Sample records for conversion electron counting

  1. Absorption and backscatter of internal conversion electrons in the measurements of surface contamination of ¹³⁷Cs.

    PubMed

    Yunoki, A; Kawada, Y; Yamada, T; Unno, Y; Sato, Y; Hino, Y

    2013-11-01

    We measured 4π and 2π counting efficiencies for internal conversion electrons (ICEs), gross β-particles and also β-rays alone with various source conditions regarding absorber and backing foil thickness using e-X coincidence technique. Dominant differences regarding the penetration, attenuation and backscattering properties among ICEs and β-rays were revealed. Although the abundance of internal conversion electrons of (137)Cs-(137)Ba is only 9.35%, 60% of gross counts may be attributed to ICEs in worse source conditions. This information will be useful for radionuclide metrology and for surface contamination monitoring. © 2013 Elsevier Ltd. All rights reserved.

  2. VizieR Online Data Catalog: Flux conversion factors for the Swift/UVOT filters (Brown+, 2016)

    NASA Astrophysics Data System (ADS)

    Brown, P. J.; Breeveld, A.; Roming, P. W. A.; Siegel, M.

    2016-10-01

    The conversion of observed magnitudes (or the actual observed photon or electron count rates) to a flux density is one of the most fundamental calculations. The flux conversions factors for the six Swift/UVOT filters are tabulated in Table1. (1 data file).

  3. Passive, Low Cost Neutron Detectors for Neutron Diagnostics at the National Ignition Facility

    DTIC Science & Technology

    2013-03-01

    Facility PTFE Polytetrafluoroethylene TLD Thermoluminescent Dosimeter α Conversion Coefficient (Conversion...because they required a large investment in automated track counting equipment. Thermoluminescent dosimeters ( TLDs ) remained as a viable option. They...necessary to predict radiation damage to measurement electronics . Due to programmatic and facility limitations, traditional neutron measurement

  4. High-Efficiency Photovoltaic Energy Conversion using Surface Acoustic Waves in Piezoelectric Semiconductors

    NASA Astrophysics Data System (ADS)

    Yakovenko, Victor

    2010-03-01

    We propose a radically new design for photovoltaic energy conversion using surface acoustic waves (SAWs) in piezoelectric semiconductors. The periodically modulated electric field from SAW spatially separates photogenerated electrons and holes to the maxima and minima of SAW, thus preventing their recombination. The segregated electrons and holes are transported by the moving SAW to the collecting electrodes of two types, which produce dc electric output. Recent experiments [1] using SAWs in GaAs have demonstrated the photon to current conversion efficiency of 85%. These experiments were designed for photon counting, but we propose to adapt these techniques for highly efficient photovoltaic energy conversion. The advantages are that the electron-hole segregation takes place in the whole volume where SAW is present, and the electrons and holes are transported in the organized, collective manner at high speed, as opposed to random diffusion in conventional devices.[4pt] [1] S. J. Jiao, P. D. Batista, K. Biermann, R. Hey, and P. V. Santos, J. Appl. Phys. 106, 053708 (2009).

  5. A high dynamic range pulse counting detection system for mass spectrometry.

    PubMed

    Collings, Bruce A; Dima, Martian D; Ivosev, Gordana; Zhong, Feng

    2014-01-30

    A high dynamic range pulse counting system has been developed that demonstrates an ability to operate at up to 2e8 counts per second (cps) on a triple quadrupole mass spectrometer. Previous pulse counting detection systems have typically been limited to about 1e7 cps at the upper end of the systems dynamic range. Modifications to the detection electronics and dead time correction algorithm are described in this paper. A high gain transimpedance amplifier is employed that allows a multi-channel electron multiplier to be operated at a significantly lower bias potential than in previous pulse counting systems. The system utilises a high-energy conversion dynode, a multi-channel electron multiplier, a high gain transimpedance amplifier, non-paralysing detection electronics and a modified dead time correction algorithm. Modification of the dead time correction algorithm is necessary due to a characteristic of the pulse counting electronics. A pulse counting detection system with the capability to count at ion arrival rates of up to 2e8 cps is described. This is shown to provide a linear dynamic range of nearly five orders of magnitude for a sample of aprazolam with concentrations ranging from 0.0006970 ng/mL to 3333 ng/mL while monitoring the m/z 309.1 → m/z 205.2 transition. This represents an upward extension of the detector's linear dynamic range of about two orders of magnitude. A new high dynamic range pulse counting system has been developed demonstrating the ability to operate at up to 2e8 cps on a triple quadrupole mass spectrometer. This provides an upward extension of the detector's linear dynamic range by about two orders of magnitude over previous pulse counting systems. Copyright © 2013 John Wiley & Sons, Ltd.

  6. Apparatus for use in rapid and accurate controlled-potential coulometric analysis

    DOEpatents

    Frazzini, Thomas L.; Holland, Michael K.; Pietri, Charles E.; Weiss, Jon R.

    1981-01-01

    An apparatus for controlled-potential coulometric analysis of a solution includes a cell to contain the solution to be analyzed and a plurality of electrodes to contact the solution in the cell. Means are provided to stir the solution and to control the atmosphere above it. A potentiostat connected to the electrodes controls potential differences among the electrodes. An electronic circuit connected to the potentiostat provides analog-to-digital conversion and displays a precise count of charge transfer during a desired chemical process. This count provides a measure of the amount of an unknown substance in the solution.

  7. Realization of the purely spatial Einstein-Podolsky-Rosen paradox in full-field images of spontaneous parametric down-conversion

    NASA Astrophysics Data System (ADS)

    Moreau, Paul-Antoine; Mougin-Sisini, Joé; Devaux, Fabrice; Lantz, Eric

    2012-07-01

    We demonstrate Einstein-Podolsky-Rosen (EPR) entanglement by detecting purely spatial quantum correlations in the near and far fields of spontaneous parametric down-conversion generated in a type-2 beta barium borate crystal. Full-field imaging is performed in the photon-counting regime with an electron-multiplying CCD camera. The data are used without any postselection, and we obtain a violation of Heisenberg inequalities with inferred quantities taking into account all the biphoton pairs in both the near and far fields by integration on the entire two-dimensional transverse planes. This ensures a rigorous demonstration of the EPR paradox in its original position-momentum form.

  8. Detective quantum efficiency of photon-counting x-ray detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanguay, Jesse, E-mail: jessetan@mail.ubc.ca; Yun, Seungman; Kim, Ho Kyung

    Purpose: Single-photon-counting (SPC) x-ray imaging has the potential to improve image quality and enable novel energy-dependent imaging methods. Similar to conventional detectors, optimizing image SPC quality will require systems that produce the highest possible detective quantum efficiency (DQE). This paper builds on the cascaded-systems analysis (CSA) framework to develop a comprehensive description of the DQE of SPC detectors that implement adaptive binning. Methods: The DQE of SPC systems can be described using the CSA approach by propagating the probability density function (PDF) of the number of image-forming quanta through simple quantum processes. New relationships are developed to describe PDF transfermore » through serial and parallel cascades to accommodate scatter reabsorption. Results are applied to hypothetical silicon and selenium-based flat-panel SPC detectors including the effects of reabsorption of characteristic/scatter photons from photoelectric and Compton interactions, stochastic conversion of x-ray energy to secondary quanta, depth-dependent charge collection, and electronic noise. Results are compared with a Monte Carlo study. Results: Depth-dependent collection efficiency can result in substantial broadening of photopeaks that in turn may result in reduced DQE at lower x-ray energies (20–45 keV). Double-counting interaction events caused by reabsorption of characteristic/scatter photons may result in falsely inflated image signal-to-noise ratio and potential overestimation of the DQE. Conclusions: The CSA approach is extended to describe signal and noise propagation through photoelectric and Compton interactions in SPC detectors, including the effects of escape and reabsorption of emission/scatter photons. High-performance SPC systems can be achieved but only for certain combinations of secondary conversion gain, depth-dependent collection efficiency, electronic noise, and reabsorption characteristics.« less

  9. Detective quantum efficiency of photon-counting x-ray detectors.

    PubMed

    Tanguay, Jesse; Yun, Seungman; Kim, Ho Kyung; Cunningham, Ian A

    2015-01-01

    Single-photon-counting (SPC) x-ray imaging has the potential to improve image quality and enable novel energy-dependent imaging methods. Similar to conventional detectors, optimizing image SPC quality will require systems that produce the highest possible detective quantum efficiency (DQE). This paper builds on the cascaded-systems analysis (CSA) framework to develop a comprehensive description of the DQE of SPC detectors that implement adaptive binning. The DQE of SPC systems can be described using the CSA approach by propagating the probability density function (PDF) of the number of image-forming quanta through simple quantum processes. New relationships are developed to describe PDF transfer through serial and parallel cascades to accommodate scatter reabsorption. Results are applied to hypothetical silicon and selenium-based flat-panel SPC detectors including the effects of reabsorption of characteristic/scatter photons from photoelectric and Compton interactions, stochastic conversion of x-ray energy to secondary quanta, depth-dependent charge collection, and electronic noise. Results are compared with a Monte Carlo study. Depth-dependent collection efficiency can result in substantial broadening of photopeaks that in turn may result in reduced DQE at lower x-ray energies (20-45 keV). Double-counting interaction events caused by reabsorption of characteristic/scatter photons may result in falsely inflated image signal-to-noise ratio and potential overestimation of the DQE. The CSA approach is extended to describe signal and noise propagation through photoelectric and Compton interactions in SPC detectors, including the effects of escape and reabsorption of emission/scatter photons. High-performance SPC systems can be achieved but only for certain combinations of secondary conversion gain, depth-dependent collection efficiency, electronic noise, and reabsorption characteristics.

  10. Optically Based Rapid Screening Method for Proven Optimal Treatment Strategies Before Treatment Begins

    DTIC Science & Technology

    2015-08-01

    lifetime ( t2 ) corresponds to protein- bound NADH (23). Conversely, protein-bound FAD corre- sponds to the short lifetime, whereas free FAD corresponds...single photon counting (TCSPC) electronics (SPC-150, Becker and Hickl). TCSPC uses a fast detector PMT to measure the time between a laser pulse and... Becker and Hickl). A binning of nine surrounding pixels was used. Then, the fluorescence lifetime components were computed for each pixel by deconvolving

  11. Towards the evidence of a purely spatial Einstein-Podolsky-Rosen paradox in images: measurement scheme and first experimental results

    NASA Astrophysics Data System (ADS)

    Devaux, F.; Mougin-Sisini, J.; Moreau, P. A.; Lantz, E.

    2012-07-01

    We propose a scheme to evidence the Einstein-Podolsky-Rosen (EPR) paradox for photons produced by spontaneous down conversion, from measurement of purely spatial correlations of photon positions both in the near- and in the far-field. Experimentally, quantum correlations have been measured in the far-field of parametric fluorescence created in a type II BBO crystal. Imaging is performed in the photon counting regime with an electron-multiplying CCD (EMCCD) camera.

  12. Digital scale converter

    DOEpatents

    Upton, Richard G.

    1978-01-01

    A digital scale converter is provided for binary coded decimal (BCD) conversion. The converter may be programmed to convert a BCD value of a first scale to the equivalent value of a second scale according to a known ratio. The value to be converted is loaded into a first BCD counter and counted down to zero while a second BCD counter registers counts from zero or an offset value depending upon the conversion. Programmable rate multipliers are used to generate pulses at selected rates to the counters for the proper conversion ratio. The value present in the second counter at the time the first counter is counted to the zero count is the equivalent value of the second scale. This value may be read out and displayed on a conventional seven-segment digital display.

  13. Xe isotope detection and discrimination using beta spectroscopy with coincident gamma spectroscopy

    NASA Astrophysics Data System (ADS)

    Reeder, P. L.; Bowyer, T. W.

    1998-02-01

    Beta spectroscopic techniques show promise of significant improvements for a beta-gamma coincidence counter that is part of a system for analyzing Xe automatically separated from air. The previously developed counting system for 131mXe, 133mXe, 133gXe, and 135gXe can be enhanced to give additional discrimination between these Xe isotopes by using the plastic scintillation sample cell as a beta spectrometer to resolve the conversion electron peaks. The automated system will be a key factor in monitoring the Comprehensive Test Ban Treaty.

  14. Electron-beam lithography with character projection exposure for throughput enhancement with line-edge quality optimization

    NASA Astrophysics Data System (ADS)

    Ikeno, Rimon; Maruyama, Satoshi; Mita, Yoshio; Ikeda, Makoto; Asada, Kunihiro

    2016-03-01

    Among various electron-beam lithography (EBL) techniques, variable-shaped beam (VSB) and character projection (CP) methods have attracted many EBL users for their high-throughput feature, but they are considered to be more suited to small-featured VLSI fabrication with regularly-arranged layouts like standard-cell logics and memory arrays. On the other hand, non-VLSI applications like photonics, MEMS, MOEMS, and so on, have not been fully utilized the benefit of CP method due to their wide variety of layout patterns. In addition, the stepwise edge shapes by VSB method often causes intolerable edge roughness to degrade device characteristics from its intended performance with smooth edges. We proposed an overall EBL methodology applicable to wade-variety of EBL applications utilizing VSB and CP methods. Its key idea is in our layout data conversion algorithm that decomposes curved or oblique edges of arbitrary layout patterns into CP shots. We expect significant reduction in EB shot count with a CP-bordered exposure data compared to the corresponding VSB-alone conversion result. Several CP conversion parameters are used to optimize EB exposure throughput, edge quality, and resultant device characteristics. We demonstrated out methodology using the leading-edge VSB/CP EBL tool, ADVANTEST F7000S-VD02, with high resolution Hydrogen Silsesquioxane (HSQ) resist. Through our experiments of curved and oblique edge lithography under various data conversion conditions, we learned correspondence of the conversion parameters to the resultant edge roughness and other conditions. They will be utilized as the fundamental data for further enhancement of our EBL strategy for optimized EB exposure.

  15. The detective quantum efficiency of photon-counting x-ray detectors using cascaded-systems analyses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanguay, Jesse; Yun, Seungman; School of Mechanical Engineering, Pusan National University, Jangjeon-dong, Geumjeong-gu, Busan 609-735

    Purpose: Single-photon counting (SPC) x-ray imaging has the potential to improve image quality and enable new advanced energy-dependent methods. The purpose of this study is to extend cascaded-systems analyses (CSA) to the description of image quality and the detective quantum efficiency (DQE) of SPC systems. Methods: Point-process theory is used to develop a method of propagating the mean signal and Wiener noise-power spectrum through a thresholding stage (required to identify x-ray interaction events). The new transfer relationships are used to describe the zero-frequency DQE of a hypothetical SPC detector including the effects of stochastic conversion of incident photons to secondarymore » quanta, secondary quantum sinks, additive noise, and threshold level. Theoretical results are compared with Monte Carlo calculations assuming the same detector model. Results: Under certain conditions, the CSA approach can be applied to SPC systems with the additional requirement of propagating the probability density function describing the total number of image-forming quanta through each stage of a cascaded model. Theoretical results including DQE show excellent agreement with Monte Carlo calculations under all conditions considered. Conclusions: Application of the CSA method shows that false counts due to additive electronic noise results in both a nonlinear image signal and increased image noise. There is a window of allowable threshold values to achieve a high DQE that depends on conversion gain, secondary quantum sinks, and additive noise.« less

  16. Radiometer offsets and count conversion coefficients for the Earth Radiation Budget Experiment (ERBE) spacecraft for the years 1984, 1985, and 1986

    NASA Technical Reports Server (NTRS)

    Paden, Jack; Pandey, Dhirendra K.; Shivakumar, Netra D.; Stassi, Joseph C.; Wilson, Robert; Bolden, William; Thomas, Susan; Gibson, M. Alan

    1991-01-01

    A compendium is presented of the ground and inflight scanner and nonscanner offsets and count conversion (gain) coefficients used for the Earth Radiation Budget Experiment (ERBE) production processing of data from the ERBS, NOAA-9, and NOAA-10 satellites for the 1 Nov. 1984 to 31 Dec. 1986.

  17. A Concise Protocol for the Validation of Language ENvironment Analysis (LENA) Conversational Turn Counts in Vietnamese

    ERIC Educational Resources Information Center

    Ganek, Hillary V.; Eriks-Brophy, Alice

    2018-01-01

    The aim of this study was to present a protocol for the validation of the Language ENvironment Analysis (LENA) System's conversational turn count (CTC) for Vietnamese speakers. Ten families of children aged between 22 and 42 months, recruited near Ho Chi Minh City, participated in this project. Each child wore the LENA audio recorder for a full…

  18. A Unified Approach to Electron Counting in Main-Group Clusters

    ERIC Educational Resources Information Center

    McGrady, John E.

    2004-01-01

    A presentation of an extensive review of traditional approaches to teaching electron counting is given. The electron-precise clusters are usually taken as a reference point for rationalizing the structures of their electron-rich counterparts, which are characterized by valence electron counts greater than 5n.

  19. The normalization of solar X-ray data from many experiments.

    NASA Technical Reports Server (NTRS)

    Wende, C. D.

    1972-01-01

    A conversion factor is used to convert Geiger (GM) tube count rates or ion chamber currents into units of the incident X-ray energy flux in a specified passband. A method is described which varies the passband to optimize these conversion factors such that they are relatively independent of the spectrum of the incident photons. This method was applied to GM tubes flown on Explorers 33 and 35 and Mariner 5 and to ion chambers flown on OSO 3 and OGO 4. Revised conversion factors and passbands are presented, and the resulting absolute solar X-ray fluxes based on these are shown to improve the agreement between the various experiments. Calculations have shown that, although the GM tubes on Explorer 33 viewed the Sun off-axis, the effective passband did not change appreciably, and the simple normalization of the count rates to the count rates of a similar GM tube on Explorer 35 was justified.

  20. 1.5- μm single photon counting using polarization-independent up-conversion detector

    NASA Astrophysics Data System (ADS)

    Takesue, Hiroki; Diamanti, Eleni; Langrock, Carsten; Fejer, M. M.; Yamamoto, Yoshihisa

    2006-12-01

    We report a 1.5- μm band polarization independent single photon detector based on frequency up-conversion in periodically poled lithium niobate (PPLN) waveguides. To overcome the polarization dependence of the PPLN waveguides, we employed a polarization diversity configuration composed of two up-conversion detectors connected with a polarization beam splitter. We experimentally confirmed polarization independent single photon counting using our detector. We undertook a proof-of-principle differential phase shift quantum key distribution experiment using the detector, and confirmed that the sifted key rate and error rate remained stable when the polarization state was changed during single photon transmission.

  1. The relationship between various exposure metrics for elongate mineral particles (EMP) in the taconite mining and processing industry.

    PubMed

    Hwang, Jooyeon; Ramachandran, Gurumurthy; Raynor, Peter C; Alexander, Bruce H; Mandel, Jeffrey H

    2014-01-01

    Different dimensions of elongate mineral particles (EMP) have been proposed as being relevant to respiratory health end-points such as mesothelioma and lung cancer. In this article, a methodology for converting personal EMP exposures measured using the National Institute for Occupational Safety and Health (NIOSH) 7400/7402 methods to exposures based on other size-based definitions has been proposed and illustrated. Area monitoring for EMP in the taconite mines in Minnesota's Mesabi Iron Range was conducted using a Micro Orifice Uniform Deposit Impactor (MOUDI) size-fractionating sampler. EMP on stages of the MOUDI were counted and sized according to each EMP definition using an indirect-transfer transmission electron microscopy (ISO Method 13794). EMP were identified using energy-dispersive x-ray and electron diffraction analysis. Conversion factors between the EMP counts based on different definitions were estimated using (1) a linear regression model across all locations and (2) a location-specific ratio of the count based on each EMP definition to the NIOSH 7400/7402 count. The highest fractions of EMP concentrations were found for EMP that were 1-3 μm in length and 0.2-0.5 μm in width. Therefore, the current standard NIOSH Method 7400, which only counts EMP >5 μm in length and ≥ 3 in aspect ratio, may underestimate amphibole EMP exposures. At the same time, there was a high degree of correlation between the exposures estimated according to the different size-based metrics. Therefore, the various dimensional definitions probably do not result in different dose-response relationships in epidemiological analyses. Given the high degree of correlation between the various metrics, a result consistent with prior research, a more reasonable metric might be the measurement of all EMP irrespective of size. [Supplementary materials are available for this article. Go to the publisher's online edition of Journal of Occupational and Environmental Hygiene for the following free supplemental resource: figures detailing EMP concentration.].

  2. Integrated four-channel all-fiber up-conversion single-photon-detector with adjustable efficiency and dark count.

    PubMed

    Zheng, Ming-Yang; Shentu, Guo-Liang; Ma, Fei; Zhou, Fei; Zhang, Hai-Ting; Dai, Yun-Qi; Xie, Xiuping; Zhang, Qiang; Pan, Jian-Wei

    2016-09-01

    Up-conversion single photon detector (UCSPD) has been widely used in many research fields including quantum key distribution, lidar, optical time domain reflectrometry, and deep space communication. For the first time in laboratory, we have developed an integrated four-channel all-fiber UCSPD which can work in both free-running and gate modes. This compact module can satisfy different experimental demands with adjustable detection efficiency and dark count. We have characterized the key parameters of the UCSPD system.

  3. Detection efficiency calculation for photons, electrons and positrons in a well detector. Part I: Analytical model

    NASA Astrophysics Data System (ADS)

    Pommé, S.

    2009-06-01

    An analytical model is presented to calculate the total detection efficiency of a well-type radiation detector for photons, electrons and positrons emitted from a radioactive source at an arbitrary position inside the well. The model is well suited to treat a typical set-up with a point source or cylindrical source and vial inside a NaI well detector, with or without lead shield surrounding it. It allows for fast absolute or relative total efficiency calibrations for a wide variety of geometrical configurations and also provides accurate input for the calculation of coincidence summing effects. Depending on its accuracy, it may even be applied in 4π-γ counting, a primary standardisation method for activity. Besides an accurate account of photon interactions, precautions are taken to simulate the special case of 511 keV annihilation quanta and to include realistic approximations for the range of (conversion) electrons and β -- and β +-particles.

  4. Platelet counting using the Coulter electronic counter.

    PubMed

    Eggleton, M J; Sharp, A A

    1963-03-01

    A method for counting platelets in dilutions of platelet-rich plasm using the Coulter electronic counter is described.(1) The results obtained show that such platelet counts are at least as accurate as the best methods of visual counting. The various technical difficulties encountered are discussed.

  5. Using the 18-Electron Rule To Understand the Nominal 19-Electron Half-Heusler NbCoSb with Nb Vacancies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeier, Wolfgang G.; Anand, Shashwat; Huang, Lihong

    The 18-electron rule is a widely used criterion in the search for new half-Heusler thermoelectric materials. However, several 19-electron compounds such as NbCoSb have been found to be stable and exhibit thermoelectric properties rivaling state-of-the art materials. Using synchrotron X-ray diffraction and density functional theory calculations, we show that samples with nominal (19-electron) composition NbCoSb actually contain a half-Heusler phase with composition Nb0.84CoSb. The large amount of stable Nb vacancies reduces the overall electron count, which brings the stoichiometry of the compound close to an 18-electron count, and stabilizes the material. Excess electrons beyond 18 electrons provide heavy doping neededmore » to make these good thermoelectric materials. This work demonstrates that considering possible defect chemistry and allowing small variation of electron counting leads to extra degrees of freedom for tailoring thermoelectric properties and exploring new compounds. Here we discuss the 18-electron rule as a guide to find defect-free half-Heusler semiconductors. Other electron counts such as 19-electron NbCoSb can also be expected to be stable as n-type metals, perhaps with cation vacancy defects to reduce the electron count.« less

  6. Platelet counting using the Coulter electronic counter

    PubMed Central

    Eggleton, M. J.; Sharp, A. A.

    1963-01-01

    A method for counting platelets in dilutions of platelet-rich plasm using the Coulter electronic counter is described.1 The results obtained show that such platelet counts are at least as accurate as the best methods of visual counting. The various technical difficulties encountered are discussed. PMID:16811002

  7. Measurement of the^ 235U(n,n')^235mU Integral Cross Section in a Pulsed Reactor

    NASA Astrophysics Data System (ADS)

    Vieira, D. J.; Bond, E. M.; Belier, G.; Meot, V.; Becker, J. A.; Macri, R. A.; Authier, N.; Hyneck, D.; Jacquet, X.; Jansen, Y.; Legrendre, J.

    2009-10-01

    We will present the integral measurement of the neutron inelastic cross section of ^235U leading to the 26-minute, E*=76.5 eV isomer state. Small samples (5-20 microgm) of isotope-enriched ^235U were activated in the central cavity of the CALIBAN pulsed reactor at Valduc where a nearly pure fission neutron spectrum is produced with a typical fluence of 3x10^14 n/cm^2. After 30 minutes the samples were removed from the reactor and counted in an electrostatic-deflecting electron spectrometer that was optimized for the detection of ^235mU conversion electrons. From the decay curve analysis of the data, the 26-minute ^235mU component was extracted. Preliminary results will be given and compared to gamma-cascade calculations assuming complete K-mixing or with no K-mixing.

  8. Evaluating language environment analysis system performance for Chinese: a pilot study in Shanghai.

    PubMed

    Gilkerson, Jill; Zhang, Yiwen; Xu, Dongxin; Richards, Jeffrey A; Xu, Xiaojuan; Jiang, Fan; Harnsberger, James; Topping, Keith

    2015-04-01

    The purpose of this study was to evaluate performance of the Language Environment Analysis (LENA) automated language-analysis system for the Chinese Shanghai dialect and Mandarin (SDM) languages. Volunteer parents of 22 children aged 3-23 months were recruited in Shanghai. Families provided daylong in-home audio recordings using LENA. A native speaker listened to 15 min of randomly selected audio samples per family to label speaker regions and provide Chinese character and SDM word counts for adult speakers. LENA segment labeling and counts were compared with rater-based values. LENA demonstrated good sensitivity in identifying adult and child; this sensitivity was comparable to that of American English validation samples. Precision was strong for adults but less so for children. LENA adult word count correlated strongly with both Chinese characters and SDM word counts. LENA conversational turn counts correlated similarly with rater-based counts after the exclusion of three unusual samples. Performance related to some degree to child age. LENA adult word count and conversational turn provided reasonably accurate estimates for SDM over the age range tested. Theoretical and practical considerations regarding LENA performance in non-English languages are discussed. Despite the pilot nature and other limitations of the study, results are promising for broader cross-linguistic applications.

  9. Radiometer offsets and count conversion coefficients for the Earth Radiation Budget Experiment (ERBE) spacecraft for the years 1987, 1988, and 1989

    NASA Technical Reports Server (NTRS)

    Paden, Jack; Pandey, Dhirendra K.; Stassi, Joseph C.; Wilson, Robert; Bolden, William; Thomas, Susan; Gibson, M. Alan

    1993-01-01

    This document contains a compendium of the ground and in-flight scanner and non-scanner offsets and count conversion (gain) coefficients used for the Earth Radiation Budget Experiment (ERBE) production processing of data from the ERBS satellite for the period from 1 January 1987 to 31 December 1989; for the NOAA-9 satellite, for the month of January 1987; and for the NOAA-10 satellite, for the period from 1 January 1987 to 31 May 1989.

  10. Electron-beam lithography with character projection technique for high-throughput exposure with line-edge quality control

    NASA Astrophysics Data System (ADS)

    Ikeno, Rimon; Maruyama, Satoshi; Mita, Yoshio; Ikeda, Makoto; Asada, Kunihiro

    2016-07-01

    The high throughput of character projection (CP) electron-beam (EB) lithography makes it a promising technique for low-to-medium volume device fabrication with regularly arranged layouts, such as for standard-cell logics and memory arrays. However, non-VLSI applications such as MEMS and MOEMS may not be able to fully utilize the benefits of the CP method due to the wide variety of layout figures including curved and oblique edges. In addition, the stepwise shapes that appear because of the EB exposure process often result in intolerable edge roughness, which degrades device performances. In this study, we propose a general EB lithography methodology for such applications utilizing a combination of the CP and variable-shaped beam methods. In the process of layout data conversion with CP character instantiation, several control parameters were optimized to minimize the shot count, improve the edge quality, and enhance the overall device performance. We have demonstrated EB shot reduction and edge-quality improvement with our methodology by using a leading-edge EB exposure tool, ADVANTEST F7000S-VD02, and a high-resolution hydrogen silsesquioxane resist. Atomic force microscope observations were used to analyze the resist edge profiles' quality to determine the influence of the control parameters used in the data conversion process.

  11. Measuring Transmission Efficiencies Of Mass Spectrometers

    NASA Technical Reports Server (NTRS)

    Srivastava, Santosh K.

    1989-01-01

    Coincidence counts yield absolute efficiencies. System measures mass-dependent transmission efficiencies of mass spectrometers, using coincidence-counting techniques reminiscent of those used for many years in calibration of detectors for subatomic particles. Coincidences between detected ions and electrons producing them counted during operation of mass spectrometer. Under certain assumptions regarding inelastic scattering of electrons, electron/ion-coincidence count is direct measure of transmission efficiency of spectrometer. When fully developed, system compact, portable, and used routinely to calibrate mass spectrometers.

  12. A comparison of manual and electronic counting for total nucleated cell counts on synovial fluid from canine stifle joints.

    PubMed

    Atilola, M A; Lumsden, J H; Rooke, F

    1986-04-01

    Synovial fluids collected from the stifle joints of 20 physically normal adult dogs were subjected to cytological examination. A total nucleated cell count was performed on each sample using both an electronic cell counter and a hemocytometer. The mean of the total counts done with the electronic counter was significantly higher (1008 cells/microL) than that obtained manually with the hemocytometer (848 cells/microL).

  13. Optically-Switched Resonant Tunneling Diodes for Space-Based Optical Communication Applications

    NASA Technical Reports Server (NTRS)

    Moise, T. S.; Kao, Y. -C.; Jovanovic, D.; Sotirelis, P.

    1995-01-01

    We are developing a new type of digital photo-receiver that has the potential to perform high speed optical-to-electronic conversion with a factor of 10 reduction in component count and power dissipation. In this paper, we describe the room-temperature photo-induced switching of this InP-based device which consists of an InGaAs/AlAs resonant tunneling diode integrated with an InGaAs absorber layer. When illuminated at an irradiance of greater than 5 Wcm(exp -2) using 1.3 micromillimeter radiation, the resonant tunneling diode switches from a high-conductance to a low-conductance electrical state and exhibits a voltage swing of up to 800 mV.

  14. Impute DC link (IDCL) cell based power converters and control thereof

    DOEpatents

    Divan, Deepakraj M.; Prasai, Anish; Hernendez, Jorge; Moghe, Rohit; Iyer, Amrit; Kandula, Rajendra Prasad

    2016-04-26

    Power flow controllers based on Imputed DC Link (IDCL) cells are provided. The IDCL cell is a self-contained power electronic building block (PEBB). The IDCL cell may be stacked in series and parallel to achieve power flow control at higher voltage and current levels. Each IDCL cell may comprise a gate drive, a voltage sharing module, and a thermal management component in order to facilitate easy integration of the cell into a variety of applications. By providing direct AC conversion, the IDCL cell based AC/AC converters reduce device count, eliminate the use of electrolytic capacitors that have life and reliability issues, and improve system efficiency compared with similarly rated back-to-back inverter system.

  15. Single electron counting using a dual MCP assembly

    NASA Astrophysics Data System (ADS)

    Yang, Yuzhen; Liu, Shulin; Zhao, Tianchi; Yan, Baojun; Wang, Peiliang; Yu, Yang; Lei, Xiangcui; Yang, Luping; Wen, Kaile; Qi, Ming; Heng, Yuekun

    2016-09-01

    The gain, pulse height resolution and peak-to-valley ratio of single electrons detected by using a Chevron configured Microchannel Plate (MCP) assembly are studied. The two MCPs are separated by a 280 μm gap and are biased by four electrodes. The purpose of the study is to determine the optimum bias voltage arrangements for single electron counting. By comparing the results of various bias voltage combinations, we conclude that good performance for the electron counting can be achieved by operating the MCP assembly in saturation mode. In addition, by applying a small reverse bias voltage across the gap while adjusting the bias voltages of the MCPs, optimum performance of electron counting can be obtained.

  16. Conversion from Engineering Units to Telemetry Counts on Dryden Flight Simulators

    NASA Technical Reports Server (NTRS)

    Fantini, Jay A.

    1998-01-01

    Dryden real-time flight simulators encompass the simulation of pulse code modulation (PCM) telemetry signals. This paper presents a new method whereby the calibration polynomial (from first to sixth order), representing the conversion from counts to engineering units (EU), is numerically inverted in real time. The result is less than one-count error for valid EU inputs. The Newton-Raphson method is used to numerically invert the polynomial. A reverse linear interpolation between the EU limits is used to obtain an initial value for the desired telemetry count. The method presented here is not new. What is new is how classical numerical techniques are optimized to take advantage of modem computer power to perform the desired calculations in real time. This technique makes the method simple to understand and implement. There are no interpolation tables to store in memory as in traditional methods. The NASA F-15 simulation converts and transmits over 1000 parameters at 80 times/sec. This paper presents algorithm development, FORTRAN code, and performance results.

  17. Alpha and conversion electron spectroscopy of 238,239Pu and 241Am and alpha-conversion electron coincidence measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dion, Michael P.; Miller, Brian W.; Warren, Glen A.

    2016-09-01

    A technique to determine the isotopics of a mixed actinide sample has been proposed by measuring the coincidence of the alpha particle during radioactive decay with the conversion electron (or Auger) emitted during the relaxation of the daughter isotope. This presents a unique signature to allow the deconvolution of isotopes that possess overlapping alpha particle energy. The work presented here are results of conversion electron spectroscopy of 241Am, 238Pu and 239Pu using a dual-stage peltier-cooled 25 mm2 silicon drift detector. A passivated ion implanted planar silicon detector provided measurements of alpha spectroscopy. The conversion electron spectra were evaluated from 20–55more » keV based on fits to the dominant conversion electron emissions, which allowed the relative conversion electron emission intensities to be determined. These measurements provide crucial singles spectral information to aid in the coincident measurement approach.« less

  18. A comparison of 2 techniques for estimating deer density

    USGS Publications Warehouse

    Storm, G.L.; Cottam, D.F.; Yahner, R.H.; Nichols, J.D.

    1977-01-01

    We applied mark-resight and area-conversion methods to estimate deer abundance at a 2,862-ha area in and surrounding the Gettysburg National Military Park and Eisenhower National Historic Site during 1987-1991. One observer in each of 11 compartments counted marked and unmarked deer during 65-75 minutes at dusk during 3 counts in each of April and November. Use of radio-collars and vinyl collars provided a complete inventory of marked deer in the population prior to the counts. We sighted 54% of the marked deer during April 1987 and 1988, and 43% of the marked deer during November 1987 and 1988. Mean number of deer counted increased from 427 in April 1987 to 582 in April 1991, and increased from 467 in November 1987 to 662 in November 1990. Herd size during April, based on the mark-resight method, increased from approximately 700-1,400 from 1987-1991, whereas the estimates for November indicated an increase from 983 for 1987 to 1,592 for 1990. Given the large proportion of open area and the extensive road system throughout the study area, we concluded that the sighting probability for marked and unmarked deer was fairly similar. We believe that the mark-resight method was better suited to our study than the area-conversion method because deer were not evenly distributed between areas suitable and unsuitable for sighting within open and forested areas. The assumption of equal distribution is required by the area-conversion method. Deer marked for the mark-resight method also helped reduce double counting during the dusk surveys.

  19. CuOF: an electrical to optical interface for the upgrade of the CMS muon Drift Tubes system

    NASA Astrophysics Data System (ADS)

    Dattola, D.; De Remigis, P.; Maselli, S.; Mazza, G.; Rotondo, F.; Wheadon, R.

    2013-02-01

    The upgrade of the Drift Tube system of the CMS experiment foresee the relocation of the electronics actually sitting on the racks beside the magnet from the cavern to the counting room. It is thus required to convert the signals from electrical to optical, for a total number of 3500 channels that run at up to 480 Mb/s. A Copper to Optical Fiber board is currently under design. The board is divided into a mother board, which hosts the slow control system based on Field Programmable Gate Array, and four mezzanine cards, each with 8 conversion channels. A prototype of the mezzanine board has been designed and tested under irradiation.

  20. Low-dose electron energy-loss spectroscopy using electron counting direct detectors.

    PubMed

    Maigné, Alan; Wolf, Matthias

    2018-03-01

    Since the development of parallel electron energy loss spectroscopy (EELS), charge-coupled devices (CCDs) have been the default detectors for EELS. With the recent development of electron-counting direct-detection cameras, micrographs can be acquired under very low electron doses at significantly improved signal-to-noise ratio. In spectroscopy, in particular in combination with a monochromator, the signal can be extremely weak and the detection limit is principally defined by noise introduced by the detector. Here we report the use of an electron-counting direct-detection camera for EEL spectroscopy. We studied the oxygen K edge of amorphous ice and obtained a signal noise ratio up to 10 times higher than with a conventional CCD.We report the application of electron counting to record time-resolved EEL spectra of a biological protein embedded in amorphous ice, revealing chemical changes observed in situ while exposed by the electron beam. A change in the fine structure of nitrogen K and the carbon K edges were recorded during irradiation. A concentration of 3 at% nitrogen was detected with a total electron dose of only 1.7 e-/Å2, extending the boundaries of EELS signal detection at low electron doses.

  1. Simulation of background from low-level tritium and radon emanation in the KATRIN spectrometers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leiber, B.; Collaboration: KATRIN Collaboration

    The KArlsruhe TRItium Neutrino (KATRIN) experiment is a large-scale experiment for the model independent determination of the mass of electron anti-neutrinos with a sensitivity of 200 meV/c{sup 2}. It investigates the kinematics of electrons from tritium beta decay close to the endpoint of the energy spectrum at 18.6 keV. To achieve a good signal to background ratio at the endpoint, a low background rate below 10{sup −2} counts per second is required. The KATRIN setup thus consists of a high luminosity windowless gaseous tritium source (WGTS), a magnetic electron transport system with differential and cryogenic pumping for tritium retention, andmore » electro-static retarding spectrometers (pre-spectrometer and main spectrometer) for energy analysis, followed by a segmented detector system for counting transmitted beta-electrons. A major source of background comes from magnetically trapped electrons in the main spectrometer (vacuum vessel: 1240 m{sup 3}, 10{sup −11} mbar) produced by nuclear decays in the magnetic flux tube of the spectrometer. Major contributions are expected from short-lived radon isotopes and tritium. Primary electrons, originating from these decays, can be trapped for hours, until having lost almost all their energy through inelastic scattering on residual gas particles. Depending on the initial energy of the primary electron, up to hundreds of low energetic secondary electrons can be produced. Leaving the spectrometer, these electrons will contribute to the background rate. This contribution describes results from simulations for the various background sources. Decays of {sup 219}Rn, emanating from the main vacuum pump, and tritium from the WGTS that reaches the spectrometers are expected to account for most of the background. As a result of the radon alpha decay, electrons are emitted through various processes, such as shake-off, internal conversion and the Auger deexcitations. The corresponding simulations were done using the KASSIOPEIA framework, which has been developed for the KATRIN experiment for low-energy electron tracking, field calculation and detector simulation. The results of the simulations have been used to optimize the design parameters of the vacuum system with regard to radon emanation and tritium pumping, in order to reach the stringent requirements of the neutrino mass measurement.« less

  2. Mapping the layer count of few-layer hexagonal boron nitride at high lateral spatial resolutions

    NASA Astrophysics Data System (ADS)

    Mohsin, Ali; Cross, Nicholas G.; Liu, Lei; Watanabe, Kenji; Taniguchi, Takashi; Duscher, Gerd; Gu, Gong

    2018-01-01

    Layer count control and uniformity of two dimensional (2D) layered materials are critical to the investigation of their properties and to their electronic device applications, but methods to map 2D material layer count at nanometer-level lateral spatial resolutions have been lacking. Here, we demonstrate a method based on two complementary techniques widely available in transmission electron microscopes (TEMs) to map the layer count of multilayer hexagonal boron nitride (h-BN) films. The mass-thickness contrast in high-angle annular dark-field (HAADF) imaging in the scanning transmission electron microscope (STEM) mode allows for thickness determination in atomically clean regions with high spatial resolution (sub-nanometer), but is limited by surface contamination. To complement, another technique based on the boron K ionization edge in the electron energy loss spectroscopy spectrum (EELS) of h-BN is developed to quantify the layer count so that surface contamination does not cause an overestimate, albeit at a lower spatial resolution (nanometers). The two techniques agree remarkably well in atomically clean regions with discrepancies within  ±1 layer. For the first time, the layer count uniformity on the scale of nanometers is quantified for a 2D material. The methodology is applicable to layer count mapping of other 2D layered materials, paving the way toward the synthesis of multilayer 2D materials with homogeneous layer count.

  3. Radon induced background processes in the KATRIN pre-spectrometer

    NASA Astrophysics Data System (ADS)

    Fränkle, F. M.; Bornschein, L.; Drexlin, G.; Glück, F.; Görhardt, S.; Käfer, W.; Mertens, S.; Wandkowsky, N.; Wolf, J.

    2011-10-01

    The KArlsruhe TRItium Neutrino (KATRIN) experiment is a next generation, model independent, large scale tritium β-decay experiment to determine the effective electron anti-neutrino mass by investigating the kinematics of tritium β-decay with a sensitivity of 200 meV/c 2 using the MAC-E filter technique. In order to reach this sensitivity, a low background level of 10 -2 counts per second (cps) is required. This paper describes how the decay of radon in a MAC-E filter generates background events, based on measurements performed at the KATRIN pre-spectrometer test setup. Radon (Rn) atoms, which emanate from materials inside the vacuum region of the KATRIN spectrometers, are able to penetrate deep into the magnetic flux tube so that the α-decay of Rn contributes to the background. Of particular importance are electrons emitted in processes accompanying the Rn α-decay, such as shake-off, internal conversion of excited levels in the Rn daughter atoms and Auger electrons. While low-energy electrons (<100 eV) directly contribute to the background in the signal region, higher energy electrons can be stored magnetically inside the volume of the spectrometer. Depending on their initial energy, they are able to create thousands of secondary electrons via subsequent ionization processes with residual gas molecules and, since the detector is not able to distinguish these secondary electrons from the signal electrons, an increased background rate over an extended period of time is generated.

  4. NEMA count-rate evaluation of the first and second generation of the Ecat Exact and Ecat Exact HR family of scanners

    NASA Astrophysics Data System (ADS)

    Eriksson, L.; Wienhard, K.; Eriksson, M.; Casey, M. E.; Knoess, C.; Bruckbauer, T.; Hamill, J.; Mulnix, T.; Vollmar, S.; Bendriem, B.; Heiss, W. D.; Nutt, R.

    2002-06-01

    The first and second generation of the Exact and Exact HR family of scanners has been evaluated in terms of noise equivalent count rate (NEC) and count-rate capabilities. The new National Electrical Manufacturers Association standard was used for the evaluation. In spite of improved electronics and improved count-rate capabilities, the peak NEC was found to be fairly constant between the generations. The results are discussed in terms of the different electronic solutions for the two generations and its implications on system dead time and NEC count-rate capability.

  5. Non-Markovian full counting statistics in quantum dot molecules

    PubMed Central

    Xue, Hai-Bin; Jiao, Hu-Jun; Liang, Jiu-Qing; Liu, Wu-Ming

    2015-01-01

    Full counting statistics of electron transport is a powerful diagnostic tool for probing the nature of quantum transport beyond what is obtainable from the average current or conductance measurement alone. In particular, the non-Markovian dynamics of quantum dot molecule plays an important role in the nonequilibrium electron tunneling processes. It is thus necessary to understand the non-Markovian full counting statistics in a quantum dot molecule. Here we study the non-Markovian full counting statistics in two typical quantum dot molecules, namely, serially coupled and side-coupled double quantum dots with high quantum coherence in a certain parameter regime. We demonstrate that the non-Markovian effect manifests itself through the quantum coherence of the quantum dot molecule system, and has a significant impact on the full counting statistics in the high quantum-coherent quantum dot molecule system, which depends on the coupling of the quantum dot molecule system with the source and drain electrodes. The results indicated that the influence of the non-Markovian effect on the full counting statistics of electron transport, which should be considered in a high quantum-coherent quantum dot molecule system, can provide a better understanding of electron transport through quantum dot molecules. PMID:25752245

  6. Direct Detection Electron Energy-Loss Spectroscopy: A Method to Push the Limits of Resolution and Sensitivity.

    PubMed

    Hart, James L; Lang, Andrew C; Leff, Asher C; Longo, Paolo; Trevor, Colin; Twesten, Ray D; Taheri, Mitra L

    2017-08-15

    In many cases, electron counting with direct detection sensors offers improved resolution, lower noise, and higher pixel density compared to conventional, indirect detection sensors for electron microscopy applications. Direct detection technology has previously been utilized, with great success, for imaging and diffraction, but potential advantages for spectroscopy remain unexplored. Here we compare the performance of a direct detection sensor operated in counting mode and an indirect detection sensor (scintillator/fiber-optic/CCD) for electron energy-loss spectroscopy. Clear improvements in measured detective quantum efficiency and combined energy resolution/energy field-of-view are offered by counting mode direct detection, showing promise for efficient spectrum imaging, low-dose mapping of beam-sensitive specimens, trace element analysis, and time-resolved spectroscopy. Despite the limited counting rate imposed by the readout electronics, we show that both core-loss and low-loss spectral acquisition are practical. These developments will benefit biologists, chemists, physicists, and materials scientists alike.

  7. Resonant snubber inverter

    DOEpatents

    Lai, Jih-Sheng; Young, Sr., Robert W.; Chen, Daoshen; Scudiere, Matthew B.; Ott, Jr., George W.; White, Clifford P.; McKeever, John W.

    1997-01-01

    A resonant, snubber-based, soft switching, inverter circuit achieves lossless switching during dc-to-ac power conversion and power conditioning with minimum component count and size. Current is supplied to the resonant snubber branches solely by the main inverter switches. Component count and size are reduced by use of a single semiconductor switch in the resonant snubber branches. Component count is also reduced by maximizing the use of stray capacitances of the main switches as parallel resonant capacitors. Resonance charging and discharging of the parallel capacitances allows lossless, zero voltage switching. In one embodiment, circuit component size and count are minimized while achieving lossless, zero voltage switching within a three-phase inverter.

  8. Resonant snubber inverter

    DOEpatents

    Lai, J.S.; Young, R.W. Sr.; Chen, D.; Scudiere, M.B.; Ott, G.W. Jr.; White, C.P.; McKeever, J.W.

    1997-06-24

    A resonant, snubber-based, soft switching, inverter circuit achieves lossless switching during dc-to-ac power conversion and power conditioning with minimum component count and size. Current is supplied to the resonant snubber branches solely by the main inverter switches. Component count and size are reduced by use of a single semiconductor switch in the resonant snubber branches. Component count is also reduced by maximizing the use of stray capacitances of the main switches as parallel resonant capacitors. Resonance charging and discharging of the parallel capacitances allows lossless, zero voltage switching. In one embodiment, circuit component size and count are minimized while achieving lossless, zero voltage switching within a three-phase inverter. 14 figs.

  9. Effects of disorder on the intrinsically hole-doped iron-based superconductor KC a2F e4A s4F2 by cobalt substitution

    NASA Astrophysics Data System (ADS)

    Ishida, Junichi; Iimura, Soshi; Hosono, Hideo

    2017-11-01

    In this paper, the effects of cobalt substitution on the transport and electronic properties of the recently discovered iron-based superconductor KC a2F e4A s4F2 , with Tc=33 K , are reported. This material is an unusual superconductor showing intrinsic hole conduction (0.25 holes /F e2 + ). Upon doping of Co, the Tc of KC a2(Fe1-xC ox) 4A s4F2 gradually decreased, and bulk superconductivity disappeared when x ≥0.25 . Conversion of the primary carrier from p type to n type upon Co-doping was clearly confirmed by Hall measurements, and our results are consistent with the change in the calculated Fermi surface. Nevertheless, neither spin density wave (SDW) nor an orthorhombic phase, which are commonly observed for nondoped iron-based superconductors, was observed in the nondoped or electron-doped samples. The electron count in the 3 d orbitals and structural parameters were compared with those of other iron-based superconductors to show that the physical properties can be primarily ascribed to the effects of disorder.

  10. Compact SPAD-Based Pixel Architectures for Time-Resolved Image Sensors

    PubMed Central

    Perenzoni, Matteo; Pancheri, Lucio; Stoppa, David

    2016-01-01

    This paper reviews the state of the art of single-photon avalanche diode (SPAD) image sensors for time-resolved imaging. The focus of the paper is on pixel architectures featuring small pixel size (<25 μm) and high fill factor (>20%) as a key enabling technology for the successful implementation of high spatial resolution SPAD-based image sensors. A summary of the main CMOS SPAD implementations, their characteristics and integration challenges, is provided from the perspective of targeting large pixel arrays, where one of the key drivers is the spatial uniformity. The main analog techniques aimed at time-gated photon counting and photon timestamping suitable for compact and low-power pixels are critically discussed. The main features of these solutions are the adoption of analog counting techniques and time-to-analog conversion, in NMOS-only pixels. Reliable quantum-limited single-photon counting, self-referenced analog-to-digital conversion, time gating down to 0.75 ns and timestamping with 368 ps jitter are achieved. PMID:27223284

  11. Software electron counting for low-dose scanning transmission electron microscopy.

    PubMed

    Mittelberger, Andreas; Kramberger, Christian; Meyer, Jannik C

    2018-05-01

    The performance of the detector is of key importance for low-dose imaging in transmission electron microscopy, and counting every single electron can be considered as the ultimate goal. In scanning transmission electron microscopy, low-dose imaging can be realized by very fast scanning, however, this also introduces artifacts and a loss of resolution in the scan direction. We have developed a software approach to correct for artifacts introduced by fast scans, making use of a scintillator and photomultiplier response that extends over several pixels. The parameters for this correction can be directly extracted from the raw image. Finally, the images can be converted into electron counts. This approach enables low-dose imaging in the scanning transmission electron microscope via high scan speeds while retaining the image quality of artifact-free slower scans. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  12. High-fidelity frequency down-conversion of visible entangled photon pairs with superconducting single-photon detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ikuta, Rikizo; Kato, Hiroshi; Kusaka, Yoshiaki

    We experimentally demonstrate a high-fidelity visible-to-telecommunicationwavelength conversion of a photon by using a solid-state-based difference frequency generation. In the experiment, one half of a pico-second visible entangled photon pair at 780 nm is converted to a 1522-nm photon. Using superconducting single-photon detectors with low dark count rates and small timing jitters, we observed a fidelity of 0.93±0.04 after the wavelength conversion.

  13. Soybean extracts facilitate bacterial agglutination and prevent biofilm formation on orthodontic wire.

    PubMed

    Lee, Heon-Jin; Kwon, Tae-Yub; Kim, Kyo-Han; Hong, Su-Hyung

    2014-01-01

    Soybean is an essential food ingredient that contains a class of organic compounds known as isoflavones. It is also well known that several plant agglutinins interfere with bacterial adherence to smooth surfaces. However, little is known about the effects of soybean extracts or genistein (a purified isoflavone from soybean) on bacterial biofilm formation. We evaluated the effects of soybean (Glycine max) extracts, including fermented soybean and genistein, on streptococcal agglutination and attachment onto stainless steel orthodontic wire. After cultivating streptococci in biofilm medium containing soybean extracts and orthodontic wire, the viable bacteria attached to the wire were counted. Phase-contrast microscopy and scanning electron microscopy (SEM) analyses were conducted to evaluate bacterial agglutination and attachment. Our study showed that soybean extracts induce agglutination between streptococci, which results in bacterial precipitation. Conversely, viable bacterial counting and SEM image analysis of Streptococcus mutans attached to the orthodontic wire show that bacterial attachment decreases significantly when soybean extracts were added. However, there was no significant change in pre-attached S. mutans biofilm in response to soybean. A possible explanation for these results is that increased agglutination of planktonic streptococci by soybean extracts results in inhibition of bacterial attachment onto the orthodontic wire.

  14. Partial bisulfite conversion for unique template sequencing

    PubMed Central

    Kumar, Vijay; Rosenbaum, Julie; Wang, Zihua; Forcier, Talitha; Ronemus, Michael; Wigler, Michael

    2018-01-01

    Abstract We introduce a new protocol, mutational sequencing or muSeq, which uses sodium bisulfite to randomly deaminate unmethylated cytosines at a fixed and tunable rate. The muSeq protocol marks each initial template molecule with a unique mutation signature that is present in every copy of the template, and in every fragmented copy of a copy. In the sequenced read data, this signature is observed as a unique pattern of C-to-T or G-to-A nucleotide conversions. Clustering reads with the same conversion pattern enables accurate count and long-range assembly of initial template molecules from short-read sequence data. We explore count and low-error sequencing by profiling 135 000 restriction fragments in a PstI representation, demonstrating that muSeq improves copy number inference and significantly reduces sporadic sequencer error. We explore long-range assembly in the context of cDNA, generating contiguous transcript clusters greater than 3,000 bp in length. The muSeq assemblies reveal transcriptional diversity not observable from short-read data alone. PMID:29161423

  15. Means and method for calibrating a photon detector utilizing electron-photon coincidence

    NASA Technical Reports Server (NTRS)

    Srivastava, S. K. (Inventor)

    1984-01-01

    An arrangement for calibrating a photon detector particularly applicable for the ultraviolet and vacuum ultraviolet regions is based on electron photon coincidence utilizing crossed electron beam atom beam collisions. Atoms are excited by electrons which lose a known amount of energy and scatter with a known remaining energy, while the excited atoms emit photons of known radiation. Electrons of the known remaining energy are separated from other electrons and are counted. Photons emitted in a direction related to the particular direction of scattered electrons are detected to serve as a standard. Each of the electrons is used to initiate the measurements of a time interval which terminates with the arrival of a photon exciting the photon detector. Only the number of time intervals related to the coincidence correlation and of electrons scattered in the particular direction with the known remaining energy and photons of a particular radiation level emitted due to the collisions of such scattered electrons are counted. The detector calibration is related to the number of counted electrons and photons.

  16. A systematic approach to baseline assessment of nursing documentation and enterprise-wide prioritization for electronic conversion.

    PubMed

    Dykes, Patricia C; Spurr, Cindy; Gallagher, Joan; Li, Qi; Ives Erickson, Jeanette

    2006-01-01

    An important challenge associated with making the transition from paper to electronic documentation systems is achieving consensus regarding priorities for electronic conversion across diverse groups. In our work we focus on applying a systematic approach to evaluating the baseline state of nursing documentation across a large healthcare system and establishing a unified vision for electronic conversion. A review of the current state of nursing documentation across PHS was conducted using structured tools. Data from this assessment was employed to facilitate an evidence-based approach to decision-making regarding conversion to electronic documentation at local and PHS levels. In this paper we present highlights of the assessment process and the outcomes of this multi-site collaboration.

  17. Properties of 83mKr conversion electrons and their use in the KATRIN experiment

    NASA Astrophysics Data System (ADS)

    Vénos, D.; Sentkerestiová, J.; Dragoun, O.; Slezák, M.; Ryšavý, M.; Špalek, A.

    2018-02-01

    The gaseous 83mKr will be used as a source of monoenergetic conversion electrons for systematic studies and calibration of the energy scale in the KArlsruhe TRItium Neutrino experiment (KATRIN). Using all existing experimental data the adopted values of the electron binding energies for free krypton were established and the basic conversion electron properties in 83mKr decay were compiled. Modes of the measurements with gaseous 83mKr were suggested for KATRIN.

  18. The Hole-Count Test Revisited: Effects of Test Specimen Thickness

    NASA Technical Reports Server (NTRS)

    Lyman, C. E.; Ackland, D. W.; Williams, D. B.; Goldstein, J. I.

    1989-01-01

    For historical reasons the hole count, an important performance test for the Analytical Electron Microscope (AEM), is somewhat arbitrary yielding different numbers for different investigators. This was not a problem a decade ago when AEM specimens were often bathed with large fluxes of stray electrons and hard x rays. At that time the presence or absence of a thick Pt second condenser (C2) aperture could be detected by a simple comparison of the x-ray spectrum taken 'somewhere in the hole' with a spectrum collected on a 'typical thickness' of Mo or Ag foil. A high hole count of about 10-20% indicated that the electron column needed modifications; whereas a hole count of 1-2% was accepted for most AEM work. The absolute level of the hole count is a function of test specimen atomic number, overall specimen shape, and thin-foil thickness. In order that equivalent results may be obtained for any AEM in any laboratory in the world, this test must become standardized. The hole-count test we seek must be as simpl and as nonsubjective as the graphite 0.344nm lattice-line-resolution test. This lattice-resolution test spurred manufacturers to improve the image resolution of the TEM significantly in the 1970s and led to the even more stringent resolution tests of today. A similar phenomenon for AEM instruments would be welcome. The hole-count test can also indicate whether the spurious x-ray signal is generated by high-energy continuum x rays (bremsstrahlung) generated in the electron column (high K-line to L-line ratio) or uncollimated electrons passing through or around the C2 aperture (low K/L ratio).

  19. Handling Density Conversion in TPS.

    PubMed

    Isobe, Tomonori; Mori, Yutaro; Takei, Hideyuki; Sato, Eisuke; Tadano, Kiichi; Kobayashi, Daisuke; Tomita, Tetsuya; Sakae, Takeji

    2016-01-01

    Conversion from CT value to density is essential to a radiation treatment planning system. Generally CT value is converted to the electron density in photon therapy. In the energy range of therapeutic photon, interactions between photons and materials are dominated with Compton scattering which the cross-section depends on the electron density. The dose distribution is obtained by calculating TERMA and kernel using electron density where TERMA is the energy transferred from primary photons and kernel is a volume considering spread electrons. Recently, a new method was introduced which uses the physical density. This method is expected to be faster and more accurate than that using the electron density. As for particle therapy, dose can be calculated with CT-to-stopping power conversion since the stopping power depends on the electron density. CT-to-stopping power conversion table is also called as CT-to-water-equivalent range and is an essential concept for the particle therapy.

  20. Evaluation of Pulse Counting for the Mars Organic Mass Analyzer (MOMA) Ion Trap Detection Scheme

    NASA Technical Reports Server (NTRS)

    Van Amerom, Friso H.; Short, Tim; Brinckerhoff, William; Mahaffy, Paul; Kleyner, Igor; Cotter, Robert J.; Pinnick, Veronica; Hoffman, Lars; Danell, Ryan M.; Lyness, Eric I.

    2011-01-01

    The Mars Organic Mass Analyzer is being developed at Goddard Space Flight Center to identify organics and possible biological compounds on Mars. In the process of characterizing mass spectrometer size, weight, and power consumption, the use of pulse counting was considered for ion detection. Pulse counting has advantages over analog-mode amplification of the electron multiplier signal. Some advantages are reduced size of electronic components, low power consumption, ability to remotely characterize detector performance, and avoidance of analog circuit noise. The use of pulse counting as a detection method with ion trap instruments is relatively rare. However, with the recent development of high performance electrical components, this detection method is quite suitable and can demonstrate significant advantages over analog methods. Methods A prototype quadrupole ion trap mass spectrometer with an internal electron ionization source was used as a test setup to develop and evaluate the pulse-counting method. The anode signal from the electron multiplier was preamplified. The an1plified signal was fed into a fast comparator for pulse-level discrimination. The output of the comparator was fed directly into a Xilinx FPGA development board. Verilog HDL software was written to bin the counts at user-selectable intervals. This system was able to count pulses at rates in the GHz range. The stored ion count nun1ber per bin was transferred to custom ion trap control software. Pulse-counting mass spectra were compared with mass spectra obtained using the standard analog-mode ion detection. Prelin1inary Data Preliminary mass spectra have been obtained for both analog mode and pulse-counting mode under several sets of instrument operating conditions. Comparison of the spectra revealed better peak shapes for pulse-counting mode. Noise levels are as good as, or better than, analog-mode detection noise levels. To artificially force ion pile-up conditions, the ion trap was overfilled and ions were ejected at very high scan rates. Pile-up of ions was not significant for the ion trap under investigation even though the ions are ejected in so-called 'ion-micro packets'. It was found that pulse counting mode had higher dynamic range than analog mode, and that the first amplification stage in analog mode can distort mass peaks. The inherent speed of the pulse counting method also proved to be beneficial to ion trap operation and ion ejection characterization. Very high scan rates were possible with pulse counting since the digital circuitry response time is so much smaller than with the analog method. Careful investigation of the pulse-counting data also allowed observation of the applied resonant ejection frequency during mass analysis. Ejection of ion micro packets could be clearly observed in the binned data. A second oscillation frequency, much lower than the secular frequency, was also observed. Such an effect was earlier attributed to the oscillation of the total plasma cloud in the ion trap. While the components used to implement pulse counting are quite advanced, due to their prevalence in consumer electronics, the cost of this detection system is no more than that of an analog mode system. Total pulse-counting detection system electronics cost is under $250

  1. Compact x-ray source and panel

    DOEpatents

    Sampayon, Stephen E [Manteca, CA

    2008-02-12

    A compact, self-contained x-ray source, and a compact x-ray source panel having a plurality of such x-ray sources arranged in a preferably broad-area pixelized array. Each x-ray source includes an electron source for producing an electron beam, an x-ray conversion target, and a multilayer insulator separating the electron source and the x-ray conversion target from each other. The multi-layer insulator preferably has a cylindrical configuration with a plurality of alternating insulator and conductor layers surrounding an acceleration channel leading from the electron source to the x-ray conversion target. A power source is connected to each x-ray source of the array to produce an accelerating gradient between the electron source and x-ray conversion target in any one or more of the x-ray sources independent of other x-ray sources in the array, so as to accelerate an electron beam towards the x-ray conversion target. The multilayer insulator enables relatively short separation distances between the electron source and the x-ray conversion target so that a thin panel is possible for compactness. This is due to the ability of the plurality of alternating insulator and conductor layers of the multilayer insulators to resist surface flashover when sufficiently high acceleration energies necessary for x-ray generation are supplied by the power source to the x-ray sources.

  2. Nuclear conversion theory: molecular hydrogen in non-magnetic insulators

    NASA Astrophysics Data System (ADS)

    Ilisca, Ernest; Ghiglieno, Filippo

    2016-09-01

    The hydrogen conversion patterns on non-magnetic solids sensitively depend upon the degree of singlet/triplet mixing in the intermediates of the catalytic reaction. Three main `symmetry-breaking' interactions are brought together. In a typical channel, the electron spin-orbit (SO) couplings introduce some magnetic excitations in the non-magnetic solid ground state. The electron spin is exchanged with a molecular one by the electric molecule-solid electron repulsion, mixing the bonding and antibonding states and affecting the molecule rotation. Finally, the magnetic hyperfine contact transfers the electron spin angular momentum to the nuclei. Two families of channels are considered and a simple criterion based on the SO coupling strength is proposed to select the most efficient one. The denoted `electronic' conversion path involves an emission of excitons that propagate and disintegrate in the bulk. In the other denoted `nuclear', the excited electron states are transients of a loop, and the electron system returns to its fundamental ground state. The described model enlarges previous studies by extending the electron basis to charge-transfer states and `continui' of band states, and focuses on the broadening of the antibonding molecular excited state by the solid conduction band that provides efficient tunnelling paths for the hydrogen conversion. After working out the general conversion algebra, the conversion rates of hydrogen on insulating and semiconductor solids are related to a few molecule-solid parameters (gap width, ionization and affinity potentials) and compared with experimental measures.

  3. It's Time to Talk: How to Start Conversations about Racial Inequities. A Race for Results Case Study

    ERIC Educational Resources Information Center

    Annie E. Casey Foundation, 2015

    2015-01-01

    Several organizations in the 53-member KIDS COUNT network and many other Casey grantees and partners have taken on the challenge of making race equity a priority of their work, providing lessons for other organizations as they begin this process. This first case study focuses on the importance of organizing community conversations about race as a…

  4. Uncertainties in internal gas counting

    NASA Astrophysics Data System (ADS)

    Unterweger, M.; Johansson, L.; Karam, L.; Rodrigues, M.; Yunoki, A.

    2015-06-01

    The uncertainties in internal gas counting will be broken down into counting uncertainties and gas handling uncertainties. Counting statistics, spectrum analysis, and electronic uncertainties will be discussed with respect to the actual counting of the activity. The effects of the gas handling and quantities of counting and sample gases on the uncertainty in the determination of the activity will be included when describing the uncertainties arising in the sample preparation.

  5. Ultralow noise up-conversion detector and spectrometer for the telecom band.

    PubMed

    Shentu, Guo-Liang; Pelc, Jason S; Wang, Xiao-Dong; Sun, Qi-Chao; Zheng, Ming-Yang; Fejer, M M; Zhang, Qiang; Pan, Jian-Wei

    2013-06-17

    We demonstrate up-conversion single-photon detection for the 1550-nm telecommunications band using a PPLN waveguide, long-wavelength pump, and narrowband filtering using a volume Bragg grating. We achieve total-system detection efficiency of around 30% with noise at the dark-count level of a Silicon APD. Based on the new detector, a single-pixel up-conversion infrared spectrometer with a noise equivalent power of -142 dBm Hz(-1/2) was demonstrated, which was as good as a liquid nitrogen cooled CCD camera.

  6. Opto-electronic conversion logic behaviour through dynamic modulation of electron/energy transfer states at the TiO2-carbon quantum dot interface.

    PubMed

    Wang, Fang; Zhang, Yonglai; Liu, Yang; Wang, Xuefeng; Shen, Mingrong; Lee, Shuit-Tong; Kang, Zhenhui

    2013-03-07

    Here we show a bias-mediated electron/energy transfer process at the CQDs-TiO(2) interface for the dynamic modulation of opto-electronic properties. Different energy and electron transfer states have been observed in the CQDs-TNTs system due to the up-conversion photoluminescence and the electron donation/acceptance properties of the CQDs decorated on TNTs.

  7. Delta connected resonant snubber circuit

    DOEpatents

    Lai, J.S.; Peng, F.Z.; Young, R.W. Sr.; Ott, G.W. Jr.

    1998-01-20

    A delta connected, resonant snubber-based, soft switching, inverter circuit achieves lossless switching during dc-to-ac power conversion and power conditioning with minimum component count and size. Current is supplied to the resonant snubber branches solely by the dc supply voltage through the main inverter switches and the auxiliary switches. Component count and size are reduced by use of a single semiconductor switch in the resonant snubber branches. Component count is also reduced by maximizing the use of stray capacitances of the main switches as parallel resonant capacitors. Resonance charging and discharging of the parallel capacitances allows lossless, zero voltage switching. In one embodiment, circuit component size and count are minimized while achieving lossless, zero voltage switching within a three-phase inverter. 36 figs.

  8. Delta connected resonant snubber circuit

    DOEpatents

    Lai, Jih-Sheng; Peng, Fang Zheng; Young, Sr., Robert W.; Ott, Jr., George W.

    1998-01-01

    A delta connected, resonant snubber-based, soft switching, inverter circuit achieves lossless switching during dc-to-ac power conversion and power conditioning with minimum component count and size. Current is supplied to the resonant snubber branches solely by the dc supply voltage through the main inverter switches and the auxiliary switches. Component count and size are reduced by use of a single semiconductor switch in the resonant snubber branches. Component count is also reduced by maximizing the use of stray capacitances of the main switches as parallel resonant capacitors. Resonance charging and discharging of the parallel capacitances allows lossless, zero voltage switching. In one embodiment, circuit component size and count are minimized while achieving lossless, zero voltage switching within a three-phase inverter.

  9. Computer measurement of particle sizes in electron microscope images

    NASA Technical Reports Server (NTRS)

    Hall, E. L.; Thompson, W. B.; Varsi, G.; Gauldin, R.

    1976-01-01

    Computer image processing techniques have been applied to particle counting and sizing in electron microscope images. Distributions of particle sizes were computed for several images and compared to manually computed distributions. The results of these experiments indicate that automatic particle counting within a reasonable error and computer processing time is feasible. The significance of the results is that the tedious task of manually counting a large number of particles can be eliminated while still providing the scientist with accurate results.

  10. Nuclear conversion theory: molecular hydrogen in non-magnetic insulators

    PubMed Central

    Ghiglieno, Filippo

    2016-01-01

    The hydrogen conversion patterns on non-magnetic solids sensitively depend upon the degree of singlet/triplet mixing in the intermediates of the catalytic reaction. Three main ‘symmetry-breaking’ interactions are brought together. In a typical channel, the electron spin–orbit (SO) couplings introduce some magnetic excitations in the non-magnetic solid ground state. The electron spin is exchanged with a molecular one by the electric molecule–solid electron repulsion, mixing the bonding and antibonding states and affecting the molecule rotation. Finally, the magnetic hyperfine contact transfers the electron spin angular momentum to the nuclei. Two families of channels are considered and a simple criterion based on the SO coupling strength is proposed to select the most efficient one. The denoted ‘electronic’ conversion path involves an emission of excitons that propagate and disintegrate in the bulk. In the other denoted ‘nuclear’, the excited electron states are transients of a loop, and the electron system returns to its fundamental ground state. The described model enlarges previous studies by extending the electron basis to charge-transfer states and ‘continui’ of band states, and focuses on the broadening of the antibonding molecular excited state by the solid conduction band that provides efficient tunnelling paths for the hydrogen conversion. After working out the general conversion algebra, the conversion rates of hydrogen on insulating and semiconductor solids are related to a few molecule–solid parameters (gap width, ionization and affinity potentials) and compared with experimental measures. PMID:27703681

  11. A reconfigurable image tube using an external electronic image readout

    NASA Astrophysics Data System (ADS)

    Lapington, J. S.; Howorth, J. R.; Milnes, J. S.

    2005-08-01

    We have designed and built a sealed tube microchannel plate (MCP) intensifier for optical/NUV photon counting applications suitable for 18, 25 and 40 mm diameter formats. The intensifier uses an electronic image readout to provide direct conversion of event position into electronic signals, without the drawbacks associated with phosphor screens and subsequent optical detection. The Image Charge technique is used to remove the readout from the intensifier vacuum enclosure, obviating the requirement for additional electrical vacuum feedthroughs and for the readout pattern to be UHV compatible. The charge signal from an MCP intensifier is capacitively coupled via a thin dielectric vacuum window to the electronic image readout, which is external to the sealed intensifier tube. The readout pattern is a separate item held in proximity to the dielectric window and can be easily detached, making the system easily reconfigurable. Since the readout pattern detects induced charge and is external to the tube, it can be constructed as a multilayer, eliminating the requirement for narrow insulator gaps and allowing it to be constructed using standard PCB manufacturing tolerances. We describe two readout patterns, the tetra wedge anode (TWA), an optimized 4 electrode device similar to the wedge and strip anode (WSA) but with a factor 2 improvement in resolution, and an 8 channel high speed 50 ohm device, both manufactured as multilayer PCBs. We present results of the detector imaging performance, image resolution, linearity and stability, and discuss the development of an integrated readout and electronics device based on these designs.

  12. SURVIVAL OF SALMONELLA SPECIES IN RIVER WATER.

    EPA Science Inventory

    The survival of four Salmonella strains in river water microcosms was monitored using culturing techniques, direct counts, whole cell hybridization, scanning electron microscopy, and resuscitation techniques via the direct viable count method and flow cytrometry. Plate counts of...

  13. Partial bisulfite conversion for unique template sequencing.

    PubMed

    Kumar, Vijay; Rosenbaum, Julie; Wang, Zihua; Forcier, Talitha; Ronemus, Michael; Wigler, Michael; Levy, Dan

    2018-01-25

    We introduce a new protocol, mutational sequencing or muSeq, which uses sodium bisulfite to randomly deaminate unmethylated cytosines at a fixed and tunable rate. The muSeq protocol marks each initial template molecule with a unique mutation signature that is present in every copy of the template, and in every fragmented copy of a copy. In the sequenced read data, this signature is observed as a unique pattern of C-to-T or G-to-A nucleotide conversions. Clustering reads with the same conversion pattern enables accurate count and long-range assembly of initial template molecules from short-read sequence data. We explore count and low-error sequencing by profiling 135 000 restriction fragments in a PstI representation, demonstrating that muSeq improves copy number inference and significantly reduces sporadic sequencer error. We explore long-range assembly in the context of cDNA, generating contiguous transcript clusters greater than 3,000 bp in length. The muSeq assemblies reveal transcriptional diversity not observable from short-read data alone. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  14. Using temperature to reduce noise in quantum frequency conversion.

    PubMed

    Kuo, Paulina S; Pelc, Jason S; Langrock, Carsten; Fejer, M M

    2018-05-01

    Quantum frequency conversion is important in quantum networks to interface nodes operating at different wavelengths and to enable long-distance quantum communication using telecommunications wavelengths. Unfortunately, frequency conversion in actual devices is not a noise-free process. One main source of noise is spontaneous Raman scattering, which can be reduced by lowering the device operating temperature. We explore frequency conversion of 1554 nm photons to 837 nm using a 1813 nm pump in a periodically poled lithium niobate waveguide device. By reducing the temperature from 85°C to 40°C, we show a three-fold reduction in dark count rates, which is in good agreement with theory.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawano, T.; Tanaka, M.; Isozumi, S.

    Air exerts a negative effect on radiation detection using a gas counter because oxygen contained in air has a high electron attachment coefficient and can trap electrons from electron-ion pairs created by ionization from incident radiation in counting gas. This reduces radiation counts. The present study examined the influence of air on energy and rise-time spectra measurements using a proportional gas counter. In addition, a decompression procedure method was proposed to reduce the influence of air and its effectiveness was investigated. For the decompression procedure, the counting gas inside the gas counter was decompressed below atmospheric pressure before radiation detection.more » For the spectrum measurement, methane as well as various methane and air mixtures were used as the counting gas to determine the effect of air on energy and rise-time spectra. Results showed that the decompression procedure was effective for reducing or eliminating the influence of air on spectra measurement using a proportional gas counter. (authors)« less

  16. Electronic-To-Optical-To-Electronic Packet-Data Conversion

    NASA Technical Reports Server (NTRS)

    Monacos, Steve

    1996-01-01

    Space-time multiplexer (STM) cell-based communication system designed to take advantage of both high throughput attainable in optical transmission links and flexibility and functionality of electronic processing, storage, and switching. Long packets segmented and transmitted optically by wavelength-division multiplexing. Performs optoelectronic and protocol conversion between electronic "store-and-forward" protocols and optical "hot-potato" protocols.

  17. Measuring the Electron’s Charge and the Fine-Structure Constant by Counting Electrons on a Capacitor

    PubMed Central

    Williams, E. R.; Ghosh, Ruby N.; Martinis, John M.

    1992-01-01

    The charge of the electron can be determined by simply placing a known number of electrons on one electrode of a capacitor and measuring the voltage, Vs, across the capacitor. If Vs is measured in terms of the Josephson volt and the capacitor is measured in SI units then the fine-structure constant is the quantity determined. Recent developments involving single electron tunneling, SET, have shown bow to count the electrons as well as how to make an electrometer with sufficient sensitivity to measure the charge. PMID:28053434

  18. Photoemission of Energetic Hot Electrons Produced via Up-Conversion in Doped Quantum Dots.

    PubMed

    Dong, Yitong; Parobek, David; Rossi, Daniel; Son, Dong Hee

    2016-11-09

    The benefits of the hot electrons from semiconductor nanostructures in photocatalysis or photovoltaics result from their higher energy compared to that of the band-edge electrons facilitating the electron-transfer process. The production of high-energy hot electrons usually requires short-wavelength UV or intense multiphoton visible excitation. Here, we show that highly energetic hot electrons capable of above-threshold ionization are produced via exciton-to-hot-carrier up-conversion in Mn-doped quantum dots under weak band gap excitation (∼10 W/cm 2 ) achievable with the concentrated solar radiation. The energy of hot electrons is as high as ∼0.4 eV above the vacuum level, much greater than those observed in other semiconductor or plasmonic metal nanostructures, which are capable of performing energetically and kinetically more-challenging electron transfer. Furthermore, the prospect of generating solvated electron is unique for the energetic hot electrons from up-conversion, which can open a new door for long-range electron transfer beyond short-range interfacial electron transfer.

  19. Measurement and reduction of low-level radon background in the KATRIN experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fränkle, F. M.

    The KArlsruhe TRItium Neutrino (KATRIN) experiment is a next generation, model independent, large scale experiment to determine the mass of the electron anti-neutrino by investigating the kinematics of tritium beta decay with a sensitivity of 200 meV/c{sup 2}. The measurement setup consists of a high luminosity windowless gaseous molecular tritium source (WGTS), a differential and cryogenic pumped electron transport and tritium retention section, a tandem spectrometer section (pre-spectrometer and main spectrometer) for energy analysis, followed by a detector system for counting transmitted beta decay electrons. Measurements performed at the KATRIN pre-spectrometer test setup showed that the decay of radon (Rn)more » atoms in the volume of the KATRIN spectrometers is a major background source. Rn atoms from low-level radon emanation of materials inside the vacuum region of the KATRIN spectrometers are able to penetrate deep into the magnetic flux tube so that the alpha decay of Rn contributes to the background. Of particular importance are electrons emitted in processes accompanying the Rn alpha decay, such as shake-off, internal conversion of excited levels in the Rn daughter atoms and Auger electrons. Lowenergy electrons (< 100 eV) directly contribute to the background in the signal region. High-energy electrons can be stored magnetically inside the volume of the spectrometer and are able to create thousands of secondary electrons via subsequent ionization processes with residual gas molecules. In order to reduce the Rn induced background different active and passive counter measures were developed and tested. This proceeding will give an overview on Rn sources within the KATRIN spectrometer, describes how Rn decays inside the spectrometer produce background events at the detector and presents different counter measures to reduce the Rn induced background.« less

  20. Measurement and reduction of low-level radon background in the KATRIN experiment

    NASA Astrophysics Data System (ADS)

    Fränkle, F. M.

    2013-08-01

    The KArlsruhe TRItium Neutrino (KATRIN) experiment is a next generation, model independent, large scale experiment to determine the mass of the electron anti-neutrino by investigating the kinematics of tritium beta decay with a sensitivity of 200 meV/c2. The measurement setup consists of a high luminosity windowless gaseous molecular tritium source (WGTS), a differential and cryogenic pumped electron transport and tritium retention section, a tandem spectrometer section (pre-spectrometer and main spectrometer) for energy analysis, followed by a detector system for counting transmitted beta decay electrons. Measurements performed at the KATRIN pre-spectrometer test setup showed that the decay of radon (Rn) atoms in the volume of the KATRIN spectrometers is a major background source. Rn atoms from low-level radon emanation of materials inside the vacuum region of the KATRIN spectrometers are able to penetrate deep into the magnetic flux tube so that the alpha decay of Rn contributes to the background. Of particular importance are electrons emitted in processes accompanying the Rn alpha decay, such as shake-off, internal conversion of excited levels in the Rn daughter atoms and Auger electrons. Lowenergy electrons (< 100 eV) directly contribute to the background in the signal region. High-energy electrons can be stored magnetically inside the volume of the spectrometer and are able to create thousands of secondary electrons via subsequent ionization processes with residual gas molecules. In order to reduce the Rn induced background different active and passive counter measures were developed and tested. This proceeding will give an overview on Rn sources within the KATRIN spectrometer, describes how Rn decays inside the spectrometer produce background events at the detector and presents different counter measures to reduce the Rn induced background.

  1. SURVIVAL OF SALMONELLA SPECIES IN RIVER WATER

    EPA Science Inventory

    The survival of four Salmonella strains in river water microcosms was monitored by culturing techniques, direct counts, whole-cell hybridization, scanning electron microscopy, and resuscitation techniques via the direct viable count method and flow cytometry. Plate counts of bact...

  2. Rapid classification of hairtail fish and pork freshness using an electronic nose based on the PCA method.

    PubMed

    Tian, Xiu-Ying; Cai, Qiang; Zhang, Yong-Ming

    2012-01-01

    We report a method for building a simple and reproducible electronic nose based on commercially available metal oxide sensors (MOS) to monitor the freshness of hairtail fish and pork stored at 15, 10, and 5 °C. After assembly in the laboratory, the proposed product was tested by a manufacturer. Sample delivery was based on the dynamic headspace method, and two features were extracted from the transient response of each sensor using an unsupervised principal component analysis (PCA) method. The compensation method and pattern recognition based on PCA are discussed in the current paper. PCA compensation can be used for all storage temperatures, however, pattern recognition differs according to storage conditions. Total volatile basic nitrogen (TVBN) and aerobic bacterial counts of the samples were measured simultaneously with the standard indicators of hairtail fish and pork freshness. The PCA models based on TVBN and aerobic bacterial counts were used to classify hairtail fish samples as "fresh" (TVBN ≤ 25 g and microbial counts ≤ 10(6) cfu/g) or "spoiled" (TVBN ≥ 25 g and microbial counts ≥ 10(6) cfu/g) and pork samples also as "fresh" (TVBN ≤ 15 g and microbial counts ≤ 10(6) cfu/g) or "spoiled" (TVBN ≥ 15 g and microbial counts ≥ 10(6) cfu/g). Good correlation coefficients between the responses of the electronic nose and the TVBN and aerobic bacterial counts of the samples were obtained. For hairtail fish, correlation coefficients were 0.97 and 0.91, and for pork, correlation coefficients were 0.81 and 0.88, respectively. Through laboratory simulation and field application, we were able to determine that the electronic nose could help ensure the shelf life of hairtail fish and pork, especially when an instrument is needed to take measurements rapidly. The results also showed that the electronic nose could analyze the process and level of spoilage for hairtail fish and pork.

  3. Comparative calibration of IP scanning equipment

    NASA Astrophysics Data System (ADS)

    Ingenito, F.; Andreoli, P.; Batani, D.; Boutoux, G.; Cipriani, M.; Consoli, F.; Cristofari, G.; Curcio, A.; De Angelis, R.; Di Giorgio, G.; Ducret, J.; Forestier-Colleoni, P.; Hulin, S.; Jakubowska, K.; Rabhi, N.

    2016-05-01

    Imaging Plates (IP) are diagnostic devices which contain a photostimulable phosphor layer that stores the incident radiation dose as a latent image. The image is read with a scanner which stimulates the decay of electrons, previously excited by the incident radiation, by exposition to a laser beam. This results in emitted light, which is detected by photomultiplier tubes; so the latent image is reconstructed. IPs have the interesting feature that can be reused many times, after erasing stored information. Algorithms to convert signals stored in the detector to Photostimulated luminescence (PSL) counts depend on the scanner and are not available on every model. A comparative cross-calibration of the IP scanner Dürr CR35 BIO, used in ABC laboratory, was performed, using the Fujifilm FLA 7000 scanner as a reference, to find the equivalence between grey-scale values given by the Dürr scanner to PSL counts. Using an IP and a 55Fe β-source, we produced pairs of samples with the same exposition times, which were analysed by both scanners, placing particular attention to fading times of the image stored on IPs. Data analysis led us to the determine a conversion formula which can be used to compare data of experiments obtained in different laboratories and to use IP calibrations available, till now, only for Fujifilm scanners.

  4. Laser x-ray Conversion and Electron Thermal Conductivity

    NASA Astrophysics Data System (ADS)

    Wang, Guang-yu; Chang, Tie-qiang

    2001-02-01

    The influence of electron thermal conductivity on the laser x-ray conversion in the coupling of 3ωo laser with Au plane target has been investigated by using a non-LTE radiation hydrodynamic code. The non-local electron thermal conductivity is introduced and compared with the other two kinds of the flux-limited Spitzer-Härm description. The results show that the non-local thermal conductivity causes the increase of the laser x-ray conversion efficiency and important changes of the plasma state and coupling feature.

  5. Impact of non-specific normal databases on perfusion quantification of low-dose myocardial SPECT studies.

    PubMed

    Scabbio, Camilla; Zoccarato, Orazio; Malaspina, Simona; Lucignani, Giovanni; Del Sole, Angelo; Lecchi, Michela

    2017-10-17

    To evaluate the impact of non-specific normal databases on the percent summed rest score (SR%) and stress score (SS%) from simulated low-dose SPECT studies by shortening the acquisition time/projection. Forty normal-weight and 40 overweight/obese patients underwent myocardial studies with a conventional gamma-camera (BrightView, Philips) using three different acquisition times/projection: 30, 15, and 8 s (100%-counts, 50%-counts, and 25%-counts scan, respectively) and reconstructed using the iterative algorithm with resolution recovery (IRR) Astonish TM (Philips). Three sets of normal databases were used: (1) full-counts IRR; (2) half-counts IRR; and (3) full-counts traditional reconstruction algorithm database (TRAD). The impact of these databases and the acquired count statistics on the SR% and SS% was assessed by ANOVA analysis and Tukey test (P < 0.05). Significantly higher SR% and SS% values (> 40%) were found for the full-counts TRAD databases respect to the IRR databases. For overweight/obese patients, significantly higher SS% values for 25%-counts scans (+19%) are confirmed compared to those of 50%-counts scan, independently of using the half-counts or the full-counts IRR databases. Astonish TM requires the adoption of the own specific normal databases in order to prevent very high overestimation of both stress and rest perfusion scores. Conversely, the count statistics of the normal databases seems not to influence the quantification scores.

  6. Conversion electron spectrometry of Pu isotopes with a silicon drift detector.

    PubMed

    Pommé, S; Paepen, J; Peräjärvi, K; Turunen, J; Pöllänen, R

    2016-03-01

    An electron spectrometry set-up was built at IRMM consisting of a vacuum chamber with a moveable source holder and windowless Peltier-cooled silicon drift detector (SDD). The SDD is well suited for measuring low-energy x rays and electrons emitted from thin radioactive sources with low self-absorption. The attainable energy resolution is better than 0.5keV for electrons of 30keV. It has been used to measure the conversion electron spectra of three plutonium isotopes, i.e. (238)Pu, (239)Pu, (240)Pu, as well as (241)Am (being a decay product of (241)Pu). The obtained mixed x-ray and electron spectra are compared with spectra obtained with a close-geometry set-up using another SDD in STUK and spectra measured with a Si(Li) detector at IRMM. The potential of conversion electron spectrometry for isotopic analysis of mixed plutonium samples is investigated. With respect to the (240)Pu/(239)Pu isotopic ratio, the conversion electron peaks of both isotopes are more clearly separated than their largely overlapping peaks in alpha spectra. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Feasibility of a high-speed gamma-camera design using the high-yield-pileup-event-recovery method.

    PubMed

    Wong, W H; Li, H; Uribe, J; Baghaei, H; Wang, Y; Yokoyama, S

    2001-04-01

    Higher count-rate gamma cameras than are currently used are needed if the technology is to fulfill its promise in positron coincidence imaging, radionuclide therapy dosimetry imaging, and cardiac first-pass imaging. The present single-crystal design coupled with conventional detector electronics and the traditional Anger-positioning algorithm hinder higher count-rate imaging because of the pileup of gamma-ray signals in the detector and electronics. At an interaction rate of 2 million events per second, the fraction of nonpileup events is < 20% of the total incident events. Hence, the recovery of pileup events can significantly increase the count-rate capability, increase the yield of imaging photons, and minimize image artifacts associated with pileups. A new technology to significantly enhance the performance of gamma cameras in this area is introduced. We introduce a new electronic design called high-yield-pileup-event-recovery (HYPER) electronics for processing the detector signal in gamma cameras so that the individual gamma energies and positions of pileup events, including multiple pileups, can be resolved and recovered despite the mixing of signals. To illustrate the feasibility of the design concept, we have developed a small gamma-camera prototype with the HYPER-Anger electronics. The camera has a 10 x 10 x 1 cm NaI(Tl) crystal with four photomultipliers. Hot-spot and line sources with very high 99mTc activities were imaged. The phantoms were imaged continuously from 60,000 to 3,500,000 counts per second to illustrate the efficacy of the method as a function of counting rates. At 2-3 million events per second, all phantoms were imaged with little distortion, pileup, and dead-time loss. At these counting rates, multiple pileup events (> or = 3 events piling together) were the predominate occurrences, and the HYPER circuit functioned well to resolve and recover these events. The full width at half maximum of the line-spread function at 3,000,000 counts per second was 1.6 times that at 60,000 counts per second. This feasibility study showed that the HYPER electronic concept works; it can significantly increase the count-rate capability and dose efficiency of gamma cameras. In a larger clinical camera, multiple HYPER-Anger circuits may be implemented to further improve the imaging counting rates that we have shown by multiple times. This technology would facilitate the use of gamma cameras for radionuclide therapy dosimetry imaging, cardiac first-pass imaging, and positron coincidence imaging and the simultaneous acquisition of transmission and emission data using different isotopes with less cross-contamination between transmission and emission data.

  8. The effect of dietary garlic supplementation on body weight gain, feed intake, feed conversion efficiency, faecal score, faecal coliform count and feeding cost in crossbred dairy calves.

    PubMed

    Ghosh, Sudipta; Mehla, Ram K; Sirohi, S K; Roy, Biswajit

    2010-06-01

    Thirty-six crossbred calves (Holstein cross) of 5 days of age were used to study the effect of garlic extract feeding on their performance up to the age of 2 months (pre-ruminant stage). They were randomly allotted into treatment and control groups (18 numbers in each group). Performance was evaluated by measuring average body weight (BW) gain, feed intake (dry matter (DM), total digestible nutrient (TDN) and crude protein (CP)), feed conversion efficiency (FCE; DM, TDN and CP), faecal score, faecal coliform count and feeding cost. Diets were the same for the both groups. In addition, treatment group received garlic extract supplementation at 250 mg/kg BW per day per calf. Body weight measured weekly, feed intake measured twice daily, proximate analysis of feeds and fodders analysed weekly, faecal scores monitored daily and faecal coliform count done weekly. There was significant increase in average body weight gain, feed intake and FCE and significant decrease in severity of scours as measured by faecal score and faecal coliform count in the treatment group compared to the control group (P < 0.01). Feed cost per kilogramme BW gain was significantly lower in the treatment group compared to control group (P < 0.01). The results suggest that garlic extract can be supplemented to the calves for better performance.

  9. Electronic strain-level counter

    NASA Technical Reports Server (NTRS)

    Pitts, F. L.; Spencer, J. L. (Inventor)

    1973-01-01

    An electronic strain level counter for obtaining structural strain data on in-flight aircraft is described. The device counts the number of times the strain at a point on an aircraft structural member exceeds each of several preset levels. A dead band is provided at each level to prohibit the counting of small strain variations around a given preset level.

  10. Demonstration of fundamental statistics by studying timing of electronics signals in a physics-based laboratory

    NASA Astrophysics Data System (ADS)

    Beach, Shaun E.; Semkow, Thomas M.; Remling, David J.; Bradt, Clayton J.

    2017-07-01

    We have developed accessible methods to demonstrate fundamental statistics in several phenomena, in the context of teaching electronic signal processing in a physics-based college-level curriculum. A relationship between the exponential time-interval distribution and Poisson counting distribution for a Markov process with constant rate is derived in a novel way and demonstrated using nuclear counting. Negative binomial statistics is demonstrated as a model for overdispersion and justified by the effect of electronic noise in nuclear counting. The statistics of digital packets on a computer network are shown to be compatible with the fractal-point stochastic process leading to a power-law as well as generalized inverse Gaussian density distributions of time intervals between packets.

  11. The SPEDE spectrometer

    NASA Astrophysics Data System (ADS)

    Papadakis, P.; Cox, D. M.; O'Neill, G. G.; Borge, M. J. G.; Butler, P. A.; Gaffney, L. P.; Greenlees, P. T.; Herzberg, R.-D.; Illana, A.; Joss, D. T.; Konki, J.; Kröll, T.; Ojala, J.; Page, R. D.; Rahkila, P.; Ranttila, K.; Thornhill, J.; Tuunanen, J.; Van Duppen, P.; Warr, N.; Pakarinen, J.

    2018-03-01

    The electron spectrometer, SPEDE, has been developed and will be employed in conjunction with the Miniball spectrometer at the HIE-ISOLDE facility, CERN. SPEDE allows for direct measurement of internal conversion electrons emitted in-flight, without employing magnetic fields to transport or momentum filter the electrons. Together with the Miniball spectrometer, it enables simultaneous observation of γ rays and conversion electrons in Coulomb excitation experiments using radioactive ion beams.

  12. Influence of dietary supplementation of prebiotics (mannanoligosaccharide) on the performance of crossbred calves.

    PubMed

    Ghosh, Sudipta; Mehla, Ram Kumar

    2012-03-01

    Thirty-six Holstein cross calves 5 days of age in their preruminant stage were used to study the effect of feeding prebiotic (mannanoligosaccharide) on their performance up to the age of 2 months. Treatment and control groups consisted of 18 calves each. Treatment group was supplemented with 4 g prebiotic (mannanoligosaccharide)/calf/day. Performance was evaluated by measuring average body weight (BW) gain, feed intake [dry matter (DM), total digestible nutrient (TDN) and crude protein(CP)], feed conversion efficiency (DM, TDN, and CP), fecal score, fecal coliform count and feeding cost. Body weight measured weekly, feed intake measured twice daily, proximate analysis of feeds and fodders analyzed weekly, fecal score monitored daily and fecal coliform count done weekly. There was a significant increase in average body weight gain, feed intake and feed conversion efficiency; and a significant decrease in severity of scours as measured by fecal score and fecal coliform count in the treatment group compared with control group (P < 0.01). Feed cost/kg BW gain was significantly lower in the treatment group compared to control group (P < 0.01). The results suggest that prebiotic (mannanoligosaccharide) can be supplemented to the calves for better performance.

  13. Development of an Ultra-Pure, Carrier-Free 209Po Solution Standard

    PubMed Central

    Collé, R.; Fitzgerald, R. P.; Laureano-Perez, L.

    2015-01-01

    Ultra-pure, carrier-free 209Po solution standards have been prepared and standardized for their massic alpha-particle emission rate. The standards, which will be disseminated by the National Institute of Standards and Technology (NIST) as Standard Reference Material SRM 4326a, have a mean mass of (5.169 ± 0.003) g of a solution of polonium in nominal 2.0 mol▪L−1 HCl (having a solution density of (1.032 ± 0.002) g▪ mL−1 at 20 °C) that are contained in 5 mL, flame-sealed, borosilicate glass ampoules. They are certified to contain a 209Po massic alpha-particle emission rate of (39.01 ± 0.18) s−1▪g−1 as of a reference time of 1200 EST, 01 December 2013. This new standard series replaces SRM 4326 that was issued by NIST in 1994. The standardization was based on 4πα liquid scintillation (LS) spectrometry with two different LS counting systems and under wide variations in measurement and counting source conditions. The methodology for the standardization, with corrections for detection of the low-energy conversion electrons from the delayed 2 keV isomeric state in 205Pb and for the radiations accompanying the small 0.45 % electron-capture branch to 209Bi, involves a unique spectral analysis procedure that is specific for the case of 209Po decay. The entire measurement protocol is similar, but revised and improved from that used for SRM 4326. Spectroscopic impurity analyses revealed that no photon-emitting or alpha-emitting radionuclidic impurities were detected. The most common impurity associated with 209Po is 208Po and the activity ratio of 208Po/209Po was < 10−7. PMID:26958444

  14. A Flight Photon Counting Camera for the WFIRST Coronagraph

    NASA Astrophysics Data System (ADS)

    Morrissey, Patrick

    2018-01-01

    A photon counting camera based on the Teledyne-e2v CCD201-20 electron multiplying CCD (EMCCD) is being developed for the NASA WFIRST coronagraph, an exoplanet imaging technology development of the Jet Propulsion Laboratory (Pasadena, CA) that is scheduled to launch in 2026. The coronagraph is designed to directly image planets around nearby stars, and to characterize their spectra. The planets are exceedingly faint, providing signals similar to the detector dark current, and require the use of photon counting detectors. Red sensitivity (600-980nm) is preferred to capture spectral features of interest. Since radiation in space affects the ability of the EMCCD to transfer the required single electron signals, care has been taken to develop appropriate shielding that will protect the cameras during a five year mission. In this poster, consideration of the effects of space radiation on photon counting observations will be described with the mitigating features of the camera design. An overview of the current camera flight system electronics requirements and design will also be described.

  15. Linguistic Input, Electronic Media, and Communication Outcomes of Toddlers with Hearing Loss

    PubMed Central

    Ambrose, Sophie E.; VanDam, Mark; Moeller, Mary Pat

    2013-01-01

    Objectives The objectives of this study were to examine the quantity of adult words, adult-child conversational turns, and electronic media in the auditory environments of toddlers who are hard of hearing (HH) and to examine whether these variables contributed to variability in children’s communication outcomes. Design Participants were 28 children with mild to severe hearing loss. Full-day recordings of children’s auditory environments were collected within 6 months of their 2nd birthdays by utilizing LENA (Language ENvironment Analysis) technology. The system analyzes full-day acoustic recordings, yielding estimates of the quantity of adult words, conversational turns, and electronic media exposure in the recordings. Children’s communication outcomes were assessed via the receptive and expressive scales of the Mullen Scales of Early Learning at 2 years of age and the Comprehensive Assessment of Spoken Language at 3 years of age. Results On average, the HH toddlers were exposed to approximately 1400 adult words per hour and participated in approximately 60 conversational turns per hour. An average of 8% of each recording was classified as electronic media. However, there was considerable within-group variability on all three measures. Frequency of conversational turns, but not adult words, was positively associated with children’s communication outcomes at 2 and 3 years of age. Amount of electronic media exposure was negatively associated with 2-year-old receptive language abilities; however, regression results indicate that the relationship was fully mediated by the quantity of conversational turns. Conclusions HH toddlers who were engaged in more conversational turns demonstrated stronger linguistic outcomes than HH toddlers who were engaged in fewer conversational turns. The frequency of these interactions was found to be decreased in households with high rates of electronic media exposure. Optimal language-learning environments for HH toddlers include frequent linguistic interactions between parents and children. To support this goal, parents should be encouraged to reduce their children’s exposure to electronic media. PMID:24441740

  16. Linguistic input, electronic media, and communication outcomes of toddlers with hearing loss.

    PubMed

    Ambrose, Sophie E; VanDam, Mark; Moeller, Mary Pat

    2014-01-01

    The objectives of this study were to examine the quantity of adult words, adult-child conversational turns, and electronic media in the auditory environments of toddlers who are hard of hearing (HH) and to examine whether these factors contributed to variability in children's communication outcomes. Participants were 28 children with mild to severe hearing loss. Full-day recordings of children's auditory environments were collected within 6 months of their second birthdays by using Language ENvironment Analysis technology. The system analyzes full-day acoustic recordings, yielding estimates of the quantity of adult words, conversational turns, and electronic media exposure in the recordings. Children's communication outcomes were assessed via the receptive and expressive scales of the Mullen Scales of Early Learning at 2 years of age and the Comprehensive Assessment of Spoken Language at 3 years of age. On average, the HH toddlers were exposed to approximately 1400 adult words per hour and participated in approximately 60 conversational turns per hour. An average of 8% of each recording was classified as electronic media. However, there was considerable within-group variability on all three measures. Frequency of conversational turns, but not adult words, was positively associated with children's communication outcomes at 2 and 3 years of age. Amount of electronic media exposure was negatively associated with 2-year-old receptive language abilities; however, regression results indicate that the relationship was fully mediated by the quantity of conversational turns. HH toddlers who were engaged in more conversational turns demonstrated stronger linguistic outcomes than HH toddlers who were engaged in fewer conversational turns. The frequency of these interactions was found to be decreased in households with high rates of electronic media exposure. Optimal language-learning environments for HH toddlers include frequent linguistic interactions between parents and children. To support this goal, parents should be encouraged to reduce their children's exposure to electronic media.

  17. Atom-counting in High Resolution Electron Microscopy:TEM or STEM - That's the question.

    PubMed

    Gonnissen, J; De Backer, A; den Dekker, A J; Sijbers, J; Van Aert, S

    2017-03-01

    In this work, a recently developed quantitative approach based on the principles of detection theory is used in order to determine the possibilities and limitations of High Resolution Scanning Transmission Electron Microscopy (HR STEM) and HR TEM for atom-counting. So far, HR STEM has been shown to be an appropriate imaging mode to count the number of atoms in a projected atomic column. Recently, it has been demonstrated that HR TEM, when using negative spherical aberration imaging, is suitable for atom-counting as well. The capabilities of both imaging techniques are investigated and compared using the probability of error as a criterion. It is shown that for the same incoming electron dose, HR STEM outperforms HR TEM under common practice standards, i.e. when the decision is based on the probability function of the peak intensities in HR TEM and of the scattering cross-sections in HR STEM. If the atom-counting decision is based on the joint probability function of the image pixel values, the dependence of all image pixel intensities as a function of thickness should be known accurately. Under this assumption, the probability of error may decrease significantly for atom-counting in HR TEM and may, in theory, become lower as compared to HR STEM under the predicted optimal experimental settings. However, the commonly used standard for atom-counting in HR STEM leads to a high performance and has been shown to work in practice. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Multianode cylindrical proportional counter for high count rates

    DOEpatents

    Hanson, J.A.; Kopp, M.K.

    1980-05-23

    A cylindrical, multiple-anode proportional counter is provided for counting of low-energy photons (< 60 keV) at count rates of greater than 10/sup 5/ counts/sec. A gas-filled proportional counter cylinder forming an outer cathode is provided with a central coaxially disposed inner cathode and a plurality of anode wires disposed in a cylindrical array in coaxial alignment with and between the inner and outer cathodes to form a virtual cylindrical anode coaxial with the inner and outer cathodes. The virtual cylindrical anode configuration improves the electron drift velocity by providing a more uniform field strength throughout the counter gas volume, thus decreasing the electron collection time following the detection of an ionizing event. This avoids pulse pile-up and coincidence losses at these high count rates. Conventional RC position encoding detection circuitry may be employed to extract the spatial information from the counter anodes.

  19. Multianode cylindrical proportional counter for high count rates

    DOEpatents

    Hanson, James A.; Kopp, Manfred K.

    1981-01-01

    A cylindrical, multiple-anode proportional counter is provided for counting of low-energy photons (<60 keV) at count rates of greater than 10.sup.5 counts/sec. A gas-filled proportional counter cylinder forming an outer cathode is provided with a central coaxially disposed inner cathode and a plurality of anode wires disposed in a cylindrical array in coaxial alignment with and between the inner and outer cathodes to form a virtual cylindrical anode coaxial with the inner and outer cathodes. The virtual cylindrical anode configuration improves the electron drift velocity by providing a more uniform field strength throughout the counter gas volume, thus decreasing the electron collection time following the detection of an ionizing event. This avoids pulse pile-up and coincidence losses at these high count rates. Conventional RC position encoding detection circuitry may be employed to extract the spatial information from the counter anodes.

  20. Construction of a 1 MeV Electron Accelerator for High Precision Beta Decay Studies

    NASA Astrophysics Data System (ADS)

    Longfellow, Brenden

    2014-09-01

    Beta decay energy calibration for detectors is typically established using conversion sources. However, the calibration points from conversion sources are not evenly distributed over the beta energy spectrum and the foil backing of the conversion sources produces perturbations in the calibration spectrum. To improve this, an external, tunable electron beam coupled by a magnetic field can be used to calibrate the detector. The 1 MeV electron accelerator in development at Triangle Universities Nuclear Laboratory (TUNL) utilizes a pelletron charging system. The electron gun shoots 104 electrons per second with an energy range of 50 keV to 1 MeV and is pulsed at a 10 kHz rate with a few ns width. The magnetic field in the spectrometer is 1 T and guiding fields of 0.01 to 0.05 T for the electron gun are used to produce a range of pitch angles. This accelerator can be used to calibrate detectors evenly over its energy range and determine the detector response over a range of pitch angles. Beta decay energy calibration for detectors is typically established using conversion sources. However, the calibration points from conversion sources are not evenly distributed over the beta energy spectrum and the foil backing of the conversion sources produces perturbations in the calibration spectrum. To improve this, an external, tunable electron beam coupled by a magnetic field can be used to calibrate the detector. The 1 MeV electron accelerator in development at Triangle Universities Nuclear Laboratory (TUNL) utilizes a pelletron charging system. The electron gun shoots 104 electrons per second with an energy range of 50 keV to 1 MeV and is pulsed at a 10 kHz rate with a few ns width. The magnetic field in the spectrometer is 1 T and guiding fields of 0.01 to 0.05 T for the electron gun are used to produce a range of pitch angles. This accelerator can be used to calibrate detectors evenly over its energy range and determine the detector response over a range of pitch angles. TUNL REU Program.

  1. Principles of gross alpha and beta radioactivity detection in water.

    PubMed

    Semkow, T M; Parekh, P P

    2001-11-01

    A simultaneous detection of gross alpha and beta radioactivity was studied using gas proportional counting. This measurement is a part of a method mandated by US Environmental Protection Agency to screen for alpha and beta radioactivity in drinking water. Responses of a gas proportional detector to alpha and beta particles from several radionuclides were determined in drop and electroplated geometries. It is shown that, while the alpha radioactivity can be measured accurately in the presence of beta radioactivity, the opposite is not typically true due to alpha-to-beta crosstalk. The crosstalk, originating from the emission of conversion and Auger electrons as well as x rays, is shown to be dependent primarily on the particular alpha-decay scheme while the dependence on alpha energy is small but negligible. It was measured at 28-35% for 241Am, 22-24% for 230Th, and 4.9-6.5% for 239Pu. For 210Po, the crosstalk of 1.2-1.6% was observed mostly due to energy retardation. A method of reducing the crosstalk to a <3% level is proposed by absorbing the atomic electrons in a 6.2 mg cm(-2) Al absorber, at the same time decreasing the beta efficiency by 16-31%.

  2. Low-energy particle experiments-electron analyzer (LEPe) onboard the Arase spacecraft

    NASA Astrophysics Data System (ADS)

    Kazama, Yoichi; Wang, Bo-Jhou; Wang, Shiang-Yu; Ho, Paul T. P.; Tam, Sunny W. Y.; Chang, Tzu-Fang; Chiang, Chih-Yu; Asamura, Kazushi

    2017-12-01

    In this report, we describe the low-energy electron instrument LEPe (low-energy particle experiments-electron analyzer) onboard the Arase (ERG) spacecraft. The instrument measures a three-dimensional distribution function of electrons with energies of ˜ 19 eV-19 keV. Electrons in this energy range dominate in the inner magnetosphere, and measurement of such electrons is important in terms of understanding the magnetospheric dynamics and wave-particle interaction. The instrument employs a toroidal tophat electrostatic energy analyzer with a passive 6-mm aluminum shield. To minimize background radiation effects, the analyzer has a background channel, which monitors counts produced by background radiation. Background counts are then subtracted from measured counts. Electronic components are radiation tolerant, and 5-mm-thick shielding of the electronics housing ensures that the total dose is less than 100 kRad for the one-year nominal mission lifetime. The first in-space measurement test was done on February 12, 2017, showing that the instrument functions well. On February 27, the first all-instrument run test was done, and the LEPe instrument measured an energy dispersion event probably related to a substorm injection occurring immediately before the instrument turn-on. These initial results indicate that the instrument works fine in space, and the measurement performance is good for science purposes.[Figure not available: see fulltext.

  3. Plasma chemical conversion of sulphur hexafluoride initiated by a pulsed electron beam

    NASA Astrophysics Data System (ADS)

    Kholodnaya, Galina; Sazonov, Roman; Ponomarev, Denis; Guzeeva, Tatiana

    2017-01-01

    This paper presents the results of the experimental investigation of plasma chemical conversion of sulphur hexafluoride initiated by a pulsed electron beam (TEA-500 pulsed electron accelerator) with the following characteristics: 400-450 keV electron energy, 60 ns pulse duration, up to 200 J pulse energy, and 5 cm beam diameter. Experiments were conducted on the effect of the pulsed electron beam on SF6 and on mixtures of SF6 with O2, Ar, or N2. For the mixture of SF6 and oxygen, the results indicated chemical reactions involving the formation of a number of products of which one is sulphur, confirming the Wray - Fluorescence Analysis. The plasma chemical conversion of SF6 initiated by the pulsed electron beam was not detected when SF6 was mixed with Ar or N2, suggesting a possible mechanism for the reaction of SF6 in the presence of O2.

  4. Applied nonlinear optics in the journal 'Quantum Electronics'

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grechin, Sergei G; Dmitriev, Valentin G; Chirkin, Anatolii S

    2011-12-31

    A brief historical review of the experimental and theoretical works on nonlinear optical frequency conversion (generation of harmonics, up- and down-conversion, parametric oscillation), which have been published in the journal 'Quantum Electronics' for the last 40 years, is presented.

  5. Digital computing cardiotachometer

    NASA Technical Reports Server (NTRS)

    Smith, H. E.; Rasquin, J. R.; Taylor, R. A. (Inventor)

    1973-01-01

    A tachometer is described which instantaneously measures heart rate. During the two intervals between three succeeding heart beats, the electronic system: (1) measures the interval by counting cycles from a fixed frequency source occurring between the two beats; and (2) computes heat rate during the interval between the next two beats by counting the number of times that the interval count must be counted to zero in order to equal a total count of sixty times (to convert to beats per minute) the frequency of the fixed frequency source.

  6. Electrochemically enhanced microbial CO conversion to volatile fatty acids using neutral red as an electron mediator.

    PubMed

    Im, Chae Ho; Kim, Changman; Song, Young Eun; Oh, Sang-Eun; Jeon, Byong-Hun; Kim, Jung Rae

    2018-01-01

    Conversion of C1 gas feedstock, including carbon monoxide (CO), into useful platform chemicals has attracted considerable interest in industrial biotechnology. Nevertheless, the low conversion yield and/or growth rate of CO-utilizing microbes make it difficult to develop a C1 gas biorefinery process. The Wood-Ljungdahl pathway which utilize CO is a pathway suffered from insufficient electron supply, in which the conversion can be increased further when an additional electron source like carbohydrate or hydrogen is provided. In this study, electrode-based electron transference using a bioelectrochemical system (BES) was examined to compensate for the insufficient reducing equivalent and increase the production of volatile fatty acids. The BES including neutral red (BES-NR), which facilitated electron transfer between bacteria and electrode, was compared with BES without neutral red and open circuit control. The coulombic efficiency based on the current input to the system and the electrons recovered into VFAs, was significantly higher in BES-NR than the control. These results suggest that the carbon electrode provides a platform to regulate the redox balance for improving the bioconversion of CO, and amending the conventional C1 gas fermentation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Status of the Top and Bottom Counting Detectors for the ISS-CREAM Experiment

    NASA Astrophysics Data System (ADS)

    Park, J. M.; ISS-CREAM Collaboration

    2017-11-01

    It is important to measure the cosmic ray spectra to study the origin, acceleration and propagation mechanisms of high-energy cosmic rays. A payload of the Cosmic Ray Energetics And Mass experiment is scheduled to be launched in 2017 to the International Space Station for measuring cosmic ray elemental spectra at energies beyond the reach of balloon instruments. Top Counting Detector and Bottom Counting Detector (T/BCD) as a two-dimensional detector are to separate electrons from protons for electron/gamma-ray physics. The T/BCD each consists of a plastic scintillator read out by 20 by 20 photodiodes and is placed before and after the Calorimeter, respectively. Energy and hit information of the T/BCD can distinguish shower profiles of electrons and protons, which show narrower and shorter showers from electrons at a given energy. The T/BCD performance has been studied with the Silicon Charge Detector and the calorimeter by using a GEANT3 + FLUKA 3.21 simulation package. By comparing the number of hits and shower width distributions between electrons and protons, we have studied optimal parameters for the e/p separation.

  8. Conversion gain and noise of niobium superconducting hot-electron-mixers

    NASA Technical Reports Server (NTRS)

    Ekstrom, Hans; Karasik, Boris S.; Kollberg, Erik L.; Yngvesson, Sigfrid

    1995-01-01

    A study has been done of microwave mixing at 20 GHz using the nonlinear (power dependent) resistance of thin niobium strips in the resistive state. Our experiments give evidence that electron-heating is the main cause of the nonlinear phenomenon. Also a detailed phenomenological theory for the determination of conversion properties is presented. This theory is capable of predicting the frequency-conversion loss rather accurately for arbitrary bias by examining the I-V-characteristic. Knowing the electron temperature relaxation time, and using parameters derived from the I-V-characteristic also allows us to predict the -3 dB IF bandwidth. Experimental results are in excellent agreement with the theoretical predictions. The requirements on the mode of operation and on the film parameters for minimizing the conversion loss (and even achieving conversion gain) are discussed in some detail. Our measurements demonstrate an intrinsic conversion loss as low as 1 dB. The maximum IF frequency defined for -3 dB drop in conversion gain, is about 80 MHz. Noise measurements indicate a device output noise temperature of about 50 K and SSB mixer noise temperature below 250 K. This type of mixer is considered very promising for use in low-noise heterodyne receivers at THz frequencies.

  9. Numerically exact full counting statistics of the nonequilibrium Anderson impurity model

    NASA Astrophysics Data System (ADS)

    Ridley, Michael; Singh, Viveka N.; Gull, Emanuel; Cohen, Guy

    2018-03-01

    The time-dependent full counting statistics of charge transport through an interacting quantum junction is evaluated from its generating function, controllably computed with the inchworm Monte Carlo method. Exact noninteracting results are reproduced; then, we continue to explore the effect of electron-electron interactions on the time-dependent charge cumulants, first-passage time distributions, and n -electron transfer distributions. We observe a crossover in the noise from Coulomb blockade to Kondo-dominated physics as the temperature is decreased. In addition, we uncover long-tailed spin distributions in the Kondo regime and analyze queuing behavior caused by correlations between single-electron transfer events.

  10. Numerically exact full counting statistics of the nonequilibrium Anderson impurity model

    DOE PAGES

    Ridley, Michael; Singh, Viveka N.; Gull, Emanuel; ...

    2018-03-06

    The time-dependent full counting statistics of charge transport through an interacting quantum junction is evaluated from its generating function, controllably computed with the inchworm Monte Carlo method. Exact noninteracting results are reproduced; then, we continue to explore the effect of electron-electron interactions on the time-dependent charge cumulants, first-passage time distributions, and n-electron transfer distributions. We observe a crossover in the noise from Coulomb blockade to Kondo-dominated physics as the temperature is decreased. In addition, we uncover long-tailed spin distributions in the Kondo regime and analyze queuing behavior caused by correlations between single-electron transfer events

  11. Numerically exact full counting statistics of the nonequilibrium Anderson impurity model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ridley, Michael; Singh, Viveka N.; Gull, Emanuel

    The time-dependent full counting statistics of charge transport through an interacting quantum junction is evaluated from its generating function, controllably computed with the inchworm Monte Carlo method. Exact noninteracting results are reproduced; then, we continue to explore the effect of electron-electron interactions on the time-dependent charge cumulants, first-passage time distributions, and n-electron transfer distributions. We observe a crossover in the noise from Coulomb blockade to Kondo-dominated physics as the temperature is decreased. In addition, we uncover long-tailed spin distributions in the Kondo regime and analyze queuing behavior caused by correlations between single-electron transfer events

  12. Evaluation of large format electron bombarded virtual phase CCDs as ultraviolet imaging detectors

    NASA Technical Reports Server (NTRS)

    Opal, Chet B.; Carruthers, George R.

    1989-01-01

    In conjunction with an external UV-sensitive cathode, an electron-bombarded CCD may be used as a high quantum efficiency/wide dynamic range photon-counting UV detector. Results are presented for the case of a 1024 x 1024, 18-micron square pixel virtual phase CCD used with an electromagnetically focused f/2 Schmidt camera, which yields excellent simgle-photoevent discrimination and counting efficiency. Attention is given to the vacuum-chamber arrangement used to conduct system tests and the CCD electronics and data-acquisition systems employed.

  13. Apparatus and method for compensating for electron beam emittance in synchronizing light sources

    DOEpatents

    Neil, George R.

    1996-01-01

    A focused optical beam is used to change the path length of the core electrons in electron light sources thereby boosting their efficiency of conversion of electron beam energy to light. Both coherent light in the free electron laser and incoherent light in the synchrotron is boosted by this technique. By changing the path length of the core electrons by the proper amount, the core electrons are caused to stay in phase with the electrons in the outer distribution of the electron beam. This increases the fraction of the electron beam energy that is converted to light thereby improving the efficiency of conversion of energy to light and therefore boosting the power output of the free electron laser and synchrotron.

  14. Apparatus and method for compensating for electron beam emittance in synchronizing light sources

    DOEpatents

    Neil, G.R.

    1996-07-30

    A focused optical beam is used to change the path length of the core electrons in electron light sources thereby boosting their efficiency of conversion of electron beam energy to light. Both coherent light in the free electron laser and incoherent light in the synchrotron is boosted by this technique. By changing the path length of the core electrons by the proper amount, the core electrons are caused to stay in phase with the electrons in the outer distribution of the electron beam. This increases the fraction of the electron beam energy that is converted to light thereby improving the efficiency of conversion of energy to light and therefore boosting the power output of the free electron laser and synchrotron. 4 figs.

  15. Dose limited reliability of quantitative annular dark field scanning transmission electron microscopy for nano-particle atom-counting.

    PubMed

    De Backer, A; Martinez, G T; MacArthur, K E; Jones, L; Béché, A; Nellist, P D; Van Aert, S

    2015-04-01

    Quantitative annular dark field scanning transmission electron microscopy (ADF STEM) has become a powerful technique to characterise nano-particles on an atomic scale. Because of their limited size and beam sensitivity, the atomic structure of such particles may become extremely challenging to determine. Therefore keeping the incoming electron dose to a minimum is important. However, this may reduce the reliability of quantitative ADF STEM which will here be demonstrated for nano-particle atom-counting. Based on experimental ADF STEM images of a real industrial catalyst, we discuss the limits for counting the number of atoms in a projected atomic column with single atom sensitivity. We diagnose these limits by combining a thorough statistical method and detailed image simulations. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Solid-state Image Sensor with Focal-plane Digital Photon-counting Pixel Array

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R.; Pain, Bedabrata

    1997-01-01

    A solid-state focal-plane imaging system comprises an NxN array of high gain. low-noise unit cells. each unit cell being connected to a different one of photovoltaic detector diodes, one for each unit cell, interspersed in the array for ultra low level image detection and a plurality of digital counters coupled to the outputs of the unit cell by a multiplexer(either a separate counter for each unit cell or a row of N of counters time shared with N rows of digital counters). Each unit cell includes two self-biasing cascode amplifiers in cascade for a high charge-to-voltage conversion gain (greater than 1mV/e(-)) and an electronic switch to reset input capacitance to a reference potential in order to be able to discriminate detection of an incident photon by the photoelectron (e(-))generated in the detector diode at the input of the first cascode amplifier in order to count incident photons individually in a digital counter connected to the output of the second cascade amplifier. Reseting the input capacitance and initiating self-biasing of the amplifiers occurs every clock cycle of an integratng period to enable ultralow light level image detection by the may of photovoltaic detector diodes under such ultralow light level conditions that the photon flux will statistically provide only a single photon at a time incident on anyone detector diode during any clock cycle.

  17. Permeability of the blood-brain barrier predicts conversion from optic neuritis to multiple sclerosis.

    PubMed

    Cramer, Stig P; Modvig, Signe; Simonsen, Helle J; Frederiksen, Jette L; Larsson, Henrik B W

    2015-09-01

    Optic neuritis is an acute inflammatory condition that is highly associated with multiple sclerosis. Currently, the best predictor of future development of multiple sclerosis is the number of T2 lesions visualized by magnetic resonance imaging. Previous research has found abnormalities in the permeability of the blood-brain barrier in normal-appearing white matter of patients with multiple sclerosis and here, for the first time, we present a study on the capability of blood-brain barrier permeability in predicting conversion from optic neuritis to multiple sclerosis and a direct comparison with cerebrospinal fluid markers of inflammation, cellular trafficking and blood-brain barrier breakdown. To this end, we applied dynamic contrast-enhanced magnetic resonance imaging at 3 T to measure blood-brain barrier permeability in 39 patients with monosymptomatic optic neuritis, all referred for imaging as part of the diagnostic work-up at time of diagnosis. Eighteen healthy controls were included for comparison. Patients had magnetic resonance imaging and lumbar puncture performed within 4 weeks of onset of optic neuritis. Information on multiple sclerosis conversion was acquired from hospital records 2 years after optic neuritis onset. Logistic regression analysis showed that baseline permeability in normal-appearing white matter significantly improved prediction of multiple sclerosis conversion (according to the 2010 revised McDonald diagnostic criteria) within 2 years compared to T2 lesion count alone. There was no correlation between permeability and T2 lesion count. An increase in permeability in normal-appearing white matter of 0.1 ml/100 g/min increased the risk of multiple sclerosis 8.5 times whereas having more than nine T2 lesions increased the risk 52.6 times. Receiver operating characteristic curve analysis of permeability in normal-appearing white matter gave a cut-off of 0.13 ml/100 g/min, which predicted conversion to multiple sclerosis with a sensitivity of 88% and specificity of 72%. We found a significant correlation between permeability and the leucocyte count in cerebrospinal fluid as well as levels of CXCL10 and MMP9 in the cerebrospinal fluid. These findings suggest that blood-brain barrier permeability, as measured by magnetic resonance imaging, may provide novel pathological information as a marker of neuroinflammation related to multiple sclerosis, to some extent reflecting cellular permeability of the blood-brain barrier, whereas T2 lesion count may more reflect the length of the subclinical pre-relapse phase.See Naismith and Cross (doi:10.1093/brain/awv196) for a scientific commentary on this article. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain.

  18. Atomic layer-by-layer thermoelectric conversion in topological insulator bismuth/antimony tellurides.

    PubMed

    Sung, Ji Ho; Heo, Hoseok; Hwang, Inchan; Lim, Myungsoo; Lee, Donghun; Kang, Kibum; Choi, Hee Cheul; Park, Jae-Hoon; Jhi, Seung-Hoon; Jo, Moon-Ho

    2014-07-09

    Material design for direct heat-to-electricity conversion with substantial efficiency essentially requires cooperative control of electrical and thermal transport. Bismuth telluride (Bi2Te3) and antimony telluride (Sb2Te3), displaying the highest thermoelectric power at room temperature, are also known as topological insulators (TIs) whose electronic structures are modified by electronic confinements and strong spin-orbit interaction in a-few-monolayers thickness regime, thus possibly providing another degree of freedom for electron and phonon transport at surfaces. Here, we explore novel thermoelectric conversion in the atomic monolayer steps of a-few-layer topological insulating Bi2Te3 (n-type) and Sb2Te3 (p-type). Specifically, by scanning photoinduced thermoelectric current imaging at the monolayer steps, we show that efficient thermoelectric conversion is accomplished by optothermal motion of hot electrons (Bi2Te3) and holes (Sb2Te3) through 2D subbands and topologically protected surface states in a geometrically deterministic manner. Our discovery suggests that the thermoelectric conversion can be interiorly achieved at the atomic steps of a homogeneous medium by direct exploiting of quantum nature of TIs, thus providing a new design rule for the compact thermoelectric circuitry at the ultimate size limit.

  19. A Monte Carlo modeling alternative for the API Gamma Ray Calibration Facility.

    PubMed

    Galford, J E

    2017-04-01

    The gamma ray pit at the API Calibration Facility, located on the University of Houston campus, defines the API unit for natural gamma ray logs used throughout the petroleum logging industry. Future use of the facility is uncertain. An alternative method is proposed to preserve the gamma ray API unit definition as an industry standard by using Monte Carlo modeling to obtain accurate counting rate-to-API unit conversion factors for gross-counting and spectral gamma ray tool designs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. A PFM-based MWIR DROIC employing off-pixel fine conversion of photocharge to digital using integrated column ADCs

    NASA Astrophysics Data System (ADS)

    Abbasi, S.; Galioglu, A.; Shafique, A.; Ceylan, O.; Yazici, M.; Gurbuz, Y.

    2017-02-01

    A 32x32 prototype of a digital readout IC (DROIC) for medium-wave infrared focal plane arrays (MWIR IR-FPAs) is presented. The DROIC employs in-pixel photocurrent to digital conversion based on a pulse frequency modulation (PFM) loop and boasts a novel feature of off-pixel residue conversion using 10-bit column SAR ADCs. The remaining charge at the end of integration in typical PFM based digital pixel sensors is usually wasted. Previous works employing in-pixel extended counting methods make use of extra memory and counters to convert this left-over charge to digital, thereby performing fine conversion of the incident photocurrent. This results in a low quantization noise and hence keeps the readout noise low. However, focal plane arrays (FPAs) with small pixel pitch are constrained in pixel area, which makes it difficult to benefit from in-pixel extended counting circuitry. Thus, in this work, a novel approach to measure the residue outside the pixel using column -parallel SAR ADCs has been proposed. Moreover, a modified version of the conventional PFM based pixel has been designed to help hold the residue charge and buffer it to the column ADC. In addition to the 2D array of pixels, the prototype consists of 32 SAR ADCs, a timing controller block and a memory block to buffer the residue data coming out of the ADCs. The prototype has been designed and fabricated in 90nm CMOS.

  1. Hybrid statistics-simulations based method for atom-counting from ADF STEM images.

    PubMed

    De Wael, Annelies; De Backer, Annick; Jones, Lewys; Nellist, Peter D; Van Aert, Sandra

    2017-06-01

    A hybrid statistics-simulations based method for atom-counting from annular dark field scanning transmission electron microscopy (ADF STEM) images of monotype crystalline nanostructures is presented. Different atom-counting methods already exist for model-like systems. However, the increasing relevance of radiation damage in the study of nanostructures demands a method that allows atom-counting from low dose images with a low signal-to-noise ratio. Therefore, the hybrid method directly includes prior knowledge from image simulations into the existing statistics-based method for atom-counting, and accounts in this manner for possible discrepancies between actual and simulated experimental conditions. It is shown by means of simulations and experiments that this hybrid method outperforms the statistics-based method, especially for low electron doses and small nanoparticles. The analysis of a simulated low dose image of a small nanoparticle suggests that this method allows for far more reliable quantitative analysis of beam-sensitive materials. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Particle precipitation prior to large earthquakes of both the Sumatra and Philippine Regions: A statistical analysis

    NASA Astrophysics Data System (ADS)

    Fidani, Cristiano

    2015-12-01

    A study of statistical correlation between low L-shell electrons precipitating into the atmosphere and strong earthquakes is presented. More than 11 years of the Medium Energy Protons Electrons Detector data from the NOAA-15 Sun-synchronous polar orbiting satellite were analysed. Electron fluxes were analysed using a set of adiabatic coordinates. From this, significant electron counting rate fluctuations were evidenced during geomagnetic quiet periods. Electron counting rates were compared to earthquakes by defining a seismic event L-shell obtained radially projecting the epicentre geographical positions to a given altitude towards the zenith. Counting rates were grouped in every satellite semi-orbit together with strong seismic events and these were chosen with the L-shell coordinates close to each other. NOAA-15 electron data from July 1998 to December 2011 were compared for nearly 1800 earthquakes with magnitudes larger than or equal to 6, occurring worldwide. When considering 30-100 keV precipitating electrons detected by the vertical NOAA-15 telescope and earthquake epicentre projections at altitudes greater that 1300 km, a significant correlation appeared where a 2-3 h electron precipitation was detected prior to large events in the Sumatra and Philippine Regions. This was in physical agreement with different correlation times obtained from past studies that considered particles with greater energies. The Discussion below of satellite orbits and detectors is useful for future satellite missions for earthquake mitigation.

  3. Ultrafast Electron Dynamics in Solar Energy Conversion.

    PubMed

    Ponseca, Carlito S; Chábera, Pavel; Uhlig, Jens; Persson, Petter; Sundström, Villy

    2017-08-23

    Electrons are the workhorses of solar energy conversion. Conversion of the energy of light to electricity in photovoltaics, or to energy-rich molecules (solar fuel) through photocatalytic processes, invariably starts with photoinduced generation of energy-rich electrons. The harvesting of these electrons in practical devices rests on a series of electron transfer processes whose dynamics and efficiencies determine the function of materials and devices. To capture the energy of a photogenerated electron-hole pair in a solar cell material, charges of opposite sign have to be separated against electrostatic attractions, prevented from recombining and being transported through the active material to electrodes where they can be extracted. In photocatalytic solar fuel production, these electron processes are coupled to chemical reactions leading to storage of the energy of light in chemical bonds. With the focus on the ultrafast time scale, we here discuss the light-induced electron processes underlying the function of several molecular and hybrid materials currently under development for solar energy applications in dye or quantum dot-sensitized solar cells, polymer-fullerene polymer solar cells, organometal halide perovskite solar cells, and finally some photocatalytic systems.

  4. Electron Transport Modeling of Molecular Nanoscale Bridges Used in Energy Conversion Schemes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dunietz, Barry D

    2016-08-09

    The goal of the research program is to reliably describe electron transport and transfer processes at the molecular level. Such insight is essential for improving molecular applications of solar and thermal energy conversion. We develop electronic structure models to study (1) photoinduced electron transfer and transport processes in organic semiconducting materials, and (2) charge and heat transport through molecular bridges. We seek fundamental understanding of key processes, which lead to design new experiments and ultimately to achieve systems with improved properties.

  5. Broadband high-frequency waves and intermittent energy conversion at dipolarization fronts

    NASA Astrophysics Data System (ADS)

    Yang, J.; Cao, J.; Fu, H.; Wang, T.; Liu, W.; Yao, Z., Sr.

    2017-12-01

    Dipolarization front (DF) is a sharp boundary most probably separating the reconnection jet from the background plasma sheet. So far at this boundary, the observed waves are mainly in low-frequency range (e.g., magnetosonic waves and lower hybrid waves). Few high-frequency waves are observed in this region. In this paper, we report the broadband high-frequency wave emissions at the DF. These waves, having frequencies extending from the electron cyclotron frequency fce, up to the electron plasma frequency fpe, could contribute 10% to the in situ measurement of intermittent energy conversion at the DF layer. Their generation may be attributed to electron beams, which are simultaneously observed at the DF as well. Furthermore, we find intermittent energy conversion is primarily to the broadband fluctuations in the lower hybrid frequency range although the net energy conversion is small.

  6. Dynamic pulse difference circuit

    DOEpatents

    Erickson, Gerald L.

    1978-01-01

    A digital electronic circuit of especial use for subtracting background activity pulses in gamma spectrometry comprises an up-down counter connected to count up with signal-channel pulses and to count down with background-channel pulses. A detector responsive to the count position of the up-down counter provides a signal when the up-down counter has completed one scaling sequence cycle of counts in the up direction. In an alternate embodiment, a detector responsive to the count position of the up-down counter provides a signal upon overflow of the counter.

  7. Antenna-coupled photon emission from hexagonal boron nitride tunnel junctions.

    PubMed

    Parzefall, M; Bharadwaj, P; Jain, A; Taniguchi, T; Watanabe, K; Novotny, L

    2015-12-01

    The ultrafast conversion of electrical signals to optical signals at the nanoscale is of fundamental interest for data processing, telecommunication and optical interconnects. However, the modulation bandwidths of semiconductor light-emitting diodes are limited by the spontaneous recombination rate of electron-hole pairs, and the footprint of electrically driven ultrafast lasers is too large for practical on-chip integration. A metal-insulator-metal tunnel junction approaches the ultimate size limit of electronic devices and its operating speed is fundamentally limited only by the tunnelling time. Here, we study the conversion of electrons (localized in vertical gold-hexagonal boron nitride-gold tunnel junctions) to free-space photons, mediated by resonant slot antennas. Optical antennas efficiently bridge the size mismatch between nanoscale volumes and far-field radiation and strongly enhance the electron-photon conversion efficiency. We achieve polarized, directional and resonantly enhanced light emission from inelastic electron tunnelling and establish a novel platform for studying the interaction of electrons with strongly localized electromagnetic fields.

  8. The influence of atmospheric turbulence on partially coherent two-photon entangled field

    NASA Astrophysics Data System (ADS)

    Qiu, Y.; She, W.

    2012-09-01

    The propagation of a two-photon field from down-conversion of a partially coherent Gaussian Schell-model (GSM) pump beam in free space has been reported. However, the propagation of this two-photon field through a turbulent atmosphere has not been investigated yet. In this paper, an analytical expression of the coincidence count rate of the two-photon entangled field is derived. Unlike what has been reported, the field is from a parameter down-conversion of a partially coherent dark hollow pump beam and propagates through a turbulent atmosphere. The effects of the propagation parameters on the coincidence count rate are evaluated and illustrated. The results show that the pump beam parameters and atmospheric turbulence can evidently affect the detection probability of the photon pair at two different positions. It is found that the detection probability of the two-photon field is higher, and thus less susceptible to turbulence, if the field is produced by a lower mode of partially coherent pump beam.

  9. Hot-electron-based solar energy conversion with metal-semiconductor nanodiodes.

    PubMed

    Lee, Young Keun; Lee, Hyosun; Lee, Changhwan; Hwang, Euyheon; Park, Jeong Young

    2016-06-29

    Energy dissipation at metal surfaces or interfaces between a metal and a dielectric generally results from elementary excitations, including phonons and electronic excitation, once external energy is deposited to the surface/interface during exothermic chemical processes or an electromagnetic wave incident. In this paper, we outline recent research activities to develop energy conversion devices based on hot electrons. We found that photon energy can be directly converted to hot electrons and that hot electrons flow through the interface of metal-semiconductor nanodiodes where a Schottky barrier is formed and the energy barrier is much lower than the work function of the metal. The detection of hot electron flow can be successfully measured using the photocurrent; we measured the photoyield of photoemission with incident photons-to-current conversion efficiency (IPCE). We also show that surface plasmons (i.e. the collective oscillation of conduction band electrons induced by interaction with an electromagnetic field) are excited on a rough metal surface and subsequently decay into secondary electrons, which gives rise to enhancement of the IPCE. Furthermore, the unique optical behavior of surface plasmons can be coupled with dye molecules, suggesting the possibility for producing additional channels for hot electron generation.

  10. Energy harvesting using AC machines with high effective pole count

    NASA Astrophysics Data System (ADS)

    Geiger, Richard Theodore

    In this thesis, ways to improve the power conversion of rotating generators at low rotor speeds in energy harvesting applications were investigated. One method is to increase the pole count, which increases the generator back-emf without also increasing the I2R losses, thereby increasing both torque density and conversion efficiency. One machine topology that has a high effective pole count is a hybrid "stepper" machine. However, the large self inductance of these machines decreases their power factor and hence the maximum power that can be delivered to a load. This effect can be cancelled by the addition of capacitors in series with the stepper windings. A circuit was designed and implemented to automatically vary the series capacitance over the entire speed range investigated. The addition of the series capacitors improved the power output of the stepper machine by up to 700%. At low rotor speeds, with the addition of series capacitance, the power output of the hybrid "stepper" was more than 200% that of a similarly sized PMDC brushed motor. Finally, in this thesis a hybrid lumped parameter / finite element model was used to investigate the impact of number, shape and size of the rotor and stator teeth on machine performance. A typical off-the-shelf hybrid stepper machine has significant cogging torque by design. This cogging torque is a major problem in most small energy harvesting applications. In this thesis it was shown that the cogging and ripple torque can be dramatically reduced. These findings confirm that high-pole-count topologies, and specifically the hybrid stepper configuration, are an attractive choice for energy harvesting applications.

  11. Particle simulation of electromagnetic emissions from electrostatic instability driven by an electron ring beam on the density gradient

    NASA Astrophysics Data System (ADS)

    Horký, Miroslav; Omura, Yoshiharu; Santolík, Ondřej

    2018-04-01

    This paper presents the wave mode conversion between electrostatic and electromagnetic waves on the plasma density gradient. We use 2-D electromagnetic code KEMPO2 implemented with the generation of density gradient to simulate such a conversion process. In the dense region, we use ring beam instability to generate electron Bernstein waves and we study the temporal evolution of wave spectra, velocity distributions, Poynting flux, and electric and magnetic energies to observe the wave mode conversion. Such a conversion process can be a source of electromagnetic emissions which are routinely measured by spacecraft on the plasmapause density gradient.

  12. Downconversion quantum interface for a single quantum dot spin and 1550-nm single-photon channel.

    PubMed

    Pelc, Jason S; Yu, Leo; De Greve, Kristiaan; McMahon, Peter L; Natarajan, Chandra M; Esfandyarpour, Vahid; Maier, Sebastian; Schneider, Christian; Kamp, Martin; Höfling, Sven; Hadfield, Robert H; Forchel, Alfred; Yamamoto, Yoshihisa; Fejer, M M

    2012-12-03

    Long-distance quantum communication networks require appropriate interfaces between matter qubit-based nodes and low-loss photonic quantum channels. We implement a downconversion quantum interface, where the single photons emitted from a semiconductor quantum dot at 910 nm are downconverted to 1560 nm using a fiber-coupled periodically poled lithium niobate waveguide and a 2.2-μm pulsed pump laser. The single-photon character of the quantum dot emission is preserved during the downconversion process: we measure a cross-correlation g(2)(τ = 0) = 0.17 using resonant excitation of the quantum dot. We show that the downconversion interface is fully compatible with coherent optical control of the quantum dot electron spin through the observation of Rabi oscillations in the downconverted photon counts. These results represent a critical step towards a long-distance hybrid quantum network in which subsystems operating at different wavelengths are connected through quantum frequency conversion devices and 1.5-μm quantum channels.

  13. Optimization of high count rate event counting detector with Microchannel Plates and quad Timepix readout

    NASA Astrophysics Data System (ADS)

    Tremsin, A. S.; Vallerga, J. V.; McPhate, J. B.; Siegmund, O. H. W.

    2015-07-01

    Many high resolution event counting devices process one event at a time and cannot register simultaneous events. In this article a frame-based readout event counting detector consisting of a pair of Microchannel Plates and a quad Timepix readout is described. More than 104 simultaneous events can be detected with a spatial resolution of 55 μm, while >103 simultaneous events can be detected with <10 μm spatial resolution when event centroiding is implemented. The fast readout electronics is capable of processing >1200 frames/sec, while the global count rate of the detector can exceed 5×108 particles/s when no timing information on every particle is required. For the first generation Timepix readout, the timing resolution is limited by the Timepix clock to 10-20 ns. Optimization of the MCP gain, rear field voltage and Timepix threshold levels are crucial for the device performance and that is the main subject of this article. These devices can be very attractive for applications where the photon/electron/ion/neutron counting with high spatial and temporal resolution is required, such as energy resolved neutron imaging, Time of Flight experiments in lidar applications, experiments on photoelectron spectroscopy and many others.

  14. Conversion electron measurements of 195Au using ICEBall for Nuclear Structure and Astrophysics at the University of Notre Dame

    NASA Astrophysics Data System (ADS)

    Battaglia, Anthony; Tan, Wanpeng; Aprahamian, Ani; Bauder, William; Casarella, Clark; Gurdal, Gulhan; Long, Alexander; Nystrom, Andrew; Siegl, Kevin; Smith, Karl; Smith, Mallory

    2013-10-01

    The Internal Conversion Electron Ball Array (ICEBall) consists of six Si(Li) detectors and it was recently re-comissioned at the University of Notre Dame Nuclear Science Laboratory for spectroscopic studies of heavy nuclei. For the commissioning experiment, a 16 MeV bunched proton beam was used from the FN Tandem for a (p,2n) reaction to populate low spin states of 195Au. Both conversion electrons and gamma-rays were detected in coincidence between ICEBall and a single high-purity germanium detector. A total of 14 conversion coeffcients were measured. The results will be presented and compared to previous results. This work was supported by the National Science Foundation under contract number NSF PHY-1068192. M.P. Metlay, J.X. Saladin, I.Y. Lee, and O. Dietzsch, Nucl. Instrum. Meth. A, 336, 162 (1993).

  15. Mu2e, a coherent μ --> e conversion experiment at Fermilab

    NASA Astrophysics Data System (ADS)

    Brown, D. N.; Mu2e Collaboration

    2012-09-01

    We describe a proposed experiment to search for Charged Lepton Flavor Violation (CLFV) using stopped muons at Fermilab. A primary Proton beam will strike a gold target, producing pions which decay to muons. Low-momentum negative muons will be collected, selected, and transported by a custom arrangement of solenoidal magnets and collimators. Muons will stop in thin foil targets, creating muonic atoms with significant nuclear overlap. Mu2e will search for the coherent conversion of nuclear bound muons to electrons, with an experimental signature of a single mono-energetic electron. Conversion electrons will be detected and measured in a low-mass straw tracker and a crystal calorimeter. Mu2e will have a sensitivity four orders of magnitude better than the most sensitive published result for μ → e conversion, and will have complementary physics reach to LHC experiments and μ → eγ decay experiments such as MEG.

  16. A STUDY OF VARIOUS RADIATIONS DURING SPACE FLIGHTS OF SPUTNIKS, SPACE SHIPS AND ROCKETS (in Russian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vakulov, P.V.; Vernov, S.N.; Gorchakov, E.V.

    1962-06-01

    Data are presented on various radiation zones observed during the flights of the 3rd sputnik (launched May 15th, ship (Aug. 19 to 20, 1960, 339 km apogee and a 306 km perigee), the 3rd space ship (Dec. 1 to 2, 1960, 265 km apogee and a 187.3 km perigee), and the space rocket launched toward Venus on Feb. 12th, 1961. A radiation belt of electrons was detected at a height of 320 km above the earth's surface from the bremsstrahlung radiation determined on Geiger- Mueller and scintillation counters. Conjugate zones in the Northern hemisphere were linked with corresponding zones inmore » the Southern hemisphere. The position of the electron belt has remained relatively constant for about two years. The electron spectrum does not vary significantly. A count rate of >3.6 counts cm/ sup -2/ sec/sup -1/ was obtained in a Geiger-Mueller counter in the South Atlantic Ocean off the coast of Brazil. This high count rate was due to a magnetic anomaly in this region. An accurate distribution of cosmic ray intensity as a function of latitute was obtained from a comparison of the counts of the scintillation counter and the count of the STS-5 gas-discharge counter. Thirty references are included. (TTT)« less

  17. Apparatus for time-resolved and energy-resolved measurement of internal conversion electron emission induced by nuclear resonant excitation with synchrotron radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawauchi, Taizo; Matsumoto, Masuaki; Fukutani, Katsuyuki

    2007-01-15

    A high-energy and large-object-spot type cylindrical mirror analyzer (CMA) was constructed with the aid of electron trajectory simulations. By adopting a particular shape for the outer cylinder, an energy resolution of 7% was achieved without guide rings as used in conventional CMAs. Combined with an avalanche photodiode as an electron detector, the K-shell internal conversion electrons were successfully measured under irradiation of synchrotron radiation at 14.4 keV in an energy-resolved and time-resolved manner.

  18. High event rate ROICs (HEROICs) for astronomical UV photon counting detectors

    NASA Astrophysics Data System (ADS)

    Harwit, Alex; France, Kevin; Argabright, Vic; Franka, Steve; Freymiller, Ed; Ebbets, Dennis

    2014-07-01

    The next generation of astronomical photocathode / microchannel plate based UV photon counting detectors will overcome existing count rate limitations by replacing the anode arrays and external cabled electronics with anode arrays integrated into imaging Read Out Integrated Circuits (ROICs). We have fabricated a High Event Rate ROIC (HEROIC) consisting of a 32 by 32 array of 55 μm square pixels on a 60 μm pitch. The pixel sensitivity (threshold) has been designed to be globally programmable between 1 × 103 and 1 × 106 electrons. To achieve the sensitivity of 1 × 103 electrons, parasitic capacitances had to be minimized and this was achieved by fabricating the ROIC in a 65 nm CMOS process. The ROIC has been designed to support pixel counts up to 4096 events per integration period at rates up to 1 MHz per pixel. Integration time periods can be controlled via an external signal with a time resolution of less than 1 microsecond enabling temporally resolved imaging and spectroscopy of astronomical sources. An electrical injection port is provided to verify functionality and performance of each ROIC prior to vacuum integration with a photocathode and microchannel plate amplifier. Test results on the first ROICs using the electrical injection port demonstrate sensitivities between 3 × 103 and 4 × 105 electrons are achieved. A number of fixes are identified for a re-spin of this ROIC.

  19. Multiplicity Counting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geist, William H.

    2015-12-01

    This set of slides begins by giving background and a review of neutron counting; three attributes of a verification item are discussed: 240Pu eff mass; α, the ratio of (α,n) neutrons to spontaneous fission neutrons; and leakage multiplication. It then takes up neutron detector systems – theory & concepts (coincidence counting, moderation, die-away time); detector systems – some important details (deadtime, corrections); introduction to multiplicity counting; multiplicity electronics and example distributions; singles, doubles, and triples from measured multiplicity distributions; and the point model: multiplicity mathematics.

  20. Facilitated sequence counting and assembly by template mutagenesis

    PubMed Central

    Levy, Dan; Wigler, Michael

    2014-01-01

    Presently, inferring the long-range structure of the DNA templates is limited by short read lengths. Accurate template counts suffer from distortions occurring during PCR amplification. We explore the utility of introducing random mutations in identical or nearly identical templates to create distinguishable patterns that are inherited during subsequent copying. We simulate the applications of this process under assumptions of error-free sequencing and perfect mapping, using cytosine deamination as a model for mutation. The simulations demonstrate that within readily achievable conditions of nucleotide conversion and sequence coverage, we can accurately count the number of otherwise identical molecules as well as connect variants separated by long spans of identical sequence. We discuss many potential applications, such as transcript profiling, isoform assembly, haplotype phasing, and de novo genome assembly. PMID:25313059

  1. What Students Want: Leave Me Alone...I'm Socializing

    ERIC Educational Resources Information Center

    Starkman, Neal

    2007-01-01

    Through conversations with students across different grade levels, there is clear evidence that two of the things they most desire contradict each other--and they use electronic technology to get both of them. This author had conversations with three groups of students in Seattle about their favorite electronic technologies, and any concerns they…

  2. Electron Spin Polarization Transfer to ortho-H2 by Interaction of para-H2 with Paramagnetic Species: A Key to a Novel para → ortho Conversion Mechanism.

    PubMed

    Terenzi, Camilla; Bouguet-Bonnet, Sabine; Canet, Daniel

    2015-05-07

    We report that at ambient temperature and with 100% enriched para-hydrogen (p-H2) dissolved in organic solvents, paramagnetic spin catalysis of para → ortho hydrogen conversion is accompanied at the onset by a negative ortho-hydrogen (o-H2) proton NMR signal. This novel finding indicates an electron spin polarization transfer, and we show here that this can only occur if the H2 molecule is dissociated upon its transient adsorption by the paramagnetic catalyst. Following desorption, o-H2 is created until the thermodynamic equilibrium is reached. A simple theory confirms that in the presence of a static magnetic field, the hyperfine coupling between unpaired electrons and nuclear spins is responsible for the observed polarization transfer. Owing to the negative electron gyromagnetic ratio, this explains the experimental results and ascertains an as yet unexplored mechanism for para → ortho conversion. Finally, we show that the recovery of o-H2 magnetization toward equilibrium can be simply modeled, leading to the para → ortho conversion rate.

  3. EFFECTS OF LASER RADIATION ON MATTER. LASER PLASMA: Conversion of the energy of fast electrons to thermal plasma radiation

    NASA Astrophysics Data System (ADS)

    Vergunova, G. A.; Rozanov, Vladislav B.

    1992-01-01

    An analysis is made of the conversion of the energy of highly energetic fast electrons, generated by the action of CO2 laser radiation on a target, into characteristic radiation emitted by a plasma formed from shell targets which, for instance, may be present inside targets irradiated by the CO2 laser. Analytical formulas are obtained for the temperature of the converted radiation. The results show that it is possible to control this radiation by choosing the parameters of the target and of the fast electron flux. The efficiency of conversion into characteristic thermal radiation is found numerically to be 95%. This method of conversion is more favorable than direct interaction of CO2 laser radiation with a target since the emitting region is localized in the target mass. When a laser interacts with a target the mass of this region increases with time and so the temperature of the emitted radiation is lower than in the case when fast electrons act on the target.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rahman, Nur Aira Abd, E-mail: nur-aira@nm.gov.my; Lombigit, Lojius; Abdullah, Nor Arymaswati

    This paper presents the design of new digital radiation survey meter with LND7121 Geiger Muller tube detector and Atmega328P microcontroller. Development of the survey meter prototype is carried out on Arduino Uno platform. 16-bit Timer1 on the microcontroller is utilized as external pulse counter to produce count per second or CPS measurement. Conversion from CPS to dose rate technique is also performed by Arduino to display results in micro Sievert per hour (μSvhr{sup −1}). Conversion factor (CF) value for conversion of CPM to μSvhr{sup −1} determined from manufacturer data sheet is compared with CF obtained from calibration procedure. The surveymore » meter measurement results are found to be linear for dose rates below 3500 µSv/hr.« less

  5. Arduino based radiation survey meter

    NASA Astrophysics Data System (ADS)

    Rahman, Nur Aira Abd; Lombigit, Lojius; Abdullah, Nor Arymaswati; Azman, Azraf; Dolah, Taufik; Muzakkir, Amir; Jaafar, Zainudin; Mohamad, Glam Hadzir Patai; Ramli, Abd Aziz Mhd; Zain, Rasif Mohd; Said, Fazila; Khalid, Mohd Ashhar; Taat, Muhamad Zahidee

    2016-01-01

    This paper presents the design of new digital radiation survey meter with LND7121 Geiger Muller tube detector and Atmega328P microcontroller. Development of the survey meter prototype is carried out on Arduino Uno platform. 16-bit Timer1 on the microcontroller is utilized as external pulse counter to produce count per second or CPS measurement. Conversion from CPS to dose rate technique is also performed by Arduino to display results in micro Sievert per hour (μSvhr-1). Conversion factor (CF) value for conversion of CPM to μSvhr-1 determined from manufacturer data sheet is compared with CF obtained from calibration procedure. The survey meter measurement results are found to be linear for dose rates below 3500 µSv/hr.

  6. Comparison of reconnection in magnetosphere and solar corona

    NASA Astrophysics Data System (ADS)

    Imada, Shinsuke; Hirai, Mariko; Isobe, Hiroaki; Oka, Mitsuo; Watanabe, Kyoko; Minoshima, Takashi

    One of the most famous rapid energy conversion mechanisms in space is a magnetic reconnec-tion. The general concept of a magnetic reconnection is that the rapid energy conversion from magnetic field energy to thermal energy, kinetic energy or non-thermal particle energy. The understanding of rapid energy conversion rates from magnetic field energy to other energy is the fundamental and essential problem in the space physics. One of the important goals for studying magnetic reconnection is to answer what plasma condition/parameter controls the energy conversion rates. Earth's magnetotail has been paid much attention to discuss a mag-netic reconnection, because we can discuss magnetic reconnection characteristics in detail with direct in-situ observation. Recently, solar atmosphere has been focused as a space laboratory for magnetic reconnection because of its variety in plasma condition. So far considerable effort has been devoted toward understanding the energy conversion rates of magnetic reconnection, and various typical features associated with magnetic reconnection have been observed in the Earth's magnetotail and the solar corona. In this talk, we first introduce the variety of plasma condition/parameter in solar corona and Earth's magnetotail. Later, we discuss what plasma condition/parameter controls the energy conversion from magnetic field to especially non-thermal particle. To compare non-thermal electron and ion acceleration in magnetic reconnection, we used Hard X-ray (electron) /Neu-tron monitor (ion) for solar corona and Geotail in-situ measurement (electron and ion) for magnetoatil. We found both of electron and ion accelerations are roughly controlled by re-connection electric field (reconnection rate). However, some detail points are different in ion and electron acceleration. Further, we will discuss what is the major difference between solar corona and Earth's magnetotail for particle acceleration.

  7. Design of hybrid nanoheterostructure systems for enhanced quantum and solar conversion efficiencies in dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Kılıç, Bayram; Telli, Hakan; Tüzemen, Sebahattin; Başaran, Ali; Pirge, Gursev

    2015-04-01

    Dye sensitized solar cells (DSSCs) with an innovative design involving controlled-morphology vertically aligned (VA) ZnO nanowires within mesoporous TiO2 structures with ultrahigh surface area for implementation as photoanodes are herein reported. Although TiO2 nanostructures exhibit excellent power conversion efficiency, the electron transport rate is low owing to low electron mobility. To overcome this, ZnO nanowires with high electron mobility have been investigated as potential candidates for photoanodes. However, the power conversion efficiency of ZnO nanowires is still lower than that of TiO2 owing to their low internal surface area. Consequently, in this work, vertical growth of ZnO nanowires within mesoporous TiO2 structures is carried out to increase their solar power conversion efficiency. The photovoltaic performance of solar cells using ZnO nanowires, mesoporous TiO2, and TiO2/ZnO hybrid structures are compared. The VA TiO2/ZnO hybrid structures are found to provide direct electron transfer compared with the tortuous pathway of zero-dimensional nanostructures, resulting in an increased conversion efficiency. It is demonstrated that the light scattering of the photoanode film is increased and electron recombination is decreased when an appropriate amount of mesoporous TiO2 is used as a substrate for ZnO nanowires. The DSSC fabricated with the TiO2/ZnO hybrid photoanode prepared with 15.8 wt. % TiO2 showed the highest conversion efficiency of 7.30%, approximately 5%, 18%, and 40% higher than that of DSSCs fabricated with 3.99 wt. % TiO2, pure TiO2, and pure ZnO photoanodes, respectively.

  8. Automated food microbiology: potential for the hydrophobic grid-membrane filter.

    PubMed Central

    Sharpe, A N; Diotte, M P; Dudas, I; Michaud, G L

    1978-01-01

    Bacterial counts obtained on hydrophobic grid-membrane filters were comparable to conventional plate counts for Pseudomonas aeruginosa, Escherichia coli, and Staphylococcus aureus in homogenates from a range of foods. The wide numerical operating range of the hydrophobic grid-membrane filters allowed sequential diluting to be reduced or even eliminated, making them attractive as components in automated systems of analysis. Food debris could be rinsed completely from the unincubated hydrophobic grid-membrane filter surface without affecting the subsequent count, thus eliminating the possibility of counting food particles, a common source of error in electronic counting systems. PMID:100054

  9. Cryogenic, high-resolution x-ray detector with high count rate capability

    DOEpatents

    Frank, Matthias; Mears, Carl A.; Labov, Simon E.; Hiller, Larry J.; Barfknecht, Andrew T.

    2003-03-04

    A cryogenic, high-resolution X-ray detector with high count rate capability has been invented. The new X-ray detector is based on superconducting tunnel junctions (STJs), and operates without thermal stabilization at or below 500 mK. The X-ray detector exhibits good resolution (.about.5-20 eV FWHM) for soft X-rays in the keV region, and is capable of counting at count rates of more than 20,000 counts per second (cps). Simple, FET-based charge amplifiers, current amplifiers, or conventional spectroscopy shaping amplifiers can provide the electronic readout of this X-ray detector.

  10. A study of dynamic SIMS analysis of low-k dielectric materials

    NASA Astrophysics Data System (ADS)

    Mowat, Ian A.; Lin, Xue-Feng; Fister, Thomas; Kendall, Marius; Chao, Gordon; Yang, Ming Hong

    2006-07-01

    Dynamic SIMS is an established tool for the characterization of dielectric layers in semiconductors, both for contaminant levels and for composition. As the silicon-based semiconductor industry moves towards the use of copper rather than aluminum, there is also a need to use lower k-dielectric materials to reduce RC delays and to reduce cross-talk between closely spaced metal lines. New dielectric materials pose serious challenges for implementation into semiconductor processes and also for the analytical scientist doing measurements on them. The move from inorganic materials such as SiO 2 to organic or carbon-rich low-k materials is a large change for the SIMS analyst. Low-k dielectric films from different sources can be very different materials with different analytical issues. A SIMS challenge for these materials is dealing with their insulating nature and their also fragility, particularly for porous films. These materials can be extremely sensitive to electron beam damage during charge neutralization, leading to difficulties in determining depth scales and introducing unknown errors to secondary ion counts and their subsequent conversion to concentrations. This paper presents details regarding an investigation of the effects of electron beam exposure on a low-k material. These effects and their potential impact on SIMS data will be investigated using FT-IR, TOF-SIMS, AFM and stylus profilometry.

  11. Photonic ADC: overcoming the bottleneck of electronic jitter.

    PubMed

    Khilo, Anatol; Spector, Steven J; Grein, Matthew E; Nejadmalayeri, Amir H; Holzwarth, Charles W; Sander, Michelle Y; Dahlem, Marcus S; Peng, Michael Y; Geis, Michael W; DiLello, Nicole A; Yoon, Jung U; Motamedi, Ali; Orcutt, Jason S; Wang, Jade P; Sorace-Agaskar, Cheryl M; Popović, Miloš A; Sun, Jie; Zhou, Gui-Rong; Byun, Hyunil; Chen, Jian; Hoyt, Judy L; Smith, Henry I; Ram, Rajeev J; Perrott, Michael; Lyszczarz, Theodore M; Ippen, Erich P; Kärtner, Franz X

    2012-02-13

    Accurate conversion of wideband multi-GHz analog signals into the digital domain has long been a target of analog-to-digital converter (ADC) developers, driven by applications in radar systems, software radio, medical imaging, and communication systems. Aperture jitter has been a major bottleneck on the way towards higher speeds and better accuracy. Photonic ADCs, which perform sampling using ultra-stable optical pulse trains generated by mode-locked lasers, have been investigated for many years as a promising approach to overcome the jitter problem and bring ADC performance to new levels. This work demonstrates that the photonic approach can deliver on its promise by digitizing a 41 GHz signal with 7.0 effective bits using a photonic ADC built from discrete components. This accuracy corresponds to a timing jitter of 15 fs - a 4-5 times improvement over the performance of the best electronic ADCs which exist today. On the way towards an integrated photonic ADC, a silicon photonic chip with core photonic components was fabricated and used to digitize a 10 GHz signal with 3.5 effective bits. In these experiments, two wavelength channels were implemented, providing the overall sampling rate of 2.1 GSa/s. To show that photonic ADCs with larger channel counts are possible, a dual 20-channel silicon filter bank has been demonstrated.

  12. Resonant Tunneling Analog-To-Digital Converter

    NASA Technical Reports Server (NTRS)

    Broekaert, T. P. E.; Seabaugh, A. C.; Hellums, J.; Taddiken, A.; Tang, H.; Teng, J.; vanderWagt, J. P. A.

    1995-01-01

    As sampling rates continue to increase, current analog-to-digital converter (ADC) device technologies will soon reach a practical resolution limit. This limit will most profoundly effect satellite and military systems used, for example, for electronic countermeasures, electronic and signal intelligence, and phased array radar. New device and circuit concepts will be essential for continued progress. We describe a novel, folded architecture ADC which could enable a technological discontinuity in ADC performance. The converter technology is based on the integration of multiple resonant tunneling diodes (RTD) and hetero-junction transistors on an indium phosphide substrate. The RTD consists of a layered semiconductor hetero-structure AlAs/InGaAs/AlAs(2/4/2 nm) clad on either side by heavily doped InGaAs contact layers. Compact quantizers based around the RTD offer a reduction in the number of components and a reduction in the input capacitance Because the component count and capacitance scale with the number of bits N, rather than by 2 (exp n) as in the flash ADC, speed can be significantly increased, A 4-bit 2-GSps quantizer circuit is under development to evaluate the performance potential. Circuit designs for ADC conversion with a resolution of 6-bits at 25GSps may be enabled by the resonant tunneling approach.

  13. QLog Solar-Cell Mode Photodiode Logarithmic CMOS Pixel Using Charge Compression and Readout †

    PubMed Central

    Ni, Yang

    2018-01-01

    In this paper, we present a new logarithmic pixel design currently under development at New Imaging Technologies SA (NIT). This new logarithmic pixel design uses charge domain logarithmic signal compression and charge-transfer-based signal readout. This structure gives a linear response in low light conditions and logarithmic response in high light conditions. The charge transfer readout efficiently suppresses the reset (KTC) noise by using true correlated double sampling (CDS) in low light conditions. In high light conditions, thanks to charge domain logarithmic compression, it has been demonstrated that 3000 electrons should be enough to cover a 120 dB dynamic range with a mobile phone camera-like signal-to-noise ratio (SNR) over the whole dynamic range. This low electron count permits the use of ultra-small floating diffusion capacitance (sub-fF) without charge overflow. The resulting large conversion gain permits a single photon detection capability with a wide dynamic range without a complex sensor/system design. A first prototype sensor with 320 × 240 pixels has been implemented to validate this charge domain logarithmic pixel concept and modeling. The first experimental results validate the logarithmic charge compression theory and the low readout noise due to the charge-transfer-based readout. PMID:29443903

  14. QLog Solar-Cell Mode Photodiode Logarithmic CMOS Pixel Using Charge Compression and Readout.

    PubMed

    Ni, Yang

    2018-02-14

    In this paper, we present a new logarithmic pixel design currently under development at New Imaging Technologies SA (NIT). This new logarithmic pixel design uses charge domain logarithmic signal compression and charge-transfer-based signal readout. This structure gives a linear response in low light conditions and logarithmic response in high light conditions. The charge transfer readout efficiently suppresses the reset (KTC) noise by using true correlated double sampling (CDS) in low light conditions. In high light conditions, thanks to charge domain logarithmic compression, it has been demonstrated that 3000 electrons should be enough to cover a 120 dB dynamic range with a mobile phone camera-like signal-to-noise ratio (SNR) over the whole dynamic range. This low electron count permits the use of ultra-small floating diffusion capacitance (sub-fF) without charge overflow. The resulting large conversion gain permits a single photon detection capability with a wide dynamic range without a complex sensor/system design. A first prototype sensor with 320 × 240 pixels has been implemented to validate this charge domain logarithmic pixel concept and modeling. The first experimental results validate the logarithmic charge compression theory and the low readout noise due to the charge-transfer-based readout.

  15. Photon Counting Imaging with an Electron-Bombarded Pixel Image Sensor

    PubMed Central

    Hirvonen, Liisa M.; Suhling, Klaus

    2016-01-01

    Electron-bombarded pixel image sensors, where a single photoelectron is accelerated directly into a CCD or CMOS sensor, allow wide-field imaging at extremely low light levels as they are sensitive enough to detect single photons. This technology allows the detection of up to hundreds or thousands of photon events per frame, depending on the sensor size, and photon event centroiding can be employed to recover resolution lost in the detection process. Unlike photon events from electron-multiplying sensors, the photon events from electron-bombarded sensors have a narrow, acceleration-voltage-dependent pulse height distribution. Thus a gain voltage sweep during exposure in an electron-bombarded sensor could allow photon arrival time determination from the pulse height with sub-frame exposure time resolution. We give a brief overview of our work with electron-bombarded pixel image sensor technology and recent developments in this field for single photon counting imaging, and examples of some applications. PMID:27136556

  16. Effective doses and organ doses in the MIRD-5 phantom exposed to monoenergetic 0.1 MeV to 200 MeV electrons in the LAT direction.

    PubMed

    Katagiri, M; Hikoji, M; Kitaichi, M; Aoki, Y; Sawamura, S

    2001-01-01

    Organ doses and effective doses were calculated using the EGS-4 Monte Carlo simulation code and a MIRD-5 mathematical human phantom placed in a vacuum. For broad right and left lateral beams of monoenergetic (0.1-200 MeV) electrons, conversion coefficients from the incident fluence to organ dose, to effective dose, and to effective dose equivalent were obtained. There were no clear differences between the conversion coefficients in the case of left-lateral (LLAT) and right-lateral (RLAT) irradiation. Therefore, when investigating lateral geometries for electron exposure, it is not necessary to evaluate both directions independently. In general, conversion coefficients for lateral irradiation (LAT) were smaller than those for AP and PA. The difference between the AP and PA conversion coefficients and LAT became smaller with increasing incident energy; at 200 MeV the conversion coefficients were almost independent of the irradiation geometry. The agreement between the results of the present study and those of other studies was acceptable within the statistical uncertainties.

  17. Apparatus for processing electromagnetic radiation and method

    NASA Technical Reports Server (NTRS)

    Gatewood, George D. (Inventor)

    1983-01-01

    Measuring apparatus including a ruled member having alternate transparent and opaque zones. An optical coupler connecting the ruled member with electromagnetic radiation-conversion apparatus. The conversion apparatus may include a photomultiplier and a discriminator. Radiation impinging on the ruled member will, in part, be converted to electrical pulses which correspond to the intensity of the radiation. A method of processing electromagnetic radiation includes providing a member having alternating dark and light zones, establishing movement of the member through the beam of electromagnetic radiation with the dark zones interrupting passage of radiation through the rule, providing an optical coupler to connect a portion of the radiation with a conversion station where the radiation portion is converted into an electrical pulse which is related to the intensity of the radiation received at the conversion station. The electrical pulses may be counted and the digitized signals stored or permanently recorded to produce positional information.

  18. Postoperative Conversion Disorder in Elderly Oral Cancer Patient.

    PubMed

    Yakushiji, Takashi; Hayashi, Kamichika; Morikawa, Takamichi; Migita, Masashi; Ogane, Satoru; Muramatsu, Kyotaro; Kamio, Takashi; Shibahara, Takahiko; Takano, Nobuo

    2016-01-01

    Conversion disorder is a condition in which psychological stress in response to difficult situations manifests as physical symptoms. Here, we report a case of postoperative coma due to conversion disorder in an elderly oral cancer patient. An 82-year-old woman was referred to Tokyo Dental College Chiba Hospital with a mass lesion on the tongue. A biopsy revealed a well-differentiated squamous cell carcinoma. Surgical treatment was performed for the tongue carcinoma and tracheotomy for management of the airway. On postoperative day 5, the patient exhibited loss of consciousness (Glasgow Coma Scale: E1, VT, M1; Japan Coma Scale: III-300). The patient's vital signs were all normal, as were the results of a full blood count, brain-CT, MRI, and MRA. Only the arm dropping test was positive. Therefore, the cause of the coma was diagnosed as conversion disorder. Seven hours later, the patient showed a complete recovery.

  19. Image Processing

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Electronic Imagery, Inc.'s ImageScale Plus software, developed through a Small Business Innovation Research (SBIR) contract with Kennedy Space Flight Center for use on space shuttle Orbiter in 1991, enables astronauts to conduct image processing, prepare electronic still camera images in orbit, display them and downlink images to ground based scientists for evaluation. Electronic Imagery, Inc.'s ImageCount, a spin-off product of ImageScale Plus, is used to count trees in Florida orange groves. Other applications include x-ray and MRI imagery, textile designs and special effects for movies. As of 1/28/98, company could not be located, therefore contact/product information is no longer valid.

  20. Electronuclear paths in the nuclear conversion of molecular hydrogen in silicon

    NASA Astrophysics Data System (ADS)

    Ilisca, Ernest; Ghiglieno, Filippo

    2017-01-01

    The ortho-para conversion of hydrogen molecules oscillating inside tetrahedral cages of silicon compounds relies on the interaction of the nuclear protons with the silicon electrons. At each collision against the cage hard walls, the electron repulsion changes the molecular rotation while projecting a valence electron in the antibonding molecular state dressed by a group of conduction ones. That «bridge» facilitates the hyperfine contact of the electrons with the protons. At room temperature, the angular momentum transfer is enhanced by electron fluctuations that overcome the silicon gap and accelerate the nuclear rates by more than one order of magnitude.

  1. NASA Tech Briefs, October 2007

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Topics covered include; Wirelessly Interrogated Position or Displacement Sensors; Ka-Band Radar Terminal Descent Sensor; Metal/Metal Oxide Differential Electrode pH Sensors; Improved Sensing Coils for SQUIDs; Inductive Linear-Position Sensor/Limit-Sensor Units; Hilbert-Curve Fractal Antenna With Radiation- Pattern Diversity; Single-Camera Panoramic-Imaging Systems; Interface Electronic Circuitry for an Electronic Tongue; Inexpensive Clock for Displaying Planetary or Sidereal Time; Efficient Switching Arrangement for (N + 1)/N Redundancy; Lightweight Reflectarray Antenna for 7.115 and 32 GHz; Opto-Electronic Oscillator Using Suppressed Phase Modulation; Alternative Controller for a Fiber-Optic Switch; Strong, Lightweight, Porous Materials; Nanowicks; Lightweight Thermal Protection System for Atmospheric Entry; Rapid and Quiet Drill; Hydrogen Peroxide Concentrator; MMIC Amplifiers for 90 to 130 GHz; Robot Would Climb Steep Terrain; Measuring Dynamic Transfer Functions of Cavitating Pumps; Advanced Resistive Exercise Device; Rapid Engineering of Three-Dimensional, Multicellular Tissues With Polymeric Scaffolds; Resonant Tunneling Spin Pump; Enhancing Spin Filters by Use of Bulk Inversion Asymmetry; Optical Magnetometer Incorporating Photonic Crystals; WGM-Resonator/Tapered-Waveguide White-Light Sensor Optics; Raman-Suppressing Coupling for Optical Parametric Oscillator; CO2-Reduction Primary Cell for Use on Venus; Cold Atom Source Containing Multiple Magneto- Optical Traps; POD Model Reconstruction for Gray-Box Fault Detection; System for Estimating Horizontal Velocity During Descent; Software Framework for Peer Data-Management Services; Autogen Version 2.0; Tracking-Data-Conversion Tool; NASA Enterprise Visual Analysis; Advanced Reference Counting Pointers for Better Performance; C Namelist Facility; and Efficient Mosaicking of Spitzer Space Telescope Images.

  2. Where Cultural Games Count: The Voices of Primary Classroom Teachers

    ERIC Educational Resources Information Center

    Nabie, Michael Johnson

    2015-01-01

    This study explored Ghanaian primary school teachers' values and challenges of integrating cultural games in teaching mathematics. Using an In-depth conversational interview, ten (10) certificated teachers' voices on the values and challenges of integrating games were examined. Thematic data analysis was applied to the qualitative data from the…

  3. Tunneling Statistics for Analysis of Spin-Readout Fidelity

    NASA Astrophysics Data System (ADS)

    Gorman, S. K.; He, Y.; House, M. G.; Keizer, J. G.; Keith, D.; Fricke, L.; Hile, S. J.; Broome, M. A.; Simmons, M. Y.

    2017-09-01

    We investigate spin and charge dynamics of a quantum dot of phosphorus atoms coupled to a radio-frequency single-electron transistor (SET) using full counting statistics. We show how the magnetic field plays a role in determining the bunching or antibunching tunneling statistics of the donor dot and SET system. Using the counting statistics, we show how to determine the lowest magnetic field where spin readout is possible. We then show how such a measurement can be used to investigate and optimize single-electron spin-readout fidelity.

  4. Sci-Thur PM: YIS - 07: Monte Carlo simulations to obtain several parameters required for electron beam dosimetry.

    PubMed

    Muir, B; Rogers, D; McEwen, M

    2012-07-01

    When current dosimetry protocols were written, electron beam data were limited and had uncertainties that were unacceptable for reference dosimetry. Protocols for high-energy reference dosimetry are currently being updated leading to considerable interest in accurate electron beam data. To this end, Monte Carlo simulations using the EGSnrc user-code egs_chamber are performed to extract relevant data for reference beam dosimetry. Calculations of the absorbed dose to water and the absorbed dose to the gas in realistic ion chamber models are performed as a function of depth in water for cobalt-60 and high-energy electron beams between 4 and 22 MeV. These calculations are used to extract several of the parameters required for electron beam dosimetry - the beam quality specifier, R 50 , beam quality conversion factors, k Q and k R50 , the electron quality conversion factor, k' R50 , the photon-electron conversion factor, k ecal , and ion chamber perturbation factors, P Q . The method used has the advantage that many important parameters can be extracted as a function of depth instead of determination at only the reference depth as has typically been done. Results obtained here are in good agreement with measured and other calculated results. The photon-electron conversion factors obtained for a Farmer-type NE2571 and plane-parallel PTW Roos, IBA NACP-02 and Exradin A11 chambers are 0.903, 0.896, 0.894 and 0.906, respectively. These typically differ by less than 0.7% from the contentious TG-51 values but have much smaller systematic uncertainties. These results are valuable for reference dosimetry of high-energy electron beams. © 2012 American Association of Physicists in Medicine.

  5. Direct-Write Fabrication of Cellulose Nano-Structures via Focused Electron Beam Induced Nanosynthesis

    PubMed Central

    Ganner, Thomas; Sattelkow, Jürgen; Rumpf, Bernhard; Eibinger, Manuel; Reishofer, David; Winkler, Robert; Nidetzky, Bernd; Spirk, Stefan; Plank, Harald

    2016-01-01

    In many areas of science and technology, patterned films and surfaces play a key role in engineering and development of advanced materials. Here, we introduce a new generic technique for the fabrication of polysaccharide nano-structures via focused electron beam induced conversion (FEBIC). For the proof of principle, organosoluble trimethylsilyl-cellulose (TMSC) thin films have been deposited by spin coating on SiO2 / Si and exposed to a nano-sized electron beam. It turns out that in the exposed areas an electron induced desilylation reaction takes place converting soluble TMSC to rather insoluble cellulose. After removal of the unexposed TMSC areas, structured cellulose patterns remain on the surface with FWHM line widths down to 70 nm. Systematic FEBIC parameter sweeps reveal a generally electron dose dependent behavior with three working regimes: incomplete conversion, ideal doses and over exposure. Direct (FT-IR) and indirect chemical analyses (enzymatic degradation) confirmed the cellulosic character of ideally converted areas. These investigations are complemented by a theoretical model which suggests a two-step reaction process by means of TMSC → cellulose and cellulose → non-cellulose material conversion in excellent agreement with experimental data. The extracted, individual reaction rates allowed the derivation of design rules for FEBIC parameters towards highest conversion efficiencies and highest lateral resolution. PMID:27585861

  6. Searching for O-X-B mode-conversion window with monitoring of stray microwave radiation in LHD

    NASA Astrophysics Data System (ADS)

    Igami, H.; Kubo, S.; Laqua, H. P.; Nagasaki, K.; Inagaki, S.; Notake, T.; Shimozuma, T.; Yoshimura, Y.; Mutoh, T.; LHD Experimental Group

    2006-10-01

    In the Large Helical Device, the stray microwave radiation is monitored by using so-called sniffer probes during electron cyclotron heating. In monitoring the stray radiation, we changed the microwave beam injection angle and search the O-X-B mode-conversion window to excite electron Bernstein waves (EBWs). When the microwave beam is injected toward the vicinity of the predicted O-X-B mode-conversion window, the electron temperature rises in the central part of overdense plasmas. In that case, the stray radiation level near the injection antenna becomes low. These results indicate that monitoring the stray radiation near the injection antenna is helpful in confirming the effectiveness of excitation of EBWs simply without precise analysis.

  7. Effect of electronegative additives on physical properties and chemical activity of gas discharge plasma

    NASA Astrophysics Data System (ADS)

    Kuznetsov, D. L.; Filatov, I. E.; Uvarin, V. V.

    2018-01-01

    Effect of electronegative additives (oxygen O2, sulfur dioxide SO2, carbon disulfide CS2, and carbon tetrachloride CCl4) on physical properties and chemical activity of plasma formed by pulsed corona discharge and by non-self-sustained discharge supported by pulsed electron beam in atmospheric pressure gas mixtures was investigated. It is shown that a decrease in discharge current depends on a sort of the additive and on its concentration. The reason is the difference in rate constants of electron attachment processes for the above molecules. In experiments on volatile organic compounds (VOCs) conversion in air by streamer corona it is obtained that an addition of CCl4 both decreases the discharge current amplitude and increases the VOCs conversion degree. An installation for investigation of electron attachment processes and for study of toxic impurities conversion in plasma formed by non-self-sustained discharge initiated by pulsed nanosecond electron beam is created.

  8. Study of a nTHGEM-based thermal neutron detector

    NASA Astrophysics Data System (ADS)

    Li, Ke; Zhou, Jian-Rong; Wang, Xiao-Dong; Xiong, Tao; Zhang, Ying; Xie, Yu-Guang; Zhou, Liang; Xu, Hong; Yang, Gui-An; Wang, Yan-Feng; Wang, Yan; Wu, Jin-Jie; Sun, Zhi-Jia; Hu, Bi-Tao

    2016-07-01

    With new generation neutron sources, traditional neutron detectors cannot satisfy the demands of the applications, especially under high flux. Furthermore, facing the global crisis in 3He gas supply, research on new types of neutron detector as an alternative to 3He is a research hotspot in the field of particle detection. GEM (Gaseous Electron Multiplier) neutron detectors have high counting rate, good spatial and time resolution, and could be one future direction of the development of neutron detectors. In this paper, the physical process of neutron detection is simulated with Geant4 code, studying the relations between thermal conversion efficiency, boron thickness and number of boron layers. Due to the special characteristics of neutron detection, we have developed a novel type of special ceramic nTHGEM (neutron THick GEM) for neutron detection. The performance of the nTHGEM working in different Ar/CO2 mixtures is presented, including measurements of the gain and the count rate plateau using a copper target X-ray source. A detector with a single nTHGEM has been tested for 2-D imaging using a 252Cf neutron source. The key parameters of the performance of the nTHGEM detector have been obtained, providing necessary experimental data as a reference for further research on this detector. Supported by National Natural Science Foundation of China (11127508, 11175199, 11205253, 11405191), Key Laboratory of Neutron Physics, CAEP (2013DB06, 2013BB04) and CAS (YZ201512)

  9. MOLA II Laser Transmitter Calibration and Performance. 1.2

    NASA Technical Reports Server (NTRS)

    Afzal, Robert S.; Smith, David E. (Technical Monitor)

    1997-01-01

    The goal of the document is to explain the algorithm for determining the laser output energy from the telemetry data within the return packets from MOLA II. A simple algorithm is developed to convert the raw start detector data into laser energy, measured in millijoules. This conversion is dependent on three variables, start detector counts, array heat sink temperature and start detector temperature. All these values are contained within the return packets. The conversion is applied to the GSFC Thermal Vacuum data as well as the in-space data to date and shows good correlation.

  10. A multi-purpose readout electronics for CdTe and CZT detectors for x-ray imaging applications

    NASA Astrophysics Data System (ADS)

    Yue, X. B.; Deng, Z.; Xing, Y. X.; Liu, Y. N.

    2017-09-01

    A multi-purpose readout electronics based on the DPLMS digital filter has been developed for CdTe and CZT detectors for X-ray imaging applications. Different filter coefficients can be synthesized optimized either for high energy resolution at relatively low counting rate or for high rate photon-counting with reduced energy resolution. The effects of signal width constraints, sampling rate and length were numerical studied by Mento Carlo simulation with simple CRRC shaper input signals. The signal width constraint had minor effect and the ENC was only increased by 6.5% when the signal width was shortened down to 2 τc. The sampling rate and length depended on the characteristic time constants of both input and output signals. For simple CR-RC input signals, the minimum number of the filter coefficients was 12 with 10% increase in ENC when the output time constant was close to the input shaping time. A prototype readout electronics was developed for demonstration, using a previously designed analog front ASIC and a commercial ADC card. Two different DPLMS filters were successfully synthesized and applied for high resolution and high counting rate applications respectively. The readout electronics was also tested with a linear array CdTe detector. The energy resolutions of Am-241 59.5 keV peak were measured to be 6.41% in FWHM for the high resolution filter and to be 13.58% in FWHM for the high counting rate filter with 160 ns signal width constraint.

  11. A new n-type half-Heusler thermoelectric material NbCoSb

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Lihong; Department of Physics and TcSUH, University of Houston, Houston, TX 77204; He, Ran

    2015-10-15

    Highlights: • Half-Heusler alloy NbCoSb with 19 valence electron count was studied as TE material. • It is surprising that NbCoSb is n-type. • A maximum ZT of ∼0.4 is achieved at 700 °C without optimization. • It opens up a new route to develop new half-Heusler thermoelectric materials. • It is very interesting that a traditionally thought of VEC of 18 is not required. - Abstract: We surprisingly made a new n-type thermoelectric compound NbCoSb with half-Heusler (HH) structure having valence electron count of 19, different from the traditional 18, which opens up a new route to develop newmore » half-Heusler thermoelectric materials not following the traditional valence electron count of 18. The samples are made by arc melting followed by ball milling and hot pressing. The effect of hot pressing temperature on the thermoelectric properties of NbCoSb samples has been studied. A maximum thermoelectric figure-of-merit (ZT) of ∼0.4 is achieved at 700 °C in NbCoSb sample that is hot pressed at 1000 °C. This work add a new member to HH compounds for thermoelectric applications, although the peak ZT of ∼0.4 is still lower than that of the traditional HHs. Moreover, it is very interesting to see that a traditionally thought of valence electron counts of 18 is not required.« less

  12. Isoelectronic substitutions and aluminium alloying in the Ta-Nb-Hf-Zr-Ti high-entropy alloy superconductor

    NASA Astrophysics Data System (ADS)

    von Rohr, Fabian O.; Cava, Robert J.

    2018-03-01

    High-entropy alloys (HEAs) are a new class of materials constructed from multiple principal elements statistically arranged on simple crystallographic lattices. Due to the large amount of disorder present, they are excellent model systems for investigating the properties of materials intermediate between crystalline and amorphous states. Here we report the effects of systematic isoelectronic replacements, using Mo-Y, Mo-Sc, and Cr-Sc mixtures, for the valence electron count 4 and 5 elements in the body-centered cubic (BCC) Ta-Nb-Zr-Hf-Ti high-entropy alloy (HEA) superconductor. We find that the superconducting transition temperature Tc strongly depends on the elemental makeup of the alloy, and not exclusively its electron count. The replacement of niobium or tantalum by an isoelectronic mixture lowers the transition temperature by more than 60%, while the isoelectronic replacement of hafnium, zirconium, or titanium has a limited impact on Tc. We further explore the alloying of aluminium into the nearly optimal electron count [TaNb] 0.67(ZrHfTi) 0.33 HEA superconductor. The electron count dependence of the superconducting Tc for (HEA)Al x is found to be more crystallinelike than for the [TaNb] 1 -x(ZrHfTi) x HEA solid solution. For an aluminum content of x =0.4 the high-entropy stabilization of the simple BCC lattice breaks down. This material crystallizes in the tetragonal β -uranium structure type and superconductivity is not observed above 1.8 K.

  13. SU‐C‐105‐05: Reference Dosimetry of High‐Energy Electron Beams with a Farmer‐Type Ionization Chamber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muir, B; Rogers, D

    2013-06-15

    Purpose: To investigate gradient effects and provide Monte Carlo calculated beam quality conversion factors to characterize the Farmer‐type NE2571 ion chamber for high‐energy reference dosimetry of clinical electron beams. Methods: The EGSnrc code system is used to calculate the absorbed dose to water and to the gas in a fully modeled NE2571 chamber as a function of depth in a water phantom. Electron beams incident on the surface of the phantom are modeled using realistic BEAMnrc accelerator simulations and electron beam spectra. Beam quality conversion factors are determined using calculated doses to water and to air in the chamber inmore » high‐energy electron beams and in a cobalt‐60 reference field. Calculated water‐to‐air stopping power ratios are employed for investigation of the overall ion chamber perturbation factor. Results: An upstream shift of 0.3–0.4 multiplied by the chamber radius, r-cav, both minimizes the variation of the overall ion chamber perturbation factor with depth and reduces the difference between the beam quality specifier (R{sub 5} {sub 0}) calculated using ion chamber simulations and that obtained with simulations of dose‐to‐water in the phantom. Beam quality conversion factors are obtained at the reference depth and gradient effects are optimized using a shift of 0.2r-cav. The photon‐electron conversion factor, k-ecal, amounts to 0.906 when gradient effects are minimized using the shift established here and 0.903 if no shift of the data is used. Systematic uncertainties in beam quality conversion factors are investigated and amount to between 0.4 to 1.1% depending on assumptions used. Conclusion: The calculations obtained in this work characterize the use of an NE2571 ion chamber for reference dosimetry of high‐energy electron beams. These results will be useful as the AAPM continues to review their reference dosimetry protocols.« less

  14. Study of solid-conversion gaseous detector based on GEM for high energy X-ray industrial CT.

    PubMed

    Zhou, Rifeng; Zhou, Yaling

    2014-01-01

    The general gaseous ionization detectors are not suitable for high energy X-ray industrial computed tomography (HEICT) because of their inherent limitations, especially low detective efficiency and large volume. The goal of this study was to investigate a new type of gaseous detector to solve these problems. The novel detector was made by a metal foil as X-ray convertor to improve the conversion efficiency, and the Gas Electron Multiplier (hereinafter "GEM") was used as electron amplifier to lessen its volume. The detective mechanism and signal formation of the detector was discussed in detail. The conversion efficiency was calculated by using EGSnrc Monte Carlo code, and the transport course of photon and secondary electron avalanche in the detector was simulated with the Maxwell and Garfield codes. The result indicated that this detector has higher conversion efficiency as well as less volume. Theoretically this kind of detector could be a perfect candidate for replacing the conventional detector in HEICT.

  15. Neutron counting with cameras

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Esch, Patrick; Crisanti, Marta; Mutti, Paolo

    2015-07-01

    A research project is presented in which we aim at counting individual neutrons with CCD-like cameras. We explore theoretically a technique that allows us to use imaging detectors as counting detectors at lower counting rates, and transits smoothly to continuous imaging at higher counting rates. As such, the hope is to combine the good background rejection properties of standard neutron counting detectors with the absence of dead time of integrating neutron imaging cameras as well as their very good spatial resolution. Compared to Xray detection, the essence of thermal neutron detection is the nuclear conversion reaction. The released energies involvedmore » are of the order of a few MeV, while X-ray detection releases energies of the order of the photon energy, which is in the 10 KeV range. Thanks to advances in camera technology which have resulted in increased quantum efficiency, lower noise, as well as increased frame rate up to 100 fps for CMOS-type cameras, this more than 100-fold higher available detection energy implies that the individual neutron detection light signal can be significantly above the noise level, as such allowing for discrimination and individual counting, which is hard to achieve with X-rays. The time scale of CMOS-type cameras doesn't allow one to consider time-of-flight measurements, but kinetic experiments in the 10 ms range are possible. The theory is next confronted to the first experimental results. (authors)« less

  16. Preparation and Degradation of Polysilylenes

    DTIC Science & Technology

    1991-05-02

    Grignard reagent formation from Mg and alkyl iodides in comparison with less reactive alkyl chlorides 2 3 . Electron transfer to the chlorides occur at...stoichiometric balance of reagents and nearly complete conversions (e.g. DPN-100 at 99% conversion in a homogeneous polycondensation with exact stoichiometric...the magnesium surface, whereas alkyl iodides accept electrons through Ŝ. larger distance and could not efficiently form organomagneslum reagents but

  17. Direct Observations of ULF and Whistler-Mode Chorus Modulation of 500eV EDI Electrons by MMS

    NASA Astrophysics Data System (ADS)

    Paulson, K. W.; Argall, M. R.; Ahmadi, N.; Torbert, R. B.; Le Contel, O.; Ergun, R.; Khotyaintsev, Y. V.; Strangeway, R. J.; Magnes, W.; Russell, C. T.

    2016-12-01

    We present here direct observations of chorus-wave modulated field-aligned 500 eV electrons using the Electron Drift Instrument (EDI) on board the Magnetospheric Multiscale mission. These periods of wave activity were additionally observed to be modulated by Pc5-frequency magnetic perturbations, some of which have been identified as drifting mirror-mode structures. The spacecraft encountered these mirror-mode structures just inside of the duskside magnetopause. Using the high sampling rate provided by EDI in burst sampling mode, we are able to observe the individual count fluctuations of field-aligned electrons in this region up to 512 Hz. We use the multiple look directions of EDI to generate both pitch angle and gyrophase plots of the fluctuating counts. Our observations often show unidirectional flow of these modulated electrons along the background field, and in some cases demonstrate gyrophase bunching in the wave region.

  18. Thermo-electronic solar power conversion with a parabolic concentrator

    NASA Astrophysics Data System (ADS)

    Olukunle, Olawole C.; De, Dilip K.

    2016-02-01

    We consider the energy dynamics of the power generation from the sun when the solar energy is concentrated on to the emitter of a thermo-electronic converter with the help of a parabolic mirror. We use the modified Richardson-Dushman equation. The emitter cross section is assumed to be exactly equal to the focused area at a height h from the base of the mirror to prevent loss of efficiency. We report the variation of output power with solar insolation, height h, reflectivity of the mirror, and anode temperature, initially assuming that there is no space charge effect. Our methodology allows us to predict the temperature at which the anode must be cooled in order to prevent loss of efficiency of power conversion. Novel ways of tackling the space charge problem have been discussed. The space charge effect is modeled through the introduction of a parameter f (0 < f < 1) in the thermos-electron emission equation. We find that the efficiency of the power conversion depends on solar insolation, height h, apart from radii R of the concentrator aperture and emitter, and the collector material properties. We have also considered solar thermos electronic power conversion by using single atom-layer graphene as an emitter.

  19. Photon enhanced thermionic emission

    DOEpatents

    Schwede, Jared; Melosh, Nicholas; Shen, Zhixun

    2014-10-07

    Photon Enhanced Thermionic Emission (PETE) is exploited to provide improved efficiency for radiant energy conversion. A hot (greater than 200.degree. C.) semiconductor cathode is illuminated such that it emits electrons. Because the cathode is hot, significantly more electrons are emitted than would be emitted from a room temperature (or colder) cathode under the same illumination conditions. As a result of this increased electron emission, the energy conversion efficiency can be significantly increased relative to a conventional photovoltaic device. In PETE, the cathode electrons can be (and typically are) thermalized with respect to the cathode. As a result, PETE does not rely on emission of non-thermalized electrons, and is significantly easier to implement than hot-carrier emission approaches.

  20. Spin-charge conversion in disordered two-dimensional electron gases lacking inversion symmetry

    NASA Astrophysics Data System (ADS)

    Huang, Chunli; Milletarı, Mirco; Cazalilla, Miguel A.

    2017-11-01

    We study the spin-charge conversion mechanisms in a two-dimensional gas of electrons moving in a smooth disorder potential by accounting for both Rashba-type and Mott's skew scattering contributions. We find that the quantum interference effects between spin-flip and skew scattering give rise to anisotropic spin precession scattering (ASP), a direct spin-charge conversion mechanism that was discovered in an earlier study of graphene decorated with adatoms [Huang et al., Phys. Rev. B 94, 085414 (2016), 10.1103/PhysRevB.94.085414]. Our findings suggest that, together with other spin-charge conversion mechanisms such as the inverse galvanic effect, ASP is a fairly universal phenomenon that should be present in disordered two-dimensional systems lacking inversion symmetry.

  1. Enhancing the Linear Dynamic Range in Multi-Channel Single Photon Detector beyond 7OD

    PubMed Central

    Gudkov, Dmytro; Gudkov, George; Gorbovitski, Boris; Gorfinkel, Vera

    2015-01-01

    We present design, implementation, and characterization of a single photon detector based on 32-channel PMT sensor [model H7260-20, Hamamatsu]. The developed high speed electronics enables the photon counting with linear dynamic range (LDR) up to 108count/s per detector's channel. The experimental characterization and Monte-Carlo simulations showed that in the single photon counting mode the LDR of the PMT sensor is limited by (i) “photon” pulse width (current pulse) of 900ps and (ii) substantial decrease of amplitudes of current pulses for count rates exceeding 108 count/s. The multi-channel architecture of the detector and the developed firm/software allow further expansion of the dynamic range of the device by 32-fold by using appropriate beam shaping. The developed single photon counting detector was tested for the detection of fluorescence labeled microbeads in capillary flow. PMID:27087788

  2. A high-throughput, multi-channel photon-counting detector with picosecond timing

    NASA Astrophysics Data System (ADS)

    Lapington, J. S.; Fraser, G. W.; Miller, G. M.; Ashton, T. J. R.; Jarron, P.; Despeisse, M.; Powolny, F.; Howorth, J.; Milnes, J.

    2009-06-01

    High-throughput photon counting with high time resolution is a niche application area where vacuum tubes can still outperform solid-state devices. Applications in the life sciences utilizing time-resolved spectroscopies, particularly in the growing field of proteomics, will benefit greatly from performance enhancements in event timing and detector throughput. The HiContent project is a collaboration between the University of Leicester Space Research Centre, the Microelectronics Group at CERN, Photek Ltd., and end-users at the Gray Cancer Institute and the University of Manchester. The goal is to develop a detector system specifically designed for optical proteomics, capable of high content (multi-parametric) analysis at high throughput. The HiContent detector system is being developed to exploit this niche market. It combines multi-channel, high time resolution photon counting in a single miniaturized detector system with integrated electronics. The combination of enabling technologies; small pore microchannel plate devices with very high time resolution, and high-speed multi-channel ASIC electronics developed for the LHC at CERN, provides the necessary building blocks for a high-throughput detector system with up to 1024 parallel counting channels and 20 ps time resolution. We describe the detector and electronic design, discuss the current status of the HiContent project and present the results from a 64-channel prototype system. In the absence of an operational detector, we present measurements of the electronics performance using a pulse generator to simulate detector events. Event timing results from the NINO high-speed front-end ASIC captured using a fast digital oscilloscope are compared with data taken with the proposed electronic configuration which uses the multi-channel HPTDC timing ASIC.

  3. Localised and delocalised optically induced conversion of composite glow peak 5 in LiF:Mg,Ti (TLD-100) to glow peak 4 as a function of postirradiation annealing temperature.

    PubMed

    Horowitz, Y S; Einav, Y; Biderman, S; Oster, L

    2002-01-01

    The composite structure of glow peak 5 in LiF:Mg,Ti (TLD-100) has been investigated using optical bleaching by 310 nm (4 eV) light. The glow peak conversion efficiency of peak 5a (Tm = 187 degrees C) to peak 4 traps is very high at a value of 3+/-0.5 (1 SD) whereas the glow peak conversion efficiency of peak 5 (Tm = 205 degrees C) to peak 4 traps is 0.0026+/-0.0012 (1 SD). The high conversion efficiency of peak 5a to peak 4 arises from direct optical ionisation of the electron in the electron-hole pair. leaving behind a singly-trapped hole (peak 4), a direct mechanism, relatively free of competitive mechanisms. Optical ionisation of the 'singly-trapped' electron (peak 5), however, can lead to peak 4 only via multi-stage mechanisms involving charge carrier transport in the valence and conduction bands, a mechanism subject to competitive processes. The conduction/valence band competitive processes lead to the factor of one thousand decrease in the conversion efficiency of peak 5 compared to peak 5a.

  4. TH-EF-207A-03: Photon Counting Implementation Challenges Using An Electron Multiplying Charged-Coupled Device Based Micro-CT System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Podgorsak, A; Bednarek, D; Rudin, S

    2016-06-15

    Purpose: To successfully implement and operate a photon counting scheme on an electron multiplying charged-coupled device (EMCCD) based micro-CT system. Methods: We built an EMCCD based micro-CT system and implemented a photon counting scheme. EMCCD detectors use avalanche transfer registries to multiply the input signal far above the readout noise floor. Due to intrinsic differences in the pixel array, using a global threshold for photon counting is not optimal. To address this shortcoming, we generated a threshold array based on sixty dark fields (no x-ray exposure). We calculated an average matrix and a variance matrix of the dark field sequence.more » The average matrix was used for the offset correction while the variance matrix was used to set individual pixel thresholds for the photon counting scheme. Three hundred photon counting frames were added for each projection and 360 projections were acquired for each object. The system was used to scan various objects followed by reconstruction using an FDK algorithm. Results: Examination of the projection images and reconstructed slices of the objects indicated clear interior detail free of beam hardening artifacts. This suggests successful implementation of the photon counting scheme on our EMCCD based micro-CT system. Conclusion: This work indicates that it is possible to implement and operate a photon counting scheme on an EMCCD based micro-CT system, suggesting that these devices might be able to operate at very low x-ray exposures in a photon counting mode. Such devices could have future implications in clinical CT protocols. NIH Grant R01EB002873; Toshiba Medical Systems Corp.« less

  5. Radical Conversations: Part Two--Cultivating Social-Constructivist Learning Methods in ABE Classrooms

    ERIC Educational Resources Information Center

    Muth, Bill; Kiser, Madeline

    2008-01-01

    In many U.S. prisons an overuse of individualized instruction silences literacy learners and reinforces oppressive notions about what knowledge is and whose knowledge counts. In these classrooms, methods that invite learners to tap their background knowledge, reflect on their worlds, and dialogue with others to construct meaning--commonplace in…

  6. Hydrogen Distribution in the Lunar Polar Regions

    NASA Technical Reports Server (NTRS)

    Sanin, A. B.; Mitrofanov, I. G.; Litvak, M. L.; Bakhtin, B. N.; Bodnarik, J. G.; Boynton, W. V.; Chin, G.; Evans, L. G.; Harshmann, K.; Fedosov, F.; hide

    2016-01-01

    We present a method of conversion of the lunar neutron counting rate measured by the Lunar Reconnaissance Orbiter (LRO) Lunar Exploration Neutron Detector (LEND) instrument collimated neutron detectors, to water equivalent hydrogen (WEH) in the top approximately 1 m layer of lunar regolith. Polar maps of the Moon’s inferred hydrogen abundance are presented and discussed.

  7. Correlation Functions Quantify Super-Resolution Images and Estimate Apparent Clustering Due to Over-Counting

    PubMed Central

    Veatch, Sarah L.; Machta, Benjamin B.; Shelby, Sarah A.; Chiang, Ethan N.; Holowka, David A.; Baird, Barbara A.

    2012-01-01

    We present an analytical method using correlation functions to quantify clustering in super-resolution fluorescence localization images and electron microscopy images of static surfaces in two dimensions. We use this method to quantify how over-counting of labeled molecules contributes to apparent self-clustering and to calculate the effective lateral resolution of an image. This treatment applies to distributions of proteins and lipids in cell membranes, where there is significant interest in using electron microscopy and super-resolution fluorescence localization techniques to probe membrane heterogeneity. When images are quantified using pair auto-correlation functions, the magnitude of apparent clustering arising from over-counting varies inversely with the surface density of labeled molecules and does not depend on the number of times an average molecule is counted. In contrast, we demonstrate that over-counting does not give rise to apparent co-clustering in double label experiments when pair cross-correlation functions are measured. We apply our analytical method to quantify the distribution of the IgE receptor (FcεRI) on the plasma membranes of chemically fixed RBL-2H3 mast cells from images acquired using stochastic optical reconstruction microscopy (STORM/dSTORM) and scanning electron microscopy (SEM). We find that apparent clustering of FcεRI-bound IgE is dominated by over-counting labels on individual complexes when IgE is directly conjugated to organic fluorophores. We verify this observation by measuring pair cross-correlation functions between two distinguishably labeled pools of IgE-FcεRI on the cell surface using both imaging methods. After correcting for over-counting, we observe weak but significant self-clustering of IgE-FcεRI in fluorescence localization measurements, and no residual self-clustering as detected with SEM. We also apply this method to quantify IgE-FcεRI redistribution after deliberate clustering by crosslinking with two distinct trivalent ligands of defined architectures, and we evaluate contributions from both over-counting of labels and redistribution of proteins. PMID:22384026

  8. Characterization of Sphinx1 ASIC X-ray detector using photon counting and charge integration

    NASA Astrophysics Data System (ADS)

    Habib, A.; Arques, M.; Moro, J.-L.; Accensi, M.; Stanchina, S.; Dupont, B.; Rohr, P.; Sicard, G.; Tchagaspanian, M.; Verger, L.

    2018-01-01

    Sphinx1 is a novel pixel architecture adapted for X-ray imaging, it detects radiation by photon counting and charge integration. In photon counting mode, each photon is compensated by one or more counter-charges typically consisting of 100 electrons (e-) each. The number of counter-charges required gives a measure of the incoming photon energy, thus allowing spectrometric detection. Pixels can also detect radiation by integrating the charges deposited by all incoming photons during one image frame and converting this analog value into a digital response with a 100 electrons least significant bit (LSB), based on the counter-charge concept. A proof of concept test chip measuring 5 mm × 5 mm, with 200 μm × 200 μm pixels has been produced and characterized. This paper provides details on the architecture and the counter-charge design; it also describes the two modes of operation: photon counting and charge integration. The first performance measurements for this test chip are presented. Noise was found to be ~80 e-rms in photon counting mode with a power consumption of only 0.9 μW/pixel for the static analog part and 0.3 μW/pixel for the static digital part.

  9. Neutronic analysis of the 1D and 1E banks reflux detection system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blanchard, A.

    1999-12-21

    Two H Canyon neutron monitoring systems for early detection of postulated abnormal reflux conditions in the Second Uranium Cycle 1E and 1D Mixer-Settle Banks have been designed and built. Monte Carlo neutron transport simulations using the general purpose, general geometry, n-particle MCNP code have been performed to model expected response of the monitoring systems to varying conditions.The confirmatory studies documented herein conclude that the 1E and 1D neutron monitoring systems are able to achieve adequate neutron count rates for various neutron source and detector configurations, thereby eliminating excessive integration count time. Neutron count rate sensitivity studies are also performed. Conversely,more » the transport studies concluded that the neutron count rates are statistically insensitive to nitric acid content in the aqueous region and to the transition region length. These studies conclude that the 1E and 1D neutron monitoring systems are able to predict the postulated reflux conditions for all examined perturbations in the neutron source and detector configurations. In the cases examined, the relative change in the neutron count rates due to postulated transitions from normal {sup 235}U concentration levels to reflux levels remain satisfactory detectable.« less

  10. Core List of Astronomy and Physics Journals

    NASA Astrophysics Data System (ADS)

    Bryson, Liz; Fortner, Diane; Yorks, Pamela

    This is a list of highly-used and highly-cited physics and astronomy journals. "Use" is measured largely on paper-journal counts from selective academic research-level libraries. Citation count titles are drawn from Institute for Scientific Information (ISI) data. Recognition is given to entrepreneurial electronic-only or new-style electronic journals. Selective news, magazine, and general science journals are omitted. The compilers welcome questions, suggestions for additions, or other advice. Comments may be sent c/o Diane Fortner, Physics Library, University of California, Berkeley. Dfortner@library.berkeley.edu

  11. Study of runaway electrons in TUMAN-3M tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Shevelev, A.; Khilkevitch, E.; Tukachinsky, A.; Pandya, S.; Askinazi, L.; Belokurov, A.; Chugunov, I.; Doinikov, D.; Gin, D.; Iliasova, M.; Kiptily, V.; Kornev, V.; Lebedev, S.; Naidenov, V.; Plyusnin, V.; Polunovsky, I.; Zhubr, N.

    2018-07-01

    Studies of runaway electrons in present day tokamaks are essential to improve theoretical models and to support possible avoidance or suppression mechanisms in future large-scale plasma devices. Some of the phenomena associated with the runaway electrons take place at faster time scales, and thus it is essential to probe the runaway electrons to investigate underlying physics. The present article reports a few experimental observations of runaway electron associated events, at fast time scales, using a state-of-the-art multi-detector system developed at the Ioffe Institute and recently deployed on the TUMAN-3M tokamak. The system is based on the high-performance scintillation gamma-ray spectrometers for measurements of bremsstrahlung generated during the interaction of accelerated electrons with plasma and materials of the tokamak chamber. It includes a total three detectors configured in the spectroscopic mode having different lines of sight. Along with this hardware, dedicated algorithms were developed and validated that enables the separation of piled-up pulses, maximize the dynamic range of the detector and provides a counting rate as high as 107 counts per second. The inversion code, DeGaSum, has been used for the reconstruction of a runaway electron energy distribution function from the measured gamma-ray spectra. Using this tool, experimental analysis of the runaway electron beam generation and evolution of their energy distribution in the TUMAN-3M representative plasma discharges is performed. The effect on gamma-ray count rate during the magnetohydrodynamic activities and possible changes in the runaway electron energy distribution function during sawtooth oscillations is discussed in detail. Possible maximum limit of the runaway electron energy in TUMAN-3M is investigated and compared with the numerical analysis. In addition, the probability of the runaway electron generation throughout the plasma discharge is estimated analytically and compared with the experimental observation that suggests a balance between production and loss of the runaway electrons.

  12. Comparison of two different physical activity monitors.

    PubMed

    Paul, David R; Kramer, Matthew; Moshfegh, Alanna J; Baer, David J; Rumpler, William V

    2007-06-25

    Understanding the relationships between physical activity (PA) and disease has become a major area of research interest. Activity monitors, devices that quantify free-living PA for prolonged periods of time (days or weeks), are increasingly being used to estimate PA. A range of different activity monitors brands are available for investigators to use, but little is known about how they respond to different levels of PA in the field, nor if data conversion between brands is possible. 56 women and men were fitted with two different activity monitors, the Actigraph (Actigraph LLC; AGR) and the Actical (Mini-Mitter Co.; MM) for 15 days. Both activity monitors were fixed to an elasticized belt worn over the hip, with the anterior and posterior position of the activity monitors randomized. Differences between activity monitors and the validity of brand inter-conversion were measured by t-tests, Pearson correlations, Bland-Altman plots, and coefficients of variation (CV). The AGR detected a significantly greater amount of daily PA (216.2 +/- 106.2 vs. 188.0 +/- 101.1 counts/min, P < 0.0001). The average difference between activity monitors expressed as a CV were 3.1 and 15.5% for log-transformed and raw data, respectively. When a conversion equation was applied to convert datasets from one brand to another, the differences were no longer significant, with CV's of 2.2 and 11.7%, log-transformed and raw data, respectively. Although activity monitors predict PA on the same scale (counts/min), the results between these two brands are not directly comparable. However, the data are comparable if a conversion equation is applied, with better results for log-transformed data.

  13. Social Markers of Mild Cognitive Impairment: Proportion of Word Counts in Free Conversational Speech.

    PubMed

    Dodge, Hiroko H; Mattek, Nora; Gregor, Mattie; Bowman, Molly; Seelye, Adriana; Ybarra, Oscar; Asgari, Meysam; Kaye, Jeffrey A

    2015-01-01

    Detecting early signs of Alzheimer's disease (AD) and mild cognitive impairment (MCI) during the pre-symptomatic phase is becoming increasingly important for costeffective clinical trials and also for deriving maximum benefit from currently available treatment strategies. However, distinguishing early signs of MCI from normal cognitive aging is difficult. Biomarkers have been extensively examined as early indicators of the pathological process for AD, but assessing these biomarkers is expensive and challenging to apply widely among pre-symptomatic community dwelling older adults. Here we propose assessment of social markers, which could provide an alternative or complementary and ecologically valid strategy for identifying the pre-symptomatic phase leading to MCI and AD. The data came from a larger randomized controlled clinical trial (RCT), where we examined whether daily conversational interactions using remote video telecommunications software could improve cognitive functions of older adult participants. We assessed the proportion of words generated by participants out of total words produced by both participants and staff interviewers using transcribed conversations during the intervention trial as an indicator of how two people (participants and interviewers) interact with each other in one-on-one conversations. We examined whether the proportion differed between those with intact cognition and MCI, using first, generalized estimating equations with the proportion as outcome, and second, logistic regression models with cognitive status as outcome in order to estimate the area under ROC curve (ROC AUC). Compared to those with normal cognitive function, MCI participants generated a greater proportion of words out of the total number of words during the timed conversation sessions (p=0.01). This difference remained after controlling for participant age, gender, interviewer and time of assessment (p=0.03). The logistic regression models showed the ROC AUC of identifying MCI (vs. normals) was 0.71 (95% Confidence Interval: 0.54 - 0.89) when average proportion of word counts spoken by subjects was included univariately into the model. An ecologically valid social marker such as the proportion of spoken words produced during spontaneous conversations may be sensitive to transitions from normal cognition to MCI.

  14. Multipurpose setup for low-temperature conversion electron Mössbauer spectroscopy

    NASA Astrophysics Data System (ADS)

    Augustyns, V.; Trekels, M.; Gunnlaugsson, H. P.; Masenda, H.; Temst, K.; Vantomme, A.; Pereira, L. M. C.

    2017-05-01

    We describe an experimental setup for conversion electron Mössbauer spectroscopy (CEMS) at low temperature. The setup is composed of a continuous flow cryostat (temperature range of 4.2-500 K), detector housing, three channel electron multipliers, and corresponding electronics. We demonstrate the capabilities of the setup with CEMS measurements performed on a sample consisting of a thin enriched 57Fe film, with a thickness of 20 nm, deposited on a silicon substrate. We also describe exchangeable adaptations (lid and sample holder) which extend the applicability of the setup to emission Mössbauer spectroscopy as well as measurements under an applied magnetic field.

  15. Modeling recombination processes and predicting energy conversion efficiency of dye sensitized solar cells from first principles

    NASA Astrophysics Data System (ADS)

    Ma, Wei; Meng, Sheng

    2014-03-01

    We present a set of algorithms based on solo first principles calculations, to accurately calculate key properties of a DSC device including sunlight harvest, electron injection, electron-hole recombination, and open circuit voltages. Two series of D- π-A dyes are adopted as sample dyes. The short circuit current can be predicted by calculating the dyes' photo absorption, and the electron injection and recombination lifetime using real-time time-dependent density functional theory (TDDFT) simulations. Open circuit voltage can be reproduced by calculating energy difference between the quasi-Fermi level of electrons in the semiconductor and the electrolyte redox potential, considering the influence of electron recombination. Based on timescales obtained from real time TDDFT dynamics for excited states, the estimated power conversion efficiency of DSC fits nicely with the experiment, with deviation below 1-2%. Light harvesting efficiency, incident photon-to-electron conversion efficiency and the current-voltage characteristics can also be well reproduced. The predicted efficiency can serve as either an ideal limit for optimizing photovoltaic performance of a given dye, or a virtual device that closely mimicking the performance of a real device under different experimental settings.

  16. Measurement of the intensity ratio of Auger and conversion electrons for the electron capture decay of 125I.

    PubMed

    Alotiby, M; Greguric, I; Kibédi, T; Lee, B Q; Roberts, M; Stuchbery, A E; Tee, Pi; Tornyi, T; Vos, M

    2018-03-21

    Auger electrons emitted after nuclear decay have potential application in targeted cancer therapy. For this purpose it is important to know the Auger electron yield per nuclear decay. In this work we describe a measurement of the ratio of the number of conversion electrons (emitted as part of the nuclear decay process) to the number of Auger electrons (emitted as part of the atomic relaxation process after the nuclear decay) for the case of 125 I. Results are compared with Monte-Carlo type simulations of the relaxation cascade using the BrIccEmis code. Our results indicate that for 125 I the calculations based on rates from the Evaluated Atomic Data Library underestimate the K Auger yields by 20%.

  17. Measurement of the intensity ratio of Auger and conversion electrons for the electron capture decay of 125I

    NASA Astrophysics Data System (ADS)

    Alotiby, M.; Greguric, I.; Kibédi, T.; Lee, B. Q.; Roberts, M.; Stuchbery, A. E.; Tee, Pi; Tornyi, T.; Vos, M.

    2018-03-01

    Auger electrons emitted after nuclear decay have potential application in targeted cancer therapy. For this purpose it is important to know the Auger electron yield per nuclear decay. In this work we describe a measurement of the ratio of the number of conversion electrons (emitted as part of the nuclear decay process) to the number of Auger electrons (emitted as part of the atomic relaxation process after the nuclear decay) for the case of 125I. Results are compared with Monte-Carlo type simulations of the relaxation cascade using the BrIccEmis code. Our results indicate that for 125I the calculations based on rates from the Evaluated Atomic Data Library underestimate the K Auger yields by 20%.

  18. Electrothermal energy conversion using electron gas volumetric change inside semiconductors

    NASA Astrophysics Data System (ADS)

    Yazawa, K.; Shakouri, A.

    2016-07-01

    We propose and analyze an electrothermal energy converter using volumetric changes in non-equilibrium electron gas inside semiconductors. The geometric concentration of electron gas under an electric field increases the effective pressure of the electrons, and then a barrier filters out cold electrons, acting like a valve. Nano- and micro-scale features enable hot electrons to arrive at the contact in a short enough time to avoid thermalization with the lattice. Key length and time scales, preliminary device geometry, and anticipated efficiency are estimated for electronic analogs of Otto and Brayton power generators and Joule-Thomson micro refrigerators on a chip. The power generators convert the energy of incident photons from the heat source to electrical current, and the refrigerator can reduce the temperature of electrons in a semiconductor device. The analytic calculations show that a large energy conversion efficiency or coefficient of performance may be possible.

  19. Electrothermal energy conversion using electron gas volumetric change inside semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yazawa, K.; Shakouri, A.

    2016-07-25

    We propose and analyze an electrothermal energy converter using volumetric changes in non-equilibrium electron gas inside semiconductors. The geometric concentration of electron gas under an electric field increases the effective pressure of the electrons, and then a barrier filters out cold electrons, acting like a valve. Nano- and micro-scale features enable hot electrons to arrive at the contact in a short enough time to avoid thermalization with the lattice. Key length and time scales, preliminary device geometry, and anticipated efficiency are estimated for electronic analogs of Otto and Brayton power generators and Joule-Thomson micro refrigerators on a chip. The powermore » generators convert the energy of incident photons from the heat source to electrical current, and the refrigerator can reduce the temperature of electrons in a semiconductor device. The analytic calculations show that a large energy conversion efficiency or coefficient of performance may be possible.« less

  20. Efficiency enhancement of slow-wave electron-cyclotron maser by a second-order shaping of the magnetic field in the low-gain limit

    NASA Astrophysics Data System (ADS)

    Liu, Si-Jia; Zhang, Yu-Fei; Wang, Kang; Li, Yong-Ming; Jing, Jian

    2017-03-01

    Based on the anomalous Doppler effect, we put forward a proposal to enhance the conversion efficiency of the slow-wave electron cyclotron masers (ECM) under the resonance condition. Compared with previous studies, we add a second-order shaping term in the guild magnetic field. Theoretical analyses and numerical calculations show that it can enhance the conversion efficiency in the low-gain limit. The case of the initial velocity spread of electrons satisfying the Gaussian distribution is also analysed numerically.

  1. Efficiency enhancement of slow-wave electron-cyclotron maser by a second-order shaping of the magnetic field in the low-gain limit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Si-Jia; Zhang, Yu-Fei; Wang, Kang

    Based on the anomalous Doppler effect, we put forward a proposal to enhance the conversion efficiency of the slow-wave electron cyclotron masers (ECM) under the resonance condition. Compared with previous studies, we add a second-order shaping term in the guild magnetic field. Theoretical analyses and numerical calculations show that it can enhance the conversion efficiency in the low-gain limit. The case of the initial velocity spread of electrons satisfying the Gaussian distribution is also analysed numerically.

  2. Surveys of research in the Chemistry Division, Argonne National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grazis, B.M.

    1992-01-01

    Research reports are presented on reactive intermediates in condensed phase (radiation chemistry, photochemistry), electron transfer and energy conversion, photosynthesis and solar energy conversion, metal cluster chemistry, chemical dynamics in gas phase, photoionization-photoelectrons, characterization and reactivity of coal and coal macerals, premium coal sample program, chemical separations, heavy elements coordination chemistry, heavy elements photophysics/photochemistry, f-electron interactions, radiation chemistry of high-level wastes (gas generation in waste tanks), ultrafast molecular electronic devices, and nuclear medicine. Separate abstracts have been prepared. Accelerator activites and computer system/network services are also reported.

  3. Surveys of research in the Chemistry Division, Argonne National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grazis, B.M.

    1992-11-01

    Research reports are presented on reactive intermediates in condensed phase (radiation chemistry, photochemistry), electron transfer and energy conversion, photosynthesis and solar energy conversion, metal cluster chemistry, chemical dynamics in gas phase, photoionization-photoelectrons, characterization and reactivity of coal and coal macerals, premium coal sample program, chemical separations, heavy elements coordination chemistry, heavy elements photophysics/photochemistry, f-electron interactions, radiation chemistry of high-level wastes (gas generation in waste tanks), ultrafast molecular electronic devices, and nuclear medicine. Separate abstracts have been prepared. Accelerator activites and computer system/network services are also reported.

  4. Cascaded systems analysis of charge sharing in cadmium telluride photon-counting x-ray detectors.

    PubMed

    Tanguay, Jesse; Cunningham, Ian A

    2018-05-01

    Single-photon-counting (SPC) and spectroscopic x-ray detectors are under development in academic and industry laboratories for medical imaging applications. The spatial resolution of SPC and spectroscopic x-ray detectors is an important design criterion. The purpose of this article was to extend the cascaded systems approach to include a description of the spatial resolution of SPC and spectroscopic x-ray imaging detectors. A cascaded systems approach was used to model reabsorption of characteristic x rays, Coulomb repulsion, and diffusion in SPC and spectroscopic x-ray detectors. In addition to reabsorption, diffusion, and Coulomb repulsion, the model accounted for x-ray conversion to electron-hole (e-h) pairs, integration of e-h pairs in detector elements, electronic noise, and energy thresholding. The probability density function (PDF) describing the number of e-h pairs was propagated through each stage of the model and was used to derive new theoretical expressions for the large-area gain and modulation transfer function (MTF) of CdTe SPC x-ray detectors, and the energy bin sensitivity functions and MTFs of CdTe spectroscopic detectors. Theoretical predictions were compared with the results of MATLAB-based Monte Carlo (MC) simulations and published data. Comparisons were also made with the MTF of energy-integrating systems. Under general radiographic conditions, reabsorption, diffusion, and Coulomb repulsion together artificially inflate count rates by 20% to 50%. For thicker converters (e.g. 1000 μm) and larger detector elements (e.g. 500 μm pixel pitch) these processes result in modest inflation (i.e. ∼10%) in apparent count rates. Our theoretical and MC analyses predict that SPC MTFs will be degraded relative to those of energy-integrating systems for fluoroscopic, general radiographic, and CT imaging conditions. In most cases, this degradation is modest (i.e., ∼10% at the Nyquist frequency). However, for thicker converters, the SPC MTF can be degraded by up to 25% at the Nyquist frequency relative to EI systems. Additionally, unlike EI systems, the MTF of spectroscopic systems is strongly dependent on photon energy, which results in energy-bin-dependent spatial resolution in spectroscopic systems. The PDF-transfer approach to modeling signal transfer through SPC and spectroscopic x-ray imaging systems provides a framework for understanding system performance. Application of this approach demonstrated that charge sharing artificially inflates the SPC image signal and degrades the MTF of SPC and spectroscopic systems relative to energy-integrating systems. These results further motivate the need for anticharge-sharing circuits to mitigate the effects of charge sharing on SPC and spectroscopic x-ray image quality. © 2018 American Association of Physicists in Medicine.

  5. Submillimeter Schottky Diodes with Electron Beam Lithography.

    DTIC Science & Technology

    1979-12-01

    Timer 2: external clock, oneshot , 0’ sixteen bit counting modes are .,selected, no data is entered; interrupts are disabled. Timer 3: external clock and...CLOCK, ONESHOT MODE, NO INTERRUPTS, 00031* 16 BIT COUNTING MODE, OUTPUT IS EN- 00032 * ABLED; NO DATA IS ENTERED, 00033 00034 * TIMER3: EXT CLOCK

  6. Dual diathesis-stressor model of emotional and linguistic contributions to developmental stuttering.

    PubMed

    Walden, Tedra A; Frankel, Carl B; Buhr, Anthony P; Johnson, Kia N; Conture, Edward G; Karrass, Jan M

    2012-05-01

    This study assessed emotional and speech-language contributions to childhood stuttering. A dual diathesis-stressor framework guided this study, in which both linguistic requirements and skills, and emotion and its regulation, are hypothesized to contribute to stuttering. The language diathesis consists of expressive and receptive language skills. The emotion diathesis consists of proclivities to emotional reactivity and regulation of emotion, and the emotion stressor consists of experimentally manipulated emotional inductions prior to narrative speaking tasks. Preschool-age children who do and do not stutter were exposed to three emotion-producing overheard conversations-neutral, positive, and angry. Emotion and emotion-regulatory behaviors were coded while participants listened to each conversation and while telling a story after each overheard conversation. Instances of stuttering during each story were counted. Although there was no main effect of conversation type, results indicated that stuttering in preschool-age children is influenced by emotion and language diatheses, as well as coping strategies and situational emotional stressors. Findings support the dual diathesis-stressor model of stuttering.

  7. SPECTRA. September 2011

    DTIC Science & Technology

    2011-09-01

    Spots 2000th Comet 14 LASCO: 13,587 CMEs and Counting 15 Viewing the Sun in 3-D with STEREO 18 NRL Launches Nanosatellite Experimental Platforms...specifically count the most abundant particles in the solar wind — electrons, protons, and helium ions — and measure their proper- ties. The...and Counting NRL FEATURES S O L A R P H Y S IC S Total mass injection in the solar wind by CMEs over the last 14 years as observed by the LASCO

  8. Energy conversion modeling of the intrinsic persistent luminescence of solids via energy transfer paths between transition levels.

    PubMed

    Huang, Bolong; Sun, Mingzi

    2017-04-05

    An energy conversion model has been established for the intrinsic persistent luminescence in solids related to the native point defect levels, formations, and transitions. In this study, we showed how the recombination of charge carriers between different defect levels along the zero phonon line (ZPL) can lead to energy conversions supporting the intrinsic persistent phosphorescence in solids. This suggests that the key driving force for this optical phenomenon is the pair of electrons hopping between different charged defects with negative-U eff . Such a negative correlation energy will provide a sustainable energy source for electron-holes to further recombine in a new cycle with a specific quantum yield. This will help us to understand the intrinsic persistent luminescence with respect to native point defect levels as well as the correlations of electronics and energetics.

  9. Determination of nitrogen in coal macerals using electron microprobe technique-experimental procedure

    USGS Publications Warehouse

    Mastalerz, Maria; Gurba, L.W.

    2001-01-01

    This paper discusses nitrogen determination with the Cameca SX50 electron microprobe using PCO as an analyzing crystal. A set of conditions using differing accelerating voltages, beam currents, beam sizes, and counting times were tested to determine parameters that would give the most reliable nitrogen determination. The results suggest that, for the instrumentation used, 10 kV, current 20 nA, and a counting time of 20 s provides the most reliable nitrogen determination, with a much lower detection limit than the typical concentration of this element in coal. The study demonstrates that the electron microprobe technique can be used to determine the nitrogen content of coal macerals successfully and accurately. ?? 2001 Elsevier Science B.V. All rights reserved.

  10. Counting statistics of tunneling current

    NASA Astrophysics Data System (ADS)

    Levitov, L. S.; Reznikov, M.

    2004-09-01

    The form of electron counting statistics of the tunneling current noise in a generic many-body interacting electron system is obtained and universal relations between its different moments are derived. A generalized fluctuation-dissipation theorem providing a relation between current and noise at arbitrary bias-to-temperature ratio eV/kBT is established in the tunneling Hamiltonian approximation. The third correlator of current fluctuations S3 (the skewness of the charge counting distribution) has a universal Schottky-type relation with the current and quasiparticle charge that holds in a wide bias voltage range, both at large and small eV/kBT . The insensitivity of S3 to the Nyquist-Schottky crossover represents an advantage compared to the Schottky formula for the noise power. We discuss the possibility of using the correlator S3 for detecting quasiparticle charge at high temperatures.

  11. To Build or Not to Build: Addressing Facilities Needs While Controlling Costs

    ERIC Educational Resources Information Center

    Kadamus, James A.

    2015-01-01

    When trustees, presidents, and senior college administrators meet, one topic dominates the conversation: how to keep education quality high and costs down. To keep quality high, college leaders need to have strong faculties and state-of-the-art facilities for teaching and research. Quality counts but it also costs, and that is where the pressures…

  12. Effects of Quantitative Linguistic Feedback to Caregivers of Young Children: A Pilot Study in China

    ERIC Educational Resources Information Center

    Zhang, Yiwen; Xu, Xiaojuan; Jiang, Fan; Gilkerson, Jill; Xu, Dongxin; Richards, Jeffrey A.; Harnsberger, James; Topping, Keith J.

    2015-01-01

    Changes in natural language environments of families receiving quantitative language feedback in Shanghai were investigated. Volunteer parents of 22 children aged 5 to 30 months were recruited from a hospital and a learning center. Quantitative measures of adult word count and conversational turns with children were collected regularly over 6…

  13. Integrating Conversations about Equity in "Whose Knowledge Counts" into Science Teacher Education

    ERIC Educational Resources Information Center

    Russ, Rosemary S.

    2017-01-01

    Each day we are confronted with news stories detailing the landscape of privilege and bias built into the cultural institutions of our nation. The elected representatives of Flint denied its people access to clean water. The legal system fails to hold police officers who shoot unarmed Black men criminally responsible for their actions. The…

  14. Simple performance evaluation of pulsed spontaneous parametric down-conversion sources for quantum communications.

    PubMed

    Smirr, Jean-Loup; Guilbaud, Sylvain; Ghalbouni, Joe; Frey, Robert; Diamanti, Eleni; Alléaume, Romain; Zaquine, Isabelle

    2011-01-17

    Fast characterization of pulsed spontaneous parametric down conversion (SPDC) sources is important for applications in quantum information processing and communications. We propose a simple method to perform this task, which only requires measuring the counts on the two output channels and the coincidences between them, as well as modeling the filter used to reduce the source bandwidth. The proposed method is experimentally tested and used for a complete evaluation of SPDC sources (pair emission probability, total losses, and fidelity) of various bandwidths. This method can find applications in the setting up of SPDC sources and in the continuous verification of the quality of quantum communication links.

  15. Einstein-Podolsky-Rosen-Bohm experiment and Bell inequality violation using Type 2 parametric down conversion

    NASA Technical Reports Server (NTRS)

    Kiess, Thomas E.; Shih, Yan-Hua; Sergienko, A. V.; Alley, Carroll O.

    1994-01-01

    We report a new two-photon polarization correlation experiment for realizing the Einstein-Podolsky-Rosen-Bohm (EPRB) state and for testing Bell-type inequalities. We use the pair of orthogonally-polarized light quanta generated in Type 2 parametric down conversion. Using 1 nm interference filters in front of our detectors, we observe from the output of a 0.5mm beta - BaB2O4 (BBO) crystal the EPRB correlations in coincidence counts, and measure an associated Bell inequality violation of 22 standard deviations. The quantum state of the photon pair is a polarization analog of the spin-1/2 singlet state.

  16. An automated method of quantifying ferrite microstructures using electron backscatter diffraction (EBSD) data.

    PubMed

    Shrestha, Sachin L; Breen, Andrew J; Trimby, Patrick; Proust, Gwénaëlle; Ringer, Simon P; Cairney, Julie M

    2014-02-01

    The identification and quantification of the different ferrite microconstituents in steels has long been a major challenge for metallurgists. Manual point counting from images obtained by optical and scanning electron microscopy (SEM) is commonly used for this purpose. While classification systems exist, the complexity of steel microstructures means that identifying and quantifying these phases is still a great challenge. Moreover, point counting is extremely tedious, time consuming, and subject to operator bias. This paper presents a new automated identification and quantification technique for the characterisation of complex ferrite microstructures by electron backscatter diffraction (EBSD). This technique takes advantage of the fact that different classes of ferrite exhibit preferential grain boundary misorientations, aspect ratios and mean misorientation, all of which can be detected using current EBSD software. These characteristics are set as criteria for identification and linked to grain size to determine the area fractions. The results of this method were evaluated by comparing the new automated technique with point counting results. The technique could easily be applied to a range of other steel microstructures. © 2013 Published by Elsevier B.V.

  17. Air and smear sample calculational tool for Fluor Hanford Radiological control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BAUMANN, B.L.

    2003-07-11

    A spreadsheet calculation tool was developed to automate the calculations performed for determining the concentration of airborne radioactivity and smear counting as outlined in HNF-13536, Section 5.2.7, ''Analyzing Air and Smear Samples''. This document reports on the design and testing of the calculation tool. Radiological Control Technicians (RCTs) will save time and reduce hand written and calculation errors by using an electronic form for documenting and calculating work place air samples. Current expectations are RCTs will perform an air sample and collect the filter or perform a smear for surface contamination. RCTs will then survey the filter for gross alphamore » and beta/gamma radioactivity and with the gross counts utilize either hand calculation method or a calculator to determine activity on the filter. The electronic form will allow the RCT with a few key strokes to document the individual's name, payroll, gross counts, instrument identifiers; produce an error free record. This productivity gain is realized by the enhanced ability to perform mathematical calculations electronically (reducing errors) and at the same time, documenting the air sample.« less

  18. Probing ultrafast ππ*/nπ* internal conversion in organic chromophores via K-edge resonant absorption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolf, T. J. A.; Myhre, R. H.; Cryan, J. P.

    Many photoinduced processes including photosynthesis and human vision happen in organic molecules and involve coupled femtosecond dynamics of nuclei and electrons. Organic molecules with heteroatoms often possess an important excited-state relaxation channel from an optically allowed ππ* to a dark nπ* state. The ππ*/nπ* internal conversion is difficult to investigate, as most spectroscopic methods are not exclusively sensitive to changes in the excited-state electronic structure. Here, we report achieving the required sensitivity by exploiting the element and site specificity of near-edge soft X-ray absorption spectroscopy. As a hole forms in the n orbital during ππ*/nπ* internal conversion, the absorption spectrummore » at the heteroatom K-edge exhibits an additional resonance. We demonstrate the concept using the nucleobase thymine at the oxygen K-edge, and unambiguously show that ππ*/nπ* internal conversion takes place within (60 ± 30) fs. Furthermore, high-level-coupled cluster calculations confirm the method’s impressive electronic structure sensitivity for excited-state investigations.« less

  19. Probing ultrafast ππ*/nπ* internal conversion in organic chromophores via K-edge resonant absorption

    DOE PAGES

    Wolf, T. J. A.; Myhre, R. H.; Cryan, J. P.; ...

    2017-06-22

    Many photoinduced processes including photosynthesis and human vision happen in organic molecules and involve coupled femtosecond dynamics of nuclei and electrons. Organic molecules with heteroatoms often possess an important excited-state relaxation channel from an optically allowed ππ* to a dark nπ* state. The ππ*/nπ* internal conversion is difficult to investigate, as most spectroscopic methods are not exclusively sensitive to changes in the excited-state electronic structure. Here, we report achieving the required sensitivity by exploiting the element and site specificity of near-edge soft X-ray absorption spectroscopy. As a hole forms in the n orbital during ππ*/nπ* internal conversion, the absorption spectrummore » at the heteroatom K-edge exhibits an additional resonance. We demonstrate the concept using the nucleobase thymine at the oxygen K-edge, and unambiguously show that ππ*/nπ* internal conversion takes place within (60 ± 30) fs. Furthermore, high-level-coupled cluster calculations confirm the method’s impressive electronic structure sensitivity for excited-state investigations.« less

  20. Ultrafast photon counting applied to resonant scanning STED microscopy.

    PubMed

    Wu, Xundong; Toro, Ligia; Stefani, Enrico; Wu, Yong

    2015-01-01

    To take full advantage of fast resonant scanning in super-resolution stimulated emission depletion (STED) microscopy, we have developed an ultrafast photon counting system based on a multigiga sample per second analogue-to-digital conversion chip that delivers an unprecedented 450 MHz pixel clock (2.2 ns pixel dwell time in each scan). The system achieves a large field of view (∼50 × 50 μm) with fast scanning that reduces photobleaching, and advances the time-gated continuous wave STED technology to the usage of resonant scanning with hardware-based time-gating. The assembled system provides superb signal-to-noise ratio and highly linear quantification of light that result in superior image quality. Also, the system design allows great flexibility in processing photon signals to further improve the dynamic range. In conclusion, we have constructed a frontier photon counting image acquisition system with ultrafast readout rate, excellent counting linearity, and with the capacity of realizing resonant-scanning continuous wave STED microscopy with online time-gated detection. © 2014 The Authors Journal of Microscopy © 2014 Royal Microscopical Society.

  1. Measurement of mass stopping power of chitosan polymer loaded with TiO2 for relativistic electron interaction

    NASA Astrophysics Data System (ADS)

    Babu, S. Ramesh; Badiger, N. M.; Karidurgannavar, M. Y.; Varghese, Jolly. G.

    2018-04-01

    The Mass Stopping Power (MSP) of relativistic electrons in chitosan loaded with TiO2 of different proportions has been measured by recording the spectrum of internal conversion electrons. The internal conversion electrons of energies 614 keV from Cs137, 942 keV and 1016 keV from Bi207 source are allowed to pass through chitosan-TiO2 alloy and transmitted electrons are detected with a Si (Li) detector coupled to an 8 K multichannel analyzer. By knowing the energies of incident electrons and transmitted electrons, the energy loss and the MSP are determined. Thus measured MSP values of the alloys are compared with the values calculated using Braggs additivity rule. The disagreement between theory and experiment is found to increases with increasing TiO2 concentration in chitosan, indicating the influence of chemical environment in the properties of such polymeric membrane.

  2. Two-step photon up-conversion solar cells

    PubMed Central

    Asahi, Shigeo; Teranishi, Haruyuki; Kusaki, Kazuki; Kaizu, Toshiyuki; Kita, Takashi

    2017-01-01

    Reducing the transmission loss for below-gap photons is a straightforward way to break the limit of the energy-conversion efficiency of solar cells (SCs). The up-conversion of below-gap photons is very promising for generating additional photocurrent. Here we propose a two-step photon up-conversion SC with a hetero-interface comprising different bandgaps of Al0.3Ga0.7As and GaAs. The below-gap photons for Al0.3Ga0.7As excite GaAs and generate electrons at the hetero-interface. The accumulated electrons at the hetero-interface are pumped upwards into the Al0.3Ga0.7As barrier by below-gap photons for GaAs. Efficient two-step photon up-conversion is achieved by introducing InAs quantum dots at the hetero-interface. We observe not only a dramatic increase in the additional photocurrent, which exceeds the reported values by approximately two orders of magnitude, but also an increase in the photovoltage. These results suggest that the two-step photon up-conversion SC has a high potential for implementation in the next-generation high-efficiency SCs. PMID:28382945

  3. Characterization of the fast electrons distribution produced in a high intensity laser target interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Westover, B.; Lawrence Livermore National Laboratory, Livermore, California 94550; Chen, C. D.

    2014-03-15

    Experiments on the Titan laser (∼150 J, 0.7 ps, 2 × 10{sup 20} W cm{sup −2}) at the Lawrence Livermore National Laboratory were carried out in order to study the properties of fast electrons produced by high-intensity, short pulse laser interacting with matter under conditions relevant to Fast Ignition. Bremsstrahlung x-rays produced by these fast electrons were measured by a set of compact filter-stack based x-ray detectors placed at three angles with respect to the target. The measured bremsstrahlung signal allows a characterization of the fast electron beam spectrum, conversion efficiency of laser energy into fast electron kinetic energy and angular distribution. A Monte Carlo codemore » Integrated Tiger Series was used to model the bremsstrahlung signal and infer a laser to fast electron conversion efficiency of 30%, an electron slope temperature of about 2.2 MeV, and a mean divergence angle of 39°. Simulations were also performed with the hybrid transport code ZUMA which includes fields in the target. In this case, a conversion efficiency of laser energy to fast electron energy of 34% and a slope temperature between 1.5 MeV and 4 MeV depending on the angle between the target normal direction and the measuring spectrometer are found. The observed temperature of the bremsstrahlung spectrum, and therefore the inferred electron spectrum are found to be angle dependent.« less

  4. Lymphatic vessels correlate closely with inflammation index in alkali burned cornea.

    PubMed

    Yan, Hao; Qi, Chaoxiu; Ling, Shiqi; Li, Weihua; Liang, Linyi

    2010-08-01

    To study the relationship between corneal lymphangiogenesis and inflammation in alkali burned corneas. Rat corneal lymphatic and blood vessels were labeled and distinguished by whole mount immunofluorescence and 5'-nase-alkaline phosphatase (5'-NA-ALP) double enzyme-histochemistry. Then, lymphatic vessel areas (LVA) and lymphatic vessel counting (LVC) were examined. Corneal inflammation was evaluated by inflammation index (IF) grading, histopathology, electron microscope, and polymorphonuclear leukocyte (PMN) infiltration. The relationship between LVC, LVA, IF, and PMN was examined, respectively. In addition, corneal lymphatic vessels of eleven human alkali burned corneas were examined by lymphatic vessel endothelial receptor (LYVE-1) immunohistochemistry. Corneal lymphangiogenesis occurred on Day 3, reached the peak at the end of two weeks, and disappeared five weeks after alkaline burns. Both LVA and LVC were strongly and positively correlated with IF after corneal alkaline burns. However, the relationship between LVC and PMN, between LVA and PMN were significant but converse. Among eleven human alkali burned corneas, corneal lymphangiogenesis was present in three corneas. Corneal lymphagiogenesis develops after alkaline burns and correlates closely with corneal inflammation.

  5. Measurement of the ^235mU Production Cross Section Using a Critical Assembly*

    NASA Astrophysics Data System (ADS)

    Macri, Robert; Authier, Nicolas; Becker, John; Belier, Gilbert; Bond, Evelyn; Bredeweg, Todd; Glover, S.; Meot, Vincent; Rundberg, Robert; Vieira, David; Wilhelmy, Jerry

    2006-10-01

    Measurements of the creation and destruction cross sections for actinide nuclei constitute an important experimental effort in support of Stockpile Stewardship. In this talk I will give a progress report on the effort to measure the production cross section of the ^235mU isomer integrated over a fission neutron spectrum. This ongoing experiment is fielded at CEA in Valduc, France, taking advantage of the CALIBAN critical assembly. This effort is performed in collaboration with LANL, LLNL, Bruyeres le Chatel, and Valduc staff. This experiment utilizes a technique to measure internal conversion electrons from the ^235mU isomer with the French BIII detector (Bruyeres le Chatel), and involves a substantial chemistry effort (LANL) to prepare targets for irradiation and counting, as well as to remove fission fragments after irradiation. Experimental techniques will be discussed and preliminary data presented. *Work performed under the auspices of the U.S. Department of Energy by Los Alamos National Laboratory (W-7405-ENG-36) and Lawrence Livermore National Laboratory (W-7405-ENG-48), and CEA-DAM under CEA-DAM NNSA-DOE agreement.

  6. Concentration Independent Calibration of β-γ Coincidence Detector Using 131mXe and 133Xe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McIntyre, Justin I.; Cooper, Matthew W.; Carman, April J.

    Absolute efficiency calibration of radiometric detectors is frequently difficult and requires careful detector modeling and accurate knowledge of the radioactive source used. In the past we have calibrated the b-g coincidence detector of the Automated Radioxenon Sampler/Analyzer (ARSA) using a variety of sources and techniques which have proven to be less than desirable.[1] A superior technique has been developed that uses the conversion-electron (CE) and x-ray coincidence of 131mXe to provide a more accurate absolute gamma efficiency of the detector. The 131mXe is injected directly into the beta cell of the coincident counting system and no knowledge of absolute sourcemore » strength is required. In addition, 133Xe is used to provide a second independent means to obtain the absolute efficiency calibration. These two data points provide the necessary information for calculating the detector efficiency and can be used in conjunction with other noble gas isotopes to completely characterize and calibrate the ARSA nuclear detector. In this paper we discuss the techniques and results that we have obtained.« less

  7. Enhanced hot-electron production and strong-shock generation in hydrogen-rich ablators for shock ignition

    NASA Astrophysics Data System (ADS)

    Theobald, W.; Bose, A.; Yan, R.; Betti, R.; Lafon, M.; Mangino, D.; Christopherson, A. R.; Stoeckl, C.; Seka, W.; Shang, W.; Michel, D. T.; Ren, C.; Nora, R. C.; Casner, A.; Peebles, J.; Beg, F. N.; Ribeyre, X.; Llor Aisa, E.; Colaïtis, A.; Tikhonchuk, V.; Wei, M. S.

    2017-12-01

    Experiments were performed with CH, Be, C, and SiO2 ablators interacting with high-intensity UV laser radiation (5 × 1015 W/cm2, λ = 351 nm) to determine the optimum material for hot-electron production and strong-shock generation. Significantly more hot electrons are produced in CH (up to ˜13% instantaneous conversion efficiency), while the amount is a factor of ˜2 to 3 lower in the other ablators. A larger hot-electron fraction is correlated with a higher effective ablation pressure. The higher conversion efficiency in CH is attributed to stronger damping of ion-acoustic waves because of the presence of light H ions.

  8. Interacting Effects of Light and Iron Availability on the Coupling of Photosynthetic Electron Transport and CO2-Assimilation in Marine Phytoplankton

    PubMed Central

    Schuback, Nina; Schallenberg, Christina; Duckham, Carolyn; Maldonado, Maria T.; Tortell, Philippe D.

    2015-01-01

    Iron availability directly affects photosynthesis and limits phytoplankton growth over vast oceanic regions. For this reason, the availability of iron is a crucial variable to consider in the development of active chlorophyll a fluorescence based estimates of phytoplankton primary productivity. These bio-optical approaches require a conversion factor to derive ecologically-relevant rates of CO2-assimilation from estimates of electron transport in photosystem II. The required conversion factor varies significantly across phytoplankton taxa and environmental conditions, but little information is available on its response to iron limitation. In this study, we examine the role of iron limitation, and the interacting effects of iron and light availability, on the coupling of photosynthetic electron transport and CO2-assimilation in marine phytoplankton. Our results show that excess irradiance causes increased decoupling of carbon fixation and electron transport, particularly under iron limiting conditions. We observed that reaction center II specific rates of electron transport (ETRRCII, mol e- mol RCII-1 s-1) increased under iron limitation, and we propose a simple conceptual model for this observation. We also observed a strong correlation between the derived conversion factor and the expression of non-photochemical quenching. Utilizing a dataset from in situ phytoplankton assemblages across a coastal – oceanic transect in the Northeast subarctic Pacific, this relationship was used to predict ETRRCII: CO2-assimilation conversion factors and carbon-based primary productivity from FRRF data, without the need for any additional measurements. PMID:26171963

  9. Comparison between acetate and hydrogen as electron donors and implications for the reductive dehalogenation of PCE and TCE.

    PubMed

    Lee, Il-Su; Bae, Jae-Ho; McCarty, Perry L

    2007-10-30

    Bioremediation by reductive dehalogenation of groundwater contaminated with tetrachloroethene (PCE) or trichloroethene (TCE) is generally carried out through the addition of a fermentable electron donor such as lactate, benzoate, carbohydrates or vegetable oil. These fermentable donors are converted by fermenting organisms into acetate and hydrogen, either of which might be used by dehalogenating microorganisms. Comparisons were made between H2 and acetate on the rate and extent of reductive dehalogenation of PCE. PCE dehalogenation with H2 alone was complete to ethene, but with acetate alone it generally proceeded only about half as fast and only to cis-1,2-dichloroethene (cDCE). Additionally, acetate was not used as an electron donor in the presence of H2. These findings suggest the fermentable electron donor requirement for PCE dehalogenation to ethene can be reduced up to 50% by separating PCE dehalogenation into two stages, the first of which uses acetate for the conversion of PCE to cDCE, and the second uses H2 for the conversion of cDCE to ethene. This can be implemented with a recycle system in which the fermentable substrate is added down-gradient, where the hydrogen being produced by fermentation effects cDCE conversion into ethene. The acetate produced is recycled up-gradient to achieve PCE conversion into cDCE. With the lower electron donor usage required, potential problems of aquifer clogging, excess methane production, and high groundwater chemical oxygen demand (COD) can be greatly reduced.

  10. Comparison between acetate and hydrogen as electron donors and implications for the reductive dehalogenation of PCE and TCE

    NASA Astrophysics Data System (ADS)

    Lee, Il-Su; Bae, Jae-Ho; McCarty, Perry L.

    2007-10-01

    Bioremediation by reductive dehalogenation of groundwater contaminated with tetrachloroethene (PCE) or trichloroethene (TCE) is generally carried out through the addition of a fermentable electron donor such as lactate, benzoate, carbohydrates or vegetable oil. These fermentable donors are converted by fermenting organisms into acetate and hydrogen, either of which might be used by dehalogenating microorganisms. Comparisons were made between H 2 and acetate on the rate and extent of reductive dehalogenation of PCE. PCE dehalogenation with H 2 alone was complete to ethene, but with acetate alone it generally proceeded only about half as fast and only to cis-1,2-dichloroethene (cDCE). Additionally, acetate was not used as an electron donor in the presence of H 2. These findings suggest the fermentable electron donor requirement for PCE dehalogenation to ethene can be reduced up to 50% by separating PCE dehalogenation into two stages, the first of which uses acetate for the conversion of PCE to cDCE, and the second uses H 2 for the conversion of cDCE to ethene. This can be implemented with a recycle system in which the fermentable substrate is added down-gradient, where the hydrogen being produced by fermentation effects cDCE conversion into ethene. The acetate produced is recycled up-gradient to achieve PCE conversion into cDCE. With the lower electron donor usage required, potential problems of aquifer clogging, excess methane production, and high groundwater chemical oxygen demand (COD) can be greatly reduced.

  11. Interacting Effects of Light and Iron Availability on the Coupling of Photosynthetic Electron Transport and CO2-Assimilation in Marine Phytoplankton.

    PubMed

    Schuback, Nina; Schallenberg, Christina; Duckham, Carolyn; Maldonado, Maria T; Tortell, Philippe D

    2015-01-01

    Iron availability directly affects photosynthesis and limits phytoplankton growth over vast oceanic regions. For this reason, the availability of iron is a crucial variable to consider in the development of active chlorophyll a fluorescence based estimates of phytoplankton primary productivity. These bio-optical approaches require a conversion factor to derive ecologically-relevant rates of CO2-assimilation from estimates of electron transport in photosystem II. The required conversion factor varies significantly across phytoplankton taxa and environmental conditions, but little information is available on its response to iron limitation. In this study, we examine the role of iron limitation, and the interacting effects of iron and light availability, on the coupling of photosynthetic electron transport and CO2-assimilation in marine phytoplankton. Our results show that excess irradiance causes increased decoupling of carbon fixation and electron transport, particularly under iron limiting conditions. We observed that reaction center II specific rates of electron transport (ETR(RCII), mol e- mol RCII(-1) s(-1)) increased under iron limitation, and we propose a simple conceptual model for this observation. We also observed a strong correlation between the derived conversion factor and the expression of non-photochemical quenching. Utilizing a dataset from in situ phytoplankton assemblages across a coastal--oceanic transect in the Northeast subarctic Pacific, this relationship was used to predict ETR(RCII): CO2-assimilation conversion factors and carbon-based primary productivity from FRRF data, without the need for any additional measurements.

  12. A compact 7-cell Si-drift detector module for high-count rate X-ray spectroscopy.

    PubMed

    Hansen, K; Reckleben, C; Diehl, I; Klär, H

    2008-05-01

    A new Si-drift detector module for fast X-ray spectroscopy experiments was developed and realized. The Peltier-cooled module comprises a sensor with 7 × 7-mm 2 active area, an integrated circuit for amplification, shaping and detection, storage, and derandomized readout of signal pulses in parallel, and amplifiers for line driving. The compactness and hexagonal shape of the module with a wrench size of 16mm allow very short distances to the specimen and multi-module arrangements. The power dissipation is 186mW. At a shaper peaking time of 190 ns and an integration time of 450 ns an electronic rms noise of ~11 electrons was achieved. When operated at 7 °C, FWHM line widths around 260 and 460 eV (Cu-K α ) were obtained at low rates and at sum-count rates of 1.7 MHz, respectively. The peak shift is below 1% for a broad range of count rates. At 1.7-MHz sum-count rate the throughput loss amounts to 30%.

  13. Coherent Nuclear Wave Packets in Q States by Ultrafast Internal Conversions in Free Base Tetraphenylporphyrin.

    PubMed

    Kim, So Young; Joo, Taiha

    2015-08-06

    Persistence of vibrational coherence in electronic transition has been noted especially in biochemical systems. Here, we report the dynamics between electronic excited states in free base tetraphenylporphyrin (H2TPP) by time-resolved fluorescence with high time resolution. Following the photoexcitation of the B state, ultrafast internal conversion occurs to the Qx state directly as well as via the Qy state. Unique and distinct coherent nuclear wave packet motions in the Qx and Qy states are observed through the modulation of the fluorescence intensity in time. The instant, serial internal conversions from the B to the Qy and Qx states generate the coherent wave packets. Theory and experiment show that the observed vibrational modes involve the out-of-plane vibrations of the porphyrin ring that are strongly coupled to the internal conversion of H2TPP.

  14. THE ENERGY CONVERSION APPARATUS IN PHOTOSYNTHESIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sauer, K.

    1962-12-01

    An analysis of outstanding problems still presenting difficulty with respect to understanding the quantumconversion process in photosynthesis is presented. Considerations of how some of these difficulties may be overcome are included. The dynamic process of energy conversion is considered in terms of photon absorption, electronic energy transfer, trapping in long-lived excited states, primary oxidants and reductants, and the electron transport chain leading to products representing stored chemical potential. The physical structure of the apparatus accomplishing this energy conversion is sought in the framework of the concept of the photosynthetic unit. The nature of this unit--its size, composition, arrangement and orientationmore » of components, internal electrical and polarizability properties, and assembly and aggregation in the chloroplast--and the problems related to its determination are essential considerations in the overall approach to the understanding of the mechanism of energy conversion. (auth)« less

  15. A versatile chemical conversion synthesis of Cu2S nanotubes and the photovoltaic activities for dye-sensitized solar cell

    PubMed Central

    2014-01-01

    A versatile, low-temperature, and low-cost chemical conversion synthesis has been developed to prepare copper sulfide (Cu2S) nanotubes. The successful chemical conversion from ZnS nanotubes to Cu2S ones profits by the large difference in solubility between ZnS and Cu2S. The morphology, structure, and composition of the yielded products have been examined by field-emission scanning electron microscopy, transmission electron microscopy, and X-ray diffraction measurements. We have further successfully employed the obtained Cu2S nanotubes as counter electrodes in dye-sensitized solar cells. The light-to-electricity conversion results show that the Cu2S nanostructures exhibit high photovoltaic conversion efficiency due to the increased surface area and the good electrocatalytical activity of Cu2S. The present chemical route provides a simple way to synthesize Cu2S nanotubes with a high surface area for nanodevice applications. PMID:25246878

  16. Study of irradiated Hadfield steel using transmission Mössbauer spectroscopy with high velocity resolution and conversion electron Mössbauer spectroscopy

    NASA Astrophysics Data System (ADS)

    Semionkin, V. A.; Neshev, F. G.; Tsurin, V. A.; Milder, O. B.; Oshtrakh, M. I.

    2010-03-01

    Proton irradiated Hadfield steel foil was studied using transmission Mössbauer spectroscopy with high velocity resolution and conversion electron Mössbauer spectroscopy. It was shown that proton irradiation leads to structural changes in the foil as well as to surface oxidation with ferric hydrous oxide formation (ferrihydrite). Moreover, oxidation on the foil underside was higher than on the foil right side.

  17. Enhanced charge separation of rutile TiO2 nanorods by trapping holes and transferring electrons for efficient cocatalyst-free photocatalytic conversion of CO2 to fuels.

    PubMed

    Wu, Jing; Lu, Hongwei; Zhang, Xuliang; Raziq, Fazal; Qu, Yang; Jing, Liqiang

    2016-04-11

    Modification with chloride and phosphate anions, and coupling with carbon nanotubes could effectively trap holes and transfer the electrons of rutile nanorods, respectively, so as to greatly promote photogenerated charge separation, leading to an obviously-improved cocatalyst-free photocatalytic conversion of CO2 to CH4 and CO, along with the positive effects of constructed phosphate bridges.

  18. Long-distance practical quantum key distribution by entanglement swapping.

    PubMed

    Scherer, Artur; Sanders, Barry C; Tittel, Wolfgang

    2011-02-14

    We develop a model for practical, entanglement-based long-distance quantum key distribution employing entanglement swapping as a key building block. Relying only on existing off-the-shelf technology, we show how to optimize resources so as to maximize secret key distribution rates. The tools comprise lossy transmission links, such as telecom optical fibers or free space, parametric down-conversion sources of entangled photon pairs, and threshold detectors that are inefficient and have dark counts. Our analysis provides the optimal trade-off between detector efficiency and dark counts, which are usually competing, as well as the optimal source brightness that maximizes the secret key rate for specified distances (i.e. loss) between sender and receiver.

  19. Conversion of magnetic energy to runaway kinetic energy during the termination of runaway current on the J-TEXT tokamak

    NASA Astrophysics Data System (ADS)

    Dai, A. J.; Chen, Z. Y.; Huang, D. W.; Tong, R. H.; Zhang, J.; Wei, Y. N.; Ma, T. K.; Wang, X. L.; Yang, H. Y.; Gao, H. L.; Pan, Y.; the J-TEXT Team

    2018-05-01

    A large number of runaway electrons (REs) with energies as high as several tens of mega-electron volt (MeV) may be generated during disruptions on a large-scale tokamak. The kinetic energy carried by REs is eventually deposited on the plasma-facing components, causing damage and posing a threat on the operation of the tokamak. The remaining magnetic energy following a thermal quench is significant on a large-scale tokamak. The conversion of magnetic energy to runaway kinetic energy will increase the threat of runaway electrons on the first wall. The magnetic energy dissipated inside the vacuum vessel (VV) equals the decrease of initial magnetic energy inside the VV plus the magnetic energy flowing into the VV during a disruption. Based on the estimated magnetic energy, the evolution of magnetic-kinetic energy conversion are analyzed through three periods in disruptions with a runaway current plateau.

  20. Frequency-Domain Analysis of Diffusion-Cooled Hot-Electron Bolometer Mixers

    NASA Technical Reports Server (NTRS)

    Skalare, A.; McGrath, W. R.; Bumble, B.; LeDuc, H. G.

    1998-01-01

    A new theoretical model is introduced to describe heterodyne mixer conversion efficiency and noise (from thermal fluctuation effects) in diffusion-cooled superconducting hot-electron bolometers. The model takes into account the non-uniform internal electron temperature distribution generated by Wiedemann-Franz heat conduction, and accepts for input an arbitrary (analytical or experimental) superconducting resistance-versus- temperature curve. A non-linear large-signal solution is solved iteratively to calculate the temperature distribution, and a linear frequency-domain small-signal formulation is used to calculate conversion efficiency and noise. In the small-signal solution the device is discretized into segments, and matrix algebra is used to relate the heating modulation in the segments to temperature and resistance modulations. Matrix expressions are derived that allow single-sideband mixer conversion efficiency and coupled noise power to be directly calculated. The model accounts for self-heating and electrothermal feedback from the surrounding bias circuit.

  1. X-rays diagnostics of the hot electron energy distribution in the intense laser interaction with metal targets

    NASA Astrophysics Data System (ADS)

    Kostenko, O. F.; Andreev, N. E.; Rosmej, O. N.

    2018-03-01

    A two-temperature hot electron energy distribution has been revealed by modeling of bremsstrahlung emission, measured by the radiation attenuation and half-shade methods, and Kα emission from a massive silver cylinder irradiated by a subpicosecond s-polarized laser pulse with a peak intensity of about 2 × 1019 W/cm2. To deduce parameters of the hot electron spectrum, we have developed semi-analytical models of generation and measurements of the x-rays. The models are based on analytical expressions and tabulated data on electron stopping power as well as cross-sections of generation and absorption of the x-rays. The Kα emission from thin silver foils deposited on low-Z substrates, both conducting and nonconducting, has been used to verify the developed models and obtained hot electron spectrum. The obtained temperatures of the colder and hotter electron components are in agreement with the values predicted by kinetic simulations of the cone-guided approach to fast ignition [Chrisman et al., Phys. Plasmas 15, 056309 (2008)]. The temperature of the low-energy component of the accelerated electron spectrum is well below the ponderomotive scaling and Beg's law. We have obtained relatively low conversion efficiency of laser energy into the energy of hot electrons propagating through the solid target of about 2%. It is demonstrated that the assumption about a single-temperature hot electron energy distribution with the slope temperature described by the ponderomotive scaling relationship, without detailed analysis of the hot electron spectrum, can lead to strong overestimation of the laser-to-electron energy-conversion efficiency, in particular, the conversion efficiency of laser energy into the high-temperature component of the hot electron distribution.

  2. The Effect of Background Pressure on Electron Acceleration from Ultra-Intense Laser-Matter Interactions

    NASA Astrophysics Data System (ADS)

    Le, Manh; Ngirmang, Gregory; Orban, Chris; Morrison, John; Chowdhury, Enam; Roquemore, William

    2017-10-01

    We present two-dimensional particle-in-cell (PIC) simulations that investigate the role of background pressure on the acceleration of electrons from ultra intense laser interaction at normal incidence with liquid density ethylene glycol targets. The interaction was simulated at ten different pressures varying from 7.8 mTorr to 26 Torr. We calculated conversion efficiencies from the simulation results and plotted the efficiencies with respect to the background pressure. The results revealed that the laser to > 100 keV electron conversion efficiency remained flat around 0.35% from 7.8 mTorr to 1.2 Torr and increased exponentially from 1.2 Torr onward to about 1.47% at 26 Torr. Increasing the background pressure clearly has a dramatic effect on the acceleration of electrons from the target. We explain how electrostatic effects, in particular the neutralization of the target by the background plasma, allows electrons to escape more easily and that this effect is strengthened with higher densities. This work could facilitate the design of future experiments in increasing laser to electron conversion efficiency and generating substantial bursts of electrons with relativistic energies. This research is supported by the Air Force Office of Scientific Research under LRIR Project 17RQCOR504 under the management of Dr. Riq Parra and Dr. Jean-Luc Cambier. Support was also provided by the DOD HPCMP Internship Program.

  3. A Statistical Correlation Between Low L-shell Electrons Measured by NOAA Satellites and Strong Earthquakes

    NASA Astrophysics Data System (ADS)

    Fidani, C.

    2015-12-01

    More than 11 years of the Medium Energy Protons Electrons Detector data from the NOAA polar orbiting satellites were analyzed. Significant electron counting rate fluctuations were evidenced during geomagnetic quiet periods by using a set of adiabatic coordinates. Electron counting rates were compared to earthquakes by defining a seismic event L-shell obtained radially projecting the epicenter geographical positions to a given altitude. Counting rate fluctuations were grouped in every satellite semi-orbit together with strong seismic events and these were chosen with the L-shell coordinates close to each other. Electron data from July 1998 to December 2011 were compared for nearly 1,800 earthquakes with magnitudes larger than or equal to 6, occurring worldwide. When considering 30 - 100 keV energy channels by the vertical NOAA telescopes and earthquake epicenter projections at altitudes greater that 1,300 km, a 4 sigma correlation appeared where time of particle precipitations Tpp occurred 2 - 3 hour prior time of large seismic events Teq. This was in physical agreement with different correlation times obtained from past studies that considered particles with greater energies. The correlation suggested a 4-8 hour advance in preparedness of strong earthquakes influencing the ionosphere. Considering this strong correlation between earthquakes and electron rate fluctuations, and the hypothesis that such fluctuations originated with magnetic disturbances generated underground, a small scale experiment with low cost at ground level is advisable. Plans exists to perform one or more unconventional experiments around an earthquake affected area by private investor in Italy.

  4. Multi-Aperture-Based Probabilistic Noise Reduction of Random Telegraph Signal Noise and Photon Shot Noise in Semi-Photon-Counting Complementary-Metal-Oxide-Semiconductor Image Sensor

    PubMed Central

    Ishida, Haruki; Kagawa, Keiichiro; Komuro, Takashi; Zhang, Bo; Seo, Min-Woong; Takasawa, Taishi; Yasutomi, Keita; Kawahito, Shoji

    2018-01-01

    A probabilistic method to remove the random telegraph signal (RTS) noise and to increase the signal level is proposed, and was verified by simulation based on measured real sensor noise. Although semi-photon-counting-level (SPCL) ultra-low noise complementary-metal-oxide-semiconductor (CMOS) image sensors (CISs) with high conversion gain pixels have emerged, they still suffer from huge RTS noise, which is inherent to the CISs. The proposed method utilizes a multi-aperture (MA) camera that is composed of multiple sets of an SPCL CIS and a moderately fast and compact imaging lens to emulate a very fast single lens. Due to the redundancy of the MA camera, the RTS noise is removed by the maximum likelihood estimation where noise characteristics are modeled by the probability density distribution. In the proposed method, the photon shot noise is also relatively reduced because of the averaging effect, where the pixel values of all the multiple apertures are considered. An extremely low-light condition that the maximum number of electrons per aperture was the only 2e− was simulated. PSNRs of a test image for simple averaging, selective averaging (our previous method), and the proposed method were 11.92 dB, 11.61 dB, and 13.14 dB, respectively. The selective averaging, which can remove RTS noise, was worse than the simple averaging because it ignores the pixels with RTS noise and photon shot noise was less improved. The simulation results showed that the proposed method provided the best noise reduction performance. PMID:29587424

  5. The Quanta Image Sensor: Every Photon Counts

    PubMed Central

    Fossum, Eric R.; Ma, Jiaju; Masoodian, Saleh; Anzagira, Leo; Zizza, Rachel

    2016-01-01

    The Quanta Image Sensor (QIS) was conceived when contemplating shrinking pixel sizes and storage capacities, and the steady increase in digital processing power. In the single-bit QIS, the output of each field is a binary bit plane, where each bit represents the presence or absence of at least one photoelectron in a photodetector. A series of bit planes is generated through high-speed readout, and a kernel or “cubicle” of bits (x, y, t) is used to create a single output image pixel. The size of the cubicle can be adjusted post-acquisition to optimize image quality. The specialized sub-diffraction-limit photodetectors in the QIS are referred to as “jots” and a QIS may have a gigajot or more, read out at 1000 fps, for a data rate exceeding 1 Tb/s. Basically, we are trying to count photons as they arrive at the sensor. This paper reviews the QIS concept and its imaging characteristics. Recent progress towards realizing the QIS for commercial and scientific purposes is discussed. This includes implementation of a pump-gate jot device in a 65 nm CIS BSI process yielding read noise as low as 0.22 e− r.m.s. and conversion gain as high as 420 µV/e−, power efficient readout electronics, currently as low as 0.4 pJ/b in the same process, creating high dynamic range images from jot data, and understanding the imaging characteristics of single-bit and multi-bit QIS devices. The QIS represents a possible major paradigm shift in image capture. PMID:27517926

  6. 77 FR 74719 - Self-Regulatory Organizations; NYSE Arca, Inc.; Notice of Filing and Immediate Effectiveness of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-17

    ... for Electronic Complex Order executions, and (vii) include days when the Exchange closes early in the... combined thresholds in contracts from Customer posted orders in Penny Pilot issues and Electronic Complex Orders.\\5\\ The Exchange proposes not to count Electronic Complex Orders toward the Customer monthly...

  7. [A Generator of Mono-energetic Electrons for Response Test of Charged Particle Detectors.].

    PubMed

    Matsubayashi, Fumiyasu; Yoshida, Katsuhide; Maruyama, Koichi

    2005-01-01

    We designed and fabricated a generator of mono-energetic electrons for the response test of charged particle detectors, which is used to measure fragmented particles of the carbon beam for cancer therapy. Mono-energetic electrons are extracted from (90)Sr by analyzing the energy of beta rays in the generator with a magnetic field. We evaluated performance parameters of the generator such as the absolute energy, the energy resolution and the counting rates of extracted electrons. The generator supplies mono-energetic electrons from 0.5MeV to 1.7MeV with the energy resolution of 20% in FWHM at higher energies than 1.0MeV. The counting rate of electrons is 400cpm at the maximum when the activity of (90)Sr is 298kBq. The generator was used to measure responses of fragmented-particle detectors and to determine the threshold energy of the detectors. We evaluated the dependence of pulse height variation on the detector position and the threshold energy by using the generator. We concluded this generator is useful for the response test of general charged particle detectors.

  8. An electron-microscope study of alpha to gamma transformation in an iron-nickel alloy

    NASA Technical Reports Server (NTRS)

    Lobodyuk, V. A.; Khandros, L. G.; Fedas, N. P.

    1980-01-01

    Procedures used to study the alpha to gamma conversion in thin foils of an iron alloy with 32% nickel concentration and initial martensite conversion temperature of -60 C are described. Photomicrographs show deformation twinning as well as changes in samples after they were heated. Reverse conversion is discussed and results are examined.

  9. Electrochemical detection device. [for use in microbiology

    NASA Technical Reports Server (NTRS)

    Young, R. N.; Wilkins, J. R. (Inventor)

    1979-01-01

    A standard pH reference electrode and a platinum cathodic electrode are positioned in a container with suitable nutrient medium for microbial growth plus the sample to be tested. The two electrodes are connected to electronic circuitry including an up/down counter whicn counts up for the first 80 minutes after a test has initiated. Then the potential between the two electrodes is tracked by the electronic circuitry and after there is a change of 10 mv a signal is sent to the up/down counter to cause it to reverse its count. When there is a additional 20 mv change in the potential between the two electrodes another signal is sent to the up/down counter, signalling it to stop. The resulting count on the counter is equal to the length of time for the inoculum to begin the production of measurable amounts of H2 after inoculation.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guinn, I.; Buuck, M.; Cuesta, C.

    The MAJORANA Collaboration will seek neutrinoless double beta decay (0νββ) in {sup 76}Ge using isotopically enriched p-type point contact (PPC) high purity Germanium (HPGe) detectors. A tonne-scale array of HPGe detectors would require background levels below 1 count/ROI-tonne-year in the 4 keV region of interest (ROI) around the 2039 keV Q-value of the decay. In order to demonstrate the feasibility of such an experiment, the MAJORANA DEMONSTRATOR, a 40 kg HPGe detector array, is being constructed with a background goal of < 3 count/ROI-tonne-year, which is expected to scale down to < 1 count/ROI-tonne-year for a tonne-scale experiment. The signalmore » readout electronics, which must be placed in close proximity to the detectors, present a challenge toward reaching this background goal. This talk will discuss the materials and design used to construct signal readout electronics with low enough backgrounds for the MAJORANA DEMONSTRATOR.« less

  11. Advanced Nanoscale Thin Film & Bulk Materials Towards Thermoelectric Power Conversion Efficiencies of 30%

    DTIC Science & Technology

    2014-02-27

    Electron Microscopy. Detailed Kronig -Penny (K-P)) modeling of electron transport through these superlattices suggests an estimated e-h transition energy...superalttices was confirmed by Transmission Electron Microscopy. Detailed Kronig -Penny (K-P)) modeling of electron transport through these superlattices

  12. High spatial resolution detection of low-energy electrons using an event-counting method, application to point projection microscopy

    NASA Astrophysics Data System (ADS)

    Salançon, Evelyne; Degiovanni, Alain; Lapena, Laurent; Morin, Roger

    2018-04-01

    An event-counting method using a two-microchannel plate stack in a low-energy electron point projection microscope is implemented. 15 μm detector spatial resolution, i.e., the distance between first-neighbor microchannels, is demonstrated. This leads to a 7 times better microscope resolution. Compared to previous work with neutrons [Tremsin et al., Nucl. Instrum. Methods Phys. Res., Sect. A 592, 374 (2008)], the large number of detection events achieved with electrons shows that the local response of the detector is mainly governed by the angle between the hexagonal structures of the two microchannel plates. Using this method in point projection microscopy offers the prospect of working with a greater source-object distance (350 nm instead of 50 nm), advancing toward atomic resolution.

  13. SPAD electronics for high-speed quantum communications

    NASA Astrophysics Data System (ADS)

    Bienfang, Joshua C.; Restelli, Alessandro; Migdall, Alan

    2011-01-01

    We discuss high-speed electronics that support the use of single-photon avalanche diodes (SPADs) in gigahertz singlephoton communications systems. For InGaAs/InP SPADs, recent work has demonstrated reduced afterpulsing and count rates approaching 500 MHz can be achieved with gigahertz periodic-gating techniques designed to minimize the total avalanche charge to less than 100 fC. We investigate afterpulsing in this regime and establish a connection to observations using more conventional techniques. For Si SPADs, we report the benefits of improved timing electronics that enhance the temporal resolution of Si SPADs used in a free-space quantum key distribution (QKD) system operating in the GHz regime. We establish that the effects of count-rate fluctuations induced by daytime turbulent scintillation are significantly reduced, benefitting the performance of the QKD system.

  14. Symposium on the Physical Chemistry of Solar Energy Conversion, Indianapolis American Chemical Society Meetings, Fall 2013

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lian, Tianquan

    2013-09-20

    The Symposium on the Physical Chemistry of Solar Energy Conversion at the Fall ACS Meeting in Indianapolis, IN (Sept. 8-12) featured the following sessions (approx. 6 speakers per session): (1) Quantum Dots and Nanorods for Solar Energy Conversion (2 half-day sessions); (2) Artificial Photosynthesis: Water Oxidation; (3) Artificial Photosynthesis: Solar Fuels (2 half-day sessions); (4) Organic Solar Cells; (5) Novel Concepts for Solar Energy Conversion (2 half-day sessions); (6) Emerging Techniques for Solar Energy Conversion; (7) Interfacial Electron Transfer

  15. Laser ablation under different electron heat conduction models in inertial confinement fusion

    NASA Astrophysics Data System (ADS)

    Li, Shuanggui; Ren, Guoli; Huo, Wen Yi

    2018-06-01

    In this paper, we study the influence of three different electron heat conduction models on the laser ablation of gold plane target. Different from previous studies, we concentrate on the plasma conditions, the conversion efficiency from laser into soft x rays and the scaling relation of mass ablation, which are relevant to hohlraum physics study in indirect drive inertial confinement fusion. We find that the simulated electron temperature in corona region is sensitive to the electron heat conduction models. For different electron heat conduction models, there are obvious differences in magnitude and spatial profile of electron temperature. For the flux limit model, the calculated conversion efficiency is sensitive to flux limiters. In the laser ablation of gold, most of the laser energies are converted into x rays. So the scaling relation of mass ablation rate is quite different from that of low Z materials.

  16. What Is Knowledge in English and Where Does It Come From?

    ERIC Educational Resources Information Center

    Anderson, Gill

    2015-01-01

    By offering a close reading and interpretation of one conversation between four Year 8 pupils about Robert Swindell's "Stone Cold," I aim to address questions of what might count as knowledge in English and to suggest how it might develop not only out of the qualities of a text, but from particular social relations and a set of pedagogic…

  17. Spin-to-charge conversion for hot photoexcited electrons in germanium

    NASA Astrophysics Data System (ADS)

    Zucchetti, C.; Bottegoni, F.; Isella, G.; Finazzi, M.; Rortais, F.; Vergnaud, C.; Widiez, J.; Jamet, M.; Ciccacci, F.

    2018-03-01

    We investigate the spin-to-charge conversion in highly doped germanium as a function of the kinetic energy of the carriers. Spin-polarized electrons are optically generated in the Ge conduction band, and their kinetic energy is varied by changing the photon energy in the 0.7-2.2 eV range. The spin detection scheme relies on spin-dependent scattering inside Ge, which yields an inverse spin-Hall electromotive force. The detected signal shows a sign inversion for h ν ≈1 eV which can be related to an interplay between the spin relaxation of high-energy electrons photoexcited from the heavy-hole and light-hole bands and that of low-energy electrons promoted from the split-off band. The inferred spin-Hall angle increases by about 3 orders of magnitude within the analyzed photon energy range. Since, for increasing photon energies, the phonon contribution to spin scattering exceeds that of impurities, our result indicates that the spin-to-charge conversion mediated by phonons is much more efficient than the one mediated by impurities.

  18. Enhanced hot-electron production and strong-shock generation in hydrogen-rich ablators for shock ignition

    DOE PAGES

    Theobald, W.; Bose, A.; Yan, R.; ...

    2017-12-08

    Experiments were performed with CH, Be, C, and SiO 2 ablators interacting with high-intensity UV laser radiation (5 × 10 15 W/cm 2, λ = 351 nm) to determine the optimum material for hot-electron production and strong-shock generation. Significantly more hot electrons are produced in CH (up to ~13% instantaneous conversion efficiency), while the amount is a factor of ~2 to 3 lower in the other ablators. A larger hot-electron fraction is correlated with a higher effective ablation pressure. As a result, the higher conversion efficiency in CH is attributed to stronger damping of ion-acoustic waves because of the presencemore » of light H ions.« less

  19. Enhanced hot-electron production and strong-shock generation in hydrogen-rich ablators for shock ignition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Theobald, W.; Bose, A.; Yan, R.

    Experiments were performed with CH, Be, C, and SiO 2 ablators interacting with high-intensity UV laser radiation (5 × 10 15 W/cm 2, λ = 351 nm) to determine the optimum material for hot-electron production and strong-shock generation. Significantly more hot electrons are produced in CH (up to ~13% instantaneous conversion efficiency), while the amount is a factor of ~2 to 3 lower in the other ablators. A larger hot-electron fraction is correlated with a higher effective ablation pressure. As a result, the higher conversion efficiency in CH is attributed to stronger damping of ion-acoustic waves because of the presencemore » of light H ions.« less

  20. Comparative study of effect of Withania somnifera as an adjuvant to DOTS in patients of newly diagnosed sputum smear positive pulmonary tuberculosis.

    PubMed

    Kumar, Ranjeet; Rai, Jaswant; Kajal, N C; Devi, Pushpa

    2018-07-01

    Ashwagandha (Withania somnifera Linn.) a rejuvenative herb has long been used as an immunomodulator in Indian subcontinent. As immunity plays an important role in pathogenesis and treatment of tuberculosis (TB), so role of W. somnifera as an adjuvant has been studied on selected parameter. A randomized, double-blind placebo-control study was conducted in two groups of 60 newly diagnosed sputum smear positive pulmonary TB patients on Directly Observed Treatment - short course (DOTS) regime. W. somnifera root extract or placebo capsules were given as add-on therapy for duration of 12 weeks. Effects on sputum conversion, Hemoglobin (Hb), body weight, Erythrocyte Sedimentation Rate (ESR), RBC counts, WBC counts, CD4 and CD8 counts, Serum Glutamic-Oxaloacetic Transaminase (SGOT), Serum Glutamic-Pyruvic Transaminase (SGPT), serum uric acid and HRQL (Health Related Quality of Life) Index scores were studied. At the end of 8 weeks, sputum conversion was seen in 86.6% patients in study group and 76.6% in placebo group. At the end of 12 weeks a highly significant increase was seen in both CD4 and CD8 counts in study group. A raised SGOT and SGPT levels (>35IU/L) were observed in 16.6% and 33.3% patients in study group; 43.33% and 53.33% in the placebo group of patients. Elevated serum uric acid levels (>6mg/dl) were observed in 20% and 33.33% in study and placebo group respectively. Average gain in HRQL score was better in patients of study group. Use of W. somnifera as an adjuvant in conjunction with anti-TB drugs used as DOTS showed a favorable effect on symptoms and immunological parameters in patients with pulmonary TB. Copyright © 2017 Tuberculosis Association of India. Published by Elsevier B.V. All rights reserved.

  1. Localized Oscillatory Energy Conversion in Magnetopause Reconnection

    NASA Astrophysics Data System (ADS)

    Burch, J. L.; Ergun, R. E.; Cassak, P. A.; Webster, J. M.; Torbert, R. B.; Giles, B. L.; Dorelli, J. C.; Rager, A. C.; Hwang, K.-J.; Phan, T. D.; Genestreti, K. J.; Allen, R. C.; Chen, L.-J.; Wang, S.; Gershman, D.; Le Contel, O.; Russell, C. T.; Strangeway, R. J.; Wilder, F. D.; Graham, D. B.; Hesse, M.; Drake, J. F.; Swisdak, M.; Price, L. M.; Shay, M. A.; Lindqvist, P.-A.; Pollock, C. J.; Denton, R. E.; Newman, D. L.

    2018-02-01

    Data from the NASA Magnetospheric Multiscale mission are used to investigate asymmetric magnetic reconnection at the dayside boundary between the Earth's magnetosphere and the solar wind. High-resolution measurements of plasmas and fields are used to identify highly localized ( 15 electron Debye lengths) standing wave structures with large electric field amplitudes (up to 100 mV/m). These wave structures are associated with spatially oscillatory energy conversion, which appears as alternatingly positive and negative values of J · E. For small guide magnetic fields the wave structures occur in the electron stagnation region at the magnetosphere edge of the electron diffusion region. For larger guide fields the structures also occur near the reconnection X-line. This difference is explained in terms of channels for the out-of-plane current (agyrotropic electrons at the stagnation point and guide field-aligned electrons at the X-line).

  2. Study on the Electrochemical Reaction Mechanism of ZnFe2O4 by In Situ Transmission Electron Microscopy

    PubMed Central

    Su, Qingmei; Wang, Shixin; Yao, Libing; Li, Haojie; Du, Gaohui; Ye, Huiqun; Fang, Yunzhang

    2016-01-01

    A family of mixed transition–metal oxides (MTMOs) has great potential for applications as anodes for lithium ion batteries (LIBs). However, the reaction mechanism of MTMOs anodes during lithiation/delithiation is remain unclear. Here, the lithiation/delithiation processes of ZnFe2O4 nanoparticles are observed dynamically using in situ transmission electron microscopy (TEM). Our results suggest that during the first lithiation process the ZnFe2O4 nanoparticles undergo a conversion process and generate a composite structure of 1–3 nm Fe and Zn nanograins within Li2O matrix. During the delithiation process, volume contraction and the conversion of Zn and Fe take place with the disappearance of Li2O, followed by the complete conversion to Fe2O3 and ZnO not the original phase ZnFe2O4. The following cycles are dominated by the full reversible phase conversion between Zn, Fe and ZnO, Fe2O3. The Fe valence evolution during cycles evidenced by electron energy–loss spectroscopy (EELS) techniques also exhibit the reversible conversion between Fe and Fe2O3 after the first lithiation, agreeing well with the in situ TEM results. Such in situ TEM observations provide valuable phenomenological insights into electrochemical reaction of MTMOs, which may help to optimize the composition of anode materials for further improved electrochemical performance. PMID:27306189

  3. Bio-inspired cofacial Fe porphyrin dimers for efficient electrocatalytic CO2 to CO conversion: Overpotential tuning by substituents at the porphyrin rings

    PubMed Central

    Zahran, Zaki N.; Mohamed, Eman A.; Naruta, Yoshinori

    2016-01-01

    Efficient reduction of CO2 into useful carbon resources particularly CO is an essential reaction for developing alternate sources of fuels and for reducing the greenhouse effect of CO2. The binuclear Ni, Fe−containing carbon monoxide dehydrogenase (CODHs) efficiently catalyzes the reduction of CO2 to CO. The location of Ni and Fe at proper positions allows their cooperation for CO2 to CO conversion through a push−pull mechanism. Bio−inspired from CODHs, we used several cofacial porphyrin dimers with different substituents as suitable ligands for holding two Fe ions with suitable Fe−Fe separation distance to efficiently and selectively promote CO2 to CO conversion with high turnover frequencies, TOFs. The substituents on the porphyrin rings greatly affect the catalysis process. By introducing electron-withdrawing/-donating groups, e.g. electron-withdrawing perfluorophenyl, at all meso positions of the porphyrin rings, the catalysis overpotential, η was minimized by ≈0.3 V compared to that obtained by introducing electron-donating mesityl groups. The Fe porphyrin dimers among reported catalysts are the most efficient ones for CO2 to CO conversion. Control experiments indicate that the high performance of the current CO2 to CO conversion catalysts is due to the presence of binuclear Fe centers at suitable Fe−Fe separation distance. PMID:27087483

  4. Bio-inspired cofacial Fe porphyrin dimers for efficient electrocatalytic CO2 to CO conversion: Overpotential tuning by substituents at the porphyrin rings.

    PubMed

    Zahran, Zaki N; Mohamed, Eman A; Naruta, Yoshinori

    2016-04-18

    Efficient reduction of CO2 into useful carbon resources particularly CO is an essential reaction for developing alternate sources of fuels and for reducing the greenhouse effect of CO2. The binuclear Ni, Fe-containing carbon monoxide dehydrogenase (CODHs) efficiently catalyzes the reduction of CO2 to CO. The location of Ni and Fe at proper positions allows their cooperation for CO2 to CO conversion through a push-pull mechanism. Bio-inspired from CODHs, we used several cofacial porphyrin dimers with different substituents as suitable ligands for holding two Fe ions with suitable Fe-Fe separation distance to efficiently and selectively promote CO2 to CO conversion with high turnover frequencies, TOFs. The substituents on the porphyrin rings greatly affect the catalysis process. By introducing electron-withdrawing/-donating groups, e.g. electron-withdrawing perfluorophenyl, at all meso positions of the porphyrin rings, the catalysis overpotential, η was minimized by ≈0.3 V compared to that obtained by introducing electron-donating mesityl groups. The Fe porphyrin dimers among reported catalysts are the most efficient ones for CO2 to CO conversion. Control experiments indicate that the high performance of the current CO2 to CO conversion catalysts is due to the presence of binuclear Fe centers at suitable Fe-Fe separation distance.

  5. Bio-inspired cofacial Fe porphyrin dimers for efficient electrocatalytic CO2 to CO conversion: Overpotential tuning by substituents at the porphyrin rings

    NASA Astrophysics Data System (ADS)

    Zahran, Zaki N.; Mohamed, Eman A.; Naruta, Yoshinori

    2016-04-01

    Efficient reduction of CO2 into useful carbon resources particularly CO is an essential reaction for developing alternate sources of fuels and for reducing the greenhouse effect of CO2. The binuclear Ni, Fe-containing carbon monoxide dehydrogenase (CODHs) efficiently catalyzes the reduction of CO2 to CO. The location of Ni and Fe at proper positions allows their cooperation for CO2 to CO conversion through a push-pull mechanism. Bio-inspired from CODHs, we used several cofacial porphyrin dimers with different substituents as suitable ligands for holding two Fe ions with suitable Fe-Fe separation distance to efficiently and selectively promote CO2 to CO conversion with high turnover frequencies, TOFs. The substituents on the porphyrin rings greatly affect the catalysis process. By introducing electron-withdrawing/-donating groups, e.g. electron-withdrawing perfluorophenyl, at all meso positions of the porphyrin rings, the catalysis overpotential, η was minimized by ≈0.3 V compared to that obtained by introducing electron-donating mesityl groups. The Fe porphyrin dimers among reported catalysts are the most efficient ones for CO2 to CO conversion. Control experiments indicate that the high performance of the current CO2 to CO conversion catalysts is due to the presence of binuclear Fe centers at suitable Fe-Fe separation distance.

  6. STEM VQ Method, Using Scanning Transmission Electron Microscopy (STEM) for Accurate Virus Quantification

    DTIC Science & Technology

    2017-02-02

    Corresponding Author Abstract Accurate virus quantification is sought, but a perfect method still eludes the scientific community. Electron...unlimited. UNCLASSIFIED 2 provides morphology data and counts all viral particles, including partial or noninfectious particles; however, EM methods ...consistent, reproducible virus quantification method called Scanning Transmission Electron Microscopy – Virus Quantification (STEM-VQ) which simplifies

  7. Dose conversion coefficients for monoenergetic electrons incident on a realistic human eye model with different lens cell populations

    NASA Astrophysics Data System (ADS)

    Nogueira, P.; Zankl, M.; Schlattl, H.; Vaz, P.

    2011-11-01

    The radiation-induced posterior subcapsular cataract has long been generally accepted to be a deterministic effect that does not occur at doses below a threshold of at least 2 Gy. Recent epidemiological studies indicate that the threshold for cataract induction may be much lower or that there may be no threshold at all. A thorough study of this subject requires more accurate dose estimates for the eye lens than those available in ICRP Publication 74. Eye lens absorbed dose per unit fluence conversion coefficients for electron irradiation were calculated using a geometrical model of the eye that takes into account different cell populations of the lens epithelium, together with the MCNPX Monte Carlo radiation transport code package. For the cell population most sensitive to ionizing radiation—the germinative cells—absorbed dose per unit fluence conversion coefficients were determined that are up to a factor of 4.8 higher than the mean eye lens absorbed dose conversion coefficients for electron energies below 2 MeV. Comparison of the results with previously published values for a slightly different eye model showed generally good agreement for all electron energies. Finally, the influence of individual anatomical variability was quantified by positioning the lens at various depths below the cornea. A depth difference of 2 mm between the shallowest and the deepest location of the germinative zone can lead to a difference between the resulting absorbed doses of up to nearly a factor of 5000 for electron energy of 0.7 MeV.

  8. Dose conversion coefficients for monoenergetic electrons incident on a realistic human eye model with different lens cell populations.

    PubMed

    Nogueira, P; Zankl, M; Schlattl, H; Vaz, P

    2011-11-07

    The radiation-induced posterior subcapsular cataract has long been generally accepted to be a deterministic effect that does not occur at doses below a threshold of at least 2 Gy. Recent epidemiological studies indicate that the threshold for cataract induction may be much lower or that there may be no threshold at all. A thorough study of this subject requires more accurate dose estimates for the eye lens than those available in ICRP Publication 74. Eye lens absorbed dose per unit fluence conversion coefficients for electron irradiation were calculated using a geometrical model of the eye that takes into account different cell populations of the lens epithelium, together with the MCNPX Monte Carlo radiation transport code package. For the cell population most sensitive to ionizing radiation-the germinative cells-absorbed dose per unit fluence conversion coefficients were determined that are up to a factor of 4.8 higher than the mean eye lens absorbed dose conversion coefficients for electron energies below 2 MeV. Comparison of the results with previously published values for a slightly different eye model showed generally good agreement for all electron energies. Finally, the influence of individual anatomical variability was quantified by positioning the lens at various depths below the cornea. A depth difference of 2 mm between the shallowest and the deepest location of the germinative zone can lead to a difference between the resulting absorbed doses of up to nearly a factor of 5000 for electron energy of 0.7 MeV.

  9. Automated vehicle counting using image processing and machine learning

    NASA Astrophysics Data System (ADS)

    Meany, Sean; Eskew, Edward; Martinez-Castro, Rosana; Jang, Shinae

    2017-04-01

    Vehicle counting is used by the government to improve roadways and the flow of traffic, and by private businesses for purposes such as determining the value of locating a new store in an area. A vehicle count can be performed manually or automatically. Manual counting requires an individual to be on-site and tally the traffic electronically or by hand. However, this can lead to miscounts due to factors such as human error A common form of automatic counting involves pneumatic tubes, but pneumatic tubes disrupt traffic during installation and removal, and can be damaged by passing vehicles. Vehicle counting can also be performed via the use of a camera at the count site recording video of the traffic, with counting being performed manually post-recording or using automatic algorithms. This paper presents a low-cost procedure to perform automatic vehicle counting using remote video cameras with an automatic counting algorithm. The procedure would utilize a Raspberry Pi micro-computer to detect when a car is in a lane, and generate an accurate count of vehicle movements. The method utilized in this paper would use background subtraction to process the images and a machine learning algorithm to provide the count. This method avoids fatigue issues that are encountered in manual video counting and prevents the disruption of roadways that occurs when installing pneumatic tubes

  10. Quantitative secondary electron detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agrawal, Jyoti; Joy, David C.; Nayak, Subuhadarshi

    Quantitative Secondary Electron Detection (QSED) using the array of solid state devices (SSD) based electron-counters enable critical dimension metrology measurements in materials such as semiconductors, nanomaterials, and biological samples (FIG. 3). Methods and devices effect a quantitative detection of secondary electrons with the array of solid state detectors comprising a number of solid state detectors. An array senses the number of secondary electrons with a plurality of solid state detectors, counting the number of secondary electrons with a time to digital converter circuit in counter mode.

  11. The effect of deadtime and electronic transients on the predelay bias in neutron coincidence counting

    DOE PAGES

    Croft, Stephen; Favalli, Andrea; Swinhoe, Martyn T.; ...

    2016-01-13

    In neutron coincidence counting using the shift register autocorrelation technique, a predelay is inserted before the opening of the (R+A)-gate. Operationally the purpose of the predelay is to ensure that the (R+A)- and A-gates have matched effectiveness, otherwise a bias will result when the difference between the gates is used to calculate the accidentals corrected net reals coincidence rate. The necessity for the predelay was established experimentally in the early practical development and deployment of the coincidence counting method. The choice of predelay for a given detection system is usually made experimentally, but even today long standing traditional values (e.g.,more » 4.5 µs) are often used. This, at least in part, reflects the fact that a deep understanding of why a finite predelay setting is needed and how to control the underlying influences has not been fully worked out. We attempt, in this paper, to gain some insight into the problem. One aspect we consider is the slowing down, thermalization, and diffusion of neutrons in the detector moderator. The other is the influence of deadtime and electronic transients. These may be classified as non-ideal detector behaviors because they are not included in the conventional model used to interpret measurement data. From improved understanding of the effect of deadtime and electronic transients on the predelay bias in neutron coincidence counting, the performance of both future and current coincidence counters may be improved.« less

  12. The effect of deadtime and electronic transients on the predelay bias in neutron coincidence counting

    NASA Astrophysics Data System (ADS)

    Croft, Stephen; Favalli, Andrea; Swinhoe, Martyn T.; Goddard, Braden; Stewart, Scott

    2016-04-01

    In neutron coincidence counting using the shift register autocorrelation technique, a predelay is inserted before the opening of the (R+A)-gate. Operationally the purpose of the predelay is to ensure that the (R+A)- and A-gates have matched effectiveness, otherwise a bias will result when the difference between the gates is used to calculate the accidentals corrected net reals coincidence rate. The necessity for the predelay was established experimentally in the early practical development and deployment of the coincidence counting method. The choice of predelay for a given detection system is usually made experimentally, but even today long standing traditional values (e.g., 4.5 μs) are often used. This, at least in part, reflects the fact that a deep understanding of why a finite predelay setting is needed and how to control the underlying influences has not been fully worked out. In this paper we attempt to gain some insight into the problem. One aspect we consider is the slowing down, thermalization, and diffusion of neutrons in the detector moderator. The other is the influence of deadtime and electronic transients. These may be classified as non-ideal detector behaviors because they are not included in the conventional model used to interpret measurement data. From improved understanding of the effect of deadtime and electronic transients on the predelay bias in neutron coincidence counting, the performance of both future and current coincidence counters may be improved.

  13. Personnel electronic neutron dosimeter

    DOEpatents

    Falk, R.B.; Tyree, W.H.

    1982-03-03

    A personnel electronic dosimeter includes a neutron-proton and neutron-alpha converter for providing an electrical signal having a magnitude proportional to the energy of a detected proton or alpha particle produced from the converter, a pulse generator circuit for generating a pulse having a duration controlled by the weighed effect of the amplitude of the electrical signal, an oscillator enabled by the pulse for generating a train of clock pulses for a time dependent upon the pulse length, a counter for counting the clock pulses, and an indicator for providing a direct reading and aural alarm when the count indicates that the wearer has been exposed to a selected level of neutron dose equivalent.

  14. A low-noise current-sensitive amplifier-discriminator system for beta particle counting.

    PubMed

    Sephton, J P; Johansson, L C; Williams, J M

    2008-01-01

    NPL has developed a low-noise current amplifier/discriminator system for radionuclides that emit low-energy electrons and X-rays. The new beta amplifier is based on the low-noise Amptek A-250 operational amplifier. The design has been configured for optimum signal to noise ratio. The new amplifier is described and results obtained using primarily electron-capture decaying radionuclides are presented. The new amplifier gives rise to higher particle detection efficiency than the previously used Atomic Energy of Canada Limited-designed amplifier. This is shown by measurements of (54)Mn and (65)Zn. The counting plateaux are significantly longer and have reduced gradients.

  15. Personnel electronic neutron dosimeter

    DOEpatents

    Falk, Roger B.; Tyree, William H.

    1984-12-18

    A personnel electronic dosimeter includes a neutron-proton and neutron-alpha converter for providing an electrical signal having a magnitude proportional to the energy of a detected proton or alpha particle produced from the converter, a pulse generator circuit for generating a pulse having a duration controlled by the weighed effect of the amplitude of the electrical signal, an oscillator enabled by the pulse for generating a train of clock pulses for a time dependent upon the pulse length, a counter for counting the clock pulses, and an indicator for providing a direct reading and aural alarm when the count indicates that the wearer has been exposed to a selected level of neutron dose equivalent.

  16. Low-noise quantum frequency down-conversion of indistinguishable photons (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kambs, Benjamin; Kettler, Jan; Bock, Matthias; Becker, Jonas; Arend, Carsten; Jetter, Michael; Michler, Peter; Becher, Christoph

    2016-04-01

    Single-photon sources based on quantum dots have been shown to exhibit almost ideal properties such as high brightness and purity in terms of clear anti-bunching as well as high two-photon interference visibilities of the emitted photons, making them promising candidates for different quantum information applications such as quantum computing, quantum communication and quantum teleportation. However, as most single-photon sources also quantum dots typically emit light at wavelengths of electronic transitions within the visible or the near infrared range. In order to establish quantum networks with remote building blocks, low-loss single photons at telecom wavelengths are preferable, though. Despite recent progress on emitters of telecom-photons, the most efficient single-photon sources still work at shorter wavelengths. On that matter, quantum frequency down-conversion, being a nonlinear optical process, has been used in recent years to alter the wavelength of single photons to the telecom wavelength range while conserving their nonclassical properties. Characteristics such as lifetime, first-order coherence, anti-bunching and entanglement have been shown to be conserved or even improved due to background suppression during the conversion process, while the conservation of indistinguishability was yet to be shown. Here we present our experimental results on quantum frequency down-conversion of single photons emitted by an InAs/GaAs quantum dot at 903.6 nm following a pulsed excitation of a p-shell exciton at 884 nm. The emitted fluorescence photons are mixed with a strong pump-field at 2155 nm inside a periodically poled lithium niobate ridge waveguide and converted to 1557 nm. Common issues of a large background due to Raman-scattered pump-light photons spectrally overlapping with the converted single photons could largely be avoided, as the pump-wavelength was chosen to be fairly longer than the target wavelength. Additional narrowband spectral filtering at the telecom regime as a result of the small conversion bandwidth and using a high-performance fiber-Bragg-grating solely left the detector dark counts as the only noise source in our setup. Therefore, we could achieve conversion efficiencies of more than 20 %. In order to test the indistinguishability, sequentially emitted photons were fed into a Mach-Zehnder interferometer and spatially as well as temporally overlapped at the output beam splitter. Cross-correlation measurements between both output-ports of the beam splitter exhibit two-photon interference contrasts of more than 40 % prior to and after the down-conversion step. Accordingly, we demonstrate that the process of quantum frequency conversion preserves photon indistinguishability and can be used to establish a versatile source of indistinguishable single photons at the telecom C-Band. Furthermore our scheme allows for converting photons in a wavelength band from 900 nm to 910 nm to the same telecom target wavelength. This enables us to test indistinguishability of frequency-converted photons, originally stemming from different sources with dinstinguishable wavelengths.

  17. Method for the photocatalytic conversion of gas hydrates

    DOEpatents

    Taylor, Charles E.; Noceti, Richard P.; Bockrath, Bradley C.

    2001-01-01

    A method for converting methane hydrates to methanol, as well as hydrogen, through exposure to light. The process includes conversion of methane hydrates by light where a radical initiator has been added, and may be modified to include the conversion of methane hydrates with light where a photocatalyst doped by a suitable metal and an electron transfer agent to produce methanol and hydrogen. The present invention operates at temperatures below 0.degree. C., and allows for the direct conversion of methane contained within the hydrate in situ.

  18. Confocal Raman and electronic microscopy studies on the topotactic conversion of calcium carbonate from Pomacea lineate shells into hydroxyapatite bioceramic materials in phosphate media.

    PubMed

    dePaula, S M; Huila, M F G; Araki, K; Toma, H E

    2010-12-01

    Conversion of Pomacea lineate shells into hydroxyapatite (HA) bioceramic materials was investigated by their in vitro treatment with phosphate solutions, at room temperature. Confocal Raman microscopy revealed that the conversion proceeds at distinct rates through the nacreous or periostracum sides of the shell. The conversion can be accelerated using powdered samples, yielding biocompatible materials of great interest in biomedicine. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. Heat Exchanger Cleaning in Support of Ocean Thermal Energy Conversion (OTEC) - Electronics Subsystems.

    DTIC Science & Technology

    1980-12-01

    exchangers . The performance of heat exchangers will therefore decide the ultimate success or failure of OTEC . BACKGROUND Hardware development in support...8217AD-AG9 216 NAVAL COASTAL SYSTEMS CENTER PANAMA CITY FL F/S 13/10 HEAT EXCHANGER CLEANING IN SUPPORT OF OCEAN THERMAL ENERGY CONV"-ETC(U) DEC 80 D F...block minI ber) Heat Exchangers Chlorination Cleaning Electronics Thermal Energy Conversion 2%AISTRACT (Centhmes en; rewwe ide it neseer end iftefb Op

  20. Investigation of ultra low-dose scans in the context of quantum-counting clinical CT

    NASA Astrophysics Data System (ADS)

    Weidinger, T.; Buzug, T. M.; Flohr, T.; Fung, G. S. K.; Kappler, S.; Stierstorfer, K.; Tsui, B. M. W.

    2012-03-01

    In clinical computed tomography (CT), images from patient examinations taken with conventional scanners exhibit noise characteristics governed by electronics noise, when scanning strongly attenuating obese patients or with an ultra-low X-ray dose. Unlike CT systems based on energy integrating detectors, a system with a quantum counting detector does not suffer from this drawback. Instead, the noise from the electronics mainly affects the spectral resolution of these detectors. Therefore, it does not contribute to the image noise in spectrally non-resolved CT images. This promises improved image quality due to image noise reduction in scans obtained from clinical CT examinations with lowest X-ray tube currents or obese patients. To quantify the benefits of quantum counting detectors in clinical CT we have carried out an extensive simulation study of the complete scanning and reconstruction process for both kinds of detectors. The simulation chain encompasses modeling of the X-ray source, beam attenuation in the patient, and calculation of the detector response. Moreover, in each case the subsequent image preprocessing and reconstruction is modeled as well. The simulation-based, theoretical evaluation is validated by experiments with a novel prototype quantum counting system and a Siemens Definition Flash scanner with a conventional energy integrating CT detector. We demonstrate and quantify the improvement from image noise reduction achievable with quantum counting techniques in CT examinations with ultra-low X-ray dose and strong attenuation.

  1. Single-photon counting multicolor multiphoton fluorescence microscope.

    PubMed

    Buehler, Christof; Kim, Ki H; Greuter, Urs; Schlumpf, Nick; So, Peter T C

    2005-01-01

    We present a multicolor multiphoton fluorescence microscope with single-photon counting sensitivity. The system integrates a standard multiphoton fluorescence microscope, an optical grating spectrograph operating in the UV-Vis wavelength region, and a 16-anode photomultiplier tube (PMT). The major technical innovation is in the development of a multichannel photon counting card (mC-PhCC) for direct signal collection from multi-anode PMTs. The electronic design of the mC-PhCC employs a high-throughput, fully-parallel, single-photon counting scheme along with a high-speed electrical or fiber-optical link interface to the data acquisition computer. There is no electronic crosstalk among the detection channels of the mC-PhCC. The collected signal remains linear up to an incident photon rate of 10(8) counts per second. The high-speed data interface offers ample bandwidth for real-time readout: 2 MByte lambda-stacks composed of 16 spectral channels, 256 x 256 pixel image with 12-bit dynamic range can be transferred at 30 frames per second. The modular design of the mC-PhCC can be readily extended to accommodate PMTs of more anodes. Data acquisition from a 64-anode PMT has been verified. As a demonstration of system performance, spectrally resolved images of fluorescent latex spheres and ex-vivo human skin are reported. The multicolor multiphoton microscope is suitable for highly sensitive, real-time, spectrally-resolved three-dimensional imaging in biomedical applications.

  2. Three dimensional particle-in-cell simulations of electron beams created via reflection of intense laser light from a water target

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ngirmang, Gregory K., E-mail: ngirmang.1@osu.edu; Orban, Chris; Feister, Scott

    We present 3D Particle-in-Cell (PIC) modeling of an ultra-intense laser experiment by the Extreme Light group at the Air Force Research Laboratory using the Large Scale Plasma (LSP) PIC code. This is the first time PIC simulations have been performed in 3D for this experiment which involves an ultra-intense, short-pulse (30 fs) laser interacting with a water jet target at normal incidence. The laser-energy-to-ejected-electron-energy conversion efficiency observed in 2D(3v) simulations were comparable to the conversion efficiencies seen in the 3D simulations, but the angular distribution of ejected electrons in the 2D(3v) simulations displayed interesting differences with the 3D simulations' angular distribution;more » the observed differences between the 2D(3v) and 3D simulations were more noticeable for the simulations with higher intensity laser pulses. An analytic plane-wave model is discussed which provides some explanation for the angular distribution and energies of ejected electrons in the 2D(3v) simulations. We also performed a 3D simulation with circularly polarized light and found a significantly higher conversion efficiency and peak electron energy, which is promising for future experiments.« less

  3. Investigation of direct solar-to-microwave energy conversion techniques

    NASA Technical Reports Server (NTRS)

    Chatterton, N. E.; Mookherji, T. K.; Wunsch, P. K.

    1978-01-01

    Identification of alternative methods of producing microwave energy from solar radiation for purposes of directing power to the Earth from space is investigated. Specifically, methods of conversion of optical radiation into microwave radiation by the most direct means are investigated. Approaches based on demonstrated device functioning and basic phenomenologies are developed. There is no system concept developed, that is competitive with current baseline concepts. The most direct methods of conversion appear to require an initial step of production of coherent laser radiation. Other methods generally require production of electron streams for use in solid-state or cavity-oscillator systems. Further development is suggested to be worthwhile for suggested devices and on concepts utilizing a free-electron stream for the intraspace station power transport mechanism.

  4. Unravelling the structural-electronic impact of arylamine electron-donating antennas on the performances of efficient ruthenium sensitizers for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Chen, Wang-Chao; Kong, Fan-Tai; Ghadari, Rahim; Li, Zhao-Qian; Guo, Fu-Ling; Liu, Xue-Peng; Huang, Yang; Yu, Ting; Hayat, Tasawar; Dai, Song-Yuan

    2017-04-01

    We report a systematic research to understand the structural-electronic impact of the arylamine electron-donating antennas on the performances of the ruthenium complexes for dye-sensitized solar cells. Three ruthenium complexes functionalized with different arylamine electron-donating antennas (N,N-diethyl-aniline in RC-31, julolidine in RC-32 and N,N-dibenzyl-aniline in RC-36) are designed and synthesized. The photoelectric properties of RC dyes exhibit apparent discrepancy, which are ascribed to different structural nature and electronic delocalization ability of these arylamine electron-donating system. In conjunction with TiO2 microspheres photoanode and a typical coadsorbent DPA, the devices sensitized by RC-36 achieve the best conversion efficiency of 10.23%. The UV-Vis absorption, electrochemical measurement, incident photon-to-current conversion efficiency and transient absorption spectra confirm that the excellent performance of RC-36 is induced by synergistically structural-electronic impacts from enhanced absorption capacity and well-tuned electronic characteristics. These observations provide valuable insights into the molecular engineering methodology based on fine tuning structural-electronic impact of electron-donating antenna in efficient ruthenium sensitizers.

  5. Enhanced generation and anisotropic Coulomb scattering of hot electrons in an ultra-broadband plasmonic nanopatch metasurface.

    PubMed

    Sykes, Matthew E; Stewart, Jon W; Akselrod, Gleb M; Kong, Xiang-Tian; Wang, Zhiming; Gosztola, David J; Martinson, Alex B F; Rosenmann, Daniel; Mikkelsen, Maiken H; Govorov, Alexander O; Wiederrecht, Gary P

    2017-10-17

    The creation of energetic electrons through plasmon excitation of nanostructures before thermalization has been proposed for a wide number of applications in optical energy conversion and ultrafast nanophotonics. However, the use of "nonthermal" electrons is primarily limited by both a low generation efficiency and their ultrafast decay. We report experimental and theoretical results on the use of broadband plasmonic nanopatch metasurfaces comprising a gold substrate coupled to silver nanocubes that produce large concentrations of hot electrons, which we measure using transient absorption spectroscopy. We find evidence for three subpopulations of nonthermal carriers, which we propose arise from anisotropic electron-electron scattering within sp-bands near the Fermi surface. The bimetallic character of the metasurface strongly impacts the physics, with dissipation occurring primarily in the gold, whereas the quantum process of hot electron generation takes place in both components. Our calculations show that the choice of geometry and materials is crucial for producing strong ultrafast nonthermal electron components.The creation of energetic electrons through plasmon excitation has implications in optical energy conversion and ultrafast nanophotonics. Here, the authors find evidence for three subpopulations of nonthermal carriers which arise from anisotropic electron-electron scattering near the Fermi surface.

  6. Multiphoton entanglement concentration and quantum cryptography.

    PubMed

    Durkin, Gabriel A; Simon, Christoph; Bouwmeester, Dik

    2002-05-06

    Multiphoton states from parametric down-conversion can be entangled both in polarization and photon number. Maximal high-dimensional entanglement can be concentrated postselectively from these states via photon counting. This makes them natural candidates for quantum key distribution, where the presence of more than one photon per detection interval has up to now been considered undesirable. We propose a simple multiphoton cryptography protocol for the case of low losses.

  7. Sonoma tree vole habitat on managed redwood and Douglas-fir forestlands in north coastal California

    Treesearch

    Sal J. Chinnici; David Bigger; Eric Johnson

    2012-01-01

    The Sonoma Tree Vole (Arborimus pomo) – a small arboreal mammal associated with mature forests – is a California Species of Special Concern due to concerns regarding loss of habitat from harvest, fire, and conversion. By counting their nests, we examined A. pomo use of pole to mature forest seral stages from 2001 to 2005 using...

  8. Electronic Classroom.

    ERIC Educational Resources Information Center

    Price, Harry A.

    The conversion of a limited-use, "white elephant" auditorium into an electronic classroom to be used as a flexible instructional space with numerous potentials for enrichment of learning via utilization of electromechanical aids. (FS)

  9. Improved efficiency of NiOx-based p-i-n perovskite solar cells by using PTEG-1 as electron transport layer

    NASA Astrophysics Data System (ADS)

    Groeneveld, Bart G. H. M.; Najafi, Mehrdad; Steensma, Bauke; Adjokatse, Sampson; Fang, Hong-Hua; Jahani, Fatemeh; Qiu, Li; ten Brink, Gert H.; Hummelen, Jan C.; Loi, Maria Antonietta

    2017-07-01

    We present efficient p-i-n type perovskite solar cells using NiOx as the hole transport layer and a fulleropyrrolidine with a triethylene glycol monoethyl ether side chain (PTEG-1) as electron transport layer. This electron transport layer leads to higher power conversion efficiencies compared to perovskite solar cells with PCBM (phenyl-C61-butyric acid methyl ester). The improved performance of PTEG-1 devices is attributed to the reduced trap-assisted recombination and improved charge extraction in these solar cells, as determined by light intensity dependence and photoluminescence measurements. Through optimization of the hole and electron transport layers, the power conversion efficiency of the NiOx/perovskite/PTEG-1 solar cells was increased up to 16.1%.

  10. Internet Relay Chat.

    ERIC Educational Resources Information Center

    Simpson, Carol

    2000-01-01

    Describes Internet Relay Chats (IRCs), electronic conversations over the Internet that allow multiple users to write messages, and their applications to educational settings such as teacher collaboration and conversations between classes. Explains hardware and software requirements, IRC organization into nets and channels, and benefits and…

  11. QUARTERLY PROGRESS REPORT NO. 83,

    DTIC Science & Technology

    Topics included are: microwave spectroscopy; radio astronomy; solid-state microwave electronics; optical and infrared spectroscopy; physical electronics and surface physics; physical acoustics; plasma physics; gaseous electronics; plasmas and controlled nuclear fusion ; energy conversion research; statistical communication theory; linguistics; cognitive information processing; communications biophysics; neurophysiology; computation research.

  12. Energy Conversion Mechanism for Electron Perpendicular Energy in High Guide-Field Reconnection

    NASA Astrophysics Data System (ADS)

    Guo, Xuehan; Horiuchi, Ritoku; Kaminou, Yasuhiro; Cheng, Frank; Ono, Yasushi

    2016-10-01

    The energy conversion mechanism for electron perpendicular energy, both the thermal and the kinetic energy, is investigated by means of two-dimensional, full-particle simulations in an open system. It is shown that electron perpendicular heating is mainly due to the breaking of magnetic moment conservation in separatrix region because the charge separation generates intense variation of electric field within the electron Larmor radius. Meanwhile, electron perpendicular acceleration takes place manly due to the polarization drift term as well as the curvature drift term of E . u⊥ in the downstream near the X-point. The enhanced electric field due to the charge separation there results in a significant effect of the polarization drift term on the dissipation of magnetic energy within the ion inertia length in the downstream. Japan Society for the Promotion of Science (JSPS) Fellows 15J03758.

  13. Coherent Generation of Photo-Thermo-Acoustic Wave from Graphene Sheets

    NASA Astrophysics Data System (ADS)

    Tian, Yichao; Tian, He; Wu, Yanling; Zhu, Leilei; Tao, Luqi; Zhang, Wei; Shu, Yi; Xie, Dan; Yang, Yi; Wei, Zhiyi; Lu, Xinghua; Ren, Tian-Ling; Shih, Chih-Kang; Zhao, Jimin

    Many remarkable properties of graphene are derived from its large energy window for Dirac-like electronic states and have been explored for applications in electronics and photonics. In addition, strong electron-phonon interaction in graphene has led to efficient photo-thermo energy conversions, which has been harnessed for energy applications. By combining the wavelength independent absorption property and the efficient photo-thermo energy conversion, here we report a new type of applications in sound wave generation underlined by a photo-thermo-acoustic energy conversion mechanism. Most significantly, by utilizing ultrafast optical pulses, we demonstrate the ability to control the phase of sound waves generated by the photo-thermal-acoustic process. Our finding paves the way for new types of applications for graphene, such as remote non-contact speakers, optical-switching acoustic devices, etc. National Basic Research Program of China MOST (2012CB821402), External Cooperation Program of Chinese Academy of Sciences (GJHZ1403), and National Natural Science Foundation of China (11274372).

  14. Orbitally-driven giant phonon anharmonicity in SnSe

    DOE PAGES

    Li, Chen W.; Hong, Jiawang; May, Andrew F.; ...

    2015-10-19

    We understand that elementary excitations and their couplings in condensed matter systems is critical to develop better energy-conversion devices. In thermoelectric materials, the heat-to-electricity conversion efficiency is directly improved by suppressing the propagation of phonon quasiparticles responsible for macroscopic thermal transport. The material with the current record for thermoelectric conversion efficiency, SnSe, achieves an ultra-low thermal conductivity, but the mechanism enabling this strong phonon scattering remains largely unknown. Using inelastic neutron scattering measurements and first-principles simulations, we mapped the four-dimensional phonon dispersion surfaces of SnSe, and revealed the origin of ionic-potential anharmonicity responsible for the unique properties of SnSe. Wemore » show that the giant phonon scattering arises from an unstable electronic structure, with orbital interactions leading to a ferroelectric-like lattice instability. Our results provide a microscopic picture connecting electronic structure and phonon anharmonicity in SnSe, and offers precious insights on how electron-phonon and phononphonon interactions may lead to the realization of ultra-low thermal conductivity.« less

  15. Excitation transfer and trapping kinetics in plant photosystem I probed by two-dimensional electronic spectroscopy.

    PubMed

    Akhtar, Parveen; Zhang, Cheng; Liu, Zhengtang; Tan, Howe-Siang; Lambrev, Petar H

    2018-03-01

    Photosystem I is a robust and highly efficient biological solar engine. Its capacity to utilize virtually every absorbed photon's energy in a photochemical reaction generates great interest in the kinetics and mechanisms of excitation energy transfer and charge separation. In this work, we have employed room-temperature coherent two-dimensional electronic spectroscopy and time-resolved fluorescence spectroscopy to follow exciton equilibration and excitation trapping in intact Photosystem I complexes as well as core complexes isolated from Pisum sativum. We performed two-dimensional electronic spectroscopy measurements with low excitation pulse energies to record excited-state kinetics free from singlet-singlet annihilation. Global lifetime analysis resolved energy transfer and trapping lifetimes closely matches the time-correlated single-photon counting data. Exciton energy equilibration in the core antenna occurred on a timescale of 0.5 ps. We further observed spectral equilibration component in the core complex with a 3-4 ps lifetime between the bulk Chl states and a state absorbing at 700 nm. Trapping in the core complex occurred with a 20 ps lifetime, which in the supercomplex split into two lifetimes, 16 ps and 67-75 ps. The experimental data could be modelled with two alternative models resulting in equally good fits-a transfer-to-trap-limited model and a trap-limited model. However, the former model is only possible if the 3-4 ps component is ascribed to equilibration with a "red" core antenna pool absorbing at 700 nm. Conversely, if these low-energy states are identified with the P 700 reaction centre, the transfer-to-trap-model is ruled out in favour of a trap-limited model.

  16. HAADF-STEM atom counting in atom probe tomography specimens: Towards quantitative correlative microscopy.

    PubMed

    Lefebvre, W; Hernandez-Maldonado, D; Moyon, F; Cuvilly, F; Vaudolon, C; Shinde, D; Vurpillot, F

    2015-12-01

    The geometry of atom probe tomography tips strongly differs from standard scanning transmission electron microscopy foils. Whereas the later are rather flat and thin (<20 nm), tips display a curved surface and a significantly larger thickness. As far as a correlative approach aims at analysing the same specimen by both techniques, it is mandatory to explore the limits and advantages imposed by the particular geometry of atom probe tomography specimens. Based on simulations (electron probe propagation and image simulations), the possibility to apply quantitative high angle annular dark field scanning transmission electron microscopy to of atom probe tomography specimens has been tested. The influence of electron probe convergence and the benefice of deconvolution of electron probe point spread function electron have been established. Atom counting in atom probe tomography specimens is for the first time reported in this present work. It is demonstrated that, based on single projections of high angle annular dark field imaging, significant quantitative information can be used as additional input for refining the data obtained by correlative analysis of the specimen in APT, therefore opening new perspectives in the field of atomic scale tomography. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Developing Web Services for Technology Education. The Graphic Communication Electronic Publishing Project.

    ERIC Educational Resources Information Center

    Sanders, Mark

    1999-01-01

    Graphic Communication Electronic Publishing Project supports a Web site (http://TechEd.vt.edu/gcc/) for graphic communication teachers and students, providing links to Web materials, conversion of print materials to electronic formats, and electronic products and services including job listings, resume posting service, and a listserv. (SK)

  18. A Multi-Contact, Low Capacitance HPGe Detector for High Rate Gamma Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cox, Christopher

    2014-12-04

    The detection, identification and non-destructive assay of special nuclear materials and nuclear fission by-products are critically important activities in support of nuclear non-proliferation programs. Both national and international nuclear safeguard agencies recognize that current accounting methods for spent nuclear fuel are inadequate from a safeguards perspective. Radiation detection and analysis by gamma-ray spectroscopy is a key tool in this field, but no instrument exists that can deliver the required performance (energy resolution and detection sensitivity) in the presence of very high background count rates encountered in the nuclear safeguards arena. The work of this project addresses this critical need bymore » developing a unique gamma-ray detector based on high purity germanium that has the previously unachievable property of operating in the 1 million counts-per-second range while achieving state-of-the-art energy resolution necessary to identify and analyze the isotopes of interest. The technical approach was to design and fabricate a germanium detector with multiple segmented electrodes coupled to multi-channel high rate spectroscopy electronics. Dividing the germanium detector’s signal electrode into smaller sections offers two advantages; firstly, the energy resolution of the detector is potentially improved, and secondly, the detector is able to operate at higher count rates. The design challenges included the following; determining the optimum electrode configuration to meet the stringent energy resolution and count rate requirements; determining the electronic noise (and therefore energy resolution) of the completed system after multiple signals are recombined; designing the germanium crystal housing and vacuum cryostat; and customizing electronics to perform the signal recombination function in real time. In this phase I work, commercial off-the-shelf electrostatic modeling software was used to develop the segmented germanium crystal geometry, which underwent several iterations before an optimal electrode configuration was found. The model was tested and validated against real-world measurements with existing germanium detectors. Extensive modeling of electronic noise was conducted using established formulae, and real-world measurements were performed on candidate front-end electronic components. This initial work proved the feasibility of the design with respect to expected high count rate and energy resolution performance. Phase I also delivered the mechanical design of the detector housing and vacuum cryostat to be built in Phase II. Finally, a Monte Carlo simulation was created to show the response of the complete design to a Cs-137 source. This development presents a significant advance for nuclear safeguards instrumentation with increased speed and accuracy of detection and identification of special nuclear materials. Other significant applications are foreseen for a gamma-ray detector that delivers high energy resolution (1keV FWHM noise) at high count rate (1 Mcps), especially in the areas of physics research and materials analysis.« less

  19. Exceeding the solar cell Shockley-Queisser limit via thermal up-conversion of low-energy photons

    NASA Astrophysics Data System (ADS)

    Boriskina, Svetlana V.; Chen, Gang

    2014-03-01

    Maximum efficiency of ideal single-junction photovoltaic (PV) cells is limited to 33% (for 1 sun illumination) by intrinsic losses such as band edge thermalization, radiative recombination, and inability to absorb below-bandgap photons. This intrinsic thermodynamic limit, named after Shockley and Queisser (S-Q), can be exceeded by utilizing low-energy photons either via their electronic up-conversion or via the thermophotovoltaic (TPV) conversion process. However, electronic up-conversion systems have extremely low efficiencies, and practical temperature considerations limit the operation of TPV converters to the narrow-gap PV cells. Here we develop a conceptual design of a hybrid TPV platform, which exploits thermal up-conversion of low-energy photons and is compatible with conventional silicon PV cells by using spectral and directional selectivity of the up-converter. The hybrid platform offers sunlight-to-electricity conversion efficiency exceeding that imposed by the S-Q limit on the corresponding PV cells across a broad range of bandgap energies, under low optical concentration (1-300 suns), operating temperatures in the range 900-1700 K, and in simple flat panel designs. We demonstrate maximum conversion efficiency of 73% under illumination by non-concentrated sunlight. A detailed analysis of non-ideal hybrid platforms that allows for up to 15% of absorption/re-emission losses yields limiting efficiency value of 45% for Si PV cells.

  20. Roadmap on optical energy conversion

    NASA Astrophysics Data System (ADS)

    Boriskina, Svetlana V.; Green, Martin A.; Catchpole, Kylie; Yablonovitch, Eli; Beard, Matthew C.; Okada, Yoshitaka; Lany, Stephan; Gershon, Talia; Zakutayev, Andriy; Tahersima, Mohammad H.; Sorger, Volker J.; Naughton, Michael J.; Kempa, Krzysztof; Dagenais, Mario; Yao, Yuan; Xu, Lu; Sheng, Xing; Bronstein, Noah D.; Rogers, John A.; Alivisatos, A. Paul; Nuzzo, Ralph G.; Gordon, Jeffrey M.; Wu, Di M.; Wisser, Michael D.; Salleo, Alberto; Dionne, Jennifer; Bermel, Peter; Greffet, Jean-Jacques; Celanovic, Ivan; Soljacic, Marin; Manor, Assaf; Rotschild, Carmel; Raman, Aaswath; Zhu, Linxiao; Fan, Shanhui; Chen, Gang

    2016-07-01

    For decades, progress in the field of optical (including solar) energy conversion was dominated by advances in the conventional concentrating optics and materials design. In recent years, however, conceptual and technological breakthroughs in the fields of nanophotonics and plasmonics combined with a better understanding of the thermodynamics of the photon energy-conversion processes reshaped the landscape of energy-conversion schemes and devices. Nanostructured devices and materials that make use of size quantization effects to manipulate photon density of states offer a way to overcome the conventional light absorption limits. Novel optical spectrum splitting and photon-recycling schemes reduce the entropy production in the optical energy-conversion platforms and boost their efficiencies. Optical design concepts are rapidly expanding into the infrared energy band, offering new approaches to harvest waste heat, to reduce the thermal emission losses, and to achieve noncontact radiative cooling of solar cells as well as of optical and electronic circuitries. Light-matter interaction enabled by nanophotonics and plasmonics underlie the performance of the third- and fourth-generation energy-conversion devices, including up- and down-conversion of photon energy, near-field radiative energy transfer, and hot electron generation and harvesting. Finally, the increased market penetration of alternative solar energy-conversion technologies amplifies the role of cost-driven and environmental considerations. This roadmap on optical energy conversion provides a snapshot of the state of the art in optical energy conversion, remaining challenges, and most promising approaches to address these challenges. Leading experts authored 19 focused short sections of the roadmap where they share their vision on a specific aspect of this burgeoning research field. The roadmap opens up with a tutorial section, which introduces major concepts and terminology. It is our hope that the roadmap will serve as an important resource for the scientific community, new generations of researchers, funding agencies, industry experts, and investors.

  1. The conversion to electronic hospital notes at Mayo Clinic. Overcoming barriers and challenges.

    PubMed

    Andreen, Debra L; Dobie, Linda J; Jasperson, Jan C; Lucas, Thomas A; Wubbenhorst, Cathryn L

    2010-01-01

    This article describes the conversion to electronic hospital notes at a large, multi-specialty group practice: Mayo Clinic in Rochester, Minnesota. Because of the size of the institution and the barriers to the adoption of electronic notes, the process was a gradual one that took several years. Making a convincing case for change to institutional leaders and maintaining their support was crucial to success. Equally vital was the careful investigation of user requirements and the development of software features that allowed providers to complete their notes quickly in the fast-paced hospital environment. Care providers discovered the value of having immediate access to legible hospital notes throughout the campus and from remote locations.

  2. Integrated electronics for time-resolved array of single-photon avalanche diodes

    NASA Astrophysics Data System (ADS)

    Acconcia, G.; Crotti, M.; Rech, I.; Ghioni, M.

    2013-12-01

    The Time Correlated Single Photon Counting (TCSPC) technique has reached a prominent position among analytical methods employed in a great variety of fields, from medicine and biology (fluorescence spectroscopy) to telemetry (laser ranging) and communication (quantum cryptography). Nevertheless the development of TCSPC acquisition systems featuring both a high number of parallel channels and very high performance is still an open challenge: to satisfy the tight requirements set by the applications, a fully parallel acquisition system requires not only high efficiency single photon detectors but also a read-out electronics specifically designed to obtain the highest performance in conjunction with these sensors. To this aim three main blocks have been designed: a gigahertz bandwidth front-end stage to directly read the custom technology SPAD array avalanche current, a reconfigurable logic to route the detectors output signals to the acquisition chain and an array of time measurement circuits capable of recording the photon arrival times with picoseconds time resolution and a very high linearity. An innovative architecture based on these three circuits will feature a very high number of detectors to perform a truly parallel spatial or spectral analysis and a smaller number of high performance time-to-amplitude converter offering very high performance and a very high conversion frequency while limiting the area occupation and power dissipation. The routing logic will make the dynamic connection between the two arrays possible in order to guarantee that no information gets lost.

  3. Acetylacetone as an efficient electron shuttle for concerted redox conversion of arsenite and nitrate in the opposite direction.

    PubMed

    Chen, Zhihao; Song, Xiaojie; Zhang, Shujuan; Wu, Bingdang; Zhang, Guoyang; Pan, Bingcai

    2017-11-01

    The redox conversion of arsenite and nitrate has direct effects on their potential environment risks. Due to the similar reduction potentials, there are few technologies that can simultaneously oxidize arsenite and reduce nitrate in one process. Here, we demonstrate that a diketone-mediated photochemical process could efficiently do this. A combined experimental and theoretical investigation was conducted to elucidate the mechanisms behind the redox conversion in the UV/acetylacetone (AA) process. Our key finding is that UV irradiation significantly changed the redox potential of AA. The excited AA, 3 (AA)*, acted as a semiquinone radical-like electron shuttle. For arsenite oxidation, the efficiency of 3 (AA)* was 1-2 orders of magnitude higher than those of quinone-type electron shuttles, whereas the consumption of AA was 2-4 orders of magnitude less than those of benzonquinones. The oxidation of arsenite and reduction of nitrate could be both accelerated when they existed together in UV/AA process. The results indicate that small diketones are some neglected but potent electron shuttles of great application potential in regulating aquatic redox reactions with the combination of UV irradiation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Thermoelectric Properties of Complex Oxide Heterostructures

    NASA Astrophysics Data System (ADS)

    Cain, Tyler Andrew

    Thermoelectrics are a promising energy conversion technology for power generation and cooling systems. The thermal and electrical properties of the materials at the heart of thermoelectric devices dictate conversion efficiency and technological viability. Studying the fundamental properties of potentially new thermoelectric materials is of great importance for improving device performance and understanding the electronic structure of materials systems. In this dissertation, investigations on the thermoelectric properties of a prototypical complex oxide, SrTiO3, are discussed. Hybrid molecular beam epitaxy (MBE) is used to synthesize La-doped SrTiO3 thin films, which exhibit high electron mobilities and large Seebeck coefficients resulting in large thermoelectric power factors at low temperatures. Large interfacial electron densities have been observed in SrTiO3/RTiO 3 (R=Gd,Sm) heterostructures. The thermoelectric properties of such heterostructures are investigated, including the use of a modulation doping approach to control interfacial electron densities. Low-temperature Seebeck coefficients of extreme electron-density SrTiO3 quantum wells are shown to provide insight into their electronic structure.

  5. In silico designing of power conversion efficient organic lead dyes for solar cells using todays innovative approaches to assure renewable energy for future

    NASA Astrophysics Data System (ADS)

    Kar, Supratik; Roy, Juganta K.; Leszczynski, Jerzy

    2017-06-01

    Advances in solar cell technology require designing of new organic dye sensitizers for dye-sensitized solar cells with high power conversion efficiency to circumvent the disadvantages of silicon-based solar cells. In silico studies including quantitative structure-property relationship analysis combined with quantum chemical analysis were employed to understand the primary electron transfer mechanism and photo-physical properties of 273 arylamine organic dyes from 11 diverse chemical families explicit to iodine electrolyte. The direct quantitative structure-property relationship models enable identification of the essential electronic and structural attributes necessary for quantifying the molecular prerequisites of 11 classes of arylamine organic dyes, responsible for high power conversion efficiency of dye-sensitized solar cells. Tetrahydroquinoline, N,N'-dialkylaniline and indoline have been least explored classes under arylamine organic dyes for dye-sensitized solar cells. Therefore, the identified properties from the corresponding quantitative structure-property relationship models of the mentioned classes were employed in designing of "lead dyes". Followed by, a series of electrochemical and photo-physical parameters were computed for designed dyes to check the required variables for electron flow of dye-sensitized solar cells. The combined computational techniques yielded seven promising lead dyes each for all three chemical classes considered. Significant (130, 183, and 46%) increment in predicted %power conversion efficiency was observed comparing with the existing dye with highest experimental %power conversion efficiency value for tetrahydroquinoline, N,N'-dialkylaniline and indoline, respectively maintaining required electrochemical parameters.

  6. A pilot study to evaluate the magnitude of association of the use of electronic personal health records with patient activation and empowerment in HIV-infected veterans

    PubMed Central

    Rose, Carol Dawson; Johnson, Mallory; Janson, Susan L.

    2015-01-01

    The HITECH Act signed into law in 2009 requires hospitals to provide patients with electronic access to their health information through an electronic personal health record (ePHR) in order to receive Medicare/Medicaid incentive payments. Little is known about who uses these systems or the impact these systems will have on patient outcomes in HIV care. The health care empowerment model provides rationale for the hypothesis that knowledge from an electronic personal health record can lead to greater patient empowerment resulting in improved outcomes. The objective was to determine the patient characteristics and patient activation, empowerment, satisfaction, knowledge of their CD4, Viral Loads, and antiretroviral medication, and medication adherence outcomes associated with electronic personal health record use in Veterans living with HIV at the San Francisco VA Medical Center. The participants included HIV-Infected Veterans receiving care in a low volume HIV-clinic at the San Francisco VA Medical Center, divided into two groups of users and non-users of electronic personal health records. The research was conducted using in-person surveys either online or on paper and data abstraction from medical records for current anti-retroviral therapy (ART), CD4 count, and plasma HIV-1 viral load. The measures included the Patient Activation Measure, Health Care Empowerment Inventory, ART adherence, provider satisfaction, current CD4 count, current plasma viral load, knowledge of current ART, knowledge of CD4 counts, and knowledge of viral load. In all, 40 participants were recruited. The use of electronic personal health records was associated with significantly higher levels of patient activation and levels of patient satisfaction for getting timely appointments, care, and information. ePHR was also associated with greater proportions of undetectable plasma HIV-1 viral loads, of knowledge of current CD4 count, and of knowledge of current viral load. The two groups differed by race and computer access. There was no difference in the current CD4, provider satisfaction, Health Care Empowerment Inventory score, satisfaction with provider-patient communication, satisfaction with courteous and helpful staff, knowledge of ART, or ART adherence. The use of electronic personal health records is associated with positive clinical and behavioral characteristics. The use of these systems may play a role in improving the health of people with HIV. Larger studies are needed to further evaluate these associations. PMID:25802815

  7. High-Performance First-Principles Molecular Dynamics for Predictive Theory and Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gygi, Francois; Galli, Giulia; Schwegler, Eric

    This project focused on developing high-performance software tools for First-Principles Molecular Dynamics (FPMD) simulations, and applying them in investigations of materials relevant to energy conversion processes. FPMD is an atomistic simulation method that combines a quantum-mechanical description of electronic structure with the statistical description provided by molecular dynamics (MD) simulations. This reliance on fundamental principles allows FPMD simulations to provide a consistent description of structural, dynamical and electronic properties of a material. This is particularly useful in systems for which reliable empirical models are lacking. FPMD simulations are increasingly used as a predictive tool for applications such as batteries, solarmore » energy conversion, light-emitting devices, electro-chemical energy conversion devices and other materials. During the course of the project, several new features were developed and added to the open-source Qbox FPMD code. The code was further optimized for scalable operation of large-scale, Leadership-Class DOE computers. When combined with Many-Body Perturbation Theory (MBPT) calculations, this infrastructure was used to investigate structural and electronic properties of liquid water, ice, aqueous solutions, nanoparticles and solid-liquid interfaces. Computing both ionic trajectories and electronic structure in a consistent manner enabled the simulation of several spectroscopic properties, such as Raman spectra, infrared spectra, and sum-frequency generation spectra. The accuracy of the approximations used allowed for direct comparisons of results with experimental data such as optical spectra, X-ray and neutron diffraction spectra. The software infrastructure developed in this project, as applied to various investigations of solids, liquids and interfaces, demonstrates that FPMD simulations can provide a detailed, atomic-scale picture of structural, vibrational and electronic properties of complex systems relevant to energy conversion devices.« less

  8. Ab initio Studies of Magnetism in the Iron Chalcogenides FeTe and FeSe

    NASA Astrophysics Data System (ADS)

    Hirayama, Motoaki; Misawa, Takahiro; Miyake, Takashi; Imada, Masatoshi

    2015-09-01

    The iron chalcogenides FeTe and FeSe belong to the family of iron-based superconductors. We study the magnetism in these compounds in the normal state using the ab initio downfolding scheme developed for strongly correlated electron systems. In deriving ab initio low-energy effective models, we employ the constrained GW method to eliminate the double counting of electron correlations originating from the exchange correlations already taken into account in the density functional theory. By solving the derived ab initio effective models, we reveal that the elimination of the double counting is important in reproducing the bicollinear antiferromagnetic order in FeTe, as is observed in experiments. We also show that the elimination of the double counting induces a unique degeneracy of several magnetic orders in FeSe, which may explain the absence of the magnetic ordering. We discuss the relationship between the degeneracy and the recently found puzzling phenomena in FeSe as well as the magnetic ordering found under pressure.

  9. Probing Majorana bound states via counting statistics of a single electron transistor

    NASA Astrophysics Data System (ADS)

    Li, Zeng-Zhao; Lam, Chi-Hang; You, J. Q.

    2015-06-01

    We propose an approach for probing Majorana bound states (MBSs) in a nanowire via counting statistics of a nearby charge detector in the form of a single-electron transistor (SET). We consider the impacts on the counting statistics by both the local coupling between the detector and an adjacent MBS at one end of a nanowire and the nonlocal coupling to the MBS at the other end. We show that the Fano factor and the skewness of the SET current are minimized for a symmetric SET configuration in the absence of the MBSs or when coupled to a fermionic state. However, the minimum points of operation are shifted appreciably in the presence of the MBSs to asymmetric SET configurations with a higher tunnel rate at the drain than at the source. This feature persists even when varying the nonlocal coupling and the pairing energy between the two MBSs. We expect that these MBS-induced shifts can be measured experimentally with available technologies and can serve as important signatures of the MBSs.

  10. Image charge multi-role and function detectors

    NASA Astrophysics Data System (ADS)

    Milnes, James; Lapington, Jon S.; Jagutzki, Ottmar; Howorth, Jon

    2009-06-01

    The image charge technique used with microchannel plate imaging tubes provides several operational and practical benefits by serving to isolate the electronic image readout from the detector. The simple dielectric interface between detector and readout provides vacuum isolation and no vacuum electrical feed-throughs are required. Since the readout is mechanically separate from the detector, an image tube of generic design can be simply optimised for various applications by attaching it to different readout devices and electronics. We present imaging performance results using a single image tube with a variety of readout devices suited to differing applications: (a) A four electrode charge division tetra wedge anode, optimised for best spatial resolution in photon counting mode. (b) A cross delay line anode, enabling higher count rate, and the possibility of discriminating near co-incident events, and an event timing resolution of better than 1 ns. (c) A multi-anode readout connected, either to a multi-channel oscilloscope for analogue measurements of fast optical pulses, or alternately, to a multi-channel time correlated single photon counting (TCSPC) card.

  11. Quantum Key Distribution Using Polarized Single Photons

    DTIC Science & Technology

    2009-04-01

    liquid helium the SSPD with a low - noise , cryogenic high-electron-mobility transistor (HEMT) with high-input impedance. This arrangement allowed us...Sobolewski, IEEE Trans. Appl. Supercon., accepted (2009). 19. " Measurements of amplitude distributions of dark counts and photon counts in NbN ...75, 174507 (2007). 6. "Fiber-Coupled NbN Superconducting Single-Photon Detectors for Quantum Correlation Measurements ," W. Slysz, M. Wegrzecki, J

  12. Low cost digital electronics for isotope analysis with microcalorimeters - final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    W. Hennig

    2006-09-11

    The overall goal of the Phase I research was to demonstrate that the digital readout electronics and filter algorithms developed by XIA for use with HPGe detectors can be adapted to high precision, cryogenic gamma detectors (microcalorimeters) and not only match the current state of the art in terms of energy resolution, but do so at a significantly reduced cost. This would make it economically feasible to instrument large arrays of microcalorimeters and would also allow automation of the setup, calibration and operation of large numbers of channels through software. We expected, and have demonstrated, that this approach would furthermore » allow much higher count rates than the optimum filter algorithms currently used. In particular, in measurements with a microcalorimeter at LLNL, the adapted Pixie-16 spectrometer achieved an energy resolution of 0.062%, significantly better than the targeted resolution of 0.1% in the Phase I proposal and easily matching resolutions obtained with LLNL readout electronics and optimum filtering (0.066%). The theoretical maximum output count rate for the filter settings used to achieve this resolution is about 120cps. If the filter is adjusted for maximum throughput with an energy resolution of 0.1% or better, rates of 260cps are possible. This is 20-50 times higher than the maximum count rates of about 5cps with optimum filters for this detector. While microcalorimeter measurements were limited to count rates of ~1.3cps due to the strength of available sources, pulser measurements demonstrated that measured energy resolutions were independent of counting rate to output counting rates well in excess of 200cps or more.. We also developed a preliminary hardware design of a spectrometer module, consisting of a digital processing core and several input options that can be implemented on daughter boards. Depending upon the daughter board, the total parts cost per channel ranged between $12 and $27, resulting in projected product prices of $80 to $160 per channel. This demonstrates that a price of $100 per channel is economically very feasible for large microcalorimeter arrays.« less

  13. Evaluation of the platelet counting by Abbott CELL-DYN SAPPHIRE haematology analyser compared with flow cytometry.

    PubMed

    Grimaldi, E; Del Vecchio, L; Scopacasa, F; Lo Pardo, C; Capone, F; Pariante, S; Scalia, G; De Caterina, M

    2009-04-01

    The Abbot Cell-Dyn Sapphire is a new generation haematology analyser. The system uses optical/fluorescence flow cytometry in combination with electronic impedance to produce a full blood count. Optical and impedance are the default methods for platelet counting while automated CD61-immunoplatelet analysis can be run as selectable test. The aim of this study was to determine the platelet count performance of the three counting methods available on the instrument and to compare the results with those provided by Becton Dickinson FACSCalibur flow cytometer used as reference method. A lipid interference experiment was also performed. Linearity, carryover and precision were good, and satisfactory agreement with reference method was found for the impedance, optical and CD61-immunoplatelet analysis, although this latter provided the closest results in comparison with flow cytometry. In the lipid interference experiment, a moderate inaccuracy of optical and immunoplatelet counts was observed starting from a very high lipid value.

  14. Avalanche photodiode photon counting receivers for space-borne lidars

    NASA Technical Reports Server (NTRS)

    Sun, Xiaoli; Davidson, Frederic M.

    1991-01-01

    Avalanche photodiodes (APD) are studied for uses as photon counting detectors in spaceborne lidars. Non-breakdown APD photon counters, in which the APD's are biased below the breakdown point, are shown to outperform: (1) conventional APD photon counters biased above the breakdown point; (2) conventional APD photon counters biased above the breakdown point; and (3) APD's in analog mode when the received optical signal is extremely weak. Non-breakdown APD photon counters were shown experimentally to achieve an effective photon counting quantum efficiency of 5.0 percent at lambda = 820 nm with a dead time of 15 ns and a dark count rate of 7000/s which agreed with the theoretically predicted values. The interarrival times of the counts followed an exponential distribution and the counting statistics appeared to follow a Poisson distribution with no after pulsing. It is predicted that the effective photon counting quantum efficiency can be improved to 18.7 percent at lambda = 820 nm and 1.46 percent at lambda = 1060 nm with a dead time of a few nanoseconds by using more advanced commercially available electronic components.

  15. Preliminary design report, Large Space Telescope OTA/SI Phase B study: High speed area photometer. [systems analysis

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A photometer is examined which combines several features from separate instruments into a single package. The design presented has both point and area photometry capability with provision for inserting filters to provide spectral discrimination. The electronics provide for photon counting mode for the point detectors and both photon counting and analog modes for the area detector. The area detector also serves as a target locating device for the point detectors. Topics discussed include: (1) electronic equipment requirements, (2) optical properties, (3) structural housing for the instrument, (4) motors and other mechanical components, (5) ground support equipment, and (6) environment control for the instrument. Engineering drawings and block diagrams are shown.

  16. The role of charged particles in the positive corona-generated photon count in a rod to plane air gap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bian, X. M.; Wang, Y. J.; MacAlpine, J. M. K.

    The relationship between the calculated charged-particle densities in positive corona, the rate of streamer production, and the photon count from the corona were investigated and found to be closely related. Both the densities of electrons and positive ions peaked at 11.8 kV, near the corona inception voltage; they then fell rapidly before slowly rising again. This behavior was exactly matched by the measured photon count. The calculation of the charged-particle density in a positive corona was achieved by means of a fluid model.

  17. CD4 count-based failure criteria combined with viral load monitoring may trigger worse switch decisions than viral load monitoring alone.

    PubMed

    Hoffmann, Christopher J; Maritz, Jean; van Zyl, Gert U

    2016-02-01

    CD4 count decline often triggers antiretroviral regimen switches in resource-limited settings, even when viral load testing is available. We therefore compared CD4 failure and CD4 trends in patients with viraemia with or without antiretroviral resistance. Retrospective cohort study investigating the association of HIV drug resistance with CD4 failure or CD4 trends in patients on first-line antiretroviral regimens during viraemia. Patients with viraemia (HIV RNA >1000 copies/ml) from two HIV treatment programmes in South Africa (n = 350) were included. We investigated the association of M184V and NNRTI resistance with WHO immunological failure criteria and CD4 count trends, using chi-square tests and linear mixed models. Fewer patients with the M184V mutation reached immunologic failure criteria than those without: 51 of 151(34%) vs. 90 of 199 (45%) (P = 0.03). Similarly, 79 of 220 (36%) patients, who had major NNRTI resistance, had immunological failure, whereas 62 of 130 (48%) without (chi-square P = 0.03) did. The CD4 count decline among patients with the M184V mutation was 2.5 cells/mm(3) /year, whereas in those without M184V it was 14 cells/mm(3) /year (P = 0.1), but the difference in CD4 count decline with and without NNRTI resistance was marginal. Our data suggest that CD4 count monitoring may lead to inappropriate delayed therapy switches for patients with HIV drug resistance. Conversely, patients with viraemia but no drug resistance are more likely to have a CD4 count decline and thus may be more likely to be switched to a second-line regimen. © 2015 John Wiley & Sons Ltd.

  18. A streamlined method for analysing genome-wide DNA methylation patterns from low amounts of FFPE DNA.

    PubMed

    Ludgate, Jackie L; Wright, James; Stockwell, Peter A; Morison, Ian M; Eccles, Michael R; Chatterjee, Aniruddha

    2017-08-31

    Formalin fixed paraffin embedded (FFPE) tumor samples are a major source of DNA from patients in cancer research. However, FFPE is a challenging material to work with due to macromolecular fragmentation and nucleic acid crosslinking. FFPE tissue particularly possesses challenges for methylation analysis and for preparing sequencing-based libraries relying on bisulfite conversion. Successful bisulfite conversion is a key requirement for sequencing-based methylation analysis. Here we describe a complete and streamlined workflow for preparing next generation sequencing libraries for methylation analysis from FFPE tissues. This includes, counting cells from FFPE blocks and extracting DNA from FFPE slides, testing bisulfite conversion efficiency with a polymerase chain reaction (PCR) based test, preparing reduced representation bisulfite sequencing libraries and massively parallel sequencing. The main features and advantages of this protocol are: An optimized method for extracting good quality DNA from FFPE tissues. An efficient bisulfite conversion and next generation sequencing library preparation protocol that uses 50 ng DNA from FFPE tissue. Incorporation of a PCR-based test to assess bisulfite conversion efficiency prior to sequencing. We provide a complete workflow and an integrated protocol for performing DNA methylation analysis at the genome-scale and we believe this will facilitate clinical epigenetic research that involves the use of FFPE tissue.

  19. Parameter Estimation with Entangled Photons Produced by Parametric Down-Conversion

    NASA Technical Reports Server (NTRS)

    Cable, Hugo; Durkin, Gabriel A.

    2010-01-01

    We explore the advantages offered by twin light beams produced in parametric down-conversion for precision measurement. The symmetry of these bipartite quantum states, even under losses, suggests that monitoring correlations between the divergent beams permits a high-precision inference of any symmetry-breaking effect, e.g., fiber birefringence. We show that the quantity of entanglement is not the key feature for such an instrument. In a lossless setting, scaling of precision at the ultimate "Heisenberg" limit is possible with photon counting alone. Even as photon losses approach 100% the precision is shot-noise limited, and we identify the crossover point between quantum and classical precision as a function of detected flux. The predicted hypersensitivity is demonstrated with a Bayesian simulation.

  20. Parameter estimation with entangled photons produced by parametric down-conversion.

    PubMed

    Cable, Hugo; Durkin, Gabriel A

    2010-07-02

    We explore the advantages offered by twin light beams produced in parametric down-conversion for precision measurement. The symmetry of these bipartite quantum states, even under losses, suggests that monitoring correlations between the divergent beams permits a high-precision inference of any symmetry-breaking effect, e.g., fiber birefringence. We show that the quantity of entanglement is not the key feature for such an instrument. In a lossless setting, scaling of precision at the ultimate "Heisenberg" limit is possible with photon counting alone. Even as photon losses approach 100% the precision is shot-noise limited, and we identify the crossover point between quantum and classical precision as a function of detected flux. The predicted hypersensitivity is demonstrated with a Bayesian simulation.

  1. Investigation of operating parameters on CO2 splitting by dielectric barrier discharge plasma

    NASA Astrophysics Data System (ADS)

    Pan, CHEN; Jun, SHEN; Tangchun, RAN; Tao, YANG; Yongxiang, YIN

    2017-12-01

    Experiments of CO2 splitting by dielectric barrier discharge (DBD) plasma were carried out, and the influence of CO2 flow rate, plasma power, discharge voltage, discharge frequency on CO2 conversion and process energy efficiency were investigated. It was shown that the absolute quantity of CO2 decomposed was only proportional to the amount of conductive electrons across the discharge gap, and the electron amount was proportional to the discharge power; the energy efficiency of CO2 conversion was almost a constant at a lower level, which was limited by CO2 inherent discharge character that determined a constant gap electric field strength. This was the main reason why CO2 conversion rate decreased as the CO2 flow rate increase and process energy efficiency was decreased a little as applied frequency increased. Therefore, one can improve the CO2 conversion by less feed flow rate or larger discharge power in DBD plasma, but the energy efficiency is difficult to improve.

  2. Cocrystals Strategy towards Materials for Near-Infrared Photothermal Conversion and Imaging.

    PubMed

    Wang, Yu; Zhu, Weigang; Du, Wenna; Liu, Xinfeng; Zhang, Xiaotao; Dong, Huanli; Hu, Wenping

    2018-04-03

    A cocrystal strategy with a simple preparation process is developed to prepare novel materials for near-infrared photothermal (PT) conversion and imaging. DBTTF and TCNB are selected as electron donor (D) and electron acceptor (A) to self-assemble into new cocrystals through non-covalent interactions. The strong D-A interaction leads to a narrow band gap with NIR absorption and that both the ground state and lowest-lying excited state are charge transfer states. Under the NIR laser illumination, the temperature of the cocrystal sharply increases in a short time with high PT conversion efficiency (η=18.8 %), which is due to the active non-radiative pathways and inhibition of radiative transition process, as revealed by femtosecond transient absorption spectroscopy. This is the first PT conversion cocrystal, which not only provides insights for the development of novel PT materials, but also paves the way of designing functional materials with appealing applications. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Solar energy conversion with photon-enhanced thermionic emission

    NASA Astrophysics Data System (ADS)

    Kribus, Abraham; Segev, Gideon

    2016-07-01

    Photon-enhanced thermionic emission (PETE) converts sunlight to electricity with the combined photonic and thermal excitation of charge carriers in a semiconductor, leading to electron emission over a vacuum gap. Theoretical analyses predict conversion efficiency that can match, or even exceed, the efficiency of traditional solar thermal and photovoltaic converters. Several materials have been examined as candidates for radiation absorbers and electron emitters, with no conclusion yet on the best set of materials to achieve high efficiency. Analyses have shown the complexity of the energy conversion and transport processes, and the significance of several loss mechanisms, requiring careful control of material properties and optimization of the device structure. Here we survey current research on PETE modeling, materials, and device configurations, outline the advances made, and stress the open issues and future research needed. Based on the substantial progress already made in this young topic, and the potential of high conversion efficiency based on theoretical performance limits, continued research in this direction is very promising and may yield a competitive technology for solar electricity generation.

  4. Characterization of spectrometric photon-counting X-ray detectors at different pitches

    NASA Astrophysics Data System (ADS)

    Jurdit, M.; Brambilla, A.; Moulin, V.; Ouvrier-Buffet, P.; Radisson, P.; Verger, L.

    2017-09-01

    There is growing interest in energy-sensitive photon-counting detectors based on high flux X-ray imaging. Their potential applications include medical imaging, non-destructive testing and security. Innovative detectors of this type will need to count individual photons and sort them into selected energy bins, at several million counts per second and per mm2. Cd(Zn)Te detector grade materials with a thickness of 1.5 to 3 mm and pitches from 800 μm down to 200 μm were assembled onto interposer boards. These devices were tested using in-house-developed full-digital fast readout electronics. The 16-channel demonstrators, with 256 energy bins, were experimentally characterized by determining spectral resolution, count rate, and charge sharing, which becomes challenging at low pitch. Charge sharing correction was found to efficiently correct X-ray spectra up to 40 × 106 incident photons.s-1.mm-2.

  5. Enhancement of the efficiency of dye-sensitized solar cell with multi-wall carbon nanotubes/polypyrrole composite counter electrodes prepared by electrophoresis/electrochemical polymerization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Jun; Niu, Hai-jun; Wen, Hai-lin

    2013-03-15

    Graphical abstract: The overall energy conversion efficiency of the DSSC employing the MWCNT/PPy CE reached 3.78%. Compared with a reference DSSC using single MWCNT film CE with efficiency of 2.68%, the energy conversion efficiency was increased by 41.04%. Highlights: ► MWCNT/PPy composite film prepared by electrodeposition layer by layer was used as counter electrode in DSSC. ► The overall energy conversion efficiency of the DSSC was 3.78% by employing the composite film. ► The energy conversion efficiency increased by 41.04% compared with efficiency of 2.68% by using the single MWCNT film. ► We analyzed the mechanism and influence factor ofmore » electron transfer in the composite electrode by EIS. - Abstract: For the purpose of replacing the precious Pt counter electrode in dye-sensitized solar cells (DSSCs) with higher energy conversion efficiency, multi-wall carbon nanotube (MWCNT)/polypyrrole (PPy) double layers film counter electrode (CE) was fabricated by electrophoresis and cyclic voltammetry (CV) layer by layer. Atom force microscopy (AFM), scanning electron microscopy (SEM) and transmission electron microscope (TEM) demonstrated the morphologies of the composite electrode and Raman spectroscopy verified the PPy had come into being. The overall energy conversion efficiency of the DSSC employing the MWCNT/PPy CE reached 3.78%. Compared with a reference DSSC using single MWCNT film CE with efficiency of 2.68%, the energy conversion efficiency was increased by 41.04%. The result of impedance showed that the charge transfer resistance R{sub ct} of the MWCNT/PPy CE had the lowest value compared to that of MWCNT or PPy electrode. These results indicate that the composite film with high conductivity, high active surface area, and good catalytic properties for I{sub 3}{sup −} reduction can potentially be used as the CE in a high-performance DSSC.« less

  6. Mu2e Technical Design Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bartoszek, L.; et al.

    Fermi National Accelerator Laboratory and the Mu2e Collaboration, composed of about 155 scientists and engineers from 28 universities and laboratories around the world, have collaborated to create this technical design for a new facility to study charged lepton flavor violation using the existing Department of Energy investment in the Fermilab accelerator complex. Mu2e proposes to measure the ratio of the rate of the neutrinoless, coherent conversion of muons into electrons in the field of a nucleus, relative to the rate of ordinary muon capture on the nucleus. The conversion process is an example of charged lepton flavor violation (CLFV), amore » process that has never been observed experimentally. The significant motivation behind the search for muon-to-electron conversion is discussed in Chapter 3.« less

  7. Ecojustice in science education: leaving the classroom

    NASA Astrophysics Data System (ADS)

    Mueller, Michael P.

    2011-06-01

    Eduardo Dopico and Eva Garcia-Vázquez's article enriched the ecojustice literature with an interesting metaphor of leaving the classroom, which I argue for here. Glasson and Boggs help to highlight the challenges and fortitude of working ecojustice perspectives in science education and the ways that a dialogical conversation addresses the world at large rather than focusing narrowly and exclusively on science education. Considering the metaphor of `leaving the classroom' I want to explore the tensions that can be experienced by science educators who do research focused on ecosocial justice. While it is not a new idea to suggest that there are gatekeepers in science education who try to maintain what counts in terms of impact in the classroom and what counts or not for the purposes of doing good work in science education, I anticipate highlighting the tensions that ecojustice educators may experience and why they can and should persevere with the incisive work that they are doing to conserve the prospects of future generations. Ecojustice no longer belongs constrained under the confines of environmental sciences or environmental education in science education. It is a separate and distinct field of study that should be generally accepted for the ways it brings clarity and conversation to ideas, curriculum studies, and thick descriptions of how people engage in eco-justice and ethics.

  8. Conversion factors from counts to chemical ratios for the EURITRACK tagged neutron inspection system

    NASA Astrophysics Data System (ADS)

    El Kanawati, W.; Perot, B.; Carasco, C.; Eleon, C.; Valkovic, V.; Sudac, D.; Obhodas, J.

    2011-10-01

    The EURopean Illicit TRAfficking Countermeasures Kit (EURITRACK) uses 14 MeV neutrons produced by the 3H(d,n) 4H fusion reaction to detect explosives and narcotics in cargo containers. Reactions induced by fast neutrons produce gamma rays, which are detected in coincidence with the associated alpha particle to determine the neutron direction. In addition, the neutron path length is obtained from a time-of-flight measurement, thus allowing the origin of the gamma rays inside the container to be determined. Information concerning the chemical composition of the target material is obtained from the analysis of the energy spectrum. The carbon, oxygen, and nitrogen relative count contributions must be converted to chemical proportions to distinguish illicit and benign organic materials. An extensive set of conversion factors based on Monte Carlo numerical simulations has been calculated, taking into account neutron slowing down and photon attenuation in the cargo materials. An experimental validation of the method is presented by comparing the measured chemical fractions of known materials, in the form of bare samples or hidden in a cargo container, to their real chemical composition. Examples of application to real cargo containers are also reported, as well as simulated data with explosives and illicit drugs.

  9. An experiment to verify that the weak interactions satisfy the strong equivalence principle. [electron capture and gravitational potential

    NASA Technical Reports Server (NTRS)

    Eby, P. B.

    1978-01-01

    The construction of a clock based on the beta decay process is proposed to test for any violations by the weak interaction of the strong equivalence principle bu determining whether the weak interaction coupling constant beta is spatially constant or whether it is a function of gravitational potential (U). The clock can be constructed by simply counting the beta disintegrations of some suitable source. The total number of counts are to be taken a measure of elapsed time. The accuracy of the clock is limited by the statistical fluctuations in the number of counts, N, which is equal to the square root of N. Increasing N gives a corresponding increase in accuracy. A source based on the electron capture process can be used so as to avoid low energy electron discrimination problems. Solid state and gaseous detectors are being considered. While the accuracy of this type of beta decay clock is much less than clocks based on the electromagnetic interaction, there is a corresponding lack of knowledge of the behavior of beta as a function of gravitational potential. No predictions from nonmetric theories as to variations in beta are available as yet, but they may occur at the U/sg C level.

  10. On the formation of anions: frequency-, angle-, and time-resolved photoelectron imaging of the menadione radical anion† †Electronic supplementary information (ESI) available: A summary of the ground-state geometries and molecular orbitals from the ab initio calculations; fitted residuals from the FA-PI simulation; plots of all spectra included in the frequency-resolved two-dimensional figure; and example time-resolved PE spectra from the 3.10 + 1.55 eV pump-probe experiments. See DOI: 10.1039/c4sc03491k Click here for additional data file.

    PubMed Central

    Bull, James N.; West, Christopher W.

    2015-01-01

    Frequency-, angle-, and time-resolved photoelectron imaging of gas-phase menadione (vitamin K3) radical anions was used to show that quasi-bound resonances of the anion can act as efficient doorway states to produce metastable ground electronic state anions on a sub-picosecond timescale. Several anion resonances have been experimentally observed and identified with the assistance of ab initio calculations, and ground state anion recovery was observed across the first 3 eV above threshold. Time-resolved measurements revealed the mechanism of electronic ground state anion formation, which first involves a cascade of very fast internal conversion processes to a bound electronic state that, in turn, decays by slower internal conversion to the ground state. Autodetachment processes from populated resonances are inefficient compared with electronic relaxation through internal conversion. The mechanistic understanding gained provides insight into the formation of radical anions in biological and astrochemical systems. PMID:29560245

  11. How US Smokers Refer to E-cigarettes: An Examination of User-Generated Posts From a Web-Based Smoking Cessation Intervention, 2008-2015.

    PubMed

    Pearson, Jennifer L; Amato, Michael S; Wang, Xi; Zhao, Kang; Cha, Sarah; Cohn, Amy M; Papandonatos, George D; Graham, Amanda L

    2017-02-01

    A challenge in Electronic Nicotine Delivery System (ENDS) research is how to refer to these devices in ways that are meaningful to current or potential users. The objectives of this study were to: (1) describe the frequency of ENDS terms in a web-based smoking cessation intervention; and (2) determine whether terms vary by US geographic region and date. Data were drawn from public posts between 2008-2015 on http://BecomeAnEX.org and limited to US users. We conducted "exact" and "fuzzy" searches to find posts containing ENDS keywords using custom Python scripts, and extracted geocoding data and date for each post. We examined counts and frequencies of ENDS terms by unique user, by unique user and region, and by unique user and date. We identified 1023 unique US website users who had written a post containing one or more ENDS keywords. Posters were majority female (79%), educated (78% attended at least some college), and had a median age of 47 years. Overall, 92% of ENDS posters employed the term "e-cigarette" or a derivation. Derivations of "vape" became increasingly popular in 2013, whereas "NJoy" and "blu" were employed by fewer than 2% of posters. We found no variation in frequency of ENDS terms by US region. Researchers may have confidence that "e-cigarette" and "vape" are recognizable terms among US treatment-seeking smokers. Conversely, terms such as "ENDS," commonly employed by researchers and public health advocates, are not used by smokers and may be an impediment to tobacco control research. Researchers may have confidence that "e-cigarette," and, to a lesser extent, "vape" are recognizable terms among US adult smokers referring to ENDS (including accessories, brand names, and actions). Conversely, terms such as "electronic nicotine delivery systems," commonly employed by researchers and public health advocates, are not used by US smokers and may be an impediment to tobacco control research and practice. © The Author 2016. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. How US Smokers Refer to E-cigarettes: An Examination of User-Generated Posts From a Web-Based Smoking Cessation Intervention, 2008–2015

    PubMed Central

    Amato, Michael S.; Wang, Xi; Zhao, Kang; Cha, Sarah; Cohn, Amy M.; Papandonatos, George D.; Graham, Amanda L.

    2017-01-01

    Introduction: A challenge in Electronic Nicotine Delivery System (ENDS) research is how to refer to these devices in ways that are meaningful to current or potential users. The objectives of this study were to: (1) describe the frequency of ENDS terms in a web-based smoking cessation intervention; and (2) determine whether terms vary by US geographic region and date. Methods: Data were drawn from public posts between 2008–2015 on http://BecomeAnEX.org and limited to US users. We conducted “exact” and “fuzzy” searches to find posts containing ENDS keywords using custom Python scripts, and extracted geocoding data and date for each post. We examined counts and frequencies of ENDS terms by unique user, by unique user and region, and by unique user and date. Results: We identified 1023 unique US website users who had written a post containing one or more ENDS keywords. Posters were majority female (79%), educated (78% attended at least some college), and had a median age of 47 years. Overall, 92% of ENDS posters employed the term “e-cigarette” or a derivation. Derivations of “vape” became increasingly popular in 2013, whereas “NJoy” and “blu” were employed by fewer than 2% of posters. We found no variation in frequency of ENDS terms by US region. Conclusions: Researchers may have confidence that “e-cigarette” and “vape” are recognizable terms among US treatment-seeking smokers. Conversely, terms such as “ENDS,” commonly employed by researchers and public health advocates, are not used by smokers and may be an impediment to tobacco control research. Implications: Researchers may have confidence that “e-cigarette,” and, to a lesser extent, “vape” are recognizable terms among US adult smokers referring to ENDS (including accessories, brand names, and actions). Conversely, terms such as “electronic nicotine delivery systems,” commonly employed by researchers and public health advocates, are not used by US smokers and may be an impediment to tobacco control research and practice. PMID:27613899

  13. A Conversation about Professionalism and Community.

    ERIC Educational Resources Information Center

    Bauch, Patricia A.; Crowson, Robert L.; Goldring, Ellen B.; Mawhinney, Hanne B.; Ogawa, Rodney T.; Driscoll, Mary Erina

    1998-01-01

    Presents an interactive electronic conversation among a group of scholars. Participants examined the nature of relationships between professionals and school communities and debated the degree to which conflict was either inevitable or useful in sustaining this connection. They tried to imagine the organizational structures and policies needed to…

  14. Dual Diathesis-Stressor Model of Emotional and Linguistic Contributions to Developmental Stuttering

    PubMed Central

    Frankel, Carl B.; Buhr, Anthony P.; Johnson, Kia N.; Conture, Edward G.; Karrass, Jan M.

    2013-01-01

    This study assessed emotional and speech-language contributions to childhood stuttering. A dual diathesis-stressor framework guided this study, in which both linguistic requirements and skills, and emotion and its regulation, are hypothesized to contribute to stuttering. The language diathesis consists of expressive and receptive language skills. The emotion diathesis consists of proclivities to emotional reactivity and regulation of emotion, and the emotion stressor consists of experimentally manipulated emotional inductions prior to narrative speaking tasks. Preschool-age children who do and do not stutter were exposed to three emotion-producing overheard conversations—neutral, positive, and angry. Emotion and emotion-regulatory behaviors were coded while participants listened to each conversation and while telling a story after each overheard conversation. Instances of stuttering during each story were counted. Although there was no main effect of conversation type, results indicated that stuttering in preschool-age children is influenced by emotion and language diatheses, as well as coping strategies and situational emotional stressors. Findings support the dual diathesis-stressor model of stuttering. PMID:22016200

  15. Technical Note: exploring the limit for the conversion of energy-subtracted CT number to electron density for high-atomic-number materials.

    PubMed

    Saito, Masatoshi; Tsukihara, Masayoshi

    2014-07-01

    For accurate tissue inhomogeneity correction in radiotherapy treatment planning, the authors had previously proposed a novel conversion of the energy-subtracted CT number to an electron density (ΔHU-ρe conversion), which provides a single linear relationship between ΔHU and ρe over a wide ρe range. The purpose of this study is to address the limitations of the conversion method with respect to atomic number (Z) by elucidating the role of partial photon interactions in the ΔHU-ρe conversion process. The authors performed numerical analyses of the ΔHU-ρe conversion for 105 human body tissues, as listed in ICRU Report 46, and elementary substances with Z = 1-40. Total and partial attenuation coefficients for these materials were calculated using the XCOM photon cross section database. The effective x-ray energies used to calculate the attenuation were chosen to imitate a dual-source CT scanner operated at 80-140 kV/Sn under well-calibrated and poorly calibrated conditions. The accuracy of the resultant calibrated electron density,[Formula: see text], for the ICRU-46 body tissues fully satisfied the IPEM-81 tolerance levels in radiotherapy treatment planning. If a criterion of [Formula: see text]ρe - 1 is assumed to be within ± 2%, the predicted upper limit of Z applicable for the ΔHU-ρe conversion under the well-calibrated condition is Z = 27. In the case of the poorly calibrated condition, the upper limit of Z is approximately 16. The deviation from the ΔHU-ρe linearity for higher Z substances is mainly caused by the anomalous variation in the photoelectric-absorption component. Compensation among the three partial components of the photon interactions provides for sufficient linearity of the ΔHU-ρe conversion to be applicable for most human tissues even for poorly conditioned scans in which there exists a large variation of effective x-ray energies owing to beam-hardening effects arising from the mismatch between the sizes of the object and the calibration phantom.

  16. Understanding how adolescents and young adults with cancer talk about needs in online and face-to-face support groups.

    PubMed

    Thompson, Charee M; Crook, Brittani; Love, Brad; Macpherson, Catherine Fiona; Johnson, Rebecca

    2015-04-27

    We compared adolescent and young adult cancer patient and survivor language between mediated and face-to-face support communities in order to understand how the use of certain words frame conversations about family, friends, health, work, achievement, and leisure. We analyzed transcripts from an online discussion board (N = 360) and face-to-face support group (N = 569) for adolescent and young adults using Linguistic Inquiry and Word Count, a word-based computerized text analysis software that counts the frequency of words and word stems. There were significant differences between the online and face-to-face support groups in terms of content (e.g. friends, health) and style words (e.g. verb tense, negative emotion, and cognitive process). © The Author(s) 2015.

  17. Raman Lidar MERGE Value-Added Product

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newsom, Rob; Goldsmith, John; Sivaraman, Chitra

    The U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility Raman lidars (RLs) are semi-autonomous, land-based, laser remote sensing systems that provide height- and time-resolved measurements of water vapor mixing ratio, temperature, aerosol backscatter, extinction, and linear depolarization ratio from about 200 m to greater than 10 km AGL. These systems transmit at a wavelength of 355 nm with 300 mJ, ~5 ns pulses, and a pulse repetition frequency of 30 Hz. The receiver incorporates nine detection channels, including two water vapor channels at 408 nm, two nitrogen channels at 387 nm, three elastic channels, and twomore » rotational Raman channels for temperature profiling at 354 and 353 nm. Figure 1 illustrates the layout of the ARM RL receiver system. Backscattered light from the atmosphere enters the telescope and is directed into the receiver system (i.e., aft optics). This signal is then split between a narrow-field-of-view radiometer (NFOV) path (blue) and a wide-field-of-view zenith radiometer (WFOV) path (red). The WFOV (2 mrad) path contains three channels (water vapor, nitrogen, and unpolarized elastic), and the NFOV (0.3 mrad) path contains six channels (water vapor, nitrogen, parallel and perpendicular elastic, and two rotational Raman). All nine detection channels use Electron Tubes 9954B photomultiplier tubes (PMTs). The signals from each of the nine PMTs are acquired using transient data recorders from Licel GbR (Berlin, Germany). The Licel data recorders provide simultaneous measurements of both analog photomultiplier current and photon counts at height resolution of 7.5 m and a time resolution of 10 s. The analog signal provides good linearity in the strong signal regime, but poor sensitivity at low signal levels. Conversely, the photo counting signal provides good sensitivity in the weak signal regime, but is strongly nonlinear at higher signal levels. The advantage in recording both signals is that they can be combined (or merged) into a single signal with improved dynamic range. The process of combining the analog and photon counting data has become known as “gluing” (Whiteman et al., 2006).« less

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Renaud, James, E-mail: james.renaud@mail.mcgill.ca; Seuntjens, Jan; Sarfehnia, Arman

    Purpose: In this work, the authors describe an electron sealed water calorimeter (ESWcal) designed to directly measure absorbed dose to water in clinical electron beams and its use to derive electron beam quality conversion factors for two ionization chamber types. Methods: A functioning calorimeter prototype was constructed in-house and used to obtain reproducible measurements in clinical accelerator-based 6, 9, 12, 16, and 20 MeV electron beams. Corrections for the radiation field perturbation due to the presence of the glass calorimeter vessel were calculated using Monte Carlo (MC) simulations. The conductive heat transfer due to dose gradients and nonwater materials wasmore » also accounted for using a commercial finite element method software package. Results: The relative combined standard uncertainty on the ESWcal dose was estimated to be 0.50% for the 9–20 MeV beams and 1.00% for the 6 MeV beam, demonstrating that the development of a water calorimeter-based standard for electron beams over such a wide range of clinically relevant energies is feasible. The largest contributor to the uncertainty was the positioning (Type A, 0.10%–0.40%) and its influence on the perturbation correction (Type B, 0.10%–0.60%). As a preliminary validation, measurements performed with the ESWcal in a 6 MV photon beam were directly compared to results derived from the National Research Council of Canada (NRC) photon beam standard water calorimeter. These two independent devices were shown to agree well within the 0.43% combined relative uncertainty of the ESWcal for this beam type and quality. Absorbed dose electron beam quality conversion factors were measured using the ESWcal for the Exradin A12 and PTW Roos ionization chambers. The photon-electron conversion factor, k{sub ecal}, for the A12 was also experimentally determined. Nonstatistically significant differences of up to 0.7% were found when compared to the calculation-based factors listed in the AAPM’s TG-51 protocol. General agreement between the relative electron energy dependence of the PTW Roos data measured in this work and a recent MC-based study are also shown. Conclusions: This is the first time that water calorimetry has been successfully used to measure electron beam quality conversion factors for energies as low as 6 MeV (R{sub 50} = 2.25 cm)« less

  19. Converting Carbon Dioxide to Butyrate with an Engineered Strain of Clostridium ljungdahlii

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ueki, T; Nevin, KP; Woodard, TL

    2014-08-26

    Microbial conversion of carbon dioxide to organic commodities via syngas metabolism or microbial electrosynthesis is an attractive option for production of renewable biocommodities. The recent development of an initial genetic toolbox for the acetogen Clostridium ljungdahlii has suggested that C. ljungdahlii may be an effective chassis for such conversions. This possibility was evaluated by engineering a strain to produce butyrate, a valuable commodity that is not a natural product of C. ljungdahlii metabolism. Heterologous genes required for butyrate production from acetyl-coenzyme A (CoA) were identified and introduced initially on plasmids and in subsequent strain designs integrated into the C. ljungdahliimore » chromosome. Iterative strain designs involved increasing translation of a key enzyme by modifying a ribosome binding site, inactivating the gene encoding the first step in the conversion of acetyl-CoA to acetate, disrupting the gene which encodes the primary bifunctional aldehyde/alcohol dehydrogenase for ethanol production, and interrupting the gene for a CoA transferase that potentially represented an alternative route for the production of acetate. These modifications yielded a strain in which ca. 50 or 70% of the carbon and electron flow was diverted to the production of butyrate with H-2 or CO as the electron donor, respectively. These results demonstrate the possibility of producing high-value commodities from carbon dioxide with C. ljungdahlii as the catalyst. IMPORTANCE The development of a microbial chassis for efficient conversion of carbon dioxide directly to desired organic products would greatly advance the environmentally sustainable production of biofuels and other commodities. Clostridium ljungdahlii is an effective catalyst for microbial electrosynthesis, a technology in which electricity generated with renewable technologies, such as solar or wind, powers the conversion of carbon dioxide and water to organic products. Other electron donors for C. ljungdahlii include carbon monoxide, which can be derived from industrial waste gases or the conversion of recalcitrant biomass to syngas, as well as hydrogen, another syngas component. The finding that carbon and electron flow in C. ljungdahlii can be diverted from the production of acetate to butyrate synthesis is an important step toward the goal of renewable commodity production from carbon dioxide with this organism.« less

  20. Convergent Validity of the Arab Teens Lifestyle Study (ATLS) Physical Activity Questionnaire

    PubMed Central

    Al-Hazzaa, Hazzaa M.; Al-Sobayel, Hana I.; Musaiger, Abdulrahman O.

    2011-01-01

    The Arab Teens Lifestyle Study (ATLS) is a multicenter project for assessing the lifestyle habits of Arab adolescents. This study reports on the convergent validity of the physical activity questionnaire used in ATLS against an electronic pedometer. Participants were 39 males and 36 females randomly selected from secondary schools, with a mean age of 16.1 ± 1.1 years. ATLS self-reported questionnaire was validated against the electronic pedometer for three consecutive weekdays. Mean steps counts were 6,866 ± 3,854 steps/day with no significant gender difference observed. Questionnaire results showed no significant gender differences in time spent on total or moderate-intensity activities. However, males spent significantly more time than females on vigorous-intensity activity. The correlation of steps counts with total time spent on all activities by the questionnaire was 0.369. Relationship of steps counts was higher with vigorous-intensity (r = 0.338) than with moderate-intensity activity (r = 0.265). Pedometer steps counts showed higher correlations with time spent on walking (r = 0.350) and jogging (r = 0.383) than with the time spent on other activities. Active participants, based on pedometer assessment, were also most active by the questionnaire. It appears that ATLS questionnaire is a valid instrument for assessing habitual physical activity among Arab adolescents. PMID:22016718

  1. Convergent validity of the Arab Teens Lifestyle Study (ATLS) physical activity questionnaire.

    PubMed

    Al-Hazzaa, Hazzaa M; Al-Sobayel, Hana I; Musaiger, Abdulrahman O

    2011-09-01

    The Arab Teens Lifestyle Study (ATLS) is a multicenter project for assessing the lifestyle habits of Arab adolescents. This study reports on the convergent validity of the physical activity questionnaire used in ATLS against an electronic pedometer. Participants were 39 males and 36 females randomly selected from secondary schools, with a mean age of 16.1 ± 1.1 years. ATLS self-reported questionnaire was validated against the electronic pedometer for three consecutive weekdays. Mean steps counts were 6,866 ± 3,854 steps/day with no significant gender difference observed. Questionnaire results showed no significant gender differences in time spent on total or moderate-intensity activities. However, males spent significantly more time than females on vigorous-intensity activity. The correlation of steps counts with total time spent on all activities by the questionnaire was 0.369. Relationship of steps counts was higher with vigorous-intensity (r = 0.338) than with moderate-intensity activity (r = 0.265). Pedometer steps counts showed higher correlations with time spent on walking (r = 0.350) and jogging (r = 0.383) than with the time spent on other activities. Active participants, based on pedometer assessment, were also most active by the questionnaire. It appears that ATLS questionnaire is a valid instrument for assessing habitual physical activity among Arab adolescents.

  2. Comparison of clinical parameters in captive Cracidae fed traditional and extruded diets.

    PubMed

    Candido, Marcus Vinicius; Silva, Louise C C; Moura, Joelma; Bona, Tania D M M; Montiani-Ferreira, Fabiano; Santin, Elizabeth

    2011-09-01

    The Cracidae family of neotropical birds is regarded as one of the most severely threatened in the world. They traditionally have been extensively hunted, and, thus, ex situ efforts for their conservation are recommended and involve the optimization of their care in captivity. Nutrition is a fundamental aspect of husbandry, which influences survival and reproduction in captivity. In this study, a total of 29 animals, including 3 species (Penelope obscura, Penelope superciliaris, and Aburria jacutinga), were subjected to monthly physical examination and blood sampling before and after dietary conversion from the traditional diet of broiler feed, fruits, and vegetables to a nutritionally balanced commercial diet specifically designed for wild Galliformes. The diet change produced differences in several parameters tested, including an increase (P < 0.05) in hemoglobin concentration for all species. Increases (P < 0.05) in erythrocyte count, packed cell volume, and body weight were observed in P. obscura, with a concomitant decrease in the standard deviation for such parameters that show improved uniformity. Globulins and lipase also were reduced (P < 0.05) in P. obscura. Although leukocyte count was lowered and eosinophils were increased in all 3 species after dietary conversion, only these 2 changes were significant (P < 0.05) in P. superciliaris. A. jacutinga had higher (P < 0.05) blood glucose concentrations than the other species, but diet had no effect on this parameter. Blood uric acid concentrations were higher (P < 0.05) after conversion to the commercial diet in P superciliaris. The provision of a commercial extruded diet as a single food source was beneficial, which led to a general improvement in clinical aspects and group uniformity in these 3 species of Cracidae.

  3. Nanocrystal Size-Dependent Efficiency of Quantum Dot Sensitized Solar Cells in the Strongly Coupled CdSe Nanocrystals/TiO2 System.

    PubMed

    Yun, Hyeong Jin; Paik, Taejong; Diroll, Benjamin; Edley, Michael E; Baxter, Jason B; Murray, Christopher B

    2016-06-15

    Light absorption and electron injection are important criteria determining solar energy conversion efficiency. In this research, monodisperse CdSe quantum dots (QDs) are synthesized with five different diameters, and the size-dependent solar energy conversion efficiency of CdSe quantum dot sensitized solar cell (QDSSCs) is investigated by employing the atomic inorganic ligand, S(2-). Absorbance measurements and transmission electron microscopy show that the diameters of the uniform CdSe QDs are 2.5, 3.2, 4.2, 6.4, and 7.8 nm. Larger CdSe QDs generate a larger amount of charge under the irradiation of long wavelength photons, as verified by the absorbance results and the measurements of the external quantum efficiencies. However, the smaller QDs exhibit faster electron injection kinetics from CdSe QDs to TiO2 because of the high energy level of CBCdSe, as verified by time-resolved photoluminescence and internal quantum efficiency results. Importantly, the S(2-) ligand significantly enhances the electronic coupling between the CdSe QDs and TiO2, yielding an enhancement of the charge transfer rate at the interfacial region. As a result, the S(2-) ligand helps improve the new size-dependent solar energy conversion efficiency, showing best performance with 4.2-nm CdSe QDs, whereas conventional ligand, mercaptopropionic acid, does not show any differences in efficiency according to the size of the CdSe QDs. The findings reported herein suggest that the atomic inorganic ligand reinforces the influence of quantum confinement on the solar energy conversion efficiency of QDSSCs.

  4. Bird biodiversity assessments in temperate forest: the value of point count versus acoustic monitoring protocols.

    PubMed

    Klingbeil, Brian T; Willig, Michael R

    2015-01-01

    Effective monitoring programs for biodiversity are needed to assess trends in biodiversity and evaluate the consequences of management. This is particularly true for birds and faunas that occupy interior forest and other areas of low human population density, as these are frequently under-sampled compared to other habitats. For birds, Autonomous Recording Units (ARUs) have been proposed as a supplement or alternative to point counts made by human observers to enhance monitoring efforts. We employed two strategies (i.e., simultaneous-collection and same-season) to compare point count and ARU methods for quantifying species richness and composition of birds in temperate interior forests. The simultaneous-collection strategy compares surveys by ARUs and point counts, with methods matched in time, location, and survey duration such that the person and machine simultaneously collect data. The same-season strategy compares surveys from ARUs and point counts conducted at the same locations throughout the breeding season, but methods differ in the number, duration, and frequency of surveys. This second strategy more closely follows the ways in which monitoring programs are likely to be implemented. Site-specific estimates of richness (but not species composition) differed between methods; however, the nature of the relationship was dependent on the assessment strategy. Estimates of richness from point counts were greater than estimates from ARUs in the simultaneous-collection strategy. Woodpeckers in particular, were less frequently identified from ARUs than point counts with this strategy. Conversely, estimates of richness were lower from point counts than ARUs in the same-season strategy. Moreover, in the same-season strategy, ARUs detected the occurrence of passerines at a higher frequency than did point counts. Differences between ARU and point count methods were only detected in site-level comparisons. Importantly, both methods provide similar estimates of species richness and composition for the region. Consequently, if single visits to sites or short-term monitoring are the goal, point counts will likely perform better than ARUs, especially if species are rare or vocalize infrequently. However, if seasonal or annual monitoring of sites is the goal, ARUs offer a viable alternative to standard point-count methods, especially in the context of large-scale or long-term monitoring of temperate forest birds.

  5. Dynamic tracking down-conversion signal processing method based on reference signal for grating heterodyne interferometer

    NASA Astrophysics Data System (ADS)

    Wang, Guochao; Yan, Shuhua; Zhou, Weihong; Gu, Chenhui

    2012-08-01

    Traditional displacement measurement systems by grating, which purely make use of fringe intensity to implement fringe count and subdivision, have rigid demands for signal quality and measurement condition, so they are not easy to realize measurement with nanometer precision. Displacement measurement with the dual-wavelength and single-grating design takes advantage of the single grating diffraction theory and the heterodyne interference theory, solving quite well the contradiction between large range and high precision in grating displacement measurement. To obtain nanometer resolution and nanometer precision, high-power subdivision of interference fringes must be realized accurately. A dynamic tracking down-conversion signal processing method based on the reference signal is proposed. Accordingly, a digital phase measurement module to realize high-power subdivision on field programmable gate array (FPGA) was designed, as well as a dynamic tracking down-conversion module using phase-locked loop (PLL). Experiments validated that a carrier signal after down-conversion can constantly maintain close to 100 kHz, and the phase-measurement resolution and phase precision are more than 0.05 and 0.2 deg, respectively. The displacement resolution and the displacement precision, corresponding to the phase results, are 0.139 and 0.556 nm, respectively.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madanian, H.; Cravens, T. E.; Burch, J.

    The plasma environment near comet 67P/Churyumov–Gerasimenko (67P/CG) is dynamically affected by various factors, including the incident solar wind and outgassing from the nucleus. The Rosetta spacecraft MAGnetometer (MAG) instrument observations near perihelion showed crossing events into a magnetic field-free region at about 170 km from the nucleus in 2015 July at 1.26 au from the Sun. At each crossing, the magnitude of the magnetic field dropped by more than 20 nT to near zero. We compared the Ion and Electron Sensor (IES) electron differential flux energy spectrum inside and outside the crossing boundaries. The IES observations show a modest butmore » consistent drop in electron flux for energies between 40 eV and a few hundred eV at each cavity crossing event. This drop in the electron spectra might be due to the absence or attenuation of solar wind electrons inside the observed diamagnetic regions, which might or might not be a diamagnetic cavity. There is no apparent simple linear correlation between the electron count rate measured by the IES at different energies and the magnitude of the magnetic field, however; at all energies, the highest electron count rates are recorded at the highest magnetic field magnitudes. From model-data comparisons it seems that inside diamagnetic regions, pure coma photoelectrons are not sufficient to explain the observations and that a trapping mechanism and/or infused solar wind electrons are necessary to explain the observed electron fluxes.« less

  7. Factors Affecting Time to Sputum Culture Conversion in Adults with Pulmonary Tuberculosis: A Historical Cohort Study without Censored Cases.

    PubMed

    Kanda, Rie; Nagao, Taishi; Tho, Nguyen Van; Ogawa, Emiko; Murakami, Yoshitaka; Osawa, Makoto; Saika, Yoshinori; Doi, Kenji; Nakano, Yasutaka

    2015-01-01

    In patients with pulmonary tuberculosis (TB), shortening the time to sputum culture conversion is desirable to reduce the likelihood of mycobacterial transmission. A persistent positive sputum culture after 2 months of treatment is reported to be associated with the presence of cavitation and the extent of disease on chest X-ray, high colony count, diabetes mellitus, and smoking. However, little is known about factors affecting the time to sputum culture conversion. This study was conducted to evaluate factors affecting the time to sputum culture conversion throughout the course of treatment in adults with pulmonary TB. This study was performed using a database of the medical records of patients with active pulmonary TB who were treated at Hirakata Kohsai Hospital in Hirakata City, Osaka, Japan, from October 2000 to October 2002. Cox proportional-hazards analysis was used to evaluate factors affecting the time to sputum culture conversion after adjusting for potential confounders. The data of 86 patients with pulmonary TB were analyzed. The median time to sputum culture conversion was 39 days, and the maximum time was 116 days. The Cox proportional-hazards analysis showed that a higher smear grading (HR, 0.40; 95%CI, 0.23-0.71) and a history of ever smoking (HR, 0.48; 95%CI, 0.25-0.94) were associated with delayed sputum culture conversion. High smear grading and smoking prolonged the time to sputum culture conversion in adults with pulmonary TB. To effectively control TB, measures to decrease the cigarette smoking rate should be implemented, in addition to early detection and timely anti-TB treatment.

  8. Development of a Photon Counting System for Differential Lidar Signal Detection

    NASA Technical Reports Server (NTRS)

    Elsayed-Ali, Hani

    1997-01-01

    Photon counting has been chosen as a means to extend the detection range of current airborne DIAL ozone measurements. Lidar backscattered return signals from the on and off-line lasers experience a significant exponential decay. To extract further data from the decaying ozone return signals, photon counting will be used to measure the low light levels, thus extending the detection range. In this application, photon counting will extend signal measurement where the analog return signal is too weak. The current analog measurement range is limited to approximately 25 kilometers from an aircraft flying at 12 kilometers. Photon counting will be able to exceed the current measurement range so as to follow the mid-latitude model of ozone density as a function of height. This report describes the development of a photon counting system. The initial development phase begins with detailed evaluation of individual photomultiplier tubes. The PMT qualities investigated are noise count rates, single electron response peaks, voltage versus gain values, saturation effects, and output signal linearity. These evaluations are followed by analysis of two distinctive tube base gating schemes. The next phase is to construct and operate a photon counting system in a laboratory environment. The laboratory counting simulations are used to determine optimum discriminator setpoints and to continue further evaluations of PMT properties. The final step in the photon counting system evaluation process is the compiling of photon counting measurements on the existing ozone DIAL laser system.

  9. A Conversation about Educational Research Priorities: A Message to Riley.

    ERIC Educational Resources Information Center

    Glass, Gene V.

    1993-01-01

    Presents highlights from a conversation via BITNET on education policy and priorities for the Office of Educational Research and Improvement. The electronic discussion took place over 3 weeks with approximately 700 participants. Themes of balancing kindergarten through grade 12 education and higher education and the government's role in research…

  10. Endohedral gallide cluster superconductors and superconductivity in ReGa5.

    PubMed

    Xie, Weiwei; Luo, Huixia; Phelan, Brendan F; Klimczuk, Tomasz; Cevallos, Francois Alexandre; Cava, Robert Joseph

    2015-12-22

    We present transition metal-embedded (T@Gan) endohedral Ga-clusters as a favorable structural motif for superconductivity and develop empirical, molecule-based, electron counting rules that govern the hierarchical architectures that the clusters assume in binary phases. Among the binary T@Gan endohedral cluster systems, Mo8Ga41, Mo6Ga31, Rh2Ga9, and Ir2Ga9 are all previously known superconductors. The well-known exotic superconductor PuCoGa5 and related phases are also members of this endohedral gallide cluster family. We show that electron-deficient compounds like Mo8Ga41 prefer architectures with vertex-sharing gallium clusters, whereas electron-rich compounds, like PdGa5, prefer edge-sharing cluster architectures. The superconducting transition temperatures are highest for the electron-poor, corner-sharing architectures. Based on this analysis, the previously unknown endohedral cluster compound ReGa5 is postulated to exist at an intermediate electron count and a mix of corner sharing and edge sharing cluster architectures. The empirical prediction is shown to be correct and leads to the discovery of superconductivity in ReGa5. The Fermi levels for endohedral gallide cluster compounds are located in deep pseudogaps in the electronic densities of states, an important factor in determining their chemical stability, while at the same time limiting their superconducting transition temperatures.

  11. The Effect of a Guide Field on Local Energy Conversion During Asymmetric Magnetic Reconnection: Particle-in-Cell Simulations

    NASA Astrophysics Data System (ADS)

    Cassak, P. A.; Genestreti, K. J.; Burch, J. L.; Phan, T.-D.; Shay, M. A.; Swisdak, M.; Drake, J. F.; Price, L.; Eriksson, S.; Ergun, R. E.; Anderson, B. J.; Merkin, V. G.; Komar, C. M.

    2017-11-01

    We use theory and simulations to study how the out-of-plane (guide) magnetic field strength modifies the location where the energy conversion rate between the electric field and the plasma is appreciable during asymmetric magnetic reconnection, motivated by observations (Genestreti et al., 2017). For weak guide fields, energy conversion is maximum on the magnetospheric side of the X line, midway between the X line and electron stagnation point. As the guide field increases, the electron stagnation point gets closer to the X line, and energy conversion occurs closer to the electron stagnation point. We motivate one possible nonrigorous approach to extend the theory of the stagnation point location to include a guide field. The predictions are compared to two-dimensional particle-in-cell (PIC) simulations with vastly different guide fields. The simulations have upstream parameters corresponding to three events observed with Magnetospheric Multiscale (MMS). The predictions agree reasonably well with the simulation results, capturing trends with the guide field. The theory correctly predicts that the X line and stagnation points approach each other as the guide field increases. The results are compared to MMS observations, Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) observations of each event, and a global resistive-magnetohydrodynamics simulation of the 16 October 2015 event. The PIC simulation results agree well with the global observations and simulation but differ in the strong electric fields and energy conversion rates found in MMS observations. The observational, theoretical, and numerical results suggest that the strong electric fields observed by MMS do not represent a steady global reconnection rate.

  12. Long vertically aligned titania nanotubes on transparent conducting oxide for highly efficient solar cells.

    PubMed

    Varghese, Oomman K; Paulose, Maggie; Grimes, Craig A

    2009-09-01

    Dye-sensitized solar cells consist of a random network of titania nanoparticles that serve both as a high-surface-area support for dye molecules and as an electron-transporting medium. Despite achieving high power conversion efficiencies, their performance is limited by electron trapping in the nanoparticle film. Electron diffusion lengths can be increased by transporting charge through highly ordered nanostructures such as titania nanotube arrays. Although titania nanotube array films have been shown to enhance the efficiencies of both charge collection and light harvesting, it has not been possible to grow them on transparent conducting oxide glass with the lengths needed for high-efficiency device applications (tens of micrometres). Here, we report the fabrication of transparent titania nanotube array films on transparent conducting oxide glass with lengths between 0.3 and 33.0 microm using a novel electrochemistry approach. Dye-sensitized solar cells containing these arrays yielded a power conversion efficiency of 6.9%. The incident photon-to-current conversion efficiency ranged from 70 to 80% for wavelengths between 450 and 650 nm.

  13. Who Needs Lewis Structures to Get VSEPR Geometries?

    ERIC Educational Resources Information Center

    Lindmark, Alan F.

    2010-01-01

    Teaching the VSEPR (valence shell electron-pair repulsion) model can be a tedious process. Traditionally, Lewis structures are drawn and the number of "electron clouds" (groups) around the central atom are counted and related to the standard VSEPR table of possible geometries. A simpler method to deduce the VSEPR structure without first drawing…

  14. Electron multiplier-ion detector system

    DOEpatents

    Dietz, L.A.

    1975-08-01

    This patent relates to an improved ion detector for use in mass spectrometers for pulse counting signal ions which may have a positive or a negative charge. The invention combines a novel electron multiplier with a scintillator type of ion detector. It is a high vacuum, high voltage device intended for use in ion microprobe mass spectrometers. (auth)

  15. Radiation energy conversion in space; Conference, 3rd, NASA Ames Research Center, Moffett Field, Calif., January 26-28, 1978, Technical Papers

    NASA Technical Reports Server (NTRS)

    Billman, K. W.

    1978-01-01

    Concepts for space-based conversion of space radiation energy into useful energy for man's needs are developed and supported by studies of costs, material and size requirements, efficiency, and available technology. Besides the more studied solar power satellite system using microwave transmission, a number of alternative space energy concepts are considered. Topics covered include orbiting mirrors for terrestrial energy supply, energy conversion at a lunar polar site, ultralightweight structures for space power, radiatively sustained cesium plasmas for solar electric conversion, solar pumped CW CO2 laser, superelastic laser energy conversion, laser-enhanced dynamics in molecular rate processes, and electron beams in space for energy storage.

  16. Techniques for the correction of topographical effects in scanning Auger electron microscopy

    NASA Technical Reports Server (NTRS)

    Prutton, M.; Larson, L. A.; Poppa, H.

    1983-01-01

    A number of ratioing methods for correcting Auger images and linescans for topographical contrast are tested using anisotropically etched silicon substrates covered with Au or Ag. Thirteen well-defined angles of incidence are present on each polyhedron produced on the Si by this etching. If N1 electrons are counted at the energy of an Auger peak and N2 are counted in the background above the peak, then N1, N1 - N2, (N1 - N2)/(N1 + N2) are measured and compared as methods of eliminating topographical contrast. The latter method gives the best compensation but can be further improved by using a measurement of the sample absorption current. Various other improvements are discussed.

  17. Three-dimensional reconstruction of glycosomes in trypanosomatids of the genus Phytomonas.

    PubMed

    Attias, M; de Souza, W

    1995-02-01

    Computer aided three dimensional (3-D) reconstruction of cells from two isolates of protozoa of the genus Phytomonas, trypanosomatids found in plants, were made from 0.3 microm thick sections, imaged on a Zeiss 902 electron microscope with a energy filter for in ellastically scattered electrons, in order to obtain information about glycosomal shape diversity. Direct counts of peroxisomes (glycosomes) from Phytomonas sp. from Chamaesyce thymifolia indicated that there were fewer glycosomes per cell than the simple count of ultrathin section profiles would suggest and that these organelles could be long and branched. On the other hand, the stacked glycosomes observed in the isolate from Euphorbia characias were small individual structures and no connection was seen between them.

  18. Optimizing Energy Transduction of Fluctuating Signals with Nanofluidic Diodes and Load Capacitors.

    PubMed

    Ramirez, Patricio; Cervera, Javier; Gomez, Vicente; Ali, Mubarak; Nasir, Saima; Ensinger, Wolfgang; Mafe, Salvador

    2018-05-01

    The design and experimental implementation of hybrid circuits is considered allowing charge transfer and energy conversion between nanofluidic diodes in aqueous ionic solutions and conventional electronic elements such as capacitors. The fundamental concepts involved are reviewed for the case of fluctuating zero-average external potentials acting on single pore and multipore membranes. This problem is relevant to electrochemical energy conversion and storage, the stimulus-response characteristics of nanosensors and actuators, and the estimation of the accumulative effects caused by external signals on biological ion channels. Half-wave and full-wave voltage doublers and quadruplers can scale up the transduction between ionic and electronic signals. The network designs discussed here should be useful to convert the weak signals characteristic of the micro and nanoscale into robust electronic responses by interconnecting iontronics and electronic elements. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. High-Efficiency Nonfullerene Polymer Solar Cell Enabling by Integration of Film-Morphology Optimization, Donor Selection, and Interfacial Engineering.

    PubMed

    Zhang, Xin; Li, Weiping; Yao, Jiannian; Zhan, Chuanlang

    2016-06-22

    Carrier mobility is a vital factor determining the electrical performance of organic solar cells. In this paper we report that a high-efficiency nonfullerene organic solar cell (NF-OSC) with a power conversion efficiency of 6.94 ± 0.27% was obtained by optimizing the hole and electron transportations via following judicious selection of polymer donor and engineering of film-morphology and cathode interlayers: (1) a combination of solvent annealing and solvent vapor annealing optimizes the film morphology and hence both hole and electron mobilities, leading to a trade-off of fill factor and short-circuit current density (Jsc); (2) the judicious selection of polymer donor affords a higher hole and electron mobility, giving a higher Jsc; and (3) engineering the cathode interlayer affords a higher electron mobility, which leads to a significant increase in electrical current generation and ultimately the power conversion efficiency (PCE).

  20. ULTRAFAST CHEMISTRY: Using Time-Resolved Vibrational Spectroscopy for Interrogation of Structural Dynamics

    NASA Astrophysics Data System (ADS)

    Nibbering, Erik T. J.; Fidder, Henk; Pines, Ehud

    2005-05-01

    Time-resolved infrared (IR) and Raman spectroscopy elucidates molecular structure evolution during ultrafast chemical reactions. Following vibrational marker modes in real time provides direct insight into the structural dynamics, as is evidenced in studies on intramolecular hydrogen transfer, bimolecular proton transfer, electron transfer, hydrogen bonding during solvation dynamics, bond fission in organometallic compounds and heme proteins, cis-trans isomerization in retinal proteins, and transformations in photochromic switch pairs. Femtosecond IR spectroscopy monitors the site-specific interactions in hydrogen bonds. Conversion between excited electronic states can be followed for intramolecular electron transfer by inspection of the fingerprint IR- or Raman-active vibrations in conjunction with quantum chemical calculations. Excess internal vibrational energy, generated either by optical excitation or by internal conversion from the electronic excited state to the ground state, is observable through transient frequency shifts of IR-active vibrations and through nonequilibrium populations as deduced by Raman resonances.

  1. The effect of microchannel plate gain depression on PAPA photon counting cameras

    NASA Astrophysics Data System (ADS)

    Sams, Bruce J., III

    1991-03-01

    PAPA (precision analog photon address) cameras are photon counting imagers which employ microchannel plates (MCPs) for image intensification. They have been used extensively in astronomical speckle imaging. The PAPA camera can produce artifacts when light incident on its MCP is highly concentrated. The effect is exacerbated by adjusting the strobe detection level too low, so that the camera accepts very small MCP pulses. The artifacts can occur even at low total count rates if the image has highly a concentrated bright spot. This paper describes how to optimize PAPA camera electronics, and describes six techniques which can avoid or minimize addressing errors.

  2. Single Photon Counting Performance and Noise Analysis of CMOS SPAD-Based Image Sensors.

    PubMed

    Dutton, Neale A W; Gyongy, Istvan; Parmesan, Luca; Henderson, Robert K

    2016-07-20

    SPAD-based solid state CMOS image sensors utilising analogue integrators have attained deep sub-electron read noise (DSERN) permitting single photon counting (SPC) imaging. A new method is proposed to determine the read noise in DSERN image sensors by evaluating the peak separation and width (PSW) of single photon peaks in a photon counting histogram (PCH). The technique is used to identify and analyse cumulative noise in analogue integrating SPC SPAD-based pixels. The DSERN of our SPAD image sensor is exploited to confirm recent multi-photon threshold quanta image sensor (QIS) theory. Finally, various single and multiple photon spatio-temporal oversampling techniques are reviewed.

  3. Dissecting Reactor Antineutrino Flux Calculations

    NASA Astrophysics Data System (ADS)

    Sonzogni, A. A.; McCutchan, E. A.; Hayes, A. C.

    2017-09-01

    Current predictions for the antineutrino yield and spectra from a nuclear reactor rely on the experimental electron spectra from 235U, 239Pu, 241Pu and a numerical method to convert these aggregate electron spectra into their corresponding antineutrino ones. In the present work we investigate quantitatively some of the basic assumptions and approximations used in the conversion method, studying first the compatibility between two recent approaches for calculating electron and antineutrino spectra. We then explore different possibilities for the disagreement between the measured Daya Bay and the Huber-Mueller antineutrino spectra, including the 238U contribution as well as the effective charge and the allowed shape assumption used in the conversion method. We observe that including a shape correction of about +6 % MeV-1 in conversion calculations can better describe the Daya Bay spectrum. Because of a lack of experimental data, this correction cannot be ruled out, concluding that in order to confirm the existence of the reactor neutrino anomaly, or even quantify it, precisely measured electron spectra for about 50 relevant fission products are needed. With the advent of new rare ion facilities, the measurement of shape factors for these nuclides, for many of which precise beta intensity data from TAGS experiments already exist, would be highly desirable.

  4. World's Cheapest Readout Electronics for Kinetic Inductance Detector by Using RedPitaya

    NASA Astrophysics Data System (ADS)

    Tomita, N.; Jeong, H.; Choi, J.; Ishitsuka, H.; Mima, S.; Nagasaki, T.; Oguri, S.; Tajima, O.

    2016-07-01

    The kinetic inductance detector (KID) is a cutting-edge superconducting detector. The number of KID developers is growing. Most of them have switched from their previous study to superconducting technologies. Therefore, infrastructures for the fabrication of KIDs and cooling systems for their tests have already been established. However, readout electronics have to be newly prepared. Neither a commercial system nor low-cost standard electronics are available despite various attempts to create a standard one. We suggest the use of RedPitaya as readout electronics for the initial step of KID development, which is low cost (≈ 400 USD) and easy to set up. The RedPitaya consists of an all-programmable FPGA-CPU module and a dual-channel 14 bit DAC (ADC) to generate (measure) fast analog signals with 125 MSpS. Each port can be synchronized in-phase or quadrature-phase, and functions for generating and sampling analog signal are prepared. It is straightforward to construct vector network analyzer-like logic by using a combination of these default functions. Up-conversion and down-conversion of its frequency range are also possible by using commercial equipment, i.e., mixers, couplers, and a local oscillator. We implemented direct down-conversion logic on the RedPitaya, and successfully demonstrated KID signal measurements.

  5. Dissecting Reactor Antineutrino Flux Calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sonzogni, A. A.; McCutchan, E. A.; Hayes, A. C.

    2017-09-15

    Current predictions for the antineutrino yield and spectra from a nuclear reactor rely on the experimental electron spectra from 235 U , 239 Pu , 241 Pu and a numerical method to convert these aggregate electron spectra into their corresponding antineutrino ones. In our present work we investigate quantitatively some of the basic assumptions and approximations used in the conversion method, studying first the compatibility between two recent approaches for calculating electron and antineutrino spectra. We then explore different possibilities for the disagreement between the measured Daya Bay and the Huber-Mueller antineutrino spectra, including the 238 U contribution as wellmore » as the effective charge and the allowed shape assumption used in the conversion method. Here, we observe that including a shape correction of about + 6 % MeV - 1 in conversion calculations can better describe the Daya Bay spectrum. Because of a lack of experimental data, this correction cannot be ruled out, concluding that in order to confirm the existence of the reactor neutrino anomaly, or even quantify it, precisely measured electron spectra for about 50 relevant fission products are needed. With the advent of new rare ion facilities, the measurement of shape factors for these nuclides, for many of which precise beta intensity data from TAGS experiments already exist, would be highly desirable.« less

  6. Plasma distributions in meteor head echoes and implications for radar cross section interpretation

    NASA Astrophysics Data System (ADS)

    Marshall, Robert A.; Brown, Peter; Close, Sigrid

    2017-09-01

    The derivation of meteoroid masses from radar measurements requires conversion of the measured radar cross section (RCS) to meteoroid mass. Typically, this conversion passes first through an estimate of the meteor plasma density derived from the RCS. However, the conversion from RCS to meteor plasma density requires assumptions on the radial electron density distribution. We use simultaneous triple-frequency measurements of the RCS for 63 large meteor head echoes to derive estimates of the meteor plasma size and density using five different possible radial electron density distributions. By fitting these distributions to the observed meteor RCS values and estimating the goodness-of-fit, we determine that the best fit to the data is a 1 /r2 plasma distribution, i.e. the electron density decays as 1 /r2 from the center of the meteor plasma. Next, we use the derived plasma distributions to estimate the electron line density q for each meteor using each of the five distributions. We show that depending on the choice of distribution, the line density can vary by a factor of three or more. We thus argue that a best estimate for the radial plasma distribution in a meteor head echo is necessary in order to have any confidence in derived meteoroid masses.

  7. Second NASA Conference on Laser Energy Conversion

    NASA Technical Reports Server (NTRS)

    Billman, K. W. (Editor)

    1976-01-01

    The possible transmission of high power laser beams over long distances and their conversion to thrust, electricity, or other useful forms of energy is considered. Specific topics discussed include: laser induced chemistry; developments in photovoltaics, including modification of the Schottky barrier devices and generation of high voltage emf'sby laser radiation of piezoelectric ceramics; the thermo electronic laser energy converter and the laser plasmadynamics converters; harmonic conversion of infrared laser radiation in molecular gases; and photon engines.

  8. Ultrafast internal conversion dynamics of highly excited pyrrole studied with VUV/UV pump probe spectroscopy.

    PubMed

    Horton, Spencer L; Liu, Yusong; Chakraborty, Pratip; Matsika, Spiridoula; Weinacht, Thomas

    2017-02-14

    We study the relaxation dynamics of pyrrole after excitation with an 8 eV pump pulse to a state just 0.2 eV below the ionization potential using vacuum ultraviolet/ultraviolet pump probe spectroscopy. Our measurements in conjunction with electronic structure calculations indicate that pyrrole undergoes rapid internal conversion to the ground state in less than 300 fs. We find that internal conversion to the ground state dominates over dissociation.

  9. Photon-Limited Information in High Resolution Laser Ranging

    DTIC Science & Technology

    2014-05-28

    entangled photons generated by spontaneous parametric down-conversion of a chirped source to perform ranging measurements. Summary of the Most... Matlab program to collect the photon counts from the time to digital converter (TDC). This entailed setting up Matlab to talk to the TDC to get the...SECURITY CLASSIFICATION OF: This project is an effort under the Information in a Photon (InPho) program at DARPA\\DSO. Its purpose is to investigate

  10. Advanced electrical power, distribution and control for the Space Transportation System

    NASA Astrophysics Data System (ADS)

    Hansen, Irving G.; Brandhorst, Henry W., Jr.

    1990-08-01

    High frequency power distribution and management is a technology ready state of development. As such, a system employs the fewest power conversion steps, and employs zero current switching for those steps. It results in the most efficiency, and lowest total parts system count when equivalent systems are compared. The operating voltage and frequency are application specific trade off parameters. However, a 20 kHz Hertz system is suitable for wide range systems.

  11. Advanced electrical power, distribution and control for the Space Transportation System

    NASA Technical Reports Server (NTRS)

    Hansen, Irving G.; Brandhorst, Henry W., Jr.

    1990-01-01

    High frequency power distribution and management is a technology ready state of development. As such, a system employs the fewest power conversion steps, and employs zero current switching for those steps. It results in the most efficiency, and lowest total parts system count when equivalent systems are compared. The operating voltage and frequency are application specific trade off parameters. However, a 20 kHz Hertz system is suitable for wide range systems.

  12. Ultra-low-power conversion and management techniques for thermoelectric energy harvesting applications

    NASA Astrophysics Data System (ADS)

    Fleming, Jerry W.

    2010-04-01

    Thermoelectric energy harvesting has increasingly gained acceptance as a potential power source that can be used for numerous commercial and military applications. However, power electronic designers have struggled to incorporate energy harvesting methods into their designs due to the relatively small voltage levels available from many harvesting device technologies. In order to bridge this gap, an ultra-low input voltage power conversion method is needed to convert small amounts of scavenged energy into a usable form of electricity. Such a method would be an enabler for new and improved medical devices, sensor systems, and other portable electronic products. This paper addresses the technical challenges involved in ultra-low-voltage power conversion by providing a solution utilizing novel power conversion techniques and applied technologies. Our solution utilizes intelligent power management techniques to control unknown startup conditions. The load and supply management functionality is also controlled in a deterministic manner. The DC to DC converter input operating voltage is 20mV with a conversion efficiency of 90% or more. The output voltage is stored into a storage device such as an ultra-capacitor or lithium-ion battery for use during brown-out or unfavorable harvesting conditions. Applications requiring modular, low power, extended maintenance cycles, such as wireless instrumentation would significantly benefit from the novel power conversion and harvesting techniques outlined in this paper.

  13. Ultrafast non-radiative dynamics of atomically thin MoSe 2

    DOE PAGES

    Lin, Ming -Fu; Kochat, Vidya; Krishnamoorthy, Aravind; ...

    2017-10-17

    Non-radiative energy dissipation in photoexcited materials and resulting atomic dynamics provide a promising pathway to induce structural phase transitions in two-dimensional materials. However, these dynamics have not been explored in detail thus far because of incomplete understanding of interaction between the electronic and atomic degrees of freedom, and a lack of direct experimental methods to quantify real-time atomic motion and lattice temperature. Here, we explore the ultrafast conversion of photoenergy to lattice vibrations in a model bi-layered semiconductor, molybdenum diselenide, MoSe 2. Specifically, we characterize sub-picosecond lattice dynamics initiated by the optical excitation of electronic charge carriers in the highmore » electron-hole plasma density regime. Our results focuses on the first ten picosecond dynamics subsequent to photoexcitation before the onset of heat transfer to the substrate, which occurs on a ~100 picosecond time scale. Photoinduced atomic motion is probed by measuring the time dependent Bragg diffraction of a delayed mega-electronvolt femtosecond electron beam. Transient lattice temperatures are characterized through measurement of Bragg peak intensities and calculation of the Debye-Waller factor (DWF). These measurements show a sub-picosecond decay of Bragg diffraction and a correspondingly rapid rise in lattice temperatures. We estimate a high quantum yield for the conversion of excited charge carrier energy to lattice motion under our experimental conditions, indicative of a strong electron-phonon interaction. First principles nonadiabatic quantum molecular dynamics simulations (NAQMD) on electronically excited MoSe 2 bilayers reproduce the observed picosecond-scale increase in lattice temperature and ultrafast conversion of photoenergy to lattice vibrations. Calculation of excited-state phonon dispersion curves suggests that softened vibrational modes in the excited state are involved in efficient and rapid energy transfer between the electronic system and the lattice.« less

  14. Ultrafast non-radiative dynamics of atomically thin MoSe 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Ming -Fu; Kochat, Vidya; Krishnamoorthy, Aravind

    Non-radiative energy dissipation in photoexcited materials and resulting atomic dynamics provide a promising pathway to induce structural phase transitions in two-dimensional materials. However, these dynamics have not been explored in detail thus far because of incomplete understanding of interaction between the electronic and atomic degrees of freedom, and a lack of direct experimental methods to quantify real-time atomic motion and lattice temperature. Here, we explore the ultrafast conversion of photoenergy to lattice vibrations in a model bi-layered semiconductor, molybdenum diselenide, MoSe 2. Specifically, we characterize sub-picosecond lattice dynamics initiated by the optical excitation of electronic charge carriers in the highmore » electron-hole plasma density regime. Our results focuses on the first ten picosecond dynamics subsequent to photoexcitation before the onset of heat transfer to the substrate, which occurs on a ~100 picosecond time scale. Photoinduced atomic motion is probed by measuring the time dependent Bragg diffraction of a delayed mega-electronvolt femtosecond electron beam. Transient lattice temperatures are characterized through measurement of Bragg peak intensities and calculation of the Debye-Waller factor (DWF). These measurements show a sub-picosecond decay of Bragg diffraction and a correspondingly rapid rise in lattice temperatures. We estimate a high quantum yield for the conversion of excited charge carrier energy to lattice motion under our experimental conditions, indicative of a strong electron-phonon interaction. First principles nonadiabatic quantum molecular dynamics simulations (NAQMD) on electronically excited MoSe 2 bilayers reproduce the observed picosecond-scale increase in lattice temperature and ultrafast conversion of photoenergy to lattice vibrations. Calculation of excited-state phonon dispersion curves suggests that softened vibrational modes in the excited state are involved in efficient and rapid energy transfer between the electronic system and the lattice.« less

  15. Biological Profiles of Korean Atomic Bomb Survivors in Residence at Daegu and Kyungbuk, Republic of Korea

    PubMed Central

    Jhun, Hyung-Joon; Kim, Byoung-Gwon; Kim, Su-Young; Koo, Bon-Min; Kim, Jin-Kook

    2008-01-01

    In 1945, many Koreans, in addition to Japanese, were killed or injured by the atomic bombs dropped on Hiroshima and Nagasaki, Japan. This study compared the biological profiles of Korean atomic bomb survivors in residence at Daegu and Kyungbuk, Republic of Korea with those of a representative sample of Koreans obtained during a similar period. We evaluated anthropometric measurements, blood pressure, blood cell counts, blood chemistry, and urinalysis of survivors (n=414) and age- and sex-matched controls (n=414) recruited from the third Korea National Health and Nutrition Examination Survey conducted in 2005. Univariate analyses revealed significantly higher systolic blood pressure, white blood cell count, and serum total cholesterol, triglycerides, high-density lipoprotein-cholesterol, and aspartate aminotransferase levels (p<0.01) in the survivors. Conversely, hemoglobin concentration, hematocrit, red blood cell count, and the proportion of positive urine occult blood (p<0.01) were lower in the survivors. Our findings suggest that biological profiles of Korean atomic bomb survivors were adversely affected by radiation exposure. PMID:19119455

  16. Assessing consumption of bioactive micro-particles by filter-feeding Asian carp

    USGS Publications Warehouse

    Jensen, Nathan R.; Amberg, Jon J.; Luoma, James A.; Walleser, Liza R.; Gaikowski, Mark P.

    2012-01-01

    Silver carp Hypophthalmichthys molitrix (SVC) and bighead carp H. nobilis (BHC) have impacted waters in the US since their escape. Current chemical controls for aquatic nuisance species are non-selective. Development of a bioactive micro-particle that exploits filter-feeding habits of SVC or BHC could result in a new control tool. It is not fully understood if SVC or BHC will consume bioactive micro-particles. Two discrete trials were performed to: 1) evaluate if SVC and BHC consume the candidate micro-particle formulation; 2) determine what size they consume; 3) establish methods to evaluate consumption of filter-feeders for future experiments. Both SVC and BHC were exposed to small (50-100 μm) and large (150-200 μm) micro-particles in two 24-h trials. Particles in water were counted electronically and manually (microscopy). Particles on gill rakers were counted manually and intestinal tracts inspected for the presence of micro-particles. In Trial 1, both manual and electronic count data confirmed reductions of both size particles; SVC appeared to remove more small particles than large; more BHC consumed particles; SVC had fewer overall particles in their gill rakers than BHC. In Trial 2, electronic counts confirmed reductions of both size particles; both SVC and BHC consumed particles, yet more SVC consumed micro-particles compared to BHC. Of the fish that ate micro-particles, SVC consumed more than BHC. It is recommended to use multiple metrics to assess consumption of candidate micro-particles by filter-feeders when attempting to distinguish differential particle consumption. This study has implications for developing micro-particles for species-specific delivery of bioactive controls to help fisheries, provides some methods for further experiments with bioactive micro-particles, and may also have applications in aquaculture.

  17. A Next Generation Digital Counting System For Low-Level Tritium Studies (Project Report)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowman, P.

    2016-10-03

    Since the early seventies, SRNL has pioneered low-level tritium analysis using various nuclear counting technologies and techniques. Since 1999, SRNL has successfully performed routine low-level tritium analyses with counting systems based on digital signal processor (DSP) modules developed in the late 1990s. Each of these counting systems are complex, unique to SRNL, and fully dedicated to performing routine tritium analyses of low-level environmental samples. It is time to modernize these systems due to a variety of issues including (1) age, (2) lack of direct replacement electronics modules and (3) advances in digital signal processing and computer technology. There has beenmore » considerable development in many areas associated with the enterprise of performing low-level tritium analyses. The objective of this LDRD project was to design, build, and demonstrate a Next Generation Tritium Counting System (NGTCS), while not disrupting the routine low-level tritium analyses underway in the facility on the legacy counting systems. The work involved (1) developing a test bed for building and testing new counting system hardware that does not interfere with our routine analyses, (2) testing a new counting system based on a modern state of the art DSP module, and (3) evolving the low-level tritium counter design to reflect the state of the science.« less

  18. Electron magnetic reconnection without ion coupling in Earth's turbulent magnetosheath

    NASA Astrophysics Data System (ADS)

    Phan, T. D.; Eastwood, J. P.; Shay, M. A.; Drake, J. F.; Sonnerup, B. U. Ö.; Fujimoto, M.; Cassak, P. A.; Øieroset, M.; Burch, J. L.; Torbert, R. B.; Rager, A. C.; Dorelli, J. C.; Gershman, D. J.; Pollock, C.; Pyakurel, P. S.; Haggerty, C. C.; Khotyaintsev, Y.; Lavraud, B.; Saito, Y.; Oka, M.; Ergun, R. E.; Retino, A.; Le Contel, O.; Argall, M. R.; Giles, B. L.; Moore, T. E.; Wilder, F. D.; Strangeway, R. J.; Russell, C. T.; Lindqvist, P. A.; Magnes, W.

    2018-05-01

    Magnetic reconnection in current sheets is a magnetic-to-particle energy conversion process that is fundamental to many space and laboratory plasma systems. In the standard model of reconnection, this process occurs in a minuscule electron-scale diffusion region1,2. On larger scales, ions couple to the newly reconnected magnetic-field lines and are ejected away from the diffusion region in the form of bi-directional ion jets at the ion Alfvén speed3-5. Much of the energy conversion occurs in spatially extended ion exhausts downstream of the diffusion region6. In turbulent plasmas, which contain a large number of small-scale current sheets, reconnection has long been suggested to have a major role in the dissipation of turbulent energy at kinetic scales7-11. However, evidence for reconnection plasma jetting in small-scale turbulent plasmas has so far been lacking. Here we report observations made in Earth's turbulent magnetosheath region (downstream of the bow shock) of an electron-scale current sheet in which diverging bi-directional super-ion-Alfvénic electron jets, parallel electric fields and enhanced magnetic-to-particle energy conversion were detected. Contrary to the standard model of reconnection, the thin reconnecting current sheet was not embedded in a wider ion-scale current layer and no ion jets were detected. Observations of this and other similar, but unidirectional, electron jet events without signatures of ion reconnection reveal a form of reconnection that can drive turbulent energy transfer and dissipation in electron-scale current sheets without ion coupling.

  19. Electron magnetic reconnection without ion coupling in Earth's turbulent magnetosheath.

    PubMed

    Phan, T D; Eastwood, J P; Shay, M A; Drake, J F; Sonnerup, B U Ö; Fujimoto, M; Cassak, P A; Øieroset, M; Burch, J L; Torbert, R B; Rager, A C; Dorelli, J C; Gershman, D J; Pollock, C; Pyakurel, P S; Haggerty, C C; Khotyaintsev, Y; Lavraud, B; Saito, Y; Oka, M; Ergun, R E; Retino, A; Le Contel, O; Argall, M R; Giles, B L; Moore, T E; Wilder, F D; Strangeway, R J; Russell, C T; Lindqvist, P A; Magnes, W

    2018-05-01

    Magnetic reconnection in current sheets is a magnetic-to-particle energy conversion process that is fundamental to many space and laboratory plasma systems. In the standard model of reconnection, this process occurs in a minuscule electron-scale diffusion region 1,2 . On larger scales, ions couple to the newly reconnected magnetic-field lines and are ejected away from the diffusion region in the form of bi-directional ion jets at the ion Alfvén speed 3-5 . Much of the energy conversion occurs in spatially extended ion exhausts downstream of the diffusion region 6 . In turbulent plasmas, which contain a large number of small-scale current sheets, reconnection has long been suggested to have a major role in the dissipation of turbulent energy at kinetic scales 7-11 . However, evidence for reconnection plasma jetting in small-scale turbulent plasmas has so far been lacking. Here we report observations made in Earth's turbulent magnetosheath region (downstream of the bow shock) of an electron-scale current sheet in which diverging bi-directional super-ion-Alfvénic electron jets, parallel electric fields and enhanced magnetic-to-particle energy conversion were detected. Contrary to the standard model of reconnection, the thin reconnecting current sheet was not embedded in a wider ion-scale current layer and no ion jets were detected. Observations of this and other similar, but unidirectional, electron jet events without signatures of ion reconnection reveal a form of reconnection that can drive turbulent energy transfer and dissipation in electron-scale current sheets without ion coupling.

  20. HealthSouth's most wanted. Founder and former chairman and CEO Richard Scrushy is indicted for 85 counts of conspiracy, fraud and money laundering.

    PubMed

    Piotrowski, Julie

    2003-11-10

    Wake-up call for the industry or an isolated case of corporate chicanery? Healthcare experts are divided on the import of Richard Scrushy's indictment on 85 counts last week in connection with the financial scandal at HealthSouth Corp. The indictment alleges the company founder relied on electronic and telephone surveillance, threats and intimidation to control his accomplices.

  1. Nonlinear generation of sum and difference frequency waves by two helicon waves in a semiconductor

    NASA Astrophysics Data System (ADS)

    Salimullah, M.; Ferdous, T.

    1984-05-01

    This paper presents a theoretical investigation of the nonlinear generation of electrostatic waves at the sum and the difference frequency when two high amplitude elliptically polarized helicon waves propagate along the direction of the externally applied static magnetic field in an n-type semiconductor. The nonlinearity arises through the ponderomotive force on electrons. It is noticed that the power conversion efficiency of the difference frequency generation is much larger than that of the sum frequency generation. The power conversion efficiency may be easily increased by increasing the density of electrons in the semiconductor.

  2. Mössbauer study on the deformed surface of high-manganese steel

    NASA Astrophysics Data System (ADS)

    Nasu, S.; Tanimoto, H.; Fujita, F. E.

    1990-07-01

    Conversion electron, X-ray backscattering and conventional transmission57Fe Mössbauer measurements have been performed to investigate the origin of the remarkable work hardening at the surface of a high-manganese steel which is called Hadfield steel. Mössbauer results show that α' martensite has no relation to work hardening. From the comparison of conversion electron to X-ray backscattering spectra, the occurrence of decarbonization is suggested at the surface. The transmission Mössbauer spectrum at 20 K for deformed specimen shows the existence of ɛ martensite which could be related to the work hardening of Hadfield steel.

  3. A Prescription for List-Mode Data Processing Conventions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beddingfield, David H.; Swinhoe, Martyn Thomas; Huszti, Jozsef

    There are a variety of algorithmic approaches available to process list-mode pulse streams to produce multiplicity histograms for subsequent analysis. In the development of the INCC v6.0 code to include the processing of this data format, we have noted inconsistencies in the “processed time” between the various approaches. The processed time, tp, is the time interval over which the recorded pulses are analyzed to construct multiplicity histograms. This is the time interval that is used to convert measured counts into count rates. The observed inconsistencies in tp impact the reported count rate information and the determination of the error-values associatedmore » with the derived singles, doubles, and triples counting rates. This issue is particularly important in low count-rate environments. In this report we will present a prescription for the processing of list-mode counting data that produces values that are both correct and consistent with traditional shift-register technologies. It is our objective to define conventions for list mode data processing to ensure that the results are physically valid and numerically aligned with the results from shift-register electronics.« less

  4. Combined blood cell counting and classification with fluorochrome stains and flow instrumentation.

    PubMed

    Shapiro, H M; Schildkraut, E R; Curbelo, R; Laird, C W; Turner, B; Hirschfeld, T

    1976-01-01

    A multiparameter flow cytophotometer was used to count and classify fixed human blood cells fluorochromed with a mixture of ethidium bromide (EB), brilliant sulfaflavine and a blue fluorescent stilbene disulfonic acid derivative (LN). The system measures light scattered by the cells and absorption at 420 nm for all cells. In addition, nuclear EB fluorescence (540 leads to 610 nm) and cytoplasmic fluorescence from LN (366 leads to 470 nm), brilliant sulfaflavine (420 leads to 520 nm) and EB exicted by energy transfer from LN (366 leads to 610 nm) are measured for all nucleated cells. This information is sufficient to perform red and white blood cell counts and to classify leukocytes as lymphocytes, monocytes, basophils, eosinophils or neutrophils. Light scattering and/or nuclear and cytoplasmic fluorescence values may be further analyzed to obtain the ratio of immature to mature neutrophils. Counts produced by the system are in reasonable agreement with those obtained by electronic cells counting and examination of Wright's-stained blood smears; some discrepancies appear to be due to systematic errors in the manual counting method.

  5. Preparation of AgInS2 quantum dot/In2S3 co-sensitized photoelectrodes by a facile aqueous-phase synthesis route and their photovoltaic performance

    NASA Astrophysics Data System (ADS)

    Wang, Yuanqiang; Zhang, Qinghong; Li, Yaogang; Wang, Hongzhi

    2015-03-01

    In an aqueous-phase system, AgInS2 quantum dot (QD) sensitized TiO2 photoanodes were prepared in situ by the reaction of β-In2S3 nanocrystals and as-prepared TiO2/Ag2S-QD electrodes, followed by a covering process with a ZnS passivation layer. A facile successive ionic layer adsorption and reaction (SILAR) method was adopted to obtain TiO2/Ag2S-QD electrodes. β-In2S3 nanocrystals synthesized by the chemical bath deposition (CBD) process serve as the reactant of AgInS2 as well as a buffer layer between the interfaces of TiO2 and AgInS2-QDs. A polysulfide electrolyte and a Pt-coated FTO glass count electrode were used to test the photovoltaic performance of the constructed devices. The characteristics of the sensitized photoelectrodes were studied in more detail by electron microscopy, X-ray techniques, and optical and photoelectric performance measurements. AgInS2 is the main photo-sensitizer for TiO2/AgInS2-QD/In2S3 electrodes and excess In2S3 appears on the surface of the electrodes. Based on the optimal Ag2S SILAR cycle, the best photovoltaic performance of the prepared TiO2/AgInS2-QD/In2S3 electrode with the short-circuit photocurrent density (Jsc) of 7.87 mA cm-2 and power conversion efficiency (η) of 0.70% under full one-sun illumination was achieved.In an aqueous-phase system, AgInS2 quantum dot (QD) sensitized TiO2 photoanodes were prepared in situ by the reaction of β-In2S3 nanocrystals and as-prepared TiO2/Ag2S-QD electrodes, followed by a covering process with a ZnS passivation layer. A facile successive ionic layer adsorption and reaction (SILAR) method was adopted to obtain TiO2/Ag2S-QD electrodes. β-In2S3 nanocrystals synthesized by the chemical bath deposition (CBD) process serve as the reactant of AgInS2 as well as a buffer layer between the interfaces of TiO2 and AgInS2-QDs. A polysulfide electrolyte and a Pt-coated FTO glass count electrode were used to test the photovoltaic performance of the constructed devices. The characteristics of the sensitized photoelectrodes were studied in more detail by electron microscopy, X-ray techniques, and optical and photoelectric performance measurements. AgInS2 is the main photo-sensitizer for TiO2/AgInS2-QD/In2S3 electrodes and excess In2S3 appears on the surface of the electrodes. Based on the optimal Ag2S SILAR cycle, the best photovoltaic performance of the prepared TiO2/AgInS2-QD/In2S3 electrode with the short-circuit photocurrent density (Jsc) of 7.87 mA cm-2 and power conversion efficiency (η) of 0.70% under full one-sun illumination was achieved. Electronic supplementary information (ESI) available: Photograph images, FESEM images, optical absorption spectra, photocurrent voltage characteristics of the photoelectrodes obtained by CBD of In2S3 and in situ reaction with different cycles of Ag2S SILAR deposition on TiO2 films. See DOI: 10.1039/c4nr06458e

  6. Roadmap on optical energy conversion

    DOE PAGES

    Boriskina, Svetlana V.; Green, Martin A.; Catchpole, Kylie; ...

    2016-06-24

    For decades, progress in the field of optical (including solar) energy conversion was dominated by advances in the conventional concentrating optics and materials design. In recent years, however, conceptual and technological breakthroughs in the fields of nanophotonics and plasmonics combined with a better understanding of the thermodynamics of the photon energy-conversion processes reshaped the landscape of energy-conversion schemes and devices. Nanostructured devices and materials that make use of size quantization effects to manipulate photon density of states offer a way to overcome the conventional light absorption limits. Novel optical spectrum splitting and photon-recycling schemes reduce the entropy production in themore » optical energy-conversion platforms and boost their efficiencies. Optical design concepts are rapidly expanding into the infrared energy band, offering new approaches to harvest waste heat, to reduce the thermal emission losses, and to achieve noncontact radiative cooling of solar cells as well as of optical and electronic circuitries. Light-matter interaction enabled by nanophotonics and plasmonics underlie the performance of the third- and fourth-generation energy-conversion devices, including up- and down-conversion of photon energy, near-field radiative energy transfer, and hot electron generation and harvesting. Finally, the increased market penetration of alternative solar energy-conversion technologies amplifies the role of cost-driven and environmental considerations. This roadmap on optical energy conversion provides a snapshot of the state of the art in optical energy conversion, remaining challenges, and most promising approaches to address these challenges. Leading experts authored 19 focused short sections of the roadmap where they share their vision on a specific aspect of this burgeoning research field. The roadmap opens up with a tutorial section, which introduces major concepts and terminology. As a result, it is our hope that the roadmap will serve as an important resource for the scientific community, new generations of researchers, funding agencies, industry experts, and investors.« less

  7. Dual-energy imaging using a photon counting detector with electronic spectrum-splitting

    NASA Astrophysics Data System (ADS)

    Bornefalk, Hans; Lundqvist, Mats

    2006-03-01

    This paper presents a dual-energy imaging technique optimized for contrast-enhanced mammography using a photon counting detector. Each photon pulse is processed separately in the detector and the addition of an electronic threshold near the middle of the energy range of the x-ray spectrum allows discrimination of high and low energy photons. This effectively makes the detector energy sensitive, and allows the acquisition of high- and low-energy images simultaneously. These high- and low-energy images can be combined to dual-energy images where the anatomical clutter has been suppressed. By setting the electronic threshold close to 33.2 keV (the k-edge of iodine) the system is optimized for dual-energy contrast-enhanced imaging of breast tumors. Compared to other approaches, this method not only eliminates the need for separate exposures that might lead to motion artifacts, it also eliminates the otherwise deteriorating overlap between high- and low-energy spectra. We present phantom dual-energy images acquired on a prototype system to illustrate that the technique is already operational, albeit in its infancy. We also present a theoretical estimation of the potential gain in tumor signal-difference-to-noise ratio when using this electronic spectrum-splitting method as opposed to acquiring the high- and low-energy images separately with double exposures with separate x-ray spectra. Assuming ideal energy sensitive photon counting detectors, we arrive at the conclusion that the signal-difference-to-noise ratio could be increased by 145% at constant dose. We also illustrate our results on synthetic images.

  8. Probing Majorana bound states via counting statistics of a single electron transistor

    PubMed Central

    Li, Zeng-Zhao; Lam, Chi-Hang; You, J. Q.

    2015-01-01

    We propose an approach for probing Majorana bound states (MBSs) in a nanowire via counting statistics of a nearby charge detector in the form of a single-electron transistor (SET). We consider the impacts on the counting statistics by both the local coupling between the detector and an adjacent MBS at one end of a nanowire and the nonlocal coupling to the MBS at the other end. We show that the Fano factor and the skewness of the SET current are minimized for a symmetric SET configuration in the absence of the MBSs or when coupled to a fermionic state. However, the minimum points of operation are shifted appreciably in the presence of the MBSs to asymmetric SET configurations with a higher tunnel rate at the drain than at the source. This feature persists even when varying the nonlocal coupling and the pairing energy between the two MBSs. We expect that these MBS-induced shifts can be measured experimentally with available technologies and can serve as important signatures of the MBSs. PMID:26098973

  9. Advanced characterization study of commercial conversion and electrocoating structures on magnesium alloys AZ31B and ZE10A

    DOE PAGES

    Brady, Michael P.; Leonard, Donovan N.; Meyer, III, Harry M.; ...

    2016-03-31

    The local metal-coating interface microstructure and chemistry formed on commercial magnesium alloys Mg–3Al–1Zn (AZ31B) and Mg–1Zn–0.25Zr–<0.5Nd (ZE10A, ZEK100 type) were analyzed as-chemical conversion coated with a commercial hexafluoro-titanate/zirconate type + organic polymer based treatment (Bonderite® 5200) and a commercial hexafluoro-zirconate type + trivalent chromium Cr3 + type treatment (Surtec® 650), and after the same conversion coatings followed by electrocoating with an epoxy based coating, Cathoguard® 525. Characterization techniques included scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and cross-section scanning transmission electron microscopy (STEM). Corrosion behavior was assessed in room temperature saturated aqueous Mg(OH)2 solution with 1 wt.% NaCl. Themore » goal of the effort was to assess the degree to which substrate alloy additions become enriched in the conversion coating, and how the conversion coating was impacted by subsequent electrocoating. Key findings included the enrichment of Al from AZ31B and Zr from ZE10A, respectively, into the conversion coating, with moderate corrosion resistance benefits for AZ31B when Al was incorporated. Varying degrees of increased porosity and modification of the initial conversion coating chemistry at the metal-coating interface were observed after electrocoating. These changes were postulated to result in degraded electrocoating protectiveness. As a result, these observations highlight the challenges of coating Mg, and the need to tailor electrocoating in light of potential degradation of the initial as-conversion coated Mg alloy surface.« less

  10. "He Said What?!" Constructed Dialogue in Various Interface Modes

    ERIC Educational Resources Information Center

    Young, Lesa; Morris, Carla; Langdon, Clifton

    2012-01-01

    This study analyzes the manifestation of constructed dialogue in ASL narratives as dependent on the interface mode (i.e., face-to-face conversation, electronic conversation over videophone, and vlog monologues). Comparisons of eye gaze over three interface modes shows how aspects of constructed dialogue are altered to fit the communication mode.…

  11. Field-Sequential Color Converter

    NASA Technical Reports Server (NTRS)

    Studer, Victor J.

    1989-01-01

    Electronic conversion circuit enables display of signals from field-sequential color-television camera on color video camera. Designed for incorporation into color-television monitor on Space Shuttle, circuit weighs less, takes up less space, and consumes less power than previous conversion equipment. Incorporates state-of-art memory devices, also used in terrestrial stationary or portable closed-circuit television systems.

  12. Multicast routing for wavelength-routed WDM networks with dynamic membership

    NASA Astrophysics Data System (ADS)

    Huang, Nen-Fu; Liu, Te-Lung; Wang, Yao-Tzung; Li, Bo

    2000-09-01

    Future broadband networks must support integrated services and offer flexible bandwidth usage. In our previous work, we explore the optical link control layer on the top of optical layer that enables the possibility of bandwidth on-demand service directly over wavelength division multiplexed (WDM) networks. Today, more and more applications and services such as video-conferencing software and Virtual LAN service require multicast support over the underlying networks. Currently, it is difficult to provide wavelength multicast over the optical switches without optical/electronic conversions although the conversion takes extra cost. In this paper, based on the proposed wavelength router architecture (equipped with ATM switches to offer O/E and E/O conversions when necessary), a dynamic multicast routing algorithm is proposed to furnish multicast services over WDM networks. The goal is to joint a new group member into the multicast tree so that the cost, including the link cost and the optical/electronic conversion cost, is kept as less as possible. The effectiveness of the proposed wavelength router architecture as well as the dynamic multicast algorithm is evaluated by simulation.

  13. Improved Method for Determination of Respiring Individual Microorganisms in Natural Waters

    PubMed Central

    Tabor, Paul S.; Neihof, Rex A.

    1982-01-01

    A method is reported that combines the microscopic determinations of specific, individual, respiring microorganisms by the detection of electron transport system activity and the total number of organisms of an estuarine population by epifluorescence microscopy. An active cellular electron transport system specifically reduces 2-(p-iodophenyl)-3-(p-nitrophenyl)-5-phenyl tetrazolium chloride (INT) to INT-formazan, which is recognized as opaque intracellular deposits in microorganisms stained with acridine orange. In a comparison of previously described sample preparation techniques, a loss of >70% of the counts of INT-reducing microorganisms was shown to be due to the dissolution of INT-formazan deposits by immersion oil (used in microscopy). In addition, significantly fewer fluorescing microorganisms and INT-formazan deposits, both ≤0.2 μm in size, were found for sample preparations that included a Nuclepore filter. Visual clarity was enhanced, and significantly greater direct counts and counts of INT-reducing microorganisms were recognized by transferring microorganisms from a filter to a gelatin film on a cover glass, followed by coating the sample with additional gelatin to produce a transparent matrix. With this method, the number of INT-reducing microorganisms determined for a Chesapeake Bay water sample was 2-to 10-fold greater than the number of respiring organisms reported previously for marine or freshwater samples. INT-reducing microorganisms constituted 61% of the total direct counts determined for a Chesapeake Bay water sample. This is the highest percentage of metabolically active microorganisms of any aquatic population reported using a method which determines both total counts and specific activity. PMID:16346025

  14. Improved method for determination of respiring individual microorganisms in natural waters.

    PubMed

    Tabor, P S; Neihof, R A

    1982-06-01

    A method is reported that combines the microscopic determinations of specific, individual, respiring microorganisms by the detection of electron transport system activity and the total number of organisms of an estuarine population by epifluorescence microscopy. An active cellular electron transport system specifically reduces 2-(p-iodophenyl)-3-(p-nitrophenyl)-5-phenyl tetrazolium chloride (INT) to INT-formazan, which is recognized as opaque intracellular deposits in microorganisms stained with acridine orange. In a comparison of previously described sample preparation techniques, a loss of >70% of the counts of INT-reducing microorganisms was shown to be due to the dissolution of INT-formazan deposits by immersion oil (used in microscopy). In addition, significantly fewer fluorescing microorganisms and INT-formazan deposits, both

  15. The theory of an auto-resonant field emission cathode relativistic electron accelerator for high efficiency microwave to direct current power conversion

    NASA Technical Reports Server (NTRS)

    Manning, Robert M.

    1990-01-01

    A novel method of microwave power conversion to direct current is discussed that relies on a modification of well known resonant linear relativistic electron accelerator techniques. An analysis is presented that shows how, by establishing a 'slow' electromagnetic field in a waveguide, electrons liberated from an array of field emission cathodes, are resonantly accelerated to several times their rest energy, thus establishing an electric current over a large potential difference. Such an approach is not limited to the relatively low frequencies that characterize the operation of rectennas, and can, with appropriate waveguide and slow wave structure design, be employed in the 300 to 600 GHz range where much smaller transmitting and receiving antennas are needed.

  16. Reversible Conversion of Dominant Polarity in Ambipolar Polymer/Graphene Oxide Hybrids

    PubMed Central

    Zhou, Ye; Han, Su-Ting; Sonar, Prashant; Ma, Xinlei; Chen, Jihua; Zheng, Zijian; Roy, V. A. L.

    2015-01-01

    The possibility to selectively modulate the charge carrier transport in semiconducting materials is extremely challenging for the development of high performance and low-power consuming logic circuits. Systematical control over the polarity (electrons and holes) in transistor based on solution processed layer by layer polymer/graphene oxide hybrid system has been demonstrated. The conversion degree of the polarity is well controlled and reversible by trapping the opposite carriers. Basically, an electron device is switched to be a hole only device or vice versa. Finally, a hybrid layer ambipolar inverter is demonstrated in which almost no leakage of opposite carrier is found. This hybrid material has wide range of applications in planar p-n junctions and logic circuits for high-throughput manufacturing of printed electronic circuits. PMID:25801827

  17. Alpha-Voltaic Sources Using Liquid Ga as Conversion Medium

    NASA Technical Reports Server (NTRS)

    Patel, Jagdish U.; Fleurial, Jean-Pierre; Snyder, G. Jeffrey

    2006-01-01

    A family of proposed miniature sources of power would exploit the direct conversion of the kinetic energy of alpha particles into electricity. In addition to having long operational lives, these sources are expected to operate with energy-conversion efficiencies from 70 to 90 percent. A power source as proposed (see figure) would be an electrolytic cell in which liquid gallium would serve as both an electrolyte and an energy-conversion medium. The cell would contain an iridium cathode and a zirconium anode. The alpha particles, each with a kinetic energy approx.5.8 MeV, would be emitted by radioactive decay of Cm-244, which has a half-life of 18 years. The Cm-244 source would be positioned so that the a particles would enter the liquid gallium, where their kinetic energy would be dissipated mostly through ionization of Ga atoms, creating Ga(+) ions and free electrons. The electrons would be collected by iridium cathode, and the Ga(+) ions would be neutralized at the zirconium cathode by electrons returning after flowing through an external circuit. Gallium is a candidate for use as the electrolyte and the energy-conversion medium because in the liquid state it is a semimetal: its electrical conductivity is greater than that of a typical semiconductor but small in comparison with the conductivities of metals. Consequently, in liquid gallium, electrons and Ga(+) can exist without immediate recombination and can be moved by electric fields. It is expected that electric fields, resulting at least partly from the difference between the work functions of the electrode metals, would move the electrons and ions to their respective electrodes. The open-circuit potential of the cell is expected to be 1.62 V - equal to the difference between the work functions of iridium and zirconium. Unlike in a solid-state energy conversion medium, the impingement of energetic a particles would not give rise to displacement damage in the liquid gallium. Hence, the cell should have a long life, limited only by the half-life of Cm-244. A cell having a volume less than 25 cu mm, containing 1 curie of Cm-244 (the curie is a unit of radioactivity equal to 3.7 10(exp 10) disintegrations per second) is expected to deliver a current between 7 and 12 mA, which, at the expected open-circuit potential, would provide a power in the approximate range of 11 to 20 mW.

  18. 500-MHz x-ray counting with a Si-APD and a fast-pulse processing system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kishimoto, Shunji; Taniguchi, Takashi; Tanaka, Manobu

    2010-06-23

    We introduce a counting system of up to 500 MHz for synchrotron x-ray high-rate measurements. A silicon avalanche photodiode detector was used in the counting system. The fast-pulse circuit of the amplifier was designed with hybrid ICs to prepare an ASIC system for a large-scale pixel array detector in near future. The fast amplifier consists of two cascading emitter-followers using 10-GHz band transistors. A count-rate of 3.25x10{sup 8} s{sup -1} was then achieved using the system for 8-keV x-rays. However, a baseline shift by adopting AC-coupling in the amplifier disturbed us to observe the maximum count of 4.49x10{sup 8} s{supmore » -1}, determined by electron-bunch filling into a ring accelerator. We also report that an amplifier with a baseline restorer was tested in order to keep the baseline level to be 0 V even at high input rates.« less

  19. Quantitative Electron-Excited X-Ray Microanalysis of Borides, Carbides, Nitrides, Oxides, and Fluorides with Scanning Electron Microscopy/Silicon Drift Detector Energy-Dispersive Spectrometry (SEM/SDD-EDS) and NIST DTSA-II.

    PubMed

    Newbury, Dale E; Ritchie, Nicholas W M

    2015-10-01

    A scanning electron microscope with a silicon drift detector energy-dispersive X-ray spectrometer (SEM/SDD-EDS) was used to analyze materials containing the low atomic number elements B, C, N, O, and F achieving a high degree of accuracy. Nearly all results fell well within an uncertainty envelope of ±5% relative (where relative uncertainty (%)=[(measured-ideal)/ideal]×100%). Quantification was performed with the standards-based "k-ratio" method with matrix corrections calculated based on the Pouchou and Pichoir expression for the ionization depth distribution function, as implemented in the NIST DTSA-II EDS software platform. The analytical strategy that was followed involved collection of high count (>2.5 million counts from 100 eV to the incident beam energy) spectra measured with a conservative input count rate that restricted the deadtime to ~10% to minimize coincidence effects. Standards employed included pure elements and simple compounds. A 10 keV beam was employed to excite the K- and L-shell X-rays of intermediate and high atomic number elements with excitation energies above 3 keV, e.g., the Fe K-family, while a 5 keV beam was used for analyses of elements with excitation energies below 3 keV, e.g., the Mo L-family.

  20. Thermophotovoltaic conversion using selective infrared line emitters and large band gap photovoltaic devices

    DOEpatents

    Brandhorst, Jr., Henry W.; Chen, Zheng

    2000-01-01

    Efficient thermophotovoltaic conversion can be performed using photovoltaic devices with a band gap in the 0.75-1.4 electron volt range, and selective infrared emitters chosen from among the rare earth oxides which are thermally stimulated to emit infrared radiation whose energy very largely corresponds to the aforementioned band gap. It is possible to use thermovoltaic devices operating at relatively high temperatures, up to about 300.degree. C., without seriously impairing the efficiency of energy conversion.

  1. Dose conversion coefficients for electron exposure of the human eye lens

    NASA Astrophysics Data System (ADS)

    Behrens, R.; Dietze, G.; Zankl, M.

    2009-07-01

    Recent epidemiological studies suggest a rather low dose threshold (below 0.5 Gy) for the induction of a cataract of the eye lens. Some other studies even assume that there is no threshold at all. Therefore, protection measures have to be optimized and current dose limits for the eye lens may be reduced in the future. Two questions arise from this situation: first, which dose quantity is related to the risk of developing a cataract, and second, which personal dose equivalent quantity is appropriate for monitoring this dose quantity. While the dose equivalent quantity Hp(0.07) has often been seen as being sufficiently accurate for monitoring the dose to the lens of the eye, this would be questionable in the case when the dose limits were reduced and, thus, it may be necessary to generally use the dose equivalent quantity Hp(3) for this purpose. The basis for a decision, however, must be the knowledge of accurate conversion coefficients from fluence to equivalent dose to the lens. This is especially important for low-penetrating radiation, for example, electrons. Formerly published values of conversion coefficients are based on quite simple models of the eye. In this paper, quite a sophisticated model of the eye including the inner structure of the lens was used for the calculations and precise conversion coefficients for electrons with energies between 0.2 MeV and 12 MeV, and for angles of radiation incidence between 0° and 45° are presented. Compared to the values adopted in 1996 by the International Commission on Radiological Protection (ICRP), the new values are up to 1000 times smaller for electron energies below 1 MeV, nearly equal at 1 MeV and above 4 MeV, and by a factor of 1.5 larger at about 1.5 MeV electron energy.

  2. Dose conversion coefficients for electron exposure of the human eye lens.

    PubMed

    Behrens, R; Dietze, G; Zankl, M

    2009-07-07

    Recent epidemiological studies suggest a rather low dose threshold (below 0.5 Gy) for the induction of a cataract of the eye lens. Some other studies even assume that there is no threshold at all. Therefore, protection measures have to be optimized and current dose limits for the eye lens may be reduced in the future. Two questions arise from this situation: first, which dose quantity is related to the risk of developing a cataract, and second, which personal dose equivalent quantity is appropriate for monitoring this dose quantity. While the dose equivalent quantity H(p)(0.07) has often been seen as being sufficiently accurate for monitoring the dose to the lens of the eye, this would be questionable in the case when the dose limits were reduced and, thus, it may be necessary to generally use the dose equivalent quantity H(p)(3) for this purpose. The basis for a decision, however, must be the knowledge of accurate conversion coefficients from fluence to equivalent dose to the lens. This is especially important for low-penetrating radiation, for example, electrons. Formerly published values of conversion coefficients are based on quite simple models of the eye. In this paper, quite a sophisticated model of the eye including the inner structure of the lens was used for the calculations and precise conversion coefficients for electrons with energies between 0.2 MeV and 12 MeV, and for angles of radiation incidence between 0 degrees and 45 degrees are presented. Compared to the values adopted in 1996 by the International Commission on Radiological Protection (ICRP), the new values are up to 1000 times smaller for electron energies below 1 MeV, nearly equal at 1 MeV and above 4 MeV, and by a factor of 1.5 larger at about 1.5 MeV electron energy.

  3. Enhancement of Energy Conversion Efficiency for Dye Sensitized Solar Cell Using Zinc Oxide Photoanode

    NASA Astrophysics Data System (ADS)

    Jamalullail, N.; Smohamad, I.; Nnorizan, M.; Mahmed, N.

    2018-06-01

    Dye sensitized solar cell (DSSC) is a third generation solar cell that is well known for its low cost, simple fabrication process and promised reasonable energy conversion efficiency. Basic structure of DSSC is composed of photoanode, dye sensitizer, electrolyte that is sandwiched together in between two transparent conductive oxide (TCO) glasses. Each of the components in the DSSC contributes important role that affect the energy conversion efficiency. In this research, the commonly used titanium dioxide (TiO2) photoanode has previously reported to have high recombination rate and low electron mobility which caused efficiency loss had been compared with the zinc oxide (ZnO) photoanode with high electron mobility (155 cm2V-1s-1). Both of these photoanodes had been deposited through doctor blade technique. The electrical performance of the laboratory based DSSCs were tested using solar cell simulator and demonstrated that ZnO is a better photoanode compared to TiO2 with the energy conversion efficiency of 0.34% and 0.29% respectively. Nanorods shape morphology was observed in ZnO photoanode with average particle size of 41.60 nm and average crystallite size of 19.13 nm. This research proved that the energy conversion efficiency of conventional TiO2 based photoanode can be improved using ZnO material.

  4. Gold Nanoparticle Quantitation by Whole Cell Tomography.

    PubMed

    Sanders, Aric W; Jeerage, Kavita M; Schwartz, Cindi L; Curtin, Alexandra E; Chiaramonti, Ann N

    2015-12-22

    Many proposed biomedical applications for engineered gold nanoparticles require their incorporation by mammalian cells in specific numbers and locations. Here, the number of gold nanoparticles inside of individual mammalian stem cells was characterized using fast focused ion beam-scanning electron microscopy based tomography. Enhanced optical microscopy was used to provide a multiscale map of the in vitro sample, which allows cells of interest to be identified within their local environment. Cells were then serially sectioned using a gallium ion beam and imaged using a scanning electron beam. To confirm the accuracy of single cross sections, nanoparticles in similar cross sections were imaged using transmission electron microscopy and scanning helium ion microscopy. Complete tomographic series were then used to count the nanoparticles inside of each cell and measure their spatial distribution. We investigated the influence of slice thickness on counting single particles and clusters as well as nanoparticle packing within clusters. For 60 nm citrate stabilized particles, the nanoparticle cluster packing volume is 2.15 ± 0.20 times the volume of the bare gold nanoparticles.

  5. THz Hot-Electron Photon Counter

    NASA Technical Reports Server (NTRS)

    Karasik, Boris S.; Sergeev, Andrei V.

    2004-01-01

    We present a concept for the hot-electron transition-edge sensor capable of counting THz photons. The main need for such a sensor is a spectroscopy on future space telescopes where a background limited NEP approx. 10(exp -20) W/H(exp 1/2) is expected at around 1 THz. Under these conditions, the rate of photon arrival is very low and any currently imaginable detector with sufficient sensitivity will operate in the photon counting mode. The Hot-Electron Photon Counter based on a submicron-size Ti bridge has a very low heat capacity which provides a high enough energy resolution (approx.140 GHz) at 0.3 K. With the sensor time constant of a few microseconds, the dynamic range would be approx. 30 dB. The sensor couples to radiation via a planar antenna and is read by a SQUID amplifier or by a 1-bit RSFQ ADC. A compact array of the antenna-coupled counters can be fabricated on a silicon wafer without membranes.

  6. A space- and time-resolved single photon counting detector for fluorescence microscopy and spectroscopy

    PubMed Central

    Michalet, X.; Siegmund, O.H.W.; Vallerga, J.V.; Jelinsky, P.; Millaud, J.E.; Weiss, S.

    2017-01-01

    We have recently developed a wide-field photon-counting detector having high-temporal and high-spatial resolutions and capable of high-throughput (the H33D detector). Its design is based on a 25 mm diameter multi-alkali photocathode producing one photo electron per detected photon, which are then multiplied up to 107 times by a 3-microchannel plate stack. The resulting electron cloud is proximity focused on a cross delay line anode, which allows determining the incident photon position with high accuracy. The imaging and fluorescence lifetime measurement performances of the H33D detector installed on a standard epifluorescence microscope will be presented. We compare them to those of standard single-molecule detectors such as single-photon avalanche photodiode (SPAD) or electron-multiplying camera using model samples (fluorescent beads, quantum dots and live cells). Finally, we discuss the design and applications of future generation of H33D detectors for single-molecule imaging and high-throughput study of biomolecular interactions. PMID:29479130

  7. eCAF: A New Tool for the Conversational Analysis of Electronic Communication

    ERIC Educational Resources Information Center

    Duncan-Howell, Jennifer

    2009-01-01

    Electronic communication is characteristically concerned with "the message" (eM), those who send them (S), and those who receive and read them (R). This relationship could be simplified into the equation eM = S + R. When this simple equation is applied to electronic communication, several elements are added that make this straightforward act of…

  8. Possible explanation of the solar-neutrino puzzle

    NASA Technical Reports Server (NTRS)

    Bethe, H. A.

    1986-01-01

    A new derivation of the Mikheyev and Smirnov (1985) mechanism for the conversion of electron neutrinos into mu neutrinos when traversing the sun is presented, and various hypotheses set forth. It is assumed that this process is responsible for the detection of fewer solar neutrinos than expected, with neutrinos below a minimum energy, E(m), being undetectable. E(m) is found to be about 6 MeV, and the difference of the squares of the respective neutrino masses is calculated to be 6 X 10 to the - 5th sq eV. A restriction on the neutrino mixing angle is assumed such that the change of density near the crossing point is adiabatic. It is predicted that no resonance conversion of neutrinos will occur in the dense core of supernovae, but conversion of electron neutrinos to mu neutrinos will occur as they escape outward through a density region around 100.

  9. Computational Modeling of Photocatalysts for CO2 Conversion Applications

    NASA Astrophysics Data System (ADS)

    Tafen, De; Matranga, Christopher

    2013-03-01

    To make photocatalytic conversion approaches efficient, economically practical, and industrially scalable, catalysts capable of utilizing visible and near infrared photons need to be developed. Recently, a series of CdSe and PbS quantum dot-sensitized TiO2 heterostructures have been synthesized, characterized, and tested for reduction of CO2 under visible light. Following these experiments, we use density functional theory to model these heterostructured catalysts and investigate their CO2 catalytic activity. In particular, we study the nature of the heterostructure interface, charge transport/electron transfer, active sites and the electronic structures of these materials. The results will be presented and compared to experiments. The improvement of our understanding of the properties of these materials will aid not only the development of more robust, visible light active photocatalysts for carbon management applications, but also the development of quantum dot-sensitized semiconductor solar cells with high efficiencies in solar-to-electrical energy conversion.

  10. Probing CP violation in $$h\\rightarrow\\gamma\\gamma$$ with converted photons

    DOE PAGES

    Bishara, Fady; Grossman, Yuval; Harnik, Roni; ...

    2014-04-11

    We study Higgs diphoton decays, in which both photons undergo nuclear conversion to electron- positron pairs. The kinematic distribution of the two electron-positron pairs may be used to probe the CP violating (CPV) coupling of the Higgs to photons, that may be produced by new physics. Detecting CPV in this manner requires interference between the spin-polarized helicity amplitudes for both conversions. We derive leading order, analytic forms for these amplitudes. In turn, we obtain compact, leading-order expressions for the full process rate. While performing experiments involving photon conversions may be challenging, we use the results of our analysis to constructmore » experimental cuts on certain observables that may enhance sensitivity to CPV. We show that there exist regions of phase space on which sensitivity to CPV is of order unity. As a result, the statistical sensitivity of these cuts are verified numerically, using dedicated Monte-Carlo simulations.« less

  11. LETTER: Investigation of the effect of Alfven resonance mode conversion on fast wave current drive in ITER

    NASA Astrophysics Data System (ADS)

    Alava, M. J.; Heikkinen, J. A.; Hellsten, T.

    1995-07-01

    In order to reduce or to avoid ion cyclotron damping, the use of frequencies below the ion cyclotron frequency of minority ion species or the second harmonic of majority ion species has been proposed for fast wave current drive based on direct electron absorption. For these scenarios, the Alfven or ion-ion hybrid resonance can appear on the high field side of a tokamak. The presence of these resonances causes parasitic absorption, competing with the electron Landau damping and transit time magnetic pumping responsible for the fast wave current drive. In the present study, neglecting effects from toroidicity, the mode conversion at the Alfven resonance is shown to be of the order of 5 to 10% in the current drive scenarios for the planned ITER experiment. If the single pass absorption in the centre can be made sufficiently high, the conversion at the Alfven resonance becomes negligible

  12. Dynamic Average-Value Modeling of Doubly-Fed Induction Generator Wind Energy Conversion Systems

    NASA Astrophysics Data System (ADS)

    Shahab, Azin

    In a Doubly-fed Induction Generator (DFIG) wind energy conversion system, the rotor of a wound rotor induction generator is connected to the grid via a partial scale ac/ac power electronic converter which controls the rotor frequency and speed. In this research, detailed models of the DFIG wind energy conversion system with Sinusoidal Pulse-Width Modulation (SPWM) scheme and Optimal Pulse-Width Modulation (OPWM) scheme for the power electronic converter are developed in detail in PSCAD/EMTDC. As the computer simulation using the detailed models tends to be computationally extensive, time consuming and even sometimes not practical in terms of speed, two modified approaches (switching-function modeling and average-value modeling) are proposed to reduce the simulation execution time. The results demonstrate that the two proposed approaches reduce the simulation execution time while the simulation results remain close to those obtained using the detailed model simulation.

  13. Fermi arcs vs. fermi pockets in electron-doped perovskite iridates

    DOE PAGES

    He, Junfeng; Hafiz, H.; Mion, Thomas R.; ...

    2015-02-23

    We report on an angle resolved photoemission (ARPES) study of bulk electron-doped perovskite iridate, (Sr 1-xLa x)₃Ir₂O₇. Fermi surface pockets are observed with a total electron count in keeping with that expected from La substitution. Depending on the energy and polarization of the incident photons, these pockets show up in the form of disconnected “Fermi arcs”, reminiscent of those reported recently in surface electron-doped Sr₂IrO₄. Our observed spectral variation is consistent with the coexistence of an electronic supermodulation with structural distortion in the system.

  14. Accurate on line measurements of low fluences of charged particles

    NASA Astrophysics Data System (ADS)

    Palla, L.; Czelusniak, C.; Taccetti, F.; Carraresi, L.; Castelli, L.; Fedi, M. E.; Giuntini, L.; Maurenzig, P. R.; Sottili, L.; Taccetti, N.

    2015-03-01

    Ion beams supplied by the 3MV Tandem accelerator of LABEC laboratory (INFN-Firenze), have been used to study the feasibility of irradiating materials with ion fluences reproducible to about 1%. Test measurements have been made with 7.5 MeV 7Li2+ beams of different intensities. The fluence control is based on counting ions contained in short bursts generated by chopping the continuous beam with an electrostatic deflector followed by a couple of adjustable slits. Ions are counted by means of a micro-channel plate (MCP) detecting the electrons emitted from a thin layer of Al inserted along the beam path in between the pulse defining slits and the target. Calibration of the MCP electron detector is obtained by comparison with the response of a Si detector.

  15. Effect of electron count and chemical complexity in the Ta-Nb-Hf-Zr-Ti high-entropy alloy superconductor.

    PubMed

    von Rohr, Fabian; Winiarski, Michał J; Tao, Jing; Klimczuk, Tomasz; Cava, Robert Joseph

    2016-11-15

    High-entropy alloys are made from random mixtures of principal elements on simple lattices, stabilized by a high mixing entropy. The recently discovered body-centered cubic (BCC) Ta-Nb-Hf-Zr-Ti high-entropy alloy superconductor appears to display properties of both simple crystalline intermetallics and amorphous materials; e.g., it has a well-defined superconducting transition along with an exceptional robustness against disorder. Here we show that the valence electron count dependence of the superconducting transition temperature in the high-entropy alloy falls between those of analogous simple solid solutions and amorphous materials and test the effect of alloy complexity on the superconductivity. We propose high-entropy alloys as excellent intermediate systems for studying superconductivity as it evolves between crystalline and amorphous materials.

  16. 1.5-μm band polarization entangled photon-pair source with variable Bell states.

    PubMed

    Arahira, Shin; Kishimoto, Tadashi; Murai, Hitoshi

    2012-04-23

    In this paper we report a polarization-entangled photon-pair source in a 1.5-μm band which can generate arbitrary entangled states including four maximum entangled states (Bell states) by using cascaded optical second nonlinearities (second-harmonic generation and the following spontaneous parametric down conversion) in a periodically poled LiNbO(3) (PPLN) ridge-waveguide device. Exchange among the Bell states was achieved by using an optical phase bias compensator (OPBC) in a Sagnac loop interferometer and a half-wave plate outside the loop for polarization conversion. Quantitative evaluation was made on the performance of the photon-pair source through the experiments of two-photon interferences, quantum state tomography, and test of violation of Bell inequality. We observed high visibilities of 96%, fidelities of 97%, and 2.71 of the S parameter in inequality of Clauser, Horne, Shimony, and Holt (CHSH). The experimental values, including peak coincidence counts in the two-photon interference (approximately 170 counts per second), remained almost unchanged in despite of the exchange among the Bell states. They were also in good agreement with the theoretical assumption from the mean number of the photon-pairs under the test (0.04 per pulse). More detailed experimental studies on the dependence of the mean number of the photon-pairs revealed that the quantum states were well understood as the Werner state. © 2012 Optical Society of America

  17. Evaluation of DNA damage induced by Auger electrons from 137Cs.

    PubMed

    Watanabe, Ritsuko; Hattori, Yuya; Kai, Takeshi

    2016-11-01

    To understand the biological effect of external and internal exposure from 137 Cs, DNA damage spectrum induced by directly emitted electrons (γ-rays, internal conversion electrons, Auger electrons) from 137 Cs was compared with that induced by 137 Cs γ-rays. Monte Carlo track simulation method was used to calculate the microscopic energy deposition pattern in liquid water. Simulation was performed for the two simple target systems in microscale. Radiation sources were placed inside for one system and outside for another system. To simulate the energy deposition by directly emitted electrons from 137 Cs placed inside the system, the multiple ejections of electrons after internal conversion were considered. In the target systems, induction process of DNA damage was modeled and simulated for both direct energy deposition and the water radical reaction on the DNA. The yield and spatial distribution of simple and complex DNA damage including strand breaks and base lesions were calculated for irradiation by electrons and γ-rays from 137 Cs. The simulation showed that the significant difference in DNA damage spectrum was not caused by directly ejected electrons and γ-rays from 137 Cs. The result supports the existing perception that the biological effects by internal and external exposure by 137 Cs are equivalent.

  18. Methodological study of computational approaches to address the problem of strong correlations

    NASA Astrophysics Data System (ADS)

    Lee, Juho

    The main focus of this thesis is the detailed investigation of computational methods to tackle strongly correlated materials in which a rich variety of exotic phenomena are found. A many-body problem with sizable electronic correlations can no longer be explained by independent-particle approximations such as density functional theory (DFT) or tight-binding approaches. The influence of an electron to the others is too strong for each electron to be treated as an independent quasiparticle and consequently those standard band-structure methods fail even at a qualitative level. One of the most powerful approaches for strong correlations is the dynamical mean-field theory (DMFT), which has enlightened the understanding of the Mott transition based on the Hubbard model. For realistic applications, the dynamical mean-field theory is combined with various independent-particles approaches. The most widely used one is the DMFT combined with the DFT in the local density approximation (LDA), so-called LDA+DMFT. In this approach, the electrons in the weakly correlated orbitals are calculated by LDA while others in the strongly correlated orbitals are treated by DMFT. Recently, the method combining DMFT with Hedin's GW approximation was also developed, in which the momentum-dependent self-energy is also added. In this thesis, we discuss the application of those methodologies based on DMFT. First, we apply the dynamical mean-field theory to solve the 3-dimensional Hubbard model in Chap. 3. In this application, we model the interface between the thermodynamically coexisting metal and Mott insulator. We show how to model the required slab geometry and extract the electronic spectra. We construct an effective Landau free energy and compute the variation of its parameters across the phase diagram. Finally, using a linear mixture of the density and double-occupancy, we identify a natural Ising order parameter which unifies the treatment of the bandwidth and filling controlled Mott transitions. Secondly, we study the double-counting problem, a subtle issue that arises in LDA+DMFT. We propose a highly precise double-counting functional, in which the intersection of LDA and DMFT is calculated exactly, and implement a parameter-free version of the LDA+DMFT that is tested on one of the simplest strongly correlated systems, the H2 molecule. We show that the exact double-counting treatment along with a good DMFT projector leads to very accurate and total energy and excitation spectrum of H2 molecule. Finally, we implement various versions of GW+DMFT, in its fully self-consistent way, one shot GW approximation, and quasiparticle self-consistent scheme, and studied how well these combined methods perform on H2 molecule as compared to more established methods such as LDA+DMFT. We found that most flavors of GW+DMFT break down in strongly correlated regime due to causality violation. Among GW+DMFT methods, only the self-consistent quasiparticle GW+DMFT with static double-counting, and a new method with causal double-counting, correctly recover the atomic limit at large H-atom separation. While some flavors of GW+DMFT improve the single-electron spectra of LDA+DMFT, the total energy is best predicted by LDA+DMFT, for which the exact double-counting is known, and is static.

  19. Single Photon Counting Performance and Noise Analysis of CMOS SPAD-Based Image Sensors

    PubMed Central

    Dutton, Neale A. W.; Gyongy, Istvan; Parmesan, Luca; Henderson, Robert K.

    2016-01-01

    SPAD-based solid state CMOS image sensors utilising analogue integrators have attained deep sub-electron read noise (DSERN) permitting single photon counting (SPC) imaging. A new method is proposed to determine the read noise in DSERN image sensors by evaluating the peak separation and width (PSW) of single photon peaks in a photon counting histogram (PCH). The technique is used to identify and analyse cumulative noise in analogue integrating SPC SPAD-based pixels. The DSERN of our SPAD image sensor is exploited to confirm recent multi-photon threshold quanta image sensor (QIS) theory. Finally, various single and multiple photon spatio-temporal oversampling techniques are reviewed. PMID:27447643

  20. A photon-counting photodiode array detector for far ultraviolet (FUV) astronomy

    NASA Technical Reports Server (NTRS)

    Hartig, G. F.; Moos, H. W.; Pembroke, R.; Bowers, C.

    1982-01-01

    A compact, stable, single-stage intensified photodiode array detector designed for photon-counting, far ultraviolet astronomy applications employs a saturable, 'C'-type MCP (Galileo S. MCP 25-25) to produce high gain pulses with a narrowly peaked pulse height distribution. The P-20 output phosphor exhibits a very short decay time, due to the high current density of the electron pulses. This intensifier is being coupled to a self-scanning linear photodiode array which has a fiber optic input window which allows direct, rigid mechanical coupling with minimal light loss. The array was scanned at a 250 KHz pixel rate. The detector exhibits more than adequate signal-to-noise ratio for pulse counting and event location.

  1. Endohedral gallide cluster superconductors and superconductivity in ReGa5

    PubMed Central

    Xie, Weiwei; Luo, Huixia; Phelan, Brendan F.; Klimczuk, Tomasz; Cevallos, Francois Alexandre; Cava, Robert Joseph

    2015-01-01

    We present transition metal-embedded (T@Gan) endohedral Ga-clusters as a favorable structural motif for superconductivity and develop empirical, molecule-based, electron counting rules that govern the hierarchical architectures that the clusters assume in binary phases. Among the binary T@Gan endohedral cluster systems, Mo8Ga41, Mo6Ga31, Rh2Ga9, and Ir2Ga9 are all previously known superconductors. The well-known exotic superconductor PuCoGa5 and related phases are also members of this endohedral gallide cluster family. We show that electron-deficient compounds like Mo8Ga41 prefer architectures with vertex-sharing gallium clusters, whereas electron-rich compounds, like PdGa5, prefer edge-sharing cluster architectures. The superconducting transition temperatures are highest for the electron-poor, corner-sharing architectures. Based on this analysis, the previously unknown endohedral cluster compound ReGa5 is postulated to exist at an intermediate electron count and a mix of corner sharing and edge sharing cluster architectures. The empirical prediction is shown to be correct and leads to the discovery of superconductivity in ReGa5. The Fermi levels for endohedral gallide cluster compounds are located in deep pseudogaps in the electronic densities of states, an important factor in determining their chemical stability, while at the same time limiting their superconducting transition temperatures. PMID:26644566

  2. Effect of electron beam irradiation on bacterial and Ascaris ova loads and volatile organic compounds in municipal sewage sludge

    NASA Astrophysics Data System (ADS)

    Engohang-Ndong, Jean; Uribe, R. M.; Gregory, Roger; Gangoda, Mahinda; Nickelsen, Mike G.; Loar, Philip

    2015-07-01

    Wastewater treatment plants produce large amounts of biosolids that can be utilized for land applications. However, prior to their use, these biosolids must be treated to eliminate risks of infections and to reduce upsetting odors. In this study, microbiological and chemical analyzes were performed before and after treatment of sewage sludge with 3 MeV of an electron beam accelerator in a pilot processing plant. Thus, we determined that dose 4.5 kGy was required to reduce fecal coliform counts to safe levels for land applications of sludge while, 14.5 kGy was necessary to decrease Ascaris ova counts to safe levels. Furthermore, at low doses, electron beam irradiation showed little effect on the concentrations of volatile organic compounds, while some increase were recorded at high doses. The concentration of dimethyl sulfide was reduced by 50-70% at irradiation doses of 25.7 kGy and 30.7 kGy respectively. By contrast, electron beam irradiation increased dimethyl disulfide concentrations. We also showed that electron beam treatment was less energy-consuming with shorter processing times than conventional techniques used to decontaminate sludge. Hence opening new avenues for large urban agglomerations to save money and time when treating biosolids for land application.

  3. Comparative studies of thin film growth on aluminium by AFM, TEM and GDOES characterization

    NASA Astrophysics Data System (ADS)

    Qi, Jiantao; Thompson, George E.

    2016-07-01

    In this present study, comparative studies of trivalent chromium conversion coating formation, associated with aluminium dissolution process, have been investigated using atomic force microscopy (AFM), transmission electron microscopy (TEM) and glow-discharge optical emission spectroscopy (GDOES). High-resolution electron micrographs revealed the evident and uniform coating initiation on the whole surface after conversion treatment for only 30 s, although a network of metal ridges was created by HF etching pre-treatment. In terms of conversion treatment process on electropolished aluminium, constant kinetics of coating growth, ∼0.30 ± 0.2 nm/s, were found after the prolonged conversion treatment for 600 s. The availability of electrolyte anions for coating deposition determined the growth process. Simultaneously, a proceeding process of aluminium dissolution during conversion treatment, of ∼0.11 ± 0.02 nm/s, was found for the first time, indicating constant kinetics of anodic reactions. The distinct process of aluminium consumption was assigned with loss of corrosion protection of the deposited coating material as evidenced in the electrochemical impedance spectroscopy. Based on the present data, a new mechanism of coating growth on aluminium was proposed, and it consisted of an activation period (0-30 s), a linear growth period (0.30 nm/s, up for 600 s) and limited growth period (0.17 nm/s, 600-1200 s). In addition, the air-drying post-treatment and a high-vacuum environment in the microscope revealed a coating shrinkage, especially in the coatings after conversion treatments for longer time.

  4. Understanding Power Electronics and Electrical Machines in Multidisciplinary Wind Energy Conversion System Courses

    ERIC Educational Resources Information Center

    Duran, M. J.; Barrero, F.; Pozo-Ruz, A.; Guzman, F.; Fernandez, J.; Guzman, H.

    2013-01-01

    Wind energy conversion systems (WECS) nowadays offer an extremely wide range of topologies, including various different types of electrical generators and power converters. Wind energy is also an application of great interest to students and with a huge potential for engineering employment. Making WECS the main center of interest when teaching…

  5. Technology for satellite power conversion

    NASA Technical Reports Server (NTRS)

    Campbell, D. P.; Gouker, M. A.; Summers, C.; Gallagher, J. J.

    1984-01-01

    Techniques for satellite electromagnetic energy transfer and power conversion at millimeter and infrared wavelengths are discussed. The design requirements for rectenna receiving elements are reviewed for both coherent radiation sources and Earth thermal infrared emission. Potential power transmitters including gyrotrons, free electron lasers, and CO2 lasers are assessed along with the rectification properties of metal-oxide metal diode power converters.

  6. Enabling Unbalanced Fermentations by Using Engineered Electrode-Interfaced Bacteria

    PubMed Central

    Flynn, Jeffrey M.; Ross, Daniel E.; Hunt, Kristopher A.; Bond, Daniel R.; Gralnick, Jeffrey A.

    2010-01-01

    Cellular metabolism is a series of tightly linked oxidations and reductions that must be balanced. Recycling of intracellular electron carriers during fermentation often requires substrate conversion to undesired products, while respiration demands constant addition of electron acceptors. The use of electrode-based electron acceptors to balance biotransformations may overcome these constraints. To test this hypothesis, the metal-reducing bacterium Shewanella oneidensis was engineered to stoichiometrically convert glycerol into ethanol, a biotransformation that will not occur unless two electrons are removed via an external reaction, such as electrode reduction. Multiple modules were combined into a single plasmid to alter S. oneidensis metabolism: a glycerol module, consisting of glpF, glpK, glpD, and tpiA from Escherichia coli, and an ethanol module containing pdc and adh from Zymomonas mobilis. A further increase in product yields was accomplished through knockout of pta, encoding phosphate acetyltransferase, shifting flux toward ethanol and away from acetate production. In this first-generation demonstration, conversion of glycerol to ethanol required the presence of an electrode to balance the reaction, and electrode-linked rates were on par with volumetric conversion rates observed in engineered E. coli. Linking microbial biocatalysis to current production can eliminate redox constraints by shifting other unbalanced reactions to yield pure products and serve as a new platform for next-generation bioproduction strategies. PMID:21060736

  7. Magnetic field effects on electron transfer reactions involving sextet-spin ( S = 5/2) intermediates generated on photoexcitation of a Cr(III)-porphyrin complex

    NASA Astrophysics Data System (ADS)

    Mori, Yukie; Hoshino, Mikio; Hayashi, Hisaharu

    The excited trip-sextet ( 6 T 1 ) state of chloro-(3-methylimidazol)-( meso -tetraphenylporphyrinato) chromium(III) (Cr III P) is quenched by 1,1 '-dibenzyl-4,4 '-bipyridinium (BV 2+ ) in acetonitrile through electron transfer to give 5 (Cr III P .+ ) and 2 BV .+ . The intermediate is a geminate ion pair in the sextet (Sx) state 6 [ 5 (Cr III P .+ ) 2 BV .+ ], which decays through either the escape from a solvent cage to give the free ions or the spin conversion to the quartet (Qa) state followed by back electron transfer. The free ion yield ( ΦFI ) increased with increasing magnetic field from 0 to 4 T and then slightly decreased from 4 T to 10 T. These magnetic field effects are explained as follows. Under low fields where the Zeeman splitting of the spin sublevels is lower than or comparable with the electron spin dipole-dipole interaction within 5 (Cr III P .+ ), this interaction effectively induces the Sx ⇔Qa conversion of [ 5 (Cr III P .+ ) 2 BV + ] to result in low ΦFI values. Under high fields where the Zeeman splitting is larger than the dipole-dipole interaction, the Sx Qa conversion is decreased with increasing field to cause higher ΦFI values. The slight decrease in ΦFI above 4 T may be due to the Δg mechanism.

  8. Conversion electron Mössbauer spectroscopy of plasma immersion ion implanted H13 tool steel

    NASA Astrophysics Data System (ADS)

    Terwagne, G.; Collins, G. A.; Hutchings, R.

    1994-12-01

    Conversion electron Mössbauer spectroscopy (CEMS) has been used to investigate nitride formation in AISI-H13 tool steel after treatment by plasma immersion ion implantation (PI3) at 350 °C. With only slight variation in the plasma conditions, it is possible to influence the kinetics of nitride precipitation so as to obtain nitrogen concentrations that range from those associated with ɛ-Fe2N through ɛ-Fe3N to γ'-Fe4N. The CEMS results enable a more definite identification of the nitrides than that obtained by glancing-angle X-ray diffraction and nuclear reaction analysis alone.

  9. Acceleration of the highest energy cosmic rays through proton-neutron conversions in relativistic bulk flows

    NASA Astrophysics Data System (ADS)

    Derishev, E.; Aharonian, F.

    We show that, in the presence of radiation field, relativistic bulk flows can very quikly accelerate protons and electrons up to the energies limited either by Hillas criterion or by synchrotron losses. Unlike the traditional approach, we take advantage of continuous photon-induced conversion of charged particle species to neutral ones, and vice versa (proton-neutron or electron-photon). Such a conversion, though it leads to considerable energy losses, allows accelerated particles to increase their energies in each scattering by a factor roughly equal to the bulk Lorentz factor, thus avoiding the need in slow and relatively inefficient diffusive acceleration. The optical depth of accelerating region with respect to inelastic photon-induced reactions (pair production for electrons and photomeson reactions for protons) should be a substancial fraction of unity. Remarkably, self-tuning of the optical depth is automatically achieved as long as the photon density depends on the distance along the bulk flow. This mechanism can work in Gamma-Ray Bursts (GRBs), Active Galactic Nuclei (AGNs), microquasars, or any other object with relativistic bulk flows embedded in radiation-reach environment. Both GRBs and AGNs turn out to be capable of producing 1020 eV cosmic rays.

  10. Carbon Nitride-Aromatic Diimide-Graphene Nanohybrids: Metal-Free Photocatalysts for Solar-to-Hydrogen Peroxide Energy Conversion with 0.2% Efficiency.

    PubMed

    Kofuji, Yusuke; Isobe, Yuki; Shiraishi, Yasuhiro; Sakamoto, Hirokatsu; Tanaka, Shunsuke; Ichikawa, Satoshi; Hirai, Takayuki

    2016-08-10

    Solar-to-chemical energy conversion is a challenging subject for renewable energy storage. In the past 40 years, overall water splitting into H2 and O2 by semiconductor photocatalysis has been studied extensively; however, they need noble metals and extreme care to avoid explosion of the mixed gases. Here we report that generating hydrogen peroxide (H2O2) from water and O2 by organic semiconductor photocatalysts could provide a new basis for clean energy storage without metal and explosion risk. We found that carbon nitride-aromatic diimide-graphene nanohybrids prepared by simple hydrothermal-calcination procedure produce H2O2 from pure water and O2 under visible light (λ > 420 nm). Photoexcitation of the semiconducting carbon nitride-aromatic diimide moiety transfers their conduction band electrons to graphene and enhances charge separation. The valence band holes on the semiconducting moiety oxidize water, while the electrons on the graphene moiety promote selective two-electron reduction of O2. This metal-free system produces H2O2 with solar-to-chemical energy conversion efficiency 0.20%, comparable to the highest levels achieved by powdered water-splitting photocatalysts.

  11. Fixed Pattern Noise pixel-wise linear correction for crime scene imaging CMOS sensor

    NASA Astrophysics Data System (ADS)

    Yang, Jie; Messinger, David W.; Dube, Roger R.; Ientilucci, Emmett J.

    2017-05-01

    Filtered multispectral imaging technique might be a potential method for crime scene documentation and evidence detection due to its abundant spectral information as well as non-contact and non-destructive nature. Low-cost and portable multispectral crime scene imaging device would be highly useful and efficient. The second generation crime scene imaging system uses CMOS imaging sensor to capture spatial scene and bandpass Interference Filters (IFs) to capture spectral information. Unfortunately CMOS sensors suffer from severe spatial non-uniformity compared to CCD sensors and the major cause is Fixed Pattern Noise (FPN). IFs suffer from "blue shift" effect and introduce spatial-spectral correlated errors. Therefore, Fixed Pattern Noise (FPN) correction is critical to enhance crime scene image quality and is also helpful for spatial-spectral noise de-correlation. In this paper, a pixel-wise linear radiance to Digital Count (DC) conversion model is constructed for crime scene imaging CMOS sensor. Pixel-wise conversion gain Gi,j and Dark Signal Non-Uniformity (DSNU) Zi,j are calculated. Also, conversion gain is divided into four components: FPN row component, FPN column component, defects component and effective photo response signal component. Conversion gain is then corrected to average FPN column and row components and defects component so that the sensor conversion gain is uniform. Based on corrected conversion gain and estimated image incident radiance from the reverse of pixel-wise linear radiance to DC model, corrected image spatial uniformity can be enhanced to 7 times as raw image, and the bigger the image DC value within its dynamic range, the better the enhancement.

  12. Free electron lasers for transmission of energy in space

    NASA Technical Reports Server (NTRS)

    Segall, S. B.; Hiddleston, H. R.; Catella, G. C.

    1981-01-01

    A one-dimensional resonant-particle model of a free electron laser (FEL) is used to calculate laser gain and conversion efficiency of electron energy to photon energy. The optical beam profile for a resonant optical cavity is included in the model as an axial variation of laser intensity. The electron beam profile is matched to the optical beam profile and modeled as an axial variation of current density. Effective energy spread due to beam emittance is included. Accelerators appropriate for a space-based FEL oscillator are reviewed. Constraints on the concentric optical resonator and on systems required for space operation are described. An example is given of a space-based FEL that would produce 1.7 MW of average output power at 0.5 micrometer wavelength with over 50% conversion efficiency of electrical energy to laser energy. It would utilize a 10 m-long amplifier centered in a 200 m-long optical cavity. A 3-amp, 65 meV electrostatic accelerator would provide the electron beam and recover the beam after it passes through the amplifier. Three to five shuttle flights would be needed to place the laser in orbit.

  13. High-Efficiency Selective Electron Tunnelling in a Heterostructure Photovoltaic Diode.

    PubMed

    Jia, Chuancheng; Ma, Wei; Gu, Chunhui; Chen, Hongliang; Yu, Haomiao; Li, Xinxi; Zhang, Fan; Gu, Lin; Xia, Andong; Hou, Xiaoyuan; Meng, Sheng; Guo, Xuefeng

    2016-06-08

    A heterostructure photovoltaic diode featuring an all-solid-state TiO2/graphene/dye ternary interface with high-efficiency photogenerated charge separation/transport is described here. Light absorption is accomplished by dye molecules deposited on the outside surface of graphene as photoreceptors to produce photoexcited electron-hole pairs. Unlike conventional photovoltaic conversion, in this heterostructure both photoexcited electrons and holes tunnel along the same direction into graphene, but only electrons display efficient ballistic transport toward the TiO2 transport layer, thus leading to effective photon-to-electricity conversion. On the basis of this ipsilateral selective electron tunnelling (ISET) mechanism, a model monolayer photovoltaic device (PVD) possessing a TiO2/graphene/acridine orange ternary interface showed ∼86.8% interfacial separation/collection efficiency, which guaranteed an ultrahigh absorbed photon-to-current efficiency (APCE, ∼80%). Such an ISET-based PVD may become a fundamental device architecture for photovoltaic solar cells, photoelectric detectors, and other novel optoelectronic applications with obvious advantages, such as high efficiency, easy fabrication, scalability, and universal availability of cost-effective materials.

  14. Photon-counting detector arrays based on microchannel array plates. [for image enhancement

    NASA Technical Reports Server (NTRS)

    Timothy, J. G.

    1975-01-01

    The recent development of the channel electron multiplier (CEM) and its miniaturization into the microchannel array plate (MCP) offers the possibility of fully combining the advantages of the photographic and photoelectric detection systems. The MCP has an image-intensifying capability and the potential of being developed to yield signal outputs superior to those of conventional photomultipliers. In particular, the MCP has a photon-counting capability with a negligible dark-count rate. Furthermore, the MCP can operate stably and efficiently at extreme-ultraviolet and soft X-ray wavelengths in a windowless configuration or can be integrated with a photo-cathode in a sealed tube for use at ultraviolet and visible wavelengths. The operation of one- and two-dimensional photon-counting detector arrays based on the MCP at extreme-ultraviolet wavelengths is described, and the design of sealed arrays for use at ultraviolet and visible wavelengths is briefly discussed.

  15. Noise limitations of multiplier phototubes in the radiation environment of space

    NASA Technical Reports Server (NTRS)

    Viehmann, W.; Eubanks, A. G.

    1976-01-01

    The contributions of Cerenkov emission, luminescence, secondary electron emission, and bremsstrahlung to radiation-induced data current and noise of multiplier phototubes were analyzed quantitatively. Fluorescence and Cerenkov emission in the tube window are the major contributors and can quantitatively account for dark count levels observed in orbit. Radiation-induced noise can be minimized by shielding, tube selection, and mode of operation. Optical decoupling of windows and cathode (side-window tubes) leads to further reduction of radiation-induced dark counts, as does reducing the window thickness and effective cathode area, and selection of window/cathode combinations of low fluorescence efficiency. In trapped radiation-free regions of near-earth orbits and in free space, Cerenkov emission by relativistic particles contributes predominantly to the photoelectron yield per event. Operating multiplier phototubes in the photon (pulse) counting mode will discriminate against these large pulses and substantially reduce the dark count and noise to levels determined by fluorescence.

  16. Standardization of Ga-68 by coincidence measurements, liquid scintillation counting and 4πγ counting.

    PubMed

    Roteta, Miguel; Peyres, Virginia; Rodríguez Barquero, Leonor; García-Toraño, Eduardo; Arenillas, Pablo; Balpardo, Christian; Rodrígues, Darío; Llovera, Roberto

    2012-09-01

    The radionuclide (68)Ga is one of the few positron emitters that can be prepared in-house without the use of a cyclotron. It disintegrates to the ground state of (68)Zn partially by positron emission (89.1%) with a maximum energy of 1899.1 keV, and partially by electron capture (10.9%). This nuclide has been standardized in the frame of a cooperation project between the Radionuclide Metrology laboratories from CIEMAT (Spain) and CNEA (Argentina). Measurements involved several techniques: 4πβ-γ coincidences, integral gamma counting and Liquid Scintillation Counting using the triple to double coincidence ratio and the CIEMAT/NIST methods. Given the short half-life of the radionuclide assayed, a direct comparison between results from both laboratories was excluded and a comparison of experimental efficiencies of similar NaI detectors was used instead. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Chemical Consequences of Radioactive Decay and their Biological Implications.

    PubMed

    DeJesus, Onofre T

    2017-11-10

    The chemical effects of radioactive decay arise from (1) transmutation, (2) formation of charged daughter nuclei, (3) recoil of the daughter nuclei, (4) electron "shakeoff" phenomenon and (5) vacancy cascade in decays via electron capture and internal conversion. This review aims to reiterate what has been known for a long time regarding the chemical consequences of radioactive decay and gives a historical perspective to the observations that led to their elucidation. The energetics of the recoil process in each decay mode is discussed in relation to the chemical bond between the decaying nucleus and the parent molecule. Special attention is given to the biological effects of the Auger process following decay by electron capture and internal conversion because of their possible utility in internal radiotherapy. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. Reversible conversion of dominant polarity in ambipolar polymer/graphene oxide hybrids

    DOE PAGES

    Zhou, Ye; Han, Su -Ting; Sonar, Prashant; ...

    2015-03-24

    The possibility to selectively modulate the charge carrier transport in semiconducting materials is extremely challenging for the development of high performance and low-power consuming logic circuits. Systematical control over the polarity (electrons and holes) in transistor based on solution processed layer by layer polymer/graphene oxide hybrid system has been demonstrated. The conversion degree of the polarity is well controlled and reversible by trapping the opposite carriers. Basically, an electron device is switched to be a hole only device or vice versa. Finally, a hybrid layer ambipolar inverter is demonstrated in which almost no leakage of opposite carrier is found. Wemore » conclude that this hybrid material has wide range of applications in planar p-n junctions and logic circuits for high-throughput manufacturing of printed electronic circuits.« less

  19. Symposium N: Materials and Devices for Thermal-to-Electric Energy Conversion

    DTIC Science & Technology

    2010-08-24

    X - ray diffraction, transmission electron microscopy, scanning electron microscopy, and dynamic light scattering. Thermal conductivity measurements...SEM), X - ray diffraction (XRD) measurements as well as Raman spectroscopy. The results from these techniques indicate a clear modification...was examined by using scanning electron microscope (SEM; HITACHI S-4500 model) attached with an energy dispersive x - ray spectroscopy. The electrical

  20. Landscape correlates along mourning dove call-count routes in Mississippi

    USGS Publications Warehouse

    Elmore, R.D.; Vilella, F.J.; Gerard, P.D.

    2007-01-01

    Mourning dove (Zenaida macroura) call-count surveys in Mississippi, USA, suggest declining populations. We used available mourning dove call-count data to evaluate long-term mourning dove habitat relationships. Dove routes were located in the Mississippi Alluvial Valley, Deep Loess Province, Mid Coastal Plain, and Hilly Coastal Plain physiographic provinces of Mississippi. We also included routes in the Blackbelt Prairie region of Mississippi and Alabama, USA. We characterized landscape structure and composition within 1.64-km buffers around 10 selected mourning dove call-count routes during 3 time periods. Habitat classes included agriculture, forest, urban, regeneration stands, wetland, and woodlot. We used Akaike's Information Criterion to select the best candidate model. We selected a model containing percent agriculture and edge density that contained approximately 40% of the total variability in the data set. Percent agriculture was positively correlated with relative dove abundance. Interestingly, we found a negative relationship between edge density and dove abundance. Researchers should conduct future research on dove nesting patterns in Mississippi and threshold levels of edge necessary to maximize dove density. During the last 20 years, Mississippi lost more than 800,000 ha of cropland while forest cover represented largely by pine (Pinus taeda) plantations increased by more than 364,000 ha. Our results suggest observed localized declines in mourning dove abundance in Mississippi may be related to the documented conversion of agricultural lands to pine plantations.

  1. Watching the dynamics of electrons and atoms at work in solar energy conversion.

    PubMed

    Canton, S E; Zhang, X; Liu, Y; Zhang, J; Pápai, M; Corani, A; Smeigh, A L; Smolentsev, G; Attenkofer, K; Jennings, G; Kurtz, C A; Li, F; Harlang, T; Vithanage, D; Chabera, P; Bordage, A; Sun, L; Ott, S; Wärnmark, K; Sundström, V

    2015-01-01

    The photochemical reactions performed by transition metal complexes have been proposed as viable routes towards solar energy conversion and storage into other forms that can be conveniently used in our everyday applications. In order to develop efficient materials, it is necessary to identify, characterize and optimize the elementary steps of the entire process on the atomic scale. To this end, we have studied the photoinduced electronic and structural dynamics in two heterobimetallic ruthenium-cobalt dyads, which belong to the large family of donor-bridge-acceptor systems. Using a combination of ultrafast optical and X-ray absorption spectroscopies, we can clock the light-driven electron transfer processes with element and spin sensitivity. In addition, the changes in local structure around the two metal centers are monitored. These experiments show that the nature of the connecting bridge is decisive for controlling the forward and the backward electron transfer rates, a result supported by quantum chemistry calculations. More generally, this work illustrates how ultrafast optical and X-ray techniques can disentangle the influence of spin, electronic and nuclear factors on the intramolecular electron transfer process. Finally, some implications for further improving the design of bridged sensitizer-catalysts utilizing the presented methodology are outlined.

  2. Gaseous 83mKr generator of monoenergetic electrons based on 83Rb deposited in zeolite

    NASA Astrophysics Data System (ADS)

    Sentkerestiová, J.; Vénos, D.; Slezák, M.

    2017-09-01

    The gaseous 83mKr electron source is currently used in neutrino mass experiments KATRIN and Project 8, dark matter experiments XENON, LUX and DarkSide, and ALICE (CERN) experiment. The main attractive features of this radioactive noble gas are its monoenergetic conversion electrons with well known energies and a half-life of 1.8 h, which is short enough to avoid any long-lasting contamination of the system. The long half-life of the mother 83Rb isotope (T1/2 = 86.2 d) enables more time demanding measurement. Particularly, in the neutrino mass experiments with gaseous tritium in which the 83mKr is applied in the same manner as the tritium, the K-32 conversion electrons with energy conveniently close to the beta spectrum endpoint represent an important test and calibration tool. Here, the design and characteristics of the gaseous 83mKr generator, including the 83mKr source itself, for KATRIN (KArlsruhe TRItium Neutrino) experiment are presented.

  3. The effects of electron and hole transport layer with the electrode work function on perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Deng, Quanrong; Li, Yiqi; Chen, Lian; Wang, Shenggao; Wang, Geming; Sheng, Yonglong; Shao, Guosheng

    2016-09-01

    The effects of electron and hole transport layer with the electrode work function on perovskite solar cells with the interface defects were simulated by using analysis of microelectronic and photonic structures-one-dimensional (AMPS-1D) software. The simulation results suggest that TiO2 electron transport layer provides best device performance with conversion efficiency of 25.9% compared with ZnO and CdS. The threshold value of back electrode work function for Spiro-OMeTAD, NiO, CuI and Cu2O hole transport layer are calculated to be 4.9, 4.8, 4.7 and 4.9 eV, respectively, to reach the highest conversion efficiency. The mechanisms of device physics with various electron and hole transport materials are discussed in details. The device performance deteriorates gradually as the increased density of interface defects located at ETM/absorber or absorber/HTM. This research results can provide helpful guidance for materials and metal electrode choice for perovskite solar cells.

  4. Density functional theory calculations of the water interactions with ZrO2 nanoparticles Y2O3 doped

    NASA Astrophysics Data System (ADS)

    Subhoni, Mekhrdod; Kholmurodov, Kholmirzo; Doroshkevich, Aleksandr; Asgerov, Elmar; Yamamoto, Tomoyuki; Lyubchyk, Andrei; Almasan, Valer; Madadzada, Afag

    2018-03-01

    Development of a new electricity generation techniques is one of the most relevant tasks, especially nowadays under conditions of extreme growth in energy consumption. The exothermic heterogeneous electrochemical energy conversion to the electric energy through interaction of the ZrO2 based nanopowder system with atmospheric moisture is one of the ways of electric energy obtaining. The questions of conversion into the electric form of the energy of water molecules adsorption in 3 mol% Y2O3 doped ZrO2 nanopowder systems were investigated using the density functional theory calculations. The density functional theory calculations has been realized as in the Kohn-Sham formulation, where the exchange-correlation potential is approximated by a functional of the electronic density. The electronic density, total energy and band structure calculations are carried out using the all-electron, full potential, linear augmented plane wave method of the electronic density and related approximations, i.e. the local density, the generalized gradient and their hybrid approximations.

  5. n-type conversion of SnS by isovalent ion substitution: Geometrical doping as a new doping route

    PubMed Central

    Ran, Fan-Yong; Xiao, Zewen; Toda, Yoshitake; Hiramatsu, Hidenori; Hosono, Hideo; Kamiya, Toshio

    2015-01-01

    Tin monosulfide (SnS) is a naturally p-type semiconductor with a layered crystal structure, but no reliable n-type SnS has been obtained by conventional aliovalent ion substitution. In this work, carrier polarity conversion to n-type was achieved by isovalent ion substitution for polycrystalline SnS thin films on glass substrates. Substituting Pb2+ for Sn2+ converted the majority carrier from hole to electron, and the free electron density ranged from 1012 to 1015 cm−3 with the largest electron mobility of 7.0 cm2/(Vs). The n-type conduction was confirmed further by the position of the Fermi level (EF) based on photoemission spectroscopy and electrical characteristics of pn heterojunctions. Density functional theory calculations reveal that the Pb substitution invokes a geometrical size effect that enlarges the interlayer distance and subsequently reduces the formation energies of Sn and Pb interstitials, which results in the electron doping. PMID:26020855

  6. Photon Counting Energy Dispersive Detector Arrays for X-ray Imaging

    PubMed Central

    Iwanczyk, Jan S.; Nygård, Einar; Meirav, Oded; Arenson, Jerry; Barber, William C.; Hartsough, Neal E.; Malakhov, Nail; Wessel, Jan C.

    2009-01-01

    The development of an innovative detector technology for photon-counting in X-ray imaging is reported. This new generation of detectors, based on pixellated cadmium telluride (CdTe) and cadmium zinc telluride (CZT) detector arrays electrically connected to application specific integrated circuits (ASICs) for readout, will produce fast and highly efficient photon-counting and energy-dispersive X-ray imaging. There are a number of applications that can greatly benefit from these novel imagers including mammography, planar radiography, and computed tomography (CT). Systems based on this new detector technology can provide compositional analysis of tissue through spectroscopic X-ray imaging, significantly improve overall image quality, and may significantly reduce X-ray dose to the patient. A very high X-ray flux is utilized in many of these applications. For example, CT scanners can produce ~100 Mphotons/mm2/s in the unattenuated beam. High flux is required in order to collect sufficient photon statistics in the measurement of the transmitted flux (attenuated beam) during the very short time frame of a CT scan. This high count rate combined with a need for high detection efficiency requires the development of detector structures that can provide a response signal much faster than the transit time of carriers over the whole detector thickness. We have developed CdTe and CZT detector array structures which are 3 mm thick with 16×16 pixels and a 1 mm pixel pitch. These structures, in the two different implementations presented here, utilize either a small pixel effect or a drift phenomenon. An energy resolution of 4.75% at 122 keV has been obtained with a 30 ns peaking time using discrete electronics and a 57Co source. An output rate of 6×106 counts per second per individual pixel has been obtained with our ASIC readout electronics and a clinical CT X-ray tube. Additionally, the first clinical CT images, taken with several of our prototype photon-counting and energy-dispersive detector modules, are shown. PMID:19920884

  7. Photon Counting Energy Dispersive Detector Arrays for X-ray Imaging.

    PubMed

    Iwanczyk, Jan S; Nygård, Einar; Meirav, Oded; Arenson, Jerry; Barber, William C; Hartsough, Neal E; Malakhov, Nail; Wessel, Jan C

    2009-01-01

    The development of an innovative detector technology for photon-counting in X-ray imaging is reported. This new generation of detectors, based on pixellated cadmium telluride (CdTe) and cadmium zinc telluride (CZT) detector arrays electrically connected to application specific integrated circuits (ASICs) for readout, will produce fast and highly efficient photon-counting and energy-dispersive X-ray imaging. There are a number of applications that can greatly benefit from these novel imagers including mammography, planar radiography, and computed tomography (CT). Systems based on this new detector technology can provide compositional analysis of tissue through spectroscopic X-ray imaging, significantly improve overall image quality, and may significantly reduce X-ray dose to the patient. A very high X-ray flux is utilized in many of these applications. For example, CT scanners can produce ~100 Mphotons/mm(2)/s in the unattenuated beam. High flux is required in order to collect sufficient photon statistics in the measurement of the transmitted flux (attenuated beam) during the very short time frame of a CT scan. This high count rate combined with a need for high detection efficiency requires the development of detector structures that can provide a response signal much faster than the transit time of carriers over the whole detector thickness. We have developed CdTe and CZT detector array structures which are 3 mm thick with 16×16 pixels and a 1 mm pixel pitch. These structures, in the two different implementations presented here, utilize either a small pixel effect or a drift phenomenon. An energy resolution of 4.75% at 122 keV has been obtained with a 30 ns peaking time using discrete electronics and a (57)Co source. An output rate of 6×10(6) counts per second per individual pixel has been obtained with our ASIC readout electronics and a clinical CT X-ray tube. Additionally, the first clinical CT images, taken with several of our prototype photon-counting and energy-dispersive detector modules, are shown.

  8. Optically Based Rapid Screening Method for Proven Optimal Treatment Strategies before Treatment Begins

    DTIC Science & Technology

    2014-08-01

    tumor size, measured by mammography, MRI, or ultrasound. These methods evaluate the regimen that the patient received. Molecular changes induced by...photon counting electronics (SPC-150, Becker and Hickl) and a GaAsP PMT (H7422P-40, Hamamatsu). Photon count rates were maintained above 5x10 5...conditions (33), thus making them an attractive system to evaluate tumor response to drugs. We used OMI to assess the response of primary breast tumor

  9. Universal Pin Electronics.

    DTIC Science & Technology

    1982-11-03

    define the maximum count for the pattern defined by the first 3 bits. Since there are 11 bits involved it is possible to define patterns up to 2048 ...applied to the UUT directly through the driver for any count up to 2048 . Any one of the 7 clocks may be selected under program control and applied to any...one ievel for the driver ( VDI ), the logic zero level for the driver (VDO), the logic one level for the receiver (VRl), and the logic zero level for the

  10. Plastic Scintillator Based Detector for Observations of Terrestrial Gamma-ray Flashes.

    NASA Astrophysics Data System (ADS)

    Barghi, M. R., Sr.; Delaney, N.; Forouzani, A.; Wells, E.; Parab, A.; Smith, D.; Martinez, F.; Bowers, G. S.; Sample, J.

    2017-12-01

    We present an overview of the concept and design of the Light and Fast TGF Recorder (LAFTR), a balloon borne gamma-ray detector designed to observe Terrestrial Gamma-Ray Flashes (TGFs). Terrestrial Gamma-Ray Flashes (TGFs) are extremely bright, sub-millisecond bursts of gamma-rays observed to originate inside thunderclouds coincident with lightning. LAFTR is joint institutional project built by undergraduates at the University of California Santa Cruz and Montana State University. It consists of a detector system fed into analog front-end electronics and digital processing. The presentation focuses specifically on the UCSC components, which consists of the detector system and analog front-end electronics. Because of the extremely high count rates observed during TGFs, speed is essential for both the detector and electronics of the instrument. The detector employs a fast plastic scintillator (BC-408) read out by a SensL Silicon Photomultiplier (SiPM). BC-408 is chosen for its speed ( 4 ns decay time) and low cost and availability. Furthermore, GEANT3 simulations confirm the scintillator is sensitive to 500 counts at 7 km horizontal distance from the TGF source (for a 13 km source altitude and 26 km balloon altitude) and to 5 counts out to 20 km. The signal from the SiPM has a long exponential decay tail and is sent to a custom shaping circuit board that amplifies and shapes the signal into a semi-Gaussian pulse with a 40 ns FWHM. The signal is then input to a 6-channel discriminator board that clamps the signal and outputs a Low Voltage Differential Signal (LVDS) for processing by the digital electronics.

  11. AN EXTERNAL RADIATION BELT AT A HEIGHT OF 320 KM ABOVE THE EARTH (in Russian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vernov, S.N.; Savenko, I.A.; Shavrin, P.I.

    1961-10-01

    The orbit of the second Russian sputnik was almost circular with altitude extremes of 307 and 339 km. The count rate obtained from a scintillation counter (NaI (Tl) crystall on board the sputnik showed an increase from 4 to 11 disinteg/cm/sup 2/-sec on going from the equator to latitudes of plus or minus 40 to 50 deg due to the variation in cosmic ray count with latitude. Then, a sharp increase in count rate of 20-600 disinteg/cm/sup 2/-sec was observed at geometrical latitudes 50 to 65 deg . Conjugate points were determined, where a zone of increased activity in Siberiamore » was related with a region in the South Indian Ocean, and a zone in North America was related with a zone in the South Pacific Ocean. Thus, zones of increased radiation in the Northern Hemisphere were related to corresponding zones in the Southern Hemisphere by means of the force lines of the geomagnetic field which determines the external radiation belt. The limit of the radiation belt at small latitudes corresponds with the isocline delta = 70 deg in the Northern Hemisphere and with delta = 66 deg in the Southern Hemisphere. The radiation was found to be due to gamma rays having an energy of 100 to 300 kev which originated from the slow-down of electrons hitting the shell of the sputnik. It was estimated that the upper limit of the lifetime of the electrons in the belt was 10/sup 6/to 10/ sup 8/ seconds. Hence it is more likely that the electrons are captured by local acceleration of electrons within the limits of the geomagnetic field than in accordance with a neutron hypothesis (TTT)« less

  12. Effect of the geometry of the anodized titania nanotube array on the performance of dye-sensitized solar cells.

    PubMed

    Sun, Lidong; Zhang, Sam; Sun, Xiaowei; He, Xiaodong

    2010-07-01

    Highly ordered TiO2 nanotube arrays are superior photoanodes for dye-sensitized solar cells (DSSCs) due to reduced intertube connections, vectorial electron transport, suppressed electron recombination, and enhanced light scattering. Performance of the cells is greatly affected by tube geometry, such as wall thickness, length, inner diameter and intertube spacing. In this paper, effect of geometry on the photovoltaic characteristics of DSSCs is reviewed. The nanotube wall has to be thick enough for a space charge layer to form for faster electron transportation and reduced recombination. When the tube wall is too thin to support the space charge layer, electron transport in the nanotubes will be hindered and reduced to that similar in a typical nanoparticle photoanode, and recombination will easily take place. Length of the nanotubes also plays a role: longer tube length is desired because of more dye loading, however, tube length longer than the electron diffusion length results in low collecting efficiency, which in turn, results in low short-circuit current density and thus low overall conversion efficiency. The tube inner diameter (pore size) affects the conversion efficiency through effective surface area, i.e., larger pore size gives rise to smaller surface area for dye adsorption, which results in low short-circuit current density under the same light soaking. Another issue that may seriously affect the conversion efficiency is whether each of the tube stands alone (free from connecting to the neighboring tubes) to facilitate infiltration of dye and fully use the outer surface area.

  13. Acceptability of the use of cellular telephone and computer pictures/video for "pill counts" in buprenorphine maintenance treatment.

    PubMed

    Welsh, Christopher

    2016-01-01

    As part of a comprehensive plan to attempt to minimize the diversion of prescribed controlled substances, many professional organization and licensing boards are recommending the use of "pill counts." This study sought to evaluate acceptability of the use of cellular phone and computer pictures/video for "pill counts" by patients in buprenorphine maintenance treatment. Patients prescribed buprenorphine/naloxone were asked a series of questions related to the type(s) of electronic communication to which they had access as well as their willingness to use these for the purpose of performing a "pill/film count." Of the 80 patients, 4 (5 percent) did not have a phone at all. Only 28 (35 percent) had a "smart phone" with some sort of data plan and Internet access. Forty (50 percent) of the patients had a phone with no camera and 10 (12.5 percent) had a phone with a camera but no video capability. All patients said that they would be willing to periodically use the video or camera on their phone or computer to have buprenorphine/naloxone pills or film counted as long as the communication was protected from electronic tampering. With the advent of applications for smart phones that allow for Health Insurance Portability and Accountability Act of 1996-compliant picture/video communication, a number of things can now be done that can enhance patient care as well as reduce the chances of misuse/diversion of prescribed medications. This could be used in settings where a larger proportion of controlled substances are prescribed including medication assisted therapy for opioid use disorders and pain management programs.

  14. The Effect of Excess Electron and hole on CO2 Adsorption and Activation on Rutile (110) surface

    PubMed Central

    Yin, Wen-Jin; Wen, Bo; Bandaru, Sateesh; Krack, Matthias; Lau, MW; Liu, Li-Min

    2016-01-01

    CO2 capture and conversion into useful chemical fuel attracts great attention from many different fields. In the reduction process, excess electron is of key importance as it participates in the reaction, thus it is essential to know whether the excess electrons or holes affect the CO2 conversion. Here, the first-principles calculations were carried out to explore the role of excess electron on adsorption and activation of CO2 on rutile (110) surface. The calculated results demonstrate that CO2 can be activated as CO2 anions or CO2 cation when the system contains excess electrons and holes. The electronic structure of the activated CO2 is greatly changed, and the lowest unoccupied molecular orbital of CO2 can be even lower than the conduction band minimum of TiO2, which greatly facilities the CO2 reduction. Meanwhile, the dissociation process of CO2 undergoes an activated CO2− anion in bend configuration rather than the linear, while the long crossing distance of proton transfer greatly hinders the photocatalytic reduction of CO2 on the rutile (110) surface. These results show the importance of the excess electrons on the CO2 reduction process. PMID:26984417

  15. Progress in Fast Ignition Studies with Electrons and Protons

    NASA Astrophysics Data System (ADS)

    MacKinnon, A. J.; Akli, K. U.; Bartal, T.; Beg, F. N.; Chawla, S.; Chen, C. D.; Chen, H.; Chen, S.; Chowdhury, E.; Fedosejevs, R.; Freeman, R. R.; Hey, D.; Higginson, D.; Key, M. H.; King, J. A.; Link, A.; Ma, T.; MacPhee, A. G.; Offermann, D.; Ovchinnikov, V.; Pasley, J.; Patel, P. K.; Ping, Y.; Schumacher, D. W.; Stephens, R. B.; Tsui, Y. Y.; Wei, M. S.; Van Woerkom, L. D.

    2009-09-01

    Isochoric heating of inertially confined fusion plasmas by laser driven MeV electrons or protons is an area of great topical interest in the inertial confinement fusion community, particularly with respect to the fast ignition (FI) concept for initiating burn in a fusion capsule. In order to investigate critical aspects needed for a FI point design, experiments were performed to study 1) laser-to-electrons or protons conversion issues and 2) laser-cone interactions including prepulse effects. A large suite of diagnostics was utilized to study these important parameters. Using cone—wire surrogate targets it is found that pre-pulse levels on medium scale lasers such as Titan at Lawrence Livermore National Laboratory produce long scale length plasmas that strongly effect coupling of the laser to FI relevant electrons inside cones. The cone wall thickness also affects coupling to the wire. Conversion efficiency to protons has also been measured and modeled as a function of target thickness, material. Conclusions from the proton and electron source experiments will be presented. Recent advances in modeling electron transport and innovative target designs for reducing igniter energy and increasing gain curves will also be discussed. In conclusion, a program of study will be presented based on understanding the fundamental physics of the electron or proton source relevant to FI.

  16. Bragg-scattering conversion at telecom wavelengths towards the photon counting regime.

    PubMed

    Krupa, Katarzyna; Tonello, Alessandro; Kozlov, Victor V; Couderc, Vincent; Di Bin, Philippe; Wabnitz, Stefan; Barthélémy, Alain; Labonté, Laurent; Tanzilli, Sébastien

    2012-11-19

    We experimentally study Bragg-scattering four-wave mixing in a highly nonlinear fiber at telecom wavelengths using photon counters. We explore the polarization dependence of this process with a continuous wave signal in the macroscopic and attenuated regime, with a wavelength shift of 23 nm. Our measurements of mean photon numbers per second under various pump polarization configurations agree well with the theoretical and numerical predictions based on classical models. We discuss the impact of noise under these different polarization configurations.

  17. Analysis of neutron propagation from the skyshine port of a fusion neutron source facility

    NASA Astrophysics Data System (ADS)

    Wakisaka, M.; Kaneko, J.; Fujita, F.; Ochiai, K.; Nishitani, T.; Yoshida, S.; Sawamura, T.

    2005-12-01

    The process of neutron leaking from a 14 MeV neutron source facility was analyzed by calculations and experiments. The experiments were performed at the Fusion Neutron Source (FNS) facility of the Japan Atomic Energy Institute, Tokai-mura, Japan, which has a port on the roof for skyshine experiments, and a 3He counter surrounded with a polyethylene moderator of different thicknesses was used to estimate the energy spectra and dose distributions. The 3He counter with a 3-cm-thick moderator was also used for dose measurements, and the doses evaluated by the counter counts and the calculated count-to-dose conversion factor agreed with the calculations to within ˜30%. The dose distribution was found to fit a simple analytical expression, D(r)=Q{exp(-r/λD)}/{r} and the parameters Q and λD are discussed.

  18. The 26-meter S-X Conversion Project. [Deep Space Network stations

    NASA Technical Reports Server (NTRS)

    Lobb, V. B.

    1977-01-01

    The 26-meter S-X conversion project provides for the conversion of an existing 26-meter S-band subnet to a 34-meter S- and X-band subnet. The subnet chosen for conversion consists of the following stations: DSS 12 near Barstow, DSS 44 in Australia, and DSS 62 in Spain. The main subsystems effected by this project are the antenna mechanical, antenna microwave, and receiver-exciter. In addition to these, there are many project-related electronic equipments that have been added to the existing station equipment. The major subsystems are essentially through the design stage with the antenna mechanical subsystem completed through detail design with procurement in process.

  19. Electron-Poor Polar Intermetallics: Complex Structures, Novel Clusters, and Intriguing Bonding with Pronounced Electron Delocalization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Qisheng; Miller, Gordon J.

    Intermetallic compounds represent an extensive pool of candidates for energy related applications stemming from magnetic, electric, optic, caloric, and catalytic properties. The discovery of novel intermetallic compounds can enhance understanding of the chemical principles that govern structural stability and chemical bonding as well as finding new applications. Valence electron-poor polar intermetallics with valence electron concentrations (VECs) between 2.0 and 3.0 e –/atom show a plethora of unprecedented and fascinating structural motifs and bonding features. Furthermore, establishing simple structure-bonding-property relationships is especially challenging for this compound class because commonly accepted valence electron counting rules are inappropriate.

  20. Electron-Poor Polar Intermetallics: Complex Structures, Novel Clusters, and Intriguing Bonding with Pronounced Electron Delocalization

    DOE PAGES

    Lin, Qisheng; Miller, Gordon J.

    2017-12-18

    Intermetallic compounds represent an extensive pool of candidates for energy related applications stemming from magnetic, electric, optic, caloric, and catalytic properties. The discovery of novel intermetallic compounds can enhance understanding of the chemical principles that govern structural stability and chemical bonding as well as finding new applications. Valence electron-poor polar intermetallics with valence electron concentrations (VECs) between 2.0 and 3.0 e –/atom show a plethora of unprecedented and fascinating structural motifs and bonding features. Furthermore, establishing simple structure-bonding-property relationships is especially challenging for this compound class because commonly accepted valence electron counting rules are inappropriate.

  1. Writing as Involvement: A Case for Face-to-Face Classroom Talk in a Computer Age.

    ERIC Educational Resources Information Center

    Berggren, Anne G.

    The abandonment of face-to-face voice conversations in favor of the use of electronic conversations in composition classes is an issue to be interrogated. In a recent push to "prepare students for the 21st century," teachers are asked to teach computer applications in the humanities--and composition teachers, who will teach writing in…

  2. International Conference on Nanoscience - Young Giants of Nanoscience, 2016

    DTIC Science & Technology

    2017-10-12

    Nanoelectronics • Nanoptics • Catalysis • Sense and Response Systems • Energy Conversion and Storage • Stimuli-responsive materials • Molecular motors...This issue will address the following topics: advanced nanointerfaces research in energy , medicine, optics, flexible electronics and nanofabrication...Methods • Nanomedicine • Nanoelectronics • Nanoptics • Catalysis • Sense and Response Systems • Energy Conversion and Storage • Stimuli

  3. Loose, Falling Characters and Sentences: The Persistence of the OCR Problem in Digital Repository E-Books

    ERIC Educational Resources Information Center

    Kichuk, Diana

    2015-01-01

    The electronic conversion of scanned image files to readable text using optical character recognition (OCR) software and the subsequent migration of raw OCR text to e-book text file formats are key remediation or media conversion technologies used in digital repository e-book production. Despite real progress, the OCR problem of reliability and…

  4. Single-electron thermal noise

    NASA Astrophysics Data System (ADS)

    Nishiguchi, Katsuhiko; Ono, Yukinori; Fujiwara, Akira

    2014-07-01

    We report the observation of thermal noise in the motion of single electrons in an ultimately small dynamic random access memory (DRAM). The nanometer-scale transistors that compose the DRAM resolve the thermal noise in single-electron motion. A complete set of fundamental tests conducted on this single-electron thermal noise shows that the noise perfectly follows all the aspects predicted by statistical mechanics, which include the occupation probability, the law of equipartition, a detailed balance, and the law of kT/C. In addition, the counting statistics on the directional motion (i.e., the current) of the single-electron thermal noise indicate that the individual electron motion follows the Poisson process, as it does in shot noise.

  5. Single-electron thermal noise.

    PubMed

    Nishiguchi, Katsuhiko; Ono, Yukinori; Fujiwara, Akira

    2014-07-11

    We report the observation of thermal noise in the motion of single electrons in an ultimately small dynamic random access memory (DRAM). The nanometer-scale transistors that compose the DRAM resolve the thermal noise in single-electron motion. A complete set of fundamental tests conducted on this single-electron thermal noise shows that the noise perfectly follows all the aspects predicted by statistical mechanics, which include the occupation probability, the law of equipartition, a detailed balance, and the law of kT/C. In addition, the counting statistics on the directional motion (i.e., the current) of the single-electron thermal noise indicate that the individual electron motion follows the Poisson process, as it does in shot noise.

  6. 61Ni synchrotron radiation-based Mössbauer spectroscopy of nickel-based nanoparticles with hexagonal structure

    PubMed Central

    Masuda, Ryo; Kobayashi, Yasuhiro; Kitao, Shinji; Kurokuzu, Masayuki; Saito, Makina; Yoda, Yoshitaka; Mitsui, Takaya; Hosoi, Kohei; Kobayashi, Hirokazu; Kitagawa, Hiroshi; Seto, Makoto

    2016-01-01

    We measured the synchrotron-radiation (SR)-based Mössbauer spectra of Ni-based nanoparticles with a hexagonal structure that were synthesised by chemical reduction. To obtain Mössbauer spectra of the nanoparticles without 61Ni enrichment, we developed a measurement system for 61Ni SR-based Mössbauer absorption spectroscopy without X-ray windows between the 61Ni84V16 standard energy alloy and detector. The counting rate of the 61Ni nuclear resonant scattering in the system was enhanced by the detection of internal conversion electrons and the close proximity between the energy standard and the detector. The spectrum measured at 4 K revealed the internal magnetic field of the nanoparticles was 3.4 ± 0.9 T, corresponding to a Ni atomic magnetic moment of 0.3 Bohr magneton. This differs from the value of Ni3C and the theoretically predicted value of hexagonal-close-packed (hcp)-Ni and suggested the nanoparticle possessed intermediate carbon content between hcp-Ni and Ni3C of approximately 10 atomic % of Ni. The improved 61Ni Mössbauer absorption measurement system is also applicable to various Ni materials without 61Ni enrichment, such as Ni hydride nanoparticles. PMID:26883185

  7. Effect of electron count and chemical complexity in the Ta-Nb-Hf-Zr-Ti high-entropy alloy superconductor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    von Rohr, Fabian; Winiarski, Michał J.; Tao, Jing

    High-entropy alloys are made from random mixtures of principal elements on simple lattices, stabilized by a high mixing entropy. The recently discovered body-centered cubic (BCC) Ta-Nb-Hf-Zr-Ti high-entropy alloy superconductor appears to display properties of both simple crystalline intermetallics and amorphous materials; e.g., it has a well-defined superconducting transition along with an exceptional robustness against disorder. Here we show that the valence electron count dependence of the superconducting transition temperature in the high-entropy alloy falls between those of analogous simple solid solutions and amorphous materials and test the effect of alloy complexity on the superconductivity. We propose high-entropy alloys as excellentmore » intermediate systems for studying superconductivity as it evolves between crystalline and amorphous materials.« less

  8. Composition measurement in substitutionally disordered materials by atomic resolution energy dispersive X-ray spectroscopy in scanning transmission electron microscopy.

    PubMed

    Chen, Z; Taplin, D J; Weyland, M; Allen, L J; Findlay, S D

    2017-05-01

    The increasing use of energy dispersive X-ray spectroscopy in atomic resolution scanning transmission electron microscopy invites the question of whether its success in precision composition determination at lower magnifications can be replicated in the atomic resolution regime. In this paper, we explore, through simulation, the prospects for composition measurement via the model system of Al x Ga 1-x As, discussing the approximations used in the modelling, the variability in the signal due to changes in configuration at constant composition, and the ability to distinguish between different compositions. Results are presented in such a way that the number of X-ray counts, and thus the expected variation due to counting statistics, can be gauged for a range of operating conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. End-to-end test of the electron-proton spectrometer

    NASA Technical Reports Server (NTRS)

    Cash, B. L.

    1972-01-01

    A series of end-to-end tests were performed to demonstrate the proper functioning of the complete Electron-Proton Spectrometer (EPS). The purpose of the tests was to provide experimental verification of the design and to provide a complete functional performance check of the instrument from the excitation of the sensors to and including the data processor and equipment test set. Each of the channels of the EPS was exposed to a calibrated beam of energetic particles, and counts were accumulated for a predetermined period of time for each of several energies. The counts were related to the known flux of particles to give a monodirectional response function for each channel. The measured response function of the test unit was compared to the response function determined for the calibration sensors from the data taken from the calibration program.

  10. Effect of electron count and chemical complexity in the Ta-Nb-Hf-Zr-Ti high-entropy alloy superconductor

    PubMed Central

    von Rohr, Fabian; Winiarski, Michał J.; Tao, Jing; Klimczuk, Tomasz; Cava, Robert Joseph

    2016-01-01

    High-entropy alloys are made from random mixtures of principal elements on simple lattices, stabilized by a high mixing entropy. The recently discovered body-centered cubic (BCC) Ta-Nb-Hf-Zr-Ti high-entropy alloy superconductor appears to display properties of both simple crystalline intermetallics and amorphous materials; e.g., it has a well-defined superconducting transition along with an exceptional robustness against disorder. Here we show that the valence electron count dependence of the superconducting transition temperature in the high-entropy alloy falls between those of analogous simple solid solutions and amorphous materials and test the effect of alloy complexity on the superconductivity. We propose high-entropy alloys as excellent intermediate systems for studying superconductivity as it evolves between crystalline and amorphous materials. PMID:27803330

  11. Mass-dependent channel electron multiplier operation. [for ion detection

    NASA Technical Reports Server (NTRS)

    Fields, S. A.; Burch, J. L.; Oran, W. A.

    1977-01-01

    The absolute counting efficiency and pulse height distributions of a continuous-channel electron multiplier used in the detection of hydrogen, argon and xenon ions are assessed. The assessment technique, which involves the post-acceleration of 8-eV ion beams to energies from 100 to 4000 eV, provides information on counting efficiency versus post-acceleration voltage characteristics over a wide range of ion mass. The charge pulse height distributions for H2 (+), A (+) and Xe (+) were measured by operating the experimental apparatus in a marginally gain-saturated mode. It was found that gain saturation occurs at lower channel multiplier operating voltages for light ions such as H2 (+) than for the heavier ions A (+) and Xe (+), suggesting that the technique may be used to discriminate between these two classes of ions in electrostatic analyzers.

  12. Effect of electron count and chemical complexity in the Ta-Nb-Hf-Zr-Ti high-entropy alloy superconductor

    DOE PAGES

    von Rohr, Fabian; Winiarski, Michał J.; Tao, Jing; ...

    2016-11-01

    High-entropy alloys are made from random mixtures of principal elements on simple lattices, stabilized by a high mixing entropy. The recently discovered body-centered cubic (BCC) Ta-Nb-Hf-Zr-Ti high-entropy alloy superconductor appears to display properties of both simple crystalline intermetallics and amorphous materials; e.g., it has a well-defined superconducting transition along with an exceptional robustness against disorder. Here we show that the valence electron count dependence of the superconducting transition temperature in the high-entropy alloy falls between those of analogous simple solid solutions and amorphous materials and test the effect of alloy complexity on the superconductivity. We propose high-entropy alloys as excellentmore » intermediate systems for studying superconductivity as it evolves between crystalline and amorphous materials.« less

  13. Design and characterization of the PREC (Prototype Readout Electronics for Counting particles)

    NASA Astrophysics Data System (ADS)

    Assis, P.; Brogueira, P.; Ferreira, M.; Luz, R.; Mendes, L.

    2016-08-01

    The design, tests and performance of a novel, low noise, acquisition system—the PREC (Prototype Readout Electronics for Counting particles) is presented in this article. PREC is a system developed using discrete electronics for particle counting applications using RPCs (Resistive Plate Chamber) detectors. PREC can, however, be used with other kind of detectors that present fast pulses, e.g. Silicon Photomultipliers. The PREC system consists in several Front-End boards that transmit data to a purely digital Motherboard. The amplification and discrimination of the signal is performed in the Front-End boards, making them the critical component of the system. In this paper, the Front-End was tested extensively by measuring the gain, noise level, crosstalk, trigger efficiency, propagation time and power consumption. The gain shows a decrease with the working temperature and an increase with the power supply voltage. The Front-End board shows a low noise level (<= 1.6 mV at 3σ level) and no crosstalk is detected above this level. The s-curve of the trigger efficiency is characterized by a 3 mV gap from the region where most of the signals are triggered to almost no signal is triggered. The signal transit time between the Front-End input and the digital Motherboard is estimated to be 5.82 ns. The maximum power consumption is 3.372 W for the Motherboard and 3.576 W and 1.443 W for each Front-End analogue circuitry and digital part, respectively.

  14. SeaWiFS technical report series. Volume 23: SeaWiFS prelaunch radiometric calibration and spectral characterization

    NASA Technical Reports Server (NTRS)

    Barnes, Robert A.; Holmes, Alan W.; Barnes, William L.; Esaias, Wayne E.; Mcclain, Charles R.; Svitek, Tomas; Hooker, Stanford B.; Firestone, Elaine R.; Acker, James G.

    1994-01-01

    Based on the operating characteristics of the Sea-viewing Wide Field-of-view Sensor (SeaWiFS), calibration equations have been developed that allow conversion of the counts from the radiometer into Earth-existing radiances. These radiances are the geophysical properties the instrument has been designed to measure. SeaWiFS uses bilinear gains to allow high sensitivity measurements of ocean-leaving radiances and low sensitivity measurements of radiances from clouds, which are much brighter than the ocean. The calculation of these bilinear gains is central to the calibration equations. Several other factors within these equations are also included. Among these are the spectral responses of the eight SeaWiFS bands. A band's spectral response includes the ability of the band to isolate a portion of the electromagnetic spectrum and the amount of light that lies outside of that region. The latter is termed out-of-band response. In the calibration procedure, some of the counts from the instrument are produced by radiance in the out-of-band region. The number of those counts for each band is a function of the spectral shape of the source. For the SeaWiFS calibration equations, the out-of-band responses are converted from those for the laboratory source into those for a source with the spectral shape of solar flux. The solar flux, unlike the laboratory calibration, approximates the spectral shape of the Earth-existing radiance from the oceans. This conversion modifies the results from the laboratory radiometric calibration by 1-4 percent, depending on the band. These and other factors in the SeaWiFS calibration equations are presented here, both for users of the SeaWiFS data set and for researchers making ground-based radiance measurements in support of Sea WiFS.

  15. Analog synthetic biology.

    PubMed

    Sarpeshkar, R

    2014-03-28

    We analyse the pros and cons of analog versus digital computation in living cells. Our analysis is based on fundamental laws of noise in gene and protein expression, which set limits on the energy, time, space, molecular count and part-count resources needed to compute at a given level of precision. We conclude that analog computation is significantly more efficient in its use of resources than deterministic digital computation even at relatively high levels of precision in the cell. Based on this analysis, we conclude that synthetic biology must use analog, collective analog, probabilistic and hybrid analog-digital computational approaches; otherwise, even relatively simple synthetic computations in cells such as addition will exceed energy and molecular-count budgets. We present schematics for efficiently representing analog DNA-protein computation in cells. Analog electronic flow in subthreshold transistors and analog molecular flux in chemical reactions obey Boltzmann exponential laws of thermodynamics and are described by astoundingly similar logarithmic electrochemical potentials. Therefore, cytomorphic circuits can help to map circuit designs between electronic and biochemical domains. We review recent work that uses positive-feedback linearization circuits to architect wide-dynamic-range logarithmic analog computation in Escherichia coli using three transcription factors, nearly two orders of magnitude more efficient in parts than prior digital implementations.

  16. Analog synthetic biology

    PubMed Central

    Sarpeshkar, R.

    2014-01-01

    We analyse the pros and cons of analog versus digital computation in living cells. Our analysis is based on fundamental laws of noise in gene and protein expression, which set limits on the energy, time, space, molecular count and part-count resources needed to compute at a given level of precision. We conclude that analog computation is significantly more efficient in its use of resources than deterministic digital computation even at relatively high levels of precision in the cell. Based on this analysis, we conclude that synthetic biology must use analog, collective analog, probabilistic and hybrid analog–digital computational approaches; otherwise, even relatively simple synthetic computations in cells such as addition will exceed energy and molecular-count budgets. We present schematics for efficiently representing analog DNA–protein computation in cells. Analog electronic flow in subthreshold transistors and analog molecular flux in chemical reactions obey Boltzmann exponential laws of thermodynamics and are described by astoundingly similar logarithmic electrochemical potentials. Therefore, cytomorphic circuits can help to map circuit designs between electronic and biochemical domains. We review recent work that uses positive-feedback linearization circuits to architect wide-dynamic-range logarithmic analog computation in Escherichia coli using three transcription factors, nearly two orders of magnitude more efficient in parts than prior digital implementations. PMID:24567476

  17. Characterization of reticulated vitreous carbon foam using a frisch-grid parallel-plate ionization chamber

    NASA Astrophysics Data System (ADS)

    Edwards, Nathaniel S.; Conley, Jerrod C.; Reichenberger, Michael A.; Nelson, Kyle A.; Tiner, Christopher N.; Hinson, Niklas J.; Ugorowski, Philip B.; Fronk, Ryan G.; McGregor, Douglas S.

    2018-06-01

    The propagation of electrons through several linear pore densities of reticulated vitreous carbon (RVC) foam was studied using a Frisch-grid parallel-plate ionization chamber pressurized to 1 psig of P-10 proportional gas. The operating voltages of the electrodes contained within the Frisch-grid parallel-plate ionization chamber were defined by measuring counting curves using a collimated 241Am alpha-particle source with and without a Frisch grid. RVC foam samples with linear pore densities of 5, 10, 20, 30, 45, 80, and 100 pores per linear inch were separately positioned between the cathode and anode. Pulse-height spectra and count rates from a collimated 241Am alpha-particle source positioned between the cathode and each RVC foam sample were measured and compared to a measurement without an RVC foam sample. The Frisch grid was positioned in between the RVC foam sample and the anode. The measured pulse-height spectra were indiscernible from background and resulted in negligible net count rates for all RVC foam samples. The Frisch grid parallel-plate ionization chamber measurement results indicate that electrons do not traverse the bulk of RVC foam and consequently do not produce a pulse.

  18. Fast counting electronics for neutron coincidence counting

    DOEpatents

    Swansen, James E.

    1987-01-01

    An amplifier-discriminator is tailored to output a very short pulse upon an above-threshold input from a detector which may be a .sup.3 He detector. The short pulse output is stretched and energizes a light emitting diode (LED) to provide a visual output of operation and pulse detection. The short pulse is further fed to a digital section for processing and possible ORing with other like generated pulses. Finally, the output (or ORed output ) is fed to a derandomizing buffer which converts the rapidly and randomly occurring pulses into synchronized and periodically spaced-apart pulses for the accurate counting thereof. Provision is also made for the internal and external disabling of each individual channel of amplifier-discriminators in an ORed plurality of same.

  19. Fast counting electronics for neutron coincidence counting

    DOEpatents

    Swansen, J.E.

    1985-03-05

    An amplifier-discriminator is tailored to output a very short pulse upon an above-threshold input from a detector which may be a /sup 3/He detector. The short pulse output is stretched and energizes a light emitting diode (LED) to provide a visual output of operation and pulse detection. The short pulse is further fed to a digital section for processing and possible ORing with other like generated pulses. Finally, the output (or ORed output) is fed to a derandomizing buffer which converts the rapidly and randomly occurring pulses into synchronized and periodically spaced-apart pulses for the accurate counting thereof. Provision is also made for the internal and external disabling of each individual channel of amplifier-discriminators in an ORed plurality of same.

  20. Separation and counting of single molecules through nanofluidics, programmable electrophoresis, and nanoelectrode-gated tunneling and dielectric detection

    DOEpatents

    Lee, James W.; Thundat, Thomas G.

    2006-04-25

    An apparatus for carrying out the separation, detection, and/or counting of single molecules at nanometer scale. Molecular separation is achieved by driving single molecules through a microfluidic or nanofluidic medium using programmable and coordinated electric fields. In various embodiments, the fluidic medium is a strip of hydrophilic material on nonconductive hydrophobic surface, a trough produced by parallel strips of hydrophobic nonconductive material on a hydrophilic base, or a covered passageway produced by parallel strips of hydrophobic nonconductive material on a hydrophilic base together with a nonconductive cover on the parallel strips of hydrophobic nonconductive material. The molecules are detected and counted using nanoelectrode-gated electron tunneling methods, dielectric monitoring, and other methods.

  1. Amplitude distributions of dark counts and photon counts in NbN superconducting single-photon detectors integrated with the HEMT readout

    NASA Astrophysics Data System (ADS)

    Kitaygorsky, J.; Słysz, W.; Shouten, R.; Dorenbos, S.; Reiger, E.; Zwiller, V.; Sobolewski, Roman

    2017-01-01

    We present a new operation regime of NbN superconducting single-photon detectors (SSPDs) by integrating them with a low-noise cryogenic high-electron-mobility transistor and a high-load resistor. The integrated sensors are designed to get a better understanding of the origin of dark counts triggered by the detector, as our scheme allows us to distinguish the origin of dark pulses from the actual photon pulses in SSPDs. The presented approach is based on a statistical analysis of amplitude distributions of recorded trains of the SSPD photoresponse transients. It also enables to obtain information on energy of the incident photons, as well as demonstrates some photon-number-resolving capability of meander-type SSPDs.

  2. SOI metal-oxide-semiconductor field-effect transistor photon detector based on single-hole counting.

    PubMed

    Du, Wei; Inokawa, Hiroshi; Satoh, Hiroaki; Ono, Atsushi

    2011-08-01

    In this Letter, a scaled-down silicon-on-insulator (SOI) metal-oxide-semiconductor field-effect transistor (MOSFET) is characterized as a photon detector, where photogenerated individual holes are trapped below the negatively biased gate and modulate stepwise the electron current flowing in the bottom channel induced by the positive substrate bias. The output waveforms exhibit clear separation of current levels corresponding to different numbers of trapped holes. Considering this capability of single-hole counting, a small dark count of less than 0.02 s(-1) at room temperature, and low operation voltage of 1 V, SOI MOSFET could be a unique photon-number-resolving detector if the small quantum efficiency were improved. © 2011 Optical Society of America

  3. Photon counting photodiode array detector for far ultraviolet (FUV) astronomy

    NASA Technical Reports Server (NTRS)

    Hartig, G. F.; Moos, H. W.; Pembroke, R.; Bowers, C.

    1982-01-01

    A compact, stable, single-stage intensified photodiode array detector designed for photon-counting, far ultraviolet astronomy applications employs a saturable, 'C'-type MCP (Galileo S. MCP 25-25) to produce high gain pulses with a narrowly peaked pulse height distribution. The P-20 output phosphor exhibits a very short decay time, due to the high current density of the electron pulses. This intensifier is being coupled to a self-scanning linear photodiode array which has a fiber optic input window which allows direct, rigid mechanical coupling with minimal light loss. The array was scanned at a 250 KHz pixel rate. The detector exhibits more than adequate signal-to-noise ratio for pulse counting and event location. Previously announced in STAR as N82-19118

  4. Si-strip photon counting detectors for contrast-enhanced spectral mammography

    NASA Astrophysics Data System (ADS)

    Chen, Buxin; Reiser, Ingrid; Wessel, Jan C.; Malakhov, Nail; Wawrzyniak, Gregor; Hartsough, Neal E.; Gandhi, Thulasi; Chen, Chin-Tu; Iwanczyk, Jan S.; Barber, William C.

    2015-08-01

    We report on the development of silicon strip detectors for energy-resolved clinical mammography. Typically, X-ray integrating detectors based on scintillating cesium iodide CsI(Tl) or amorphous selenium (a-Se) are used in most commercial systems. Recently, mammography instrumentation has been introduced based on photon counting Si strip detectors. The required performance for mammography in terms of the output count rate, spatial resolution, and dynamic range must be obtained with sufficient field of view for the application, thus requiring the tiling of pixel arrays and particular scanning techniques. Room temperature Si strip detector, operating as direct conversion x-ray sensors, can provide the required speed when connected to application specific integrated circuits (ASICs) operating at fast peaking times with multiple fixed thresholds per pixel, provided that the sensors are designed for rapid signal formation across the X-ray energy ranges of the application. We present our methods and results from the optimization of Si-strip detectors for contrast enhanced spectral mammography. We describe the method being developed for quantifying iodine contrast using the energy-resolved detector with fixed thresholds. We demonstrate the feasibility of the method by scanning an iodine phantom with clinically relevant contrast levels.

  5. Performance characteristics of high-conductivity channel electron multipliers. [as UV and x ray detector

    NASA Technical Reports Server (NTRS)

    Timothy, J. G.; Bybee, R. L.

    1978-01-01

    The paper describes a new type of continuous channel multiplier (CEM) fabricated from a low-resistance glass to produce a high-conductivity channel section and thereby obtain a high count-rate capability. The flat-cone cathode configuration of the CEM is specifically designed for the detection of astigmatic exit images from grazing-incidence spectrometers at the optimum angle of illumination for high detection efficiencies at XUV wavelengths. Typical operating voltages are in the range of 2500-2900 V with stable counting plateau slopes in the range 3-6% per 100-V increment. The modal gain at 2800 V was typically in the range (50-80) million. The modal gain falls off at count rates in excess of about 20,000 per sec. The detection efficiency remains essentially constant to count rates in excess of 2 million per sec. Higher detection efficiencies (better than 20%) are obtained by coating the CEM with MgF2. In life tests of coated CEMs, no measurable change in detection efficiency was measured to a total accumulated signal of 2 times 10 to the 11th power counts.

  6. Usefulness of hemocytometer as a counting chamber in a computer assisted sperm analyzer (CASA)

    USGS Publications Warehouse

    Eljarah, A.; Chandler, J.; Jenkins, J.A.; Chenevert, J.; Alcanal, A.

    2013-01-01

    Several methods are used to determine sperm cell concentration, such as the haemocytometer, spectrophotometer, electronic cell counter and computer-assisted semen analysers (CASA). The utility of CASA systems has been limited due to the lack of characterization of individual systems and the absence of standardization among laboratories. The aims of this study were to: 1) validate and establish setup conditions for the CASA system utilizing the haemocytometer as a counting chamber, and 2) compare the different methods used for the determination of sperm cell concentration in bull semen. Two ejaculates were collected and the sperm cell concentration was determined using spectrophotometer and haemocytometer. For the Hamilton-Thorn method, the haemocytometer was used as a counting chamber. Sperm concentration was determined three times per ejaculate samples. A difference (P 0.05) or between the haemocytometer count and the spectrophotometer. Based on the results of this study, we concluded that the haemocytometer can be used in computerized semen analysis systems as a substitute for the commercially available disposable counting chambers, therefore avoiding disadvantageous high costs and slower procedures.

  7. Catalysis of Nuclear Reactions by Electrons

    NASA Astrophysics Data System (ADS)

    Lipoglavšek, Matej

    2018-01-01

    Electron screening enhances nuclear reaction cross sections at low energies. We studied the nuclear reaction 1H(19F,αγ)16O in inverse kinematics in different solid hydrogen targets. Measured resonance strengths differed by up to a factor of 10 in different targets. We also studied the 2H(p,γ)3He fusion reaction and observed electrons emitted as reaction products instead of γ rays. In this case electron screening greatly enhances internal conversion probability.

  8. The effectiveness of the microbiological radiation decontamination process of agricultural products with the use of low energy electron beam

    NASA Astrophysics Data System (ADS)

    Gryczka, Urszula; Migdał, Wojciech; Bułka, Sylwester

    2018-02-01

    The effectiveness of the radiation decontamination process was tested for electron beam of energy 200 keV and 300 keV. The energy of electrons was controlled by the measurements of its penetration ability in stack of B3 dosimetric film. In the presented work, the reduction of total aerobic bacteria count was observed, depending on time of irradiation for samples of dried black pepper, onion flakes and bay leaves. The results were compared with the effect observed for the process where high energy electron beam was used.

  9. Advanced X-ray Imaging Crystal Spectrometer for Magnetic Fusion Tokamak Devices

    NASA Astrophysics Data System (ADS)

    Lee, S. G.; Bak, J. G.; Bog, M. G.; Nam, U. W.; Moon, M. K.; Cheon, J. K.

    2008-03-01

    An advanced X-ray imaging crystal spectrometer is currently under development using a segmented position sensitive detector and time-to-digital converter (TDC) based delay-line readout electronics for burning plasma diagnostics. The proposed advanced XICS utilizes an eight-segmented position sensitive multi-wire proportional counter and supporting electronics to increase the spectrometer performance includes the photon count-rate capability and spatial resolution.

  10. Simulation of Rate-Related (Dead-Time) Losses In Passive Neutron Multiplicity Counting Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evans, L.G.; Norman, P.I.; Leadbeater, T.W.

    Passive Neutron Multiplicity Counting (PNMC) based on Multiplicity Shift Register (MSR) electronics (a form of time correlation analysis) is a widely used non-destructive assay technique for quantifying spontaneously fissile materials such as Pu. At high event rates, dead-time losses perturb the count rates with the Singles, Doubles and Triples being increasingly affected. Without correction these perturbations are a major source of inaccuracy in the measured count rates and assay values derived from them. This paper presents the simulation of dead-time losses and investigates the effect of applying different dead-time models on the observed MSR data. Monte Carlo methods have beenmore » used to simulate neutron pulse trains for a variety of source intensities and with ideal detection geometry, providing an event by event record of the time distribution of neutron captures within the detection system. The action of the MSR electronics was modelled in software to analyse these pulse trains. Stored pulse trains were perturbed in software to apply the effects of dead-time according to the chosen physical process; for example, the ideal paralysable (extending) and non-paralysable models with an arbitrary dead-time parameter. Results of the simulations demonstrate the change in the observed MSR data when the system dead-time parameter is varied. In addition, the paralysable and non-paralysable models of deadtime are compared. These results form part of a larger study to evaluate existing dead-time corrections and to extend their application to correlated sources. (authors)« less

  11. Luminescence in Conjugated Molecular Materials under Sub-bandgap Excitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    So, Franky

    2014-05-08

    Light emission in semiconductors occurs when they are under optical and electrical excitation with energy larger than the bandgap energy. In some low-dimensional semiconductor heterostructure systems, this thermodynamic limit can be violated due to radiative Auger recombination (AR), a process in which the sub-bandgap energy released from a recombined electron-hole pair is transferred to a third particle leading to radiative band-to-band recombination.1 Thus far, photoluminescence up-conversion phenomenon has been observed in some low dimensional semiconductor systems, and the effect is very weak and it can only be observed at low temperatures. Recently, we discovered that efficient electroluminescence in poly[2-methoxy-5-(2’-ethylhexyloxy)-1, phenylenevinylene]more » (MEH-PPV) polymer light-emitting devices (PLEDs) at drive voltages below its bandgap voltage could be observed when a ZnO nanoparticles (NPs) electron injection layer was inserted between the polymer and the aluminum electrode. Specifically, emitted photons with energy of 2.13 eV can be detected at operating voltages as low as 1.2 V at room temperature. Based on these data, we propose that the sub-bandgap turn-on in the MEH-PPV device is due to an Auger-assisted energy up-conversion process. The significance of this discovery is three-fold. First, radiative recombination occurs at operating voltages below the thermodynamic bandgap voltage. This process can significantly reduce the device operating voltage. For example, the current density of the device with the ZnO NC layer is almost two orders of magnitude higher than that of the device without the NC layer. Second, a reactive metal is no longer needed for the cathode. Third, this electroluminescence up-conversion process can be applied to inorganic semiconductors systems as well and their operation voltages of inorganic LEDs can be reduced to about half of the bandgap energy. Based on our initial data, we propose that the sub-bandgap turn-on in MEH-PPV devices is due to Auger-assisted energy up-conversion process. Specifically, we propose that the up-conversion process is due to charge accumulation at the polymer/NPs interface. This model requires that holes should be the dominant carriers in the polymer and the polymer/ZnO NCs heterojunction should be a type II alignment. In order to determine the mechanism of the up-conversion process, we will characterize devices fabricated using polymers with different carrier transporting properties to determine whether hole accumulation at the polymer/nanocrystals is required. Likewise, we will also use NPs with different electronic structures to fabricate devices to determine how electron accumulation affects the up-conversion process. Finally, we will measure quantitatively the interface charge accumulation by electroabsorption and correlate the results with the up-conversion photoluminescence efficiency measurements under an applied electric field.« less

  12. Electronic Conferencing Tools for Student Apprenticeship and Perspective Taking.

    ERIC Educational Resources Information Center

    Bonk, Curtis Jay; And Others

    1996-01-01

    Discusses three electronic conferencing tools that apprentice novice learners and encourage them to interact and grapple with alternative perspectives. Technical details of each tool are described, along with 1 instance where all 3 technologies were united, resulting in a highly interactive conversation shared by over 30 people at 4 different…

  13. Responding Electronically to Student Drafts on Campus: Dis/Encouraging Dialogue?

    ERIC Educational Resources Information Center

    Harran, M.; Knott, A.; Weir, C.

    2011-01-01

    This article reports on an investigation into whether writing centre (WC) respondents at an institution of Higher Education (HE) encourage or discourage draft dialogue (a conversation in writing) with students submitting drafts electronically to the WC for feedback. The writing respondents insert local feedback responses or comments directly onto…

  14. Toward Improved Security and Privacy in Modern Healthcare

    ERIC Educational Resources Information Center

    Pagano, Matthew Wallach

    2013-01-01

    The conversion of paper-based medical records into electronic formats is set to bring many benefits to healthcare. This includes creating a more seamless exchange of electronic health records (EHRs) between providers, improving healthcare while lowering its costs, and providing patients with increased access to their EHRs. As more medical…

  15. Quench protection analysis of the Mu2e production solenoid

    NASA Astrophysics Data System (ADS)

    Kashikhin, Vadim; Ambrosio, Giorgio; Andreev, Nikolai; Lamm, Michael; Nicol, Thomas; Orris, Darryl; Page, Thomas

    2014-01-01

    The Muon-to-Electron conversion experiment (Mu2e), under development at Fermilab, seeks to detect direct muon to electron conversion to provide evidence for a process violating muon and electron lepton number conservation that cannot be explained by the Standard Model of particle physics. The Mu2e magnet system consists of three large superconducting solenoids. In case of a quench, the stored magnetic energy is extracted to an external dump circuit. However, because of the fast current decay, a significant fraction of the energy dissipates inside of the cryostat in the coil support shells made of structural aluminum, and in the radiation shield. A 3D finite-element model of the complete cold-mass was created in order to simulate the quench development and understand the role of the quench-back. The simulation results are reported at the normal and non-standard operating conditions.

  16. Structure and electronic properties of grain boundaries in earth-abundant photovoltaic absorber Cu2ZnSnSe4.

    PubMed

    Li, Junwen; Mitzi, David B; Shenoy, Vivek B

    2011-11-22

    We have studied the atomic and electronic structure of Cu(2)ZnSnSe(4) and CuInSe(2) grain boundaries using first-principles calculations. We find that the constituent atoms at the grain boundary in Cu(2)ZnSnSe(4) create localized defect states that promote the recombination of photon-excited electron and hole carriers. In distinct contrast, significantly lower density of defect states is found at the grain boundaries in CuInSe(2), which is consistent with the experimental observation that CuInSe(2) solar cells exhibit high conversion efficiency without the need for deliberate passivation. Our investigations suggest that it is essential to effectively remove these defect states in order to improve the conversion efficiency of solar cells with Cu(2)ZnSnSe(4) as photovoltaic absorber materials. © 2011 American Chemical Society

  17. Colloidally prepared La-doped BaSnO3 electrodes for efficient, photostable perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Shin, Seong Sik; Yeom, Eun Joo; Yang, Woon Seok; Hur, Seyoon; Kim, Min Gyu; Im, Jino; Seo, Jangwon; Noh, Jun Hong; Seok, Sang Il

    2017-04-01

    Perovskite solar cells (PSCs) exceeding a power conversion efficiency (PCE) of 20% have mainly been demonstrated by using mesoporous titanium dioxide (mp-TiO2) as an electron-transporting layer. However, TiO2 can reduce the stability of PSCs under illumination (including ultraviolet light). Lanthanum (La)-doped BaSnO3 (LBSO) perovskite would be an ideal replacement given its electron mobility and electronic structure, but LBSO cannot be synthesized as well-dispersible fine particles or crystallized below 500°C. We report a superoxide colloidal solution route for preparing a LBSO electrode under very mild conditions (below 300°C). The PSCs fabricated with LBSO and methylammonium lead iodide (MAPbI3) show a steady-state power conversion efficiency of 21.2%, versus 19.7% for a mp-TiO2 device. The LBSO-based PSCs could retain 93% of their initial performance after 1000 hours of full-Sun illumination.

  18. Improvement of efficiency in graphene/gallium nitride nanowire on Silicon photoelectrode for overall water splitting

    NASA Astrophysics Data System (ADS)

    Bae, Hyojung; Rho, Hokyun; Min, Jung-Wook; Lee, Yong-Tak; Lee, Sang Hyun; Fujii, Katsushi; Lee, Hyo-Jong; Ha, Jun-Seok

    2017-11-01

    Gallium nitride (GaN) nanowires are one of the most promising photoelectrode materials due to their high stability in acidic and basic electrolytes, and tunable band edge potentials. In this study, GaN nanowire arrays (GaN NWs) were prepared by molecular beam epitaxy (MBE); their large surface area enhanced the solar to hydrogen conversion efficiency. More significantly, graphene was grown by chemical vapor deposition (CVD), which enhanced the electron transfer between NWs for water splitting and protected the GaN NW surface. Structural characterizations of the prepared composite were performed using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The photocurrent density of Gr/GaN NWs exhibited a two-fold increase over pristine GaN NWs and sustained water splitting up to 70 min. These improvements may accelerate possible applications for hydrogen generation with high solar to hydrogen conversion efficiency.

  19. Electron Jet Detected by MMS at Dipolarization Front

    NASA Astrophysics Data System (ADS)

    Liu, C. M.; Fu, H. S.; Vaivads, A.; Khotyaintsev, Y. V.; Gershman, D. J.; Hwang, K.-J.; Chen, Z. Z.; Cao, D.; Xu, Y.; Yang, J.; Peng, F. Z.; Huang, S. Y.; Burch, J. L.; Giles, B. L.; Ergun, R. E.; Russell, C. T.; Lindqvist, P.-A.; Le Contel, O.

    2018-01-01

    Using MMS high-resolution measurements, we present the first observation of fast electron jet (Ve 2,000 km/s) at a dipolarization front (DF) in the magnetotail plasma sheet. This jet, with scale comparable to the DF thickness ( 0.9 di), is primarily in the tangential plane to the DF current sheet and mainly undergoes the E × B drift motion; it contributes significantly to the current system at the DF, including a localized ring-current that can modify the DF topology. Associated with this fast jet, we observed a persistent normal electric field, strong lower hybrid drift waves, and strong energy conversion at the DF. Such strong energy conversion is primarily attributed to the electron-jet-driven current (E ṡ je ≈ 2 E ṡ ji), rather than the ion current suggested in previous studies.

  20. Quench protection analysis of the Mu2e production solenoid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kashikhin, Vadim; Ambrosio, Giorgio; Andreev, Nikolai

    The Muon-to-Electron conversion experiment (Mu2e), under development at Fermilab, seeks to detect direct muon to electron conversion to provide evidence for a process violating muon and electron lepton number conservation that cannot be explained by the Standard Model of particle physics. The Mu2e magnet system consists of three large superconducting solenoids. In case of a quench, the stored magnetic energy is extracted to an external dump circuit. However, because of the fast current decay, a significant fraction of the energy dissipates inside of the cryostat in the coil support shells made of structural aluminum, and in the radiation shield. Amore » 3D finite-element model of the complete cold-mass was created in order to simulate the quench development and understand the role of the quench-back. The simulation results are reported at the normal and non-standard operating conditions.« less

Top