Sample records for conversion design checkout

  1. Firing Room Remote Application Software Development

    NASA Technical Reports Server (NTRS)

    Liu, Kan

    2014-01-01

    The Engineering and Technology Directorate (NE) at National Aeronautics and Space Administration (NASA) Kennedy Space Center (KSC) is designing a new command and control system for the checkout and launch of Space Launch System (SLS) and future rockets. The purposes of the semester long internship as a remote application software developer include the design, development, integration, and verification of the software and hardware in the firing rooms, in particular with the Mobile Launcher (ML) Launch Accessories subsystem. In addition, a Conversion Fusion project was created to show specific approved checkout and launch engineering data for public-friendly display purposes.

  2. Skylab

    NASA Image and Video Library

    1971-04-01

    This photograph shows Skylab's Extreme Ultraviolet (XUV) Spectroheliograph during an acceptance test and checkout procedures in April 1971. The unit was an Apollo Telescope Mount (ATM) instrument designed to sequentially photograph the solar chromosphere and corona in selected ultraviolet wavelengths. The instrument also obtained information about composition, temperature, energy conversion and transfer, and plasma processes of the chromosphere and lower corona. The Marshall Space Flight Center had program management responsibility for the development of Skylab hardware and experiments.

  3. Comparison of Analytical Predictions and Experimental Results for a Dual Brayton Power System

    NASA Technical Reports Server (NTRS)

    Johnson, Paul

    2007-01-01

    NASA Glenn Research Center (GRC) contracted Barber- Nichols, Arvada, CO to construct a dual Brayton power conversion system for use as a hardware proof of concept and to validate results from a computational code known as the Closed Cycle System Simulation (CCSS). Initial checkout tests were performed at Barber- Nichols to ready the system for delivery to GRC. This presentation describes the system hardware components and lists the types of checkout tests performed along with a couple issues encountered while conducting the tests. A description of the CCSS model is also presented. The checkout tests did not focus on generating data, therefore, no test data or model analyses are presented.

  4. Comparison of Analytical Predictions and Experimental Results for a Dual Brayton Power System (Discussion on Test Hardware and Computer Model for a Dual Brayton System)

    NASA Technical Reports Server (NTRS)

    Johnson, Paul K.

    2007-01-01

    NASA Glenn Research Center (GRC) contracted Barber-Nichols, Arvada, CO to construct a dual Brayton power conversion system for use as a hardware proof of concept and to validate results from a computational code known as the Closed Cycle System Simulation (CCSS). Initial checkout tests were performed at Barber- Nichols to ready the system for delivery to GRC. This presentation describes the system hardware components and lists the types of checkout tests performed along with a couple issues encountered while conducting the tests. A description of the CCSS model is also presented. The checkout tests did not focus on generating data, therefore, no test data or model analyses are presented.

  5. Check-In Check-Out + Social Skills: Enhancing the Effects of Check-In Check-Out for Students With Social Skill Deficits

    ERIC Educational Resources Information Center

    Ross, Scott W.; Sabey, Christian V.

    2015-01-01

    Check-In Check-Out is a Tier 2 intervention designed to reduce problem behavior and increase prosocial behavior. Although the intervention has demonstrated effects in several studies, few research efforts have considered how the intervention can be modified to support students with social skill deficits. Through a multiple baseline design across…

  6. Space shuttle propulsion systems on-board checkout and monitoring system development study

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Investigations on the fundamental space shuttle propulsion systems program are reported, with emphasis on in-depth reviews of preliminary drafts of the guidelines. The guidelines will be used to incorporate the onboard checkout and monitoring function into the basic design of the propulsion systems and associated interfacing systems. The analysis of checkout and monitoring requirements of the Titan 3 L expandable booster propulsion systems was completed, and the techniques for accomplishing the checkout and monitoring functions were determined. Updating results of the basic study of propulsion system checkout and monitoring is continuing.

  7. Communications systems checkout study

    NASA Technical Reports Server (NTRS)

    Ginter, W. G.

    1972-01-01

    The results and conclusions of an engineering study of Space Station communications subsystem checkout are reported. The primary purpose of the study is to recommend specific guidelines and constraints for the design and utilization of the communications subsystem leading to a practical and effective means of onboard checkout implementation. Major study objectives are as follows: (1) identify candidate communications subsystem checkout concepts, (2) determine implementation impacts of feasible concepts, (3) evaluate practicality and effectiveness of alternative concepts, (4) propose baseline modifications to accommodate preferred concepts, and (5) recommend areas for additional investigation. In addition, study results are interpreted, where appropriate, in terms of their applicability to checkout of Shuttle-Orbiter communications subsystem.

  8. Relevance and speed of message delivery trade-offs in augmentative and alternative communication.

    PubMed

    Bedrosian, Jan L; Hoag, Linda A; McCoy, Kathleen F

    2003-08-01

    This report is the first in a series of investigations designed to test a theory identifying the effects of conversational trade-offs between selected maxims on public attitudes toward augmentative and alternative communication (AAC) system users and their communication. In the current study, the trade-offs between the relevance of a prestored message and its speed of delivery were examined. Participating were 96 sales clerks. Twelve scripted videotaped conversational conditions, involving an AAC customer and a clerk at a checkout counter, were used to manipulate message relevance, speed of message delivery, and participant/AAC user gender. Following each assigned viewing, participants completed a questionnaire designed to assess their attitudes toward the AAC user and his or her communication. Significantly higher mean ratings were found for the conditions involving the slowly delivered relevant messages (both preceded by a conversational floorholder and without a floorholder) when compared to the quickly delivered partly relevant message condition. In addition, the condition involving the slowly delivered relevant message with a floorholder yielded significantly higher mean ratings than that without the floorholder. There was no effect for participant/user gender. Modifications of the theory and technological implications are discussed.

  9. Space shuttle propulsion systems on-board checkout and monitoring system development study (extension). Volume 2: Guidelines for for incorporation of the onboard checkout and monitoring function on the space shuttle

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Guidelines are presented for incorporation of the onboard checkout and monitoring function (OCMF) into the designs of the space shuttle propulsion systems. The guidelines consist of and identify supporting documentation; requirements for formulation, implementation, and integration of OCMF; associated compliance verification techniques and requirements; and OCMF terminology and nomenclature. The guidelines are directly applicable to the incorporation of OCMF into the design of space shuttle propulsion systems and the equipment with which the propulsion systems interface. The techniques and general approach, however, are also generally applicable to OCMF incorporation into the design of other space shuttle systems.

  10. Skylab SO71/SO72 circadian periodicity experiment. [experimental design and checkout of hardware

    NASA Technical Reports Server (NTRS)

    Fairchild, M. K.; Hartmann, R. A.

    1973-01-01

    The circadian rhythm hardware activities from 1965 through 1973 are considered. A brief history of the programs leading to the development of the combined Skylab SO71/SO72 Circadian Periodicity Experiment (CPE) is given. SO71 is the Skylab experiment number designating the pocket mouse circadian experiment, and SO72 designates the vinegar gnat circadian experiment. Final design modifications and checkout of the CPE, integration testing with the Apollo service module CSM 117 and the launch preparation and support tasks at Kennedy Space Center are reported.

  11. The proportion of unhealthy foodstuffs children are exposed to at the checkout of convenience supermarkets.

    PubMed

    Horsley, Jason A; Absalom, Katie Ar; Akiens, Evie M; Dunk, Robert J; Ferguson, Alice M

    2014-11-01

    To investigate the proportion of foods that are unhealthy to which children are exposed at the checkout of convenience supermarkets. We performed a cross-sectional survey of foodstuffs displayed at the checkout. Products displayed at or below children's eye-level were designated as healthy, unhealthy or unclassifiable using the Food Standards Agency's scoring criteria. Thirteen convenience supermarkets from the three leading UK supermarket chains were selected on the basis of proximity to the town hall in Sheffield, England. Convenience supermarkets were defined as branches of supermarket chains that were identified as being other than superstores on their company's store locator website. In almost all of the convenience supermarkets surveyed, the main healthy product on display was sugar-free chewing gum. On average, when chewing gum was not included as a foodstuff, 89% of the products on display at the checkouts of convenience supermarkets were unhealthy using the Food Standards Agency's criteria. One store was a notable outlier, providing only fruit and nuts at its checkout. The overwhelming majority of products to which children are exposed at the convenience supermarket checkout are unhealthy. This is despite all the supermarket chains surveyed having signed up to the UK Government's 'responsibility deal'.

  12. Performance Evaluation of Reliable Multicast Protocol for Checkout and Launch Control Systems

    NASA Technical Reports Server (NTRS)

    Shu, Wei Wennie; Porter, John

    2000-01-01

    The overall objective of this project is to study reliability and performance of Real Time Critical Network (RTCN) for checkout and launch control systems (CLCS). The major tasks include reliability and performance evaluation of Reliable Multicast (RM) package and fault tolerance analysis and design of dual redundant network architecture.

  13. Launch Processing System. [for Space Shuttle

    NASA Technical Reports Server (NTRS)

    Byrne, F.; Doolittle, G. V.; Hockenberger, R. W.

    1976-01-01

    This paper presents a functional description of the Launch Processing System, which provides automatic ground checkout and control of the Space Shuttle launch site and airborne systems, with emphasis placed on the Checkout, Control, and Monitor Subsystem. Hardware and software modular design concepts for the distributed computer system are reviewed relative to performing system tests, launch operations control, and status monitoring during ground operations. The communication network design, which uses a Common Data Buffer interface to all computers to allow computer-to-computer communication, is discussed in detail.

  14. Spitzer Space Telescope in-orbit checkout and science verification operations

    NASA Technical Reports Server (NTRS)

    Linick, Sue H.; Miles, John W.; Gilbert, John B.; Boyles, Carol A.

    2004-01-01

    Spitzer Space Telescope, the fourth and final of NASA's great observatories, and the first mission in NASA's Origins Program was launched 25 August 2003 into an Earth-trailing solar orbit. The observatory was designed to probe and explore the universe in the infrared. Before science data could be acquired, however, the observatory had to be initialized, characterized, calibrated, and commissioned. A two phased operations approach was defined to complete this work. These phases were identified as In-Orbit Checkout (IOC) and Science Verification (SV). Because the observatory lifetime is cryogen-limited these operations had to be highly efficient. The IOC/SV operations design accommodated a pre-defined distributed organizational structure and a complex, cryogenic flight system. Many checkout activities were inter-dependent, and therefore the operations concept and ground data system had to provide the flexibility required for a 'short turn-around' environment. This paper describes the adaptive operations system design and evolution, implementation, and lessons-learned from the completion of IOC/SV.

  15. Systematic Review of the Check-In, Check-Out Intervention for Students at Risk for Emotional and Behavioral Disorders

    ERIC Educational Resources Information Center

    Hawken, Leanne S.; Bundock, Kaitlin; Kladis, Kristin; O'Keeffe, Breda; Barret, Courtenay A.

    2014-01-01

    The purpose of this systematic literature review was to summarize outcomes of the Check-in Check-out (CICO) intervention across elementary and secondary settings. Twenty-eight studies utilizing both single subject and group (experimental and quasi-experimental) designs were included in this review. Median effect sizes across the eight group…

  16. LORAN-C LATITUDE-LONGITUDE CONVERSION AT SEA: PROGRAMMING CONSIDERATIONS.

    USGS Publications Warehouse

    McCullough, James R.; Irwin, Barry J.; Bowles, Robert M.

    1985-01-01

    Comparisons are made of the precision of arc-length routines as computer precision is reduced. Overland propagation delays are discussed and illustrated with observations from offshore New England. Present practice of LORAN-C error budget modeling is then reviewed with the suggestion that additional terms be considered in future modeling. Finally, some detailed numeric examples are provided to help with new computer program checkout.

  17. KSC-2012-1852

    NASA Image and Video Library

    2012-02-17

    Industrial Area Construction: Located 5 miles south of Launch Complex 39, construction of the main buildings -- Operations and Checkout Building, Headquarters Building, and Central Instrumentation Facility – began in 1963. In 1992, the Space Station Processing Facility was designed and constructed for the pre-launch processing of International Space Station hardware that was flown on the space shuttle. Along with other facilities, the industrial area provides spacecraft assembly and checkout, crew training, computer and instrumentation equipment, hardware preflight testing and preparations, as well as administrative offices. Poster designed by Kennedy Space Center Graphics Department/Greg Lee. Credit: NASA

  18. Development of an instrument for assessing workstyle in checkout cashier work (BAsIK).

    PubMed

    Kjellberg, Katarina; Palm, Peter; Josephson, Malin

    2012-01-01

    Checkout cashier work consists of handling a large number of items during a work shift, which implies repetitive movements of the shoulders, arms and hands/wrists, and a high work rate. The work is associated with a high prevalence of disorders in the neck and upper extremity. The concept of workstyle explains how ergonomic and psychosocial factors interact in the development of work-related upper extremity disorders. The aim of the project was to develop an instrument for the occupational health services to be used in the efforts to prevent upper extremity disorders in checkout cashier work. The instrument is based on the workstyle concept and is intended to be used as a tool to identify high-risk workstyle and needs for interventions, such as training and education. The instrument, BAsIK, consists of four parts; a questionnaire about workstyle, an observation protocol for work technique, a checklist about the design of the checkout and a questionnaire about work organization. The instrument was developed by selecting workstyle items developed for office work and adapting them to checkout cashier work, discussions with researchers and ergonomists, focus-group interviews with cashiers, observations of video recordings of cashiers, and studies of existing guidelines and checklists.

  19. Design and Checkout of a High Speed Research Nozzle Evaluation Rig

    NASA Technical Reports Server (NTRS)

    Castner, Raymond S.; Wolter, John D.

    1997-01-01

    The High Flow Jet Exit Rig (HFJER) was designed to provide simulated mixed flow turbojet engine exhaust for one- seventh scale models of advanced High Speed Research test nozzles. The new rig was designed to be used at NASA Lewis Research Center in the Nozzle Acoustic Test Rig and the 8x6 Supersonic Wind Tunnel. Capabilities were also designed to collect nozzle thrust measurement, aerodynamic measurements, and acoustic measurements when installed at the Nozzle Acoustic Test Rig. Simulated engine exhaust can be supplied from a high pressure air source at 33 pounds of air per second at 530 degrees Rankine and nozzle pressure ratios of 4.0. In addition, a combustion unit was designed from a J-58 aircraft engine burner to provide 20 pounds of air per second at 2000 degrees Rankine, also at nozzle pressure ratios of 4.0. These airflow capacities were designed to test High Speed Research nozzles with exhaust areas from eighteen square inches to twenty-two square inches. Nozzle inlet flow measurement is available through pressure and temperature sensors installed in the rig. Research instrumentation on High Speed Research nozzles is available with a maximum of 200 individual pressure and 100 individual temperature measurements. Checkout testing was performed in May 1997 with a 22 square inch ASME long radius flow nozzle. Checkout test results will be summarized and compared to the stated design goals.

  20. Firing Room Remote Application Software Development

    NASA Technical Reports Server (NTRS)

    Liu, Kan

    2015-01-01

    The Engineering and Technology Directorate (NE) at National Aeronautics and Space Administration (NASA) Kennedy Space Center (KSC) is designing a new command and control system for the checkout and launch of Space Launch System (SLS) and future rockets. The purposes of the semester long internship as a remote application software developer include the design, development, integration, and verification of the software and hardware in the firing rooms, in particular with the Mobile Launcher (ML) Launch Accessories (LACC) subsystem. In addition, a software test verification procedure document was created to verify and checkout LACC software for Launch Equipment Test Facility (LETF) testing.

  1. YF-12 cooperative airframe/propulsion control system program, volume 1

    NASA Technical Reports Server (NTRS)

    Anderson, D. L.; Connolly, G. F.; Mauro, F. M.; Reukauf, P. J.; Marks, R. (Editor)

    1980-01-01

    Several YF-12C airplane analog control systems were converted to a digital system. Included were the air data computer, autopilot, inlet control system, and autothrottle systems. This conversion was performed to allow assessment of digital technology applications to supersonic cruise aircraft. The digital system was composed of a digital computer and specialized interface unit. A large scale mathematical simulation of the airplane was used for integration testing and software checkout.

  2. INTERIOR SECOND FLOOR EAST ENGINEERING DESIGN AREA DETAIL VIEW, FACING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR SECOND FLOOR EAST ENGINEERING DESIGN AREA DETAIL VIEW, FACING NORTH. - NASA Industrial Plant, Systems Integration & Checkout Facility, 12214 Lakewood Boulevard, Downey, Los Angeles County, CA

  3. Automated System Checkout to Support Predictive Maintenance for the Reusable Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Patterson-Hine, Ann; Deb, Somnath; Kulkarni, Deepak; Wang, Yao; Lau, Sonie (Technical Monitor)

    1998-01-01

    The Propulsion Checkout and Control System (PCCS) is a predictive maintenance software system. The real-time checkout procedures and diagnostics are designed to detect components that need maintenance based on their condition, rather than using more conventional approaches such as scheduled or reliability centered maintenance. Predictive maintenance can reduce turn-around time and cost and increase safety as compared to conventional maintenance approaches. Real-time sensor validation, limit checking, statistical anomaly detection, and failure prediction based on simulation models are employed. Multi-signal models, useful for testability analysis during system design, are used during the operational phase to detect and isolate degraded or failed components. The TEAMS-RT real-time diagnostic engine was developed to utilize the multi-signal models by Qualtech Systems, Inc. Capability of predicting the maintenance condition was successfully demonstrated with a variety of data, from simulation to actual operation on the Integrated Propulsion Technology Demonstrator (IPTD) at Marshall Space Flight Center (MSFC). Playback of IPTD valve actuations for feature recognition updates identified an otherwise undetectable Main Propulsion System 12 inch prevalve degradation. The algorithms were loaded into the Propulsion Checkout and Control System for further development and are the first known application of predictive Integrated Vehicle Health Management to an operational cryogenic testbed. The software performed successfully in real-time, meeting the required performance goal of 1 second cycle time.

  4. The IRM fluxgate magnetometer

    NASA Technical Reports Server (NTRS)

    Luehr, H.; Kloecker, N.; Oelschlaegel, W.; Haeusler, B.; Acuna, M.

    1985-01-01

    This report describes the three-axis fluxgate magnetometer instrument on board the AMPTE IRM spacecraft. Important features of the instrument are its wide dynamic range (0.1-60,000 nT), a high resolution (16-bit analog to digital conversion) and the capability to operate automatically or via telecommand in two gain states. In addition, the wave activity is monitored in all three components up to 50 Hz. Inflight checkout proved the nominal functioning of the instrument in all modes.

  5. Healthy Checkout Lines: A Study in Urban Supermarkets.

    PubMed

    Adjoian, Tamar; Dannefer, Rachel; Willingham, Craig; Brathwaite, Chantelle; Franklin, Sharraine

    2017-09-01

    To understand the impact of healthy checkouts in Bronx, New York City supermarkets. Consumer purchasing behavior was observed for 2 weeks in 2015. Three supermarkets in the South Bronx. A total of 2,131 adult shoppers (aged ≥18 years) who paid for their groceries at 1 of the selected study checkout lines. Two checkout lines were selected per store; 1 was converted to a healthy checkout and the other remained as it was (standard checkout). Data collectors observed consumer behavior at each line and recorded items purchased from checkout areas. Percentage of customers who purchase items from the checkout area; quantity and price of healthy and unhealthy items purchased from the healthy and standard checkout lines. Measures were analyzed by study condition using chi-square and t tests; significance was determined at α = .05. Only 4.0% of customers bought anything from the checkout area. A higher proportion of customers using the healthy vs standard checkout line bought healthy items (56.5% vs 20.5%; P < .001). When healthier products were available, the proportion of healthy purchases increased. Findings contribute to limited research on effectiveness of healthy checkouts in supermarkets. Similar interventions should expect an increase in healthy purchases from the checkout area, but limited overall impact. Copyright © 2017 Society for Nutrition Education and Behavior. Published by Elsevier Inc. All rights reserved.

  6. Reflight certification software design specifications

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The PDSS/IMC Software Design Specification for the Payload Development Support System (PDSS)/Image Motion Compensator (IMC) is contained. The PDSS/IMC is to be used for checkout and verification of the IMC flight hardware and software by NASA/MSFC.

  7. Liquid rocket valve assemblies

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The design and operating characteristics of valve assemblies used in liquid propellant rocket engines are discussed. The subjects considered are as follows: (1) valve selection parameters, (2) major design aspects, (3) design integration of valve subassemblies, and (4) assembly of components and functional tests. Information is provided on engine, stage, and spacecraft checkout procedures.

  8. Parallel Eclipse Project Checkout

    NASA Technical Reports Server (NTRS)

    Crockett, Thomas M.; Joswig, Joseph C.; Shams, Khawaja S.; Powell, Mark W.; Bachmann, Andrew G.

    2011-01-01

    Parallel Eclipse Project Checkout (PEPC) is a program written to leverage parallelism and to automate the checkout process of plug-ins created in Eclipse RCP (Rich Client Platform). Eclipse plug-ins can be aggregated in a feature project. This innovation digests a feature description (xml file) and automatically checks out all of the plug-ins listed in the feature. This resolves the issue of manually checking out each plug-in required to work on the project. To minimize the amount of time necessary to checkout the plug-ins, this program makes the plug-in checkouts parallel. After parsing the feature, a request to checkout for each plug-in in the feature has been inserted. These requests are handled by a thread pool with a configurable number of threads. By checking out the plug-ins in parallel, the checkout process is streamlined before getting started on the project. For instance, projects that took 30 minutes to checkout now take less than 5 minutes. The effect is especially clear on a Mac, which has a network monitor displaying the bandwidth use. When running the client from a developer s home, the checkout process now saturates the bandwidth in order to get all the plug-ins checked out as fast as possible. For comparison, a checkout process that ranged from 8-200 Kbps from a developer s home is now able to saturate a pipe of 1.3 Mbps, resulting in significantly faster checkouts. Eclipse IDE (integrated development environment) tries to build a project as soon as it is downloaded. As part of another optimization, this innovation programmatically tells Eclipse to stop building while checkouts are happening, which dramatically reduces lock contention and enables plug-ins to continue downloading until all of them finish. Furthermore, the software re-enables automatic building, and forces Eclipse to do a clean build once it finishes checking out all of the plug-ins. This software is fully generic and does not contain any NASA-specific code. It can be applied to any Eclipse-based repository with a similar structure. It also can apply build parameters and preferences automatically at the end of the checkout.

  9. MHK Hydrofoils Design, Wind Tunnel Optimization and CFD Analysis Report for the Aquantis 2.5MW Ocean Current Generation Device

    DOE Data Explorer

    Shiu, Henry; Swales, Henry; Van Damn, Case

    2015-06-03

    Dataset contains MHK Hydrofoils Design and Optimization and CFD Analysis Report for the Aquantis 2.5 MW Ocean Current Generation Device, as well as MHK Hydrofoils Wind Tunnel Test Plan and Checkout Test Report.

  10. 30 CFR 57.11058 - Check-in, check-out system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Check-in, check-out system. 57.11058 Section 57... Escapeways Escapeways-Underground Only § 57.11058 Check-in, check-out system. Each operator of an underground mine shall establish a check-in and check-out system which shall provide an accurate record of persons...

  11. 30 CFR 57.11058 - Check-in, check-out system.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Check-in, check-out system. 57.11058 Section 57... Escapeways Escapeways-Underground Only § 57.11058 Check-in, check-out system. Each operator of an underground mine shall establish a check-in and check-out system which shall provide an accurate record of persons...

  12. 30 CFR 57.11058 - Check-in, check-out system.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Check-in, check-out system. 57.11058 Section 57... Escapeways Escapeways-Underground Only § 57.11058 Check-in, check-out system. Each operator of an underground mine shall establish a check-in and check-out system which shall provide an accurate record of persons...

  13. 30 CFR 57.11058 - Check-in, check-out system.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Check-in, check-out system. 57.11058 Section 57... Escapeways Escapeways-Underground Only § 57.11058 Check-in, check-out system. Each operator of an underground mine shall establish a check-in and check-out system which shall provide an accurate record of persons...

  14. 30 CFR 57.11058 - Check-in, check-out system.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Check-in, check-out system. 57.11058 Section 57... Escapeways Escapeways-Underground Only § 57.11058 Check-in, check-out system. Each operator of an underground mine shall establish a check-in and check-out system which shall provide an accurate record of persons...

  15. Innovative Test Operations to Support Orion and Future Human Rated Missions

    NASA Technical Reports Server (NTRS)

    Koenig, William J.; Garcia, Rafael; Harris, Richard F.; See, Michael J.; Van Lear, Benjamin S.; Dobson, Jill M.; Norris, Scott Douglas

    2017-01-01

    This paper describes how the Orion program is implementing new and innovative test approaches and strategies in an evolving development environment. The early flight test spacecraft are evolving in design maturity and complexity requiring significant changes in the ground test operations for each mission. The testing approach for EM-2 is planned to validate innovative Orion production acceptance testing methods to support human exploration missions in the future. Manufacturing and testing at Kennedy Space Center in the Neil Armstrong Operations and Checkout facility will provide a seamless transition directly to the launch site avoiding transportation and checkout of the spacecraft from other locations.

  16. Launch vehicle test and checkout plan. - Volume 2: Saturn 1B launch vehicle Skylab R (rescue) and AS-208 flow plan and listings

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The launch operations test and checkout plan is a planning document that establishes all launch site checkout activity, including the individual tests and sequence of testing required to fulfill the development center and KSC test and checkout requirements. This volume contains the launch vehicle test and checkout plan encompassing S-1B, S-4B, IU stage, and ground support equipment tests. The plan is based upon AS-208 flow utilizing a manned spacecraft, LUT 1, and launch pad 39B facilities.

  17. The General Electric MOD-1 wind turbine generator program

    NASA Technical Reports Server (NTRS)

    Poor, R. H.; Hobbs, R. B.

    1979-01-01

    The design, fabrication, installation and checkout of MOD-1, a megawatt class wind turbine generator which generates utility grade electrical power, is described. A MOD-1/MOD-1A tradeoff study is discussed.

  18. Automated validation of a computer operating system

    NASA Technical Reports Server (NTRS)

    Dervage, M. M.; Milberg, B. A.

    1970-01-01

    Programs apply selected input/output loads to complex computer operating system and measure performance of that system under such loads. Technique lends itself to checkout of computer software designed to monitor automated complex industrial systems.

  19. Kistler reusable vehicle facility design and operational approach

    NASA Astrophysics Data System (ADS)

    Fagan, D.; McInerney, F.; Johnston, C.; Tolson, B.

    Kistler Aerospace Corporation is designing and developing the K-1, the world's first fully reusable aerospace vehicle to deliver satellites into orbit. The K-1 vehicle test program will be conducted in Woomera, Australia, with commercial operations scheduled to begin shortly afterwards. Both stages of the K-1 will return to the launch site utilizing parachutes and airbags for a soft landing within 24 h after launch. The turnaround flow of the two stages will cycle from landing site to a maintenance/refurbishment facility and through the next launch in only 9 days. Payload processing will occur in a separate facility in parallel with recovery and refurbishment operations. The vehicle design and on-board checkout capability of the avionics system eliminates the need for an abundance of ground checkout equipment. Payload integration, vehicle assembly, and K-1 transport to the launch pad will be performed horizontally, simplifying processing and reducing infrastructure requirements. This simple, innovative, and cost-effective approach will allow Kistler to offer its customers flexible, low-cost, and on-demand launch services.

  20. PROPULSE 980: A Hydrogen Peroxide Enrichment System

    NASA Technical Reports Server (NTRS)

    Boxwell, Robert; Bromley, G.; Wanger, Robert; Pauls, Dan; Maynard, Bryon; McNeal, Curtis; Dumbacher, D. L. (Technical Monitor)

    2000-01-01

    The PROPULSE 980 unit is a transportable processing plant that enriches aerospace grade hydrogen peroxide from 90% to 98% final concentration. The unit was developed by Degussa-H Is, in cooperation with Orbital, NASA Marshall Space Center, and NASA Stennis Space Center. The system is a self-contained unit that houses all of the process equipment, instrumentation and controls to perform the concentration operation nearly autonomously. It is designed to produce non-bulk quantities of 98% hydrogen peroxide. The enrichment unit design also maintains system, personnel and environmental safety during all aspects of the enrichment process and final product storage. As part of the Propulse 980 checkout and final buyoff, it will be disassembled at the Degussa-H Is Corporation plant in Theodore, AL, transported to the Stennis Space Center, reassembled and subjected to a series of checkout tests to verify design objectives have been met. This paper will summarize the basic project elements and provide an update on the present status of the project.

  1. Checkout systems: Summary report for the universal control and display console

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The development of a unified test equipment checkout concept based on a universal control and display console system is discussed. The checkout requirements are analyzed for the shuttle and space station. Capability, size, utilization requirements and specifications of the ground checkout system are made on the basis of engineering trade-off studies. Recommendations related to the attainment of overall unified test equipment conceptual goals and objectives are submitted.

  2. Digital computer technique for setup and checkout of an analog computer

    NASA Technical Reports Server (NTRS)

    Ambaruch, R.

    1968-01-01

    Computer program technique, called Analog Computer Check-Out Routine Digitally /ACCORD/, generates complete setup and checkout data for an analog computer. In addition, the correctness of the analog program implementation is validated.

  3. A guide to onboard checkout. Volume 2: Environmental control and life support

    NASA Technical Reports Server (NTRS)

    1971-01-01

    A description of space station equipment for environmental control and life support is presented. Reliability and maintenance procedures are reviewed. Failure analysis and checkout tests are discussed. The strategy for software checkout is noted.

  4. On-orbit checkout of satellites, volume 2. Part 3 of on-orbit checkout study. [space maintenance

    NASA Technical Reports Server (NTRS)

    Pritchard, E. I.

    1978-01-01

    Early satellite failures significantly degrading satellite operations are reviewed with emphasis on LANDSAT D, the Technology Demonstration Satellite, the ATREX/AEM spacecraft, STORMSAT 2, and the synchronous meteorological satellite. Candidates for correction with on-orbit checkout and appropriate actions are analyzed. On-orbit checkout subsystem level studies are summarized for electrical power, attitude control, thermal control, reaction control and propulsion, instruments, and angular rate matching for alignment of satellite IRU.

  5. Automated Ground Umbilical Systems (AGUS) Project

    NASA Technical Reports Server (NTRS)

    Gosselin, Armand M.

    2007-01-01

    All space vehicles require ground umbilical systems for servicing. Servicing requirements can include, but are not limited to, electrical power and control, propellant loading and venting, pneumatic system supply, hazard gas detection and purging as well as systems checkout capabilities. Of the various types of umbilicals, all require several common subsystems. These typically include an alignment system, mating and locking system, fluid connectors, electrical connectors and control !checkout systems. These systems have been designed to various levels of detail based on the needs for manual and/or automation requirements. The Automated Ground Umbilical Systems (AGUS) project is a multi-phase initiative to develop design performance requirements and concepts for launch system umbilicals. The automation aspect minimizes operational time and labor in ground umbilical processing while maintaining reliability. This current phase of the project reviews the design, development, testing and operations of ground umbilicals built for the Saturn, Shuttle, X-33 and Atlas V programs. Based on the design and operations lessons learned from these systems, umbilicals can be optimized for specific applications. The product of this study is a document containing details of existing systems and requirements for future automated umbilical systems with emphasis on design-for-operations (DFO).

  6. Satellite Power Systems (SPS) concept definition study, exhibit C. Volume 6: In-depth element investigation

    NASA Technical Reports Server (NTRS)

    Hanley, G.

    1979-01-01

    Computer assisted design of a gallium arsenide solid state dc-to-RF converter with supportive fabrication data was investigated. Specific tasks performed include: computer program checkout; amplifier comparisons; computer design analysis of GaSa solar cells; and GaAs diode evaluation. Results obtained in the design and evaluation of transistors for the microwave space power system are presented.

  7. V/STOL tilt rotor research aircraft. Volume 1: General information, revision C

    NASA Technical Reports Server (NTRS)

    Kimbell, M.; Whitener, A.

    1980-01-01

    The configuration, operation and maintenance requirements for the contractor-furnished portion of the XV-15 research instrumentation and data acquisition system are defined. Descriptions of systems operation, maintenance and checkout procedures, and cable designations are given.

  8. Robotic lunar surface operations: Engineering analysis for the design, emplacement, checkout and performance of robotic lunar surface systems

    NASA Technical Reports Server (NTRS)

    Woodcock, Gordon R.

    1990-01-01

    The assembly, emplacement, checkout, operation, and maintenance of equipment on planetary surfaces are all part of expanding human presence out into the solar system. A single point design, a reference scenario, is presented for lunar base operations. An initial base, barely more than an output, which starts from nothing but then quickly grows to sustain people and produce rocket propellant. The study blended three efforts: conceptual design of all required surface systems; assessments of contemporary developments in robotics; and quantitative analyses of machine and human tasks, delivery and work schedules, and equipment reliability. What emerged was a new, integrated understanding of hot to make a lunar base happen. The overall goal of the concept developed was to maximize return, while minimizing cost and risk. The base concept uses solar power. Its primary industry is the production of liquid oxygen for propellant, which it extracts from native lunar regolith. Production supports four lander flights per year, and shuts down during the lunar nighttime while maintenance is performed.

  9. Large space telescope engineering scale model optical design

    NASA Technical Reports Server (NTRS)

    Facey, T. A.

    1973-01-01

    The objective is to develop the detailed design and tolerance data for the LST engineering scale model optical system. This will enable MSFC to move forward to the optical element procurement phase and also to evaluate tolerances, manufacturing requirements, assembly/checkout procedures, reliability, operational complexity, stability requirements of the structure and thermal system, and the flexibility to change and grow.

  10. Nutrition Report Cards: An Opportunity to Improve School Lunch Selection

    PubMed Central

    Wansink, Brian; Just, David R.; Patterson, Richard W.; Smith, Laura E.

    2013-01-01

    Objective To explore the feasibility and implementation efficiency of Nutritional Report Cards(NRCs) in helping children make healthier food choices at school. Methods Pilot testing was conducted in a rural New York school district (K-12). Over a five-week period, 27 parents received a weekly e-mail containing a NRC listing how many meal components (fruits, vegetables, starches, milk), snacks, and a-la-carte foods their child selected. We analyzed choices of students in the NRC group vs. the control group, both prior to and during the intervention period. Point-of-sale system data for a-la-carte items was analyzed using Generalized Least Squares regressions with clustered standard errors. Results NRCs encouraged more home conversations about nutrition and more awareness of food selections. Despite the small sample, the NRC was associated with reduced selection of some items, such as the percentage of those selecting cookies which decreased from 14.3 to 6.5 percent. Additionally, despite requiring new keys on the check-out registers to generate the NRC, checkout times increased by only 0.16 seconds per transaction, and compiling and sending the NRCs required a total weekly investment of 30 minutes of staff time. Conclusions This test of concept suggests that NRCs are a feasible and inexpensive tool to guide children towards healthier choices. PMID:24098324

  11. Nutrition Report Cards: an opportunity to improve school lunch selection.

    PubMed

    Wansink, Brian; Just, David R; Patterson, Richard W; Smith, Laura E

    2013-01-01

    To explore the feasibility and implementation efficiency of Nutritional Report Cards (NRCs) in helping children make healthier food choices at school. Pilot testing was conducted in a rural New York school district (K-12). Over a five-week period, 27 parents received a weekly e-mail containing a NRC listing how many meal components (fruits, vegetables, starches, milk), snacks, and a-la-carte foods their child selected. We analyzed choices of students in the NRC group vs. the control group, both prior to and during the intervention period. Point-of-sale system data for a-la-carte items was analyzed using Generalized Least Squares regressions with clustered standard errors. NRCs encouraged more home conversations about nutrition and more awareness of food selections. Despite the small sample, the NRC was associated with reduced selection of some items, such as the percentage of those selecting cookies which decreased from 14.3 to 6.5 percent. Additionally, despite requiring new keys on the check-out registers to generate the NRC, checkout times increased by only 0.16 seconds per transaction, and compiling and sending the NRCs required a total weekly investment of 30 minutes of staff time. This test of concept suggests that NRCs are a feasible and inexpensive tool to guide children towards healthier choices.

  12. Execution of the Spitzer In-orbit Checkout and Science Verification Plan

    NASA Technical Reports Server (NTRS)

    Miles, John W.; Linick, Susan H.; Long, Stacia; Gilbert, John; Garcia, Mark; Boyles, Carole; Werner, Michael; Wilson, Robert K.

    2004-01-01

    The Spitzer Space Telescope is an 85-cm telescope with three cryogenically cooled instruments. Following launch, the observatory was initialized and commissioned for science operations during the in-orbit checkout (IOC) and science verification (SV) phases, carried out over a total of 98.3 days. The execution of the IOC/SV mission plan progressively established Spitzer capabilities taking into consideration thermal, cryogenic, optical, pointing, communications, and operational designs and constraints. The plan was carried out with high efficiency, making effective use of cryogen-limited flight time. One key component to the success of the plan was the pre-launch allocation of schedule reserve in the timeline of IOC/SV activities, and how it was used in flight both to cover activity redesign and growth due to continually improving spacecraft and instrument knowledge, and to recover from anomalies. This paper describes the adaptive system design and evolution, implementation, and lessons learned from IOC/SV operations. It is hoped that this information will provide guidance to future missions with similar engineering challenges

  13. External tank processing from barge to pad

    NASA Technical Reports Server (NTRS)

    Carpenter, J. E.

    1985-01-01

    Delivery and launch readiness events for the External Tanks (ET) are discussed. The ET is off-loaded at the KSC Barge Turning Basin and towed to the Vertical Assembly Building (VAB), High Bay Transfer Aisle. It is erected vertically and placed in the ET Checkout Area of High Bay 2 or 4 for standalone checkout. At the completion of checkout the ET is transferred to storage or to the Integration Area of High Bay 1 or 3 for SRB and Orbiter Mate. A Systems Integration Test performed with the Orbiter and Solid Rocket Booster is described. Final checkout activities are also described.

  14. Automation of checkout for the shuttle operations era

    NASA Technical Reports Server (NTRS)

    Anderson, J. A.; Hendrickson, K. O.

    1985-01-01

    The Space Shuttle checkout is different from its Apollo predecessor. The complexity of the hardware, the shortened turnaround time, and the software that performs ground checkout are outlined. Generating new techniques and standards for software development and the management structure to control it are implemented. The utilization of computer systems for vehicle testing is high lighted.

  15. 39. View of checkout indicator computer console for DR beams, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    39. View of checkout indicator computer console for DR beams, TR chains, and special checkout target control located in CSMR in transmitter building no. 102. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  16. A guide to onboard checkout. Volume 1: Guidance, navigation and control

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The results are presented of a study of onboard checkout techniques, as they relate to space station subsystems, as a guide to those who may need to implement onboard checkout in similar subsystems. Guidance, navigation, and control subsystems, and their reliability and failure analyses are presented. Software and testing procedures are also given.

  17. Microbial load monitor

    NASA Technical Reports Server (NTRS)

    Caplin, R. S.; Royer, E. R.

    1977-01-01

    Design analysis of a microbial load monitor system flight engineering model was presented. Checkout of the card taper and media pump system was fabricated as well as the final two incubating reading heads, the sample receiving and card loading device assembly, related sterility testing, and software. Progress in these areas was summarized.

  18. GSDO PDR (Preliminary Design Review) Morning Meeting

    NASA Image and Video Library

    2014-03-20

    CAPE CANAVERAL, Fla. – Mike Bolger, program manager for the Ground Systems Development and Operations, or GSDO, Program speaks to participants during completion of the preliminary design review in the Mission Briefing Room inside the Operations and Checkout Building at NASA’s Kennedy Space Center in Florida. Representatives from NASA, its contractor partners and experts from across the aerospace industry met in the Mission Briefing Room inside the Operations and Checkout Building at NASA’s Kennedy Space Center in Florida to conclude the initial design and technology development phase. Completion of this review has validated that the baseline architecture is sound and aligns with the agency's exploration objectives. NASA is developing the Space Launch System and Orion spacecraft to provide an entirely new capability for human exploration beyond low-Earth orbit, with the flexibility to launch spacecraft for crew and cargo missions, including to an asteroid and Mars. Orion’s first unpiloted test flight is scheduled to launch later this year atop a Delta IV rocket. A second uncrewed flight test is scheduled for fiscal year 2018 on the Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Cory Huston

  19. Interface Message Processors for the ARPA Computer Network

    DTIC Science & Technology

    1975-04-01

    Pluribus IMP construction and checkout; sizeable changes to the i*4P message-processing algorithms: and Satellite IMP issues. The IMP message...extremely low cost modification design. We have begun to consider changes to the MLC design which would enable the MLC to suppress continuous breaks...existing authentication mechanisms need not make these changes . 2.7 Other Topics During the first quarter BBN constructed an environmental test chamber

  20. Initial Checkout Results of the Compact Infrared Camera (circ) for Earth Observation

    NASA Astrophysics Data System (ADS)

    Kato, E.; Katayama, H.; Sakai, M.; Nakajima, Y.; Kimura, T.; Nakau, K.; Tonooka, H.

    2015-04-01

    Compact Infrared Camera (CIRC) is a technology-demonstration instrument equipped with an uncooled infrared array detector (microbolometer) for space application. CIRC is the first microbolometer sensor without a calibration function in orbit, like a shutter system or an onboard blackbody. The main objective of the CIRC is to detect wildfires, which are major and chronic disasters affecting various countries of Southeast Asia, particularly considering the effects of global warming and climate change. The CIRC achieves a small size (approximately 200 mm), light mass (approximately 3 kg), and low electrical power consumption (<20 W) by employing athermal optics and a shutterless system. The CIRC can be consequently mounted on multiple satellites to enable highfrequency observation. Installation of CIRCs on the ALOS-2 and on the JEM/CALET is expected to increase observation frequency. We present the initial check-out results of the CIRC onboard ALOS-2. Since the initial check-out phase (July 4-14, 2014), the CIRC has acquired the images of Earth. CIRC was demonstrated to function according to its intended design. After the early calibration validation phase, which confirmed the temperature accuracy of observed data, CIRC data has been available to the public January 2015 onward. We also introduce a few observational results about wildfire, volcanoes, and heat-island.

  1. Natural environment design criteria for the Space Station definition and preliminary design

    NASA Astrophysics Data System (ADS)

    Vaughan, W. W.; Green, C. E.

    1985-03-01

    The natural environment design criteria for the Space Station Program (SSP) definition and preliminary design are presented. Information on the atmospheric, dynamic and thermodynamic environments, meteoroids, radiation, magnetic fields, physical constants, etc. is provided with the intension of enabling all groups involved in the definition and preliminary design studies to proceed with a common and consistent set of natural environment criteria requirements. The space station program elements (SSPE) shall be designed with no operational sensitivity to natural environment conditions during assembly, checkout, stowage, launch, and orbital operations to the maximum degree practical.

  2. Natural environment design criteria for the Space Station definition and preliminary design

    NASA Technical Reports Server (NTRS)

    Vaughan, W. W.; Green, C. E.

    1985-01-01

    The natural environment design criteria for the Space Station Program (SSP) definition and preliminary design are presented. Information on the atmospheric, dynamic and thermodynamic environments, meteoroids, radiation, magnetic fields, physical constants, etc. is provided with the intension of enabling all groups involved in the definition and preliminary design studies to proceed with a common and consistent set of natural environment criteria requirements. The space station program elements (SSPE) shall be designed with no operational sensitivity to natural environment conditions during assembly, checkout, stowage, launch, and orbital operations to the maximum degree practical.

  3. Core Stage Forward Skirt Umbilical Installation onto Mobile Launcher

    NASA Image and Video Library

    2017-06-29

    Just north of the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, the core stage forward skirt umbilical is installed on the mobile launcher. The mobile launcher is designed to support the assembly, testing and check-out of the agency's Space Launch System (SLS) rocket and the Orion spacecraft.

  4. Core Stage Forward Skirt Umbilical Installation onto Mobile Laun

    NASA Image and Video Library

    2017-06-30

    Just north of the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, the core stage forward skirt umbilical is installed on the mobile launcher. The mobile launcher is designed to support the assembly, testing and check-out of the agency's Space Launch System (SLS) rocket and the Orion spacecraft.

  5. Core Stage Forward Skirt Umbilical Installation onto Mobile Laun

    NASA Image and Video Library

    2017-06-30

    Just north of the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, a crane lifts the core stage forward skirt umbilical for installation onto the mobile launcher. The mobile launcher is designed to support the assembly, testing and check-out of the agency's Space Launch System (SLS) rocket and the Orion spacecraft.

  6. Core Stage Forward Skirt Umbilical Installation onto Mobile Laun

    NASA Image and Video Library

    2017-06-30

    Just north of the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, technicians install the core stage forward skirt umbilical on the mobile launcher. The mobile launcher is designed to support the assembly, testing and check-out of the agency's Space Launch System (SLS) rocket and the Orion spacecraft.

  7. Ground Operations Aerospace Language (GOAL)

    NASA Technical Reports Server (NTRS)

    1973-01-01

    GOAL, is a test engineer oriented language designed to be used to standardize procedure terminology and as the test programming language to be used for ground checkout operations in a space vehicle launch environment. The material presented concerning GOAL includes: (1) a historical review, (2) development objectives and requirements, (3) language scope and format, and (4) language capabilities.

  8. The Fleet Application for Scheduling and Tracking (FAST) Management Website

    NASA Technical Reports Server (NTRS)

    Marrero-Perez, Radames J.

    2014-01-01

    The FAST application was designed to replace the paper and pen method of checking out and checking in GSA Vehicles at KSC. By innovating from a paper and pen based checkout system to a fully digital one, not only the resources wasted by printing the checkout forms have been reduced, but it also reduces significantly the time that users and fleet managers need to interact with the system as well as improving the record accuracy for each vehicle. The vehicle information is pulled from a centralized database server in the SPSDL. In an attempt to add a new feature to the FAST application, the author of this report (alongside the FAST developers) has been designing and developing the FAST Management Website. The GSA fleet managers had to rely on the FAST developers in order to add new vehicles, edit vehicles and previous transactions, or for generating vehicles reports. By providing an easy-to-use FAST Management Website portal, the GSA fleet managers are now able to easily move vehicles, edit records, and print reports.

  9. Reliability history of the Apollo guidance computer

    NASA Technical Reports Server (NTRS)

    Hall, E. C.

    1972-01-01

    The Apollo guidance computer was designed to provide the computation necessary for guidance, navigation and control of the command module and the lunar landing module of the Apollo spacecraft. The computer was designed using the technology of the early 1960's and the production was completed by 1969. During the development, production, and operational phase of the program, the computer has accumulated a very interesting history which is valuable for evaluating the technology, production methods, system integration, and the reliability of the hardware. The operational experience in the Apollo guidance systems includes 17 computers which flew missions and another 26 flight type computers which are still in various phases of prelaunch activity including storage, system checkout, prelaunch spacecraft checkout, etc. These computers were manufactured and maintained under very strict quality control procedures with requirements for reporting and analyzing all indications of failure. Probably no other computer or electronic equipment with equivalent complexity has been as well documented and monitored. Since it has demonstrated a unique reliability history, it is important to evaluate the techniques and methods which have contributed to the high reliability of this computer.

  10. Processing and Preparation of Advanced Stirling Convertors for Extended Operation

    NASA Technical Reports Server (NTRS)

    Oriti, Salvatore M.; Cornell, Paggy A.

    2008-01-01

    The U.S. Department of Energy (DOE), Lockheed Martin Space Company (LMSC), Sunpower Inc., and NASA Glenn Research Center (GRC) have been developing an Advanced Stirling Radioisotope Generator (ASRG) for use as a power system on space science missions. This generator will make use of the free-piston Stirling convertors to achieve higher conversion efficiency than currently available alternatives. NASA GRC is supporting the development of the ASRG by providing extended operation of several Sunpower Inc. Advanced Stirling Convertors (ASCs). In the past year and a half, eight ASCs have operated in continuous, unattended mode in both air and thermal vacuum environments. Hardware, software, and procedures were developed to prepare each convertor for extended operation with intended durations on the order of tens of thousands of hours. Steps taken to prepare a convertor for long-term operation included geometry measurements, thermocouple instrumentation, evaluation of working fluid purity, evacuation with bakeout, and high purity charge. Actions were also taken to ensure the reliability of support systems, such as data acquisition and automated shutdown checkouts. Once a convertor completed these steps, it underwent short-term testing to gather baseline performance data before initiating extended operation. These tests included insulation thermal loss characterization, low-temperature checkout, and full-temperature and power demonstration. This paper discusses the facilities developed to support continuous, unattended operation, and the processing results of the eight ASCs currently on test.

  11. Processing and Preparation of Advanced Stirling Convertors for Extended Operation at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Oriti, Salvatore M.; Cornell, Peggy A.

    2008-01-01

    The U.S. Department of Energy (DOE), Lockheed Martin Space Company (LMSC), Sunpower Inc., and NASA Glenn Research Center (GRC) have been developing an Advanced Stirling Radioisotope Generator (ASRG) for use as a power system on space science missions. This generator will make use of the free-piston Stirling convertors to achieve higher conversion efficiency than currently available alternatives. NASA GRC is supporting the development of the ASRG by providing extended operation of several Sunpower Inc. Advanced Stirling Convertors (ASCs). In the past year and a half, eight ASCs have operated in continuous, unattended mode in both air and thermal vacuum environments. Hardware, software, and procedures were developed to prepare each convertor for extended operation with intended durations on the order of tens of thousands of hours. Steps taken to prepare a convertor for long-term operation included geometry measurements, thermocouple instrumentation, evaluation of working fluid purity, evacuation with bakeout, and high purity charge. Actions were also taken to ensure the reliability of support systems, such as data acquisition and automated shutdown checkouts. Once a convertor completed these steps, it underwent short-term testing to gather baseline performance data before initiating extended operation. These tests included insulation thermal loss characterization, low-temperature checkout, and full-temperature and power demonstration. This paper discusses the facilities developed to support continuous, unattended operation, and the processing results of the eight ASCs currently on test.

  12. Food at checkouts in non-food stores: a cross-sectional study of a large indoor shopping mall.

    PubMed

    Wright, James; Kamp, Erin; White, Martin; Adams, Jean; Sowden, Sarah

    2015-10-01

    To investigate the display of food at non-food store checkouts; and to classify foods by type and nutrient content, presence of price promotions and whether food was at child height. Cross-sectional survey of checkout displays at non-food stores. Foods were classified as 'less healthy' or healthier using the UK Food Standards Agency's Nutrient Profile Model. Written price promotions were recorded. Child height was defined as the sight line of an 11-year-old approximated from UK growth charts. A large indoor shopping mall, Gateshead, UK, February-March 2014. Two hundred and five out of 219 non-food stores in the shopping mall directory which were open for trading. Thirty-two (15·6%) of 205 non-food stores displayed food at the checkout. All displayed less healthy foods, and fourteen (43·8%) had healthier foods. Overall, 5911 checkout foods were identified. Of these, 4763 (80·6%) were 'less healthy'. No fruits, vegetables, nuts or seeds were found. Of 4763 less healthy foods displayed, 195 (4·1%) were subject to price promotions, compared with twelve of 1148 (1·0%) healthier foods (χ 2(df=1)=25·4, P<0·0001). There was no difference in the proportion of less healthy (95·1%) and healthier (96·2%) foods displayed at child height. Almost one-sixth of non-food stores displayed checkout food, the majority of which was 'less healthy' and displayed at child height. Less healthy food was more likely to be subject to a written price promotion than healthier food. Further research into the drivers and consequences of checkout food in non-food stores is needed. Public health regulation may be warranted.

  13. Space shuttle propulsion systems on-board checkout and monitoring system development study (extension). Volume 1: Summary and technical results

    NASA Technical Reports Server (NTRS)

    1972-01-01

    An analysis was conducted of the space shuttle propulsion systems to define the onboard checkout and monitoring function. A baseline space shuttle vehicle and mission were used to establish the techniques and approach for defining the requirements. The requirements were analyzed to formulate criteria for implementing the functions of preflight checkout, performance monitoring, fault isolation, emergency detection, display, data storage, postflight evaluation, and maintenance retest.

  14. Fuel Cell/Reformers Technology Development

    NASA Technical Reports Server (NTRS)

    2004-01-01

    NASA Glenn Research Center is interested in developing Solid Oxide Fuel Cell for use in aerospace applications. Solid oxide fuel cell requires hydrogen rich feed stream by converting commercial aviation jet fuel in a fuel processing process. The grantee's primary research activities center on designing and constructing a test facility for evaluating injector concepts to provide optimum feeds to fuel processor; collecting and analyzing literature information on fuel processing and desulfurization technologies; establishing industry and academic contacts in related areas; providing technical support to in-house SOFC-based system studies. Fuel processing is a chemical reaction process that requires efficient delivery of reactants to reactor beds for optimum performance, i.e., high conversion efficiency and maximum hydrogen production, and reliable continuous operation. Feed delivery and vaporization quality can be improved by applying NASA's expertise in combustor injector design. A 10 KWe injector rig has been designed, procured, and constructed to provide a tool to employ laser diagnostic capability to evaluate various injector concepts for fuel processing reactor feed delivery application. This injector rig facility is now undergoing mechanical and system check-out with an anticipated actual operation in July 2004. Multiple injector concepts including impinging jet, venturi mixing, discrete jet, will be tested and evaluated with actual fuel mixture compatible with reforming catalyst requirement. Research activities from September 2002 to the closing of this collaborative agreement have been in the following areas: compiling literature information on jet fuel reforming; conducting autothermal reforming catalyst screening; establishing contacts with other government agencies for collaborative research in jet fuel reforming and desulfurization; providing process design basis for the build-up of injector rig facility and individual injector design.

  15. A guide to onboard checkout. Volume 4: Propulsion

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The propulsion system for a space station is considered with respect to onboard checkout requirements. Failure analysis, reliability, and maintenance features are presented. Computer analysis techniques are also discussed.

  16. Design and Operation of a Fast, Thin-Film Thermocouple Probe on a Turbine Engine

    NASA Technical Reports Server (NTRS)

    Meredith, Roger D.; Wrbanek, John D.; Fralick, Gustave C.; Greer, Lawrence C., III; Hunter, Gary W.; Chen, Liang-Yu

    2014-01-01

    As a demonstration of technology maturation, a thin-film temperature sensor probe was fabricated and installed on a F117 turbofan engine via a borescope access port to monitor the temperature experienced in the bleed air passage of the compressor area during an engine checkout test run. To withstand the harsh conditions experienced in this environment, the sensor probe was built from high temperature materials. The thin-film thermocouple sensing elements were deposited by physical vapor deposition using pure metal elements, thus avoiding the inconsistencies of sputter-depositing particular percentages of materials to form standardized alloys commonly found in thermocouples. The sensor probe and assembly were subjected to a strict protocol of multi-axis vibrational testing as well as elevated temperature pressure testing to be qualified for this application. The thin-film thermocouple probe demonstrated a faster response than a traditional embedded thermocouple during the engine checkout run.

  17. Center Director Bridges addresses guests at ribbon cutting for the new Checkout & Launch Control

    NASA Technical Reports Server (NTRS)

    2000-01-01

    KSC Director Roy Bridges addresses attendees at a ribbon cutting for the new Checkout and Launch Control System (CLCS) at the Hypergolic Maintenance Facility (HMF). The CLCS was declared operational in a ribbon cutting ceremony earlier. The new control room will be used to process the Orbital Maneuvering System pods and Forward Reaction Control System modules at the HMF. This hardware is removed from Space Shuttle orbiters and routinely taken to the HMF for checkout and servicing.

  18. A guide to onboard checkout. Volume 3: Electrical power

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The baseline electrical power subsystem for a space station is considered. The subsystem was anlayzed in order to define onboard checkout requirements. Reliability, failure effects, and maintenance are discussed.

  19. Apollo/Saturn V facilities Test Vehicle and Launch Umbilical Tower

    NASA Image and Video Library

    1966-05-25

    An Apollo/Saturn V facilities Test Vehicle and Launch Umbilical Tower (LUT) atop a crawler-transporter move from the Vehicle Assembly Building (VAB) on the way to Pad A. This test vehicle, designated the Apollo/Saturn 500-F, is being used to verify launch facilities, train launch crews, and develop test and checkout procedures.

  20. Shuttle mission simulator requirements report, volume 1, revision C

    NASA Technical Reports Server (NTRS)

    Burke, J. F.

    1973-01-01

    The contractor tasks required to produce a shuttle mission simulator for training crew members and ground personnel are discussed. The tasks will consist of the design, development, production, installation, checkout, and field support of a simulator with two separate crew stations. The tasks include the following: (1) review of spacecraft changes and incorporation of appropriate changes in simulator hardware and software design, and (2) the generation of documentation of design, configuration management, and training used by maintenance and instructor personnel after acceptance for each of the crew stations.

  1. Lunar Surface Operations. Part 1; Post-Touchdown Lunar Surface and System Checkouts

    NASA Technical Reports Server (NTRS)

    Interbartolo, Michael

    2009-01-01

    This slide presentation reviews the first part of the post-touchdown lunar surface and system checkout tasks. A stay/no stay decision for the lunar lander was made based on the questions: "Is the Lunar Module (LM) stable on the lunar surface?"; "Are there any time critical systems failures or trends indicating impending loss of capability to ascent and achieve a safe lunar orbit?"; and "Is there loss of capability in critical LM systems?" The sequence of these decisions is given as a time after touchdown on the surface of the moon. After the decision to stay is made the next task is to checkout status of the lunar module. While the status of the lunar module is checking out certain conditions, the Command Service Module was also engaged in certain checkout activities.

  2. Guidelines of the Design of Electropyrotechnic Firing Circuit for Unmanned Flight and Ground Test Projects

    NASA Technical Reports Server (NTRS)

    Gonzalez, Guillermo A.; Lucy, Melvin H.; Massie, Jeffrey J.

    2013-01-01

    The NASA Langley Research Center, Engineering Directorate, Electronic System Branch, is responsible for providing pyrotechnic support capabilities to Langley Research Center unmanned flight and ground test projects. These capabilities include device selection, procurement, testing, problem solving, firing system design, fabrication and testing; ground support equipment design, fabrication and testing; checkout procedures and procedure?s training to pyro technicians. This technical memorandum will serve as a guideline for the design, fabrication and testing of electropyrotechnic firing systems. The guidelines will discuss the entire process beginning with requirements definition and ending with development and execution.

  3. An analysis of the number of parking bays and checkout counters for a supermarket using SAS simulation studio

    NASA Astrophysics Data System (ADS)

    Kar, Leow Soo

    2014-07-01

    Two important factors that influence customer satisfaction in large supermarkets or hypermarkets are adequate parking facilities and short waiting times at the checkout counters. This paper describes the simulation analysis of a large supermarket to determine the optimal levels of these two factors. SAS Simulation Studio is used to model a large supermarket in a shopping mall with car park facility. In order to make the simulation model more realistic, a number of complexities are introduced into the model. For example, arrival patterns of customers vary with the time of the day (morning, afternoon and evening) and with the day of the week (weekdays or weekends), the transport mode of arriving customers (by car or other means), the mode of payment (cash or credit card), customer shopping pattern (leisurely, normal, exact) or choice of checkout counters (normal or express). In this study, we focus on 2 important components of the simulation model, namely the parking area, the normal and express checkout counters. The parking area is modeled using a Resource Pool block where one resource unit represents one parking bay. A customer arriving by car seizes a unit of the resource from the Pool block (parks car) and only releases it when he exits the system. Cars arriving when the Resource Pool is empty (no more parking bays) leave without entering the system. The normal and express checkouts are represented by Server blocks with appropriate service time distributions. As a case study, a supermarket in a shopping mall with a limited number of parking bays in Bangsar was chosen for this research. Empirical data on arrival patterns, arrival modes, payment modes, shopping patterns, service times of the checkout counters were collected and analyzed to validate the model. Sensitivity analysis was also performed with different simulation scenarios to identify the parameters for the optimal number the parking spaces and checkout counters.

  4. Space Transportation Avionics Technology Symposium. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The focus of the symposium was to examine existing and planned avionics technology processes and products and to recommend necessary changes for strengthening priorities and program emphases. Innovative changes in avionics technology development and design processes, identified during the symposium, are needed to support the increasingly complex, multi-vehicle, integrated, autonomous space-based systems. Key technology advances make such a major initiative viable at this time: digital processing capabilities, integrated on-board test/checkout methods, easily reconfigurable laboratories, and software design and production techniques.

  5. Space Transportation Avionics Technology Symposium. Volume 2: Conference Proceedings

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The focus of the symposium was to examine existing and planned avionics technology processes and products and to recommend necessary changes for strengthening priorities and program emphases. Innovative changes in avionics technology development and design processes are needed to support the increasingly complex, multi-vehicle, integrated, autonomous space-based systems. Key technology advances make such a major initiative viable at this time: digital processing capabilities, integrated on-board test/checkout methods, easily reconfigurable laboratories, and software design and production techniques.

  6. Operational manual for MX-290 data-voice PN Mod, MX-291 data-voice PN DEMOD

    NASA Technical Reports Server (NTRS)

    1971-01-01

    This operation manual is also the final report of the program to design, assemble, checkout, and deliver to the customer three MX-290 transmitters and two MX-291 companion receivers. These equipments are designed and assembled to provide for maximum flexibility with respect to making changes in electrical circuits which may be required for future applications. A number of test points for monitoring and troubleshooting are provided along with easy access to subunits.

  7. Acceptance-test report for El Toro Library solar heating and cooling demonstration project (SHAC no. 1501)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    A partial acceptance test was conducted on the El Toro Library Solar Energy System, and the detailed results of the various mode acceptance tests are given. All the modes tested function as designed. Collector array efficiencies were calculated at approximately 40%. Chiller COP was estimated at .50, with chiller loop flow rates approximately 85 to 90% of design flow. The acceptance test included visual inspection, preoperational testing and procedure verification, operational mode checkout, and performance testing. (LEW)

  8. The 25 kW power module evolution study. Part 3: Conceptual design for power module evolution. Volume 6: WBS and dictionary

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Program elements of the power module (PM) system, are identified, structured, and defined according to the planned work breakdown structure. Efforts required to design, develop, manufacture, test, checkout, launch and operate a protoflight assembled 25 kW, 50 kW and 100 kW PM include the preparation and delivery of related software, government furnished equipment, space support equipment, ground support equipment, launch site verification software, orbital verification software, and all related data items.

  9. 51. LINES AT TIME OFFICE NO. 13 AT CHECKOUT TIME. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    51. LINES AT TIME OFFICE NO. 13 AT CHECKOUT TIME. SEAPLANE HANGARS (BLDGS. 1-2) IN BACKGROUND. USN PHOTO, JULY 11, 1941. - Quonset Point Naval Air Station, Roger Williams Way, North Kingstown, Washington County, RI

  10. HELIOS dual swept frequency radiometer

    NASA Technical Reports Server (NTRS)

    White, J. R.

    1975-01-01

    The HELIOS dual swept frequency radiometer, used in conjunction with a dipole antenna, was designed to measure electromagnetic radiation in space. An engineering prototype was fabricated and tested on the HELIOS spacecraft. Two prototypes and two flight units were fabricated and three of the four units were integrated into the HELIOS spacecraft. Two sets of ground support equipment were provided for checkout of the radiometer.

  11. Command module/service module reaction control subsystem assessment

    NASA Technical Reports Server (NTRS)

    Weary, D. P.

    1971-01-01

    Detailed review of component failure histories, qualification adequacy, manufacturing flow, checkout requirements and flow, ground support equipment interfaces, subsystem interface verification, protective devices, and component design did not reveal major weaknesses in the command service module (CSM) reaction control system (RCS). No changes to the CSM RCS were recommended. The assessment reaffirmed the adequacy of the CSM RCS for future Apollo missions.

  12. Space shuttle program. Expendable second stage reusable space shuttle booster. Volume 2: Technical summary. Book 2: Expendable second stage vehicle definition

    NASA Technical Reports Server (NTRS)

    1971-01-01

    A definition of the expendable second stage for use with the reusable space shuttle booster is presented. The subjects discussed are: (1) expendable second stage design, (2) structural subsystem, (3) propulsion subsystem, (4) avionics subsystems, (5) recovery and deorbit subsystem, and (6) expendable second stage vehicle installation, assembly, and checkout.

  13. Tactical Satellite 3

    DTIC Science & Technology

    2008-08-01

    identified for static experiments , target arrays have been designed and ground truth systems are already in place. Participation in field ...key objectives are rapid launch and on-orbit checkout, theater commanding, and near -real time theater data integration. It will also feature a rapid...Organisation (DSTO) plan to participate in TacSat-3 experiments . 1. INTRODUCTION In future conflicts, military space forces will likely face

  14. The CEBAF Element Database and Related Operational Software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larrieu, Theodore; Slominski, Christopher; Keesee, Marie

    The newly commissioned 12GeV CEBAF accelerator relies on a flexible, scalable and comprehensive database to define the accelerator. This database delivers the configuration for CEBAF operational tools, including hardware checkout, the downloadable optics model, control screens, and much more. The presentation will describe the flexible design of the CEBAF Element Database (CED), its features and assorted use case examples.

  15. KSC-2012-6430

    NASA Image and Video Library

    2012-12-05

    CAPE CANAVERAL, Fla. – Technicians prepare to lift a special fixture inside the high bay of the Operations & Checkout Building at NASA's Kennedy Space Center in Florida. The fixture is designed to enable precise pre-launch processing of the Orion spacecraft. An Orion capsule is being prepared to make a flight test in 2014 on a mission that will not carry any astronauts. Photo by Tim Jacobs

  16. KSC-2012-6447

    NASA Image and Video Library

    2012-12-06

    CAPE CANAVERAL, Fla. – Technicians lift a special fixture inside the high bay of the Operations & Checkout Building at NASA's Kennedy Space Center in Florida. The fixture is designed to enable precise pre-launch processing of the Orion spacecraft. An Orion capsule is being prepared to make a flight test in 2014 on a mission that will not carry any astronauts. Photo by Tim Jacobs

  17. KSC-2012-6428

    NASA Image and Video Library

    2012-12-05

    CAPE CANAVERAL, Fla. – Technicians prepare to lift a special fixture inside the high bay of the Operations & Checkout Building at NASA's Kennedy Space Center in Florida. The fixture is designed to enable precise pre-launch processing of the Orion spacecraft. An Orion capsule is being prepared to make a flight test in 2014 on a mission that will not carry any astronauts. Photo by Tim Jacobs

  18. KSC-2012-6429

    NASA Image and Video Library

    2012-12-05

    CAPE CANAVERAL, Fla. – Technicians prepare to lift a special fixture inside the high bay of the Operations & Checkout Building at NASA's Kennedy Space Center in Florida. The fixture is designed to enable precise pre-launch processing of the Orion spacecraft. An Orion capsule is being prepared to make a flight test in 2014 on a mission that will not carry any astronauts. Photo by Tim Jacobs

  19. KSC-2012-6446

    NASA Image and Video Library

    2012-12-06

    CAPE CANAVERAL, Fla. – Technicians lift a special fixture inside the high bay of the Operations & Checkout Building at NASA's Kennedy Space Center in Florida. The fixture is designed to enable precise pre-launch processing of the Orion spacecraft. An Orion capsule is being prepared to make a flight test in 2014 on a mission that will not carry any astronauts. Photo by Tim Jacobs

  20. KSC-2012-6445

    NASA Image and Video Library

    2012-12-05

    CAPE CANAVERAL, Fla. – Technicians lift a special fixture inside the high bay of the Operations & Checkout Building at NASA's Kennedy Space Center in Florida. The fixture is designed to enable precise pre-launch processing of the Orion spacecraft. An Orion capsule is being prepared to make a flight test in 2014 on a mission that will not carry any astronauts. Photo by Tim Jacobs

  1. Life science payloads planning study integration facility survey results

    NASA Technical Reports Server (NTRS)

    Wells, G. W.; Brown, N. E.; Nelson, W. G.

    1976-01-01

    The integration facility survey effort described is structured to examine the facility resources needed to conduct life science payload (LSP) integration checkout activities at NASA-JSC. The LSP integration facility operations and functions are defined along with the LSP requirements for facility design. A description of available JSC life science facilities is presented and a comparison of accommodations versus requirements is reported.

  2. Personnel in blue and white FCR bldg 30 during STS-106

    NASA Image and Video Library

    2000-09-19

    JSC2000-E-22832 (13 September 2000) --- Gary Ford intently watches a monitor at the Assembly and Checkout Officer (ACO) console in Houston's Mission Control Center (MCC). The ACO is responsible for station assembly, activation and checkout operations.

  3. Faster Finances

    NASA Technical Reports Server (NTRS)

    1976-01-01

    TRW has applied the Apollo checkout procedures to retail-store and bank-transaction systems, as well as to control systems for electric power transmission grids -- reducing the chance of power blackouts. Automatic checkout equipment for Apollo Spacecraft is one of the most complex computer systems in the world. Used to integrate extensive Apollo checkout procedures from manufacture to launch, it has spawned major advances in computer systems technology. Store and bank credit system has caused significant improvement in speed and accuracy of transactions, credit authorization, and inventory control. A similar computer service called "Validata" is used nationwide by airlines, airline ticket offices, car rental agencies, and hotels.

  4. Presence of Candy and Snack Food at Checkout in Chain Stores: Results of a Pilot Study.

    PubMed

    Basch, Corey H; Kernan, William D; Menafro, Anthony

    2016-10-01

    Community health professionals must use multiple strategies to address the rising rates of childhood obesity in the United States. One such strategy is to address the underlying causes of childhood obesity, including lack of exercise and the consumption of calorically-dense snack foods. This study examines the presence of candy and snack food in the checkout lines of all retail chain stores in a selected community to determine the presence of these products, the ways in which these products are promoted, and the type of physical environment through which customers navigate during the checkout process. The findings confirm that candy, soft drinks, snacks, and ice cream were present in a large majority of these retail stores. Further, this pilot study found that many of these stores "corral" customers through the check-out line in such a way that it is necessary to pass these snack foods directly. Three themes for discussion emerged from the review of the data collected, including product marketing, product packaging, and product placement. Implications for childhood health are presented in the context of these marketing strategies. The results and subsequent discussion provide important insight into the ways in which the presence of candy and snack food at checkout lines might contribute to childhood obesity rates.

  5. Test Rack Development for Extended Operation of Advanced Stirling Convertors at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Dugala, Gina M.

    2009-01-01

    The U.S. Department of Energy (DOE), Lockheed Martin Space Company (LMSC), Sun power Inc., and NASA Glenn Research Center (GRC) have been developing an Advanced Stirling Radioisotope Generator (ASRG) for use as a power system on space science missions. This generator will make use of free-piston Stirling convertors to achieve higher conversion efficiency than currently available alternatives. NASA GRC's support of ASRG development includes extended operation testing of Advanced Stirling Convertors (ASCs) developed by Sunpower Inc. In the past year, NASA GRC has been building a test facility to support extended operation of a pair of engineering level ASCs. Operation of the convertors in the test facility provides convertor performance data over an extended period of time. Mechanical support hardware, data acquisition software, and an instrumentation rack were developed to prepare the pair of convertors for continuous extended operation. Short-term tests were performed to gather baseline performance data before extended operation was initiated. These tests included workmanship vibration, insulation thermal loss characterization, low-temperature checkout, and fUll-power operation. Hardware and software features are implemented to ensure reliability of support systems. This paper discusses the mechanical support hardware, instrumentation rack, data acquisition software, short-term tests, and safety features designed to support continuous unattended operation of a pair of ASCs.

  6. Trajectory Design Considerations for Exploration Mission 1

    NASA Technical Reports Server (NTRS)

    Dawn, Timothy F.; Gutkowski, Jeffrey P.; Batcha, Amelia L.

    2017-01-01

    Exploration Mission 1 (EM-1) will be the first mission to send an uncrewed Orion vehicle to cislunar space in 2018, targeted to a Distant Retrograde Orbit (DRO). Analysis of EM-1 DRO mission opportunities in 2018 help characterize mission parameters that are of interest to other subsystems (e.g., power, thermal, communications, flight operations, etc). Subsystems request mission design trades which include: landing lighting, addition of an Orion main engine checkout burn, and use of auxiliary thruster only cases. This paper examines the evolving trade studies that incorporate subsystem feedback and demonstrate the feasibility of these constrained mission trajectory designs and contingencies.

  7. Design of a Mechanical NaK Pump for Fission Space Power Systems

    NASA Technical Reports Server (NTRS)

    Mireles, Omar R.; Bradley, David; Godfroy, Thomas

    2010-01-01

    Alkali liquid metal cooled fission reactor concepts are under development for mid-range spaceflight power requirements. One such concept utilizes a sodium-potassium eutectic (NaK) as the primary loop working fluid. Traditionally, linear induction pumps have been used to provide the required flow and head conditions for liquid metal systems but can be limited in performance. This paper details the design, build, and check-out test of a mechanical NaK pump. The pump was designed to meet reactor cooling requirements using commercially available components modified for high temperature NaK service.

  8. GEMINI-TITAN (GT)-11 - PREFLIGHT PREP - CHECKOUT - CAPE

    NASA Image and Video Library

    1966-07-21

    S66-47635 (21 July 1966) --- McDonnell Aircraft Corporation personnel bolt the Gemini-11 spacecraft to a support ring for bore sighting in the Pyrotechnic Installation Building, Merritt Island, during checkout and preflight preparations at the Kennedy Space Center. Photo credit: NASA

  9. Advanced Gas Turbine (AGT) powertrain system

    NASA Technical Reports Server (NTRS)

    Helms, H. E.; Kaufeld, J.; Kordes, R.

    1981-01-01

    A 74.5 kW(100 hp) advanced automotive gas turbine engine is described. A design iteration to improve the weight and production cost associated with the original concept is discussed. Major rig tests included 15 hours of compressor testing to 80% design speed and the results are presented. Approximately 150 hours of cold flow testing showed duct loss to be less than the design goal. Combustor test results are presented for initial checkout tests. Turbine design and rig fabrication is discussed. From a materials study of six methods to fabricate rotors, two have been selected for further effort. A discussion of all six methods is given.

  10. Quality assurance plan for Solar Maximum Mission (SSM) Instruments electronic assembly - HRUV spectrometer/polarimeter

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The quality assurance program demonstrates recognition of the quality aspects and an organized approach to achieve them. It ensures that quality requirements are determined and satisfied throughout all phases of contract performance, including preliminary and engineering design, development, fabrication, processing, assembly, inspection, test, checkout, packaging, shipping, storage, maintenance field use, flight preparations, flight operations and post-flight analysis, as applicable.

  11. Analyses of the dynamic docking test system for advanced mission docking system test programs. [Apollo Soyuz Test Project

    NASA Technical Reports Server (NTRS)

    Gates, R. M.; Williams, J. E.

    1974-01-01

    Results are given of analytical studies performed in support of the design, implementation, checkout and use of NASA's dynamic docking test system (DDTS). Included are analyses of simulator components, a list of detailed operational test procedures, a summary of simulator performance, and an analysis and comparison of docking dynamics and loads obtained by test and analysis.

  12. KSC-2012-6433

    NASA Image and Video Library

    2012-12-05

    CAPE CANAVERAL, Fla. – Technicians prepare to fit a special fixture around an Orion capsule inside the high bay of the Operations & Checkout Building at NASA's Kennedy Space Center in Florida. The fixture is designed to enable precise pre-launch processing of the Orion spacecraft. An Orion capsule is being prepared to make a flight test in 2014 on a mission that will not carry any astronauts. Photo by Tim Jacobs

  13. KSC-2012-6444

    NASA Image and Video Library

    2012-12-05

    CAPE CANAVERAL, Fla. – Technicians prepare to fit a special fixture around an Orion capsule inside the high bay of the Operations & Checkout Building at NASA's Kennedy Space Center in Florida. The fixture is designed to enable precise pre-launch processing of the Orion spacecraft. An Orion capsule is being prepared to make a flight test in 2014 on a mission that will not carry any astronauts. Photo by Tim Jacobs

  14. KSC-2012-6434

    NASA Image and Video Library

    2012-12-05

    CAPE CANAVERAL, Fla. – Technicians prepare to fit a special fixture around an Orion capsule inside the high bay of the Operations & Checkout Building at NASA's Kennedy Space Center in Florida. The fixture is designed to enable precise pre-launch processing of the Orion spacecraft. An Orion capsule is being prepared to make a flight test in 2014 on a mission that will not carry any astronauts. Photo by Tim Jacobs

  15. KSC-2012-6442

    NASA Image and Video Library

    2012-12-05

    CAPE CANAVERAL, Fla. – Technicians prepare to fit a special fixture around an Orion capsule inside the high bay of the Operations & Checkout Building at NASA's Kennedy Space Center in Florida. The fixture is designed to enable precise pre-launch processing of the Orion spacecraft. An Orion capsule is being prepared to make a flight test in 2014 on a mission that will not carry any astronauts. Photo by Tim Jacobs

  16. KSC-2012-6441

    NASA Image and Video Library

    2012-12-05

    CAPE CANAVERAL, Fla. – Technicians prepare to fit a special fixture around an Orion capsule inside the high bay of the Operations & Checkout Building at NASA's Kennedy Space Center in Florida. The fixture is designed to enable precise pre-launch processing of the Orion spacecraft. An Orion capsule is being prepared to make a flight test in 2014 on a mission that will not carry any astronauts. Photo by Tim Jacobs

  17. KSC-2012-6440

    NASA Image and Video Library

    2012-12-05

    CAPE CANAVERAL, Fla. – Technicians prepare to fit a special fixture around an Orion capsule inside the high bay of the Operations & Checkout Building at NASA's Kennedy Space Center in Florida. The fixture is designed to enable precise pre-launch processing of the Orion spacecraft. An Orion capsule is being prepared to make a flight test in 2014 on a mission that will not carry any astronauts. Photo by Tim Jacobs

  18. KSC-2012-6432

    NASA Image and Video Library

    2012-12-05

    CAPE CANAVERAL, Fla. – Technicians prepare to fit a special fixture around an Orion capsule inside the high bay of the Operations & Checkout Building at NASA's Kennedy Space Center in Florida. The fixture is designed to enable precise pre-launch processing of the Orion spacecraft. An Orion capsule is being prepared to make a flight test in 2014 on a mission that will not carry any astronauts. Photo by Tim Jacobs

  19. KSC-2012-6443

    NASA Image and Video Library

    2012-12-05

    CAPE CANAVERAL, Fla. – Technicians prepare to fit a special fixture around an Orion capsule inside the high bay of the Operations & Checkout Building at NASA's Kennedy Space Center in Florida. The fixture is designed to enable precise pre-launch processing of the Orion spacecraft. An Orion capsule is being prepared to make a flight test in 2014 on a mission that will not carry any astronauts. Photo by Tim Jacobs

  20. KSC-2012-6431

    NASA Image and Video Library

    2012-12-05

    CAPE CANAVERAL, Fla. – Technicians prepare to fit a special fixture around an Orion capsule inside the high bay of the Operations & Checkout Building at NASA's Kennedy Space Center in Florida. The fixture is designed to enable precise pre-launch processing of the Orion spacecraft. An Orion capsule is being prepared to make a flight test in 2014 on a mission that will not carry any astronauts. Photo by Tim Jacobs

  1. KSC-2012-6437

    NASA Image and Video Library

    2012-12-05

    CAPE CANAVERAL, Fla. – Technicians prepare to fit a special fixture around an Orion capsule inside the high bay of the Operations & Checkout Building at NASA's Kennedy Space Center in Florida. The fixture is designed to enable precise pre-launch processing of the Orion spacecraft. An Orion capsule is being prepared to make a flight test in 2014 on a mission that will not carry any astronauts. Photo by Tim Jacobs

  2. KSC-2012-6435

    NASA Image and Video Library

    2012-12-05

    CAPE CANAVERAL, Fla. – Technicians prepare to fit a special fixture around an Orion capsule inside the high bay of the Operations & Checkout Building at NASA's Kennedy Space Center in Florida. The fixture is designed to enable precise pre-launch processing of the Orion spacecraft. An Orion capsule is being prepared to make a flight test in 2014 on a mission that will not carry any astronauts. Photo by Tim Jacobs

  3. KSC-2012-6436

    NASA Image and Video Library

    2012-12-05

    CAPE CANAVERAL, Fla. – Technicians prepare to fit a special fixture around an Orion capsule inside the high bay of the Operations & Checkout Building at NASA's Kennedy Space Center in Florida. The fixture is designed to enable precise pre-launch processing of the Orion spacecraft. An Orion capsule is being prepared to make a flight test in 2014 on a mission that will not carry any astronauts. Photo by Tim Jacobs

  4. KSC-2012-6448

    NASA Image and Video Library

    2012-12-06

    CAPE CANAVERAL, Fla. – Technicians lower a special fixture around an Orion spacecraft inside the high bay of the Operations & Checkout Building at NASA's Kennedy Space Center in Florida. The fixture is designed to enable precise pre-launch processing of the Orion spacecraft. An Orion capsule is being prepared to make a flight test in 2014 on a mission that will not carry any astronauts. Photo by Tim Jacobs

  5. KSC-2012-6449

    NASA Image and Video Library

    2012-12-06

    CAPE CANAVERAL, Fla. – Technicians lower a special fixture around an Orion spacecraft inside the high bay of the Operations & Checkout Building at NASA's Kennedy Space Center in Florida. The fixture is designed to enable precise pre-launch processing of the Orion spacecraft. An Orion capsule is being prepared to make a flight test in 2014 on a mission that will not carry any astronauts. Photo by Tim Jacobs

  6. KSC-2012-6450

    NASA Image and Video Library

    2012-12-06

    CAPE CANAVERAL, Fla. – A special fixture stands in place around an Orion spacecraft inside the high bay of the Operations & Checkout Building at NASA's Kennedy Space Center in Florida. The fixture is designed to enable precise pre-launch processing of the Orion spacecraft. An Orion capsule is being prepared to make a flight test in 2014 on a mission that will not carry any astronauts. Photo by Tim Jacobs

  7. KSC-2012-6439

    NASA Image and Video Library

    2012-12-05

    CAPE CANAVERAL, Fla. – Technicians prepare to fit a special fixture around an Orion capsule inside the high bay of the Operations & Checkout Building at NASA's Kennedy Space Center in Florida. The fixture is designed to enable precise pre-launch processing of the Orion spacecraft. An Orion capsule is being prepared to make a flight test in 2014 on a mission that will not carry any astronauts. Photo by Tim Jacobs

  8. KSC-2012-6438

    NASA Image and Video Library

    2012-12-05

    CAPE CANAVERAL, Fla. – Technicians prepare to fit a special fixture around an Orion capsule inside the high bay of the Operations & Checkout Building at NASA's Kennedy Space Center in Florida. The fixture is designed to enable precise pre-launch processing of the Orion spacecraft. An Orion capsule is being prepared to make a flight test in 2014 on a mission that will not carry any astronauts. Photo by Tim Jacobs

  9. Alternative Approach to Vehicle Element Processing

    NASA Technical Reports Server (NTRS)

    Huether, Jacob E.; Otto, Albert E.

    1995-01-01

    The National Space Transportation Policy (NSTP), describes the challenge facing today's aerospace industry. 'Assuring reliable and affordable access to space through U.S. space transportation capabilities is a fundamental goal of the U.S. space program'. Experience from the Space Shuttle Program (SSP) tells us that launch and mission operations are responsible for approximately 45 % of the cost of each shuttle mission. Reducing these costs is critical to NSTP goals in the next generation launch vehicle. Based on this, an innovative alternative approach to vehicle element processing was developed with an emphasis on reduced launch costs. State-of-the-art upgrades to the launch processing system (LPS) will enhance vehicle ground operations. To carry this one step further, these upgrade could be implemented at various vehicle element manufacturing sites to ensure system compatibility between the manufacturing facility and the launch site. Design center vehicle stand alone testing will ensure system integrity resulting in minimized checkout and testing at the launch site. This paper will addresses vehicle test requirements, timelines and ground checkout procedures which enable concept implementation.

  10. KSC-2012-4107

    NASA Image and Video Library

    2012-07-31

    CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, is being moved out of its checkout building for a short trip to a launch position at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis

  11. KSC-2012-4109

    NASA Image and Video Library

    2012-07-31

    CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, is being transported out from its checkout building for a short trip to a launch position at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis

  12. KSC-2012-4106

    NASA Image and Video Library

    2012-07-31

    CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, is being moved out of its checkout building for a short trip to a launch position at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis

  13. KSC-2012-4110

    NASA Image and Video Library

    2012-07-31

    CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, is being transported out from its checkout building for a short trip to a launch position at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis

  14. KSC-2012-4108

    NASA Image and Video Library

    2012-07-31

    CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, is being transported out of its checkout building for a short trip to a launch position at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis

  15. KSC ground operations planning for Space Station

    NASA Technical Reports Server (NTRS)

    Lyon, J. R.; Revesz, W., Jr.

    1993-01-01

    At the Kennedy Space Center (KSC) in Florida, processing facilities are being built and activated to support the processing, checkout, and launch of Space Station elements. The generic capability of these facilities will be utilized to support resupply missions for payloads, life support services, and propellants for the 30-year life of the program. Special Ground Support Equipment (GSE) is being designed for Space Station hardware special handling requirements, and a Test, Checkout, and Monitoring System (TCMS) is under development to verify that the flight elements are ready for launch. The facilities and equipment used at KSC, along with the testing required to accomplish the mission, are described in detail to provide an understanding of the complexity of operations at the launch site. Assessments of hardware processing flows through KSC are being conducted to minimize the processing flow times for each hardware element. Baseline operations plans and the changes made to improve operations and reduce costs are described, recognizing that efficient ground operations are a major key to success of the Space Station.

  16. Communication at Work: An Ethnography of Checkout Operators.

    ERIC Educational Resources Information Center

    Searle, Jean

    1991-01-01

    A framework for identifying information regarding workplace communication requirements is presented that assumes communication involves sign systems as well as spoken and written language. Research with suburban supermarket checkout operators indicates that communication is deeply embedded in the social context. (Contains 18 references.) (LB)

  17. Shuttle considerations for the design of large space structures

    NASA Technical Reports Server (NTRS)

    Roebuck, J. A., Jr.

    1980-01-01

    Shuttle related considerations (constraints and guidelines) are compiled for use by designers of a potential class of large space structures which are transported to orbit and, deployed, fabricated or assembled in space using the Space Shuttle Orbiter. Considerations of all phases of shuttle operations from launch to ground turnaround operations are presented. Design of large space structures includes design of special construction fixtures and support equipment, special stowage cradles or pallets, special checkout maintenance, and monitoring equipment, and planning for packaging into the orbiter of all additional provisions and supplies chargeable to payload. Checklists of design issues, Shuttle capabilities constraints and guidelines, as well as general explanatory material and references to source documents are included.

  18. Microwave Anisotrophy Probe Launch and Early Operations

    NASA Technical Reports Server (NTRS)

    ODonnell, James R., Jr.; Andrews, Stephen F.; Starin, Scott R.; Ward, David K.; Bauer, Frank H. (Technical Monitor)

    2002-01-01

    The Microwave Anisotropy Probe (MAP), a follow-on to the Differential Microwave Radiometer (DMR) instrument on the Cosmic Background Explorer (COBE), was launched from the Kennedy Space Center at 19:46:46 UTC on June 30, 2001. The powered flight and separation from the Delta II appeared to go as designed, with the launch placing MAP well within sigma launch dispersion and with less than 7 Nms of tip-off momentum. Because of this relatively low momentum, MAP was able to acquire the sun within only 15 minutes with a battery state of charge of 94%. After MAP's successful launch, a six week period of in-orbit checkout and orbit maneuvers followed. The dual purpose of the in-orbit checkout period was to validate the correct performance of all of MAP's systems and, from the attitude control system (ACS) point of view, to calibrate the performance of the spacecraft ACS sensors and actuators to maximize system performance. In addition to the checkout activities performed by the MAP team, the other critical activity taking place during the first six weeks after launch were a series of orbit maneuvers necessary to get the spacecraft from its launch orbit out to its desired orbit about L2, the second Earth-Sun Lagrange point. As MAP continues its standard operations, its ACS design is meeting all of its requirements to successfully complete the mission. This paper will describe the launch and early operations summarized above in greater detail, and show the performance of the attitude control and attitude determination system versus its requirements. Additionally, some of the unexpected events that occurred during this period will be discussed, including two events which dropped the spacecraft into its Safehold Mode and the presence of an "anomalous force" observed during each of the perigee orbit maneuvers that had the potential to cause these critical maneuvers to be prematurely aborted.

  19. Brown, Rominger and Curbeam conduct flight control systems checkout

    NASA Image and Video Library

    1997-08-29

    STS085-330-034 (7 - 19 August 1997) --- From the left, astronauts Curtis L. Brown, Jr., mission commander; Robert L. Curbeam, Jr., mission specialist; and Kent V. Rominger, pilot, are pictured on the Space Shuttle Discovery's flight deck during a checkout of flight control systems.

  20. 69. DETAIL OF OPERATIONS AND CHECKOUT (POWER CONTROL AND MONITOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    69. DETAIL OF OPERATIONS AND CHECKOUT (POWER CONTROL AND MONITOR PANEL) AND RANGE SAFETY (DESTRUCT SYSTEM CONTROL MONITOR PANEL) PANELS IN SLC-3E CONTROL ROOM - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  1. Leadership Development Program Final Project

    NASA Technical Reports Server (NTRS)

    Parrish, Teresa C.

    2016-01-01

    TOSC is NASA's prime contractor tasked to successfully assemble, test, and launch the EM1 spacecraft. TOSC success is highly dependent on design products from the other NASA Programs manufacturing and delivering the flight hardware; Space Launch System(SLS) and Multi-Purpose Crew Vehicle(MPCV). Design products directly feed into TOSC's: Procedures, Personnel training, Hardware assembly, Software development, Integrated vehicle test and checkout, Launch. TOSC senior management recognized a significant schedule risk as these products are still being developed by the other two (2) programs; SVE and ACE positions were created.

  2. Pattern classification using charge transfer devices

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The feasibility of using charge transfer devices in the classification of multispectral imagery was investigated by evaluating particular devices to determine their suitability in matrix multiplication subsystem of a pattern classifier and by designing a protype of such a system. Particular attention was given to analog-analog correlator devices which consist of two tapped delay lines, chip multipliers, and a summed output. The design for the classifier and a printed circuit layout for the analog boards were completed and the boards were fabricated. A test j:g for the board was built and checkout was begun.

  3. 140. VIEW OF CHECKOUT AREA (117), LSB (BLDG. 770), FROM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    140. VIEW OF CHECKOUT AREA (117), LSB (BLDG. 770), FROM AGENA TRANSFER AREA SHELTER (117A). NITROGEN TEST PANEL ON EAST WALL OF AGENA TRANSFER AREA SHELTER (117A). - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  4. Communication at Work: An Ethnography of Checkout Operators.

    ERIC Educational Resources Information Center

    Searle, Jean

    An investigation focused on communication demands of the workplace, specifically those placed on checkout operators at a supermarket in Queensland, Australia. Key questions organized the investigation: What is the nature of communication in this workplace? How can this information be obtained? and How can the information be used to develop…

  5. KSC-2013-3460

    NASA Image and Video Library

    2013-08-21

    CAPE CANAVERAL, Fla. – Technicians work with the Orion spacecraft being assembled by Lockheed Martin inside the Operations & Checkout Building's high bay at NASA's Kennedy Space Center. The spacecraft is being prepared for a test flight next year that calls for the Orion to fly without a crew on a mission to evaluate its systems and heat shield. The spacecraft is designed to carry astronauts into deep space and back safely. Photo credit: NASA/Charisse Nahsser

  6. Safety assessment for EPS electron-proton spectrometer

    NASA Technical Reports Server (NTRS)

    Gleeson, P.

    1971-01-01

    A safety analysis was conducted to identify the efforts required to assure relatively hazard free operation of the EPS and to meet the safety requirements of the program. Safety engineering criteria, principles, and techniques in applicable disciplines are stressed in the performance of the system and subsystem studies; in test planning; in the design, development, test, evaluation, and checkout of the equipment; and the operating procedures for the EPS program.

  7. Armaments Coproduction at a Crossroads. U.S. Policy Options After the Cold War.

    DTIC Science & Technology

    1993-04-01

    Copro: $200 million ($132 million R&D; $68 million production) P Technology flowback : - -12 ECPs from NATO, I adopted by U.S. (rotary pump for...and future competition in the global defense marketplace. 0 Standard provisions for royalty-free technology flowback of all design changes...modifications, and improvements. -Some benefits in technology flowback reported by General Dynamics in learning Swiss digital system checkout techniques with

  8. Coordinating, Scheduling, Processing and Analyzing IYA09

    NASA Technical Reports Server (NTRS)

    Gipson, John; Behrend, Dirk; Gordon, David; Himwich, Ed; MacMillan, Dan; Titus, Mike; Corey, Brian

    2010-01-01

    The IVS scheduled a special astrometric VLBI session for the International Year of Astronomy 2009 (IYA09) commemorating 400 years of optical astronomy and 40 years of VLBI. The IYA09 session is the most ambitious geodetic session to date in terms of network size, number of sources, and number of observations. We describe the process of designing, coordinating, scheduling, pre-session station checkout, correlating, and analyzing this session.

  9. The Author’s Guide To Writing 412th Test Wing Technical Reports

    DTIC Science & Technology

    2014-12-01

    control CAD computer aided design cc cubic centimeters C.O. carry-over c/o checkout USAF United States Air Force C1 rolling moment coefficient...cooling air. Mission Impact: Results in maintenance inability to reliably duplicate and isolate valid aircraft failures, and degrades reliability...air. Mission Impact: Results in maintenance inability to reliably duplicate and isolate valid aircraft failures, and degrades reliability of system

  10. VANDENBERG AIR FORCE BASE, CALIF. - The SciSat-1 spacecraft is revealed at Vandenberg Air Force Base, Calif. Sci-Sat, which will undergo instrument checkout and spacecraft functional testing, weighs approximately 330 pounds and after launch will be placed in a 400-mile-high polar orbit to investigate processes that control the distribution of ozone in the upper atmosphere. The data from the satellite will provide Canadian and international scientists with improved measurements relating to global ozone processes and help policymakers assess existing environmental policy and develop protective measures for improving the health of our atmosphere, preventing further ozone depletion. The mission is designed to last two years.

    NASA Image and Video Library

    2003-06-26

    VANDENBERG AIR FORCE BASE, CALIF. - The SciSat-1 spacecraft is revealed at Vandenberg Air Force Base, Calif. Sci-Sat, which will undergo instrument checkout and spacecraft functional testing, weighs approximately 330 pounds and after launch will be placed in a 400-mile-high polar orbit to investigate processes that control the distribution of ozone in the upper atmosphere. The data from the satellite will provide Canadian and international scientists with improved measurements relating to global ozone processes and help policymakers assess existing environmental policy and develop protective measures for improving the health of our atmosphere, preventing further ozone depletion. The mission is designed to last two years.

  11. VANDENBERG AIR FORCE BASE, CALIF.- The cover is being lifted off SciSat-1 spacecraft at Vandenberg Air Force Base, Calif. Sci-Sat, which will undergo instrument checkout and spacecraft functional testing, weighs approximately 330 pounds and after launch will be placed in a 400-mile-high polar orbit to investigate processes that control the distribution of ozone in the upper atmosphere. The data from the satellite will provide Canadian and international scientists with improved measurements relating to global ozone processes and help policymakers assess existing environmental policy and develop protective measures for improving the health of our atmosphere, preventing further ozone depletion. The mission is designed to last two years.

    NASA Image and Video Library

    2003-06-26

    VANDENBERG AIR FORCE BASE, CALIF.- The cover is being lifted off SciSat-1 spacecraft at Vandenberg Air Force Base, Calif. Sci-Sat, which will undergo instrument checkout and spacecraft functional testing, weighs approximately 330 pounds and after launch will be placed in a 400-mile-high polar orbit to investigate processes that control the distribution of ozone in the upper atmosphere. The data from the satellite will provide Canadian and international scientists with improved measurements relating to global ozone processes and help policymakers assess existing environmental policy and develop protective measures for improving the health of our atmosphere, preventing further ozone depletion. The mission is designed to last two years.

  12. Using IoT Device Technology in Spacecraft Checkout Systems

    NASA Astrophysics Data System (ADS)

    Plummer, Chris

    2015-09-01

    The Internet of Things (IoT) has become a common theme in both the technical and popular press in recent years because many of the enabling technologies that are required to make IoT a reality have now matured. Those technologies are revolutionising the way industrial systems and products are developed because they offer significant advantages over older technologies. This paper looks at how IoT device technology can be used in spacecraft checkout systems to achieve smaller, more capable, and more scalable solutions than are currently available. It covers the use of IoT device technology for classical spacecraft test systems as well as for hardware-in-the-loop simulation systems used to support spacecraft checkout.

  13. Software development guidelines

    NASA Technical Reports Server (NTRS)

    Kovalevsky, N.; Underwood, J. M.

    1979-01-01

    Analysis, modularization, flowcharting, existing programs and subroutines, compatibility, input and output data, adaptability to checkout, and general-purpose subroutines are summarized. Statement ordering and numbering, specification statements, variable names, arrays, arithemtical expressions and statements, control statements, input/output, and subroutines are outlined. Intermediate results, desk checking, checkout data, dumps, storage maps, diagnostics, and program timing are reviewed.

  14. Large-Scale Implementation of Check-In, Check-Out: A Descriptive Study

    ERIC Educational Resources Information Center

    Hawken, Leanne S.; Bundock, Kaitlin; Barrett, Courtenay A.; Eber, Lucille; Breen, Kimberli; Phillips, Danielle

    2015-01-01

    Check-In, Check-Out (CICO) is one of the most widely implemented Tier 2 behavior interventions in a school-wide system of Positive Behavior Interventions and Supports (PBIS). Much literature has documented implementation of CICO across individual schools or districts. The Illinois PBIS Network, currently known as the Midwest PBIS Network, has…

  15. A Systematic Review of the Empirical Support for Check-in Check-Out

    ERIC Educational Resources Information Center

    Wolfe, Katie; Pyle, Daniel; Charlton, Cade T.; Sabey, Christian V.; Lund, Emily M.; Ross, Scott W.

    2016-01-01

    Tier 2 interventions play an important role within the Positive Behavioral Interventions and Supports framework, bridging the gap between schoolwide Tier 1 interventions and individualized Tier 3 supports. Check-in Check-out (CICO) is a promising Tier 2 intervention for addressing mild problem behavior and potentially preventing the need for more…

  16. Assessing the Implementation Fidelity of Check-In Check-Out Behavioral Interventions in Elementary and Middle Schools

    ERIC Educational Resources Information Center

    Ruiz, María Isolina; Smith, Traci N.; Naquin, Gale M.; Morgan-D'Atrio, Cynthia; Dellinger, Amy B.

    2014-01-01

    Implementation fidelity is crucial to the success of behavioral interventions. However, measuring and maintaining intervention implementation fidelity in schools' natural settings can be challenging. This article reports findings from a study examining the implementation fidelity of check-in check-out interventions at an urban school district…

  17. A guide to onboard checkout. Volume 6: Structures/mechanics

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The structures and mechanical subsystem of a space station are considered. The subsystem includes basic structure (pressurization, equipment support, meteoroid protection, radiators, insulation, and docking interfaces), the docking mechanisms, spacecraft access (hatches, airlocks, and view ports), and antenna deployment mechanisms. Checkout is discussed in terms of reliability, failure analysis, and maintenance.

  18. Asymmetrical booster ascent guidance and control system design study. Volume 2: SSFS math models - Ascent. [space shuttle development

    NASA Technical Reports Server (NTRS)

    Williams, F. E.; Lemon, R. S.

    1974-01-01

    The engineering equations and mathematical models developed for use in the space shuttle functional simulator (SSFS) are presented, and include extensive revisions and additions to earlier documentation. Definitions of coordinate systems used by the SSFS models and coordinate tranformations are given, along with documentation of the flexible body mathematical models. The models were incorporated in the SSFS and are in the checkout stage.

  19. Automated Maneuver Design and Checkout for the Lunar Reconnaissance Orbiter

    DTIC Science & Technology

    2014-12-01

    for communication with Earth based ground stations . A photograph of the LRO, while still in development, is shown in Figure 1. All instruments with...International Space Station LAMP Lyman alpha mapping project LEND lunar exploration neutron detector LOLA lunar orbiter laser altimeter LRO Lunar...theory is discussed at length in [1 0], on which this introduction is based . To illustrate the application of Pontryagin ’s minimum principle, a simple

  20. Apollo experience report: Guidance and control systems. Lunar module stabilization and control system

    NASA Technical Reports Server (NTRS)

    Shelton, D. H.

    1975-01-01

    A brief functional description of the Apollo lunar module stabilization and control subsystem is presented. Subsystem requirements definition, design, development, test results, and flight experiences are discussed. Detailed discussions are presented of problems encountered and the resulting corrective actions taken during the course of assembly-level testing, integrated vehicle checkout and test, and mission operations. Although the main experiences described are problem oriented, the subsystem has performed satisfactorily in flight.

  1. Ensuring Success of Adaptive Control Research Through Project Lifecycle Risk Mitigation

    NASA Technical Reports Server (NTRS)

    Pavlock, Kate M.

    2011-01-01

    Lessons Learne: 1. Design-out unnecessary risk to prevent excessive mitigation management during flight. 2. Consider iterative checkouts to confirm or improve human factor characteristics. 3. Consider the total flight test profile to uncover unanticipated human-algorithm interactions. 4. Consider test card cadence as a metric to assess test readiness. 5. Full-scale flight test is critical to development, maturation, and acceptance of adaptive control laws for operational use.

  2. 43. View of CSMR room equipment locator and system checkout ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    43. View of CSMR room equipment locator and system checkout console for detection radars and rearward communication data links in transmitter building no. 102. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Easton, C. R.

    The objectives of this program are to establish a heliostat design with the associated manufacturing, assembly, installation and maintenance approaches that will: (1) yield a significant reduction of capital and operating costs; (2) meet performance specifications for large collector subsystems; and (3) can be produced and deployed throughout the southwestern United States. In addition, cost plans and schedules to develop, fabricate, and operate the heliostat are to be developed. This volume presents the collector design, including trade study and test results, and the manufacturing, installation and checkout, and operations and maintenance concepts. Also, a discussion of specification verification and optimizationmore » is included. (WHK)« less

  4. Safety considerations in the design and operation of large wind turbines

    NASA Technical Reports Server (NTRS)

    Reilly, D. H.

    1979-01-01

    The engineering and safety techniques used to assure the reliable and safe operation of large wind turbine generators utilizing the Mod 2 Wind Turbine System Program as an example is described. The techniques involve a careful definition of the wind turbine's natural and operating environments, use of proven structural design criteria and analysis techniques, an evaluation of potential failure modes and hazards, and use of a fail safe and redundant component engineering philosophy. The role of an effective quality assurance program, tailored to specific hardware criticality, and the checkout and validation program developed to assure system integrity are described.

  5. Update of KSC activities for the space transportation system

    NASA Technical Reports Server (NTRS)

    Gray, R. H.

    1979-01-01

    The paper is a status report on the facilities and planned operations at the Kennedy Space Center (KSC) that will support Space Shuttle launches. The conversion of KSC facilities to support efficient and economical checkout and launch operations in the era of the Space Shuttle is nearing completion. The driving force behind the KSC effort has been the necessity of providing adequate and indispensable facilities and support systems at minimum cost. This required the optimum utilization of existing buildings, equipment and systems, both at KSC and at Air Force property on Cape Canaveral, as well as the construction of two major new facilities and several minor ones. The entirely new structures discussed are the Shuttle Landing Facility and Orbiter Processing Facility. KSC stands ready to provide the rapid reliable economical landing-to-launch processing needed to ensure the success of this new space transportation system.

  6. The Effect of Major Fields of Study on Student Demand for Library Books. AIR 1983 Annual Forum Paper.

    ERIC Educational Resources Information Center

    Russell, Ralph E.; And Others

    The relationship between student demand for library books by subject area and the students' majors and courses undertaken was studied using a library's automated circulation system. During 1980-1982, book checkout at the university library declined 22 percent. History had the greatest decline in checkouts per student. Other fields with larger…

  7. Side scanner for supermarkets: a new scanner design standard

    NASA Astrophysics Data System (ADS)

    Cheng, Charles K.; Cheng, J. K.

    1996-09-01

    High speed UPC bar code has become a standard mode of data capture for supermarkets in the US, Europe, and Japan. The influence of the ergonomics community on the design of the scanner is evident. During the past decade the ergonomic issues of cashier in check-outs has led to occupational hand-wrist cumulative trauma disorders, in most cases causing carpal tunnel syndrome, a permanent hand injury. In this paper, the design of a side scanner to resolve the issues is discussed. The complex optical module and the sensor for aforesaid side scanner is described. The ergonomic advantages offer the old counter mounted vertical scanner has been experimentally proved by the industrial funded study at an independent university.

  8. Cell module and fuel conditioner

    NASA Technical Reports Server (NTRS)

    Hoover, D. Q., Jr.

    1980-01-01

    Measurements of stack height changes with temperature and cell material characteristics were made. Stack 559 was assembled and components were fabricated for 560, 561, and 562. Stack 425 was transferred from the parallel DOE program and installed in the OS/IES simulation loop for mechanical and electrical testing. Construction and preliminary checkout of the 2 kW test facility was completed and design and procurement of the 8 kW test facility was initiated. The fuel conditioning subsystem design continued to evolve and the state points for the current design were calculated at full and part load conditions. Steam reforming catalyst activity tests were essentially completed and aging tests and CO shift converter tests were initiated.

  9. Apollo experience report: Electrical wiring subsystem

    NASA Technical Reports Server (NTRS)

    White, L. D.

    1975-01-01

    The general requirements of the electrical wiring subsystems and the problem areas and solutions that occurred during the major part of the Apollo Program are detailed in this report. The concepts and definitions of specific requirements for electrical wiring; wire-connecting devices; and wire-harness fabrication, checkout, and installation techniques are discussed. The design and development of electrical wiring and wire-connecting devices are described. Mission performance is discussed, and conclusions and recommendations for future programs are presented.

  10. ATM test and integration. [Skylab Apollo Telescope Mount

    NASA Technical Reports Server (NTRS)

    Moore, J. W.; Mitchell, J. R.

    1974-01-01

    The test and checkout philosophy of the test program for the Skylab ATM module and the overall test flow including in-process, post-manufacturing, vibration, thermal vacuum, and prelaunch checkout activities are described. Capabilities and limitations of the test complex and its use of automation are discussed. Experiences with the organizational principle of using a dedicated test team for all checkout activities are reported. Material on the development of the ATM subsystems, the experimental program and the requirements of the scientific community, and the integration and verification of the complex systems/subsystems of the ATM are presented. The performance of the ATM test program in such areas as alignment, systems and subsystems, contamination control, and experiment operation is evaluated. The conclusions and recommendations resulting from the ATM test program are enumerated.

  11. Shuttle avionics and the goal language including the impact of error detection and redundancy management

    NASA Technical Reports Server (NTRS)

    Flanders, J. H.; Helmers, C. T.; Stanten, S. F.

    1973-01-01

    The relationship is examined between the space shuttle onboard avionics and the ground test computer language GOAL when used in the onboard computers. The study is aimed at providing system analysis support to the feasibility analysis of a GOAL to HAL translator, where HAL is the language used to program the onboard computers for flight. The subject is dealt with in three aspects. First, the system configuration at checkout, the general checkout and launch sequences, and the inventory of subsystems are described. Secondly, the hierarchic organization of onboard software and different ways of introducing GOAL-derived software onboard are described. Also the flow of commands and test data during checkout is diagrammed. Finally, possible impact of error detection and redundancy management on the GOAL language is discussed.

  12. Test plan. GCPS task 7, subtask 7.1: IHM development

    NASA Technical Reports Server (NTRS)

    Greenberg, H. S.

    1994-01-01

    The overall objective of Task 7 is to identify cost-effective life cycle integrated health management (IHM) approaches for a reusable launch vehicle's primary structure. Acceptable IHM approaches must: eliminate and accommodate faults through robust designs, identify optimum inspection/maintenance periods, automate ground and on-board test and check-out, and accommodate and detect structural faults by providing wide and localized area sensor and test coverage as required. These requirements are elements of our targeted primary structure low cost operations approach using airline-like maintenance by exception philosophies. This development plan will follow an evolutionary path paving the way to the ultimate development of flight-quality production, operations, and vehicle systems. This effort will be focused on maturing the recommended sensor technologies required for localized and wide area health monitoring to a technology readiness level (TRL) of 6 and to establish flight ready system design requirements. The following is a brief list of IHM program objectives: design out faults by analyzing material properties, structural geometry, and load and environment variables and identify failure modes and damage tolerance requirements; design in system robustness while meeting performance objectives (weight limitations) of the reusable launch vehicle primary structure; establish structural integrity margins to preclude the need for test and checkout and predict optimum inspection/maintenance periods through life prediction analysis; identify optimum fault protection system concept definitions combining system robustness and integrity margins established above with cost effective health monitoring technologies; and use coupons, panels, and integrated full scale primary structure test articles to identify, evaluate, and characterize the preferred NDE/NDI/IHM sensor technologies that will be a part of the fault protection system.

  13. A guide to onboard checkout. Volume 5: Data management

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The baseline data management subsystem for a space station is discussed. The subsystem consists of equipment necessary to transfer, store, and process data to and from users and subsystems. It acquires and conditions a wide variety of input data from experiments, vehicle subsystems sensors, uplinked ground communications, and astronaut-activated controls. Computer techniques for failure analysis, reliability, and maintenance checkout onboard the space station are considered.

  14. Tactical Satellite-3 Mission Overview and Initial Lessons Learned (Postprint)

    DTIC Science & Technology

    2013-03-01

    current buses. The spacecraft bus includes the main structure; attitude control system (reaction wheels and torque rods); the thermal protection...Specific key areas are the relatively rapid checkout of the spacecraft and lessons from the responsive space development. 15. SUBJECT TERMS...relatively rapid checkout of the spacecraft and lessons from the responsive space development. INTRODUCTION The Tactical Satellite 3 mission was a

  15. Design and application of a test rig for super-critical power transmission shafts

    NASA Technical Reports Server (NTRS)

    Darlow, M.; Smalley, A.

    1979-01-01

    The design, assembly, operational check-out and application of a test facility for testing supercritical power transmission shafts under realistic conditions of size, speed and torque are described. Alternative balancing methods and alternative damping mechanisms are demonstrated and compared. The influence of torque upon the unbalance distribution is studied, and its effect on synchronous vibrations is investigated. The feasibility of operating supercritical power transmission shafting is demonstrated, but the need for careful control, by balancing and damping, of synchronous and nonsynchronous vibrations is made clear. The facility was demonstrated to be valuable for shaft system development programs and studies for both advanced and current-production hardware.

  16. An intelligent, free-flying robot

    NASA Technical Reports Server (NTRS)

    Reuter, G. J.; Hess, C. W.; Rhoades, D. E.; Mcfadin, L. W.; Healey, K. J.; Erickson, J. D.

    1988-01-01

    The ground-based demonstration of EVA Retriever, a voice-supervised, intelligent, free-flying robot, is designed to evaluate the capability to retrieve objects (astronauts, equipment, and tools) which have accidentally separated from the Space Station. The major objective of the EVA Retriever Project is to design, develop, and evaluate an integrated robotic hardware and on-board software system which autonomously: (1) performs system activation and check-out, (2) searches for and acquires the target, (3) plans and executes a rendezvous while continuously tracking the target, (4) avoids stationary and moving obstacles, (5) reaches for and grapples the target, (6) returns to transfer the object, and (7) returns to base.

  17. An intelligent, free-flying robot

    NASA Technical Reports Server (NTRS)

    Reuter, G. J.; Hess, C. W.; Rhoades, D. E.; Mcfadin, L. W.; Healey, K. J.; Erickson, J. D.; Phinney, Dale E.

    1989-01-01

    The ground based demonstration of the extensive extravehicular activity (EVA) Retriever, a voice-supervised, intelligent, free flying robot, is designed to evaluate the capability to retrieve objects (astronauts, equipment, and tools) which have accidentally separated from the Space Station. The major objective of the EVA Retriever Project is to design, develop, and evaluate an integrated robotic hardware and on-board software system which autonomously: (1) performs system activation and check-out; (2) searches for and acquires the target; (3) plans and executes a rendezvous while continuously tracking the target; (4) avoids stationary and moving obstacles; (5) reaches for and grapples the target; (6) returns to transfer the object; and (7) returns to base.

  18. KSC-2013-3461

    NASA Image and Video Library

    2013-08-21

    CAPE CANAVERAL, Fla. – A set of maneuvering thrusters is seen prior to their installation into the Orion spacecraft being assembled by Lockheed Martin inside the Operations & Checkout Building's high bay at NASA's Kennedy Space Center. The spacecraft is being prepared for a test flight next year that calls for the Orion to fly without a crew on a mission to evaluate its systems and heat shield. The spacecraft is designed to carry astronauts into deep space and back safely. Photo credit: NASA/Charisse Nahsser

  19. KSC-2013-3462

    NASA Image and Video Library

    2013-08-21

    CAPE CANAVERAL, Fla. – A technician works with a set of tanks prior to their installation into the Orion spacecraft being assembled by Lockheed Martin inside the Operations & Checkout Building's high bay at NASA's Kennedy Space Center. The spacecraft is being prepared for a test flight next year that calls for the Orion to fly without a crew on a mission to evaluate its systems and heat shield. The spacecraft is designed to carry astronauts into deep space and back safely. Photo credit: NASA/Charisse Nahsser

  20. KSC-2013-3459

    NASA Image and Video Library

    2013-08-21

    CAPE CANAVERAL, Fla. – Technicians work with a set of maneuvering thrusters prior to their installation into the Orion spacecraft being assembled by Lockheed Martin inside the Operations & Checkout Building's high bay at NASA's Kennedy Space Center. The spacecraft is being prepared for a test flight next year that calls for the Orion to fly without a crew on a mission to evaluate its systems and heat shield. The spacecraft is designed to carry astronauts into deep space and back safely. Photo credit: NASA/Charisse Nahsser

  1. Flat-plate solar array project: Experimental process system development unit for producing semiconductor-grade silicon using the silane-to-silicon process

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The process technology for the manufacture of semiconductor-grade silicon in a large commercial plant by 1986, at a price less than $14 per kilogram of silicon based on 1975 dollars is discussed. The engineering design, installation, checkout, and operation of an Experimental Process System Development unit was discussed. Quality control of scaling-up the process and an economic analysis of product and production costs are discussed.

  2. KSC-2009-2282

    NASA Image and Video Library

    2009-03-16

    CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility in Titusville, Fla., the GOES-O satellite is on a rotation stand. The latest Geostationary Operational Environmental Satellite, GOES-O was developed by NASA for the National Oceanic and Atmospheric Administration, or NOAA. Once in orbit, GOES-O will be designated GOES-14, and NASA will provide on-orbit checkout and then transfer operational responsibility to NOAA. The GOES-O satellite is targeted to launch April 28 onboard a United Launch Alliance Delta IV expendable launch vehicle. Photo credit: NASA/Kim Shiflett

  3. Design and fabrication of a low-cost Darrieus vertical-axis wind-turbine system, volume 2

    NASA Astrophysics Data System (ADS)

    1983-03-01

    The fabrication, installation, and checkout of 100-kW 17 meter vertical axis wind turbines is described. Turbines are Darrieus-type VAWIs with rotors 17 meters and 25.15 meters in height. They can produce 100 kW of electric power at a cost of energy as low as 3 cents per kWh, in an 18-mph wind regime using 12% annualized costs. Four turbines were produced; three are installed and are operable. Contract results are documented.

  4. Low-Pressure Capability of NASA Glenn's 10- by 10-Foot Supersonic Wind Tunnel Expanded

    NASA Technical Reports Server (NTRS)

    Roeder, James W.

    2004-01-01

    Extremely low dynamic pressure Q conditions are desired for space-related research including the testing of parachute designs and other decelerator concepts for future vehicles landing on Mars. Therefore, the low-pressure operating capability of the Abe Silverstein 10- by 10-foot Supersonic Wind Tunnel (10 10 SWT) at NASA Glenn Research Center was recently increased. Successful checkout tests performed in the fall of 2002 showed significantly reduced minimum operating pressures in the wind tunnel.

  5. Optical data transmission technology for fixed and drag-on STS payload umbilicals, volume 2

    NASA Technical Reports Server (NTRS)

    St.denis, R. W.

    1981-01-01

    Optical data handling methods are studied as applicable to payload communications checkout and monitoring. Both payload umbilicals and interconnecting communication lines carrying payload data are examined for the following: (1) ground checkout requirements; (2) optical approach (technical survey of optical approaches, selection of optimum approach); (3) survey and select components; (4) compare with conventional approach; and (5) definition of follow on activity.

  6. Multi-kw dc power distribution system study program

    NASA Technical Reports Server (NTRS)

    Berkery, E. A.; Krausz, A.

    1974-01-01

    The first phase of the Multi-kw dc Power Distribution Technology Program is reported and involves the test and evaluation of a technology breadboard in a specifically designed test facility according to design concepts developed in a previous study on space vehicle electrical power processing, distribution, and control. The static and dynamic performance, fault isolation, reliability, electromagnetic interference characterisitics, and operability factors of high distribution systems were studied in order to gain a technology base for the use of high voltage dc systems in future aerospace vehicles. Detailed technical descriptions are presented and include data for the following: (1) dynamic interactions due to operation of solid state and electromechanical switchgear; (2) multiplexed and computer controlled supervision and checkout methods; (3) pulse width modulator design; and (4) cable design factors.

  7. STS-31 pre-deployment checkout of the Hubble Space Telescope (HST) on OV-103

    NASA Image and Video Library

    1990-04-25

    The Hubble Space Telescope (HST), grappled by Discovery's, Orbiter Vehicle (OV) 103's, remote manipulator system (RMS), is oriented in a 90 degree pitch position during STS-31 pre-deployment checkout procedures. The solar array (SA) panel (center) and high gain antennae (HGA) (on either side) are stowed along the Support System Module (SSM) forward shell prior to deployment. The sun highlights HST against the blackness of space.

  8. STS 51-G crewmembers depart KSC's operations and checkout building

    NASA Image and Video Library

    1985-05-20

    51G-S-117 (17 June 1985) --- 51-G crewmembers depart the Kennedy Space Center's operations and checkout building on their way to the launch pad for the launch of the Discovery. Leading the seven are Daniel C. Brandenstein, commander; and John O. Creighton, pilot. Following are Payload specialist Sultan Salman Abdelazize Al-Saud; John M. Fabian, mission specialist; Patrick Baudry, payload specialist; Shannon Lucid and Steven R. Nagel, mission specialists.

  9. Application of a space station to communications satellites

    NASA Technical Reports Server (NTRS)

    Ramler, J. R.

    1983-01-01

    The economic benefits of a space station relative to communications satellites are discussed in terms of technology experiments, spacecraft checkout, repair, servicing, and refurbishment (RSR), and mating an OTV with satellites for boost to GEO. The zero gravity, vacuum conditions, and atmosphere free long ranges are environmental features that can be used for testing large, flexible antennas and laser communications devices. Some resistance might be encountered to checkout in LEO due to the substantial success of launches to GEO without LEO checkout. However, new generations of larger, more complex satellites may warrant the presence of a space station to verify performance of new spacecraft. One RSR positive aspect for a space station is as a storage site for propellant, as well as for reusable OTV booster engines. Also, the space station can serve as a base for manned or unmanned repair spacecraft which will travel to GEO to fix malfunctions in geostationary satellites.

  10. Paying for Express Checkout: Competition and Price Discrimination in Multi-Server Queuing Systems

    PubMed Central

    Deck, Cary; Kimbrough, Erik O.; Mongrain, Steeve

    2014-01-01

    We model competition between two firms selling identical goods to customers who arrive in the market stochastically. Shoppers choose where to purchase based upon both price and the time cost associated with waiting for service. One seller provides two separate queues, each with its own server, while the other seller has a single queue and server. We explore the market impact of the multi-server seller engaging in waiting cost-based-price discrimination by charging a premium for express checkout. Specifically, we analyze this situation computationally and through the use of controlled laboratory experiments. We find that this form of price discrimination is harmful to sellers and beneficial to consumers. When the two-queue seller offers express checkout for impatient customers, the single queue seller focuses on the patient shoppers thereby driving down prices and profits while increasing consumer surplus. PMID:24667809

  11. Increased Resistance to Flow and Ventilator Failure Secondary to Faulty CO2 Absorbent Insert Not Detected During Automated Anesthesia Machine Check: A Case Report.

    PubMed

    Moreno-Duarte, Ingrid; Montenegro, Julio; Balonov, Konstantin; Schumann, Roman

    2017-04-15

    Most modern anesthesia workstations provide automated checkout, which indicates the readiness of the anesthesia machine. In this case report, an anesthesia machine passed the automated machine checkout. Minutes after the induction of general anesthesia, we observed a mismatch between the selected and delivered tidal volumes in the volume auto flow mode with increased inspiratory resistance during manual ventilation. Endotracheal tube kinking, circuit obstruction, leaks, and patient-related factors were ruled out. Further investigation revealed a broken internal insert within the CO2 absorbent canister that allowed absorbent granules to cause a partial obstruction to inspiratory and expiratory flow triggering contradictory alarms. We concluded that even when the automated machine checkout indicates machine readiness, unforeseen equipment failure due to unexpected events can occur and require providers to remain vigilant.

  12. Paying for express checkout: competition and price discrimination in multi-server queuing systems.

    PubMed

    Deck, Cary; Kimbrough, Erik O; Mongrain, Steeve

    2014-01-01

    We model competition between two firms selling identical goods to customers who arrive in the market stochastically. Shoppers choose where to purchase based upon both price and the time cost associated with waiting for service. One seller provides two separate queues, each with its own server, while the other seller has a single queue and server. We explore the market impact of the multi-server seller engaging in waiting cost-based-price discrimination by charging a premium for express checkout. Specifically, we analyze this situation computationally and through the use of controlled laboratory experiments. We find that this form of price discrimination is harmful to sellers and beneficial to consumers. When the two-queue seller offers express checkout for impatient customers, the single queue seller focuses on the patient shoppers thereby driving down prices and profits while increasing consumer surplus.

  13. Spacelab-Mir Module Lift in Operations and Checkout Building,

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The STS-71 Spacelab-Mir module is lifted by overhead crane from a test stand in the Operations and Checkout (O&C) Building after final checkout work is completed by the KSC payload processing team. the module will be integrated into the payload bay of the Space Shuttle orbiter Atlantis. During the 11-day mission, the module will serve as an orbital medical laboratory where joint U.S.-Russian investigations will be conducted on the physiological effects of long-duration spaceflight. Also on board Atlantis will be the Orbiter Docking System (ODS) that will permit the link-up of Atlantis and the Russian Mir Space Station. STS-71 is the first of seven planned docking missions. The Spacelab-Mir also carries supplies for the two Russian Mir 19 crew members who will liftoff as a part of the STS-71 crew and later transfer into the space station.

  14. Cryogenic Pressure Control Modeling for Ellipsoidal Space Tanks

    NASA Technical Reports Server (NTRS)

    Lopez, Alfredo; Grayson, Gary D.; Chandler, Frank O.; Hastings, Leon J.; Heyadat, Ali

    2007-01-01

    A computational fluid dynamics (CFD) model is developed to simulate pressure control of an ellipsoidal-shaped liquid hydrogen tank under external heating in normal gravity. Pressure control is provided by an axial jet thermodynamic vent system (TVS) centered within the vessel that injects cooler liquid into the tank, mixing the contents and reducing tank pressure. The two-phase cryogenic tank model considers liquid hydrogen in its own vapor with liquid density varying with temperature only and a fully compressible ullage. The axisymmetric model is developed using a custom version of the commercially available FLOW-31) software. Quantitative model validation is ,provided by engineering checkout tests performed at Marshall Space Flight Center in 1999 in support of the Solar Thermal Upper Stage_ Technology Demonstrator (STUSTD) program. The engineering checkout tests provide cryogenic tank self-pressurization test data at various heat leaks and tank fill levels. The predicted self-pressurization rates, ullage and liquid temperatures at discrete locations within the STUSTD tank are in good agreement with test data. The work presented here advances current CFD modeling capabilities for cryogenic pressure control and helps develop a low cost CFD-based design process for space hardware.

  15. Dawn: An Ion-Propelled Journey to the Beginning of the Solar System

    NASA Technical Reports Server (NTRS)

    Brophy, John R.; Rayman, Marc D.; Pavri, Betina

    2008-01-01

    The Dawn mission is designed to perform a scientific investigation of the two heaviest mainbelt asteroids Vesta and Ceres. These bodies are believed to preserve records of the physical and chemical conditions present during the formation of the solar system. The mission uses an ion propulsion system to enable the single Dawn spacecraft and its complement of scientific instruments to orbit both of these asteroids. Dawn's three science instruments - the gamma ray and neutron detector, the visible and infrared mapping spectrometer, and the primary framing camera - were successfully tested after launch and are functioning normally. The ion propulsion system includes three ion thrusters of the type flown previously on NASA's Deep Space 1 mission. A minimum of two ion thrusters is necessary to accomplish the Dawn mission. Checkout of two of the ion thrusters was completed as planned within 30 days after launch. This activity confirmed that the spacecraft has two healthy ion thrusters. While further checkout activities are still in progress, the activities completed as of the end of October indicate that the spacecraft is well on its way toward being ready for the start of the thrusting-cruise phase of the mission beginning December 15th.

  16. Nudging at the checkout counter - A longitudinal study of the effect of a food repositioning nudge on healthy food choice.

    PubMed

    Van Gestel, L C; Kroese, F M; De Ridder, D T D

    2018-06-01

    Objective The current study is a longitudinal conceptual replication and aimed to investigate the effect of a food repositioning nudge on healthy food choice in a kiosk. Design During eight weeks, sales data were collected. The former four weeks formed the baseline phase and the latter four weeks formed the nudge phase where healthy food products were repositioned at the checkout counter display, while unhealthy alternatives remained available elsewhere in the store. Main Outcome Measures The main variable of interest was the proportion of healthy food products (selected to be repositioned) sold per day. Also exit interviews were administered to gather individual level data about purchases, and awareness and opinions of the nudge. Results Results showed that the proportion of selected healthy food products in total food sales was higher in all four nudge weeks than in all four baseline weeks. Individual level data showed that more customers had bought a selected healthy food product in the nudge phase and that customers generally approved of the nudge. Conclusion The current study strengthened the empirical evidence base of repositioning healthy food products as an effective and well-accepted nudge.

  17. ``High energy Electron exPeriment (HEP)'' onboard the ERG satellite

    NASA Astrophysics Data System (ADS)

    Mitani, T.; Takashima, T.; Kasahara, S.; Miyake, W.; Hirahara, M.

    2017-12-01

    The Exploration of energization and Radiation in Geospace (ERG) satellite was successfully launched on December 20, 2016, and now explores how relativistic electrons in the radiation belts are generated during space storms. "High energy Electron exPeriment (HEP)" onboard the ERG satellite observes 70 keV - 2 MeV electrons and provides three-dimensional velocity distribution of electrons every spacecraft spin period. Electrons are observed by two types of camera designs, HEP-L and HEP-H, with regard to geometrical factor and energy range. HEP-L observes 0.1 - 1 MeV electrons and its geometrical factor (G-factor) is 10-3 cm2 str, and HEP-H observes 0.7 - 2 MeV and G-factor is 10-2 cm2 str. HEP-L and HEP-H each consist of three pin-hole type cameras, and each camera consist of mechanical collimator, stacked silicon semiconductor detectors and readout ASICs. HEP-H has larger opening angle of the collimator and more silicon detectors to observe higher energy electrons than HEP-L. The initial checkout in orbit was carried out in February 2017 and it was confirmed that there was no performance degradation by comparing the results of the initial checkout in orbit and the prelaunch function tests. Since late March, HEP has carried out normal observation. HEP observed losses and recovery of the outer radiation belt electrons several times up to now. In this presentation we introduce the HEP instrument design, prelaunch tests results and report the initial results in orbit.

  18. VANDENBERG AIR FORCE BASE, CALIF. - Outside the clean room at Vandenberg Air Force Base, Calif., the SciSat-1 spacecraft (background) has been removed from the shipping container mounting base (lower left) and placed on the handling fixture. Sci-Sat, which will undergo instrument checkout and spacecraft functional testing, weighs approximately 330 pounds and after launch will be placed in a 400-mile-high polar orbit to investigate processes that control the distribution of ozone in the upper atmosphere. The data from the satellite will provide Canadian and international scientists with improved measurements relating to global ozone processes and help policymakers assess existing environmental policy and develop protective measures for improving the health of our atmosphere, preventing further ozone depletion. The mission is designed to last two years.

    NASA Image and Video Library

    2003-06-26

    VANDENBERG AIR FORCE BASE, CALIF. - Outside the clean room at Vandenberg Air Force Base, Calif., the SciSat-1 spacecraft (background) has been removed from the shipping container mounting base (lower left) and placed on the handling fixture. Sci-Sat, which will undergo instrument checkout and spacecraft functional testing, weighs approximately 330 pounds and after launch will be placed in a 400-mile-high polar orbit to investigate processes that control the distribution of ozone in the upper atmosphere. The data from the satellite will provide Canadian and international scientists with improved measurements relating to global ozone processes and help policymakers assess existing environmental policy and develop protective measures for improving the health of our atmosphere, preventing further ozone depletion. The mission is designed to last two years.

  19. EXPRESS Rack: The Extension of International Space Station Resources for Multi-Discipline Subrack Payloads

    NASA Technical Reports Server (NTRS)

    Sledd, Annette; Danford, Mike; Key, Brian

    2002-01-01

    The EXpedite the PRocessing of Experiments to Space Station or EXPRESS Rack System was developed to provide Space Station accommodations for subrack payloads. The EXPRESS Rack accepts Space Shuttle middeck locker type payloads and International Subrack Interface Standard (ISIS) Drawer payloads, allowing previously flown payloads an opportunity to transition to the International Space Station. The EXPRESS Rack provides power, data command and control, video, water cooling, air cooling, vacuum exhaust, and Nitrogen supply to payloads. The EXPRESS Rack system also includes transportation racks to transport payloads to and from the Space Station, Suitcase Simulators to allow a payload developer to verify data interfaces at the development site, Functional Checkout Units to allow payload checkout at KSC prior to launch, and trainer racks for the astronauts to learn how to operate the EXPRESS Racks prior to flight. Standard hardware and software interfaces provided by the EXPRESS Rack simplify the integration processes, and facilitate simpler ISS payload development. Whereas most ISS Payload facilities are designed to accommodate one specific type of science, the EXPRESS Rack is designed to accommodate multi-discipline research within the same rack allowing for the independent operation of each subrack payload. On-orbit operations began with the EXPRESS Rack Project on April 24, 2001, with one rack operating continuously to support long-running payloads. The other on-orbit EXPRESS Racks operate based on payload need and resource availability. Sustaining Engineering and Logistics and Maintenance functions are in place to maintain operations and to provide software upgrades.

  20. The Extension of ISS Resources for Multi-Discipline Subrack Payloads

    NASA Technical Reports Server (NTRS)

    Sledd, Annette M.; Gilbert, Paul A. (Technical Monitor)

    2002-01-01

    The EXpedite the processing of Experiments to Space Station or EXPRESS Rack System was developed to provide Space Station accommodations for subrack payloads. The EXPRESS Rack accepts Space Shuttle middeck locker type payloads and International Subrack Interface Standard (ISIS) Drawer payloads, allowing previously flown payloads an opportunity to transition to the International Space Station. The EXPRESS Rack provides power, data command and control, video, water cooling, air cooling, vacuum exhaust, and Nitrogen supply to payloads. The EXPRESS Rack system also includes transportation racks to transport payloads to and from the Space Station, Suitcase Simulators to allow a payload developer to verify data interfaces at the development site, Functional Checkout Units to allow payload checkout at KSC prior to launch, and trainer racks for the astronauts to learn how to operate the EXPRESS Racks prior to flight. Standard hardware and software interfaces provided by the EXPRESS Rack simplify the integration processes, and facilitate simpler ISS payload development. Whereas most ISS Payload facilities are designed to accommodate one specific type of science, the EXPRESS Rack is designed to accommodate multi-discipline research within the same rack allowing for the independent operation of each subrack payload. On-orbit operations began with the EXPRESS Rack Project on April 24, 2001, with one rack operating continuously to support long-running payloads. The other on-orbit EXPRESS Racks operate based on payload need and resource availability. Sustaining Engineering and Logistics and Maintenance functions are in place to maintain operations and to provide software upgrades.

  1. TRMM On Orbit Attitude Control System Performance

    NASA Technical Reports Server (NTRS)

    Robertson, Brent; Placanica, Sam; Morgenstern, Wendy

    1999-01-01

    This paper presents an overview of the Tropical Rainfall Measuring Mission (TRMM) Attitude Control System (ACS) along with detailed in-flight performance results for each operational mode. The TRMM spacecraft is an Earth-pointed, zero momentum bias satellite launched on November 27, 1997 from Tanegashima Space Center, Japan. TRMM is a joint mission between NASA and the National Space Development Agency (NASDA) of Japan designed to monitor and study tropical rainfall and the associated release of energy. Launched to provide a validation for poorly known rainfall data sets generated by global climate models, TRMM has demonstrated its utility by reducing uncertainties in global rainfall measurements by a factor of two. The ACS is comprised of Attitude Control Electronics (ACE), an Earth Sensor Assembly (ESA), Digital Sun Sensors (DSS), Inertial Reference Units (IRU), Three Axis Magnetometers (TAM), Coarse Sun Sensors (CSS), Magnetic Torquer Bars (MTB), Reaction Wheel Assemblies (RWA), Engine Valve Drivers (EVD) and thrusters. While in Mission Mode, the ESA provides roll and pitch axis attitude error measurements and the DSS provide yaw updates twice per orbit. In addition, the TAM in combination with the IRU and DSS can be used to provide pointing in a contingency attitude determination mode which does not rely on the ESA. Although the ACS performance to date has been highly successful, lessons were learned during checkout and initial on-orbit operation. This paper describes the design, on-orbit checkout, performance and lessons learned for the TRMM ACS.

  2. Substituting sugar confectionery with fruit and healthy snacks at checkout - a win-win strategy for consumers and food stores? a study on consumer attitudes and sales effects of a healthy supermarket intervention.

    PubMed

    Winkler, Lise L; Christensen, Ulla; Glümer, Charlotte; Bloch, Paul; Mikkelsen, Bent E; Wansink, Brian; Toft, Ulla

    2016-11-22

    The widespread use of in-store marketing strategies to induce unhealthy impulsive purchases has implications for shopping experience, food choice and possibly adverse health outcomes. The aim of this study was to examine consumer attitudes and evaluate sales effects of a healthy checkout supermarket intervention. The study was part of Project Sundhed & Lokalsamfund (Project SoL); a Danish participatory community-based health promotion intervention. Consumer attitudes towards unhealthy snack exposure in supermarkets were examined in a qualitative pre-intervention study (29 short in-store interviews, 11 semi-structured interviews and three focus group interviews). Findings were presented to food retailers and informed the decision to test a healthy checkout intervention. Sugar confectionery at one checkout counter was substituted with fruit and healthy snacking items in four stores for 4 weeks. The intervention was evaluated by 48 short exit interviews on consumer perceptions of the intervention and by linear mixed model analyses of supermarket sales data from the intervention area and a matched control area. The qualitative pre-intervention study identified consumer concern and annoyance with placement and promotion of unhealthy snacks in local stores. Store managers were willing to respond to local consumer concern and a healthy checkout intervention was therefore implemented. Exit interviews found positive attitudes towards the intervention, while intervention awareness was modest. Most participants believed that the intervention could help other consumers make healthier choices, while fewer expected to be influenced by the intervention themselves. Statistical analyses suggested an intervention effect on sales of carrot snack packs when compared with sales before the intervention in Bornholm control stores (P < 0.05). No significant intervention effect on sales of other intervention items or sugar confectionery was found. The present study finds that the healthy checkout intervention was positively evaluated by consumers and provided a 'responsible' branding opportunity for supermarkets, thus representing a win-win strategy for store managers and consumers in the short term. However, the intervention was too modest to draw conclusions on long-term sales and health implications of this initiative. More research is needed to assess whether retailer-researcher collaborations on health promotion can be a winning strategy for public health.

  3. Active Control of Fan Noise: Feasibility Study. Volume 5; Numerical Computation of Acoustic Mode Reflection Coefficients for an Unflanged Cylindrical Duct

    NASA Technical Reports Server (NTRS)

    Kraft, R. E.

    1996-01-01

    A computational method to predict modal reflection coefficients in cylindrical ducts has been developed based on the work of Homicz, Lordi, and Rehm, which uses the Wiener-Hopf method to account for the boundary conditions at the termination of a thin cylindrical pipe. The purpose of this study is to develop a computational routine to predict the reflection coefficients of higher order acoustic modes impinging on the unflanged termination of a cylindrical duct. This effort was conducted wider Task Order 5 of the NASA Lewis LET Program, Active Noise Control of aircraft Engines: Feasibility Study, and will be used as part of the development of an integrated source noise, acoustic propagation, ANC actuator coupling, and control system algorithm simulation. The reflection coefficient prediction will be incorporated into an existing cylindrical duct modal analysis to account for the reflection of modes from the duct termination. This will provide a more accurate, rapid computation design tool for evaluating the effect of reflected waves on active noise control systems mounted in the duct, as well as providing a tool for the design of acoustic treatment in inlet ducts. As an active noise control system design tool, the method can be used preliminary to more accurate but more numerically intensive acoustic propagation models such as finite element methods. The resulting computer program has been shown to give reasonable results, some examples of which are presented. Reliable data to use for comparison is scarce, so complete checkout is difficult, and further checkout is needed over a wider range of system parameters. In future efforts the method will be adapted as a subroutine to the GEAE segmented cylindrical duct modal analysis program.

  4. Advanced gamma ray balloon experiment ground checkout and data analysis

    NASA Technical Reports Server (NTRS)

    Blackstone, M.

    1976-01-01

    A software programming package to be used in the ground checkout and handling of data from the advanced gamma ray balloon experiment is described. The Operator's Manual permits someone unfamiliar with the inner workings of the software system (called LEO) to operate on the experimental data as it comes from the Pulse Code Modulation interface, converting it to a form for later analysis, and monitoring the program of an experiment. A Programmer's Manual is included.

  5. Hubble Space Telescope (HST) grappled by OV-103's RMS during STS-31 checkout

    NASA Image and Video Library

    1990-04-25

    The Hubble Space Telescope (HST), grappled by Discovery's, Orbiter Vehicle (OV) 103's, remote manipulator system (RMS), is held in a pre-deployment position. During STS-31 checkout procedures, the solar array (SA) panels and the high gain antennae (HGA) will be deployed. The starboard SA (center) and the two HGA are stowed along side the Support System Module (SSM) forward shell. The sun highlights HST against the blackness of space.

  6. MARS PATHFINDER INSPECTED BY ENGINEER LINDA ROBECK IN SAEF-2

    NASA Technical Reports Server (NTRS)

    1996-01-01

    In the SAEF-2 spacecraft checkout facility, engineer Linda Robeck of the Jet Propulsion Laboratory inspects the Mars Pathfinder lander. The spacecraft arrived at Kennedy Space Center from Pasadena, CA on Aug. 13, 1996. The petals of the lander will be opened for checkout of the spacecraft and the installation of the small rover. Launch of Mars Pathfinder aboard a McDonnell Douglas Delta II rocket will occur from Pad B at Complex 17 on Dec. 2.

  7. KSC-2012-3111

    NASA Image and Video Library

    2012-05-23

    CAPE CANAVERAL, Fla. – Joanne Maguire, executive vice president of Space Systems for Lockheed Martin, and Kennedy Space Center Director Bob Cabana, far right, are accompanied by Lockheed Martin and NASA personnel during a tour of Kennedy's Operations and Checkout Building. Lockheed Martin is the prime contractor to NASA for the Orion Multi-Purpose Crew Vehicle, which will be processed in the refurbished Operations and Checkout building. For more information, visit http://www.nasa.gov/exploration/systems/ground. Photo credit: NASA/Jim Grossmann

  8. KSC-2012-3112

    NASA Image and Video Library

    2012-05-23

    CAPE CANAVERAL, Fla. – Lockheed Martin and NASA personnel accompany Joanne Maguire, executive vice president of Space Systems for Lockheed Martin, and Kennedy Space Center Director Bob Cabana, far right, during a tour of Kennedy's Operations and Checkout Building. Lockheed Martin is the prime contractor to NASA for the Orion Multi-Purpose Crew Vehicle, which will be processed in the refurbished Operations and Checkout building. For more information, visit http://www.nasa.gov/exploration/systems/ground. Photo credit: NASA/Jim Grossmann

  9. Modular space station detailed preliminary design. Volume 1: Sections 1 through 4.4

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Detailed configuration and subsystems preliminary design data are presented for the modular space station concept. Each module comprising the initial space station is described in terms of its external and internal configuration, its functional responsibilities to the initial cluster, and its orbital build up sequence. Descriptions of the subsequent build up to the growth space station are also presented. Analytical and design techniques, tradeoff considerations, and depth of design detail are discussed for each subsystem. The subsystems include the following: structural/mechanical; crew habitability and protection; experiment support; electrical power; environmental control/life support; guidance, navigation, and control; propulsion; communications; data management; and onboard checkout subsystems. The interfaces between the station and other major elements of the program are summarized. The rational for a zero-gravity station, in lieu of one with artificial-gravity capability, is also summarized.

  10. Design of a command, communications, and control van (surrogate)

    NASA Astrophysics Data System (ADS)

    Holder, J. Darryl; Fishback, Jerome

    1989-03-01

    This report describes the design, construction, and checkout of a radio and telephone multi-mode communications hub. This unit is to serve as a surrogate for a command, control, and communications van which is to be used in support of a special series of testing at a remote site. This unit is assembled in a military four-wheel van and has a crew of a commander and three operators. Radio communications monitoring can be performed in all popular modes of transmission from 50 KHz to 2 GHz and transmission can be performed on selected frequencies in the 40-meter, 6-meter, and 2-meter bands. Both voice and digital (teletype, packet, facsimile, etc.) communications are supported.

  11. Robustness

    NASA Astrophysics Data System (ADS)

    Ryan, R.

    1993-03-01

    Robustness is a buzz word common to all newly proposed space systems design as well as many new commercial products. The image that one conjures up when the word appears is a 'Paul Bunyon' (lumberjack design), strong and hearty; healthy with margins in all aspects of the design. In actuality, robustness is much broader in scope than margins, including such factors as simplicity, redundancy, desensitization to parameter variations, control of parameter variations (environments flucation), and operational approaches. These must be traded with concepts, materials, and fabrication approaches against the criteria of performance, cost, and reliability. This includes manufacturing, assembly, processing, checkout, and operations. The design engineer or project chief is faced with finding ways and means to inculcate robustness into an operational design. First, however, be sure he understands the definition and goals of robustness. This paper will deal with these issues as well as the need for the requirement for robustness.

  12. Robustness

    NASA Technical Reports Server (NTRS)

    Ryan, R.

    1993-01-01

    Robustness is a buzz word common to all newly proposed space systems design as well as many new commercial products. The image that one conjures up when the word appears is a 'Paul Bunyon' (lumberjack design), strong and hearty; healthy with margins in all aspects of the design. In actuality, robustness is much broader in scope than margins, including such factors as simplicity, redundancy, desensitization to parameter variations, control of parameter variations (environments flucation), and operational approaches. These must be traded with concepts, materials, and fabrication approaches against the criteria of performance, cost, and reliability. This includes manufacturing, assembly, processing, checkout, and operations. The design engineer or project chief is faced with finding ways and means to inculcate robustness into an operational design. First, however, be sure he understands the definition and goals of robustness. This paper will deal with these issues as well as the need for the requirement for robustness.

  13. Facility Systems, Ground Support Systems, and Ground Support Equipment General Design Requirements

    NASA Technical Reports Server (NTRS)

    Thaxton, Eric A.

    2014-01-01

    KSC-DE-512-SM establishes overall requirements and best design practices to be used at the John F. Kennedy Space Center (KSC) for the development of ground systems (GS) in support of operations at launch, landing, and retrieval sites. These requirements apply to the design and development of hardware and software for ground support equipment (GSE), ground support systems (GSS), and facility ground support systems (F-GSS) used to support the KSC mission for transportation, receiving, handling, assembly, test, checkout, servicing, and launch of space vehicles and payloads and selected flight hardware items for retrieval. This standards manual supplements NASA-STD-5005 by including KSC-site-specific and local environment requirements. These requirements and practices are optional for equipment used at manufacturing, development, and test sites.

  14. Shuttle: forever young?

    PubMed

    Sietzen, Frank

    2002-01-01

    NASA has started a 4-phase program of upgrades designed to increase safety and extend use of the space shuttles through the year 2020. Phase I is aimed at improving vehicle safety and supporting the space station. Phase II is aimed at combating obsolescence and includes a checkout launch and control system and protection from micrometeoroids and orbital debris. Phase III is designed to expand or enhance the capabilities of the shuttle and includes development of an auxiliary power unit, avionics, a channel-wall nozzle, extended nose landing gear, long-life fuel cells, a nontoxic orbital maneuvering system/reaction control system, and a water membrane evaporator. Phase IV is aimed at design of system changes that would alter the shuttle mold line and configuration; projects include a five-segment solid rocket booster, liquid flyback boosters, and a crew escape module.

  15. Combustion of LOX with H2(sub g) under subcritical, critical, and supercritical conditions (Task 1) and experimental observation of dense spray and mixing of impinging jets (Task 2)

    NASA Technical Reports Server (NTRS)

    Kuo, K. K.; Hsieh, W. H.; Cheung, F. B.; Yang, A. S.; Brown, J. J.; Woodward, R. D.; Kline, M. C.; Burch, R. L.

    1992-01-01

    The objective was to achieve a better understanding of the combustion processes of liquid oxygen and gaseous hydrogen under broad range of pressure covering subcritical, critical, and supercritical conditions. The scope of the experimental work falls into the following areas: (1) design of the overall experimental setup; (2) modification of an existing windowed high pressure chamber; (3) design of the LOX feeding system; (4) provision of the safety features in the test rig design; (5) LOX cleanliness requirements; (6) cold shock testing; (7) implementation of data acquisition systems; (8) preliminary tests for system checkout; (9) modification of LOX feeding system; and (10) evaporation tests. Progress in each area is discussed.

  16. VLSI 'smart' I/O module development

    NASA Astrophysics Data System (ADS)

    Kirk, Dan

    The developmental history, design, and operation of the MIL-STD-1553A/B discrete and serial module (DSM) for the U.S. Navy AN/AYK-14(V) avionics computer are described and illustrated with diagrams. The ongoing preplanned product improvement for the AN/AYK-14(V) includes five dual-redundant MIL-STD-1553 channels based on DSMs. The DSM is a front-end processor for transferring data to and from a common memory, sharing memory with a host processor to provide improved 'smart' input/output performance. Each DSM comprises three hardware sections: three VLSI-6000 semicustomized CMOS arrays, memory units to support the arrays, and buffers and resynchronization circuits. The DSM hardware module design, VLSI-6000 design tools, controlware and test software, and checkout procedures (using a hardware simulator) are characterized in detail.

  17. KSC-2009-2472

    NASA Image and Video Library

    2009-03-19

    CAPE CANAVERAL, Fla. – In the Astrotech payload processing facility in Titusville, Fla., the GOES-O satellite is rotated on a stand toward a vertical position after blanket inspection. The latest Geostationary Operational Environmental Satellite, GOES-O was developed by NASA for the National Oceanic and Atmospheric Administration, or NOAA. Once in orbit, GOES-O will be designated GOES-14, and NASA will provide on-orbit checkout and then transfer operational responsibility to NOAA. The GOES-O satellite is targeted to launch April 28 onboard a United Launch Alliance Delta IV expendable launch vehicle. Photo credit: NASA/Jim Grossmann

  18. KSC-2009-2286

    NASA Image and Video Library

    2009-03-16

    CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility in Titusville, Fla., technicians at right and left examine the GOES-O satellite as it rotates on the stand. The latest Geostationary Operational Environmental Satellite, GOES-O was developed by NASA for the National Oceanic and Atmospheric Administration, or NOAA. Once in orbit, GOES-O will be designated GOES-14, and NASA will provide on-orbit checkout and then transfer operational responsibility to NOAA. The GOES-O satellite is targeted to launch April 28 onboard a United Launch Alliance Delta IV expendable launch vehicle. Photo credit: NASA/Kim Shiflett

  19. KSC-2009-2470

    NASA Image and Video Library

    2009-03-19

    CAPE CANAVERAL, Fla. – In the Astrotech payload processing facility in Titusville, Fla., the GOES-O satellite is rotated on a stand for blanket inspection. The latest Geostationary Operational Environmental Satellite, GOES-O was developed by NASA for the National Oceanic and Atmospheric Administration, or NOAA. Once in orbit, GOES-O will be designated GOES-14, and NASA will provide on-orbit checkout and then transfer operational responsibility to NOAA. The GOES-O satellite is targeted to launch April 28 onboard a United Launch Alliance Delta IV expendable launch vehicle. Photo credit: NASA/Jim Grossmann

  20. KSC-2009-2283

    NASA Image and Video Library

    2009-03-16

    CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility in Titusville, Fla., a technician checks the GOES-O satellite as it begins rotating on the stand. The latest Geostationary Operational Environmental Satellite, GOES-O was developed by NASA for the National Oceanic and Atmospheric Administration, or NOAA. Once in orbit, GOES-O will be designated GOES-14, and NASA will provide on-orbit checkout and then transfer operational responsibility to NOAA. The GOES-O satellite is targeted to launch April 28 onboard a United Launch Alliance Delta IV expendable launch vehicle. Photo credit: NASA/Kim Shiflett

  1. KSC-2009-2469

    NASA Image and Video Library

    2009-03-19

    CAPE CANAVERAL, Fla. – In the Astrotech payload processing facility in Titusville, Fla., the GOES-O satellite is rotated on a stand for blanket inspection. The latest Geostationary Operational Environmental Satellite, GOES-O was developed by NASA for the National Oceanic and Atmospheric Administration, or NOAA. Once in orbit, GOES-O will be designated GOES-14, and NASA will provide on-orbit checkout and then transfer operational responsibility to NOAA. The GOES-O satellite is targeted to launch April 28 onboard a United Launch Alliance Delta IV expendable launch vehicle. Photo credit: NASA/Jim Grossmann

  2. KSC-2009-2468

    NASA Image and Video Library

    2009-03-19

    CAPE CANAVERAL, Fla. – In the Astrotech payload processing facility in Titusville, Fla., the GOES-O satellite is rotated on a stand for blanket inspection. The latest Geostationary Operational Environmental Satellite, GOES-O was developed by NASA for the National Oceanic and Atmospheric Administration, or NOAA. Once in orbit, GOES-O will be designated GOES-14, and NASA will provide on-orbit checkout and then transfer operational responsibility to NOAA. The GOES-O satellite is targeted to launch April 28 onboard a United Launch Alliance Delta IV expendable launch vehicle. Photo credit: NASA/Jim Grossmann

  3. KSC-2009-2284

    NASA Image and Video Library

    2009-03-16

    CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility in Titusville, Fla., technicians examine the progress of the GOES-O satellite as it rotates on the stand. The latest Geostationary Operational Environmental Satellite, GOES-O was developed by NASA for the National Oceanic and Atmospheric Administration, or NOAA. Once in orbit, GOES-O will be designated GOES-14, and NASA will provide on-orbit checkout and then transfer operational responsibility to NOAA. The GOES-O satellite is targeted to launch April 28 onboard a United Launch Alliance Delta IV expendable launch vehicle. Photo credit: NASA/Kim Shiflett

  4. KSC-2009-2473

    NASA Image and Video Library

    2009-03-19

    CAPE CANAVERAL, Fla. – In the Astrotech payload processing facility in Titusville, Fla., the GOES-O satellite has been rotated on its stand to a vertical position after blanket inspection. The latest Geostationary Operational Environmental Satellite, GOES-O was developed by NASA for the National Oceanic and Atmospheric Administration, or NOAA. Once in orbit, GOES-O will be designated GOES-14, and NASA will provide on-orbit checkout and then transfer operational responsibility to NOAA. The GOES-O satellite is targeted to launch April 28 onboard a United Launch Alliance Delta IV expendable launch vehicle. Photo credit: NASA/Jim Grossmann

  5. KSC-2009-2285

    NASA Image and Video Library

    2009-03-16

    CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility in Titusville, Fla., ., a technician checks the GOES-O satellite as it rotates on the stand. The latest Geostationary Operational Environmental Satellite, GOES-O was developed by NASA for the National Oceanic and Atmospheric Administration, or NOAA. Once in orbit, GOES-O will be designated GOES-14, and NASA will provide on-orbit checkout and then transfer operational responsibility to NOAA. The GOES-O satellite is targeted to launch April 28 onboard a United Launch Alliance Delta IV expendable launch vehicle. Photo credit: NASA/Kim Shiflett

  6. KSC-2009-2471

    NASA Image and Video Library

    2009-03-19

    CAPE CANAVERAL, Fla. – In the Astrotech payload processing facility in Titusville, Fla., the GOES-O satellite is rotated on a stand for blanket inspection. The latest Geostationary Operational Environmental Satellite, GOES-O was developed by NASA for the National Oceanic and Atmospheric Administration, or NOAA. Once in orbit, GOES-O will be designated GOES-14, and NASA will provide on-orbit checkout and then transfer operational responsibility to NOAA. The GOES-O satellite is targeted to launch April 28 onboard a United Launch Alliance Delta IV expendable launch vehicle. Photo credit: NASA/Jim Grossmann

  7. KSC-2009-2288

    NASA Image and Video Library

    2009-03-16

    CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility in Titusville, Fla., technicians complete the rotation of the GOES-O satellite on the stand. The latest Geostationary Operational Environmental Satellite, GOES-O was developed by NASA for the National Oceanic and Atmospheric Administration, or NOAA. Once in orbit, GOES-O will be designated GOES-14, and NASA will provide on-orbit checkout and then transfer operational responsibility to NOAA. The GOES-O satellite is targeted to launch April 28 onboard a United Launch Alliance Delta IV expendable launch vehicle. Photo credit: NASA/Kim Shiflett

  8. Laser Scanning Reader For Automated Data Entry Operations

    NASA Astrophysics Data System (ADS)

    Cheng, Charles C. K.

    1980-02-01

    The use of the Universal Product Code (UPC) in conjunction with the laser-scanner-equipped electronic checkout system has made it technologically possible for supermarket stores to operate more efficiently and accurately. At present, more than 90% of the packages in grocery stores have been marked by the manufacturer with laser-scannable UPC symbols and the installation of laser scanning systems is expected to expand into all major chain stores. Areas to be discussed are: system design features, laser-scanning pattern generation, signal-processing logical considerations, UPC characteristics and encodation.

  9. Skylab thruster attitude control system

    NASA Technical Reports Server (NTRS)

    Wilmer, G. E., Jr.

    1974-01-01

    Preflight activities and the Skylab mission support effort for the thruster attitude control system (TACS) are documented. The preflight activities include a description of problems and their solutions encountered in the development, qualification, and flight checkout test programs. Mission support effort is presented as it relates to system performance assessment, real-time problem solving, flight anomalies, and the daily system evaluation. Finally, the detailed flight evaluation is presented for each phase of the mission using system telemetry data. Data assert that the TACS met or exceeded design requirements and fulfilled its assigned mission objectives.

  10. Quiet Clean Short-haul Experimental Engine (QCSEE) under-the-wing engine composite fan blade design report

    NASA Technical Reports Server (NTRS)

    Ravenhall, R.; Salemme, C. T.

    1977-01-01

    A total of 38 quiet clean short haul experimental engine under the wing composite fan blades were manufactured for various component tests, process and tooling, checkout, and use in the QCSEE UTW engine. The component tests included frequency characterization, strain distribution, bench fatigue, platform static load, whirligig high cycle fatigue, whirligig low cycle fatigue, whirligig strain distribution, and whirligig over-speed. All tests were successfully completed. All blades planned for use in the engine were subjected to and passed a whirligig proof spin test.

  11. STS-75 Mission Cmdr Andrew Allen inspects SPREE in O&C

    NASA Technical Reports Server (NTRS)

    1995-01-01

    STS-75 Mission Commander Andrew Allen inspects the Shuttle Potential and Return Experiment (SPRE) that will fly on his mission in the Operations and Checkout (O&C) Building. This 14- day mission is now scheduled for early 1996 aboard the Space Shuttle Orbiter Columbia. The primary payloads are the Tethered Satellite System-1R (TSS-1R) and the U.S. Microgravity Payload-3 (USMP-3). The 'R' designation indicates a reflight of the TSS-1. It originally flew on STS-46 in July 1992 but achieved only partial success.

  12. Solar Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Gerrish, Harold P., Jr.

    2003-01-01

    This paper presents viewgraphs on Solar Thermal Propulsion (STP). Some of the topics include: 1) Ways to use Solar Energy for Propulsion; 2) Solar (fusion) Energy; 3) Operation in Orbit; 4) Propulsion Concepts; 5) Critical Equations; 6) Power Efficiency; 7) Major STP Projects; 8) Types of STP Engines; 9) Solar Thermal Propulsion Direct Gain Assembly; 10) Specific Impulse; 11) Thrust; 12) Temperature Distribution; 13) Pressure Loss; 14) Transient Startup; 15) Axial Heat Input; 16) Direct Gain Engine Design; 17) Direct Gain Engine Fabrication; 18) Solar Thermal Propulsion Direct Gain Components; 19) Solar Thermal Test Facility; and 20) Checkout Results.

  13. Utilization of the Multiple Access Communications Satellite (Macsat) in support of tactical communications

    NASA Astrophysics Data System (ADS)

    Steele, B.; McCormick, C.; Brandt, K.; Fornwalt, W.; Bonometti, R.

    1992-03-01

    After a brief on-orbit checkout, the two Macsats launched into 90-deg, near-circular, 400-n. mi. altitude polar orbits on May 9, 1990 began to furnish operational communications support to USMC aircraft involved in Operations Desert Shield and Desert Storm. These operations of the Macsats furnished numerous lessons applicable to prospective design and deployment of small tactical-communications satellites. Macsats proved their ability to support quick-reaction requirements through reschedulings within 2-10 hrs. Their user communications terminal is portable, and easily relocated with changing requirements.

  14. A&R challenges for in-space operations. [Automation and Robotic technologies

    NASA Technical Reports Server (NTRS)

    Underwood, James

    1990-01-01

    Automation and robotics (A&R) challenges for in-space operations are examined, with emphasis on the interaction between developing requirements, developing solutions, design concepts, and the nature of the applicability of automation in robotic technologies. Attention is first given to the use of A&R in establishing outposts on the moon and Mars. Then emphasis is placed on the requirements for the assembly of transportation systems in low earth orbit. Concepts of the Space Station which show how the assembly, processing, and checkout of systems in LEO might be accommodated are examined.

  15. Development of a test and flight engineering oriented language, phase 3

    NASA Technical Reports Server (NTRS)

    Kamsler, W. F.; Case, C. W.; Kinney, E. L.; Gyure, J.

    1970-01-01

    Based on an analysis of previously developed test oriented languages and a study of test language requirements, a high order language was designed to enable test and flight engineers to checkout and operate the proposed space shuttle and other NASA vehicles and experiments. The language is called ALOFT (a language oriented to flight engineering and testing). The language is described, its terminology is compared to similar terms in other test languages, and its features and utilization are discussed. The appendix provides the specifications for ALOFT.

  16. STS-31 pre-deployment checkout of the Hubble Space Telescope (HST) on OV-103

    NASA Image and Video Library

    1990-04-25

    During STS-31 checkout, the Hubble Space Telescope (HST) is held in a pre-deployment position by Discovery's, Orbiter Vehicle (OV) 103's, remote manipulator system (RMS). The view, taken from the crew cabin overhead window W7, shows the starboard solar array (SA) panel (center) and two high gain antennae (HGA) (on either side) stowed along side the Support System Module (SSM) forward shell. The sun highlights HST against the blackness of space.

  17. NASA Associate Administrator for Space Flight Rothenberg addresses guests at ribbon cutting for the

    NASA Technical Reports Server (NTRS)

    2000-01-01

    NASA Associate Administrator for Space Flight Joseph Rothenberg addresses attendees at a ribbon cutting for the new Checkout and Launch Control System (CLCS) at the Hypergolic Maintenance Facility (HMF). The CLCS was declared operational in a ribbon cutting ceremony earlier. The new control room will be used to process the Orbital Maneuvering System pods and Forward Reaction Control System modules at the HMF. This hardware is removed from Space Shuttle orbiters and routinely taken to the HMF for checkout and servicing.

  18. A guide to onboard checkout. Volume 7: RF communications

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The radio frequency communications subsystem for a space station is considered, with respect to onboard checkout requirements. The subsystem comprises all equipment necessary for transmitting and receiving, tracking and ranging, command, multiple voice and television information, and broadband experiment data. The communications subsystem provides a radio frequency interface between the space station and ground stations, either directly or indirectly, through a data relay satellite system, independent free-flying experiment modules, and logistics vehicles. Reliability, maintenance, and failure analyses are discussed, and computer programming techniques are presented.

  19. KSC-2012-6221

    NASA Image and Video Library

    2012-11-08

    CAPE CANAVERAL, Fla. -- Inside the Applied Physics Laboratory in the Operations and Checkout Building at NASA’s Kennedy Space Center in Florida, lead researcher Dr. Bob Youngquist demonstrates a technology developed for the Space Shuttle Program to a group of Society of Physics students. About 800 graduate and undergraduate physics students toured Kennedy facilities. A group of about 40 students toured laboratories in the Operations and Checkout Building and the EDL during their visit. The physics students were in Orlando for the 2012 Quadrennial Physics Congress. Photo credit: NASA/Cory Huston

  20. KSC-2012-6220

    NASA Image and Video Library

    2012-11-08

    CAPE CANAVERAL, Fla. -- Inside the Applied Physics Laboratory in the Operations and Checkout Building at NASA’s Kennedy Space Center in Florida, lead researcher Dr. Bob Youngquist describes technologies developed for the Space Shuttle Program to a group of Society of Physics students. About 800 graduate and undergraduate physics students toured Kennedy facilities. A group of about 40 students toured laboratories in the Operations and Checkout Building and the EDL during their visit. The physics students were in Orlando for the 2012 Quadrennial Physics Congress. Photo credit: NASA/Cory Huston

  1. STS 41-G crew prepares to leave Operations and checkout bldg for launch

    NASA Image and Video Library

    1984-10-05

    41G-90081 / S17-90081 (5 Oct 1984) --- The seven member crew leaves the Operations and Checkout Building (OCB) to take a van ride to the launch pad. Leading the way is Kathryn D. Sullivan followed in file by Robert L. Crippen, Paul D. Scully-Power and Jon A. McBride. On the right side are Sally K. Ride, David C. Leestma and Marc Garneau. Trailing the crew are George W. S. Abbey, Richard Nygren, Paul Bulver, and Paul J. Weitz.

  2. Skylab checkout operations. [from multiple docking adapter contractor viewpoint

    NASA Technical Reports Server (NTRS)

    Timmons, K. P.

    1973-01-01

    The Skylab Program at Kennedy Space Center presented many opportunities for interesting and profound test and checkout experience. It also offered a compilation of challenges and promises for the Center and for the contractors responsible for the various modules making up Skylab. It is very probable that the various contractors had common experiences during the module and combined systems tests, but this paper will discuss those experiences from the viewpoint of the Multiple Docking Adapter contractor. The experience will consider personnel, procedures, and hardware.

  3. KSC-2014-3243

    NASA Image and Video Library

    2014-07-21

    CAPE CANAVERAL, Fla. -- Apollo astronaut Michael Collins tours the astronaut crew quarters in the Operations and Checkout Building at NASA's Kennedy Space Center in Florida, accompanied by family members and friends. The tour followed a ceremony renaming the refurbished Operations and Checkout Building for Apollo 11 astronaut Neil Armstrong, the first person to set foot on the moon. Besides housing the crew quarters, the building's high bay is being used to support the agency's new Orion spacecraft and is the same spaceport facility where the Apollo 11 command/service module and lunar module were prepped for the first lunar landing mission in 1969. Orion is designed to take humans farther than they’ve ever gone before, serving as the exploration vehicle that will carry astronauts to deep space and sustain the crew during travel to destinations such as an asteroid or Mars. The visit of the former astronauts was part of NASA's 45th anniversary celebration of the moon landing. As the world watched, Neil Armstrong and Aldrin landed in the moon's Sea of Tranquility aboard the lunar module Eagle on July 20, 1969. Meanwhile, crewmate Collins orbited above in the command module Columbia. For more, visit http://www.nasa.gov/press/2014/july/nasa-honors-historic-first-moon-landing-eyes-first-mars-mission. Photo credit: NASA/Kim Shiflett

  4. KSC-2014-3251

    NASA Image and Video Library

    2014-07-21

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, NASA Administrator Charles Bolden, left, signs a banner displaying the new name of the Operations and Checkout Building, as Apollo 11 moonwalker Buzz Aldrin prepares to sign. The banner signing followed a ceremony renaming the refurbished Operations and Checkout Building for Apollo 11 astronaut Neil Armstrong, the first person to set foot on the moon. The building's high bay is being used to support the agency's new Orion spacecraft and is the same spaceport facility where the Apollo 11 command/service module and lunar module were prepped for the first lunar landing mission in 1969. Orion is designed to take humans farther than they’ve ever gone before, serving as the exploration vehicle that will carry astronauts to deep space and sustain the crew during travel to destinations such as an asteroid or Mars. The ceremony was part of NASA's 45th anniversary celebration of the Apollo 11 moon landing. As the world watched, Neil Armstrong and Buzz Aldrin landed in the moon's Sea of Tranquility on July 20, 1969, aboard the lunar module Eagle. Meanwhile, crewmate Michael Collins orbited above in the command module Columbia. For more, visit http://www.nasa.gov/press/2014/july/nasa-honors-historic-first-moon-landing-eyes-first-mars-mission. Photo credit: NASA/Kevin O'Connell

  5. KSC-2014-3242

    NASA Image and Video Library

    2014-07-21

    CAPE CANAVERAL, Fla. -- Apollo astronauts Jim Lovell, left, and Buzz Aldrin tour the astronaut crew quarters in the Operations and Checkout Building at NASA's Kennedy Space Center in Florida. The tour followed a ceremony renaming the refurbished Operations and Checkout Building for Apollo 11 astronaut Neil Armstrong, the first person to set foot on the moon. Besides housing the crew quarters, the building's high bay is being used to support the agency's new Orion spacecraft and is the same spaceport facility where the Apollo 11 command/service module and lunar module were prepped for the first lunar landing mission in 1969. Orion is designed to take humans farther than they’ve ever gone before, serving as the exploration vehicle that will carry astronauts to deep space and sustain the crew during travel to destinations such as an asteroid or Mars. The visit of the former astronauts was part of NASA's 45th anniversary celebration of the moon landing. As the world watched, Neil Armstrong and Aldrin landed in the moon's Sea of Tranquility aboard the lunar module Eagle on July 20, 1969. Meanwhile, crewmate Collins orbited above in the command module Columbia. For more, visit http://www.nasa.gov/press/2014/july/nasa-honors-historic-first-moon-landing-eyes-first-mars-mission. Photo credit: NASA/Kim Shiflett

  6. KSC-2014-3239

    NASA Image and Video Library

    2014-07-21

    CAPE CANAVERAL, Fla. -- Apollo 11 astronaut Michael Collins checks out some equipment during a tour of the astronaut crew quarters in the Operations and Checkout Building at NASA's Kennedy Space Center in Florida. The tour followed a ceremony renaming the refurbished Operations and Checkout Building for Apollo 11 astronaut Neil Armstrong, the first person to set foot on the moon. Besides housing the crew quarters, the building's high bay is being used to support the agency's new Orion spacecraft and is the same spaceport facility where the Apollo 11 command/service module and lunar module were prepped for the first lunar landing mission in 1969. Orion is designed to take humans farther than they’ve ever gone before, serving as the exploration vehicle that will carry astronauts to deep space and sustain the crew during travel to destinations such as an asteroid or Mars. The visit of the former astronauts was part of NASA's 45th anniversary celebration of the moon landing. As the world watched, Neil Armstrong and Aldrin landed in the moon's Sea of Tranquility aboard the lunar module Eagle on July 20, 1969. Meanwhile, crewmate Collins orbited above in the command module Columbia. For more, visit http://www.nasa.gov/press/2014/july/nasa-honors-historic-first-moon-landing-eyes-first-mars-mission. Photo credit: NASA/Kim Shiflett

  7. On-Orbit Checkout and Activation of the ISS Oxygen Generation System

    NASA Technical Reports Server (NTRS)

    Bagdigian, Robert M.; Prokhorov, Kimberlee S.

    2007-01-01

    NASA has developed and; deployed an Oxygen Generation System (OGS) into the Destiny Module of the International Space Station (ISS). The major. assembly; included in this system is the Oxygen Generator Assembly. (OGA) which was developed under NASA contract by Hamilton Sundstrand Space Systems International (HSSSI), Inc. This paper summarizes the installation of the system into the Destiny Module, its initial checkout and periodic preventative maintenance activities, and its operational activation. Trade studies and analyses that were conducted with the goal of mitigating on-orbit operational risks are also discussed.

  8. Mariner Mars 1971 science operational support equipment

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The Mariner Mars 1971 science operational support equipment (SOSE) was developed to support the checkout of the proof test model and flight spacecraft. The test objectives of the SOSE and how these objectives were implemented are discussed. Attention is focused on the computer portion of the SOSE, since incorporation of a computer in ground checkout equipment represents a major departure from the support equipment concepts previously used. A functional description of the major hardware elements contained in the SOSE is also included, along with the operational performance of the SOSE during spacecraft testing.

  9. Death Spiral: Luftwaffe Airlift Training, Operation Stosser, and Lessons for the Mordern U.S. Air Force

    DTIC Science & Technology

    2015-05-22

    long substitute, Pilot Check-Out ( PCO ), which re-taught the basics of air refueling and assault-zone landings as a "top­ off’ course. While some cost...saving occurred the failure rates and poor performance ofnew students at PIQ and PCO forced changes in the program. 132 Reoccurring failures reduced...AFB, TX: HQ AETC/A3ZM, February 2013. ---.Air Education and Training Command Syllabus C-17 Pilot Checkout ( PCO ). Randolph AFB, TX: HQ AETC/A3ZM

  10. KSC-2012-6219

    NASA Image and Video Library

    2012-11-08

    CAPE CANAVERAL, Fla. -- Inside a laboratory in the Operations and Checkout Building at NASA’s Kennedy Space Center in Florida, research chemist Mary Coan describes components of the Regolith and Environment Science and Oxygen and Lunar Volatiles Extraction, or RESOLVE, rover to a group of Society of Physics students. About 800 graduate and undergraduate physics students toured Kennedy facilities. A group of about 40 students toured laboratories in the Operations and Checkout Building and the EDL during their visit. The physics students were in Orlando for the 2012 Quadrennial Physics Congress. Photo credit: NASA/Cory Huston

  11. Applications Technology Satellite ATS-6 in orbit checkout report

    NASA Technical Reports Server (NTRS)

    Moore, W.; Prensky, W. (Editor)

    1974-01-01

    The activities of the ATS-6 spacecraft for the checkout period of approximately four weeks beginning May 30, 1974 are described, along with the results of a performance evaluation of its subsystems and components. The following specific items are discussed: (1) subsystem requirements/specifications and in-orbit performance summary; (2) flight chronology; (3) spacecraft description; (4) structural/deployment subsystems; (5) electrical power subsystem; (6) thermal control subsystem; (7) telemetry and command subsystems; (8) attitude control subsystem; (9) spacecraft propulsion subsystem; (10) communication subsystem; and (12) experiment subsystem.

  12. The influence of radiation shielding on reusable nuclear shuttle design

    NASA Technical Reports Server (NTRS)

    Littman, T. M.; Garcia, D.

    1972-01-01

    Alternate reusable nuclear shuttle configurations were synthesized and evaluated. Particular attention was given to design factors which reduced tank exposure to direct and scattered radiation, increased payload-engine separation, and improved self-shielding by the LH2 propellant. The most attractive RNS concept in terms of cost effectiveness consists of a single conical aft bulkhead tank with a high fineness ratio. Launch is accomplished by the INT-21 with the tank positioned in the inverted attitude. The NERVA engine is delivered to orbit separately where final stage assembly and checkout are accomplished. This approach is consistent with NERVA definition criteria and required operating procedures to support an economically viable nuclear shuttle transportation program in the post-1980 period.

  13. First Results from the GPS Compact Total Electron Content Sensor (CTECS) on the PSSC2 Nanosat

    NASA Astrophysics Data System (ADS)

    Bishop, R. L.; Straus, P. R.; Hinkley, D.; Brubaker, T. R.

    2011-12-01

    The Compact Total Electron Content Sensor (CTECS) is a GPS radio occultation instrument designed for cubesat platforms that utilizes a COTS receiver, modified firmware, and a custom designed antenna. CTECS was placed on the Pico Satellite Solar Cell Testbed 2 (PSSC2) nanosat that was installed on the Space Shuttle Atlantis (STS-135). PSSC2 was successfully released from the shuttle on 20 July 2011. After approximately 2-4 weeks of spacecraft checkout and attitude adjustments, CTECS will be powered on and begin its mission to obtain ionospheric measurements of the total electron content and scintillation. This presentation describes the CTECS instrument, presents ground test data, initial on-orbit data, as well as future flight opportunities.

  14. Mars mission effects on Space Station evolution

    NASA Technical Reports Server (NTRS)

    Askins, Barbara S.; Cook, Stephen G.

    1989-01-01

    The permanently manned Space Station scheduled to be operational in low earth by the mid 1990's, will provide accommodations for science, applications, technology, and commercial users, and will develop enabling capabilities for future missions. A major aspect of the baseline Space Station design is that provisions for evolution to greater capabilities are included in the systems and subsystems designs. User requirements are the basis for conceptual evolution modes or infrastructure to support the paths. Four such modes are discussed in support of a Human to Mars mission, along with some of the near term actions protecting the future of supporting Mars missions on the Space Station. The evolution modes include crew and payload transfer, storage, checkout, assembly, maintenance, repair, and fueling.

  15. Apollo experience report: Lunar module environmental control subsystem

    NASA Technical Reports Server (NTRS)

    Gillen, R. J.; Brady, J. C.; Collier, F.

    1972-01-01

    A functional description of the environmental control subsystem is presented. Development, tests, checkout, and flight experiences of the subsystem are discussed; and the design fabrication, and operational difficulties associated with the various components and subassemblies are recorded. Detailed information is related concerning design changes made to, and problems encountered with, the various elements of the subsystem, such as the thermal control water sublimator, the carbon dioxide sensing and control units, and the water section. The problems associated with water sterilization, water/glycol formulation, and materials compatibility are discussed. The corrective actions taken are described with the expection that this information may be of value for future subsystems. Although the main experiences described are problem oriented, the subsystem has generally performed satisfactorily in flight.

  16. Automated control and data acquisition for a tunable diode laser heterodyne spectrometer

    NASA Technical Reports Server (NTRS)

    Shull, T. S.; Rinsland, P. L.

    1983-01-01

    This paper describes the hardware and software design, development, and implementation of the control and data electronics of a laser heterodyne spectrometer instrument being built at NASA Langley Research Center for a technology demonstration. Functional partitioning, applied at all levels of hardware and software, has been found to provide expedient design, development, and testing of the instrument. The instrument is composed of distributed microprocessor-based units. A master/slave protocol is presented which can be simulated by a terminal for unit checkout. All but one of the units are implemented using a set of core boards, plus unique boards where necessary. This design has led to reduced hardware development, reduced parts inventory, and replication of software modules, while providing the flexibility needed for a development instrument. The development tools and documentation guidelines are discussed.

  17. CTAS data analysis program

    NASA Technical Reports Server (NTRS)

    Neuman, Frank; Erzberger, Heinz; Schueller, Michael S.

    1994-01-01

    The analysis program (AN) is specifically designed to produce graphic and tabular information to aid in the design and checkout of the Center TRACON Automation System (CTAS). To best reveal CTAS operation and possible problems, data are plotted in many different ways both in detail and summary form. AN has been designed to analyze both radar surveillance data and output data from CTAS. AN has been extensively used to debug and refine CTAS. It is also being used in the field to monitor and assess CTAS performance. AN is continuously refined to keep up with changing needs. The present version of AN grew out of analysis of Denver Center data. However, the AN software has been written to be adaptable to any other facility Center or TRACON. Presently, one can select Denver Stapleton, Denver International, Dallas/Fort Worth International Airport, and Dallas Love Field.

  18. The availability of snack food displays that may trigger impulse purchases in Melbourne supermarkets.

    PubMed

    Thornton, Lukar E; Cameron, Adrian J; McNaughton, Sarah A; Worsley, Anthony; Crawford, David A

    2012-03-15

    Supermarkets play a major role in influencing the food purchasing behaviours of most households. Snack food exposures within these stores may contribute to higher levels of consumption and ultimately to increasing levels of obesity, particularly within socioeconomically disadvantaged neighbourhoods. We aimed to examine the availability of snack food displays at checkouts, end-of-aisle displays and island displays in major supermarket chains in the least and most socioeconomically disadvantaged neighbourhoods of Melbourne. Within-store audits of 35 Melbourne supermarkets. Supermarkets were sampled from the least and most socioeconomically disadvantaged suburbs within 30 km of the Melbourne CBD. We measured the availability of crisps, chocolate, confectionery, and soft drinks (diet and regular) at the checkouts, in end-of-aisle displays, and in island bin displays. Snack food displays were most prominent at checkouts with only five stores not having snack foods at 100% of their checkouts. Snack foods were also present at a number of end-of-aisle displays (at both the front (median 38%) and back (median 33%) of store), and in island bin displays (median number of island displays: 7; median total circumference of island displays: 19.4 metres). Chocolate items were the most common snack food item on display. There was no difference in the availability of these snack food displays by neighbourhood disadvantage. As a result of the high availability of snack food displays, exposure to snack foods is almost unavoidable in Melbourne supermarkets, regardless of levels of neighbourhood socioeconomic disadvantage. Results of this study could promote awareness of the prominence of unhealthy food items in chain-brand supermarkets outlets.

  19. KSC-99pc16

    NASA Image and Video Library

    1999-01-05

    Loral workers at Astrotech, Titusville, Fla., deploy one of the solar panels of the GOES-L weather satellite, to be launched from Cape Canaveral Air Station (CCAS) aboard an Atlas II rocket in late March. The GOES-L is the fourth of a new advanced series of geostationary weather satellites for the National Oceanic and Atmospheric Administration. It is a three-axis inertially stabilized spacecraft that will provide pictures and perform atmospheric sounding at the same time. Once launched, the satellite, to be designated GOES-11, will undergo checkout and provide backup capabilities for the existing, aging GOES East weather satellite

  20. KSC-99pc18

    NASA Image and Video Library

    1999-01-05

    Loral workers at Astrotech, Titusville, Fla., check out the solar panels of the GOES-L weather satellite, to be launched from Cape Canaveral Air Station (CCAS) aboard an Atlas II rocket in late March. The GOES-L is the fourth of a new advanced series of geostationary weather satellites for the National Oceanic and Atmospheric Administration. It is a three-axis inertially stabilized spacecraft that will provide pictures and perform atmospheric sounding at the same time. Once launched, the satellite, to be designated GOES-11, will undergo checkout and provide backup capabilities for the existing, aging GOES East weather satellite

  1. KSC-99pc17

    NASA Image and Video Library

    1999-01-05

    Loral workers at Astrotech, Titusville, Fla., stand back as they deploy the solar panels of the GOES-L weather satellite. The satellite is to be launched from Cape Canaveral Air Station (CCAS) aboard an Atlas II rocket in late March. The GOES-L is the fourth of a new advanced series of geostationary weather satellites for the National Oceanic and Atmospheric Administration. It is a three-axis inertially stabilized spacecraft that will provide pictures and perform atmospheric sounding at the same time. Once launched, the satellite, to be designated GOES-11, will undergo checkout and provide backup capabilities for the existing, aging GOES East weather satellite

  2. Organizing for low cost space operations - Status and plans

    NASA Technical Reports Server (NTRS)

    Lee, C.

    1976-01-01

    Design features of the Space Transportation System (vehicle reuse, low cost expendable components, simple payload interfaces, standard support systems) must be matched by economical operational methods to achieve low operating and payload costs. Users will be responsible for their own payloads and will be charged according to the services they require. Efficient use of manpower, simple documentation, simplified test, checkout, and flight planning are firm goals, together with flexibility for quick response to varying user needs. Status of the Shuttle hardware, plans for establishing low cost procedures, and the policy for user charges are discussed.

  3. KSC00pp0621

    NASA Image and Video Library

    2000-05-03

    The Atlas II/Centaur rocket carrying the NASA/NOAA weather satellite GOES-L lifts off at 3:07 a.m. EDT from Pad A at Complex 36 on Cape Canaveral Air Force Station. The primary objective of the GOES-L is to provide a full capability satellite in an on-orbit storage condition, in order to assure NOAA continuity in services from a two-satellite constellation. Launch services are being provided by the 45th Space Wing. Once in orbit, the spacecraft is to be designated GOES-11 and will complete its 90-day checkout in time for availability during the 2000 hurricane season

  4. KSC00pp0618

    NASA Image and Video Library

    2000-05-03

    The Atlas II/Centaur rocket carrying the NASA/NOAA weather satellite GOES-L launches toward space from Pad A at Complex 36 on Cape Canaveral Air Force Station. Liftoff occurred at 3:07 a.m. EDT. The primary objective of the GOES-L is to provide a full capability satellite in an on-orbit storage condition, in order to assure NOAA continuity in services from a two-satellite constellation. Launch services are being provided by the 45th Space Wing. Once in orbit, the spacecraft is to be designated GOES-11 and will complete its 90-day checkout in time for availability during the 2000 hurricane season

  5. KSC-00pp0621

    NASA Image and Video Library

    2000-05-03

    The Atlas II/Centaur rocket carrying the NASA/NOAA weather satellite GOES-L lifts off at 3:07 a.m. EDT from Pad A at Complex 36 on Cape Canaveral Air Force Station. The primary objective of the GOES-L is to provide a full capability satellite in an on-orbit storage condition, in order to assure NOAA continuity in services from a two-satellite constellation. Launch services are being provided by the 45th Space Wing. Once in orbit, the spacecraft is to be designated GOES-11 and will complete its 90-day checkout in time for availability during the 2000 hurricane season

  6. KSC-00pp0618

    NASA Image and Video Library

    2000-05-03

    The Atlas II/Centaur rocket carrying the NASA/NOAA weather satellite GOES-L launches toward space from Pad A at Complex 36 on Cape Canaveral Air Force Station. Liftoff occurred at 3:07 a.m. EDT. The primary objective of the GOES-L is to provide a full capability satellite in an on-orbit storage condition, in order to assure NOAA continuity in services from a two-satellite constellation. Launch services are being provided by the 45th Space Wing. Once in orbit, the spacecraft is to be designated GOES-11 and will complete its 90-day checkout in time for availability during the 2000 hurricane season

  7. KSC-00pp0623

    NASA Image and Video Library

    2000-05-03

    The night sky is briefly turned bright as day with the launch of the Atlas II/Centaur rocket carrying the NASA/NOAA weather satellite GOES-L. Liftoff occurred at 3:07 a.m. EDT. The primary objective of the GOES-L is to provide a full capability satellite in an on-orbit storage condition, in order to assure NOAA continuity in services from a two-satellite constellation. Launch services are being provided by the 45th Space Wing. Once in orbit, the spacecraft is to be designated GOES-11 and will complete its 90-day checkout in time for availability during the 2000 hurricane season

  8. KSC00pp0619

    NASA Image and Video Library

    2000-05-03

    The Atlas II/Centaur rocket carrying the NASA/NOAA weather satellite GOES-L lifts off at 3:07 a.m. EDT from Pad A at Complex 36 on Cape Canaveral Air Force Station. The primary objective of the GOES-L is to provide a full capability satellite in an on-orbit storage condition, in order to assure NOAA continuity in services from a two-satellite constellation. Launch services are being provided by the 45th Space Wing. Once in orbit, the spacecraft is to be designated GOES-11 and will complete its 90-day checkout in time for availability during the 2000 hurricane season

  9. KSC-00pp0619

    NASA Image and Video Library

    2000-05-03

    The Atlas II/Centaur rocket carrying the NASA/NOAA weather satellite GOES-L lifts off at 3:07 a.m. EDT from Pad A at Complex 36 on Cape Canaveral Air Force Station. The primary objective of the GOES-L is to provide a full capability satellite in an on-orbit storage condition, in order to assure NOAA continuity in services from a two-satellite constellation. Launch services are being provided by the 45th Space Wing. Once in orbit, the spacecraft is to be designated GOES-11 and will complete its 90-day checkout in time for availability during the 2000 hurricane season

  10. EMU processing - A myth dispelled

    NASA Technical Reports Server (NTRS)

    Peacock, Paul R.; Wilde, Richard C.; Lutz, Glenn C.; Melgares, Michael A.

    1991-01-01

    The refurbishment-and-checkout 'processing' activities entailed by the Space Shuttle Extravehicular Mobility Units (EMUs) are currently significantly more modest, at 1050 man-hours, than when Space Shuttle services began (involving about 4000 man-hours). This great improvement in hardware efficiency is due to the design or modification of test rigs for simplification of procedures, as well as those procedures' standardization, in conjunction with an increase in hardware confidence which has allowed the extension of inspection, service, and testing intervals. Recent simplification of the hardware-processing sequence could reduce EMU processing requirements to 600 man-hours in the near future.

  11. Shuttle payload interface verification equipment study. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A preliminary design analysis of a stand alone payload integration device (IVE) is provided that is capable of verifying payload compatibility in form, fit and function with the shuttle orbiter prior to on-line payload/orbiter operations. The IVE is a high fidelity replica of the orbiter payload accommodations capable of supporting payload functional checkout and mission simulation. A top level payload integration analysis developed detailed functional flow block diagrams of the payload integration process for the broad spectrum of P/L's and identified degree of orbiter data required by the payload user and potential applications of the IVE.

  12. KSC-04PD-1133

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. -- Technicians in the Orbiter Processing Facility attach a crane to Discoverys airlock before lifting it for installation. The airlock is located inside the orbiters payload bay and is sized to accommodate two fully suited flight crew members simultaneously. Support functions include airlock depressurization and repressurization, extravehicular activity equipment recharge, liquid-cooled garment water cooling, EVA equipment checkout, and communications. Discovery is designated as the Return to Flight vehicle for mission STS-114, no earlier than March 2005. STS-114 mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.

  13. Status of the irradiation test vehicle for testing fusion materials in the Advanced Test Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsai, H.; Gomes, I.C.; Smith, D.L.

    1998-09-01

    The design of the irradiation test vehicle (ITV) for the Advanced Test Reactor (ATR) has been completed. The main application for the ITV is irradiation testing of candidate fusion structural materials, including vanadium-base alloys, silicon carbide composites, and low-activation steels. Construction of the vehicle is underway at the Lockheed Martin Idaho Technology Company (LMITCO). Dummy test trains are being built for system checkout and fine-tuning. Reactor insertion of the ITV with the dummy test trains is scheduled for fall 1998. Barring unexpected difficulties, the ITV will be available for experiments in early 1999.

  14. Implementation of an Outer Can Welding System for Savannah River Site FB-Line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howard, S.R.

    2003-03-27

    This paper details three phases of testing to confirm use of a Gas Tungsten Arc (GTA) system for closure welding the 3013 outer container used for stabilization/storage of plutonium metals and oxides. The outer container/lid closure joint was originally designed for laser welding, but for this application, the gas tungsten arc (GTA) welding process has been adapted. The testing progressed in three phases: (1) system checkout to evaluate system components for operational readiness, (2) troubleshooting to evaluate high weld failure rates and develop corrective techniques, and (3) pre-installation acceptance testing.

  15. KSC-06pd1018

    NASA Image and Video Library

    2006-06-09

    KENNEDY SPACE CENTER, FLA. - Tug boats maneuver the Pegasus barge next to the dock in the turn basin at the Launch Complex 39 Area. The barge holds the redesigned external fuel tank, designated ET-118, that will launch Space Shuttle Atlantis on the next shuttle mission, STS-115. The tank was shipped from the Michoud Assembly Facility in New Orleans. After off-loading, the tank will be moved into the Vehicle Assembly Building and lifted into a checkout cell for further work. The tank will fly with many major safety changes, including the removal of the protuberance air load ramps. Photo credit: NASA/Kim Shiflett

  16. KSC-06pd1019

    NASA Image and Video Library

    2006-06-09

    KENNEDY SPACE CENTER, FLA. - Tug boats maneuver the Pegasus barge next to the dock in the turn basin at the Launch Complex 39 Area. The barge holds the redesigned external fuel tank, seen inside, that will launch Space Shuttle Atlantis on the next shuttle mission, STS-115. The tank, designated ET-118, was shipped from the Michoud Assembly Facility in New Orleans. After off-loading, the tank will be moved into the Vehicle Assembly Building and lifted into a checkout cell for further work. The tank will fly with many major safety changes, including the removal of the protuberance air load ramps. Photo credit: NASA/Kim Shiflett

  17. Ryan Davis | NREL

    Science.gov Websites

    design TEA LCA Biochemical conversion process pathways Algal biomass production and conversion pathways Production," Green Chemistry (2015) Process Design and Economics for the Conversion of Lignocellulosic Production," Applied Energy (2011) Process Design and Economics for Biochemical Conversion of

  18. Newman Unit 1 advanced solar repowering advanced conceptual design. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1982-04-01

    The Newman Unit 1 solar repowering design is a water/steam central receiver concept supplying superheated steam. The work reported is to develop a refined baseline conceptual design that has potential for construction and operation by 1986, makes use of existing solar thermal technology, and provides the best economics for this application. Trade studies performed in the design effort are described, both for the conceptual design of the overall system and for the subsystem conceptual design. System-level functional requirements, design, operation, performance, cost, safety, environmental, institutional, and regulatory considerations are described. Subsystems described include the collector, receiver, fossil energy, electrical powermore » generating, and master control subsystems, site and site facilities. The conceptual design, cost, and performance of each subsystem is discussed at length. A detailed economic analysis of the repowered unit is made to realistically assess the economics of the first repowered unit using present cost data for a limited production level for solar hardware. Finally, a development plan is given, including the design, procurement, construction, checkout, startup, performance validation, and commercial operation. (LEW)« less

  19. Design of 8-ft-Diameter Barrel Test Article Attachment Rings for Shell Buckling Knockdown Factor Project

    NASA Technical Reports Server (NTRS)

    Lovejoy, Andrew E.; Hilburger, Mark W.

    2010-01-01

    The Shell Buckling Knockdown Factor (SBKF) project includes the testing of sub-scale cylinders to validate new shell buckling knockdown factors for use in the design of the Ares-I and Ares-V launch vehicles. Test article cylinders represent various barrel segments of the Ares-I and Ares-V vehicles, and also include checkout test articles. Testing will be conducted at Marshall Space Flight Center (MSFC) for test articles having an eight-foot diameter outer mold line (OML) and having lengths that range from three to ten feet long. Both ends of the test articles will be connected to the test apparatus using attachment rings. Three multiple-piece and one single-piece design for the attachment rings were developed and analyzed. The single-piece design was chosen and will be fabricated from either steel or aluminum (Al) depending on the required safety factors (SF) for test hardware. This report summarizes the design and analysis of these attachment ring concepts.

  20. Space shuttle main engine definition (phase B). Volume 2: Avionics. [for space shuttle

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The advent of the space shuttle engine with its requirements for high specific impulse, long life, and low cost have dictated a combustion cycle and a closed loop control system to allow the engine components to run close to operating limits. These performance requirements, combined with the necessity for low operational costs, have placed new demands on rocket engine control, system checkout, and diagnosis technology. Based on considerations of precision environment, and compatibility with vehicle interface commands, an electronic control, makes available many functions that logically provide the information required for engine system checkout and diagnosis.

  1. KENNEDY SPACE CENTER, FLA. - Employees file around table displays under a tent near the Operations and Checkout Building. Many vendors and organizations displayed their products during the Spaceport Super Safety and Health Day at KSC and Cape Canaveral Air Force Station, an annual event dedicated to reinforcing safe and healthful behaviors in the workforce.

    NASA Image and Video Library

    2003-10-15

    KENNEDY SPACE CENTER, FLA. - Employees file around table displays under a tent near the Operations and Checkout Building. Many vendors and organizations displayed their products during the Spaceport Super Safety and Health Day at KSC and Cape Canaveral Air Force Station, an annual event dedicated to reinforcing safe and healthful behaviors in the workforce.

  2. Space Shuttle Avionics: a Redundant IMU On-Board Checkout and Redundancy Management System

    NASA Technical Reports Server (NTRS)

    Mckern, R. A.; Brown, D. G.; Dove, D. W.; Gilmore, J. P.; Landey, M. E.; Musoff, H.; Amand, J. S.; Vincent, K. T., Jr.

    1972-01-01

    A failure detection and isolation philosophy applicable to multiple off-the-shelf gimbaled IMUs are discussed. The equations developed are implemented and evaluated with actual shuttle trajectory simulations. The results of these simulations are presented for both powered and unpowered flight phases and at operational levels of four, three, and two IMUs. A multiple system checkout philosophy is developed and simulation results presented. The final task develops a laboratory test plan and defines the hardware and software requirements to implement an actual multiple system and evaluate the interim study results for space shuttle application.

  3. Detailed design of a Ride Quality Augmentation System for commuter aircraft

    NASA Technical Reports Server (NTRS)

    Suikat, Reiner; Donaldson, Kent E.; Downing, David R.

    1989-01-01

    The design of a Ride Quality Augmentation System (RQAS) for commuter aircraft is documented. The RQAS is designed for a Cessna 402B, an 8 passenger prop twin representative to this class of aircraft. The purpose of the RQAS is the reduction of vertical and lateral accelerations of the aircraft due to atmospheric turbulence by the application of active control. The detailed design of the hardware (the aircraft modifications, the Ride Quality Instrumentation System (RQIS), and the required computer software) is examined. The aircraft modifications, consisting of the dedicated control surfaces and the hydraulic actuation system, were designed at Cessna Aircraft by Kansas University-Flight Research Laboratory. The instrumentation system, which consist of the sensor package, the flight computer, a Data Acquisition System, and the pilot and test engineer control panels, was designed by NASA-Langley. The overall system design and the design of the software, both for flight control algorithms and ground system checkout are detailed. The system performance is predicted from linear simulation results and from power spectral densities of the aircraft response to a Dryden gust. The results indicate that both accelerations are possible.

  4. Watermarking spot colors in packaging

    NASA Astrophysics Data System (ADS)

    Reed, Alastair; Filler, TomáÅ.¡; Falkenstern, Kristyn; Bai, Yang

    2015-03-01

    In January 2014, Digimarc announced Digimarc® Barcode for the packaging industry to improve the check-out efficiency and customer experience for retailers. Digimarc Barcode is a machine readable code that carries the same information as a traditional Universal Product Code (UPC) and is introduced by adding a robust digital watermark to the package design. It is imperceptible to the human eye but can be read by a modern barcode scanner at the Point of Sale (POS) station. Compared to a traditional linear barcode, Digimarc Barcode covers the whole package with minimal impact on the graphic design. This significantly improves the Items per Minute (IPM) metric, which retailers use to track the checkout efficiency since it closely relates to their profitability. Increasing IPM by a few percent could lead to potential savings of millions of dollars for retailers, giving them a strong incentive to add the Digimarc Barcode to their packages. Testing performed by Digimarc showed increases in IPM of at least 33% using the Digimarc Barcode, compared to using a traditional barcode. A method of watermarking print ready image data used in the commercial packaging industry is described. A significant proportion of packages are printed using spot colors, therefore spot colors needs to be supported by an embedder for Digimarc Barcode. Digimarc Barcode supports the PANTONE spot color system, which is commonly used in the packaging industry. The Digimarc Barcode embedder allows a user to insert the UPC code in an image while minimizing perceptibility to the Human Visual System (HVS). The Digimarc Barcode is inserted in the printing ink domain, using an Adobe Photoshop plug-in as the last step before printing. Since Photoshop is an industry standard widely used by pre-press shops in the packaging industry, a Digimarc Barcode can be easily inserted and proofed.

  5. Hybrid Residual Flexibility/Mass-Additive Method for Structural Dynamic Testing

    NASA Technical Reports Server (NTRS)

    Tinker, M. L.

    2003-01-01

    A large fixture was designed and constructed for modal vibration testing of International Space Station elements. This fixed-base test fixture, which weighs thousands of pounds and is anchored to a massive concrete floor, initially utilized spherical bearings and pendulum mechanisms to simulate Shuttle orbiter boundary constraints for launch of the hardware. Many difficulties were encountered during a checkout test of the common module prototype structure, mainly due to undesirable friction and excessive clearances in the test-article-to-fixture interface bearings. Measured mode shapes and frequencies were not representative of orbiter-constrained modes due to the friction and clearance effects in the bearings. As a result, a major redesign effort for the interface mechanisms was undertaken. The total cost of the fixture design, construction and checkout, and redesign was over $2 million. Because of the problems experienced with fixed-base testing, alternative free-suspension methods were studied, including the residual flexibility and mass-additive approaches. Free-suspension structural dynamics test methods utilize soft elastic bungee cords and overhead frame suspension systems that are less complex and much less expensive than fixed-base systems. The cost of free-suspension fixturing is on the order of tens of thousands of dollars as opposed to millions, for large fixed-base fixturing. In addition, free-suspension test configurations are portable, allowing modal tests to be done at sites without modal test facilities. For example, a mass-additive modal test of the ASTRO-1 Shuttle payload was done at the Kennedy Space Center launch site. In this Technical Memorandum, the mass-additive and residual flexibility test methods are described in detail. A discussion of a hybrid approach that combines the best characteristics of each method follows and is the focus of the study.

  6. Orbit transfer rocket engine technology program

    NASA Technical Reports Server (NTRS)

    Gustafson, N. B.; Harmon, T. J.

    1993-01-01

    An advanced near term (1990's) space-based Orbit Transfer Vehicle Engine (OTVE) system was designed, and the technologies applicable to its construction, maintenance, and operations were developed under Tasks A through F of the Orbit Transfer Rocket Engine Technology Program. Task A was a reporting task. In Task B, promising OTV turbomachinery technologies were explored: two stage partial admission turbines, high velocity ratio diffusing crossovers, soft wear ring seals, advanced bearing concepts, and a rotordynamic analysis. In Task C, a ribbed combustor design was developed. Possible rib and channel geometries were chosen analytically. Rib candidates were hot air tested and laser velocimeter boundary layer analyses were conducted. A channel geometry was also chosen on the basis of laser velocimeter data. To verify the predicted heat enhancement effects, a ribbed calorimeter spool was hot fire tested. Under Task D, the optimum expander cycle engine thrust, performance and envelope were established for a set of OTV missions. Optimal nozzle contours and quick disconnects for modularity were developed. Failure Modes and Effects Analyses, maintenance and reliability studies and component study results were incorporated into the engine system. Parametric trades on engine thrust, mixture ratio, and area ratio were also generated. A control system and the health monitoring and maintenance operations necessary for a space-based engine were outlined in Task E. In addition, combustor wall thickness measuring devices and a fiberoptic shaft monitor were developed. These monitoring devices were incorporated into preflight engine readiness checkout procedures. In Task F, the Integrated Component Evaluator (I.C.E.) was used to demonstrate performance and operational characteristics of an advanced expander cycle engine system and its component technologies. Sub-system checkouts and a system blowdown were performed. Short transitions were then made into main combustor ignition and main stage operation.

  7. X-38 V201 Avionics Architecture

    NASA Technical Reports Server (NTRS)

    Bedos, Thierry; Anderson, Brian L.

    1999-01-01

    The X-38 is an experimental NASA project developing a core human capable spacecraft at a fraction of the cost of any previous human rated vehicle. The first operational derivative developed from the X-38 program will be the International Space Station (ISS) Crew Return Vehicle (CRV). Although the current X-38 vehicles are designed as re-entry vehicles only, the option exists to modify the vehicle for uses as an upward vehicle launched from an expendable launch vehicle or from the X-33 operational derivative. The Operational CRV, that will be derived from the X-38 spaceflight vehicle, will provide an emergency return capability from the International Space Station (ISS). The spacecraft can hold a crew of up to seven inside a pressurized cabin. The CRV is passively delivered to ISS, stays up to three year on-orbit attached to ISS in a passive mode with periodic functional checkout, before separation from ISS, de-orbit, entry and landing. The X-38 Vehicle 201 (V201) is being developed at NASA/JSC to demonstrate key technologies associated with the development of the CRV design. The X-38 flight test will validate the low cost development concept by demonstrating the entire station departure, re-entry, guidance and landing portions of the CRV mission. All new technologies and subsystems proposed for CRV will be validated during either the on orbit checkout or flight phases of the X-38 space flight test. The X-38 subsystems are required to be similar to those subsystems required for the CRV to the greatest extent possible. In many cases, the subsystems are identical to those that will be utilized on the Operational CRV.

  8. The NASA/industry Design Analysis Methods for Vibrations (DAMVIBS) program: McDonnell-Douglas Helicopter Company achievements

    NASA Technical Reports Server (NTRS)

    Toossi, Mostafa; Weisenburger, Richard; Hashemi-Kia, Mostafa

    1993-01-01

    This paper presents a summary of some of the work performed by McDonnell Douglas Helicopter Company under NASA Langley-sponsored rotorcraft structural dynamics program known as DAMVIBS (Design Analysis Methods for VIBrationS). A set of guidelines which is applicable to dynamic modeling, analysis, testing, and correlation of both helicopter airframes and a large variety of structural finite element models is presented. Utilization of these guidelines and the key features of their applications to vibration modeling of helicopter airframes are discussed. Correlation studies with the test data, together with the development and applications of a set of efficient finite element model checkout procedures, are demonstrated on a large helicopter airframe finite element model. Finally, the lessons learned and the benefits resulting from this program are summarized.

  9. KSC-2012-6105

    NASA Image and Video Library

    2012-11-01

    CAPE CANAVERAL, Fla. – The Orion Exploration Flight Test 1 crew module is undergoing proof pressure testing at the Operations and Checkout Building at NASA's Kennedy Space Center in Florida. The test incrementally pressurizes the spacecraft with breathing air and is designed to demonstrate weld strength capability and structural performance at maximum flight operating pressures. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on a Space Launch System rocket. For more information, visit http://www.nasa.gov/orion Photo credit: NASA/Ben Smegelsky

  10. KSC-2012-6103

    NASA Image and Video Library

    2012-11-01

    CAPE CANAVERAL, Fla. – The Orion Exploration Flight Test 1 crew module is undergoing proof pressure testing at the Operations and Checkout Building at NASA's Kennedy Space Center in Florida. The test incrementally pressurizes the spacecraft with breathing air and is designed to demonstrate weld strength capability and structural performance at maximum flight operating pressures. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on a Space Launch System rocket. For more information, visit http://www.nasa.gov/orion Photo credit: NASA/Ben Smegelsky

  11. KSC-2012-6104

    NASA Image and Video Library

    2012-11-01

    CAPE CANAVERAL, Fla. – The Orion Exploration Flight Test 1 crew module is undergoing proof pressure testing at the Operations and Checkout Building at NASA's Kennedy Space Center in Florida. The test incrementally pressurizes the spacecraft with breathing air and is designed to demonstrate weld strength capability and structural performance at maximum flight operating pressures. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on a Space Launch System rocket. For more information, visit http://www.nasa.gov/orion Photo credit: NASA/Ben Smegelsky

  12. The availability of snack food displays that may trigger impulse purchases in Melbourne supermarkets

    PubMed Central

    2012-01-01

    Background Supermarkets play a major role in influencing the food purchasing behaviours of most households. Snack food exposures within these stores may contribute to higher levels of consumption and ultimately to increasing levels of obesity, particularly within socioeconomically disadvantaged neighbourhoods. We aimed to examine the availability of snack food displays at checkouts, end-of-aisle displays and island displays in major supermarket chains in the least and most socioeconomically disadvantaged neighbourhoods of Melbourne. Methods Within-store audits of 35 Melbourne supermarkets. Supermarkets were sampled from the least and most socioeconomically disadvantaged suburbs within 30 km of the Melbourne CBD. We measured the availability of crisps, chocolate, confectionery, and soft drinks (diet and regular) at the checkouts, in end-of-aisle displays, and in island bin displays. Results Snack food displays were most prominent at checkouts with only five stores not having snack foods at 100% of their checkouts. Snack foods were also present at a number of end-of-aisle displays (at both the front (median 38%) and back (median 33%) of store), and in island bin displays (median number of island displays: 7; median total circumference of island displays: 19.4 metres). Chocolate items were the most common snack food item on display. There was no difference in the availability of these snack food displays by neighbourhood disadvantage. Conclusions As a result of the high availability of snack food displays, exposure to snack foods is almost unavoidable in Melbourne supermarkets, regardless of levels of neighbourhood socioeconomic disadvantage. Results of this study could promote awareness of the prominence of unhealthy food items in chain-brand supermarkets outlets. PMID:22420759

  13. KSC-2014-3241

    NASA Image and Video Library

    2014-07-21

    CAPE CANAVERAL, Fla. -- Apollo astronauts and their families tour the astronaut crew quarters in the Operations and Checkout Building at NASA's Kennedy Space Center in Florida. Here, from left, Apollo 11 command module pilot Michael Collins, Apollo 8 and Apollo 13 crew member Jim Lovell, and Apollo 11 moonwalker Buzz Aldrin share a light moment. The tour followed a ceremony renaming the refurbished Operations and Checkout Building for Apollo 11 astronaut Neil Armstrong, the first person to set foot on the moon. Besides housing the crew quarters, the building's high bay is being used to support the agency's new Orion spacecraft and is the same spaceport facility where the Apollo 11 command/service module and lunar module were prepped for the first lunar landing mission in 1969. Orion is designed to take humans farther than they’ve ever gone before, serving as the exploration vehicle that will carry astronauts to deep space and sustain the crew during travel to destinations such as an asteroid or Mars. The visit of the former astronauts was part of NASA's 45th anniversary celebration of the moon landing. As the world watched, Neil Armstrong and Aldrin landed in the moon's Sea of Tranquility aboard the lunar module Eagle on July 20, 1969. Meanwhile, crewmate Collins orbited above in the command module Columbia. For more, visit http://www.nasa.gov/press/2014/july/nasa-honors-historic-first-moon-landing-eyes-first-mars-mission. Photo credit: NASA/Kim Shiflett

  14. KSC-2014-3240

    NASA Image and Video Library

    2014-07-21

    CAPE CANAVERAL, Fla. -- Apollo astronauts and their families tour the astronaut crew quarters in the Operations and Checkout Building at NASA's Kennedy Space Center in Florida. Here, from left, Apollo 11 astronaut Michael Collins, NASA Administrator Charles Bolden, and Apollo 8 and Apollo 13 crew member Jim Lovell share a light moment. The tour followed a ceremony renaming the refurbished Operations and Checkout Building for Apollo 11 astronaut Neil Armstrong, the first person to set foot on the moon. Besides housing the crew quarters, the building's high bay is being used to support the agency's new Orion spacecraft and is the same spaceport facility where the Apollo 11 command/service module and lunar module were prepped for the first lunar landing mission in 1969. Orion is designed to take humans farther than they’ve ever gone before, serving as the exploration vehicle that will carry astronauts to deep space and sustain the crew during travel to destinations such as an asteroid or Mars. The visit of the former astronauts was part of NASA's 45th anniversary celebration of the moon landing. As the world watched, Neil Armstrong and Aldrin landed in the moon's Sea of Tranquility aboard the lunar module Eagle on July 20, 1969. Meanwhile, crewmate Collins orbited above in the command module Columbia. For more, visit http://www.nasa.gov/press/2014/july/nasa-honors-historic-first-moon-landing-eyes-first-mars-mission. Photo credit: NASA/Kim Shiflett

  15. Testing and checkout experiences in the National Transonic Facility since becoming operational

    NASA Technical Reports Server (NTRS)

    Bruce, W. E., Jr.; Gloss, B. B.; Mckinney, L. W.

    1988-01-01

    The U.S. National Transonic Facility, constructed by NASA to meet the national needs for High Reynolds Number Testing, has been operational in a checkout and test mode since the operational readiness review (ORR) in late 1984. During this time, there have been problems centered around the effect of large temperature excursions on the mechanical movement of large components, the reliable performance of instrumentation systems, and an unexpected moisture problem with dry insulation. The more significant efforts since the ORR are reviewed and NTF status concerning hardware, instrumentation and process controls systems, operating constraints imposed by the cryogenic environment, and data quality and process controls is summarized.

  16. KSC-06pd2222

    NASA Image and Video Library

    2006-09-26

    KENNEDY SPACE CENTER, FLA. - NASA officials cut the ribbon to officially reactivate the Operations and Checkout Building's west door as entry to the crew exploration vehicle (CEV) environment. From left are Russell Romanella, director of the ISS Payload and Processing Directorate; Conrad Nagel, consultant for Space Florida; Jim Kennedy, director of KSC; Adrian Lafitte, director of government relations for Lockheed Martin; Mark Jager, program manager of Checkout, Assembly, Payloads Processing Services with Boeing; and Lynda Weatherman, with the Economic Development Commission. During the rest of the decade, KSC will transition from launching space shuttles to launching new vehicles in NASA’s Vision For Space Exploration. Photo credit: NASA/Kim Shiflett

  17. Verifying Data Integrity of Electronically Scanned Pressure Systems at the NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Panek, Joseph W.

    2001-01-01

    The proper operation of the Electronically Scanned Pressure (ESP) System critical to accomplish the following goals: acquisition of highly accurate pressure data for the development of aerospace and commercial aviation systems and continuous confirmation of data quality to avoid costly, unplanned, repeat wind tunnel or turbine testing. Standard automated setup and checkout routines are necessary to accomplish these goals. Data verification and integrity checks occur at three distinct stages, pretest pressure tubing and system checkouts, daily system validation and in-test confirmation of critical system parameters. This paper will give an overview of the existing hardware, software and methods used to validate data integrity.

  18. KSC-00pp1244

    NASA Image and Video Library

    2000-09-06

    The ribbon is cut and the new Checkout and Launch Control System (CLCS) declared operational. Those taking part in the ceremony are (from left) Joseph Rothenberg, NASA Associate Administrator for Space Flight; Pam Gillespie, from Rep. Dave Weldon's office; Roy Bridges, Kennedy Space Center director; Dave King, director of Shuttle Processing; Retha Hart, deputy associate director, Spaceport Technology Management Office; and Ron Dittemore, manager, Space Shuttle Program. The new control room will be used to process the Orbital Maneuvering System pods and Forward Reaction Control System modules at the HMF. This hardware is removed from Space Shuttle orbiters and routinely taken to the HMF for checkout and servicing

  19. KSC00pp1244

    NASA Image and Video Library

    2000-09-06

    The ribbon is cut and the new Checkout and Launch Control System (CLCS) declared operational. Those taking part in the ceremony are (from left) Joseph Rothenberg, NASA Associate Administrator for Space Flight; Pam Gillespie, from Rep. Dave Weldon's office; Roy Bridges, Kennedy Space Center director; Dave King, director of Shuttle Processing; Retha Hart, deputy associate director, Spaceport Technology Management Office; and Ron Dittemore, manager, Space Shuttle Program. The new control room will be used to process the Orbital Maneuvering System pods and Forward Reaction Control System modules at the HMF. This hardware is removed from Space Shuttle orbiters and routinely taken to the HMF for checkout and servicing

  20. 41-D crew leaves operations and checkout building at KSC

    NASA Image and Video Library

    1984-08-30

    41D-3194 (30 Aug 1984)--- The six members of the 41-D Discovery crew leave the operations and checkout building at Kennedy Space to marke their way to Launch Pad 39A and a date with space. Leading the group is Henry W. hartsfield Jr., commander. Michael L. Coats, pilot, is left center. The mission specialists are Steven A. Hawley, second right, Richard M. (Mike) Mullane, right center, and Judith A. Resnik. Charles D. Walker, payload specialist, follows Resnik. Behind the blue-suited crewmembers are George W.S. Abbey, left, director of flight crew operations and John W. Young, chief of the astronaut office.

  1. STS-29 crewmembers leave KSC Operations and Checkout (O&C) Building

    NASA Image and Video Library

    1989-03-13

    STS029-S-024 (13 March 1989) --- The flight crew for NASA's STS-29 mission leave the operations and checkout building en route to the van that will transport them to Launch Pad 39B, where Discovery awaits the astronauts for its second post-Challenge flight. Leading the way is astronaut Michael L. Coats, mission commander. He is followed by astronauts John E. Blaha, pilot; and James F. Buchli, James P. Bagian and Robert C. Springer, all mission specialists. In the background are astronaut Daniel C. Brandenstein, chief of the astronaut office, and Donald R. Puddy, director of flight crew operations.

  2. GOAL - A test engineer oriented language. [Ground Operations Aerospace Language for coding automatic test

    NASA Technical Reports Server (NTRS)

    Mitchell, T. R.

    1974-01-01

    The development of a test engineer oriented language has been under way at the Kennedy Space Center for several years. The result of this effort is the Ground Operations Aerospace Language, GOAL, a self-documenting, high-order language suitable for coding automatic test, checkout and launch procedures. GOAL is a highly readable, writable, retainable language that is easily learned by nonprogramming oriented engineers. It is sufficiently powerful for use at all levels of Space Shuttle ground processing, from line replaceable unit checkout to integrated launch day operations. This paper will relate the language development, and describe GOAL and its applications.

  3. Scanning-time evaluation of Digimarc Barcode

    NASA Astrophysics Data System (ADS)

    Gerlach, Rebecca; Pinard, Dan; Weaver, Matt; Alattar, Adnan

    2015-03-01

    This paper presents a speed comparison between the use of Digimarc® Barcodes and the Universal Product Code (UPC) for customer checkout at point of sale (POS). The recently introduced Digimarc Barcode promises to increase the speed of scanning packaged goods at POS. When this increase is exploited by workforce optimization systems, the retail industry could potentially save billions of dollars. The Digimarc Barcode is based on Digimarc's watermarking technology, and it is imperceptible, very robust, and does not require any special ink, material, or printing processes. Using an image-based scanner, a checker can quickly scan consumer packaged goods (CPG) embedded with the Digimarc Barcode without the need to reorient the packages with respect to the scanner. Faster scanning of packages saves money and enhances customer satisfaction. It reduces the length of the queues at checkout, reduces the cost of cashier labor, and makes self-checkout more convenient. This paper quantifies the increase in POS scanning rates resulting from the use of the Digimarc Barcode versus the traditional UPC. It explains the testing methodology, describes the experimental setup, and analyzes the obtained results. It concludes that the Digimarc Barcode increases number of items per minute (IPM) scanned at least 50% over traditional UPC.

  4. Thermal Design, Tvac Testing, and Lessons Learned for Critical GSE of ATLAS and the ICESat-2 Mission

    NASA Technical Reports Server (NTRS)

    Bradshaw, Heather

    2016-01-01

    This presentation describes the thermal design of the three main of optical components which comprise the Bench Checkout Equipment (BCE) for the Advanced Topographic Laser Altimeter System (ATLAS) instrument, which is flying on the ICESat-2 mission. Thermal vacuum testing of these components is also described in this presentation, as well as a few lessons learned. These BCE components serve as critical GSE for the mission; their purpose is to verify ATLAS is performing well. It has been said that, in one light, the BCE is the most important part of ATLAS, since, without it, ATLAS cannot be aligned properly or its performance verified before flight. Therefore, careful attention was paid to the BCEs thermal design, development, and component-level Tvac testing prior to its use in instrument-level and spacecraft-level Tvac tests with ATLAS. This presentation describes that thermal design, development, and testing, as well as a few lessons learned.

  5. Shuttle Radar Topography Mission (SRTM) Flight System Design and Operations Overview

    NASA Technical Reports Server (NTRS)

    Shen, Yuhsyen; Shaffer, Scott J.; Jordan, Rolando L.

    2000-01-01

    This paper provides an overview of the Shuttle Radar Topography Mission (SRTM), with emphasis on flight system implementation and mission operations from systems engineering perspective. Successfully flown in February, 2000, the SRTM's primary payload consists of several subsystems to form the first spaceborne dual-frequency (C-band and X-band) fixed baseline interferometric synthetic aperture radar (InSAR) system, with the mission objective to acquire data sets over 80% of Earth's landmass for height reconstruction. The paper provides system architecture, unique design features, engineering budgets, design verification, in-flight checkout and data acquisition of the SRTM payload, in particular for the C-band system. Mission operation and post-mission data processing activities are also presented. The complexity of the SRTM as a system, the ambitious mission objective, the demanding requirements and the high interdependency between multi-disciplined subsystems posed many challenges. The engineering experience and the insight thus gained have important implications for future spaceborne interferometric SAR mission design and implementation.

  6. Real-Time Sensor Validation, Signal Reconstruction, and Feature Detection for an RLV Propulsion Testbed

    NASA Technical Reports Server (NTRS)

    Jankovsky, Amy L.; Fulton, Christopher E.; Binder, Michael P.; Maul, William A., III; Meyer, Claudia M.

    1998-01-01

    A real-time system for validating sensor health has been developed in support of the reusable launch vehicle program. This system was designed for use in a propulsion testbed as part of an overall effort to improve the safety, diagnostic capability, and cost of operation of the testbed. The sensor validation system was designed and developed at the NASA Lewis Research Center and integrated into a propulsion checkout and control system as part of an industry-NASA partnership, led by Rockwell International for the Marshall Space Flight Center. The system includes modules for sensor validation, signal reconstruction, and feature detection and was designed to maximize portability to other applications. Review of test data from initial integration testing verified real-time operation and showed the system to perform correctly on both hard and soft sensor failure test cases. This paper discusses the design of the sensor validation and supporting modules developed at LeRC and reviews results obtained from initial test cases.

  7. NASTRAN analysis of Tokamak vacuum vessel using interactive graphics

    NASA Technical Reports Server (NTRS)

    Miller, A.; Badrian, M.

    1978-01-01

    Isoparametric quadrilateral and triangular elements were used to represent the vacuum vessel shell structure. For toroidally symmetric loadings, MPCs were employed across model boundaries and rigid format 24 was invoked. Nonsymmetric loadings required the use of the cyclic symmetry analysis available with rigid format 49. NASTRAN served as an important analysis tool in the Tokamak design effort by providing a reliable means for assessing structural integrity. Interactive graphics were employed in the finite element model generation and in the post-processing of results. It was felt that model generation and checkout with interactive graphics reduced the modelling effort and debugging man-hours significantly.

  8. KSC-2013-3143

    NASA Image and Video Library

    2013-07-26

    CAPE CANAVERAL, Fla. – The Orion crew module for Exploration Flight Test 1 sits inside a clean room processing cell in the Operations and Checkout Building high bay at NASA’s Kennedy Space Center in Florida. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on a Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Jim Grossmann

  9. KSC-2013-3142

    NASA Image and Video Library

    2013-07-26

    CAPE CANAVERAL, Fla. – The Orion crew module for Exploration Flight Test 1 sits inside a clean room processing cell in the Operations and Checkout Building high bay at NASA’s Kennedy Space Center in Florida. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on a Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Jim Grossmann

  10. KSC-99pc26

    NASA Image and Video Library

    1999-01-07

    Loral workers at Astrotech, Titusville, Fla., perform an illumination test for circuitry verification on the solar panel of the GOES-L weather satellite. The satellite is to be launched from Cape Canaveral Air Station aboard an Atlas II rocket in late March. The GOES-L is the fourth of a new advanced series of geostationary weather satellites for the National Oceanic and Atmospheric Administration. It is a three-axis inertially stabilized spacecraft that will provide pictures and perform atmospheric sounding at the same time. Once launched, the satellite, to be designated GOES-11, will undergo checkout and provide backup capabilities for the existing, aging GOES East weather satellite

  11. KSC-99pc30

    NASA Image and Video Library

    1999-01-07

    During an illumination test, a Loral worker at Astrotech, Titusville, Fla., verifies circuitry on the solar panel of the GOES-L weather satellite. The satellite is to be launched from Cape Canaveral Air Station aboard an Atlas II rocket in late March. The GOES-L is the fourth of a new advanced series of geostationary weather satellites for the National Oceanic and Atmospheric Administration. It is a three-axis inertially stabilized spacecraft that will provide pictures and perform atmospheric sounding at the same time. Once launched, the satellite, to be designated GOES-11, will undergo checkout and provide backup capabilities for the existing, aging GOES East weather satellite

  12. KSC-99pc27

    NASA Image and Video Library

    1999-01-07

    A Loral worker at Astrotech, Titusville, Fla., assists with an illumination test for circuitry verification on the solar panel of the GOES-L weather satellite. The satellite is to be launched from Cape Canaveral Air Station aboard an Atlas II rocket in late March. The GOES-L is the fourth of a new advanced series of geostationary weather satellites for the National Oceanic and Atmospheric Administration. It is a three-axis inertially stabilized spacecraft that will provide pictures and perform atmospheric sounding at the same time. Once launched, the satellite, to be designated GOES-11, will undergo checkout and provide backup capabilities for the existing, aging GOES East weather satellite

  13. KSC-99pc28

    NASA Image and Video Library

    1999-01-07

    During an illumination test, a Loral worker at Astrotech, Titusville, Fla., verifies circuitry on the solar panel of the GOES-L weather satellite. The satellite is to be launched from Cape Canaveral Air Station aboard an Atlas II rocket in late March. The GOES-L is the fourth of a new advanced series of geostationary weather satellites for the National Oceanic and Atmospheric Administration. It is a three-axis inertially stabilized spacecraft that will provide pictures and perform atmospheric sounding at the same time. Once launched, the satellite, to be designated GOES-11, will undergo checkout and provide backup capabilities for the existing, aging GOES East weather satellite

  14. KSC00pp0622

    NASA Image and Video Library

    2000-05-03

    Seconds after liftoff, the Atlas II/Centaur rocket carrying the NASA/NOAA weather satellite GOES-L hurtles into space from Pad A at Complex 36 on Cape Canaveral Air Force Station. Liftoff occurred at 3:07 a.m. EDT. The primary objective of the GOES-L is to provide a full capability satellite in an on-orbit storage condition, in order to assure NOAA continuity in services from a two-satellite constellation. Launch services are being provided by the 45th Space Wing. Once in orbit, the spacecraft is to be designated GOES-11 and will complete its 90-day checkout in time for availability during the 2000 hurricane season

  15. KSC00pp0620

    NASA Image and Video Library

    2000-05-03

    The Atlas II/Centaur rocket carrying the NASA/NOAA weather satellite GOES-L casts a luminescent glow as it starts to clear the tower at Pad A, Complex 36, Cape Canaveral Air Force Station. Liftoff occurred at 3:07 a.m. EDT. The primary objective of the GOES-L is to provide a full capability satellite in an on-orbit storage condition, in order to assure NOAA continuity in services from a two-satellite constellation. Launch services are being provided by the 45th Space Wing. Once in orbit, the spacecraft is to be designated GOES-11 and will complete its 90-day checkout in time for availability during the 2000 hurricane season

  16. KSC-00pp0622

    NASA Image and Video Library

    2000-05-03

    Seconds after liftoff, the Atlas II/Centaur rocket carrying the NASA/NOAA weather satellite GOES-L hurtles into space from Pad A at Complex 36 on Cape Canaveral Air Force Station. Liftoff occurred at 3:07 a.m. EDT. The primary objective of the GOES-L is to provide a full capability satellite in an on-orbit storage condition, in order to assure NOAA continuity in services from a two-satellite constellation. Launch services are being provided by the 45th Space Wing. Once in orbit, the spacecraft is to be designated GOES-11 and will complete its 90-day checkout in time for availability during the 2000 hurricane season

  17. KSC-00pp0620

    NASA Image and Video Library

    2000-05-03

    The Atlas II/Centaur rocket carrying the NASA/NOAA weather satellite GOES-L casts a luminescent glow as it starts to clear the tower at Pad A, Complex 36, Cape Canaveral Air Force Station. Liftoff occurred at 3:07 a.m. EDT. The primary objective of the GOES-L is to provide a full capability satellite in an on-orbit storage condition, in order to assure NOAA continuity in services from a two-satellite constellation. Launch services are being provided by the 45th Space Wing. Once in orbit, the spacecraft is to be designated GOES-11 and will complete its 90-day checkout in time for availability during the 2000 hurricane season

  18. Development of the Space Debris Sensor (SDS)

    NASA Technical Reports Server (NTRS)

    Hamilton, Joe; Liou, J. -C.; Anz-Meador, P.; Matney, M.; Christiansen, E.

    2017-01-01

    Debris Resistive/Acoustic Grid Orbital Navy-NASA Sensor (DRAGONS) is an impact sensor designed to detect and characterize collisions with small orbital debris: from 50 microns to greater than 1millimeter debris size detection; Characterizes debris size, speed, direction, and density. The Space Debris Sensor (SDS) is a flight demonstration of DRAGONS on the International Space Station: Approximately 1 square meter of detection area facing the ISS velocity vector; Minimum two year mission on Columbus External Payloads Facility (EPF); Minimal obstruction from ISS hardware; Development is nearing final checkout and integration with the ISS; Current launch schedule is SpaceX13, about September 2017, or SpaceX14, about Jan 2018.

  19. Wind-turbine-performance assessment

    NASA Astrophysics Data System (ADS)

    Vachon, W. A.

    1982-06-01

    An updated summary of recent test data and experiences is reported from both federally and privately funded large wind turbine (WT) development and test programs, and from key WT programs in Europe. Progress and experiences on both the cluster of three MOD-2 2.5-MW WT's, the MOD-1 2-MW WT, and other WT installations are described. An examination of recent test experiences and plans from approximately five privately funded large WT programs in the United States indicates that, during machine checkout and startup, technical problems are identified, which require and startup, a number of technical problems are identified, which will require design changes and create program delays.

  20. Smart sensor technology for advanced launch vehicles

    NASA Astrophysics Data System (ADS)

    Schoess, Jeff

    1989-07-01

    Next-generation advanced launch vehicles will require improved use of sensor data and the management of multisensor resources to achieve automated preflight checkout, prelaunch readiness assessment and vehicle inflight condition monitoring. Smart sensor technology is a key component in meeting these needs. This paper describes the development of a smart sensor-based condition monitoring system concept referred to as the Distributed Sensor Architecture. A significant event and anomaly detection scheme that provides real-time condition assessment and fault diagnosis of advanced launch system rocket engines is described. The design and flight test of a smart autonomous sensor for Space Shuttle structural integrity health monitoring is presented.

  1. A Real-Time Telemetry Simulator of the IUS Spacecraft

    NASA Technical Reports Server (NTRS)

    Drews, Michael E.; Forman, Douglas A.; Baker, Damon M.; Khazoyan, Louis B.; Viazzo, Danilo

    1998-01-01

    A real-time telemetry simulator of the IUS spacecraft has recently entered operation to train Flight Control Teams for the launch of the AXAF telescope from the Shuttle. The simulator has proven to be a successful higher fidelity implementation of its predecessor, while affirming the rapid development methodology used in its design. Although composed of COTS hardware and software, the system simulates the full breadth of the mission: Launch, Pre-Deployment-Checkout, Burn Sequence, and AXAF/IUS separation. Realism is increased through patching the system into the operations facility to simulate IUS telemetry, Shuttle telemetry, and the Tracking Station link (commands and status message).

  2. Economics in ground operations of the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Gray, R. H.

    1973-01-01

    The physical configuration, task versatility, and typical mission profile of the Space Shuttle are illustrated and described, and a comparison of shuttle and expendable rocket costs is discussed, with special emphasis upon savings to be achieved in ground operations. A review of economies achieved by engineering design improvements covers the automated checkout by onboard shuttle systems, the automated launch processing system, the new maintenance concept, and the analogy of Space Shuttle and airline repetitive operations. The Space Shuttle is shown to represent a new level in space flight technology, particularly, the sophistication of the systems and procedures devised for its support and ground operations.

  3. Definition of ground test for Large Space Structure (LSS) control verification

    NASA Technical Reports Server (NTRS)

    Waites, H. B.; Doane, G. B., III; Tollison, D. K.

    1984-01-01

    An overview for the definition of a ground test for the verification of Large Space Structure (LSS) control is given. The definition contains information on the description of the LSS ground verification experiment, the project management scheme, the design, development, fabrication and checkout of the subsystems, the systems engineering and integration, the hardware subsystems, the software, and a summary which includes future LSS ground test plans. Upon completion of these items, NASA/Marshall Space Flight Center will have an LSS ground test facility which will provide sufficient data on dynamics and control verification of LSS so that LSS flight system operations can be reasonably ensured.

  4. ROSAT: An international mission exploring the high energy universe

    NASA Technical Reports Server (NTRS)

    1991-01-01

    ROSAT was designed specifically to detect high energy radiation, by using its telescopes to study x ray and ultraviolet emissions, regions of the electromagnetic spectrum that cannot be seen and that cannot penetrate the Earth's atmosphere. ROSAT is an international astronomical observatory project. ROSAT's science mission is divided into two phases. With its in-orbit checkout period complete, ROSAT has begun phase one of its mission, an all sky survey to map the heavens. When the 6 month mapping survey is complete, the satellite will begin phase two and be pointed at selected objects, studying individual targets, for the remainder of its mission.

  5. KSC-06pd1016

    NASA Image and Video Library

    2006-06-09

    KENNEDY SPACE CENTER, FLA. - Viewed from the NASA News Center, a tug boat in the background maneuvers the Pegasus barge into the turn basin at the Launch Complex 39 Area. The barge holds the redesigned external fuel tank, designated ET-118, that will launch Space Shuttle Atlantis on the next shuttle mission, STS-115. The tank was shipped from the Michoud Assembly Facility in New Orleans. After off-loading, the tank will be moved into the Vehicle Assembly Building and lifted into a checkout cell for further work. The tank will fly with many major safety changes, including the removal of the protuberance air load ramps. Photo credit: NASA/Kim Shiflett

  6. Vehicle health management technology needs

    NASA Technical Reports Server (NTRS)

    Hammond, Walter E.; Jones, W. G.

    1992-01-01

    Background material on vehicle health management (VHM) and health monitoring/control is presented. VHM benefits are described and a list of VHM technology needs that should be pursued is presented. The NASA funding process as it impacts VHM technology funding is touched upon, and the VHM architecture guidelines for generic launch vehicles are described. An example of a good VHM architecture, design, and operational philosophy as it was conceptualized for the National Launch System program is presented. Consideration is given to the Strategic Avionics Technology Working Group's role in VHM, earth-to-orbit, and space vehicle avionics technology development considerations, and some actual examples of VHM benefits for checkout are given.

  7. Initial Operation of the Nuclear Thermal Rocket Element Environmental Simulator

    NASA Technical Reports Server (NTRS)

    Emrich, William J., Jr.; Pearson, J. Boise; Schoenfeld, Michael P.

    2015-01-01

    The Nuclear Thermal Rocket Element Environmental Simulator (NTREES) facility is designed to perform realistic non-nuclear testing of nuclear thermal rocket (NTR) fuel elements and fuel materials. Although the NTREES facility cannot mimic the neutron and gamma environment of an operating NTR, it can simulate the thermal hydraulic environment within an NTR fuel element to provide critical information on material performance and compatibility. The NTREES facility has recently been upgraded such that the power capabilities of the facility have been increased significantly. At its present 1.2 MW power level, more prototypical fuel element temperatures nay now be reached. The new 1.2 MW induction heater consists of three physical units consisting of a transformer, rectifier, and inverter. This multiunit arrangement facilitated increasing the flexibility of the induction heater by more easily allowing variable frequency operation. Frequency ranges between 20 and 60 kHz can accommodated in the new induction heater allowing more representative power distributions to be generated within the test elements. The water cooling system was also upgraded to so as to be capable of removing 100% of the heat generated during testing In this new higher power configuration, NTREES will be capable of testing fuel elements and fuel materials at near-prototypic power densities. As checkout testing progressed and as higher power levels were achieved, several design deficiencies were discovered and fixed. Most of these design deficiencies were related to stray RF energy causing various components to encounter unexpected heating. Copper shielding around these components largely eliminated these problems. Other problems encountered involved unexpected movement in the coil due to electromagnetic forces and electrical arcing between the coil and a dummy test article. The coil movement and arcing which were encountered during the checkout testing effectively destroyed the induction coil in use at the time and resulted in NTREES being out of commission for a couple of months while a new stronger coil was procured. The new coil includes several additional pieces of support structure to prevent coil movement in the future. In addition, new insulating test article support components have been fabricated to prevent unexpected arcing to the test articles. Additional activities are also now underway to address ways in which the radial temperature profiles across test articles may be controlled such that they are more prototypical of what they would encounter in an operating nuclear engine. The causes of the temperature distribution problem are twofold. First, the fuel element test article is isolated in NTREES as opposed to being in the midst of many other mostly identical fuel elements in a nuclear engine. As a result, the fuel element heat flux boundary conditions in NTREES are far from adiabatic as would normally be the case in a reactor. Second, induction heating skews the power distribution such that power is preferentially deposited near the outside of the fuel element. Nuclear heating, conversely, deposits its power much more uniformly throughout the fuel element. Current studies are now looking at various schemes to adjust the amount of thermal radiation emitted from the fuel element surface so as to essentially vary the thermal boundary conditions on the test article. It is hoped that by properly adjusting the thermal boundary conditions on the fuel element test article, it may be possible to substantially correct for the inappropriate radial power distributions resulting from the induction heating so as to yield a more nearly correct temperature distribution throughout the fuel element.

  8. "Lighting the Fire" of Design Conversation.

    ERIC Educational Resources Information Center

    Rowland, Gordon

    1996-01-01

    A design group needs to sift through confusion, come together, and converse as a team before it can be productive in design tasks. At the 1994 Fuschl Conversation on Systems Design, the metaphor of lighting a fire was used to symbolize this coming together; three tables examine the relationships between the metaphor and starting a design…

  9. Managing Risk to Ensure a Successful Cassini/Huygens Saturn Orbit Insertion (SOI)

    NASA Technical Reports Server (NTRS)

    Witkowski, Mona M.; Huh, Shin M.; Burt, John B.; Webster, Julie L.

    2004-01-01

    I. Design: a) S/C designed to be largely single fault tolerant; b) Operate in flight demonstrated envelope, with margin; and c) Strict compliance with requirements & flight rules. II. Test: a) Baseline, fault & stress testing using flight system testbeds (H/W & S/W); b) In-flight checkout & demos to remove first time events. III. Failure Analysis: a) Critical event driven fault tree analysis; b) Risk mitigation & development of contingencies. IV) Residual Risks: a) Accepted pre-launch waivers to Single Point Failures; b) Unavoidable risks (e.g. natural disaster). V) Mission Assurance: a) Strict process for characterization of variances (ISAs, PFRs & Waivers; b) Full time Mission Assurance Manager reports to Program Manager: 1) Independent assessment of compliance with institutional standards; 2) Oversight & risk assessment of ISAs, PFRs & Waivers etc.; and 3) Risk Management Process facilitator.

  10. Assembly and Thermal Hydraulic Test of a Stainless Steel Sodium-Potassium Circuit

    NASA Technical Reports Server (NTRS)

    Garber, A.; Godfroy, T.; Webster, K.

    2007-01-01

    Early Flight Fission Test Facilities (EFF-TF) team has been tasked by the NASA Marshall Space Flight Center Nuclear Systems Office to design, fabricate, and test an actively pumped alkali metal flow circuit. The system was originally built for use with lithium, but due to a shift in focus, it was redesigned for use with a eutectic mixture of sodium potassium (NaK). Basic circuit components include: reactor segment, NaK to gas heat exchanger, electromagnetic (EM) liquid metal pump, load/drain reservoir, expansion reservoir, instrumentation, and a spill reservoir. A 37-pin partial-array core (pin and flow path dimensions are the same as those in a full design) was selected for fabrication and test. This paper summarizes the first fill and checkout testing of the Stainless Steel NaK-Cooled Circuit (SNaKC).

  11. STS-108 Mission Specialist Daniel M. Tani final suit checkout

    NASA Technical Reports Server (NTRS)

    2001-01-01

    STS-108 Mission Specialist Daniel M. Tani final suit checkout KSC-01PD-1717 KENNEDY SPACE CENTER, Fla. - STS-108 Mission Specialist Daniel M. Tani waves as he undergoes final suit check before launch on Nov. 29. Top priorities for the STS-108 (UF-1) mission of Endeavour are rotation of the International Space Station Expedition Three and Expedition Four crews; bringing water, equipment and supplies to the station in the Multi-Purpose Logistics Module Raffaello; and completion of robotics tasks and a spacewalk to install thermal blankets over two pieces of equipment at the bases of the Space Station's solar wings. Liftoff is scheduled for 7:41 p.m. EST.

  12. STS-108 Mission Specialist Linda A. Godwin final suit checkout

    NASA Technical Reports Server (NTRS)

    2001-01-01

    STS-108 Mission Specialist Linda A. Godwin final suit checkout KSC-01PD-1720 KENNEDY SPACE CENTER, Fla. -- STS-108 Mission Specialist Linda A. Godwin undergoes final suit check before launch on mission STS-108 Nov. 29. Top priorities for the STS-108 (UF-1) mission of Endeavour are rotation of the International Space Station Expedition Three and Expedition Four crews; bringing water, equipment and supplies to the station in the Multi-Purpose Logistics Module Raffaello; and completion of robotics tasks and a spacewalk to install thermal blankets over two pieces of equipment at the bases of the Space Station's solar wings. Liftoff is scheduled for 7:41 p.m. EST.

  13. KSC00pp1241

    NASA Image and Video Library

    2000-09-06

    KSC Director Roy Bridges (right) views the new Checkout and Launch Control System (CLCS) at the Hypergolic Maintenance Facility (HMF). Looking on (left to right)are NASA Associate Administrator for Space Flight Joseph Rothenberg, United Space Alliance Lead IPT Frank Norris, KSC Deputy Center Director Jim Jennings, and Deputy Director of External Relations & Business Development Joe Gordon (behind Bridges). At the controls is Charles Novak, HMF programmer, United Space Alliance. The CLCS was declared operational in a ribbon cutting ceremony earlier. The new control room will be used to process the Orbital Maneuvering System pods and Forward Reaction Control System modules at the HMF. This hardware is removed from Space Shuttle orbiters and routinely taken to the HMF for checkout and servicing

  14. KSC-00pp1241

    NASA Image and Video Library

    2000-09-06

    KSC Director Roy Bridges (right) views the new Checkout and Launch Control System (CLCS) at the Hypergolic Maintenance Facility (HMF). Looking on (left to right)are NASA Associate Administrator for Space Flight Joseph Rothenberg, United Space Alliance Lead IPT Frank Norris, KSC Deputy Center Director Jim Jennings, and Deputy Director of External Relations & Business Development Joe Gordon (behind Bridges). At the controls is Charles Novak, HMF programmer, United Space Alliance. The CLCS was declared operational in a ribbon cutting ceremony earlier. The new control room will be used to process the Orbital Maneuvering System pods and Forward Reaction Control System modules at the HMF. This hardware is removed from Space Shuttle orbiters and routinely taken to the HMF for checkout and servicing

  15. KSC-06pd2218

    NASA Image and Video Library

    2006-09-26

    KENNEDY SPACE CENTER, FLA. - A ribbon-cutting at NASA's Kennedy Space Center officially reactivated the Operations and Checkout Building's west door as entry to the crew exploration vehicle environment. At the podium is Russell Romanella, who opened the ceremony. Romanella is director of the ISS Payload and Processing Directorate. Seated at right are Conrad Nagel, consultant for Space Florida; Jim Kennedy, director of KSC; Adrian Lafitte, director of government relations for Lockheed Martin; Mark Jager, program manager of Checkout, Assembly, Payloads Processing Services with Boeing; and Lynda Weatherman, with the Economic Development Commission. During the rest of the decade, KSC will transition from launching space shuttles to launching new vehicles in NASA’s Vision For Space Exploration. Photo credit: NASA/Kim Shiflett

  16. KSC-2014-3238

    NASA Image and Video Library

    2014-07-21

    CAPE CANAVERAL, Fla. -- Apollo astronauts and their families tour the astronaut crew quarters in the Operations and Checkout Building at NASA's Kennedy Space Center in Florida. The tour followed a ceremony renaming the refurbished Operations and Checkout Building for Apollo 11 astronaut Neil Armstrong, the first person to set foot on the moon. Here, Armstrong's grandchildren, Bryce and Lily, in front, make their way into the room. Center Director Robert Cabana talks with Apollo 8 and Apollo 13 crew member Jim Lovell, at left, as NASA Administrator Charles Bolden talks with other Armstrong family members, at right. Besides housing the crew quarters, the building's high bay is being used to support the agency's new Orion spacecraft and is the same spaceport facility where the Apollo 11 command/service module and lunar module were prepped for the first lunar landing mission in 1969. Orion is designed to take humans farther than they’ve ever gone before, serving as the exploration vehicle that will carry astronauts to deep space and sustain the crew during travel to destinations such as an asteroid or Mars. The ceremony was part of NASA's 45th anniversary celebration of the Apollo 11 moon landing. As the world watched, Neil Armstrong and Buzz Aldrin landed in the moon's Sea of Tranquility on July 20, 1969, aboard the lunar module Eagle. Meanwhile, crewmate Michael Collins orbited above in the command module Columbia. For more, visit http://www.nasa.gov/press/2014/july/nasa-honors-historic-first-moon-landing-eyes-first-mars-mission. Photo credit: NASA/Kim Shiflett

  17. KSC-2013-3810

    NASA Image and Video Library

    2013-09-20

    CAPE CANAVERAL, Fla. – Inside the Operations and Checkout Building high bay at NASA’s Kennedy Space Center in Florida, technicians work on the service module bulkhead wiring for the Orion spacecraft. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Jim Grossmann

  18. KSC-2013-3801

    NASA Image and Video Library

    2013-09-27

    CAPE CANAVERAL, Fla. – Inside the Operations and Checkout Building high bay at NASA’s Kennedy Space Center in Florida, a technician prepares the forward bay cover for the Orion crew module. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Dimitri Gerondidakis

  19. KSC-2013-3811

    NASA Image and Video Library

    2013-09-20

    CAPE CANAVERAL, Fla. – Inside the Operations and Checkout Building high bay at NASA’s Kennedy Space Center in Florida, a technician works on the service module bulkhead wiring for the Orion spacecraft. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Jim Grossmann

  20. KSC-2013-3800

    NASA Image and Video Library

    2013-09-27

    CAPE CANAVERAL, Fla. – Inside the Operations and Checkout Building high bay at NASA’s Kennedy Space Center in Florida, a technician prepares the forward bay cover for the Orion crew module. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Dimitri Gerondidakis

  1. KSC-99pc19

    NASA Image and Video Library

    1999-01-05

    The solar panels on the GOES-L weather satellite are fully deployed. Final testing of the imaging system, instrumentation, communications and power systems also will be performed at the Astrotech facility, Titusville, Fla. The satellite is to be launched from Cape Canaveral Air Station (CCAS) aboard an Atlas II rocket in late March. The GOES-L is the fourth of a new advanced series of geostationary weather satellites for the National Oceanic and Atmospheric Administration. It is a three-axis inertially stabilized spacecraft that will provide pictures and perform atmospheric sounding at the same time. Once launched, the satellite, to be designated GOES-11, will undergo checkout and provide backup capabilities for the existing, aging GOES East weather satellite

  2. KSC-99pc22

    NASA Image and Video Library

    1999-01-05

    At Astrotech, in Titusville, Fla., Loral workers check trim tab deployment on the GOES-L weather satellite. Other tests to be performed are the imaging system, instrumentation, communications and power systems. The satellite is to be launched from Cape Canaveral Air Station aboard a Lockheed Martin Atlas II rocket in late March. The GOES-L is the fourth of a new advanced series of geostationary weather satellites for the National Oceanic and Atmospheric Administration. It is a three-axis inertially stabilized spacecraft that will provide pictures and perform atmospheric sounding at the same time. Once launched, the satellite, to be designated GOES-11, will undergo checkout and provide backup capabilities for the existing, aging GOES East weather satellite

  3. KSC-99pc21

    NASA Image and Video Library

    1999-01-05

    At Astrotech, in Titusville, Fla., Loral workers check trim tab deployment on the GOES-L weather satellite. Other tests to be performed are the imaging system, instrumentation, communications and power systems. The satellite is to be launched from Cape Canaveral Air Station aboard a Lockheed Martin Atlas II rocket in late March. The GOES-L is the fourth of a new advanced series of geostationary weather satellites for the National Oceanic and Atmospheric Administration. It is a three-axis inertially stabilized spacecraft that will provide pictures and perform atmospheric sounding at the same time. Once launched, the satellite, to be designated GOES-11, will undergo checkout and provide backup capabilities for the existing, aging GOES East weather satellite

  4. KSC-99pc29

    NASA Image and Video Library

    1999-01-07

    Workers (right) at Astrotech, Titusville, Fla., arrange the lights for an illumination test on the solar panel of the GOES-L weather satellite. The test is verifying the circuitry on the panel. The satellite is to be launched from Cape Canaveral Air Station aboard an Atlas II rocket in late March. The GOES-L is the fourth of a new advanced series of geostationary weather satellites for the National Oceanic and Atmospheric Administration. It is a three-axis inertially stabilized spacecraft that will provide pictures and perform atmospheric sounding at the same time. Once launched, the satellite, to be designated GOES-11, will undergo checkout and provide backup capabilities for the existing, aging GOES East weather satellite

  5. Initial accomplishments of the Environmental Control and Life Support System (ECLSS) atmosphere revitalization (AR) predevelopment operational system test (POST) for the Space Station Freedom (SSF)

    NASA Technical Reports Server (NTRS)

    Dunn, Kevin H.; Bulgajewski, Peter J.

    1992-01-01

    Initial results of the integrated AR POST conducted by Boeing at Marshall Space Flight Center in 1992 are presented. The three baselined ECLSS Man Tended Capability AR assemblies were integrated and operated in a closed door chamber in which the internal atmosphere was monitored. The test provides a prerequisite checkout of the AR subsystem in preparation for longer duration tests in which the AR subsystem will be integrated with the Water Recovery Management subsystem. The integrated AR POST will serve as an early test bed to evaluate the integration of the space station ECLSS AR subsystem during design maturation.

  6. KSC-2009-1939

    NASA Image and Video Library

    2009-03-03

    CAPE CANAVERAL, Fla. – In the Astrotech payload processing facility in Titusville, Fla., the latest Geostationary Operational Environmental Satellite, or GOES, is lowered onto the floor. Developed by NASA for the National Oceanic and Atmospheric Administration, or NOAA, the GOES-O satellite is targeted to launch April 28 onboard a United Launch Alliance Delta IV expendable launch vehicle. Once in orbit, GOES-O will be designated GOES-14, and NASA will provide on-orbit checkout and then transfer operational responsibility to NOAA. GOES-O will be placed in on-orbit storage as a replacement for an older GOES satellite. The satellite will undergo final testing of the imaging system, instrumentation, communications and power systems. Photo credit: NASA/Kim Shiflett

  7. KSC-2009-1938

    NASA Image and Video Library

    2009-03-03

    CAPE CANAVERAL, Fla. – The latest Geostationary Operational Environmental Satellite, or GOES, is lifted from the transporter and moved into the Astrotech payload processing facility in Titusville, Fla. Developed by NASA for the National Oceanic and Atmospheric Administration, or NOAA, the GOES-O satellite is targeted to launch April 28 onboard a United Launch Alliance Delta IV expendable launch vehicle. Once in orbit, GOES-O will be designated GOES-14, and NASA will provide on-orbit checkout and then transfer operational responsibility to NOAA. GOES-O will be placed in on-orbit storage as a replacement for an older GOES satellite. The satellite will undergo final testing of the imaging system, instrumentation, communications and power systems. Photo credit: NASA/Kim Shiflett

  8. KSC-2014-4117

    NASA Image and Video Library

    2014-09-25

    CAPE CANAVERAL, Fla. – NASA astronaut Rick Mastracchio takes questions on the execution of the Slosh experiment from employees attending the Launch Services Program's All Hands meeting in the Neil Armstrong Operations and Checkout Building Mission Briefing Room at NASA's Kennedy Space Center in Florida. An Expedition 38/39 crew member, Mastracchio launched to the station from the Baikonur Cosmodrome in Kazakhstan on Nov. 6, 2013, and returned to Earth on May 13, 2014, after 188 days in space. To read Mastracchio's biography, visit http://www.jsc.nasa.gov/Bios/htmlbios/mastracc.html. For more information on the Slosh experiment, visit http://www.nasa.gov/content/slosh-experiment-designed-to-improve-rocket-safety-efficiency/. Photo credit: NASA/Daniel Casper

  9. KSC-2014-4115

    NASA Image and Video Library

    2014-09-25

    CAPE CANAVERAL, Fla. – NASA astronaut Rick Mastracchio recounts his experiences conducting the Slosh experiment on the International Space Station to employees attending the Launch Services Program's All Hands meeting in the Neil Armstrong Operations and Checkout Building Mission Briefing Room at NASA's Kennedy Space Center in Florida. An Expedition 38/39 crew member, Mastracchio launched to the station from the Baikonur Cosmodrome in Kazakhstan on Nov. 6, 2013, and returned to Earth on May 13, 2014, after 188 days in space. To read Mastracchio's biography, visit http://www.jsc.nasa.gov/Bios/htmlbios/mastracc.html. For more information on the Slosh experiment, visit http://www.nasa.gov/content/slosh-experiment-designed-to-improve-rocket-safety-efficiency/. Photo credit: NASA/Daniel Casper

  10. The solar panels on the GOES-L satellite are deployed

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Loral workers at Astrotech, Titusville, Fla., deploy one of the solar panels of the GOES-L weather satellite, to be launched from Cape Canaveral Air Station (CCAS) aboard an Atlas II rocket in late March. The GOES-L is the fourth of a new advanced series of geostationary weather satellites for the National Oceanic and Atmospheric Administration. It is a three-axis inertially stabilized spacecraft that will provide pictures and perform atmospheric sounding at the same time. Once launched, the satellite, to be designated GOES-11, will undergo checkout and provide backup capabilities for the existing, aging GOES East weather satellite.

  11. The solar panels on the GOES-L satellite are deployed

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Loral workers at Astrotech, Titusville, Fla., check out the solar panels of the GOES-L weather satellite, to be launched from Cape Canaveral Air Station (CCAS) aboard an Atlas II rocket in late March. The GOES-L is the fourth of a new advanced series of geostationary weather satellites for the National Oceanic and Atmospheric Administration. It is a three-axis inertially stabilized spacecraft that will provide pictures and perform atmospheric sounding at the same time. Once launched, the satellite, to be designated GOES-11, will undergo checkout and provide backup capabilities for the existing, aging GOES East weather satellite.

  12. Mobile LNG (liquified natural gas) gelator. Final report, July 1980-September 1981

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rudnicki, M.I.; Hoffman, L.C.; Newton, R.A.

    1981-12-01

    Gelled liquified natural gas (GELNG) offers potential safety advantages over LNG in the case of an accidental spill. GELNG has shown reduced spread area, lower vaporization rate, and crack sealing capability relative to the ungelled material. The purpose of this contract was to develop a mobile, continuous gelator which would produce a minimum of one cubic meter per hour of GELNG; previously, GELNG had been produced in small quantities by batch processes. Major achievements under the contract were the design and construction of the mobile gelator, checkout of the system with liquid nitrogen, and testing of the system on LNG.more » GELNG was not produced in the test series.« less

  13. KSC-98pc1235

    NASA Image and Video Library

    1998-10-03

    KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), a technician begins testing on the Mars Polar Lander. The checkout includes a functional test of the science instruments and the basic spacecraft subsystems. The Mars Polar Lander is targeted for launch from Cape Canaveral Air Station aboard a Delta II rocket on Jan. 3, 1999. The solar-powered spacecraft is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere

  14. A GNC Perspective of the Launch and Commissioning of NASA's SMAP (Soil Moisture Active Passive) Spacecraft

    NASA Technical Reports Server (NTRS)

    Brown, Todd S.

    2016-01-01

    The NASA Soil Moisture Active Passive (SMAP) spacecraft was designed to use radar and radiometer measurements to produce global soil moisture measurements every 2-3 days. The SMAP spacecraft is a complicated dual-spinning design with a large 6 meter deployable mesh reflector mounted on a platform that spins at 14.6 rpm while the Guidance Navigation and Control algorithms maintain precise nadir pointing for the de-spun portion of the spacecraft. After launching in early 2015, the Guidance Navigation and Control software and hardware aboard the SMAP spacecraft underwent an intensive spacecraft checkout and commissioning period. This paper describes the activities performed by the Guidance Navigation and Control team to confirm the health and phasing of subsystem hardware and the functionality of the guidance and control modes and algorithms. The operations tasks performed, as well as anomalies that were encountered during the commissioning, are explained and results are summarized.

  15. On-Orbit Performance of the TRMM Mission Mode

    NASA Technical Reports Server (NTRS)

    Robertson, Brent; Placanica, Sam; Morgenstern, Wendy; Hashmall, Joseph A.; Glickman, Jonathan; Natanson, Gregory

    1999-01-01

    This paper presents an overview of the Tropical Rainfall Measuring Mission (TRMM) Attitude Control System along with detailed in-flight performance results of the TRMM Mission mode. The TRMM spacecraft is an Earth-pointed, zero momentum bias satellite launched on November 27, 1997 from Tanegashima Space Center, Japan. TRMM is a joint mission between NASA and the National Space Development Agency of Japan designed to monitor and study tropical rainfall and the associated release of energy. Prior to calibration, the spacecraft attitude showed larger Sun sensor yaw updates than expected. This was traced to not just sensor misalignment but also to a misalignment between the two heads within each Sun sensor. In order to avoid alteration of the flight software, Sun sensor transfer function coefficients were determined to minimize the error due to head misalignment. This paper describes the design, on-orbit checkout, calibration and performance of the TRMM Mission Mode with respect to the mission level requirements.

  16. International Space Station USOS Crew Quarters On-orbit vs Design Performance Comparison

    NASA Technical Reports Server (NTRS)

    Broyan, James Lee, Jr.; Borrego, Melissa Ann; Bahr, Juergen F.

    2008-01-01

    The International Space Station (ISS) United States Operational Segment (USOS) received the first two permanent ISS Crew Quarters (CQ) on Utility Logistics Flight Two (ULF2) in November 2008. Up to four CQs can be installed into the Node 2 element to increase the ISS crewmember size to six. The CQs provide private crewmember space with enhanced acoustic noise mitigation, integrated radiation reduction material, communication equipment, redundant electrical systems, and redundant caution and warning systems. The racksized CQ is a system with multiple crewmember restraints, adjustable lighting, controllable ventilation, and interfaces that allow each crewmember to personalize their CQ workspace. The deployment and initial operational checkout during integration of the ISS CQ to the Node is described. Additionally, the comparison of on-orbit to original design performance is outlined for the following key operational parameters: interior acoustic performance, air flow rate, temperature rise, and crewmember feedback on provisioning and restraint layout.

  17. Launch processing system transition from development to operation

    NASA Technical Reports Server (NTRS)

    Paul, H. C.

    1977-01-01

    The Launch Processing System has been under development at Kennedy Space Center since 1973. A prototype system was developed and delivered to Marshall Space Flight Center for Solid Rocket Booster checkout in July 1976. The first production hardware arrived in late 1976. The System uses a distributed computer network for command and monitoring and is supported by a dual large scale computer system for 'off line' processing. A high level of automation is anticipated for Shuttle and Payload testing and launch operations to gain the advantages of short turnaround capability, repeatability of operations, and minimization of operations and maintenance (O&M) manpower. Learning how to efficiently apply the system is our current problem. We are searching for more effective ways to convey LPS system performance characteristics from the designer to a large number of users. Once we have done this, we can realize the advantages of LPS system design.

  18. Current status and some future test directions for the U.S. National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Gloss, Blair B.

    1992-01-01

    The construction of the National Transonic Facility was completed in September 1982 and the start-up and checkout of the tunnel systems were performed over the following two years. In August 1984, the facility was declared operational for final checkout of cryogenic instrumentation and control systems, and for the aerodynamics calibration and testing to commence. Since 1984 several operational problems have been identified and successfully solved which is demonstrated by the fact that the facility has operated the last year with no significant facility down times. Also during this time period, development of test techniques and instrumentation has continued. This paper will review some of the recent test techniques and instrumentation developments, and will briefly review the status of the facility.

  19. Launch and on-orbit checkout of Aquarius/SAC-D Observatory: an international remote sensing satellite mission measuring sea surface salinity

    NASA Astrophysics Data System (ADS)

    Sen, Amit; Caruso, Daniel; Durham, David; Falcon, Carlos

    2011-11-01

    The Aquarius/SAC-D observatory was launch in June 2011 from Vandenberg Air Force Base (VAFB), in California, USA. This mission is the fourth joint earth-observation endeavor between NASA and CONAE. The primary objective of the Aquarius/SAC-D mission is to investigate the links between global water cycle, ocean circulation and climate by measuring Sea Surface Salinity (SSS). Over the last year, the observatory successfully completed system level environmental and functional testing at INPE, Brazil and was transported to VAFB for launch operations. This paper will present the challenges of this mission, the system, the preparation of the spacecraft, instruments, testing, launch, inorbit checkout and commissioning of this Observatory in space.

  20. Bench Checkout of InSight's Seismometer Instrument

    NASA Image and Video Library

    2017-08-28

    The Seismic Experiment for Interior Structure (SEIS) instrument for NASA's InSight mission to Mars undergoes a checkout for the spacecraft's assembly, test and launch operations (ATLO) in this photo taken July 20, 2017, in a Lockheed Martin clean room facility in Littleton, Colorado. The SEIS was provided by France's national space agency (CNES) with collaboration from the United States, the United Kingdom, Switzerland and Germany. The InSight mission (for Interior Exploration using Seismic Investigations, Geodesy and Heat Transport) is scheduled to launch in May 2018 and land on Mars Nov. 26, 2018. It will investigate processes that formed and shaped Mars and will help scientists better understand the evolution of our inner solar system's rocky planets, including Earth. https://photojournal.jpl.nasa.gov/catalog/PIA21846

  1. Simulation verification techniques study

    NASA Technical Reports Server (NTRS)

    Schoonmaker, P. B.; Wenglinski, T. H.

    1975-01-01

    Results are summarized of the simulation verification techniques study which consisted of two tasks: to develop techniques for simulator hardware checkout and to develop techniques for simulation performance verification (validation). The hardware verification task involved definition of simulation hardware (hardware units and integrated simulator configurations), survey of current hardware self-test techniques, and definition of hardware and software techniques for checkout of simulator subsystems. The performance verification task included definition of simulation performance parameters (and critical performance parameters), definition of methods for establishing standards of performance (sources of reference data or validation), and definition of methods for validating performance. Both major tasks included definition of verification software and assessment of verification data base impact. An annotated bibliography of all documents generated during this study is provided.

  2. The preliminary checkout, evaluation and calibration of a 3-component force measurement system for calibrating propulsion simulators for wind tunnel models

    NASA Technical Reports Server (NTRS)

    Scott, W. A.

    1984-01-01

    The propulsion simulator calibration laboratory (PSCL) in which calibrations can be performed to determine the gross thrust and airflow of propulsion simulators installed in wind tunnel models is described. The preliminary checkout, evaluation and calibration of the PSCL's 3 component force measurement system is reported. Methods and equipment were developed for the alignment and calibration of the force measurement system. The initial alignment of the system demonstrated the need for more efficient means of aligning system's components. The use of precision alignment jigs increases both the speed and accuracy with which the system is aligned. The calibration of the force measurement system shows that the methods and equipment for this procedure can be successful.

  3. Speckle Interferometry of Four Close Binaries: First Results of the Tierra Astronomical Institute Telescope

    NASA Astrophysics Data System (ADS)

    Wasson, Rick; Goldbaum, Jesse; Boyce, Pat; Harwell, Robert; Hillburn, Jerry; Rowe, Dave; Sadjadi, Sina; Westergren, Donald; Genet, Russell

    2017-04-01

    This paper documents first use for speckle interferometry of the Tierra Astronomical Institute’s 24-inch telescope, located at Terra Del Sol, some 60-miles east of San Diego, CA. Measurements are reported for four close binary systems - STF2173AB, D15, STF2205, and HSD2685 - observed over the weekend of July 1-3, 2016. The objectives of this engineering checkout run were to evaluate the integration of the telescope and ZWO ASI 290MM high speed CMOS camera, and to establish observational procedures for future speckle observations, including those made with advanced high school and college student researchers. Difficulties encountered in the checkout are described, along with suggestions for overcoming them in the next run.

  4. Development of Advanced Czochralski Growth Process to produce low cost 150 KG silicon ingots from a single crucible for technology readiness

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The modified CG2000 crystal grower construction, installation, and machine check-out was completed. The process development check-out proceeded with several dry runs and one growth run. Several machine calibrations and functional problems were discovered and corrected. Several exhaust gas analysis system alternatives were evaluated and an integrated system approved and ordered. A contract presentation was made at the Project Integration Meeting at JPL, including cost-projections using contract projected throughput and machine parameters. Several growth runs on a development CG200 RC grower show that complete neck, crown, and body automated growth can be achieved with only one operator input. Work continued for melt level, melt temperature, and diameter sensor development.

  5. Using Modern Design Tools for Digital Avionics Development

    NASA Technical Reports Server (NTRS)

    Hyde, David W.; Lakin, David R., II; Asquith, Thomas E.

    2000-01-01

    Using Modem Design Tools for Digital Avionics Development Shrinking development time and increased complexity of new avionics forces the designer to use modem tools and methods during hardware development. Engineers at the Marshall Space Flight Center have successfully upgraded their design flow and used it to develop a Mongoose V based radiation tolerant processor board for the International Space Station's Water Recovery System. The design flow, based on hardware description languages, simulation, synthesis, hardware models, and full functional software model libraries, allowed designers to fully simulate the processor board from reset, through initialization before any boards were built. The fidelity of a digital simulation is limited to the accuracy of the models used and how realistically the designer drives the circuit's inputs during simulation. By using the actual silicon during simulation, device modeling errors are reduced. Numerous design flaws were discovered early in the design phase when they could be easily fixed. The use of hardware models and actual MIPS software loaded into full functional memory models also provided checkout of the software development environment. This paper will describe the design flow used to develop the processor board and give examples of errors that were found using the tools. An overview of the processor board firmware will also be covered.

  6. GSDO PDR (Preliminary Design Review) Morning Meeting

    NASA Image and Video Library

    2014-03-20

    CAPE CANAVERAL, Fla. – The Ground Systems Development and Operations, or GSDO, Program completed its preliminary design review which allows development of the ground systems to proceed to detailed design. Representatives from NASA, its contractor partners and experts from across the aerospace industry met in the Mission Briefing Room inside the Operations and Checkout Building at NASA’s Kennedy Space Center in Florida to conclude the initial design and technology development phase. Completion of this review has validated that the baseline architecture is sound and aligns with the agency's exploration objectives. NASA is developing the Space Launch System and Orion spacecraft to provide an entirely new capability for human exploration beyond low-Earth orbit, with the flexibility to launch spacecraft for crew and cargo missions, including to an asteroid and Mars. Orion’s first unpiloted test flight is scheduled to launch later this year atop a Delta IV rocket. A second uncrewed flight test is scheduled for fiscal year 2018 on the Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Cory Huston

  7. Designing "Interaction": How Do Interaction Design Students Address Interaction?

    ERIC Educational Resources Information Center

    Karlgren, Klas; Ramberg, Robert; Artman, Henrik

    2016-01-01

    Interaction design is usually described as being concerned with interactions with and through artifacts but independent of a specific implementation. Design work has been characterized as a conversation between the designer and the situation and this conversation poses a particular challenge for interaction design as interactions can be elusive…

  8. Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbons: Dilute-Acid and Enzymatic Deconstruction of Biomass to Sugars and Biological Conversion of Sugars to Hydrocarbons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, R.; Tao, L.; Tan, E. C. D.

    2013-10-01

    This report describes one potential conversion process to hydrocarbon products by way of biological conversion of lingnocellulosic-dervied sugars. The process design converts biomass to a hydrocarbon intermediate, a free fatty acid, using dilute-acid pretreatement, enzymatic saccharification, and bioconversion. Ancillary areas--feed handling, hydrolysate conditioning, product recovery and upgrading (hydrotreating) to a final blendstock material, wastewater treatment, lignin combusion, and utilities--are also included in the design.

  9. In-Flight Operation of the Dawn Ion Propulsion System - The First Nine Months

    NASA Technical Reports Server (NTRS)

    Garner, Charles E.; Brophy, John R.; Mikes, Steven C.; Raymond, Marc D.

    2008-01-01

    The Dawn mission, part of NASA's Discovery Program, has as its goal the scientific exploration of the two most massive main-belt asteroids, Vesta and Ceres. The Dawn spacecraft was launched from Cape Canaveral Air Force Station on September 27, 2007 on a Delta-II 7925H-9.5 (Delta-II Heavy) rocket that placed the 1218 kg spacecraft into an Earth-escape trajectory. On-board the spacecraft is an ion propulsion system (IPS) which will provide most of the delta-V needed for heliocentric transfer to Vesta, orbit capture at Vesta, transfer to Vesta science orbits, departure and escape from Vesta, heliocentric transfer to Ceres, orbit capture at Ceres, and transfer to Ceres science orbits. The Dawn ion engine design is based on the design validated on NASA's Deep Space 1 mission. However, because of the very substantial (11 km/s) delta-V requirements for this mission Dawn requires two engines to complete its mission objectives. The power processor units (PPU), digital control and interface units (DCIU) slice boards and the xenon control assembly (XCA) are also based on the DS1 design. The DCIUs and thrust gimbal assemblies (TGA) were developed at the Jet Propulsion Laboratory. The spacecraft was provided by Orbital Sciences Corporation, Sterling, Virginia, and the mission is managed by and operated from the Jet Propulsion Laboratory. Dawn partnered with Germany, Italy and Los Alamos National Laboratory for the science instruments. The mission is led by the principal investigator, Dr. Christopher Russell, from the University of California, Los Angeles. The first 80 days after launch were dedicated to the initial checkout of the spacecraft prior to the initiation of long-term thrusting for the heliocentric transfer to Vesta. The IPS hardware, consisting of three ion thrusters and TGAs, two PPUs and DCIUs, xenon feed system, and spacecraft control software, was investigated extensively. Thrust measurements, roll torque measurements, pointing capabilities, control characteristics, and thermal behavior of the spacecraft and IPS were carefully evaluated. The Dawn IPS fully met all its initial checkout performance objectives. Deterministic thrusting for cruise began on December 17, 2007. Over the subsequent approximately 330 days the IPS will be operated virtually continuously at full power thrusting (approximately 91 mN) leading to a Mars flyby in February 2009. The encounter with Mars provides a gravity assist for a plane change and is the only source of post-launch delta-V apart from the IPS. Following the Mars gravity assist IPS will be operated for approximately one year at full power and for 1.3 years at throttled power levels leading to rendezvous with Vesta in August of 2011. Following nine months of orbital operations with IPS providing the propulsion needed for orbit capture, science orbit transfer and orbit maintenance and Vesta escape, Dawn will transit to Ceres with an expected arrival date of February 2015. As of June 16, 2008 the ion thrusters on Dawn have operated for close to 3,846 hours and have delivered nearly 1 km/s of delta-V to the spacecraft. Dawn IPS operation has been almost flawless during the initial checkout and six months of cruise. This paper provides an overview of Dawn's mission objectives, mission and system design, and the results of the post-launch Dawn IPS mission operations through June 2008

  10. Pathfinder aircraft flight #1

    NASA Image and Video Library

    1996-11-19

    The Pathfinder solar-powered research aircraft is silhouetted against a clear blue sky as it soars aloft during a checkout flight from the Dryden Flight Research Center, Edwards, California, November, 1996.

  11. Ergonomics

    MedlinePlus

    ... work might include Adjusting the position of your computer keyboard to prevent carpal tunnel syndrome Being sure ... whether it is sitting in front of a computer, standing at a checkout, or walking around a ...

  12. Requirements' Role in Mobilizing and Enabling Design Conversation

    NASA Astrophysics Data System (ADS)

    Bergman, Mark

    Requirements play a critical role in a design conversation of systems and products. Product and system design exists at the crossroads of problems, solutions and requirements. Requirements contextualize problems and solutions, pointing the way to feasible outcomes. These are captured with models and detailed specifications. Still, stakeholders need to be able to understand one-another using shared design representations in order to mobilize bias and transform knowledge towards legitimized, desired results. Many modern modeling languages, including UML, as well as detailed, logic-based specifications are beyond the comprehension of key stakeholders. Hence, they inhibit, rather than promote design conversation. Improved design boundary objects (DBO), especially design requirements boundary objects (DRBO), need to be created and refined to improve the communications between principals. Four key features of design boundary objects that improve and promote design conversation are discussed in detail. A systems analysis and design case study is presented which demonstrates these features in action. It describes how a small team of analysts worked with key stakeholders to mobilize and guide a complex system design discussion towards an unexpected, yet desired outcome within a short time frame.

  13. Video-CRM: understanding customer behaviors in stores

    NASA Astrophysics Data System (ADS)

    Haritaoglu, Ismail; Flickner, Myron; Beymer, David

    2013-03-01

    This paper describes two real-time computer vision systems created 10 years ago that detect and track people in stores to obtain insights of customer behavior while shopping. The first system uses a single color camera to identify shopping groups in the checkout line. Shopping groups are identified by analyzing the inter-body distances coupled with the cashier's activities to detect checkout transactions start and end times. The second system uses multiple overhead narrow-baseline stereo cameras to detect and track people, their body posture and parts to understand customer interactions with products such as "customer picking a product from a shelf". In pilot studies both systems demonstrated real-time performance and sufficient accuracy to enable more detailed understanding of customer behavior and extract actionable real-time retail analytics.

  14. Delta clipper lessons learned for increased operability in reusable space vehicles

    NASA Astrophysics Data System (ADS)

    Charette, Ray O.; Steinmeyer, Don A.; Smiljanic, Ray R.

    1998-01-01

    Important lessons were learned from the design, development, and test (DD&T), and operation of the Delta Clipper Experimental (DC-X/XA) Reusable Launch Vehicle (RLV) which apply to increased operability for the operational Reusable Space Vehicles (RSVs). Boeing maintains a continuous process improvement program that provides the opportunity to ``institutionalize'' the results from projects such as Delta Clipper for application to product improvement in future programs. During the design phase, operations and supportability (O&S) were emphasized to ensure aircraft-like operations, traceable to an operational RSV. The operations personnel, flight, and ground crew and crew chief were actively involved in the design, manufacture, and checkout of the systems. Changes and additions to capability were implemented as they evolved from knowledge gained in each phase of development. This paper presents key lessons learned with respect to design and implementation of flight systems, propulsion, airframe, hydraulics, avionics, and ground operations. Information was obtained from discussions with personnel associated with this program concerning their experience and lessons learned. Additionally, field process records and operations timelines were evaluated for applicability to RSVs. The DC-X program pursued reusability in all aspects of the design, a unique approach in rocket system development.

  15. Full-Scale System for Quantifying Leakage of Docking System Seals for Space Applications

    NASA Technical Reports Server (NTRS)

    Dunlap, Patrick H., Jr.; Daniels, Christopher C.; Steinetz, Bruce M.; Erker, Arthur H.; Robbie, Malcolm G.; Wasowski, Janice L.; Drlik, Gary J.; Tong, Michael T.; Penney, Nicholas

    2007-01-01

    NASA is developing a new docking and berthing system to support future space exploration missions to low-Earth orbit, the Moon, and Mars. This mechanism, called the Low Impact Docking System, is designed to connect pressurized space vehicles and structures. NASA Glenn Research Center is playing a key role in developing advanced technology for the main interface seal for this new docking system. The baseline system is designed to have a fully androgynous mating interface, thereby requiring a seal-on-seal configuration when two systems mate. These seals will be approximately 147 cm (58 in.) in diameter. NASA Glenn has designed and fabricated a new test fixture which will be used to evaluate the leakage of candidate full-scale seals under simulated thermal, vacuum, and engagement conditions. This includes testing under seal-on-seal or seal-on-plate configurations, temperatures from -50 to 50 C (-58 to 122 F), operational and pre-flight checkout pressure gradients, and vehicle misalignment (plus or minus 0.381 cm (0.150 in.)) and gapping (up to 0.10 cm (0.040 in.)) conditions. This paper describes the main design features of the test rig and techniques used to overcome some of the design challenges.

  16. KSC-07pd0192

    NASA Image and Video Library

    2007-01-30

    KENNEDY SPACE CENTER, FLA. -- Representatives from NASA, Lockheed Martin, Space Florida and the state of Florida are seated on stage at a ceremony to commemorate the transition of the historic Operations and Checkout (O&C) Building high bay for use by the Constellation Program. From left are Cleon Lacefield, Lockheed Martin program manager; Thad Altman, representative of the State of Florida; Bill Parsons, Kennedy Space Center director; Steve Koller, executive director of Space Florida; and Skip Hatfield, Orion Project manager. Representatives from NASA, Lockheed Martin, Space Florida and the state of Florida are seated on stage at a ceremony to commemorate the transition of the historic Operations and Checkout (O&C) Building high bay for use by the Constellation Program. From left are Cleon Lacefield, Lockheed Martin program manager; Thad Altman, representative of the State of Florida; Bill Parsons, Kennedy Space Center director; Steve Koller, executive director of Space Florida; and Skip Hatfield, Orion Project manager. Originally built to process space vehicles in the Apollo era, the O&C Building will serve as the final assembly facility for the Orion crew exploration vehicle. Orion, America's human spaceflight vehicle of the future, will be capable of transporting four crewmembers for lunar missions and later will support crew transfers for Mars missions. Each Orion spacecraft also may be used to support up to six crewmembers to the International Space Station after the space shuttle is retired in 2010. Design, development and construction of Orion's components will be performed by Lockheed Martin for NASA at facilities throughout the country. Photo credit: NASA/Kim Shiflett

  17. Wire Rope Failure on the Guppy Winch

    NASA Technical Reports Server (NTRS)

    Figert, John

    2016-01-01

    On January 6, 2016 at El Paso, the Guppy winch motor was changed. After completion of the operational checks, the load bar was being reinstalled on the cargo pallet when the motor control FORWARD relay failed in the energized position. The pallet was pinned at all locations (each pin has a load capacity of 16,000 lbs.) while the winch was running. The wire rope snapped before aircraft power could be removed. After disassembly, the fractured wire rope was shipped to ES4 lab for further characterization of the wire rope portion of the failure. The system was being operated without a clear understanding of the system capability and function. The proximate cause was the failure of the K48 -Forward Winch Control Relay in the energized position, which allowed the motor to continuously run without command from the hand controller, and operation of the winch system with both controllers connected to the system. This prevented the emergency stop feature on the hand controller from functioning as designed. An electrical checkout engineering work instruction was completed and identified the failed relay and confirmed the emergency stop only paused the system when the STOP button on both connected hand controllers were depressed simultaneously. The winch system incorporates a torque limiting clutch. It is suspected that the clutch did not slip and the motor did not stall or overload the current limiter. Aircraft Engineering is looking at how to change the procedures to provide a checkout of the clutch and set to a slip torque limit appropriate to support operations.

  18. Environmental control system transducer development study. [for space shuttles

    NASA Technical Reports Server (NTRS)

    Brudnicki, M. J.

    1974-01-01

    A development test program of transducers for aerospace projects is described. Stability and performance of existing transducers, and improvements compatible with shuttle ECS requirements are investigated. These requirements incorporate design and development features into the transducers, and include the following: (1) improvement of overall transducer ruggedness and reliability; (2) common transducers for all ECS fluids that will be unaffected by long quiescent periods in the space environment, that will require no maintenance or refurbishing for at least 100 launches; and (3) appropriate self-check features that simplify checkout and maintenance. Models of three different transducers, a three-way valve for pressure transducers from closed liquid loops, surface-type platinum-wire resistance temperature sensors, and a nuclenics gaging system are evaluated. Tests and development improvements are described.

  19. KSC-2014-4116

    NASA Image and Video Library

    2014-09-25

    CAPE CANAVERAL, Fla. – NASA astronaut Rick Mastracchio, standing at left, illustrates the fine points of conducting the Slosh experiment on the International Space Station for employees attending the Launch Services Program's All Hands meeting in the Neil Armstrong Operations and Checkout Building Mission Briefing Room at NASA's Kennedy Space Center in Florida. An Expedition 38/39 crew member, Mastracchio launched to the station from the Baikonur Cosmodrome in Kazakhstan on Nov. 6, 2013, and returned to Earth on May 13, 2014, after 188 days in space. To read Mastracchio's biography, visit http://www.jsc.nasa.gov/Bios/htmlbios/mastracc.html. For more information on the Slosh experiment, visit http://www.nasa.gov/content/slosh-experiment-designed-to-improve-rocket-safety-efficiency/. Photo credit: NASA/Daniel Casper

  20. Second Generation International Space Station (ISS) Total Organic Carbon Analyzer (TOCA) Verification Testing and On-Orbit Performance Results

    NASA Technical Reports Server (NTRS)

    Bentley, Nicole L.; Thomas, Evan A.; VanWie, Michael; Morrison, Chad; Stinson, Richard G.

    2010-01-01

    The Total Organic Carbon Analyzer (TOGA) is designed to autonomously determine recovered water quality as a function of TOC. The current TOGA has been on the International Space Station since November 2008. Functional checkout and operations revealed complex operating considerations. Specifically, failure of the hydrogen catalyst resulted in the development of an innovative oxidation analysis method. This method reduces the activation time and limits the hydrogen produced during analysis, while retaining the ability to indicate TOC concentrations within 25% accuracy. Subsequent testing and comparison to archived samples returned from the Station and tested on the ground yield high confidence in this method, and in the quality of the recovered water.

  1. Instrumentation & Data Acquisition System (D AS) Engineer

    NASA Technical Reports Server (NTRS)

    Jackson, Markus Deon

    2015-01-01

    The primary job of an Instrumentation and Data Acquisition System (DAS) Engineer is to properly measure physical phenomenon of hardware using appropriate instrumentation and DAS equipment designed to record data during a specified test of the hardware. A DAS system includes a CPU or processor, a data storage device such as a hard drive, a data communication bus such as Universal Serial Bus, software to control the DAS system processes like calibrations, recording of data and processing of data. It also includes signal conditioning amplifiers, and certain sensors for specified measurements. My internship responsibilities have included testing and adjusting Pacific Instruments Model 9355 signal conditioning amplifiers, writing and performing checkout procedures, writing and performing calibration procedures while learning the basics of instrumentation.

  2. KSC-2013-4110

    NASA Image and Video Library

    2013-11-07

    CAPE CANAVERAL, Fla. -- Inside the Operations and Checkout Building high bay at NASA’s Kennedy Space Center in Florida, the spacecraft adapter cone for the Orion spacecraft is positioned on special protective blocks for processing work. It will be mated to the service module for testing. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Daniel Casper

  3. KSC-2013-4109

    NASA Image and Video Library

    2013-11-07

    CAPE CANAVERAL, Fla. -- Inside the Operations and Checkout Building high bay at NASA’s Kennedy Space Center in Florida, the spacecraft adapter cone for the Orion spacecraft is positioned on special protective blocks for processing work. It will be mated to the service module for testing. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Daniel Casper

  4. The solar panels on the GOES-L satellite are deployed

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Loral workers at Astrotech, Titusville, Fla., stand back as they deploy the solar panels of the GOES-L weather satellite. The satellite is to be launched from Cape Canaveral Air Station (CCAS) aboard an Atlas II rocket in late March. The GOES-L is the fourth of a new advanced series of geostationary weather satellites for the National Oceanic and Atmospheric Administration. It is a three-axis inertially stabilized spacecraft that will provide pictures and perform atmospheric sounding at the same time. Once launched, the satellite, to be designated GOES-11, will undergo checkout and provide backup capabilities for the existing, aging GOES East weather satellite.

  5. Space shuttle main engine controller

    NASA Technical Reports Server (NTRS)

    Mattox, R. M.; White, J. B.

    1981-01-01

    A technical description of the space shuttle main engine controller, which provides engine checkout prior to launch, engine control and monitoring during launch, and engine safety and monitoring in orbit, is presented. Each of the major controller subassemblies, the central processing unit, the computer interface electronics, the input electronics, the output electronics, and the power supplies are described and discussed in detail along with engine and orbiter interfaces and operational requirements. The controller represents a unique application of digital concepts, techniques, and technology in monitoring, managing, and controlling a high performance rocket engine propulsion system. The operational requirements placed on the controller, the extremely harsh operating environment to which it is exposed, and the reliability demanded, result in the most complex and rugged digital system ever designed, fabricated, and flown.

  6. The Ionospheric Connection Explorer (ICON) : Mission Design and Planning

    NASA Astrophysics Data System (ADS)

    Immel, T. J.; England, S.; Mende, S. B.; Heelis, R. A.; Englert, C. R.; Edelstein, J.; Frey, H. U.; Taylor, E.; Craig, W.; Bust, G. S.; Crowley, G.; Forbes, J. M.; Gerard, J. C. M. C.; Harlander, J.; Huba, J.; Hubert, B. A.; Kamalabadi, F.; Makela, J. J.; Maute, A. I.; Meier, R. J.; Raftery, C. L.; Hauck, K.; Rochus, P.; Siegmund, O.; Stephan, A. W.; Swenson, G. R.; Frey, S.; Hysell, D. L.; Saito, A.

    2016-12-01

    The Ionospheric Connection Explorer is NASA's next Explorer mission, with a primary scientific goal of understanding the source of the extreme variability in Earth's ionosphere. The observatory is scheduled to be delivered to the Pegasus launch vehicle in early 2017 for a June launch. ICON carries unprecedented capability to orbit in a broader national and international effort to understand changes in our space environment occurring on a wide range of spatial and temporal scales. Here, we will discuss plans for the observatory checkout and early operations, and discuss the observing conditions expected in the atmosphere and ionosphere at that time. The status of the science data pipeline and the predicted performance of the observatory for scientific measurements will be discussed.

  7. Orbital transfer vehicle launch operations study. Volume 2: Detailed summary

    NASA Technical Reports Server (NTRS)

    1986-01-01

    A series of Operational Design Drivers were identified. Several of these could have significant impact(s) on program costs. These recommendations, for example, include such items as: complete factory assembly and checkout prior to shipment to the ground launch site to make significant reductions in time required at the launch site as well as overall manpower required to do this work; minimize use of nonstandard equipment when orbiter provided equipment is available; and require commonality (or interchangeability) of subsystem equipment elements that are common to the space station, Orbit Maneuvering Vehicles, and/or Orbit Transfer Vehicles. Several additional items were identified that will require a significant amount of management attention (and direction) to resolve. Key elements of the space based processing plans are discussed.

  8. KSC-2013-4444

    NASA Image and Video Library

    2013-11-12

    CAPE CANAVERAL, Fla. – Inside the Operations and Checkout Building at NASA’s Kennedy Space Center in Florida, workers are preparing to move the spacecraft adapter cone for the Orion vehicle closer to the service module which is suspended above the floor by a movable crane. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Kim Shiflett

  9. KSC-2013-3689

    NASA Image and Video Library

    2013-08-30

    CAPE CANAVERAL, Fla. – Inside the Operations and Checkout Building high bay at NASA’s Kennedy Space Center in Florida, a tile technician works on a section of thermal protection system tiles that will be installed on the Orion crew module. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Dimitri Gerondidakis

  10. KSC-2013-3690

    NASA Image and Video Library

    2013-08-30

    CAPE CANAVERAL, Fla. – Inside the Operations and Checkout Building high bay at NASA’s Kennedy Space Center in Florida, a tile technician places spacers between the thermal protection system tiles that will be installed on the Orion crew module. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Dimitri Gerondidakis

  11. KSC-2013-3691

    NASA Image and Video Library

    2013-08-30

    CAPE CANAVERAL, Fla. – Inside the Operations and Checkout Building high bay at NASA’s Kennedy Space Center in Florida, two tile technicians wrap a section of the thermal protection system tiles that will be installed on the Orion crew module. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Dimitri Gerondidakis

  12. ARC-2009-ACD09-0218-006

    NASA Image and Video Library

    2009-10-06

    NASA Conducts Airborne Science Aboard Zeppelin Airship: equipped with two imaging instruments enabling remote sensing and atmospheric science measurements not previously practical. Pre-flight checkout of airship flight systems and instruments.

  13. The Application of Embodied Conversational Agents for Mentoring African American STEM Doctoral Students

    ERIC Educational Resources Information Center

    Gosha, Kinnis

    2013-01-01

    This dissertation presents the design, development and short-term evaluation of an embodied conversational agent designed to mentor human users. An embodied conversational agent (ECA) was created and programmed to mentor African American computer science majors on their decision to pursue graduate study in computing. Before constructing the ECA,…

  14. Crew Medical Restraint System Inspection

    NASA Image and Video Library

    2013-05-22

    ISS036-E-003301 (22 May 2013) --- In the Destiny lab aboard the International Space Station, NASA astronaut Chris Cassidy, Expedition 36 flight engineer, participates in a Crew Medical Restraint System (CMRS) checkout.

  15. Offering within-category food swaps to reduce energy density of food purchases: a study using an experimental online supermarket.

    PubMed

    Forwood, Suzanna E; Ahern, Amy L; Marteau, Theresa M; Jebb, Susan A

    2015-06-25

    Swaps are often used to encourage healthier food choices, but there is little evidence of their effectiveness. The current study assessed the impact of offering swaps on groceries purchased within a bespoke online supermarket; specifically the objective was to measure the impact on energy density (ED) of food purchases following the offer of lower ED alternatives (a) at point of selection or at checkout, and (b) with or without explicit consent to receive swap prompts. Participants were asked to complete a 12-item shopping task within an online shopping platform, developed for studying food purchasing. 1610 adults were randomly assigned to a no swap control condition or to one of four interventions: consented swaps at selection; consented swaps at checkout; imposed swaps at selection; or imposed swaps at checkout. Each swap presented two lower ED options from the same category as the participant's chosen food. Swap acceptance rate and purchased food ED were the primary outcomes. Of the mean 12.36 (SD 1.26) foods purchased, intervention participants were offered a mean of 4.1 (SD 1.68) swaps, with the potential to reduce the ED of purchased food (effect (95% CI): -83 kJ/100 g (-110 - -56), p = <0.0001). A median of one swap (IQR 0 to 2) was accepted, not significantly reducing the purchased food ED (effect (95% CI): -24 kJ/100 g (4 - -52), p = 0.094). More swaps were accepted when offered at selection than at checkout (OR (95% CI) = 1.224 (1.11 - 1.35), p < 0.0001), but no differences were seen with consent. Purchased food ED was unaffected by point of swap or consent, but reduced with number of swaps accepted (effect per swap (95% CI) = -24 kJ/100 g (-35 - -14), p < 0.0001). Within category swaps did not reduce the ED of food purchases reflecting the observation that the use of swaps within an on-line shopping platform offered small potential gains in ED and a minority was accepted.

  16. Design of batch audio/video conversion platform based on JavaEE

    NASA Astrophysics Data System (ADS)

    Cui, Yansong; Jiang, Lianpin

    2018-03-01

    With the rapid development of digital publishing industry, the direction of audio / video publishing shows the diversity of coding standards for audio and video files, massive data and other significant features. Faced with massive and diverse data, how to quickly and efficiently convert to a unified code format has brought great difficulties to the digital publishing organization. In view of this demand and present situation in this paper, basing on the development architecture of Sptring+SpringMVC+Mybatis, and combined with the open source FFMPEG format conversion tool, a distributed online audio and video format conversion platform with a B/S structure is proposed. Based on the Java language, the key technologies and strategies designed in the design of platform architecture are analyzed emphatically in this paper, designing and developing a efficient audio and video format conversion system, which is composed of “Front display system”, "core scheduling server " and " conversion server ". The test results show that, compared with the ordinary audio and video conversion scheme, the use of batch audio and video format conversion platform can effectively improve the conversion efficiency of audio and video files, and reduce the complexity of the work. Practice has proved that the key technology discussed in this paper can be applied in the field of large batch file processing, and has certain practical application value.

  17. Development of the West Virginia University Small Microgravity Research Facility (WVU SMiRF)

    NASA Astrophysics Data System (ADS)

    Phillips, Kyle G.

    West Virginia University (WVU) has created the Small Microgravity Research Facility (SMiRF) drop tower through a WVU Research Corporation Program to Stimulate Competitive Research (PSCoR) grant on its campus to increase direct access to inexpensive and repeatable reduced gravity research. In short, a drop tower is a tall structure from which experimental payloads are dropped, in a controlled environment, and experience reduced gravity or microgravity (i.e. "weightlessness") during free fall. Currently, there are several methods for conducting scientific research in microgravity including drop towers, parabolic flights, sounding rockets, suborbital flights, NanoSats, CubeSats, full-sized satellites, manned orbital flight, and the International Space Station (ISS). However, none of the aforementioned techniques is more inexpensive or has the capability of frequent experimentation repeatability as drop tower research. These advantages are conducive to a wide variety of experiments that can be inexpensively validated, and potentially accredited, through repeated, reliable research that permits frequent experiment modification and re-testing. Development of the WVU SMiRF, or any drop tower, must take a systems engineering approach that may include the detailed design of several main components, namely: the payload release system, the payload deceleration system, the payload lifting and transfer system, the drop tower structure, and the instrumentation and controls system, as well as a standardized drop tower payload frame for use by those researchers who cannot afford to spend money on a data acquisition system or frame. In addition to detailed technical development, a budgetary model by which development took place is also presented throughout, summarized, and detailed in an appendix. After design and construction of the WVU SMiRF was complete, initial calibration provided performance characteristics at various payload weights, and full-scale checkout via experimentation provided repeatability characteristics of the facility. Based on checkout instrumentation, Initial repeatability results indicated a drop time of 1.26 seconds at an average of 0.06g, with a standard deviation of 0.085g over the period of the drop, and a peak impact load of 28.72g, with a standard deviation of 10.73g, for a payload weight of 113.8 lbs. In order to thoroughly check out the facility, a full-scale, fully operational experiment was developed to create an experience that provides a comprehensive perspective of the end-user experience to the developer, so as to incorporate the details that may have been overlooked to the designer and/or developer, in this case, Kyle Phillips. The experiment that was chosen was to determine the effects of die swell, or extrudate swell, in reduced gravity. Die swell is a viscoelastic phenomenon that occurs when a dilatant, or shear-thickening substance is forced through a sufficient constriction, or "die," such that the substance expands, or "swells," downstream of the constriction, even while forming and maintaining a free jet at ambient sea level conditions. A wide range of dilatants exhibit die swell when subjected to the correct conditions, ranging from simple substances such as ketchup, oobleck, and shampoo to complex specially-formulated substances to be used for next generation body armor and high performance braking systems. To date, very few, if any, have researched the stabilizing effect that gravity may have on the phenomenon of die swell. By studying a fluid phenomenon in a reduced gravity environment, both the effect of gravity can be studied and the predominant forces acting on the fluid can be concluded. Furthermore, a hypothesis describing the behavior of a viscoelastic fluid particle employing the viscous Navier-Stokes Equations was derived to attempt to push the fluid mechanics community toward further integrating more fluid behavior into a unified mathematical model of fluid mechanics. While inconclusive in this experiment, several suggestions for future research were made in order to further the science behind die swell, and a comprehensive checkout of the facility and its operations were characterized. As a result of this checkout experience, several details were modified or added to the facility in order for the drop tower to be properly operated and provide the optimal user experience, such that open operation of the WVU SMiRF may begin in the Fall of 2014.

  18. Autonomous Soaring 2005 Flight Data Summary

    NASA Technical Reports Server (NTRS)

    Allen, Michael J.

    2006-01-01

    Flight testing of the 14ft span CloudSwift UAV was conducted during the summer of 2005. Test maneuvers included aircraft checkout, Piccolo gain tuning, FTS range tests, and thermal soaring research flights.

  19. Responsive materials: A novel design for enhanced machine-augmented composites

    PubMed Central

    Bafekrpour, Ehsan; Molotnikov, Andrey; Weaver, James C.; Brechet, Yves; Estrin, Yuri

    2014-01-01

    The concept of novel responsive materials with a displacement conversion capability was further developed through the design of new machine-augmented composites (MACs). Embedded converter machines and MACs with improved geometry were designed and fabricated by multi-material 3D printing. This technique proved to be very effective in fabricating these novel composites with tuneable elastic moduli of the matrix and the embedded machines and excellent bonding between them. Substantial improvement in the displacement conversion efficiency of the new MACs over the existing ones was demonstrated. Also, the new design trebled the energy absorption of the MACs. Applications in energy absorbers as well as mechanical sensors and actuators are thus envisaged. A further type of MACs with conversion ability, viz. conversion of compressive displacements to torsional ones, was also proposed. PMID:24445490

  20. Establishment of a Digital Knowledge Conversion Architecture Design Learning with High User Acceptance

    ERIC Educational Resources Information Center

    Wu, Yun-Wu; Weng, Apollo; Weng, Kuo-Hua

    2017-01-01

    The purpose of this study is to design a knowledge conversion and management digital learning system for architecture design learning, helping students to share, extract, use and create their design knowledge through web-based interactive activities based on socialization, internalization, combination and externalization process in addition to…

  1. KENNEDY SPACE CENTER, FLA. --Shown upside down to read the names, this plaque commemorating the STS-107 Space Shuttle Columbia crew now looks over the Mars landscape after the successful landing and deployment of the Mars Exploration Rover “Spirit” Jan. 4 onto the red planet. The plaque, mounted on the high-gain antenna, is shown while the rover underwent final checkout March 28, 2003, in the Payload Hazardous Servicing Facility at KSC.

    NASA Image and Video Library

    2004-01-06

    KENNEDY SPACE CENTER, FLA. --Shown upside down to read the names, this plaque commemorating the STS-107 Space Shuttle Columbia crew now looks over the Mars landscape after the successful landing and deployment of the Mars Exploration Rover “Spirit” Jan. 4 onto the red planet. The plaque, mounted on the high-gain antenna, is shown while the rover underwent final checkout March 28, 2003, in the Payload Hazardous Servicing Facility at KSC.

  2. Activation of the E1 Ultra High Pressure Propulsion Test Facility at Stennis Space Center

    NASA Technical Reports Server (NTRS)

    Messer, Bradley; Messer, Elisabeth; Sewell, Dale; Sass, Jared; Lott, Jeff; Dutreix, Lionel, III

    2001-01-01

    After a decade of construction and a year of activation the El Ultra High Pressure Propulsion Test Facility at NASA's Stennis Space Center is fully operational. The El UHP Propulsion Test Facility is a multi-cell, multi-purpose component and engine test facility . The facility is capable of delivering cryogenic propellants at low, high, and ultra high pressures with flow rates ranging from a few pounds per second up to two thousand pounds per second. Facility activation is defined as a series of tasks required to transition between completion of construction and facility operational readiness. Activating the El UHP Propulsion Test Facility involved independent system checkouts, propellant system leak checks, fluid and gas sampling, gaseous system blow downs, pressurization and vent system checkouts, valve stability testing, valve tuning cryogenic cold flows, and functional readiness tests.

  3. Optical data transmission technology for fixed and drag-on STS payloads umbilicals. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    St.denis, R. W.

    1981-01-01

    The feasibility of using optical data handling methods to transmit payload checkout and telemetry is discussed. Optical communications are superior to conventional communication systems for the following reasons: high data capacity optical channels; small and light weight optical cables; and optical signal immunity to electromagnetic interference. Task number one analyzed the ground checkout data requirements that may be expected from the payload community. Task number two selected the optical approach based on the interface requirements, the location of the interface, the amount of time required to reconfigure hardware, and the method of transporting the optical signal. Task number three surveyed and selected optical components for the two payload data link. Task number four makes a qualitative comparison of the conventional electrical communication system and the proposed optical communication system.

  4. Human Simulators and Standardized Patients to Teach Difficult Conversations to Interprofessional Health Care Teams

    PubMed Central

    Zimmerman, Christine; Kennedy, Christopher; Schremmer, Robert; Smith, Katharine V.

    2010-01-01

    Objective To design and implement a demonstration project to teach interprofessional teams how to recognize and engage in difficult conversations with patients. Design Interdisciplinary teams consisting of pharmacy students and residents, student nurses, and medical residents responded to preliminary questions regarding difficult conversations, listened to a brief discussion on difficult conversations; formed ad hoc teams and interacted with a standardized patient (mother) and a human simulator (child), discussing the infant's health issues, intimate partner violence, and suicidal thinking; and underwent debriefing. Assessment Participants evaluated the learning methods positively and a majority demonstrated knowledge gains. The project team also learned lessons that will help better design future programs, including an emphasis on simulations over lecture and the importance of debriefing on student learning. Drawbacks included the major time commitment for design and implementation, sustainability, and the lack of resources to replicate the program for all students. Conclusion Simulation is an effective technique to teach interprofessional teams how to engage in difficult conversations with patients. PMID:21088725

  5. Endurance Test and Evaluation of Alkaline Water Electrolysis Cells

    NASA Technical Reports Server (NTRS)

    Kovach, Andrew J.; Schubert, Franz H.; Chang, B. J.; Larkins, Jim T.

    1985-01-01

    The overall objective of this program is to assess the state of alkaline water electrolysis cell technology and its potential as part of a Regenerative Fuel Cell System (RFCS) of a multikilowatt orbiting powerplant. The program evaluates the endurance capabilities of alkaline electrolyte water electrolysis cells under various operating conditions, including constant condition testing, cyclic testing and high pressure testing. The RFCS demanded the scale-up of existing cell hardware from 0.1 sq ft active electrode area to 1.0 sq ft active electrode area. A single water electrolysis cell and two six-cell modules of 1.0 sq ft active electrode area were designed and fabricated. The two six-cell 1.0 sq ft modules incorporate 1.0 sq ft utilized cores, which allow for minimization of module assembly complexity and increased tolerance to pressure differential. A water electrolysis subsystem was designed and fabricated to allow testing of the six-cell modules. After completing checkout, shakedown, design verification and parametric testing, a module was incorporated into the Regenerative Fuel Cell System Breadboard (RFCSB) for testing at Life Systems, Inc., and at NASA JSC.

  6. Report to the administrator by the NASA Aerospace Safety Advisory Panel on the Skylab program. Volume 1: Summary report. [systems management evaluation and design analysis

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Contractor and NASA technical management for the development and manufacture of the Skylab modules is reviewed with emphasis on the following management controls: configuration and interface management; vendor control; and quality control of workmanship. A review of the modified two-stage Saturn V launch vehicle which focused on modifications to accommodate the Skylab payload; resolution of prior flight anomalies; and changes in personnel and management systems is presented along with an evaluation of the possible age-life and storage problems for the Saturn 1-B launch vehicle. The NASA program management's visibility and control of contractor operations, systems engineering and integration, the review process for the evaluation of design and flight hardware, and the planning process for mission operations are investigated. It is concluded that the technical management system for development and fabrication of the modules, spacecraft, and launch vehicles, the process of design and hardware acceptance reviews, and the risk assessment activities are satisfactory. It is indicated that checkout activity, integrated testing, and preparations for and execution of mission operation require management attention.

  7. Product information representation for feature conversion and implementation of group technology automated coding

    NASA Astrophysics Data System (ADS)

    Medland, A. J.; Zhu, Guowang; Gao, Jian; Sun, Jian

    1996-03-01

    Feature conversion, also called feature transformation and feature mapping, is defined as the process of converting features from one view of an object to another view of the object. In a relatively simple implementation, for each application the design features are automatically converted into features specific for that application. All modifications have to be made via the design features. This is the approach that has attracted most attention until now. In the ideal situation, however, conversions directly from application views to the design view, and to other applications views, are also possible. In this paper, some difficulties faced in feature conversion are discussed. A new representation scheme of feature-based parts models has been proposed for the purpose of one-way feature conversion. The parts models consist of five different levels of abstraction, extending from an assembly level and its attributes, single parts and their attributes, single features and their attributes, one containing the geometric reference element and finally one for detailed geometry. One implementation of feature conversion for rotational components within GT (Group Technology) has already been undertaken using an automated coding procedure operating on a design-feature database. This database has been generated by a feature-based design system, and the GT coding scheme used in this paper is a specific scheme created for a textile machine manufacturing plant. Such feature conversion techniques presented here are only in their early stages of development and further research is underway.

  8. Rectenna session: Micro aspects. [energy conversion

    NASA Technical Reports Server (NTRS)

    Gutmann, R. J.

    1980-01-01

    Two micro aspects of the rectenna design are addressed: evaluation of the degradation in net rectenna RF to DC conversion efficiency due to power density variations across the rectenna (power combining analysis) and design of Yagi-Uda receiving elements to reduce rectenna cost by decreasing the number of conversion circuits (directional receiving elements). The first of these micro aspects involves resolving a fundamental question of efficiency potential with a rectenna, while the second involves a design modification with a large potential cost saving.

  9. IECEC '83; Proceedings of the Eighteenth Intersociety Energy Conversion Engineering Conference, Orlando, FL, August 21-26, 1983. Volume 1 - Thermal energy systems

    NASA Astrophysics Data System (ADS)

    Among the topics discussed are the nuclear fuel cycle, advanced nuclear reactor designs, developments in central status power reactors, space nuclear reactors, magnetohydrodynamic devices, thermionic devices, thermoelectric devices, geothermal systems, solar thermal energy conversion systems, ocean thermal energy conversion (OTEC) developments, and advanced energy conversion concepts. Among the specific questions covered under these topic headings are a design concept for an advanced light water breeder reactor, energy conversion in MW-sized space power systems, directionally solidified cermet electrodes for thermionic energy converters, boron-based high temperature thermoelectric materials, geothermal energy commercialization, solar Stirling cycle power conversion, and OTEC production of methanol. For individual items see A84-30027 to A84-30055

  10. Heat Rejection Concepts for Brayton Power Conversion Systems

    NASA Technical Reports Server (NTRS)

    Siamidis, John; Mason, Lee; Beach, Duane; Yuko, James

    2005-01-01

    This paper describes potential heat rejection design concepts for closed Brayton cycle (CBC) power conversion systems. Brayton conversion systems are currently under study by NASA for Nuclear Electric Propulsion (NEP) applications. The Heat Rejection Subsystem (HRS) must dissipate waste heat generated by the power conversion system due to inefficiencies in the thermal-to-electric conversion process. Space Brayton conversion system designs tend to optimize at efficiencies of about 20 to 25 percent with radiator temperatures in the 400 to 600 K range. A notional HRS was developed for a 100 kWe-class Brayton power system that uses a pumped sodium-potassium (NaK) heat transport loop coupled to a water heat pipe radiator. The radiator panels employ a sandwich construction consisting of regularly-spaced circular heat pipes contained within two composite facesheets. Heat transfer from the NaK fluid to the heat pipes is accomplished by inserting the evaporator sections into the NaK duct channel. The paper evaluates various design parameters including heat pipe diameter, heat pipe spacing, and facesheet thickness. Parameters were varied to compare design options on the basis of NaK pump pressure rise and required power, heat pipe unit power and radial flux, radiator panel areal mass, and overall HRS mass.

  11. Automated Testing Experience of the Linear Aerospike SR-71 Experiment (LASRE) Controller

    NASA Technical Reports Server (NTRS)

    Larson, Richard R.

    1999-01-01

    System controllers must be fail-safe, low cost, flexible to software changes, able to output health and status words, and permit rapid retest qualification. The system controller designed and tested for the aerospike engine program was an attempt to meet these requirements. This paper describes (1) the aerospike controller design, (2) the automated simulation testing techniques, and (3) the real time monitoring data visualization structure. Controller cost was minimized by design of a single-string system that used an off-the-shelf 486 central processing unit (CPU). A linked-list architecture, with states (nodes) defined in a user-friendly state table, accomplished software changes to the controller. Proven to be fail-safe, this system reported the abort cause and automatically reverted to a safe condition for any first failure. A real time simulation and test system automated the software checkout and retest requirements. A program requirement to decode all abort causes in real time during all ground and flight tests assured the safety of flight decisions and the proper execution of mission rules. The design also included health and status words, and provided a real time analysis interpretation for all health and status data.

  12. [STS-31 Onboard 16mm Photography Quick Release]. [Onboard Activities

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This video features scenes shot by the crew of onboard activities including Hubble Space Telescope deploy, remote manipulator system (RMS) checkout, flight deck and middeck experiments, and Earth and payload bay views.

  13. Spacelab user implementation assessment study. Volume 4: SUIAS appendixes

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The capital investment for the integration and checkout of Spacelab payloads is assessed. Detailed data pertaining to this assessment and a computer cost model utilized in the compilation of programmatic resource requirements are delineated.

  14. 76 FR 43393 - Debit Card Interchange Fees and Routing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-20

    ... have increased at a faster pace. \\20\\ Card-not-present transactions occur when the card is not...; \\32\\ faster availability of funds; faster check-out at the point-of-sale; increased sales value and...

  15. ARC-2009-ACD09-0218-002

    NASA Image and Video Library

    2009-10-06

    NASA Conducts Airborne Science Aboard Zeppelin Airship: equipped with two imaging instruments enabling remote sensing and atmospheric science measurements not previously practical. Show here in pre-flight checkouts aboard the Zeppelin NT coupled to mobile mast.

  16. Novel Airborne Imaging Polarimeter Undergoes High-Altitude Flight Testing

    NASA Technical Reports Server (NTRS)

    Diner, David J.; Pingree, Paula J.; Chipman, Russell A.

    2015-01-01

    Optical and signal processing technologies for high-accuracy polarimetric imaging, aimed at studying the impact of atmospheric haze and clouds on Earth's climate, have been demonstrated on checkout flights aboard NASA's ER-2 aircraft.

  17. Space shuttle main engine: Interactive design challenges

    NASA Technical Reports Server (NTRS)

    Mccarty, J. P.; Wood, B. K.

    1985-01-01

    The operating requirements established by NASA for the SSME were considerably more demanding than those for earlier rocket engines used in the military launch vehicles or Apollo program. The SSME, in order to achieve the high performance, low weight, long life, reusable objectives, embodied technical demands far in excess of its predecessor rocket engines. The requirements dictated the use of high combustion pressure and the staged combustion cycle which maximizes performance through total use of all propellants in the main combustion process. This approach presented a myriad of technical challenges for maximization of performance within attainable state of the art capabilities for operating pressures, operating temperatures and rotating machinery efficiencies. Controlling uniformity of the high pressure turbomachinery turbine temperature environment was a key challenge for thrust level and life capability demanding innovative engineering. New approaches in the design of the components were necessary to accommodate the multiple use, minimum maintenance objectives. Included were the use of line replaceable units to facilitate field maintenance automatic checkout and internal inspection capabilities.

  18. Framework for Development of Object-Oriented Software

    NASA Technical Reports Server (NTRS)

    Perez-Poveda, Gus; Ciavarella, Tony; Nieten, Dan

    2004-01-01

    The Real-Time Control (RTC) Application Framework is a high-level software framework written in C++ that supports the rapid design and implementation of object-oriented application programs. This framework provides built-in functionality that solves common software development problems within distributed client-server, multi-threaded, and embedded programming environments. When using the RTC Framework to develop software for a specific domain, designers and implementers can focus entirely on the details of the domain-specific software rather than on creating custom solutions, utilities, and frameworks for the complexities of the programming environment. The RTC Framework was originally developed as part of a Space Shuttle Launch Processing System (LPS) replacement project called Checkout and Launch Control System (CLCS). As a result of the framework s development, CLCS software development time was reduced by 66 percent. The framework is generic enough for developing applications outside of the launch-processing system domain. Other applicable high-level domains include command and control systems and simulation/ training systems.

  19. High Efficiency Traveling-Wave Tube Power Amplifier for Ka-Band Software Defined Radio on International Space Station-A Platform for Communications Technology Development

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Force, Dale A.; Kacpura, Thomas J.

    2013-01-01

    The design, fabrication and RF performance of the output traveling-wave tube amplifier (TWTA) for a space based Ka-band software defined radio (SDR) is presented. The TWTA, the SDR and the supporting avionics are integrated to forms a testbed, which is currently located on an exterior truss of the International Space Station (ISS). The SDR in the testbed communicates at Ka-band frequencies through a high-gain antenna directed to NASA s Tracking and Data Relay Satellite System (TDRSS), which communicates to the ground station located at White Sands Complex. The application of the testbed is for demonstrating new waveforms and software designed to enhance data delivery from scientific spacecraft and, the waveforms and software can be upgraded and reconfigured from the ground. The construction and the salient features of the Ka-band SDR are discussed. The testbed is currently undergoing on-orbit checkout and commissioning and is expected to operate for 3 to 5 years in space.

  20. Healthwatch-2 System Overview

    NASA Technical Reports Server (NTRS)

    Barszcz, Eric; Mosher, Marianne; Huff, Edward M.

    2004-01-01

    Healthwatch-2 (HW-2) is a research tool designed to facilitate the development and testing of in-flight health monitoring algorithms. HW-2 software is written in C/C++ and executes on an x86-based computer running the Linux operating system. The executive module has interfaces for collecting various signal data, such as vibration, torque, tachometer, and GPS. It is designed to perform in-flight time or frequency averaging based on specifications defined in a user-supplied configuration file. Averaged data are then passed to a user-supplied algorithm written as a Matlab function. This allows researchers a convenient method for testing in-flight algorithms. In addition to its in-flight capabilities, HW-2 software is also capable of reading archived flight data and processing it as if collected in-flight. This allows algorithms to be developed and tested in the laboratory before being flown. Currently HW-2 has passed its checkout phase and is collecting data on a Bell OH-58C helicopter operated by the U.S. Army at NASA Ames Research Center.

  1. Orion Heat Shield Foam Blocks Prefitting

    NASA Image and Video Library

    2016-10-24

    Tile blocks have been prefitted around the heat shield for the Orion crew module inside the Neil Armstrong Operations and Checkout Building high bay at NASA's Kennedy Space Center in Florida. The heat shield is one of the most critical elements of Orion and protects it and the future astronauts inside from searing temperatures experienced during reentry through Earth's atmosphere when they return home. For Exploration Mission-1, the top layer of Orion's heat shield that is primarily responsible for helping the crew module endure reentry heat will be composed of approximately 180 blocks, which are made of an ablative material called Avcoat designed to wear away as it heats up. Orion is being prepared for its flight on the agency's Space Launch System for Exploration Mission-1 in late 2018. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and NASA's Journey to Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities.

  2. KSC-2012-4887

    NASA Image and Video Library

    2012-09-05

    CAPE CANAVERAL, Fla. – Inside the Operations and Checkout Building at NASA’s Kennedy Space Center in Florida, technicians monitor the progress as a crane is used to move the Orion Exploration Flight Test 1 crew module to the base of a birdcage tool. The birdcage will be used to continue installation of external components in preparation for Orion’s first uncrewed test flight in 2014 atop a Delta IV rocket. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. A second uncrewed flight test is scheduled for 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Kim Shiflett

  3. Definition study for an extended manned test of a regenerative life support system

    NASA Technical Reports Server (NTRS)

    1971-01-01

    A program was defined which consists of extended ground-based manned tests of regenerative life support systems. The tests are to evaluate prototypes of advanced life support systems under operational, integrated conditions, thus providing data for the design of efficient environmental control and life support systems for use in long-duration space missions. The requirements are defined for test operations to provide a simulation of an orbiting space laboratory. The features of Phase A and B programs are described. These tests use proven backup equipment to ensure successful evaluation of the advanced subsystems. A pre-tests all-systems checkout period is provided to minimize equipment problems during extended testing and to familiarize all crew and operating staff members with test equipment and procedures.

  4. KSC-2009-2323

    NASA Image and Video Library

    2009-03-18

    CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility in Titusville, Fla., technicians apply the NOAA decal to the fairing that will encapsulate the GOES-O satellite during launch. The latest Geostationary Operational Environmental Satellite, GOES-O was developed by NASA for the National Oceanic and Atmospheric Administration, or NOAA. The GOES satellites continuously provide observations of 60 percent of the Earth including the continental United States, providing weather monitoring and forecast operations as well as a continuous and reliable stream of environmental information and severe weather warnings. Once in orbit, GOES-O will be designated GOES-14, and NASA will provide on-orbit checkout and then transfer operational responsibility to NOAA. The GOES-O satellite is targeted to launch April 28 onboard a United Launch Alliance Delta IV expendable launch vehicle. Photo credit: NASA/Kim Shiflett

  5. KSC-2013-3790

    NASA Image and Video Library

    2013-11-01

    CAPE CANAVERAL, Fla. – The United Launch Alliance Centaur upper stage that will boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft into orbit arrives at the Atlas Spaceflight Operations Center on Cape Canaveral Air Force Station for checkout in preparation for launch. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/ Jim Grossman

  6. KSC-2013-3792

    NASA Image and Video Library

    2013-11-01

    CAPE CANAVERAL, Fla. – The United Launch Alliance Centaur upper stage that will boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft into orbit arrives at the Atlas Spaceflight Operations Center on Cape Canaveral Air Force Station for checkout in preparation for launch. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/ Jim Grossman

  7. An illumination test is performed on the solar panel of a GOES-L satellite

    NASA Technical Reports Server (NTRS)

    1999-01-01

    A Loral worker at Astrotech, Titusville, Fla., assists with an illumination test for circuitry verification on the solar panel of the GOES-L weather satellite. The satellite is to be launched from Cape Canaveral Air Station aboard an Atlas II rocket in late March. The GOES-L is the fourth of a new advanced series of geostationary weather satellites for the National Oceanic and Atmospheric Administration. It is a three-axis inertially stabilized spacecraft that will provide pictures and perform atmospheric sounding at the same time. Once launched, the satellite, to be designated GOES-11, will undergo checkout and provide backup capabilities for the existing, aging GOES East weather satellite.

  8. An illumination test is performed on the solar panel of a GOES-L satellite

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Loral workers at Astrotech, Titusville, Fla., perform an illumination test for circuitry verification on the solar panel of the GOES-L weather satellite. The satellite is to be launched from Cape Canaveral Air Station aboard an Atlas II rocket in late March. The GOES-L is the fourth of a new advanced series of geostationary weather satellites for the National Oceanic and Atmospheric Administration. It is a three-axis inertially stabilized spacecraft that will provide pictures and perform atmospheric sounding at the same time. Once launched, the satellite, to be designated GOES-11, will undergo checkout and provide backup capabilities for the existing, aging GOES East weather satellite.

  9. An illumination test is performed on the solar panel of a GOES-L satellite

    NASA Technical Reports Server (NTRS)

    1999-01-01

    During an illumination test, a Loral worker at Astrotech, Titusville, Fla., verifies circuitry on the solar panel of the GOES-L weather satellite. The satellite is to be launched from Cape Canaveral Air Station aboard an Atlas II rocket in late March. The GOES-L is the fourth of a new advanced series of geostationary weather satellites for the National Oceanic and Atmospheric Administration. It is a three-axis inertially stabilized spacecraft that will provide pictures and perform atmospheric sounding at the same time. Once launched, the satellite, to be designated GOES-11, will undergo checkout and provide backup capabilities for the existing, aging GOES East weather satellite.

  10. Installation and checkout of the DOE/NASA Mod-1 2000-kW wind turbine generator

    NASA Technical Reports Server (NTRS)

    Puthoff, R. L.; Collins, J. L.; Wolf, R. A.

    1980-01-01

    The paper describes the DOE/NASA Mod-1 wind turbine generator, its assembly and testing, and its installation at Boone, North Carolina. The paper concludes with performance data taken during the initial tests conducted on the machine. The successful installation and initial operation of the Mod-1 wind turbine generator has had the following results: (1) megawatt-size wind turbines can be operated satisfactorily on utility grids; (2) the structural loads can be predicted by existing codes; (3) assembly of the machine on top of the tower presents no major problem; (4) large blades 100 ft long can be transported long distances and over mountain roads; and (5) operating experience and performance data will contribute substantially to the design of future low-cost wind turbines.

  11. KSC-2014-2675

    NASA Image and Video Library

    2014-05-09

    CAPE CANAVERAL, Fla. – Inside the Operations and Checkout Building high bay at NASA's Kennedy Space Center in Florida, Lockheed Martin technicians check the Orion crew module before it is lifted from a test stand. Activities are underway to lift Orion and prepare it for future installation of the heat shield. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Dimitri Gerondidakis

  12. KSC-2014-2677

    NASA Image and Video Library

    2014-05-09

    CAPE CANAVERAL, Fla. – Inside the Operations and Checkout Building high bay at NASA's Kennedy Space Center in Florida, Lockheed Martin technicians monitor the progress as the Orion crew module is lifted by crane from a test stand. Activities are underway to prepare Orion for future installation of the heat shield. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Dimitri Gerondidakis

  13. Tug fleet and ground operations schedules and controls. Volume 2: part 2, addenda

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The results of a study to assess the tug safing requirements at postlanding are presented. The study considered the normal (green light) conditions from orbiter landing to completion of preparations for the next launch. Normal tug ground turnaround operations include handling and transportation activities and the performance of inspections, tests, and checkout functions. These activities dictate that hazards to ground personnel, the tug, GSE, facilities, and ecology be reduced to the lowest practical level consistent with program objectives, cost, and schedules. During flight operations, the tug contains energy sources that constitute potential hazards but are required for mission accomplishment. These potential hazards have been reduced to an acceptable level for flight operation by design features and by providing for control of energy sources.

  14. Micrometeorite Impact Test of Flex Solar Array Coupon

    NASA Technical Reports Server (NTRS)

    Wright, K. H.; Schneider, T. A.; Vaughn, J. A.; Hoang, B.; Wong, F.; Gardiner, G.

    2016-01-01

    Spacecraft with solar arrays operate throughout the near earth environment and are planned for outer planet missions. An often overlooked test condition for solar arrays that is applicable to these missions is micrometeoroid impacts and possibly electrostatic discharge (ESD) events resulting from these impacts. NASA Marshall Space Flight Center (MSFC) is partnering with Space Systems/Loral, LLC (SSL) to examine the results of simulated micrometeoroid impacts on the electrical performance of an advanced, lightweight flexible solar array design. The test is performed at MSFC's Micro Light Gas Gun Facility with SSL-provided coupons. Multiple impacts were induced at various locations on a powered test coupon under different string voltage (0V-150V) and string current (1.1A - 1.65A) conditions. The setup, checkout, and results from the impact testing are discussed.

  15. KSC-2009-3637

    NASA Image and Video Library

    2009-06-09

    CAPE CANAVERAL, Fla. – On Launch Complex 37 at Cape Canaveral Air Force Station in Florida, the GOES-O satellite has been lifted into the mobile service tower. It has been mated with the United Launch Alliance Delta IV expendable launch vehicle. The GOES-O satellite is targeted to launch June 26. The latest Geostationary Operational Environmental Satellite, GOES-O was developed by NASA for the National Oceanic and Atmospheric Administration, or NOAA. The GOES satellites continuously provide observations of 60 percent of the Earth including the continental United States, providing weather monitoring and forecast operations as well as a continuous and reliable stream of environmental information and severe weather warnings. Once in orbit, GOES-O will be designated GOES-14, and NASA will provide on-orbit checkout and then transfer operational responsibility to NOAA. Photo credit: NASA/Kim Shiflett

  16. KSC-2014-2672

    NASA Image and Video Library

    2014-05-09

    CAPE CANAVERAL, Fla. – Inside the Operations and Checkout Building high bay at NASA's Kennedy Space Center in Florida, a crane is being moved into position to lift the Orion crew module from a test stand. Activities are underway to prepare Orion for future installation of the heat shield. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Dimitri Gerondidakis

  17. Pre-Test Analysis Predictions for the Shell Buckling Knockdown Factor Checkout Tests - TA01 and TA02

    NASA Technical Reports Server (NTRS)

    Thornburgh, Robert P.; Hilburger, Mark W.

    2011-01-01

    This report summarizes the pre-test analysis predictions for the SBKF-P2-CYL-TA01 and SBKF-P2-CYL-TA02 shell buckling tests conducted at the Marshall Space Flight Center (MSFC) in support of the Shell Buckling Knockdown Factor (SBKF) Project, NASA Engineering and Safety Center (NESC) Assessment. The test article (TA) is an 8-foot-diameter aluminum-lithium (Al-Li) orthogrid cylindrical shell with similar design features as that of the proposed Ares-I and Ares-V barrel structures. In support of the testing effort, detailed structural analyses were conducted and the results were used to monitor the behavior of the TA during the testing. A summary of predicted results for each of the five load sequences is presented herein.

  18. KSC-07pd0193

    NASA Image and Video Library

    2007-01-30

    KENNEDY SPACE CENTER, FLA. -- Employees and guests are seated in the Operations and Checkout (O&C) Building high bay for the ceremony commemorating the bay's transition for use by the Constellation Program. Originally built to process space vehicles in the Apollo era, the O&C Building will serve as the final assembly facility for the Orion crew exploration vehicle. Orion, America's human spaceflight vehicle of the future, will be capable of transporting four crewmembers for lunar missions and later will support crew transfers for Mars missions. Each Orion spacecraft also may be used to support up to six crewmembers to the International Space Station after the space shuttle is retired in 2010. Design, development and construction of Orion's components will be performed by Lockheed Martin for NASA at facilities throughout the country. Photo credit: NASA/Kim Shiflett

  19. Microprocessor tester for the treat upgrade reactor trip system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lenkszus, F.R.; Bucher, R.G.

    1984-01-01

    The upgrading of the Transient Reactor Test (TREAT) Facility at ANL-Idaho has been designed to provide additional experimental capabilities for the study of core disruptive accident (CDA) phenomena. In addition, a programmable Automated Reactor Control System (ARCS) will permit high-power transients up to 11,000 MW having a controlled reactor period of from 15 to 0.1 sec. These modifications to the core neutronics will improve simulation of LMFBR accident conditions. Finally, a sophisticated, multiply-redundant safety system, the Reactor Trip System (RTS), will provide safe operation for both steady state and transient production operating modes. To insure that this complex safety systemmore » is functioning properly, a Dedicated Microprocessor Tester (DMT) has been implemented to perform a thorough checkout of the RTS prior to all TREAT operations.« less

  20. The shelf space and strategic placement of healthy and discretionary foods in urban, urban-fringe and rural/non-metropolitan Australian supermarkets.

    PubMed

    Cameron, Adrian J

    2018-02-01

    Supermarkets are a key influence on eating behaviours, but it is unknown if the promotion of food within stores varies on a geographic gradient from urban, to urban-fringe and non-metropolitan areas. The present study aimed to assess the shelf space and strategic placement of healthy and discretionary foods in each of urban, urban-fringe and non-metropolitan Australian supermarkets. Design/Setting In-store audits were conducted in stores from one of the two major Australian supermarket chains in urban (n 19), urban-fringe (n 20) and non-metropolitan (n 26) areas of Victoria. These audits examined selected food items (crisps/chips, chocolate, confectionery, soft drinks/sodas, fruits and vegetables) and measured the shelf space and the proportion of end-of-aisle and cash register displays containing these products. Store size was measured as the sum of aisle length. Differences in the supermarket food environment with respect to location were assessed, before and after adjustment for neighbourhood socio-economic position. The strategic placement of discretionary foods was commonly observed in all supermarkets. Adjusting for store size (larger in urban-fringe and rural areas), urban stores had greater shelf space devoted to fruits and vegetables, and less checkouts with soft drinks, than urban-fringe and rural/non-metropolitan areas. Differences remained following adjustment for neighbourhood socio-economic position. No clear pattern was observed for end-of-aisle displays, or the placement of chocolate and confectionery at checkouts. The shelf space of healthy and discretionary foods in urban-fringe and rural stores parallels the prevalence of overweight and obesity in these areas. Interventions in urban-fringe and rural stores targeting the shelf space of healthy foods and the placement of soft drinks at key displays may be useful obesity prevention initiatives.

  1. History of Command and Control at KSC: Kennedy Engineering Academy Series

    NASA Technical Reports Server (NTRS)

    Hurt, George Richard

    2007-01-01

    Agenda for this presentation is: Evolution of Command and Control (C&C), C&C history, Launch Processing System overview, Core System Overview, Checkout & Launch Control System, Overview and Commercial-Off-The-Shelf guidelines

  2. iss034e033850

    NASA Image and Video Library

    2013-01-23

    ISS034-E-033850 (23 Jan. 2013) --- Canadian Space Agency astronaut Chris Hadfield, Expedition 34 flight engineer, continues work to remove and replace the Service and Performance Checkout Unit (SPCU) Heat Exchanger inside the Quest airlock of the International Space Station.

  3. ED01-0146-1

    NASA Image and Video Library

    2001-04-28

    Ground crewmen maneuver AeroVironment's solar-powered Helios Prototype flying wing on its ground support dolly during functional checkouts prior to its first flights under solar power from the U.S. Navy's Pacific Missile Range Facility on Kaua'i, Hawaii.

  4. ED01-0146-6

    NASA Image and Video Library

    2001-04-28

    Ground crewmen maneuver AeroVironment's solar-powered Helios Prototype flying wing on its ground support dolly during functional checkouts prior to its first flights under solar power from the U.S. Navy's Pacific Missile Range Facility on Kaua'i, Hawaii.

  5. ED01-0146-5

    NASA Image and Video Library

    2001-04-28

    Ground crewmen maneuver AeroVironment's solar-powered Helios Prototype flying wing on its ground support dolly during functional checkouts prior to its first flights under solar power from the U.S. Navy's Pacific Missile Range Facility on Kaua'i, Hawaii.

  6. ED01-0146-2

    NASA Image and Video Library

    2001-04-28

    Ground crewmen maneuver AeroVironment's solar-powered Helios Prototype flying wing on its ground support dolly during functional checkouts prior to its first flights under solar power from the U.S. Navy's Pacific Missile Range Facility on Kaua'i, Hawaii.

  7. Electronic device simulates respiration rate and depth

    NASA Technical Reports Server (NTRS)

    Thomas, J. A.

    1964-01-01

    An oscillator circuit and a thermistor, in close proximity to a light bulb, periodically alter the heat output of the bulb by varying the voltage across its filament. Use of this simulator permits checkout tests on pneumographs.

  8. Implementing instructions for KSC systems and safety training

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The requirements for the safety training program are reported for KSC including transportation, inspection, checkout operations, maintenance of launch vehicles, spacecraft, ground support equipment, and launch teams. The responsibilities and mechanics for implementing the program are outlined.

  9. The Mars Reconnaissance Orbiter Mission: From Launch to the Primary Science Orbit

    NASA Technical Reports Server (NTRS)

    Johnston, Martin D.; Graf, James E.; Zurek, Richard W.; Eisen, Howard J.; Jai, Benhan; Erickson, James K.

    2007-01-01

    The Mars Reconnaissance Orbiter (MRO) was launched from Cape Canaveral Air Force Station, Florida, USA, aboard an Atlas V-401 launch vehicle on August 12, 2005. The MRO spacecraft carries a very sophisticated scientific payload. Its primary science mission is to to provide global, regional survey, and targeted observations from a low altitude orbit for one Martian year (687 Earth days). After a seven month interplanetary transit, the spacecraft fired its six main engines and established a highly elliptical capture orbit at Mars. During the post-MOI early check-out period, four instruments acquired engineering-quality data. This was followed by five months of aerobraking operations. After aerobraking was terminated, a series of propulsive maneuvers were used to establish the desired low altitude science orbit. As the spacecraft is readied for its primary science mission, spacecraft and instrument checkout and deployment activities have continued.

  10. GOAL-to-HAL translation study

    NASA Technical Reports Server (NTRS)

    Flanders, J. H.; Helmers, C. T.; Stanten, S. F.

    1973-01-01

    This report deals with the feasibility, problems, solutions, and mapping of a GOAL language to HAL language translator. Ground Operations Aerospace Language, or GOAL, is a test-oriented higher order language developed by the John F. Kennedy Space Center to be used in checkout and launch of the space shuttle. HAL is a structured higher order language developed by the Johnson Space Center to be used in writing the flight software for the onboard shuttle computers. Since the onboard computers will extensively support ground checkout of the space shuttle, and since these computers and the software development facilities on the ground use the HAL language as baseline, the translation of GOAL to HAL becomes significant. The issue of feasibility was examined and it was found that a GOAL to HAL translator is feasible. Special problems are identified and solutions proposed. Finally, examples of translation are provided for each category of complete GOAL statement.

  11. Mechanical systems readiness assessment and performance monitoring study

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The problem of mechanical devices which lack the real-time readiness assessment and performance monitoring capability required for future space missions is studied. The results of a test program to establish the feasibility of implementing structure borne acoustics, a nondestructive test technique, are described. The program included the monitoring of operational acoustic signatures of five separate mechanical components, each possessing distinct sound characteristics. Acoustic signatures were established for normal operation of each component. Critical failure modes were then inserted into the test components, and faulted acoustic signatures obtained. Predominant features of the sound signature were related back to operational events occurring within the components both for normal and failure mode operations. All of these steps can be automated. The structure borne acoustics technique lends itself to reducing checkout time, simplifying maintenance procedures, and reducing manual involvement in the checkout, operation, maintenance, and fault diagnosis of mechanical systems.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spickermann, Thomas

    There are opportunities for advancement within the team. Operators advance by: (1) Becoming fully qualified - following the LANSCE Accelerator Operator Training Manual, Operator trainees go through 5 levels of qualification, from Radiation Security System to Experimental Area Operator. Must obtain Knowledge and Performance checkouts by an OSS or AOSS, and an End-of-Card checkout by the team leader or RSS engineer (level I). Program was inspired by US NAVY qualification program for nuclear reactor operators. Time to complete: 2-2.5 years. (2) Fully qualified operators are eligible to apply for vacant (OSS)/AOSS positions; and (3) Alternatively, experienced operators can sign upmore » for the voluntary Senior Operator Qualification Program. They must demonstrate in-depth knowledge of all areas of the accelerator complex. Time to complete is 2-3 years (Minimum 4 years from fully qualified). Eligible for promotion to level between qualified operator and AOSS.« less

  13. Investigating On-Orbit Attitude Determination Anomalies for the Solar Dynamics Observatory Mission

    NASA Technical Reports Server (NTRS)

    Vess, Melissa F.; Starin, Scott R.; Chia-Kuo, Alice Liu

    2011-01-01

    The Solar Dynamics Observatory (SDO) was launched on February 11, 2010 from Kennedy Space Center on an Atlas V launch vehicle into a geosynchronous transfer orbit. SDO carries a suite of three scientific instruments, whose observations are intended to promote a more complete understanding of the Sun and its effects on the Earth's environment. After a successful launch, separation, and initial Sun acquisition, the launch and flight operations teams dove into a commissioning campaign that included, among other things, checkout and calibration of the fine attitude sensors and checkout of the Kalman filter (KF) and the spacecraft s inertial pointing and science control modes. In addition, initial calibration of the science instruments was also accomplished. During that process of KF and controller checkout, several interesting observations were noticed and investigated. The SDO fine attitude sensors consist of one Adcole Digital Sun Sensor (DSS), two Galileo Avionica (GA) quaternion-output Star Trackers (STs), and three Kearfott Two-Axis Rate Assemblies (hereafter called inertial reference units, or IRUs). Initial checkout of the fine attitude sensors indicated that all sensors appeared to be functioning properly. Initial calibration maneuvers were planned and executed to update scale factors, drift rate biases, and alignments of the IRUs. After updating the IRU parameters, the KF was initialized and quickly reached convergence. Over the next few hours, it became apparent that there was an oscillation in the sensor residuals and the KF estimation of the IRU bias. A concentrated investigation ensued to determine the cause of the oscillations, their effect on mission requirements, and how to mitigate them. The ensuing analysis determined that the oscillations seen were, in fact, due to an oscillation in the IRU biases. The low frequencies of the oscillations passed through the KF, were well within the controller bandwidth, and therefore the spacecraft was actually following the oscillating biases, resulting in movement of the spacecraft on the order of plus or minus 20 arcsec. Though this level of error met the ACS attitude knowledge requirement of [35, 70, 70] arcsec, 3 sigma, the desire of the ACS and instrument teams was to remove as much of the oscillation as possible. The Kearfott IRUs have an internal temperature controller, designed to maintain the IRU temperature at a constant temperature of approximately 70 C, thus minimizing the change in the bias drift and scale factors of the mechanical gyros. During ground testing of the observatory, it was discovered that the 83-Hz control cycle of the IRU heaters put a tremendous amount of stress on the spacecraft battery. Analysis by the power systems team indicated that the constant charge/discharge on the battery due to the IRU thermal control cycle could potentially limit the life of the battery. After much analysis, the decision was made not to run the internal IRU heaters. Analysis of on orbit data revealed that the oscillations in the IRU bias had a connection to the temperature of the IRU; changes in IRU temperature resulted in changes in the amplitude and period of the IRU biases. Several mitigating solutions were investigated, the result of which was to tune the KF with larger IRU noise assumptions which allows the KF to follow and correct for the time-varying IRU biases.

  14. Exploring Students' Engineering Designs through Open-Ended Assignments

    ERIC Educational Resources Information Center

    Puente, S. M. Gómez; Jansen, J. W.

    2017-01-01

    This paper aims at presenting the experience of the Power Conversion project in teaching students to design a proof-of-principle contactless energy transfer system for the charging of electrical vehicles. The Power Conversion is a second-year electrical engineering (EE) project in which students are to gather and apply EE knowledge to design and…

  15. Informal Conversations and Learning Among Dental Students: Influence of School Design.

    ERIC Educational Resources Information Center

    Myrick, Richard; Marx, Barbara Spencer

    1967-01-01

    Data are presented from an exploratory study examining the influence of dental school building design on the quality and quantity of student information conversations. The purposes of the research were to determine--(1) what patterns of interaction exist commonly among dental students, and (2) how the architectural design of the building…

  16. Thermochemical Conversion Techno-Economic Analysis | Bioenergy | NREL

    Science.gov Websites

    Conversion Techno-Economic Analysis Thermochemical Conversion Techno-Economic Analysis NREL's Thermochemical Conversion Analysis team focuses on the conceptual process design and techno-economic analysis , detailed process models, and TEA developed under this project provide insights into the potential economic

  17. Design, fabrication, delivery, operation and maintenance of a geothermal power conversion system

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The design, fabrication, delivery, operation and maintenance of an Hydrothermal Power Company 1250 KVA geothermal power conversion system using a helical screw expander as the prime mover is described. Hydrostatic and acceptance testing are discussed.

  18. B-70 Aircraft Study. Volume 4

    NASA Technical Reports Server (NTRS)

    Taube, L. J.

    1972-01-01

    This volume contains cost, schedule, and technical information on the following B-70 aircraft subsystems: air induction system, flight control, personnel accommodation and escape, alighting and arresting, mission and traffic control, flight indication, test instrumentation, and installation, checkout, and pre-flight.

  19. ED01-0146-4

    NASA Image and Video Library

    2001-04-28

    Helios Prototype crew chief Marshall MacCready of AeroVironment, Inc., carefully monitors motor runs during ground checkout of the solar-powered flying wing prior to its first flight from the U.S. Navy's Pacific Missile Range Facility on Kaua'i, Hawaii.

  20. 77 FR 65901 - Agency Information Collection Activities: Extension, Without Change, of an Existing Information...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-31

    ... Request ACTION: 30-Day Notice of Information Collection for Review; File No. G- 146, Non-Immigrant...: Non-Immigrant Checkout Letter. (3) Agency form number, if any, and the applicable component of the...

  1. Device serves as hinge and electrical connector for circuit boards

    NASA Technical Reports Server (NTRS)

    Bethel, P. G.; Harris, G. G.

    1966-01-01

    Hinge makes both sides of electrical circuit boards readily accessible for component checkout and servicing. The hinge permits mounting of two circuit boards and incorporates connectors to maintain continuous electrical contact between the components on both boards.

  2. Pettit works at the HRF workstation in Destiny during Expedition Six

    NASA Image and Video Library

    2003-01-02

    ISS006-E-13995 (2 January 2003) --- Astronaut Donald R. Pettit, Expedition Six NASA ISS science officer, performs the Human Research Facility (HRF) Ultrasound functional checkout in the Destiny laboratory on the International Space Station (ISS).

  3. High-Flow Jet Exit Rig Designed and Fabricated

    NASA Technical Reports Server (NTRS)

    Buehrle, Robert J.; Trimarchi, Paul A.

    2003-01-01

    The High-Flow Jet Exit Rig at the NASA Glenn Research Center is designed to test single flow jet nozzles and to measure the appropriate thrust and noise levels. The rig has been designed for the maximum hot condition of 16 lbm/sec of combustion air at 1960 R (maximum) and to produce a maximum thrust of 2000 lb. It was designed for cold flow of 29.1 lbm/sec of air at 530 R. In addition, it can test dual-flow nozzles (nozzles with bypass flow in addition to core flow) with independent control of each flow. The High- Flow Jet Exit Rig was successfully fabricated in late 2001 and is being readied for checkout tests. The rig will be installed in Glenn's Aeroacoustic Propulsion Laboratory. The High-Flow Jet Exit Rig consists of the following major components: a single component force balance, the natural-gas-fueled J-79 combustor assembly, the plenum and manifold assembly, an acoustic/instrumentation/seeding (A/I/S) section, a table, and the research nozzles. The rig will be unique in that it is designed to operate uncooled. The structure survives the 1960 R test condition because it uses carefully selected high temperature alloy materials such as Hastelloy-X. The lower plenum assembly was designed to operate at pressures to 450 psig at 1960 R, in accordance with the ASME B31.3 piping code. The natural gas-fueled combustor fires directly into the lower manifold. The hot air is directed through eight 1-1/2-in. supply pipes that supply the upper plenum. The flow is conditioned in the upper plenum prior to flowing to the research nozzle. The 1-1/2-in. supply lines are arranged in a U-shaped design to provide for a flexible piping system. The combustor assembly checkout was successfully conducted in Glenn's Engine Component Research Laboratory in the spring of 2001. The combustor is a low-smoke version of the J79 combustor used to power the F4 Phantom military aircraft. The natural gas-fueled combustor demonstrated high-efficiency combustion over a wide range of operating conditions. This wide operating envelope is required to support the testing of both single- and dual-flow nozzles. Key research goals include providing simultaneous, highly accurate acoustic, flow, and thrust measurements on jet nozzle models in realistic flight conditions, as well as providing scaleable acoustic results. The High-Flow Jet Exit Rig is a second-generation high-flow test rig. Improvements include cleaner flow with reduced levels of particulate, soot, and odor. Choked-flow metering is required with plus or minus 0.25-percent accuracy. Thrust measurements from 0 to 2000 lbf are required with plus or minus 0.25-percent accuracy. Improved acoustics will be achieved by minimizing noise through large pipe bend radii, lower internal flow velocities, and microdrilled choke plates with thousands of 0.040-in.- diameter holes.

  4. Space lab system analysis

    NASA Technical Reports Server (NTRS)

    Rives, T. B.; Ingels, F. M.

    1988-01-01

    An analysis of the Automated Booster Assembly Checkout System (ABACS) has been conducted. A computer simulation of the ETHERNET LAN has been written. The simulation allows one to investigate different structures of the ABACS system. The simulation code is in PASCAL and is VAX compatible.

  5. QueSST Time-lapse

    NASA Image and Video Library

    2017-02-27

    Quiet Supersonic Technology (QueSST) X-plane in the 8x6 Supersonic Wind Tunnel at NASA Glenn Research Center. This time-lapse shows the model support structure buildup and balance checkout as well as the installation of the model in the test section.

  6. Cargo Movement Operations (CMOS) Increment I Installation and Checkout Plan for Langley AFB

    DTIC Science & Technology

    1990-10-28

    ERCI ACCEPTS COMMENT: YES [ ] NO [ ] COMMENT DISPOSITION: ACCEPT [ ] REJECT [ ] COMMENT STATUS: OPEN [ ] CLOSED [ ] Cmnt Page Paragraph No. No...document. CMOS PMO ACCEPTS COMMENT: YES [ ) NO [ ] ERCI ACCEPTS COMMENT: YES [ ] NO [ ] COMMENT DISPOSITION: COMMENT STATUS: OPEN [ ] CLOSED [

  7. Educational Design as Conversation: A Conversation Analytical Perspective on Teacher Dialogue

    ERIC Educational Resources Information Center

    van Kruiningen, Jacqueline F.

    2013-01-01

    The aim of this methodological paper is to expound on and demonstrate the value of conversation-analytical research in the area of (informal) teacher learning. The author discusses some methodological issues in current research on interaction in teacher learning and holds a plea for conversation-analytical research on interactional processes in…

  8. 76 FR 52006 - Announcement of Funding Awards for the Assisted Living Conversion Program; Fiscal Year 2009

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-19

    ... Awards for the Assisted Living Conversion Program; Fiscal Year 2009 AGENCY: Office of the Assistant... funding under the Notice of Funding Availability (NOFA) for the Assisted Living Conversion Program (ALCP... for this program is 14.314. The Assisted Living Conversion Program is designed to provide funds to...

  9. 77 FR 3788 - Announcement of Funding Awards for the Assisted Living Conversion Program; Fiscal Year 2010

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-25

    ... Awards for the Assisted Living Conversion Program; Fiscal Year 2010 AGENCY: Office of the Assistant... competition for funding under the Notice of Funding Availability (NOFA) for the Assisted Living Conversion... Assistance number for this program is 14.314. The Assisted Living Conversion Program is designed to provide...

  10. 78 FR 28606 - Announcement of Funding Awards for the Assisted Living Conversion Program Fiscal Year 2012

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-15

    ... Awards for the Assisted Living Conversion Program Fiscal Year 2012 AGENCY: Office of the Assistant... funding under the Notice of Funding Availability (NOFA) for the Assisted Living Conversion Program (ALCP... for this program is 14.314. The Assisted Living Conversion Program is designed to provide funds to...

  11. Study on film resistivity of Energy Conversion Components for MEMS Initiating Explosive Device

    NASA Astrophysics Data System (ADS)

    Ren, Wei; Zhang, Bin; Zhao, Yulong; Chu, Enyi; Yin, Ming; Li, Hui; Wang, Kexuan

    2018-03-01

    Resistivity of Plane-film Energy Conversion Components is a key parameter to influence its resistance and explosive performance, and also it has important relations with the preparation of thin film technology, scale, structure and etc. In order to improve the design of Energy Conversion Components for MEMS Initiating Explosive Device, and reduce the design deviation of Energy Conversion Components in microscale, guarantee the design resistance and ignition performance of MEMS Initiating Explosive Device, this paper theoretically analyzed the influence factors of film resistivity in microscale, through the preparation of Al film and Ni-Cr film at different thickness with micro/nano, then obtain the film resistivity parameter of the typical metal under different thickness, and reveals the effect rule of the scale to the resistivity in microscale, at the same time we obtain the corresponding inflection point data.

  12. KSC-2013-2880

    NASA Image and Video Library

    2013-06-20

    CAPE CANAVERAL, Fla. – Representatives from the European Space Agency, or ESA, toured the Operations and Checkout Building high bay at NASA’s Kennedy Space Center in Florida. From the left, are Nico Dettman, ESA Space Transportation Department director Bernardo Patti, ESA manager of International Space Station Operations Philippe Deloo, ESA European Service Module study manager and Mark Geyer, Orion Production Operations manager. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. Orion’s first unpiloted test flight is scheduled to launch in 2014 atop a Delta IV rocket. A second uncrewed flight test is scheduled for 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Jim Grossmann

  13. KSC-2013-2884

    NASA Image and Video Library

    2013-06-20

    CAPE CANAVERAL, Fla. – Representatives from the European Space Agency, or ESA, toured the Operations and Checkout Building high bay and viewed the Orion crew module at NASA’s Kennedy Space Center in Florida. Among the group were Nico Dettman, ESA Space Transportation Department director Bernardo Patti, ESA International Space Station Operations manager and Philippe Deloo, ESA European Service Module Study manager. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. Orion’s first unpiloted test flight is scheduled to launch in 2014 atop a Delta IV rocket. A second uncrewed flight test is scheduled for 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Jim Grossmann

  14. KSC-2012-4882

    NASA Image and Video Library

    2012-09-05

    CAPE CANAVERAL, Fla. – Inside the Operations and Checkout Building high bay at NASA’s Kennedy Space Center in Florida, technicians attach a crane to the Orion Exploration Flight Test 1 crew module so that it can be moved to the base of a birdcage tool. The birdcage will be used to continue installation of external components in preparation for Orion’s first uncrewed test flight in 2014 atop a Delta IV rocket. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. A second uncrewed flight test is scheduled for 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Kim Shiflett

  15. KSC-2012-4885

    NASA Image and Video Library

    2012-09-05

    CAPE CANAVERAL, Fla. – Inside the Operations and Checkout Building high bay at NASA’s Kennedy Space Center in Florida, a technician attaches a crane to the Orion Exploration Flight Test 1 crew module so that it can be moved to the base of a birdcage tool. The birdcage will be used to continue installation of external components in preparation for Orion’s first uncrewed test flight in 2014 atop a Delta IV rocket. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. A second uncrewed flight test is scheduled for 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Kim Shiflett

  16. KSC-99pc52

    NASA Image and Video Library

    1999-01-11

    In a specially built clean room at Astrotech, Titusville, Fla., Loral technician Roberto Caballero checks the position of the GOES-L weather satellite before beginning deployment of the sounder instrument's cooler cover door. The sounder, one of two meteorological instruments on the satellite, measures temperature and moisture in a vertical column of air from the satellite to Earth. Its findings will help forecast weather. GOES-L, which is to be launched from Cape Canaveral Air Station aboard an Atlas II rocket in late March, is the fourth of a new advanced series of geostationary weather satellites for the National Oceanic and Atmospheric Administration. It is a three-axis inertially stabilized spacecraft that will provide pictures as well as perform the atmospheric sounding. Once launched, the satellite, to be designated GOES-11, will undergo checkout and provide backup capabilities for the existing, aging GOES East weather satellite

  17. KSC-2013-3791

    NASA Image and Video Library

    2013-11-01

    CAPE CANAVERAL, Fla. – The United Launch Alliance Atlas V launch vehicle that will boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft into orbit arrives at the Atlas Spaceflight Operations Center on Cape Canaveral Air Force Station for checkout in preparation for launch. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/ Jim Grossman

  18. KSC-2013-3793

    NASA Image and Video Library

    2013-11-01

    CAPE CANAVERAL, Fla. – The United Launch Alliance Atlas V launch vehicle that will boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft into orbit arrives at the Atlas Spaceflight Operations Center on Cape Canaveral Air Force Station for checkout in preparation for launch. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/ Jim Grossman

  19. KSC-2013-3789

    NASA Image and Video Library

    2013-11-01

    CAPE CANAVERAL, Fla. – The United Launch Alliance Centaur upper stage that will boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft into orbit is being transported to the hangar at the Atlas Spaceflight Operations Center on Cape Canaveral Air Force Station for checkout in preparation for launch. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/ Jim Grossman

  20. KSC-2013-3794

    NASA Image and Video Library

    2013-11-01

    CAPE CANAVERAL, Fla. – The United Launch Alliance Atlas V launch vehicle that will boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft into orbit arrives at the Atlas Spaceflight Operations Center on Cape Canaveral Air Force Station for checkout in preparation for launch. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/ Jim Grossman

  1. KSC-2013-3784

    NASA Image and Video Library

    2013-11-01

    CAPE CANAVERAL, Fla. – The United Launch Alliance Atlas V launch vehicle that will boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft into orbit is being transported to the hangar at the Atlas Spaceflight Operations Center on Cape Canaveral Air Force Station for checkout in preparation for launch. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/ Jim Grossman

  2. KSC-2013-3788

    NASA Image and Video Library

    2013-11-01

    CAPE CANAVERAL, Fla. – The United Launch Alliance Atlas V launch vehicle that will boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft into orbit is being transported to the hangar at the Atlas Spaceflight Operations Center on Cape Canaveral Air Force Station for checkout in preparation for launch. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/ Jim Grossman

  3. KSC-2013-3787

    NASA Image and Video Library

    2013-11-01

    CAPE CANAVERAL, Fla. – The United Launch Alliance Atlas V launch vehicle that will boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft into orbit is being transported to the hangar at the Atlas Spaceflight Operations Center on Cape Canaveral Air Force Station for checkout in preparation for launch. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/ Jim Grossman

  4. KSC-2013-3785

    NASA Image and Video Library

    2013-11-01

    CAPE CANAVERAL, Fla. – The United Launch Alliance Atlas V launch vehicle that will boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft into orbit is being transported to the hangar at the Atlas Spaceflight Operations Center on Cape Canaveral Air Force Station for checkout in preparation for launch. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/ Jim Grossman

  5. KSC-98pc411

    NASA Image and Video Library

    1998-03-11

    KENNEDY SPACE CENTER, FLA. -- Swordtail fish (Xiphophorus helleri), like those that are part of the Neurolab payload on Space Shuttle Mission STS-90, are shown in their holding tanks in the Operations and Checkout Building. The fish will fly in the Closed Equilibrated Biological Aquatic System (CEBAS) Minimodule, a middeck locker-sized fresh water habitat, designed to allow the controlled incubation of aquatic species in a self-stabilizing, artifical ecosystem for up to three weeks under space conditions. Investigations during the Neurolab mission will focus on the effects of microgravity on the nervous system. The crew of STS-90, slated for launch April 16 at 2:19 p.m. EDT, include Commander Richard Searfoss, Pilot Scott Altman, Mission Specialists Richard Linnehan, D.V.M., Dafydd (Dave) Williams, M.D., and Kathryn (Kay) Hire, and Payload Specialists Jay Buckey, M.D., and James Pawelczyk, Ph.D

  6. KSC-98pc409

    NASA Image and Video Library

    1998-03-11

    KENNEDY SPACE CENTER, FLA. -- A water snail (Biomphalaria glabrata), like those that are part of the Neurolab payload on Space Shuttle Mission STS-90, is held up for inspection in the Operations and Checkout Building. The snails will fly in the Closed Equilibrated Biological Aquatic System (CEBAS) Minimodule, a middeck locker-sized fresh water habitat, designed to allow the controlled incubation of aquatic species in a self-stabilizing, artifical ecosystem for up to three weeks under space conditions. Investigations during the Neurolab mission will focus on the effects of microgravity on the nervous system. The crew of STS-90, slated for launch April 16 at 2:19 p.m. EDT, includes Commander Richard Searfoss, Pilot Scott Altman, Mission Specialists Richard Linnehan, D.V.M., Dafydd (Dave) Williams, M.D., and Kathryn (Kay) Hire, and Payload Specialists Jay Buckey, M.D., and James Pawelczyk, Ph.D

  7. KSC-98pc412

    NASA Image and Video Library

    1998-03-11

    KENNEDY SPACE CENTER, FLA. -- Swordtail fish (Xiphophorus helleri), like those that are part of the Neurolab payload on Space Shuttle Mission STS-90, are shown in their holding tank in the Operations and Checkout Building. The fish will fly in the Closed Equilibrated Biological Aquatic System (CEBAS) Minimodule, a middeck locker-sized fresh water habitat, designed to allow the controlled incubation of aquatic species in a self-stabilizing, artifical ecosystem for up to three weeks under space conditions. Investigations during the Neurolab mission will focus on the effects of microgravity on the nervous system. The crew of STS-90, slated for launch April 16 at 2:19 p.m. EDT, include Commander Richard Searfoss, Pilot Scott Altman, Mission Specialists Richard Linnehan, D.V.M., Dafydd (Dave) Williams, M.D., and Kathryn (Kay) Hire, and Payload Specialists Jay Buckey, M.D., and James Pawelczyk, Ph.D

  8. KSC-98pc408

    NASA Image and Video Library

    1998-03-11

    KENNEDY SPACE CENTER, FLA. -- Swordtail fish (Xiphophorus helleri), like those that are part of the Neurolab payload on Space Shuttle Mission STS-90, are shown in their holding tank in the Operations and Checkout Building. The fish will fly in the Closed Equilibrated Biological Aquatic System (CEBAS) Minimodule, a middeck locker-sized fresh water habitat, designed to allow the controlled incubation of aquatic species in a self-stabilizing, artifical ecosystem for up to three weeks under space conditions. Investigations during the Neurolab mission will focus on the effects of microgravity on the nervous system. The crew of STS-90, slated for launch April 16 at 2:19 p.m. EDT, include Commander Richard Searfoss, Pilot Scott Altman, Mission Specialists Richard Linnehan, D.V.M., Dafydd (Dave) Williams, M.D., and Kathryn (Kay) Hire, and Payload Specialists Jay Buckey, M.D., and James Pawelczyk, Ph.D.

  9. An illumination test is performed on the solar panel of a GOES-L satellite

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Workers (right) at Astrotech, Titusville, Fla., arrange the lights for an illumination test on the solar panel of the GOES-L weather satellite. The test is verifying the circuitry on the panel. The satellite is to be launched from Cape Canaveral Air Station aboard an Atlas II rocket in late March. The GOES-L is the fourth of a new advanced series of geostationary weather satellites for the National Oceanic and Atmospheric Administration. It is a three-axis inertially stabilized spacecraft that will provide pictures and perform atmospheric sounding at the same time. Once launched, the satellite, to be designated GOES-11, will undergo checkout and provide backup capabilities for the existing, aging GOES East weather satellite.

  10. Swordtail fish fly on STS-90 as part of Neurolab

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Swordtail fish (Xiphophorus helleri), like those that are part of the Neurolab payload on Space Shuttle Mission STS-90, are shown in their holding tank in the Operations and Checkout Building. The fish will fly in the Closed Equilibrated Biological Aquatic System (CEBAS) Minimodule, a middeck locker-sized fresh water habitat, designed to allow the controlled incubation of aquatic species in a self-stabilizing, artifical ecosystem for up to three weeks under space conditions. Investigations during the Neurolab mission will focus on the effects of microgravity on the nervous system. The crew of STS-90, slated for launch April 16 at 2:19 p.m. EDT, include Commander Richard Searfoss, Pilot Scott Altman, Mission Specialists Richard Linnehan, D.V.M., Dafydd (Dave) Williams, M.D., and Kathryn (Kay) Hire, and Payload Specialists Jay Buckey, M.D., and James Pawelczyk, Ph.D.

  11. KSC-2014-3634

    NASA Image and Video Library

    2014-08-22

    CAPE CANAVERAL, Fla. – NASA astronauts tour the Neil Armstrong Operations and Checkout Building high bay at NASA's Kennedy Space Center in Florida, and view the Orion forward bay cover for Exploration Flight Test-1. From left, are Jack Fischer, Mark Vande Hei, Katie Rubins and Scott Tingle. At far right is Jules Schneider, Lockheed Martin senior manager. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion is scheduled to launch in 2014 atop a United Launch Alliance Delta IV rocket and in 2018 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Dimitri Gerondidakis

  12. The solar panels on the GOES-L satellite are deployed

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The solar panels on the GOES-L weather satellite are fully deployed. Final testing of the imaging system, instrumentation, communications and power systems also will be performed at the Astrotech facility, Titusville, Fla. The satellite is to be launched from Cape Canaveral Air Station (CCAS) aboard an Atlas II rocket in late March. The GOES- L is the fourth of a new advanced series of geostationary weather satellites for the National Oceanic and Atmospheric Administration. It is a three-axis inertially stabilized spacecraft that will provide pictures and perform atmospheric sounding at the same time. Once launched, the satellite, to be designated GOES-11, will undergo checkout and provide backup capabilities for the existing, aging GOES East weather satellite.

  13. KSC-02pp1641

    NASA Image and Video Library

    2002-10-18

    KENNEDY SPACE CENTER, FLA. -- Workers supervise the move of the suspended TDRS-J spacecraft towards a workstand in the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2) for final checkout and processing before launch, currently targeted for Nov. 20. TDRS-J is the third in the current series of three Tracking and Data Relay Satellites designed to replenish the existing on-orbit fleet of six spacecraft, the first of which was launched in 1983. The Tracking and Data Relay Satellite System is the primary source of space-to-ground voice, data and telemetry for the Space Shuttle. It also provides communications with the International Space Station and scientific spacecraft in low-earth orbit, such as the Hubble Space Telescope, and launch support for some expendable vehicles. This new advanced series of satellites will extend the availability of TDRS communications services until approximately 2017.

  14. KSC-02pp1643

    NASA Image and Video Library

    2002-10-18

    KENNEDY SPACE CENTER, FLA. -- Workers supervise the placement of the TDRS-J spacecraft onto a workstand in the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2) for final checkout and processing before launch, currently targeted for Nov. 20. TDRS-J is the third in the current series of three Tracking and Data Relay Satellites designed to replenish the existing on-orbit fleet of six spacecraft, the first of which was launched in 1983. The Tracking and Data Relay Satellite System is the primary source of space-to-ground voice, data and telemetry for the Space Shuttle. It also provides communications with the International Space Station and scientific spacecraft in low-earth orbit, such as the Hubble Space Telescope, and launch support for some expendable vehicles. This new advanced series of satellites will extend the availability of TDRS communications services until approximately 2017.

  15. KSC-2009-3636

    NASA Image and Video Library

    2009-06-08

    CAPE CANAVERAL, Fla. – On Launch Complex 37 at Cape Canaveral Air Force Station in Florida, preparations are complete to lift the GOES-O satellite into the mobile service tower where it will be mated with the United Launch Alliance Delta IV expendable launch vehicle. The GOES-O satellite is targeted to launch no earlier than June 26. The latest Geostationary Operational Environmental Satellite, GOES-O was developed by NASA for the National Oceanic and Atmospheric Administration, or NOAA. The GOES satellites continuously provide observations of 60 percent of the Earth including the continental United States, providing weather monitoring and forecast operations as well as a continuous and reliable stream of environmental information and severe weather warnings. Once in orbit, GOES-O will be designated GOES-14, and NASA will provide on-orbit checkout and then transfer operational responsibility to NOAA. Photo credit: NASA/Jack Pfaller

  16. KSC-2009-3638

    NASA Image and Video Library

    2009-06-09

    CAPE CANAVERAL, Fla. – On Launch Complex 37 at Cape Canaveral Air Force Station in Florida, the GOES-O satellite is seen in the top of the mobile service tower, where it has been mated with the United Launch Alliance Delta IV expendable launch vehicle below. The GOES-O satellite is targeted to launch June 26. The latest Geostationary Operational Environmental Satellite, GOES-O was developed by NASA for the National Oceanic and Atmospheric Administration, or NOAA. The GOES satellites continuously provide observations of 60 percent of the Earth including the continental United States, providing weather monitoring and forecast operations as well as a continuous and reliable stream of environmental information and severe weather warnings. Once in orbit, GOES-O will be designated GOES-14, and NASA will provide on-orbit checkout and then transfer operational responsibility to NOAA. Photo credit: NASA/Kim Shiflett

  17. KSC-2009-3633

    NASA Image and Video Library

    2009-06-08

    CAPE CANAVERAL, Fla. – On Launch Complex 37 at Cape Canaveral Air Force Station in Florida, the GOES-O satellite is being prepared for its lift into the mobile service tower where it will be mated with the United Launch Alliance Delta IV expendable launch vehicle. The GOES-O satellite is targeted to launch no earlier than June 26. The latest Geostationary Operational Environmental Satellite, GOES-O was developed by NASA for the National Oceanic and Atmospheric Administration, or NOAA. The GOES satellites continuously provide observations of 60 percent of the Earth including the continental United States, providing weather monitoring and forecast operations as well as a continuous and reliable stream of environmental information and severe weather warnings. Once in orbit, GOES-O will be designated GOES-14, and NASA will provide on-orbit checkout and then transfer operational responsibility to NOAA. Photo credit: NASA/Jack Pfaller

  18. KSC-2009-3639

    NASA Image and Video Library

    2009-06-09

    CAPE CANAVERAL, Fla. – On Launch Complex 37 at Cape Canaveral Air Force Station in Florida, the GOES-O satellite is seen in the top of the mobile service tower, where it has been mated with the United Launch Alliance Delta IV expendable launch vehicle below. The GOES-O satellite is targeted to launch June 26. The latest Geostationary Operational Environmental Satellite, GOES-O was developed by NASA for the National Oceanic and Atmospheric Administration, or NOAA. The GOES satellites continuously provide observations of 60 percent of the Earth including the continental United States, providing weather monitoring and forecast operations as well as a continuous and reliable stream of environmental information and severe weather warnings. Once in orbit, GOES-O will be designated GOES-14, and NASA will provide on-orbit checkout and then transfer operational responsibility to NOAA. Photo credit: NASA/Kim Shiflett

  19. KSC-06pd1204

    NASA Image and Video Library

    2006-06-23

    KENNEDY SPACE CENTER, FLA. - An overview of the new Firing Room 4 shows the expanse of computer stations and the various operations the facility will be able to manage. FR4 is now designated the primary firing room for all remaining shuttle launches, and will also be used daily to manage operations in the Orbiter Processing Facilities and for integrated processing for the shuttle. The firing room now includes sound-suppressing walls and floors, new humidity control, fire-suppression systems and consoles, support tables with computer stations, communication systems and laptop computer ports. FR 4 also has power and computer network connections and a newly improved Checkout, Control and Monitor Subsystem. The renovation is part of the Launch Processing System Extended Survivability Project that began in 2003. United Space Alliance's Launch Processing System directorate managed the FR 4 project for NASA. Photo credit: NASA/Dimitri Gerondidakis

  20. KSC-06pd1203

    NASA Image and Video Library

    2006-06-23

    KENNEDY SPACE CENTER, FLA. - NASA Test Director Ted Mosteller (center) briefs the media about Firing Room 4 (FR4), which has been undergoing renovations for two years. FR4 is now designated the primary firing room for all remaining shuttle launches, and will also be used daily to manage operations in the Orbiter Processing Facilities and for integrated processing for the shuttle. The firing room now includes sound-suppressing walls and floors, new humidity control, fire-suppression systems and consoles, support tables with computer stations, communication systems and laptop computer ports. FR 4 also has power and computer network connections and a newly improved Checkout, Control and Monitor Subsystem. The renovation is part of the Launch Processing System Extended Survivability Project that began in 2003. United Space Alliance's Launch Processing System directorate managed the FR 4 project for NASA. Photo credit: NASA/Dimitri Gerondidakis

Top