scalar quantum field confined between two parallel plates in a higher dimensional cosmic string spacetime. The plates are placed orthogonal to the string, and the field obeys the Robin boundary conditions on them. The boundary-induced contributions are explicitly extracted in the vacuum expectation values (VEVs) of the field squared and of the energy-momentum tensor for both the single plate and two plates geometries. The VEV of the energy-momentum tensor, in additional to the diagonal components, contains an off diagonal component corresponding to the shear stress. The latter vanishes on the plates in special cases of Dirichlet and Neumann boundary conditions. For points outside the string core the topological contributions in the VEVs are finite on the plates. Near the string the VEVs are dominated by the boundary-free part, whereas at large distances the boundary-induced contributions dominate. Due to the nonzero off diagonal component of the vacuum energy-momentum tensor, in addition to the normal component, the Casimir forces have nonzero component parallel to the boundary (shear force). Unlike the problem on the Minkowski bulk, the normal forces acting on the separate plates, in general, do not coincide if the corresponding Robin coefficients are different. Another difference is that in the presence of the cosmic string the Casimir forces for Dirichlet and Neumann boundary conditions differ. For Dirichlet boundary condition the normal Casimir force does not depend on the curvature coupling parameter. This is not the case for other boundary conditions. A new qualitative feature induced by the cosmic string is the appearance of the shear stress acting on the plates. The corresponding force is directed along the radial coordinate and vanishes for Dirichlet and Neumann boundary conditions. Depending on the parameters of the problem, the radial component of the shear force

  2. Linking plate reconstructions with deforming lithosphere to geodynamic models

    NASA Astrophysics Data System (ADS)

    Müller, R. D.; Gurnis, M.; Flament, N.; Seton, M.; Spasojevic, S.; Williams, S.; Zahirovic, S.

    2011-12-01

    While global computational models are rapidly advancing in terms of their capabilities, there is an increasing need for assimilating observations into these models and/or ground-truthing model outputs. The open-source and platform independent GPlates software fills this gap. It was originally conceived as a tool to interactively visualize and manipulate classical rigid plate reconstructions and represent them as time-dependent topological networks of editable plate boundaries. The user can export time-dependent plate velocity meshes that can be used either to define initial surface boundary conditions for geodynamic models or alternatively impose plate motions throughout a geodynamic model run. However, tectonic plates are not rigid, and neglecting plate deformation, especially that of the edges of overriding plates, can result in significant misplacing of plate boundaries through time. A new, substantially re-engineered version of GPlates is now being developed that allows an embedding of deforming plates into topological plate boundary networks. We use geophysical and geological data to define the limit between rigid and deforming areas, and the deformation history of non-rigid blocks. The velocity field predicted by these reconstructions can then be used as a time-dependent surface boundary condition in regional or global 3-D geodynamic models, or alternatively as an initial boundary condition for a particular plate configuration at a given time. For time-dependent models with imposed plate motions (e.g. using CitcomS) we incorporate the continental lithosphere by embedding compositionally distinct crust and continental lithosphere within the thermal lithosphere. We define three isostatic columns of different thickness and buoyancy based on the tectonothermal age of the continents: Archean, Proterozoic and Phanerozoic. In the fourth isostatic column, the oceans, the thickness of the thermal lithosphere is assimilated using a half-space cooling model. We also

  3. Source Model of the MJMA 6.5 Plate-Boundary Earthquake at the Nankai Trough, Southwest Japan, on April 1, 2016, Based on Strong Motion Waveform Modeling

    NASA Astrophysics Data System (ADS)

    Asano, K.

    2017-12-01

    An MJMA 6.5 earthquake occurred offshore the Kii peninsula, southwest Japan on April 1, 2016. This event was interpreted as a thrust-event on the plate-boundary along the Nankai trough where (Wallace et al., 2016). This event is the largest plate-boundary earthquake in the source region of the 1944 Tonankai earthquake (MW 8.0) after that event. The significant point of this event regarding to seismic observation is that this event occurred beneath an ocean-bottom seismic network called DONET1, which is jointly operated by NIED and JAMSTEC. Since moderate-to-large earthquake of this focal type is very rare in this region in the last half century, it is a good opportunity to investigate the source characteristics relating to strong motion generation of subduction-zone plate-boundary earthquakes along the Nankai trough. Knowledge obtained from the study of this earthquake would contribute to ground motion prediction and seismic hazard assessment for future megathrust earthquakes expected in the Nankai trough. In this study, the source model of the 2016 offshore the Kii peninsula earthquake was estimated by broadband strong motion waveform modeling using the empirical Green's function method (Irikura, 1986). The source model is characterized by strong motion generation area (SMGA) (Miyake et al., 2003), which is defined as a rectangular area with high-stress drop or high slip-velocity. SMGA source model based on the empirical Green's function method has great potential to reproduce ground motion time history in broadband frequency range. We used strong motion data from offshore stations (DONET1 and LTBMS) and onshore stations (NIED F-net and DPRI). The records of an MJMA 3.2 aftershock at 13:04 on April 1, 2016 were selected for the empirical Green's functions. The source parameters of SMGA are optimized by the waveform modeling in the frequency range 0.4-10 Hz. The best estimate of SMGA size is 19.4 km2, and SMGA of this event does not follow the source scaling

  4. MHD Forced Convective Laminar Boundary Layer Flow from a Convectively Heated Moving Vertical Plate with Radiation and Transpiration Effect

    PubMed Central

    Uddin, Md. Jashim; Khan, Waqar A.; Ismail, A. I. Md.

    2013-01-01

    A two-dimensional steady forced convective flow of a Newtonian fluid past a convectively heated permeable vertically moving plate in the presence of a variable magnetic field and radiation effect has been investigated numerically. The plate moves either in assisting or opposing direction to the free stream. The plate and free stream velocities are considered to be proportional to whilst the magnetic field and mass transfer velocity are taken to be proportional to where is the distance along the plate from the leading edge of the plate. Instead of using existing similarity transformations, we use a linear group of transformations to transform the governing equations into similarity equations with relevant boundary conditions. Numerical solutions of the similarity equations are presented to show the effects of the controlling parameters on the dimensionless velocity, temperature and concentration profiles as well as on the friction factor, rate of heat and mass transfer. It is found that the rate of heat transfer elevates with the mass transfer velocity, convective heat transfer, Prandtl number, velocity ratio and the magnetic field parameters. It is also found that the rate of mass transfer enhances with the mass transfer velocity, velocity ratio, power law index and the Schmidt number, whilst it suppresses with the magnetic field parameter. Our results are compared with the results existing in the open literature. The comparisons are satisfactory. PMID:23741295

  5. The turbulent boundary layer on a porous plate: An experimental study of the heat transfer behavior with adverse pressure gradients

    NASA Technical Reports Server (NTRS)

    Blackwell, B. F.; Kays, W. M.; Moffat, R. J.

    1972-01-01

    An experimental investigation of the heat transfer behavior of the near equilibrium transpired turbulent boundary layer with adverse pressure gradient has been carried out. Stanton numbers were measured by an energy balance on electrically heated plates that form the bottom wall of the wind tunnel. Two adverse pressure gradients were studied. Two types of transpiration boundary conditions were investigated. The concept of an equilibrium thermal boundary layer was introduced. It was found that Stanton number as a function of enthalpy thickness Reynolds number is essentially unaffected by adverse pressure gradient with no transpiration. Shear stress, heat flux, and turbulent Prandtl number profiles were computed from mean temperature and velocity profiles. It was concluded that the turbulent Prandtl number is greater than unity in near the wall and decreases continuously to approximately 0.5 at the free stream.

  6. Influence of electrical boundary conditions on profiles of acoustic field and electric potential of shear-horizontal acoustic waves in potassium niobate plates.

    PubMed

    Kuznetsova, I E; Nedospasov, I A; Kolesov, V V; Qian, Z; Wang, B; Zhu, F

    2018-05-01

    The profiles of an acoustic field and electric potential of the forward and backward shear-horizontal (SH) acoustic waves of a higher order propagating in X-Y potassium niobate plate have been theoretically investigated. It has been shown that by changing electrical boundary conditions on a surface of piezoelectric plates, it is possible to change the distributions of an acoustic field and electric potential of the forward and backward acoustic waves. The dependencies of the distribution of a mechanical displacement and electrical potential over the plate thickness for electrically open and electrically shorted plates have been plotted. The influence of a layer with arbitrary conductivity placed on a one or on the both plate surfaces on the profiles under study, phase and group velocities of the forward and backward acoustic waves in X-Y potassium niobate has been also investigated. The obtained results can be useful for development of the method for control of a particle or electrical charge movement inside the piezoelectric plates, as well a sensor for definition of the thin film conductivity. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Coseismic slip of two large Mexican earthquakes from teleseismic body waveforms - Implications for asperity interaction in the Michoacan plate boundary segment

    NASA Astrophysics Data System (ADS)

    Mendoza, Carlos

    1993-05-01

    The distributions and depths of coseismic slip are derived for the October 25, 1981 Playa Azul and September 21, 1985 Zihuatanejo earthquakes in western Mexico by inverting the recorded teleseismic body waves. Rupture during the Playa Azul earthquake appears to have occurred in two separate zones both updip and downdip of the point of initial nucleation, with most of the slip concentrated in a circular region of 15-km radius downdip from the hypocenter. Coseismic slip occurred entirely within the area of reduced slip between the two primary shallow sources of the Michoacan earthquake that occurred on September 19, 1985, almost 4 years later. The slip of the Zihuatanejo earthquake was concentrated in an area adjacent to one of the main sources of the Michoacan earthquake and appears to be the southeastern continuation of rupture along the Cocos-North America plate boundary. The zones of maximum slip for the Playa Azul, Zihuatanejo, and Michoacan earthquakes may be considered asperity regions that control the occurrence of large earthquakes along the Michoacan segment of the plate boundary.

  8. Quadratic Convective Flow of a Micropolar Fluid along an Inclined Plate in a Non-Darcy Porous Medium with Convective Boundary Condition

    NASA Astrophysics Data System (ADS)

    RamReddy, Ch.; Naveen, P.; Srinivasacharya, D.

    2017-06-01

    The objective of the present study is to investigate the effect of nonlinear variation of density with temperature and concentration on the mixed convective flow of a micropolar fluid over an inclined flat plate in a non-Darcy porous medium in the presence of the convective boundary condition. In order to analyze all the essential features, the governing non-dimensional partial differential equations are transformed into a system of ordinary differential equations using a local non-similarity procedure and then the resulting boundary value problem is solved using a successive linearisation method (SLM). By insisting the comparison between vertical, horizontal and inclined plates, the physical quantities of the flow and its characteristics are exhibited graphically and quantitatively with various parameters. An increase in the micropolar parameter and non-Darcy parameter tend to increase the skin friction and the reverse change is observed in wall couple stress, mass and heat transfer rates. The influence of the nonlinear concentration parameter is more prominent on all the physical characteristics of the present model, compared with that of nonlinear temperature parameter.

  9. Static and Monoharmonic Acoustic Impact on a Laminated Plate

    NASA Astrophysics Data System (ADS)

    Paimushin, V. N.; Gazizullin, R. K.

    2017-07-01

    A discrete layered damping model of a multilayer plate at small displacements and deformations, with account of the internal damping of layers according to the Thompson-Kelvin-Voight model, is presented. Based on the equations derived, an analytical solution to the static deformation problem for single-layer rectangular plate hinge-supported along its contour and subjected of a uniformly distributed pressure applied to one of its boundary planes is obtained. Its convergence to the three-dimensional solution is analyzed in relation to the dimension of mesh in the thickness direction of the plate. It is found that, for thin plates, the dimension of the problem formulated can be reduced on the basis of simplified hypotheses applied to each layer. An analytical solutions is also constructed for the forced vibrations of two- and three-layer rectangular plates hinged in the opening of an absolutely stiff dividing wall upon transmission of a monoharmonic sound wave through them. It was assumed that the dividing wall is situated between two absolutely stiff barriers; one of them, owing to the harmonic vibration with a given displacement amplitude of the plate, forms an incident sound wave, and the other is stationary and is coated by a energy-absorbing material with high damping properties. Behavior of the acoustic media in spaces between the deformable plate and the barriers is described by the classical wave equations based on the model of an ideal compressible fluid. To describe the process of dynamic deformation of the energy-absorbing coating of the fixed barrier, two-dimensional equations of motion are derived based on the model of a transversely soft layer, a linear approximation of displacement fields in the thickness direction of the coating, and the account of damping properties of its material by using the hysteresis model. The effect of physical and mechanical parameters of the mechanical system considered and of frequency of the incident sound wave on the

  10. On High-Order Radiation Boundary Conditions

    NASA Technical Reports Server (NTRS)

    Hagstrom, Thomas

    1995-01-01

    In this paper we develop the theory of high-order radiation boundary conditions for wave propagation problems. In particular, we study the convergence of sequences of time-local approximate conditions to the exact boundary condition, and subsequently estimate the error in the solutions obtained using these approximations. We show that for finite times the Pade approximants proposed by Engquist and Majda lead to exponential convergence if the solution is smooth, but that good long-time error estimates cannot hold for spatially local conditions. Applications in fluid dynamics are also discussed.

  11. Consolidation patterns during initiation and evolution of a plate-boundary decollement zone: Northern Barbados accretionary prism

    USGS Publications Warehouse

    Moore, J.C.; Klaus, A.; Bangs, N.L.; Bekins, B.; Bucker, C.J.; Bruckmann, W.; Erickson, S.N.; Hansen, O.; Horton, T.; Ireland, P.; Major, C.O.; Moore, Gregory F.; Peacock, S.; Saito, S.; Screaton, E.J.; Shimeld, J.W.; Stauffer, P.H.; Taymaz, T.; Teas, P.A.; Tokunaga, T.

    1998-01-01

    Borehole logs from the northern Barbados accretionary prism show that the plate-boundary decollement initiates in a low-density radiolarian claystone. With continued thrusting, the decollement zone consolidates, but in a patchy manner. The logs calibrate a three-dimensional seismic reflection image of the decollement zone and indicate which portions are of low density and enriched in fluid, and which portions have consolidated. The seismic image demonstrates that an underconsolidated patch of the decollement zone connects to a fluid-rich conduit extending down the decollement surface. Fluid migration up this conduit probably supports the open pore structure in the underconsolidated patch.

  12. The Evolution of the Earth's Mantle Structure and Surface and Core-mantle Boundary Heat Flux since the Paleozoic

    NASA Astrophysics Data System (ADS)

    Zhang, N.; Zhong, S.

    2010-12-01

    The cause for and time evolution of the seismically observed African and Pacific slow anomalies (i.e., superplumes) are still unclear with two competing proposals. First, the African and Pacific superplumes have remained largely unchanged for at least the last 300 Ma and possibly much longer. Second, the African superplume is formed sometime after the formation of Pangea (i.e., at 330 Ma ago) and the mantle in the African hemisphere is predominated by cold downwelling structures before and during the assembly of Pangea, while the Pacific superplume has been stable for the Pangea supercontinent cycle (i.e., globally a degree-1 structure before the Pangea formation). Here, we construct a plate motion history back to 450 Ma and use it as time-dependent surface boundary conditions in 3-dimensional spherical models of thermochemical mantle convection to study the evolution of mantle structure as well as the surface and core-mantle boundary heat flux. Our results for the mantle structures suggest that while the mantle in the African hemisphere before the assembly of Pangea is predominated by the cold downwelling structure resulting from plate convergence between Gondwana and Laurussia, it is unlikely that the bulk of the African superplume structure can be formed before ~240 Ma (i.e., ~100 Ma after the assembly of Pangea). The evolution of mantle structure has implications for heat flux at the surface and core-mantle boundary (CMB). Our results show that while the plate motion controls the surface heat flux, the major cold downwellings control the core-mantle boundary heat flux. A notable feature in surface heat flux from our models is that the surface heat flux peaks at ~100 Ma ago but decreases for the last 100 Ma due to the breakup of Pangea and its subsequent plate evolution. The CMB heat flux in the equatorial regions shows two minima during period 320-250 Ma and period 120-84 Ma. The first minimum clearly results from the disappearance of a major cold downwelling

  13. Turbulent Friction in the Boundary Layer of a Flat Plate in a Two-Dimensional Compressible Flow at High Speeds

    NASA Technical Reports Server (NTRS)

    Frankl, F.; Voishel, V.

    1943-01-01

    In the present report an investigation is made on a flat plate in a two-dimensional compressible flow of the effect of compressibility and heating on the turbulent frictional drag coefficient in the boundary layer of an airfoil or wing radiator. The analysis is based on the Prandtl-Karman theory of the turbulent boundary later and the Stodola-Crocco, theorem on the linear relation between the total energy of the flow and its velocity. Formulas are obtained for the velocity distribution and the frictional drag law in a turbulent boundary later with the compressibility effect and heat transfer taken into account. It is found that with increase of compressibility and temperature at full retardation of the flow (the temperature when the velocity of the flow at a given point is reduced to zero in case of an adiabatic process in the gas) at a constant R (sub x), the frictional drag coefficient C (sub f) decreased, both of these factors acting in the same sense.

  14. Deformation Response of Unsymmetrically Laminated Plates Subjected to Inplane Loading

    NASA Technical Reports Server (NTRS)

    Ochinero, Tomoya T.; Hyer, Michael W.

    2002-01-01

    This paper discusses the out-of-plane deformation behavior of unsymmetric cross-ply composite plates compressed inplane by displacing one edge of the plate a known amount. The plates are assumed to be initially flat and several boundary conditions are considered. Geometrically nonlinear behavior is assumed. The primary objectives are to study the out-of-plane behavior as a function of increasing inplane compression and to determine if bifurcation behavior and secondary buckling can occur. It is shown that, depending on the boundary conditions, both can occur, though the characteristics are different than the pre and post-buckling behavior of a companion symmetric cross-ply plate. Furthermore, while a symmetric cross-ply plate can postbuckle with either a positive or negative out-of-plane displacement, the unsymmetric cross-ply plates studied deflect out-of-plane only in one direction throughout the range of inplane compression, the direction again depending on the boundary conditions

  15. Why does continental convergence stop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hynes, A.

    1985-01-01

    Convergence between India and Asia slowed at 45 Ma when they collided, but continues today. This requires that substantial proportions of the Indian and/or Asian lithospheric mantle are still being subducted. The resulting slab-pull is probably comparable with that from complete lithospheric slabs and may promote continued continental convergence even after collision. Since descending lithospheric slabs are present at all collision zones at the time of collision such continued convergence may be general after continental collisions. It may cease only when there is a major (global) plate reorganization which results in new forces on the convergent continents that may counteractmore » the slab-pull. These inferences may be tested on the late Paleozoic collision between Gondwanaland and Laurasia. This is generally considered to have been complete by mid-Permian time (250 Ma). However, this may be only the time of docking of Gondwanaland with North America, not that of the cessation of convergence. Paleomagnetic polar-wander paths for the Gondwanide continents exhibit consistently greater latitudinal shifts from 250 Ma to 200 Ma than those of Laurasia when corrected for post-Triassic drift, suggesting that convergence continued through late Permian well into the Triassic. It may have been accommodated by crustal thickening under what is now the US Coastal Plain, or by strike-slip faulting. Convergence may have ceased only when Pangea began to fragment again, in which case the cause for its cessation may be related to the cause of continental fragmentation.« less

  16. Plume-induced subduction initiation at the Cretaceous India-Arabia transform plate boundary: paleomagnetic constraints from the Semail ophiolite, Oman

    NASA Astrophysics Data System (ADS)

    Van Hinsbergen, D. J. J.; Maffione, M.; Koornneef, L.; Guilmette, C.

    2016-12-01

    The Neotethyan realm hosts a prominent belt of Cretaceous supra-subduction zone ophiolites from Turkey and Cyprus in the west, to Oman in the east. Associated crustal and metamorphic sole ages tightly cluster at 95-90 Ma, interpreted to shortly post-date subduction initiation in an intra-oceanic setting along transform faults or ridge segments (or ridge-parallel oceanic detachments). This subduction episode ended when the Arabian-African continental lithosphere arrived in the trench in the late Cretaceous and the leading edge of the overriding oceanic lithosphere obducted as ophiolites, including the famous Semail ophiolite of Oman. This catastrophic subduction initiation phase is assumed to be as response to some far-field trigger. Here, we analyzed whether the Semail ophiolite was generated at an E-W trending Neotethyan ridge or at a N-S trending transform. Therefore we paleomagnetically analyzed 10 localities in sheeted dyke sections of the Semail ophiolite that trend parallel to the obduction front of the ophiolite taken to reflect the paleo-trench. We demonstrate that the sheeted dyke sections, and thus also the trench, had an initial N-S strike, indicating that subduction below the Semail ophiolite probably initiated along a N-S striking transform plate boundary between the Indian and Arabian plate rather than at a Neotethyan mid-ocean ridge. Sometime before 83 Ma, India broke away from Madagascar, and underwent a counterclockwise rotation relative to Africa/Arabia around an Euler pole just north of Madagascar, likely triggered by the arrival of the Morondova mantle plume, the associated large igneous province formed since at least 91 Ma. Numerical models have shown that plume push was a likely driver for the inception of India-Madagascar spreading and associated Indian rotation. North of the associated Euler pole, E-W convergence India-Arabia must have occurred during India-Madagascar break-up. This has already been related to 96-90 Ma subduction initiation

  17. Numerical study of 3D flow structure near a cylinder piercing turbulent free-convection boundary layer on a vertical plate

    NASA Astrophysics Data System (ADS)

    Levchenya, A. M.; Smirnov, E. M.; Zhukovskaya, V. D.

    2018-05-01

    The present contribution covers RANS-based simulation of 3D flow near a cylinder introduced into turbulent vertical-plate free-convection boundary layer. Numerical solutions were obtained with a finite-volume Navier-Stokes code of second-order accuracy using refined grids. Peculiarities of the flow disturbed by the obstacle are analyzed. Cylinder-diameter effect on the horseshoe vortex size and its position is evaluated.

  18. Controls on accretion of flysch and melange belts at convergent margins: evidence from the Chugach Bay thrust and Iceworm melange, Chugach accretionary wedge, Alaska

    USGS Publications Warehouse

    Kusky, Timothy M.; Bradley, Dwight C.; Haeussler, Peter J.; Karl, Susan M.

    1997-01-01

    Controls on accretion of flysch and melange terranes at convergent margins are poorly understood. Southern Alaska's Chugach terrane forms the outboard accretionary margin of the Wrangellia composite terrane, and consists of two major lithotectonic units, including Triassic-Cretaceous melange of the McHugh Complex and Late Cretaceous flysch of the Valdez Group. The contact between the McHugh Complex and the Valdez Group on the Kenai Peninsula is a tectonic boundary between chaotically deformed melange of argillite, chert, greenstone, and graywacke of the McHugh Complex and a less chaotically deformed melange of argillite and graywacke of the Valdez Group. We assign the latter to a new, informal unit of formational rank, the Iceworm melange, and interpret it as a contractional fault zone (Chugach Bay thrust) along which the Valdez Group was emplaced beneath the McHugh Complex. The McHugh Complex had already been deformed and metamorphosed to prehnite-pumpellyite facies prior to formation of the Iceworm melange. The Chugach Bay thrust formed between 75 and 55 Ma, as shown by Campanian-Maastrichtian depositional ages of the Valdez Group, and fault-related fabrics in the Iceworm melange that are cut by Paleocene dikes. Motion along the Chugach Bay thrust thus followed Middle to Late Cretaceous collision (circa 90-100 Ma) of the Wrangellia composite terrane with North America. Collision related uplift and erosion of mountains in British Columbia formed a submarine fan on the Farallon plate, and we suggest that attempted subduction of this fan dramatically changed the subduction/accretion style within the Chugach accretionary wedge. We propose a model in which subduction of thinly sedimented plates concentrates shear strains in a narrow zone, generating melanges like the McHugh in accretionary complexes. Subduction of thickly sedimented plates allows wider distribution of shear strains to accommodate plate convergence, generating a more coherent accretionary style

  19. Contact stresses in pin-loaded orthotropic plates

    NASA Technical Reports Server (NTRS)

    Hyer, M. W.; Klang, E. C.

    1984-01-01

    The effects of pin elasticity, friction, and clearance on the stresses near the hole in a pin-loaded orthotropic plate are described. The problem is modeled as a contact elasticity problem using complex variable theory, the pin and the plate being two elastic bodies interacting through contact. This modeling is in contrast to previous works which assumed that the pin is rigid or that it exerts a known cosinusoidal radial traction on the hole boundary. Neither of these approaches explicitly involves a pin. A collocation procedure and iteration were used to obtain numerical results for a variety of plate and pin elastic properties and various levels of friction and clearance. Collocation was used to enforce the boundary and iteration was used to find the contact and no-slip regions on the boundary. Details of the numerical scheme are discussed.

  20. The Panama North Andes Plate Bounday Zone from Interpreted Radar Images, Geologic Mapping and Geophysical Anomalies

    NASA Astrophysics Data System (ADS)

    Hernandez, O.; Alexander, G. C.; Garzon, F.

    2013-05-01

    Satellite geodetics shows the existence of the rigid Panama microplate converging on west to east with The North Andean block. Seismic studies indicate that this plate boundary zone has compressive east-west stresses. Interpretation from magnetic and gravity data suggest that the thickness of the sedimentary sequence of The Atrato basin, reaches 10.5 km and that the Mande magmatic arc is a tectonic pillar, bounded by faults. The interpretation of seismic lines shows the basement of the Urabá Basin is affected by normal faults that limit blocks sunk and raised, a sedimentary sequence that is wedged against the Mande magmatic arc and becomes thicker towards the east. It also shows a thrust fault that connects Neogene sediments of Sinu fold belt with the Urabá Basin. The collision of the Panama arc with the Western Cordillera leads to the existence of a low-angle subduction zone inclined to the east involving the partition of the oceanic plate, drawing up of a trench and subducting plate bending. Before the Panama arc collision with the Western Cordillera, granitic intrusion had occurred that gave rise to the Mande magmatic arc, causing bending and rise of the oceanic crust. This effort generated tensional bending at the top of the crust that led to the formation of raised and sunken blocks bounded by normal faults, within which lies the tectonic pillar which forms the Mande magmatic arc. Upon the occurrence of the collision, it was launched the end of the connection between the Pacific Ocean and Caribbean Sea and the formation of the Uraba forearc basins and the Atrato basin. Panama - North Andes Plate boundary Zone 2d Modeling of the Panama - North Andes Plate Bounday Zone

  1. Porous and Microporous Honeycomb Composites as Potential Boundary-Layer Bleed Materials

    NASA Technical Reports Server (NTRS)

    Davis, D. O.; Willis, B. P.; Schoenenberger, M.

    1997-01-01

    Results of an experimental investigation are presented in which the use of porous and microporous honeycomb composite materials is evaluated as an alternate to perforated solid plates for boundary-layer bleed in supersonic aircraft inlets. The terms "porous" and "microporous," respectively, refer to bleed orifice diameters roughly equal to and much less than the displacement thickness of the approach boundary-layer. A Baseline porous solid plate, two porous honeycomb, and three microporous honeycomb configurations are evaluated. The performance of the plates is characterized by the flow coefficient and relative change in boundary-layer profile parameters across the bleed region. The tests were conducted at Mach numbers of 1.27 and 1.98. The results show the porous honeycomb is not as efficient at removing mass compared to the baseline. The microporous plates were about equal to the baseline with one plate demonstrating a significantly higher efficiency. The microporous plates produced significantly fuller boundary-layer profiles downstream of the bleed region for a given mass flow removal rate than either the baseline or the porous honeycomb plates.

  2. Tectonics and volcanism of Eastern Aphrodite Terra, Venus - No subduction, no spreading

    NASA Technical Reports Server (NTRS)

    Hansen, Vicki L.; Phillips, Roger J.

    1993-01-01

    Eastern Aphrodite Terra, a deformed region with high topographic relief on Venus, has been interpreted as analogous to a terrestrial extensional or convergent plate boundary. However, analysis of geological and structural relations indicates that the tectonics of eastern Aphrodite Terra is dominated by blistering of the crust by magma diapirs. The findings imply that, within this region, vertical tectonism dominates over horizontal tectonism and, consequently, that this region is neither a divergent nor a convergent plate boundary.

  3. Convergence issues in domain decomposition parallel computation of hovering rotor

    NASA Astrophysics Data System (ADS)

    Xiao, Zhongyun; Liu, Gang; Mou, Bin; Jiang, Xiong

    2018-05-01

    Implicit LU-SGS time integration algorithm has been widely used in parallel computation in spite of its lack of information from adjacent domains. When applied to parallel computation of hovering rotor flows in a rotating frame, it brings about convergence issues. To remedy the problem, three LU factorization-based implicit schemes (consisting of LU-SGS, DP-LUR and HLU-SGS) are investigated comparatively. A test case of pure grid rotation is designed to verify these algorithms, which show that LU-SGS algorithm introduces errors on boundary cells. When partition boundaries are circumferential, errors arise in proportion to grid speed, accumulating along with the rotation, and leading to computational failure in the end. Meanwhile, DP-LUR and HLU-SGS methods show good convergence owing to boundary treatment which are desirable in domain decomposition parallel computations.

  4. Rainfall Morphology in Semi-Tropical Convergence Zones

    NASA Technical Reports Server (NTRS)

    Shepherd, J. Marshall; Ferrier, Brad S.; Ray, Peter S.

    2000-01-01

    Central Florida is the ideal test laboratory for studying convergence zone-induced convection. The region regularly experiences sea breeze fronts and rainfall-induced outflow boundaries. The focus of this study is the common yet poorly-studied convergence zone established by the interaction of the sea breeze front and an outflow boundary. Previous studies have investigated mechanisms primarily affecting storm initiation by such convergence zones. Few have focused on rainfall morphology yet these storms contribute a significant amount precipitation to the annual rainfall budget. Low-level convergence and mid-tropospheric moisture have both been shown to correlate with rainfall amounts in Florida. Using 2D and 3D numerical simulations, the roles of low-level convergence and mid-tropospheric moisture in rainfall evolution are examined. The results indicate that time-averaged, vertical moisture flux (VMF) at the sea breeze front/outflow convergence zone is directly and linearly proportional to initial condensation rates. This proportionality establishes a similar relationship between VMF and initial rainfall. Vertical moisture flux, which encompasses depth and magnitude of convergence, is better correlated to initial rainfall production than surface moisture convergence. This extends early observational studies which linked rainfall in Florida to surface moisture convergence. The amount and distribution of mid-tropospheric moisture determines how rainfall associated with secondary cells develop. Rainfall amount and efficiency varied significantly over an observable range of relative humidities in the 850- 500 mb layer even though rainfall evolution was similar during the initial or "first-cell" period. Rainfall variability was attributed to drier mid-tropospheric environments inhibiting secondary cell development through entrainment effects. Observationally, 850-500 mb moisture structure exhibits wider variability than lower level moisture, which is virtually always

  5. Numerical solution of acoustic scattering by finite perforated elastic plates

    PubMed Central

    2016-01-01

    We present a numerical method to compute the acoustic field scattered by finite perforated elastic plates. A boundary element method is developed to solve the Helmholtz equation subjected to boundary conditions related to the plate vibration. These boundary conditions are recast in terms of the vibration modes of the plate and its porosity, which enables a direct solution procedure. A parametric study is performed for a two-dimensional problem whereby a cantilevered perforated elastic plate scatters sound from a point quadrupole near the free edge. Both elasticity and porosity tend to diminish the scattered sound, in agreement with previous work considering semi-infinite plates. Finite elastic plates are shown to reduce acoustic scattering when excited at high Helmholtz numbers k0 based on the plate length. However, at low k0, finite elastic plates produce only modest reductions or, in cases related to structural resonance, an increase to the scattered sound level relative to the rigid case. Porosity, on the other hand, is shown to be more effective in reducing the radiated sound for low k0. The combined beneficial effects of elasticity and porosity are shown to be effective in reducing the scattered sound for a broader range of k0 for perforated elastic plates. PMID:27274685

  6. Numerical solution of acoustic scattering by finite perforated elastic plates.

    PubMed

    Cavalieri, A V G; Wolf, W R; Jaworski, J W

    2016-04-01

    We present a numerical method to compute the acoustic field scattered by finite perforated elastic plates. A boundary element method is developed to solve the Helmholtz equation subjected to boundary conditions related to the plate vibration. These boundary conditions are recast in terms of the vibration modes of the plate and its porosity, which enables a direct solution procedure. A parametric study is performed for a two-dimensional problem whereby a cantilevered perforated elastic plate scatters sound from a point quadrupole near the free edge. Both elasticity and porosity tend to diminish the scattered sound, in agreement with previous work considering semi-infinite plates. Finite elastic plates are shown to reduce acoustic scattering when excited at high Helmholtz numbers k 0 based on the plate length. However, at low k 0 , finite elastic plates produce only modest reductions or, in cases related to structural resonance, an increase to the scattered sound level relative to the rigid case. Porosity, on the other hand, is shown to be more effective in reducing the radiated sound for low k 0 . The combined beneficial effects of elasticity and porosity are shown to be effective in reducing the scattered sound for a broader range of k 0 for perforated elastic plates.

  7. Free Vibration Study of Anti-Symmetric Angle-Ply Laminated Plates under Clamped Boundary Conditions

    NASA Astrophysics Data System (ADS)

    Viswanathan, K. K.; Karthik, K.; Sanyasiraju, Y. V. S. S.; Aziz, Z. A.

    2016-11-01

    Two type of numerical approach namely, Radial Basis Function and Spline approximation, used to analyse the free vibration of anti-symmetric angle-ply laminated plates under clamped boundary conditions. The equations of motion are derived using YNS theory under first order shear deformation. By assuming the solution in separable form, coupled differential equations obtained in term of mid-plane displacement and rotational functions. The coupled differential is then approximated using Spline function and radial basis function to obtain the generalize eigenvalue problem and parametric studies are made to investigate the effect of aspect ratio, length-to-thickness ratio, number of layers, fibre orientation and material properties with respect to the frequency parameter. Some results are compared with the existing literature and other new results are given in tables and graphs.

  8. Active NE-SW Compressional Strain Within the Arabian Plate

    NASA Astrophysics Data System (ADS)

    Floyd, M. A.; ArRajehi, A.; King, R. W.; McClusky, S.; Reilinger, R. E.; Douad, M.; Sholan, J.; Bou-Rabee, F.

    2012-12-01

    Motion of the Arabian plate with respect to Eurasia has been remarkably steady over more than 25 Myr as revealed by comparison of geodetic and plate tectonic reconstructions (e.g., McQuarrie et al., 2003, GRL; ArRajehi et al., 2010, Tectonics). While internal plate deformation is small in comparison to the rate of Arabia-Eurasia convergence, the improved resolution of GPS observations indicate ~ NE-SW compressional strain that appears to affect much of the plate south of latitude ~ 30°N. Seven ~ NE-SW oriented inter-station baselines all indicated shortening at rates in the range of 0.5-2 mm/yr, for the most part with 1-sigma velocity uncertainties < 0.4 mm/yr. Plate-scale strain rates exceed 2×10-9/yr. The spatial distribution of strain can not be resolved from the sparse available data, but strain appears to extend at least to Riyadh, KSA, ~ 600 km west of the Zagros Fold and Thrust Belt that forms the eastern, collisional boundary of the Arabian plate with Eurasia (Iran). Geodetic velocities in the plate tectonic reference frame for Arabia, derived from magnetic anomalies in the Red Sea (Chu and Gordon, 1998, GJI), show no significant E-W motion for GPS stations located along the Red Sea coast (i.e., geodetic and plate tectonic spreading rates across the Red Sea agree within their resolution), in contrast to sites in the plate interior and along the east side of the plate that indicate east-directed motions. In addition, NE-SW contraction is roughly normal to ~ N-S striking major structural folds in the sedimentary rocks within the Arabian Platform. These relationships suggest that geodetically observed contraction has characterized the plate for at least the past ~ 3 Myr. Broad-scale contraction of the Arabian plate seems intuitively reasonable given that the east and north sides of the plate are dominated by active continental collision (Zagros, E Turkey/Caucasus) while the west and south sides are bordered by mid-ocean ridge spreading (Red Sea and Gulf of

  9. Numerical modeling of intraplate seismicity with a deformable loading plate

    NASA Astrophysics Data System (ADS)

    So, B. D.; Capitanio, F. A.

    2017-12-01

    We use finite element modeling to investigate on the stress loading-unloading cycles and earthquakes occurrence in the plate interiors, resulting from the interactions of tectonic plates along their boundary. We model a visco-elasto-plastic plate embedding a single or multiple faults, while the tectonic stress is applied along the plate boundary by an external loading visco-elastic plate, reproducing the tectonic setting of two interacting lithospheres. Because the two plates deform viscously, the timescale of stress accumulation and release on the faults is self-consistently determined, from the boundary to the interiors, and seismic recurrence is an emerging feature. This approach overcomes the constraints on recurrence period imposed by stress (stress-drop) and velocity boundary conditions, while here it is unconstrained. We illustrate emerging macroscopic characteristics of this system, showing that the seismic recurrence period τ becomes shorter as Γ and Θ decreases, where Γ = ηI/ηL the viscosity ratio of the viscosities of the internal fault-embedded to external loading plates, respectively, and Θ = σY/σL the stress ratio of the elastic limit of the fault to far-field loading stress. When the system embeds multiple, randomly distributed faults, stress transfer results in recurrence period deviations, however the time-averaged recurrence period of each fault show the same dependence on Γ and Θ, illustrating a characteristic collective behavior. The control of these parameters prevails even when initial pre-stress was randomly assigned in terms of the spatial arrangement and orientation on the internal plate, mimicking local fluctuations. Our study shows the relevance of macroscopic rheological properties of tectonic plates on the earthquake occurrence in plate interiors, as opposed to local factors, proposing a viable model for the seismic behavior of continent interiors in the context of large-scale, long-term deformation of interacting tectonic

  10. Deep Seismic Reflection Images across a Major Reactivated Fracture Zone in the Wharton Basin: Implications for the Location of the Plate Boundary between India and Australia

    NASA Astrophysics Data System (ADS)

    Carton, H. D.; Singh, S. C.; Hananto, N. D.; Martin, J.; Djajadihardja, Y. S.; Udrekh, U.; Franke, D.; Gaedicke, C.

    2012-12-01

    The equatorial Indian Ocean has long been recognized to be hosting extensive "intra-plate" deformation. To west of the Ninety-East Ridge (NER), The Central Indian Ocean Basin is characterized by N-S compression in a broad region with E-W trending folds and high-angle reverse faulting. To the east of NER in the Wharton Basin, deformation mainly occurs along reactivated N5°E-trending oceanic fracture zones with left-lateral strike-slip motion. Near longitude 93°E in the Wharton Basin runs a major reactivated fracture zone, along which the epicenters of the two recent Mw=8.6 and Mw=8.2 strike-slip earthquakes of April 11, 2012, and an Mw=7.2 foreshock that occurred in January 2012 are aligned. The April 11 events are the largest known oceanic events occurring away from the main plate boundaries. They ruptured a 20-40 km thick section of the oceanic lithosphere, i.e. down to depths at which no direct images of fault zones have been obtained so far. Deep seismic reflection data acquired in the Mw=8.6 earthquake rupture zone ~100 km north of the epicenter shows the presence of sub-Moho reflectivity down to 37 km depth in the oceanic mantle. We interpret these events as reflections off the earthquake-generating fault plane in the oceanic mantle, in accordance with results suggesting that brittle deformation of the oceanic lithosphere extends well into the mantle down to the 600°C isotherm. The fracture zone near 93°E separates lithospheres of contrasting crustal thicknesses (3.5-4.5 km versus 6 km) with a 10 Ma age difference, and therefore seems to act as a rheological boundary. We find that the deep reflections could originate from either a plane trending approximately N105°E, at high angle to the fracture zone, or from the fracture zone itself if the dip of the fault surface decreases from nearly vertical in the sediments to about 45° in the oceanic mantle. We propose that this fracture zone is a major tectonic boundary in the Wharton Basin, and that the three

  11. On convergence and convergence rates for Ivanov and Morozov regularization and application to some parameter identification problems in elliptic PDEs

    NASA Astrophysics Data System (ADS)

    Kaltenbacher, Barbara; Klassen, Andrej

    2018-05-01

    In this paper we provide a convergence analysis of some variational methods alternative to the classical Tikhonov regularization, namely Ivanov regularization (also called the method of quasi solutions) with some versions of the discrepancy principle for choosing the regularization parameter, and Morozov regularization (also called the method of the residuals). After motivating nonequivalence with Tikhonov regularization by means of an example, we prove well-definedness of the Ivanov and the Morozov method, convergence in the sense of regularization, as well as convergence rates under variational source conditions. Finally, we apply these results to some linear and nonlinear parameter identification problems in elliptic boundary value problems.

  12. A New Southern North Atlantic Isochron Map: Insights Into the Drift of the Iberian Plate Since the Late Cretaceous

    NASA Astrophysics Data System (ADS)

    Macchiavelli, Chiara; Vergés, Jaume; Schettino, Antonio; Fernández, Manel; Turco, Eugenio; Casciello, Emilio; Torne, Montserrat; Pierantoni, Pietro Paolo; Tunini, Lavinia

    2017-12-01

    This paper presents a new southern North Atlantic plate model from Late Cretaceous to present, with the aim of constraining the kinematics of the Iberian plate during the last 83.5 Myr. This model is presented along with a detailed isochron map generated through the analysis of 3 aeromagnetic tracks and 400 ship tracks from the National Centers for Environmental Information database. We present a new technique to obtain well-constrained estimates of the Iberia-North America plate motions from magnetic anomalies, overcoming the scarcity of large-offset fracture zones and transform faults. We build an integrated kinematic model for NW Africa, Morocco, Iberia, Europe, and North America, which shows that the deformation is partitioned between Pyrenees and Betic-Rif orogenic domain during the Late Cretaceous-Oligocene time interval. In the Eastern Betics domain, the calculated amount of NW Africa-Iberia convergence is 80 km between 83.5 and 34 Ma, followed by 150 km since the Oligocene. The motion of Iberia relative to Europe in the Central Pyrenees is characterized by overall NE directed transpressional motion during the Campanian and the Paleocene, followed by NW directed transpressional movement until the Lutetian and overall NNW directed convergence from Bartonian to Chattian. This motion occurs along the axis of the Bay of Biscay from the Santonian-Campanian boundary to the middle Priabonian, subsequently jumping to King's Trough at Anomaly 17 (36.62 Ma).

  13. Improved Boundary Conditions for Cell-centered Difference Schemes

    NASA Technical Reports Server (NTRS)

    VanderWijngaart, Rob F.; Klopfer, Goetz H.; Chancellor, Marisa K. (Technical Monitor)

    1997-01-01

    Cell-centered finite-volume (CCFV) schemes have certain attractive properties for the solution of the equations governing compressible fluid flow. Among others, they provide a natural vehicle for specifying flux conditions at the boundaries of the physical domain. Unfortunately, they lead to slow convergence for numerical programs utilizing them. In this report a method for investigating and improving the convergence of CCFV schemes is presented, which focuses on the effect of the numerical boundary conditions. The key to the method is the computation of the spectral radius of the iteration matrix of the entire demoralized system of equations, not just of the interior point scheme or the boundary conditions.

  14. Petrology and age of volcanic-arc rocks from the continental margin of the Bering Sea: implications for Early Eocene relocation of plate boundaries

    USGS Publications Warehouse

    Davis, A.S.; Pickthorn, L.-B.G.; Vallier, T.L.; Marlow, M. S.

    1989-01-01

    Eocene volcanic flow and dike rocks from the Beringian margin have arc characteristics, implying a convergent history for this region during the early Tertiary. Chemical and mineralogical compositions are similar to those of modern Aleutian-arc lavas. They also resemble volcanic-arc compositions from western mainland Alaska, although greater chemical diversity and a stronger continental influence are observed in the Alaskan mainland rocks. Early Eocene ages of 54.4-50.2 Ma for the Beringian samples are well constrained by conventional K-Ar ages of nine plagioclase separates and by concordant 40Ar/39Ar incremental heating and total-fusion experiments. A concordant U-Pb zircon age of 53 Ma for the quartz-diorite dike is in good agreement with the K-Ar data. Plate motion studies of the North Pacific Ocean indicate more northerly directed subduction prior to the Tertiary and a continuous belt of arc-type volcanism extending from Siberia, along the Beringian margin, into mainland Alaska. Around 56 Ma (chron 25-24), subduction changed to a more westerly direction and subduction-related volcanism ceased for most of mainland Alaska. The increasingly oblique angle of convergence should have ended subduction along the Beringian margin as well. However, consistent ages of 54-50 Ma indicate a final pulse in arc-type magmatism during this period of plate adjustment. -from Authors

  15. Thermochronology, Uplift and Erosion at the Australian-Pacific Plate Boundary Alpine Fault restraining bend, New Zealand

    NASA Astrophysics Data System (ADS)

    Sagar, M. W.; Seward, D.; Norton, K. P.

    2016-12-01

    The 650 km-long Australian-Pacific plate boundary Alpine Fault is remarkably straight at a regional scale, except for a prominent S-shaped bend in the northern South Island. This is a restraining bend and has been referred to as the `Big Bend' due to similarities with the Transverse Ranges section of the San Andreas Fault. The Alpine Fault is the main source of seismic hazard in the South Island, yet there are no constraints on slip rates at the Big Bend. Furthermore, the timing of Big Bend development is poorly constrained to the Miocene. To address these issues we are using the fission-track (FT) and 40Ar/39Ar thermochronometers, together with basin-averaged cosmogenic nuclide 10Be concentrations to constrain the onset and rate of Neogene-Quaternary exhumation of the Australian and Pacific plates at the Big Bend. Exhumation rates at the Big Bend are expected to be greater than those for adjoining sections of the Alpine Fault due to locally enhanced shortening. Apatite FT ages and modelled thermal histories indicate that exhumation of the Australian Plate had begun by 13 Ma and 3 km of exhumation has occurred since that time, requiring a minimum exhumation rate of 0.2 mm/year. In contrast, on the Pacific Plate, zircon FT cooling ages suggest ≥7 km of exhumation in the past 2-3 Ma, corresponding to a minimum exhumation rate of 2 mm/year. Preliminary assessment of stream channel gradients either side of the Big Bend suggests equilibrium between uplift and erosion. The implication of this is that Quaternary erosion rates estimated from 10Be concentrations will approximate uplift rates. These uplift rates will help to better constrain the dip-slip rate of the Alpine Fault, which will allow the National Seismic Hazard Model to be updated.

  16. A superlinear convergence estimate for an iterative method for the biharmonic equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horn, M.A.

    In [CDH] a method for the solution of boundary value problems for the biharmonic equation using conformal mapping was investigated. The method is an implementation of the classical method of Muskhelishvili. In [CDH] it was shown, using the Hankel structure, that the linear system in [Musk] is the discretization of the identify plus a compact operator, and therefore the conjugate gradient method will converge superlinearly. The purpose of this paper is to give an estimate of the superlinear convergence in the case when the boundary curve is in a Hoelder class.

  17. Extinct mid-ocean ridges and insights on the influence of hotspots at divergent plate boundaries

    NASA Astrophysics Data System (ADS)

    MacLeod, Sarah; Dietmar Müller, R.; Williams, Simon; Matthews, Kara

    2016-04-01

    We review all global examples of confirmed or suspected extinct mid-ocean ridges that are preserved in present-day ocean basins. Data on their spreading rate prior to extinction, time of cessation, length of activity, bathymetric and gravity signature are analysed. This analysis identifies some differences between subgroups of extinct ridges, including microplate spreading ridges, back-arc basin ridges and large-scale mid-ocean ridges. Crustal structure of extinct ridges is evaluated using gravity inversion to seek to resolve a long-standing debate on whether the final stages of spreading leads to development of thinned or thickened crust. Most of the ridges we assess have thinner crust at their axes than their flanks, yet a small number are found to have a single segment that is overprinted by an anomalous feature such as a seamount or volcanic ridge. A more complex cessation mechanism is necessary in these cases. The location of spreading centres at their time of cessation relative to hotspots was also evaluated using a global plate reconstruction. This review provides strong evidence for the long-term interaction of spreading centres with hotspots and plate boundaries have been frequently modified within the radius of a hotspot zone of influence.

  18. Food-Pharma Convergence in Medical Nutrition– Best of Both Worlds?

    PubMed Central

    Weenen, Tamar C.; Ramezanpour, Bahar; Pronker, Esther S.; Commandeur, Harry; Claassen, Eric

    2013-01-01

    At present, industries within the health and life science sector are moving towards one another resulting in new industries such as the medical nutrition industry. Medical nutrition products are specific nutritional compositions for intervention in disease progression and symptom alleviation. Industry convergence, described as the blurring of boundaries between industries, plays a crucial role in the shaping of new markets and industries. Assuming that the medical nutrition industry has emerged from the convergence between the food and pharma industries, it is crucial to research how and which distinct industry domains have contributed to establish this relatively new industry. The first two stages of industry convergence (knowledge diffusion and consolidation) are measured by means of patent analysis. First, the extent of knowledge diffusion within the medical nutrition industry is graphed in a patent citation interrelations network. Subsequently the consolidation based on technological convergence is determined by means of patent co-classification. Furthermore, the medical nutrition core domain and technology interrelations are measured by means of a cross impact analysis. This study proves that the medical nutrition industry is a result of food and pharma convergence. It is therefore crucial for medical nutrition companies to effectively monitor technological developments within as well as across industry boundaries. This study further reveals that although the medical nutrition industry’s core technology domain is food, technological development is mainly driven by pharmaceutical/pharmacological technologies Additionally, the results indicate that the industry has surpassed the knowledge diffusion stage of convergence, and is currently in the consolidation phase of industry convergence. Nevertheless, while the medical nutrition can be classified as an industry in an advanced phase of convergence, one cannot predict that the pharma and food industry segments

  19. Food-pharma convergence in medical nutrition- best of both worlds?

    PubMed

    Weenen, Tamar C; Ramezanpour, Bahar; Pronker, Esther S; Commandeur, Harry; Claassen, Eric

    2013-01-01

    At present, industries within the health and life science sector are moving towards one another resulting in new industries such as the medical nutrition industry. Medical nutrition products are specific nutritional compositions for intervention in disease progression and symptom alleviation. Industry convergence, described as the blurring of boundaries between industries, plays a crucial role in the shaping of new markets and industries. Assuming that the medical nutrition industry has emerged from the convergence between the food and pharma industries, it is crucial to research how and which distinct industry domains have contributed to establish this relatively new industry. The first two stages of industry convergence (knowledge diffusion and consolidation) are measured by means of patent analysis. First, the extent of knowledge diffusion within the medical nutrition industry is graphed in a patent citation interrelations network. Subsequently the consolidation based on technological convergence is determined by means of patent co-classification. Furthermore, the medical nutrition core domain and technology interrelations are measured by means of a cross impact analysis. This study proves that the medical nutrition industry is a result of food and pharma convergence. It is therefore crucial for medical nutrition companies to effectively monitor technological developments within as well as across industry boundaries. This study further reveals that although the medical nutrition industry's core technology domain is food, technological development is mainly driven by pharmaceutical/pharmacological technologies Additionally, the results indicate that the industry has surpassed the knowledge diffusion stage of convergence, and is currently in the consolidation phase of industry convergence. Nevertheless, while the medical nutrition can be classified as an industry in an advanced phase of convergence, one cannot predict that the pharma and food industry segments

  20. Nonvolcanic Deep Tremors in the Transform Plate Bounding San Andreas Fault Zone

    NASA Astrophysics Data System (ADS)

    Nadeau, R. M.; Dolenc, D.

    2004-12-01

    Recently, deep ( ˜ 20 to 40 km) nonvolcanic tremor activity has been observed on convergent plate boundaries in Japan and in the Cascadia region of North America (Obara, 2002; Rodgers and Dragert, 2003; Szeliga et al., 2004). Because of the abundance of available fluids from subduction processes in these convergent zones, fluids are believed to play an important role in the generation of the tremor activity. The transient rates of tremor activity in these regions are also observed to correlate either with the occurrence of larger earthquakes (Obara, 2002) or with geodetically determined transient creep events that release large amounts of strain energy deep beneath the locked Cascadia megathrust (M.M. Miller et al., 2002; Rodgers and Dragert, 2003; Szeliga et al., 2004). These associations suggest that nonvolcanic tremor activity may participate in a fundamental mode of deep moment release and in the triggering of large subduction zone events (Rodgers and Dragert, 2003). We report the discovery of deep ( ˜ 20 to 45 km) nonvolcanic tremor activity on the transform plate bounding San Andreas Fault (SAF) in central California where, in contrast to subduction zones, long-term deformation directions are horizontal and fluid availability from subduction zone processes is absent. The source region of the SAF tremors lies beneath the epicentral region of the great 1857 magnitude (M) ˜ 8, Fort Tejon earthquake whose rupture zone is currently locked (Sieh, 1978). Activity rate transients of the tremors occurring since early 2001 also correlate with seismicity rate variations above the tremor source region.

  1. Solving the Problem of Linear Viscoelasticity for Piecewise-Homogeneous Anisotropic Plates

    NASA Astrophysics Data System (ADS)

    Kaloerov, S. A.; Koshkin, A. A.

    2017-11-01

    An approximate method for solving the problem of linear viscoelasticity for thin anisotropic plates subject to transverse bending is proposed. The method of small parameter is used to reduce the problem to a sequence of boundary problems of applied theory of bending of plates solved using complex potentials. The general form of complex potentials in approximations and the boundary conditions for determining them are obtained. Problems for a plate with elliptic elastic inclusions are solved as an example. The numerical results for a plate with one, two elliptical (circular), and linear inclusions are analyzed.

  2. Well-tempered metadynamics converges asymptotically.

    PubMed

    Dama, James F; Parrinello, Michele; Voth, Gregory A

    2014-06-20

    Metadynamics is a versatile and capable enhanced sampling method for the computational study of soft matter materials and biomolecular systems. However, over a decade of application and several attempts to give this adaptive umbrella sampling method a firm theoretical grounding prove that a rigorous convergence analysis is elusive. This Letter describes such an analysis, demonstrating that well-tempered metadynamics converges to the final state it was designed to reach and, therefore, that the simple formulas currently used to interpret the final converged state of tempered metadynamics are correct and exact. The results do not rely on any assumption that the collective variable dynamics are effectively Brownian or any idealizations of the hill deposition function; instead, they suggest new, more permissive criteria for the method to be well behaved. The results apply to tempered metadynamics with or without adaptive Gaussians or boundary corrections and whether the bias is stored approximately on a grid or exactly.

  3. Well-Tempered Metadynamics Converges Asymptotically

    NASA Astrophysics Data System (ADS)

    Dama, James F.; Parrinello, Michele; Voth, Gregory A.

    2014-06-01

    Metadynamics is a versatile and capable enhanced sampling method for the computational study of soft matter materials and biomolecular systems. However, over a decade of application and several attempts to give this adaptive umbrella sampling method a firm theoretical grounding prove that a rigorous convergence analysis is elusive. This Letter describes such an analysis, demonstrating that well-tempered metadynamics converges to the final state it was designed to reach and, therefore, that the simple formulas currently used to interpret the final converged state of tempered metadynamics are correct and exact. The results do not rely on any assumption that the collective variable dynamics are effectively Brownian or any idealizations of the hill deposition function; instead, they suggest new, more permissive criteria for the method to be well behaved. The results apply to tempered metadynamics with or without adaptive Gaussians or boundary corrections and whether the bias is stored approximately on a grid or exactly.

  4. Hierarchic plate and shell models based on p-extension

    NASA Technical Reports Server (NTRS)

    Szabo, Barna A.; Sahrmann, Glenn J.

    1988-01-01

    Formulations of finite element models for beams, arches, plates and shells based on the principle of virtual work was studied. The focus is on computer implementation of hierarchic sequences of finite element models suitable for numerical solution of a large variety of practical problems which may concurrently contain thin and thick plates and shells, stiffeners, and regions where three dimensional representation is required. The approximate solutions corresponding to the hierarchic sequence of models converge to the exact solution of the fully three dimensional model. The stopping criterion is based on: (1) estimation of the relative error in energy norm; (2) equilibrium tests, and (3) observation of the convergence of quantities of interest.

  5. How the gas hydrate system gives insight into subduction wedge dewatering processes in a zone of highly-oblique convergence on the southern Hikurangi margin of New Zealand

    NASA Astrophysics Data System (ADS)

    Crutchley, Gareth; Klaeschen, Dirk; Pecher, Ingo; Henrys, Stuart

    2017-04-01

    The southern end of New Zealand's Hikurangi subduction margin is characterised by highly-oblique convergence as it makes a southward transition into a right-lateral transform plate boundary at the Alpine Fault. Long-offset seismic data that cross part of the offshore portion of this transition zone give new insight into the nature of the plate boundary. We have carried out 2D pre-stack depth migrations, with an iterative reflection tomography to update the velocity field, on two seismic lines in this area to investigate fluid flow processes that have implications for the mechanical stability of the subduction interface. The results show distinct and focused fluid expulsion pathways from the subduction interface to the shallow sub-surface. For example, on one of the seismic lines there is a clear disruption of the gas hydrate system at its intersection with a splay fault - a clear indication of focused fluid release from the subduction interface. The seismic velocities derived from tomography also highlight a broad, pronounced low velocity zone beneath the deforming wedge that we interpret as a thick zone of gas-charged fluids that may have important implications for the long-term frictional stability of the plate boundary in this area. The focused flow upward toward the seafloor has the potential to result in the formation of concentrated gas hydrate deposits. Our on-going work on these data will include amplitude versus offset analysis in an attempt to better characterise the nature of the subduction interface, the fluids in that region, and also the shallower gas hydrate system.

  6. Slip Behavior of the Queen Charlotte Plate Boundary Before and After the 2012, MW 7.8 Haida Gwaii Earthquake: Evidence From Repeating Earthquakes

    NASA Astrophysics Data System (ADS)

    Hayward, Tim W.; Bostock, Michael G.

    2017-11-01

    The Queen Charlotte plate boundary, near Haida Gwaii, B.C., includes the dextral, strike-slip, Queen Charlotte Fault (QCF) and the subduction interface between the downgoing Pacific and overriding North American plates. In this study, we present a comprehensive repeating earthquake catalog that represents an effective slip meter for both structures. The catalog comprises 712 individual earthquakes (0.3≤MW≤3.5) arranged into 224 repeating earthquake families on the basis of waveform similarity and source separation estimates from coda wave interferometry. We employ and extend existing relationships for repeating earthquake magnitudes and slips to provide cumulative slip histories for the QCF and subduction interface in six adjacent zones within the study area between 52.3°N and 53.8°N. We find evidence for creep on both faults; however, creep rates are significantly less than plate motion rates, which suggests partial locking of both faults. The QCF exhibits the highest degrees of locking south of 52.8°N, which indicates that the seismic hazard for a major strike-slip earthquake is highest in the southern part of the study area. The 28 October 2012, MW 7.8 Haida Gwaii thrust earthquake occurred in our study area and altered the slip dynamics of the plate boundary. The QCF is observed to undergo accelerated, right-lateral slip for 1-2 months following the earthquake. The subduction interface exhibits afterslip thrust motion that persists for the duration of the study period (i.e., 3 years and 2 months after the Haida Gwaii earthquake). Afterslip is greatest (5.7-8.4 cm/yr) on the periphery of the main rupture zone of the Haida Gwaii event.

  7. A review of structural patterns and melting processes in the Archean craton of West Greenland: Evidence for crustal growth at convergent plate margins as opposed to non-uniformitarian models

    NASA Astrophysics Data System (ADS)

    Polat, Ali; Wang, Lu; Appel, Peter W. U.

    2015-11-01

    The Archean craton of West Greenland consists of many fault-bounded Eoarchean to Neoarchean tectonic terranes (crustal blocks). These tectonic terranes are composed mainly of tonalite-trondhjemite-granodiorite (TTG) gneisses, granitic gneisses, metavolcanic-dominated supracrustal belts, layered anorthositic complexes, and late- to post-tectonic granites. Rock assemblages and geochemical signatures in these terranes suggest that they represent fragments of dismembered oceanic island arcs, consisting mainly of TTG plutons, tholeiitic to calc-alkaline basalts, boninites, picrites, and cumulate layers of ultramafic rocks, gabbros, leucogabbros and anorthosites, with minor sedimentary rocks. The structural characteristics of the terrane boundaries are consistent with the assembly of these island arcs through modern style of horizontal tectonics, suggesting that the Archean craton of West Greenland grew at convergent plate margins. Several supracrustal belts that occur at or near the terrane boundaries are interpreted as relict accretionary prisms. The terranes display fold and thrust structures and contain numerous 10 cm to 20 m wide bifurcating, ductile shear zones that are characterized by a variety of structures including transposed and redistributed isoclinal folds. Geometrically these structures are similar to those occurring on regional scales, suggesting that the Archean craton of West Greenland can be interpreted as a continental scale accretionary complex, such as the Paleozoic Altaids. Melting of metavolcanic rocks during tectonic thickening in the arcs played an important role in the generation of TTGs. Non-uniformitarian models proposed for the origin of Archean terranes have no analogs in the geologic record and are inconsistent with structural, lithological, petrological and geochemical data collected from Archean terranes over the last four decades. The style of deformation and generation of felsic rocks on outcrop scales in the Archean craton of West

  8. A model of convergent plate margins based on the recent tectonics of Shikoku, Japan

    NASA Technical Reports Server (NTRS)

    Bischke, R. E.

    1974-01-01

    A viscoelastic finite element plate tectonic model is applied to displacement data for the island of Shikoku, Japan. The flow properties and geometry of the upper portions of the earth are assumed known from geophysical evidence, and the loading characteristics are determined from the model. The nature of the forces acting on the Philippine Sea plate, particularly in the vicinity of the Nankai trough, is determined. Seismic displacement data related to the 1946 Nankaido earthquake are modeled in terms of a thick elastic plate overlying a fluidlike substratum. The sequence of preseismic and seismic displacements can be explained in terms of two independent processes operating on elastic lithospheric plates: a strain accumulation process caused by vertical downward forces acting on or within the lithosphere in the vicinity of the trench, and a strain release process caused by plate failure along a preexisting zone on weakness. This is a restatement of Reid's elastic rebound theory in terms of elastic lithospheric plates.

  9. Tectonics and Relative Plate Motions Around the Andaman Sea and Sumatra

    NASA Astrophysics Data System (ADS)

    Eguchi, T.; Murakoshi, T.

    2005-12-01

    There are several R-F-R models of the active back-arc opening system in the Andaman Sea proposed by authors, e.g., Curray et al. (1978), Eguchi et al. (1979), Eguchi (1991), Mantovani et al. (2001) and Nielsen et al. (2004). Most of the previous authors, except Eguchi et al. (1978) and Eguchi (1991), documented NW-SE or NNW-SSE striking relative plate motion at the Central Andaman Rift. Recent multi-beam bathymetry study by GEODYSSEA Project group confirmed the detailed configuration of the ENE-WSW striking Central Andaman Rift and adjacent transcurrent faults. All of data from the marine survey and recent shallow earthquakes as well as their strike-slip type focal mechanisms along the N-S striking fault segment at 95.2E from 11N to 12.5N support the approximate N-S opening at the adjacent Central Andaman Rift. The magnetic anomaly survey data of Curray et al. (1978) suggest that, in the case of N-S opening, the rate becomes 4.0 cm/y, although Curray et al. (1978) proposed the total rate of 3.7 cm/y in the case of NNW-SSE opening. We then studied the realistic geometry of plate boundaries from Sumatra through the Andaman sea including the Central Andaman Rift to Myanmar, using recent seismological data and GPS studies. As is important, the Sundaland is not part of the Eurasia plate as revealed by recent GPS surveys. Furthermore, based on data of GPS velocity vectors w.r.t. Eurasia plate (e.g., Pradirodirdjo et al., 1997; Michel et. al., 2001), we can recognize some differential motion within the NW-SE striking fore-arc block, which is bounded by the Sumatra transcurrent fault and Java trench. The GPS data indicate 'differential motion' in both the trench-parallel and trench-normal directions within the NW-SE striking fore-arc block. We must resolve whether such kind differential movement within the fore-arc block is steady or not, to investigate the detailed spatio-temporal nature of dynamic coupling at the subduction zones with intermittent activity of larger

  10. Controls on accretion of flysch and mélange belts at convergent margins: Evidence from the Chugach Bay thrust and Iceworm mélange, Chugach accretionary wedge, Alaska

    NASA Astrophysics Data System (ADS)

    Kusky, Timothy M.; Bradley, Dwight C.; Haeussler, Peter J.; Karl, Sue

    1997-12-01

    Controls on accretion of flysch and mélange terranes at convergent margins are poorly understood. Southern Alaska's Chugach terrane forms the outboard accretionary margin of the Wrangellia composite terrane, and consists of two major lithotectonic units, including Triassic-Cretaceous mélange of the McHugh Complex and Late Cretaceous flysch of the Valdez Group. The contact between the McHugh Complex and the Valdez Group on the Kenai Peninsula is a tectonic boundary between chaotically deformed melange of argillite, chert, greenstone, and graywacke of the McHugh Complex and a less chaotically deformed mélange of argillite and graywacke of the Valdez Group. We assign the latter to a new, informal unit of formational rank, the Iceworm mélange, and interpret it as a contractional fault zone (Chugach Bay thrust) along which the Valdez Group was emplaced beneath the McHugh Complex. The McHugh Complex had already been deformed and metamorphosed to prehnite-pumpellyite facies prior to formation of the Iceworm mélange. The Chugach Bay thrust formed between 75 and 55 Ma, as shown by Campanian-Maastrichtian depositional ages of the Valdez Group, and fault-related fabrics in the Iceworm mélange that are cut by Paleocene dikes. Motion along the Chugach Bay thrust thus followed Middle to Late Cretaceous collision (circa 90-100 Ma) of the Wrangellia composite terrane with North America. Collision related uplift and erosion of mountains in British Columbia formed a submarine fan on the Farallon plate, and we suggest that attempted subduction of this fan dramatically changed the subduction/accretion style within the Chugach accretionary wedge. We propose a model in which subduction of thinly sedimented plates concentrates shear strains in a narrow zone, generating mélanges like the McHugh in accretionary complexes. Subduction of thickly sedimented plates allows wider distribution of shear strains to accommodate plate convergence, generating a more coherent accretionary style

  11. Coexisting shortening and extension along the "Africa-Eurasia" plate boundary in southern Italy

    NASA Astrophysics Data System (ADS)

    Cuffaro, M.; Riguzzi, F.; Scrocca, D.; Doglioni, C.

    2009-04-01

    We performed geodetic strain rate field analyses along the "Africa (Sicily microplate)"-"Eurasia (Tyrrhenian microplate)" plate boundary in Sicily (southern Italy), using new GPS velocities from a data set spanning maximum ten years (1998-2007). Data from GPS permanent stations maintained from different institutions and the recent RING network, settled in Italy in the last five years by the Istituto Nazionale di Geofisica e Vulcanologia, were included into the analysis. Two dimensional strain and rotation rate fields were estimated by the distance weighted approach on a regularly spaced grid (30*30km), estimating the strain using all stations, but data from each station are weighted by their distance from the grid node by a constant a=70km that specifies how the effect of a station decays with distance from the node grid interpolation. Results show that most of the shortening of the Africa-Eurasia relative motion is distributed in the northwestern side offshore Sicily, whereas the extension becomes comparable with shortening on the western border of the Capo d'Orlando basin, and grater in the northeastern side, offshore Sicily, as directly provided by GPS velocities which show a larger E-ward component of sites located in Calabria with respect to those located either in northern Sicily or in the Ustica-Aeolian islands. Moreover, where shortening and extension have mostly a similar order of magnitude, two rotation rate fields can be detected, CCW in the northwestern side of Sicily, and CW in the northeastern one respectively. Also, 2-D dilatation field records a similar pattern, with negative values (shortening) in the northwestern area of Sicily close to the Ustica island, and positive values (extension) in the northeastern and southeastern ones, respectively. Principal shortening and extension rate axes are consistent with long-term geological features: seismic reflection profiles acquired in the southern Tyrrhenian seismogenic belt show active extensional faults

  12. Transients in Pacific/North American Plate Boundary Deformation: Synthesis and Modeling of GPS and Borehole Strain Observations

    NASA Technical Reports Server (NTRS)

    Solomon, Sean C.; Frey, H. V. (Technical Monitor)

    2002-01-01

    This is the Final Technical Report on research conducted between 1 June 1997 and 14 September 2001 entitled "Transients in Pacific/North American plate boundary deformation: Synthesis and modeling of GPS and borehole strain observations." As the project title implies, our effort involved a geodetic study of strain transients, i.e., temporal variations in deformation rates, that occur within plate boundary zones and their relationship to earthquakes and plate motions. Important transients occur during and following large earthquakes, and there are also strain transients not apparently associated with earthquakes. A particularly intriguing class of transients, for which there is a modest but growing list of examples, are preseismic anomalies. Such earthquake precursors, if further documented and understood, would have obvious importance for earthquake hazard mitigation. Because the timescales for these diverse transients range over at least 6 orders of magnitude (minutes to years), no single geodetic technique is optimum. We therefore undertook a systematic synthesis of Global Positioning Satellite (GPS) and borehole strainmeter data in three areas in California where there are adequate numbers of both types of instruments (or their equivalent): the San Francisco Bay region (within the Bay Area Regional Deformation network), southern California (within the Southern California Integrated GPS Network), and Parkfield (where a two-color laser system provides a proxy for continuous GPS measurements). An integral component of our study was the elucidation of the physical mechanisms by which such transients occur and propagate. We therefore initiated the development of multiple forward models, using two independent approaches. In the first, we explored the response to specified earthquake slip in viscoelastic models that incorporated failure criteria and the geometry of major faults in California. In the second approach, we examined the dynamical response of a complex

  13. Slip parameters on major thrusts at a convergent plate boundary: regional heterogeneity of potential slip distance at the shallow portion of the subducting plate

    NASA Astrophysics Data System (ADS)

    Mukoyoshi, Hideki; Kaneki, Shunya; Hirono, Tetsuro

    2018-03-01

    Understanding variations of slip distance along major thrust systems at convergent margins is an important issue for evaluation of near-trench slip and the potential generation of large tsunamis. We derived quantitative estimates of slip along ancient subduction fault systems by using the maturity of carbonaceous material (CM) of discrete slip zones as a proxy for temperature. We first obtained the Raman spectra of CM in ultracataclasite and pseudotachylyte layers in discrete slip zones at depths below the seafloor of 1-4 km and 2.5-5.5 km, respectively. By comparing the area-under-the-peak ratios of graphitic and disordered bands in those Raman spectra with spectra of experimentally heated CM from surrounding rocks, we determined that the ultracataclasite and pseudotachylyte layers had been heated to temperatures of up to 700 and 1300 °C, respectively. Numerical simulation of the thermal history of CM extracted from rocks near the two slip zones, taking into consideration these temperature constraints, indicated that slip distances in the ultracataclasite and pseudotachylyte layers were more than 3 and 7 m, respectively. Thus, potential distance of coseismic slip along the subduction-zone fault system could have regional variations even at shallow depth (≤ 5.5 km). The slip distances we determined probably represent minimum slips for subduction-zone thrusts and thus provide an important contribution to earthquake preparedness plans in coastal areas facing the Nankai and Sagami Troughs.

  14. The Ionian and Alfeo-Etna fault zones: New segments of an evolving plate boundary in the central Mediterranean Sea?

    NASA Astrophysics Data System (ADS)

    Polonia, A.; Torelli, L.; Artoni, A.; Carlini, M.; Faccenna, C.; Ferranti, L.; Gasperini, L.; Govers, R.; Klaeschen, D.; Monaco, C.; Neri, G.; Nijholt, N.; Orecchio, B.; Wortel, R.

    2016-04-01

    The Calabrian Arc is a narrow subduction-rollback system resulting from Africa/Eurasia plate convergence. While crustal shortening is taken up in the accretionary wedge, transtensive deformation accounts for margin segmentation along transverse lithospheric faults. One of these structures is the NNW-SSE transtensive fault system connecting the Alfeo seamount and the Etna volcano (Alfeo-Etna Fault, AEF). A second, NW-SE crustal discontinuity, the Ionian Fault (IF), separates two lobes of the CA subduction complex (Western and Eastern Lobes) and impinges on the Sicilian coasts south of the Messina Straits. Analysis of multichannel seismic reflection profiles shows that: 1) the IF and the AEF are transfer crustal tectonic features bounding a complex deformation zone, which produces the downthrown of the Western lobe along a set of transtensive fault strands; 2) during Pleistocene times, transtensive faulting reactivated structural boundaries inherited from the Mesozoic Tethyan domain which acted as thrust faults during the Messinian and Pliocene; and 3) the IF and the AEF, and locally the Malta escarpment, accommodate a recent tectonic event coeval and possibly linked to the Mt. Etna formation. Regional geodynamic models show that, whereas AEF and IF are neighboring fault systems, their individual roles are different. Faulting primarily resulting from the ESE retreat of the Ionian slab is expressed in the northwestern part of the IF. The AEF, on the other hand, is part of the overall dextral shear deformation, resulting from differences in Africa-Eurasia motion between the western and eastern sectors of the Tyrrhenian margin of northern Sicily, and accommodating diverging motions in the adjacent compartments, which results in rifting processes within the Western Lobe of the Calabrian Arc accretionary wedge. As such, it is primarily associated with Africa-Eurasia relative motion.

  15. Seafloor spreading on the Southeast Indian Ridge over the last one million years: a test of the Capricorn plate hypothesis

    NASA Astrophysics Data System (ADS)

    Conder, James A.; Forsyth, Donald W.

    2001-05-01

    Plate motions in the Indian Ocean are inconsistent with a rigid Indo-Australian plate. An equatorial, diffuse boundary dividing the plate into separate Indian and Australian plates significantly improves the fit of kinematic plate models to the spreading rates, transform azimuths, and earthquake slip vectors on the spreading center boundaries. An additional boundary, further dividing the Australian plate into Australian and Capricorn plates has been proposed to account for much of the remaining inconsistency and the pattern of intraplate earthquakes [J.-Y. Royer, R.G. Gordon, Science 277 (1997) 1268-1274]. The proposed boundary is ˜2000 km wide where it intersects the Southeast Indian Ridge. Several recent geophysical cruises to the Southeast Indian Ridge, including a cruise within the proposed boundary, provide many new data for investigating the validity of the Capricorn plate model. These new observations strongly support the hypothesis that the Capricorn plate exists. Statistical tests of the data from the Southeast Indian Ridge alone are not sufficient to confirm it, but motion about the Rodriguez Triple Junction (RTJ) suggests some non-rigidity in the Antarctica-Australia-Somalia circuit. Inferred deformation with enforced closure about the RTJ leads to an estimate of plate motion consistent with the Capricorn plate model. However, the diffuse Capricorn-Australia boundary does not extend south of the St. Paul Fracture Zone, 800 km narrower than the previously proposed boundary.

  16. Alps, Carpathians and Dinarides-Hellenides: about plates, micro-plates and delaminated crustal blocks

    NASA Astrophysics Data System (ADS)

    Schmid, Stefan

    2014-05-01

    Before the onset of Europe-Africa continental collision in the Dinarides-Hellenides (around 60Ma) and in the Alps and Western Carpathians (around 35 Ma), and at a large scale, the dynamics of orogenic processes in the Mediterranean Alpine chains were governed by Europe-Africa plate convergence leading to the disappearance of large parts of intervening oceanic lithosphere, i.e. the northern branch of Neotethys along the Sava-Izmir-Ankara suture and Alpine Tethys along the Valais-Magura suture (Schmid et al. 2008). In spite of this, two major problems concerning the pre-collisional stage are still poorly understood: (1) by now we only start to understand geometry, kinematics and dynamics of the along-strike changes in the polarity of subduction between Alps-Carpathians and Dinarides-Hellenides, and (2) it is not clear yet during exactly which episodes and to what extent intervening rifted continental fragments such as, for example, Iberia-Briançonnais, Tisza, Dacia, Adria-Taurides moved independently as micro-plates, and during which episodes they remained firmly attached to Europa or Africa from which they broke away. As Europe-Africa plate convergence slowed down well below 1 cm/yr at around 30 Ma ago these pre-collisional processes driven by plate convergence on a global scale gave way to more local processes of combined roll-back and crustal delamination in the Pannonian basin of the Carpathian embayment and in the Aegean (as well as in the Western Mediterranean, not discussed in this contribution). In the case of the Carpathian embayment E-directed roll back totally unrelated to Europe-Africa N-S-directed convergence, started at around 20 Ma ago, due to the presence relict oceanic lithosphere in the future Pannonian basin that remained un-subducted during collision. Due to total delamination of the crust from the eastward rolling back European mantle lithosphere the anticlockwise rotating ALCAPA crustal block, consisting of Eastern Alps and Western Carpathian

  17. The stress distribution in pin-loaded orthotropic plates

    NASA Technical Reports Server (NTRS)

    Klang, E. C.; Hyer, M. W.

    1985-01-01

    The performance of mechanically fastened composite joints was studied. Specially, a single-bolt connector was modeled as a pin-loaded, infinite plate. The model that was developed used two dimensional, complex variable, elasticity techniques combined with a boundary collocation procedure to produce solutions for the problem. Through iteration, the boundary conditions were satisfied and the stresses in the plate were calculated. Several graphite epoxy laminates were studied. In addition, parameters such as the pin modulus, coefficient of friction, and pin-plate clearance were varied. Conclusions drawn from this study indicate: (1) the material properties (i.e., laminate configuration) of the plate alter the stress state and, for highly orthotropic materials, the contact stress deviates greatly from the cosinusoidal distribution often assumed; (2) friction plays a major role in the distribution of stresses in the plate; (3) reversing the load direction also greatly effects the stress distribution in the plate; (4) clearance (or interference) fits change the contact angle and thus the location of the peak hoop stress; and (5) a rigid pin appears to be a good assumption for typical material systems.

  18. Plate Boundary Observatory Strainmeter Recordings of The M6.0 August 24, 2014 South Napa Earthquake

    NASA Astrophysics Data System (ADS)

    Hodgkinson, Kathleen; Mencin, David; Phillips, David; Mattioli, Glen; Meertens, Charles

    2015-04-01

    The 2014 Mw6.0 South Napa earthquake nucleated at 11 km depth near the West Napa fault, one of a complex system of sub-parallel major right lateral faults north of San Francisco that together accommodate much of the relative motion between the Pacific and North American tectonic plates. The South Napa event was the largest to have shaken the San Francisco Bay Area (SFBA) in almost 25 years. A major goal of the NSF-funded EarthScope Plate Boundary Observatory (PBO), installed and maintained by UNAVCO, was to enable researchers to study the interaction between the faults that form a plate boundary zone, and in particular, to investigate the role that aseismic transients contribute to strain accumulation and release. To realize this goal, PBO includes borehole tensor strainmeters (BSMs) installed in several targeted regions, including on to the north and east of San Francisco. Two PBO BSMs have been operating in the SFBA since 2008: B057, north of San Francisco and 30 km from the epicenter, and B054, 3 km from the Hayward Fault and 40 km from the epicenter. We find the coseismic strains recorded by B057 are close to those predicted using elastic half-space dislocation theory and the seismically determined focal mechanism, while a more complicated variable slip model may be required for observations from B054. Months after the event, B057 continued to record a significant postseismic signal. In this presentation we document the coseismic signals recorded by the PBO BSMs and characterize the temporal behavior of the postseismic signal at B057. The PBO network includes over 1100 GPS, 75 BSMs, 79 seismometers and arrays of tiltmeters, pore pressure sensors and meteorological instrumentation. UNAVCO generates an Earthscope Level 2 processed strain time-series combined into areal and shear strains for the PBO BSM network; the raw data are available from the IRIS DMC in mSEED format. For events of interest, such as the South Napa earthquake, UNAVCO generates a 1-sps

  19. A source-sink model of the generation of plate tectonics from non-Newtonian mantle flow

    NASA Technical Reports Server (NTRS)

    Bercovici, David

    1995-01-01

    A model of mantle convection which generates plate tectonics requires strain rate- or stress-dependent rheology in order to produce strong platelike flows with weak margins as well as strike-slip deformation and plate spin (i.e., toroidal motion). Here, we employ a simple model of source-sink driven surface flow to determine the form of such a rheology that is appropriate for Earth's present-day plate motions. In this model, lithospheric motion is treated as shallow layer flow driven by sources and sinks which correspond to spreading centers and subduction zones, respectively. Two plate motion models are used to derive the source sink field. As originally implied in the simpler Cartesian version of this model, the classical power law rheologies do not generate platelike flows as well as the hypothetical Whitehead-Gans stick-slip rheology (which incorporates a simple self-lubrication mechanism). None of the fluid rheologies examined, however, produce more than approximately 60% of the original maximum shear. For either plate model, the viscosity fields produced by the power law rheologies are diffuse, and the viscosity lows over strike-slip shear zones or pseudo-margins are not as small as over the prescribed convergent-divergent margins. In contrast, the stick-slip rheology generates very platelike viscosity fields, with sharp gradients at the plate boundaries, and margins with almost uniformly low viscosity. Power law rheologies with high viscosity contrasts, however, lead to almost equally favorable comparisons, though these also yield the least platelike viscosity fields. This implies that the magnitude of toroidal flow and platelike strength distributions are not necessarily related and thus may present independent constraints on the determination of a self-consistent plate-mantle rheology.

  20. Global Dynamic Numerical Simulations of Plate Tectonic Reorganizations

    NASA Astrophysics Data System (ADS)

    Morra, G.; Quevedo, L.; Butterworth, N.; Matthews, K. J.; Müller, D.

    2010-12-01

    We use a new numerical approach for global geodynamics to investigate the origin of present global plate motion and to identify the causes of the last two global tectonic reorganizations occurred about 50 and 100 million years ago (Ma) [1]. While the 50 Ma event is the most well-known global plate-mantle event, expressed by the bend in the Hawaiian-Emperor volcanic chain, a prominent plate reorganization at about 100 Ma, although presently little studied, is clearly indicated by a major bend in the fracture zones in the Indian Ocean and by a change in Pacific plate motion [2]. Our workflow involves turning plate reconstructions into surface meshes that are subsequently employed as initial conditions for global Boundary Element numerical models. The tectonic setting that anticipates the reorganizations is processed with the software GPlates, combining the 3D mesh of the paleo-plate morphology and the reconstruction of paleo-subducted slabs, elaborated from tectonic history [3]. All our models involve the entire planetary system, are fully dynamic, have free surface, are characterized by a spectacular computational speed due to the simultaneous use of the multi-pole algorithm and the Boundary Element formulation and are limited only by the use of sharp material property variations [4]. We employ this new tool to unravel the causes of plate tectonic reorganizations, producing and comparing global plate motion with the reconstructed ones. References: [1] Torsvik, T., Müller, R.D., Van der Voo, R., Steinberger, B., and Gaina, C., 2008, Global Plate Motion Frames: Toward a unified model: Reviews in Geophysics, VOL. 46, RG3004, 44 PP., 2008 [2] Wessel, P. and Kroenke, L.W. Pacific absolute plate motion since 145 Ma: An assessment of the fixed hot spot hypothesis. Journal of Geophysical Research, Vol 113, B06101, 2008 [3] L. Quevedo, G. Morra, R. D. Mueller. Parallel Fast Multipole Boundary Element Method for Crustal Dynamics, Proceeding 9th World Congress and 4th Asian

  1. Crustal stress across the northern Arabian plate and the relationship with the plate boundary forces

    NASA Astrophysics Data System (ADS)

    Yassminh, Rayan

    The region encompassing the collision of northern Arabia with Eurasia is a tectonically heterogeneous region of distributed deformation. The northern Arabia plate is bounded to the west by the subducting Sinai plate and the left-lateral Dead Sea transform. This complexity suggests that there are multiple competing processes that may influence regional tectonics in northern Arabia and adjacent areas. Earthquake mechanisms provide insight into crustal kinematics and stress; however, reliable determination of earthquake source parameters can be challenging in a complex geological region, such as the continental collision zone between the Arabian and Eurasian plates. The goal of this study is to investigate spatial patterns of the crustal stress in the northern Arabian plate and surrounding area. The focal mechanisms used in this study are based on (1) first-motion polarities for earthquakes recorded by Syrian earthquake center during 2000-2011, and (2) regional moment tensors from broadband seismic data, from Turkey and Iraq. First motion focal mechanisms were assigned quality classifications based on the variation of both nodal planes. Regional moment tensor analysis can be significantly influenced by seismic velocity structure; thus, we have divided the study area into regions based on tectonic units. For each region, the velocity model is described using a waveform-modeling technique prior to the regional moment tensor inversion. The resulting focal mechanisms, combined with other previously published focal mechanisms for the study area, provide a basis for stress inversion analysis. The resulting deviatoric stress tensors show the spatial distribution of the maximum horizontal stress varies from NW-SE along the Dead Sea Fault to the N-S toward the east. We interpret this to reflect the eastward change from the transform to collision processes in northern Arabia. Along the Dead Sea Fault, transposition of the sigma-1 and sigma-2 to vertical and horizontal

  2. High precision refractometry based on Fresnel diffraction from phase plates.

    PubMed

    Tavassoly, M Taghi; Naraghi, Roxana Rezvani; Nahal, Arashmid; Hassani, Khosrow

    2012-05-01

    When a transparent plane-parallel plate is illuminated at a boundary region by a monochromatic parallel beam of light, Fresnel diffraction occurs because of the abrupt change in phase imposed by the finite change in refractive index at the plate boundary. The visibility of the diffraction fringes varies periodically with changes in incident angle. The visibility period depends on the plate thickness and the refractive indices of the plate and the surrounding medium. Plotting the phase change versus incident angle or counting the visibility repetition in an incident-angle interval provides, for a given plate thickness, the refractive index of the plate very accurately. It is shown here that the refractive index of a plate can be determined without knowing the plate thickness. Therefore, the technique can be utilized for measuring plate thickness with high precision. In addition, by installing a plate with known refractive index in a rectangular cell filled with a liquid and following the described procedures, the refractive index of the liquid is obtained. The technique is applied to measure the refractive indices of a glass slide, distilled water, and ethanol. The potential and merits of the technique are also discussed.

  3. The life cycle of continental rifts: Numerical models of plate tectonics and mantle convection.

    NASA Astrophysics Data System (ADS)

    Ulvrova, Martina; Brune, Sascha; Williams, Simon

    2017-04-01

    Plate tectonic processes and mantle convection form a self-organized system whose surface expression is characterized by repeated Wilson cycles. Conventional numerical models often capture only specific aspects of plate-mantle interaction, due to imposed lateral boundary conditions or simplified rheologies. Here we study continental rift evolution using a 2D spherical annulus geometry that does not require lateral boundary conditions. Instead, continental extension is driven self-consistently by slab pull, basal drag and trench suction forces. We use the numerical code StagYY to solve equations of conservation of mass, momentum and energy and transport of material properties. This code is capable of computing mantle convection with self-consistently generated Earth-like plate tectonics using a pseudo-plastic rheology. Our models involve an incompressible mantle under the Boussinesq approximation with internal heat sources and basal heating. Due to the 2D setup, our models allow for a comparably high resolution of 10 km at the mantle surface and 15 km at the core mantle boundary. Viscosity variations range over 7 orders of magnitude. We find that the causes for rift initiation are often related to subduction dynamics. Some rifts initiate due to increasing slab pull, others because of developing trench suction force, for instance by closure of an intra-oceanic back-arc basin. In agreement with natural settings, our models reproduce rifts forming in both young and old collision zones. Our experiments show that rift dynamics follow a characteristic evolution, which is independent of the specific setting: (1) continental rifts initiate during tens of million of years at low extension rates (few millimetres per year) (2) the extension velocity increases during less than 10 million years up to several tens of millimetres per year. This speed-up takes place before lithospheric break-up and affects the structural architecture of rifted margins. (3) high divergence rates

  4. Stability and natural vibration analysis of laminated plates by using a mixed element based on a refined plate theory

    NASA Technical Reports Server (NTRS)

    Putcha, N. S.; Reddy, J. N.

    1986-01-01

    A mixed shear flexible finite element, with relaxed continuity, is developed for the geometrically linear and nonlinear analysis of layered anisotropic plates. The element formulation is based on a refined higher order theory which satisfies the zero transverse shear stress boundary conditions on the top and bottom faces of the plate and requires no shear correction coefficients. The mixed finite element developed herein consists of eleven degrees of freedom per node which include three displacements, two rotations and six moment resultants. The element is evaluated for its accuracy in the analysis of the stability and vibration of anisotropic rectangular plates with different lamination schemes and boundary conditions. The mixed finite element described here for the higher order theory gives very accurate results for buckling loads and natural frequencies.

  5. Exhumation History of an Oblique Plate Boundary: Investigating Kaikoura Mountain-building within the Marlborough Fault System, NE South Island New Zealand

    NASA Astrophysics Data System (ADS)

    Collett, C.; Duvall, A. R.; Flowers, R. M.; Tucker, G. E.

    2015-12-01

    The Kaikoura Mountains stand high as topographic anomalies in the oblique Pacific-Australian plate boundary zone known as the Marlborough Fault System (MFS), NE South Island New Zealand. The base of both the Inland and Seaward Kaikoura Ranges are bound on the SE by major, steeply NW-dipping, right lateral, active strike-slips (Clarence and Hope faults of the MFS, respectively). Previous geologic mapping, observations of predominantly horizontal fault slip at the surface from GPS and offset Quaternary deposits, and uplift of marine terraces, provide evidence for shortening and mountain-building via distributed deformation off of the main MFS strike-slip faults. However, quantitative estimates of the magnitude and spatial patterns of exhumation and of the timing of mountain-building in the Kaikouras are needed to understand more fully the nature of oblique deformation in the MFS. We present new apatite and zircon (U-Th)/He ages from opposite sides of the Hope and Clarence faults, spanning over 2 km of relief within the Kaikoura Mountains to identify spatial and temporal changes in exhumation rates in relation to the adjacent faults. Young (~3 Ma) apatite He ages and rapid (potentially > 1 mm/yr) exhumation rates from opposite sides of the faults are consistent with previously mentioned evidence of recent, regional, distributed deformation off of the main MFS faults. Moreover, early Miocene zircon He ages imply that parts of this region experienced an earlier phase of fault-related exhumation. Large changes in zircon He ages across the faults from ~20 Ma to > 100 Ma support hypotheses that portions of the Marlborough Faults may be re-activated, early Miocene thrusts. The zircon data are also consistent with the hypothesis of an early Miocene initiation of the oblique Pacific-Australian plate boundary in this region. Evidence for this comes from a change in sedimentation during this time from fine marine sediments to coarse, terrigenous conglomerates. Observing more

  6. Casimir effect for parallel plates in a Friedmann-Robertson-Walker universe

    NASA Astrophysics Data System (ADS)

    Bezerra de Mello, E. R.; Saharian, A. A.; Setare, M. R.

    2017-03-01

    We evaluate the Hadamard function, the vacuum expectation values (VEVs) of the field squared and the energy-momentum tensor for a massive scalar field with a general curvature coupling parameter in the geometry of two parallel plates on a spatially flat Friedmann-Robertson-Walker background with a general scale factor. On the plates, the field operator obeys the Robin boundary conditions with the coefficients depending on the scale factor. In all the spatial regions, the VEVs are decomposed into the boundary-free and boundary-induced contributions. Unlike the problem with the Minkowski bulk, in the region between the plates, the normal stress is not homogeneous and does not vanish in the geometry of a single plate. Near the plates, it has different signs for accelerated and decelerated expansions of the Universe. The VEV of the energy-momentum tensor, in addition to the diagonal components, has a nonzero off-diagonal component describing an energy flux along the direction normal to the boundaries. Expressions are derived for the Casimir forces acting on the plates. Depending on the Robin coefficients and on the vacuum state, these forces can be either attractive or repulsive. An important difference from the corresponding result in the Minkowski bulk is that the forces on the separate plates, in general, are different if the corresponding Robin coefficients differ. We give the applications of general results for the class of α vacua in the de Sitter bulk. It is shown that, compared with the Bunch-Davies vacuum state, the Casimir forces for a given α vacuum may change the sign.

  7. Fuel cell cooler-humidifier plate

    DOEpatents

    Vitale, Nicholas G.; Jones, Daniel O.

    2000-01-01

    A cooler-humidifier plate for use in a proton exchange membrane (PEM) fuel cell stack assembly is provided. The cooler-humidifier plate combines functions of cooling and humidification within the fuel cell stack assembly, thereby providing a more compact structure, simpler manifolding, and reduced reject heat from the fuel cell. Coolant on the cooler side of the plate removes heat generated within the fuel cell assembly. Heat is also removed by the humidifier side of the plate for use in evaporating the humidification water. On the humidifier side of the plate, evaporating water humidifies reactant gas flowing over a moistened wick. After exiting the humidifier side of the plate, humidified reactant gas provides needed moisture to the proton exchange membranes used in the fuel cell stack assembly. The invention also provides a fuel cell plate that maximizes structural support within the fuel cell by ensuring that the ribs that form the boundaries of channels on one side of the plate have ends at locations that substantially correspond to the locations of ribs on the opposite side of the plate.

  8. Natural Vibration Analysis of Clamped Rectangular Orthotropic Plates

    NASA Astrophysics Data System (ADS)

    dalaei, m.; kerr, a. d.

    The natural vibrations of clamped rectangular orthotropic plates are analyzed using the extended Kantorovich method. The developed iterative scheme converges very rapidly to the final result. The obtained natural frequencies are evaluated for a square plate made of Kevlar 49 Epoxy and the obtained results are compared with those published by Kanazawa and Kawai, and by Leissa. The agreement was found to be very close. As there are no exact analytical solutions for clamped rectangular plates, the generated closed form expression for the natural modes, and the corresponding natural frequencies, are very suitable for use in engineering analyses.

  9. A far-field non-reflecting boundary condition for two-dimensional wake flows

    NASA Technical Reports Server (NTRS)

    Danowitz, Jeffrey S.; Abarbanel, Saul A.; Turkel, Eli

    1995-01-01

    Far-field boundary conditions for external flow problems have been developed based upon long-wave perturbations of linearized flow equations about a steady state far field solution. The boundary improves convergence to steady state in single-grid temporal integration schemes using both regular-time-stepping and local-time-stepping. The far-field boundary may be near the trailing edge of the body which significantly reduces the number of grid points, and therefore the computational time, in the numerical calculation. In addition the solution produced is smoother in the far-field than when using extrapolation conditions. The boundary condition maintains the convergence rate to steady state in schemes utilizing multigrid acceleration.

  10. Convergence studies in meshfree peridynamic simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seleson, Pablo; Littlewood, David J.

    2016-04-15

    Meshfree methods are commonly applied to discretize peridynamic models, particularly in numerical simulations of engineering problems. Such methods discretize peridynamic bodies using a set of nodes with characteristic volume, leading to particle-based descriptions of systems. In this article, we perform convergence studies of static peridynamic problems. We show that commonly used meshfree methods in peridynamics suffer from accuracy and convergence issues, due to a rough approximation of the contribution to the internal force density of nodes near the boundary of the neighborhood of a given node. We propose two methods to improve meshfree peridynamic simulations. The first method uses accuratemore » computations of volumes of intersections between neighbor cells and the neighborhood of a given node, referred to as partial volumes. The second method employs smooth influence functions with a finite support within peridynamic kernels. Numerical results demonstrate great improvements in accuracy and convergence of peridynamic numerical solutions, when using the proposed methods.« less

  11. Strongly Coupled Fluid-Body Dynamics in the Immersed Boundary Projection Method

    NASA Astrophysics Data System (ADS)

    Wang, Chengjie; Eldredge, Jeff D.

    2014-11-01

    A computational algorithm is developed to simulate dynamically coupled interaction between fluid and rigid bodies. The basic computational framework is built upon a multi-domain immersed boundary method library, whirl, developed in previous work. In this library, the Navier-Stokes equations for incompressible flow are solved on a uniform Cartesian grid by the vorticity-based immersed boundary projection method of Colonius and Taira. A solver for the dynamics of rigid-body systems is also included. The fluid and rigid-body solvers are strongly coupled with an iterative approach based on the block Gauss-Seidel method. Interfacial force, with its intimate connection with the Lagrange multipliers used in the fluid solver, is used as the primary iteration variable. Relaxation, developed from a stability analysis of the iterative scheme, is used to achieve convergence in only 2-4 iterations per time step. Several two- and three-dimensional numerical tests are conducted to validate and demonstrate the method, including flapping of flexible wings, self-excited oscillations of a system of linked plates and three-dimensional propulsion of flexible fluked tail. This work has been supported by AFOSR, under Award FA9550-11-1-0098.

  12. Boundary layer control device for duct silencers

    NASA Technical Reports Server (NTRS)

    Schmitz, Fredric H. (Inventor); Soderman, Paul T. (Inventor)

    1993-01-01

    A boundary layer control device includes a porous cover plate, an acoustic absorber disposed under the porous cover plate, and a porous flow resistive membrane interposed between the porous cover plate and the acoustic absorber. The porous flow resistive membrane has a flow resistance low enough to permit sound to enter the acoustic absorber and high enough to damp unsteady flow oscillations.

  13. Three-Dimensional Thermal Boundary Layer Corrections for Circular Heat Flux Gauges Mounted in a Flat Plate with a Surface Temperature Discontinuity

    NASA Technical Reports Server (NTRS)

    Kandula, M.; Haddad, G. F.; Chen, R.-H.

    2006-01-01

    Three-dimensional Navier-Stokes computational fluid dynamics (CFD) analysis has been performed in an effort to determine thermal boundary layer correction factors for circular convective heat flux gauges (such as Schmidt-Boelter and plug type)mounted flush in a flat plate subjected to a stepwise surface temperature discontinuity. Turbulent flow solutions with temperature-dependent properties are obtained for a free stream Reynolds number of 1E6, and freestream Mach numbers of 2 and 4. The effect of gauge diameter and the plate surface temperature have been investigated. The 3-D CFD results for the heat flux correction factors are compared to quasi-21) results deduced from constant property integral solutions and also 2-D CFD analysis with both constant and variable properties. The role of three-dimensionality and of property variations on the heat flux correction factors has been demonstrated.

  14. High-velocity basal sediment package atop oceanic crust, offshore Cascadia: Impacts on plate boundary processes and fluid migration

    NASA Astrophysics Data System (ADS)

    Peterson, D. E.; Keranen, K. M.

    2017-12-01

    Differences in fluid pressure and mechanical properties at megathrust boundaries in subduction zones have been proposed to create varying seismogenic behavior. In Cascadia, where large ruptures are possible but little seismicity occurs presently, new seismic transects across the deformation front (COAST cruise; Holbrook et al., 2012) image an unusually high-wavespeed sedimentary unit directly overlying oceanic crust. Wavespeed increases before sediments reach the deformation front, and the well-laminated unit, consistently of 1 km thickness, can be traced for 50 km beneath the accretionary prism before imaging quality declines. Wavespeed is modeled via iterative prestack time migration (PSTM) imaging and increases from 3.5 km/sec on the seaward end of the profile to >5.0 km/s near the deformation front. Landward of the deformation front, wavespeed is low along seaward-dipping thrust faults in the Quaternary accretionary prism, indicative of rapid dewatering along faults. The observed wavespeed of 5.5 km/sec just above subducting crust is consistent with porosity <5% (Erickson and Jarrard, 1998), possibly reflecting enhanced consolidation, cementation, and diagenesis as the sediments encounter the deformation front. Beneath the sediment, the compressional wavespeed of uppermost oceanic crust is 3-4 km/sec, likely reduced by alteration and/or fluids, lowest within a propagator wake. The propagator wake intersects the plate boundary at an oblique angle and changes the degree of hydration of the oceanic plate as it subducts within our area. Fluid flow out of oceanic crust is likely impeded by the low-porosity basal sediment package except along the focused thrust faults. Decollements are present at the top of oceanic basement, at the top of the high-wavespeed basal unit, and within sedimentary strata at higher levels; the decollement at the top of oceanic crust is active at the toe of the deformation front. The basal sedimentary unit appears to be mechanically strong

  15. Present-day plate motions

    NASA Technical Reports Server (NTRS)

    Minster, J. B.; Jordan, T. H.

    1977-01-01

    A data set comprising 110 spreading rates, 78 transform fault azimuths and 142 earthquake slip vectors was inverted to yield a new instantaneous plate motion model, designated RM2. The mean averaging interval for the relative motion data was reduced to less than 3 My. A detailed comparison of RM2 with angular velocity vectors which best fit the data along individual plate boundaries indicates that RM2 performs close to optimally in most regions, with several notable exceptions. On the other hand, a previous estimate (RM1) failed to satisfy an extensive set of new data collected in the South Atlantic Ocean. It is shown that RM1 incorrectly predicts the plate kinematics in the South Atlantic because the presently available data are inconsistent with the plate geometry assumed in deriving RM1. It is demonstrated that this inconsistency can be remedied by postulating the existence of internal deformation with the Indian plate, although alternate explanations are possible.

  16. Eikonal Tomography of the Southern California Plate Boundary Region

    NASA Astrophysics Data System (ADS)

    Qiu, H.; Ben-Zion, Y.; Zigone, D.; Lin, F. C.

    2016-12-01

    We use eikonal tomography to derive directionally-dependent phase velocities of surface waves for the plate boundary region in southern CA sensitive to the approximate depth range 1-20 km. Seismic noise data recorded by 346 stations in the area provide a spatial coverage with 5-25 km typical station spacing and period range of 1-20 s. Noise cross-correlations are calculated for vertical component data recorded in year 2014. Rayleigh wave group and phase travel times between 2 and 13 sec period are derived for each station pair using frequency-time analysis. For each common station, all available phase travel time measurements with sufficient signal to noise ratio and envelope peak amplitude are used to construct a travel time map for a virtual source at the common station location. By solving the eikonal equation, both phase velocity and propagation direction are evaluated at each location for each virtual source. Isotropic phase velocities and 2-psi azimuthal anisotropy and their uncertainties are determined statistically using measurements from different virtual sources. Following the method of Barmin et al. (2001), group velocities are also inverted using all the group travel times that pass quality criteria. The obtained group and phase dispersions of Rayleigh waves are then inverted on a 6 x 6 km2 grid for local 1D piecewise shear wave velocity structures using the procedure of Herrmann (2013). The results agree well with previous observations of Zigone et al. (2015) in the overlapping area. Clear velocity contrasts and low velocity zones are seen for the San Andreas, San Jacinto, Elsinore and Garlock faults. We also find 2-psi azimuthal anisotropy with fast directions parallel to geometrically-simple fault sections. Details and updated results will be presented in the meeting.

  17. Spatial evolution of Zagros collision zone in Kurdistan, NW Iran: constraints on Arabia-Eurasia oblique convergence

    NASA Astrophysics Data System (ADS)

    Sadeghi, Shahriar; Yassaghi, Ali

    2016-04-01

    Stratigraphy, detailed structural mapping and a crustal-scale cross section across the NW Zagros collision zone provide constraints on the spatial evolution of oblique convergence of the Arabian and Eurasian plates since the Late Cretaceous. The Zagros collision zone in NW Iran consists of the internal Sanandaj-Sirjan, Gaveh Rud and Ophiolite zones and the external Bisotoun, Radiolarite and High Zagros zones. The Main Zagros Thrust is the major structure of the Zagros suture zone. Two stages of oblique deformation are recognized in the external part of the NW Zagros in Iran. In the early stage, coexisting dextral strike-slip and reverse dominated domains in the Radiolarite zone developed in response to deformation partitioning due to oblique convergence. Dextral-reverse faults in the Bisotoun zone are also compatible with oblique convergence. In the late stage, deformation partitioning occurred during southeastward propagation of the Zagros orogeny towards its foreland resulting in synchronous development of orogen-parallel strike-slip and thrust faults. It is proposed that the first stage was related to Late Cretaceous oblique obduction, while the second stage resulted from Cenozoic collision. The Cenozoic orogen-parallel strike-slip component of Zagros oblique convergence is not confined to the Zagros suture zone (Main Recent Fault) but also occurred in the external part (Marekhil-Ravansar fault system). Thus, it is proposed that oblique convergence of Arabian and Eurasian plates in Zagros collision zone initiated with oblique obduction in the Late Cretaceous followed by oblique collision in the late Tertiary, consistent with global plate reconstructions.

  18. Lithospheric structure beneath the Caribbean- South American plate boundary from S receiver functions

    NASA Astrophysics Data System (ADS)

    Masy, J.; Levander, A.; Niu, F.

    2010-12-01

    We have analyzed teleseismic S-wave data recorded by the permanent national seismic network of Venezuela and the BOLIVAR broadband array (Broadband Onshore-offshore Lithospheric Investigation of Venezuela and the Antilles arc Region) deployed from 2003 to 2005. A total of 28 events with Mw > 5.7 occurring at epicentral distances from 55° to 85° were used. We made Sp receiver functions to estimate the rapid variations of lithospheric structure in the southern Caribbean plate boundary region to try to better understand the complicated tectonic history of the region. Estimated Moho depth ranges from ~20 km beneath the Caribbean Large Igneous Provinces to ~50 km beneath the Mérida Andes in western Venezuela and the Sierra del Interior in northeastern Venezuela. These results are consistent with previous receiver functions studies (Niu et al., 2007) and active source profiles (Schmitz et al., 2001; Bezada et al., 2007; Clark et al., 2008; Guedez, 2008; Magnani et al., 2009). Beneath the Maracaibo Block we observe a signal at a depth of 100 km dipping ~24° towards the continent, which we interpret as the top of the oceanic Caribbean slab that is subducting beneath South America from the west. The deeper part of the slab was previously imaged using P-wave tomography (Bezada et al, 2010), and the upper part inferred from intermediate depth seismicity (Malavé and Suarez, 1995). These studies indicate flat slab subduction beneath northern Colombia and northwestern Venezuela with the slab dipping between 20° - 30° beneath Lake Maracaibo. Like others we attribute the flat slab subduction to the uplift of the Mérida Andes (for example Kellogg and Bonini, 1982). In eastern Venezuela beneath the Sierra del Interior we also observe a deep signal that we interpret as deep South American lithosphere that is detaching from the overriding plate as the Atlantic subducts and tears away from SA (Bezada et al., 2010; Clark et al, 2008). The lithosphere-asthenosphere boundary (LAB

  19. High-resolution reconstructions of Pacific-North America plate motion: 20 Ma to present

    NASA Astrophysics Data System (ADS)

    DeMets, C.; Merkouriev, S.

    2016-11-01

    We present new rotations that describe the relative positions and velocities of the Pacific and North America plates at 22 times during the past 19.7 Myr, offering ≈1-Myr temporal resolution for studies of the geotectonic evolution of western North America and other plate boundary locations. Derived from ≈18 000 magnetic reversal, fracture zone and transform fault identifications from the Pacific-Antarctic-Nubia-North America plate circuit and the velocities of 935 GPS sites on the Pacific and North America plates, the new rotations and GPS-derived angular velocity indicate that the rate of motion between the two plates increased by ≈70 per cent from 19.7 to 9±1 Ma, but changed by less than 2 per cent since 8 Ma and even less since 4.2 Ma. The rotations further suggest that the relative plate direction has rotated clockwise for most of the past 20 Myr, with a possible hiatus from 9 to 5 Ma. This conflicts with previously reported evidence for a significant clockwise change in the plate direction at ≈8-6 Ma. Our new rotations indicate that Pacific plate motion became obliquely convergent with respect to the San Andreas Fault of central California at 5.2-4.2 Ma, in agreement with geological evidence for a Pliocene onset of folding and faulting in central California. Our reconstruction of the northern Gulf of California at 6.3 Ma differs by only 15-30 km from structurally derived reconstructions after including 3-4 km Myr-1 of geodetically measured slip between the Baja California Peninsula and Pacific plate. This implies an approximate 15-30 km upper bound for plate non-rigidity integrated around the global circuit at 6.3 Ma. A much larger 200±54 km discrepancy between our reconstruction of the northern Gulf of California at 12 Ma and that estimated from structural and marine geophysical observations suggests that faults in northwestern Mexico or possibly west of the Baja California Peninsula accommodated large amounts of obliquely divergent dextral shear

  20. A source-sink model of the generation of plate tectonics from non-Newtonian mantle flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bercovici, D.

    1995-02-01

    A model of mantle convection which generates plate tectonics requires strain rate- or stress-dependent rheology in order to produce strong platelike flows with weak margins as well as strike-slip deformation and plate spin (i.e., toroidal motion). Here, we employ a simple model of source-sink driven surface flow to determine the form of such a rheology that is appropriate for Earth`s present-day plate motions. In this model, lithospheric motion is treated as shallow layer flow driven by sources and sinks which correspond to spreading centers and subduction zones, respectively. Two plate motion models are used to derive the source sink field.more » As originally implied in the simpler Cartesian version of this model, the classical power law rheologies do not generate platelike flows as well as the hypothetical Whitehead-Gans stick-slip rheology (which incorporates a simple self-lubrication mechanism). None of the fluid rheologies examined, however, produce more than approximately 60% of the original maximum shear. For either plate model, the viscosity fields produced by the power law rheologies are diffuse, and the viscosity lows over strike-slip shear zones or pseudo-margins are not as small as over the prescribed convergent-divergent margins. In contrast, the stick-slip rheology generates very platelike viscosity fields, with sharp gradients at the plate boundaries, and margins with almost uniformly low viscosity. Power law rheologies with high viscosity contrasts, however, lead to almost equally favorable comparisons, though these also yield the least platelike viscosity fields. This implies that the magnitude of toroidal flow and platelike strength distributions are not necessarily related and thus may present independent constraints on the determination of a self-consistent plate-mantle rheology.« less

  1. Beyond plate tectonics - Looking at plate deformation with space geodesy

    NASA Technical Reports Server (NTRS)

    Jordan, Thomas H.; Minster, J. Bernard

    1988-01-01

    The requirements that must be met by space-geodetic systems in order to constrain the horizontal secular motions associated with the geological deformation of the earth's surface are explored. It is suggested that in order to improve existing plate-motion models, the tangential components of relative velocities on interplate baselines must be resolved to an accuracy of less than 3 mm/yr. Results indicate that measuring the velocities between crustal blocks to + or - 5 mm/yr on 100-km to 1000-km scales can produce geologically significant constraints on the integrated deformation rates across continental plate-boundary zones such as the western United States.

  2. Integration of the Plate Boundary Observatory and Existing GPS Networks in Southern California: A Multi Use Geodetic Network

    NASA Astrophysics Data System (ADS)

    Walls, C.; Blume, F.; Meertens, C.; Arnitz, E.; Lawrence, S.; Miller, S.; Bradley, W.; Jackson, M.; Feaux, K.

    2007-12-01

    The ultra-stable GPS monument design developed by Southern California Geodetic Network (SCIGN) in the late 1990s demonstrates sub-millimeter errors on long time series where there are a high percentage of observations and low multipath. Following SCIGN, other networks such as PANGA and BARGEN have adopted the monument design for both deep drilled braced monuments (DDBM = 5 legs grouted 10.7 meters into bedrock/stratigraphy) and short drilled braced monuments (SDBM = 4 legs epoxied 2 meters into bedrock). A Plate Boundary Observatory (PBO) GPS station consists of a "SCIGN" style monument and state of the art NetRS receiver and IP based communications. Between the years 2003-2008 875 permanent PBO GPS stations are being built throughout the United States. Concomitant with construction of the PBO the majority of pre-existing GPS stations that meet stability specifications are being upgraded with Trimble NetRS and IP based communications to PBO standards under the EarthScope PBO Nucleus project. In 2008, with completed construction of the Plate Boundary Observatory, more than 1100 GPS stations will share common design specifications and have identical receivers with common communications making it the most homogenous geodetic network in the World. Of the 875 total Plate Boundary Observatory GPS stations, 211 proposed sites are distributed throughout the Southern California region. As of August 2007 the production status is: 174 stations built (81 short braced monuments, 93 deep drilled braced monuments), 181 permits signed, 211 permits submitted and 211 station reconnaissance reports. The balance of 37 stations (19 SDBM and 18 DDBM) will be built over the next year from Long Valley to the Mexico border in order of priority as recommended by the PBO Transform, Extension and Magmatic working groups. Fifteen second data is archived for each station and 1 Hz as well as 5 Hz data is buffered to be triggered for download in the event of an earthquake. Communications

  3. The Convergence Problems of Eigenfunction Expansions of Elliptic Differential Operators

    NASA Astrophysics Data System (ADS)

    Ahmedov, Anvarjon

    2018-03-01

    In the present research we investigate the problems concerning the almost everywhere convergence of multiple Fourier series summed over the elliptic levels in the classes of Liouville. The sufficient conditions for the almost everywhere convergence problems, which are most difficult problems in Harmonic analysis, are obtained. The methods of approximation by multiple Fourier series summed over elliptic curves are applied to obtain suitable estimations for the maximal operator of the spectral decompositions. Obtaining of such estimations involves very complicated calculations which depends on the functional structure of the classes of functions. The main idea on the proving the almost everywhere convergence of the eigenfunction expansions in the interpolation spaces is estimation of the maximal operator of the partial sums in the boundary classes and application of the interpolation Theorem of the family of linear operators. In the present work the maximal operator of the elliptic partial sums are estimated in the interpolation classes of Liouville and the almost everywhere convergence of the multiple Fourier series by elliptic summation methods are established. The considering multiple Fourier series as an eigenfunction expansions of the differential operators helps to translate the functional properties (for example smoothness) of the Liouville classes into Fourier coefficients of the functions which being expanded into such expansions. The sufficient conditions for convergence of the multiple Fourier series of functions from Liouville classes are obtained in terms of the smoothness and dimensions. Such results are highly effective in solving the boundary problems with periodic boundary conditions occurring in the spectral theory of differential operators. The investigations of multiple Fourier series in modern methods of harmonic analysis incorporates the wide use of methods from functional analysis, mathematical physics, modern operator theory and spectral

  4. Pore pressure development beneath the décollement at the Nankai subduction zone: Implications for plate boundary fault strength and sediment dewatering

    NASA Astrophysics Data System (ADS)

    Skarbek, Robert M.; Saffer, Demian M.

    2009-07-01

    Despite its importance for plate boundary fault processes, quantitative constraints on pore pressure are rare, especially within fault zones. Here, we combine laboratory permeability measurements from core samples with a model of loading and pore pressure diffusion to investigate pore fluid pressure evolution within underthrust sediment at the Nankai subduction zone. Independent estimates of pore pressure to ˜20 km from the trench, combined with permeability measurements conducted over a wide range of effective stresses and porosities, allow us to reliably simulate pore pressure development to greater depths than in previous studies and to directly quantify pore pressure within the plate boundary fault zone itself, which acts as the upper boundary of the underthrusting section. Our results suggest that the time-averaged excess pore pressure (P*) along the décollement ranges from 1.7-2.1 MPa at the trench to 30.2-35.9 MPa by 40 km landward, corresponding to pore pressure ratios of λb = 0.68-0.77. For friction coefficients of 0.30-0.40, the resulting shear strength along the décollement remains <12 MPa over this region. When noncohesive critical taper theory is applied using these values, the required pore pressure ratios within the wedge are near hydrostatic (λw = 0.41-0.59), implying either that pore pressure throughout the wedge is low or that the fault slips only during transient pulses of elevated pore pressure. In addition, simulated downward migration of minima in effective stress during drainage provides a quantitative explanation for down stepping of the décollement that is consistent with observations at Nankai.

  5. Episodic tectonic plate reorganizations driven by mantle convection

    NASA Astrophysics Data System (ADS)

    King, Scott D.; Lowman, Julian P.; Gable, Carl W.

    2002-10-01

    Periods of relatively uniform plate motion were interrupted several times throughout the Cenozoic and Mesozoic by rapid plate reorganization events [R. Hey, Geol. Soc. Am. Bull. 88 (1977) 1404-1420; P.A. Rona, E.S. Richardson, Earth Planet. Sci. Lett. 40 (1978) 1-11; D.C. Engebretson, A. Cox, R.G. Gordon, Geol. Soc. Am. Spec. Pap. 206 (1985); R.G. Gordon, D.M. Jurdy, J. Geophys. Res. 91 (1986) 12389-12406; D.A. Clague, G.B. Dalrymple, US Geol. Surv. Prof. Pap. 1350 (1987) 5-54; J.M. Stock, P. Molnar, Nature 325 (1987) 495-499; C. Lithgow-Bertelloni, M.A. Richards, Geophys. Res. Lett. 22 (1995) 1317-1320; M.A. Richards, C. Lithgow-Bertelloni, Earth Planet. Sci. Lett. 137 (1996) 19-27; C. Lithgow-Bertelloni, M.A. Richards, Rev. Geophys. 36 (1998) 27-78]. It has been proposed that changes in plate boundary forces are responsible for these events [M.A. Richards, C. Lithgow-Bertelloni, Earth Planet. Sci. Lett. 137 (1996) 19-27; C. Lithgow-Bertelloni, M.A. Richards, Rev. Geophys. 36 (1998) 27-78]. We present an alternative hypothesis: convection-driven plate motions are intrinsically unstable due to a buoyant instability that develops as a result of the influence of plates on an internally heated mantle. This instability, which has not been described before, is responsible for episodic reorganizations of plate motion. Numerical mantle convection experiments demonstrate that high-Rayleigh number convection with internal heating and surface plates is sufficient to induce plate reorganization events, changes in plate boundary forces, or plate geometry, are not required.

  6. Receiver Functions Imaging of the Moho and LAB in the Southern Caribbean plate boundary and Venezuela

    NASA Astrophysics Data System (ADS)

    Masy, J.; Levander, A.; Niu, F.

    2011-12-01

    We have made teleseismic Ps and Sp receiver functions from data recorded from 2003 to 2009 by the permanent national seismic network of Venezuela, the BOLIVAR (Broadband Onshore-offshore Lithospheric Investigation of Venezuela and the Antilles arc Region) and WAVE (Western Array for Venezuela) experiments. The receiver functions show rapid variations in Moho and lithosphere-asthenosphere boundary (LAB) depths both across and along the southern Caribbean plate boundary region. We used a total of 69 events with Mw > 6 occurring at epicentral distances from 30° to 90° for the Ps receiver functions, and 43 events with Mw > 5.7 from 55° to 85° to make Sp receiver functions. For CCP stacking we constructed a 3D velocity model from numerous active source profiles (Schmitz et al., 2001; Bezada et al., 2007; Clark et al., 2008; Guedez, 2008; Magnani et al., 2009), from finite-frequency P wave upper mantle tomography model of Bezada et al., (2010) and the Rayleigh wave tomography model of Miller et al., (2009). The Moho ranges in depth from ~25 km beneath the Caribbean Large Igneous Provinces to ~55 km beneath the Mérida Andes in western Venezuela. These results are consistent with previous receiver functions studies (Niu et al., 2007) and the available active source profiles. Beneath the Maracaibo Block in northwestern Venezuela, we observe a strong positive signal at 40 to 60 km depth dipping ~6° towards the continent. We interpret this as the Moho of the Caribbean slab subducting beneath northernmost South America from the west. Beneath northern Colombia and northwestern Venezuela the top of this slab has been previously inferred from intermediate depth seismicity (Malavé and Suarez, 1995), which indicates a slab dipping between 20° - 30° beneath Lake Maracaibo. Our results could indicate that the slab is tearing beneath Lake Maracaibo as suggested previously by Masy et al. (2011). The deeper (> 100 km depth) part of the slab has been imaged using P

  7. PBO H2O: Plate Boundary Observatory Studies of the Water Cycle

    NASA Astrophysics Data System (ADS)

    Larson, K. M.; Small, E. E.; Chew, C. C.; Nievinski, F. G.; Pratt, J.; McCreight, J. L.; Braun, J.; Boniface, K.; Evans, S. G.

    2013-12-01

    The EarthScope Plate Boundary Observatory was built to measure the deformation of the North American continent. PBO stations can also be used to measure ground displacements at much higher frequencies (5-Hz) for studies of fault slip during large earthquakes and for warnings of volcanic eruptions. There is also a long history of using atmospheric delays on the GPS signals to estimate precipitable water vapor (for weather and climate studies) and total electron content (space weather studies). Recently the PBO H2O research group has demonstrated that GPS signals that reflect from the nearby environment can be used for water cycle research. These GPS reflections measure how much water is in the top layer of the soil, how much snow is on its surface, and water content of nearby vegetation. Observing and monitoring spatial and temporal changes in the water cycle is critical for both understanding and predicting Earth's climate. Since GPS reflections encompass an area of ~1000 m^2, they provide a spatial footprint that complements satellite systems which sense much larger areas and in situ systems that sense regions < 1 m^2. Water cycle products are produced from PBO data each day and updated on the PBO H2O website.

  8. Super-deep low-velocity layer beneath the Arabian plate

    NASA Astrophysics Data System (ADS)

    Vinnik, L.; Ravi Kumar, M.; Kind, R.; Farra, V.

    2003-04-01

    S and P receiver functions reveal indications of a low S velocity layer at 350-410 km depths beneath the Arabian plate. A similar layer was previously found beneath the Kaapvaal craton in southern Africa and Tunguska basin of the Siberian platform. We hypothesize, that the boundary at 350 km depth may separate dry mantle root of the Arabian plate from the underlying wet mantle layer. This boundary is not found beneath the Gulf of Aden, where the root is destroyed by sea-floor spreading.

  9. Reconciling the geological history of western Turkey with plate circuits and mantle tomography

    NASA Astrophysics Data System (ADS)

    van Hinsbergen, Douwe J. J.; Kaymakci, Nuretdin; Spakman, Wim; Torsvik, Trond H.

    2010-09-01

    We place the geological history since Cretaceous times in western Turkey in a context of convergence, subduction, collision and slab break-off. To this end, we compare the west Anatolian geological history with amounts of Africa-Europe convergence calculated from the Atlantic plate circuit, and the seismic tomography images of the west Anatolian mantle structure. Western Turkish geology reflects the convergence between the Sakarya continent (here treated as Eurasia) in the north and Africa in the south, with the Anatolide-Tauride Block (ATB) between two strands of the Neotethyan ocean. Convergence between the Sakarya and the ATB started at least ~ 95-90 Myr ago, marked by ages of metamorphic soles of ophiolites that form the highest structural unit below Sakarya. These are underlain by high-pressure, low-temperature metamorphic rocks of the Tavşanlı and Afyon zones, and the Ören Unit, which in turn are underlain by the Menderes Massif derived from the ATB. Underthrusting of the ATB below Sakarya was since ~ 50 Ma, associated with high-temperature metamorphism and widespread granitic magmatism. Thrusting in the Menderes Massif continued until 35 Ma, after which there is no record of accretion in western Turkey. Plate circuits show that since 90 Ma, ~ 1400 km of Africa-Europe convergence occurred, of which ~ 700 km since 50 Ma and ~ 450 km since 35 Ma. Seismic tomography shows that the African slab under western Turkey is decoupled from the African Plate. This detached slab is a single, coherent body, representing the lithosphere consumed since 90 Ma. There was no subduction re-initiation after slab break-off. ATB collision with Europe therefore did not immediately lead to slab break-off but instead to delamination of subducting lithospheric mantle from accreting ATB crust, while staying attached to the African Plate. This led to asthenospheric inflow below the ATB crust, high-temperature metamorphism and felsic magmatism. Slab break-off in western Turkey probably

  10. Reconciling the geological history of western Turkey with plate circuits and mantle tomography

    NASA Astrophysics Data System (ADS)

    Kaymakci, N.; van Hinsbergen, D. J.; Spakman, W.; Torsvik, T. H.

    2010-12-01

    We place the geological history since Cretaceous times in western Turkey in a context of convergence, subduction, collision and slab break-off. To this end, we compare the west Anatolian geological history with amounts of Africa-Europe convergence calculated from the Atlantic plate circuit, and the seismic tomography images of the west Anatolian mantle structure. Western Turkish geology reflects the convergence between the Sakarya continent (here treated as Eurasia) in the north and Africa in the south, with the Anatolide-Tauride Block (ATB) between two strands of the Neotethyan ocean. Convergence between the Sakarya and the ATB started at least ~95-90Myr ago, marked by ages of metamorphic soles of ophiolites that form the highest structural unit below Sakarya. These are underlain by high-pressure, low-temperature metamorphic rocks of the Tavsanli and Afyon zones, and the Ören Unit, which in turn are underlain by the Menderes Massif derived from the ATB. Underthrusting of the ATB below Sakarya was since ~50Ma, associated with high-temperature metamorphism and widespread granitic magmatism. Thrusting in the Menderes Massif continued until 35 Ma, after which there is no record of accretion in western Turkey. Plate circuits show that since 90 Ma, ~1400 km of Africa-Europe convergence occurred, of which ~700 km since 50 Ma and ~450 km since 35Ma. Seismic tomography shows that the African slab under western Turkey is decoupled from the African Plate. This detached slab is a single, coherent body, representing the lithosphere consumed since 90 Ma. There was no subduction re-initiation after slab break-off. ATB collision with Europe therefore did not immediately lead to slab break-off but instead to delamination of subducting lithospheric mantle from accreting ATB crust, while staying attached to the African Plate. This led to asthenospheric inflow below the ATB crust, high-temperature metamorphism and felsic magmatism. Slab break-off in western Turkey probably occurred

  11. Inversion for the driving forces of plate tectonics

    NASA Technical Reports Server (NTRS)

    Richardson, R. M.

    1983-01-01

    Inverse modeling techniques have been applied to the problem of determining the roles of various forces that may drive and resist plate tectonic motions. Separate linear inverse problems have been solved to find the best fitting pole of rotation for finite element grid point velocities and to find the best combination of force models to fit the observed relative plate velocities for the earth's twelve major plates using the generalized inverse operator. Variance-covariance data on plate motion have also been included. Results emphasize the relative importance of ridge push forces in the driving mechanism. Convergent margin forces are smaller by at least a factor of two, and perhaps by as much as a factor of twenty. Slab pull, apparently, is poorly transmitted to the surface plate as a driving force. Drag forces at the base of the plate are smaller than ridge push forces, although the sign of the force remains in question.

  12. Rhyolitic components of the Michipicoten greenstone belt, Ontario: Evidence for late Archaen intracontinental rifts or convergent plate margins in the Canadian Shield?

    NASA Technical Reports Server (NTRS)

    Sylvester, P. J.; Attoh, K.; Schulz, K. J.

    1986-01-01

    Rhyolitic rocks often are the dominant felsic end member of the biomodal volcanic suites that characterize many late Archean greenstone belts of the Canadian Shield. The rhyolites primarily are pyroclastic flows (ash flow tuffs) emplaced following plinian eruptions, although deposits formed by laval flows and phreatomagmatic eruptions also are presented. Based both on measured tectono-stratigraphic sections and provenance studies of greenstone belt sedimentary sequences, the rhyolites are believed to have been equal in abundance to associated basaltic rocks. In many recent discussions of the tectonic setting of late Archean Canadian greenstone belts, rhyolites have been interpreted as products of intracontinental rifting . A study of the tectono-stratigraphic relationships, rock associations and chemical characteristics of the particularly ell-exposed late Archean rhyolites of the Michipicoten greenstone belt, suggests that convergent plate margin models are more appropriate.

  13. Repulsive Casimir effect from extra dimensions and Robin boundary conditions: From branes to pistons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elizalde, E.; Odintsov, S. D.; Institucio Catalana de Recerca i Estudis Avanccats

    2009-03-15

    We evaluate the Casimir energy and force for a massive scalar field with general curvature coupling parameter, subject to Robin boundary conditions on two codimension-one parallel plates, located on a (D+1)-dimensional background spacetime with an arbitrary internal space. The most general case of different Robin coefficients on the two separate plates is considered. With independence of the geometry of the internal space, the Casimir forces are seen to be attractive for special cases of Dirichlet or Neumann boundary conditions on both plates and repulsive for Dirichlet boundary conditions on one plate and Neumann boundary conditions on the other. For Robinmore » boundary conditions, the Casimir forces can be either attractive or repulsive, depending on the Robin coefficients and the separation between the plates, what is actually remarkable and useful. Indeed, we demonstrate the existence of an equilibrium point for the interplate distance, which is stabilized due to the Casimir force, and show that stability is enhanced by the presence of the extra dimensions. Applications of these properties in braneworld models are discussed. Finally, the corresponding results are generalized to the geometry of a piston of arbitrary cross section.« less

  14. The cellular basis of the convergence and extension of the Xenopus neural plate.

    PubMed

    Keller, R; Shih, J; Sater, A

    1992-03-01

    There is great interest in the patterning and morphogenesis of the vertebrate nervous system, but the morphogenetic movements involved in early neural development and their underlying cellular mechanisms are poorly understood. This paper describes the cellular basis of the early neural morphogenesis of Xenopus laevis. The results have important implications for neural induction. Mapping the fate map of the midneurula (Eagleson and Harris: J. Neurobiol. 21:427-440, 1990) back to the early gastrula with time-lapse video recording demonstrates that the prospective hindbrain and spinal cord are initially very wide and very short, and thus at the beginning of gastrulation all their precursor cells lie within a few cell diameters of the inducing mesoderm. In the midgastrula, the prospective hindbrain and spinal cord undergo very strong convergence and extension movements in two phases: In the first phase they primarily undergo thinning in the radial direction and lengthening (extension) in the animal-vegetal direction, and the second phase is characterized primarily by mediolateral narrowing (convergence) and anterior-posterior lengthening (extension). These movements also occur in sandwich explants of the gastrula, thus demonstrating the local autonomy of the forces producing them. Tracing cell movements with fluorescein dextran-labeled cells in embryos or explants shows that the initial thinning and extension occurs by radial intercalation of deep cells to form fewer layers of greater area, all of which is expressed as increased length. The subsequent convergence and extension occurs by mediolateral intercalation of deep cells to form a longer, narrower array. These results establish that a similar if not identical sequence of radial and mediolateral cell intercalations underlie convergence and extension of the neural and the mesoderm tissues (Wilson and Keller: Development, 112:289-300, 1991). Moreover, these results establish that radial and mediolateral

  15. Stress-intensity factors for a wide range of semi-elliptical surface cracks in finite-thickness plates

    NASA Technical Reports Server (NTRS)

    Raju, I. S.; Newman, J. C., Jr.

    1979-01-01

    Surface cracks are among the more common flaws in aircraft and pressure vessel components. Several calculations of stress-intensity factors for semi-elliptical surface cracks subjected to tension have appeared in the literature. However, some of these solutions are in disagreement by 50-100%. In this paper, stress-intensity factors for shallow and deep semi-elliptical surface cracks in plates subjected to tension are presented. To verify the accuracy of the three-dimensional finite-element models employed, convergence was studied by varying the number of degrees of freedom in the models from 1500 to 6900. The 6900 degrees of freedom used here were more than twice the number used in previously reported solutions. Also, the stress-intensity variations in the boundary-layer region at the intersection of the crack with the free surface were investigated.

  16. The Tasmanides: Phanerozoic Tectonic Evolution of Eastern Australia

    NASA Astrophysics Data System (ADS)

    Rosenbaum, Gideon

    2018-05-01

    The Tasmanides occupy the eastern third of Australia and provide an extensive record of the evolution of the eastern Gondwanan convergent plate boundary from the Cambrian to the Triassic. This article presents a summary of the primary building blocks (igneous provinces and sedimentary basins) within the Tasmanides, followed by a discussion of the timing and extent of deformation events. Relatively short episodes of contractional deformation alternated with longer periods of crustal extension accompanied by voluminous magmatism. This behavior was likely controlled by plate boundary migration (trench retreat and advance) that was also responsible for bending and segmentation of the convergent plate margin. As a result, the Tasmanides were subjected to at least three major phases of oroclinal bending, in the Silurian, Devonian, and Permian. The most significant segmentation likely occurred at ˜420–400 Ma along a lithospheric-scale boundary that separated the northern and southern parts of the Tasmanides.

  17. Smoothed Particle Hydrodynamics Continuous Boundary Force method for Navier-Stokes equations subject to Robin boundary condition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Wenxiao; Bao, Jie; Tartakovsky, Alexandre M.

    2014-02-15

    Robin boundary condition for the Navier-Stokes equations is used to model slip conditions at the fluid-solid boundaries. A novel Continuous Boundary Force (CBF) method is proposed for solving the Navier-Stokes equations subject to Robin boundary condition. In the CBF method, the Robin boundary condition at boundary is replaced by the homogeneous Neumann boundary condition at the boundary and a volumetric force term added to the momentum conservation equation. Smoothed Particle Hydrodynamics (SPH) method is used to solve the resulting Navier-Stokes equations. We present solutions for two-dimensional and three-dimensional flows in domains bounded by flat and curved boundaries subject to variousmore » forms of the Robin boundary condition. The numerical accuracy and convergence are examined through comparison of the SPH-CBF results with the solutions of finite difference or finite element method. Taken the no-slip boundary condition as a special case of slip boundary condition, we demonstrate that the SPH-CBF method describes accurately both no-slip and slip conditions.« less

  18. Convergence of Defect-Correction and Multigrid Iterations for Inviscid Flows

    NASA Technical Reports Server (NTRS)

    Diskin, Boris; Thomas, James L.

    2011-01-01

    Convergence of multigrid and defect-correction iterations is comprehensively studied within different incompressible and compressible inviscid regimes on high-density grids. Good smoothing properties of the defect-correction relaxation have been shown using both a modified Fourier analysis and a more general idealized-coarse-grid analysis. Single-grid defect correction alone has some slowly converging iterations on grids of medium density. The convergence is especially slow for near-sonic flows and for very low compressible Mach numbers. Additionally, the fast asymptotic convergence seen on medium density grids deteriorates on high-density grids. Certain downstream-boundary modes are very slowly damped on high-density grids. Multigrid scheme accelerates convergence of the slow defect-correction iterations to the extent determined by the coarse-grid correction. The two-level asymptotic convergence rates are stable and significantly below one in most of the regions but slow convergence is noted for near-sonic and very low-Mach compressible flows. Multigrid solver has been applied to the NACA 0012 airfoil and to different flow regimes, such as near-tangency and stagnation. Certain convergence difficulties have been encountered within stagnation regions. Nonetheless, for the airfoil flow, with a sharp trailing-edge, residuals were fast converging for a subcritical flow on a sequence of grids. For supercritical flow, residuals converged slower on some intermediate grids than on the finest grid or the two coarsest grids.

  19. InSAR Time Series Analysis of Dextral Strain Partitioning Across the Burma Plate

    NASA Astrophysics Data System (ADS)

    Reitman, N. G.; Wang, Y.; Lin, N.; Lindsey, E. O.; Mueller, K. J.

    2017-12-01

    Oblique convergence between the India and Sunda plates creates partitioning of strike-slip and compressional strain across the Burma plate. GPS data indicate up to 40 mm/yr (Steckler et al 2016) of dextral strain exists between the India and Sunda plates. The Sagaing fault in Myanmar accommodates 20 mm/yr at the eastern boundary of the Burma plate, but the location and magnitude of dextral strain on other faults remains an open question, as does the relative importance of seismic vs aseismic processes. The remaining 20 mm/yr of dextral strain may be accommodated on one or two faults or widely distributed on faults across the Burma plate, scenarios that have a major impact on seismic hazard. However, the dense GPS data necessary for precise determination of which faults accommodate how much strain do not exist yet. Previous studies using GPS data ascribe 10-18 mm/yr dextral strain on the Churachandpur Mao fault in India (Gahaluat et al 2013, Steckler et al 2016) and 18-22 mm/yr on the northern Sagaing fault (Maurin et al 2010, Steckler et al 2016), leaving up to 10 mm/yr unconstrained. Several of the GPS results are suggestive of shallow aseismic slip along parts of these faults, which, if confirmed, would have a significant impact on our understanding of hazard in the area. Here, we use differential InSAR analyzed in time series to investigate dextral strain on the Churachandpur Mao fault and across the Burma plate. Ascending ALOS-1 imagery spanning 2007-2010 were processed in time series for three locations. Offsets in phase and a strong gradient in line-of-sight deformation rate are observed across the Churachandpur Mao fault, and work is ongoing to determine if these are produced by shallow fault movement, topographic effects, or both. The results of this study will provide further constraints for strain rate on the Churachandpur Mao fault, and yield a more complete understanding of strain partitioning across the Burma plate.

  20. Rheological structure of the lithosphere in plate boundary strike-slip fault zones

    NASA Astrophysics Data System (ADS)

    Chatzaras, Vasileios; Tikoff, Basil; Kruckenberg, Seth C.; Newman, Julie; Titus, Sarah J.; Withers, Anthony C.; Drury, Martyn R.

    2016-04-01

    How well constrained is the rheological structure of the lithosphere in plate boundary strike-slip fault systems? Further, how do lithospheric layers, with rheologically distinct behaviors, interact within the strike-slip fault zones? To address these questions, we present rheological observations from the mantle sections of two lithospheric-scale, strike-slip fault zones. Xenoliths from ˜40 km depth (970-1100 ° C) beneath the San Andreas fault system (SAF) provide critical constraints on the mechanical stratification of the lithosphere in this continental transform fault. Samples from the Bogota Peninsula shear zone (BPSZ, New Caledonia), which is an exhumed oceanic transform fault, provide insights on lateral variations in mantle strength and viscosity across the fault zone at a depth corresponding to deformation temperatures of ˜900 ° C. Olivine recrystallized grain size piezometry suggests that the shear stress in the SAF upper mantle is 5-9 MPa and in the BPSZ is 4-10 MPa. Thus, the mantle strength in both fault zones is comparable to the crustal strength (˜10 MPa) of seismogenic strike-slip faults in the SAF system. Across the BPSZ, shear stress increases from 4 MPa in the surrounding rocks to 10 MPa in the mylonites, which comprise the core of the shear zone. Further, the BPSZ is characterized by at least one order of magnitude difference in the viscosity between the mylonites (1018 Paṡs) and the surrounding rocks (1019 Paṡs). Mantle viscosity in both the BPSZ mylonites and the SAF (7.0ṡ1018-3.1ṡ1020 Paṡs) is relatively low. To explain our observations from these two strike-slip fault zones, we propose the "lithospheric feedback" model in which the upper crust and lithospheric mantle act together as an integrated system. Mantle flow controls displacement and the upper crust controls the stress magnitude in the system. Our stress data combined with data that are now available for the middle and lower crustal sections of other transcurrent fault

  1. Geodetic Constraints on the Rigidity and Eastern Boundary of the Sierra Nevada Micro-Plate, from Mohawk Valley to Southern Walker Lane

    NASA Astrophysics Data System (ADS)

    Kreemer, C. W.; Hammond, W. C.; Blewitt, G.

    2009-12-01

    The Sierra Nevada - Great Valley (SNGV) micro-plate has long been recognized as a tectonically rigid, though mobile, entity within the Pacific - North America plate boundary zone. The motion of the SNGV relative to stable North America (and the Colorado Plateau) provides the kinematic boundary condition for, and perhaps drives, the deformation in the Basin and Range Province (BRP) and Walker Lane. In the north the motion of the SNGV is aligned with the Mohawk Valley fault zone, which could have a slip rate of over a few mm/yr. The crest of the Sierras marks the SNGV’s eastern edge, but the obliquity between orientation of this boundary and the block’s motion implies an expected increase in rangefront-normal extension from the northern to southern Walker Lane. We use new GPS data from the EarthScope Plate Boundary Observatory (PBO) and our own semi-continuous MAGNET network to revisit the following questions: 1) Do the data still support rigidity of the SNGV?; 2) How far east does the rigidity extend and how does this relate to SNGV lithology?; 3) How does the direction of SNGV motion relate to the strike of its eastern margin and observed strain partitioning (and its along strike variation) in the Walker Lane?; and 4) How is SNGV-BRP motion accommodated between the Walker Lane and the Cascadia forearc? We analyze data from all the available continuous GPS sites in the greater SNGV region, including new data from PBO, as well as data from MAGNET. All data are processed with the GIPSY-OASIS II precise point positioning software using recently reprocessed orbits from JPL's IGS Analysis Center. The processing includes satellite and station antenna calibrations and all data have the phase ambiguities fixed using the Ambizap algorithm. Positions are estimated in our custom-made North America reference frame in which continental-scale common-mode errors are removed. Velocities and uncertainties are estimated using the CATS software in which we assuming an error model

  2. Structure of the Sumatra wedge affected by the 26th December 2004 :Effects of the lower plate volcanic ridges.

    NASA Astrophysics Data System (ADS)

    Rangin, C.; Sibuet, J. C.; Lin, J. Y.; Le Pichon, X.

    2009-04-01

    the subducted plate with the leading edge of the upper Sunda plate subduction zone is an active tectonic transfer process of oceanic material to the upper plate. The proposed emergence of the interplate boundary into the middle part of the wedge along the Lower Splay Fault, could have favoured the formation of the giant Sumatra tsunami at moderate water depth. This docking and temporary stacking of these volcanic ridges before their subduction at depth, is favoured by the strong oblique convergence that prevails up to the Bengal basin into the north.

  3. Effects of boundary-layer separation controllers on a desktop fume hood.

    PubMed

    Huang, Rong Fung; Chen, Jia-Kun; Hsu, Ching Min; Hung, Shuo-Fu

    2016-10-02

    A desktop fume hood installed with an innovative design of flow boundary-layer separation controllers on the leading edges of the side plates, work surface, and corners was developed and characterized for its flow and containment leakage characteristics. The geometric features of the developed desktop fume hood included a rearward offset suction slot, two side plates, two side-plate boundary-layer separation controllers on the leading edges of the side plates, a slanted surface on the leading edge of the work surface, and two small triangular plates on the upper left and right corners of the hood face. The flow characteristics were examined using the laser-assisted smoke flow visualization technique. The containment leakages were measured by the tracer gas (sulphur hexafluoride) detection method on the hood face plane with a mannequin installed in front of the hood. The results of flow visualization showed that the smoke dispersions induced by the boundary-layer separations on the leading edges of the side plates and work surface, as well as the three-dimensional complex flows on the upper-left and -right corners of the hood face, were effectively alleviated by the boundary-layer separation controllers. The results of the tracer gas detection method with a mannequin standing in front of the hood showed that the leakage levels were negligibly small (≤0.003 ppm) at low face velocities (≥0.19 m/s).

  4. Initial-boundary layer associated with the nonlinear Darcy-Brinkman-Oberbeck-Boussinesq system

    NASA Astrophysics Data System (ADS)

    Fei, Mingwen; Han, Daozhi; Wang, Xiaoming

    2017-01-01

    In this paper, we study the vanishing Darcy number limit of the nonlinear Darcy-Brinkman-Oberbeck-Boussinesq system (DBOB). This singular perturbation problem involves singular structures both in time and in space giving rise to initial layers, boundary layers and initial-boundary layers. We construct an approximate solution to the DBOB system by the method of multiple scale expansions. The convergence with optimal convergence rates in certain Sobolev norms is established rigorously via the energy method.

  5. "Discovering Plate Boundaries in Data-Rich Environments": Supporting Pre-service Teachers involvement in Unique Practices of Geosciences

    NASA Astrophysics Data System (ADS)

    Barrie, A. S.; Moore, J.

    2012-12-01

    plate tectonics using key scientific practices. As a result of the educational activities developed in this project, we will try help teachers to overcome their challenges and develop the pedagogical skills that novice teachers need to use to teach plate tectonics by focusing on key scientific practices with the help of previously-developed educational resources. Learning about the processes that occur at plate boundaries will help future teachers (and their students) understand natural disasters such as earthquakes and volcanoes. Furthermore, the study will have a significant, and broader, impact by 'teaching the teachers' and empowering novice teachers to overcome the challenges of reading maps and using argumentation in science classrooms.

  6. Upper-plate splay fault earthquakes along the Arakan subduction belt recorded by uplifted coral microatolls on northern Ramree Island, western Myanmar (Burma)

    NASA Astrophysics Data System (ADS)

    Shyu, J. Bruce H.; Wang, Chung-Che; Wang, Yu; Shen, Chuan-Chou; Chiang, Hong-Wei; Liu, Sze-Chieh; Min, Soe; Aung, Lin Thu; Than, Oo; Tun, Soe Thura

    2018-02-01

    Upper-plate structures that splay out from the megathrusts are common features along major convergent plate boundaries. However, their earthquake and tsunami hazard potentials have not yet received significant attention. In this study, we identified at least one earthquake event that may have been produced by an upper-plate splay fault offshore western Myanmar, based on U-Th ages of uplifted coral microatolls. This event is likely an earthquake that was documented historically in C.E. 1848, with an estimated magnitude between 6.8 and 7.2 based on regional structural characteristics. Such magnitude is consistent with the observed co-seismic uplift amount of ∼0.5 m. Although these events are smaller in magnitude than events produced by megathrusts, they may produce higher earthquake and tsunami hazards for local coastal communities due to their proximity. Our results also indicate that earthquake events with co-seismic uplift along the coast may not necessarily produce a flight of marine terraces. Therefore, using only records of uplifted marine terraces as megathrust earthquake proxies may overlook the importance of upper-plate splay fault ruptures, and underestimate the overall earthquake frequency for future seismic and tsunami hazards along major subduction zones of the world.

  7. The generation of plate tectonics from mantle convection

    NASA Astrophysics Data System (ADS)

    Bercovici, David

    2003-01-01

    In the last decade, significant progress has been made toward understanding how plate tectonics is generated from mantle dynamics. A primary goal of plate-generation studies has been the development of models that allow the top cold thermal boundary layer of mantle convection, i.e. the lithosphere, to develop broad and strong plate-like segments separated by narrow, weak and rapidly deforming boundaries; ideally, such models also permit significant strike-slip (toroidal) motion, passive ridges (i.e. pulled rather than pried apart), and self-consistent initiation of subduction. A major outcome of work so far is that nearly all aspects of plate generation require lithospheric rheologies and shear-localizing feedback mechanisms that are considerably more exotic than rheologies typically used in simple fluid-dynamical models of mantle flow. The search for plate-generating behavior has taken us through investigations of the effects of shear weakening ('stick-slip') and viscoplastic rheologies, of melting at ridges and low-viscosity asthenospheres, and of grain-size dependent rheologies and damage mechanics. Many such mechanisms, either by themselves or in combination, have led to self-consistent fluid-mechanical models of mantle flow that are remarkably plate-like, which is in itself a major accomplishment. However, many other important problems remain unsolved, such as subduction intiation and asymmetry, temporal evolution of plate geometry, rapid changes in plate motion, and the Archaean initiation of the plate-tectonic mode of convection. This paper presents a brief review of progress made in the plate-generation problem over the last decade, and discusses unresolved issues and future directions of research in this important area.

  8. Seismicity of the Earth 1900-2012 Sumatra and vicinity

    USGS Publications Warehouse

    Hayes, Gavin P.; Bernardino, Melissa; Dannemann, Fransiska; Smoczyk, Gregory; Briggs, Richard W.; Benz, Harley M.; Furlong, Kevin P.; Villaseñor, Antonio

    2013-01-01

    The plate boundary southwest of Sumatra is part of a long tectonic collision zone that extends over 8,000 km from Papua, New Guinea, in the east to the Himalayan front in the west. The Sumatra-Andaman part of the collision zone forms a subduction zone plate boundary, which accommodates convergence between the Indo-Australia and Sunda plates. This convergence is responsible for the intense seismicity in Sumatra. The Sumatra Fault, a major transform structure that bisects Sumatra, accommodates the northwest-increasing lateral component of relative plate motion. Most strain accumulation and release between the two plates occurs along the Sunda megathrust. The increasingly oblique convergence moving northwest is accommodated by crustal seismicity along several transform and normal faults, including the Sumatra Fault. Plate-boundary related deformation is also not restricted to the subduction zone and overriding plate: the Indo-Australian plate actually comprises two somewhat independent plates (India and Australia) that are joined along a broad, actively deforming region that produces seismicity up to several hundred kilometers west of the trench. This deformation is exemplified by the recent April 2012 earthquake sequence, which includes the April 11 M 8.6 and M 8.2 strike-slip events and their subsequent aftershocks. Since 2004, much of the Sunda megathrust between the northern Andaman Islands and Enggano Island, a distance of more than 2,000 km, has ruptured in a series of large subduction zone earthquakes—most rupturing the plate boundary south of Banda Aceh. These events include the great M 9.1 earthquake of December 26, 2004; the M 8.6 Nias Island earthquake of March 28, 2005; and two earthquakes on September 12, 2007, of M 8.5 and M 7.9. On October 25, 2010, a M 7.8 on the shallow portion of the megathrust to the west of the Mentawai Islands caused a substantial tsunami on the west coast of those islands.

  9. Forearc kinematics in obliquely convergent margins: Examples from Nicaragua and the northern Lesser Antilles

    NASA Astrophysics Data System (ADS)

    Turner, Henry L., III

    In this study, I use surface velocities derived from GPS geodesy, elastic half-space dislocation models, and modeled Coulomb stress changes to investigate deformation in the over-riding plate at obliquely convergent margins at the leading and trailing edges of the Caribbean plate. The two principal study areas are western Nicaragua, where the Cocos plate subducts beneath the Caribbean plate, and the northern Lesser Antilles, where the North American plate subducts beneath the Caribbean plate. In Nicaragua, plate convergence is rapid at 84 mm yr1 with a small angle of obliquity of 10° along a slightly concave portion of the Middle America Trench. GPS velocities for the period from 2000 to 2004 from sites located in the Nicaraguan forearc confirmed forearc sliver motion on the order of ˜14 mm yr1 in close agreement with the value predicted by DeMets (2001). These results are presented here in Chapter 3 and were reported in Geophysical Research Letters (Turner et al., 2007). GPS observations made on sites located in the interior and on the eastern coast of Nicaragua during the same time period were combined with new data from eastern Honduras to help better constrain estimates of rigid Caribbean plate motion (DeMets et al., 2007). Slip approaching the plate convergence rate along the Nicaraguan and El Salvadoran sections of the Middle America Trench was quantitatively demonstrated by finite element modeling of this section of the plate interface using GPS velocities from our Nicaraguan network together with velocities from El Salvador and Honduras as model constraints (Correa-Mora, 2009). The MW 6.9 earthquake that ruptured the seismogenic zone offshore Nicaragua on October 9, 2004 resulted in coseismic displacements and post-seismic motion at GPS sites in the central part of the Nicaraguan forearc that currently prevent extension of interseismic time-series in this region. An elastic half-space dislocation model was used to estimate coseismic displacements at these

  10. Links Between Earthquake Characteristics and Subducting Plate Heterogeneity in the 2016 Pedernales Ecuador Earthquake Rupture Zone

    NASA Astrophysics Data System (ADS)

    Bai, L.; Mori, J. J.

    2016-12-01

    The collision between the Indian and Eurasian plates formed the Himalayas, the largest orogenic belt on the Earth. The entire region accommodates shallow earthquakes, while intermediate-depth earthquakes are concentrated at the eastern and western Himalayan syntaxis. Here we investigate the focal depths, fault plane solutions, and source rupture process for three earthquake sequences, which are located at the western, central and eastern regions of the Himalayan orogenic belt. The Pamir-Hindu Kush region is located at the western Himalayan syntaxis and is characterized by extreme shortening of the upper crust and strong interaction of various layers of the lithosphere. Many shallow earthquakes occur on the Main Pamir Thrust at focal depths shallower than 20 km, while intermediate-deep earthquakes are mostly located below 75 km. Large intermediate-depth earthquakes occur frequently at the western Himalayan syntaxis about every 10 years on average. The 2015 Nepal earthquake is located in the central Himalayas. It is a typical megathrust earthquake that occurred on the shallow portion of the Main Himalayan Thrust (MHT). Many of the aftershocks are located above the MHT and illuminate faulting structures in the hanging wall with dip angles that are steeper than the MHT. These observations provide new constraints on the collision and uplift processes for the Himalaya orogenic belt. The Indo-Burma region is located south of the eastern Himalayan syntaxis, where the strike of the plate boundary suddenly changes from nearly east-west at the Himalayas to nearly north-south at the Burma Arc. The Burma arc subduction zone is a typical oblique plate convergence zone. The eastern boundary is the north-south striking dextral Sagaing fault, which hosts many shallow earthquakes with focal depth less than 25 km. In contrast, intermediate-depth earthquakes along the subduction zone reflect east-west trending reverse faulting.

  11. Plate tectonic constraints on the cessation of subduction beneath the Baja California peninsula, Mexico

    NASA Astrophysics Data System (ADS)

    Stock, J. M.

    2007-05-01

    I review published models, existing global plate tectonic data and published marine geophysical observations west of Baja California to assess the timing and conditions under which subduction ceased along the W margin of Baja California. The relative motion of the Farallon microplate fragments can be reconstructed using Pacific- North America global plate motions (from the Pacific-Antarctica-Nubia-North America plate circuit) added to the local velocities of the microplates with respect to the Pacific plate. Because the Pacific plate was moving obliquely away from North America, the time at which subduction stopped has often been taken to be the time at which the microplates joined the Pacific plate (the ages of dead spreading centers preserved west of North America on the Pacific plate). The timing of cessation of subduction west of what is now northern Baja California is not recorded by a dead ridge offshore but is inferred to be coincident with extension and rotation in the continental borderland (early-middle Miocene). The Arguello microplate stopped spreading relative to the Pacific plate at about 13 Ma, providing a younger age limit on the cessation of subduction in the sector N of the Shirley transform fault. The time of cessation of spreading of the Magdalena-Pacific (M-P) ridge has been proposed by Michaud et al. (2006 Geology) to be as young as 8 Ma. However, the clockwise rotation of the M-P ridge before it ceased, and its inferred slow spreading rate away from the Pacific plate implies transcurrent motion with virtually no convergence between the Magdalena microplate and the North America plate during the last stages of activity of the M-P ridge. Subduction can occur by motion of forearc fragments without any convergence of the major bounding plates (e.g., the modern South Shetland Trench), but this may be ruled out for Baja California due to the small spatial scale of the microplates compared to the scale of the stable Baja California peninsula block

  12. Magmatism at the Eurasian–North American modern plate boundary: Constraints from alkaline volcanism in the Chersky Belt (Yakutia)

    PubMed Central

    Tschegg, Cornelius; Bizimis, Michael; Schneider, David; Akinin, Vyacheslav V.; Ntaflos, Theodoros

    2011-01-01

    The Chersky seismic belt (NE-Russia) forms the modern plate boundary of the Eurasian−North American continental plate. The geodynamic evolution of this continent−continent setting is highly complex and remains a matter of debate, as the extent and influence of the Mid-Arctic Ocean spreading center on the North Asian continent since the Eocene remains unclear. The progression from a tensional stress regime to a modern day transpressional one in the Chersky seismic belt, makes the understanding even more complicated. The alkaline volcanism that has erupted along the Chersky range from Eocene through to the Recent can provide constraints on the geodynamic evolution of this continental boundary, however, the source and petrogenetic evolution of these volcanic rocks and their initiating mechanisms are poorly understood. We studied basanites of the central Chersky belt, which are thought to represent the first alkaline volcanic activity in the area, after initial opening of the Arctic Ocean basin. We present mineral and bulk rock geochemical data as well as Sr–Nd–Pb–Hf isotopes of the alkaline suite of rocks combined with new precise K–Ar and 40Ar/39Ar dating, and discuss an integrated tectono-magmatic model for the Chersky belt. Our findings show that the basanites were generated from a homogeneous asthenospheric mantle reservoir with an EM-1 isotopic flavor, under relatively ‘dry’ conditions at segregation depths around 110 km and temperatures of ~ 1500 °C. Trace element and isotope systematics combined with mantle potential temperature estimates offer no confirmation of magmatism related to subduction or plume activity. Mineral geochemical and petrographical observations together with bulk geochemical evidence indicate a rapid ascent of melts and high cooling rates after emplacement in the continental crust. Our preferred model is that volcanism was triggered by extension and thinning of the lithosphere combined with adiabatic upwelling of the

  13. Magmatism at the Eurasian-North American modern plate boundary: Constraints from alkaline volcanism in the Chersky Belt (Yakutia).

    PubMed

    Tschegg, Cornelius; Bizimis, Michael; Schneider, David; Akinin, Vyacheslav V; Ntaflos, Theodoros

    2011-07-01

    The Chersky seismic belt (NE-Russia) forms the modern plate boundary of the Eurasian-North American continental plate. The geodynamic evolution of this continent-continent setting is highly complex and remains a matter of debate, as the extent and influence of the Mid-Arctic Ocean spreading center on the North Asian continent since the Eocene remains unclear. The progression from a tensional stress regime to a modern day transpressional one in the Chersky seismic belt, makes the understanding even more complicated. The alkaline volcanism that has erupted along the Chersky range from Eocene through to the Recent can provide constraints on the geodynamic evolution of this continental boundary, however, the source and petrogenetic evolution of these volcanic rocks and their initiating mechanisms are poorly understood. We studied basanites of the central Chersky belt, which are thought to represent the first alkaline volcanic activity in the area, after initial opening of the Arctic Ocean basin. We present mineral and bulk rock geochemical data as well as Sr-Nd-Pb-Hf isotopes of the alkaline suite of rocks combined with new precise K-Ar and 40 Ar/ 39 Ar dating, and discuss an integrated tectono-magmatic model for the Chersky belt. Our findings show that the basanites were generated from a homogeneous asthenospheric mantle reservoir with an EM-1 isotopic flavor, under relatively 'dry' conditions at segregation depths around 110 km and temperatures of ~ 1500 °C. Trace element and isotope systematics combined with mantle potential temperature estimates offer no confirmation of magmatism related to subduction or plume activity. Mineral geochemical and petrographical observations together with bulk geochemical evidence indicate a rapid ascent of melts and high cooling rates after emplacement in the continental crust. Our preferred model is that volcanism was triggered by extension and thinning of the lithosphere combined with adiabatic upwelling of the underlying mantle

  14. How does the 2010 El Mayor - Cucapah Earthquake Rupture Connect to the Southern California Plate Boundary Fault System

    NASA Astrophysics Data System (ADS)

    Donnellan, A.; Ben-Zion, Y.; Arrowsmith, R.

    2016-12-01

    The Pacific - North American plate boundary in southern California is marked by several major strike slip faults. The 2010 M7.2 El Mayor - Cucapah earthquake ruptured 120 km of upper crust in Baja California to the US-Mexico border. The earthquake triggered slip along an extensive network of faults in the Salton Trough from the Mexican border to the southern end of the San Andreas fault. Earthquakes >M5 were triggered in the gap between the Laguna Salada and Elsinore faults at Ocotillo and on the Coyote Creek segment of the San Jacinto fault 20 km northwest of Borrego Springs. UAVSAR observations, collected since October of 2009, measure slip associated with the M5.7 Ocotillo aftershock with deformation continuing into 2014. The Elsinore fault has been remarkably quiet, however, with only M5.0 and M5.2 earthquakes occurring on the Coyote Mountains segment of the fault in 1940 and 1968 respectively. In contrast, the Imperial Valley has been quite active historically with numerous moderate events occurring since 1935. Moderate event activity is increasing along the San Jacinto fault zone (SJFZ), especially the trifurcation area, where 6 of 12 historic earthquakes in this 20 km long fault zone have occurred since 2000. However, no recent deformation has been detected using UAVSAR measurements in this area, including the recent M5.2 June 2016 Borrego earthquake. Does the El Mayor - Cucapah rupture connect to and transfer stress primarily to a single southern California fault or several? What is its role relative to the background plate motion? UAVSAR observations indicate that the southward extension of the Elsinore fault has recently experienced the most localized deformation. Seismicity suggests that the San Jacinto fault is more active than neighboring major faults, and geologic evidence suggests that the Southern San Andreas fault has been the major plate boundary fault in southern California. Topographic data with 3-4 cm resolution using structure from motion from

  15. Drag reduction using wrinkled surfaces in high Reynolds number laminar boundary layer flows

    NASA Astrophysics Data System (ADS)

    Raayai-Ardakani, Shabnam; McKinley, Gareth H.

    2017-09-01

    Inspired by the design of the ribbed structure of shark skin, passive drag reduction methods using stream-wise riblet surfaces have previously been developed and tested over a wide range of flow conditions. Such textures aligned in the flow direction have been shown to be able to reduce skin friction drag by 4%-8%. Here, we explore the effects of periodic sinusoidal riblet surfaces aligned in the flow direction (also known as a "wrinkled" texture) on the evolution of a laminar boundary layer flow. Using numerical analysis with the open source Computational Fluid Dynamics solver OpenFOAM, boundary layer flow over sinusoidal wrinkled plates with a range of wavelength to plate length ratios ( λ / L ), aspect ratios ( 2 A / λ ), and inlet velocities are examined. It is shown that in the laminar boundary layer regime, the riblets are able to retard the viscous flow inside the grooves creating a cushion of stagnant fluid that the high-speed fluid above can partially slide over, thus reducing the shear stress inside the grooves and the total integrated viscous drag force on the plate. Additionally, we explore how the boundary layer thickness, local average shear stress distribution, and total drag force on the wrinkled plate vary with the aspect ratio of the riblets as well as the length of the plate. We show that riblets with an aspect ratio of close to unity lead to the highest reduction in the total drag, and that because of the interplay between the local stress distribution on the plate and stream-wise evolution of the boundary layer the plate has to exceed a critical length to give a net decrease in the total drag force.

  16. Optimal discrete-time LQR problems for parabolic systems with unbounded input: Approximation and convergence

    NASA Technical Reports Server (NTRS)

    Rosen, I. G.

    1988-01-01

    An abstract approximation and convergence theory for the closed-loop solution of discrete-time linear-quadratic regulator problems for parabolic systems with unbounded input is developed. Under relatively mild stabilizability and detectability assumptions, functional analytic, operator techniques are used to demonstrate the norm convergence of Galerkin-based approximations to the optimal feedback control gains. The application of the general theory to a class of abstract boundary control systems is considered. Two examples, one involving the Neumann boundary control of a one-dimensional heat equation, and the other, the vibration control of a cantilevered viscoelastic beam via shear input at the free end, are discussed.

  17. SubductionGenerator: A program to build three-dimensional plate configurations

    NASA Astrophysics Data System (ADS)

    Jadamec, M. A.; Kreylos, O.; Billen, M. I.; Turcotte, D. L.; Knepley, M.

    2016-12-01

    Geologic, geochemical, and geophysical data from subduction zones indicate that a two-dimensional paradigm for plate tectonic boundaries is no longer adequate to explain the observations. Many open source software packages exist to simulate the viscous flow of the Earth, such as the dynamics of subduction. However, there are few open source programs that generate the three-dimensional model input. We present an open source software program, SubductionGenerator, that constructs the three-dimensional initial thermal structure and plate boundary structure. A 3D model mesh and tectonic configuration are constructed based on a user specified model domain, slab surface, seafloor age grid file, and shear zone surface. The initial 3D thermal structure for the plates and mantle within the model domain is then constructed using a series of libraries within the code that use a half-space cooling model, plate cooling model, and smoothing functions. The code maps the initial 3D thermal structure and the 3D plate interface onto the mesh nodes using a series of libraries including a k-d tree to increase efficiency. In this way, complicated geometries and multiple plates with variable thickness can be built onto a multi-resolution finite element mesh with a 3D thermal structure and 3D isotropic shear zones oriented at any angle with respect to the grid. SubductionGenerator is aimed at model set-ups more representative of the earth, which can be particularly challenging to construct. Examples include subduction zones where the physical attributes vary in space, such as slab dip and temperature, and overriding plate temperature and thickness. Thus, the program can been used to construct initial tectonic configurations for triple junctions and plate boundary corners.

  18. Plates and Mantle Convection: A Far-From Equilibrium Self-Organized System

    NASA Astrophysics Data System (ADS)

    King, S. D.; Lowman, J. P.; Gable, C. W.

    2001-12-01

    A common observation of plate tectonics is that plate velocities change over short time scales. Some have speculated that these reorganization events are triggered by evolving plate boundaries. This work presents an alternative mechanism, due to the interaction of mobil plates and internally heated convection. We present numerical models of 3D Cartesian convection in an internally-heated fluid with mobile plates that exhibit rapid changes in plate motion. A persistent feature of these calculations is that plate motion is relatively uniform punctuated by rapid reorganization events where plate speed and direction change over a short time period. The rapid changes in plate motion result solely from the interaction of internally-heated convection and the mobile plates. Without plates, the convective planform of an internally-heated fluid evolves into a pattern with a larger number of small cells. When plates are included, the fluid is dominated by plate-scale structures; however, isolated regions develop where heat builds up. These isolated regions are near the location of mature slabs where the plates are older and thicker. As the system evolves, the temperature (and buoyancy) in these isolated regions increases, they become unstable and, as they rise, the net force on the plate is no longer dominated by `slab pull' from the mature slab. The plate reorganization allows the system to transfer heat from the short-wavelength, internal-heating scale, to the longer-wavelength, plate-cooling scale. As we will demonstrate, the interaction between plate motions and the mantle is sufficiently dynamic that evolving plate boundaries are not necessary to achieve rapid changes in plate motion.

  19. Complex Plate Tectonic Features on Planetary Bodies: Analogs from Earth

    NASA Astrophysics Data System (ADS)

    Stock, J. M.; Smrekar, S. E.

    2016-12-01

    We review the types and scales of observations needed on other rocky planetary bodies (e.g., Mars, Venus, exoplanets) to evaluate evidence of present or past plate motions. Earth's plate boundaries were initially simplified into three basic types (ridges, trenches, and transform faults). Previous studies examined the Moon, Mars, Venus, Mercury and icy moons such as Europa, for evidence of features, including linear rifts, arcuate convergent zones, strike-slip faults, and distributed deformation (rifting or folding). Yet, several aspects merit further consideration. 1) Is the feature active or fossil? Earth's active mid ocean ridges are bathymetric highs, and seafloor depth increases on either side; whereas, fossil mid ocean ridges may be as deep as the surrounding abyssal plain with no major rift valley, although with a minor gravity low (e.g., Osbourn Trough, W. Pacific Ocean). Fossil trenches have less topographic relief than active trenches (e.g., the fossil trench along the Patton Escarpment, west of California). 2) On Earth, fault patterns of spreading centers depend on volcanism. Excess volcanism reduced faulting. Fault visibility increases as spreading rates slow, or as magmatism decreases, producing high-angle normal faults parallel to the spreading center. At magma-poor spreading centers, high resolution bathymetry shows low angle detachment faults with large scale mullions and striations parallel to plate motion (e.g., Mid Atlantic Ridge, Southwest Indian Ridge). 3) Sedimentation on Earth masks features that might be visible on a non-erosional planet. Subduction zones on Earth in areas of low sedimentation have clear trench -parallel faults causing flexural deformation of the downgoing plate; in highly sedimented subduction zones, no such faults can be seen, and there may be no bathymetric trench at all. 4) Areas of Earth with broad upwelling, such as the North Fiji Basin, have complex plate tectonic patterns with many individual but poorly linked ridge

  20. Effect of leading-edge geometry on boundary-layer receptivity to freestream sound

    NASA Technical Reports Server (NTRS)

    Lin, Nay; Reed, Helen L.; Saric, W. S.

    1991-01-01

    The receptivity to freestream sound of the laminar boundary layer over a semi-infinite flat plate with an elliptic leading edge is simulated numerically. The incompressible flow past the flat plate is computed by solving the full Navier-Stokes equations in general curvilinear coordinates. A finite-difference method which is second-order accurate in space and time is used. Spatial and temporal developments of the Tollmien-Schlichting wave in the boundary layer, due to small-amplitude time-harmonic oscillations of the freestream velocity that closely simulate a sound wave travelling parallel to the plate, are observed. The effect of leading-edge curvature is studied by varying the aspect ratio of the ellipse. The boundary layer over the flat plate with a sharper leading edge is found to be less receptive. The relative contribution of the discontinuity in curvature at the ellipse-flat-plate juncture to receptivity is investigated by smoothing the juncture with a polynomial. Continuous curvature leads to less receptivity. A new geometry of the leading edge, a modified super ellipse, which provides continuous curvature at the juncture with the flat plate, is used to study the effect of continuous curvature and inherent pressure gradient on receptivity.

  1. The Quest for the Africa-Eurasia plate boundary West of the Strait of Gibraltar

    NASA Astrophysics Data System (ADS)

    Zitellini, N.

    2009-04-01

    A new swath bathymetry compilation of the Gulf of Cadiz Area and SW Iberia is presented. The new map is the result of a collaborative research performed after year 2000 by teams from 7 European countries and 14 research institutions. This new dataset allow for the first time to present and to discuss the missing link in the plate boundary between Eurasia and Africa in the Central Atlantic. A set of almost linear and sub parallel dextral strike-slip faults, the SWIM Faults (SWIM is the acronym of the ESF EuroMargins project "Earthquake and Tsunami hazards of active faults at the South West Iberian Margin: deep structure, high-resolution imaging and paleoseismic signature") was mapped using a the new swath bathymetry compilation available in the area. The SWIM Faults form a narrow band of deformation over a length of 600 km coincident with a small circle centred on the pole of rotation of Africa with respect to Eurasia, This narrow band of deformation connects the Gloria Fault to the Rif-Tell Fault Zone, two segments of the plate boundary between Africa and Eurasia. In addition, the SWIM faults cuts across the Gulf of Cadiz, in the Atlantic Ocean, where the 1755 Great Lisbon earthquake, M~8.5-8.7, and tsunami were generated, providing a new insights on its source location. SWIM Team: E. Gràcia (2), L. Matias (3), P. Terrinha (4), M.A. Abreu (5), G. DeAlteriis(6), J.P. Henriet (7), J.J. Dañobeitia (2), D.G. Masson (8), T. Mulder (9), R. Ramella (10), L. Somoza (11) and S. Diez (2) (2) Unitat de Tecnologia Marina (CSIC), Centre Mediterrani d'Investigacions Marines i Ambientals, Barcelona, Spain (3) Centro Geofísica da Universidade de Lisboa (CGUL, IDL), Lisboa, Portugal (4) National Institute for Engineering, Technology and Innovation (INETI, LATTEX), Departamento de Geologia Marinha, Amadora, Portugal (5) Estrutura de Missão para a Extensão da Plataforma Continental, Lisboa, Portugal (6) Geomare Sud IAMC, CNR, Napoli, Italy (7) Renard Centre of Marine Geology

  2. A solution procedure for behavior of thick plates on a nonlinear foundation and postbuckling behavior of long plates

    NASA Technical Reports Server (NTRS)

    Stein, M.; Stein, P. A.

    1978-01-01

    Approximate solutions for three nonlinear orthotropic plate problems are presented: (1) a thick plate attached to a pad having nonlinear material properties which, in turn, is attached to a substructure which is then deformed; (2) a long plate loaded in inplane longitudinal compression beyond its buckling load; and (3) a long plate loaded in inplane shear beyond its buckling load. For all three problems, the two dimensional plate equations are reduced to one dimensional equations in the y-direction by using a one dimensional trigonometric approximation in the x-direction. Each problem uses different trigonometric terms. Solutions are obtained using an existing algorithm for simultaneous, first order, nonlinear, ordinary differential equations subject to two point boundary conditions. Ordinary differential equations are derived to determine the variable coefficients of the trigonometric terms.

  3. Do convergent developmental mechanisms underlie convergent phenotypes?

    NASA Technical Reports Server (NTRS)

    Wray, Gregory A.

    2002-01-01

    Convergence is a pervasive evolutionary process, affecting many aspects of phenotype and even genotype. Relatively little is known about convergence in developmental processes, however, nor about the degree to which convergence in development underlies convergence in anatomy. A switch in the ecology of sea urchins from feeding to nonfeeding larvae illustrates how convergence in development can be associated with convergence in anatomy. Comparisons to more distantly related taxa, however, suggest that this association may be limited to relatively close phylogenetic comparisons. Similarities in gene expression during development provide another window into the association between convergence in developmental processes and convergence in anatomy. Several well-studied transcription factors exhibit likely cases of convergent gene expression in distantly related animal phyla. Convergence in regulatory gene expression domains is probably more common than generally acknowledged, and can arise for several different reasons. Copyright 2002 S. Karger AG, Basel.

  4. A 2006 earthquakes series at the Colima rift and its relationship to the Rivera-Cocos plate boundary

    NASA Astrophysics Data System (ADS)

    Yamamoto, J.; Jimenez, Z.

    2013-12-01

    From July 31 through 13 August 2006 a series of fourteen earthquakes (M 3.9 to 6.1) occurred in the western end of the Central Mexican Volcanic Belt (CMVB) in twenty five days period. The most prominent earthquake (Mw 6.1) occurred on 11 August 2006 at 14:30 UTC (9:30 local time) approximately at 18.37° N, 101.25° W and 81 km depth. The epicenter was less than 40 km from Huetamo, Michoacan a 41,250-inhabitant city and 60 km from the El Infiernillo dam embayment the third largest hydroelectric plant in Mexico. This earthquake was widely felt through out the region with minor to moderate reported damage. In Mexico City 250 km away from the epicenter the earthquake, produced alarm among the population and several buildings evacuated. The earthquake series developed into two activity clusters one centered in the coast and separated about 300 km from a second inland cluster. The initial coastal cluster consisted of a nearly linear activity distribution which includes two shallow-depth earthquakes and reverse faulting mechanism with a slight left lateral strike-slip component and a possible fault planes trending roughly east-west. Two normal faulting earthquakes located at the extremes of the graben system, and fault planes oriented in a nearly north-south direction followed. The earthquakes are located approximately between the trench and the coast along the El Gordo-Colima graben system, which has been proposed as the continuation of the diffuse boundary between the Rivera and Cocos plates. The reverse faulting earthquakes are congruent either, with the expected subduction of the Rivera or Cocos plate under the North America plate and the normal faulting earthquake that can be associated to motions in the graben.

  5. The Jigsaw Earth--Putting the Pieces Together.

    ERIC Educational Resources Information Center

    Glenn, William H.

    1983-01-01

    Discusses continental drift, sea floor spreading, evidence for these two geological phenomena, and how they were unified into a theory of plate tectonics. Also discusses three types of plate boundaries: (1) divergent junctions, (2) convergent junctions, and (3) shear junctions. (Author/JN)

  6. Surface capillary currents: Rediscovery of fluid-structure interaction by forced evolving boundary theory

    NASA Astrophysics Data System (ADS)

    Wang, Chunbai; Mitra, Ambar K.

    2016-01-01

    Any boundary surface evolving in viscous fluid is driven with surface capillary currents. By step function defined for the fluid-structure interface, surface currents are found near a flat wall in a logarithmic form. The general flat-plate boundary layer is demonstrated through the interface kinematics. The dynamics analysis elucidates the relationship of the surface currents with the adhering region as well as the no-slip boundary condition. The wall skin friction coefficient, displacement thickness, and the logarithmic velocity-defect law of the smooth flat-plate boundary-layer flow are derived with the advent of the forced evolving boundary method. This fundamental theory has wide applications in applied science and engineering.

  7. Drought-induced uplift in the western United States as observed by the EarthScope Plate Boundary Observatory GPS network

    NASA Astrophysics Data System (ADS)

    Borsa, A. A.; Agnew, D. C.; Cayan, D. R.

    2014-12-01

    The western United States (WUS) has been experiencing severe drought since 2013. The solid earth response to the accompanying loss of surface and near-surface water mass should be a broad region of uplift. We use seasonally-adjusted time series from continuously operating GPS stations in the EarthScope Plate Boundary Observatory and several smaller networks to measure this uplift, which reaches 15 mm in the California Coastal Ranges and Sierra Nevada and has a median value of 4 mm over the entire WUS. The pattern of mass loss due to the drought, which we recover from an inversion of uplift observations, ranges up to 50 cm of water equivalent and is consistent with observed decreases in precipitation and streamflow. We estimate the total deficit to be 240 Gt, equivalent to a uniform 10 cm layer of water over the entire region, or the magnitude of the current annual mass loss from the Greenland Ice Sheet. In the WUS, interannual changes in crustal loading are driven by changes in cool-season precipitation, which cause variations in surface water, snowpack, soil moisture, and groundwater. The results here demonstrate that the existing network of continuous GPS stations can be used to recover loading changes due to both wet and dry climate patterns. This suggests a new role for GPS networks such as that of the Plate Boundary Observatory. The exceptional stability of the GPS monumentation means that this network is also capable of monitoring the long-term effects of regional climate change. Surface displacement observations from GPS have the potential to expand the capabilities of the current hydrological observing network for monitoring current and future hydrological changes, with obvious social and economic benefits.

  8. New Insights into the present-day kinematics of the central and western Papua New Guinea from GPS

    NASA Astrophysics Data System (ADS)

    Koulali, A.; Tregoning, P.; McClusky, S.; Stanaway, R.; Wallace, L.; Lister, G.

    2015-08-01

    New Guinea is a region characterized by rapid oblique convergence between the Pacific and Australian tectonic plates. The detailed tectonics of the region, including the partitioning of relative block motions and fault slip rates within this complex boundary plate boundary zone are still not well understood. In this study, we quantify the distribution of the deformation throughout the central and western parts of Papua New Guinea (PNG) using 20 yr of GPS data (1993-2014). We use an elastic block model to invert the regional GPS velocities as well as earthquake slip vectors for the location and rotation rates of microplate Euler poles as well as fault slip parameters in the region. Convergence between the Pacific and the Australian plates is accommodated in northwestern PNG largely by the New Guinea Trench with rates exceeding 90 mm yr-1, indicating that this is the major active interplate boundary. However, some convergent deformation is partitioned into a shear component with ˜12 per cent accommodated by the Bewani-Torricelli fault zone and the southern Highlands Fold-and-Thrust Belt. New GPS velocities in the eastern New Guinea Highlands region have led to the identification of the New Guinea Highlands and the Papuan Peninsula being distinctly different blocks, separated by a boundary through the Aure Fold-and-Thrust Belt complex which accommodates an estimated 4-5 mm yr-1 of left-lateral and 2-3 mm yr-1 of convergent motion. This implies that the Highlands Block is rotating in a clockwise direction relative to the rigid Australian Plate, consistent with the observed transition to left-lateral strike-slip regime observed in western New Guinea Highlands. We find a better fit of our block model to the observed velocities when assigning the current active boundary between the Papuan Peninsula and the South Bismark Block to be to the north of the city of Lae on the Gain Thrust, rather than on the more southerly Ramu-Markham fault as previously thought. This may

  9. The Role of Proto-Thrusts in Frontal Accretion and Accommodation of Plate Convergence, Hikurangi Subduction Margin, New Zealand

    NASA Astrophysics Data System (ADS)

    Barnes, P.; Ghisetti, F.; Ellis, S. M.; Morgan, J.

    2016-12-01

    Proto-thrusts are an enigmatic structural feature at the toe of many subduction accretionary wedges. They are commonly recognised in seismic reflection sections as relatively small-displacement (tens of metres) faults seaward of the primary deformation front. Although widely assumed to reflect incipient accretionary deformation and to mark the location of future thrusts, proto-thrusts have received relatively little attention. Few studies have attempted to characterise their displacement properties, evolution, and kinematic role in frontal accretion processes associated with propagation of the interface décollement. In this study, we make use of excellent quality geophysical and bathymetric imaging of the spectacular 25 km-wide Hikurangi margin proto-thrust zone (PTZ), the structure of which varies significantly along strike. From a detailed structural analysis, we provide the first substantial quantitative dataset on proto-thrust geometry, displacement profiles, fault scaling relationships, and fault population characteristics. These analyses provide new insights into the role of inferred stratigraphic inhomogeneity in proto-thrust development, and the role of proto-thrust arrays in frontal accretion. Our observations, combined with our own recently published reconstructions of the wedge, and ongoing numerical simulations, indicate a migrating wave of proto-thrust activity in association with forward-advancement of the décollement. Calculation of tectonic shortening accommodated by the active PTZ east of the present deformation front, from measurements of seismically-imaged fault displacements and estimates of sub-seismic faulting derived from power law relationships, reveal their surprisingly significant role in accommodating regional plate convergence. South of the colliding Bennett Knoll Seamount, the predominantly seaward-vergent PTZ has accommodated 3.3 km of tectonic shortening, of which 70% is at sub-seismic scale. In comparison, north of Bennett Knoll

  10. On the Boussinesq-Burgers equations driven by dynamic boundary conditions

    NASA Astrophysics Data System (ADS)

    Zhu, Neng; Liu, Zhengrong; Zhao, Kun

    2018-02-01

    We study the qualitative behavior of the Boussinesq-Burgers equations on a finite interval subject to the Dirichlet type dynamic boundary conditions. Assuming H1 ×H2 initial data which are compatible with boundary conditions and utilizing energy methods, we show that under appropriate conditions on the dynamic boundary data, there exist unique global-in-time solutions to the initial-boundary value problem, and the solutions converge to the boundary data as time goes to infinity, regardless of the magnitude of the initial data.

  11. Symmetries and Boundary Conditions with a Twist

    NASA Astrophysics Data System (ADS)

    Zawadzki, Krissia; D'Amico, Irene; Oliveira, Luiz N.

    2017-10-01

    Interest in finite-size systems has risen in the last decades, due to the focus on nanotechnological applications and because they are convenient for numerical treatment that can subsequently be extrapolated to infinite lattices. Independently of the envisioned application, special attention must be given to boundary condition, which may or may not preserve the symmetry of the infinite lattice. Here, we present a detailed study of the compatibility between boundary conditions and conservation laws. The conflict between open boundary conditions and momentum conservation is well understood, but we examine other symmetries, as well: we discuss gauge invariance, inversion, spin, and particle-hole symmetry and their compatibility with open, periodic, and twisted boundary conditions. In the interest of clarity, we develop the reasoning in the framework of the one-dimensional half-filled Hubbard model, whose Hamiltonian displays a variety of symmetries. Our discussion includes analytical and numerical results. Our analytical survey shows that, as a rule, boundary conditions break one or more symmetries of the infinite-lattice Hamiltonian. The exception is twisted boundary condition with the special torsion Θ = πL/2, where L is the lattice size. Our numerical results for the ground-state energy at half-filling and the energy gap for L = 2-7 show how the breaking of symmetry affects the convergence to the L → ∞ limit. We compare the computed energies and gaps with the exact results for the infinite lattice drawn from the Bethe-Ansatz solution. The deviations are boundary-condition dependent. The special torsion yields more rapid convergence than open or periodic boundary conditions. For sizes as small as L = 7, the numerical results for twisted condition are very close to the L → ∞ limit. We also discuss the ground-state electronic density and magnetization at half filling under the three boundary conditions.

  12. Hydrodynamic and Thermal Slip Effect on Double-Diffusive Free Convective Boundary Layer Flow of a Nanofluid Past a Flat Vertical Plate in the Moving Free Stream

    PubMed Central

    Khan, Waqar A.; Uddin, Md Jashim; Ismail, A. I. Md.

    2013-01-01

    The effects of hydrodynamic and thermal slip boundary conditions on the double-diffusive free convective flow of a nanofluid along a semi-infinite flat solid vertical plate are investigated numerically. It is assumed that free stream is moving. The governing boundary layer equations are non-dimensionalized and transformed into a system of nonlinear, coupled similarity equations. The effects of the controlling parameters on the dimensionless velocity, temperature, solute and nanofluid concentration as well as on the reduced Nusselt number, reduced Sherwood number and the reduced nanoparticle Sherwood number are investigated and presented graphically. To the best of our knowledge, the effects of hydrodynamic and thermal slip boundary conditions have not been investigated yet. It is found that the reduced local Nusselt, local solute and the local nanofluid Sherwood numbers increase with hydrodynamic slip and decrease with thermal slip parameters. PMID:23533566

  13. A new method of imposing boundary conditions for hyperbolic equations

    NASA Technical Reports Server (NTRS)

    Funaro, D.; ative.

    1987-01-01

    A new method to impose boundary conditions for pseudospectral approximations to hyperbolic equations is suggested. This method involves the collocation of the equation at the boundary nodes as well as satisfying boundary conditions. Stability and convergence results are proven for the Chebyshev approximation of linear scalar hyperbolic equations. The eigenvalues of this method applied to parabolic equations are shown to be real and negative.

  14. Subduction Drive of Plate Tectonics

    NASA Astrophysics Data System (ADS)

    Hamilton, W. B.

    2003-12-01

    Don Anderson emphasizes that plate tectonics is self-organizing and is driven by subduction, which rights the density inversion generated as oceanic lithosphere forms by cooling of asthenosphere from the top. The following synthesis owes much to many discussions with him. Hinge rollback is the key to kinematics, and, like the rest of actual plate behavior, is incompatible with bottom-up convection drive. Subduction hinges (which are under, not in front of, thin leading parts of arcs and overriding plates) roll back into subducting plates. The Pacific shrinks because bounding hinges roll back into it. Colliding arcs, increasing arc curvatures, back-arc spreading, and advance of small arcs into large plates also require rollback. Forearcs of overriding plates commonly bear basins which preclude shortening of thin plate fronts throughout periods recorded by basin strata (100 Ma for Cretaceous and Paleogene California). This requires subequal rates of advance and rollback, and control of both by subduction. Convergence rate is equal to rates of rollback and advance in many systems but is greater in others. Plate-related circulation probably is closed above 650 km. Despite the popularity of concepts of plumes from, and subduction into, lower mantle, there is no convincing evidence for, and much evidence against, penetration of the 650 in either direction. That barrier not only has a crossing-inhibiting negative Clapeyron slope but also is a compositional boundary between fractionated (not "primitive"), sluggish lower mantle and fertile, mobile upper mantle. Slabs sink more steeply than they dip. Slabs older than about 60 Ma when their subduction began sink to, and lie down on and depress, the 650-km discontinuity, and are overpassed, whereas younger slabs become neutrally buoyant in mid-upper mantle, into which they are mixed as they too are overpassed. Broadside-sinking old slabs push all upper mantle, from base of oceanic lithosphere down to the 650, back under

  15. Computational Investigations in Rectangular Convergent and Divergent Ribbed Channels

    NASA Astrophysics Data System (ADS)

    Sivakumar, Karthikeyan; Kulasekharan, N.; Natarajan, E.

    2018-05-01

    Computational investigations on the rib turbulated flow inside a convergent and divergent rectangular channel with square ribs of different rib heights and different Reynolds numbers (Re=20,000, 40,000 and 60,000). The ribs were arranged in a staggered fashion between the upper and lower surfaces of the test section. Computational investigations are carried out using computational fluid dynamic software ANSYS Fluent 14.0. Suitable solver settings like turbulence models were identified from the literature and the boundary conditions for the simulations on a solution of independent grid. Computations were carried out for both convergent and divergent channels with 0 (smooth duct), 1.5, 3, 6, 9 and 12 mm rib heights, to identify the ribbed channel with optimal performance, assessed using a thermo hydraulic performance parameter. The convergent and divergent rectangular channels show higher Nu values than the standard correlation values.

  16. Convergence of Spectral Discretizations of the Vlasov--Poisson System

    DOE PAGES

    Manzini, G.; Funaro, D.; Delzanno, G. L.

    2017-09-26

    Here we prove the convergence of a spectral discretization of the Vlasov-Poisson system. The velocity term of the Vlasov equation is discretized using either Hermite functions on the infinite domain or Legendre polynomials on a bounded domain. The spatial term of the Vlasov and Poisson equations is discretized using periodic Fourier expansions. Boundary conditions are treated in weak form through a penalty type term that can be applied also in the Hermite case. As a matter of fact, stability properties of the approximated scheme descend from this added term. The convergence analysis is carried out in detail for the 1D-1Vmore » case, but results can be generalized to multidimensional domains, obtained as Cartesian product, in both space and velocity. The error estimates show the spectral convergence under suitable regularity assumptions on the exact solution.« less

  17. Analogies between Kirchhoff plates and functionally graded Saint-Venant beams under torsion

    NASA Astrophysics Data System (ADS)

    Barretta, Raffaele; Luciano, Raimondo

    2015-05-01

    Exact solutions of elastic Kirchhoff plates are available only for special geometries, loadings and kinematic boundary constraints. An effective solution procedure, based on an analogy between functionally graded orthotropic Saint-Venant beams under torsion and inhomogeneous isotropic Kirchhoff plates, with no kinematic boundary constraints, is proposed. The result extends the one contributed in Barretta (Acta Mech 224(12):2955-2964, 2013) for the special case of homogeneous Saint-Venant beams under torsion. Closed-form solutions for displacement, bending-twisting moment and curvature fields of an elliptic plate, corresponding to a functionally graded orthotropic beam, are evaluated. A new benchmark for computational mechanics is thus provided.

  18. Investigation of 3D Shock-Boundary Layer Interaction: A Combined Approach using Experiments, Numerical Simulations and Stability Analysis

    DTIC Science & Technology

    2015-12-02

    layer , the non-reflecting boundary condition suggested by Poinsot and Lele is adopted.38 On the flat – plate surface, the no-penetration (v = 0) and the no...generator plate is emulated to create an oblique shock that impinges on the boundary layer causing separation. This is similar to the experimental...without SBLI and with SBLI. To calculate the steady flat – plate solution with no shock, a characteristic boundary condition according to Harris is used.39

  19. Anatomy of the Dead Sea transform: Does it reflect continuous changes in plate motion?

    USGS Publications Warehouse

    ten Brink, Uri S.; Rybakov, M.; Al-Zoubi, A. S.; Hassouneh, M.; Frieslander, U.; Batayneh, A.T.; Goldschmidt, V.; Daoud, M.N.; Rotstein, Y.; Hall, J.K.

    1999-01-01

    A new gravity map of the southern half of the Dead Sea transform offers the first regional view of the anatomy of this plate boundary. Interpreted together with auxiliary seismic and well data, the map reveals a string of subsurface basins of widely varying size, shape, and depth along the plate boundary and relatively short (25-55 km) and discontinuous fault segments. We argue that this structure is a result of continuous small changes in relative plate motion. However, several segments must have ruptured simultaneously to produce the inferred maximum magnitude of historical earthquakes.

  20. From Subduction to a Compressional transform system: Diffuse Deformation Processes at the Southeastern Boundary of the Caribbean Plate

    NASA Astrophysics Data System (ADS)

    Deville, E.; Padron, C.; Huyghe, P.; Callec, Y.; Lallemant, S.; Lebrun, J.; Mascle, A.; Mascle, G.; Noble, M.

    2006-12-01

    Geophysical data acquired in the southeastern Caribbean marine area (CARAMBA survey of the French O/V Atalante) provide new information about the deformation processes occurring in this subduction-to-strike-slip transitions zone. The 65 000 km2 of multibeam data and 5600 km of seismic reflection and 3.5 kHz profiles which have been collected evidence that the connection between the Barbados accretionary prism and the south Caribbean transform system is partitioned between a wide variety of recently active tectonic superficial features (complex folding, diffuse faulting, and mud volcanism), which accommodate the relative displacement between the Caribbean and the South America plates. The active deformation within the sedimentary pile is mostly aseismic (creeping) and this deformation is relatively diffuse over a large diffuse plate boundary. There is no direct fault connection between the front of the Barbados prism and the strike-slip system of northern Venezuela. The toe thrust system at the southern edge of the Barbados prism, exhibits clear en-echelon geometry. The geometry of the syntectonic deposits evidence the diachronism of the deformation processes. Notably, it is well evidenced that early folds have been sealed by the recent turbidite deposits, whereas, some of the fold and thrust structures were active recently. Within this active compressional region, extension growth faults develop on the platform and on the slope of the Orinoco delta along a WNW-ESE trending en-echelon fault system that we called the Orinoco Delta Fault Zone (ODFZ). This fault system is clearly oblique with respect to the present-day Orinoco delta slope. These faults are not simply related to a passive gravitary collapse of the sediments accumulated on the Orinoco platform. Though there a decoupling between the shallow deformation processes in the sediments and the deep deformation characterized by earthquake activity, the ODFZ is inferred to be partly controlled by deep structures

  1. Sensor for Boundary Shear Stress in Fluid Flow

    NASA Technical Reports Server (NTRS)

    Bao, Xiaoqi; Badescu, Mircea; Sherrit, Stewart; Bar-Cohen, Yoseph; Lih, Shyh-Shiuh; Chang, Zensheu; Trease, Brian P.; Kerenyi, Kornel; Widholm, Scott E.; Ostlund, Patrick N.

    2012-01-01

    The formation of scour patterns at bridge piers is driven by the forces at the boundary of the water flow. In most experimental scour studies, indirect processes have been applied to estimate the shear stress using measured velocity profiles. The estimations are based on theoretical models and associated assumptions. However, the turbulence flow fields and boundary layer in the pier-scour region are very complex and lead to low-fidelity results. In addition, available turbulence models cannot account accurately for the bed roughness effect. Direct measurement of the boundary shear stress, normal stress, and their fluctuations are attractive alternatives. However, most direct-measurement shear sensors are bulky in size or not compatible to fluid flow. A sensor has been developed that consists of a floating plate with folded beam support and an optical grid on the back, combined with a high-resolution optical position probe. The folded beam support makes the floating plate more flexible in the sensing direction within a small footprint, while maintaining high stiffness in the other directions. The floating plate converts the shear force to displacement, and the optical probe detects the plate s position with nanometer resolution by sensing the pattern of the diffraction field of the grid through a glass window. This configuration makes the sensor compatible with liquid flow applications.

  2. Slab interactions in 3-D subduction settings: The Philippine Sea Plate region

    NASA Astrophysics Data System (ADS)

    Holt, Adam F.; Royden, Leigh H.; Becker, Thorsten W.; Faccenna, Claudio

    2018-05-01

    The importance of slab-slab interactions is manifested in the kinematics and geometry of the Philippine Sea Plate and western Pacific subduction zones, and such interactions offer a dynamic basis for the first-order observations in this complex subduction setting. The westward subduction of the Pacific Sea Plate changes, along-strike, from single slab subduction beneath Japan, to a double-subduction setting where Pacific subduction beneath the Philippine Sea Plate occurs in tandem with westward subduction of the Philippine Sea Plate beneath Eurasia. Our 3-D numerical models show that there are fundamental differences between single slab systems and double slab systems where both subduction systems have the same vergence. We find that the observed kinematics and slab geometry of the Pacific-Philippine subduction can be understood by considering an along-strike transition from single to double subduction, and is largely independent from the detailed geometry of the Philippine Sea Plate. Important first order features include the relatively shallow slab dip, retreating/stationary trenches, and rapid subduction for single slab systems (Pacific Plate subducting under Japan), and front slabs within a double slab system (Philippine Sea Plate subducting at Ryukyu). In contrast, steep to overturned slab dips, advancing trench motion, and slower subduction occurs for rear slabs in a double slab setting (Pacific subducting at the Izu-Bonin-Mariana). This happens because of a relative build-up of pressure in the asthenosphere beneath the Philippine Sea Plate, where the asthenosphere is constrained between the converging Ryukyu and Izu-Bonin-Mariana slabs. When weak back-arc regions are included, slab-slab convergence rates slow and the middle (Philippine) plate extends, which leads to reduced pressure build up and reduced slab-slab coupling. Models without back-arcs, or with back-arc viscosities that are reduced by a factor of five, produce kinematics compatible with present

  3. Tectonic plates, D (double prime) thermal structure, and the nature of mantle plumes

    NASA Technical Reports Server (NTRS)

    Lenardic, A.; Kaula, W. M.

    1994-01-01

    It is proposed that subducting tectonic plates can affect the nature of thermal mantle plumes by determining the temperature drop across a plume source layer. The temperature drop affects source layer stability and the morphology of plumes emitted from it. Numerical models are presented to demonstrate how introduction of platelike behavior in a convecting temperature dependent medium, driven by a combination of internal and basal heating, can increase the temperature drop across the lower boundary layer. The temperature drop increases dramatically following introduction of platelike behavior due to formation of a cold temperature inversion above the lower boundary layer. This thermal inversion, induced by deposition of upper boundary layer material to the system base, decays in time, but the temperature drop across the lower boundary layer always remains considerably higher than in models lacking platelike behavior. On the basis of model-inferred boundary layer temperature drops and previous studies of plume dynamics, we argue that generally accepted notions as to the nature of mantle plumes on Earth may hinge on the presence of plates. The implication for Mars and Venus, planets apparently lacking plate tectonics, is that mantle plumes of these planets may differ morphologically from those of Earth. A corollary model-based argument is that as a result of slab-induced thermal inversions above the core mantle boundary the lower most mantle may be subadiabatic, on average (in space and time), if major plate reorganization timescales are less than those acquired to diffuse newly deposited slab material.

  4. Stability of active mantle upwelling revealed by net characteristics of plate tectonics.

    PubMed

    Conrad, Clinton P; Steinberger, Bernhard; Torsvik, Trond H

    2013-06-27

    Viscous convection within the mantle is linked to tectonic plate motions and deforms Earth's surface across wide areas. Such close links between surface geology and deep mantle dynamics presumably operated throughout Earth's history, but are difficult to investigate for past times because the history of mantle flow is poorly known. Here we show that the time dependence of global-scale mantle flow can be deduced from the net behaviour of surface plate motions. In particular, we tracked the geographic locations of net convergence and divergence for harmonic degrees 1 and 2 by computing the dipole and quadrupole moments of plate motions from tectonic reconstructions extended back to the early Mesozoic era. For present-day plate motions, we find dipole convergence in eastern Asia and quadrupole divergence in both central Africa and the central Pacific. These orientations are nearly identical to the dipole and quadrupole orientations of underlying mantle flow, which indicates that these 'net characteristics' of plate motions reveal deeper flow patterns. The positions of quadrupole divergence have not moved significantly during the past 250 million years, which suggests long-term stability of mantle upwelling beneath Africa and the Pacific Ocean. These upwelling locations are positioned above two compositionally and seismologically distinct regions of the lowermost mantle, which may organize global mantle flow as they remain stationary over geologic time.

  5. Convergence results for pseudospectral approximations of hyperbolic systems by a penalty type boundary treatment

    NASA Technical Reports Server (NTRS)

    Funaro, Daniele; Gottlieb, David

    1989-01-01

    A new method of imposing boundary conditions in the pseudospectral approximation of hyperbolic systems of equations is proposed. It is suggested to collocate the equations, not only at the inner grid points, but also at the boundary points and use the boundary conditions as penalty terms. In the pseudo-spectral Legrendre method with the new boundary treatment, a stability analysis for the case of a constant coefficient hyperbolic system is presented and error estimates are derived.

  6. Analytic Approximate Solutions to the Boundary Layer Flow Equation over a Stretching Wall with Partial Slip at the Boundary.

    PubMed

    Ene, Remus-Daniel; Marinca, Vasile; Marinca, Bogdan

    2016-01-01

    Analytic approximate solutions using Optimal Homotopy Perturbation Method (OHPM) are given for steady boundary layer flow over a nonlinearly stretching wall in presence of partial slip at the boundary. The governing equations are reduced to nonlinear ordinary differential equation by means of similarity transformations. Some examples are considered and the effects of different parameters are shown. OHPM is a very efficient procedure, ensuring a very rapid convergence of the solutions after only two iterations.

  7. Surface cracks as a long-term record of Andean plate boundary segmentation

    NASA Astrophysics Data System (ADS)

    Loveless, J. P.; Allmendinger, R. W.; Pritchard, M. E.

    2007-12-01

    Meter-scale surface cracks throughout the northern Chilean and southern Peruvian forearcs provide a long-term record of seismic segmentation along the Andean plate boundary. The cracks, mapped on high-resolution satellite imagery, show strong preferred orientations over large regions and the mean strikes of cracks vary systematically as a function of position along the margin. The spatial scale of this variation suggests that stress fields operating with similar dimensions, namely those produced by strong subduction zone earthquakes, are primarily responsible for crack evolution. The orientations of cracks are consistent with the static and dynamic coseismic stress fields calculated for several recent and historical earthquakes on distinct segments of the subduction interface. Field observations indicate that the cracks have experienced multiple episodes of opening and proximal age evidence suggests that they represent deformation as old as several hundred thousand years. We invert the crack orientation data to solve for plausible slip distributions on the Iquique, Chile segment of the margin (19°--23° S), which last ruptured in a M~8--9 event in 1877. We find that concentrations of coseismic slip resolved by the inversion coincide spatially with negative gravity anomalies, consistent with recent studies correlating subduction zone earthquake slip with forearc structure. These results suggest that distinct seismic segments or asperities on the subduction interface define characteristic earthquakes with rupture dimensions and magnitudes that are similar over many seismic cycles.

  8. Surface cracks as a long-term record of Andean plate boundary segmentation

    NASA Astrophysics Data System (ADS)

    Loveless, J. P.; Allmendinger, R. W.; Pritchard, M. E.

    2004-12-01

    Meter-scale surface cracks throughout the northern Chilean and southern Peruvian forearcs provide a long-term record of seismic segmentation along the Andean plate boundary. The cracks, mapped on high-resolution satellite imagery, show strong preferred orientations over large regions and the mean strikes of cracks vary systematically as a function of position along the margin. The spatial scale of this variation suggests that stress fields operating with similar dimensions, namely those produced by strong subduction zone earthquakes, are primarily responsible for crack evolution. The orientations of cracks are consistent with the static and dynamic coseismic stress fields calculated for several recent and historical earthquakes on distinct segments of the subduction interface. Field observations indicate that the cracks have experienced multiple episodes of opening and proximal age evidence suggests that they represent deformation as old as several hundred thousand years. We invert the crack orientation data to solve for plausible slip distributions on the Iquique, Chile segment of the margin (19°--23° S), which last ruptured in a M~8--9 event in 1877. We find that concentrations of coseismic slip resolved by the inversion coincide spatially with negative gravity anomalies, consistent with recent studies correlating subduction zone earthquake slip with forearc structure. These results suggest that distinct seismic segments or asperities on the subduction interface define characteristic earthquakes with rupture dimensions and magnitudes that are similar over many seismic cycles.

  9. Granular dynamics under shear with deformable boundaries

    NASA Astrophysics Data System (ADS)

    Geller, Drew; Backhaus, Scott; Ecke, Robert

    2015-03-01

    Granular materials under shear develop complex patterns of stress as the result of granular positional rearrangements under an applied load. We consider the simple planar shear of a quasi two-dimensional granular material consisting of bi-dispersed nylon cylinders confined between deformable boundaries. The aspect ratio of the gap width to total system length is 50, and the ratio of particle diameter to gap width is about 10. This system, designed to model a long earthquake fault with long range elastic coupling through the plates, is an interesting model system for understanding effective granular friction because it essentially self tunes to the jamming condition owing to the hardness of the grains relative to that of the boundary material, a ratio of more than 1000 in elastic moduli. We measure the differential strain displacements of the plates, the inhomogeneous stress distribution in the plates, the positions and angular orientations of the individual grains, and the shear force, all as functions of the applied normal stress. There is significant stick-slip motion in this system that we quantify through our quantitative measurements of both the boundary and the grain motion, resulting in a good characterization of this sheared 2D hard sphere system.

  10. Finite stretching of an annular plate.

    NASA Technical Reports Server (NTRS)

    Biricikoglu, V.; Kalnins, A.

    1971-01-01

    The problem of the finite stretching of an annular plate which is bonded to a rigid inclusion at its inner edge is considered. The material is assumed to be isotropic and incompressible with a Mooney-type constitutive law. It is shown that the inclusion of the effect of the transverse normal strain leads to a rapid variation in thickness which is confined to a narrow edge zone. The explicit solutions to the boundary layer equations, which govern the behavior of the plate near the edges, are presented.

  11. Plate tectonics and offshore boundary delimitation: Tunisia-Libya case at the International Court of Justice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stanley, D.J.

    1983-03-01

    Advances in the technology for exploiting resources of the oceans, particularly recovery of hydrocarbons and minerals in deep water, is benefiting a growing number of nations. At the same time, however, economic and political pressures have induced concern and there is now a much increased emphasis on jurisdiction to divide the offshore areas between the 132 coastal nations. Negotiations affect research operations at sea and, in consequence, marine scientists have been made aware of offshore problems as highlighted by the Law of the Sea Treaty (UNCLOS III) and complications arising from the legal versus scientific definitions of continental shelves andmore » margins. The first major offshore boundary case of international scope where plate tectonics has constituted a significant argument is the one recently brought before the International Court of Justice by Libya and Tunisia concerning the delimitation of their continental shelves. Of the two parties, Libya placed the greatest emphasis on this concept as a means to determine natural prolongation of its land territory into and under the sea. Tunisia contested Libya's use of the whole of the African continental landmass as a reference unit; in Tunisia's view, considerations of geography, geomorphology, and bathymetry are at least as relevant as are those of geology. In its landmark judgment (February 1982) - which almost certainly will have far-reaching consequences in future such boundary delimitation cases - the court pronounced that It is the outcome, not the evolution in the long-distant past, which is of importance, and that it is the present-day configuration of the coasts and sea bed which are the main factors to be considered, not geology.« less

  12. Studies of acoustic effects on a flow boundary layer in air

    NASA Technical Reports Server (NTRS)

    Mechel, F.; Schilz, W.

    1986-01-01

    Effects of sound fields on the flow boundary layer on a flat plate subjected to a parallel flow are studied. The boundary layer is influenced by controlling the stagnation point flow at the front edge of the plate. Depending on the Reynolds number and sound frequency, excitation or suppression of turbulent is observed. Measurements were taken at wind velocities between 10 and 30 m/sec and sound frequencies between 0.2 and 3.0 kHz.

  13. GPS and seismological constraints on active tectonics and arc-continent collision in Papua New Guinea: Implications for mechanics of microplate rotations in a plate boundary zone

    NASA Astrophysics Data System (ADS)

    Wallace, Laura M.; Stevens, Colleen; Silver, Eli; McCaffrey, Rob; Loratung, Wesley; Hasiata, Suvenia; Stanaway, Richard; Curley, Robert; Rosa, Robert; Taugaloidi, Jones

    2004-05-01

    The island of New Guinea is located within the deforming zone between the Pacific and Australian plates that converge obliquely at ˜110 mm/yr. New Guinea has been fragmented into a complex array of microplates, some of which rotate rapidly about nearby vertical axes. We present velocities from a network of 38 Global Positioning System (GPS) sites spanning much of the nation of Papua New Guinea (PNG). The GPS-derived velocities are used to explain the kinematics of major tectonic blocks in the region and the nature of strain accumulation on major faults in PNG. We simultaneously invert GPS velocities, earthquake slip vectors on faults, and transform orientations in the Woodlark Basin for the poles of rotation of the tectonic blocks and the degree of elastic strain accumulation on faults in the region. The data are best explained by six distinct tectonic blocks: the Australian, Pacific, South Bismarck, North Bismarck, and Woodlark plates and a previously unrecognized New Guinea Highlands Block. Significant portions of the Ramu-Markham Fault appear to be locked, which has implications for seismic hazard determination in the Markham Valley region. We also propose that rapid clockwise rotation of the South Bismarck plate is controlled by edge forces initiated by the collision between the Finisterre arc and the New Guinea Highlands.

  14. Using the Mesozoic History of the Canadian Cordillera as a Case Study in Teaching Plate Tectonics.

    ERIC Educational Resources Information Center

    Chamberlain, Valerie Elaine

    1989-01-01

    Reviews a model used in the teaching of plate tectonics which includes processes and concepts related to: terranes and the amalgamation of terranes, relative plate motion and oblique subduction, the effects of continent-continent collision, changes in plate motion, plate configuration, and the type of plate boundary. Diagrams are included.…

  15. Fundamental structure model of island arcs and subducted plates in and around Japan

    NASA Astrophysics Data System (ADS)

    Iwasaki, T.; Sato, H.; Ishiyama, T.; Shinohara, M.; Hashima, A.

    2015-12-01

    The eastern margin of the Asian continent is a well-known subduction zone, where the Pacific (PAC) and Philippine Sea (PHS) plates are being subducted. In this region, several island arcs (Kuril, Northeast Japan, Southwest Japan, Izu-Bonin and Ryukyu arcs) meet one another to form a very complicated tectonic environment. At 2014, we started to construct fundamental structure models for island arcs and subducted plates in and around Japan. Our research is composed of 6 items of (1) topography, (2) plate geometry, (3) fault models, (4) the Moho and brittle-ductile transition zone, (5) the lithosphere-asthenosphere boundary, and (6) petrological/rheological models. Such information is basic but inevitably important in qualitative understanding not only for short-term crustal activities in the subduction zone (particularly caused by megathrust earthquakes) but also for long-term cumulative deformation of the arcs as a result of strong plate-arc/arc-arc interactions. This paper is the first presentation of our research, mainly presenting the results of items (1) and (2). The area of our modelling is 12o-54o N and 118o-164o E to cover almost the entire part of Japanese Islands together with Kuril, Ryukyu and Izu-Bonin trenches. The topography model was constructed from the 500-m mesh data provided from GSJ, JODC, GINA and Alaska University. Plate geometry models are being constructed through the two steps. In the first step, we modelled very smooth plate boundaries of the Pacific and Philippine Sea plates in our whole model area using 42,000 earthquake data from JMA, USGS and ISC. For 7,800 cross sections taken with several directions to the trench axes, 2D plate boundaries were defined by fitting to the earthquake distribution (the Wadati-Benioff zone), from which we obtained equi-depth points of the plate boundary. These equi-depth points were then approximated by spline interpolation technique to eliminate shorter wave length undulation (<50-100 km). The obtained

  16. A new estimate for present-day Cocos-Caribbean Plate motion: Implications for slip along the Central American Volcanic Arc

    NASA Astrophysics Data System (ADS)

    DeMets, Charles

    Velocities from 153 continuously-operating GPS sites on the Caribbean, North American, and Pacific plates are combined with 61 newly estimated Pacific-Cocos seafloor spreading rates and additional marine geophysical data to derive a new estimate of present-day Cocos-Caribbean plate motion. A comparison of the predicted Cocos-Caribbean direction to slip directions of numerous shallow-thrust subduction earthquakes from the Middle America trench between Costa Rica and Guatemala shows the slip directions to be deflected 10° clockwise from the plate convergence direction, supporting the hypothesis that frequent dextral strike-slip earthquakes along the Central American volcanic arc result from partitioning of oblique Cocos-Caribbean plate convergence. Linear velocity analysis for forearc locations in Nicaragua and Guatemala predicts 14±2 mm yr-1 of northwestward trench-parallel slip of the forearc relative to the Caribbean plate, possibly decreasing in magnitude in El Salvador and Guatemala, where extension east of the volcanic arc complicates the tectonic setting.

  17. Changes in In Situ Stress Across the Nankai and Cascadia Convergent Margins From Borehole Breakout Measurements During Ocean Drilling

    NASA Astrophysics Data System (ADS)

    McNeill, L.; Moore, J. C.; Yamada, Y.; Chang, C.; Tobin, H.; Kinoshita, M.; Gulick, S.; Moore, G.; Iodp Exp. 314/315/316 Science Party, &

    2008-12-01

    Borehole breakouts are commonly observed in borehole images shortly after drilling of continental margin sites. This study aims to compile and compare these results to determine what in situ shallow stress measurements can tell us about the larger scale tectonic regime. Recent Logging While Drilling resistivity images across the Kumano transect of the Nankai subduction zone, during Expedition 314, Stage 1 of the IODP NanTroSEIZE project, add to this dataset. Expedition 314 site data within the prism (C0001, C0004, C0006, including the megasplay fault system which may overlie the seismogenic updip limit) suggest maximum compressive stress (SHmax) is perpendicular to the margin (not parallel to the convergence vector) but is rotated through 90° at the forearc basin site (C0002). These results may point to changes in stress state of the shallow forearc from east to west: compression in the aseismic active prism (with evidence of strain partitioning of oblique convergence); and extension above the updip seismogenic zone suggesting focus of plate coupling at the plate boundary and not in the shallow forearc. Further south, ODP Leg 196 drilled the prism toe (808) with breakouts indicating SHmax parallel to the convergence vector, in contrast to Exp. 314 results. The stress state in the shallow prism at Site 808 may be affected by nearby seamount subduction or may represent differences in strain partitioning. On the Cascadia margin, two drilling legs have collected LWD borehole images (Leg 204 and Exp. 311). Leg 204 drilled 3 sites at hydrate ridge in the C Cascadia outer prism with breakout orientations variable between closely spaced sites. Prism fold axes are parallel to the margin so we might expect SHmax perpendicular to the margin as in Exp. 314. Deviations from this orientation may reflect local and surface effects (Goldberg and Janik, 2006). Exp. 311, N Cascadia, drilled 5 sites across the prism with breakouts in LWD images. Subduction is not oblique here, in

  18. Frictional power dissipation on plate boundary faults: Implications for coseismic slip propagation at near-surface depths

    NASA Astrophysics Data System (ADS)

    Ikari, M.; Kopf, A.; Saffer, D. M.; Marone, C.; Carpenter, B. M.

    2013-12-01

    The general lack of earthquake slip at shallow (< ~4 km) depths on plate-boundary faults suggests that they creep stably, a behavior associated with laboratory observations that disaggregated fault gouges commonly strengthen with increasing sliding velocity (i.e. velocity-strengthening friction), which precludes strain energy release via stress drops. However, the 2011 Tohoku earthquake demonstrated that coseismic rupture and slip can sometimes propagate to the surface in subduction zones. Surface rupture is also known to occur on other plate boundary faults, such as the Alpine Fault in New Zealand. It is uncertain how the extent of coseismic slip propagation from depth is controlled by the frictional properties of the near-surface portion of major faults. In these situations, it is common for slip to localize within gouge having a significant component of clay minerals, which laboratory experiments have shown are generally weak and velocity strengthening. However, low overall fault strength should facilitate coseismic slip, while velocity-strengthening behavior would resist it. In order to investigate how frictional properties may control the extent of coseismic slip propagation at shallow depths, we compare frictional strength and velocity-dependence measurements using samples from three subduction zones known for hosting large magnitude earthquakes. We focus on samples recovered during scientific drilling projects from the Nankai Trough, Japan, the Japan Trench in the region of the Tohoku earthquake, and the Middle America Trench, offshore Costa Rica; however we also include comparisons with other major fault zones sampled by drilling. In order to incorporate the combined effects of overall frictional strength and friction velocity-dependence, we estimate shear strength as a function of slip velocity (at constant effective normal stress), and integrate this function to obtain the areal power density, or frictional power dissipation capability of the fault zone

  19. New approach to the boundary-parallel plastic / viscous diapiric flow patterns in the curvilinear boundary zones: an implication for structural geology studies

    NASA Astrophysics Data System (ADS)

    Sarkarinejad, Khalil

    2010-05-01

    New approach to the boundary-parallel plastic / viscous diapiric flow patterns in the curvilinear boundary zones: an implication for structural geology studies Khalil Sarkarinejad and Abdolreza Partabian Department of Earth Sciences, College of Sciences, Shiraz University, Shiraz, Iran (Sarkarinejad@geology.susc.ac.ir). In the oceanic diverging away plates, the asthenospheric flow at solidus high-temperature conditions typically produces mineral foliations and lineations in peridotites. Foliation and lineation of mantle are defined by preferred flattening and alignment of olivine, pyroxene and spinel. In the areas with steep foliations trajectories which are associated with the steeply plunging stretching lineation trajectories, reflecting localized vertical flow and has been related to mantle diapir. The mantle flow patterns are well documented through detail structural mapping of the Neyriz ophiolite along the Zagros inclined dextral transpression and Oman ophiolite. Such models of the diverging asthenaspheric mantle flow and formation of mantle diapir are rarely discussed and paid any attention in the mathematical models of transpressional deformation in converging continental crusts. Systematic measurements of the mineral preferred orientations and construction of the foliation and lineation trajectories of the Zagros high-strain zone reveal two diapers with the shape of the inclined NW-SE boundary-parallel semi-ellipses shape and one rotated asymmetric diapir. These diapers made of quartzo-feldspathic gneiss and garnet amphibolite core with phyllite, phyllonite, muscovite schist and deformed conglomerate as a cover sequences. These boundary-parallel and rotated diapirs are formed by the interaction of Afro-Arabian lower to middle continental detachment and hot subdacting Tethyan oceanic crust, due to increasing effective pressure and temperature. The plastic/viscous gneissic diapers were squeezed between in Zagros transpression curvilinear boundary zones in an

  20. A seismic reflection image for the base of a tectonic plate.

    PubMed

    Stern, T A; Henrys, S A; Okaya, D; Louie, J N; Savage, M K; Lamb, S; Sato, H; Sutherland, R; Iwasaki, T

    2015-02-05

    Plate tectonics successfully describes the surface of Earth as a mosaic of moving lithospheric plates. But it is not clear what happens at the base of the plates, the lithosphere-asthenosphere boundary (LAB). The LAB has been well imaged with converted teleseismic waves, whose 10-40-kilometre wavelength controls the structural resolution. Here we use explosion-generated seismic waves (of about 0.5-kilometre wavelength) to form a high-resolution image for the base of an oceanic plate that is subducting beneath North Island, New Zealand. Our 80-kilometre-wide image is based on P-wave reflections and shows an approximately 15° dipping, abrupt, seismic wave-speed transition (less than 1 kilometre thick) at a depth of about 100 kilometres. The boundary is parallel to the top of the plate and seismic attributes indicate a P-wave speed decrease of at least 8 ± 3 per cent across it. A parallel reflection event approximately 10 kilometres deeper shows that the decrease in P-wave speed is confined to a channel at the base of the plate, which we interpret as a sheared zone of ponded partial melts or volatiles. This is independent, high-resolution evidence for a low-viscosity channel at the LAB that decouples plates from mantle flow beneath, and allows plate tectonics to work.