NASA Astrophysics Data System (ADS)
Papadakis, P.; Cox, D. M.; O'Neill, G. G.; Borge, M. J. G.; Butler, P. A.; Gaffney, L. P.; Greenlees, P. T.; Herzberg, R.-D.; Illana, A.; Joss, D. T.; Konki, J.; Kröll, T.; Ojala, J.; Page, R. D.; Rahkila, P.; Ranttila, K.; Thornhill, J.; Tuunanen, J.; Van Duppen, P.; Warr, N.; Pakarinen, J.
2018-03-01
The electron spectrometer, SPEDE, has been developed and will be employed in conjunction with the Miniball spectrometer at the HIE-ISOLDE facility, CERN. SPEDE allows for direct measurement of internal conversion electrons emitted in-flight, without employing magnetic fields to transport or momentum filter the electrons. Together with the Miniball spectrometer, it enables simultaneous observation of γ rays and conversion electrons in Coulomb excitation experiments using radioactive ion beams.
NASA Astrophysics Data System (ADS)
Garrett, P. E.; Jigmeddorj, B.; Radich, A. J.; Andreoiu, C.; Ball, G. C.; Bangay, J. C.; Bianco, L.; Bildstein, V.; Chagnon-Lessard, S.; Cross, D. S.; Demand, G. A.; Diaz Varela, A.; Dunlop, R.; Finlay, P.; Garnsworthy, A. B.; Green, K. L.; Hackman, G.; Hadinia, B.; Leach, K. G.; Michetti-Wilson, J.; Orce, J. N.; Rajabali, M. M.; Rand, E. T.; Starosta, K.; Sumithrarachchi, C.; Svensson, C. E.; Triambak, S.; Wang, Z. M.; Williams, S. J.; Wood, J. L.; Wong, J.; Yates, S. W.; Zganjar, E. F.
2016-09-01
The 8π spectrometer, located at TRIUMF-ISAC, was the world's most powerful spectrometer dedicated to β-decay studies until its decommissioning in early 2014 for replacement with the GRIFFIN array. An integral part of the 8π spectrometer was the Pentagonal Array for Conversion Electron Spectroscopy (PACES) consisting of 5 Si(Li) detectors used for charged-particle detection. PACES enabled both γ - e- and e- - e- coincidence measurements, which were crucial for increasing the sensitivity for discrete e- lines in the presence of large backgrounds. Examples from a 124Cs decay experiment, where the data were vital for the expansion of the 124Cs decay scheme, are shown. With suffcient statistics, measurements of conversion coeffcients can be used to extract the E0 components of Jπ → Jπ transitions for J ≠ 0, which is demonstrated for data obtained in 110In→110Cd decay. With knowledge of the shapes of the states involved, as obtained, for example, from the use of Kumar-Cline shape invariants, the mixing of the states can be extracted.
Measurement and reduction of low-level radon background in the KATRIN experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fränkle, F. M.
The KArlsruhe TRItium Neutrino (KATRIN) experiment is a next generation, model independent, large scale experiment to determine the mass of the electron anti-neutrino by investigating the kinematics of tritium beta decay with a sensitivity of 200 meV/c{sup 2}. The measurement setup consists of a high luminosity windowless gaseous molecular tritium source (WGTS), a differential and cryogenic pumped electron transport and tritium retention section, a tandem spectrometer section (pre-spectrometer and main spectrometer) for energy analysis, followed by a detector system for counting transmitted beta decay electrons. Measurements performed at the KATRIN pre-spectrometer test setup showed that the decay of radon (Rn)more » atoms in the volume of the KATRIN spectrometers is a major background source. Rn atoms from low-level radon emanation of materials inside the vacuum region of the KATRIN spectrometers are able to penetrate deep into the magnetic flux tube so that the alpha decay of Rn contributes to the background. Of particular importance are electrons emitted in processes accompanying the Rn alpha decay, such as shake-off, internal conversion of excited levels in the Rn daughter atoms and Auger electrons. Lowenergy electrons (< 100 eV) directly contribute to the background in the signal region. High-energy electrons can be stored magnetically inside the volume of the spectrometer and are able to create thousands of secondary electrons via subsequent ionization processes with residual gas molecules. In order to reduce the Rn induced background different active and passive counter measures were developed and tested. This proceeding will give an overview on Rn sources within the KATRIN spectrometer, describes how Rn decays inside the spectrometer produce background events at the detector and presents different counter measures to reduce the Rn induced background.« less
Measurement and reduction of low-level radon background in the KATRIN experiment
NASA Astrophysics Data System (ADS)
Fränkle, F. M.
2013-08-01
The KArlsruhe TRItium Neutrino (KATRIN) experiment is a next generation, model independent, large scale experiment to determine the mass of the electron anti-neutrino by investigating the kinematics of tritium beta decay with a sensitivity of 200 meV/c2. The measurement setup consists of a high luminosity windowless gaseous molecular tritium source (WGTS), a differential and cryogenic pumped electron transport and tritium retention section, a tandem spectrometer section (pre-spectrometer and main spectrometer) for energy analysis, followed by a detector system for counting transmitted beta decay electrons. Measurements performed at the KATRIN pre-spectrometer test setup showed that the decay of radon (Rn) atoms in the volume of the KATRIN spectrometers is a major background source. Rn atoms from low-level radon emanation of materials inside the vacuum region of the KATRIN spectrometers are able to penetrate deep into the magnetic flux tube so that the alpha decay of Rn contributes to the background. Of particular importance are electrons emitted in processes accompanying the Rn alpha decay, such as shake-off, internal conversion of excited levels in the Rn daughter atoms and Auger electrons. Lowenergy electrons (< 100 eV) directly contribute to the background in the signal region. High-energy electrons can be stored magnetically inside the volume of the spectrometer and are able to create thousands of secondary electrons via subsequent ionization processes with residual gas molecules. In order to reduce the Rn induced background different active and passive counter measures were developed and tested. This proceeding will give an overview on Rn sources within the KATRIN spectrometer, describes how Rn decays inside the spectrometer produce background events at the detector and presents different counter measures to reduce the Rn induced background.
A 4 π dilepton spectrometer: PEPSI
NASA Astrophysics Data System (ADS)
Buda, A.; Bacelar, J. C. S.; Bałanda, A.; van Klinken, J.; Sujkowski, Z.; van der Woude, A.
1993-11-01
A novel positron-electron pair spectroscopy instrument (PEPSI) was designed to measure transitions in the energy region 10-40 MeV. It consists of Nd 2Fe 14B permanent magnets forming a compact 4 π magnetic filter consisting of 12 positron and 20 electron mini-orange-like spectrometers. The response function of PEPSI has been measured with mono-energetic beams of electrons from 5 to 20 MeV. The PEPSI spectrometer was used for measuring the internal pair conversion coefficient ( απ) of the 15.1 MeV M1 transition from a Jπ = 1 + state to the ground state in 12C. Our experimental value of απ = (3.3 ± 0.5) × 10 -3 is in good agreement with theoretical estimates.
Electron {sup 83}Rb/{sup 83m}Kr Source for the Energy Scale Monitoring in the KATRIN Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zboril, Miroslav; Nuclear Physics Institute of the ASCR, p. r. i., CZ-25068 Rez; Collaboration: KATRIN Collaboration
The KATRIN (KArlsruhe TRItium Neutrino) experiment investigates the endpoint region of the tritium {beta}-spectrum aiming for the sensitivity on the neutrino mass of 0.2 eV (90% C.L.). A spectrometer of the MAC-E filter (Magnetic Adiabatic Collimation with an Electrostatic filter) type will be used for a total time of at least 5 years. An unrecognized shift of the filtering potential would directly influence the resulting neutrino mass. To continuously monitor the filtering potential the high voltage (HV) will be simultaneously applied to an additional MAC-E filter spectrometer. In this monitor spectrometer suitable electron sources based on atomic/nuclear standards will bemore » utilized. As one of such monitoring tools the solid {sup 83}Rb/{sup 83m}Kr source is intended. It provides conversion electrons from {sup 83m}Kr(t{sub 1/2} = 1.83 h) which is continuously generated by {sup 83}Rb(t{sub 1/2}{approx_equal}86 d). The Calibration and Monitoring task of the KATRIN project demands the long-term energy stability {Delta}E/E of the K-32 conversion electron line (E = 17.8 keV, {Gamma} = 2.7 eV) of {+-}1.6 ppm/month.« less
Construction of a 1 MeV Electron Accelerator for High Precision Beta Decay Studies
NASA Astrophysics Data System (ADS)
Longfellow, Brenden
2014-09-01
Beta decay energy calibration for detectors is typically established using conversion sources. However, the calibration points from conversion sources are not evenly distributed over the beta energy spectrum and the foil backing of the conversion sources produces perturbations in the calibration spectrum. To improve this, an external, tunable electron beam coupled by a magnetic field can be used to calibrate the detector. The 1 MeV electron accelerator in development at Triangle Universities Nuclear Laboratory (TUNL) utilizes a pelletron charging system. The electron gun shoots 104 electrons per second with an energy range of 50 keV to 1 MeV and is pulsed at a 10 kHz rate with a few ns width. The magnetic field in the spectrometer is 1 T and guiding fields of 0.01 to 0.05 T for the electron gun are used to produce a range of pitch angles. This accelerator can be used to calibrate detectors evenly over its energy range and determine the detector response over a range of pitch angles. Beta decay energy calibration for detectors is typically established using conversion sources. However, the calibration points from conversion sources are not evenly distributed over the beta energy spectrum and the foil backing of the conversion sources produces perturbations in the calibration spectrum. To improve this, an external, tunable electron beam coupled by a magnetic field can be used to calibrate the detector. The 1 MeV electron accelerator in development at Triangle Universities Nuclear Laboratory (TUNL) utilizes a pelletron charging system. The electron gun shoots 104 electrons per second with an energy range of 50 keV to 1 MeV and is pulsed at a 10 kHz rate with a few ns width. The magnetic field in the spectrometer is 1 T and guiding fields of 0.01 to 0.05 T for the electron gun are used to produce a range of pitch angles. This accelerator can be used to calibrate detectors evenly over its energy range and determine the detector response over a range of pitch angles. TUNL REU Program.
MOS Circuitry Would Detect Low-Energy Charged Particles
NASA Technical Reports Server (NTRS)
Sinha, Mahadeva; Wadsworth, Mark
2003-01-01
Metal oxide semiconductor (MOS) circuits for measuring spatially varying intensities of beams of low-energy charged particles have been developed. These circuits are intended especially for use in measuring fluxes of ions with spatial resolution along the focal planes of mass spectrometers. Unlike prior mass spectrometer focal-plane detectors, these MOS circuits would not be based on ion-induced generation of electrons, and photons; instead, they would be based on direct detection of the electric charges of the ions. Hence, there would be no need for microchannel plates (for ion-to-electron conversion), phosphors (for electron-to-photon conversion), and photodetectors (for final detection) -- components that degrade spatial resolution and contribute to complexity and size. The developmental circuits are based on linear arrays of charge-coupled devices (CCDs) with associated readout circuitry (see figure). They resemble linear CCD photodetector arrays, except that instead of a photodetector, each pixel contains a capacitive charge sensor. The capacitor in each sensor comprises two electrodes (typically made of aluminum) separated by a layer of insulating material. The exposed electrode captures ions and accumulates their electric charges during signal-integration periods.
Radon induced background processes in the KATRIN pre-spectrometer
NASA Astrophysics Data System (ADS)
Fränkle, F. M.; Bornschein, L.; Drexlin, G.; Glück, F.; Görhardt, S.; Käfer, W.; Mertens, S.; Wandkowsky, N.; Wolf, J.
2011-10-01
The KArlsruhe TRItium Neutrino (KATRIN) experiment is a next generation, model independent, large scale tritium β-decay experiment to determine the effective electron anti-neutrino mass by investigating the kinematics of tritium β-decay with a sensitivity of 200 meV/c 2 using the MAC-E filter technique. In order to reach this sensitivity, a low background level of 10 -2 counts per second (cps) is required. This paper describes how the decay of radon in a MAC-E filter generates background events, based on measurements performed at the KATRIN pre-spectrometer test setup. Radon (Rn) atoms, which emanate from materials inside the vacuum region of the KATRIN spectrometers, are able to penetrate deep into the magnetic flux tube so that the α-decay of Rn contributes to the background. Of particular importance are electrons emitted in processes accompanying the Rn α-decay, such as shake-off, internal conversion of excited levels in the Rn daughter atoms and Auger electrons. While low-energy electrons (<100 eV) directly contribute to the background in the signal region, higher energy electrons can be stored magnetically inside the volume of the spectrometer. Depending on their initial energy, they are able to create thousands of secondary electrons via subsequent ionization processes with residual gas molecules and, since the detector is not able to distinguish these secondary electrons from the signal electrons, an increased background rate over an extended period of time is generated.
Simulation of background from low-level tritium and radon emanation in the KATRIN spectrometers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leiber, B.; Collaboration: KATRIN Collaboration
The KArlsruhe TRItium Neutrino (KATRIN) experiment is a large-scale experiment for the model independent determination of the mass of electron anti-neutrinos with a sensitivity of 200 meV/c{sup 2}. It investigates the kinematics of electrons from tritium beta decay close to the endpoint of the energy spectrum at 18.6 keV. To achieve a good signal to background ratio at the endpoint, a low background rate below 10{sup −2} counts per second is required. The KATRIN setup thus consists of a high luminosity windowless gaseous tritium source (WGTS), a magnetic electron transport system with differential and cryogenic pumping for tritium retention, andmore » electro-static retarding spectrometers (pre-spectrometer and main spectrometer) for energy analysis, followed by a segmented detector system for counting transmitted beta-electrons. A major source of background comes from magnetically trapped electrons in the main spectrometer (vacuum vessel: 1240 m{sup 3}, 10{sup −11} mbar) produced by nuclear decays in the magnetic flux tube of the spectrometer. Major contributions are expected from short-lived radon isotopes and tritium. Primary electrons, originating from these decays, can be trapped for hours, until having lost almost all their energy through inelastic scattering on residual gas particles. Depending on the initial energy of the primary electron, up to hundreds of low energetic secondary electrons can be produced. Leaving the spectrometer, these electrons will contribute to the background rate. This contribution describes results from simulations for the various background sources. Decays of {sup 219}Rn, emanating from the main vacuum pump, and tritium from the WGTS that reaches the spectrometers are expected to account for most of the background. As a result of the radon alpha decay, electrons are emitted through various processes, such as shake-off, internal conversion and the Auger deexcitations. The corresponding simulations were done using the KASSIOPEIA framework, which has been developed for the KATRIN experiment for low-energy electron tracking, field calculation and detector simulation. The results of the simulations have been used to optimize the design parameters of the vacuum system with regard to radon emanation and tritium pumping, in order to reach the stringent requirements of the neutrino mass measurement.« less
Far From ‘Easy’ Spectroscopy with the 8π and GRIFFIN Spectrometers at TRIUMF-ISAC
NASA Astrophysics Data System (ADS)
Garrett, P. E.; Radich, A. J.; Allmond, J. M.; Andreoiu, C.; Ball, G. C.; Bender, P. C.; Bianco, L.; Bildstein, V.; Bidaman, H.; Braid, R.; Burbadge, C.; Chagnon-Lessard, S.; Cross, D. S.; Deng, G.; Demand, G. A.; Diaz Varela, A.; Dunlop, M. R.; Dunlop, R.; Finlay, P.; Garnsworthy, A. B.; Grinyer, G. F.; Hackman, G.; Hadinia, B.; Ilyushkin, S.; Jigmeddorj, B.; Kisliuk, D.; Kuhn, K.; Laffoley, A. T.; Leach, K. G.; MacLean, A. D.; Michetti-Wilson, J.; Miller, D.; Moore, W.; Olaizola, B.; Orce, J. N.; Pearson, C. J.; Pore, J. L.; Rajabali, M. M.; Rand, E. T.; Sarazin, F.; Smith, J. K.; Starosta, K.; Sumithrarachchi, C. S.; Svensson, C. E.; Triambak, S.; Turko, J.; Wang, Z. M.; Wood, J. L.; Wong, J.; Williams, S. J.; Yates, S. W.; Zganjar, E. F.
2015-09-01
The 8π spectrometer, installed at the TRIUMF-ISAC facility, was the world's most sensitive γ-ray spectrometer dedicated to β-decay studies. A description is given of the 8π spectrometer and its auxiliary detectors including the plastic scintillator array SCEPTAR used for β-particle tagging and the Si(Li) array PACES for conversion electron measurements, its moving tape collector, and its data acquisition system. The recent investigation of the decay of 124Cs to study the nuclear structure of 124Xe, and how the β-decay measurements complemented previous Coulomb excitation studies, is highlighted, including the extraction of the deformation parameters for the excited 0+ bands in 124Xe. As a by-product, the decay scheme of the (7+) 124Cs isomeric state, for which the data from the PACES detectors were vital, was studied. Finally, a description of the new GRIFFIN spectrometer, which uses the same auxiliary detectors as the 8π spectrometer, is given.
A QUANTITATIVE STUDY OF THE EVOLUTION OF GASES FROM ELECTRON TUBES AND MATERIALS.
spectrometer, ion pumps, ionization gauges and precision orifices to measure the flow rate of individual gases. It has been used to examine several...amounts comprise about 95% of the gas evolved during cathode conversion and activation. Additional experiments in the dynamic analysis of tube processes are suggested. (Author)
Measurements of multipolarities in 225Ra
NASA Astrophysics Data System (ADS)
Andersen, E.; Borge, M. J. G.; Burke, D. G.; Gietz, H.; Hill, P.; Kaffrell, N.; Kurcewicz, W.; Løvhøiden, G.; Mattsson, S.; Naumann, R. A.; Nybø, K.; Nyman, G.; Thorsteinsen, T. F.; Isolde Collaboration
1989-01-01
Multipolarities of 45 transitions in 225Ra have been established by investigating the radiations associated with the β - decay of 225Fr. The study includes β -, e - and γ-singles spectra, e -γ- and γγ-coincidence measurements. The conversion electrons were measured with a mini-orange electron spectrometer, and the γ-spectra with Ge detectors. The multipolarities obtained from the measured conversion coefficients support the assignments of spin-parity doublets thus giving evidence for a stable octupole deformation of this nucleus. The negative parity of the 394.2 keV level established in the present work indicates that this level is a candidate for the parity-doublet partner of the {5}/{2}+ state at 236.3 keV.
High-precision branching-ratio measurement for the superallowed β+ emitter 74Rb
NASA Astrophysics Data System (ADS)
Dunlop, R.; Ball, G. C.; Leslie, J. R.; Svensson, C. E.; Towner, I. S.; Andreoiu, C.; Chagnon-Lessard, S.; Chester, A.; Cross, D. S.; Finlay, P.; Garnsworthy, A. B.; Garrett, P. E.; Glister, J.; Hackman, G.; Hadinia, B.; Leach, K. G.; Rand, E. T.; Starosta, K.; Tardiff, E. R.; Triambak, S.; Williams, S. J.; Wong, J.; Yates, S. W.; Zganjar, E. F.
2013-10-01
A high-precision branching-ratio measurement for the superallowed β+ decay of 74Rb was performed at the TRIUMF Isotope Separator and Accelerator (ISAC) radioactive ion-beam facility. The scintillating electron-positron tagging array (SCEPTAR), composed of 10 thin plastic scintillators, was used to detect the emitted β particles; the 8π spectrometer, an array of 20 Compton-suppressed HPGe detectors, was used for detecting γ rays that were emitted following Gamow-Teller and nonanalog Fermi β+ decays of 74Rb; and the Pentagonal Array of Conversion Electron Spectrometers (PACES), an array of 5 Si(Li) detectors, was employed for measuring β-delayed conversion electrons. Twenty-three excited states were identified in 74Kr following 8.241(4)×108 detected 74Rb β decays. A total of 58 γ-ray and electron transitions were placed in the decay scheme, allowing the superallowed branching ratio to be determined as B0=99.545(31)%. Combined with previous half-life and Q-value measurements, the superallowed branching ratio measured in this work leads to a superallowed ft value of 3082.8(65) s. Comparisons between this superallowed ft value and the world-average-corrected Ft¯ value, as well as the nonanalog Fermi branching ratios determined in this work, provide guidance for theoretical models of the isospin-symmetry-breaking corrections in this mass region.
Gamma-Ray Spectroscopy at TRIUMF-ISAC
NASA Astrophysics Data System (ADS)
Garrett, P. E.; Svensson, C. E.; Ball, G. C.; Hackman, G.; Zganjar, E. F.; Andreoiu, C.; Andreyev, A.; Ashley, S. F.; Austin, R. A. E.; Bandyopadhyay, D.; Becker, J. A.; Chan, S.; Coombes, H.; Churchman, R.; Chakrawarthy, R. S.; Finlay, P.; Grinyer, G. F.; Hyland, B.; Illes, E.; Jones, G. A.; Kulp, W. D.; Leslie, J. R.; Mattoon, C.; Morton, A. C.; Pearson, C. J.; Phillips, A. A.; Regan, P. H.; Ressler, J. J.; Sarazin, F.; Schumaker, M. A.; Schwarzenberg, J.; Smith, M. B.; Valiente-Dobón, J. J.; Walker, P. M.; Williams, S. J.; Waddington, J. C.; Watters, L. M.; Wong, J.; Wood, J. L.
2006-03-01
The 8π spectrometer at TRIUMF-ISAC consists of 20 Compton-suppressed germanium detectors and various auxiliary devices. The Ge array, once used for studies of nuclei at high angular momentum, has been transformed into the world's most powerful device dedicated to radioactive-decay studies. Many improvements in the spectrometer have been made, including a high-throughput data acquisition system, installation of a moving tape collector, incorporation of an array of 20 plastic scintillators for β-particle tagging, 5 Si(Li) detectors for conversion electrons, and 10 BaF2 detectors for fast-lifetime measurements. Experiments can be performed where data from all detectors are collected simultaneously, resulting in a very detailed view of the nucleus through radioactive decay. A number of experimental programmes have been launched that take advantage of the versatility of the spectrometer, and the intense beams available at TRIUMF-ISAC.
Alkali layered compounds interfaces for energy conversion and energy storage
NASA Technical Reports Server (NTRS)
Papageorgopoulos, Chris A.
1996-01-01
During year one a new ultra-high vacuum, an Ar(+) ion sputterer, a low energy electron diffraction (LEED) system, an Auger electron spectrometer (AES), a work function measurement device with a Kelvin probe, and related accessories were used. The study found a focus in the adsorption of chalcogenides on Si and III-V compound semiconductors. In the second year, a scanning tunneling microscope was obtained along with a quadrapole mass spectrometer, power supplies, a computer, a chart recorder, etc. We started the systematic study on the adsorption of chalcogenides on the compound semiconductor surfaces. The third year saw the mounting of the scanning tunneling microscope (STM) on the existing UHV system. The investigation continued with the adsorption of Cs (alkali) on S-covered Si(100)2x1 surfaces. Then the adsorption of S on Cs-covered Si(100) surfaces was studied.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Westover, B.; Lawrence Livermore National Laboratory, Livermore, California 94550; Chen, C. D.
2014-03-15
Experiments on the Titan laser (∼150 J, 0.7 ps, 2 × 10{sup 20} W cm{sup −2}) at the Lawrence Livermore National Laboratory were carried out in order to study the properties of fast electrons produced by high-intensity, short pulse laser interacting with matter under conditions relevant to Fast Ignition. Bremsstrahlung x-rays produced by these fast electrons were measured by a set of compact filter-stack based x-ray detectors placed at three angles with respect to the target. The measured bremsstrahlung signal allows a characterization of the fast electron beam spectrum, conversion efficiency of laser energy into fast electron kinetic energy and angular distribution. A Monte Carlo codemore » Integrated Tiger Series was used to model the bremsstrahlung signal and infer a laser to fast electron conversion efficiency of 30%, an electron slope temperature of about 2.2 MeV, and a mean divergence angle of 39°. Simulations were also performed with the hybrid transport code ZUMA which includes fields in the target. In this case, a conversion efficiency of laser energy to fast electron energy of 34% and a slope temperature between 1.5 MeV and 4 MeV depending on the angle between the target normal direction and the measuring spectrometer are found. The observed temperature of the bremsstrahlung spectrum, and therefore the inferred electron spectrum are found to be angle dependent.« less
NASA Astrophysics Data System (ADS)
Nicol, Patrick; Fleury, Joel; Le Naour, Claire; Bernard, Frédéric
2017-11-01
IASI (Infrared Atmospheric Sounding Interferometer) is an infrared atmospheric sounder. It will provide meteorologist and scientific community with atmospheric spectra. The instrument is composed of a Fourier transform spectrometer and an associated infrared imager. The presentation will describe the spectrometer detection chain architecture, composed by three different detectors cooled in a passive cryo-cooler (so called CBS : Cold Box Subsystem) and associated analog electronics up to digital conversion. It will mainly focus on design choices with regards to environment constraints, implemented technologies, and associated performances. CNES is leading the IASI program in collaboration with EUMETSAT. The instrument Prime is ALCATEL SPACE responsible, notably, of the detection chain architecture. SAGEM SA provides the detector package (so called CAU : Cold Acquisition Unit).
NASA Astrophysics Data System (ADS)
Nicol, Patrick; Fleury, Joel; Bernard, Frédéric
2004-06-01
IASI (Infrared Atmospheric Sounding Interferometer) is an infrared atmospheric sounder. It will provide meteorologist and scientific community with atmospheric spectra. The instrument is composed of a Fourier transform spectrometer and an associated infrared imager. The presentation will describe the spectrometer detection chain architecture, composed by three different detectors cooled in a passive cryo-cooler (so called CBS : Cold Box Subsystem) and associated analog electronics up to digital conversion. It will mainly focus on design choices with regards to environment constraints, implemented technologies, and associated performances . CNES is leading the IASI program in collaboration with EUMETSAT. The instrument Prime is ALCATEL SPACE responsible, notably, of the detection chain architecture. SAGEM SA provides the detector package (so called CAU: Cold Acquisition Unit).
Measurements of multipolarities in 227Ra as tests of evidence for stable octupole deformation
NASA Astrophysics Data System (ADS)
Borge, M. J. G.; Burke, D. G.; Gietz, H.; Hill, P.; Kaffrell, N.; Kurcewicz, W.; Løvhøiden, G.; Mattsson, S.; Naumann, R. A.; Nybø, K.; Nyman, G.; Thorsteinsen, T. F.
1987-03-01
Multipolarities of ~30 transitions in 227Ra have been established by measuring conversion electrons following the β - decay of 227Fr. For this purpose a "mini-orange"-type electron spectrometer has been constructed. The 227Fr isotopes were produced by the ISOLDE on-line separator at the CERN Synchro-cyclotron. Internal conversion coefficients were obtained from singles spectra and also from simultaneous γe - and γγ coincidence measurements. The new results support the placement of levels and transitions in the earlier level scheme but require changes in the previously assigned parities for four of the levels. Also, one E0 transition was identified. The results are consistent with previous interpretations for most of the levels that have been used to argue in favour of a small permanent octupole deformation for 227Ra.
Proton-neutron multiplet states in {sup 112}Sb
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fayez-Hassan, M.; Gulyas, J.; Dombradi, Z.
1997-05-01
Excited states of {sup 112}Sb were investigated through the {sup 112}Sn(p,n{gamma}){sup 112}Sb reaction. {gamma}-ray, {gamma}{gamma}-coincidence, and internal conversion electron spectra were measured with Ge(HP) {gamma} and superconducting magnetic lens plus Si(Li) electron spectrometers at 8.5, 8.9, 9.1, and 9.3 MeV bombarding proton energies. A significantly extended level scheme was constructed. Spins and parities have been assigned to the levels from Hauser-Feshbach analysis of reaction cross sections, internal conversion coefficients, angular distribution of the {gamma} rays, and decay properties of the states. The low lying states were assigned to proton-neutron multiplets on the basis of their decay properties. The energy splittingmore » of these multiplets have been calculated using the parabolic rule. {copyright} {ital 1997} {ital The American Physical Society}« less
Delta-Doped CCDs as Detector Arrays in Mass Spectrometers
NASA Technical Reports Server (NTRS)
Nikzad, Shouleh; Jones, Todd; Jewell, April; Sinha, Mahadeva
2007-01-01
In a conventional mass spectrometer, charged particles (ions) are dispersed through a magnetic sector onto an MCP at an output (focal) plane. In the MCP, the impinging charged particles excite electron cascades that afford signal gain. Electrons leaving the MCP can be read out by any of a variety of means; most commonly, they are post-accelerated onto a solid-state detector array, wherein the electron pulses are converted to photons, which, in turn, are converted to measurable electric-current pulses by photodetectors. Each step in the conversion from the impinging charged particles to the output 26 NASA Tech Briefs, February 2007 current pulses reduces spatial resolution and increases noise, thereby reducing the overall sensitivity and performance of the mass spectrometer. Hence, it would be preferable to make a direct measurement of the spatial distribution of charged particles impinging on the focal plane. The utility of delta-doped CCDs as detectors of charged particles was reported in two articles in NASA Tech Briefs, Vol. 22, No. 7 (July 1998): "Delta-Doped CCDs as Low-Energy-Particle Detectors" (NPO-20178) on page 48 and "Delta- Doped CCDs for Measuring Energies of Positive Ions" (NPO-20253) on page 50. In the present developmental miniature mass spectrometers, the above mentioned miniaturization and performance advantages contributed by the use of delta-doped CCDs are combined with the advantages afforded by the Mattauch-Herzog design. The Mattauch- Herzog design is a double-focusing spectrometer design involving an electric and a magnetic sector, where the ions of different masses are spatially separated along the focal plane of magnetic sector. A delta-doped CCD at the focal plane measures the signals of all the charged-particle species simultaneously at high sensitivity and high resolution, thereby nearly instantaneously providing a complete, high-quality mass spectrum. The simultaneous nature of the measurement of ions stands in contrast to that of a scanning mass spectrometer, in which abundances of different masses are measured at successive times.
Development and Use of a Virtual NMR Facility
NASA Astrophysics Data System (ADS)
Keating, Kelly A.; Myers, James D.; Pelton, Jeffrey G.; Bair, Raymond A.; Wemmer, David E.; Ellis, Paul D.
2000-03-01
We have developed a "virtual NMR facility" (VNMRF) to enhance access to the NMR spectrometers in Pacific Northwest National Laboratory's Environmental Molecular Sciences Laboratory (EMSL). We use the term virtual facility to describe a real NMR facility made accessible via the Internet. The VNMRF combines secure remote operation of the EMSL's NMR spectrometers over the Internet with real-time videoconferencing, remotely controlled laboratory cameras, real-time computer display sharing, a Web-based electronic laboratory notebook, and other capabilities. Remote VNMRF users can see and converse with EMSL researchers, directly and securely control the EMSL spectrometers, and collaboratively analyze results. A customized Electronic Laboratory Notebook allows interactive Web-based access to group notes, experimental parameters, proposed molecular structures, and other aspects of a research project. This paper describes our experience developing a VNMRF and details the specific capabilities available through the EMSL VNMRF. We show how the VNMRF has evolved during a test project and present an evaluation of its impact in the EMSL and its potential as a model for other scientific facilities. All Collaboratory software used in the VNMRF is freely available from http://www.emsl.pnl.gov:2080/docs/collab.
NASA Astrophysics Data System (ADS)
Boutami, R.; Borge, M. J. G.; Mach, H.; Kurcewicz, W.; Fraile, L. M.; Gulda, K.; Aas, A. J.; García-Raffi, L. M.; Løvhøiden, G.; Martínez, T.; Rubio, B.; Taín, J. L.; Tengblad, O.
2008-10-01
The low-energy structure of 231Ac has been investigated by means of γ ray spectroscopy following the β decay of 231Ra. Multipolarities of 28 transitions have been established by measuring conversion electrons with a MINI-ORANGE electron spectrometer. The decay scheme of 231Ra → 231Ac has been constructed for the first time. The Advanced Time Delayed βγγ(t) method has been used to measure the half-lives of five levels. The moderately fast B(E1) transition rates derived suggest that the octupole effects, albeit weak, are still present in this exotic nucleus.
Conversion of NO with a catalytic packed-bed dielectric barrier discharge reactor
NASA Astrophysics Data System (ADS)
Xu, CAO; Weixuan, ZHAO; Renxi, ZHANG; Huiqi, HOU; Shanping, CHEN; Ruina, ZHANG
2017-11-01
This paper discusses the conversion of nitric oxide (NO) with a low-temperature plasma induced by a catalytic packed-bed dielectric barrier discharge (DBD) reactor. Alumina oxide (Al2O3), glass (SiO2) and zirconium oxide (ZrO2), three different spherical packed materials of the same size, were each present in the DBD reactor. The NO conversion under varying input voltage and specific energy density, and the effects of catalysts (titanium dioxide (TiO2) and manganese oxide (MnO x ) coated on Al2O3) on NO conversion were investigated. The experimental results showed that NO conversion was greatly enhanced in the presence of packed materials in the reactor, and the catalytic packed bed of MnO x /Al2O3 showed better performance than that of TiO2/Al2O3. The surface and crystal structures of the materials and catalysts were characterized through scanning electron microscopy analysis. The final products were clearly observed by a Fourier transform infrared spectrometer and provided a better understanding of NO conversion.
Two-screen single-shot electron spectrometer for laser wakefield accelerated electron beams.
Soloviev, A A; Starodubtsev, M V; Burdonov, K F; Kostyukov, I Yu; Nerush, E N; Shaykin, A A; Khazanov, E A
2011-04-01
The laser wakefield acceleration electron beams can essentially deviate from the axis of the system, which distinguishes them greatly from beams of conventional accelerators. In case of energy measurements by means of a permanent-magnet electron spectrometer, the deviation angle can affect accuracy, especially for high energies. A two-screen single-shot electron spectrometer that correctly allows for variations of the angle of entry is considered. The spectrometer design enables enhancing accuracy of measuring narrow electron beams significantly as compared to a one-screen spectrometer with analogous magnetic field, size, and angular acceptance. © 2011 American Institute of Physics
NASA Astrophysics Data System (ADS)
Arenz, M.; Baek, W.-J.; Beck, M.; Beglarian, A.; Behrens, J.; Bergmann, T.; Berlev, A.; Besserer, U.; Blaum, K.; Bode, T.; Bornschein, B.; Bornschein, L.; Brunst, T.; Buzinsky, N.; Chilingaryan, S.; Choi, W. Q.; Deffert, M.; Doe, P. J.; Dragoun, O.; Drexlin, G.; Dyba, S.; Edzards, F.; Eitel, K.; Ellinger, E.; Engel, R.; Enomoto, S.; Erhard, M.; Eversheim, D.; Fedkevych, M.; Fischer, S.; Formaggio, J. A.; Fränkle, F. M.; Franklin, G. B.; Friedel, F.; Fulst, A.; Gil, W.; Glück, F.; Ureña, A. Gonzalez; Grohmann, S.; Grössle, R.; Gumbsheimer, R.; Hackenjos, M.; Hannen, V.; Harms, F.; Haußmann, N.; Heizmann, F.; Helbing, K.; Herz, W.; Hickford, S.; Hilk, D.; Hillesheimer, D.; Howe, M. A.; Huber, A.; Jansen, A.; Kellerer, J.; Kernert, N.; Kippenbrock, L.; Kleesiek, M.; Klein, M.; Kopmann, A.; Korzeczek, M.; Kovalík, A.; Krasch, B.; Kraus, M.; Kuckert, L.; Lasserre, T.; Lebeda, O.; Letnev, J.; Lokhov, A.; Machatschek, M.; Marsteller, A.; Martin, E. L.; Mertens, S.; Mirz, S.; Monreal, B.; Neumann, H.; Niemes, S.; Off, A.; Osipowicz, A.; Otten, E.; Parno, D. S.; Pollithy, A.; Poon, A. W. P.; Priester, F.; Ranitzsch, P. C.-O.; Rest, O.; Robertson, R. G. H.; Roccati, F.; Rodenbeck, C.; Röllig, M.; Röttele, C.; Ryšavý, M.; Sack, R.; Saenz, A.; Schimpf, L.; Schlösser, K.; Schlösser, M.; Schönung, K.; Schrank, M.; Seitz-Moskaliuk, H.; Sentkerestiová, J.; Sibille, V.; Slezák, M.; Steidl, M.; Steinbrink, N.; Sturm, M.; Suchopar, M.; Suesser, M.; Telle, H. H.; Thorne, L. A.; Thümmler, T.; Titov, N.; Tkachev, I.; Trost, N.; Valerius, K.; Vénos, D.; Vianden, R.; Hernández, A. P. Vizcaya; Weber, M.; Weinheimer, C.; Weiss, C.; Welte, S.; Wendel, J.; Wilkerson, J. F.; Wolf, J.; Wüstling, S.; Zadoroghny, S.
2018-05-01
The neutrino mass experiment KATRIN requires a stability of 3 ppm for the retarding potential at - 18.6 kV of the main spectrometer. To monitor the stability, two custom-made ultra-precise high-voltage dividers were developed and built in cooperation with the German national metrology institute Physikalisch-Technische Bundesanstalt (PTB). Until now, regular absolute calibration of the voltage dividers required bringing the equipment to the specialised metrology laboratory. Here we present a new method based on measuring the energy difference of two ^{83{m}}Kr conversion electron lines with the KATRIN setup, which was demonstrated during KATRIN's commissioning measurements in July 2017. The measured scale factor M=1972.449(10) of the high-voltage divider K35 is in agreement with the last PTB calibration 4 years ago. This result demonstrates the utility of the calibration method, as well as the long-term stability of the voltage divider.
The nuclear structure of 223Fr
NASA Astrophysics Data System (ADS)
Kurcewicz, W.; Løvhøiden, G.; Thorsteinsen, T. F.; Borge, M. J. G.; Burke, D. G.; Cronqvist, M.; Gabelmann, H.; Gietz, H.; Hill, P.; Kaffrell, N.; Naumann, R. A.; Nybø, K.; Nyman, G.; Rogowski, J.; Isolde Collaboration
1992-03-01
The γ-rays following the β- decay of 223Rn have been investigated by means of γ-ray singles including multispectrum analysis, and γγ-coincidence measurements using Ge detectors. Multipolarities of 38 transitions in 223Fr have been established by measuring conversion electrons with a mini-orange electron spectrometer. Most of the observed transitions could be placed in a level scheme comprising 53 excited states of 223Fr. The level structure is interpreted in terms of K π = {3}/{2}± and {1}/{2}± parity doublet bands, and a second K π = {3}/{2}± higher-lying parity doublet. The experimental data are compared with the theoretical predictions of the reflection-asymmetric rotor model.
Ultralow noise up-conversion detector and spectrometer for the telecom band.
Shentu, Guo-Liang; Pelc, Jason S; Wang, Xiao-Dong; Sun, Qi-Chao; Zheng, Ming-Yang; Fejer, M M; Zhang, Qiang; Pan, Jian-Wei
2013-06-17
We demonstrate up-conversion single-photon detection for the 1550-nm telecommunications band using a PPLN waveguide, long-wavelength pump, and narrowband filtering using a volume Bragg grating. We achieve total-system detection efficiency of around 30% with noise at the dark-count level of a Silicon APD. Based on the new detector, a single-pixel up-conversion infrared spectrometer with a noise equivalent power of -142 dBm Hz(-1/2) was demonstrated, which was as good as a liquid nitrogen cooled CCD camera.
ARO Research Instrumentation Program - IR Spectrometer Procurement
2015-11-01
supercapacitors ). The Nicolet iS50R spectrometer has been synchronized with a potentiostat to 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE...interfaces. This information is important for the development of enhanced energy conversion processes and devices (e.g., supercapacitors ). The Nicolet iS50R...electrode interfaces. This information is important for the development of enhanced energy conversion processes and devices (e.g., supercapacitors
Structure of sup 118 Sb nucleus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gulyas, J.; Fenyes, T.; Fayez, M.
1992-10-01
{gamma}, {gamma}{gamma}-coincidence, internal conversion electron, and {gamma}-ray angular distribution spectra of the {sup 118}Sn({ital p},{ital n}{gamma}){sup 118}Sb reaction were measured at different bombarding proton energies between 5.5 and 7.5 MeV. {gamma}, {gamma}{gamma}-coincidence, and internal conversion electron spectra of the {sup 115}In ({alpha},{ital n}{gamma}){sup 118}Sb reaction were also measured at {ital E}{sub {alpha}}=14.5 MeV. Ge(HP), Ge(Li), Ge(LEPS) {gamma}-ray detectors, as well as a superconducting magnetic lens electron spectrometer (with Si(Li) detectors), were used in the experiments. About 210 (including {similar to}130 new) {gamma} rays have been assigned to {sup 118}Sb. The deduced {sup 118}Sb level scheme contains more than 70 newmore » levels. On the basis of the internal conversion coefficients, Hauser-Feshbach analysis of ({ital p},{ital n}) reaction cross sections, {gamma}-ray angular distributions, and other arguments spin and parity values have been determined. The parabolic rule'' prediction of the energy splitting of different proton-neutron multiplets enabled the identification of many proton-neutron multiplet states. The energy spectrum and electromagnetic properties have been calculated in the framework of the interacting boson-fermion-fermion--odd-odd truncated quadrupole phonon model, and reasonably good agreement has been obtained between experimental and theoretical results.« less
Conversion-electron spectroscopy and gamma-gamma angular correlation measurements in 116Sn
NASA Astrophysics Data System (ADS)
Cross, D. S.; Pore, J. L.; Andreoiu, C.; Ball, G. C.; Bender, P. C.; Chester, A. S.; Churchman, R.; Demand, G. A.; Diaz Varela, A.; Dunlop, R.; Garnsworthy, A. B.; Garrett, P. E.; Hackman, G.; Hadinia, B.; Jigmeddorj, B.; Laffoley, A. T.; Liblong, A.; Kanungo, R.; Miller, D. T.; Noakes, B.; Petrache, C. M.; Starosta, K.; Svensson, C. E.; Voss, P.; Wang, Z.-M.; Wilson, J. M.; Wood, J. L.; Yates, S. W.
2017-11-01
The 116Sn nucleus was studied via the β- decay of 116In utilizing the 8π spectrometer and its auxiliary detectors at TRIUMF-ISAC. The resulting K-shell conversion coefficients, K/L ratios, and multipole mixing ratios are presented. The 23+ → 21+ 931 keV and 22+ → 21+ 819 keV transition mixing ratios were re-measured and found to be δ = +1.8_{-0.5}^{+0.7} and -1.83(8), respectively. Newly measured mixing ratios for transitions among the low-lying I^{π} = 4+ states in 116Sn, when combined with γ-ray intensity data, suggest that the 2529 keV 42+ state possesses a neutron broken-pair admixture in addition to its dominant proton 2p-2h component.
Xe isotope detection and discrimination using beta spectroscopy with coincident gamma spectroscopy
NASA Astrophysics Data System (ADS)
Reeder, P. L.; Bowyer, T. W.
1998-02-01
Beta spectroscopic techniques show promise of significant improvements for a beta-gamma coincidence counter that is part of a system for analyzing Xe automatically separated from air. The previously developed counting system for 131mXe, 133mXe, 133gXe, and 135gXe can be enhanced to give additional discrimination between these Xe isotopes by using the plastic scintillation sample cell as a beta spectrometer to resolve the conversion electron peaks. The automated system will be a key factor in monitoring the Comprehensive Test Ban Treaty.
Development of position-sensitive time-of-flight spectrometer for fission fragment research
Arnold, C. W.; Tovesson, F.; Meierbachtol, K.; ...
2014-07-09
A position-sensitive, high-resolution time-of-flight detector for fission fragments has been developed. The SPectrometer for Ion DEtermination in fission Research (SPIDER) is a 2E–2v spectrometer designed to measure the mass of light fission fragments to a single mass unit. The time pick-off detector pairs to be used in SPIDER have been tested with α-particles from 229Th and its decay chain and α-particles and spontaneous fission fragments from 252Cf. Each detector module is comprised of thin electron conversion foil, electrostatic mirror, microchannel plates, and delay-line anodes. Particle trajectories on the order of 700 mm are determined accurately to within 0.7 mm. Flightmore » times were measured with 250 ps resolution FWHM. Computed particle velocities are accurate to within 0.06 mm/ns corresponding to a precision of 0.5%. As a result, an ionization chamber capable of 400 keV energy resolution coupled with the velocity measurements described here will pave the way for modestly efficient measurements of light fission fragments with unit mass resolution.« less
Electron/proton spectrometer certification documentation analyses
NASA Technical Reports Server (NTRS)
Gleeson, P.
1972-01-01
A compilation of analyses generated during the development of the electron-proton spectrometer for the Skylab program is presented. The data documents the analyses required by the electron-proton spectrometer verification plan. The verification plan was generated to satisfy the ancillary hardware requirements of the Apollo Applications program. The certification of the spectrometer requires that various tests, inspections, and analyses be documented, approved, and accepted by reliability and quality control personnel of the spectrometer development program.
Measuring Transmission Efficiencies Of Mass Spectrometers
NASA Technical Reports Server (NTRS)
Srivastava, Santosh K.
1989-01-01
Coincidence counts yield absolute efficiencies. System measures mass-dependent transmission efficiencies of mass spectrometers, using coincidence-counting techniques reminiscent of those used for many years in calibration of detectors for subatomic particles. Coincidences between detected ions and electrons producing them counted during operation of mass spectrometer. Under certain assumptions regarding inelastic scattering of electrons, electron/ion-coincidence count is direct measure of transmission efficiency of spectrometer. When fully developed, system compact, portable, and used routinely to calibrate mass spectrometers.
Test report: Shock test of the electron/proton spectrometer structural test unit
NASA Technical Reports Server (NTRS)
Vincent, D. L.
1972-01-01
A shock test of the electron-proton spectrometer structural test unit was conducted. The purpose of the shock test was to verify the structural integrity of the electron-spectrometer design and to obtain data on the shock response of the electronics and electronic housing. The test equipment is described and typical shock response data are provided.
Electronics for a Spectrometer
2014-01-24
NASA has provided part of the electronics package for an instrument called the Double Focusing Mass Spectrometer, which is part of the Swiss-built Rosetta Orbiter Spectrometer for Ion and Neutral Analysis ROSINA instrument.
The nuclear structure of 227Fr
NASA Astrophysics Data System (ADS)
Kurcewicz, W.; Grant, I. S.; Gulda, K.; Aas, A. J.; Billowes, J.; Borge, M. J. G.; Burke, D. G.; Butler, P. A.; Cocks, J. F. C.; Fogelberg, B.; Freeman, S. J.; Jones, G. D.; Hagebø, E.; Hoff, P.; Hønsi, J.; Lindroth, A.; Løvhøiden, G.; Mach, H.; Martinez, T.; Naumann, R. A.; Nybø, K.; Nyman, G.; Ravn, H.; Rubio, B.; Simpson, J.; Smith, A. G.; Smith, J. F.; Steffensen, K.; Tain, J. L.; Tengblad, O.; Thorsteinsen, T. F.; Isolde Collaboration
1997-02-01
The γ-rays following the β- decay of 227Rn have been investigated by means of γ-ray singles and γγ-coincidence measurements using an array of 12 Compton-suppressed Ge detectors. The fast-timing βγγ( t) method has been used to measure six level lifetimes. Multipolarities of 32 transitions in 227Fr have been established by measuring conversion electrons with a mini-orange electron spectrometer. Most of the observed transitions have been placed in a level scheme comprising 38 excited states of 227Fr. The low-lying levels are interpreted in terms of seven rotational bands. The observed E1 strengths for two transitions connecting the K π = {3}/{2}± bands are consistent with the transitional character of 227Fr, and confirm the presence of octupole correlations in this nucleus.
NASA Astrophysics Data System (ADS)
Zhang, Xiao-Juan; Lin, Dong-Yang; Yan, Xiao-Hui; Wang, Xiao-Xiang
2011-12-01
A homogeneous amorphous calcium phosphate (ACP) coating containing magnesium was achieved on titanium substrates by electrochemical deposition (ECD). Its amorphous structure is confirmed by transmission electron microscope (TEM) together with grazing reflection absorption infrared spectroscopy (IR) spectrometer. In the images of high-resolution transmission electron microscope (HRTEM), the ACP spheres are assembled by nano-particles with the diameter of 5-10 nm. In the alkaline environment, nucleation of hydroxyapatite (HAP) occurs on the surfaces of ACP spheres. By consuming the Ca and PO 4 ions inside the ACP spheres, the HAP nuclei grow outward. Confirmed by TEM, the ACP spheres converse to hollow HAP spheres composed of HAP nano-needles. The coating is finally constructed by the HAP nano-needles, which are themselves aggregated by numerous nano-particles.
NASA Astrophysics Data System (ADS)
Jabeen, Uzma; Adhikari, Tham; Pathak, Dinesh; Shah, Syed Mujtaba; Nunzi, Jean-Michel
2018-04-01
Cadmium sulphide (CdS) and Mn-doped CdS nanocrystals were synthesized by co-precipitation method. The nanocrystals were characterized by Fluorescence, Fourier Transformed Infra-red Spectrometer (FTIR), UV-Visible, X-ray diffraction (XRD), X-ray photoelectron spectrometer (XPS), Field Emission Scanning Electron Microscope (FESEM), and High Resolution Transmission Electron Microscope (HRTEM). A considerable blue shift of absorption band with respect to the cadmium sulphide was observed by the Mn concentration (0.5 M) in the doped sample with decreasing the size of nanocrystals. Other reason for this may be Mn doping. Subsequently the band gap was altered from 2.11 to 2.21 eV due to quantum confinement effect. Scanning electron microscope supplemented with EDAX was operated to find grain size and chemical composition of the synthesized nanomaterials. The PL spectrum of Mn-doped CdS nanocrystals displays three PL bands the first one, within the range of 500 nm and the second band at 537 nm, and the third one around 713 nm is labelled red band emission due to attributed to a 4T1→6A1 transition within the 3d shell of divalent manganese. XRD analysis showed that the material was in cubic crystalline state. A comparative study of surfaces of un-doped and metal doped CdS nanocrystals were investigated using X-ray Photoelectron Spectroscopy (XPS). The synthesized nanomaterial in combination with polymer, poly (3-hexyl thiophene) was operated in the construction of photovoltaic cells. The photovoltaic devices with CdS nanocrystals exhibited power conversion efficiency of 0.34% without annealing and 0.38% with annealing. However, the power conversion efficiency was enhanced by a factor of 0.35 without annealing and 0.42 with annealing with corporation of Mn impurity in CdS lattice. Atomic Force Microscopy was employed for morphology and packing behavior of blend of nanocrystals with organic polymer.
NASA Astrophysics Data System (ADS)
Sargent, Steven D.; Greenman, Mark E.; Hansen, Scott M.
1998-11-01
The Spatial Infrared Imaging Telescope (SPIRIT III) is the primary sensor aboard the Midcourse Space Experiment (MSX), which was launched 24 April 1996. SPIRIT III included a Fourier transform spectrometer that collected terrestrial and celestial background phenomenology data for the Ballistic Missile Defense Organization (BMDO). This spectrometer used a helium-neon reference laser to measure the optical path difference (OPD) in the spectrometer and to command the analog-to-digital conversion of the infrared detector signals, thereby ensuring the data were sampled at precise increments of OPD. Spectrometer data must be sampled at accurate increments of OPD to optimize the spectral resolution and spectral position of the transformed spectra. Unfortunately, a failure in the power supply preregulator at the MSX spacecraft/SPIRIT III interface early in the mission forced the spectrometer to be operated without the reference laser until a failure investigation was completed. During this time data were collected in a backup mode that used an electronic clock to sample the data. These data were sampled evenly in time, and because the scan velocity varied, at nonuniform increments of OPD. The scan velocity profile depended on scan direction and scan length, and varied over time, greatly degrading the spectral resolution and spectral and radiometric accuracy of the measurements. The Convert software used to process the SPIRIT III data was modified to resample the clock-sampled data at even increments of OPD, using scan velocity profiles determined from ground and on-orbit data, greatly improving the quality of the clock-sampled data. This paper presents the resampling algorithm, the characterization of the scan velocity profiles, and the results of applying the resampling algorithm to on-orbit data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ota, Masahiro; Ishiguro, Yuki; Nakajima, Yutaro
2016-02-01
This paper reports on a highly-sensitive retarding-type electron spectrometer for a continuous source of electrons, in which the electron collection efficiency is increased by utilizing the magnetic bottle effect. This study demonstrates an application to Penning ionization electron spectroscopy using collisional ionization with metastable He*(2{sup 3}S) atoms. Technical details and performances of the instrument are presented. This spectrometer can be used for studies of functional molecules and assemblies, and exterior electron densities are expected to be selectively observed by the Penning ionization.
Precision determination of electron scattering angle by differential nuclear recoil energy method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liyanage, N.; Saenboonruang, K.
2015-12-01
The accurate determination of the scattered electron angle is crucial to electron scattering experiments, both with open-geometry large-acceptance spectrometers and ones with dipole-type magnetic spectrometers for electron detection. In particular, for small central-angle experiments using dipole-type magnetic spectrometers, in which surveys are used to measure the spectrometer angle with respect to the primary electron beam, the importance of the scattering angle determination is emphasized. However, given the complexities of large experiments and spectrometers, the accuracy of such surveys is limited and insufficient to meet demands of some experiments. In this article, we present a new technique for determination of themore » electron scattering angle based on an accurate measurement of the primary beam energy and the principle of differential nuclear recoil. This technique was used to determine the scattering angle for several experiments carried out at the Experimental Hall A, Jefferson Lab. Results have shown that the new technique greatly improved the accuracy of the angle determination compared to surveys.« less
Precision Determination of Electron Scattering Angle by Differential Nuclear Recoil Energy Method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liyanage, Nilanga; Saenboonruang, Kiadtisak
2015-09-01
The accurate determination of the scattered electron angle is crucial to electron scattering experiments, both with open-geometry large-acceptance spectrometers and ones with dipole-type magnetic spectrometers for electron detection. In particular, for small central-angle experiments using dipole-type magnetic spectrometers, in which surveys are used to measure the spectrometer angle with respect to the primary electron beam, the importance of the scattering angle determination is emphasized. However, given the complexities of large experiments and spectrometers, the accuracy of such surveys is limited and insufficient to meet demands of some experiments. In this article, we present a new technique for determination of themore » electron scattering angle based on an accurate measurement of the primary beam energy and the principle of differential nuclear recoil. This technique was used to determine the scattering angle for several experiments carried out at the Experimental Hall A, Jefferson Lab. Results have shown that the new technique greatly improved the accuracy of the angle determination compared to surveys.« less
Scalable NMR spectroscopy with semiconductor chips
Ha, Dongwan; Paulsen, Jeffrey; Sun, Nan; Song, Yi-Qiao; Ham, Donhee
2014-01-01
State-of-the-art NMR spectrometers using superconducting magnets have enabled, with their ultrafine spectral resolution, the determination of the structure of large molecules such as proteins, which is one of the most profound applications of modern NMR spectroscopy. Many chemical and biotechnological applications, however, involve only small-to-medium size molecules, for which the ultrafine resolution of the bulky, expensive, and high-maintenance NMR spectrometers is not required. For these applications, there is a critical need for portable, affordable, and low-maintenance NMR spectrometers to enable in-field, on-demand, or online applications (e.g., quality control, chemical reaction monitoring) and co-use of NMR with other analytical methods (e.g., chromatography, electrophoresis). As a critical step toward NMR spectrometer miniaturization, small permanent magnets with high field homogeneity have been developed. In contrast, NMR spectrometer electronics capable of modern multidimensional spectroscopy have thus far remained bulky. Complementing the magnet miniaturization, here we integrate the NMR spectrometer electronics into 4-mm2 silicon chips. Furthermore, we perform various multidimensional NMR spectroscopies by operating these spectrometer electronics chips together with a compact permanent magnet. This combination of the spectrometer-electronics-on-a-chip with a permanent magnet represents a useful step toward miniaturization of the overall NMR spectrometer into a portable platform. PMID:25092330
NASA Technical Reports Server (NTRS)
Chin, G.; Buhl, D.; Florez, J. M.
1981-01-01
A survey of acousto-optic spectrometers for molecular astronomy is presented, noting a technique of combining the acoustic bending of a collimated coherent light beam with a Bragg cell followed by an array of sensitive photodetectors. This acousto-optic spectrometer has a large bandwidth, a large number of channels, high resolution, and is energy efficient. Receiver development has concentrated on high-frequency heterodyne systems for the study of the chemical composition of the interstellar medium. RF spectrometers employing acousto-optic diffraction cells are described. Acousto-optic techniques have been suggested for applications to electronic warfare, electronic countermeasures and electronic support systems. Plans to use integrated optics for the further miniaturization of acousto-optic spectrometers are described. Bulk acousto-optic spectrometers with 300 MHz and 1 GHz bandwidths are being developed for use in the back-end of high-frequency heterodyne receivers for astronomical research.
Thermostatic system of sensor in NIR spectrometer based on PID control
NASA Astrophysics Data System (ADS)
Wang, Zhihong; Qiao, Liwei; Ji, Xufei
2016-11-01
Aiming at the shortcomings of the primary sensor thermostatic control system in the near infrared (NIR) spectrometer, a novel thermostatic control system based on proportional-integral-derivative (PID) control technology was developed to improve the detection precision of the NIR spectrometer. There were five parts including bridge amplifier circuit, analog-digital conversion (ADC) circuit, microcontroller, digital-analog conversion (DAC) circuit and drive circuit in the system. The five parts formed a closed-loop control system based on PID algorithm that was used to control the error between the temperature calculated by the sampling data of ADC and the designed temperature to ensure the stability of the spectrometer's sensor. The experimental results show that, when the operating temperature of sensor is -11°, compared with the original system, the temperature control precision of the new control system is improved from ±0.64° to ±0.04° and the spectrum signal to noise ratio (SNR) is improved from 4891 to 5967.
NASA Astrophysics Data System (ADS)
Kantsyrev, V. L.; Schultz, K. A.; Shlyaptseva, V. V.; Safronova, A. S.; Cooper, M. C.; Shrestha, I. K.; Petkov, E. E.; Stafford, A.; Moschella, J. J.; Schmidt-Petersen, M. T.; Butcher, C. J.; Kemp, G. E.; Andrews, S. D.; Fournier, K. B.
2016-10-01
The study of laser-generated debris-free x-ray sources in an underdense plasma produced in a high-density linear gas-puff jet was carried out at the LLNL Titan laser (2 ω, 45 J, sub-ps) with an intensity in the 10 um focal spot of 7 x 1019 W/cm2. A linear nozzle with a fast valve was used for the generation of a clusters/gas jet. X-ray diagnostics for the spectral region of 0.7 - 9 keV include: two spectrometers and pinhole cameras, and 3 groups of fast filtered detectors. Electron beams were measured with the EPPS magnetic spectrometer (>1 MeV) and Faraday cups (>72 keV). Spectralon/spectrometer devices were also used to measure absorption of laser radiation in the jets. New results were obtained on: anisotropic generation of x-rays (laser to x-ray conversion coefficient was >1%) and characteristics of laser-generated electron beams; evolution of x-ray generation with the location of the laser focus in a cluster-gas jet, and observations of a strong x-ray flash in some focusing regimes. Non-LTE kinetic modeling was used to estimate plasma parameters. UNR work supported by the DTRA Basic Research Award # HDTRA1-13-1-0033. Work at LLNL was performed under the auspices of the U.S. DOE by LLNL under Contract DE-AC52-07NA27344.
A magnetic-bottle multi-electron-ion coincidence spectrometer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsuda, Akitaka; Hishikawa, Akiyoshi; Department of Chemistry, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8602
2011-10-15
A novel multi-electron-ion coincidence spectrometer developed on the basis of a 1.5 m-long magnetic-bottle electron spectrometer is presented. Electrons are guided by an inhomogeneous magnetic field to a detector at the end of the flight tube, while a set of optics is used to extract counterpart ions to the same detector, by a pulsed inhomogeneous electric field. This setup allows ion detection with high mass resolution, without impairing the high collection efficiency for electrons. The performance of the coincidence spectrometer was tested with double ionization of carbon disulfide, CS{sub 2} {yields} CS{sub 2}{sup 2+} + e{sup -} + e{sup -},more » in ultrashort intense laser fields (2.8 x 10{sup 13} W/cm{sup 2}, 280 fs, 1030 nm) to clarify the electron correlation below the rescattering threshold.« less
A high dynamic range pulse counting detection system for mass spectrometry.
Collings, Bruce A; Dima, Martian D; Ivosev, Gordana; Zhong, Feng
2014-01-30
A high dynamic range pulse counting system has been developed that demonstrates an ability to operate at up to 2e8 counts per second (cps) on a triple quadrupole mass spectrometer. Previous pulse counting detection systems have typically been limited to about 1e7 cps at the upper end of the systems dynamic range. Modifications to the detection electronics and dead time correction algorithm are described in this paper. A high gain transimpedance amplifier is employed that allows a multi-channel electron multiplier to be operated at a significantly lower bias potential than in previous pulse counting systems. The system utilises a high-energy conversion dynode, a multi-channel electron multiplier, a high gain transimpedance amplifier, non-paralysing detection electronics and a modified dead time correction algorithm. Modification of the dead time correction algorithm is necessary due to a characteristic of the pulse counting electronics. A pulse counting detection system with the capability to count at ion arrival rates of up to 2e8 cps is described. This is shown to provide a linear dynamic range of nearly five orders of magnitude for a sample of aprazolam with concentrations ranging from 0.0006970 ng/mL to 3333 ng/mL while monitoring the m/z 309.1 → m/z 205.2 transition. This represents an upward extension of the detector's linear dynamic range of about two orders of magnitude. A new high dynamic range pulse counting system has been developed demonstrating the ability to operate at up to 2e8 cps on a triple quadrupole mass spectrometer. This provides an upward extension of the detector's linear dynamic range by about two orders of magnitude over previous pulse counting systems. Copyright © 2013 John Wiley & Sons, Ltd.
Inference of the electron temperature in ICF implosions from the hard X-ray spectral continuum
NASA Astrophysics Data System (ADS)
Kagan, Grigory; Landen, O. L.; Svyatsky, D.; Sio, H.; Kabadi, N. V.; Simpson, R. A.; Gatu Johnson, M.; Frenje, J. A.; Petrasso, R. D.; Shah, R. C.; Joshi, T. R.; Hakel, P.; Weber, T. E.; Rinderknecht, H. G.; Thorn, D.; Schneider, M.; Bradley, D.; Kilkenny, J.
2017-10-01
The NIF Continuum Spectrometer, scheduled to be first deployed in Fall of 2017, will infer the imploded core electron temperature from the free-free continuum self-emission spectra of photons with energies of 20 to 30 keV. However, this hard X-ray radiation is emitted by the tail of the electron distribution, which likely deviates from Maxwellian and thus obscures interpretation of the data. We investigate resulting modifications to the X-ray spectra. The logarithmic slope of the spectrum from the more realistic, non-thermal tail of the electron distribution is found to decrease more rapidly at higher photon energies, as compared to the perfectly Maxwellian case. Interpreting the spectrum with assumption of Maxwellian electrons enforced is shown to give an electron temperature that is lower than the actual one. Conversely, due to its connection with the non-thermal features in the electron distribution, hard X-ray emission can provide unprecedented information about kinetic processes in the hot DT core. This work was performed under the auspices of the U.S. Dept. of Energy by the Los Alamos National Security, LLC, Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396.
Low Energy X-Ray Diagnostics - 1981.
1981-01-01
small angular aperture relative to rings in that its orbit is truly circular, the radius that for which most systems are designed to collect of turning...incorporates points from all ot 3 3 the channels in our filter-fluorescer spectrometer. The spectrometer is shown in figure b. Design Figure 2. Conversion...of the detector. spectrometer using the design of von Ramsm and a The transmission of these layers is given in (6]. The resistive-anode position
Chirped Pulse Spectrometer Operating at 200 GHz
NASA Astrophysics Data System (ADS)
Hindle, Francis; Bray, Cédric; Hickson, Kevin; Fontanari, Daniele; Mouelhi, Meriem; Cuisset, Arnaud; Mouret, Gaël; Bocquet, Robin
2018-01-01
The combination of electronic sources operating at high frequencies and modern microwave instrumentation has enabled the recent development of chirped pulse spectrometers for the millimetre and THz bands. This type of instrument can operate at high resolution which is particularly suited to gas-phase rotational spectroscopy. The construction of a chirped pulse spectrometer operating at 200 GHz is described in detail while attention is paid to the phase stability and the data accumulation over many cycles. Validation using carbonyl sulphide has allowed the detection limit of the instrument to be established as function of the accumulation. A large number of OCS transitions were identified using a 10-GHz chirped pulse and include the six most abundant isotopologues, the weakest line corresponding to the fundamental R(17) transition of 16O13C33S with a line strength of 4.3 × 10-26 cm-1/(molecule cm-2). The linearity of the system response for different degrees of data accumulation and transition line strength was confirmed over four orders of magnitudes. A simple analysis of the time-domain data was demonstrated to provide the line-broadening coefficient without the need for conversion by a Fourier transform. Finally, the pulse duration is discussed and optimal values are given for both Doppler-limited and collisional regimes.
A real time spectrum to dose conversion system
NASA Technical Reports Server (NTRS)
Farmer, B. J.; Johnson, J. H.; Bagwell, R. G.
1972-01-01
A system has been developed which permits the determination of dose in real time or near real time directly from the pulse-height output of a radiation spectrometer. The technique involves the use of the resolution matrix of a spectrometer, the radiation energy-to-dose conversion function, and the geometrical factors, although the order of matrix operations is reversed. The new technique yields a result which is mathematically identical to the standard method while requiring no matrix manipulations or resolution matrix storage in the remote computer. It utilizes only a single function for each type dose required and each geometric factor involved.
Development of an ion time-of-flight spectrometer for neutron depth profiling
NASA Astrophysics Data System (ADS)
Cetiner, Mustafa Sacit
Ion time-of-flight spectrometry techniques are investigated for applicability to neutron depth profiling. Time-of-flight techniques are used extensively in a wide range of scientific and technological applications including energy and mass spectroscopy. Neutron depth profiling is a near-surface analysis technique that gives concentration distribution versus depth for certain technologically important light elements. The technique uses thermal or sub-thermal neutrons to initiate (n, p) or (n, alpha) reactions. Concentration versus depth distribution is obtained by the transformation of the energy spectrum into depth distribution by using stopping force tables of the projectiles in the substrate, and by converting the number of counts into concentration using a standard sample of known dose value. Conventionally, neutron depth profiling measurements are based on charged particle spectrometry, which employs semiconductor detectors such as a surface barrier detector (SBD) and the associated electronics. Measurements with semiconductor detectors are affected by a number of broadening mechanisms, which result from the interactions between the projectile ion and the detector material as well as fluctuations in the signal generation process. These are inherent features of the detection mechanism that involve the semiconductor detectors and cannot be avoided. Ion time-of-flight spectrometry offers highly precise measurement capabilities, particularly for slow particles. For high-energy low-mass particles, measurement resolution tends to degrade with all other parameters fixed. The threshold for more precise ion energy measurements with respect to conventional techniques, such as direct energy measurement by a surface barrier detector, is directly related to the design and operating parameters of the device. Time-of-flight spectrometry involves correlated detection of two signals by a coincidence unit. In ion time-of-flight spectroscopy, the ion generates the primary input signal. Without loss of generality, the secondary signal is obtained by the passage of the ion through a thin carbon foil, which produces ion-induced secondary electron emission (IISEE). The time-of-flight spectrometer physically acts as an ion/electron separator. The electrons that enter the active volume of the spectrometer are transported onto the microchannel plate detector to generate the secondary signal. The electron optics can be designed in variety of ways depending on the nature of the measurement and physical requirements. Two ion time-of-flight spectrometer designs are introduced: the parallel electric and magnetic (PEM) field spectrometer and the cross electric and magnetic (CEM) field spectrometer. The CEM field spectrometers have been extensively used in a wide range of applications where precise mass differentiation is required. The PEM field spectrometers have lately found interest in mass spectroscopy applications. The application of the PEM field spectrometer for energy measurements is a novel approach. The PEM field spectrometer used in the measurements employs axial electric and magnetic fields along the nominal direction of the incident ion. The secondary electrons are created by a thin carbon foil on the entrance disk and transported on the microchannel plate that faces the carbon foil. The initial angular distribution of the secondary electrons has virtually no effect on the transport time of the secondary electrons from the surface of the carbon foil to the electron microchannel plate detector. Therefore, the PEM field spectrometer can offer high-resolution energy measurement for relatively lower electric fields. The measurements with the PEM field spectrometer were made with the Tandem linear particle accelerator at the IBM T. J. Watson Research Center at Yorktown Heights, NY. The CEM field spectrometer developed for the thesis employs axial electric field along the nominal direction of the ion, and has perpendicular magnetic field. As the electric field accelerates and then decelerates the emitted secondary electron beam, the magnetic field steers the beam away from the source and focuses it onto the electron microchannel plate detector. The initial momentum distribution of the electron beam is observed to have profound effect on the electron transport time. Hence, the CEM field spectrometer measurements suffer more from spectral broadening at similar operating parameters. The CEM field spectrometer measurements were obtained with a 210Po alpha source at the Penn State Radiation Science and Engineering Center, University Park, PA. Although the PEM field spectrometer suffers less from electron transport time dispersion, the CEM field spectrometer is more suited for application to neutron depth profiling. The multiple small-diameter apertures used in the PEM field configuration considerably reduces the geometric efficiency of the spectrometer. Most of the neutron depth profiling measurements, where isotropic emission of charged particles is observed, have relatively low count rates; hence, high detection efficiency is essential.
A flexible, on-line magnetic spectrometer for ultra-intense laser produced fast electron measurement
NASA Astrophysics Data System (ADS)
Ge, Xulei; Yuan, Xiaohui; Yang, Su; Deng, Yanqing; Wei, Wenqing; Fang, Yuan; Gao, Jian; Liu, Feng; Chen, Min; Zhao, Li; Ma, Yanyun; Sheng, Zhengming; Zhang, Jie
2018-04-01
We have developed an on-line magnetic spectrometer to measure energy distributions of fast electrons generated from ultra-intense laser-solid interactions. The spectrometer consists of a sheet of plastic scintillator, a bundle of non-scintillating plastic fibers, and an sCMOS camera recording system. The design advantages include on-line capturing ability, versatility of detection arrangement, and resistance to harsh in-chamber environment. The validity of the instrument was tested experimentally. This spectrometer can be applied to the characterization of fast electron source for understanding fundamental laser-plasma interaction physics and to the optimization of high-repetition-rate laser-driven applications.
Electron-proton spectrometer design summary
NASA Technical Reports Server (NTRS)
1972-01-01
The electron-proton spectrometer (EPS) will be placed aboard the Skylab in order to provide data from which electron and proton radiation dose can be determined. The EPS has five sensors, each consisting of a shielded silicon detector. These provide four integral electron channels and five integral proton channels from which can be deduced four differential proton increments.
Measurement of the^ 235U(n,n')^235mU Integral Cross Section in a Pulsed Reactor
NASA Astrophysics Data System (ADS)
Vieira, D. J.; Bond, E. M.; Belier, G.; Meot, V.; Becker, J. A.; Macri, R. A.; Authier, N.; Hyneck, D.; Jacquet, X.; Jansen, Y.; Legrendre, J.
2009-10-01
We will present the integral measurement of the neutron inelastic cross section of ^235U leading to the 26-minute, E*=76.5 eV isomer state. Small samples (5-20 microgm) of isotope-enriched ^235U were activated in the central cavity of the CALIBAN pulsed reactor at Valduc where a nearly pure fission neutron spectrum is produced with a typical fluence of 3x10^14 n/cm^2. After 30 minutes the samples were removed from the reactor and counted in an electrostatic-deflecting electron spectrometer that was optimized for the detection of ^235mU conversion electrons. From the decay curve analysis of the data, the 26-minute ^235mU component was extracted. Preliminary results will be given and compared to gamma-cascade calculations assuming complete K-mixing or with no K-mixing.
Synthesis and formation mechanism of pinnoite by the phase transition process
NASA Astrophysics Data System (ADS)
Lin, Feng; Dong, Yaping; Peng, Jiaoyu; Wang, Liping; Li, Wu
2016-06-01
Pinnoite (MgB2O(OH)6) for the first time was synthesized using the solid-liquid-solid conversion method. The effects of reaction time, pH value and concentrations of magnesium and borate were investigated. Pinnoite was synthesized under the optimum condition of 8 mmol hungtsaoite and 1% boric acid solution at 80 °C. The products were determined using X-ray diffraction, Fourier-transform infrared spectroscopy, TG-DSC and a UV-vis spectrometer. The change processes of the surface morphology of pinnoite were investigated using scanning electron microscopy. In addition, the formation mechanism of pinnoite was discussed according to the changes in the content of precipitation and pH value.
Behrens, R; Ambrosi, P
2002-01-01
A few-channel spectrometer for mixed photon, electron and ion radiation fields has been developed. It consists of a front layer of an etched-track detector foil for detecting protons and ions, a stack of PMMA with thermoluminescent detectors at different depths for gaining spectral information about electrons, and a stack of metallic filters with increasing cut-off photon energies, interspersed with thermoluminescent detectors for gaining spectral information about photons. From the reading of the TL detectors the spectral fluence of the electrons (400 keV to 9 MeV) and photons (20 keV to 2 MeV) can be determined by an unfolding procedure. The spectrometer can be used in pulsed radiation fields with extremely high momentary values of the fluence rate. Design and calibration of the spectrometer are described.
Ceccolini, E; Rocchi, F; Mostacci, D; Sumini, M; Tartari, A
2011-08-01
The electron beam emitted from the back of plasma focus devices is being studied as a radiation source for intraoperative radiation therapy applications. A plasma focus device is being developed for this purpose, and there is a need for characterizing its electron beam, particularly, insofar as the energy spectrum is concerned. The instrument used is a magnetic spectrometer. To calibrate this spectrometer, a procedure relying on the energy-range relation in Mylar® has been devised and applied. By measuring the transmission through increasing thicknesses of the material, electron energies could be assessed and compared to the spectrometer readings. Thus, the original calibration of the instrument has been extended to higher energies and also to better accuracy. Methods and results are presented.
Atmospheric electron-induced x-ray spectrometer development
NASA Technical Reports Server (NTRS)
Wilcox, Jaroslava Z.; Urgiles, Eduardo; Toda, Risaku; Crisp, Joy
2005-01-01
This paper extends the work reported at the IEEE Aerospace conference in 2001 and 2003 where the concept and progress in the development of the so called atmospheric Electron X-ray Spectrometer (AEXS) has been described.
Advanced X-ray Imaging Crystal Spectrometer for Magnetic Fusion Tokamak Devices
NASA Astrophysics Data System (ADS)
Lee, S. G.; Bak, J. G.; Bog, M. G.; Nam, U. W.; Moon, M. K.; Cheon, J. K.
2008-03-01
An advanced X-ray imaging crystal spectrometer is currently under development using a segmented position sensitive detector and time-to-digital converter (TDC) based delay-line readout electronics for burning plasma diagnostics. The proposed advanced XICS utilizes an eight-segmented position sensitive multi-wire proportional counter and supporting electronics to increase the spectrometer performance includes the photon count-rate capability and spatial resolution.
Le Petit, G; Cagniant, A; Morelle, M; Gross, P; Achim, P; Douysset, G; Taffary, T; Moulin, C
The verification regime of the comprehensive test ban treaty (CTBT) is based on a network of three different waveform technologies together with global monitoring of aerosols and noble gas in order to detect, locate and identify a nuclear weapon explosion down to 1 kt TNT equivalent. In case of a low intensity underground or underwater nuclear explosion, it appears that only radioactive gases, especially the noble gas which are difficult to contain, will allow identification of weak yield nuclear tests. Four radioactive xenon isotopes, 131m Xe, 133m Xe, 133 Xe and 135 Xe, are sufficiently produced in fission reactions and exhibit suitable half-lives and radiation emissions to be detected in atmosphere at low level far away from the release site. Four different monitoring CTBT systems, ARIX, ARSA, SAUNA, and SPALAX™ have been developed in order to sample and to measure them with high sensitivity. The latest developed by the French Atomic Energy Commission (CEA) is likely to be drastically improved in detection sensitivity (especially for the metastable isotopes) through a higher sampling rate, when equipped with a new conversion electron (CE)/X-ray coincidence spectrometer. This new spectrometer is based on two combined detectors, both exhibiting very low radioactive background: a well-type NaI(Tl) detector for photon detection surrounding a gas cell equipped with two large passivated implanted planar silicon chips for electron detection. It is characterized by a low electron energy threshold and a much better energy resolution for the CE than those usually measured with the existing CTBT equipments. Furthermore, the compact geometry of the spectrometer provides high efficiency for X-ray and for CE associated to the decay modes of the four relevant radioxenons. The paper focus on the design of this new spectrometer and presents spectroscopic performances of a prototype based on recent results achieved from both radioactive xenon standards and air sample measurements. Major improvements in detection sensitivity have been reached and quantified, especially for metastable radioactive isotopes 131m Xe and 133m Xe with a gain in minimum detectable activity (about 2 × 10 -3 Bq) relative to current CTBT SPALAX™ system (air sampling frequency normalized to 8 h) of about 70 and 30 respectively.
A rare gas optics-free absolute photon flux and energy analyzer for solar and planetary observations
NASA Technical Reports Server (NTRS)
Judge, Darrell L.
1994-01-01
We have developed a prototype spectrometer for space applications requiring long term absolute EUV photon flux measurements. In this recently developed spectrometer, the energy spectrum of the incoming photons is transformed directly into an electron energy spectrum by taking advantage of the photoelectric effect in one of several rare gases at low pressures. Using an electron energy spectrometer, followed by an electron multiplier detector, pulses due to individual electrons are counted. The overall efficiency of this process can be made essentially independent of gain drifts in the signal path, and the secular degradation of optical components which is often a problem in other techniques is avoided. A very important feature of this approach is its freedom from the problem of overlapping spectral orders that plagues grating EUV spectrometers. An instrument with these features has not been flown before, but is essential to further advances in our understanding of solar EUV flux dynamics, and the coupled dynamics of terrestrial and planetary atmospheres. The detailed characteristics of this optics-free spectrometer are presented in the publications section.
Ohrui, Y; Nagoya, T; Kurimata, N; Sodeyama, M; Seto, Y
2017-07-01
A field-portable gas chromatography-mass spectrometry (GC-MS) system (Hapsite ER) was evaluated for the detection of nonvolatile V-type nerve agents (VX and Russian VX (RVX)) in the vapor phase. The Hapsite ER system consists of a Tri-Bed concentrator gas sampler, a nonpolar low thermal-mass capillary GC column and a hydrophobic membrane-interfaced electron ionization quadrupole mass spectrometer evacuated by a non-evaporative getter pump. The GC-MS system was attached to a VX-G fluoridating conversion tube containing silver nitrate and potassium fluoride. Sample vapors of VX and RVX were converted into O-ethyl methylphosphonofluoridate (EtGB) and O-isobutyl methylphosphonofluoridate (iBuGB), respectively. These fluoridated derivatives were detected within 10 min. No compounds were detected when the VX and RVX samples were analyzed without the conversion tube. A vapor sample of tabun (GA) was analyzed, in which GA and O-ethyl N,N-dimethylphosphoramidofluoridate were detected. The molar recovery percentages of EtGB and iBuGB from VX and RVX vapors varied from 0.3 to 17%, which was attributed to variations in the vaporization efficiency of the glass vapor container. The conversion efficiencies of the VX-G conversion tube for VX and RVX to their phosphonate derivatives were estimated to be 40%. VX and RVX vapors were detected at concentrations as low as 0.3 mg m -3 . Gasoline vapor was found to interfere with the analyses of VX and RVX. In the presence of 160 mg m -3 gasoline, the detection limits of VX and RVX vapor were increased to 20 mg m -3 . Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Potentiostat for Characterizing Microstructures at Ionic Liquid/Electrode Interfaces
2015-10-10
processes and devices (e.g., supercapacitors ). The potentiostat has been synchronized with an infrared spectrometer 1. REPORT DATE (DD-MM-YYYY) 4. TITLE...progress of many important energy conversion processes and devices (e.g., supercapacitors ). The potentiostat has been synchronized with an infrared...devices (e.g., supercapacitors ). The potentiostat has been synchronized with an infrared spectrometer to perform surface enhanced infrared absorption
NASA Astrophysics Data System (ADS)
Yang, Tao; Peng, Jing-xiao; Ho, Ho-pui; Song, Chun-yuan; Huang, Xiao-li; Zhu, Yong-yuan; Li, Xing-ao; Huang, Wei
2018-01-01
By using a preaggregated silver nanoparticle monolayer film and an infrared sensor card, we demonstrate a miniature spectrometer design that covers a broad wavelength range from visible to infrared with high spectral resolution. The spectral contents of an incident probe beam are reconstructed by solving a matrix equation with a smoothing simulated annealing algorithm. The proposed spectrometer offers significant advantages over current instruments that are based on Fourier transform and grating dispersion, in terms of size, resolution, spectral range, cost and reliability. The spectrometer contains three components, which are used for dispersion, frequency conversion and detection. Disordered silver nanoparticles in dispersion component reduce the fabrication complexity. An infrared sensor card in the conversion component broaden the operational spectral range of the system into visible and infrared bands. Since the CCD used in the detection component provides very large number of intensity measurements, one can reconstruct the final spectrum with high resolution. An additional feature of our algorithm for solving the matrix equation, which is suitable for reconstructing both broadband and narrowband signals, we have adopted a smoothing step based on a simulated annealing algorithm. This algorithm improve the accuracy of the spectral reconstruction.
ISAP: ISO Spectral Analysis Package
NASA Astrophysics Data System (ADS)
Ali, Babar; Bauer, Otto; Brauher, Jim; Buckley, Mark; Harwood, Andrew; Hur, Min; Khan, Iffat; Li, Jing; Lord, Steve; Lutz, Dieter; Mazzarella, Joe; Molinari, Sergio; Morris, Pat; Narron, Bob; Seidenschwang, Karla; Sidher, Sunil; Sturm, Eckhard; Swinyard, Bruce; Unger, Sarah; Verstraete, Laurent; Vivares, Florence; Wieprecht, Ecki
2014-03-01
ISAP, written in IDL, simplifies the process of visualizing, subsetting, shifting, rebinning, masking, combining scans with weighted means or medians, filtering, and smoothing Auto Analysis Results (AARs) from post-pipeline processing of the Infrared Space Observatory's (ISO) Short Wavelength Spectrometer (SWS) and Long Wavelength Spectrometer (LWS) data. It can also be applied to PHOT-S and CAM-CVF data, and data from practically any spectrometer. The result of a typical ISAP session is expected to be a "simple spectrum" (single-valued spectrum which may be resampled to a uniform wavelength separation if desired) that can be further analyzed and measured either with other ISAP functions, native IDL functions, or exported to other analysis package (e.g., IRAF, MIDAS) if desired. ISAP provides many tools for further analysis, line-fitting, and continuum measurements, such as routines for unit conversions, conversions from wavelength space to frequency space, line and continuum fitting, flux measurement, synthetic photometry and models such as a zodiacal light model to predict and subtract the dominant foreground at some wavelengths.
Renpenning, Julian; Hitzfeld, Kristina L; Gilevska, Tetyana; Nijenhuis, Ivonne; Gehre, Matthias; Richnow, Hans-Hermann
2015-03-03
A universal application of compound-specific isotope analysis of chlorine was thus far limited by the availability of suitable analysis techniques. In this study, gas chromatography in combination with a high-temperature conversion interface (GC-HTC), converting organic chlorine in the presence of H2 to gaseous HCl, was coupled to a dual-detection system, combining an ion trap mass spectrometer (MS) and isotope-ratio mass spectrometer (IRMS). The combination of the MS/IRMS detection enabled a detailed characterization, optimization, and online monitoring of the high-temperature conversion process via ion trap MS as well as a simultaneous chlorine isotope analysis by the IRMS. Using GC-HTC-MS/IRMS, chlorine isotope analysis at optimized conversion conditions resulted in very accurate isotope values (δ(37)Cl(SMOC)) for measured reference material with known isotope composition, including chlorinated ethylene, chloromethane, hexachlorocyclohexane, and trichloroacetic acids methyl ester. Respective detection limits were determined to be <15 nmol Cl on column with achieved precision of <0.3‰.
NASA Astrophysics Data System (ADS)
Chakraborty, Dipayan; Nag, Pamir; Nandi, Dhananjay
2018-02-01
A new time of flight mass spectrometer (TOFMS) has been developed to study the absolute dissociative electron attachment (DEA) cross section using a relative flow technique of a wide variety of molecules in gas phase, ranging from simple diatomic to complex biomolecules. Unlike the Wiley-McLaren type TOFMS, here the total ion collection condition has been achieved without compromising the mass resolution by introducing a field free drift region after the lensing arrangement. The field free interaction region is provided for low energy electron molecule collision studies. The spectrometer can be used to study a wide range of masses (H- ion to few hundreds atomic mass unit). The mass resolution capability of the spectrometer has been checked experimentally by measuring the mass spectra of fragment anions arising from DEA to methanol. Overall performance of the spectrometer has been tested by measuring the absolute DEA cross section of the ground state SO2 molecule, and the results are satisfactory.
Soft X-ray Spectrometer for Characterization of Electron Beam Driven WDM
NASA Astrophysics Data System (ADS)
Ramey, Nicholas; Coleman, Joshua; Perry, John
2017-10-01
A preliminary design study is being performed on a soft X-ray spectrometer to measure K-shell spectra emitted by a warm dense plasma generated by an intense, relativistic electron beam interacting with a thin, low-Z metal foil. A 100-ns-long electron pulse with a beam current of 1.7 kA and energy of 19.8 MeV deposits energy into the thin metal foil heating it to a warm dense plasma. The collisional ionization of the target by the electron beam produces an anisotropic angular distribution of K-shell radiation and a continuum of both scattered electrons and Bremsstrahlung up to the beam energy of 19.8 MeV. A proof-of-principle Bragg-type spectrometer has been built to measure the Ti K- α and K- β lines. The goal of the spectrometer is to measure the temperature and density of this warm dense plasma for the first time with this heating technique. This work was supported by the National Nuclear Security Administration of the U.S. Department of Energy under Contract No. DE-AC52-06NA25396.
Short Pulse Laser Absorption and Energy Partition at Relativistic Laser Intensities
NASA Astrophysics Data System (ADS)
Ping, Yuan
2005-10-01
We present the first absorption measurements at laser intensity between 10^17 to 10^20 W/cm^2 using an intergrating sphere and a suite of diagnostics that measures scale length, hot electrons and laser harmonics. A much-enhanced absorption in the regime of relativestic electron heating was observed. Furthermore, we present measurements on the partitioning of absorbed laser energy into thermal and non-thermal electrons when illuminating solid targets from 10^17 to 10^19 W/cm^2. This was measured using a sub-picosecond x-ray streak camera interfaced to a dual crystal von H'amos crystal spectrograph, a spherical crystal x-ray imaging spectrometer, an electron spectrometer and optical spectrometer. Our data suggests an intensity dependent energy-coupling transition with greater energy portion into non-thermal electrons that rapidly transition to thermal electrons. The details of these experimental results and modeling simulations will be presented.
aCORN Beta Spectrometer and Electrostatic Mirror
NASA Astrophysics Data System (ADS)
Hassan, Md; aCORN Collaboration
2013-10-01
aCORN uses a high efficiency backscatter suppressed beta spectrometer to measure the electron-antineutrino correlation in neutron beta decay. We measure the correlation by counting protons and beta electrons in coincidence with precisely determined electron energy. There are 19 photomultiplier tubes arranged in a hexagonal array coupled to a single phosphor doped polystyrene scintillator. The magnetic field is shaped so that electrons that backscatter without depositing their full energy strike a tulip-shaped array of scintillator paddles and these events are vetoed. The detailed construction, performance and calibration of this beta spectrometer will be presented. I will also present the simulation, construction, and features of our novel electrostatic mirror. This work was supported by the National Science Foundation and the NIST Center for Neutron Research.
Two Meter Flight Path - Time of Flight Positron Annihilation Induced Auger Electron Spectrometer
NASA Astrophysics Data System (ADS)
Mukherjee, S.; Shastry, K.; Maddox, W.; Weiss, A. H.
2008-03-01
Details of the design and construction of a new time of flight positron annihilation induced Auger electron (TOF-PAES) spectrometer are presented. The new spectrometer will be equipped with a 2 meter long ``TOF'' tube that can be biased at a potential different from that of the sample in order to increase or decrease the kinetic energy of the electrons traveling through the tube. The time of flight will be determined from timing signals obtained from the detection of the annihilation gamma (signaling the start of the flight) and detection of the annihilation induced Auger electron at the end of the 2 meter flight path (signaling the end of the flight). The 2 meter long flight path is a factor of two longer than used in previous TOF-PAES systems. The longer flight path can be expected to result in a fractional energy width: delta E/ E that is .5ex1 -.1em/ -.15em.25ex2 as large as the current UTA lab based TOF-PAES spectrometer.
NASA Astrophysics Data System (ADS)
Hirata, M.; Nagashima, S.; Cho, T.; Kohagura, J.; Yoshida, M.; Ito, H.; Numakura, T.; Minami, R.; Kondoh, T.; Nakashima, Y.; Yatsu, K.; Miyoshi, S.
2003-03-01
For the purpose of end-loss-ion energy analyses in open-field plasmas, a newly developed electrostatic ion-energy spectrometer is proposed on the basis of a "self-collection" principle for secondary-electron emission from a metal collector. The ion-energy spectrometer is designed with multiple grids for analyzing incident ion energies, and a set of parallelly placed metal plates with respect to lines of ambient magnetic forces in an open-ended device. One of the most important characteristic properties of this spectrometer is the use of our proposed principle of a "self-collection" mechanism due to E×B drifts for secondary electrons emitted from the grounded metal-plate collector by the use of no further additional magnetic systems except the ambient open-ended fields B. The proof-of-principle and characterization experiments are carried out by the use of a test-ion-beam line along with an additional use of a Helmholtz coil system for the formation of open magnetic fields similar to those in the GAMMA 10 end region. The applications of the developed ion-energy spectrometer for end-loss-ion diagnostics in the GAMMA 10 plasma experiments are demonstrated under the conditions with simultaneous incidence of energetic electrons produced by electron-cyclotron heatings for end-loss-plugging potential formation, since these electrons have contributed to disturb these ion signals from conventional end-loss-ion detectors.
The aCORN backscatter-suppressed beta spectrometer
Hassan, M. T.; Bateman, F.; Collett, B.; ...
2017-06-16
Backscatter of electrons from a beta detector, with incomplete energy deposition, can lead to undesirable effects in many types of experiments. We present and discuss the design and operation of a backscatter-suppressed beta spectrometer that was developed as part of a program to measure the electron–antineutrino correlation coefficient in neutron beta decay (aCORN). An array of backscatter veto detectors surrounds a plastic scintillator beta energy detector. The spectrometer contains an axial magnetic field gradient, so electrons are efficiently admitted but have a low probability for escaping back through the entrance after backscattering. Lastly, the design, construction, calibration, and performance ofmore » the spectrometer are discussed.« less
NASA Astrophysics Data System (ADS)
Liu, Bing; Guo, Yong-yuan; Xiao, Gui-yong; Lu, Yu-peng
2017-03-01
Calcium phosphate coatings have been applied on the surface of Ti implants to realize better osseointegration. The formation of dicalcium phosphate dihydrate (CaHPO4·2H2O), mineralogically named brushite on pure Ti substrate has been investigated via chemical conversion method. Coating composition and microstructure have been investigated by X-ray diffractometer, Fourier transform infrared spectrometer and field emission scanning electron microscope. The results reveal that the coatings are composed of high crystalline brushite with minor scholzite (CaZn2(PO4)2·2H2O). A micro/nano-scaled fibrous morphology can be produced in the acidic chemical conversion bath with pH 5.00. The surface of the fibrous brushite coating exhibits high hydrophilicity and corrosion resistance in the simulated body fluid. The osteoblast cells grow and spread actively on the coated samples and the proliferation numbers and alkaline phosphate activities of the cells improve significantly compared to the uncoated Ti. It is suggested that the micro/nano-fibrous brushite coating can be a potential approach to improve the osteoinductivity and osteoconductivity of Ti implant, due to its similarity in morphology and dimension to inorganic components of biological hard tissues, and favorable responses to the osteoblasts.
NASA Astrophysics Data System (ADS)
Ozaki, T.; Hata, M.; Matsuo, K.; Kojima, S.; Arikawa, Y.; Fujioka, S.; Sakagami, H.; Sunahara, A.; Nagatomo, H.; Johzaki, T.; Yogo, A.; Morace, A.; Zhang, Z.; Shiraga, H.; Sakata, S.; Nagai, T.; Abe, Y.; Lee, S.; Nakai, M.; Nishimura, H.; Azechi, H.; FIREX Group; GXII-LFEX Group
2016-05-01
Hot electrons which are generated from targets irradiated by a high-intense laser are measured by two electron spectrometers (ESMs). However, total electron energy observed by the ESM is only less than 1%. Hot electrons are confined by self-fields due to the huge current. When an external magnetic field of several hundred Tesla is applied during the laser irradiation on targets, the ESM signals always increase. In the simulation, the same result can be obtained. The reason is that the Alfvén limit can be mitigated due to the external longitudinal magnetic field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okuyama, Haruki; Karashima, Shutaro; Suzuki, Toshinori, E-mail: suzuki@kuchem.kyoto-u.ac.jp
The charge-transfer-to-solvent (CTTS) reactions from iodide (I{sup −}) to H{sub 2}O, D{sub 2}O, methanol, and ethanol were studied by time-resolved photoelectron spectroscopy of liquid microjets using a magnetic bottle time-of-flight spectrometer with variable pass energy. Photoexcited iodide dissociates into a weak complex (a contact pair) of a solvated electron and an iodine atom in similar reaction times, 0.3 ps in H{sub 2}O and D{sub 2}O and 0.5 ps in methanol and ethanol, which are much shorter than their dielectric relaxation times. The results indicate that solvated electrons are formed with minimal solvent reorganization in the long-range solvent polarization field createdmore » for I{sup −}. The photoelectron spectra for CTTS in H{sub 2}O and D{sub 2}O—measured with higher accuracy than in our previous study [Y. I. Suzuki et al., Chem. Sci. 2, 1094 (2011)]—indicate that internal conversion yields from the photoexcited I{sup −*} (CTTS) state are less than 10%, while alcohols provide 2–3 times greater yields of internal conversion from I{sup −*}. The overall geminate recombination yields are found to be in the order of H{sub 2}O > D{sub 2}O > methanol > ethanol, which is opposite to the order of the mutual diffusion rates of an iodine atom and a solvated electron. This result is consistent with the transition state theory for an adiabatic outer-sphere electron transfer process, which predicts that the recombination reaction rate has a pre-exponential factor inversely proportional to a longitudinal solvent relaxation time.« less
A Mechanical Cryogenic Cooler for the Hubble Space Telescope
NASA Technical Reports Server (NTRS)
Jedrich, Nicholas; Zimbelman, Darell; Swift, Walter; Dolan, Francis; Brumfield, Mark (Technical Monitor)
2002-01-01
This paper presents a description of the Hubble Space Telescope (HST) Near-Infrared Camera and Multi-Object Spectrometer (NICMOS) Cryo Cooler (NCC), the cutting edge technology involved, its evolution, performance, and future space applications. The NCC is the primary hardware component of the NICMOS Cooling System comprised of the NCC, an Electronics Support Module, a Capillary Pumped Loop/Radiator, and associated interface harnessing. The system will be installed during extravehicular activities on HST during Servicing Mission 3B scheduled for launch in February 2002. The NCC will be used to revive the NICMOS instrument, which experienced a reduced operational lifetime due to an internal thermal short in its dewar structure, and restore HST scientific infrared capability to operational status. The NCC is a state-of-the-art reverse Turbo-Brayton cycle cooler employing gas bearing micro turbo machinery, driven by advanced power conversion electronics, operating at speeds up to 7300 revolutions per second (rps) to remove heat from the NICMOS instrument.
Upconversion luminescence of Er3+/Yb3+ doped Sr5(PO4)3OH phosphor powders
NASA Astrophysics Data System (ADS)
Mokoena, P. P.; Swart, H. C.; Ntwaeaborwa, O. M.
2018-04-01
Sr5(PO4)3OH co-doped with Er3+and Yb3+ powder phosphors were synthesized by urea combustion method. The crystal structure was analyzed using X-ray diffraction (XRD). Particle morphology was analyzed using a Jeol JSM 7800F thermal field emission scanning electron microscope (FE-SEM) and the chemical composition analysis was carried out using an Oxford Instruments AzTEC energy dispersive spectrometer (EDS) attached to the FE-SEM. Upconversion emission was measured by using a FLS980 Spectrometer equipped with a 980 nm NIR laser as the excitation source, and a photomultiplier (PMT) detector. The XRD data of the Sr5(PO4)3OH powder exhibited characteristic diffraction patterns of the hexagonal structure referenced in the standard JCPDS card number 00-033-1348. The sharp peaks revealed the formation of crystalline Sr5(PO4)3OH. The powders were made up of hexagonal nanospheres. The enhanced red emission due to the 4F9/2 → 4I15/2 transitions of Er3+ was observed and was attributed to up conversion (UC) energy transfer from Yb3+. The upconversion energy transfer mechanism from Yb3+ to Er3+ is discussed.
Test report: Electron-proton spectrometer qualification test unit, qualification test
NASA Technical Reports Server (NTRS)
Vincent, D. L.
1972-01-01
Qualification tests of the electron-proton spectrometer test unit are presented. The tests conducted were: (1) functional, (2) thermal/vacuum, (3) electromagnetic interference, (4) acoustic, (5) shock, (6) vibration, and (7) humidity. Results of each type of test are presented in the form of data sheets.
Permanent-magnet energy spectrometer for electron beams from radiotherapy accelerators
DOE Office of Scientific and Technical Information (OSTI.GOV)
McLaughlin, David J.; Shikhaliev, Polad M.; Matthews, Kenneth L.
2015-09-15
Purpose: The purpose of this work was to adapt a lightweight, permanent magnet electron energy spectrometer for the measurement of energy spectra of therapeutic electron beams. Methods: An irradiation geometry and measurement technique were developed for an approximately 0.54-T, permanent dipole magnet spectrometer to produce suitable latent images on computed radiography (CR) phosphor strips. Dual-pinhole electron collimators created a 0.318-cm diameter, approximately parallel beam incident on the spectrometer and an appropriate dose rate at the image plane (CR strip location). X-ray background in the latent image, reduced by a 7.62-cm thick lead block between the pinhole collimators, was removed usingmore » a fitting technique. Theoretical energy-dependent detector response functions (DRFs) were used in an iterative technique to transform CR strip net mean dose profiles into energy spectra on central axis at the entrance to the spectrometer. These spectra were transformed to spectra at 95-cm source to collimator distance (SCD) by correcting for the energy dependence of electron scatter. The spectrometer was calibrated by comparing peak mean positions in the net mean dose profiles, initially to peak mean energies determined from the practical range of central-axis percent depth-dose (%DD) curves, and then to peak mean energies that accounted for how the collimation modified the energy spectra (recalibration). The utility of the spectrometer was demonstrated by measuring the energy spectra for the seven electron beams (7–20 MeV) of an Elekta Infinity radiotherapy accelerator. Results: Plots of DRF illustrated their dependence on energy and position in the imaging plane. Approximately 15 iterations solved for the energy spectra at the spectrometer entrance from the measured net mean dose profiles. Transforming those spectra into ones at 95-cm SCD increased the low energy tail of the spectra, while correspondingly decreasing the peaks and shifting them to slightly lower energies. Energy calibration plots of peak mean energy versus peak mean position of the net mean dose profiles for each of the seven electron beams followed the shape predicted by the Lorentz force law for a uniform z-component of the magnetic field, validating its being modeled as uniform (0.542 ± 0.027 T). Measured Elekta energy spectra and their peak mean energies correlated with the 0.5-cm (7–13 MeV) and the 1.0-cm (13–20 MeV) R{sub 90} spacings of the %DD curves. The full-width-half-maximum of the energy spectra decreased with decreasing peak mean energy with the exception of the 9-MeV beam, which was anomalously wide. Similarly, R{sub 80–20} decreased linearly with peak mean energy with the exception of the 9 MeV beam. Both were attributed to suboptimal tuning of the high power phase shifter for the recycled radiofrequency power reentering the traveling wave accelerator. Conclusions: The apparatus and analysis techniques of the authors demonstrated that an inexpensive, lightweight, permanent magnet electron energy spectrometer can be used for measuring the electron energy distributions of therapeutic electron beams (6–20 MeV). The primary goal of future work is to develop a real-time spectrometer by incorporating a real-time imager, which has potential applications such as beam matching, ongoing beam tune maintenance, and measuring spectra for input into Monte Carlo beam calculations.« less
Permanent-magnet energy spectrometer for electron beams from radiotherapy accelerators.
McLaughlin, David J; Hogstrom, Kenneth R; Carver, Robert L; Gibbons, John P; Shikhaliev, Polad M; Matthews, Kenneth L; Clarke, Taylor; Henderson, Alexander; Liang, Edison P
2015-09-01
The purpose of this work was to adapt a lightweight, permanent magnet electron energy spectrometer for the measurement of energy spectra of therapeutic electron beams. An irradiation geometry and measurement technique were developed for an approximately 0.54-T, permanent dipole magnet spectrometer to produce suitable latent images on computed radiography (CR) phosphor strips. Dual-pinhole electron collimators created a 0.318-cm diameter, approximately parallel beam incident on the spectrometer and an appropriate dose rate at the image plane (CR strip location). X-ray background in the latent image, reduced by a 7.62-cm thick lead block between the pinhole collimators, was removed using a fitting technique. Theoretical energy-dependent detector response functions (DRFs) were used in an iterative technique to transform CR strip net mean dose profiles into energy spectra on central axis at the entrance to the spectrometer. These spectra were transformed to spectra at 95-cm source to collimator distance (SCD) by correcting for the energy dependence of electron scatter. The spectrometer was calibrated by comparing peak mean positions in the net mean dose profiles, initially to peak mean energies determined from the practical range of central-axis percent depth-dose (%DD) curves, and then to peak mean energies that accounted for how the collimation modified the energy spectra (recalibration). The utility of the spectrometer was demonstrated by measuring the energy spectra for the seven electron beams (7-20 MeV) of an Elekta Infinity radiotherapy accelerator. Plots of DRF illustrated their dependence on energy and position in the imaging plane. Approximately 15 iterations solved for the energy spectra at the spectrometer entrance from the measured net mean dose profiles. Transforming those spectra into ones at 95-cm SCD increased the low energy tail of the spectra, while correspondingly decreasing the peaks and shifting them to slightly lower energies. Energy calibration plots of peak mean energy versus peak mean position of the net mean dose profiles for each of the seven electron beams followed the shape predicted by the Lorentz force law for a uniform z-component of the magnetic field, validating its being modeled as uniform (0.542 ± 0.027 T). Measured Elekta energy spectra and their peak mean energies correlated with the 0.5-cm (7-13 MeV) and the 1.0-cm (13-20 MeV) R90 spacings of the %DD curves. The full-width-half-maximum of the energy spectra decreased with decreasing peak mean energy with the exception of the 9-MeV beam, which was anomalously wide. Similarly, R80-20 decreased linearly with peak mean energy with the exception of the 9 MeV beam. Both were attributed to suboptimal tuning of the high power phase shifter for the recycled radiofrequency power reentering the traveling wave accelerator. The apparatus and analysis techniques of the authors demonstrated that an inexpensive, lightweight, permanent magnet electron energy spectrometer can be used for measuring the electron energy distributions of therapeutic electron beams (6-20 MeV). The primary goal of future work is to develop a real-time spectrometer by incorporating a real-time imager, which has potential applications such as beam matching, ongoing beam tune maintenance, and measuring spectra for input into Monte Carlo beam calculations.
Electron source for a mini ion trap mass spectrometer
Dietrich, Daniel D.; Keville, Robert F.
1995-01-01
An ion trap which operates in the regime between research ion traps which can detect ions with a mass resolution of better than 1:10.sup.9 and commercial mass spectrometers requiring 10.sup.4 ions with resolutions of a few hundred. The power consumption is kept to a minimum by the use of permanent magnets and a novel electron gun design. By Fourier analyzing the ion cyclotron resonance signals induced in the trap electrodes, a complete mass spectra in a single combined structure can be detected. An attribute of the ion trap mass spectrometer is that overall system size is drastically reduced due to combining a unique electron source and mass analyzer/detector in a single device. This enables portable low power mass spectrometers for the detection of environmental pollutants or illicit substances, as well as sensors for on board diagnostics to monitor engine performance or for active feedback in any process involving exhausting waste products.
NASA Astrophysics Data System (ADS)
Behrens, J.; Ranitzsch, P. C.-O.; Beck, M.; Beglarian, A.; Erhard, M.; Groh, S.; Hannen, V.; Kraus, M.; Ortjohann, H.-W.; Rest, O.; Schlösser, K.; Thümmler, T.; Valerius, K.; Wierman, K.; Wilkerson, J. F.; Winzen, D.; Zacher, M.; Weinheimer, C.
2017-06-01
The KATRIN experiment aims to determine the neutrino mass scale with a sensitivity of 200 {meV/c^2} (90% C. L.) by a precision measurement of the shape of the tritium β -spectrum in the endpoint region. The energy analysis of the decay electrons is achieved by a MAC-E filter spectrometer. To determine the transmission properties of the KATRIN main spectrometer, a mono-energetic and angular-selective electron source has been developed. In preparation for the second commissioning phase of the main spectrometer, a measurement phase was carried out at the KATRIN monitor spectrometer where the device was operated in a MAC-E filter setup for testing. The results of these measurements are compared with simulations using the particle-tracking software "Kassiopeia", which was developed in the KATRIN collaboration over recent years.
Atmospheric electron x-ray spectrometer
NASA Technical Reports Server (NTRS)
Feldman, Jason E. (Inventor); George, Thomas (Inventor); Wilcox, Jaroslava Z. (Inventor)
2002-01-01
The present invention comprises an apparatus for performing in-situ elemental analyses of surfaces. The invention comprises an atmospheric electron x-ray spectrometer with an electron column which generates, accelerates, and focuses electrons in a column which is isolated from ambient pressure by a:thin, electron transparent membrane. After passing through the membrane, the electrons impinge on the sample in atmosphere to generate characteristic x-rays. An x-ray detector, shaping amplifier, and multi-channel analyzer are used for x-ray detection and signal analysis. By comparing the resultant data to known x-ray spectral signatures, the elemental composition of the surface can be determined.
The Nab Spectrometer, Precision Field Mapping, and Associated Systematic Effects
NASA Astrophysics Data System (ADS)
Fry, Jason; Nab Collaboration
2017-09-01
The Nab experiment will make precision measurements of a, the e- ν correlation parameter, and b, the Fierz interference term, in neutron beta decay, aiming to deliver an independent determination of the ratio λ =GA /GV to sensitively test CKM unitarity. Nab utilizes a novel, long asymmetric spectrometer to measure the proton TOF and electron energy. We extract a from the slope of the measured TOF distribution for different electron energies. A reliable relation of the measured proton TOF to a requires detailed knowledge of the effective proton pathlength, which in turn imposes further requirements on the precision of the magnetic fields in the Nab spectrometer. The Nab spectrometer, magnetometry, and associated systematics will be discussed.
The Wavelength-Dispersive Spectrometer and Its Proposed Use in the Analytical Electron Microscope
NASA Technical Reports Server (NTRS)
Goldstein, Joseph I.; Lyman, Charles E.; Williams, David B.
1989-01-01
The Analytical Electron Microscope (AEM) equipped with a wavelength-dispersive spectrometer (WDS) should have the ability to resolve peaks which normally overlap in the spectra from an energy-dispersive spectrometer (EDS). With a WDS it should also be possible to measure lower concentrations of elements in thin foils due to the increased peak-to-background ratio compared with EDS. The WDS will measure X-ray from the light elements (4 less than Z less than 1O) more effectively. This paper addresses the possibility of interfacing a compact WDS with a focussing circle of approximately 4 cm to a modem AEM with a high-brightness (field emission) source of electrons.
NASA Technical Reports Server (NTRS)
Michell, R. G.; Samara, M.; Grubbs, G., II; Ogasawara, K.; Miller, G.; Trevino, J. A.; Webster, J.; Stange, J.
2016-01-01
We present a description of the Acute Precipitating Electron Spectrometer (APES) that was designed and built for the Ground-to-Rocket Electron Electrodynamics Correlative Experiment (GREECE) auroral sounding rocket mission. The purpose was to measure the precipitating electron spectrum with high time resolution, on the order of milliseconds. The trade-off made in order to achieve high time resolution was to limit the aperture to only one look direction. The energy selection was done by using a permanent magnet to separate the incoming electrons, such that the different energies would fall onto different regions of the microchannel plate and therefore be detected by different anodes. A rectangular microchannel plate (MCP) was used (15 mm x 100 mm), and there was a total of 50 discrete anodes under the MCP, each one 15 mm x 1.5 mm, with a 0.5 mm spacing between anodes. The target energy range of APES was 200 eV to 30 keV.
Spacecraft Applications of Compact Optical and Mass Spectrometers
NASA Technical Reports Server (NTRS)
Davinic, N. M.; Nagel, D. J.
1995-01-01
Optical spectrometers, and mass spectrometers to a lesser extent, have a long and rich history of use aboard spacecraft. Space mission applications include deep space science spacecraft, earth orbiting satellites, atmospheric probes, and surface landers, rovers, and penetrators. The large size of capable instruments limited their use to large, expensive spacecraft. Because of the novel application of micro-fabrication technologies, compact optical and mass spectrometers are now available. The new compact devices are especially attractive for spacecraft because of their small mass and volume, as well as their low power consumption. Dispersive optical multi-channel analyzers which cover the 0.4-1.1 micrometer wavelength are now commercially available in packages as small as 3 x 6 x 18 mm exclusive of drive and recording electronics. Mass spectrometers as small as 3 x 3 mm, again without electronics, are under development. A variety of compact optical and mass spectrometers are reviewed in this paper. A number of past space applications are described, along with some upcoming opportunities that are likely candidate missions to fly this new class of compact spectrometers.
Electron multiplier-ion detector system
Dietz, L.A.
1975-08-01
This patent relates to an improved ion detector for use in mass spectrometers for pulse counting signal ions which may have a positive or a negative charge. The invention combines a novel electron multiplier with a scintillator type of ion detector. It is a high vacuum, high voltage device intended for use in ion microprobe mass spectrometers. (auth)
NASA Technical Reports Server (NTRS)
Judge, Darrell L.
1994-01-01
A prototype spectrometer has been developed for space applications requiring long term absolute EUV photon flux measurements. The energy spectrum of the incoming photons is transformed directly into an electron energy spectrum by taking advantage of the photoelectric effect in one of several rare gases at low pressures. Using an electron energy spectrometer, followed by an electron multiplier detector, pulses due to individual electrons are counted. The overall efficiency of this process can be made essentially independent of gain drifts in the signal path, and the secular degradation of optical components which is often a problem in other techniques is avoided. A very important feature of this approach is its freedom from the problem of overlapping spectral orders that plagues grating EUV spectrometers. An instrument with these features has not been flown before, but is essential to further advances in our understanding of solar EUV flux dynamics, and the coupled dynamics of terrestrial and planetary atmospheres. The detailed characteristics of this optics-free spectrometer are presented in the publications section.
The Evaluation of the 0.07 and 3 mm Dose Equivalent with a Portable Beta Spectrometer
NASA Astrophysics Data System (ADS)
Hoshi, Katsuya; Yoshida, Tadayoshi; Tsujimura, Norio; Okada, Kazuhiko
Beta spectra of various nuclide species were measured using a commercially available compact spectrometer. The shape of the spectra obtained via the spectrometer was almost similar to that of the theoretical spectra. The beta dose equivalent at any depth was obtained as a product of the measured pulse height spectra and the appropriate conversion coefficients of ICRP Publication 74. The dose rates evaluated from the spectra were comparable with the reference dose rates of standard beta calibration sources. In addition, we were able to determine the dose equivalents with a relative error of indication of 10% without the need for complicated correction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, W.; Chen, Z. Y., E-mail: zychen@hust.edu.cn; Huang, D. W.
An x-ray imaging crystal spectrometer has been developed on joint Texas experimental tokamak for the measurement of electron and ion temperatures from the K{sub α} spectra of helium-like argon and its satellite lines. A two-dimensional multi-wire proportional counter has been applied to detect the spectra. The electron and ion temperatures have been obtained from the Voigt fitting with the spectra of helium-like argon ions. The profiles of electron and ion temperatures show the dependence on electron density in ohmic plasmas.
Balloon Borne Ultraviolet Spectrometer.
1978-12-28
n.c.aaary ond lden lfy by block numb.r) ultraviolet ground support equipment (GSE) spectrometers flight electronics instrumentation balloons \\ solar ...Assembly 4 Fig. 3 Solar Balloon Experiment Ass ’y 7 Fig. 4 Mechanical Interface , UV Spectrometer 8 Fig . 5 Spectrometer Body Assemb ly 10 Fig. 6...Diagram, GSE )bnitor 48 Selector and Battery Charger Fig. 25 Schematic Diagram, GSE Serial to 49 Parallel Data Converter Fig. 26 Schematic Diagram
Boesenberg, Ulrike; Samoylova, Liubov; Roth, Thomas; ...
2017-02-03
A precise spectral characterization of every single pulse is required in many x-ray free-electron laser (XFEL) experiments due to the fluctuating spectral content of self-amplified spontaneous emission (SASE) beams. Bent single-crystal spectrometers can provide sufficient spectral resolution to resolve the SASE spikes while also covering the full SASE bandwidth. To better withstand the high heat load induced by the 4.5 MHz repetition rate of pulses at the forthcoming European XFEL facility, a spectrometer based on single-crystal diamond has been developed. Here, we report a direct comparison of the diamond spectrometer with its Si counterpart in experiments performed at the Linacmore » Coherent Light Source.« less
A simple photoionization scheme for characterizing electron and ion spectrometers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wituschek, A.; Vangerow, J. von; Grzesiak, J.
We present a simple diode laser-based photoionization scheme for generating electrons and ions with well-defined spatial and energetic (≲2 eV) structures. This scheme can easily be implemented in ion or electron imaging spectrometers for the purpose of off-line characterization and calibration. The low laser power ∼1 mW needed from a passively stabilized diode laser and the low flux of potassium atoms in an effusive beam make our scheme a versatile source of ions and electrons for applications in research and education.
Electron source for a mini ion trap mass spectrometer
Dietrich, D.D.; Keville, R.F.
1995-12-19
An ion trap is described which operates in the regime between research ion traps which can detect ions with a mass resolution of better than 1:10{sup 9} and commercial mass spectrometers requiring 10{sup 4} ions with resolutions of a few hundred. The power consumption is kept to a minimum by the use of permanent magnets and a novel electron gun design. By Fourier analyzing the ion cyclotron resonance signals induced in the trap electrodes, a complete mass spectra in a single combined structure can be detected. An attribute of the ion trap mass spectrometer is that overall system size is drastically reduced due to combining a unique electron source and mass analyzer/detector in a single device. This enables portable low power mass spectrometers for the detection of environmental pollutants or illicit substances, as well as sensors for on board diagnostics to monitor engine performance or for active feedback in any process involving exhausting waste products. 10 figs.
NASA Astrophysics Data System (ADS)
Watanabe, Noboru; Hirayama, Tsukasa; Yamada, So; Takahashi, Masahiko
2018-04-01
We report details of an electron-ion coincidence apparatus, which has been developed for molecular-frame electron energy loss spectroscopy studies. The apparatus is mainly composed of a pulsed electron gun, an energy-dispersive electron spectrometer, and an ion momentum imaging spectrometer. Molecular-orientation dependence of the high-energy electron scattering cross section can be examined by conducting measurements of vector correlation between the momenta of the scattered electron and fragment ion. Background due to false coincidences is significantly reduced by introducing a pulsed electron beam and pulsing scheme of ion extraction. The experimental setup has been tested by measuring the inner-shell excitation of N2 at an incident electron energy of 1.5 keV and a scattering angle of 10.2°.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maxwell, T. J.; Behrens, C.; Ding, Y.
2013-10-28
Modern, high-brightness electron beams such as those from plasma wakefield accelerators and free-electron laser linacs continue the drive to ever-shorter bunch durations. In low-charge operation ( ~ 20 pC ), bunches shorter than 10 fs are reported at the Linac Coherent Light Source (LCLS). Though suffering from a loss of phase information, spectral diagnostics remain appealing as compact, low-cost bunch duration monitors suitable for deployment in beam dynamics studies and operations instrumentation. Progress in middle-infrared (MIR) imaging has led to the development of a single-shot, MIR prism spectrometer to characterize the corresponding LCLS coherent beam radiation power spectrum for few-femtosecondmore » scale bunch length monitoring. In this Letter, we report on the spectrometer installation as well as the temporal reconstruction of 3 to 60 fs-long LCLS electron bunch profiles using single-shot coherent transition radiation spectra.« less
Performance of a short 'magnetic bottle' electron spectrometer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mucke, M.; Lischke, T.; Arion, T.
2012-06-15
In this article, a newly constructed electron spectrometer of the magnetic bottle type is described. The instrument is part of an apparatus for measuring the electron spectra of free clusters using synchrotron radiation. Argon and helium outer valence photoelectron spectra have been recorded in order to investigate the characteristic features of the spectrometer. The energy resolution (E/{Delta}E) has been found to be {approx}30. Using electrostatic retardation of the electrons, it can be increased to at least 110. The transmission as a function of kinetic energy is flat, and is not impaired much by retardation with up to 80% of themore » initial kinetic energy. We have measured a detection efficiency of most probably 0.6{sub -0.1}{sup +0.05}, but at least of 0.4. Results from testing the alignment of the magnet, and from trajectory simulations, are also discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mukherjee, S.; Shastry, K.; Anto, C. V.
2016-03-15
We describe a novel spectrometer designed for positron annihilation induced Auger electron spectroscopy employing a time-of-flight spectrometer. The spectrometer’s new configuration enables us to implant monoenergetic positrons with kinetic energies as low as 1.5 eV on the sample while simultaneously allowing for the detection of electrons emitted from the sample surface at kinetic energies ranging from ∼500 eV to 0 eV. The spectrometer’s unique characteristics made it possible to perform (a) first experiments demonstrating the direct transition of a positron from an unbound scattering state to a bound surface state and (b) the first experiments demonstrating that Auger electron spectramore » can be obtained down to 0 eV without the beam induced secondary electron background obscuring the low energy part of the spectra. Data are presented which show alternative means of estimating positron surface state binding energy and background-free Auger spectra.« less
NASA Astrophysics Data System (ADS)
Fairchild, A. J.; Chirayath, V. A.; Gladen, R. W.; Chrysler, M. D.; Koymen, A. R.; Weiss, A. H.
2017-01-01
In this paper, we present results of numerical modelling of the University of Texas at Arlington’s time of flight positron annihilation induced Auger electron spectrometer (UTA TOF-PAES) using SIMION® 8.1 Ion and Electron Optics Simulator. The time of flight (TOF) spectrometer measures the energy of electrons emitted from the surface of a sample as a result of the interaction of low energy positrons with the sample surface. We have used SIMION® 8.1 to calculate the times of flight spectra of electrons leaving the sample surface with energies and angles dispersed according to distribution functions chosen to model the positron induced electron emission process and have thus obtained an estimate of the true electron energy distribution. The simulated TOF distribution was convolved with a Gaussian timing resolution function and compared to the experimental distribution. The broadening observed in the simulated TOF spectra was found to be consistent with that observed in the experimental secondary electron spectra of Cu generated as a result of positrons incident with energy 1.5 eV to 901 eV, when a timing resolution of 2.3 ns was assumed.
Using IR spectroscopy to determine biodiesel conversion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tirla, Cornelia; Dooling, Thomas; Smith, Rachel B.
This project’s aim was to develop a way to use Infrared (IR) Spectroscopy to determine the extent of the conversion of oil to biodiesel produced during a typical transesterification process. The most reliable method of biodiesel analysis is gas chromatography with flame ionization detector (GC-FID) analysis. This analysis is not ideal for the educational or field applications since it is time intensive and requires expensive, specialized equipment. The use of the FT-IR is faster and more affordable. A calibration curve was created by comparing data on the purity of biodiesel samples obtained from the GC-FID analysis to the ratio ofmore » the absorbances at 1197 cm -1 to 1166 cm -1 from the FT-IR spectrum. For field application, a similar method was developed using a portable IR spectrometer, the InfraSpecTM VFA-IR spectrometer. As a result, the data collected gave a good linear fit for % purity of the samples and can be used as a method for monitoring the conversion of different types of oils to biodiesel and determining the purity of biodiesel produced from oil.« less
Using IR spectroscopy to determine biodiesel conversion
Tirla, Cornelia; Dooling, Thomas; Smith, Rachel B.; ...
2013-01-01
This project’s aim was to develop a way to use Infrared (IR) Spectroscopy to determine the extent of the conversion of oil to biodiesel produced during a typical transesterification process. The most reliable method of biodiesel analysis is gas chromatography with flame ionization detector (GC-FID) analysis. This analysis is not ideal for the educational or field applications since it is time intensive and requires expensive, specialized equipment. The use of the FT-IR is faster and more affordable. A calibration curve was created by comparing data on the purity of biodiesel samples obtained from the GC-FID analysis to the ratio ofmore » the absorbances at 1197 cm -1 to 1166 cm -1 from the FT-IR spectrum. For field application, a similar method was developed using a portable IR spectrometer, the InfraSpecTM VFA-IR spectrometer. As a result, the data collected gave a good linear fit for % purity of the samples and can be used as a method for monitoring the conversion of different types of oils to biodiesel and determining the purity of biodiesel produced from oil.« less
NASA Astrophysics Data System (ADS)
Detistov, Pavel; Balabanski, Dimiter L.
2015-04-01
This work work is a part of the performance investigation of the recently constructed Mini-Orange beta spectrometer. The spectrometer has eight different configurations using three different magnet shapes and combination of three, four, and six magnet pieces allowing detection of electrons in wide kinetic energy range. The performance of the device is studied using the GEANT4 simulation tool. Evaluation of the device's basic parameters has been made, paying special attention to the backscattering, for which a study of the dependence of this process on the energy and the angle is made.
NASA Technical Reports Server (NTRS)
Avanov, Levon A.; Gliese, Ulrik; Mariano, Albert; Tucker, Corey; Barrie, Alexander; Chornay, Dennis J.; Pollock, Craig James; Kujawski, Joseph T.; Collinson, Glyn A.; Nguyen, Quang T.;
2011-01-01
The Magnetospheric Multiscale mission (MMS) is designed to study fundamental phenomena in space plasma physics such as a magnetic reconnection. The mission consists of four spacecraft, equipped with identical scientific payloads, allowing for the first measurements of fast dynamics in the critical electron diffusion region where magnetic reconnection occurs and charged particles are demagnetized. The MMS orbit is optimized to ensure the spacecraft spend extended periods of time in locations where reconnection is known to occur: at the dayside magnetopause and in the magnetotail. In order to resolve fine structures of the three dimensional electron distributions in the diffusion region (reconnection site), the Fast Plasma Investigation's (FPI) Dual Electron Spectrometer (DES) is designed to measure three dimensional electron velocity distributions with an extremely high time resolution of 30 ms. In order to achieve this unprecedented sampling rate, four dual spectrometers, each sampling 180 x 45 degree sections of the sky, are installed on each spacecraft. We present results of the comprehensive tests performed on the DES Engineering & Test Unit (ETU). This includes main parameters of the spectrometer such as energy resolution, angular acceptance, and geometric factor along with their variations over the 16 pixels spanning the 180-degree tophat Electro Static Analyzer (ESA) field of view and over the energy of the test beam. A newly developed method for precisely defining the operational space of the instrument is presented as well. This allows optimization of the trade-off between pixel to pixel crosstalk and uniformity of the main spectrometer parameters.
Electronics design of the RPC system for the OPERA muon spectrometer
NASA Astrophysics Data System (ADS)
Acquafredda, R.; Ambrosio, M.; Balsamo, E.; Barichello, G.; Bergnoli, A.; Consiglio, L.; Corradi, G.; dal Corso, F.; Felici, G.; Manea, C.; Masone, V.; Parascandolo, P.; Sorrentino, G.
2004-09-01
The present document describes the front-end electronics of the RPC system that instruments the magnet muon spectrometer of the OPERA experiment. The main task of the OPERA spectrometer is to provide particle tracking information for muon identification and simplify the matching between the Precision Trackers. As no trigger has been foreseen for the experiment, the spectrometer electronics must be self-triggered with single-plane readout capability. Moreover, precision time information must be added within each event frame for off-line reconstruction. The read-out electronics is made of three different stages: the Front-End Boards (FEBs) system, the Controller Boards (CBs) system and the Trigger Boards (TBs) system. The FEB system provides discrimination of the strip incoming signals; a FAST-OR output of the input signals is also available for trigger plane signal generation. FEB signals are acquired by the CB system that provides the zero suppression and manages the communication to the DAQ and Slow Control. A Trigger Board allows to operate in both self-trigger mode (the FEB's FAST-OR signal starts the plane acquisition) or in external-trigger mode (different conditions can be set on the FAST-OR signals generated from different planes).
ATS-6 - Synchronous orbit trapped radiation studies with an electron-proton spectrometer
NASA Technical Reports Server (NTRS)
Walker, R. J.; Swanson, R. L.; Winckler, J. R.; Erickson, K. N.
1975-01-01
The paper discusses the University of Minnesota experiment on ATS-6 designed to study the origin and dynamics of high-energy electrons and protons in the outer radiation belt and in the near-earth plasma sheet. The experiment consists of two nearly identical detector assemblies, each of which is a magnetic spectrometer containing four gold-silicon surface barrier detectors. The instrument provides a clean separation between protons and electrons by the combination of pulse height analysis and magnetic deflection.
NASA Astrophysics Data System (ADS)
Dogan, Mevlut; Ulu, Melike; Gennerakis, Giannis; Zouros, Theo J. M.
2014-04-01
A new hemispherical deflector analyzer (HDA) which is designed for electron energy analysis in atomic collisions has been constructed and tested. Using the crossed beam technique at the electron spectrometer, test measurements were performed for electron beam (200 eV) - Helium atoms interactions. These first experimental results show that the paracentric entries give almost twice as good resolution as that for the conventional entry. Supporting simulations of the entire lens+HDA spectrometer are found in relatively good agreement with experiment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirschner, J.; Kerherve, G.; Winkler, C.
In this article, a novel time-of-flight spectrometer for two-electron-emission (e,2e/{gamma},2e) correlation spectroscopy from surfaces at low electron energies is presented. The spectrometer consists of electron optics that collect emitted electrons over a solid angle of approximately 1 sr and focus them onto a multichannel plate using a reflection technique. The flight time of an electron with kinetic energy of E{sub kin}{approx_equal}25 eV is around 100 ns. The corresponding time- and energy resolution are typically {approx_equal}1 ns and {approx_equal}0.65 eV, respectively. The first (e,2e) data obtained with the present setup from a LiF film are presented.
Study of high resolution x-ray spectrometer concepts for NIF experiments
NASA Astrophysics Data System (ADS)
Hill, K. W.; Bitter, M.; Delgado-Aparicio, L.; Efthimion, P.; Gao, L.; Maddox, J.; Pablant, N. A.; Beiersdorfer, P.; Chen, H.; Coppari, F.; Ma, T.; Nora, R.; Scott, H.; Schneider, M.; Mancini, R.
2015-11-01
Options have been investigated for DIM-insertable (Diagnostic Instrument Manipulator) high resolution (E/ ΔE ~ 3000 - 5000) Bragg crystal x-ray spectrometers for experiments on the NIF. Of interest are time integrated Cu K- and Ta L-edge absorption spectra and time resolved Kr He- β emission from compressed symcaps for inference of electron temperature from dielectronic satellites and electron density from Stark broadening. Cylindrical and conical von Hamos, Johann, and advanced high throughput designs have been studied. Predicted x-ray intensities, spectrometer throughputs, spectral resolution, and spatial focusing properties, as well as lab evaluations of some spectrometer candidates will be presented. Performed under the auspices of the US DOE by PPPL under contract DE-AC02-09CH11466 and by LLNL under contract DE-AC52-07NA27344.
Double passing the Kitt Peak 1-m Fourier transform spectrometer
NASA Technical Reports Server (NTRS)
Jennings, D. E.; Hubbard, R.; Brault, J. W.
1985-01-01
Attention is given to a simple technique for performing the conversion of the Kitt Peak 1-m Fourier transform spectrometer's dual input/output optical configuration to a double pass configuration that improves spectral resolution by a factor of 2. The modification is made by placing a flat mirror in the output beam from each cat's eye, retroreflecting the beams back through the cat's eyes to the first beam splitter. A single detector is placed at the second input port, which then becomes the instrument's output.
a High-Precision Branching-Ratio Measurement for the Superallowed β+ Emitter 74Rb
NASA Astrophysics Data System (ADS)
Dunlop, R.; Chagnon-Lessard, S.; Finlay, P.; Garrett, P. E.; Hadinia, B.; Leach, K. G.; Svensson, C. E.; Wong, J.; Ball, G.; Garnsworthy, A. B.; Glister, J.; Hackman, G.; Tardiff, E. R.; Triambak, S.; Williams, S. J.; Leslie, J. R.; Andreoiu, C.; Chester, A.; Cross, D.; Starosta, K.; Yates, S. W.; Zganjar, E. F.
2013-03-01
Precision measurements of superallowed Fermi beta decay allow for tests of the Cabibbo-Kobayashi-Maskawa matrix (CKM) unitarity, the conserved vector current hypothesis, and the magnitude of isospin-symmetry-breaking effects in nuclei. A high-precision measurement of the branching ratio for the β+ decay of 74Rb has been performed at the Isotope Separator and ACcelerator (ISAC) facility at TRIUMF. The 8π spectrometer, an array of 20 close-packed HPGe detectors, was used to detect gamma rays emitted following the decay of 74Rb. PACES, an array of 5 Si(Li) detectors, was used to detect emitted conversion electrons, while SCEPTAR, an array of plastic scintillators, was used to detect emitted beta particles. A total of 51γ rays have been identified following the decay of 21 excited states in the daughter nucleus 74Kr.
Beam Extinction Monitoring in the Mu2e Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prebys, Eric; Bartoszek, Larry; Gaponenko, Andrei
The Mu2e Experiment at Fermilab will search for the conversion of a muon to an electron in the field of an atomic nucleus with unprecedented sensitivity. The experiment requires a beam consisting of proton bunches approximately 200ns FW long, separated by 1.7 microseconds, with no out-of-time protons at the 10⁻¹⁰ fractional level. The verification of this level of extinction is very challenging. The proposed technique uses a special purpose spectrometer which will observe particles scattered from the production target of the experiment. The acceptance will be limited such that there will be no saturation effects from the in-time beam. Themore » precise level and profile of the out-of-time beam can then be built up statistically, by integrating over many bunches.« less
Inverse time-of-flight spectrometer for beam plasma research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yushkov, Yu. G., E-mail: yuyushkov@gmail.com; Zolotukhin, D. B.; Tyunkov, A. V.
2014-08-15
The paper describes the design and principle of operation of an inverse time-of-flight spectrometer for research in the plasma produced by an electron beam in the forevacuum pressure range (5–20 Pa). In the spectrometer, the deflecting plates as well as the drift tube and the primary ion beam measuring system are at high potential with respect to ground. This provides the possibility to measure the mass-charge constitution of the plasma created by a continuous electron beam with a current of up to 300 mA and electron energy of up to 20 keV at forevacuum pressures in the chamber placed atmore » ground potential. Research results on the mass-charge state of the beam plasma are presented and analyzed.« less
Current instrument status of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)
NASA Technical Reports Server (NTRS)
Eastwood, Michael L.; Sarture, Charles M.; Chrien, Thomas G.; Green, Robert O.; Porter, Wallace M.
1991-01-01
An upgraded version of AVIRIS, an airborne imaging spectrometer based on a whiskbroom-type scanner coupled via optical fibers to four dispersive spectrometers, that has been in operation since 1987 is described. Emphasis is placed on specific AVIRIS subsystems including foreoptics, fiber optics, and an in-flight reference source; spectrometers and detector dewars; a scan drive mechanism; a signal chain; digital electronics; a tape recorder; calibration systems; and ground support requirements.
NASA Astrophysics Data System (ADS)
Tang, Yaguo; Shan, Xu; Liu, Zhaohui; Niu, Shanshan; Wang, Enliang; Chen, Xiangjun
2018-03-01
The low count rate of (e, 2e) electron momentum spectroscopy (EMS) has long been a major limitation of its application to the investigation of molecular dynamics. Here we report a new EMS apparatus developed for time-resolved experiments in the nanosecond time scale, in which a double toroidal energy analyzer is utilized to improve the sensitivity of the spectrometer and a nanosecond pulsed electron gun with a repetition rate of 10 kHz is used to obtain an average beam current up to nA. Meanwhile, a picosecond ultraviolet laser with a repetition rate of 5 kHz is introduced to pump the sample target. The time zero is determined by photoionizing the target using a pump laser and monitoring the change of the electron beam current with time delay between the laser pulse and electron pulse, which is influenced by the plasma induced by the photoionization. The performance of the spectrometer is demonstrated by the EMS measurement on argon using a pulsed electron beam, illustrating the potential abilities of the apparatus for investigating the molecular dynamics in excited states when employing the pump-probe scheme.
Solenoid Magnet System for the Fermilab Mu2e Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lamm, M. J.; Andreev, N.; Ambrosio, G.
2011-12-14
The Fermilab Mu2e experiment seeks to measure the rare process of direct muon to electron conversion in the field of a nucleus. Key to the design of the experiment is a system of three superconducting solenoids; a muon production solenoid (PS) which is a 1.8 m aperture axially graded solenoid with a peak field of 5 T used to focus secondary pions and muons from a production target located in the solenoid aperture; an 'S shaped' transport solenoid (TS) which selects and transports the subsequent muons towards a stopping target; a detector solenoid (DS) which is an axially graded solenoidmore » at the upstream end to focus transported muons to a stopping target, and a spectrometer solenoid at the downstream end to accurately measure the momentum of the outgoing conversion elections. The magnetic field requirements, the significant magnetic coupling between the solenoids, the curved muon transport geometry and the large beam induced energy deposition into the superconducting coils pose significant challenges to the magnetic, mechanical, and thermal design of this system. In this paper a conceptual design for the magnetic system which meets the Mu2e experiment requirements is presented.« less
X-ray emission spectroscopy of biomimetic Mn coordination complexes
Jensen, Scott C.; Davis, Katherine M.; Sullivan,
2017-05-19
Understanding the function of Mn ions in biological and chemical redox catalysis requires precise knowledge of their electronic structure. X-ray emission spectroscopy (XES) is an emerging technique with a growing application to biological and biomimetic systems. Here, we report an improved, cost-effective spectrometer used to analyze two biomimetic coordination compounds, [Mn IV(OH) 2(Me 2EBC)] 2+ and [Mn IV(O)(OH)(Me 2EBC)] +, the second of which contains a key Mn IV=O structural fragment. Despite having the same formal oxidation state (Mn IV) and tetradentate ligands, XES spectra from these two compounds demonstrate different electronic structures. Experimental measurements and DFT calculations yield differentmore » localized spin densities for the two complexes resulting from Mn IV–OH conversion to Mn IV=O. The relevance of the observed spectroscopic changes is discussed for applications in analyzing complex biological systems such as photosystem II. In conclusion, a model of the S 3 intermediate state of photosystem II containing a Mn IV=O fragment is compared to recent time-resolved X-ray diffraction data of the same state.« less
X-ray Emission Spectroscopy of Biomimetic Mn Coordination Complexes.
Jensen, Scott C; Davis, Katherine M; Sullivan, Brendan; Hartzler, Daniel A; Seidler, Gerald T; Casa, Diego M; Kasman, Elina; Colmer, Hannah E; Massie, Allyssa A; Jackson, Timothy A; Pushkar, Yulia
2017-06-15
Understanding the function of Mn ions in biological and chemical redox catalysis requires precise knowledge of their electronic structure. X-ray emission spectroscopy (XES) is an emerging technique with a growing application to biological and biomimetic systems. Here, we report an improved, cost-effective spectrometer used to analyze two biomimetic coordination compounds, [Mn IV (OH) 2 (Me 2 EBC)] 2+ and [Mn IV (O)(OH)(Me 2 EBC)] + , the second of which contains a key Mn IV ═O structural fragment. Despite having the same formal oxidation state (Mn IV ) and tetradentate ligands, XES spectra from these two compounds demonstrate different electronic structures. Experimental measurements and DFT calculations yield different localized spin densities for the two complexes resulting from Mn IV -OH conversion to Mn IV ═O. The relevance of the observed spectroscopic changes is discussed for applications in analyzing complex biological systems such as photosystem II. A model of the S 3 intermediate state of photosystem II containing a Mn IV ═O fragment is compared to recent time-resolved X-ray diffraction data of the same state.
Cadieux, J. R.; Fugate, G. A.; King, III, G. S.
2015-02-07
Here, an alpha–gamma coincidence spectrometer has been developed for the measurement of selected actinide isotopes in the presence of high beta/gamma fields. The system is based on a PERALS® liquid scintillation counter for beta/alpha discrimination and was successfully tested with both high purity germanium and bismuth germanate, gamma-ray detectors using conventional analog electronics.
Knapp, P F; Ball, C; Austin, K; Hansen, S B; Kernaghan, M D; Lake, P W; Ampleford, D J; McPherson, L A; Sandoval, D; Gard, P; Wu, M; Bourdon, C; Rochau, G A; McBride, R D; Sinars, D B
2017-01-01
We describe the design and function of a new time and space resolved x-ray spectrometer for use in Z-pinch inertial confinement fusion and radiation source development experiments. The spectrometer is designed to measure x-rays in the range of 0.5-1.5 Å (8-25 keV) with a spectral resolution λ/Δλ ∼ 400. The purpose of this spectrometer is to measure the time- and one-dimensional space-dependent electron temperature and density during stagnation. These relatively high photon energies are required to escape the dense plasma created at stagnation and to obtain sensitivity to electron temperatures ≳3 keV. The spectrometer is of the Cauchois type, employing a large 30 × 36 mm 2 , transmissive quartz optic for which a novel solid beryllium holder was designed. The performance of the crystal was verified using offline tests, and the integrated system was tested using experiments on the Z pulsed power accelerator.
Digital optical conversion module
Kotter, D.K.; Rankin, R.A.
1988-07-19
A digital optical conversion module used to convert an analog signal to a computer compatible digital signal including a voltage-to-frequency converter, frequency offset response circuitry, and an electrical-to-optical converter. Also used in conjunction with the digital optical conversion module is an optical link and an interface at the computer for converting the optical signal back to an electrical signal. Suitable for use in hostile environments having high levels of electromagnetic interference, the conversion module retains high resolution of the analog signal while eliminating the potential for errors due to noise and interference. The module can be used to link analog output scientific equipment such as an electrometer used with a mass spectrometer to a computer. 2 figs.
Digital optical conversion module
Kotter, Dale K.; Rankin, Richard A.
1991-02-26
A digital optical conversion module used to convert an analog signal to a computer compatible digital signal including a voltage-to-frequency converter, frequency offset response circuitry, and an electrical-to-optical converter. Also used in conjunction with the digital optical conversion module is an optical link and an interface at the computer for converting the optical signal back to an electrical signal. Suitable for use in hostile environments having high levels of electromagnetic interference, the conversion module retains high resolution of the analog signal while eliminating the potential for errors due to noise and interference. The module can be used to link analog output scientific equipment such as an electrometer used with a mass spectrometer to a computer.
Large dynamic range terahertz spectrometers based on plasmonic photomixers (Conference Presentation)
NASA Astrophysics Data System (ADS)
Wang, Ning; Javadi, Hamid; Jarrahi, Mona
2017-02-01
Heterodyne terahertz spectrometers are highly in demand for space explorations and astrophysics studies. A conventional heterodyne terahertz spectrometer consists of a terahertz mixer that mixes a received terahertz signal with a local oscillator signal to generate an intermediate frequency signal in the radio frequency (RF) range, where it can be easily processed and detected by RF electronics. Schottky diode mixers, superconductor-insulator-superconductor (SIS) mixers and hot electron bolometer (HEB) mixers are the most commonly used mixers in conventional heterodyne terahertz spectrometers. While conventional heterodyne terahertz spectrometers offer high spectral resolution and high detection sensitivity levels at cryogenic temperatures, their dynamic range and bandwidth are limited by the low radiation power of existing terahertz local oscillators and narrow bandwidth of existing terahertz mixers. To address these limitations, we present a novel approach for heterodyne terahertz spectrometry based on plasmonic photomixing. The presented design replaces terahertz mixer and local oscillator of conventional heterodyne terahertz spectrometers with a plasmonic photomixer pumped by an optical local oscillator. The optical local oscillator consists of two wavelength-tunable continuous-wave optical sources with a terahertz frequency difference. As a result, the spectrometry bandwidth and dynamic range of the presented heterodyne spectrometer is not limited by radiation frequency and power restrictions of conventional terahertz sources. We demonstrate a proof-of-concept terahertz spectrometer with more than 90 dB dynamic range and 1 THz spectrometry bandwidth.
Characteristics of DC electric fields at dipolarization fronts
NASA Astrophysics Data System (ADS)
Laakso, Harri; Escoubet, Philippe; Masson, Arnaud
2016-04-01
We investigate the characteristics of DC electric field at dipolarization fronts and BBF's using multi-point Cluster observations. There are plenty of important issues that are considered, such as what kind of DC electric fields exist in such events and what are their spatial scales. One can also recognize if electrons and ions perform ExB drift motions in these events. To investigate this, we take an advantage of five different DC electric field measurements in the plasma sheet available from the EFW double probe experiment, EDI electron drift instrument, CODIF and HIA ion spectrometers, and PEACE electron spectrometer. The calibrated observations of the three spectrometers are used to determine the proton and electron drift velocity and furthermore the DC electric field, assuming that the electron and proton velocity perpendicular to the magnetic field is dominated by the ExB drift motion. Naturally when ions and electrons do not perform a proper drift motion, which can happen in the plasma sheet, the estimated DC electric field from ion and electron motion is not correct. However, surprisingly often the DC electric fields estimated from electron and ion motions are identical suggesting that this field is a real DC electric field around the measurement point. This investigation also helps understand how well different measurements are calibrated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dion, Michael P.; Miller, Brian W.; Warren, Glen A.
2016-09-01
A technique to determine the isotopics of a mixed actinide sample has been proposed by measuring the coincidence of the alpha particle during radioactive decay with the conversion electron (or Auger) emitted during the relaxation of the daughter isotope. This presents a unique signature to allow the deconvolution of isotopes that possess overlapping alpha particle energy. The work presented here are results of conversion electron spectroscopy of 241Am, 238Pu and 239Pu using a dual-stage peltier-cooled 25 mm2 silicon drift detector. A passivated ion implanted planar silicon detector provided measurements of alpha spectroscopy. The conversion electron spectra were evaluated from 20–55more » keV based on fits to the dominant conversion electron emissions, which allowed the relative conversion electron emission intensities to be determined. These measurements provide crucial singles spectral information to aid in the coincident measurement approach.« less
Technical design and commissioning of the KATRIN large-volume air coil system
NASA Astrophysics Data System (ADS)
Erhard, M.; Behrens, J.; Bauer, S.; Beglarian, A.; Berendes, R.; Drexlin, G.; Glück, F.; Gumbsheimer, R.; Hergenhan, J.; Leiber, B.; Mertens, S.; Osipowicz, A.; Plischke, P.; Reich, J.; Thümmler, T.; Wandkowsky, N.; Weinheimer, C.; Wüstling, S.
2018-02-01
The KATRIN experiment is a next-generation direct neutrino mass experiment with a sensitivity of 0.2 eV (90% C.L.) to the effective mass of the electron neutrino. It measures the tritium β-decay spectrum close to its endpoint with a spectrometer based on the MAC-E filter technique. The β-decay electrons are guided by a magnetic field that operates in the mT range in the central spectrometer volume; it is fine-tuned by a large-volume air coil system surrounding the spectrometer vessel. The purpose of the system is to provide optimal transmission properties for signal electrons and to achieve efficient magnetic shielding against background. In this paper we describe the technical design of the air coil system, including its mechanical and electrical properties. We outline the importance of its versatile operation modes in background investigation and suppression techniques. We compare magnetic field measurements in the inner spectrometer volume during system commissioning with corresponding simulations, which allows to verify the system's functionality in fine-tuning the magnetic field configuration. This is of major importance for a successful neutrino mass measurement at KATRIN.
Soft X-ray spectrometer design for warm dense plasma measurements on DARHT Axis-I
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramey, Nicholas Bryan; Perry, John Oliver; Coleman, Joshua Eugene
2017-07-11
A preliminary design study is being performed on a soft X-ray spectrometer to measure K-shell spectra emitted by a warm dense plasma generated on Axis-I of the Dual-Axis Radiographic Hydrodynamic Testing (DARHT) facility at Los Alamos National Laboratory. The 100-ns-long intense, relativistic electron pulse with a beam current of 1.7 kA and energy of 19.8 MeV deposits energy into a thin metal foil heating it to a warm dense plasma. The collisional ionization of the target by the electron beam produces an anisotropic angular distribution of K-shell radiation and a continuum of both scattered electrons and Bremsstrahlung up to themore » beam energy of 19.8 MeV. The principal goal of this project is to characterize these angular distributions to determine the optimal location to deploy the soft X-ray spectrometer. In addition, a proof-of-principle design will be presented. The ultimate goal of the spectrometer is to obtain measurements of the plasma temperature and density to benchmark equation-of-state models of the warm dense matter regime.« less
Absolute Calibration of Image Plate for electrons at energy between 100 keV and 4 MeV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, H; Back, N L; Eder, D C
2007-12-10
The authors measured the absolute response of image plate (Fuji BAS SR2040) for electrons at energies between 100 keV to 4 MeV using an electron spectrometer. The electron source was produced from a short pulse laser irradiated on the solid density targets. This paper presents the calibration results of image plate Photon Stimulated Luminescence PSL per electrons at this energy range. The Monte Carlo radiation transport code MCNPX results are also presented for three representative incident angles onto the image plates and corresponding electron energies depositions at these angles. These provide a complete set of tools that allows extraction ofmore » the absolute calibration to other spectrometer setting at this electron energy range.« less
Performance of a carbon nanotube field emission electron gun
NASA Astrophysics Data System (ADS)
Getty, Stephanie A.; King, Todd T.; Bis, Rachael A.; Jones, Hollis H.; Herrero, Federico; Lynch, Bernard A.; Roman, Patrick; Mahaffy, Paul
2007-04-01
A cold cathode field emission electron gun (e-gun) based on a patterned carbon nanotube (CNT) film has been fabricated for use in a miniaturized reflectron time-of-flight mass spectrometer (RTOF MS), with future applications in other charged particle spectrometers, and performance of the CNT e-gun has been evaluated. A thermionic electron gun has also been fabricated and evaluated in parallel and its performance is used as a benchmark in the evaluation of our CNT e-gun. Implications for future improvements and integration into the RTOF MS are discussed.
NASA Astrophysics Data System (ADS)
Avetisov, V. G.; Kosichkin, Yu V.; Malakhova, V. I.; Merkulov, A. V.; Nadezhdinskiĭ, A. I.; Paleĭ, S. L.; Khusnutdinov, A. N.; Yakubovich, S. D.
1989-04-01
A two-beam spectrometer utilizing injection lasers emitting in the near infrared was constructed. The spectrometer utilizes rapid scanning of the laser emission frequency followed by recording with an analog-digital converter. The spectrometer parameters are as follows: a spectral resolution of at least 2 × 10 -3 cm-1, a response time 50 ns, and a detectivity amounting to 0.0003% of the incident power carried by one pulse.
NASA Astrophysics Data System (ADS)
Jakobsen, Hans J.; Bildsøe, Henrik; Gan, Zhehong; Brey, William W.
2011-08-01
The acquisition and different appearances observed for wide bandwidth solid-state MAS NMR spectra of low-γ nuclei, using 14N as an illustrative nucleus and employing two different commercial spectrometers (Varian, 14.1 T and Bruker, 19.6 T), have been compared/evaluated and optimized from an experimental NMR and an electronic engineering point of view, to account for the huge differences in these spectra. The large differences in their spectral appearances, employing the recommended/standard experimental set-up for the two different spectrometers, are shown to be associated with quite large differences in the electronic design of the two types of preamplifiers, which are connected to their respective probes through a 50 Ω cable, and are here completely accounted for. This has led to different opportunities for optimum performances in the acquisition of nearly ideal wide bandwidth spectra for low-γ nuclei on the two spectrometers by careful evaluation of the length for the 50 Ω probe-to-preamp cable for the Varian system and appropriate changes to the bandwidth ( Q) of the NMR probe used on the Bruker spectrometer. Earlier, we reported quite distorted spectra obtained with Varian Unity INOVA spectrometers (at 11.4 and 14.1 T) in several exploratory wide bandwidth 14N MAS NMR studies of inorganic nitrates and amino acids. These spectra have now been compared/evaluated with fully analyzed 14N MAS spectra correspondingly acquired at 19.6 T on a Bruker spectrometer. It is shown that our upgraded version of the STARS simulation/iterative-fitting software is capable of providing identical sets for the molecular spectral parameters and corresponding fits to the experimental spectra, which fully agree with the electronic measurements, despite the highly different appearances for the MAS NMR spectra acquired on the Varian and Bruker spectrometers.
NASA Astrophysics Data System (ADS)
Henderson, Alexander Hastings
Lasers have grown more powerful in recent years, opening up new frontiers in physics. From early intensities of less than 1010 W/cm 2, lasers can now achieve intensities over 1021 W/cm 2. Ultraintense laser can become powerful new tools to produce relativistic electrons, positron-electron pairs, and gamma-rays. The pair production efficiency is equal to or greater than that of linear accelerators, the most common method of antimatter generation in the past. The gamma-rays and electrons produced can be highly collimated, making these interactions of interest for beam generation. Monte-Carlo particle transport simulation has long been used in physics for simulating various particle and radiation processes, and is well-suited to simulating both electromagnetic cascades resulting from laser-solid interactions and the response of electron/positron spectrometers and gamma-ray detectors. We have used GEANT4 Monte-Carlo particle transport simulation to design and calibrate charged-particle spectrometers using permanent magnets as well as a Forward Compton Electron Spectrometer to measure gamma-rays of higher energies than have previously been achieved. We have had some success simulating and measuring high positron and gamma-rays yields from laser-solid interactions using gold target at the Texas Petawatt Laser (TPW). While similar spectrometers have been developed in the past, we are to our knowledge the first to successfully use permanent magnet spectrometers to detect positrons originating from laser-solid interactions in this energy range. We believe we are also the first to successfully detect multi-MeV gamma rays using a permanent magnet Forward Compton Electron Spectrometer. Monte-Carlo particle transport simulation has been used by other groups to model positron production from laser-solid ineraction, but at the time that we began we were, as far as we know, the first to have a significant amount of empirical data to work with. We were thus at liberty to estimate the initial conditions, compare simulation results to data, and adjust as needed to obtain a better estimate of the actual initial conditions. We have also developed a new method for measuring the yield and angular distribution of gamma-rays using a two-dimensional dosimeter array. In this work, we examine the experimental and simulation results as well as the physical processes behind them. In addition, the gamma-rays produced by our experiments could be useful for photo-nuclear reactors and homeland security purposes. In our experiments, we measured narrow energy-band positrons and electrons which have potential medical uses.
Baker, Daniel N; Dewey, Ryan M; Lawrence, David J; Goldsten, John O; Peplowski, Patrick N; Korth, Haje; Slavin, James A; Krimigis, Stamatios M; Anderson, Brian J; Ho, George C; McNutt, Ralph L; Raines, Jim M; Schriver, David; Solomon, Sean C
2016-03-01
The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission to Mercury has provided a wealth of new data about energetic particle phenomena. With observations from MESSENGER's Energetic Particle Spectrometer, as well as data arising from energetic electrons recorded by the X-Ray Spectrometer and Gamma-Ray and Neutron Spectrometer (GRNS) instruments, recent work greatly extends our record of the acceleration, transport, and loss of energetic electrons at Mercury. The combined data sets include measurements from a few keV up to several hundred keV in electron kinetic energy and have permitted relatively good spatial and temporal resolution for many events. We focus here on the detailed nature of energetic electron bursts measured by the GRNS system, and we place these events in the context of solar wind and magnetospheric forcing at Mercury. Our examination of data at high temporal resolution (10 ms) during the period March 2013 through October 2014 supports strongly the view that energetic electrons are accelerated in the near-tail region of Mercury's magnetosphere and are subsequently "injected" onto closed magnetic field lines on the planetary nightside. The electrons populate the plasma sheet and drift rapidly eastward toward the dawn and prenoon sectors, at times executing multiple complete drifts around the planet to form "quasi-trapped" populations.
Zhang, Zhen-Long; Li, Jun-Feng; Wang, Xiao-Li; Qin, Jian-Qiang; Shi, Wen-Jia; Liu, Yue-Feng; Gao, Hui-Ping; Mao, Yan-Li
2017-12-01
In this paper, N-doped TiO 2 (N-TiO 2 ) nanorod arrays were synthesized with hydrothermal method, and perovskite solar cells were fabricated using them as electron transfer layer. The solar cell performance was optimized by changing the N doping contents. The power conversion efficiency of solar cells based on N-TiO 2 with the N doping content of 1% (N/Ti, atomic ratio) has been achieved 11.1%, which was 14.7% higher than that of solar cells based on un-doped TiO 2 . To get an insight into the improvement, some investigations were performed. The structure was examined with X-ray powder diffraction (XRD), and morphology was examined by scanning electron microscopy (SEM). Energy dispersive spectrometer (EDS) and Tauc plot spectra indicated the incorporation of N in TiO 2 nanorods. Absorption spectra showed higher absorption of visible light for N-TiO 2 than un-doped TiO 2 . The N doping reduced the energy band gap from 3.03 to 2.74 eV. The photoluminescence (PL) and time-resolved photoluminescence (TRPL) spectra displayed the faster electron transfer from perovskite layer to N-TiO 2 than to un-doped TiO 2 . Electrochemical impedance spectroscopy (EIS) showed the smaller resistance of device based on N-TiO 2 than that on un-doped TiO 2 .
Diffractive Optical Elements for Spectral Imaging
NASA Technical Reports Server (NTRS)
Wilson, D.; Maker, P.; Muller, R.; Mourolis, P.; Descour, M.; Volin, C.; Dereniak, E.
2000-01-01
Diffractive optical elements fabricated on flat and non-flat substrates frequently act as dispersive elements in imaging spectrometers. We describe the design and electron-beam fabrication of blazed and computer-generated-hologram gratings for slit and tomographic imaging spectrometer.
Diffractive Optical Elements for Spectral Imaging
NASA Technical Reports Server (NTRS)
Wilson, D.; Maker, P.; Muller, R.; Maker, P.; Mouroulis, P.; Descour, M.; Volin, C.; Dereniak, E.
2000-01-01
Diffractive optical elements fabricated on flat and non-flat substrates frequently act as dispersive elements in imaging spectrometers. We describe the design and electron-beam fabrication of blazed and computer-generated-hologram gratings for slit and tomographic imaging spectrometers.
An Optics Free Spectrometer for the Extreme Ultraviolet
NASA Technical Reports Server (NTRS)
Judge, D. L.; Daybell, M. D.; Hoffman, J. R.; Gruntman, M. A.; Ogawa, H. S.; Samson, J. A. R.
1994-01-01
The optics-free spectrometer is a photon spectrometer. It provides the photon spectrum of a broadband source by converting photons of energy E into electrons of energy E', according to the Einstein relation, E' = E - Ei. E, is the ionization threshold of the gas target of interest (any of the rare gases are suitable) and E is the incoming photon energy. As is evident from the above equation, only a single order spectrum is produced throughout the energy range between the first and second ionization potentials of the rare gas used. Photons with energy above the second ionization potential produce two groups of electrons, but they are readily distinguished from each other. This feature makes this device extremely useful for determining the true spectrum of a continuum source or a many line source. The principle of operation and the laboratory results obtained with a representative configuration of the optics-free spectrometer are presented.
Measurements on the development of cascades in a tungsten-scintillator ionization spectrometer
NASA Technical Reports Server (NTRS)
Cheshire, D. L.; Huggett, R. W.; Johnson, D. P.; Jones, W. V.; Rountree, S. P.; Schmidt, W. K. H.; Kurz, R. J.; Bowen, T.; Delise, D. A.; Krider, E. P.
1975-01-01
The response of a tungsten-scintillator ionization spectrometer to accelerated particle beams has been investigated. Results obtained from exposure of the approx. 1000 g/sq cm apparatus to 5, 10, and 15 GeV/c electrons and pions as well as to 2.1 GeV/nucleon C-12 and O-16 ions are presented. These results include cascade-development curves, fractions of the primary energy measured by the spectrometer, and resolutions of the apparatus for measuring the primary energies. For 15 GeV/c electrons, an average of about 82% of the incident energy is measured by the apparatus with resolution (normal standard deviation) of about 6%. For 15 GeV/c pions, an average of about 65% of the incident energy is measured with resolution of about 18%. The energy resolution improves with increasing energy and with increasing depth of the spectrometer.
Mini ion trap mass spectrometer
Dietrich, Daniel D.; Keville, Robert F.
1995-01-01
An ion trap which operates in the regime between research ion traps which can detect ions with a mass resolution of better than 1:10.sup.9 and commercial mass spectrometers requiring 10.sup.4 ions with resolutions of a few hundred. The power consumption is kept to a minimum by the use of permanent magnets and a novel electron gun design. By Fourier analyzing the ion cyclotron resonance signals induced in the trap electrodes, a complete mass spectra in a single combined structure can be detected. An attribute of the ion trap mass spectrometer is that overall system size is drastically reduced due to combining a unique electron source and mass analyzer/detector in a single device. This enables portable low power mass spectrometers for the detection of environmental pollutants or illicit substances, as well as sensors for on board diagnostics to monitor engine performance or for active feedback in any process involving exhausting waste products.
Mini ion trap mass spectrometer
Dietrich, D.D.; Keville, R.F.
1995-09-19
An ion trap is described which operates in the regime between research ion traps which can detect ions with a mass resolution of better than 1:10{sup 9} and commercial mass spectrometers requiring 10{sup 4} ions with resolutions of a few hundred. The power consumption is kept to a minimum by the use of permanent magnets and a novel electron gun design. By Fourier analyzing the ion cyclotron resonance signals induced in the trap electrodes, a complete mass spectra in a single combined structure can be detected. An attribute of the ion trap mass spectrometer is that overall system size is drastically reduced due to combining a unique electron source and mass analyzer/detector in a single device. This enables portable low power mass spectrometers for the detection of environmental pollutants or illicit substances, as well as sensors for on board diagnostics to monitor engine performance or for active feedback in any process involving exhausting waste products. 10 figs.
High resolution Fouier transform spectrometer Serial No. 091002: Instruction manual
NASA Technical Reports Server (NTRS)
1971-01-01
A description of the spectrometer and procedures for its operation, maintenance, alignments, adjustments, and control functions are presented. The interferometer spectrometer is a modified Model 296 capable of 0.5/cm resolution over the spectral region of 5 to 15 microns configured for operation with the optical head at a temperature of approximately 80 K. Details are given on the optical system and the electronic circuits. The detector used with the optical head is mercury doped germanium kept at a temperature of about 4 K by means of liquid helium. Electronic schematics, and instruction manuals for handling the liquid helium dewars, tape recorder for analog outputs, and playback console are included.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karelin, A. V., E-mail: karelin@hotbox.ru; Borisov, S. V.; Voronov, S. A.
2013-06-15
The PAMELA satellite-borne experiment is designed to study cosmic rays over a broad energy range. The apparatus has been in near-Earth cosmic space from June 2006 to the present time. It is equipped with a magnetic spectrometer for determining the sign of the particle charge and rigidity. In solving some problems, however, information from the magnetic spectrometer becomes inaccessible, so that it is necessary to employ a calorimeter to separate the electron and nuclear cosmic-ray components. A procedure for separating these components for particles arriving off the magnetic-spectrometer aperture is considered.
Photoelectrochromism in Tungsten Trioxide Colloidal Solutions
ERIC Educational Resources Information Center
Chenthamarakshan, C. R.; Tacconi, N. R. de; Xu, Lucy; Rajeshwar, Krishnan
2004-01-01
Photophysical and photochemical properties of semiconductor metal oxide colloids are studied in the context of photoelectrochemical conversion and storage of solar energy. The experiment teaches the instrumental principles of UV-visible spectrophotometry, spectral acquisition and background subtraction strategies and diode array spectrometers.
Handheld spectrometers: the state of the art
NASA Astrophysics Data System (ADS)
Crocombe, Richard A.
2013-05-01
"Small" spectrometers fall into three broad classes: small versions of laboratory instruments, providing data, subsequently processed on a PC; dedicated analyzers, providing actionable information to an individual operator; and process analyzers, providing quantitative or semi-quantitative information to a process controller. The emphasis of this paper is on handheld dedicated analyzers. Many spectrometers have historically been large, possible fragile, expensive and complicated to use. The challenge over the last dozen years, as instruments have moved into the field, has been to make spectrometers smaller, affordable, rugged, easy-to-use, but most of all capable of delivering actionable results. Actionable results can dramatically improve the efficiency of a testing process and transform the way business is done. There are several keys to this handheld spectrometer revolution. Consumer electronics has given us powerful mobile platforms, compact batteries, clearly visible displays, new user interfaces, etc., while telecomm has revolutionized miniature optics, sources and detectors. While these technologies enable miniature spectrometers themselves, actionable information has demanded the development of rugged algorithms for material confirmation, unknown identification, mixture analysis and detection of suspicious materials in unknown matrices. These algorithms are far more sophisticated than the `correlation' or `dot-product' methods commonly used in benchtop instruments. Finally, continuing consumer electronics advances now enable many more technologies to be incorporated into handheld spectrometers, including Bluetooth, wireless, WiFi, GPS, cameras and bar code readers, and the continued size shrinkage of spectrometer `engines' leads to the prospect of dual technology or `hyphenated' handheld instruments.
Beta decay heat following U-235, U-238 and Pu-239 neutron fission
NASA Astrophysics Data System (ADS)
Li, Shengjie
1997-09-01
This is an experimental study of beta-particle decay heat from 235U, 239Pu and 238U aggregate fission products over delay times 0.4-40,000 seconds. The experimental results below 2s for 235U and 239Pu, and below 20s for 238U, are the first such results reported. The experiments were conducted at the UMASS Lowell 5.5-MV Van de Graaff accelerator and 1-MW swimming-pool research reactor. Thermalized neutrons from the 7Li(p,n)7Be reaction induced fission in 238U and 239Pu, and fast neutrons produced in the reactor initiated fission in 238U. A helium-jet/tape-transport system rapidly transferred fission fragments from a fission chamber to a low background counting area. Delay times after fission were selected by varying the tape speed or the position of the spray point relative to the beta spectrometer that employed a thin-scintillator-disk gating technique to separate beta-particles from accompanying gamma-rays. Beta and gamma sources were both used in energy calibration. Based on low-energy(<1 MeV) internal-conversion electron studies, a set of trial responses for the spectrometer was established and spanned electron energies 0-10 MeV. Measured beta spectra were unfolded for their energy distributions by the program FERD, and then compared to other measurements and summation calculations based on ENDF/B-VI fission-product data performed on the LANL Cray computer. Measurements of the beta activity as a function of decay time furnished a relative normalization. Results for the beta decay heat are presented and compared with other experimental data and the summation calculations.
Viewfinder/tracking system for Skylab
NASA Technical Reports Server (NTRS)
Casey, W. L.
1975-01-01
Basic component of system is infrared spectrometer designed for manual target acquisition, pointing and tracking, and data-take initiation. System incorporates three main subsystems which include: (1) viewfinder telescope, (2) control panel and electronics assembly, and (3) IR-spectrometer case assembly.
The effect of the earth's and stray magnetic fields on mobile mass spectrometer systems.
Bell, Ryan J; Davey, Nicholas G; Martinsen, Morten; Short, R Timothy; Gill, Chris G; Krogh, Erik T
2015-02-01
Development of small, field-portable mass spectrometers has enabled a rapid growth of in-field measurements on mobile platforms. In such in-field measurements, unexpected signal variability has been observed by the authors in portable ion traps with internal electron ionization. The orientation of magnetic fields (such as the Earth's) relative to the ionization electron beam trajectory can significantly alter the electron flux into a quadrupole ion trap, resulting in significant changes in the instrumental sensitivity. Instrument simulations and experiments were performed relative to the earth's magnetic field to assess the importance of (1) nonpoint-source electron sources, (2) vertical versus horizontal electron beam orientation, and (3) secondary magnetic fields created by the instrument itself. Electron lens focus effects were explored by additional simulations, and were paralleled by experiments performed with a mass spectrometer mounted on a rotating platform. Additionally, magnetically permeable metals were used to shield (1) the entire instrument from the Earth's magnetic field, and (2) the electron beam from both the Earth's and instrument's magnetic fields. Both simulation and experimental results suggest the predominant influence on directionally dependent signal variability is the result of the summation of two magnetic vectors. As such, the most effective method for reducing this effect is the shielding of the electron beam from both magnetic vectors, thus improving electron beam alignment and removing any directional dependency. The improved ionizing electron beam alignment also allows for significant improvements in overall instrument sensitivity.
Diffractive optical elements on non-flat substrates using electron beam lithography
NASA Technical Reports Server (NTRS)
Maker, Paul D. (Inventor); Muller, Richard E. (Inventor); Wilson, Daniel W. (Inventor)
2002-01-01
The present disclosure describes a technique for creating diffraction gratings on curved surfaces with electron beam lithography. The curved surface can act as an optical element to produce flat and aberration-free images in imaging spectrometers. In addition, the fabrication technique can modify the power structure of the grating orders so that there is more energy in the first order than for a typical grating. The inventors noticed that by using electron-beam lithography techniques, a variety of convex gratings that are well-suited to the requirements of imaging spectrometers can be manufactured.
The Jovian Electron and Ion Spectrometer (JEI) for the JUICE mission
NASA Astrophysics Data System (ADS)
Fränz, M.; Bührke, U.; Ferreira, P.; Fischer, H.; Heumüller, P.; Krupp, N.; Kühne, W.; Roussos, E.
2017-09-01
The magnetosphere of Jupiter is apart from the Sun the strongest source of charged particles in the Solar system. The interaction of these particles with the exospheres of the Jovian moons forms one of the most complex plasma laboratories encountered by human space flight. For this reason the plasma analyzer package forms a crucial experiment of the Jupiter Icy Moon Explorer (JUICE). As part of the Plasma Environment Package (PEP) we here describe a combined electron and ion spectrometer which is able to measure the electron and ion distribution functions in the energy range 1 to 50000 eV with high sensitivity and time resolution. This instrument is called the Jovian Electron and Ion Analyzer, JEI.
Positron lifetime spectrometer using a DC positron beam
Xu, Jun; Moxom, Jeremy
2003-10-21
An entrance grid is positioned in the incident beam path of a DC beam positron lifetime spectrometer. The electrical potential difference between the sample and the entrance grid provides simultaneous acceleration of both the primary positrons and the secondary electrons. The result is a reduction in the time spread induced by the energy distribution of the secondary electrons. In addition, the sample, sample holder, entrance grid, and entrance face of the multichannel plate electron detector assembly are made parallel to each other, and are arranged at a tilt angle to the axis of the positron beam to effectively separate the path of the secondary electrons from the path of the incident positrons.
General-purpose readout electronics for white neutron source at China Spallation Neutron Source
NASA Astrophysics Data System (ADS)
Wang, Q.; Cao, P.; Qi, X.; Yu, T.; Ji, X.; Xie, L.; An, Q.
2018-01-01
The under-construction White Neutron Source (WNS) at China Spallation Neutron Source is a facility for accurate measurements of neutron-induced cross section. Seven spectrometers are planned at WNS. As the physical objectives of each spectrometer are different, the requirements for readout electronics are not the same. In order to simplify the development of the readout electronics, this paper presents a general method for detector signal readout. This method has advantages of expansibility and flexibility, which makes it adaptable to most detectors at WNS. In the WNS general-purpose readout electronics, signals from any kinds of detectors are conditioned by a dedicated signal conditioning module corresponding to this detector, and then digitized by a common waveform digitizer with high speed and high precision (1 GSPS at 12-bit) to obtain the full waveform data. The waveform digitizer uses a field programmable gate array chip to process the data stream and trigger information in real time. PXI Express platform is used to support the functionalities of data readout, clock distribution, and trigger information exchange between digitizers and trigger modules. Test results show that the performance of the WNS general-purpose readout electronics can meet the requirements of the WNS spectrometers.
Cosmic ray experimental observations
NASA Technical Reports Server (NTRS)
Balasubrahmanyan, V. K.; Mcdonald, F. B.
1974-01-01
The current experimental situation in cosmic ray studies is discussed, with special emphasis on the development of new detector systems. Topics covered are the techniques for particle identification, energy measurements, gas Cerenkov counters, magnet spectrometers, ionization spectrometers, track detectors, nuclear emulsions, multiparameter analysis using arrays of detectors, the Goddard ionization spectrometer, charge spectra, relative abundances, isotope composition, antinuclei in cosmic rays, electrons, the measurement of cosmic ray arrival directions, and the prehistory of cosmic rays.
Inverse photoelectron spectrometer with magnetically focused electron gun
NASA Technical Reports Server (NTRS)
Krainsky, Isay L.
1991-01-01
An inverse photoelectron spectrometer is described which is based on the design of a magnetically focused low energy electron gun. The magnetic lens extends its field over a relatively large segment of the electron trajectory, which could provide a better focusing effect on a high-current-density low-velocity electron beam, providing the magnetic field in the vicinity of the target is reduced sufficiently to preserve the collinearity of the beam. In order to prove the concept, ray tracing is conducted using the Herrmannsfeldt program for solving electron trajectories in electrostatic and magnetostatic focusing systems. The program allows the calculation of the angles of the electron trajectories with the z axis, at the target location. The results of the ray-tracing procedure conducted for this gun are discussed. Some of the advantages of the magnetic focusing are also discussed.
A firmware-defined digital direct-sampling NMR spectrometer for condensed matter physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pikulski, M., E-mail: marekp@ethz.ch; Shiroka, T.; Ott, H.-R.
2014-09-15
We report on the design and implementation of a new digital, broad-band nuclear magnetic resonance (NMR) spectrometer suitable for probing condensed matter. The spectrometer uses direct sampling in both transmission and reception. It relies on a single, commercially-available signal processing device with a user-accessible field-programmable gate array (FPGA). Its functions are defined exclusively by the FPGA firmware and the application software. Besides allowing for fast replication, flexibility, and extensibility, our software-based solution preserves the option to reuse the components for other projects. The device operates up to 400 MHz without, and up to 800 MHz with undersampling, respectively. Digital down-conversion with ±10 MHzmore » passband is provided on the receiver side. The system supports high repetition rates and has virtually no intrinsic dead time. We describe briefly how the spectrometer integrates into the experimental setup and present test data which demonstrates that its performance is competitive with that of conventional designs.« less
A firmware-defined digital direct-sampling NMR spectrometer for condensed matter physics.
Pikulski, M; Shiroka, T; Ott, H-R; Mesot, J
2014-09-01
We report on the design and implementation of a new digital, broad-band nuclear magnetic resonance (NMR) spectrometer suitable for probing condensed matter. The spectrometer uses direct sampling in both transmission and reception. It relies on a single, commercially-available signal processing device with a user-accessible field-programmable gate array (FPGA). Its functions are defined exclusively by the FPGA firmware and the application software. Besides allowing for fast replication, flexibility, and extensibility, our software-based solution preserves the option to reuse the components for other projects. The device operates up to 400 MHz without, and up to 800 MHz with undersampling, respectively. Digital down-conversion with ±10 MHz passband is provided on the receiver side. The system supports high repetition rates and has virtually no intrinsic dead time. We describe briefly how the spectrometer integrates into the experimental setup and present test data which demonstrates that its performance is competitive with that of conventional designs.
The primary cosmic ray electron spectrum from 10 GeV to about 200 GeV
NASA Technical Reports Server (NTRS)
Silverberg, R. F.; Ormes, J. F.; Balasubrahmanyan, V. K.; Ryan, M. J.
1971-01-01
An ionization spectrometer consisting of 10.8 radiation lengths of tungsten and 35 radiation lengths of iron has been used to determine the energy spectrum of cosmic ray electrons above 10 GeV. The spectrometer was calibrated with electrons from 5.4 to 18 GeV and then flown at an altitude of 6 gm-cm/2 for 16 hours. Separation of electron initiated events from proton events was achieved by utilizing starting point distributions, the shower development in tungsten, and the energy deposited in the large thickness of iron absorber. The exponent of the differential energy spectrum of the electrons is -3.1 + or - 0.2 while the exponent of the background is consistent with the proton exponent of -2.7 + or -0.2.
The magnetic toroidal sector: a broad-band electron-positron pair spectrometer
NASA Astrophysics Data System (ADS)
Hagmann, Siegbert; Hillenbrand, Pierre-Michel; Litvinov, Yuri; Spillmann, Uwe
2016-05-01
At the future relativistic storage-ring HESR at FAIR the study of electron-positron pairs from non-nuclear, atomic processes will be one of the goals of the experimental program with kinematically complete experiments focusing on momentum spectroscopy of coincident emission of electrons and positrons from free-free pairs and corresponding recoil ions. The underlying production mechanisms belong to central topics of QED in strong fields. We present first results on the electron-optical properties of a magnetic toroidal sector configuration enabling coincident detection of free-free electron-positron pairs; this spectrometer is suitable for implementation into a storage ring with a supersonic jet target and covering a wide range of lepton emission into the forward hemisphere. The simulation calculations are performed using the OPERA code.
Dewey, Ryan M.; Lawrence, David J.; Goldsten, John O.; Peplowski, Patrick N.; Korth, Haje; Slavin, James A.; Krimigis, Stamatios M.; Anderson, Brian J.; Ho, George C.; McNutt, Ralph L.; Raines, Jim M.; Schriver, David; Solomon, Sean C.
2016-01-01
Abstract The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission to Mercury has provided a wealth of new data about energetic particle phenomena. With observations from MESSENGER's Energetic Particle Spectrometer, as well as data arising from energetic electrons recorded by the X‐Ray Spectrometer and Gamma‐Ray and Neutron Spectrometer (GRNS) instruments, recent work greatly extends our record of the acceleration, transport, and loss of energetic electrons at Mercury. The combined data sets include measurements from a few keV up to several hundred keV in electron kinetic energy and have permitted relatively good spatial and temporal resolution for many events. We focus here on the detailed nature of energetic electron bursts measured by the GRNS system, and we place these events in the context of solar wind and magnetospheric forcing at Mercury. Our examination of data at high temporal resolution (10 ms) during the period March 2013 through October 2014 supports strongly the view that energetic electrons are accelerated in the near‐tail region of Mercury's magnetosphere and are subsequently “injected” onto closed magnetic field lines on the planetary nightside. The electrons populate the plasma sheet and drift rapidly eastward toward the dawn and prenoon sectors, at times executing multiple complete drifts around the planet to form “quasi‐trapped” populations. PMID:27830111
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prakash, John; Mishra, Ashok Kumar
2016-01-15
It is possible to measure luminescence quantum yield in a facile way, by designing an optical spectrometer capable of obtaining electronic absorption as well as luminescence spectra, with a setup that uses the same light source and detector for both the spectral measurements. Employment of a single light source and single detector enables use of the same correction factor profile for spectral corrections. A suitable instrumental scaling factor is used for adjusting spectral losses.
Schaefer, R T; MacAskill, J A; Mojarradi, M; Chutjian, A; Darrach, M R; Madzunkov, S M; Shortt, B J
2008-09-01
Reported herein is development of a quadrupole mass spectrometer controller (MSC) with integrated radio frequency (rf) power supply and mass spectrometer drive electronics. Advances have been made in terms of the physical size and power consumption of the MSC, while simultaneously making improvements in frequency stability, total harmonic distortion, and spectral purity. The rf power supply portion of the MSC is based on a series-resonant LC tank, where the capacitive load is the mass spectrometer itself, and the inductor is a solenoid or toroid, with various core materials. The MSC drive electronics is based on a field programmable gate array (FPGA), with serial peripheral interface for analog-to-digital and digital-to-analog converter support, and RS232/RS422 communications interfaces. The MSC offers spectral quality comparable to, or exceeding, that of conventional rf power supplies used in commercially available mass spectrometers; and as well an inherent flexibility, via the FPGA implementation, for a variety of tasks that includes proportional-integral derivative closed-loop feedback and control of rf, rf amplitude, and mass spectrometer sensitivity. Also provided are dc offsets and resonant dipole excitation for mass selective accumulation in applications involving quadrupole ion traps; rf phase locking and phase shifting for external loading of a quadrupole ion trap; and multichannel scaling of acquired mass spectra. The functionality of the MSC is task specific, and is easily modified by simply loading FPGA registers or reprogramming FPGA firmware.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Englbrecht, F; Lindner, F; Bin, J
2016-06-15
Purpose: To measure and simulate well-defined electron spectra using a linear accelerator and a permanent-magnetic wide-angle spectrometer to test the performance of a novel reconstruction algorithm for retrieval of unknown electron-sources, in view of application to diagnostics of laser-driven particle acceleration. Methods: Six electron energies (6, 9, 12, 15, 18 and 21 MeV, 40cm × 40cm field-size) delivered by a Siemens Oncor linear accelerator were recorded using a permanent-magnetic wide-angle electron spectrometer (150mT) with a one dimensional slit (0.2mm × 5cm). Two dimensional maps representing beam-energy and entrance-position along the slit were measured using different scintillating screens, read by anmore » online CMOS detector of high resolution (0.048mm × 0.048mm pixels) and large field of view (5cm × 10cm). Measured energy-slit position maps were compared to forward FLUKA simulations of electron transport through the spectrometer, starting from IAEA phase-spaces of the accelerator. The latter ones were validated against measured depth-dose and lateral profiles in water. Agreement of forward simulation and measurement was quantified in terms of position and shape of the signal distribution on the detector. Results: Measured depth-dose distributions and lateral profiles in the water phantom showed good agreement with forward simulations of IAEA phase-spaces, thus supporting usage of this simulation source in the study. Measured energy-slit position maps and those obtained by forward Monte-Carlo simulations showed satisfactory agreement in shape and position. Conclusion: Well-defined electron beams of known energy and shape will provide an ideal scenario to study the performance of a novel reconstruction algorithm using measured and simulated signal. Future work will increase the stability and convergence of the reconstruction-algorithm for unknown electron sources, towards final application to the electrons which drive the interaction of TW-class laser pulses with nanometer thin target foils to accelerate protons and ions to multi-MeV kinetic energy. Cluster of Excellence of the German Research Foundation (DFG) “Munich-Centre for Advanced Photonics”.« less
Imaging Electron Spectrometer (IES) Electron Preprocessor (EPP) Design
NASA Technical Reports Server (NTRS)
Fennell, J. F.; Osborn, J. V.; Christensen, John L. (Technical Monitor)
2001-01-01
The Aerospace Corporation developed the Electron PreProcessor (EPP) to support the Imaging Electron Spectrometer (IES) that is part of the RAPID experiment on the ESA/NASA CLUSTER mission. The purpose of the EPP is to collect raw data from the IES and perform processing and data compression on it before transferring it to the RAPID microprocessor system for formatting and transmission to the CLUSTER satellite data system. The report provides a short history of the RAPID and CLUSTER programs and describes the EPP design. Four EPP units were fabricated, tested, and delivered for the original CLUSTER program. These were destroyed during a launch failure. Four more EPP units were delivered for the CLUSTER II program. These were successfully launched and are operating nominally on orbit.
Investigation of low-loss spectra and near-edge fine structure of polymers by PEELS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heckmann, W.
Transmission electron microscopy has changed from a purely imaging method to an analytical method. This has been facilitated particularly by equipping electron microscopes with energy filters and with parallel electron energy loss spectrometers (PEELS). Because of their relatively high energy resolution (1 to 2 eV) they provide information not only on the elements present but also on the type of bonds between the molecular groups. Polymers are radiation sensitive and the molecular bonds change as the spectrum is being recorded. This can be observed with PEEL spectrometers that are able to record spectra with high sensitivity and in rapid succession.
Investigating electron spin resonance spectroscopy of a spin-½ compound in a home-built spectrometer
NASA Astrophysics Data System (ADS)
Sarkar, Jit; Roy, Subhadip; Singh, Jitendra Kumar; Singh, Sourabh; Chakraborty, Tanmoy; Mitra, Chiranjib
2018-05-01
In this work we report electron spin resonance (ESR) measurements performed on NH4CuPO4.H2O, a Heisenberg spin ½ dimer compound. We carried out the experiments both at room temperature and at 78 K, which are well above the antiferromagnetic ordering temperature of the system where the paramagnetic spins have a dominant role in determining its magnetic behavior. We performed the measurements in a home built custom designed continuous wave electron spin resonance (CW-ESR) spectrometer. By analyzing the experimental data, we were able to quantify the Landé g-factor and the ESR line-width of the sample.
Purohit, S; Joisa, Y S; Raval, J V; Ghosh, J; Tanna, R; Shukla, B K; Bhatt, S B
2014-11-01
Silicon drift detector based X-ray spectrometer diagnostic was developed to study the non-thermal electron for Aditya tokamak plasma. The diagnostic was mounted on a radial mid plane port at the Aditya. The objective of diagnostic includes the estimation of the non-thermal electron temperature for the ohmically heated plasma. Bi-Maxwellian plasma model was adopted for the temperature estimation. Along with that the study of high Z impurity line radiation from the ECR pre-ionization experiments was also aimed. The performance and first experimental results from the new X-ray spectrometer system are presented.
Degradation-Free Spectrometers for Solar EUV Measurements: A Progress Report
NASA Astrophysics Data System (ADS)
Wieman, S. R.; Judge, D. L.; Didkovsky, L. V.
2009-12-01
Solar EUV observations will be made using two new degradation-free EUV spectrometers on a sounding rocket flight scheduled for Summer 2010. The two instruments, a rare gas photoionization-based Optics-Free Spectrometer (OFS) and a Dual Grating Spectrometer (DGS), are filter-free and optics-free. OFS can measure the solar EUV spectrum with a spectral resolution comparable to that of grating-based EUV spectrometers. The DGS is designed to provide solar irradiance at Lyman-alpha and He II to overlap EUV observations from SOHO/SEM and SDO/EVE. Electronic and mechanical designs for the flight prototype instruments and results of tests performed with the instruments in the laboratory are reported. The spectrometers are being developed and demonstrated as part of the Degradation Free Spectrometers (DFS) project under NASA’s Low Cost Access to Space (LCAS) program and are supported by NASA Grant NNX08BA12G.
NASA Astrophysics Data System (ADS)
Fairchild, A.; Chirayath, V.; Gladen, R.; McDonald, A.; Lim, Z.; Chrysler, M.; Koymen, A.; Weiss, A.
Simion 8.1®simulations were used to determine the energy resolution of a 1 meter long Time of Flight Positron annihilation induced Auger Electron Spectrometer (TOF-PAES). The spectrometer consists of: 1. a magnetic gradient section used to parallelize the electrons leaving the sample along the beam axis, 2. an electric field free time of flight tube and 3. a detection section with a set of ExB plates that deflect electrons exiting the TOF tube into a Micro-Channel Plate (MCP). Simulations of the time of flight distribution of electrons emitted according to a known secondary electron emission distribution, for various sample biases, were compared to experimental energy calibration peaks and found to be in excellent agreement. The TOF spectra at the highest sample bias was used to determine the timing resolution function describing the timing spread due to the electronics. Simulations were then performed to calculate the energy resolution at various electron energies in order to deconvolute the combined influence of the magnetic field parallelizer, the timing resolution, and the voltage gradient at the ExB plates. The energy resolution of the 1m TOF-PAES was compared to a newly constructed 3 meter long system. The results were used to optimize the geometry and the potentials of the ExB plates for obtaining the best energy resolution. This work was supported by NSF Grant NSF Grant No. DMR 1508719 and DMR 1338130.
Fast Plasma Investigation for Magnetospheric Multiscale
NASA Technical Reports Server (NTRS)
Pollock, C.; Moore, T.; Coffey, V.; Dorelli J.; Giles, B.; Adrian, M.; Chandler, M.; Duncan, C.; Figueroa-Vinas, A.; Garcia, K.;
2016-01-01
The Fast Plasma Investigation (FPI) was developed for flight on the Magnetospheric Multiscale (MMS) mission to measure the differential directional flux of magnetospheric electrons and ions with unprecedented time resolution to resolve kinetic-scale plasma dynamics. This increased resolution has been accomplished by placing four dual 180-degree top hat spectrometers for electrons and four dual 180-degree top hat spectrometers for ions around the periphery of each of four MMS spacecraft. Using electrostatic field-of-view deflection, the eight spectrometers for each species together provide 4pi-sr-field-of-view with, at worst, 11.25-degree sample spacing. Energy/charge sampling is provided by swept electrostatic energy/charge selection over the range from 10 eVq to 30000 eVq. The eight dual spectrometers on each spacecraft are controlled and interrogated by a single block redundant Instrument Data Processing Unit, which in turn interfaces to the observatory's Instrument Suite Central Instrument Data processor. This paper described the design of FPI, its ground and in-flight calibration, its operational concept, and its data products.
Zastrau, Ulf; Fletcher, Luke B; Förster, Eckhart; Galtier, Eric Ch; Gamboa, Eliseo; Glenzer, Siegfried H; Heimann, Philipp; Marschner, Heike; Nagler, Bob; Schropp, Andreas; Wehrhan, Ortrud; Lee, Hae Ja
2014-09-01
We present a cylindrically curved GaAs x-ray spectrometer with energy resolution ΔE/E = 1.1 × 10(-4) and wave-number resolution of Δk/k = 3 × 10(-3), allowing plasmon scattering at the resolution limits of the Linac Coherent Light Source (LCLS) x-ray free-electron laser. It spans scattering wavenumbers of 3.6 to 5.2/Å in 100 separate bins, with only 0.34% wavenumber blurring. The dispersion of 0.418 eV/13.5 μm agrees with predictions within 1.3%. The reflection homogeneity over the entire wavenumber range was measured and used to normalize the amplitude of scattering spectra. The proposed spectrometer is superior to a mosaic highly annealed pyrolytic graphite spectrometer when the energy resolution needs to be comparable to the LCLS seeded bandwidth of 1 eV and a significant range of wavenumbers must be covered in one exposure.
NASA Astrophysics Data System (ADS)
Gilmore, A. S.; Philbrick, R. H.; Funderburg, J.
2017-09-01
Remote sensing of pollutants are enabled from a satellite in a geostationary orbit containing an imaging spectrometer encompassing the wavelength ranges of 290 - 490 nm and 540 - 740 nm. As the first of NASA's Earth Venture Instrument Program, the Tropospheric Emissions: Monitoring of Pollution (TEMPO) program will utilize this instrument to measure hourly air quality over a large portion of North America. The focal plane subsystem (FPS) contains two custom designed and critically aligned full frame transfer charge coupled devices (active area: 1028 x 2048, 18 μm) within a focal plane array package designed for radiation tolerance and space charging rejection. In addition, the FPS contains custom distributed focal plane electronics that provide all necessary clocks and biases to the sensors, receives all analog data from the sensors and performs 14 bit analog to digital conversion for upstream processing. Finally, the FPS encompasses custom low noise cables connecting the focal plane array and associated electronics. This paper discusses the design and performance of this novel focal plane subsystem with particular emphasis on the optical performance achieved including alignment, quantum efficiency, and modulation transfer function.
SUPRATHERMAL ELECTRONS IN TITAN’S SUNLIT IONOSPHERE: MODEL–OBSERVATION COMPARISONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vigren, E.; Edberg, N. J. T.; Wahlund, J.-E.
2016-08-01
The dayside ionosphere of the Saturnian satellite Titan is generated mainly from photoionization of N{sub 2} and CH{sub 4}. We compare model-derived suprathermal electron intensities with spectra measured by the Cassini Plasma Spectrometer/Electron Spectrometer (CAPS/ELS) in Titan's sunlit ionosphere (altitudes of 970–1250 km) focusing on the T40, T41, T42, and T48 Titan flybys by the Cassini spacecraft. The model accounts only for photoelectrons and associated secondary electrons, with a main input being the impinging solar EUV spectra as measured by the Thermosphere Ionosphere Mesosphere Energy and Dynamics/Solar EUV Experiment and extrapolated to Saturn. Associated electron-impact electron production rates have beenmore » derived from ambient number densities of N{sub 2} and CH{sub 4} (measured by the Ion Neutral Mass Spectrometer/Closed Source Neutral mode) and related energy-dependent electron-impact ionization cross sections. When integrating up to electron energies of 60 eV, covering the bulk of the photoelectrons, the model-based values exceed the observationally based values typically by factors of ∼3 ± 1. This finding is possibly related to current difficulties in accurately reproducing the observed electron number densities in Titan's dayside ionosphere. We compare the utilized dayside CAPS/ELS spectra with ones measured in Titan's nightside ionosphere during the T55–T59 flybys. The investigated nightside locations were associated with higher fluxes of high-energy (>100 eV) electrons than the dayside locations. As expected, for similar neutral number densities, electrons with energies <60 eV give a higher relative contribution to the total electron-impact ionization rates on the dayside (due to the contribution from photoelectrons) than on the nightside.« less
Zhu, Lin-Lin; Qiu, Li-Hong; Liu, Li-Yang; Li, Xiao-Lin
2017-10-01
To determine the effect of the thickness of reinforced glass ceramics on the degree of conversion (DC) of three dual-cure resin cements (Multilink N, RelyX Ultimate and NX3-Nexus). Upcera reinforced glass ceramics and IPS e.max CAD test specimen were processed, with different thickness, transmittance was tested by ultraviolet and visible spectrometer. The DC was evaluated using Fourier transform infrared (FT-IR) spectrometer, then the degree of conversion of polymerization before and after curing was calculated. SPSS 21.0 software package was used for data analysis. Transmittance decreased along with the thickness of reinforced glass ceramics increased. At 2 mm -thickness transmittance of upcera lithium disilicate glass ceramics was superior to IPS e.max CAD. The DC of dual-cured resin cement was decreased with the increase of thickness. At the same 2 mm group, the DC of Multilink N and RelyX Ultimate under upcera lithium disilicate glass ceramics were superior to that under IPS e.max CAD groups. At 2 mm-thickness transmittance of upcera lithium disilicate glass ceramics was superior to IPS e.max CAD. At the same 2 mm group, the DC of Multilink N and RelyX Ultimate under upcera lithium disilicate glass ceramics were superior to that under IPS e.max CAD groups.
Commissioning of the vacuum system of the KATRIN Main Spectrometer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arenz, M.; Babutzka, M.; Bahr, M.
The KATRIN experiment will probe the neutrino mass by measuring the β-electron energy spectrum near the endpoint of tritium β-decay. We performed an integral energy analysis by an electro-static spectrometer (``Main Spectrometer''), an ultra-high vacuum vessel with a length of 23.2 m, a volume of 1240 m 3, and a complex inner electrode system with about 120 000 individual parts. The strong magnetic field that guides the β-electrons is provided by super-conducting solenoids at both ends of the spectrometer. Its influence on turbo-molecular pumps and vacuum gauges had to be considered. Furthermore, a system consisting of 6 turbo-molecular pumps andmore » 3 km of non-evaporable getter strips has been deployed and was tested during the commissioning of the spectrometer. In this paper the configuration, the commissioning with bake-out at 300 °C, and the performance of this system are presented in detail. The vacuum system has to maintain a pressure in the 10 -11 mbar range. We demonstrated that the performance of the system is already close to these stringent functional requirements for the KATRIN experiment, which will start at the end of 2016.« less
Commissioning of the vacuum system of the KATRIN Main Spectrometer
Arenz, M.; Babutzka, M.; Bahr, M.; ...
2016-04-07
The KATRIN experiment will probe the neutrino mass by measuring the β-electron energy spectrum near the endpoint of tritium β-decay. We performed an integral energy analysis by an electro-static spectrometer (``Main Spectrometer''), an ultra-high vacuum vessel with a length of 23.2 m, a volume of 1240 m 3, and a complex inner electrode system with about 120 000 individual parts. The strong magnetic field that guides the β-electrons is provided by super-conducting solenoids at both ends of the spectrometer. Its influence on turbo-molecular pumps and vacuum gauges had to be considered. Furthermore, a system consisting of 6 turbo-molecular pumps andmore » 3 km of non-evaporable getter strips has been deployed and was tested during the commissioning of the spectrometer. In this paper the configuration, the commissioning with bake-out at 300 °C, and the performance of this system are presented in detail. The vacuum system has to maintain a pressure in the 10 -11 mbar range. We demonstrated that the performance of the system is already close to these stringent functional requirements for the KATRIN experiment, which will start at the end of 2016.« less
Aguilar, M; Aisa, D; Alvino, A; Ambrosi, G; Andeen, K; Arruda, L; Attig, N; Azzarello, P; Bachlechner, A; Barao, F; Barrau, A; Barrin, L; Bartoloni, A; Basara, L; Battarbee, M; Battiston, R; Bazo, J; Becker, U; Behlmann, M; Beischer, B; Berdugo, J; Bertucci, B; Bigongiari, G; Bindi, V; Bizzaglia, S; Bizzarri, M; Boella, G; de Boer, W; Bollweg, K; Bonnivard, V; Borgia, B; Borsini, S; Boschini, M J; Bourquin, M; Burger, J; Cadoux, F; Cai, X D; Capell, M; Caroff, S; Casaus, J; Cascioli, V; Castellini, G; Cernuda, I; Cervelli, F; Chae, M J; Chang, Y H; Chen, A I; Chen, H; Cheng, G M; Chen, H S; Cheng, L; Chikanian, A; Chou, H Y; Choumilov, E; Choutko, V; Chung, C H; Clark, C; Clavero, R; Coignet, G; Consolandi, C; Contin, A; Corti, C; Coste, B; Cui, Z; Dai, M; Delgado, C; Della Torre, S; Demirköz, M B; Derome, L; Di Falco, S; Di Masso, L; Dimiccoli, F; Díaz, C; von Doetinchem, P; Du, W J; Duranti, M; D'Urso, D; Eline, A; Eppling, F J; Eronen, T; Fan, Y Y; Farnesini, L; Feng, J; Fiandrini, E; Fiasson, A; Finch, E; Fisher, P; Galaktionov, Y; Gallucci, G; García, B; García-López, R; Gast, H; Gebauer, I; Gervasi, M; Ghelfi, A; Gillard, W; Giovacchini, F; Goglov, P; Gong, J; Goy, C; Grabski, V; Grandi, D; Graziani, M; Guandalini, C; Guerri, I; Guo, K H; Habiby, M; Haino, S; Han, K C; He, Z H; Heil, M; Hoffman, J; Hsieh, T H; Huang, Z C; Huh, C; Incagli, M; Ionica, M; Jang, W Y; Jinchi, H; Kanishev, K; Kim, G N; Kim, K S; Kirn, Th; Kossakowski, R; Kounina, O; Kounine, A; Koutsenko, V; Krafczyk, M S; Kunz, S; La Vacca, G; Laudi, E; Laurenti, G; Lazzizzera, I; Lebedev, A; Lee, H T; Lee, S C; Leluc, C; Li, H L; Li, J Q; Li, Q; Li, Q; Li, T X; Li, W; Li, Y; Li, Z H; Li, Z Y; Lim, S; Lin, C H; Lipari, P; Lippert, T; Liu, D; Liu, H; Lomtadze, T; Lu, M J; Lu, Y S; Luebelsmeyer, K; Luo, F; Luo, J Z; Lv, S S; Majka, R; Malinin, A; Mañá, C; Marín, J; Martin, T; Martínez, G; Masi, N; Maurin, D; Menchaca-Rocha, A; Meng, Q; Mo, D C; Morescalchi, L; Mott, P; Müller, M; Ni, J Q; Nikonov, N; Nozzoli, F; Nunes, P; Obermeier, A; Oliva, A; Orcinha, M; Palmonari, F; Palomares, C; Paniccia, M; Papi, A; Pedreschi, E; Pensotti, S; Pereira, R; Pilo, F; Piluso, A; Pizzolotto, C; Plyaskin, V; Pohl, M; Poireau, V; Postaci, E; Putze, A; Quadrani, L; Qi, X M; Rancoita, P G; Rapin, D; Ricol, J S; Rodríguez, I; Rosier-Lees, S; Rozhkov, A; Rozza, D; Sagdeev, R; Sandweiss, J; Saouter, P; Sbarra, C; Schael, S; Schmidt, S M; Schuckardt, D; Schulz von Dratzig, A; Schwering, G; Scolieri, G; Seo, E S; Shan, B S; Shan, Y H; Shi, J Y; Shi, X Y; Shi, Y M; Siedenburg, T; Son, D; Spada, F; Spinella, F; Sun, W; Sun, W H; Tacconi, M; Tang, C P; Tang, X W; Tang, Z C; Tao, L; Tescaro, D; Ting, Samuel C C; Ting, S M; Tomassetti, N; Torsti, J; Türkoğlu, C; Urban, T; Vagelli, V; Valente, E; Vannini, C; Valtonen, E; Vaurynovich, S; Vecchi, M; Velasco, M; Vialle, J P; Wang, L Q; Wang, Q L; Wang, R S; Wang, X; Wang, Z X; Weng, Z L; Whitman, K; Wienkenhöver, J; Wu, H; Xia, X; Xie, M; Xie, S; Xiong, R Q; Xin, G M; Xu, N S; Xu, W; Yan, Q; Yang, J; Yang, M; Ye, Q H; Yi, H; Yu, Y J; Yu, Z Q; Zeissler, S; Zhang, J H; Zhang, M T; Zhang, X B; Zhang, Z; Zheng, Z M; Zhuang, H L; Zhukov, V; Zichichi, A; Zimmermann, N; Zuccon, P; Zurbach, C
2014-09-19
Precision measurements by the Alpha Magnetic Spectrometer on the International Space Station of the primary cosmic-ray electron flux in the range 0.5 to 700 GeV and the positron flux in the range 0.5 to 500 GeV are presented. The electron flux and the positron flux each require a description beyond a single power-law spectrum. Both the electron flux and the positron flux change their behavior at ∼30 GeV but the fluxes are significantly different in their magnitude and energy dependence. Between 20 and 200 GeV the positron spectral index is significantly harder than the electron spectral index. The determination of the differing behavior of the spectral indices versus energy is a new observation and provides important information on the origins of cosmic-ray electrons and positrons.
NASA Astrophysics Data System (ADS)
Aguilar, M.; Aisa, D.; Alvino, A.; Ambrosi, G.; Andeen, K.; Arruda, L.; Attig, N.; Azzarello, P.; Bachlechner, A.; Barao, F.; Barrau, A.; Barrin, L.; Bartoloni, A.; Basara, L.; Battarbee, M.; Battiston, R.; Bazo, J.; Becker, U.; Behlmann, M.; Beischer, B.; Berdugo, J.; Bertucci, B.; Bigongiari, G.; Bindi, V.; Bizzaglia, S.; Bizzarri, M.; Boella, G.; de Boer, W.; Bollweg, K.; Bonnivard, V.; Borgia, B.; Borsini, S.; Boschini, M. J.; Bourquin, M.; Burger, J.; Cadoux, F.; Cai, X. D.; Capell, M.; Caroff, S.; Casaus, J.; Cascioli, V.; Castellini, G.; Cernuda, I.; Cervelli, F.; Chae, M. J.; Chang, Y. H.; Chen, A. I.; Chen, H.; Cheng, G. M.; Chen, H. S.; Cheng, L.; Chikanian, A.; Chou, H. Y.; Choumilov, E.; Choutko, V.; Chung, C. H.; Clark, C.; Clavero, R.; Coignet, G.; Consolandi, C.; Contin, A.; Corti, C.; Coste, B.; Cui, Z.; Dai, M.; Delgado, C.; Della Torre, S.; Demirköz, M. B.; Derome, L.; Di Falco, S.; Di Masso, L.; Dimiccoli, F.; Díaz, C.; von Doetinchem, P.; Du, W. J.; Duranti, M.; D'Urso, D.; Eline, A.; Eppling, F. J.; Eronen, T.; Fan, Y. Y.; Farnesini, L.; Feng, J.; Fiandrini, E.; Fiasson, A.; Finch, E.; Fisher, P.; Galaktionov, Y.; Gallucci, G.; García, B.; García-López, R.; Gast, H.; Gebauer, I.; Gervasi, M.; Ghelfi, A.; Gillard, W.; Giovacchini, F.; Goglov, P.; Gong, J.; Goy, C.; Grabski, V.; Grandi, D.; Graziani, M.; Guandalini, C.; Guerri, I.; Guo, K. H.; Habiby, M.; Haino, S.; Han, K. C.; He, Z. H.; Heil, M.; Hoffman, J.; Hsieh, T. H.; Huang, Z. C.; Huh, C.; Incagli, M.; Ionica, M.; Jang, W. Y.; Jinchi, H.; Kanishev, K.; Kim, G. N.; Kim, K. S.; Kirn, Th.; Kossakowski, R.; Kounina, O.; Kounine, A.; Koutsenko, V.; Krafczyk, M. S.; Kunz, S.; La Vacca, G.; Laudi, E.; Laurenti, G.; Lazzizzera, I.; Lebedev, A.; Lee, H. T.; Lee, S. C.; Leluc, C.; Li, H. L.; Li, J. Q.; Li, Q.; Li, Q.; Li, T. X.; Li, W.; Li, Y.; Li, Z. H.; Li, Z. Y.; Lim, S.; Lin, C. H.; Lipari, P.; Lippert, T.; Liu, D.; Liu, H.; Lomtadze, T.; Lu, M. J.; Lu, Y. S.; Luebelsmeyer, K.; Luo, F.; Luo, J. Z.; Lv, S. S.; Majka, R.; Malinin, A.; Mañá, C.; Marín, J.; Martin, T.; Martínez, G.; Masi, N.; Maurin, D.; Menchaca-Rocha, A.; Meng, Q.; Mo, D. C.; Morescalchi, L.; Mott, P.; Müller, M.; Ni, J. Q.; Nikonov, N.; Nozzoli, F.; Nunes, P.; Obermeier, A.; Oliva, A.; Orcinha, M.; Palmonari, F.; Palomares, C.; Paniccia, M.; Papi, A.; Pedreschi, E.; Pensotti, S.; Pereira, R.; Pilo, F.; Piluso, A.; Pizzolotto, C.; Plyaskin, V.; Pohl, M.; Poireau, V.; Postaci, E.; Putze, A.; Quadrani, L.; Qi, X. M.; Rancoita, P. G.; Rapin, D.; Ricol, J. S.; Rodríguez, I.; Rosier-Lees, S.; Rozhkov, A.; Rozza, D.; Sagdeev, R.; Sandweiss, J.; Saouter, P.; Sbarra, C.; Schael, S.; Schmidt, S. M.; Schuckardt, D.; von Dratzig, A. Schulz; Schwering, G.; Scolieri, G.; Seo, E. S.; Shan, B. S.; Shan, Y. H.; Shi, J. Y.; Shi, X. Y.; Shi, Y. M.; Siedenburg, T.; Son, D.; Spada, F.; Spinella, F.; Sun, W.; Sun, W. H.; Tacconi, M.; Tang, C. P.; Tang, X. W.; Tang, Z. C.; Tao, L.; Tescaro, D.; Ting, Samuel C. C.; Ting, S. M.; Tomassetti, N.; Torsti, J.; Türkoǧlu, C.; Urban, T.; Vagelli, V.; Valente, E.; Vannini, C.; Valtonen, E.; Vaurynovich, S.; Vecchi, M.; Velasco, M.; Vialle, J. P.; Wang, L. Q.; Wang, Q. L.; Wang, R. S.; Wang, X.; Wang, Z. X.; Weng, Z. L.; Whitman, K.; Wienkenhöver, J.; Wu, H.; Xia, X.; Xie, M.; Xie, S.; Xiong, R. Q.; Xin, G. M.; Xu, N. S.; Xu, W.; Yan, Q.; Yang, J.; Yang, M.; Ye, Q. H.; Yi, H.; Yu, Y. J.; Yu, Z. Q.; Zeissler, S.; Zhang, J. H.; Zhang, M. T.; Zhang, X. B.; Zhang, Z.; Zheng, Z. M.; Zhuang, H. L.; Zhukov, V.; Zichichi, A.; Zimmermann, N.; Zuccon, P.; Zurbach, C.; AMS Collaboration
2014-09-01
Precision measurements by the Alpha Magnetic Spectrometer on the International Space Station of the primary cosmic-ray electron flux in the range 0.5 to 700 GeV and the positron flux in the range 0.5 to 500 GeV are presented. The electron flux and the positron flux each require a description beyond a single power-law spectrum. Both the electron flux and the positron flux change their behavior at ˜30 GeV but the fluxes are significantly different in their magnitude and energy dependence. Between 20 and 200 GeV the positron spectral index is significantly harder than the electron spectral index. The determination of the differing behavior of the spectral indices versus energy is a new observation and provides important information on the origins of cosmic-ray electrons and positrons.
The OPERA muon spectrometer tracking electronics
NASA Astrophysics Data System (ADS)
Ambrosio, M.; Barichello, G.; Brugnera, R.; Carrara, E.; Consiglio, L.; Corradi, A.; Dal Corso, F.; Dusini, S.; Felici, G.; Garfagnini, A.; Manea, C.; Masone, V.; Paoloni, A.; Paoluzzi, G.; Papalino, G.; Parascandolo, P.; Sorrentino, G.; Spinetti, M.; Stanco, L.; Terranova, F.; Votano, L.
2004-11-01
The document describes the front-end electronics that instrument the spectrometer of the OPERA experiment. The spectrometer is made of two separate modules. Each module consists of 22 RPC planes equipped with horizontal and vertical strips readout for a total amount of about 25,000 digital channels. The front end electronics is self-triggered and has single plane readout capability. It is made of three different stages: the Front End Boards (FEBs) system, the Controller Boards (CBs) system and the Timing Boards (TBs) system. The FEB system provides discrimination of the strip incoming signals; a FAST OR output of the input signals is also available for trigger plane signal generation. FEBs discriminated signals are acquired by the CBs system that manages also the communication to the experiment DAQ and Slow Control interface. A Trigger Board allows to operate in both self-trigger (the FEB FAST OR signal starts the plane acquisition) or external-trigger (different conditions can be set on the OR signals generated from different planes) modes.
Atmospheric Electron-Induced X-Ray Spectrometer (AEXS) Development
NASA Technical Reports Server (NTRS)
Wilcox, Jaroslava Z.; Urgiles, Eduardo; Toda, Risaku; George, Thomas; Douglas, Susanne; Crisp, Joy
2005-01-01
This paper describes the progress in the development of the so-called Atmospheric Electron X-ray Spectrometer (AEXS) instrument in our laboratory at JPL. The AEXS is a novel miniature instrument concept based on the excitation of characteristic X-Ray Fluorescence (XRF) and luminescence spectra using a focused electron beam, for non-destructive evaluation of surfaces of samples in situ, in planetary ambient atmosphere. In situ operation is obtained through the use of a thin electron transmissive membrane to isolate the vacuum within the AEXS electron source from the outside ambient atmosphere. By using a focused electron beam, the impinging electrons on samples in the external atmosphere excite XRF spectra from the irradiated spots with high-to-medium spatial resolution. The XRF spectra are analyzed using an energy-dispersive detector to determine surface elemental composition. The use of high- intensity electron beam results in rapid spectrum acquisition (several minutes), and consequently low energy consumption (several tens of Joules) per acquired XRF spectrum in comparison to similar portable instruments.
Detection of a strongly negative surface potential at Saturn's moon Hyperion.
Nordheim, T A; Jones, G H; Roussos, E; Leisner, J S; Coates, A J; Kurth, W S; Khurana, K K; Krupp, N; Dougherty, M K; Waite, J H
2014-10-28
On 26 September 2005, Cassini conducted its only close targeted flyby of Saturn's small, irregularly shaped moon Hyperion. Approximately 6 min before the closest approach, the electron spectrometer (ELS), part of the Cassini Plasma Spectrometer (CAPS) detected a field-aligned electron population originating from the direction of the moon's surface. Plasma wave activity detected by the Radio and Plasma Wave instrument suggests electron beam activity. A dropout in energetic electrons was observed by both CAPS-ELS and the Magnetospheric Imaging Instrument Low-Energy Magnetospheric Measurement System, indicating that the moon and the spacecraft were magnetically connected when the field-aligned electron population was observed. We show that this constitutes a remote detection of a strongly negative (∼ -200 V) surface potential on Hyperion, consistent with the predicted surface potential in regions near the solar terminator.
NASA Astrophysics Data System (ADS)
Kim, Ji-hyun; Han, Jae-Ho; Jeong, Jichai
2016-05-01
The commonly employed calibration methods for laboratory-made spectrometers have several disadvantages, including poor calibration when the number of characteristic spectral peaks is low. Therefore, we present a wavelength calibration method using relative k-space distribution with low coherence interferometer. The proposed method utilizes an interferogram with a perfect sinusoidal pattern in k-space for calibration. Zero-crossing detection extracts the k-space distribution of a spectrometer from the interferogram in the wavelength domain, and a calibration lamp provides information about absolute wavenumbers. To assign wavenumbers, wavelength-to-k-space conversion is required for the characteristic spectrum of the calibration lamp with the extracted k-space distribution. Then, the wavelength calibration is completed by inverse conversion of the k-space into wavelength domain. The calibration performance of the proposed method was demonstrated with two experimental conditions of four and eight characteristic spectral peaks. The proposed method elicited reliable calibration results in both cases, whereas the conventional method of third-order polynomial curve fitting failed to determine wavelengths in the case of four characteristic peaks. Moreover, for optical coherence tomography imaging, the proposed method could improve axial resolution due to higher suppression of sidelobes in point spread function than the conventional method. We believe that our findings can improve not only wavelength calibration accuracy but also resolution for optical coherence tomography.
Research in particles and fields. [cosmic rays, gamma rays, and cosmic plasma
NASA Technical Reports Server (NTRS)
Stone, E. C.; Buffington, A.; Davis, L., Jr.; Prince, T. A.; Vogt, R. E.
1984-01-01
Research activities in cosmic rays, gamma rays, and astrophysical plasmas are reviewed. Energetic particle and photon detector systems flown on spacecraft and balloons were used to carry out the investigations. Specific instruments mentioned are: the high energy isotope spectrometer telescope, the electron/isotope spectrometer, the heavy isotope spectrometer telescope, and magnetometers. Solar flares, planetary magnetospheres, element abundance, the isotopic composition of low energy cosmic rays, and heavy nuclei are among the topics receiving research attention.
NASA Technical Reports Server (NTRS)
Buffington, A.
1978-01-01
A super-cooled magnetic spectrometer for a cosmic-ray experiment is considered for application in the high energy astronomical observatory which may be used on a space shuttle spacelab mission. New cryostat parameters are reported which are appropriate to shuttle mission weight and mission duration constraints. Since a super-conducting magnetic spectrometer has a magnetic fringe field, methods for shielding sensitive electronic and mechanical components on nearby experiments are described.
GaAs Spectrometer for Electron Spectroscopy at Europa
NASA Astrophysics Data System (ADS)
Lioliou, G.; Barnett, A. M.
2016-12-01
We propose a GaAs based electron spectrometer for a hypothetical future mission orbiting Europa. Previous observations at Europa's South Pole with the Hubble Space Telescope of hydrogen Lyman-α and oxygen OI 130.4 nm emissions were consistent with water vapor plumes [Roth et al., 2014, Science 343, 171]. Future observations and analysis of plumes on Europa could provide information about its subsurface structure and the distribution of liquid water within its icy shells [Rhoden at al. 2015, Icarus 253, 169]. In situ low energy (1keV - 100keV) electron spectroscopy along with UV imaging either in situ or with the Hubble Space Telescope Wide Field Camera 3 or similar would allow verification of the auroral observations being due to electron impact excitation of water vapor plumes. The proposed spectrometer includes a novel GaAs p+-i-n+ photodiode and a custom-made charge-sensitive preamplifier. The use of an early prototype GaAs detector for direct electron spectroscopy has already been demonstrated in ground based applications [Barnett et al., 2012, J. Instrum. 7, P09012]. Based on previous radiation hardness measurements of GaAs, the expected duration of the mission without degradation of the detector performance is estimated to be 4 months. Simulations and laboratory experiments characterising the detection performance of the proposed system are presented.
EXTENDING THE USEFUL LIFE OF OLDER MASS SPECTROMETERS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, S.; Cordaro, J.; Holland, M.
2010-06-17
Thermal ionization and gas mass spectrometers are widely used across the Department of Energy (DOE) Complex and contractor laboratories. These instruments support critical missions, where high reliability and low measurement uncertainty are essential. A growing number of these mass spectrometers are significantly older than their original design life. The reality is that manufacturers have declared many of the instrument models obsolete, with direct replacement parts and service no longer available. Some of these obsolete models do not have a next generation, commercially available replacement. Today's budget conscious economy demands for the use of creative funds management. Therefore, the ability tomore » refurbish (or upgrade) these valuable analytical tools and extending their useful life is a cost effective option. The Savannah River Site (SRS) has the proven expertise to breathe new life into older mass spectrometers, at a significant cost savings compared to the purchase and installation of new instruments. A twenty-seven year old Finnigan MAT-261{trademark} Thermal Ionization Mass Spectrometer (TIMS), located at the SRS F/H Area Production Support Laboratory, has been successfully refurbished. Engineers from the Savannah River National Laboratory (SRNL) fabricated and installed the new electronics. These engineers also provide continued instrument maintenance services. With electronic component drawings being DOE Property, other DOE Complex laboratories have the option to extend the life of their aged Mass Spectrometers.« less
1966-10-01
S66-09382 (1 Oct. 1966) --- Gemini-12 Experiment MSC-7 Bremsstrahlung Spectrometer-Spectrometer Analyzer processor installed in cabin. Objective of experiment is to determine the gamma and beta flux and energy spectra induced inside the spacecraft by exterior electrons. Photo credit: NASA
NASA Technical Reports Server (NTRS)
Vanous, D. D.
1974-01-01
The development and characteristics of the infrared interferometer spectrometer and radiometer (IRIS) instrument for use with the Mariner/Jupiter/Saturn space probe. The subjects discussed are: (1) the electronic design, (2) the opto-mechanical design, (3) reliability analysis, (4) quality control, and (5) program management.
A Statitstical Study of Energetic Electron Phase Space Density with RBSP and BD-IES Data
NASA Astrophysics Data System (ADS)
Chen, X.; Zong, Q.; Zhou, X.; Zou, H.; Wang, Y.
2017-12-01
We present a statistical study of energetic electron phase space density (PSD) with combined observations from the Magnetic Electron Ion Spectrometer (MagEIS) instruments onboard the Van Allen Probes and the Image Electron Spectrometer (BD-IES) onboard an inclined geosynchronous orbit satellite. The electron PSD as a function of the adiabatic invariants is derived using one year data (Nov. 2015 to Oct. 2016) of these instruments. The orbits of the satellites cover a wide range of L-shells, allowing for the distribution of electron PSD throughout the radiation belt (L* 1 to 10). A persistent peak of energetic electron ( 30 to 1000 MeV/G) PSD is unambiguously identified at L* 5.5, which may help to understand the role of local acceleration and radial diffusion in the dynamics of energetic electrons. In addition, the electron PSD shows a power-law distribution with the exponent varying from about -2 to -4 depending on L*. The variance of electron PSD during storm and substorm activities indicating by SYMH and AE indices are also discussed.
Impedance changes during setting of amorphous calcium phosphate composites.
Par, Matej; Šantić, Ana; Gamulin, Ozren; Marovic, Danijela; Moguš-Milanković, Andrea; Tarle, Zrinka
2016-11-01
To investigate the electrical properties of experimental light-curable composite materials based on amorphous calcium phosphate (ACP) with the admixture of silanized barium glass and silica fillers. Short-term setting was investigated by impedance measurements at a frequency of 1kHz, while for the long-term setting the impedance spectra were measured consecutively over a frequency range of 0.05Hz to 1MHz for 24h. The analysis of electrical resistivity changes during curing allowed the extraction of relevant kinetic parameters. The impedance results were correlated to the degree of conversion assessed by Raman spectroscopy, water content determined by gravimetry, light transmittance measured by CCD spectrometer and microstructural features observed by scanning electron microscopy. ACP-based composites have shown higher immediate degree of conversion and less post-cure polymerization than the control composites, but lower polymerization rate. The polymerization rate assessed by impedance measurements correlated well with the light transmittance. The differences in the electrical conductivity values observed among the materials were correlated to the amount of water introduced into composites by the ACP filler. High correlation was found between the degree of conversion and electrical resistivity. Equivalent circuit modeling revealed two electrical contributions for the ACP-based composites and a single contribution for the control composites. The impedance spectroscopy has proven a valuable method for gaining insight into various features of ACP-based composites. Better understanding of the properties of ACP-based composites should further the development of these promising bioactive materials. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Dispersion-free continuum two-dimensional electronic spectrometer
Zheng, Haibin; Caram, Justin R.; Dahlberg, Peter D.; Rolczynski, Brian S.; Viswanathan, Subha; Dolzhnikov, Dmitriy S.; Khadivi, Amir; Talapin, Dmitri V.; Engel, Gregory S.
2015-01-01
Electronic dynamics span broad energy scales with ultrafast time constants in the condensed phase. Two-dimensional (2D) electronic spectroscopy permits the study of these dynamics with simultaneous resolution in both frequency and time. In practice, this technique is sensitive to changes in nonlinear dispersion in the laser pulses as time delays are varied during the experiment. We have developed a 2D spectrometer that uses broadband continuum generated in argon as the light source. Using this visible light in phase-sensitive optical experiments presents new challenges in implementation. We demonstrate all-reflective interferometric delays using angled stages. Upon selecting an ~180 nm window of the available bandwidth at ~10 fs compression, we probe the nonlinear response of broadly absorbing CdSe quantum dots and electronic transitions of Chlorophyll a. PMID:24663470
Multi-point Measurements of Relativistic Electrons in the Magnetosphere
NASA Astrophysics Data System (ADS)
Li, X.; Selesnick, R.; Baker, D. N.; Blake, J. B.; Schiller, Q.; Blum, L. W.; Zhao, H.; Jaynes, A. N.; Kanekal, S.
2014-12-01
We take an advantage of five different DC electric field measurements in the plasma sheet available from the EFW double probe experiment, EDI electron drift instrument, CODIF and HIA ion spectrometers, and PEACE electron spectrometer on the four Cluster spacecraft. The calibrated observations of the three spectrometers are used to determine the proton and electron velocity moments. The velocity moments can be used to estimate the proton and electron drift velocity and furthermore the DC electric field, assuming that the electron and proton velocity perpendicular to the magnetic field is dominated by the ExB drift motion. Naturally when ions and electrons do not perform a proper drift motion, which can happen in the plasma sheet, the estimated DC electric field from ion and electron motion is not correct. However, surprisingly often the DC electric fields estimated from electron and ion motions are identical suggesting that this field is a real DC electric field around the measurement point. As the measurement techniques are so different, it is quite plausible that when two different measurements yield the same DC electric field, it is the correct field. All five measurements of the DC electric field are usually not simultaneously available, especially on Cluster 2 where CODIF and HIA are not operational, or on Cluster 4 where EDI is off. In this presentation we investigate DC electric field in various transient plasma sheet events such as dipolarization events and BBF's and how the five measurements agree or disagree. There are plenty of important issues that are considered, e.g., (1) what kind of DC electric fields exist in such events and what are their spatial scales, (2) do electrons and ions perform ExB drift motions in these events, and (3) how well the instruments have been calibrated.
X-ray spectroscopy of high-/Z highly charged ions with the Tokyo EBIT
NASA Astrophysics Data System (ADS)
Nakamura, Nobuyuki; Kato, Daiji; Ohtani, Shunsuke
2003-05-01
We have been using the Tokyo electron beam ion trap to investigate the relativistic and the quantum electrodynamical effects on the atomic structure of few electron heavy ions. In this paper, we present 1s binding energy measurement for hydrogen-like rhodium which was performed as one of such systematic studies. It has been obtained by measuring the X-ray transition energy for radiative recombination into the 1s vacancy of bare rhodium and subtracting the electron beam energy from it. For further investigation, a bent crystal spectrometer for hard X-rays is being developed. The design of the new spectrometer and the preliminary result with it are also presented.
Development of mercuric iodide uncooled x ray detectors and spectrometers
NASA Technical Reports Server (NTRS)
Iwanczyk, Jan S.
1990-01-01
The results obtained in the development of miniature, lowpower, light weight mercuric iodide, HgI2, x ray spectrometers for future space missions are summarized. It was demonstrated that HgI2 detectors can be employed in a high resolution x ray spectrometer, operating in a scanning electron microscope. Also, the development of HgI2 x ray detectors to augment alpha backscattering spectrometers is discussed. These combination instruments allow for the identification of all chemical elements, with the possible exception of hydrogen, and their respective concentrations. Additionally, further investigations of questions regarding radiation damage effects in the HgI2 x ray detectors are reported.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stråhlman, Christian, E-mail: Christian.Strahlman@maxlab.lu.se; Sankari, Rami; Nyholm, Ralf
2016-01-15
We present a newly constructed spectrometer for negative–ion/positive–ion coincidence spectroscopy of gaseous samples. The instrument consists of two time–of–flight ion spectrometers and a magnetic momentum filter for deflection of electrons. The instrument can measure double and triple coincidences between mass–resolved negative and positive ions with high detection efficiency. First results include identification of several negative–ion/positive–ion coincidence channels following inner-shell photoexcitation of sulfur hexafluoride (SF{sub 6})
A micro-scale plasma spectrometer for space and plasma edge applications (invited)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scime, E. E., E-mail: escime@wvu.edu; Keesee, A. M.; Elliott, D.
2016-11-15
A plasma spectrometer design based on advances in lithography and microchip stacking technologies is described. A series of curved plate energy analyzers, with an integrated collimator, is etched into a silicon wafer. Tests of spectrometer elements, the energy analyzer and collimator, were performed with a 5 keV electron beam. The measured collimator transmission and energy selectivity were in good agreement with design targets. A single wafer element could be used as a plasma processing or fusion first wall diagnostic.
A cometary ion mass spectrometer
NASA Technical Reports Server (NTRS)
Shelley, E. G.; Simpson, D. A.
1984-01-01
The development of flight suitable analyzer units for that part of the GIOTTO Ion Mass Spectrometer (IMS) experiment designated the High Energy Range Spectrometer (HERS) is discussed. Topics covered include: design of the total ion-optical system for the HERS analyzer; the preparation of the design of analyzing magnet; the evaluation of microchannel plate detectors and associated two-dimensional anode arrays; and the fabrication and evaluation of two flight-suitable units of the complete ion-optical analyzer system including two-dimensional imaging detectors and associated image encoding electronics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gatu Johnson, M., E-mail: gatu@psfc.mit.edu; Frenje, J. A.; Li, C. K.
2016-11-15
The Magnetic Recoil neutron Spectrometer (MRS) on the National Ignition Facility measures the DT neutron spectrum from cryogenically layered inertial confinement fusion implosions. Yield, areal density, apparent ion temperature, and directional fluid flow are inferred from the MRS data. This paper describes recent advances in MRS measurements of the primary peak using new, thinner, reduced-area deuterated plastic (CD) conversion foils. The new foils allow operation of MRS at yields 2 orders of magnitude higher than previously possible, at a resolution down to ∼200 keV FWHM.
Gatu Johnson, M.; Frenje, J. A.; Bionta, R. M.; ...
2016-08-09
The Magnetic Recoil neutron Spectrometer (MRS) on the National Ignition Facility measures the DT neutron spectrum from cryogenically layered inertial confinement fusion implosions. Yield, areal density, apparent ion temperature, and directional fluid flow are inferred from the MRS data. Here, this paper describes recent advances in MRS measurements of the primary peak using new, thinner, reduced-area deuterated plastic (CD) conversion foils. The new foils allow operation of MRS at yields 2 orders of magnitude higher than previously possible, at a resolution down to ~200 keV FWHM.
Gatu Johnson, M; Frenje, J A; Bionta, R M; Casey, D T; Eckart, M J; Farrell, M P; Grim, G P; Hartouni, E P; Hatarik, R; Hoppe, M; Kilkenny, J D; Li, C K; Petrasso, R D; Reynolds, H G; Sayre, D B; Schoff, M E; Séguin, F H; Skulina, K; Yeamans, C B
2016-11-01
The Magnetic Recoil neutron Spectrometer (MRS) on the National Ignition Facility measures the DT neutron spectrum from cryogenically layered inertial confinement fusion implosions. Yield, areal density, apparent ion temperature, and directional fluid flow are inferred from the MRS data. This paper describes recent advances in MRS measurements of the primary peak using new, thinner, reduced-area deuterated plastic (CD) conversion foils. The new foils allow operation of MRS at yields 2 orders of magnitude higher than previously possible, at a resolution down to ∼200 keV FWHM.
Calibration of imaging plates to electrons between 40 and 180 MeV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rabhi, N., E-mail: nesrine.rabhi@celia.u-bordeaux.fr; Batani, D.; Boutoux, G.
2016-05-15
This paper presents the response calibration of Imaging Plates (IPs) for electrons in the 40-180 MeV range using laser-accelerated electrons at Laboratoire d’Optique Appliquée (LOA), Palaiseau, France. In the calibration process, the energy spectrum and charge of electron beams are measured by an independent system composed of a magnetic spectrometer and a Lanex scintillator screen used as a calibrated reference detector. It is possible to insert IPs of different types or stacks of IPs in this spectrometer in order to detect dispersed electrons simultaneously. The response values are inferred from the signal on the IPs, due to an appropriate chargemore » calibration of the reference detector. The effect of thin layers of tungsten in front and/or behind IPs is studied in detail. GEANT4 simulations are used in order to analyze our measurements.« less
Hypernuclear Spectroscopy with Electron Beam at JLab Hall C
NASA Astrophysics Data System (ADS)
Fujii, Y.; Chiba, A.; Doi, D.; Gogami, T.; Hashimoto, O.; Kanda, H.; Kaneta, M.; Kawama, D.; Maeda, K.; Maruta, T.; Matsumura, A.; Nagao, S.; Nakamura, S. N.; Shichijo, A.; Tamura, H.; Taniya, N.; Yamamoto, T.; Yokota, K.; Kato, S.; Sato, Y.; Takahashi, T.; Noumi, H.; Motoba, T.; Hiyama, E.; Albayrak, I.; Ates, O.; Chen, C.; Christy, M.; Keppel, C.; Kohl, M.; Li, Y.; Liyanage, A.; Tang, L.; Walton, T.; Ye, Z.; Yuan, L.; Zhu, L.; Baturin, P.; Boeglin, W.; Dhamija, S.; Markowitz, P.; Raue, B.; Reinhold, J.; Hungerford, Ed. V.; Ent, R.; Fenker, H.; Gaskell, D.; Horn, T.; Jones, M.; Smith, G.; Vulcan, W.; Wood, S. A.; Johnston, C.; Simicevic, N.; Wells, S.; Samanta, C.; Hu, B.; Shen, J.; Wang, W.; Zhang, X.; Zhang, Y.; Feng, J.; Fu, Y.; Zhou, J.; Zhou, S.; Jiang, Y.; Lu, H.; Yan, X.; Ye, Y.; Gan, L.; Ahmidouch, A.; Danagoulian, S.; Gasparian, A.; Elaasar, M.; Wesselmann, F. R.; Asaturyan, A.; Margaryan, A.; Mkrtchyan, A.; Mkrtchyan, H.; Tadevosyan, V.; Androic, D.; Furic, M.; Petkovic, T.; Seva, T.; Niculescu, G.; Niculescu, I.; López, V. M. Rodríguez; Cisbani, E.; Cusanno, F.; Garibaldi, F.; Uuciuoli, G. M.; de Leo, R.; Maronne, S.
2010-10-01
Hypernuclear spectroscopy with electron beam at JLab Hall C has been studied since 2000. The first experiment, JLab E89-009, demonstrated the possibility of the (e,e'K+) reaction for hypernuclear spectroscopy by achieving an energy resolution of better than 1 MeV (FWHM). The second experiment, JLab E01-011 employed a newly constructed high resolution kaon spectrometer and introduced a vertically tilted electron arm setup to avoid electrons from bremsstrahlung and Moeller scattering. The setup allowed us to have 10 times yield rate and 4 times better signal to accidental ratio with expected energy resolution of 400 keV (FWHM). The third experiment, JLab E05-11B will be performed in 2009 with employing newly constructed high resolution electron spectrometer and a new charge-separation magnet. With the fully customized third generation experimental setup, we can study a variety of targets up to medium-heavy ones such as 52Cr.
Hypernuclear Spectroscopy with Electron Beam at JLab Hall C
NASA Astrophysics Data System (ADS)
Fujii, Y.; Chiba, A.; Doi, D.; Gogami, T.; Hashimoto, O.; Kanda, H.; Kaneta, M.; Kawama, D.; Maeda, K.; Maruta, T.; Matsumura, A.; Nagao, S.; Nakamura, S. N.; Shichijo, A.; Tamura, H.; Taniya, N.; Yamamoto, T.; Yokota, K.; Kato, S.; Sato, Y.; Takahashi, T.; Noumi, H.; Motoba, T.; Hiyama, E.; Albayrak, I.; Ates, O.; Chen, C.; Christy, M.; Keppel, C.; Kohl, M.; Li, Y.; Liyanage, A.; Tang, L.; Walton, T.; Ye, Z.; Yuan, L.; Zhu, L.; Baturin, P.; Boeglin, W.; Dhamija, S.; Markowitz, P.; Raue, B.; Reinhold, J.; Hungerford, Ed. V.; Ent, R.; Fenker, H.; Gaskell, D.; Horn, T.; Jones, M.; Smith, G.; Vulcan, W.; Wood, S. A.; Johnston, C.; Simicevic, N.; Wells, S.; Samanta, C.; Hu, B.; Shen, J.; Wang, W.; Zhang, X.; Zhang, Y.; Feng, J.; Fu, Y.; Zhou, J.; Zhou, S.; Jiang, Y.; Lu, H.; Yan, X.; Ye, Y.; Gan, L.; Ahmidouch, A.; Danagoulian, S.; Gasparian, A.; Elaasar, M.; Wesselmann, F. R.; Asaturyan, A.; Margaryan, A.; Mkrtchyan, A.; Mkrtchyan, H.; Tadevosyan, V.; Androic, D.; Furic, M.; Petkovic, T.; Seva, T.; Niculescu, G.; Niculescu, I.; Rodríguez López, V. M.; Cisbani, E.; Cusanno, F.; Garibaldi, F.; Uuciuoli, G. M.; de Leo, R.; Maronne, S.
Hypernuclear spectroscopy with electron beam at JLab Hall C has been studied since 2000. The first experiment, JLab E89-009, demonstrated the possibility of the (e, e‧ K+) reaction for hypernuclear spectroscopy by achieving an energy resolution of better than 1 MeV (FWHM). The second experiment, JLab E01-011 employed a newly constructed high resolution kaon spectrometer and introduced a vertically tilted electron arm setup to avoid electrons from bremsstrahlung and Moeller scattering. The setup allowed us to have 10 times yield rate and 4 times better signal to accidental ratio with expected energy resolution of 400 keV (FWHM). The third experiment, JLab E05-115 will be performed in 2009 with employing newly constructed high resolution electron spectrometer and a new charge-separation magnet. With the fully customized third generation experimental setup, we can study a variety of targets up to medium-heavy ones such as 52Cr.
NASA Astrophysics Data System (ADS)
Taylor, S. A.; Coates, A. J.; Jones, G. H.; Wellbrock, A.; Fazakerley, A. N.; Desai, R. T.; Caro-Carretero, R.; Michiko, M. W.; Schippers, P.; Waite, J. H.
2018-01-01
The Electron Spectrometer (ELS) of the Cassini Plasma Spectrometer has observed photoelectrons produced in the plume of Enceladus. These photoelectrons are observed during Enceladus encounters in the energetic particle shadow where the spacecraft is largely shielded from penetrating radiation by the moon. We present a complex electron spectrum at Enceladus including evidence of two previously unidentified electron populations at 6-10 eV and 10-16 eV. We estimate that the proportion of "hot" (>15 eV) to "cold" (<15 eV) electrons during the Enceladus flybys is ≈ 0.1-0.5%. We have constructed a model of photoelectron production in the plume and compared it with ELS Enceladus flyby data by scaling and energy shifting according to spacecraft potential. We suggest that the complex structure of the electron spectrum observed can be explained entirely by photoelectron production in the plume ionosphere.
NASA Astrophysics Data System (ADS)
Pallone, Arthur
Necessity often leads to inspiration. Such was the case when a traditional amplifier quit working during the collection of an alpha particle spectrum. I had a 15 battery-powered audio amplifier in my box of project electronics so I connected it between the preamplifier and the multichannel analyzer. The alpha particle spectrum that appeared on the computer screen matched expectations even without correcting for impedance mismatches. Encouraged by this outcome, I have begun to systematically replace each of the parts in a traditional charged particle spectrometer with audio and video components available through consumer electronics stores with the goal of producing an inexpensive charged particle spectrometer for use in education and research. Hopefully my successes, setbacks, and results to date described in this presentation will inform and inspire others.
Dykes, Patricia C; Spurr, Cindy; Gallagher, Joan; Li, Qi; Ives Erickson, Jeanette
2006-01-01
An important challenge associated with making the transition from paper to electronic documentation systems is achieving consensus regarding priorities for electronic conversion across diverse groups. In our work we focus on applying a systematic approach to evaluating the baseline state of nursing documentation across a large healthcare system and establishing a unified vision for electronic conversion. A review of the current state of nursing documentation across PHS was conducted using structured tools. Data from this assessment was employed to facilitate an evidence-based approach to decision-making regarding conversion to electronic documentation at local and PHS levels. In this paper we present highlights of the assessment process and the outcomes of this multi-site collaboration.
Characteristics of DC electric fields in transient plasma sheet events
NASA Astrophysics Data System (ADS)
Laakso, H. E.; Escoubet, C. P.; Masson, A.
2015-12-01
We take an advantage of five different DC electric field measurements in the plasma sheet available from the EFW double probe experiment, EDI electron drift instrument, CODIF and HIA ion spectrometers, and PEACE electron spectrometer on the four Cluster spacecraft. The calibrated observations of the three spectrometers are used to determine the proton and electron velocity moments. The velocity moments can be used to estimate the proton and electron drift velocity and furthermore the DC electric field, assuming that the electron and proton velocity perpendicular to the magnetic field is dominated by the ExB drift motion. Naturally when ions and electrons do not perform a proper drift motion, which can happen in the plasma sheet, the estimated DC electric field from ion and electron motion is not correct. However, surprisingly often the DC electric fields estimated from electron and ion motions are identical suggesting that this field is a real DC electric field around the measurement point. As the measurement techniques are so different, it is quite plausible that when two different measurements yield the same DC electric field, it is the correct field. All five measurements of the DC electric field are usually not simultaneously available, especially on Cluster 2 where CODIF and HIA are not operational, or on Cluster 4 where EDI is off. In this presentation we investigate DC electric field in various transient plasma sheet events such as dipolarization events and BBF's and how the five measurements agree or disagree. There are plenty of important issues that are considered, e.g., (1) what kind of DC electric fields exist in such events and what are their spatial scales, (2) do electrons and ions perform ExB drift motions in these events, and (3) how well the instruments have been calibrated.
A system that couples a gas chromatograph (GC) via a split to a quadrapole mass spectrometer (MS) and, through a combustion interface, to an isotope ratio mass spectrometer (IRMS) allows the simultaneous detection of electron impact mass spectra and stable carbon isotope ratio an...
New search for double electron capture in {sup 106}Cd decay with the TGV-2 spectrometer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Briançon, Ch.; Brudanin, V. B.; Egorov, V. G.
2015-09-15
A new experiment devoted to searches for double electron capture in {sup 106}Cd decay is being performed at the Modane underground laboratory (4800 mwe) with the 32-detector TGV-2 spectrometer. The limit T{sub 1/2}(2νEC/EC) > 2.0×10{sup 20} yr at a 90%confidence level (C.L.) was obtained from a preliminary analysis of data obtained over 2250 h of measurements with about 23.2 g sample enriched in the isotope {sup 106}Cd to 99.57%. The limits T{sub 1/2}(KL, 2741 keV) > 0.9 × 10{sup 20} yr and T{sub 1/2}(KK, 2718 keV) ≫ 1.4 × 10{sup 20} yr at a 90% C.L. on the neutrinoless decaymore » of {sup 106}Cd were obtained from measurements performed with the Obelix low-background spectrometer from high-purity germanium (HPGe spectrometer) for a sample of mass about 23.2 g enriched in the isotope {sup 106}Cd.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palutke, S., E-mail: steffen.palutke@desy.de; Wurth, W.; Deutsches Elekronen Synchrotron
The setup and first results from commissioning of a fast online photon energy spectrometer for the vacuum ultraviolet free electron laser at Hamburg (FLASH) at DESY are presented. With the use of the latest advances in detector development, the presented spectrometer reaches readout frequencies up to 1 MHz. In this paper, we demonstrate the ability to record online photon energy spectra on a shot-to-shot base in the multi-bunch mode of FLASH. Clearly resolved shifts in the mean wavelength over the pulse train as well as shot-to-shot wavelength fluctuations arising from the statistical nature of the photon generating self-amplified spontaneous emissionmore » process have been observed. In addition to an online tool for beam calibration and photon diagnostics, the spectrometer enables the determination and selection of spectral data taken with a transparent experiment up front over the photon energy of every shot. This leads to higher spectral resolutions without the loss of efficiency or photon flux by using single-bunch mode or monochromators.« less
Amsden, Jason J; Herr, Philip J; Landry, David M W; Kim, William; Vyas, Raul; Parker, Charles B; Kirley, Matthew P; Keil, Adam D; Gilchrist, Kristin H; Radauscher, Erich J; Hall, Stephen D; Carlson, James B; Baldasaro, Nicholas; Stokes, David; Di Dona, Shane T; Russell, Zachary E; Grego, Sonia; Edwards, Steven J; Sperline, Roger P; Denton, M Bonner; Stoner, Brian R; Gehm, Michael E; Glass, Jeffrey T
2018-02-01
Despite many potential applications, miniature mass spectrometers have had limited adoption in the field due to the tradeoff between throughput and resolution that limits their performance relative to laboratory instruments. Recently, a solution to this tradeoff has been demonstrated by using spatially coded apertures in magnetic sector mass spectrometers, enabling throughput and signal-to-background improvements of greater than an order of magnitude with no loss of resolution. This paper describes a proof of concept demonstration of a cycloidal coded aperture miniature mass spectrometer (C-CAMMS) demonstrating use of spatially coded apertures in a cycloidal sector mass analyzer for the first time. C-CAMMS also incorporates a miniature carbon nanotube (CNT) field emission electron ionization source and a capacitive transimpedance amplifier (CTIA) ion array detector. Results confirm the cycloidal mass analyzer's compatibility with aperture coding. A >10× increase in throughput was achieved without loss of resolution compared with a single slit instrument. Several areas where additional improvement can be realized are identified. Graphical Abstract ᅟ.
NASA Astrophysics Data System (ADS)
Amsden, Jason J.; Herr, Philip J.; Landry, David M. W.; Kim, William; Vyas, Raul; Parker, Charles B.; Kirley, Matthew P.; Keil, Adam D.; Gilchrist, Kristin H.; Radauscher, Erich J.; Hall, Stephen D.; Carlson, James B.; Baldasaro, Nicholas; Stokes, David; Di Dona, Shane T.; Russell, Zachary E.; Grego, Sonia; Edwards, Steven J.; Sperline, Roger P.; Denton, M. Bonner; Stoner, Brian R.; Gehm, Michael E.; Glass, Jeffrey T.
2018-02-01
Despite many potential applications, miniature mass spectrometers have had limited adoption in the field due to the tradeoff between throughput and resolution that limits their performance relative to laboratory instruments. Recently, a solution to this tradeoff has been demonstrated by using spatially coded apertures in magnetic sector mass spectrometers, enabling throughput and signal-to-background improvements of greater than an order of magnitude with no loss of resolution. This paper describes a proof of concept demonstration of a cycloidal coded aperture miniature mass spectrometer (C-CAMMS) demonstrating use of spatially coded apertures in a cycloidal sector mass analyzer for the first time. C-CAMMS also incorporates a miniature carbon nanotube (CNT) field emission electron ionization source and a capacitive transimpedance amplifier (CTIA) ion array detector. Results confirm the cycloidal mass analyzer's compatibility with aperture coding. A >10× increase in throughput was achieved without loss of resolution compared with a single slit instrument. Several areas where additional improvement can be realized are identified.
On the calibration and use of Dual Electron Sensors for NASA's Magnetospheric MultiScale mission
NASA Astrophysics Data System (ADS)
Avanov, L. A.; Gliese, U.; Pollock, C. J.; Barrie, A.; Mariano, A. J.; Tucker, C. J.; Jacques, A. D.; Zeuch, M.; Shields, N.; Christian, K. D.
2013-12-01
The scientific target of NASA's Magnetospheric MultiScale (MMS) mission is to study the fundamentally important phenomenon of magnetic reconnection. Theoretical models of this process predict a small (order of ten kilometers) size for the diffusion region where electrons are demagnetized at the dayside magnetopause. Yet, the region may typically sweep over the spacecraft at relatively high speeds of 50km/s. That is why Fast Plasma Investigation (FPI) instrument suite must have extremely high time resolution for measurements of the 3D particle distribution functions. The Dual Electron Spectrometers (DESs) provide fast (30ms) 3D electron velocity distributions, from 10eV to 30,000 eV, as part of the Fast Plasma Investigation (FPI) on NASA's Magnetospheric MultiScale (MMS) mission. This is accomplished by combining the measurements from eight different spectrometers (packaged in four dual sets) on each MMS spacecraft to produce each full distribution. This approach presents a new and challenging aspect to the calibration and operation of these instruments. The response uniformity among the spectrometer set, the consistency and reliability of their calibration in both sensitivity and their phase space selectivity (energy and angle), and the approach to handling any temporal evolution of these calibrated characteristics all assume enhanced importance in this application. In this paper, we will present brief descriptions of the spectrometers and our approach their ground calibration, trended results of those calibrations, and our plans to detect, track, and respond to any temporal evolution in instrument performance through the life of the mission.
In-beam spectroscopy of the k π=0- bands in230 236U
NASA Astrophysics Data System (ADS)
Zeyen, P.; Ackermann, B.; Dämmrich, U.; Euler, K.; Grafen, V.; Günther, C.; Herzog, P.; Marten-Tölle, M.; Prillwitz, B.; Tölle, R.; Lauterbach, Ch.; Maier, H. J.
1987-12-01
The K π=0- bands in even uranium nuclei were studied in the compound reactions231Pa( p, 2 n)230U,230, 232Th( α,2 n)232, 234U and236U( d, pn)236U. In-beam γ-rays were measured in coincidence with conversion-electrons, which were detected with an iron-free orange spectrometer. The negative-parity levels are observed up to intermediate spins ( I<13-). In addition, the 1- and 3- levels in230U were confirmed by a decay study with an isotope separated230Pa source. For the heavier isotopes ( A≥232) the properties of the K π=0- bands (energies and γ-branchings) are consistent with a vibrational character of these bands. For230U the K π=0- band lies at rather low energy ( E(1-)=367 keV), and the level spacings within this band are very similar to those of the isotones228Th and226Ra, which might indicate the onset of a stable octupole deformation.
NASA Technical Reports Server (NTRS)
Lincoln, K. A.; Bechtel, R. D.
1986-01-01
Recent advances in commercially available data acquisition electronics embodying high speed A/D conversion coupled to increased memory storage have now made practical (at least within time intervals of a third of a millisecond or more) the capturing of all of the data generated by a high repetition rate time-of-flight mass spectrometer producing complete spectra every 25 to 35 microseconds. Such a system was assembled and interfaced with a personal computer for control and management of data. The applications are described for recording time-resolved spectra of individual vapor plumes induced from the pulsed-laser heating of material. Each laser pulse triggers the system to generate automatically a 3-dimensional (3-D) presentation of the time-resolved spectra with m/z labeling of the major mass peaks, plus an intensity versus time display of both the laser pulse and the resulting vapor pulse. The software also permits storing of data and its presentation in various additional forms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Namba, S., E-mail: namba@hiroshima-u.ac.jp; Hasegawa, N.; Kishimoto, M.
To characterize the temporal evolution of ultrashort X-ray pulses emitted by laser plasmas using a pump-probe method, a magnetic bottle time-of-flight electron spectrometer is constructed. The design is determined by numerical calculations of a mirror magnetic field and of the electron trajectory in a flight tube. The performance of the spectrometer is characterized by measuring the electron spectra of xenon atoms irradiated with a laser-driven plasma X-ray pulse. In addition, two-color above-threshold ionization (ATI) experiment is conducted for measurement of the X-ray laser pulse duration, in which xenon atoms are simultaneously irradiated with an X-ray laser pump and an IRmore » laser probe. The correlation in the intensity of the sideband spectra of the 4d inner-shell photoelectrons and in the time delay of the two laser pulses yields an X-ray pulse width of 5.7 ps, in good agreement with the value obtained using an X-ray streak camera.« less
Novel time-of-flight spectrometer for the analysis of positron annihilation induced Auger electrons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hugenschmidt, Christoph; Legl, Stefan; Physik-Department E21, Technische Universitaet Muenchen, James-Franck-Strasse, 85748 Garching
2006-10-15
Positron annihilation induced Auger-electron spectroscopy (PAES) has several advantages over conventional Auger-electron spectroscopy such as extremely high surface sensitivity and outstanding signal-to-noise ratio at the Auger-transition energy. In order to benefit from these prominent features a low-energy positron beam of high intensity is required for surface sensitive PAES studies. In addition, an electron energy analyzer is required, which efficiently detects the Auger electrons with acceptable energy resolution. For this reason a novel time-of-flight (TOF) spectrometer has been developed at the intense positron source NEPOMUC that allows PAES studies within short measurement time. This TOF-PAES setup combines a trochoidal filter andmore » a flight tube in a Faraday cage in order to achieve an improved energy resolution of about 1 eV at high electron energies up to E{approx_equal}1000 eV. The electron flight time is the time between the annihilation radiation at the sample and when the electron hits a microchannel plate detector at the end of the flight tube.« less
Novel time-of-flight spectrometer for the analysis of positron annihilation induced Auger electrons
NASA Astrophysics Data System (ADS)
Hugenschmidt, Christoph; Legl, Stefan
2006-10-01
Positron annihilation induced Auger-electron spectroscopy (PAES) has several advantages over conventional Auger-electron spectroscopy such as extremely high surface sensitivity and outstanding signal-to-noise ratio at the Auger-transition energy. In order to benefit from these prominent features a low-energy positron beam of high intensity is required for surface sensitive PAES studies. In addition, an electron energy analyzer is required, which efficiently detects the Auger electrons with acceptable energy resolution. For this reason a novel time-of-flight (TOF) spectrometer has been developed at the intense positron source NEPOMUC that allows PAES studies within short measurement time. This TOF-PAES setup combines a trochoidal filter and a flight tube in a Faraday cage in order to achieve an improved energy resolution of about 1eV at high electron energies up to E ≈1000eV. The electron flight time is the time between the annihilation radiation at the sample and when the electron hits a microchannel plate detector at the end of the flight tube.
SU-D-BRCD-06: Measurement of Elekta Electron Energy Spectra Using a Small Magnetic Spectrometer.
Hogstrom, K; McLaughlin, D; Gibbons, J; Shikhaliev, P; Clarke, T; Henderson, A; Taylor, D; Shagin, P; Liang, E
2012-06-01
To demonstrate how a small magnetic spectrometer can measure the energy spectra of seven electron beams on an Elekta Infinity tuned to match beams on a previously commissioned machine. Energyspectra were determined from measurements of intensity profiles on 6″-long computed radiographic (CR) strips after deflecting a narrow incident beam using a small (28 lbs.), permanent magnetic spectrometer. CR plateexposures (<1cGy) required special beam reduction techniques and bremsstrahlung shielding. Curves of CR intensity (corrected for non- linearity and background) versus position were transformed into energy spectra using the transformation from position (x) on the CR plate to energy (E) based on the Lorentz force law. The effective magnetic field and its effective edge, parameters in the transformation, were obtained by fitting a plot of most probable incident energy (determined from practical range) to the peak position. The calibration curve (E vs. x) fit gave 0.423 Tesla for the effective magnetic field. Most resulting energy spectra were characterized by a single, asymmetric peak with peak position and FWHM increasing monotonically with beam energy. Only the 9-MeV spectrum was atypical, possibly indicating suboptimal beam tuning. These results compared well with energy spectra independently determined by adjusting each spectrum until the EGSnrc Monte Carlo calculated percent depth-dose curve agreed well with the corresponding measured curve. Results indicate that this spectrometer and methodology could be useful for measuring energy spectra of clinical electron beams at isocenter. Future work will (1) remove the small effect of the detector response function (due to pinhole size and incident angular spread) from the energy spectra, (2) extract the energy spectra exiting the accelerator from current results, (3) use the spectrometer to compare energy spectra of matched beams among our clinical sites, and (4) modify the spectrometer to utilize radiochromic film. © 2012 American Association of Physicists in Medicine.
Properties of 83mKr conversion electrons and their use in the KATRIN experiment
NASA Astrophysics Data System (ADS)
Vénos, D.; Sentkerestiová, J.; Dragoun, O.; Slezák, M.; Ryšavý, M.; Špalek, A.
2018-02-01
The gaseous 83mKr will be used as a source of monoenergetic conversion electrons for systematic studies and calibration of the energy scale in the KArlsruhe TRItium Neutrino experiment (KATRIN). Using all existing experimental data the adopted values of the electron binding energies for free krypton were established and the basic conversion electron properties in 83mKr decay were compiled. Modes of the measurements with gaseous 83mKr were suggested for KATRIN.
Source Region and Growth Analysis of Narrowband Z-mode Emission at Saturn
NASA Astrophysics Data System (ADS)
Menietti, J. D.; Pisa, D.; Santolik, O.; Ye, S.; Arridge, C. S.; Coates, A. J.
2015-12-01
Z-mode intensity levels can be significant in the lower density region near the inner edge of the Enceladus torus at Saturn, where these waves may resonate with electrons at MeV energies. The source mechanism of this emission, which is narrow banded and most intense near 5 kHz, is not yet well understood. We survey the Cassini Radio and Plasma Wave Science (RPWS) data to isolate several probable source regions. Electron phase space distributions are obtained from the Cassini Electron Spectrometer (ELS), a part of the Cassini Plasma Spectrometer (CAPS) investigation. These data are analyzed in seeking the wave source mechanism, free energy source and growth rate of Z-mode observations. We present the first results of our analysis.
NASA Technical Reports Server (NTRS)
Iwanczyk, J. S.; Dabrowski, A. J.; Huth, G. C.; Bradley, J. G.; Conley, J. M.
1986-01-01
A mercuric iodide energy dispersive X-ray spectrometer, with Peltier cooling provided for the detector and input field effect transistor, has been developed and tested in a scanning electron microscope. X-ray spectra were obtained with the 15 keV electron beam. An energy resolution of 225 eV (FWHM) for Mn-K(alpha) at 5.9 keV and 195 eV (FWHM) for the Mg-K line at 1.25 keV has been measured. Overall system noise level was 175 eV (FWHM). The detector system characterization with a carbon target demonstrated good energy sensitivity at low energies and lack of significant spectral artifacts at higher energies.
NASA Astrophysics Data System (ADS)
Wygant, J. R.
2016-12-01
Evidence has accumulated that most energy conversion structures in space plasmas are characterized by intense small-scale size electric fields with strong parallel components, which are prime suspects in the rapid and efficient bulk acceleration of electrons. The proposed MPEX mission will provide, for the first time, 1 ms measurements of electrons capable of resolving the acceleration process due to these small-scale structures. These structures include Time Domain Structures (TDS) which are often organized into wave trains of hundreds of discrete structures propagating along magnetic fields lines. Recent measurements in the near Earth tail on auroral field lines indicate these wave trains are associated with electron acceleration in layers of strong energy flow in the form of particle energy flux and Poynting flux. Also coincident are kinetic Alfven waves which may be capable of driving the time domain structures or directly accelerating electrons. Other waves that may be important include lower hybrid wave packets, electron cyclotron waves, and large amplitude whistler waves. High time resolution field measurements show that such structures occur within dayside and tail reconnection regions, at the bow shock, at interplanetary shocks, and at other structures in the solar wind. The MPEX mission will be a multiphase mission with apogee boosts, which will explore all these regions. An array of electron ESAs will provide a 1 millisecond measurement of electron flux variations with nearly complete pitch angle coverage over a programmable array of selected energy channels. The electric field detector will provide measurement a fully 3-D measurement of the electric field with the benefit of an extremely large ratio of boom length to spacecraft radius and an improved sensor design. 2-D ion distribution functions will be provided by ion mass spectrometer and energetic electrons will be measured by a solid-state telescope.
Models of Electron Energetics in the Enceladus Torus
NASA Astrophysics Data System (ADS)
Cravens, T. E.; Ozak, N.; Richard, M. S.; Robertson, I. P.; Perry, M. E.; Campbell, M. E.
2010-12-01
The inner magnetosphere of Saturn contains a mixture of plasma and neutral gas, the dominant source of which is the icy satellite Enceladus. Water vapor and water dissociation products are present throughout the magnetosphere but they are particularly concentrated in a torus surrounding Saturn at the orbit of Enceladus. The Hubble Space Telescope observed OH in the torus and other neutral species (mainly water) have been measured by the Ion and Neutral Mass Spectrometer (INMS) and the Ultraviolet Imaging Spectrometer (UVIS) onboard the Cassini spacecraft. Relatively cold plasma, dominated by water group ion species, was measured by instruments onboard both the Voyager and Cassini spacecraft. The electron distribution function in this torus appears to include both a colder thermal population (seen for example by the Cassini Radio and Plasma Wave Spectrometer’s Langmuir probe -- RPWS/LP) and hotter suprathermal populations (seen by the electron spectrometer part of the Cassini plasma analyzer -- CAPS/ELS). We present a model of electron energetics in the torus. One part of this model utilizes an electron energy deposition code to determine electron fluxes versus energy. The model includes photoelectron production from the absorption of solar radiation as well as electron impact collisional processes for water and other neutral species. Another part of the model consists of an energetics code for thermal electrons that generates electron temperatures. Heating from Coulomb collisions with photoelectrons and with hot pick-up ions was included, as was cooling due to electron impact collisions with water. We show that solar radiation is the dominant source of suprathermal electrons in the core neutral torus, in agreement with recently published CAPS-ELS data. We predict electron thermal energies of about 2 eV, which is somewhat low in comparison with recently published RPWS-LP data. The implications of these results for plasma densities in the torus will also be discussed.
On-line carbon balance of yeast fermentations using miniaturized optical sensors.
Beuermann, Thomas; Egly, Dominik; Geoerg, Daniel; Klug, Kerris Isolde; Storhas, Winfried; Methner, Frank-Juergen
2012-03-01
Monitoring of microbiological processes using optical sensors and spectrometers has gained in importance over the past few years due to its advantage in enabling non-invasive on-line analysis. Near-infrared (NIR) and mid-infrared (MIR) spectrometer set-ups in combination with multivariate calibrations have already been successfully employed for the simultaneous determination of different metabolites in microbiological processes. Photometric sensors, in addition to their low price compared to spectrometer set-ups, have the advantage of being compact and are easy to calibrate and operate. In this work, the detection of ethanol and CO(2) in the exhaust gas during aerobic yeast fermentation was performed by two photometric gas analyzers, and dry yeast biomass was monitored using a fiber optic backscatter set-up. The optical sensors could be easily fitted to the bioreactor and exhibited high robustness during measuring. The ethanol content of the fermentation broth was monitored on-line by measuring the ethanol concentration in the fermentation exhaust and applying a conversion factor. The vapor/liquid equilibrium and the associated conversion factor strongly depend on the process parameter temperature but not on aeration and stirring rate. Dry yeast biomass was determined in-line by a backscattering signal applying a linear calibration. An on-line balance with a recovery rate of 95-97% for carbon was achieved with the use of three optical sensors (two infrared gas analyzers and one fiber optic backscatter set-up). Copyright © 2011 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sigaud, L., E-mail: lsigaud@if.uff.br; Jesus, V. L. B. de; Ferreira, Natalia
In this work, the inclusion of an Einzel-like lens inside the time-of-flight drift tube of a standard mass spectrometer coupled to a gas cell—to study ionization of atoms and molecules by electron impact—is described. Both this lens and a conical collimator are responsible for further focalization of the ions and charged molecular fragments inside the spectrometer, allowing a much better resolution at the time-of-flight spectra, leading to a separation of a single mass-to-charge unit up to 100 a.m.u. The procedure to obtain the overall absolute efficiency of the spectrometer and micro-channel plate detector is also discussed.
Sigaud, L; de Jesus, V L B; Ferreira, Natalia; Montenegro, E C
2016-08-01
In this work, the inclusion of an Einzel-like lens inside the time-of-flight drift tube of a standard mass spectrometer coupled to a gas cell-to study ionization of atoms and molecules by electron impact-is described. Both this lens and a conical collimator are responsible for further focalization of the ions and charged molecular fragments inside the spectrometer, allowing a much better resolution at the time-of-flight spectra, leading to a separation of a single mass-to-charge unit up to 100 a.m.u. The procedure to obtain the overall absolute efficiency of the spectrometer and micro-channel plate detector is also discussed.
LVGEMS Time-of-Flight Mass Spectrometry on Satellites
NASA Technical Reports Server (NTRS)
Herrero, Federico
2013-01-01
NASA fs investigations of the upper atmosphere and ionosphere require measurements of composition of the neutral air and ions. NASA is able to undertake these observations, but the instruments currently in use have their limitations. NASA has extended the scope of its research in the atmosphere and now requires more measurements covering more of the atmosphere. Out of this need, NASA developed multipoint measurements using miniaturized satellites, also called nanosatellites (e.g., CubeSats), that require a new generation of spectrometers that can fit into a 4 4 in. (.10 10 cm) cross-section in the upgraded satellites. Overall, the new mass spectrometer required for the new depth of atmospheric research must fulfill a new level of low-voltage/low-power requirements, smaller size, and less risk of magnetic contamination. The Low-Voltage Gated Electrostatic Mass Spectrometer (LVGEMS) was developed to fulfill these requirements. The LVGEMS offers a new spectrometer that eliminates magnetic field issues associated with magnetic sector mass spectrometers, reduces power, and is about 1/10 the size of previous instruments. LVGEMS employs the time of flight (TOF) technique in the GEMS mass spectrometer previously developed. However, like any TOF mass spectrometer, GEMS requires a rectangular waveform of large voltage amplitude, exceeding 100 V -- that means that the voltage applied to one of the GEMS electrodes has to change from 0 to 100 V in a time of only a few nanoseconds. Such electronic speed requires more power than can be provided in a CubeSat. In the LVGEMS, the amplitude of the rectangular waveform is reduced to about 1 V, compatible with digital electronics supplies and requiring little power.
Design study for electronic system for Jupiter Orbit Probe (JOP)
NASA Technical Reports Server (NTRS)
Elero, B. P., Jr.; Carignan, G. R.
1978-01-01
The conceptual design of the Jupiter probe spectrometer is presented. Block and circuit diagrams are presented along with tabulated parts lists. Problem areas are considered to be (1) the schedule, (2) weight limitations for the electronic systems, and (3) radiation hardness of the electronic devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yange, E-mail: zhangygzhang@163.com; Li, Pinjiang; Xu, Xiaoyun
2015-10-15
Highlights: • SnO{sub 2} nanocrystals/thin films were fabricated on ITO glass substrate from preformed SnS thin film as sacrificial template. • The SnO{sub 2} film and SnO{sub 2}/P3HT was characterized by several techniques. • The new hybrid solar cell device was based on the hybrid thin film of SnO{sub 2} NCs and P3HT composites. - Abstract: we described a facile in-situ wet chemical method to prepare SnO{sub 2} thin film on ITO glass substrate from preformed SnS thin film as sacrificial template. The chemical conversion process of SnS to SnO{sub 2} was studied. The SnO{sub 2} film and SnO{sub 2}/P3HTmore » was characterized by several techniques, such as powder X-ray diffract meter (XRD), Raman spectrometer, scanning electron microscope (SEM), atomic force microscope (AFM) and UV–vis spectrophotometer in detail. The new SnO{sub 2}/P3HT hybrid solar cell device showed an open-circuit voltage of 0.185 V, a short-circuit current density of 0.366 mA/cm{sup 2} and a fill factor of 0.247, corresponding to a power conversion efficiency of 0.0167%.« less
Handling Density Conversion in TPS.
Isobe, Tomonori; Mori, Yutaro; Takei, Hideyuki; Sato, Eisuke; Tadano, Kiichi; Kobayashi, Daisuke; Tomita, Tetsuya; Sakae, Takeji
2016-01-01
Conversion from CT value to density is essential to a radiation treatment planning system. Generally CT value is converted to the electron density in photon therapy. In the energy range of therapeutic photon, interactions between photons and materials are dominated with Compton scattering which the cross-section depends on the electron density. The dose distribution is obtained by calculating TERMA and kernel using electron density where TERMA is the energy transferred from primary photons and kernel is a volume considering spread electrons. Recently, a new method was introduced which uses the physical density. This method is expected to be faster and more accurate than that using the electron density. As for particle therapy, dose can be calculated with CT-to-stopping power conversion since the stopping power depends on the electron density. CT-to-stopping power conversion table is also called as CT-to-water-equivalent range and is an essential concept for the particle therapy.
NASA Astrophysics Data System (ADS)
Baeza-Romero, María Teresa; Gaie-Levrel, Francois; Mahjoub, Ahmed; López-Arza, Vicente; Garcia, Gustavo A.; Nahon, Laurent
2016-07-01
A reaction chamber was coupled to a photoionization aerosol time-of-flight mass spectrometer based on an electron/ion coincidence scheme and applied for on-line analysis of organic and inorganic-organic mixed aerosols using synchrotron tunable vacuum ultraviolet (VUV) photons as the ionization source. In this proof of principle study, both aerosol and gas phase were detected simultaneously but could be differentiated. Present results and perspectives for improvement for this set-up are shown in the study of ozonolysis ([O3] = 0.13-3 ppm) of α-pinene (2-3 ppm), and the uptake of glyoxal upon ammonium sulphate. In this work the ozone concentration was monitored in real time, together with the particle size distributions and chemical composition, the latter taking advantage of the coincidence spectrometer and the tuneability of the synchrotron radiation as a soft VUV ionization source.
Compact x-ray source and panel
Sampayon, Stephen E [Manteca, CA
2008-02-12
A compact, self-contained x-ray source, and a compact x-ray source panel having a plurality of such x-ray sources arranged in a preferably broad-area pixelized array. Each x-ray source includes an electron source for producing an electron beam, an x-ray conversion target, and a multilayer insulator separating the electron source and the x-ray conversion target from each other. The multi-layer insulator preferably has a cylindrical configuration with a plurality of alternating insulator and conductor layers surrounding an acceleration channel leading from the electron source to the x-ray conversion target. A power source is connected to each x-ray source of the array to produce an accelerating gradient between the electron source and x-ray conversion target in any one or more of the x-ray sources independent of other x-ray sources in the array, so as to accelerate an electron beam towards the x-ray conversion target. The multilayer insulator enables relatively short separation distances between the electron source and the x-ray conversion target so that a thin panel is possible for compactness. This is due to the ability of the plurality of alternating insulator and conductor layers of the multilayer insulators to resist surface flashover when sufficiently high acceleration energies necessary for x-ray generation are supplied by the power source to the x-ray sources.
Electron and ion Bernstein waves in Saturnian Magnetosphere
NASA Astrophysics Data System (ADS)
Bashir, M. F.; Waheed, A.; Ilie, R.; Naeem, I.; Maqsood, U.; Yoon, P. H.
2017-12-01
The study of Bernstein mode is presented in order to interpret the observed micro-structures (MIS) and banded emission (BEM) in the Saturnian magnetosphere. The general dispersion relation of Bernstein wave is derived using the Lerche-NewBerger sum rule for the kappa distribution function and further analyzed the both electron Bernstein (EB) and ion Bernstein (IB) waves. The observational data of particle measurements is obtained from the electron spectrometer (ELS) and the ion mass spectrometer (IMS), which are part of the Cassini Plasma Spectrometer (CAPS) instrument suite on board the Cassini spacecraft. For additional electron data, the measurements of Low Energy Magnetospheric Measurements System of the Magnetospheric Imaging Instrument (LEMMS /MIMI) are also utilized. The effect of kappa spectral index, density ratio (nohe/noce for EB and nohe/noi for IB) and the temperature ratio (The/Tce for EB and The/T(h,c)i for IB) on the dispersion properties are discussed employing the exact numerical analysis to explain the appearing of additional maxima/minima (points where the perpendicular group velocity vanishes, i.e., ∂w/∂k = 0) above/below the lower (for IB) and upper hybrid (EB) bands in the observation and their relation to the MIS and BED. The results of these waves may also be compared with the simulation results of Space Weather Modeling Framework (SWMF) .
Nuclear conversion theory: molecular hydrogen in non-magnetic insulators
NASA Astrophysics Data System (ADS)
Ilisca, Ernest; Ghiglieno, Filippo
2016-09-01
The hydrogen conversion patterns on non-magnetic solids sensitively depend upon the degree of singlet/triplet mixing in the intermediates of the catalytic reaction. Three main `symmetry-breaking' interactions are brought together. In a typical channel, the electron spin-orbit (SO) couplings introduce some magnetic excitations in the non-magnetic solid ground state. The electron spin is exchanged with a molecular one by the electric molecule-solid electron repulsion, mixing the bonding and antibonding states and affecting the molecule rotation. Finally, the magnetic hyperfine contact transfers the electron spin angular momentum to the nuclei. Two families of channels are considered and a simple criterion based on the SO coupling strength is proposed to select the most efficient one. The denoted `electronic' conversion path involves an emission of excitons that propagate and disintegrate in the bulk. In the other denoted `nuclear', the excited electron states are transients of a loop, and the electron system returns to its fundamental ground state. The described model enlarges previous studies by extending the electron basis to charge-transfer states and `continui' of band states, and focuses on the broadening of the antibonding molecular excited state by the solid conduction band that provides efficient tunnelling paths for the hydrogen conversion. After working out the general conversion algebra, the conversion rates of hydrogen on insulating and semiconductor solids are related to a few molecule-solid parameters (gap width, ionization and affinity potentials) and compared with experimental measures.
Improved real-time imaging spectrometer
NASA Technical Reports Server (NTRS)
Lambert, James L. (Inventor); Chao, Tien-Hsin (Inventor); Yu, Jeffrey W. (Inventor); Cheng, Li-Jen (Inventor)
1993-01-01
An improved AOTF-based imaging spectrometer that offers several advantages over prior art AOTF imaging spectrometers is presented. The ability to electronically set the bandpass wavelength provides observational flexibility. Various improvements in optical architecture provide simplified magnification variability, improved image resolution and light throughput efficiency and reduced sensitivity to ambient light. Two embodiments of the invention are: (1) operation in the visible/near-infrared domain of wavelength range 0.48 to 0.76 microns; and (2) infrared configuration which operates in the wavelength range of 1.2 to 2.5 microns.
Modulated Fourier Transform Raman Fiber-Optic Spectroscopy
NASA Technical Reports Server (NTRS)
Jensen, Brian J. (Inventor); Cooper, John B. (Inventor); Wise, Kent L. (Inventor)
2000-01-01
A modification to a commercial Fourier Transform (FT) Raman spectrometer is presented for the elimination of thermal backgrounds in the FT Raman spectra. The modification involves the use of a mechanical optical chopper to modulate the continuous wave laser, remote collection of the signal via fiber optics, and connection of a dual-phase digital-signal-processor (DSP) lock-in amplifier between the detector and the spectrometer's collection electronics to demodulate and filter the optical signals. The resulting Modulated Fourier Transform Raman Fiber-Optic Spectrometer is capable of completely eliminating thermal backgrounds at temperatures exceeding 300 C.
H2RG Detector Characterization for RIMAS and Instrument Efficiencies
NASA Technical Reports Server (NTRS)
Toy, Vicki L.; Kutyrev, Alexander S.; Capone, John I.; Hams, Thomas; Robinson, F. David; Lotkin, Gennadiy N.; Veilleux, Sylvain; Moseley, Samuel H.; Gehrels, Neil A.; Vogel, Stuart N.
2016-01-01
The Rapid infrared IMAger-Spectrometer (RIMAS) is a near-infrared (NIR) imager and spectrometer that will quickly follow up gamma-ray burst afterglows on the 4.3-meter Discovery Channel Telescope (DCT). RIMAS has two optical arms which allows simultaneous coverage over two bandpasses (YJ and HK) in either imaging or spectroscopy mode. RIMAS utilizes two Teledyne HgCdTe H2RG detectors controlled by Astronomical Research Cameras, Inc. (ARC/Leach) drivers. We report the laboratory characterization of RIMAS's detectors: conversion gain, read noise, linearity, saturation, dynamic range, and dark current. We also present RIMAS's instrument efficiency from atmospheric transmission models and optics data (both telescope and instrument) in all three observing modes.
Revealing hole trapping in zinc oxide nanoparticles by time-resolved X-ray spectroscopy
Penfold, Thomas J.; Szlachetko, Jakub; Santomauro, Fabio G.; ...
2018-02-02
Nanostructures of transition metal oxides (TMO), such as ZnO, have attracted considerable interest for solar-energy conversion and photocatalysis. For the latter, trapping of charge carriers has an essential role. The probing of electron trapping in the conduction band of room temperature photoexcited TMOs has recently become possible owing to the emergence of time-resolved element-sensitive methods, such as X-ray spectroscopy. However, because the valence band of TMOs is dominated by the oxygen 2p orbitals,holes have so far escaped observation. Herein we use a novel dispersive X-ray emission spectrometer combined with X-ray absorption spectroscopy to directly probe the charge carrier relaxation andmore » trapping pro-cesses in ZnO nanoparticles after above band-gap photoexcitation. Here, our results, supported by simulations, demonstrate that within our temporal resolution of 80 ps, photo-excited holes are trapped at singly charged oxygen vacancies, turning them into doubly charged vacancies, which causes an outward displacement by approximately 15% of the four surrounding Zn atoms away from the central vacancy. These traps recombine radiatively with the delocalised electrons of the conduction band yielding the commonly observed green luminescence. This identification of the hole traps and their evolution provides new insight for future developments of TMO-based nanodevices.« less
Revealing hole trapping in zinc oxide nanoparticles by time-resolved X-ray spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Penfold, Thomas J.; Szlachetko, Jakub; Santomauro, Fabio G.
Nanostructures of transition metal oxides (TMO), such as ZnO, have attracted considerable interest for solar-energy conversion and photocatalysis. For the latter, trapping of charge carriers has an essential role. The probing of electron trapping in the conduction band of room temperature photoexcited TMOs has recently become possible owing to the emergence of time-resolved element-sensitive methods, such as X-ray spectroscopy. However, because the valence band of TMOs is dominated by the oxygen 2p orbitals,holes have so far escaped observation. Herein we use a novel dispersive X-ray emission spectrometer combined with X-ray absorption spectroscopy to directly probe the charge carrier relaxation andmore » trapping pro-cesses in ZnO nanoparticles after above band-gap photoexcitation. Here, our results, supported by simulations, demonstrate that within our temporal resolution of 80 ps, photo-excited holes are trapped at singly charged oxygen vacancies, turning them into doubly charged vacancies, which causes an outward displacement by approximately 15% of the four surrounding Zn atoms away from the central vacancy. These traps recombine radiatively with the delocalised electrons of the conduction band yielding the commonly observed green luminescence. This identification of the hole traps and their evolution provides new insight for future developments of TMO-based nanodevices.« less
Chen, Peng; Yan, Lei; Wu, Zhengrong; Li, Suyue; Bai, Zhongtian; Yan, Xiaojuan; Wang, Ningbo; Liang, Ning; Li, Hongyu
2016-01-01
Bacillus subtilis strain B7-S screened from18 strains is an aerobic, endospore-forming, model organism of Gram-positive bacteria which is capable to form vanillin during ferulic acid bioconversion. The bioconversion of ferulic acid to vanillin by Bacillus subtilis B7-S (B. subtilis B7-S) was investigated. Based on our results, the optimum bioconversion conditions for the production of vanillin by B. subtilis B7-S can be summarized as follows: temperature 35 °C; initial pH 9.0; inoculum volume 5%; ferulic acid concentration 0.6 g/L; volume of culture medium 20%; and shaking speed 200 r/min. Under these conditions, several repeated small-scale batch experiments showed that the maximum conversion efficiency was 63.30% after 3 h of bioconversion. The vanillin products were confirmed by spectral data achieved from UV–vis, inductively coupled plasma atomic emission spectroscope (ICP-AES) and Fourier transform infrared spectrometer (FT-IR) spectra. Scanning electron microscopy (SEM) and transmission electron spectroscopy (TEM) results confirmed that the cell surface of B. subtilis plays a role in the induction of ferulic acid tolerance. These results demonstrate that B. subtilis B7-S has the potential for use in vanillin production through bioconversion of ferulic acid. PMID:26841717
Chen, Peng; Yan, Lei; Wu, Zhengrong; Li, Suyue; Bai, Zhongtian; Yan, Xiaojuan; Wang, Ningbo; Liang, Ning; Li, Hongyu
2016-02-04
Bacillus subtilis strain B7-S screened from18 strains is an aerobic, endospore-forming, model organism of Gram-positive bacteria which is capable to form vanillin during ferulic acid bioconversion. The bioconversion of ferulic acid to vanillin by Bacillus subtilis B7-S (B. subtilis B7-S) was investigated. Based on our results, the optimum bioconversion conditions for the production of vanillin by B. subtilis B7-S can be summarized as follows: temperature 35 °C; initial pH 9.0; inoculum volume 5%; ferulic acid concentration 0.6 g/L; volume of culture medium 20%; and shaking speed 200 r/min. Under these conditions, several repeated small-scale batch experiments showed that the maximum conversion efficiency was 63.30% after 3 h of bioconversion. The vanillin products were confirmed by spectral data achieved from UV-vis, inductively coupled plasma atomic emission spectroscope (ICP-AES) and Fourier transform infrared spectrometer (FT-IR) spectra. Scanning electron microscopy (SEM) and transmission electron spectroscopy (TEM) results confirmed that the cell surface of B. subtilis plays a role in the induction of ferulic acid tolerance. These results demonstrate that B. subtilis B7-S has the potential for use in vanillin production through bioconversion of ferulic acid.
Results from a 64-pixel PIN-diode detector system for low-energy beta-electrons
NASA Astrophysics Data System (ADS)
Wuestling, Sascha; Fraenkle, F.; Habermehl, F.; Renschler, P.; Steidl, M.
2010-12-01
The KATRIN neutrino mass experiment is based on a precise energy measurement (Δ E/ E=5×10 -5) of electrons emerging from tritium beta decay ( Emax=18.6 keV). This is done by a large electrostatic retarding spectrometer (MAC-E Filter), which is followed by an electron detector. Key requirements for this detector are a large sensitive area (˜80 cm 2), a certain energy resolution (Δ E=600 eV @ 18.6 keV) but also a certain spatial resolution (˜3 mm), which leads to a multi-pixel design. As a tentative design on the way to the final detector, but also for operational service on the so-called pre-spectrometer experiment, a detector system with a reduced size (16 cm 2) and a reduced pixel number (64), making use of a monolithic segmented silicon PIN diode, was designed and built. While the design and very first measurements have been presented in Wuestling et al. [6], this publication shows the operational performance of the detector system. The robust concept of the electronics allowed adaptation to mechanically different experimental setups. The spacial resolution of the detector system proved to be essential in examining Penning trap induced background and other effects in the pre-spectrometer experiment. The detector performance test runs include energy resolution and calibration, background rates, correlation between pixels (crosstalk), spatially resolved rate analysis, and a dead-layer measurement [7]. The detector allows for background searches with a sensitivity as low as 1.3×10 -3 cps/cm 2 in the energy range of 20 keV. This allows the pre-spectrometer to be characterized with e-gun illumination with a signal to background ratio of better than 10 5 and the search for ultra low Penning discharge emissions.
ERIC Educational Resources Information Center
Bonjour, Jessica L.; Pitzer, Joy M.; Frost, John A.
2015-01-01
Mole to gram conversions, density, and percent composition are fundamental concepts in first year chemistry at the high school or undergraduate level; however, students often find it difficult to engage with these concepts. We present a simple laboratory experiment utilizing portable nuclear magnetic resonance spectroscopy (NMR) to determine the…
NASA Technical Reports Server (NTRS)
Traub, W. A.; Chance, K. V.; Brasunas, J. C.; Vrtilek, J. M.; Carleton, N. P.
1982-01-01
The design and use of an infrared Fourier transform spectrometer which has been used for observations of laboratory, stratospheric, and astronomical spectra are described. The spectrometer has a spectral resolution of 0.032/cm and has operated in the mid-infrared (12 to 13 microns) as well as the far-infrared (40 to 140 microns), using both bolometer and photoconductor cryogenic detectors. The spectrometer is optically sized to accept an f/9 beam from the multi-mirror telescope (MMT). The optical and electronic design are discussed, including remote operation of the spectrometer on a balloon-borne 102-cm telescope. The performance of the laser-controlled, screw-driven moving cat's-eye mirror is discussed. Segments of typical far-infrared balloon flight spectra, lab spectra, and mid-infrared MMT spectra are presented. Data reduction, interferogram processing, artifact removal, wavelength calibration, and intensity calibration methods are discussed. Future use of the spectrometer is outlined.
Spectroscopy of Vibrational States in Diatomic Iodine Molecules
NASA Astrophysics Data System (ADS)
Mulholland, Mary; Harrill, Charles H.; Smith, R. Seth
2015-04-01
This project is focused on understanding the vibrational structure of iodine, which is a homonuclear diatomic molecule. A 20 mW, 532 nm cw diode laser was used to selectively excite neutral iodine molecules to a higher energy electronic state. By performing spectroscopy on the transitions from this state to a lower energy electronic state, the data only showed those vibrational bands which connect the two electronic states. Since a number of vibrational levels are populated in the higher energy electronic state, the transitions to all of the allowed vibrational levels in the lower energy electronic state provided sufficient data to determine the vibrational structures of both states. Emission spectra were collected with an Ocean Optics USB4000 Compact CCD Spectrometer. The spectrometer had a range of 500 - 770 nm with a resolution of approximately 0.5 nm and was sensitive enough to resolve the vibrational states in diatomic iodine molecules. The results were compared to a simple harmonic oscillator model.
Wang, Fang; Zhang, Yonglai; Liu, Yang; Wang, Xuefeng; Shen, Mingrong; Lee, Shuit-Tong; Kang, Zhenhui
2013-03-07
Here we show a bias-mediated electron/energy transfer process at the CQDs-TiO(2) interface for the dynamic modulation of opto-electronic properties. Different energy and electron transfer states have been observed in the CQDs-TNTs system due to the up-conversion photoluminescence and the electron donation/acceptance properties of the CQDs decorated on TNTs.
Linear electronic field time-of-flight ion mass spectrometers
Funsten, Herbert O.
2010-08-24
Time-of-flight mass spectrometer comprising a first drift region and a second drift region enclosed within an evacuation chamber; a means of introducing an analyte of interest into the first drift region; a pulsed ionization source which produces molecular ions from said analyte of interest; a first foil positioned between the first drift region and the second drift region, which dissociates said molecular ions into constituent atomic ions and emits secondary electrons; an electrode which produces secondary electrons upon contact with a constituent atomic ion in second drift region; a stop detector comprising a first ion detection region and a second ion detection region; and a timing means connected to the pulsed ionization source, to the first ion detection region, and to the second ion detection region.
Design and building of new spin polarized Positron Annihilation Induced Auger Electron Spectrometer
NASA Astrophysics Data System (ADS)
Lim, Zheng Hui; Mishler, Michael; Joglekar, Prasad; Shastry, Karthik; Koymen, Ali; Sharma, Suresh; Weiss, Alexander
2014-03-01
We propose to develop a next generation high flux variable energy spin-polarized position beam facility for materials studies. This new system will have a higher efficiency than our current system, and it will also be the first in the world to combine spin polarization with a time of flight Positron Annihilation induced Auger Electron Spectroscopy (PAES). The spin polarized positrons are electromagnetically guided towards the sample with an axial magnetic field and perpendicular electric fields. These incident positrons get annihilated at the surface of the sample creating two gamma rays and auger electrons via Auger transitions. These signals are useful in characterizing material surface, surface magnetization, and energy sharing in valence band. This new spectrometer, which is currently under construction, will be a next generation positron system. NSF.
Instrumentation for the Atmospheric Explorer photoelectron spectrometer
NASA Technical Reports Server (NTRS)
Peletier, D. P.
1973-01-01
The photoelectron spectrometer (PES) is part of the complements of scientific instruments aboard three NASA Atmosphere Explorer (AE) satellites. The PES measures the energy spectrum, angular distribution, and intensity of electrons in the earth's thermosphere. Measurements of energies between 2 and 500 eV are made at altitudes as low as 130 km. The design, characteristics, and performance of the instrument are described.
JPRS Report, Science & Technology, USSR: Chemistry.
1987-07-29
allowing these mycotoxins to be determined with high sensitivity in the food products most frequently contami- nated by them. The content of these...first ultraviolet and infrared spectrometers, then came, the turn of nuclear magnetic resonance, electron spin resonance and mass spectrometers...products was by two methods: gravimetric analysis and infrared spectrometry. Calculations showed that the energy necessary to disperse the initial
Negative ion and dust grain charge in Titan's ionosphere: multi-instrument case study
NASA Astrophysics Data System (ADS)
Shebanits, O.; Wahlund, J.-E.; Edberg, N. J. T.; Wellbrock, A.; Coates, A. J.; Crary, F.; Andrews, D.
2014-04-01
The Cassini s/c in-situ plasma measurements of Titan's ionosphere by Radio and Plasma Wave Science (RPWS) Langmuir Probe (LP), Cassini Plasma Spectrometer (CAPS) Electron (ELS) and Ion Beam (IBS) spectrometers are combined for selected flybys (T16, T20, T29, T40 and T56) to further constrain plasma parameters of ionosphere below 1400 km.
Berkeley extreme-ultraviolet airglow rocket spectrometer - BEARS
NASA Technical Reports Server (NTRS)
Cotton, D. M.; Chakrabarti, S.
1992-01-01
The Berkeley EUV airglow rocket spectrometer (BEARS) instrument is described. The instrument was designed in particular to measure the dominant lines of atomic oxygen in the FUV and EUV dayglow at 1356, 1304, 1027, and 989 A, which is the ultimate source of airglow emissions. The optical and mechanical design of the instrument, the detector, electronics, calibration, flight operations, and results are examined.
An ultra-low cost NMR device with arbitrary pulse programming
NASA Astrophysics Data System (ADS)
Chen, Hsueh-Ying; Kim, Yaewon; Nath, Pulak; Hilty, Christian
2015-06-01
Ultra-low cost, general purpose electronics boards featuring microprocessors or field programmable gate arrays (FPGA) are reaching capabilities sufficient for direct implementation of NMR spectrometers. We demonstrate a spectrometer based on such a board, implemented with a minimal need for the addition of custom electronics and external components. This feature allows such a spectrometer to be readily implemented using typical knowledge present in an NMR laboratory. With FPGA technology, digital tasks are performed with precise timing, without the limitation of predetermined hardware function. In this case, the FPGA is used for programming of arbitrarily timed pulse sequence events, and to digitally generate required frequencies. Data acquired from a 0.53 T permanent magnet serves as a demonstration of the flexibility of pulse programming for diverse experiments. Pulse sequences applied include a spin-lattice relaxation measurement using a pulse train with small-flip angle pulses, and a Carr-Purcell-Meiboom-Gill experiment with phase cycle. Mixing of NMR signals with a digitally generated, 4-step phase-cycled reference frequency is further implemented to achieve sequential quadrature detection. The flexibility in hardware implementation permits tailoring this type of spectrometer for applications such as relaxometry, polarimetry, diffusometry or NMR based magnetometry.
Performance of a neutron spectrometer based on a PIN diode.
Agosteo, S; D'Angelo, G; Fazzi, A; Para, A Foglio; Pola, A; Ventura, L; Zotto, P
2005-01-01
The neutron spectrometer discussed in this work consists of a PIN diode coupled with a polyethylene converter. Neutrons are detected through the energy deposited by recoil-protons in silicon. The maximum detectable energy is -6 MeV and is imposed by the thickness of the fully depleted layer (300 microm for the present device). The minimum detectable energy which can be assessed with pulse-shape discrimination (PSD) is -0.9 MeV. PSD is performed with a crossover method and setting the diode in the 'reverse-injection' configuration (i.e. with the N+ layer adjacent to the converter). This configuration provides longer collection times for the electron-hole pairs generated by the recoil-protons. The limited interval of detectable energies restricts the application of this spectrometer to low-energy neutron fields, such as the ones which can be produced at facilities hosting low-energy ion accelerators. The capacity to reproduce continuous neutron spectra was investigated by optimising the electronic chain for pulse-shape discrimination. In particular, the spectrometer was irradiated with neutrons that were generated by striking a thick beryllium target with protons of several energies and the measured spectra were compared with data taken from the literature.
NASA Astrophysics Data System (ADS)
Liszkay, L.; Comini, P.; Corbel, C.; Debu, P.; Grandemange, P.; Pérez, P.; Rey, J.-M.; Reymond, J.-M.; Ruiz, N.; Sacquin, Y.; Vallage, B.
2014-04-01
A new slow positron beamline featuring a large acceptance positronium lifetime spectrometer has been constructed and tested at the linac-based slow positron source at IRFU CEA Saclay, France. The new instrument will be used in the development of a dense positronium target cloud for the GBAR experiment. The GBAR project aims at precise measurement of the gravitational acceleration of antihydrogen in the gravitational field of the Earth. Beyond application in fundamental science, the positron spectrometer will be used in materials research, for testing thin porous films and layers by means of positronium annihilation. The slow positron beamline is being used as a test bench to develop further instrumentation for positron annihilation spectroscopy (Ps time-of-flight, pulsed positron beam). The positron source is built on a low energy linear electron accelerator (linac). The 4.3 MeV electron energy used is well below the photoneutron threshold, making the source a genuine on-off device, without remaining radioactivity. The spectrometer features large BGO (Bismuth Germanate) scintillator detectors, with sufficiently large acceptance to detect all ortho-positronium annihilation lifetime components (annihilation in vacuum and in nanopores).
Scheeline, Alexander
2017-10-01
Designing a spectrometer requires knowledge of the problem to be solved, the molecules whose properties will contribute to a solution of that problem and skill in many subfields of science and engineering. A seemingly simple problem, design of an ultraviolet, visible, and near-infrared spectrometer, is used to show the reasoning behind the trade-offs in instrument design. Rather than reporting a fully optimized instrument, the Yin and Yang of design choices, leading to decisions about financial cost, materials choice, resolution, throughput, aperture, and layout are described. To limit scope, aspects such as grating blaze, electronics design, and light sources are not presented. The review illustrates the mixture of mathematical rigor, rule of thumb, esthetics, and availability of components that contribute to the art of spectrometer design.
A compact time-of-flight mass spectrometer for ion source characterization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, L., E-mail: l.chen03@gmail.com; Wan, X.; Jin, D. Z.
2015-03-15
A compact time-of-flight mass spectrometer with overall dimension of about 413 × 250 × 414 mm based on orthogonal injection and angle reflection has been developed for ion source characterization. Configuration and principle of the time-of-flight mass spectrometer are introduced in this paper. The mass resolution is optimized to be about 1690 (FWHM), and the ion energy detection range is tested to be between about 3 and 163 eV with the help of electron impact ion source. High mass resolution and compact configuration make this spectrometer useful to provide a valuable diagnostic for ion spectra fundamental research and study themore » mass to charge composition of plasma with wide range of parameters.« less
The Lunar Prospector Discovery Mission: mission and measurement description.
NASA Astrophysics Data System (ADS)
Hubbard, G. S.; Binder, A. B.; Feldman, W.
1998-06-01
Lunar Prospector, the first competitively selected planetary mission in NASA's Discovery Program, is described with emphasis on the radiation spectrometer instrumentation and anticipated scientific data return. Scheduled to be launched in January 1998, the mission will conduct a one year orbital survey of the Moon's composition and structure. The suite of five instruments are outlined: neutron spectrometer, alpha particle spectrometer, gamma-ray spectrometer, electron reflectometer and magnetometer. Scientific requirements and measurement approach to detect water/ice to a sensitivity of 50 ppm (hydrogen), measure key elemental constituents, detect radioactive gas release events and accurately map the Moon's gravitational and magnetic fields are given. A brief overview of the programmatic accomplishments in meeting a tightly constrained schedule and budget is also provided.
The Lunar Prospector discovery mission: mission and measurement description.
NASA Astrophysics Data System (ADS)
Hubbard, G. S.; Binder, A. B.; Feldman, W.
Lunar Prospector, the first competitively selected planetary mission in NASA's discovery program, is described with emphasis on the radiation spectrometer instrumentation and anticipated scientific data return. Scheduled to be launched in January 1998, the mission will conduct a one year orbital survey of the moon's composition and structure. The suite of five instruments will be outlined: neutron spectrometer, alpha particle spectrometer, gamma-ray spectrometer, electron reflectometer and magnetometer. Scientific requirements and measurement approach to detect water ice to a sensitivity of 50 ppm (hydrogen), measure key elemental constituents, detect radioactive gas release events and accurately map the moon's gravitational and magnetic fields are given. A brief overview of the programmatic accomplishments in meeting a tightly constrained schedule and budget is also provided.
Nuclear conversion theory: molecular hydrogen in non-magnetic insulators
Ghiglieno, Filippo
2016-01-01
The hydrogen conversion patterns on non-magnetic solids sensitively depend upon the degree of singlet/triplet mixing in the intermediates of the catalytic reaction. Three main ‘symmetry-breaking’ interactions are brought together. In a typical channel, the electron spin–orbit (SO) couplings introduce some magnetic excitations in the non-magnetic solid ground state. The electron spin is exchanged with a molecular one by the electric molecule–solid electron repulsion, mixing the bonding and antibonding states and affecting the molecule rotation. Finally, the magnetic hyperfine contact transfers the electron spin angular momentum to the nuclei. Two families of channels are considered and a simple criterion based on the SO coupling strength is proposed to select the most efficient one. The denoted ‘electronic’ conversion path involves an emission of excitons that propagate and disintegrate in the bulk. In the other denoted ‘nuclear’, the excited electron states are transients of a loop, and the electron system returns to its fundamental ground state. The described model enlarges previous studies by extending the electron basis to charge-transfer states and ‘continui’ of band states, and focuses on the broadening of the antibonding molecular excited state by the solid conduction band that provides efficient tunnelling paths for the hydrogen conversion. After working out the general conversion algebra, the conversion rates of hydrogen on insulating and semiconductor solids are related to a few molecule–solid parameters (gap width, ionization and affinity potentials) and compared with experimental measures. PMID:27703681
A Ka-band chirped-pulse Fourier transform microwave spectrometer
NASA Astrophysics Data System (ADS)
Zaleski, Daniel P.; Neill, Justin L.; Muckle, Matt T.; Seifert, Nathan A.; Brandon Carroll, P.; Widicus Weaver, Susanna L.; Pate, Brooks H.
2012-10-01
The design and performance of a new chirped-pulse Fourier transform microwave (CP-FTMW) spectrometer operating from 25 to 40 GHz (Ka-band) is presented. This spectrometer is well-suited for the study of complex organic molecules of astronomical interest in the size range of 6-10 atoms that have strong rotational transitions in Ka-band under pulsed jet sample conditions (Trot = 1-10 K). The spectrometer permits acquisition of the full spectral band in a single data acquisition event. Sensitivity is enhanced by using two pulsed jet sources and acquiring 10 broadband measurements for each sample injection cycle. The spectrometer performance is benchmarked by measuring the pure rotational spectrum of several isotopologues of acetaldehyde in natural abundance. The rotational spectra of the singly substituted 13C and 18O isotopologues of the two lowest energy conformers of ethyl formate have been analyzed and the resulting substitution structures for these conformers are compared to electronic structure theory calculations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kojima, Sadaoki, E-mail: kojima-s@ile.osaka-u.ac.jp, E-mail: sfujioka@ile.osaka-u.ac.jp; Ikenouchi, Takahito; Arikawa, Yasunobu
Hard X-ray spectroscopy is an essential diagnostics used to understand physical processes that take place in high energy density plasmas produced by intense laser-plasma interactions. A bundle of hard X-ray detectors, of which the responses have different energy thresholds, is used as a conventional single-shot spectrometer for high-flux (>10{sup 13} photons/shot) hard X-rays. However, high energy resolution (Δhv/hv < 0.1) is not achievable with a differential energy threshold (DET) X-ray spectrometer because its energy resolution is limited by energy differences between the response thresholds. Experimental demonstration of a Compton X-ray spectrometer has already been performed for obtaining higher energy resolutionmore » than that of DET spectrometers. In this paper, we describe design details of the Compton X-ray spectrometer, especially dependence of energy resolution and absolute response on photon-electron converter design and its background reduction scheme, and also its application to the laser-plasma interaction experiment. The developed spectrometer was used for spectroscopy of bremsstrahlung X-rays generated by intense laser-plasma interactions using a 200 μm thickness SiO{sub 2} converter. The X-ray spectrum obtained with the Compton X-ray spectrometer is consistent with that obtained with a DET X-ray spectrometer, furthermore higher certainly of a spectral intensity is obtained with the Compton X-ray spectrometer than that with the DET X-ray spectrometer in the photon energy range above 5 MeV.« less
Recent Developments of an Opto-Electronic THz Spectrometer for High-Resolution Spectroscopy
Hindle, Francis; Yang, Chun; Mouret, Gael; Cuisset, Arnaud; Bocquet, Robin; Lampin, Jean-François; Blary, Karine; Peytavit, Emilien; Akalin, Tahsin; Ducournau, Guillaume
2009-01-01
A review is provided of sources and detectors that can be employed in the THz range before the description of an opto-electronic source of monochromatic THz radiation. The realized spectrometer has been applied to gas phase spectroscopy. Air-broadening coefficients of HCN are determined and the insensitivity of this technique to aerosols is demonstrated by the analysis of cigarette smoke. A multiple pass sample cell has been used to obtain a sensitivity improvement allowing transitions of the volatile organic compounds to be observed. A solution to the frequency metrology is presented and promises to yield accurate molecular line center measurements. PMID:22291552
The LAMP instrument at the Linac Coherent Light Source free-electron laser
NASA Astrophysics Data System (ADS)
Osipov, Timur; Bostedt, Christoph; Castagna, J.-C.; Ferguson, Ken R.; Bucher, Maximilian; Montero, Sebastian C.; Swiggers, Michele L.; Obaid, Razib; Rolles, Daniel; Rudenko, Artem; Bozek, John D.; Berrah, Nora
2018-03-01
The Laser Applications in Materials Processing (LAMP) instrument is a new end-station for soft X-ray imaging, high-field physics, and ultrafast X-ray science experiments that is available to users at the Linac Coherent Light Source (LCLS) free-electron laser. While the instrument resides in the Atomic, Molecular and Optical science hutch, its components can be used at any LCLS beamline. The end-station has a modular design that provides high flexibility in order to meet user-defined experimental requirements and specifications. The ultra-high-vacuum environment supports different sample delivery systems, including pulsed and continuous atomic, molecular, and cluster jets; liquid and aerosols jets; and effusive metal vapor beams. It also houses movable, large-format, high-speed pnCCD X-ray detectors for detecting scattered and fluorescent photons. Multiple charged-particle spectrometer options are compatible with the LAMP chamber, including a double-sided spectrometer for simultaneous and even coincident measurements of electrons, ions, and photons produced by the interaction of the high-intensity X-ray beam with the various samples. Here we describe the design and capabilities of the spectrometers along with some general aspects of the LAMP chamber and show some results from the initial instrument commissioning.
Electronic-To-Optical-To-Electronic Packet-Data Conversion
NASA Technical Reports Server (NTRS)
Monacos, Steve
1996-01-01
Space-time multiplexer (STM) cell-based communication system designed to take advantage of both high throughput attainable in optical transmission links and flexibility and functionality of electronic processing, storage, and switching. Long packets segmented and transmitted optically by wavelength-division multiplexing. Performs optoelectronic and protocol conversion between electronic "store-and-forward" protocols and optical "hot-potato" protocols.
Positron-electron decay of 28Si at an excitation energy of 50 MeV
NASA Astrophysics Data System (ADS)
Buda, A.; Bacelar, J. C.; Balanda, A.; van der Ploeg, H.; Sujkowski, Z.; van der Woude, A.
1993-03-01
The electron-position pair decay of 28Si at 50 MeV excitation produced by the isospin T=0 (α + 24Mg) and the mixed isospin T=0,1 (3He + 25Mg) reactions has been studied using a special designed Positron-Electron pair spectrometer PEPSI.
Kokaly, Raymond F.; Hoefen, Todd M.; Livo, K. Eric; Swayze, Gregg A.; Leifer, Ira; McCubbin, Ian B.; Eastwood, Michael L.; Green, Robert O.; Lundeen, Sarah R.; Sarture, Charles M.; Steele, Denis; Ryan, Thomas; Bradley, Eliza S.; Roberts, Dar A.; ,
2010-01-01
This report describes a method to create color-composite images indicative of thick oil:water emulsions on the surface of clear, deep ocean water by using normalized difference ratios derived from remotely sensed data collected by an imaging spectrometer. The spectral bands used in the normalized difference ratios are located in wavelength regions where the spectra of thick oil:water emulsions on the ocean's surface have a distinct shape compared to clear water and clouds. In contrast to quantitative analyses, which require rigorous conversion to reflectance, the method described is easily computed and can be applied rapidly to radiance data or data that have been atmospherically corrected or ground-calibrated to reflectance. Examples are shown of the method applied to Airborne Visible/Infrared Imaging Spectrometer data collected May 17 and May 19, 2010, over the oil spill from the Deepwater Horizon offshore oil drilling platform in the Gulf of Mexico.
NASA Astrophysics Data System (ADS)
Wołoszczuk, Katarzyna; Skubacz, Krystian
2018-01-01
Central Laboratory for Radiological Protection, in cooperation with Central Mining Institute performed measurements of radon concentration in air, potential alpha energy concentration (PAEC), particle size distribution of the radon progeny and ambient aerosols in the Underground Tourist-Educational Route "Liczyrzepa" Mine in Kowary Adit. A research study was developed to investigate the appropriate dose conversion factors for short-lived radon progeny. The particle size distribution of radon progeny was determined using Radon Progeny Particle Size Spectrometer (RPPSS). The device allows to receive the distribution of PAEC in the particle size range from 0.6 nm to 2494 nm, based on their activity measured on 8 stages composed of impaction plates or diffusion screens. The measurements of the ambient airborne particle size distribution were performed in the range from a few nanometres to about 20 micrometres using Aerodynamic Particle Sizer (APS) spectrometer and the Scanning Mobility Particle Sizer Spectrometer (SMPS).
Photoemission of Energetic Hot Electrons Produced via Up-Conversion in Doped Quantum Dots.
Dong, Yitong; Parobek, David; Rossi, Daniel; Son, Dong Hee
2016-11-09
The benefits of the hot electrons from semiconductor nanostructures in photocatalysis or photovoltaics result from their higher energy compared to that of the band-edge electrons facilitating the electron-transfer process. The production of high-energy hot electrons usually requires short-wavelength UV or intense multiphoton visible excitation. Here, we show that highly energetic hot electrons capable of above-threshold ionization are produced via exciton-to-hot-carrier up-conversion in Mn-doped quantum dots under weak band gap excitation (∼10 W/cm 2 ) achievable with the concentrated solar radiation. The energy of hot electrons is as high as ∼0.4 eV above the vacuum level, much greater than those observed in other semiconductor or plasmonic metal nanostructures, which are capable of performing energetically and kinetically more-challenging electron transfer. Furthermore, the prospect of generating solvated electron is unique for the energetic hot electrons from up-conversion, which can open a new door for long-range electron transfer beyond short-range interfacial electron transfer.
NASA Astrophysics Data System (ADS)
Schiff, C.; Gershman, D. J.; Avanov, L. A.; Giles, B. L.; Paterson, W. R.; Kriesler, S.; Barrie, A. C.; Rand, D. K.; Gliese, U.; Burch, J.
2017-12-01
Scientifically accurate measurements depend on careful calibration of in-flight instrumentation. We review two years of calibration results for the Fast Plasma Investigation (FPI) electron and ion spectrometers over the MMS fleet. We focus on the operating point calibration by which the operating voltage on each of the 64 spectrometers is set to best balance between gain, signal loss, and anode-to-anode cross talk. In addition, we map the calibration and housekeeping telemetry to infer charge extracted evolution from the microchannel plates and, subsequently, the project lifetime of the instrumentation.
Science Observations of Deep Space One
NASA Technical Reports Server (NTRS)
Nelson, Robert M.; Baganal, Fran; Boice, Daniel C.; Britt, Daniel T.; Brown, Robert H.; Buratti, Bonnie J.; Creary, Frank; Ip, Wing-Huan; Meier, Roland; Oberst, Juergen
1999-01-01
During the Deep Space One (DS1) primary mission, the spacecraft will fly by asteroid 1992 KD and possibly comet Borrelly. There are two technologies being validated on DS1 that will provide science observations of these targets, the Miniature Integrated Camera Spectrometer (MICAS) and the Plasma Experiment for Planetary Exploration (PEPE). MICAS encompasses a camera, an ultraviolet imaging spectrometer and an infrared imaging spectrometer. PEPE combines an ion and electron analyzer designed to determine the three-dimensional distribution of plasma over its field of view. MICAS includes two visible wavelength imaging channels, an ultraviolet imaging spectrometer, and an infrared imaging spectrometer all of which share a single 10-cm diameter telescope. Two types of visible wavelength detectors, both operating between about 500 and 1000 nm are used: a CCD with 13-microrad pixels and an 18-microrad-per-pixel, metal-on-silicon active pixel sensor (APS). Unlike the CCD the APS includes the timing and control electronics on the chip along with the detector. The UV spectrometer spans 80 to 185 nm with 0.64-nm spectral resolution and 316-microrad pixels. The IR spectrometer covers the range from 1200 to 2400 nm with 6.6-nm resolution and 54-microrad pixels PEPE includes a very low-power, low-mass micro-calorimeter to help understand plasma-surface interactions and a plasma analyzer to identify de individual molecules and atoms in the immediate vicinity of the spacecraft that have been eroded off the surface of asteroid 1992 KD. It employs common apertures with separate electrostatic energy analyzers. It measures electron and ion energies spanning a range of 3 eV to 30 keV, with a resolution of five percent. and measures ion mass from one to 135 atomic mass units with 5 percent resolution. It electrostatically sweeps its field of view both in elevation and azimuth. Both MICAS and PEPE represent a new direction for the evolution of science instruments for interplanetary spacecraft. These two instruments incorporate a large fraction of the capability of five instruments that had typically flown on NASA's deep space missions The Deep Space One science team acknowledges the support of Philip Varghese, David H. Lehman, Leslie Livesay, and Marc Rayman for providing invaluable assistance in making the science observations possible.
An Undulator-Based Laser Wakefield Accelerator Electron Beam Diagnostic
NASA Astrophysics Data System (ADS)
Bakeman, Michael S.
Currently particle accelerators such as the Large Hadron Collider use RF cavities with a maximum field gradient of 50-100 MV/m to accelerate particles over long distances. A new type of plasma based accelerator called a Laser Plasma Accelerator (LPA) is being investigated at the LOASIS group at Lawrence Berkeley National Laboratory which can sustain field gradients of 10-100 GV/m. This new type of accelerator offers the potential to create compact high energy accelerators and light sources. In order to investigate the feasibility of producing a compact light source an undulator-based electron beam diagnostic for use on the LOASIS LPA has been built and calibrated. This diagnostic relies on the principal that the spectral analysis of synchrotron radiation from an undulator can reveal properties of the electron beam such as emittance, energy and energy spread. The effects of electron beam energy spread upon the harmonics of undulator produced synchrotron radiation were derived from the equations of motion of the beam and numerically simulated. The diagnostic consists of quadrupole focusing magnets to collimate the electron beam, a 1.5 m long undulator to produce the synchrotron radiation, and a high resolution high gain XUV spectrometer to analyze the radiation. The undulator was aligned and tuned in order to maximize the flux of synchrotron radiation produced. The spectrometer was calibrated at the Advanced Light Source, with the results showing the ability to measure electron beam energy spreads at resolutions as low as 0.1% rms, a major improvement over conventional magnetic spectrometers. Numerical simulations show the ability to measure energy spreads on realistic LPA produced electron beams as well as the improvements in measurements made with the quadrupole magnets. Experimentally the quadrupoles were shown to stabilize and focus the electron beams at specific energies for their insertion into the undulator, with the eventual hope of producing an all optical Free Electron Laser operating in the XUV and soft x-ray regimes.
Development of a Multi-GeV spectrometer for laser-plasma experiment at FLAME
NASA Astrophysics Data System (ADS)
Valente, P.; Anelli, F.; Bacci, A.; Batani, D.; Bellaveglia, M.; Benocci, R.; Benedetti, C.; Cacciotti, L.; Cecchetti, C. A.; Clozza, A.; Cultrera, L.; Di Pirro, G.; Drenska, N.; Faccini, R.; Ferrario, M.; Filippetto, D.; Fioravanti, S.; Gallo, A.; Gamucci, A.; Gatti, G.; Ghigo, A.; Giulietti, A.; Giulietti, D.; Gizzi, L. A.; Koester, P.; Labate, L.; Levato, T.; Lollo, V.; Londrillo, P.; Martellotti, S.; Pace, E.; Pathak, N.; Rossi, A.; Tani, F.; Serafini, L.; Turchetti, G.; Vaccarezza, C.
2011-10-01
The advance in laser-plasma acceleration techniques pushes the regime of the resulting accelerated particles to higher energies and intensities. In particular, the upcoming experiments with the 250 TW laser at the FLAME facility of the INFN Laboratori Nazionali di Frascati, will enter the GeV regime with more than 100 pC of electrons. At the current status of understanding of the acceleration mechanism, relatively large angular and energy spreads are expected. There is therefore the need for developing a device capable to measure the energy of electrons over three orders of magnitude (few MeV to few GeV), with still unknown angular divergences. Within the PlasmonX experiment at FLAME, a spectrometer is being constructed to perform these measurements. It is made of an electro-magnet and a screen made of scintillating fibers for the measurement of the trajectories of the particles. The large range of operation, the huge number of particles and the need to focus the divergence, present challenges in the design and construction of such a device. We present the design considerations for this spectrometer that lead to the use of scintillating fibers, multichannel photo-multipliers and a multiplexing electronics, a combination which is innovative in the field. We also present the experimental results obtained with a high intensity electron beam performed on a prototype at the LNF beam test facility.
Laser x-ray Conversion and Electron Thermal Conductivity
NASA Astrophysics Data System (ADS)
Wang, Guang-yu; Chang, Tie-qiang
2001-02-01
The influence of electron thermal conductivity on the laser x-ray conversion in the coupling of 3ωo laser with Au plane target has been investigated by using a non-LTE radiation hydrodynamic code. The non-local electron thermal conductivity is introduced and compared with the other two kinds of the flux-limited Spitzer-Härm description. The results show that the non-local thermal conductivity causes the increase of the laser x-ray conversion efficiency and important changes of the plasma state and coupling feature.
Portable Tandem Mass Spectrometer Analyzer
1991-07-01
The planned instrument was to be small enough to be portable in small vehicles and was to be able to use either an atmospheric pressure ion source or a...conventional electron impact/chemical ionization ion source. In order to accomplish these developments an atmospheric pressure ionization source was...developed for a compact, commercially available tandem quadrupole mass spectrometer. This ion source could be readily exchanged with the conventional
Pair spectrometer hodoscope for Hall D at Jefferson Lab
Barbosa, Fernando J.; Hutton, Charles L.; Sitnikov, Alexandre; ...
2015-09-21
We present the design of the pair spectrometer hodoscope fabricated at Jefferson Lab and installed in the experimental Hall D. The hodoscope consists of thin scintillator tiles; the light from each tile is collected using wave-length shifting fibers and detected using a Hamamatsu silicon photomultiplier. Light collection was measured using relativistic electrons produced in the tagger area of the experimental Hall B.
Pair spectrometer hodoscope for Hall D at Jefferson Lab
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barbosa, Fernando J.; Hutton, Charles L.; Sitnikov, Alexandre
We present the design of the pair spectrometer hodoscope fabricated at Jefferson Lab and installed in the experimental Hall D. The hodoscope consists of thin scintillator tiles; the light from each tile is collected using wave-length shifting fibers and detected using a Hamamatsu silicon photomultiplier. Light collection was measured using relativistic electrons produced in the tagger area of the experimental Hall B.
Fiber-Coupled Acousto-Optical-Filter Spectrometer
NASA Technical Reports Server (NTRS)
Levin, Kenneth H.; Li, Frank Yanan
1993-01-01
Fiber-coupled acousto-optical-filter spectrometer steps rapidly through commanded sequence of wavelengths. Sample cell located remotely from monochromator and associated electronic circuitry, connected to them with optical fibers. Optical-fiber coupling makes possible to monitor samples in remote, hazardous, or confined locations. Advantages include compactness, speed, and no moving parts. Potential applications include control of chemical processes, medical diagnoses, spectral imaging, and sampling of atmospheres.
Conversion electron spectrometry of Pu isotopes with a silicon drift detector.
Pommé, S; Paepen, J; Peräjärvi, K; Turunen, J; Pöllänen, R
2016-03-01
An electron spectrometry set-up was built at IRMM consisting of a vacuum chamber with a moveable source holder and windowless Peltier-cooled silicon drift detector (SDD). The SDD is well suited for measuring low-energy x rays and electrons emitted from thin radioactive sources with low self-absorption. The attainable energy resolution is better than 0.5keV for electrons of 30keV. It has been used to measure the conversion electron spectra of three plutonium isotopes, i.e. (238)Pu, (239)Pu, (240)Pu, as well as (241)Am (being a decay product of (241)Pu). The obtained mixed x-ray and electron spectra are compared with spectra obtained with a close-geometry set-up using another SDD in STUK and spectra measured with a Si(Li) detector at IRMM. The potential of conversion electron spectrometry for isotopic analysis of mixed plutonium samples is investigated. With respect to the (240)Pu/(239)Pu isotopic ratio, the conversion electron peaks of both isotopes are more clearly separated than their largely overlapping peaks in alpha spectra. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
Lindemer, T. B.; Voit, S. L.; Silva, C. M.; Besmann, T. M.; Hunt, R. D.
2014-05-01
The US Department of Energy is developing a new nuclear fuel that would be less susceptible to ruptures during a loss-of-coolant accident. The fuel would consist of tristructural isotropic coated particles with uranium nitride (UN) kernels with diameters near 825 μm. This effort explores factors involved in the conversion of uranium oxide-carbon microspheres into UN kernels. An analysis of previous studies with sufficient experimental details is provided. Thermodynamic calculations were made to predict pressures of carbon monoxide and other relevant gases for several reactions that can be involved in the conversion of uranium oxides and carbides into UN. Uranium oxide-carbon microspheres were heated in a microbalance with an attached mass spectrometer to determine details of calcining and carbothermic conversion in argon, nitrogen, and vacuum. A model was derived from experiments on the vacuum conversion to uranium oxide-carbide kernels. UN-containing kernels were fabricated using this vacuum conversion as part of the overall process. Carbonitride kernels of ∼89% of theoretical density were produced along with several observations concerning the different stages of the process.
L-edge spectroscopy of dilute, radiation-sensitive systems using a transition-edge-sensor array
NASA Astrophysics Data System (ADS)
Titus, Charles J.; Baker, Michael L.; Lee, Sang Jun; Cho, Hsiao-Mei; Doriese, William B.; Fowler, Joseph W.; Gaffney, Kelly; Gard, Johnathon D.; Hilton, Gene C.; Kenney, Chris; Knight, Jason; Li, Dale; Marks, Ronald; Minitti, Michael P.; Morgan, Kelsey M.; O'Neil, Galen C.; Reintsema, Carl D.; Schmidt, Daniel R.; Sokaras, Dimosthenis; Swetz, Daniel S.; Ullom, Joel N.; Weng, Tsu-Chien; Williams, Christopher; Young, Betty A.; Irwin, Kent D.; Solomon, Edward I.; Nordlund, Dennis
2017-12-01
We present X-ray absorption spectroscopy and resonant inelastic X-ray scattering (RIXS) measurements on the iron L-edge of 0.5 mM aqueous ferricyanide. These measurements demonstrate the ability of high-throughput transition-edge-sensor (TES) spectrometers to access the rich soft X-ray (100-2000 eV) spectroscopy regime for dilute and radiation-sensitive samples. Our low-concentration data are in agreement with high-concentration measurements recorded by grating spectrometers. These results show that soft-X-ray RIXS spectroscopy acquired by high-throughput TES spectrometers can be used to study the local electronic structure of dilute metal-centered complexes relevant to biology, chemistry, and catalysis. In particular, TES spectrometers have a unique ability to characterize frozen solutions of radiation- and temperature-sensitive samples.
A Portable Diode Array Spectrophotometer.
Stephenson, David
2016-05-01
A cheap portable visible light spectrometer is presented. The spectrometer uses readily sourced items and could be constructed by anyone with a knowledge of electronics. The spectrometer covers the wavelength range 450-725 nm with a resolution better than 5 nm. The spectrometer uses a diffraction grating to separate wavelengths, which are detected using a 128-element diode array, the output of which is analyzed using a microprocessor. The spectrum is displayed on a small liquid crystal display screen and can be saved to a micro SD card for later analysis. Battery life (2 × AAA) is estimated to be 200 hours. The overall dimensions of the unit are 120 × 65 × 60 mm, and it weighs about 200 g. © The Author(s) 2016.
Musett: A segmented Si array for Recoil-Decay-Tagging studies at VAMOS
NASA Astrophysics Data System (ADS)
Theisen, Ch.; Jeanneau, F.; Sulignano, B.; Druillole, F.; Ljungvall, J.; Paul, B.; Virique, E.; Baron, P.; Bervas, H.; Clément, E.; Delagnes, E.; Dijon, A.; Dossat, E.; Drouart, A.; Farget, F.; Flouzat, Ch.; De France, G.; Görgen, A.; Houarner, Ch.; Jacquot, B.; Korten, W.; Lebertre, G.; Lecornu, B.; Legeard, L.; Lermitage, A.; Lhenoret, S.; Marry, C.; Maugeais, C.; Menager, L.; Meunier, O.; Navin, A.; Nizery, F.; Obertelli, A.; Rauly, E.; Raine, B.; Rejmund, M.; Ropert, J.; Saillant, F.; Savajols, H.; Schmitt, Ch.; Tripon, M.; Wanlin, E.; Wittwer, G.
2014-05-01
A new segmented silicon-array called MUSETT has been built for the study of heavy elements using the Recoil-Decay-Tagging technique. MUSETT is located at the focal plane of the VAMOS spectrometer at GANIL and is used in conjunction with a γ-ray array at the target position. This paper describes the device, which consists of four 10×10 cm2 Si detectors and its associated front-end electronics based on highly integrated ASICs electronics. The triggerless readout electronics, the data acquisition and the analysis tools developed for its characterization are presented. This device was commissioned at GANIL with the EXOGAM γ-ray spectrometer using the fusion-evaporation reaction 197Au(22Ne,5n)214Ac. Additionally, the performance of the VAMOS Wien filter used during the in-beam commissioning is also reported.
Mass spectrometer with electron source for reducing space charge effects in sample beam
Houk, Robert S.; Praphairaksit, Narong
2003-10-14
A mass spectrometer includes an ion source which generates a beam including positive ions, a sampling interface which extracts a portion of the beam from the ion source to form a sample beam that travels along a path and has an excess of positive ions over at least part of the path, thereby causing space charge effects to occur in the sample beam due to the excess of positive ions in the sample beam, an electron source which adds electrons to the sample beam to reduce space charge repulsion between the positive ions in the sample beam, thereby reducing the space charge effects in the sample beam and producing a sample beam having reduced space charge effects, and a mass analyzer which analyzes the sample beam having reduced space charge effects.
Gilbert, J A; Gershman, D J; Gloeckler, G; Lundgren, R A; Zurbuchen, T H; Orlando, T M; McLain, J; von Steiger, R
2014-09-01
For instruments that use time-of-flight techniques to measure space plasma, there are common sources of background signals that evidence themselves in the data. The background from these sources may increase the complexity of data analysis and reduce the signal-to-noise response of the instrument, thereby diminishing the science value or usefulness of the data. This paper reviews several sources of background commonly found in time-of-flight mass spectrometers and illustrates their effect in actual data using examples from ACE-SWICS and MESSENGER-FIPS. Sources include penetrating particles and radiation, UV photons, energy straggling and angular scattering, electron stimulated desorption of ions, ion-induced electron emission, accidental coincidence events, and noise signatures from instrument electronics. Data signatures of these sources are shown, as well as mitigation strategies and design considerations for future instruments.
Alignment and Calibration of an Airborne Infrared Spectrometer
NASA Astrophysics Data System (ADS)
Vira, A.
2017-12-01
The airborne infrared spectrometer (AIR-Spec) will measure the coronal plasma emission lines in the infrared at high spatial and spectral resolution. These results will enhance our understanding of the coronal dynamics and improve solar forecasting models. To measure the infrared coronal emission lines, the airborne system will fly on the NSF/NCAR High-Performance Instrumented Airborne Platform for Environmental Research (HIAPER) during the total solar eclipse in August 2017. The flight path was calculated to maximize the observation time. A detailed analysis of our flight path will be reported. The optical system consists of a fast steering mirror, telescope, grating spectrometer, and slit-jaw imager. Light from the sun is directed into the f/15 telescope by a fast steering mirror. The telescope focuses the light on the slitjaw and the remaining light enters the grating spectrometer through the slit. The poster will include a discussion of the alignment procedures for the telescope and spectrograph. All of the spectrometer optics are cooled to cryogenic temperatures, which complicates the alignment process. After the telescope and spectrometer are aligned independently, the telescope needs to be precisely aligned to the spectrometer. Several alignment methods were used to ensure that the telescope is focused at the slitjaw and normal to the spectrometer. In addition to the optical alignment, there are a few calibrations to complete: 1) flat field, 2) spectral, and 3) radiometric. The flat field gives us a measure of the pixel to pixel variations. The spectral calibration is used to determine the conversion factor between wavelength and pixel. The radiometric calibration is used to map the camera output to radiance. All these calibrations are necessary for processing our data from the solar eclipse. We will report on our methods and results for the optical alignment and calibration for AIR-Spec. AIR-Spec is supported by NSF and Smithsonian Institution through the Major Research Instrumentation program. This work is supported by the NSF-REU solar physics program at SAO, grant number AGS-1560313.
Integration of a versatile bridge concept in a 34 GHz pulsed/CW EPR spectrometer
NASA Astrophysics Data System (ADS)
Band, Alan; Donohue, Matthew P.; Epel, Boris; Madhu, Shraeya; Szalai, Veronika A.
2018-03-01
We present a 34 GHz continuous wave (CW)/pulsed electron paramagnetic resonance (EPR) spectrometer capable of pulse-shaping that is based on a versatile microwave bridge design. The bridge radio frequency (RF)-in/RF-out design (500 MHz to 1 GHz input/output passband, 500 MHz instantaneous input/output bandwidth) creates a flexible platform with which to compare a variety of excitation and detection methods utilizing commercially available equipment external to the bridge. We use three sources of RF input to implement typical functions associated with CW and pulse EPR spectroscopic measurements. The bridge output is processed via high speed digitizer and an in-phase/quadrature (I/Q) demodulator for pulsed work or sent to a wideband, high dynamic range log detector for CW. Combining this bridge with additional commercial hardware and new acquisition and control electronics, we have designed and constructed an adaptable EPR spectrometer that builds upon previous work in the literature and is functionally comparable to other available systems.
NASA Astrophysics Data System (ADS)
Haag, Justin M.; Van Gorp, Byron E.; Mouroulis, Pantazis; Thompson, David R.
2017-09-01
The airborne Portable Remote Imaging Spectrometer (PRISM) instrument is based on a fast (F/1.8) Dyson spectrometer operating at 350-1050 nm and a two-mirror telescope combined with a Teledyne HyViSI 6604A detector array. Raw PRISM data contain electronic and optical artifacts that must be removed prior to radiometric calibration. We provide an overview of the process transforming raw digital numbers to calibrated radiance values. Electronic panel artifacts are first corrected using empirical relationships developed from laboratory data. The instrument spectral response functions (SRF) are reconstructed using a measurement-based optimization technique. Removal of SRF effects from the data improves retrieval of true spectra, particularly in the typically low-signal near-ultraviolet and near-infrared regions. As a final step, radiometric calibration is performed using corrected measurements of an object of known radiance. Implementation of the complete calibration procedure maximizes data quality in preparation for subsequent processing steps, such as atmospheric removal and spectral signature classification.
Electronic and software systems of an automated portable static mass spectrometer
NASA Astrophysics Data System (ADS)
Chichagov, Yu. V.; Bogdanov, A. A.; Lebedev, D. S.; Kogan, V. T.; Tubol'tsev, Yu. V.; Kozlenok, A. V.; Moroshkin, V. S.; Berezina, A. V.
2017-01-01
The electronic systems of a small high-sensitivity static mass spectrometer and software and hardware tools, which allow one to determine trace concentrations of gases and volatile compounds in air and water samples in real time, have been characterized. These systems and tools have been used to set up the device, control the process of measurement, synchronize this process with accompanying measurements, maintain reliable operation of the device, process the obtained results automatically, and visualize and store them. The developed software and hardware tools allow one to conduct continuous measurements for up to 100 h and provide an opportunity for personnel with no special training to perform maintenance on the device. The test results showed that mobile mass spectrometers for geophysical and medical research, which were fitted with these systems, had a determination limit for target compounds as low as several ppb(m) and a mass resolving power (depending on the current task) as high as 250.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hell, N.; Beiersdorfer, P.; Magee, E. W.
2016-08-04
Here, we report the calibration of the Orion High-Resolution X-ray (OHREX) imaging crystal spectrometer at the EBIT-I electron beam ion trap at Livermore. Two such instruments, dubbed OHREX-1 and OHREX-2, are fielded for plasma diagnostics at the Orion laser facility in the United Kingdom. The OHREX spectrometer can simultaneously house two spherically bent crystals with a radius of curvature of r=67.2 cm. The focusing properties of the spectrometer allow both for larger distance to the source due to the increase in collected light and for observation of extended sources. OHREX is designed to cover a 2.5–3 degree spectral range atmore » Bragg angles around 51.3 degree. The typically high resolving powers at these large Bragg angles are ideally suited for line shape diagnostics. For instance, the nominal resolving power of the instrument (> 10000) is much higher than the effective resolving power associated with the Doppler broadening due to the temperature of the trapped ions in EBIT-I. The effective resolving power is only around 3000 at typical EBIT-I conditions, which nevertheless is sufficient to set up and test the instrument’s spectral characteristics. We have calibrated the spectral range for a number of crystals using well known reference lines in first and second order, and derived the ion temperatures from these lines. We have also made use of the 50µm size of the EBIT-I source width to characterize the spatial focusing of the spectrometer.« less
Reduction and analysis of ATS-6 data
NASA Technical Reports Server (NTRS)
Paulikas, G. A.; Blake, J. B.
1977-01-01
Results obtained from the analysis of data returned by the energetic particle spectrometer on ATS 6 are presented. The study of the energetic electron environment and the effects of the solar wind parameters on the energetic electrons trapped at the synchronous altitude are emphasized.
In vitro percutaneous penetration and characterization of silver from silver-containing textiles
Bianco, Carlotta; Kezic, Sanja; Crosera, Matteo; Svetličić, Vesna; Šegota, Suzana; Maina, Giovanni; Romano, Canzio; Larese, Francesca; Adami, Gianpiero
2015-01-01
The objective of this study was to determine the in vitro percutaneous penetration of silver and characterize the silver species released from textiles in different layers of full thickness human skin. For this purpose, two different wound dressings and a garment soaked in artificial sweat were placed in the donor compartments of Franz cells for 24 hours. The concentration of silver in the donor phase and in the skin was determined by an electrothermal atomic absorption spectrometer (ET-AAS) and by inductively coupled plasma mass spectrometer (ICP-MS). The characterization of silver species in the textiles and in the skin layers was made by scanning electron microscopy with integrated energy dispersive X-ray spectroscopy (SEM-EDX). Additionally, the size distribution of silver nanoparticles in the textiles was performed by atomic force microscopy (AFM). On the surface of all investigated materials, silver nanoparticles of different size and morphology were found. Released silver concentrations in the soaking solutions (ie, exposure concentration) ranged from 0.7 to 4.7 μg/mL (0.6–4.0 μg/cm2), fitting the bactericidal range. Silver and silver chloride aggregates at sizes of up to 1 μm were identified both in the epidermis and dermis. The large size of these particles suggests that the aggregation occurred in the skin. The formation of these aggregates likely slowed down the systemic absorption of silver. Conversely, these aggregates may form a reservoir enabling prolonged release of silver ions, which might lead to local effects. PMID:25792824
NASA Astrophysics Data System (ADS)
Zhang, Jie; Dai, Changsong; Wei, Jie; Wen, Zhaohui; Zhang, Shujuan; Lin, Lemin
2013-09-01
The purpose of this study was to investigate the effect of different concentration of Mg2+ in a modified simulated body fluid (m-SBF) on the bioactivity of calcium phosphate/chitosan composite coating. Calcium phosphate/chitosan composite coating was prepared on graphite substrate via electrophoretic deposition (EPD) followed by conversion in a phosphate buffer solution (PBS). The obtained samples were soaked in the m-SBF containing different concentration of Mg2+ for different times. And then, the composite coatings were assessed using X-ray diffractometer (XRD), Fourier-transformed infrared spectroscopy (FTIR), Raman spectra, and scanning electron microscope (SEM) with an energy dispersive spectrometer (EDS). The soaking solution was evaluated by inductively coupled plasma optical emission spectrometer (ICP-OES) test. The analytical results showed that hydroxyapatite (HA) and bone-like apatite (HCA) grew on the surface of calcium phosphate/chitosan composite coating after incubation in different m-SBF. With Mg2+ concentration in m-SBF increased from 1× Mg to 10× Mg, HA in the composite coating first presented a dissolving process and then a precipitating one slowly, while HCA presented a growing trend, continuously. The increasing of Mg2+ concentration in the m-SBF inhibited the total growing process of HA and HCA as a whole. The structure of the composite coating changed from spherical into irregular morphology with the concentration of Mg2+ increasing from 1× Mg to 10× Mg. Over all, with the Mg2+ concentration increasing, the bioactivity of calcium phosphate/chitosan composite coating tended to decrease.
THOR Ion Mass Spectrometer instrument - IMS
NASA Astrophysics Data System (ADS)
Retinò, Alessandro; Kucharek, Harald; Saito, Yoshifumi; Fraenz, Markus; Verdeil, Christophe; Leblanc, Frederic; Techer, Jean-Denis; Jeandet, Alexis; Macri, John; Gaidos, John; Granoff, Mark; Yokota, Shoichiro; Fontaine, Dominique; Berthomier, Matthieu; Delcourt, Dominique; Kistler, Lynn; Galvin, Antoniette; Kasahara, Satoshi; Kronberg, Elena
2016-04-01
Turbulence Heating ObserveR (THOR) is the first mission ever flown in space dedicated to plasma turbulence. Specifically, THOR will study how turbulent fluctuations at kinetic scales heat and accelerate particles in different turbulent environments within the near-Earth space. To achieve this goal, THOR payload is being designed to measure electromagnetic fields and particle distribution functions with unprecedented resolution and accuracy. Here we present the Ion Mass Spectrometer (IMS) instrument that will measure the full three-dimensional distribution functions of near-Earth main ion species (H+, He+, He++ and O+) at high time resolution (~ 150 ms for H+ , ~ 300 ms for He++) with energy resolution down to ~ 10% in the range 10 eV/q to 30 keV/q and angular resolution ~ 10°. Such high time resolution is achieved by mounting multiple sensors around the spacecraft body, in similar fashion to the MMS/FPI instrument. Each sensor combines a top-hat electrostatic analyzer with deflectors at the entrance together with a time-of-flight section to perform mass selection. IMS electronics includes a fast sweeping high voltage board that is required to make measurements at high cadence. Ion detection includes Micro Channel Plates (MCP) combined with Application-Specific Integrated Circuits (ASICs) for charge amplification, discrimination and time-to-digital conversion (TDC). IMS is being designed to address many of THOR science requirements, in particular ion heating and acceleration by turbulent fluctuations in foreshock, shock and magnetosheath regions. The IMS instrument is being designed and will be built by an international consortium of scientific institutes with main hardware contributions from France, USA, Japan and Germany.
Broadband Rotational Spectroscopy
NASA Astrophysics Data System (ADS)
Pate, Brooks
2014-06-01
The past decade has seen several major technology advances in electronics operating at microwave frequencies making it possible to develop a new generation of spectrometers for molecular rotational spectroscopy. High-speed digital electronics, both arbitrary waveform generators and digitizers, continue on a Moore's Law-like development cycle that started around 1993 with device bandwidth doubling about every 36 months. These enabling technologies were the key to designing chirped-pulse Fourier transform microwave (CP-FTMW) spectrometers which offer significant sensitivity enhancements for broadband spectrum acquisition in molecular rotational spectroscopy. A special feature of the chirped-pulse spectrometer design is that it is easily implemented at low frequency (below 8 GHz) where Balle-Flygare type spectrometers with Fabry-Perot cavity designs become technologically challenging due to the mirror size requirements. The capabilities of CP-FTMW spectrometers for studies of molecular structure will be illustrated by the collaborative research effort we have been a part of to determine the structures of water clusters - a project which has identified clusters up to the pentadecamer. A second technology trend that impacts molecular rotational spectroscopy is the development of high power, solid state sources in the mm-wave/THz regions. Results from the field of mm-wave chirped-pulse Fourier transform spectroscopy will be described with an emphasis on new problems in chemical dynamics and analytical chemistry that these methods can tackle. The third (and potentially most important) technological trend is the reduction of microwave components to chip level using monolithic microwave integrated circuits (MMIC) - a technology driven by an enormous mass market in communications. Some recent advances in rotational spectrometer designs that incorporate low-cost components will be highlighted. The challenge to the high-resolution spectroscopy community - as posed by Frank De Lucia last year at the final meeting in Columbus - is what problems can we solve when real, fully capable spectrometers become essentially free to build?
A compact E × B filter: A multi-collector cycloidal focusing mass spectrometer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blase, Ryan C., E-mail: rblase@swri.edu; Miller, Greg; Brockwell, Tim
2015-10-15
A compact E × B mass spectrometer is presented. The mass spectrometer presented is termed a “perfect focus” mass spectrometer as the resolution of the device is independent of both the initial direction and energy of the ions (spatial and energy independent). The mass spectrometer is small in size (∼10.7 in.{sup 3}) and weight (∼2 kg), making it an attractive candidate for portability when using small, permanent magnets. A multi-collector Faraday cup design allows for the detection of multiple ion beams in discrete collectors simultaneously; providing the opportunity for isotope ratio monitoring. The mass resolution of the device is aroundmore » 400 through narrow collector slits and the sensitivity of the device follows expected theoretical calculations of the ion current produced in the electron impact ion source. Example mass spectra obtained from the cycloidal focusing mass spectrometer are presented as well as information on mass discrimination based on instrumental parameters and isotope ratio monitoring of certain ion signals in separate Faraday cups.« less
On the design of the NIF Continuum Spectrometer
NASA Astrophysics Data System (ADS)
Thorn, D. B.; MacPhee, A.; Ayers, J.; Galbraith, J.; Hardy, C. M.; Izumi, N.; Bradley, D. K.; Pickworth, L. A.; Bachmann, B.; Kozioziemski, B.; Landen, O.; Clark, D.; Schneider, M. B.; Hill, K. W.; Bitter, M.; Nagel, S.; Bell, P. M.; Person, S.; Khater, H. Y.; Smith, C.; Kilkenny, J.
2017-08-01
In inertial confinement fusion (ICF) experiments on the National Ignition Facility (NIF), measurements of average ion temperature using DT neutron time of flight broadening and of DD neutrons do not show the same apparent temperature. Some of this may be due to time and space dependent temperature profiles in the imploding capsule which are not taken into account in the analysis. As such, we are attempting to measure the electron temperature by recording the free-free electron-ion scattering-spectrum from the tail of the Maxwellian temperature distribution. This will be accomplished with the new NIF Continuum Spectrometer (ConSpec) which spans the x-ray range of 20 keV to 30 keV (where any opacity corrections from the remaining mass of the ablator shell are negligible) and will be sensitive to temperatures between ˜ 3 keV and 6 keV. The optical design of the ConSpec is designed to be adaptable to an x-ray streak camera to record time resolved free-free electron continuum spectra for direct measurement of the dT/dt evolution across the burn width of a DT plasma. The spectrometer is a conically bent Bragg crystal in a focusing geometry that allows for the dispersion plane to be perpendicular to the spectrometer axis. Additionally, to address the spatial temperature dependence, both time integrated and time resolved pinhole and penumbral imaging will be provided along the same polar angle. The optical and mechanical design of the instrument is presented along with estimates for the dispersion, solid angle, photometric sensitivity, and performance.
Isotopic response with small scintillator based gamma-ray spectrometers
Madden, Norman W [Sparks, NV; Goulding, Frederick S [Lafayette, CA; Asztalos, Stephen J [Oakland, CA
2012-01-24
The intrinsic background of a gamma ray spectrometer is significantly reduced by surrounding the scintillator with a second scintillator. This second (external) scintillator surrounds the first scintillator and has an opening of approximately the same diameter as the smaller central scintillator in the forward direction. The second scintillator is selected to have a higher atomic number, and thus has a larger probability for a Compton scattering interaction than within the inner region. Scattering events that are essentially simultaneous in coincidence to the first and second scintillators, from an electronics perspective, are precluded electronically from the data stream. Thus, only gamma-rays that are wholly contained in the smaller central scintillator are used for analytic purposes.
NASA Technical Reports Server (NTRS)
Ng, Y. S.
1977-01-01
A theoretical analysis of constant momentum mass spectrometry was made. A maximum resolving power for the decelerating mode constant momentum mass spectrometer was shown theoretically to exist for a beam of ions of known energy. A vacuum system and an electron beam ionization source was constructed. Supporting electronics for a residual gas analyzer were built. Experimental investigations of various types of accelerating and decelerating impulsive modes of a constant momentum mass spectrometer as applied to a residual gas analyzer were made. The data indicate that the resolving power for the decelerating mode is comparable to that of the accelerating mode.
Undergraduate Electron-Spin-Resonance Experiment.
ERIC Educational Resources Information Center
Willis, James S.
1980-01-01
Describes the basic procedures for use of an electron-spin resonance spectrometer and potassium azide (KN3) in an experiment which extends from the phase of sample preparation (crystal growth, sample mounting, and orientation) through data taking to the stages of calculation and theoretical explanation. (Author/DS)
NASA Technical Reports Server (NTRS)
Nittler, Larry R.
2003-01-01
This grant furnished funds to purchase a state-of-the-art scanning electron microscope (SEM) to support our analytical facilities for extraterrestrial samples. After evaluating several instruments, we purchased a JEOL 6500F thermal field emission SEM with the following analytical accessories: EDAX energy-dispersive x-ray analysis system with fully automated control of instrument and sample stage; EDAX LEXS wavelength-dispersive x-ray spectrometer for high sensitivity light-element analysis; EDAX/TSL electron backscatter diffraction (EBSD) system with software for phase identification and crystal orientation mapping; Robinson backscatter electron detector; and an in situ micro-manipulator (Kleindiek). The total price was $550,000 (with $150,000 of the purchase supported by Carnegie institution matching funds). The microscope was delivered in October 2002, and most of the analytical accessories were installed by January 2003. With the exception of the wavelength spectrometer (which has been undergoing design changes) everything is working well and the SEM is in routine use in our laboratory.
The VESUVIO Spectrometer Now and When?
NASA Astrophysics Data System (ADS)
Seel, A. G.; Krzystyniak, M.; Fernandez-Alonso, F.
2014-12-01
The current layout and mechanics of the VESUVIO spectrometer are presented in light of spectroscopic measurements using electron-volt neutrons. A brief background to the theoretical framework of deep inelastic neutron scattering is presented, with focus on data collection and instrumental design. The current capabilities and research themes for VESUVIO are discussed, and possible future instrumental developments highlighted which will enhance the instrument's ability to meet scientific inquiry and expectation.
Wavelength dispersive analysis with the synchrotron x ray fluorescence microprobe
NASA Technical Reports Server (NTRS)
Rivers, M. L.; Thorn, K. S.; Sutton, S. R.; Jones, K. W.; Bajt, S.
1993-01-01
A wavelength dispersive spectrometer (WDS) was tested on the synchrotron x ray fluorescence microprobe at Brookhaven National Laboratory. Compared to WDS spectra using an electron microprobe, the synchrotron WDS spectra have much better sensitivity and, due to the absence of bremsstrahlung radiation, lower backgrounds. The WDS spectrometer was successfully used to resolve REE L fluorescence spectra from standard glasses and transition metal K fluorescence spectra from kamacite.
Sputtering erosion in ion and plasma thrusters
NASA Technical Reports Server (NTRS)
Ray, Pradosh K.
1995-01-01
An experimental set-up to measure low-energy (below 1 keV) sputtering of materials is described. The materials to be bombarded represent ion thruster components as well as insulators used in the stationary plasma thruster. The sputtering takes place in a 9 inch diameter spherical vacuum chamber. Ions of argon, krypton and xenon are used to bombard the target materials. The sputtered neutral atoms are detected by a secondary neutral mass spectrometer (SNMS). Samples of copper, nickel, aluminum, silver and molybdenum are being sputtered initially to calibrate the spectrometer. The base pressure of the chamber is approximately 2 x 10(exp -9) Torr. the primary ion beam is generated by an ion gun which is capable of delivering ion currents in the range of 20 to 500 nA. The ion beam can be focused to a size approximately 1 mm in diameter. The mass spectrometer is positioned 10 mm from the target and at 90 deg angle to the primary ion beam direction. The ion beam impinges on the target at 45 deg. For sputtering of insulators, charge neutralization is performed by flooding the sample with electrons generated from an electron gun. Preliminary sputtering results, methods of calculating the instrument response function of the spectrometer and the relative sensitivity factors of the sputtered elements will be discussed.
NASA Astrophysics Data System (ADS)
Kidera, Masanori; Seto, Yasuo; Takahashi, Kazuya; Enomoto, Shuichi; Kishi, Shintaro; Makita, Mika; Nagamatsu, Tsuyoshi; Tanaka, Tatsuhiko; Toda, Masayoshi
2011-03-01
We developed a detection technology for vapor forms of chemical warfare agents (CWAs) with an element analysis system using an electron cyclotron resonance ion source. After the vapor sample was introduced directly into the ion source, the molecular material was decomposed into elements using electron cyclotron resonance plasma and ionized. The following CWAs and stimulants were examined: diisopropyl fluorophosphonate (DFP), 2-chloroethylethylsulfide (2CEES), cyanogen chloride (CNCl), and hydrogen cyanide (HCN). The type of chemical warfare agents, specifically, whether it was a nerve agent, blister agent, blood agent, or choking agent, could be determined by measuring the quantities of the monatomic ions or CN + using mass spectrometry. It was possible to detect gaseous CWAs that could not be detected by a conventional mass spectrometer. The distribution of electron temperature in the plasma could be closely controlled by adjusting the input power of the microwaves used to generate the electron cyclotron resonance plasma, and the target compounds could be detected as molecular ions or fragment ions, enabling identification of the target agents.
NASA Astrophysics Data System (ADS)
Henry, William; Jefferson Lab Hall A Collaboration
2017-09-01
Jefferson Lab's cutting-edge parity-violating electron scattering program has increasingly stringent requirements for systematic errors. Beam polarimetry is often one of the dominant systematic errors in these experiments. A new Møller Polarimeter in Hall A of Jefferson Lab (JLab) was installed in 2015 and has taken first measurements for a polarized scattering experiment. Upcoming parity violation experiments in Hall A include CREX, PREX-II, MOLLER and SOLID with the latter two requiring <0.5% precision on beam polarization measurements. The polarimeter measures the Møller scattering rates of the polarized electron beam incident upon an iron target placed in a saturating magnetic field. The spectrometer consists of four focusing quadrapoles and one momentum selection dipole. The detector is designed to measure the scattered and knock out target electrons in coincidence. Beam polarization is extracted by constructing an asymmetry from the scattering rates when the incident electron spin is parallel and anti-parallel to the target electron spin. Initial data will be presented. Sources of systematic errors include target magnetization, spectrometer acceptance, the Levchuk effect, and radiative corrections which will be discussed. National Science Foundation.
High-resolution crystal spectrometer for the 10-60 A extreme ultraviolet region
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beiersdorfer, P.; Brown, G.V.; Goddard, R.
2004-10-01
A vacuum crystal spectrometer with nominal resolving power approaching 1000 is described for measuring emission lines with wavelength in the extreme ultraviolet region up to 60 A. The instrument utilizes a flat octadecyl hydrogen maleate crystal and a thin-window 1D position-sensitive gas proportional detector. This detector employs a 1-{mu}m-thick 100x8 mm{sup 2} aluminized polyimide window and operates at one atmosphere pressure. The spectrometer has been implemented on the Livermore electron beam ion traps. The performance of the instrument is illustrated in measurements of the newly discovered magnetic field-sensitive line in Ar{sup 8+}.
High-resolution crystal spectrometer for the 10-60 (angstrom) EUV region
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beiersdorfer, P; Brown, G V; Goddard, R
2004-02-20
A vacuum crystal spectrometer with nominal resolving power approaching 1000 is described for measuring emission lines with wavelength in the extreme ultraviolet region up to 60 Angstroms. The instrument utilizes a flat octadecyl hydrogen maleate (OHM) crystal and a thin-window 1-D position-sensitive gas proportional detector. This detector employs a 1 {micro}m-thick 100 x8 mm{sup 2} aluminized polyimide window and operates at one atmosphere pressure. The spectrometer has been implemented on the Livermore electron beam ion traps. The performance of the instrument is illustrated in measurements of the newly discovered magnetic field-sensitive line in Ar{sup 8+}.
NASA Astrophysics Data System (ADS)
Ye, Hong; Trippel, Sebastian; Di Fraia, Michele; Fallahi, Arya; Mücke, Oliver D.; Kärtner, Franz X.; Küpper, Jochen
2018-04-01
A velocity-map-imaging spectrometer is demonstrated to characterize the normalized emittance (root-mean-square, rms) of photoemitted electron bunches. Both the two-dimensional spatial distribution and the projected velocity distribution images of photoemitted electrons are recorded by the detection system and analyzed to obtain the normalized emittance (rms). With the presented distribution function of the electron photoemission angles, a mathematical method is implemented to reconstruct the three-dimensional velocity distribution. As a first example, multiphoton emission from a planar Au surface is studied via irradiation at a glancing angle by intense 45-fs laser pulses at a central wavelength of 800 nm. The reconstructed energy distribution agrees very well with the Berglund-Spicer theory of photoemission. The normalized emittance (rms) of the intrinsic electron bunch is characterized to be 128 and 14 nm rad in the X and Y directions, respectively. The demonstrated imaging spectrometer has the ability to characterize the normalized emittance (rms) in a few minutes with a fine energy resolution of 0.2 meV in the image center and will, thereby, foster the further development of x-ray free-electron-laser injectors and ultrafast electron diffraction, and it opens up opportunities for studying correlated electron emission from surfaces and vacuum nanoelectronic devices.
Development and performance of a suprathermal electron spectrometer to study auroral precipitations
NASA Astrophysics Data System (ADS)
Ogasawara, Keiichi; Grubbs, Guy; Michell, Robert G.; Samara, Marilia; Stange, Jason L.; Trevino, John A.; Webster, James; Jahn, Jörg-Micha
2016-05-01
The design, development, and performance of Medium-energy Electron SPectrometer (MESP), dedicated to the in situ observation of suprathermal electrons in the auroral ionosphere, are summarized in this paper. MESP employs a permanent magnet filter with a light tight structure to select electrons with proper energies guided to the detectors. A combination of two avalanche photodiodes and a large area solid-state detector (SSD) provided 46 total energy bins (1 keV resolution for 3-20 keV range for APDs, and 7 keV resolution for >20 keV range for SSDs). Multi-channel ultra-low power application-specific integrated circuits are also verified for the flight operation to read-out and analyze the detector signals. MESP was launched from Poker Flat Research Range on 3 March 2014 as a part of ground-to-rocket electrodynamics-electrons correlative experiment (GREECE) mission. MESP successfully measured the precipitating electrons from 3 to 120 keV in 120-ms time resolution and characterized the features of suprathermal distributions associated with auroral arcs throughout the flight. The measured electrons were showing the inverted-V type spectra, consistent with the past measurements. In addition, investigations of the suprathermal electron population indicated the existence of the energetic non-thermal distribution corresponding to the brightest aurora.
Development and performance of a suprathermal electron spectrometer to study auroral precipitations.
Ogasawara, Keiichi; Grubbs, Guy; Michell, Robert G; Samara, Marilia; Stange, Jason L; Trevino, John A; Webster, James; Jahn, Jörg-Micha
2016-05-01
The design, development, and performance of Medium-energy Electron SPectrometer (MESP), dedicated to the in situ observation of suprathermal electrons in the auroral ionosphere, are summarized in this paper. MESP employs a permanent magnet filter with a light tight structure to select electrons with proper energies guided to the detectors. A combination of two avalanche photodiodes and a large area solid-state detector (SSD) provided 46 total energy bins (1 keV resolution for 3-20 keV range for APDs, and 7 keV resolution for >20 keV range for SSDs). Multi-channel ultra-low power application-specific integrated circuits are also verified for the flight operation to read-out and analyze the detector signals. MESP was launched from Poker Flat Research Range on 3 March 2014 as a part of ground-to-rocket electrodynamics-electrons correlative experiment (GREECE) mission. MESP successfully measured the precipitating electrons from 3 to 120 keV in 120-ms time resolution and characterized the features of suprathermal distributions associated with auroral arcs throughout the flight. The measured electrons were showing the inverted-V type spectra, consistent with the past measurements. In addition, investigations of the suprathermal electron population indicated the existence of the energetic non-thermal distribution corresponding to the brightest aurora.
Development and Performance of a Suprathermal Electron Spectrometer to Study Auroral Precipitations
NASA Technical Reports Server (NTRS)
Ogasawara, Keiichi; Grubbs, Guy, II; Michell, Robert G.; Samara, Maria; Stange, Jason L.; Trevino, John A.; Webster, James; Jahn, Jorg-Micha
2016-01-01
The design, development, and performance of Medium-energy Electron SPectrometer (MESP), dedicated to the in situ observation of suprathermal electrons in the auroral ionosphere, are summarized in this paper. MESP employs a permanent magnet filter with a light tight structure to select electrons with proper energies guided to the detectors. A combination of two avalanche photodiodes and a large area solid-state detector (SSD) provided 46 total energy bins (1 keV resolution for 3-20 keV range for APDs, and 7 keV resolution for greater than 20 keV range for SSDs). Multi-channel ultra-low power application-specific integrated circuits are also verified for the flight operation to read-out and analyze the detector signals. MESP was launched from Poker F1at Research Range on 3 March 2014 as a part of ground-to-rocket electrodynamics-electrons correlative experiment (GREECE) mission. MESP successfully measured the precipitating electrons from 3 to 120 keV in 120-ms time resolution and characterized the features of suprathermal distributions associated with auroral arcs throughout the flight. The measured electrons were showing the inverted-V type spectra, consistent with the past measurements. In addition, investigations of the suprathermal electron population indicated the existence of the energetic non-thermal distribution corresponding to the brightest aurora.
Development and performance of a suprathermal electron spectrometer to study auroral precipitations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ogasawara, Keiichi, E-mail: kogasawara@swri.edu; Stange, Jason L.; Trevino, John A.
2016-05-15
The design, development, and performance of Medium-energy Electron SPectrometer (MESP), dedicated to the in situ observation of suprathermal electrons in the auroral ionosphere, are summarized in this paper. MESP employs a permanent magnet filter with a light tight structure to select electrons with proper energies guided to the detectors. A combination of two avalanche photodiodes and a large area solid-state detector (SSD) provided 46 total energy bins (1 keV resolution for 3−20 keV range for APDs, and 7 keV resolution for >20 keV range for SSDs). Multi-channel ultra-low power application-specific integrated circuits are also verified for the flight operation tomore » read-out and analyze the detector signals. MESP was launched from Poker Flat Research Range on 3 March 2014 as a part of ground-to-rocket electrodynamics-electrons correlative experiment (GREECE) mission. MESP successfully measured the precipitating electrons from 3 to 120 keV in 120-ms time resolution and characterized the features of suprathermal distributions associated with auroral arcs throughout the flight. The measured electrons were showing the inverted-V type spectra, consistent with the past measurements. In addition, investigations of the suprathermal electron population indicated the existence of the energetic non-thermal distribution corresponding to the brightest aurora.« less
Linguistic Input, Electronic Media, and Communication Outcomes of Toddlers with Hearing Loss
Ambrose, Sophie E.; VanDam, Mark; Moeller, Mary Pat
2013-01-01
Objectives The objectives of this study were to examine the quantity of adult words, adult-child conversational turns, and electronic media in the auditory environments of toddlers who are hard of hearing (HH) and to examine whether these variables contributed to variability in children’s communication outcomes. Design Participants were 28 children with mild to severe hearing loss. Full-day recordings of children’s auditory environments were collected within 6 months of their 2nd birthdays by utilizing LENA (Language ENvironment Analysis) technology. The system analyzes full-day acoustic recordings, yielding estimates of the quantity of adult words, conversational turns, and electronic media exposure in the recordings. Children’s communication outcomes were assessed via the receptive and expressive scales of the Mullen Scales of Early Learning at 2 years of age and the Comprehensive Assessment of Spoken Language at 3 years of age. Results On average, the HH toddlers were exposed to approximately 1400 adult words per hour and participated in approximately 60 conversational turns per hour. An average of 8% of each recording was classified as electronic media. However, there was considerable within-group variability on all three measures. Frequency of conversational turns, but not adult words, was positively associated with children’s communication outcomes at 2 and 3 years of age. Amount of electronic media exposure was negatively associated with 2-year-old receptive language abilities; however, regression results indicate that the relationship was fully mediated by the quantity of conversational turns. Conclusions HH toddlers who were engaged in more conversational turns demonstrated stronger linguistic outcomes than HH toddlers who were engaged in fewer conversational turns. The frequency of these interactions was found to be decreased in households with high rates of electronic media exposure. Optimal language-learning environments for HH toddlers include frequent linguistic interactions between parents and children. To support this goal, parents should be encouraged to reduce their children’s exposure to electronic media. PMID:24441740
Linguistic input, electronic media, and communication outcomes of toddlers with hearing loss.
Ambrose, Sophie E; VanDam, Mark; Moeller, Mary Pat
2014-01-01
The objectives of this study were to examine the quantity of adult words, adult-child conversational turns, and electronic media in the auditory environments of toddlers who are hard of hearing (HH) and to examine whether these factors contributed to variability in children's communication outcomes. Participants were 28 children with mild to severe hearing loss. Full-day recordings of children's auditory environments were collected within 6 months of their second birthdays by using Language ENvironment Analysis technology. The system analyzes full-day acoustic recordings, yielding estimates of the quantity of adult words, conversational turns, and electronic media exposure in the recordings. Children's communication outcomes were assessed via the receptive and expressive scales of the Mullen Scales of Early Learning at 2 years of age and the Comprehensive Assessment of Spoken Language at 3 years of age. On average, the HH toddlers were exposed to approximately 1400 adult words per hour and participated in approximately 60 conversational turns per hour. An average of 8% of each recording was classified as electronic media. However, there was considerable within-group variability on all three measures. Frequency of conversational turns, but not adult words, was positively associated with children's communication outcomes at 2 and 3 years of age. Amount of electronic media exposure was negatively associated with 2-year-old receptive language abilities; however, regression results indicate that the relationship was fully mediated by the quantity of conversational turns. HH toddlers who were engaged in more conversational turns demonstrated stronger linguistic outcomes than HH toddlers who were engaged in fewer conversational turns. The frequency of these interactions was found to be decreased in households with high rates of electronic media exposure. Optimal language-learning environments for HH toddlers include frequent linguistic interactions between parents and children. To support this goal, parents should be encouraged to reduce their children's exposure to electronic media.
NASA Astrophysics Data System (ADS)
Zhang, Xiaolong; Lin, Yu; Wu, Jihuai; Fang, Biaopeng; Zeng, Jiali
2018-04-01
In this paper, CuS film was deposited onto fluorine-doped tin oxide (FTO) substrate using a facile chemical bath deposition method, and then modified by PbS using simple successive ionic layer absorption and reaction (SILAR) method with different cycles. These CuS/PbS films were utilized as counter electrodes (CEs) for CdSe/CdS co-sensitized solar cells. Field-emission scanning electron microscopy equipped with an energy-dispersive X-ray spectrometer was used to characterize the CuS/PbS films. The results show that CuS/PbS (10 cycles) CE exhibits an improved power conversion efficiency of 5.54% under the illumination of one sun (100 mW cm-2), which is higher than the CuS/PbS (0 cycles), CuS/PbS (5 cycles), and CuS/PbS (15 cycles) CEs. This enhancement is mainly attributed to good catalytic activity and lower charge-transfer and series resistances, which have been proved by electrochemical impedance spectroscopy, and Tafel polarization measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, Xun-Lei, E-mail: dingxl@ncepu.edu.cn, E-mail: chemzyx@iccas.ac.cn; Wang, Dan; Wu, Xiao-Nan
2015-09-28
The reactions between methane and niobium oxide cluster cations were studied and compared to those employing vanadium oxides. Hydrogen atom abstraction (HAA) reactions were identified over stoichiometric (Nb{sub 2}O{sub 5}){sub N}{sup +} clusters for N as large as 14 with a time-of-flight mass spectrometer. The reactivity of (Nb{sub 2}O{sub 5}){sub N}{sup +} clusters decreases as the N increases, and it is higher than that of (V {sub 2}O{sub 5}){sub N}{sup +} for N ≥ 4. Theoretical studies were conducted on (Nb{sub 2}O{sub 5}){sub N}{sup +} (N = 2–6) by density functional calculations. HAA reactions on these clusters are all favorablemore » thermodynamically and kinetically. The difference of the reactivity with respect to the cluster size and metal type (Nb vs V) was attributed to thermodynamics, kinetics, the electron capture ability, and the distribution of the unpaired spin density. Nanosized Nb oxide clusters show higher HAA reactivity than V oxides, indicating that niobia may serve as promising catalysts for practical methane conversion.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carpenter, D.
2014-11-01
NREL will provide the Renewable Energy Institute with detailed on-site biomass gasifier syngas monitoring, using the NREL transportable Molecular Beam Mass Spectrometer. This information will be used to optimize the parameters of the gasifier operation, insuring the quality of the syngas made in the Red Lion Bioenergy gasifier and its compatibility with catalytic conversion to fuels.
The U.S. Rosetta Project at Its First Science Target: Asteroid (2867) Steins, 2008
NASA Technical Reports Server (NTRS)
Alexander, C.; Sweetnam, D.; Gulkis, S.; Weissman, P.; Holmes, D.; Parker, J.; Burch, J.; Goldstein, R.; Mokashi, P.; Fuselier, S.;
2010-01-01
On September 5, 2008, the International Rosetta Mission encountered its first formal science target of the mission, asteroid (2867) Steins. We report preliminary results from the U.S. experiments. NASA's contribution to the Rosetta mission consists of an ultraviolet (UV) spectrometer, a microwave spectrometer, a plasma instrument, and a portion of the electronics package for a mass spectrometer. The UV spectrometer (Alice) was used to obtain the first far-ultraviolet (FUV) spectrum of an asteroid. A ten-minute integration, surrounding the time of closest approach, averaging over a variety of geometries, showed very good signal from 850 Angstroms to 2000 Angstroms in the FUV. The microwave instrument (MIRO) obtained a high signal to noise measurement at both observing frequencies, enabling key thermal parameters to be derived. The plasma instrument (IES) obtained a brief measurement of the solar wind, and the Double Focusing Mass Spectrometer (DFMS) of the ROSINA instrument obtained a signal just at closest approach. Laboratory work with analogue materials was begun.
Frequentist Analysis of SLAC Rosenbluth Data
NASA Astrophysics Data System (ADS)
Higinbotham, Douglas; McClellan, Evan; Shamaiengar, Stephen
2017-01-01
Analysis of the SLAC NE-11 elastic electron-proton scattering data typically assumes that the 1.6 GeV spectrometer has a systematic normalization offset as compared to the well-known 8 GeV spectrometer, yet such an offset should have been observed globally. A review of doctoral theses from the period finds that analysis with high statistics, inelastic data saw no significant normalization difference. Moreover, the unique kinematics utilized to match the two spectrometers for normalization required the 8 GeV to be rotated beyond it's well-understood angular range. We try to quantify the confidence level of rejecting the null hypothesis, i.e. that the 1.6 GeV spectrometer normalization is correct, and will show the result of simply analyzing the cross section data as obtained. This is a critical study, as the 1.6 GeV spectrometer data drives the epsilon lever arm in Rosenbluth extractions, and therefore can have a significant impact on form factor extractions at high momentum transfer.
The LAMP instrument at the Linac Coherent Light Source free-electron laser
Osipov, Timur; Bostedt, Christoph; Castagna, J. -C.; ...
2018-03-23
The Laser Applications in Materials Processing (LAMP) instrument is a new end-station for soft X-ray imaging, high-field physics, and ultrafast X-ray science experiments that is available to users at the Linac Coherent Light Source (LCLS) free-electron laser. While the instrument resides in the Atomic, Molecular and Optical science hutch, its components can be used at any LCLS beamline. The end-station has a modular design that provides high flexibility in order to meet user-defined experimental requirements and specifications. The ultra-high-vacuum environment supports different sample delivery systems, including pulsed and continuous atomic, molecular, and cluster jets; liquid and aerosols jets; and effusivemore » metal vapor beams. It also houses movable, large-format, high-speed pnCCD X-ray detectors for detecting scattered and fluorescent photons. Multiple charged-particle spectrometer options are compatible with the LAMP chamber, including a double-sided spectrometer for simultaneous and even coincident measurements of electrons, ions, and photons produced by the interaction of the high-intensity X-ray beam with the various samples. Here in this paper we describe the design and capabilities of the spectrometers along with some general aspects of the LAMP chamber and show some results from the initial instrument commissioning.« less
The LAMP instrument at the Linac Coherent Light Source free-electron laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osipov, Timur; Bostedt, Christoph; Castagna, J. -C.
The Laser Applications in Materials Processing (LAMP) instrument is a new end-station for soft X-ray imaging, high-field physics, and ultrafast X-ray science experiments that is available to users at the Linac Coherent Light Source (LCLS) free-electron laser. While the instrument resides in the Atomic, Molecular and Optical science hutch, its components can be used at any LCLS beamline. The end-station has a modular design that provides high flexibility in order to meet user-defined experimental requirements and specifications. The ultra-high-vacuum environment supports different sample delivery systems, including pulsed and continuous atomic, molecular, and cluster jets; liquid and aerosols jets; and effusivemore » metal vapor beams. It also houses movable, large-format, high-speed pnCCD X-ray detectors for detecting scattered and fluorescent photons. Multiple charged-particle spectrometer options are compatible with the LAMP chamber, including a double-sided spectrometer for simultaneous and even coincident measurements of electrons, ions, and photons produced by the interaction of the high-intensity X-ray beam with the various samples. Here in this paper we describe the design and capabilities of the spectrometers along with some general aspects of the LAMP chamber and show some results from the initial instrument commissioning.« less
Electronic drive and acquisition system for mass spectrometry
NASA Technical Reports Server (NTRS)
Schaefer, Rembrandt Thomas (Inventor); Chutjian, Ara (Inventor); Tran, Tuan (Inventor); Madzunkov, Stojan M. (Inventor); Thomas, John L. (Inventor); Mojarradi, Mohammad (Inventor); MacAskill, John (Inventor); Blaes, Brent R. (Inventor); Darrach, Murray R. (Inventor); Burke, Gary R. (Inventor)
2010-01-01
The present invention discloses a mixed signal RF drive electronics board that offers small, low power, reliable, and customizable method for driving and generating mass spectra from a mass spectrometer, and for control of other functions such as electron ionizer, ion focusing, single-ion detection, multi-channel data accumulation and, if desired, front-end interfaces such as pumps, valves, heaters, and columns.
A compact electron spectrometer for an LWFA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lumpkin, A.; Crowell, R.; Li, Y.
2007-01-01
The use of a laser wakefield accelerator (LWFA) beam as a driver for a compact free-electron laser (FEL) has been proposed recently. A project is underway at Argonne National Laboratory (ANL) to operate an LWFA in the bubble regime and to use the quasi-monoenergetic electron beam as a driver for a 3-m-long undulator for generation of sub-ps UV radiation. The Terawatt Ultrafast High Field Facility (TUHFF) in the Chemistry Division provides the 20-TW peak power laser. A compact electron spectrometer whose initial fields of 0.45 T provide energy coverage of 30-200 MeV has been selected to characterize the electron beams.more » The system is based on the Ecole Polytechnique design used for their LWFA and incorporates the 5-cm-long permanent magnet dipole, the LANEX scintillator screen located at the dispersive plane, a Roper Scientific 16-bit MCP-intensified CCD camera, and a Bergoz ICT for complementary charge measurements. Test results on the magnets, the 16-bit camera, and the ICT will be described, and initial electron beam data will be presented as available. Other challenges will also be addressed.« less
Simon, Ferenc; Murányi, Ferenc
2005-04-01
The design and performance of an electron spin resonance spectrometer operating at 3 and 9 GHz microwave frequencies combined with a 9-T superconducting magnet are described. The probehead contains a compact two-loop, one gap resonator, and is inside the variable temperature insert of the magnet enabling measurements in the 0-9T magnetic field and 1.5-400 K temperature range. The spectrometer allows studies on systems where resonance occurs at fields far above the g approximately 2 paramagnetic condition such as in antiferromagnets. The low quality factor of the resonator allows time resolved experiments such as, e.g., longitudinally detected ESR. We demonstrate the performance of the spectrometer on the NaNiO2 antiferromagnet, the MgB2 superconductor, and the RbC60 conducting alkaline fulleride polymer.
L-edge spectroscopy of dilute, radiation-sensitive systems using a transition-edge-sensor array
DOE Office of Scientific and Technical Information (OSTI.GOV)
Titus, Charles J.; Baker, Michael L.; Lee, Sang Jun
Here, we present X-ray absorption spectroscopy and resonant inelastic X-ray scattering (RIXS) measurements on the iron L-edge of 0.5 mM aqueous ferricyanide. These measurements then demonstrate the ability of high-throughput transition-edge-sensor (TES) spectrometers to access the rich soft X-ray (100–2000 eV) spectroscopy regime for dilute and radiation-sensitive samples. Our low-concentration data are in agreement with high-concentration measurements recorded by grating spectrometers. These results show that soft-X-ray RIXS spectroscopy acquired by high-throughput TES spectrometers can be used to study the local electronic structure of dilute metal-centered complexes relevant to biology, chemistry, and catalysis. In particular, TES spectrometers have a unique abilitymore » to characterize frozen solutions of radiation- and temperature-sensitive samples.« less
L-edge spectroscopy of dilute, radiation-sensitive systems using a transition-edge-sensor array
Titus, Charles J.; Baker, Michael L.; Lee, Sang Jun; ...
2017-12-07
Here, we present X-ray absorption spectroscopy and resonant inelastic X-ray scattering (RIXS) measurements on the iron L-edge of 0.5 mM aqueous ferricyanide. These measurements then demonstrate the ability of high-throughput transition-edge-sensor (TES) spectrometers to access the rich soft X-ray (100–2000 eV) spectroscopy regime for dilute and radiation-sensitive samples. Our low-concentration data are in agreement with high-concentration measurements recorded by grating spectrometers. These results show that soft-X-ray RIXS spectroscopy acquired by high-throughput TES spectrometers can be used to study the local electronic structure of dilute metal-centered complexes relevant to biology, chemistry, and catalysis. In particular, TES spectrometers have a unique abilitymore » to characterize frozen solutions of radiation- and temperature-sensitive samples.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thompson, Cyril V.; Whitten, William B.
This report describes Oak Ridge National Laboratory’s (ORNL) FY15 progress in support of National Nuclear Security Administration’s (NNSA) Portable Mass Spectrometer project. A retrofit PolarisQ ion trap mass spectrometer (RPMS) has been assembled from components of two PolarisQ ion trap mass spectrometers used in previous isotope ratio programs. The retrofit mass spectrometer includes a custom Hastelloy vacuum chamber which is about ¼ the size of the standard aluminum vacuum chamber and reduces the instrument weight from the original by nine pounds. In addition, the new vacuum chamber can be independently heated to reduce impurities such as water, which reacts withmore » UF 6 to produce HF in the vacuum chamber. The analyzer and all components requiring service are mounted on the chamber lid, facilitating quick and easy replacement of consumable components such as the filament and electron multiplier.« less
Electron-proton spectrometer: Summary for critical design review
NASA Technical Reports Server (NTRS)
1972-01-01
The electron-proton spectrometer (EPS) is mounted external to the Skylab module complex on the command service module. It is designed to make a 2 pi omni-directional measurement of electrons and protons which result from solar flares or enhancement of the radiation belts. The EPS data will provide accurate radiation dose information so that uncertain Relative biological effectiveness factors are eliminated by measuring the external particle spectra. Astronaut radiation safety, therefore, can be ensured, as the EPS data can be used to correct or qualify radiation dose measurements recorded by other radiation measuring instrumentation within the Skylab module complex. The EPS has the capability of measuring and extremely wide dynamic radiation dose rate range, approaching 10 to the 7th power. Simultaneously the EPS has the capability to process data from extremely high radiation fields such as might be encountered in the wake of an intense solar flare.
SW-MW infrared spectrometer for lunar mission
NASA Astrophysics Data System (ADS)
Banerjee, Arup; Biswas, Amiya; Joshi, Shaunak; Kumar, Ankush; Rehman, Sami; Sharma, Satish; Somani, Sandip; Bhati, Sunil; Karelia, Jitendra; Saxena, Anish; Chowdhury, Arup R.
2016-04-01
SW-MW Imaging Infrared Spectrometer, the Hyperspectral optical imaging instrument is envisaged to map geomorphology and mineralogy of lunar surface. The instrument is designed to image the electro-magnetic energy emanating from moon's surface with high spectral and spatial resolution for the mission duration from an altitude of 100 km. It is designed to cover 0.8 to 5 μm in 250 spectral bands with GSD 80m and swath 20km. Primarily, there are three basic optical segments in the spectrometer. They are fore optics, dispersing element and focusing elements. The payload is designed around a custom developed multi-blaze convex grating optimized for system throughput. The considerations for optimization are lunar radiation, instrument background, optical throughput, and detector sensitivity. HgCdTe (cooled using a rotary stirling cooler) based detector array (500x256 elements, 30μm) is being custom developed for the spectrometer. Stray light background flux is minimized using a multi-band filter cooled to cryogenic temperature. Mechanical system realization is being performed considering requirements such as structural, opto-mechanical, thermal, and alignment. The entire EOM is planned to be maintained at 240K to reduce and control instrument background. Al based mirror, grating, and EOM housing is being developed to maintain structural requirements along with opto- mechanical and thermal. Multi-tier radiative isolation and multi-stage radiative cooling approach is selected for maintaining the EOM temperature. EOM along with precision electronics packages are planned to be placed on the outer and inner side of Anti-sun side (ASS) deck. Power and Cooler drive electronics packages are planned to be placed on bottom side of ASS panel. Cooler drive electronics is being custom developed to maintain the detector temperature within 100mK during the imaging phase. Low noise detector electronics development is critical for maintaining the NETD requirements at different target temperatures. Subsequent segments of the paper bring out system design aspects and trade-off analyses.
VEGAS: VErsatile GBT Astronomical Spectrometer
NASA Astrophysics Data System (ADS)
Bussa, Srikanth; VEGAS Development Team
2012-01-01
The National Science Foundation Advanced Technologies and Instrumentation (NSF-ATI) program is funding a new spectrometer backend for the Green Bank Telescope (GBT). This spectrometer is being built by the CICADA collaboration - collaboration between the National Radio Astronomy Observatory (NRAO) and the Center for Astronomy Signal Processing and Electronics Research (CASPER) at the University of California Berkeley.The backend is named as VErsatile GBT Astronomical Spectrometer (VEGAS) and will replace the capabilities of the existing spectrometers. This backend supports data processing from focal plane array systems. The spectrometer will be capable of processing up to 1.25 GHz bandwidth from 8 dual polarized beams or a bandwidth up to 10 GHz from a dual polarized beam.The spectrometer will be using 8-bit analog to digital converters (ADC), which gives a better dynamic range than existing GBT spectrometers. There will be 8 tunable digital sub-bands within the 1.25 GHz bandwidth, which will enhance the capability of simultaneous observation of multiple spectral transitions. The maximum spectral dump rate to disk will be about 0.5 msec. The vastly enhanced backend capabilities will support several science projects with the GBT. The projects include mapping temperature and density structure of molecular clouds; searches for organic molecules in the interstellar medium; determination of the fundamental constants of our evolving Universe; red-shifted spectral features from galaxies across cosmic time and survey for pulsars in the extreme gravitational environment of the Galactic Center.
Octupole Correlations in THORIUM-225
NASA Astrophysics Data System (ADS)
Hughes, John Rhys
Available from UMI in association with The British Library. The nuclear structure of ^{225 }Th has been studied using the reaction ^{226}Ra(alpha,5n) ^{225}Th at a beam energy of 50 MeV. In-beam gamma-gamma , e^{-}-n, e ^{-}-e^{-} and e^{-}- gamma coincidences have been measured, using the TESSA3 array at the Daresbury NSF and the Double Orange spectrometer at the University of Bonn Cyclotron. gamma-ray and electron energies and intensities, gamma-ray angular distribution ratios and electron subshell ratios and conversion coefficients have been used to establish a decay scheme up to spin (39/2) hbar and excitation energy E _{z} ~ 2.5 MeV. The decay scheme is found to be characterised by two Delta J = 1 rotational bands, and these are classified in terms of the simplex quantum number, s, which is expected to be conserved for an octupole nucleus. No band crossings are observed up to a rotational frequency of hbaromega ~ 0.21 and 0.18 MeV in the s = -i and +i bands, respectively. Parity doublets have been observed, with enhanced E1 transitions linking states of opposite parity. gamma -branching ratios have been measured and an average value of | Q_1/Q_2| = (0.51 +/- 0.06) times 10^{-3} fm^{-1} has been deduced. The results are compared with various calculations incorporating odd multiple degrees of freedom in the description of the nuclear shape.
Al-Sabahi, Jamal; Bora, Tanujjal; Al-Abri, Mohammed; Dutta, Joydeep
2017-01-01
Benzene, toluene, ethylbenzene and xylenes (BTEX) are some of the common environmental pollutants originating mainly from oil and gas industries, which are toxic to human as well as other living organisms in the ecosystem. Here we investigate photocatalytic degradation of BTEX under visible light irradiation using supported zinc oxide (ZnO) nanorods grown on glass substrates using a microwave assisted hydrothermal method. ZnO nanorods were characterized by electron microscopy, X-ray diffraction (XRD), specific surface area, UV/visible absorption and photoluminescence spectroscopy. Visible light photocatalytic degradation products of BTEX are studied for individual components using gas chromatograph/mass spectrometer (GC/MS). ZnO nanorods with significant amount of electronic defect states, due to the fast crystallization of the nanorods under microwave irradiation, exhibited efficient degradation of BTEX under visible light, degrading more than 80% of the individual BTEX components in 180 minutes. Effect of initial concentration of BTEX as individual components is also probed and the photocatalytic activity of the ZnO nanorods in different conditions is explored. Formation of intermediate byproducts such as phenol, benzyl alcohol, benzaldehyde and benzoic acid were confirmed by our HPLC analysis which could be due to the photocatalytic degradation of BTEX. Carbon dioxide was evaluated and showed an increasing pattern over time indicating the mineralization process confirming the conversion of toxic organic compounds into benign products.
Bora, Tanujjal; Al-Abri, Mohammed; Dutta, Joydeep
2017-01-01
Benzene, toluene, ethylbenzene and xylenes (BTEX) are some of the common environmental pollutants originating mainly from oil and gas industries, which are toxic to human as well as other living organisms in the ecosystem. Here we investigate photocatalytic degradation of BTEX under visible light irradiation using supported zinc oxide (ZnO) nanorods grown on glass substrates using a microwave assisted hydrothermal method. ZnO nanorods were characterized by electron microscopy, X-ray diffraction (XRD), specific surface area, UV/visible absorption and photoluminescence spectroscopy. Visible light photocatalytic degradation products of BTEX are studied for individual components using gas chromatograph/mass spectrometer (GC/MS). ZnO nanorods with significant amount of electronic defect states, due to the fast crystallization of the nanorods under microwave irradiation, exhibited efficient degradation of BTEX under visible light, degrading more than 80% of the individual BTEX components in 180 minutes. Effect of initial concentration of BTEX as individual components is also probed and the photocatalytic activity of the ZnO nanorods in different conditions is explored. Formation of intermediate byproducts such as phenol, benzyl alcohol, benzaldehyde and benzoic acid were confirmed by our HPLC analysis which could be due to the photocatalytic degradation of BTEX. Carbon dioxide was evaluated and showed an increasing pattern over time indicating the mineralization process confirming the conversion of toxic organic compounds into benign products. PMID:29261711
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lindemer, Terrence; Voit, Stewart L; Silva, Chinthaka M
2014-01-01
The U.S. Department of Energy is considering a new nuclear fuel that would be less susceptible to ruptures during a loss-of-coolant accident. The fuel would consist of tristructural isotropic coated particles with large, dense uranium nitride (UN) kernels. This effort explores many factors involved in using gel-derived uranium oxide-carbon microspheres to make large UN kernels. Analysis of recent studies with sufficient experimental details is provided. Extensive thermodynamic calculations are used to predict carbon monoxide and other pressures for several different reactions that may be involved in conversion of uranium oxides and carbides to UN. Experimentally, the method for making themore » gel-derived microspheres is described. These were used in a microbalance with an attached mass spectrometer to determine details of carbothermic conversion in argon, nitrogen, or vacuum. A quantitative model is derived from experiments for vacuum conversion to an uranium oxide-carbide kernel.« less
Spectra of clinical CT scanners using a portable Compton spectrometer.
Duisterwinkel, H A; van Abbema, J K; van Goethem, M J; Kawachimaru, R; Paganini, L; van der Graaf, E R; Brandenburg, S
2015-04-01
Spectral information of the output of x-ray tubes in (dual source) computer tomography (CT) scanners can be used to improve the conversion of CT numbers to proton stopping power and can be used to advantage in CT scanner quality assurance. The purpose of this study is to design, validate, and apply a compact portable Compton spectrometer that was constructed to accurately measure x-ray spectra of CT scanners. In the design of the Compton spectrometer, the shielding materials were carefully chosen and positioned to reduce background by x-ray fluorescence from the materials used. The spectrum of Compton scattered x-rays alters from the original source spectrum due to various physical processes. Reconstruction of the original x-ray spectrum from the Compton scattered spectrum is based on Monte Carlo simulations of the processes involved. This reconstruction is validated by comparing directly and indirectly measured spectra of a mobile x-ray tube. The Compton spectrometer is assessed in a clinical setting by measuring x-ray spectra at various tube voltages of three different medical CT scanner x-ray tubes. The directly and indirectly measured spectra are in good agreement (their ratio being 0.99) thereby validating the reconstruction method. The measured spectra of the medical CT scanners are consistent with theoretical spectra and spectra obtained from the x-ray tube manufacturer. A Compton spectrometer has been successfully designed, constructed, validated, and applied in the measurement of x-ray spectra of CT scanners. These measurements show that our compact Compton spectrometer can be rapidly set-up using the alignment lasers of the CT scanner, thereby enabling its use in commissioning, troubleshooting, and, e.g., annual performance check-ups of CT scanners.
An Archive of Spectra from the Mayall Fourier Transform Spectrometer at Kitt Peak
NASA Astrophysics Data System (ADS)
Pilachowski, C. A.; Hinkle, K. H.; Young, M. D.; Dennis, H. B.; Gopu, A.; Henschel, R.; Hayashi, S.
2017-02-01
We describe the SpArc science gateway for spectral data obtained using the Fourier Transform Spectrometer (FTS) in operation at the Mayall 4-m telescope at the Kitt Peak National Observatory during the period from 1975 through 1995. SpArc is hosted by Indiana University Bloomington and is available for public access. The archive includes nearly 10,000 individual spectra of more than 800 different astronomical sources including stars, nebulae, galaxies, and solar system objects. We briefly describe the FTS instrument itself and summarize the conversion of the original interferograms into spectral data and the process for recovering the data into FITS files. The architecture of the archive is discussed and the process for retrieving data from the archive is introduced. Sample use cases showing typical FTS spectra are presented.
TIGRESS: TRIUMF-ISAC gamma-ray escape-suppressed spectrometer
NASA Astrophysics Data System (ADS)
Svensson, C. E.; Amaudruz, P.; Andreoiu, C.; Andreyev, A.; Austin, R. A. E.; Ball, G. C.; Bandyopadhyay, D.; Boston, A. J.; Chakrawarthy, R. S.; Chen, A. A.; Churchman, R.; Drake, T. E.; Finlay, P.; Garrett, P. E.; Grinyer, G. F.; Hackman, G.; Hyland, B.; Jones, B.; Kanungo, R.; Maharaj, R.; Martin, J. P.; Morris, D.; Morton, A. C.; Pearson, C. J.; Phillips, A. A.; Ressler, J. J.; Roy, R.; Sarazin, F.; Schumaker, M. A.; Scraggs, H. C.; Smith, M. B.; Starinsky, N.; Valiente-Dobón, J. J.; Waddington, J. C.; Watters, L. M.
2005-10-01
The TRIUMF-ISAC gamma-ray escape-suppressed spectrometer (TIGRESS) is a new γ-ray detector array being developed for use at TRIUMF's Isotope Separator and Accelerator (ISAC) radioactive ion beam facility. TIGRESS will comprise 12 32-fold segmented clover-type HPGe detectors coupled with 20-fold segmented modular Compton suppression shields and custom digital signal processing electronics. This paper provides an overview of the TIGRESS project and progress in its development to date.
Miniaturized Ion Mobility Spectrometer
NASA Technical Reports Server (NTRS)
Stimac, Robert M. (Inventor); Kaye, William J (Inventor)
2017-01-01
By utilizing the combination of a unique electronic ion injection control circuit in conjunction with a particularly designed drift cell construction, the instantly disclosed ion mobility spectrometer (IMS) achieves increased levels of sensitivity, while achieving significant reductions in size and weight. The instant IMS is of a much simpler and easy to manufacture design, rugged and hermetically sealed, capable of operation at high temperatures to at least 250 degrees Centigrade, and is uniquely sensitive, particularly to explosive chemicals.
Miniaturized Ion Mobility Spectrometer
NASA Technical Reports Server (NTRS)
Kaye, William J. (Inventor); Stimac, Robert M. (Inventor)
2015-01-01
By utilizing the combination of a unique electronic ion injection control circuit in conjunction with a particularly designed drift cell construction, the instantly disclosed ion mobility spectrometer achieves increased levels of sensitivity, while achieving significant reductions in size and weight. The instant IMS is of a much simpler and easy to manufacture design, rugged and hermetically sealed, capable of operation at high temperatures to at least 250.degree. C., and is uniquely sensitive, particularly to explosive chemicals.
Mariner Jupiter/Saturn 1977 infrared interferometer spectrometer (MJS' 77) design study
NASA Technical Reports Server (NTRS)
1974-01-01
A design study of the Infrared Interferometer Spectrometer and Radiometer (IRIS) instrument for the Mariner Jupiter/Saturn 1977 mission was conducted. The objective of the study was to investigate a number a potential problem areas identified in previous studies and to develop the instrument system designs along the lines providing for the optimum performance obtainable with the allowable budgets. The considerations for the optical design, mechanical design, and electronic design are examined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, H.; Li, X.; Baker, D. N.
Based on comprehensive measurements from Helium, Oxygen, Proton, and Electron Mass Spectrometer Ion Spectrometer, Relativistic Electron-Proton Telescope, and Radiation Belt Storm Probes Ion Composition Experiment instruments on the Van Allen Probes, comparative studies of ring current electrons and ions are performed and the role of energetic electrons in the ring current dynamics is investigated. The deep injections of tens to hundreds of keV electrons and tens of keV protons into the inner magnetosphere occur frequently; after the injections the electrons decay slowly in the inner belt but protons in the low L region decay very fast. Intriguing similarities between lowermore » energy protons and higher-energy electrons are also found. The evolution of ring current electron and ion energy densities and energy content are examined in detail during two geomagnetic storms, one moderate and one intense. Here, the results show that the contribution of ring current electrons to the ring current energy content is much smaller than that of ring current ions (up to ~12% for the moderate storm and ~7% for the intense storm), and <35 keV electrons dominate the ring current electron energy content at the storm main phases. Though the electron energy content is usually much smaller than that of ions, the enhancement of ring current electron energy content during the moderate storm can get to ~30% of that of ring current ions, indicating a more dynamic feature of ring current electrons and important role of electrons in the ring current buildup. Lastly, the ring current electron energy density is also shown to be higher at midnight and dawn while lower at noon and dusk.« less
NASA Astrophysics Data System (ADS)
Yeti Nuryantini, Ade; Cahya Septia Mahen, Ea; Sawitri, Asti; Wahid Nuryadin, Bebeh
2017-09-01
In this paper, we report on a homemade optical spectrometer using diffraction grating and image processing techniques. This device was designed to produce spectral images that could then be processed by measuring signal strength (pixel intensity) to obtain the light source, transmittance, and absorbance spectra of the liquid sample. The homemade optical spectrometer consisted of: (i) a white LED as a light source, (ii) a cuvette or sample holder, (iii) a slit, (iv) a diffraction grating, and (v) a CMOS camera (webcam). In this study, various concentrations of a carbon nanoparticle (CNP) colloid were used in the particle size sample test. Additionally, a commercial optical spectrometer and tunneling electron microscope (TEM) were used to characterize the optical properties and morphology of the CNPs, respectively. The data obtained using the homemade optical spectrometer, commercial optical spectrometer, and TEM showed similar results and trends. Lastly, the calculation and measurement of CNP size were performed using the effective mass approximation (EMA) and TEM. These data showed that the average nanoparticle sizes were approximately 2.4 nm and 2.5 ± 0.3 nm, respectively. This research provides new insights into the development of a portable, simple, and low-cost optical spectrometer that can be used in nanomaterial characterization for physics undergraduate instruction.
Plasma chemical conversion of sulphur hexafluoride initiated by a pulsed electron beam
NASA Astrophysics Data System (ADS)
Kholodnaya, Galina; Sazonov, Roman; Ponomarev, Denis; Guzeeva, Tatiana
2017-01-01
This paper presents the results of the experimental investigation of plasma chemical conversion of sulphur hexafluoride initiated by a pulsed electron beam (TEA-500 pulsed electron accelerator) with the following characteristics: 400-450 keV electron energy, 60 ns pulse duration, up to 200 J pulse energy, and 5 cm beam diameter. Experiments were conducted on the effect of the pulsed electron beam on SF6 and on mixtures of SF6 with O2, Ar, or N2. For the mixture of SF6 and oxygen, the results indicated chemical reactions involving the formation of a number of products of which one is sulphur, confirming the Wray - Fluorescence Analysis. The plasma chemical conversion of SF6 initiated by the pulsed electron beam was not detected when SF6 was mixed with Ar or N2, suggesting a possible mechanism for the reaction of SF6 in the presence of O2.
A beta-ray spectrometer based on a two-or three silicon detector coincidence telescope
NASA Astrophysics Data System (ADS)
Horowitz, Y. S.; Weizman, Y.; Hirning, C. R.
1996-02-01
This report describes the operation of a beta-ray energy spectrometer based on a silicon detector telescope using two or three elements. The front detector is a planar, totally-depleted, silicon surface barrier detector that is 97 μm thick, the back detector is a room-temperature, lithium compensated, silicon detector that is 5000 μm thick, and the intermediate detector is similar to the front detector but 72 μm thick and intended to be used only in intense photon fields. The three detectors are mounted in a light-tight aluminum housing. The capability of the spectrometer to reject photons is based upon the fact that the incident photon will have a small probability of simultaneously losing detectable energy in two detectors, and an even smaller probability of losing detectable energy in all three detectors. Electrons will, however, almost always record measurable events in either the front two or all three detectors. A coincidence requirement between the detectors thus rejects photon induced events. With a 97 μm thick detector the lower energy coincidence threshold is approximately 110 keV. With an ultra-thin 40 μm thick front detector, and operated at 15°C, the spectrometer is capable of detecting even 60-70 keV electrons with a coincidence efficiency of 60%. The spectrometer has been used to measure beta radiation fields in CANDU reactor working environments, and the spectral information is intended to support dose algorithms for the LiF TLD chips used in the Ontario Hydro dosimetry program.
NASA Astrophysics Data System (ADS)
Hell, N.; Beiersdorfer, P.; Magee, E. W.; Brown, G. V.
2016-11-01
We report the calibration of the Orion High-Resolution X-ray (OHREX) imaging crystal spectrometer at the EBIT-I electron beam ion trap at Livermore. Two such instruments, dubbed OHREX-1 and OHREX-2, are fielded for plasma diagnostics at the Orion laser facility in the United Kingdom. The OHREX spectrometer can simultaneously house two spherically bent crystals with a radius of curvature of r = 67.2 cm. The focusing properties of the spectrometer allow both for larger distance to the source due to the increase in collected light and for observation of extended sources. OHREX is designed to cover a 2.5°-3° spectral range at Bragg angles around 51.3°. The typically high resolving powers at these large Bragg angles are ideally suited for line shape diagnostics. For instance, the nominal resolving power of the instrument (>10 000) is much higher than the effective resolving power associated with the Doppler broadening due to the temperature of the trapped ions in EBIT-I. The effective resolving power is only around 3000 at typical EBIT-I conditions, which nevertheless is sufficient to set up and test the instrument's spectral characteristics. We have calibrated the spectral range for a number of crystals using well known reference lines in the first and second order and derived the ion temperatures from these lines. We have also made use of the 50 μm size of the EBIT-I source width to characterize the spatial focusing of the spectrometer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hell, N.; Dr. Remeis-Sternwarte and ECAP, Universität Erlangen-Nürnberg, Bamberg 96049; Beiersdorfer, P.
2016-11-15
We report the calibration of the Orion High-Resolution X-ray (OHREX) imaging crystal spectrometer at the EBIT-I electron beam ion trap at Livermore. Two such instruments, dubbed OHREX-1 and OHREX-2, are fielded for plasma diagnostics at the Orion laser facility in the United Kingdom. The OHREX spectrometer can simultaneously house two spherically bent crystals with a radius of curvature of r = 67.2 cm. The focusing properties of the spectrometer allow both for larger distance to the source due to the increase in collected light and for observation of extended sources. OHREX is designed to cover a 2.5°–3° spectral range atmore » Bragg angles around 51.3°. The typically high resolving powers at these large Bragg angles are ideally suited for line shape diagnostics. For instance, the nominal resolving power of the instrument (>10 000) is much higher than the effective resolving power associated with the Doppler broadening due to the temperature of the trapped ions in EBIT-I. The effective resolving power is only around 3000 at typical EBIT-I conditions, which nevertheless is sufficient to set up and test the instrument’s spectral characteristics. We have calibrated the spectral range for a number of crystals using well known reference lines in the first and second order and derived the ion temperatures from these lines. We have also made use of the 50 μm size of the EBIT-I source width to characterize the spatial focusing of the spectrometer.« less
Determining coronal electron temperatures from observations with UVCS/SOHO
NASA Technical Reports Server (NTRS)
Fineschi, S.; Esser, R.; Habbal, S. R.; Karovska, M.; Romoli, M.; Strachan, L.; Kohl, J. L.; Huber, M. C. E.
1995-01-01
The electron temperature is a fundamental physical parameter of the coronal plasma. Currently, there are no direct measurements of this quantity in the extended corona. Observations with the Ultraviolet Coronagraph Spectrometer (UVCS) aboard the upcoming Solar and Heliospheric Observatory (SOHO) mission can provide the most direct determination of the electron kinetic temperature (or, more precisely, the electron velocity distribution along the line of sight). This measurement is based on the observation of the Thomson-scattered Lyman alpha (Ly-alpha) profile. This observation is made particularly challenging by the fact that the integrated intensity of the electron-scattered Ly-alpha line is about 10(exp 3) times fainter than that of the resonantly-scattered Ly-alpha component. In addition, the former is distributed across 50 A (FWHM), unlike the latter that is concentrated in 1 A. These facts impose stringent requirements on the stray-light rejection properties of the coronagraph/spectrometer, and in particular on the requirements for the grating. We make use of laboratory measurements of the UVCS Ly-alpha grating stray-light, and of simulated electron-scattered Ly-alpha profiles to estimate the expected confidence levels of electron temperature determination. Models of different structures typical of the corona (e.g., streamers, coronal holes) are used for this parameter study.
Applied nonlinear optics in the journal 'Quantum Electronics'
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grechin, Sergei G; Dmitriev, Valentin G; Chirkin, Anatolii S
2011-12-31
A brief historical review of the experimental and theoretical works on nonlinear optical frequency conversion (generation of harmonics, up- and down-conversion, parametric oscillation), which have been published in the journal 'Quantum Electronics' for the last 40 years, is presented.
Nitric oxide isotopic analyzer based on a compact dual-modulation Faraday rotation spectrometer.
Zhang, Eric; Huang, Stacey; Ji, Qixing; Silvernagel, Michael; Wang, Yin; Ward, Bess; Sigman, Daniel; Wysocki, Gerard
2015-10-14
We have developed a transportable spectroscopic nitrogen isotopic analyzer. The spectrometer is based on dual-modulation Faraday rotation spectroscopy of nitric oxide isotopologues with near shot-noise limited performance and baseline-free operation. Noise analysis indicates minor isotope ((15)NO) detection sensitivity of 0.36 ppbv·Hz(-1/2), corresponding to noise-equivalent Faraday rotation angle (NEA) of 1.31 × 10(-8) rad·Hz(-1/2) and noise-equivalent absorbance (αL)min of 6.27 × 10(-8) Hz(-1/2). White-noise limited performance at 2.8× the shot-noise limit is observed up to ~1000 s, allowing reliable calibration and sample measurement within the drift-free interval of the spectrometer. Integration with wet-chemistry based on acidic vanadium(III) enables conversion of aqueous nitrate/nitrite samples to gaseous NO for total nitrogen isotope analysis. Isotopic ratiometry is accomplished via time-multiplexed measurements of two NO isotope transitions. For 5 μmol potassium nitrate samples, the instrument consistently yields ratiometric precision below 0.3‰, thus demonstrating potential as an in situ diagnostic tool for environmental nitrogen cycle studies.
Im, Chae Ho; Kim, Changman; Song, Young Eun; Oh, Sang-Eun; Jeon, Byong-Hun; Kim, Jung Rae
2018-01-01
Conversion of C1 gas feedstock, including carbon monoxide (CO), into useful platform chemicals has attracted considerable interest in industrial biotechnology. Nevertheless, the low conversion yield and/or growth rate of CO-utilizing microbes make it difficult to develop a C1 gas biorefinery process. The Wood-Ljungdahl pathway which utilize CO is a pathway suffered from insufficient electron supply, in which the conversion can be increased further when an additional electron source like carbohydrate or hydrogen is provided. In this study, electrode-based electron transference using a bioelectrochemical system (BES) was examined to compensate for the insufficient reducing equivalent and increase the production of volatile fatty acids. The BES including neutral red (BES-NR), which facilitated electron transfer between bacteria and electrode, was compared with BES without neutral red and open circuit control. The coulombic efficiency based on the current input to the system and the electrons recovered into VFAs, was significantly higher in BES-NR than the control. These results suggest that the carbon electrode provides a platform to regulate the redox balance for improving the bioconversion of CO, and amending the conventional C1 gas fermentation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Electronic systems for the new multichannel spectrometer at Sacramento Peak.
NASA Technical Reports Server (NTRS)
Hobbs, R. W.; Harris, G. D.; Epstein, G.
1972-01-01
Description of the design features and operation of a new multichannel solar spectrometer to be used for ground-based observations of active regions whose X-ray and EUV emissions are studied by the OSO-H and other satellites. The electronic systems associated with the instrument include (1) an electrooptical guider controlled by a punched paper tape capable of making raster scans of selected portions of the solar disk, (2) a programmer unit that applies paper-tape commands to various portions of the instrument, (3) a closed-loop servosystem for the vacuum heliostat, (4) stepping motor controls for spectral scans, (5) a 40-channel photomultiplier readout, and (6) a magnetometer. Preliminary solar observations indicate satisfactory performance of the system.
Conversion gain and noise of niobium superconducting hot-electron-mixers
NASA Technical Reports Server (NTRS)
Ekstrom, Hans; Karasik, Boris S.; Kollberg, Erik L.; Yngvesson, Sigfrid
1995-01-01
A study has been done of microwave mixing at 20 GHz using the nonlinear (power dependent) resistance of thin niobium strips in the resistive state. Our experiments give evidence that electron-heating is the main cause of the nonlinear phenomenon. Also a detailed phenomenological theory for the determination of conversion properties is presented. This theory is capable of predicting the frequency-conversion loss rather accurately for arbitrary bias by examining the I-V-characteristic. Knowing the electron temperature relaxation time, and using parameters derived from the I-V-characteristic also allows us to predict the -3 dB IF bandwidth. Experimental results are in excellent agreement with the theoretical predictions. The requirements on the mode of operation and on the film parameters for minimizing the conversion loss (and even achieving conversion gain) are discussed in some detail. Our measurements demonstrate an intrinsic conversion loss as low as 1 dB. The maximum IF frequency defined for -3 dB drop in conversion gain, is about 80 MHz. Noise measurements indicate a device output noise temperature of about 50 K and SSB mixer noise temperature below 250 K. This type of mixer is considered very promising for use in low-noise heterodyne receivers at THz frequencies.
NASA Astrophysics Data System (ADS)
Ormachea, O.; Abrahamse, A.; Tolavi, N.; Romero, F.; Urquidi, O.; Pearce, J. M.; Andrews, R.
2013-11-01
We report on the design and installation of a spectrometer system for monitoring solar radiation in Cochabamba, Bolivia. Both the light intensity and the spectral distribution affect the power produced by a photovoltaic device. Local variations in the solar spectrum (especially compared to the AM1.5 standard) may have important implications for device optimization and energy yield estimation. The spectrometer system, based on an Ocean Optics USB4000 (300-900nm) spectrometer, was designed to increase functionality. Typically systems only record the global horizontal radiation. Our system moves a fiber-optic cable 0-90 degrees and takes measurements in 9 degree increments. Additionally, a shadow band allows measurement of the diffuse component of the radiation at each position. The electronic controls utilize an Arduino UNO microcontroller to synchronizes the movement of two PAP bipolar (stepper) motors with the activation of the spectrometer via an external trigger. The spectrometer was factory calibrated for wavelength and calibrated for absolute irradiance using a Sellarnet SL1-Cal light source. We present preliminary results from data taken March-June, 2013, and comment on implications for PV devices in Cochabamba.
Resolution-enhanced Mapping Spectrometer
NASA Technical Reports Server (NTRS)
Kumer, J. B.; Aubrun, J. N.; Rosenberg, W. J.; Roche, A. E.
1993-01-01
A familiar mapping spectrometer implementation utilizes two dimensional detector arrays with spectral dispersion along one direction and spatial along the other. Spectral images are formed by spatially scanning across the scene (i.e., push-broom scanning). For imaging grating and prism spectrometers, the slit is perpendicular to the spatial scan direction. For spectrometers utilizing linearly variable focal-plane-mounted filters the spatial scan direction is perpendicular to the direction of spectral variation. These spectrometers share the common limitation that the number of spectral resolution elements is given by the number of pixels along the spectral (or dispersive) direction. Resolution enhancement by first passing the light input to the spectrometer through a scanned etalon or Michelson is discussed. Thus, while a detector element is scanned through a spatial resolution element of the scene, it is also temporally sampled. The analysis for all the pixels in the dispersive direction is addressed. Several specific examples are discussed. The alternate use of a Michelson for the same enhancement purpose is also discussed. Suitable for weight constrained deep space missions, hardware systems were developed including actuators, sensor, and electronics such that low-resolution etalons with performance required for implementation would weigh less than one pound.
Measurements and modeling of charge carrier lifetime in compressed xenon
NASA Astrophysics Data System (ADS)
Pudov, A. O.; Abyzov, A. S.; Sokolov, S. A.; Davydov, L. N.; Rybka, A. V.; Kutny, V. E.; Melnikov, S. I.; Kholomyeyev, G. A.; Leonov, S. A.; Turchin, A. A.
2018-06-01
Gamma-spectrometers based on high-pressure xenon gas (HPXe) are proving themselves as a great potential alternative to the spectrometers based on high-purity germanium crystals and scintillators. The working medium for the high-resolution HPXe detectors, that is, xenon gas compressed up to pressure ∼50 bar and sometimes doped with hydrogen, methane or others gases, needs to be of very high purity. The gas purity level can be determined by direct measurements or, alternatively, its usability in gamma-spectrometers can be evaluated indirectly through the charge carrier (electron) lifetime measurements. Different approaches and specific setups have been used for the lifetime determination, most of those methods involve the measurement and analyses of individual pulses from ionizing particles registered in an ionization chamber filled with Xe. In the present paper, we report on the HPXe electron lifetime study carried out by using measurements in a cylindrical ionization chamber and the respective analytical charge transport model. Our results support the possibility of carrier lifetime determination in the cylindrical configuration. In addition, the voltage regimes for the use of the chamber in the spectroscopic mode were determined. The measurements were conducted in a two-electrode configuration for a range of pressure values (5 to 50 bar) for the Xe+0.25%H2 gas mixture of ∼6N purity. It is shown that in gases with relatively high values of the electron drift velocity and the electron lifetime, for example low-density gases, the charge collection time measurements can give significantly underestimated lifetime assessment. On the other hand, for the low drift velocity gases, they give much more accurate results. With the use of the analytical model, the electron lifetime was determined more precisely.
Tunable Heterodyne Receiver from 100 Micron to 1,000 Micron for Airborne Observations
NASA Technical Reports Server (NTRS)
Roeser, H. P.; Wattenbach, R.; Vanderwal, P.
1984-01-01
Interest in high resolution spectrometers for the submillimeter wavelength range from 100 micron to 1,000 micron is mostly stimulated by molecular spectroscopy in radioastronomy and atmospheric physics, and by plasma diagnostic experiments. Schottky diodes in waveguide mixer technology and InSb-hot electron bolometers are successfully used in the 0.5 to a few millimeter range whereas tandem Fabry-Perot spectrometers combined with photoconductive detectors (Ge:Sb and Ge:Ga) are used for the 100 micron range. Recent research on heterodyne spectrometers, with Schottky diodes in an open structure mixer and a molecular laser as local oscillators, which can be used over the whole wavelength range is summarized.
A feasibility study of ion implantation techniques for mass spectrometer calibration
NASA Technical Reports Server (NTRS)
Koslin, M. E.; Krycuk, G. A.; Schatz, J. G., Jr.; White, F. A.; Wood, G. M.
1978-01-01
An experimental study was undertaken to examine the feasibility of using ion-implanted filaments doped with either an alkali metal or noble gas for in situ recalibration of onboard mass spectrometers during extended space missions. Implants of rubidium and krypton in rhenium ribbon filaments were subsequently tested in a bakeable 60 deg sector mass spectrometer operating in the static mode. Surface ionization and electron impact ion sources were both used, each yielding satisfactory results. The metallic implant with subsequent ionization provided a means of mass scale calibration and determination of system operating parameters, whereas the noble gas thermally desorbed into the system was more suited for partial pressure and sensitivity determinations.
A 10 micron laser heterodyne spectrometer for remote detection of trace gases
NASA Technical Reports Server (NTRS)
Mumma, M. J.; Kostiuk, T.; Buhl, D.
1978-01-01
Infrared heterodyne spectroscopy provides a means of measuring the intensity profiles of individual rotation-vibration spectral lines with high sensitivity. Considerable effort has been expended on optimizing these instruments for remote measurements of gases in planetary atmospheres with the result that present-generation spectrometers are beginning to provide new and startling results on the planets. The fundamental principles of laser heterodyne spectroscopy are discussed. Detailed considerations of the optical design and the electronic design of the spectral-line receiver are given. Representative results obtained with this spectrometer are discussed, including precision frequency measurements of NH3 (nu-2) lines, detection of auroral emission from Jupiter, and measurements of terrestrial O3 and CO2.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dohyung Lee.
This dissertation addresses the problem of dynamic electron-electron interactions in fast ion-atom collisions using projectile Auger electron spectroscopy. The study was carried out by measuring high-resolution projectile KKL Auger electron spectra as a function of projectile energy for the various collision systems of 0.25-2 MeV/u O{sup q+} and F{sup q+} incident on H{sub 2} and He targets. The electrons were detected in the beam direction, where the kinematic broadening is minimized. A zero-degree tandem electron spectrometer system, was developed and showed the versatility of zero-degree measurements of collisionally-produced atomic states. The zero-degree binary encounter electrons (BEe), quasifree target electrons ionizedmore » by the projectiles in head-on collisions, were observed as a strong background in the KLL Auger electron spectrum. They were studied by treating the target ionization as 180{degree} Rutherford elastic scattering in the projectile frame, and resulted in a validity test of the impulse approximation (IA) and a way to determine the spectrometer efficiency. An anomalous q-dependence, in which the zero-degree BEe yields increase with decreasing projectile charge state (q), was observed. State-resolved KLL Auger cross sections were determined by using the BEe normalization and thus the cross section of the electron-electron interactions such as resonant transfer-excitation (RTE), electron-electron excitation (eeE), and electron-electron ionization (eeI) were determined. Projectile 2l capture with 1s {yields} 2p excitation by the captured target electron was observed as an RTE process with Li-like and He-like projectiles and the measured RTEA (RTE followed by Auger decay) cross sections showed good agreement with an RTE-IA treatment and RTE alignment theory.« less
The design of the Spectrometer Ring at the HIAF
NASA Astrophysics Data System (ADS)
Wu, B.; Yang, J. C.; Xia, J. W.; Yan, X. L.; Hu, X. J.; Mao, L. J.; Sheng, L. N.; Wu, J. X.; Yin, D. Y.; Chai, W. P.; Shen, G. D.; Ge, W. W.; Wang, G.; Zhao, H.; Ruan, S.; Ma, X. W.; Wang, M.; Litvinov, S.; Wen, W. Q.; Chen, X. C.; Chen, R. J.; Tang, M. T.; Wu, W.; Luo, C.; Zhao, T. C.; Shi, C. F.; Fu, X.; Liu, J.; Liang, L.
2018-02-01
The Spectrometer Ring (SRing) is an essential part of the High Intensity heavy-ion Accelerator Facility project (HIAF) in China. It is designed as a multi-functional experimental storage ring, which will be able to operate in three ion optical operation modes. The SRing will be used as a time-of-flight mass spectrometer for short-lived, especially neutron-rich nuclei. It will also be used to collect and cool Rare Isotope Beams (RIBs) or highly-charged stable ion beams for nuclear and atomic physics experiments. The design magnetic rigidity is in the range 1.5 to 15 Tm. The beam cooling system consists of stochastic cooling and electron cooling devices. With a help of an electron cooler, stored ions will be decelerated to a minimum energy of 30 MeV/u by RF cavities. The extraction system of the SRing will allow cooled ion beams to be extracted to an external target for further ion manipulations or reaction experiments. The general ion optics design and technical requirements of SRing subsystems are presented and discussed in this paper.
Development of a high resolution x-ray spectrometer for the National Ignition Facility (NIF)
Hill, K. W.; Bitter, M.; Delgado-Aparicio, L.; ...
2016-09-28
A high resolution (E/ΔE = 1200-1800) Bragg crystal x-ray spectrometer is being developed to measure plasma parameters in National Ignition Facility experiments. The instrument will be a diagnostic instrument manipulator positioned cassette designed mainly to infer electron density in compressed capsules from Stark broadening of the helium-β (1s 2-1s3p) lines of krypton and electron temperature from the relative intensities of dielectronic satellites. Two conically shaped crystals will diffract and focus (1) the Kr Heβ complex and (2) the Heα (1s 2-1s2p) and Lyα (1s-2p) complexes onto a streak camera photocathode for time resolved measurement, and a third cylindrical or conicalmore » crystal will focus the full Heα to Heβ spectral range onto an image plate to provide a time integrated calibration spectrum. Calculations of source x-ray intensity, spectrometer throughput, and spectral resolution are presented. Furthermore, details of the conical-crystal focusing properties as well as the status of the instrumental design are also presented.« less
Development of a high resolution x-ray spectrometer for the National Ignition Facility (NIF).
Hill, K W; Bitter, M; Delgado-Aparicio, L; Efthimion, P C; Ellis, R; Gao, L; Maddox, J; Pablant, N A; Schneider, M B; Chen, H; Ayers, S; Kauffman, R L; MacPhee, A G; Beiersdorfer, P; Bettencourt, R; Ma, T; Nora, R C; Scott, H A; Thorn, D B; Kilkenny, J D; Nelson, D; Shoup, M; Maron, Y
2016-11-01
A high resolution (E/ΔE = 1200-1800) Bragg crystal x-ray spectrometer is being developed to measure plasma parameters in National Ignition Facility experiments. The instrument will be a diagnostic instrument manipulator positioned cassette designed mainly to infer electron density in compressed capsules from Stark broadening of the helium-β (1s 2 -1s3p) lines of krypton and electron temperature from the relative intensities of dielectronic satellites. Two conically shaped crystals will diffract and focus (1) the Kr Heβ complex and (2) the Heα (1s 2 -1s2p) and Lyα (1s-2p) complexes onto a streak camera photocathode for time resolved measurement, and a third cylindrical or conical crystal will focus the full Heα to Heβ spectral range onto an image plate to provide a time integrated calibration spectrum. Calculations of source x-ray intensity, spectrometer throughput, and spectral resolution are presented. Details of the conical-crystal focusing properties as well as the status of the instrumental design are also presented.
Design Study of an X-ray Crystal Spectrometer for the HANBIT Mirror Machine
NASA Astrophysics Data System (ADS)
Lee, S. G.; Hwang, S. M.; Bitter, M. L.
1997-11-01
X-ray crystal spectroscopy is expected to play a major role for the diagnostics of the reactor-like plasmas produced in future large tokamaks, such as KSTAR and ITER. However, it is also desirable to extend the observable spectral range to longer wavelengths (7-15 dotA), which is of interest for the diagnostics of plasmas with much lower electron densities (10^11-10^12 cm-3) and electron temperatures (100 - 200 eV) in other magnetic-confinement experiments, such as the HANBIT mirror machine. The construction of crystal spectrometers for this wavelength range and these plasma conditions is challenging because of the low X-ray emissivity and the fact that the low-energy X-rays are strongly attenuated by even very thin foils or windows. New types of detectors other than the presently used multi-wire proportional counters are therefore needed to obtain a high detection efficiency. In this paper, we present a design study for a vacuum spectrometer with a CCD array detector and detailed estimates of the instrument performance for the observation of spectra from O, Ne and Al ions.
Integration of a versatile bridge concept in a 34 GHz pulsed/CW EPR spectrometer.
Band, Alan; Donohue, Matthew P; Epel, Boris; Madhu, Shraeya; Szalai, Veronika A
2018-03-01
We present a 34 GHz continuous wave (CW)/pulsed electron paramagnetic resonance (EPR) spectrometer capable of pulse-shaping that is based on a versatile microwave bridge design. The bridge radio frequency (RF)-in/RF-out design (500 MHz to 1 GHz input/output passband, 500 MHz instantaneous input/output bandwidth) creates a flexible platform with which to compare a variety of excitation and detection methods utilizing commercially available equipment external to the bridge. We use three sources of RF input to implement typical functions associated with CW and pulse EPR spectroscopic measurements. The bridge output is processed via high speed digitizer and an in-phase/quadrature (I/Q) demodulator for pulsed work or sent to a wideband, high dynamic range log detector for CW. Combining this bridge with additional commercial hardware and new acquisition and control electronics, we have designed and constructed an adaptable EPR spectrometer that builds upon previous work in the literature and is functionally comparable to other available systems. Published by Elsevier Inc.
Procop, Mathias; Hodoroaba, Vasile-Dan; Terborg, Ralf; Berger, Dirk
2016-12-01
A method is proposed to determine the effective detector area for energy-dispersive X-ray spectrometers (EDS). Nowadays, detectors are available for a wide range of nominal areas ranging from 10 up to 150 mm2. However, it remains in most cases unknown whether this nominal area coincides with the "net active sensor area" that should be given according to the related standard ISO 15632, or with any other area of the detector device. Moreover, the specific geometry of EDS installation may further reduce a given detector area. The proposed method can be applied to most scanning electron microscope/EDS configurations. The basic idea consists in a comparison of the measured count rate with the count rate resulting from known X-ray yields of copper, titanium, or silicon. The method was successfully tested on three detectors with known effective area and applied further to seven spectrometers from different manufacturers. In most cases the method gave an effective area smaller than the area given in the detector description.
NASA Technical Reports Server (NTRS)
Southard, Adrian E.; Getty, Stephanie A.; Costen, Nicholas P.; Hidrobo, Gregory B.; Glavin, Daniel P.
2013-01-01
Simulations of field emission of electrons from an electron gun are used to determine the angular distribution of the emitted electron beam and the percentage of charge transmitted through the grid. The simulations are a first step towards understanding the spherical aberration present after focusing the electron beam. The effect of offset of the cathode with respect to the grid and the separation between cathode and grid on the angular distributions of emitted electrons and transmission of the grid are explored.
Apparatus and method for compensating for electron beam emittance in synchronizing light sources
Neil, George R.
1996-01-01
A focused optical beam is used to change the path length of the core electrons in electron light sources thereby boosting their efficiency of conversion of electron beam energy to light. Both coherent light in the free electron laser and incoherent light in the synchrotron is boosted by this technique. By changing the path length of the core electrons by the proper amount, the core electrons are caused to stay in phase with the electrons in the outer distribution of the electron beam. This increases the fraction of the electron beam energy that is converted to light thereby improving the efficiency of conversion of energy to light and therefore boosting the power output of the free electron laser and synchrotron.
Apparatus and method for compensating for electron beam emittance in synchronizing light sources
Neil, G.R.
1996-07-30
A focused optical beam is used to change the path length of the core electrons in electron light sources thereby boosting their efficiency of conversion of electron beam energy to light. Both coherent light in the free electron laser and incoherent light in the synchrotron is boosted by this technique. By changing the path length of the core electrons by the proper amount, the core electrons are caused to stay in phase with the electrons in the outer distribution of the electron beam. This increases the fraction of the electron beam energy that is converted to light thereby improving the efficiency of conversion of energy to light and therefore boosting the power output of the free electron laser and synchrotron. 4 figs.
Zhao, H.; Li, X.; Baker, D. N.; ...
2016-04-16
Based on comprehensive measurements from Helium, Oxygen, Proton, and Electron Mass Spectrometer Ion Spectrometer, Relativistic Electron-Proton Telescope, and Radiation Belt Storm Probes Ion Composition Experiment instruments on the Van Allen Probes, comparative studies of ring current electrons and ions are performed and the role of energetic electrons in the ring current dynamics is investigated. The deep injections of tens to hundreds of keV electrons and tens of keV protons into the inner magnetosphere occur frequently; after the injections the electrons decay slowly in the inner belt but protons in the low L region decay very fast. Intriguing similarities between lowermore » energy protons and higher-energy electrons are also found. The evolution of ring current electron and ion energy densities and energy content are examined in detail during two geomagnetic storms, one moderate and one intense. Here, the results show that the contribution of ring current electrons to the ring current energy content is much smaller than that of ring current ions (up to ~12% for the moderate storm and ~7% for the intense storm), and <35 keV electrons dominate the ring current electron energy content at the storm main phases. Though the electron energy content is usually much smaller than that of ions, the enhancement of ring current electron energy content during the moderate storm can get to ~30% of that of ring current ions, indicating a more dynamic feature of ring current electrons and important role of electrons in the ring current buildup. Lastly, the ring current electron energy density is also shown to be higher at midnight and dawn while lower at noon and dusk.« less
The Mars Microbeam Raman Spectrometer: An Improved Advanced Brassboard
NASA Technical Reports Server (NTRS)
Haskin, L. A.; Wang, Alian
2003-01-01
An advanced brassboard (ADBB) of the Mars Miscrobeam Raman Spectrometer is being developed. The probe and spectrograph have been redesigned with improved optics and the electronics have been miniaturized. The modified optical design in the probe and spectrograph provides better spectral resolution than the previous model and enables the probe design to be more compatible with robotic arm deployment. The CCD detector is now cooled thermoelectrically in anticipation of eventual terrestrial field testing of the instrument.
Micro-optical-mechanical system photoacoustic spectrometer
Kotovsky, Jack; Benett, William J.; Tooker, Angela C.; Alameda, Jennifer B.
2013-01-01
All-optical photoacoustic spectrometer sensing systems (PASS system) and methods include all the hardware needed to analyze the presence of a large variety of materials (solid, liquid and gas). Some of the all-optical PASS systems require only two optical-fibers to communicate with the opto-electronic power and readout systems that exist outside of the material environment. Methods for improving the signal-to-noise are provided and enable mirco-scale systems and methods for operating such systems.
NASA Astrophysics Data System (ADS)
Yakovenko, Victor
2010-03-01
We propose a radically new design for photovoltaic energy conversion using surface acoustic waves (SAWs) in piezoelectric semiconductors. The periodically modulated electric field from SAW spatially separates photogenerated electrons and holes to the maxima and minima of SAW, thus preventing their recombination. The segregated electrons and holes are transported by the moving SAW to the collecting electrodes of two types, which produce dc electric output. Recent experiments [1] using SAWs in GaAs have demonstrated the photon to current conversion efficiency of 85%. These experiments were designed for photon counting, but we propose to adapt these techniques for highly efficient photovoltaic energy conversion. The advantages are that the electron-hole segregation takes place in the whole volume where SAW is present, and the electrons and holes are transported in the organized, collective manner at high speed, as opposed to random diffusion in conventional devices.[4pt] [1] S. J. Jiao, P. D. Batista, K. Biermann, R. Hey, and P. V. Santos, J. Appl. Phys. 106, 053708 (2009).
Sung, Ji Ho; Heo, Hoseok; Hwang, Inchan; Lim, Myungsoo; Lee, Donghun; Kang, Kibum; Choi, Hee Cheul; Park, Jae-Hoon; Jhi, Seung-Hoon; Jo, Moon-Ho
2014-07-09
Material design for direct heat-to-electricity conversion with substantial efficiency essentially requires cooperative control of electrical and thermal transport. Bismuth telluride (Bi2Te3) and antimony telluride (Sb2Te3), displaying the highest thermoelectric power at room temperature, are also known as topological insulators (TIs) whose electronic structures are modified by electronic confinements and strong spin-orbit interaction in a-few-monolayers thickness regime, thus possibly providing another degree of freedom for electron and phonon transport at surfaces. Here, we explore novel thermoelectric conversion in the atomic monolayer steps of a-few-layer topological insulating Bi2Te3 (n-type) and Sb2Te3 (p-type). Specifically, by scanning photoinduced thermoelectric current imaging at the monolayer steps, we show that efficient thermoelectric conversion is accomplished by optothermal motion of hot electrons (Bi2Te3) and holes (Sb2Te3) through 2D subbands and topologically protected surface states in a geometrically deterministic manner. Our discovery suggests that the thermoelectric conversion can be interiorly achieved at the atomic steps of a homogeneous medium by direct exploiting of quantum nature of TIs, thus providing a new design rule for the compact thermoelectric circuitry at the ultimate size limit.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Catoire, F.; Staicu-Casagrande, E. M.; Lahmam-Bennani, A.
We describe new developments aimed to extend the capabilities and the sensitivity of the (e,2e)/(e,3e) multicoincidence spectrometer at Orsay University [Duguet et al., Rev. Sci. Instrum. 69, 3524 (1998)]. The spectrometer has been improved by the addition of a third multiangle detection channel for the fast ''scattered'' electron. The present system is unique in that it is the only system which combines three toroidal analyzers all equipped with position sensitive detectors, thus allowing the triple coincidence detection of the three electrons present in the final state of an electron impact double ionization process. The setup allows measurement of the angularmore » and energy distributions of the ejected electrons over almost the totality of the collision plane as well as that of the scattered electron over a large range of scattering angles in the forward direction. The resulting gain in sensitivity ({approx}25) has rendered feasible a whole class of experiments which could not be otherwise envisaged. The setup is described with a special emphasis on the new toroidal analyzer, data acquisition hardware, and data analysis procedures. The performances are illustrated by selected results of (e,2e) and (e,3e) experiments on the rare gases.« less
Cometary Plasma Probed by Rosetta
NASA Astrophysics Data System (ADS)
Galand, Marina; Vigren, Erik; Raghuram, Susarla; Schwartz, Steve; Eriksson, Anders; Edberg, Niklas; Lebreton, Jean-Pierre; Henri, Pierre; Burch, Jim; Fuselier, Stephen; Haessig, Myrtha; Mandt, Kathy; Altwegg, Kathrin; Tzou, Chia-You
2015-04-01
In Fall 2014, comet 67P/Churyumov-Gerasimenko, the main target of the Rosetta mission, was at 3 AU from the Sun. Its outgassing rate was only of the order of 5×1025 s-1 based on Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) / Cometary Pressure Sensor (COPS). Despite such a thin coma, a plasma of cometary origin has been detected by Rosetta Plasma Consortium (RPC) sensors and ROSINA/ Double Focusing Mass Spectrometer (DFMS). Close to the comet they have revealed the presence of a cometary ionosphere, with a hot electron population, consistent with the deposition of Extreme UltraViolet (EUV) solar radiation. We will present a comparison between RPC sensors and an energy deposition model in terms of suprathermal electron intensities [RPC/ Ion and Electron Sensor (IES)] and electron temperature and density [RPC/ LAngmuir Probe (LAP) and RPC/ Mutual Impedance Probe (MIP)]. We will also compare ion composition among the main species, between our ionospheric model and ROSINA/DFMS. We will discuss effects of the space environment on the cometary plasma. Finally, we will highlight any evolution in the cometary plasma as the comet is getting closer to perihelion.
NASA Astrophysics Data System (ADS)
Bratman, V. L.; Fedotov, A. E.; Kalynov, Yu. K.; Manuilov, V. N.
2017-08-01
The formation and utilization of a helical electron beam are studied theoretically for a gyrotron with a very low operating voltage in a range 1.5-1.8 kV. Such a gyrotron ("gyrotrino") was earlier proposed for operation inside a magnetic system of an NMR spectrometer with a dynamic nuclear polarization upgrade. Despite the very low voltage, the optimization of the electrode shape can provide velocity and positional electron spreads not exceeding these values for conventional high-voltage gyrotrons. A very small cathode-anode separation makes the gyrotrino very sensitive to thermal expansion of the gun elements that should be compensated by movement of the cathode. Estimations for long-pulse and CW regimes of the gyrotrino operation show that the ion background significantly decreases the reduction of the beam potential and leads to an acceptable drift of the electron cyclotron frequency at the voltage front. A satisfactory thermal load on the waste-beam collector located in a strong uniform magnetic field can be achieved due to the omnidirectional heat flow regime occurring in the case of thin beam footprint.
NASA Astrophysics Data System (ADS)
Shimizu, Erina; Ali, Safdar; Tsuda, Takashi; Sakaue, Hiroyuki A.; Kato, Daiji; Murakami, Izumi; Hara, Hirohisa; Watanabe, Tetsuya; Nakamura, Nobuyuki
2017-05-01
We report high-resolution density dependent intensity ratio measurements for middle charge states of iron in the extreme ultraviolet (EUV) spectral wavelength range of 160-200 Å. The measurements were performed at the Tokyo EBIT laboratory by employing a flat-field grazing incidence spectrometer installed on a low energy compact electron beam ion trap. The intensity ratios for several line pairs stemming from Fe X, Fe XI and Fe XII were extracted from spectra collected at the electron beam energies of 340 and 400 eV by varying the beam current between 7.5 and 12 mA at each energy. In addition, the effective electron densities were obtained experimentally by imaging the electron beam profile and ion cloud size with a pinhole camera and visible spectrometer, respectively. In this paper, the experimental results are compared with previous data from the literature and with the present calculations performed using a collisional-radiative model. Our experimental results show a rather good agreement with the calculations and previous reported results.
Ultrafast Electron Dynamics in Solar Energy Conversion.
Ponseca, Carlito S; Chábera, Pavel; Uhlig, Jens; Persson, Petter; Sundström, Villy
2017-08-23
Electrons are the workhorses of solar energy conversion. Conversion of the energy of light to electricity in photovoltaics, or to energy-rich molecules (solar fuel) through photocatalytic processes, invariably starts with photoinduced generation of energy-rich electrons. The harvesting of these electrons in practical devices rests on a series of electron transfer processes whose dynamics and efficiencies determine the function of materials and devices. To capture the energy of a photogenerated electron-hole pair in a solar cell material, charges of opposite sign have to be separated against electrostatic attractions, prevented from recombining and being transported through the active material to electrodes where they can be extracted. In photocatalytic solar fuel production, these electron processes are coupled to chemical reactions leading to storage of the energy of light in chemical bonds. With the focus on the ultrafast time scale, we here discuss the light-induced electron processes underlying the function of several molecular and hybrid materials currently under development for solar energy applications in dye or quantum dot-sensitized solar cells, polymer-fullerene polymer solar cells, organometal halide perovskite solar cells, and finally some photocatalytic systems.
A novel dual-detector micro-spectrometer
NASA Astrophysics Data System (ADS)
Otto, Thomas; Saupe, Ray; Stock, Volker; Bruch, Reinhard; Gruska, Bernd; Gessner, Thomas
2005-01-01
Infrared analysis is a well-established tool for measuring composition and purity of various materials in industrial-, medical- and environmental applications. Traditional spectrometers, for example Fourier Transform Infrared (FTIR) Instruments are mainly designed for laboratory use and are generally, too large, heavy, costly and delicate to handle for remote applications. With important advances in the miniaturization, ruggedness and cost efficiency we have designed and created a new type of a micromirror spectrometer that can operate in harsh temperature and vibrating environments This device is ideally suited for environmental monitoring, chemical and biological applications as well as detection of biological warfare agents and sensing in important security locations In order to realize such compact, portable and field-deployable spectrometers we have applied MOEMS technology. Thus our novel dual detector micro mirror system is composed of a scanning micro mirror combined with a diffraction grating and other essential optical components in order to miniaturize the basic modular set-up. Especially it periodically disperses polychromatic radiation into its spectral components, which are measured by a combination of a visible (VIS) and near infrared (NIR) single element detector. By means of integrated preamplifiers high-precise measurements over a wide dynamic wavelength range are possible. In addition the spectrometer, including the radiation source, detectors and electronics can be coupled to a minimum-volume liquid or gas-flow cell. Furthermore a SMA connector as a fiber optical input allows easy attachment of fiber based probes. By utilizing rapid prototyping techniques, where all components are directly integrated, the micro mirror spectrometer is manufactured for the 700-1700 nm spectral range. In this work the advanced optical design and integration of the electronic interface will be reviewed. Furthermore we will demonstrate the performance of the system and present characteristic measurement results. Finally advanced packaging issues and test results of the device will be discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, G. V.; Beiersdorfer, P.; Goddard, R.
2001-01-01
We have mounted 1 {mu}m thick aluminized polyimide windows onto the position sensitive proportional counters employed by the wide-band flat crystal spectrometers at the Lawrence Livermore National Laboratory electron beam ion trap experiment. The aluminized polyimide, supported by thin wires across the short axis of the window, is used to isolate the detection chamber of the proportional counters, which operate at a pressure of 760 Torr, from the vacuum chamber of the spectrometer. The windows are modified versions of those developed for the proportional counters which were used during ground calibration of the Chandra X-ray Observatory. The transmission properties ofmore » these windows are, therefore, well known. The increased transmission efficiency of the polyimide windows relative to the 4 {mu}m thick polypropylene window material previously employed by our proportional counters has extended the useful range of the spectrometer from roughly 20 to 30 Aa at energies below the carbon edge, as well as increasing detection efficiency at wavelengths beyond the carbon edge. Using an octadecyl hydrogen maleate crystal with 2d=63.5Aa, we demonstrate the increased wavelength coverage by measuring the resonance, intercombination, and forbidden lines in helium-like NVII in two different density regimes. The thin polyimide windows have also increased the efficiency of the spectrometers entire wavelength range. To demonstrate the increased efficiency we compare the FeXVII spectrum in the 15--17 Aa band measured with the 1 {mu}m aluminized polyimide windows to the 4 {mu}m aluminized polypropylene windows. The comparison shows an average increase in efficiency of {approx}40%. The polyimide windows have a significantly lower leak rate than the polypropylene windows making it possible to achieve approximately an order of magnitude lower pressure in the spectrometer vacuum chamber which reduces the gas load on the trap region.« less
NASA Astrophysics Data System (ADS)
Takeda, Sawako; Tashiro, Makoto S.; Ishisaki, Yoshitaka; Tsujimoto, Masahiro; Seta, Hiromi; Shimoda, Yuya; Yamaguchi, Sunao; Uehara, Sho; Terada, Yukikatsu; Fujimoto, Ryuichi; Mitsuda, Kazuhisa
2014-07-01
The soft X-ray spectrometer (SXS) aboard ASTRO-H is equipped with dedicated digital signal processing units called pulse shape processors (PSPs). The X-ray microcalorimeter system SXS has 36 sensor pixels, which are operated at 50 mK to measure heat input of X-ray photons and realize an energy resolution of 7 eV FWHM in the range 0.3-12.0 keV. Front-end signal processing electronics are used to filter and amplify the electrical pulse output from the sensor and for analog-to-digital conversion. The digitized pulses from the 36 pixels are multiplexed and are sent to the PSP over low-voltage differential signaling lines. Each of two identical PSP units consists of an FPGA board, which assists the hardware logic, and two CPU boards, which assist the onboard software. The FPGA board triggers at every pixel event and stores the triggering information as a pulse waveform in the installed memory. The CPU boards read the event data to evaluate pulse heights by an optimal filtering algorithm. The evaluated X-ray photon data (including the pixel ID, energy, and arrival time information) are transferred to the satellite data recorder along with event quality information. The PSP units have been developed and tested with the engineering model (EM) and the flight model. Utilizing the EM PSP, we successfully verified the entire hardware system and the basic software design of the PSPs, including their communication capability and signal processing performance. In this paper, we show the key metrics of the EM test, such as accuracy and synchronicity of sampling clocks, event grading capability, and resultant energy resolution.
NASA Astrophysics Data System (ADS)
Ragozin, Eugene N.; Mednikov, Konstantin N.; Pertsov, Andrei A.; Pirozhkov, Alexander S.; Reva, Anton A.; Shestov, Sergei V.; Ul'yanov, Artem S.; Vishnyakov, Eugene A.
2009-05-01
We report measurements of the reflection spectra of (i) concave (spherical and parabolic) Mo/Si, Mg/Si, and Al/Zr multilayer mirrors (MMs) intended for imaging solar spectroscopy in the framework of the TESIS/CORONAS-FOTON Satellite Project and of (ii) an aperiodic Mo/Si MM optimized for maximum uniform reflectivity in the 125-250 Å range intended for laboratory applications. The reflection spectra were measured in the configuration of a transmission grating spectrometer employing the radiation of a tungsten laser-driven plasma as the source. The function of detectors was fulfilled by backside-illuminated CCDs coated with Al or Zr/Si multilayer absorption filters. High-intensity second-order interference reflection peaks at wavelengths of about 160 Å were revealed in the reflection spectra of the 304-Å Mo/Si MMs. By contrast, the second-order reflection peak in the spectra of the new-generation narrow-band (~12 Å FWHM) 304-Å Mg/Si MMs is substantially depressed. Manifestations of the NEXAFS structure of the L2, 3 absorption edges of Al and Al2O3 were observed in the spectra recorded. The broadband Mo/Si MM was employed as the focusing element of spectrometers in experiments involving (i) the charge exchange of multiply charged ions with the donor atoms of a rare-gas jet; (ii) the spectroscopic characterization of a debris-free soft X-ray radiation source excited by Nd laser pulses in a Xe jet (iii) near-IR-to-soft-X-ray frequency conversion (double Doppler effect) occurring in the retroreflection from the relativistic electron plasma wake wave (flying mirror) driven by a multiterawatt laser in a pulsed helium jet.
Electron Transport Modeling of Molecular Nanoscale Bridges Used in Energy Conversion Schemes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dunietz, Barry D
2016-08-09
The goal of the research program is to reliably describe electron transport and transfer processes at the molecular level. Such insight is essential for improving molecular applications of solar and thermal energy conversion. We develop electronic structure models to study (1) photoinduced electron transfer and transport processes in organic semiconducting materials, and (2) charge and heat transport through molecular bridges. We seek fundamental understanding of key processes, which lead to design new experiments and ultimately to achieve systems with improved properties.
The interaction of low-energy electrons with fructose molecules
NASA Astrophysics Data System (ADS)
Chernyshova, I. V.; Kontrosh, E. E.; Markush, P. P.; Shpenik, O. B.
2017-11-01
Using a hypocycloidal electronic spectrometer, the interactions of low energy electrons (0-8.50 eV) with fructose molecules, namely, electron scattering and dissociative attachment, are studied. The results of these studies showed that the fragmentation of fructose molecules occurs effectively even at an electron energy close to zero. In the total electron-scattering cross section by molecules, resonance features (at energies 3.10 and 5.00 eV) were first observed near the formation thresholds of light ion fragments OH- and H-. The correlation of the features observed in the cross sections of electron scattering and dissociative attachment is analyzed.
A new technique for Auger analysis of surface species subject to electron-induced desorption
NASA Technical Reports Server (NTRS)
Pepper, S. V.
1973-01-01
A method is presented to observe surface species subject to electron-induced desorption by Auger electron spectroscopy. The surface to be examined is moved under the electron beam at constant velocity, establishing a time independent condition and eliminating the time response of the electron spectrometer as a limiting factor. The dependence of the Auger signal on the surface velocity, incident electron current, beam diameter, and desorption cross section are analyzed. The method is illustrated by the Auger analysis of PTFE, in which the fluorine is removed by electron induced desorption.
Observations of solar wind ion charge exchange in the comet Halley coma
NASA Technical Reports Server (NTRS)
Fuselier, S. A.; Shelley, E. G.; Goldstein, B. E.; Goldstein, R.; Neugebauer, M.; Ip, W.-H.; Balsiger, H.; Reme, H.
1991-01-01
Giotto Ion Mass Spectrometer/High Energy Range Spectrometer (IMS/HERS) observations of solar wind ions show charge exchange effects and solar wind compositional changes in the coma of comet Halley. As the comet was approached, the He(++) to proton density ratio increased until about 1 hour before closest approach after which time it decreased. Abrupt increases in this ratio were also observed in the beginning and near the end of the so-called Mystery Region (8.6 - 5.5(10)(exp 5) km from the comet along the spacecraft trajectory). These abrupt increases in the density ratio were well correlated with enhanced fluxes of keV electrons as measured by the Giotto plasma electron spectrometer. The general increase and then decrease of the He(++) to proton density ratio is quantitatively consistent with a combination of the addition of protons of cometary origin to the plasma and loss of plasma through charge exchange of protons and He(++). In general agreement with the solar wind proton and He(++) observations, solar wind oxygen and carbon ions were observed to charge exchange from higher to lower charge states with decreasing distance to the comet. The more abrupt increases in the He(++) to proton and the He(++) to O(6+) density ratios in the mystery region require a change in the solar wind ion composition in this region while the correlation with energetic electrons indicates processes associated with the comet.
Broadband high-frequency waves and intermittent energy conversion at dipolarization fronts
NASA Astrophysics Data System (ADS)
Yang, J.; Cao, J.; Fu, H.; Wang, T.; Liu, W.; Yao, Z., Sr.
2017-12-01
Dipolarization front (DF) is a sharp boundary most probably separating the reconnection jet from the background plasma sheet. So far at this boundary, the observed waves are mainly in low-frequency range (e.g., magnetosonic waves and lower hybrid waves). Few high-frequency waves are observed in this region. In this paper, we report the broadband high-frequency wave emissions at the DF. These waves, having frequencies extending from the electron cyclotron frequency fce, up to the electron plasma frequency fpe, could contribute 10% to the in situ measurement of intermittent energy conversion at the DF layer. Their generation may be attributed to electron beams, which are simultaneously observed at the DF as well. Furthermore, we find intermittent energy conversion is primarily to the broadband fluctuations in the lower hybrid frequency range although the net energy conversion is small.
Energetic electron anisotropies in the magnetotail - Identification of open and closed field lines
NASA Technical Reports Server (NTRS)
Baker, D. N.; Stone, E. C.
1976-01-01
Unidirectional anisotropies in the energetic electron fluxes (E greater than or equal to about 200 keV) have been observed in the earth's magnetotail with the Caltech Electron/Isotope Spectrometer on IMP-8. The anisotropies occur during periods of enhanced fluxes and provide essential information on the topology (open or closed) of the magnetotail field lines which are associated with recently identified acceleration regions.
Design of a lens table for a double toroidal electron spectrometer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu Xiaojng; Nicolas, Christophe; Miron, Catalin
2013-03-15
We report here on the method we developed to build a lens table for a four-element electrostatic transfer lens operated together with a double toroidal electron energy analyzer designed by one of us, and whose original design and further improvements are described in detail in Miron et al. [Rev. Sci. Instrum. 68, 3728 (1997)] and Le Guen et al. [Rev. Sci. Instrum. 73, 3885 (2002)]. Both computer simulations and laboratory instrument tuning were performed in order to build this lens table. The obtained result was tested for a broad range of electron kinetic energies and analyzer pass energies. Based onmore » this new lens table, allowing to easily computer control the spectrometer working conditions, we could routinely achieve an electron energy resolution ranging between 0.6% and 0.8% of the analyzer pass energy, while the electron count rate was also significantly improved. The establishment of such a lens table is of high importance to relieve experimentalists from the tedious laboring of the lens optimization, which was previously necessary prior to any measurement. The described method can be adapted to any type of electron/ion energy analyzer, and will thus be interesting for all experimentalists who own, or plan to build or improve their charged particle energy analyzers.« less
Fast Plasma Instrument for MMS: Simulation Results
NASA Technical Reports Server (NTRS)
Figueroa-Vinas, Adolfo; Adrian, Mark L.; Lobell, James V.; Simpson, David G.; Barrie, Alex; Winkert, George E.; Yeh, Pen-Shu; Moore, Thomas E.
2008-01-01
Magnetospheric Multiscale (MMS) mission will study small-scale reconnection structures and their rapid motions from closely spaced platforms using instruments capable of high angular, energy, and time resolution measurements. The Dual Electron Spectrometer (DES) of the Fast Plasma Instrument (FPI) for MMS meets these demanding requirements by acquiring the electron velocity distribution functions (VDFs) for the full sky with high-resolution angular measurements every 30 ms. This will provide unprecedented access to electron scale dynamics within the reconnection diffusion region. The DES consists of eight half-top-hat energy analyzers. Each analyzer has a 6 deg. x 11.25 deg. Full-sky coverage is achieved by electrostatically stepping the FOV of each of the eight sensors through four discrete deflection look directions. Data compression and burst memory management will provide approximately 30 minutes of high time resolution data during each orbit of the four MMS spacecraft. Each spacecraft will intelligently downlink the data sequences that contain the greatest amount of temporal structure. Here we present the results of a simulation of the DES analyzer measurements, data compression and decompression, as well as ground-based analysis using as a seed re-processed Cluster/PEACE electron measurements. The Cluster/PEACE electron measurements have been reprocessed through virtual DES analyzers with their proper geometrical, energy, and timing scale factors and re-mapped via interpolation to the DES angular and energy phase-space sampling measurements. The results of the simulated DES measurements are analyzed and the full moments of the simulated VDFs are compared with those obtained from the Cluster/PEACE spectrometer using a standard quadrature moment, a newly implemented spectral spherical harmonic method, and a singular value decomposition method. Our preliminary moment calculations show a remarkable agreement within the uncertainties of the measurements, with the results obtained by the Cluster/PEACE electron spectrometers. The data analyzed was selected because it represented a potential reconnection event as currently published.
Data on calcium oxide and cow bone catalysts used for soybean biodiesel production.
Ayodeji, Ayoola A; Blessing, Igho E; Sunday, Fayomi O
2018-06-01
Biodiesel was produced from soybean oil using calcium oxide and cow bone as heterogeneous catalysts, through transesterification process. The soybean oil used was characterized using gas chromatography mass spectrometer (GCMS) and the cow bone catalyst produced was characterized X-ray fluorescence (XRF) spectrometer. The effects of the variation of methanol/oil mole ratio, catalyst concentration and reaction temperature on biodiesel yield during the transesterification of soybean oil were investigated. Reaction time of 3 h and stirring rate of 500 rpm were kept constant. Using Response Optimizer (Minitab 17), the optimum conditions for biodiesel production were established. It was observed that the calcination of cow bone catalyst enhanced its conversion to apatite-CaOH. Also, the results obtained showed that the performance trends of calcined cow bone catalyst and the conventional CaO catalyst were similar.
NASA Astrophysics Data System (ADS)
Silver, J. A.; Bomse, D. S.; Massick, S. M.; Zondlo, M. A.
2003-12-01
Tropospheric ammonia plays important roles in the nucleation, growth, composition, and chemistry of aerosol particles. Unfortunately, high frequency and sensitive measurements of gas phase ammonia are lacking in most airborne-based field campaigns. Chemical ionization mass spectrometers (CIMS) have shown great promise for ammonia measurements, but CIMS instruments typically consume large amounts of power, are highly labor intensive, and are very heavy for most airborne platforms. These characteristics of CIMS instruments severely limit their potential deployment on smaller and lighter aircraft, despite the strong desire for ammonia measurements in atmospheric chemistry field campaigns. To this end, a CIMS ammonia instrument for light aircraft is being developed using a double-focusing, miniature mass spectrometer. The size of the mass spectrometer, comparable to a small apple, allows for higher operating pressures (0.1 mTorr) and lower pumping requirements. Power usage, including pumps and electronics, is estimated to be around 300 W, and the overall instrument including pumps, electronics, and permeation cells is expected to be about the size of a small monitor. The ion source uses americium-241 to generate protonated water ions which proton transfer to form ammonium ions. The ion source is made with commercially available ion optics to minimize machining costs. Mass spectra over its working range (~ 5-120 amu) are well represented by Gaussian shaped peaks. By examining the peak widths as a function of mass location, the resolution of the instrument was determined experimentally to be around 110 (m/delta m). The sensitivity, selectivity, power requirements, size, and performance characteristics of the miniature mass spectrometer will be described along with the possibilities for CIMS measurements on light aircraft.
Antenna-coupled photon emission from hexagonal boron nitride tunnel junctions.
Parzefall, M; Bharadwaj, P; Jain, A; Taniguchi, T; Watanabe, K; Novotny, L
2015-12-01
The ultrafast conversion of electrical signals to optical signals at the nanoscale is of fundamental interest for data processing, telecommunication and optical interconnects. However, the modulation bandwidths of semiconductor light-emitting diodes are limited by the spontaneous recombination rate of electron-hole pairs, and the footprint of electrically driven ultrafast lasers is too large for practical on-chip integration. A metal-insulator-metal tunnel junction approaches the ultimate size limit of electronic devices and its operating speed is fundamentally limited only by the tunnelling time. Here, we study the conversion of electrons (localized in vertical gold-hexagonal boron nitride-gold tunnel junctions) to free-space photons, mediated by resonant slot antennas. Optical antennas efficiently bridge the size mismatch between nanoscale volumes and far-field radiation and strongly enhance the electron-photon conversion efficiency. We achieve polarized, directional and resonantly enhanced light emission from inelastic electron tunnelling and establish a novel platform for studying the interaction of electrons with strongly localized electromagnetic fields.
Implementation of a noise reduction circuit for spaceflight IR spectrometers
NASA Technical Reports Server (NTRS)
Ramirez, L.; Hickok, R.; Pain, B.; Staller, C.
1992-01-01
The paper discusses the implementation and analysis of a correlated triple sampling circuit using analog subtractor/integrators. The software and test setup for noise measurements are also described. The correlation circuitry is part of the signal chain for a 256-element InSb line array used in the Visible and Infrared Mapping Spectrometer. Using a focal-plane array (FPA) simulator, system noise measurements of 0.7 DN are obtained. A test setup for FPA/SPE (signal processing electronics) characterization along with noise measurements is demonstrated.
Preliminary design and development of a reflectance spectrometer instrument
NASA Technical Reports Server (NTRS)
Mccord, T. B.
1979-01-01
An improved design for the reflectance spectrometer is described to be used on various terrestrial body missions. These improvements were made on the original Lunar Polar Orbiter design. These include a larger entrance mirror, rectangular aperture, multiple optical beams, spatial resolution, and a bandwidth extension to 5 microns. In addition, detailed electronic designs were produced for a charge amplifier and an amplifier/demodulator/integrator. Design of a microprocessor driven test system was begun. Laboratory tests were performed on a tuning fork chopper.
NASA Technical Reports Server (NTRS)
Bieber, J. W.; Stone, E. C.
1980-01-01
This letter reports the results of a systematic study of streaming greater than 200 keV electrons observed in the magnetotail with the Caltech Electron/Isotope Spectrometers aboard IMP-7 and IMP-8. A clear statistical association of streaming events with southward magnetic fields, often of steep inclination, and with substorms as evidenced by the AE index is demonstrated. These results support the interpretation that streaming energetic electrons are indicative of substorm-associated magnetic reconnection in the near-earth plasma sheet.
Calibration of the electron-proton spectrometer
NASA Technical Reports Server (NTRS)
Cash, B. L.
1972-01-01
The principal function of the sensor used in the electron-proton spectrometer is to provide a signal which can be used to determine the energy and indicate the type of an incident particle. Two techniques are employed to resolve the particle intensity in different energy regions. The first employs a moderator surrounding each detector to provide a nominal lower limit to the energy of a particle which can be detected. The second technique utilizes a pulse height discriminator to identify those particles entering a detector whose energy is (1) sufficiently high that it exceeds the discriminator level if the particle is stopped in the detector, or (2) sufficiently low that the ionization rate causes the discrimination level to be exceeded for paths through the detector shorter than the particle range.
Quantitative Kα line spectroscopy for energy transport in ultra-intense laser plasma interaction
NASA Astrophysics Data System (ADS)
Zhang, Z.; Nishimura, H.; Namimoto, T.; Fujioka, S.; Arikawa, Y.; Nakai, M.; Koga, M.; Shiraga, H.; Kojima, S.; Azechi, H.; Ozaki, T.; Chen, H.; Pakr, J.; Williams, G. J.; Nishikino, M.; Kawachi, T.; Sagisaka, A.; Orimo, S.; Ogura, K.; Pirozhkov, A.; Yogo, A.; Kiriyama, H.; Kondo, K.; Okano, Y.
2012-10-01
X-ray line spectra ranging from 17 to 77 keV were quantitatively measured with a Laue spectrometer, composed of a cylindrically curved crystal and a detector. The absolute sensitivity of the spectrometer system was calibrated using pre-characterized laser-produced x-ray sources and radioisotopes, for the detectors and crystal respectively. The integrated reflectivity for the crystal is in good agreement with predictions by an open code for x-ray diffraction. The energy transfer efficiency from incident laser beams to hot electrons, as the energy transfer agency for Au Kα x-ray line emissions, is derived as a consequence of this work. By considering the hot electron temperature, the transfer efficiency from LFEX laser to Au plate target is about 8% to 10%.
Electric Monopole Transition Strengths in the Stable Nickel Isotopes
NASA Astrophysics Data System (ADS)
Evitts, Lee John
A series of measurements of stable nickel isotopes were performed at the Australian National University in Canberra. Excited states in 58,60,62Ni were populated via inelastic scattering of proton beams delivered by the 14UD Pelletron accelerator. Multiple setups were used in order to determine the structure of low-lying states. The CAESAR array of Compton-suppressed HPGe detectors was used to measure the (E2/M1) mixing ratio of transitions from angular distributions of gamma rays. The Super-e spectrometer was used to measure conversion coefficients for a number of J to J transitions. The data obtained from both devices was combined with previously measured parent lifetimes and branching ratios to determine E0 transition strengths between J-pi transitions. The E0 transition strength for the second 0+ to first 0+ transitions in 60,62Ni have been measured for the first time through internal conversion electron detection. The experimental value of 132(+59,-70) for 62Ni agrees within 2 sigma of the previous result obtained from internal pair formation. However it is likely that the previous experimental results used an outdated theoretical model for internal pair formation emission. This work also represents the first measurements of E0 transition strengths between 2+ states in Ni isotopes. There is generally large E0 strength between the 2+ states, particularly in the second 2+ to first 2+ transition, however there is also a large uncertainty in the measurements owing to the difficulties involved in measuring conversion coefficients. In 62Ni, the E0 transition strength of 172(+62,-77) for the second 2+ to first 2+ transition gives further weight to the argument against the spherical vibrator model, as an E0 transition is forbidden if there is a change of only one phonon. The large measurement also indicates the presence of shape coexistence, complementing the recent experimental work carried out in the neutron-rich Ni isotopes.
A novel method for resonant inelastic soft X-ray scattering via photoelectron spectroscopy detection
Dakovski, Georgi L.; Lin, Ming-Fu; Damiani, Daniel S.; ...
2017-10-05
A method for measuring resonant inelastic X-ray scattering based on the conversion of X-ray photons into photoelectrons is presented in this paper. The setup is compact, relies on commercially available detectors, and offers significant flexibility. Finally, this method is demonstrated at the Linac Coherent Light Source with ~0.5 eV resolution at the cobalt L 3-edge, with signal rates comparable with traditional grating spectrometers.
A novel von Hamos spectrometer for efficient X-ray emission spectroscopy in the laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anklamm, Lars, E-mail: anklamm@physik.tu-berlin.de; Schlesiger, Christopher; Malzer, Wolfgang
2014-05-15
We present a novel, highly efficient von Hamos spectrometer for X-ray emission spectroscopy (XES) in the laboratory using highly annealed pyrolitic graphite crystals as the dispersive element. The spectrometer covers an energy range from 2.5 keV to 15 keV giving access to chemical speciation and information about the electronic configuration of 3d transition metals by means of the Kβ multiplet. XES spectra of Ti compounds are presented to demonstrate the speciation capabilities of the instrument. A spectral resolving power of E/ΔE = 2000 at 8 keV was achieved. Typical acquisition times range from 10 min for bulk material to hours formore » thin samples below 1 μm.« less
NASA Astrophysics Data System (ADS)
Wei, Shiqing; Castleman, A. W., Jr.
1994-02-01
Lase based time-of-flight mass spectrometer systems affixed with reflectrons are valuable tools for investigating cluster dynamics and reactions, spectroscopy and structures. Utilizing the reflectron time-of-flight mass spectrometer techniques, both decay fractions and kinetic energy releases of metastable cluster ions can be measured with high precision. By applying related theoretical models, the desired thermochemical values of metastable species can be deduced, which are otherwise very difficult to obtain. Several examples are discussed with attention focused on ammonia as a test case for hydrogen bond systems, and xenon for weaker van der Waals clusters. A brief overview of applications to investigating solvation effects on reactions and structures, delayed electron transfer and ionization through intracluster Penning ionization is also given.
Design and development of a fast ion mass spectrometer
NASA Technical Reports Server (NTRS)
Burch, J. L.
1983-01-01
Two Fast Ion Mass Spectrometers (FIMS A and FIMS B) were developed. The design, development, construction, calibration, integration, and flight of these instruments, along with early results from the data analysis efforts are summarized. A medium energy ion mass spectrometer that covers mass velocity space with significantly higher time resolution, improved mass resolution, (particularly for heavier ions), and wider energy range than existing instruments had achieved was completed. The initial design consisted of a dual channel cylindrical electrostatic analyzer followed by a dual channel cylindrical velocity filter. The gain versus count rate characteristics of the high current channel electron multipliers (CEM's), which were chosen for ion detection, revealed a systematic behavior that can be used as a criterion for selection of CEM's for long counting lifetimes.
Hot-electron-based solar energy conversion with metal-semiconductor nanodiodes.
Lee, Young Keun; Lee, Hyosun; Lee, Changhwan; Hwang, Euyheon; Park, Jeong Young
2016-06-29
Energy dissipation at metal surfaces or interfaces between a metal and a dielectric generally results from elementary excitations, including phonons and electronic excitation, once external energy is deposited to the surface/interface during exothermic chemical processes or an electromagnetic wave incident. In this paper, we outline recent research activities to develop energy conversion devices based on hot electrons. We found that photon energy can be directly converted to hot electrons and that hot electrons flow through the interface of metal-semiconductor nanodiodes where a Schottky barrier is formed and the energy barrier is much lower than the work function of the metal. The detection of hot electron flow can be successfully measured using the photocurrent; we measured the photoyield of photoemission with incident photons-to-current conversion efficiency (IPCE). We also show that surface plasmons (i.e. the collective oscillation of conduction band electrons induced by interaction with an electromagnetic field) are excited on a rough metal surface and subsequently decay into secondary electrons, which gives rise to enhancement of the IPCE. Furthermore, the unique optical behavior of surface plasmons can be coupled with dye molecules, suggesting the possibility for producing additional channels for hot electron generation.
Zhong, Hongying; Fu, Jieying; Wang, Xiaoli; Zheng, Shi
2012-06-04
Measurement of light induced heterogeneous electron transfer is important for understanding of fundamental processes involved in chemistry, physics and biology, which is still challenging by current techniques. Laser activated electron tunneling (LAET) from semiconductor metal oxides was observed and characterized by a MALDI (matrix assisted laser desorption ionization) mass spectrometer in this work. Nanoparticles of ZnO were placed on a MALDI sample plate. Free fatty acids and derivatives were used as models of organic compounds and directly deposited on the surface of ZnO nanoparticles. Irradiation of UV laser (λ=355 nm) with energy more than the band gap of ZnO produces ions that can be detected in negative mode. When TiO(2) nanoparticles with similar band gap but much lower electron mobility were used, these ions were not observed unless the voltage on the sample plate was increased. The experimental results indicate that laser induced electron tunneling is dependent on the electron mobility and the strength of the electric field. Capture of low energy electrons by charge-deficient atoms of adsorbed organic molecules causes unpaired electron-directed cleavages of chemical bonds in a nonergodic pathway. In positive detection mode, electron tunneling cannot be observed due to the reverse moving direction of electrons. It should be able to expect that laser desorption ionization mass spectrometry is a new technique capable of probing the dynamics of electron tunneling. LAET offers advantages as a new ionization dissociation method for mass spectrometry. Copyright © 2012 Elsevier B.V. All rights reserved.
Shutterless ion mobility spectrometer with fast pulsed electron source
NASA Astrophysics Data System (ADS)
Bunert, E.; Heptner, A.; Reinecke, T.; Kirk, A. T.; Zimmermann, S.
2017-02-01
Ion mobility spectrometers (IMS) are devices for fast and very sensitive trace gas analysis. The measuring principle is based on an initial ionization process of the target analyte. Most IMS employ radioactive electron sources, such as 63Ni or 3H. These radioactive materials have the disadvantage of legal restrictions and the electron emission has a predetermined intensity and cannot be controlled or disabled. In this work, we replaced the 3H source of our IMS with 100 mm drift tube length with our nonradioactive electron source, which generates comparable spectra to the 3H source. An advantage of our emission current controlled nonradioactive electron source is that it can operate in a fast pulsed mode with high electron intensities. By optimizing the geometric parameters and developing fast control electronics, we can achieve very short electron emission pulses for ionization with high intensities and an adjustable pulse width of down to a few nanoseconds. This results in small ion packets at simultaneously high ion densities, which are subsequently separated in the drift tube. Normally, the required small ion packet is generated by a complex ion shutter mechanism. By omitting the additional reaction chamber, the ion packet can be generated directly at the beginning of the drift tube by our pulsed nonradioactive electron source with only slight reduction in resolving power. Thus, the complex and costly shutter mechanism and its electronics can also be omitted, which leads to a simple low-cost IMS-system with a pulsed nonradioactive electron source and a resolving power of 90.
NASA Technical Reports Server (NTRS)
Voss, H. D.; Smith, L. G.
1974-01-01
An explanation was developed for the formation, near midnight at midlatitudes, of a broad electron density layer extending approximately from 120 to 180 km and usually referred to as the intermediate E layer. The responsible mechanism is believed to be the converging vertical ion drifts resulting from winds of the solar semidiurnal tide. Numerical solutions of the continuity equation appropriate to the intermediate layer is described for particular models of ion drift, diffusion coefficents, and ionization production. Analysis of rocket observations of the layer show that the ionization rate is highly correlated with the planetary geomagnetic index, K sub p. Particle flux measurements support the idea that energetic electrons are the principal source of this ionization. A semiconductor spectrometer experiment for investigation of the particle flux, spectrum, and angular properties was designed and successfully flown on a Nike Apache rocket. A detailed description of the theory, design, and calibration of the experiment and some preliminary results presented.
Nurjuliana, M; Che Man, Y B; Mat Hashim, D; Mohamed, A K S
2011-08-01
The volatile compounds of pork, other meats and meat products were studied using an electronic nose and gas chromatography mass spectrometer with headspace analyzer (GCMS-HS) for halal verification. The zNose™ was successfully employed for identification and differentiation of pork and pork sausages from beef, mutton and chicken meats and sausages which were achieved using a visual odor pattern called VaporPrint™, derived from the frequency of the surface acoustic wave (SAW) detector of the electronic nose. GCMS-HS was employed to separate and analyze the headspace gasses from samples into peaks corresponding to individual compounds for the purpose of identification. Principal component analysis (PCA) was applied for data interpretation. Analysis by PCA was able to cluster and discriminate pork from other types of meats and sausages. It was shown that PCA could provide a good separation of the samples with 67% of the total variance accounted by PC1. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hill, K. W.; Bitter, M.; Delgado-Aparicio, L.; Efthimion, P.; Pablant, N.; Lu, J.; Beiersdorfer, P.; Chen, H.; Magee, E.
2014-10-01
A high resolution 1D imaging x-ray spectrometer concept comprising a spherically bent crystal and a 2D pixelated detector is being optimized for diagnostics of small sources such as high energy density physics (HEDP) and synchrotron radiation or x-ray free electron laser experiments. This instrument is used on tokamak experiments for measurement of spatial profiles of Doppler ion temperature and plasma flow velocity, as well as electron temperature. Laboratory measurements demonstrate a resolving power, E/ ΔE of 10,000 and spatial resolution better than 10 μm. Good performance is obtained for Bragg angles ranging from 23 to 63 degrees. Initial tests of the instrument on HEDP plasmas are being performed with a goal of developing spatially resolved ion and electron temperature diagnostics. This work was performed under the auspices of the US DOE by PPPL under Contract DE-AC02-09CH11466 and by LLNL under Contract DE-AC52-07NA27344.
NASA Astrophysics Data System (ADS)
Horký, Miroslav; Omura, Yoshiharu; Santolík, Ondřej
2018-04-01
This paper presents the wave mode conversion between electrostatic and electromagnetic waves on the plasma density gradient. We use 2-D electromagnetic code KEMPO2 implemented with the generation of density gradient to simulate such a conversion process. In the dense region, we use ring beam instability to generate electron Bernstein waves and we study the temporal evolution of wave spectra, velocity distributions, Poynting flux, and electric and magnetic energies to observe the wave mode conversion. Such a conversion process can be a source of electromagnetic emissions which are routinely measured by spacecraft on the plasmapause density gradient.
NASA Technical Reports Server (NTRS)
Crowley, James; Rowan, Lawrence; Podwysocki, Melvin; Meyer, David
1988-01-01
Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data of the Mountain Pass, California carbonatite complex were examined to evaluate the AVIRIS instrument performance and to explore alternative methods of data calibration. Although signal-to-noise estimates derived from the data indicated that the A, B, and C spectrometers generally met the original instrument design objectives, the S/N performance of the D spectrometer was below expectations. Signal-to-noise values of 20 to 1 or lower were typical of the D spectrometer and several detectors in the D spectrometer array were shown to have poor electronic stability. The AVIRIS data also exhibited periodic noise, and were occasionally subject to abrupt dark current offsets. Despite these limitations, a number of mineral absorption bands, including CO3, Al-OH, and unusual rare earth element bands, were observed for mine areas near the main carbonatite body. To discern these bands, two different calibration procedures were applied to remove atmospheric and solar components from the remote sensing data. The two procedures, referred to as the single spectrum and the flat field calibration methods gave distinctly different results. In principle, the single spectrum method should be more accurate; however, additional fieldwork is needed to rigorously determine the degree of calibration success.
NASA Astrophysics Data System (ADS)
Hong-Chen, Zhang; Hai, Liu; Hui-Jie, Xue; Wen-Qiang, Qiao; Shi-Yu, He
2012-11-01
In this paper, effects of 160 keV electron irradiated "Panda" type Polarization-Maintaining optical fiber at 1310 nm are investigated by us. Attenuation coefficient induced in optical fiber by electron beams at 1310 nm increases with increase in electron fluence. Electron irradiation-induced damage mechanism are studied by means of CASINO simulation program, the X-ray photoelectron spectroscopy (XPS), electron spin resonance spectrometer (EPR) and Fourier transform infrared spectroscopy (FTIR). The results show that Si-OH impurity defect concentration is the main reason of increasing attenuation coefficient at 1310 nm.
High Resolution, Non-Dispersive X-Ray Calorimeter Spectrometers on EBITs and Orbiting Observatories
NASA Technical Reports Server (NTRS)
Porter, Frederick S.
2010-01-01
X-ray spectroscopy is the primary tool for performing atomic physics with Electron beam ion trap (EBITs). X-ray instruments have generally fallen into two general categories, 1) dispersive instruments with very high spectral resolving powers but limited spectral range, limited count rates, and require an entrance slit, generally, for EBITs, defined by the electron beam itself, and 2) non-dispersive solid-state detectors with much lower spectral resolving powers but that have a broad dynamic range, high count rate ability and do not require a slit. Both of these approaches have compromises that limit the type and efficiency of measurements that can be performed. In 1984 NASA initiated a program to produce a non-dispersive instrument with high spectral resolving power for x-ray astrophysics based on the cryogenic x-ray calorimeter. This program produced the XRS non-dispersive spectrometers on the Astro-E, Astro-E2 (Suzaku) orbiting observatories, the SXS instrument on the Astro-H observatory, and the planned XMS instrument on the International X-ray Observatory. Complimenting these spaceflight programs, a permanent high-resolution x-ray calorimeter spectrometer, the XRS/EBIT, was installed on the LLNL EBIT in 2000. This unique instrument was upgraded to a spectral resolving power of 1000 at 6 keV in 2003 and replaced by a nearly autonomous production-class spectrometer, the EBIT Calorimeter Spectrometer (ECS), in 2007. The ECS spectrometer has a simultaneous bandpass from 0.07 to over 100 keV with a spectral resolving power of 1300 at 6 keV with unit quantum efficiency, and 1900 at 60 keV with a quantum efficiency of 30%. X-ray calorimeters are event based, single photon spectrometers with event time tagging to better than 10 us. We are currently developing a follow-on instrument based on a newer generation of x-ray calorimeters with a spectral resolving power of 3000 at 6 keV, and improved timing and measurement cadence. The unique capabilities of the x-ray calorimeter spectrometer, coupled with higher spectral resolution dispersive spectrometers to resolve line blends, has enabled many science investigations, to date mostly in our x-ray laboratory astrophysics program. These include measurements of absolute cross sections for Land K shell emission from Fe and Ni, charge exchange measurements in many astrophysically abundant elements, lifetime measurements, line ratios, and wavelength measurements. In addition, we have performed many additional measurements in nuclear physics, and in support of diagnostics for laser fusion, for example. In this presentation we will give a detailed overview of x-ray calorimeter instruments in general and in our EBIT laboratory astrophysics program in particular. We will also discuss the science yield of our measurements at EBIT over the last decade) prospects for future science enabled by the current generation of spectrometers and that will be expanded in the near future by the next generation of spectrometers starting in 2611.
NASA Astrophysics Data System (ADS)
Battaglia, Anthony; Tan, Wanpeng; Aprahamian, Ani; Bauder, William; Casarella, Clark; Gurdal, Gulhan; Long, Alexander; Nystrom, Andrew; Siegl, Kevin; Smith, Karl; Smith, Mallory
2013-10-01
The Internal Conversion Electron Ball Array (ICEBall) consists of six Si(Li) detectors and it was recently re-comissioned at the University of Notre Dame Nuclear Science Laboratory for spectroscopic studies of heavy nuclei. For the commissioning experiment, a 16 MeV bunched proton beam was used from the FN Tandem for a (p,2n) reaction to populate low spin states of 195Au. Both conversion electrons and gamma-rays were detected in coincidence between ICEBall and a single high-purity germanium detector. A total of 14 conversion coeffcients were measured. The results will be presented and compared to previous results. This work was supported by the National Science Foundation under contract number NSF PHY-1068192. M.P. Metlay, J.X. Saladin, I.Y. Lee, and O. Dietzsch, Nucl. Instrum. Meth. A, 336, 162 (1993).
Mu2e, a coherent μ --> e conversion experiment at Fermilab
NASA Astrophysics Data System (ADS)
Brown, D. N.; Mu2e Collaboration
2012-09-01
We describe a proposed experiment to search for Charged Lepton Flavor Violation (CLFV) using stopped muons at Fermilab. A primary Proton beam will strike a gold target, producing pions which decay to muons. Low-momentum negative muons will be collected, selected, and transported by a custom arrangement of solenoidal magnets and collimators. Muons will stop in thin foil targets, creating muonic atoms with significant nuclear overlap. Mu2e will search for the coherent conversion of nuclear bound muons to electrons, with an experimental signature of a single mono-energetic electron. Conversion electrons will be detected and measured in a low-mass straw tracker and a crystal calorimeter. Mu2e will have a sensitivity four orders of magnitude better than the most sensitive published result for μ → e conversion, and will have complementary physics reach to LHC experiments and μ → eγ decay experiments such as MEG.
Yunoki, A; Kawada, Y; Yamada, T; Unno, Y; Sato, Y; Hino, Y
2013-11-01
We measured 4π and 2π counting efficiencies for internal conversion electrons (ICEs), gross β-particles and also β-rays alone with various source conditions regarding absorber and backing foil thickness using e-X coincidence technique. Dominant differences regarding the penetration, attenuation and backscattering properties among ICEs and β-rays were revealed. Although the abundance of internal conversion electrons of (137)Cs-(137)Ba is only 9.35%, 60% of gross counts may be attributed to ICEs in worse source conditions. This information will be useful for radionuclide metrology and for surface contamination monitoring. © 2013 Elsevier Ltd. All rights reserved.
Momentum-imaging apparatus for the study of dissociative electron attachment dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moradmand, A.; Williams, J. B.; Landers, A. L.
An ion-momentum spectrometer is used to study the dissociative dynamics of electron attachment to molecules. A skimmed, supersonic gas jet is crossed with a pulsed beam of low-energy electrons, and the resulting negative ions are extracted toward a time- and position-sensitive detector. Calculations of the momentum in three dimensions may be used to determine the angular dependence of dissociative attachment as well as the energetics of the reaction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawauchi, Taizo; Matsumoto, Masuaki; Fukutani, Katsuyuki
2007-01-15
A high-energy and large-object-spot type cylindrical mirror analyzer (CMA) was constructed with the aid of electron trajectory simulations. By adopting a particular shape for the outer cylinder, an energy resolution of 7% was achieved without guide rings as used in conventional CMAs. Combined with an avalanche photodiode as an electron detector, the K-shell internal conversion electrons were successfully measured under irradiation of synchrotron radiation at 14.4 keV in an energy-resolved and time-resolved manner.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chudakov, Eugene A.
Hall D is a new experimental hall at Jefferson Lab, designed for experiments with a photon beam. The primary motivation for Hall D is the GlueX experiment [1,2], dedicated to meson spectroscopy. The Hall D complex consists of: An electron beam line used to extract the 5.5-pass electrons from the accelerator into the Tagger Hall. The designed beam energy is E e = 12 GeV;The Tagger Hall, where the electron beam passes through a thin radiator (~0.01% R.L.) and is deflected into the beam dump. The electrons that lost >30% of their energy in the radiator are detected with scintillatormore » hodoscopes providing a ~0.1% energy resolution for the tagged photons. Aligned diamond radiators allow to produce linearly polarized photons via the Coherent Bremsstrahlung. The beam dump is limited to 60 kW (5 µA at 12 GeV); The Collimator Cave contains a collimator for the photon beam and dipole magnets downstream in order to remove charged particles. The 3.4 mm diameter collimator, located about 75 m downstream of the radiator, selects the central cone of the photon beam increasing its average linear polarization, up to ~40%in the coherent peak at 9 GeV; Hall D contains several elements of the photon beam line, and themain spectrometer. A Pair Spectrometer consists of a thin converter, a dipole magnet, and a two-arm detector used to measure the energy spectrum of the photon beam. The main spectrometer is based on a 2-T superconducting solenoid, 4 m long and 1.85 m bore diameter. The liquid hydrogen target is located in the front part the solenoid. The charged tracks are detected with a set of drift chambers; photons are detected with two electromagnetic calorimeters. There are also scintillator hodoscopes for triggering and time-of-flight measurements. The spectrometer is nearly hermetic in an angular range of 1° < θ < 120 •. The momentum resolution is σ p /p ~ 1 ₋ ₋3% depending on the polar angle θ. The energy resolution of the electromagnetic calorimeters is about 7% at 1 GeV.« less
What Students Want: Leave Me Alone...I'm Socializing
ERIC Educational Resources Information Center
Starkman, Neal
2007-01-01
Through conversations with students across different grade levels, there is clear evidence that two of the things they most desire contradict each other--and they use electronic technology to get both of them. This author had conversations with three groups of students in Seattle about their favorite electronic technologies, and any concerns they…
Terenzi, Camilla; Bouguet-Bonnet, Sabine; Canet, Daniel
2015-05-07
We report that at ambient temperature and with 100% enriched para-hydrogen (p-H2) dissolved in organic solvents, paramagnetic spin catalysis of para → ortho hydrogen conversion is accompanied at the onset by a negative ortho-hydrogen (o-H2) proton NMR signal. This novel finding indicates an electron spin polarization transfer, and we show here that this can only occur if the H2 molecule is dissociated upon its transient adsorption by the paramagnetic catalyst. Following desorption, o-H2 is created until the thermodynamic equilibrium is reached. A simple theory confirms that in the presence of a static magnetic field, the hyperfine coupling between unpaired electrons and nuclear spins is responsible for the observed polarization transfer. Owing to the negative electron gyromagnetic ratio, this explains the experimental results and ascertains an as yet unexplored mechanism for para → ortho conversion. Finally, we show that the recovery of o-H2 magnetization toward equilibrium can be simply modeled, leading to the para → ortho conversion rate.
NASA Astrophysics Data System (ADS)
Vergunova, G. A.; Rozanov, Vladislav B.
1992-01-01
An analysis is made of the conversion of the energy of highly energetic fast electrons, generated by the action of CO2 laser radiation on a target, into characteristic radiation emitted by a plasma formed from shell targets which, for instance, may be present inside targets irradiated by the CO2 laser. Analytical formulas are obtained for the temperature of the converted radiation. The results show that it is possible to control this radiation by choosing the parameters of the target and of the fast electron flux. The efficiency of conversion into characteristic thermal radiation is found numerically to be 95%. This method of conversion is more favorable than direct interaction of CO2 laser radiation with a target since the emitting region is localized in the target mass. When a laser interacts with a target the mass of this region increases with time and so the temperature of the emitted radiation is lower than in the case when fast electrons act on the target.
Comparison of reconnection in magnetosphere and solar corona
NASA Astrophysics Data System (ADS)
Imada, Shinsuke; Hirai, Mariko; Isobe, Hiroaki; Oka, Mitsuo; Watanabe, Kyoko; Minoshima, Takashi
One of the most famous rapid energy conversion mechanisms in space is a magnetic reconnec-tion. The general concept of a magnetic reconnection is that the rapid energy conversion from magnetic field energy to thermal energy, kinetic energy or non-thermal particle energy. The understanding of rapid energy conversion rates from magnetic field energy to other energy is the fundamental and essential problem in the space physics. One of the important goals for studying magnetic reconnection is to answer what plasma condition/parameter controls the energy conversion rates. Earth's magnetotail has been paid much attention to discuss a mag-netic reconnection, because we can discuss magnetic reconnection characteristics in detail with direct in-situ observation. Recently, solar atmosphere has been focused as a space laboratory for magnetic reconnection because of its variety in plasma condition. So far considerable effort has been devoted toward understanding the energy conversion rates of magnetic reconnection, and various typical features associated with magnetic reconnection have been observed in the Earth's magnetotail and the solar corona. In this talk, we first introduce the variety of plasma condition/parameter in solar corona and Earth's magnetotail. Later, we discuss what plasma condition/parameter controls the energy conversion from magnetic field to especially non-thermal particle. To compare non-thermal electron and ion acceleration in magnetic reconnection, we used Hard X-ray (electron) /Neu-tron monitor (ion) for solar corona and Geotail in-situ measurement (electron and ion) for magnetoatil. We found both of electron and ion accelerations are roughly controlled by re-connection electric field (reconnection rate). However, some detail points are different in ion and electron acceleration. Further, we will discuss what is the major difference between solar corona and Earth's magnetotail for particle acceleration.
NASA Astrophysics Data System (ADS)
Kılıç, Bayram; Telli, Hakan; Tüzemen, Sebahattin; Başaran, Ali; Pirge, Gursev
2015-04-01
Dye sensitized solar cells (DSSCs) with an innovative design involving controlled-morphology vertically aligned (VA) ZnO nanowires within mesoporous TiO2 structures with ultrahigh surface area for implementation as photoanodes are herein reported. Although TiO2 nanostructures exhibit excellent power conversion efficiency, the electron transport rate is low owing to low electron mobility. To overcome this, ZnO nanowires with high electron mobility have been investigated as potential candidates for photoanodes. However, the power conversion efficiency of ZnO nanowires is still lower than that of TiO2 owing to their low internal surface area. Consequently, in this work, vertical growth of ZnO nanowires within mesoporous TiO2 structures is carried out to increase their solar power conversion efficiency. The photovoltaic performance of solar cells using ZnO nanowires, mesoporous TiO2, and TiO2/ZnO hybrid structures are compared. The VA TiO2/ZnO hybrid structures are found to provide direct electron transfer compared with the tortuous pathway of zero-dimensional nanostructures, resulting in an increased conversion efficiency. It is demonstrated that the light scattering of the photoanode film is increased and electron recombination is decreased when an appropriate amount of mesoporous TiO2 is used as a substrate for ZnO nanowires. The DSSC fabricated with the TiO2/ZnO hybrid photoanode prepared with 15.8 wt. % TiO2 showed the highest conversion efficiency of 7.30%, approximately 5%, 18%, and 40% higher than that of DSSCs fabricated with 3.99 wt. % TiO2, pure TiO2, and pure ZnO photoanodes, respectively.
Infrared Spectrometer for ExoMars: A Mast-Mounted Instrument for the Rover
NASA Astrophysics Data System (ADS)
Korablev, Oleg I.; Dobrolensky, Yurii; Evdokimova, Nadezhda; Fedorova, Anna A.; Kuzmin, Ruslan O.; Mantsevich, Sergei N.; Cloutis, Edward A.; Carter, John; Poulet, Francois; Flahaut, Jessica; Griffiths, Andrew; Gunn, Matthew; Schmitz, Nicole; Martín-Torres, Javier; Zorzano, Maria-Paz; Rodionov, Daniil S.; Vago, Jorge L.; Stepanov, Alexander V.; Titov, Andrei Yu.; Vyazovetsky, Nikita A.; Trokhimovskiy, Alexander Yu.; Sapgir, Alexander G.; Kalinnikov, Yurii K.; Ivanov, Yurii S.; Shapkin, Alexei A.; Ivanov, Andrei Yu.
2017-07-01
ISEM (Infrared Spectrometer for ExoMars) is a pencil-beam infrared spectrometer that will measure reflected solar radiation in the near infrared range for context assessment of the surface mineralogy in the vicinity of the ExoMars rover. The instrument will be accommodated on the mast of the rover and will be operated together with the panoramic camera (PanCam), high-resolution camera (HRC). ISEM will study the mineralogical and petrographic composition of the martian surface in the vicinity of the rover, and in combination with the other remote sensing instruments, it will aid in the selection of potential targets for close-up investigations and drilling sites. Of particular scientific interest are water-bearing minerals, such as phyllosilicates, sulfates, carbonates, and minerals indicative of astrobiological potential, such as borates, nitrates, and ammonium-bearing minerals. The instrument has an ˜1° field of view and covers the spectral range between 1.15 and 3.30 μm with a spectral resolution varying from 3.3 nm at 1.15 μm to 28 nm at 3.30 μm. The ISEM optical head is mounted on the mast, and its electronics box is located inside the rover's body. The spectrometer uses an acousto-optic tunable filter and a Peltier-cooled InAs detector. The mass of ISEM is 1.74 kg, including the electronics and harness. The science objectives of the experiment, the instrument design, and operational scenarios are described.
Magnetic and electric deflector spectrometers for ion emission analysis from laser generated plasma
NASA Astrophysics Data System (ADS)
Torrisi, Lorenzo; Costa, Giuseppe; Ceccio, Giovanni; Cannavò, Antonino; Restuccia, Nancy; Cutroneo, Mariapompea
2018-01-01
The pulsed laser-generated plasma in vacuum and at low and high intensities can be characterized using different physical diagnostics. The charge particles emission can be characterized using magnetic, electric and magnet-electrical spectrometers. Such on-line techniques are often based on time-of-flight (TOF) measurements. A 90° electric deflection system is employed as ion energy analyzer (IEA) acting as a filter of the mass-to-charge ratio of emitted ions towards a secondary electron multiplier. It determines the ion energy and charge state distributions. The measure of the ion and electron currents as a function of the mass-to-charge ratio can be also determined by a magnetic deflector spectrometer, using a magnetic field of the order of 0.35 T, orthogonal to the ion incident direction, and an array of little ion collectors (IC) at different angles. A Thomson parabola spectrometer, employing gaf-chromix as detector, permits to be employed for ion mass, energy and charge state recognition. Mass quadrupole spectrometry, based on radiofrequency electric field oscillations, can be employed to characterize the plasma ion emission. Measurements performed on plasma produced by different lasers, irradiation conditions and targets are presented and discussed. Complementary measurements, based on mass and optical spectroscopy, semiconductor detectors, fast CCD camera and Langmuir probes are also employed for the full plasma characterization. Simulation programs, such as SRIM, SREM, and COMSOL are employed for the charge particle recognition.
NASA Astrophysics Data System (ADS)
Gliese, U.; Avanov, L. A.; Barrie, A.; Kujawski, J. T.; Mariano, A. J.; Tucker, C. J.; Chornay, D. J.; Cao, N. T.; Zeuch, M.; Pollock, C. J.; Jacques, A. D.
2013-12-01
The Fast Plasma Investigation (FPI) of the NASA Magnetospheric MultiScale (MMS) mission employs 16 Dual Electron Spectrometers (DESs) and 16 Dual Ion Spectrometers (DISs) with 4 of each type on each of 4 spacecraft to enable fast (30ms for electrons; 150ms for ions) and spatially differentiated measurements of full the 3D particle velocity distributions. This approach presents a new and challenging aspect to the calibration and operation of these instruments on ground and in flight. The response uniformity and reliability of their calibration and the approach to handling any temporal evolution of these calibrated characteristics all assume enhanced importance in this application, where we attempt to understand the meaning of particle distributions within the ion and electron diffusion regions. Traditionally, the micro-channel plate (MCP) based detection systems for electrostatic particle spectrometers have been calibrated by setting a fixed detection threshold and, subsequently, measuring a detection system count rate plateau curve to determine the MCP voltage that ensures the count rate has reached a constant value independent of further variation in the MCP voltage. This is achieved when most of the MCP pulse height distribution (PHD) is located at higher values (larger pulses) than the detection amplifier threshold. This method is adequate in single-channel detection systems and in multi-channel detection systems with very low crosstalk between channels. However, in dense multi-channel systems, it can be inadequate. Furthermore, it fails to fully and individually characterize each of the fundamental parameters of the detection system. We present a new detection system calibration method that enables accurate and repeatable measurement and calibration of MCP gain, MCP efficiency, signal loss due to variation in gain and efficiency, crosstalk from effects both above and below the MCP, noise margin, and stability margin in one single measurement. The fundamental concepts of this method, named threshold scan, will be presented. It will be shown how to derive all the individual detection system parameters. This new method has been successfully applied to achieve a highly accurate calibration of the 16 Dual Electron Spectrometers and 16 Dual Ion Spectrometers of the MMS mission. The practical application of the method will be presented together with the achieved calibration results and their significance. Finally, it will be shown how this method will be applied to ensure the best possible in flight calibration during the mission.
Lunar Prospector Data Archives
NASA Astrophysics Data System (ADS)
Guinness, Edward A.; Binder, Alan B.
1998-01-01
The Lunar Prospector (LP) is operating in a 100-km circular polar orbit around the Moon. The LP project's one-year primary mission began in January 1998. A six-month extended mission in a lower orbit is also possible. LP has five science instruments, housed on three booms: a gamma-ray spectrometer, a neutron spectrometer, an alpha-particle spectrometer, a magnetometer, and an electron reflectometer. In addition, a gravity experiment uses Doppler tracking data to derive gravity measurements. The major science objectives of LP are to determine the Moon's surface abundance of selected elements, to map the gravity and magnetic fields, to search for surface ice deposits, and to determine the locations of gas release events. The Geosciences Node of the NASA's Planetary Data System (PDS) is providing a lead role in working with the Lunar Prospector project to produce and distribute a series of archives of LP data. The Geosciences Node is developing a Web-based system to provide services for searching and browsing through the LP data archives, and for distributing the data electronically or on CDs. This system will also provide links to other relevant lunar datasets, such as Clementine image mosaics and telescopic and laboratory spectral reflectance data.
Laser-based sensor for detection of hazardous gases in the air using waveguide CO2 laser.
Gondal, Mohammed A; Bakhtiari, Imran A; Dastageer, Abdul K
2007-06-01
A spectrometer based on the principle of photoacoustic spectroscopy has been developed recently at our laboratory for the detection of hazardous gases such as O3, C2H4, SO2, NO2 and SF6. In most of our earlier works, we employed a mechanical chopper to modulate the laser beam and this chopper modulation has the crucial disadvantage of instability in the chopper frequency. Even a minor shift of about 1 Hz in the modulation frequency could significantly reduce the photoacoustic signal by an order of magnitude at the acoustic resonant mode of the photoacoustic cell. To overcome this problem, we developed a photoacoustic spectrometer where a wave guided CW CO2 laser beam is modulated electronically with the external frequency generator. Our preliminary results show that the electronic modulation of CO2 laser beam improved the sensitivity of our spectrometer by a factor of 6. The parametric dependence of photoacoustic signal on laser power, modulation frequency and trace gas concentration, was investigated and the comparison between the two modulation techniques is presented in this paper for detection of trace gases such as C2H4.
Nitric Oxide Isotopic Analyzer Based on a Compact Dual-Modulation Faraday Rotation Spectrometer
Zhang, Eric; Huang, Stacey; Ji, Qixing; Silvernagel, Michael; Wang, Yin; Ward, Bess; Sigman, Daniel; Wysocki, Gerard
2015-01-01
We have developed a transportable spectroscopic nitrogen isotopic analyzer. The spectrometer is based on dual-modulation Faraday rotation spectroscopy of nitric oxide isotopologues with near shot-noise limited performance and baseline-free operation. Noise analysis indicates minor isotope (15NO) detection sensitivity of 0.36 ppbv·Hz−1/2, corresponding to noise-equivalent Faraday rotation angle (NEA) of 1.31 × 10−8 rad·Hz−1/2 and noise-equivalent absorbance (αL)min of 6.27 × 10−8 Hz−1/2. White-noise limited performance at 2.8× the shot-noise limit is observed up to ~1000 s, allowing reliable calibration and sample measurement within the drift-free interval of the spectrometer. Integration with wet-chemistry based on acidic vanadium(III) enables conversion of aqueous nitrate/nitrite samples to gaseous NO for total nitrogen isotope analysis. Isotopic ratiometry is accomplished via time-multiplexed measurements of two NO isotope transitions. For 5 μmol potassium nitrate samples, the instrument consistently yields ratiometric precision below 0.3‰, thus demonstrating potential as an in situ diagnostic tool for environmental nitrogen cycle studies. PMID:26473876
NASA Technical Reports Server (NTRS)
Southard, Adrian E.; Getty, Stephanie A.; Feng, Steven; Glavin, Daniel P.; Auciello, Orlando; Sumant, Anirudha
2012-01-01
Carbon materials, including carbon nanotubes (CNTs) and nitrogen-incorporated ultrananocrystalline diamond (N-UNCD), have been of considerable interest for field emission applications for over a decade. In particular, robust field emission materials are compelling for space applications due to the low power consumption and potential for miniaturization. A reflectron time-of-flight mass spectrometer (TOF-MS) under development for in situ measurements on the Moon and other Solar System bodies uses a field emitter to generate ions from gaseous samples, using electron ionization. For these unusual environments, robustness, reliability, and long life are of paramount importance, and to this end, we have explored the field emission properties and lifetime of carbon nanotubes and nitrogen-incorporated ultrananocrystalline diamond (N-UNCD) thin films, the latter developed and patented by Argonne National Laboratory. We will present recent investigations of N-UNCD as a robust field emitter, revealing that this material offers stable performance in high vacuum for up to 1000 hours with threshold voltage for emission of about 3-4 V/lJm and current densities in the range of tens of microA. Optimizing the mass resolution and sensitivity of such a mass spectrometer has also been enabled by a parallel effort to scale up a CNT emitter to an array measuring 2 mm x 40 mm. Through simulation and experiment of the new extended format emitter, we have determined that focusing the electron beam is limited due to the angular spread of the emitted electrons. This dispersion effect can be reduced through modification of the electron gun geometry, but this reduces the current reaching the ionization region. By increasing the transmission efficiency of the electron beam to the anode, we have increased the anode current by two orders of magnitude to realize a corresponding enhancement in instrument sensitivity, at a moderate cost to mass resolution. We will report recent experimental and modeling results to describe the performance of a field emission electron gun as employed in the Volatile Analysis by Pyrolysis of Regolith (VAPoR) TOF-MS prototype.
Katagiri, M; Hikoji, M; Kitaichi, M; Aoki, Y; Sawamura, S
2001-01-01
Organ doses and effective doses were calculated using the EGS-4 Monte Carlo simulation code and a MIRD-5 mathematical human phantom placed in a vacuum. For broad right and left lateral beams of monoenergetic (0.1-200 MeV) electrons, conversion coefficients from the incident fluence to organ dose, to effective dose, and to effective dose equivalent were obtained. There were no clear differences between the conversion coefficients in the case of left-lateral (LLAT) and right-lateral (RLAT) irradiation. Therefore, when investigating lateral geometries for electron exposure, it is not necessary to evaluate both directions independently. In general, conversion coefficients for lateral irradiation (LAT) were smaller than those for AP and PA. The difference between the AP and PA conversion coefficients and LAT became smaller with increasing incident energy; at 200 MeV the conversion coefficients were almost independent of the irradiation geometry. The agreement between the results of the present study and those of other studies was acceptable within the statistical uncertainties.
Titan's plasma interaction: photoelectrons and negative ions
NASA Astrophysics Data System (ADS)
Coates, Coates; Welbrock, Anne; Desai, Ravi; Waite, Hunter
2016-06-01
We present a review of some of the most important results from the CAPS electron spectrometer.These include the role of photoelectrons and polar wind escape processes, and remarkable negative ion observations.
NASA Astrophysics Data System (ADS)
Jabeen, Uzma; Adhikari, Tham; Shah, Syed Mujtaba; Pathak, Dinesh; Nunzi, Jean-Michel
2017-11-01
Zinc sulphide (ZnS) and transition metal-doped ZnS nanocrystals were synthesized by co-precipitation method. Further the synthesized nanocrystals were characterized by Field Emission Scanning Electron Microscope (FESEM), High Resolution Transmission Electron Microscope (HRTEM), Fluorescence, UV-Visible, X-ray diffraction (XRD) and Fourier Transformed Infra-red (FTIR) Spectrometer (FTIR). Scanning electron microscope supplemented with EDAX was employed to attain grain size and chemical composition of the nanomaterials. A considerable blue shift of absorption band was noted by the manganese concentration (0.5 M) in the doped sample in comparison with ZnS quantum dots because of the decrease in the size of nanoparticles which may be due to quantum confinement. The photoluminescence emission observed at 596 nm is due to the emission of divalent manganese and can be ascribed to a 4T1→6A1 transition within the 3d shell. Though, the broad blue emission band was observed at 424 nm which may originates from the radiative recombination comprising defect states in the un-doped zinc sulphide quantum dots. XRD analysis exhibited that the synthesized nanomaterial endured in cubic structure. The synthesized nanomaterial combined with organic polymer P3HT, poly (3-hexyl thiophene) and worked in the construction of inverted solar cells. The photovoltaic devices with un-doped zinc sulphide quantum dots showed power conversion efficiency of 0.48% without annealing and 0.52% with annealing. By doping with manganese, the efficiency was enhanced by a factor of 0.52 without annealing and 0.59 with annealing. The morphology and packing behavior of blend of nanocrystals with organic polymer were explored using Atomic Force Microscopy.
Influence of intense THz radiation on spin state of photoswitchable compound Cu(hfac)2L(Pr).
Veber, Sergey L; Fedin, Matvey V; Maryunina, Ksenia Yu; Boldyrev, Kirill N; Sheglov, Mikhail A; Kubarev, Vitaly V; Shevchenko, Oleg A; Vinokurov, Nikolay A; Kulipanov, Gennady N; Sagdeev, Renad Z; Ovcharenko, Victor I; Bagryanskaya, Elena G
2013-02-21
The family of magnetoactive compounds Cu(hfac)(2)L(R) exhibits thermo- and photoswitching phenomena promising for various applications. Photoswitching of the Cu(hfac)(2)L(Pr) compound can be observed at temperatures below 20 K and is accompanied by transition to metastable structural state. Reverse conversion to stable structure could not be induced by light of near-IR-vis-UV regions up to date. The far-IR spectra of metastable and stable structural states are different and show characteristic absorption lines in the range of 170-240 cm(-1). These frequencies are accessible by NovoFEL - high-power THz free-electron laser user facility in Novosibirsk. We investigate selective influence of THz radiation on relaxation processes from metastable to stable structural state, which can be monitored by electron paramagnetic resonance (EPR). For this purpose, the experimental station based on X-band EPR spectrometer has been constructed by the THz beamline of NovoFEL and equipped with multimodal THz waveguide allowing to fed radiation directly into the EPR resonator. It has been found that irradiation of studied compound with high-power THz light causes significant but nondestructive increase of its temperature. Apart from this effect, no resonant influence of THz irradiation on relaxation processes has been observed. The experimental results have been rationalized taking into account vibrational relaxation times of the studied compound. Further experiments based on pulse heating by THz radiation have been proposed.
Development of a Lead Slowing Down Spectrometer for fission cross section measurements at LANSCE
NASA Astrophysics Data System (ADS)
Rochman, Dimitri; Haight, Robert C.; Wender, Stephen A.; O'Donnell, John M.; Michaudon, Andre; Vieira, Dave J.; Rundberg, Robert S.; Kronenberg, Andreas; Bond, Evelyn; Wilhelmy, Jerry B.; Bredeweg, Todd; Ethvignot, Thierry; Granier, Thierry; Petit, Michael; Danon, Yaron
2004-05-01
The Lead Slowing Down Spectrometer (LSDS) recently installed at the Los Alamos Neutron Science Center (LANSCE) consists of a 1.2 meter cube of lead surrounding a tungsten target, which is bombarded by pulses of 800 MeV protons from the Proton Storage Ring (PSR). Neutrons are produced by spallation from the interaction of the proton pulse with the target. The aim of the LSDS is to keep the neutrons inside the lead volume for few hundreds of microseconds and to slow them down by small steps in energy before they leave the spectrometer. The advantage of the LSDS is the large amount of neutrons available in the lead volume compared to traditional time-of-flight experiments. Driving the LSDS with a pulsed proton beam increases the neutron flux per watt of beam power significantly over similar spectrometers driven by electron linear accelerators. The first measurements to characterize the properties of the LSDS are presented.
High-accuracy mass spectrometry for fundamental studies.
Kluge, H-Jürgen
2010-01-01
Mass spectrometry for fundamental studies in metrology and atomic, nuclear and particle physics requires extreme sensitivity and efficiency as well as ultimate resolving power and accuracy. An overview will be given on the global status of high-accuracy mass spectrometry for fundamental physics and metrology. Three quite different examples of modern mass spectrometric experiments in physics are presented: (i) the retardation spectrometer KATRIN at the Forschungszentrum Karlsruhe, employing electrostatic filtering in combination with magnetic-adiabatic collimation-the biggest mass spectrometer for determining the smallest mass, i.e. the mass of the electron anti-neutrino, (ii) the Experimental Cooler-Storage Ring at GSI-a mass spectrometer of medium size, relative to other accelerators, for determining medium-heavy masses and (iii) the Penning trap facility, SHIPTRAP, at GSI-the smallest mass spectrometer for determining the heaviest masses, those of super-heavy elements. Finally, a short view into the future will address the GSI project HITRAP at GSI for fundamental studies with highly-charged ions.
NASA Astrophysics Data System (ADS)
Yeamans, C. B.; Gharibyan, N.
2016-11-01
At the National Ignition Facility, the diagnostic instrument manipulator-based neutron activation spectrometer is used as a diagnostic of implosion performance for inertial confinement fusion experiments. Additionally, it serves as a platform for independent neutronic experiments and may be connected to fast recording systems for neutron effect tests on active electronics. As an implosion diagnostic, the neutron activation spectrometers are used to quantify fluence of primary DT neutrons, downscattered neutrons, and neutrons above the primary DT neutron energy created by reactions of upscattered D and T in flight. At a primary neutron yield of 1015 and a downscattered fraction of neutrons in the 10-12 MeV energy range of 0.04, the downscattered neutron fraction can be measured to a relative uncertainty of 8%. Significant asymmetries in downscattered neutrons have been observed. Spectrometers have been designed and fielded to measure the tritium-tritium and deuterium-tritium neutron outputs simultaneously in experiments using DT/TT fusion ratio as a direct measure of mix of ablator into the gas.
Yeamans, C B; Gharibyan, N
2016-11-01
At the National Ignition Facility, the diagnostic instrument manipulator-based neutron activation spectrometer is used as a diagnostic of implosion performance for inertial confinement fusion experiments. Additionally, it serves as a platform for independent neutronic experiments and may be connected to fast recording systems for neutron effect tests on active electronics. As an implosion diagnostic, the neutron activation spectrometers are used to quantify fluence of primary DT neutrons, downscattered neutrons, and neutrons above the primary DT neutron energy created by reactions of upscattered D and T in flight. At a primary neutron yield of 10 15 and a downscattered fraction of neutrons in the 10-12 MeV energy range of 0.04, the downscattered neutron fraction can be measured to a relative uncertainty of 8%. Significant asymmetries in downscattered neutrons have been observed. Spectrometers have been designed and fielded to measure the tritium-tritium and deuterium-tritium neutron outputs simultaneously in experiments using DT/TT fusion ratio as a direct measure of mix of ablator into the gas.
Quantitative Electron Probe Microanalysis: State of the Art
NASA Technical Reports Server (NTRS)
Carpernter, P. K.
2005-01-01
Quantitative electron-probe microanalysis (EPMA) has improved due to better instrument design and X-ray correction methods. Design improvement of the electron column and X-ray spectrometer has resulted in measurement precision that exceeds analytical accuracy. Wavelength-dispersive spectrometer (WDS) have layered-dispersive diffraction crystals with improved light-element sensitivity. Newer energy-dispersive spectrometers (EDS) have Si-drift detector elements, thin window designs, and digital processing electronics with X-ray throughput approaching that of WDS Systems. Using these systems, digital X-ray mapping coupled with spectrum imaging is a powerful compositional mapping tool. Improvements in analytical accuracy are due to better X-ray correction algorithms, mass absorption coefficient data sets,and analysis method for complex geometries. ZAF algorithms have ban superceded by Phi(pz) algorithms that better model the depth distribution of primary X-ray production. Complex thin film and particle geometries are treated using Phi(pz) algorithms, end results agree well with Monte Carlo simulations. For geological materials, X-ray absorption dominates the corretions end depends on the accuracy of mass absorption coefficient (MAC) data sets. However, few MACs have been experimentally measured, and the use of fitted coefficients continues due to general success of the analytical technique. A polynomial formulation of the Bence-Albec alpha-factor technique, calibrated using Phi(pz) algorithms, is used to critically evaluate accuracy issues and can be also be used for high 2% relative and is limited by measurement precision for ideal cases, but for many elements the analytical accuracy is unproven. The EPMA technique has improved to the point where it is frequently used instead of the petrogaphic microscope for reconnaissance work. Examples of stagnant research areas are: WDS detector design characterization of calibration standards, and the need for more complete treatment of the continuum X-ray fluorescence correction.
Quadrupole deformed and octupole collective bands in 228Ra
NASA Astrophysics Data System (ADS)
Gulda, K.; Mach, H.; Aas, A. J.; Borge, M. J. G.; Burke, D. G.; Fogelberg, B.; Gietz, H.; Grant, I. S.; Hagebo, E.; Hill, P.; Hoff, P.; Kaffrell, N.; Kurcewicz, W.; Lindroth, A.; Løvhøiden, G.; Martinez, T.; Mattsson, S.; Naumann, R. A.; Nybø, K.; Nyman, G.; Rubio, B.; Sanchez-Vega, M.; Tain, J. L.; Taylor, R. B. E.; Tengblad, O.; Thorsteinsen, T. F.; Isolde Collaboration
1998-06-01
Spins and parities for collective states in 228Ra have been determined from conversion electron measurements with a mini-orange β spectrometer. The fast-timing βγγ( t) method has been used to measure lifetimes of T {1}/{2} = 550(20) ps and 181 (3) ps for the 2 1+ and 4 1+ aembers of the K = 0 + band, and T {1}/{2} ⩽ 7 ps and ⩽6 ps for the 1 1- and 3 1- members of the K = 0 - band, respectively The quadrupole moments, Q0 deduced from the B (E2; 2 1+ → 0 1+) and B (E2; 4 1+ → 2 1+) rates are in good agreement with the previously measured value and the systematics of the region. However, the B(E1) rates of ⩾4 × 10 -4 e 2 fm 2, which represent the first B(E1) measurements for this nucleus, are at least 25 times larger than the value previously suggested for 228Ra. The new results are consistent with the B(E1) rates recently measured for the neighbouring 227Ra and reveal octupole correlations in 228Ra.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buehler, Marc; Tartaglia, Michael; Tompkins, John
The Mu2e experiment at Fermilab is designed to explore charged lepton flavor violation by searching for muon-to-electron conversion. The magnetic field generated by a system of solenoids is crucial for Mu2e and requires accurate characterization to detect any flaws and to produce a detailed field map. Stringent physics goals are driving magnetic field specifications for the Mu2e solenoids. A field mapper is being designed, which will produce detailed magnetic field maps. The uniform field region of the spectrometer volume requires the highest level of precision (1 Gauss per 1 Tesla). During commissioning, multiple magnetic field maps will be generated tomore » verify proper alignment of all magnet coils, and to create the final magnetic field map. In order to design and build a precise field mapping system consisting of Hall and NRM probes, tolerances and precision for such a system need to be evaluated. In this paper we present a design for the Mu2e field mapping hardware, and discuss results from OPERA-3D simulations to specify parameters for Hall and NMR probes. We also present a fitting procedure for the analytical treatment of our expected magnetic measurements.« less
Lin, Lina; Qiu, Weiwen; Wang, Di; Huang, Qing; Song, Zhengguo; Chau, Henry Wai
2017-10-01
The aim of this study was to develop a cost-effective method for As removal from aqueous systems. To this end, pristine biochar (BC) was impregnated with Fe-Mn oxides and a comparative analysis was conducted on the adsorption capacities of BC, Fe-Mn binary oxide (FMO), and Fe/Mn modified biochar (FMBC). The ferromanganese oxides increased the specific surface areas of BC. FMBC presented greater adsorption of As (Q max = 8.25mgg -1 ) than FMO and BC. Energy dispersive spectrometer analysis and electron microscope scanning revealed numerous pores of FMBC with the existence of Fe-Mn oxide using. Distinguished binding energy shifting of the As3d, Fe2p, O1s, and Mn2p3/2 regions after As sorption were found, indicating that Mn(III) oxidation and interaction of oxygen-containing function groups in the FMBC promoted the conversion of As(III) to As(V). Furthermore, chemisorption was found to be the main mechanism for As sorption on FMBC. Thus, the results suggest that FMBC could be used as an inexpensive and highly efficient adsorbent for As removal from water environment. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Ding, Xia; Li, Jingjie; Li, Musen; Ge, Shengsong; Wang, Xiuchun; Ding, Kaihong; Cui, Shengli; Sun, Yongcong
2014-09-01
Nd-Fe-B permanent magnets possess excellent properties. However, they are highly sensitive to the attack of corrosive environment. The aim of this work is to improve the corrosion resistance of the magnets by phosphatization, silanization, and electrostatic spraying with organic resin composite coatings. Field emission scanning electron microscope (FE-SEM) and energy dispersive spectrometer (EDS) tests showed that uniform phosphate conversion coatings and spray layers were formed on the surface of the Nd-Fe-B magnets. Neutral salt spray tests exhibited that, after treated by either phosphating, silanization or electrostatic spraying, the protectiveness of Nd-Fe-B alloys was apparently increased. And corrosion performance of magnets treated with silane only was slightly inferior to those of phosphatized ones. However, significant improvement in corrosion protection was achieved after two-step treatments, i.e. by top-coating spray layer with phosphate or silane films underneath. Grid test indicated that the phosphate and silane coating were strongly attached to the substrate while silane film was slightly weaker than the phosphate-treated ones. Magnetic property analysis revealed phosphatization, silanization, and electrostatic spraying caused decrease in magnetism, but silanization had the relatively smaller effect.
NASA Astrophysics Data System (ADS)
Dudnik, O. V.; Podgorski, P.; Sylwester, J.; Gburek, S.; Kowalinski, M.; Siarkowski, M.; Plocieniak, S.; Bakala, J.
2012-04-01
A joint analysis is carried out of data obtained with the help of the solar X-ray SphinX spectrophotometer and the electron and proton satellite telescope STEP-F in May 2009 in the course of the scientific space experiment CORONAS-PHOTON. In order to determine the energies and particle types, in the analysis of spectrophotometer records data are used on the intensities of electrons, protons, and secondary γ-radiation, obtained by the STEP-F telescope, which was located in close proximity to the SphinX spectrophotometer. The identical reaction of both instruments is noted at the intersection of regions of the Brazilian magnetic anomaly and the Earth's radiation belts. It is shown that large area photodiodes, serving as sensors of the X-ray spectrometer, reliably record electron fluxes of low and intermediate energies, as well as fluxes of the secondary gamma radiation from construction materials of detector modules, the TESIS instrument complex, and the spacecraft itself. The dynamics of electron fluxes, recorded by the SphinX spectrophotometer in the vicinity of a weak geomagnetic storm, supplements the information about the processes of radial diffusion of electrons, which was studied using the STEP-F telescope.
Electronuclear paths in the nuclear conversion of molecular hydrogen in silicon
NASA Astrophysics Data System (ADS)
Ilisca, Ernest; Ghiglieno, Filippo
2017-01-01
The ortho-para conversion of hydrogen molecules oscillating inside tetrahedral cages of silicon compounds relies on the interaction of the nuclear protons with the silicon electrons. At each collision against the cage hard walls, the electron repulsion changes the molecular rotation while projecting a valence electron in the antibonding molecular state dressed by a group of conduction ones. That «bridge» facilitates the hyperfine contact of the electrons with the protons. At room temperature, the angular momentum transfer is enhanced by electron fluctuations that overcome the silicon gap and accelerate the nuclear rates by more than one order of magnitude.
Electron Probe Microanalysis | Materials Science | NREL
surveys of the area of interest before performing a more accurate quantitative analysis with WDS. WDS - Four spectrometers with ten diffracting crystals. The use of a single-channel analyzer allows much
U.S. Instruments Aboard Rosetta
2014-01-24
Three of NASA contributions to the ESA Rosetta mission are pictured here: an ultraviolet spectrometer called Alice top, the Ion and Electron Sensor IES bottom left, and the Microwave Instrument for Rosetta Orbiter MIRO bottom right.
Seon, C R; Choi, S H; Cheon, M S; Pak, S; Lee, H G; Biel, W; Barnsley, R
2010-10-01
A vacuum ultraviolet (VUV) spectrometer of a five-channel spectral system is designed for ITER main plasma impurity measurement. To develop and verify the system design, a two-channel prototype system is fabricated with No. 3 (14.4-31.8 nm) and No. 4 (29.0-60.0 nm) among the five channels. The optical system consists of a collimating mirror to collect the light from source to slit, two holographic diffraction gratings with toroidal geometry, and two different electronic detectors. For the test of the prototype system, a hollow cathode lamp is used as a light source. To find the appropriate detector for ITER VUV system, two kinds of detectors of the back-illuminated charge-coupled device and the microchannel plate electron multiplier are tested, and their performance has been investigated.
A new pulse width reduction technique for pulsed electron paramagnetic resonance spectroscopy.
Ohba, Yasunori; Nakazawa, Shigeaki; Kazama, Shunji; Mizuta, Yukio
2008-03-01
We present a new technique for a microwave pulse modulator that generates a short microwave pulse of approximately 1ns for use in an electron paramagnetic resonance (EPR) spectrometer. A quadruple-frequency multiplier that generates a signal of 16-20GHz from an input of 4-5GHz was employed to reduce the rise and fall times of the pulse prepared by a PIN diode switch. We examined the transient response characteristics of a commercial frequency multiplier and found that the device can function as a multiplier for pulsed signal even though it was designed for continuous wave operation. We applied the technique to a Ku band pulsed EPR spectrometer and successfully observed a spin echo signal with a broad excitation bandwidth of approximately 1.6mT using 80 degrees pulses of 1.5ns.
System and Method for an Integrated Satellite Platform
NASA Technical Reports Server (NTRS)
Starin, Scott R. (Inventor); Sheikh, Salman I. (Inventor); Hesse, Michael (Inventor); Clagett, Charles E. (Inventor); Santos Soto, Luis H. (Inventor); Hesh, Scott V. (Inventor); Paschalidis, Nikolaos (Inventor); Ericsson, Aprille J. (Inventor); Johnson, Michael A. (Inventor)
2018-01-01
A system, method, and computer-readable storage devices for a 6U CubeSat with a magnetometer boom. The example 6U CubeSat can include an on-board computing device connected to an electrical power system, wherein the electrical power system receives power from at least one of a battery and at least one solar panel, a first fluxgate sensor attached to an extendable boom, a release mechanism for extending the extendable boom, at least one second fluxgate sensor fixed within the satellite, an ion neutral mass spectrometer, and a relativistic electron/proton telescope. The on-board computing device can receive data from the first fluxgate sensor, the at least one second fluxgate sensor, the ion neutral mass spectrometer, and the relativistic electron/proton telescope via the bus, and can then process the data via an algorithm to deduce a geophysical signal.
Kasada, R; Ha, Y; Higuchi, T; Sakamoto, K
2016-05-10
B4C is widely used as control rods in light water reactors, such as the Fukushima Daiichi nuclear power plant, because it shows excellent neutron absorption and has a high melting point. However, B4C can melt at lower temperatures owing to eutectic interactions with stainless steel and can even evaporate by reacting with high-temperature steam under severe accident conditions. To reduce the risk of recriticality, a precise understanding of the location and chemical state of B in the melt core is necessary. Here we show that a novel soft X-ray emission spectrometer in electron probe microanalysis can help to obtain a chemical state map of B in a modeled control rod after a high-temperature steam oxidation test.
End-to-end test of the electron-proton spectrometer
NASA Technical Reports Server (NTRS)
Cash, B. L.
1972-01-01
A series of end-to-end tests were performed to demonstrate the proper functioning of the complete Electron-Proton Spectrometer (EPS). The purpose of the tests was to provide experimental verification of the design and to provide a complete functional performance check of the instrument from the excitation of the sensors to and including the data processor and equipment test set. Each of the channels of the EPS was exposed to a calibrated beam of energetic particles, and counts were accumulated for a predetermined period of time for each of several energies. The counts were related to the known flux of particles to give a monodirectional response function for each channel. The measured response function of the test unit was compared to the response function determined for the calibration sensors from the data taken from the calibration program.
Upgrade of the Surface Spectrometer at NEPOMUC for PAES, XPS and STM Investigations
NASA Astrophysics Data System (ADS)
Zimnik, S.; Lippert, F.; Hugenschmidt, C.
2014-04-01
The characterization of the elemental composition of surfaces is of great importance for the understanding of many surface processes, such as surface segregation or oxidation. Positron-annihilation-induced Auger Electron Spectroscopy (PAES) is a powerful technique for gathering information about the elemental composition of only the topmost atomic layer of a sample. The upgraded surface spectrometer at NEPOMUC (NEtron induced POsitron source MUniCh) enables a comprehensive surface analysis with the complementary techniques STM, XPS and PAES. A new X-ray source for X-ray induced photoelectron spectroscopy (XPS) was installed to gather additional information on oxidation states. A new scanning tunneling microscope (STM) is used as a complementary method to investigate with atomic resolution the surface electron density. The combination of PAES, XPS and STM allows the characterization of both the elemental composition, and the surface topology.
Kearns, Nicholas M; Mehlenbacher, Randy D; Jones, Andrew C; Zanni, Martin T
2017-04-03
We have developed a broad bandwidth two-dimensional electronic spectrometer that operates shot-to-shot at repetition rates up to 100 kHz using an acousto-optic pulse shaper. It is called a two-dimensional white-light (2D-WL) spectrometer because the input is white-light supercontinuum. Methods for 100 kHz data collection are studied to understand how laser noise is incorporated into 2D spectra during measurement. At 100 kHz, shot-to-shot scanning of the delays and phases of the pulses in the pulse sequence produces a 2D spectrum 13-times faster and with the same signal-to-noise as using mechanical stages and a chopper. Comparing 100 to 1 kHz repetition rates, data acquisition time is decreased by a factor of 200, which is beyond the improvement expected by the repetition rates alone due to reduction in 1/f noise. These improvements arise because shot-to-shot readout and modulation of the pulse train at 100 kHz enables the electronic coherences to be measured faster than the decay in correlation between laser intensities. Using white light supercontinuum for the pump and probe pulses produces high signal-to-noise spectra on samples with optical densities <0.1 within a few minutes of averaging and an instrument response time of <46 fs thereby demonstrating that that simple broadband continuum sources, although weak, are sufficient to create high quality 2D spectra with >200 nm bandwidth.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yap, Yung Szen, E-mail: yungszen@utm.my; Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor; Tabuchi, Yutaka
2015-06-15
We present a 17 GHz (Ku band) arbitrary waveform pulsed electron paramagnetic resonance spectrometer for experiments down to millikelvin temperatures. The spectrometer is located at room temperature, while the resonator is placed either in a room temperature magnet or inside a cryogen-free dilution refrigerator; the operating temperature range of the dilution unit is from ca. 10 mK to 8 K. This combination provides the opportunity to perform quantum control experiments on electron spins in the pure-state regime. At 0.6 T, spin echo experiments were carried out using γ-irradiated quartz glass from 1 K to 12.3 mK. With decreasing temperatures, wemore » observed an increase in spin echo signal intensities due to increasing spin polarizations, in accordance with theoretical predictions. Through experimental data fitting, thermal spin polarization at 100 mK was estimated to be at least 99%, which was almost pure state. Next, to demonstrate the ability to create arbitrary waveform pulses, we generate a shaped pulse by superposing three Gaussian pulses of different frequencies. The resulting pulse was able to selectively and coherently excite three different spin packets simultaneously—a useful ability for analyzing multi-spin system and for controlling a multi-qubit quantum computer. By applying this pulse to the inhomogeneously broadened sample, we obtain three well-resolved excitations at 8 K, 1 K, and 14 mK.« less
NASA Astrophysics Data System (ADS)
Krimigis, Stamatios; Acuna, Mario; Anderson, Brian; Baker, Daniel N.; Gloeckler, George; Gold, Robert; Ho, George; McNutt, Ralph L.; Slavin, James; Zurbuchen, Thomas H.
Our knowledge of Mercury's magnetosphere had been derived from two Mariner 10 flybys in 1974-1975 that established the presence of an intrinsic magnetic field and of some energetic and plasma electrons. Launched on August 3, 2004, MESSENGER executed the first of three flybys of Mercury on January 14, 2008. The Magnetometer provided high-resolution (0.047-nT) observations of the field, establishing firmly its dipolar nature but with substantial external components, well-defined bow shock and magnetopause crossings both inbound and outbound, and large-amplitude waves in yet to be delineated regions. The Energetic Particle and Plasma Spectrometer (EPPS) instrument consists of two sensors: The Fast Imaging Plasma Spectrometer (FIPS), a novel fish-eye lens sensor, observed for the first time in Mercury's magnetosphere low-energy ions consisting of both heated solar wind and heavier (M/Q˜4) ions most likely originating in Mercury's exosphere and/or surface. The Energetic Particle Spectrometer (EPS) searched for ions and electrons having E˜ 15 keV, expected to be observed on the basis of Mariner 10 results, but detected none. Count rates for both ions and electrons during magnetospheric traversal were indistinguishable from background, a generous upper limit being less than 0.1 percent of the intensities reported for Mariner 10. The interplanetary magnetic field was pointing generally northward both prior to entry and after spacecraft exit from the magnetosphere. The observations provide new constraints on existing models of solar wind's interaction with the planet.
NASA Astrophysics Data System (ADS)
Zhou, Xiaohu; Neubauer, Franz; Zhao, Dong; Xu, Shichao
2015-01-01
The high-precision geometric correction of airborne hyperspectral remote sensing image processing was a hard nut to crack, and conventional methods of remote sensing image processing by selecting ground control points to correct the images are not suitable in the correction process of airborne hyperspectral image. The optical scanning system of an inertial measurement unit combined with differential global positioning system (IMU/DGPS) is introduced to correct the synchronous scanned Operational Modular Imaging Spectrometer II (OMIS II) hyperspectral remote sensing images. Posture parameters, which were synchronized with the OMIS II, were first obtained from the IMU/DGPS. Second, coordinate conversion and flight attitude parameters' calculations were conducted. Third, according to the imaging principle of OMIS II, mathematical correction was applied and the corrected image pixels were resampled. Then, better image processing results were achieved.
Atmospheric pressure plasma analysis by modulated molecular beam mass spectrometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aranda Gonzalvo, Y.; Whitmore, T.D.; Rees, J.A.
Fractional number density measurements for a rf plasma 'needle' operating at atmospheric pressure have been obtained using a molecular beam mass spectrometer (MBMS) system designed for diagnostics of atmospheric plasmas. The MBMS system comprises three differentially pumped stages and a mass/energy analyzer and includes an automated beam-to-background measurement facility in the form of a software-controlled chopper mechanism. The automation of the beam modulation allows the neutral components in the plasma to be rapidly and accurately measured using the mass spectrometer by threshold ionization techniques. Data are reported for plasma generated by a needle plasma source operated using a helium/air mixture.more » In particular, data for the conversion of atmospheric oxygen and nitrogen into nitric oxide are discussed with reference to its significance for medical applications such as disinfecting wounds and dental cavities and for microsurgery.« less
Lunar Prospector: developing a very low cost planetary mission.
NASA Astrophysics Data System (ADS)
Hubbard, G. S.
Lunar Prospector, the first competitively selected planetary mission in NASA's Discovery Program, is described with emphasis on the lessons learned from managing a very low cost project. Insights into government-industry teaming, project management, contractual arrangements, schedule and budget reserve approach are discussed. The mission is conducting an orbital survey of the Moon's composition and structure. A mission overview and scientific data return is briefly described in the context of low cost mission development. The suite of five instruments is outlined: neutron spectrometer (NS), alpha particle spectrometer (APS), gamma ray spectrometer (GRS), magnetometer (MAG) and an electron reflectometer (ER). Scientific requirements and measurement approaches to detect water ice to a sensitivity of 50 ppm (hydrogen), measure key elemental constituents, detect gas release events and accurately map the Moon's gravitational and magnetic fields are described.
Jefferson Lab Experimental Hall C
NASA Astrophysics Data System (ADS)
Carlini, Roger D.
1996-10-01
Jefferson Lab's Hall C went into initial operation in November 1995. The hall has a short orbit spectrometer (SOS) for short-lived particles such as pions and kaons and a high-momentum spectrometer (HMS) usually used for electrons. The SOS can also be used for protons. The HMS can range to 7 GeV/c. Both the SOS and HMS have typical resolutions of (10-3). Experiments for this hall range from measuring the neutron electric form factor, to color transparency, to creating strange nuclei. This paper will present the optical capabilities of the spectrometers, the parameters of the detection systems, and the overall beam line characteristics of the hall as determined from the results from the recent physics experiments along with the upcoming experimental schedule. Additional information is available at URL http://www.cebaf.gov/hallc.html.
Development of an Atmospheric Pressure Ionization Mass Spectrometer
NASA Technical Reports Server (NTRS)
1998-01-01
A commercial atmospheric pressure ionization mass spectrometer (APIMS) was purchased from EXTREL Mass Spectrometry, Inc. (Pittsburgh, PA). Our research objectives were to adapt this instrument and develop techniques for real-time determinations of the concentrations of trace species in the atmosphere. The prototype instrument is capable of making high frequency measurements with no sample preconcentrations. Isotopically labeled standards are used as an internal standard to obtain high precision and to compensate for changes in instrument sensitivity and analyte losses in the sampling manifold as described by Bandy and coworkers. The prototype instrument is capable of being deployed on NASA C130, Electra, P3, and DC8 aircraft. After purchasing and taking delivery by June 1994, we assembled the mass spectrometer, data acquisition, and manifold flow control instrumentation in electronic racks and performed tests.
Cross sections for H(-) and Cl(-) production from HCl by dissociative electron attachment
NASA Technical Reports Server (NTRS)
Orient, O. J.; Srivastava, S. K.
1985-01-01
A crossed target beam-electron beam collision geometry and a quadrupole mass spectrometer have been used to conduct dissociative electron attachment cross section measurements for the case of H(-) and Cl(-) production from HCl. The relative flow technique is used to determine the absolute values of cross sections. A tabulation is given of the attachment energies corresponding to various cross section maxima. Error sources contributing to total errors are also estimated.
NASA Technical Reports Server (NTRS)
Brinton, John (Technical Monitor); Silver, Eric
2005-01-01
We completed modifications to the new microcalorimeter system dedicated for use on the EBIT at NIST, which included: 1) a redesign of the x-ray calibration source from a direct electron impact source to one that irradiates the microcalorimeter with fluorescent x-rays. The resulting calibration lines are free of bremsstrahlung background; 2) the microcalorimeter electronic circuit was significantly improved to ensure long-term stability for lengthy experimental runs
Guo, Ruixiang; Ikar'i, Tomofumi; Zhang, Jun; Minamide, Hiroaki; Ito, Hiromasa
2010-08-02
A surface-emitting THz parametric oscillator is set up to generate a narrow-linewidth, nanosecond pulsed THz-wave radiation. The THz-wave radiation is coherently detected using the frequency up-conversion in MgO: LiNbO(3) crystal. Fast frequency tuning and automatic achromatic THz-wave detection are achieved through a special optical design, including a variable-angle mirror and 1:1 telescope devices in the pump and THz-wave beams. We demonstrate a frequency-agile THz-wave parametric generation and THz-wave coherent detection system. This system can be used as a frequency-domain THz-wave spectrometer operated at room-temperature, and there are a high possible to develop into a real-time two-dimensional THz spectral imaging system.
Determination of Rest Mass Energy of the Electron by a Compton Scattering Experiment
ERIC Educational Resources Information Center
Prasannakumar, S.; Krishnaveni, S.; Umesh, T. K.
2012-01-01
We report here a simple Compton scattering experiment which may be carried out in graduate and undergraduate laboratories to determine the rest mass energy of the electron. In the present experiment, we have measured the energies of the Compton scattered gamma rays with a NaI(Tl) gamma ray spectrometer coupled to a 1 K multichannel analyzer at…
Muir, B; Rogers, D; McEwen, M
2012-07-01
When current dosimetry protocols were written, electron beam data were limited and had uncertainties that were unacceptable for reference dosimetry. Protocols for high-energy reference dosimetry are currently being updated leading to considerable interest in accurate electron beam data. To this end, Monte Carlo simulations using the EGSnrc user-code egs_chamber are performed to extract relevant data for reference beam dosimetry. Calculations of the absorbed dose to water and the absorbed dose to the gas in realistic ion chamber models are performed as a function of depth in water for cobalt-60 and high-energy electron beams between 4 and 22 MeV. These calculations are used to extract several of the parameters required for electron beam dosimetry - the beam quality specifier, R 50 , beam quality conversion factors, k Q and k R50 , the electron quality conversion factor, k' R50 , the photon-electron conversion factor, k ecal , and ion chamber perturbation factors, P Q . The method used has the advantage that many important parameters can be extracted as a function of depth instead of determination at only the reference depth as has typically been done. Results obtained here are in good agreement with measured and other calculated results. The photon-electron conversion factors obtained for a Farmer-type NE2571 and plane-parallel PTW Roos, IBA NACP-02 and Exradin A11 chambers are 0.903, 0.896, 0.894 and 0.906, respectively. These typically differ by less than 0.7% from the contentious TG-51 values but have much smaller systematic uncertainties. These results are valuable for reference dosimetry of high-energy electron beams. © 2012 American Association of Physicists in Medicine.
Ajo, Henry; Blankenship, Donnie; Clark, Elliot
2014-07-25
In this study, various commercially available surface treatments are being explored for use on stainless steel components in mass spectrometer inlet systems. Type A-286 stainless steel coupons, approximately 12.5 mm in diameter and 3 mm thick, were passivated with one of five different surface treatments; an untreated coupon served as a control. The surface and near-surface microstructure and chemistry of the coupons were investigated using sputter depth profiling using Auger electron spectroscopy, x-ray photoelectron spectroscopy, and scanning electron microscopy (SEM). All the surface treatments studied appeared to change the surface morphology dramatically, as evidenced by lack of tool marks onmore » the treated samples in SEM images. In terms of the passivation treatment, Vendors A-D appeared to have oxide layers that were very similar in thickness to each other (0.7–0.9 nm thick), as well as to the untreated samples (the untreated sample oxide layers appeared to be somewhat larger). Vendor E’s silicon coating appears to be on the order of 200 nm thick.« less
Ganner, Thomas; Sattelkow, Jürgen; Rumpf, Bernhard; Eibinger, Manuel; Reishofer, David; Winkler, Robert; Nidetzky, Bernd; Spirk, Stefan; Plank, Harald
2016-01-01
In many areas of science and technology, patterned films and surfaces play a key role in engineering and development of advanced materials. Here, we introduce a new generic technique for the fabrication of polysaccharide nano-structures via focused electron beam induced conversion (FEBIC). For the proof of principle, organosoluble trimethylsilyl-cellulose (TMSC) thin films have been deposited by spin coating on SiO2 / Si and exposed to a nano-sized electron beam. It turns out that in the exposed areas an electron induced desilylation reaction takes place converting soluble TMSC to rather insoluble cellulose. After removal of the unexposed TMSC areas, structured cellulose patterns remain on the surface with FWHM line widths down to 70 nm. Systematic FEBIC parameter sweeps reveal a generally electron dose dependent behavior with three working regimes: incomplete conversion, ideal doses and over exposure. Direct (FT-IR) and indirect chemical analyses (enzymatic degradation) confirmed the cellulosic character of ideally converted areas. These investigations are complemented by a theoretical model which suggests a two-step reaction process by means of TMSC → cellulose and cellulose → non-cellulose material conversion in excellent agreement with experimental data. The extracted, individual reaction rates allowed the derivation of design rules for FEBIC parameters towards highest conversion efficiencies and highest lateral resolution. PMID:27585861
Energetic Electron Acceleration and Injection During Dipolarization Events in Mercury's Magnetotail
NASA Astrophysics Data System (ADS)
Dewey, Ryan M.; Slavin, James A.; Raines, Jim M.; Baker, Daniel N.; Lawrence, David J.
2017-12-01
Energetic particle bursts associated with dipolarization events within Mercury's magnetosphere were first observed by Mariner 10. The events appear analogous to particle injections accompanying dipolarization events at Earth. The Energetic Particle Spectrometer (3 s resolution) aboard MESSENGER determined the particle bursts are composed entirely of electrons with energies ≳ 300 keV. Here we use the Gamma-Ray Spectrometer high-time-resolution (10 ms) energetic electron measurements to examine the relationship between energetic electron injections and magnetic field dipolarization in Mercury's magnetotail. Between March 2013 and April 2015, we identify 2,976 electron burst events within Mercury's magnetotail, 538 of which are closely associated with dipolarization events. These dipolarizations are detected on the basis of their rapid ( 2 s) increase in the northward component of the tail magnetic field (ΔBz 30 nT), which typically persists for 10 s. Similar to those at Earth, we find that these dipolarizations appear to be low-entropy, depleted flux tubes convecting planetward following the collapse of the inner magnetotail. We find that electrons experience brief, yet intense, betatron and Fermi acceleration during these dipolarizations, reaching energies 130 keV and contributing to nightside precipitation. Thermal protons experience only modest betatron acceleration. While only 25% of energetic electron events in Mercury's magnetotail are directly associated with dipolarization, the remaining events are consistent with the Near-Mercury Neutral Line model of magnetotail injection and eastward drift about Mercury, finding that electrons may participate in Shabansky-like closed drifts about the planet. Magnetotail dipolarization may be the dominant source of energetic electron acceleration in Mercury's magnetosphere.
Searching for O-X-B mode-conversion window with monitoring of stray microwave radiation in LHD
NASA Astrophysics Data System (ADS)
Igami, H.; Kubo, S.; Laqua, H. P.; Nagasaki, K.; Inagaki, S.; Notake, T.; Shimozuma, T.; Yoshimura, Y.; Mutoh, T.; LHD Experimental Group
2006-10-01
In the Large Helical Device, the stray microwave radiation is monitored by using so-called sniffer probes during electron cyclotron heating. In monitoring the stray radiation, we changed the microwave beam injection angle and search the O-X-B mode-conversion window to excite electron Bernstein waves (EBWs). When the microwave beam is injected toward the vicinity of the predicted O-X-B mode-conversion window, the electron temperature rises in the central part of overdense plasmas. In that case, the stray radiation level near the injection antenna becomes low. These results indicate that monitoring the stray radiation near the injection antenna is helpful in confirming the effectiveness of excitation of EBWs simply without precise analysis.
Single-Electron Detection and Spectroscopy via Relativistic Cyclotron Radiation.
Asner, D M; Bradley, R F; de Viveiros, L; Doe, P J; Fernandes, J L; Fertl, M; Finn, E C; Formaggio, J A; Furse, D; Jones, A M; Kofron, J N; LaRoque, B H; Leber, M; McBride, E L; Miller, M L; Mohanmurthy, P; Monreal, B; Oblath, N S; Robertson, R G H; Rosenberg, L J; Rybka, G; Rysewyk, D; Sternberg, M G; Tedeschi, J R; Thümmler, T; VanDevender, B A; Woods, N L
2015-04-24
It has been understood since 1897 that accelerating charges must emit electromagnetic radiation. Although first derived in 1904, cyclotron radiation from a single electron orbiting in a magnetic field has never been observed directly. We demonstrate single-electron detection in a novel radio-frequency spectrometer. The relativistic shift in the cyclotron frequency permits a precise electron energy measurement. Precise beta electron spectroscopy from gaseous radiation sources is a key technique in modern efforts to measure the neutrino mass via the tritium decay end point, and this work demonstrates a fundamentally new approach to precision beta spectroscopy for future neutrino mass experiments.
Electron currents associated with an auroral band
NASA Technical Reports Server (NTRS)
Spiger, R. J.; Anderson, H. R.
1975-01-01
Measurements of electron pitch angle distributions and energy spectra over a broad auroral band were used to calculate net electric current carried by auroral electrons in the vicinity of the band. The particle energy spectrometers were carried by a Nike-Tomahawk rocket launched from Poker Flat, Alaska, at 0722 UT on February 25, 1972. Data are presented which indicate the existence of upward field-aligned currents of electrons in the energy range 0.5-20 keV. The spatial relationship of these currents to visual structure of the auroral arc and the characteristics of the electrons carrying the currents are discussed.
NASA Astrophysics Data System (ADS)
Kuznetsov, D. L.; Filatov, I. E.; Uvarin, V. V.
2018-01-01
Effect of electronegative additives (oxygen O2, sulfur dioxide SO2, carbon disulfide CS2, and carbon tetrachloride CCl4) on physical properties and chemical activity of plasma formed by pulsed corona discharge and by non-self-sustained discharge supported by pulsed electron beam in atmospheric pressure gas mixtures was investigated. It is shown that a decrease in discharge current depends on a sort of the additive and on its concentration. The reason is the difference in rate constants of electron attachment processes for the above molecules. In experiments on volatile organic compounds (VOCs) conversion in air by streamer corona it is obtained that an addition of CCl4 both decreases the discharge current amplitude and increases the VOCs conversion degree. An installation for investigation of electron attachment processes and for study of toxic impurities conversion in plasma formed by non-self-sustained discharge initiated by pulsed nanosecond electron beam is created.
1985-01-01
Vukstich, A. M. Solomon Electron-Electron Coincidence Spectrometer for the Study of Relative Triple Differential 709 Cross Sections for Autoionizing...wavelengths depen~eat three- and four -photon ionization spectra v v ., v VVvVvVV (V of Bi and Bi (2) The ionizatign of"Bi2 is studied by various one &(I...the observed energetic protons must arise from at least four repulsive states. The lower energy group consists of protons arising from" . excitation
NASA Astrophysics Data System (ADS)
Wan Chan Tseung, H.; Kaspar, J.; Tolich, N.
2011-10-01
An experimental test of the electron energy scale linearities of SNO+ and EJ-301 scintillators was carried out using a Compton spectrometer with electrons in the energy range 0.09-3 MeV. The linearity of the apparatus was explicitly demonstrated. It was found that the response of both types of scintillators with respect to electrons becomes non-linear below ˜0.4 MeV. An explanation is given in terms of Cherenkov light absorption and re-emission by the scintillators.
Performance of the rebuilt SUERC single-stage accelerator mass spectrometer
NASA Astrophysics Data System (ADS)
Shanks, Richard P.; Ascough, Philippa L.; Dougans, Andrew; Gallacher, Paul; Gulliver, Pauline; Rood, Dylan H.; Xu, Sheng; Freeman, Stewart P. H. T.
2015-10-01
The SUERC bipolar single-stage accelerator mass spectrometer (SSAMS) has been dismantled and rebuilt to accommodate an additional rotatable pre-accelerator electrostatic spherical analyser (ESA) and a second ion source injector. This is for the attachment of an experimental positive-ion electron cyclotron resonance (ECR) ion source in addition to a Cs-sputter source. The ESA significantly suppresses oxygen interference to radiocarbon detection, and remaining measurement interference is now thought to be from 13C injected as 13CH molecule scattering off the plates of a second original pre-detector ESA.
Electronic considerations for externally segmented germanium detectors
NASA Technical Reports Server (NTRS)
Madden, N. W.; Landis, D. A.; Goulding, F. S.; Pehl, R. H.; Cork, C. P.; Luke, P. N.; Malone, D. F.; Pollard, M. J.
1991-01-01
The dominant background source for germanium gamma ray detector spectrometers used for some astrophysics observations is internal beta decay. Externally segmented germanium gamma ray coaxial detectors can identify beta decay by localizing the event. Energetic gamma rays interact in the germanium detector by multiple Compton interactions while beta decay is a local process. In order to recognize the difference between gamma rays and beta decay events, the external electrode (outside of detector) is electrically partitioned. The instrumentation of these external segments and the consequence with respect to the spectrometer energy signal is examined.
NASA Technical Reports Server (NTRS)
Dennis, Brian R.; Crannell, Carol JO; Desai, Upendra D.; Orwig, Larry E.; Kiplinger, Alan L.; Schwartz, Richard A.; Hurford, Gordon J.; Emslie, A. Gordon; Machado, Marcos; Wood, Kent
1988-01-01
The Fourier Imaging X-ray Spectrometer (FIXS) is one of four instruments on SAC-1, the Argentinian satellite being proposed for launch by NASA on a Scout rocket in 1992/3. The FIXS is designed to provide solar flare images at X-ray energies between 5 and 35 keV. Observations will be made on arcsecond size scales and subsecond time scales of the processes that modify the electron spectrum and the thermal distribution in flaring magnetic structures.
Spaceborne Hybrid-FPGA System for Processing FTIR Data
NASA Technical Reports Server (NTRS)
Bekker, Dmitriy; Blavier, Jean-Francois L.; Pingree, Paula J.; Lukowiak, Marcin; Shaaban, Muhammad
2008-01-01
Progress has been made in a continuing effort to develop a spaceborne computer system for processing readout data from a Fourier-transform infrared (FTIR) spectrometer to reduce the volume of data transmitted to Earth. The approach followed in this effort, oriented toward reducing design time and reducing the size and weight of the spectrometer electronics, has been to exploit the versatility of recently developed hybrid field-programmable gate arrays (FPGAs) to run diverse software on embedded processors while also taking advantage of the reconfigurable hardware resources of the FPGAs.
AFE ion mass spectrometer design study
NASA Technical Reports Server (NTRS)
Wright, Willie
1989-01-01
This final technical report covers the activities engaged in by the University of Texas at Dallas, Center for Space Sciences in conjunction with the NASA Langley Research Center, Systems Engineering Division in design studies directed towards defining a suitable ion mass spectrometer to determine the plasma parameter around the Aeroassisted Flight Experiment vehicle during passage through the earth's upper atmosphere. Additional studies relate to the use of a Langmuir probe to measure windward ion/electron concentrations and temperatures. Selected instrument inlet subsystems were tested in the NASA Ames Arc-Jet Facility.
NASA Astrophysics Data System (ADS)
Zhang, Yin; Chen, Jie; Li, Yadong; Seo, Hyo Jin
2014-11-01
β-Dicalcium silicate (β-Ca2SiO4) doped with Eu3+ was synthesized by sol-gel method. The luminescence intensity of the mineralization products formed during the hydroxyapatite (Ca10(PO4)6(OH)2, HA) conversion of Eu3+-doped β-Ca2SiO4, in 0.25 M K2HPO4 solution, were detected using luminescence spectroscopy. The results indicated that the luminescence intensity of Eu3+ ion gradually depressed with prolonged mineralization time, and it could hardly be detected with the complete transformation from β-Ca2SiO4:Eu3+ to hydroxyapatite. The change of Eu3+ ionic concentrations in the mineralization products and the final solutions after conversion reaction, were further examined using energy-dispersive X-ray and inductively-coupled plasma mass spectrometry, respectively. This suggested that the process of mineralization can be monitored with the luminescence intensity of Eu3+ ions in the mineralization products. The current study will open up a new and simple in vivo avenue for in situ monitoring hydroxyapatite conversion with a fiber luminescence spectrometer.
Performance of the EBIT calorimeter spectrometer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Porter, Frederick Scott; Gygax, John; Kelley, Richard L.
The EBIT calorimeter spectrometer (ECS) is a new high-resolution, broadband x-ray spectrometer that has recently been installed at the Electron Beam Ion Trap Facility (EBIT) at the Lawrence Livermore National Laboratory. The ECS is an entirely new production class spectrometer that replaces the XRS/EBIT spectrometer that has been operating at EBIT since 2000. The ECS utilizes a 32-pixel x-ray calorimeter array from the XRS instrument on the Suzaku x-ray observatory. Eighteen of the pixels are optimized for the 0.1-10 keV band and yield 4.5 eV full width at half maximum energy resolution and 95% quantum efficiency at 6 keV. Inmore » addition, the ECS includes 14 detector pixels that are optimized for the high-energy band with a bandpass from 0.5 to over 100 keV with 34 eV resolution and 32% quantum efficiency at 60 keV. The ECS detector array is operated at 50 mK using a five stage cryogenic system that is entirely automated. The instrument takes data continuously for over 65 h with a 2.5 h recycle time. The ECS is a nondispersive, broadband, highly efficient spectrometer that is one of the prime instruments at the EBIT facility. The instrument is used for studies of absolute cross sections, charge exchange recombination, and x-ray emission from nonequilibrium plasmas, among other measurements in our laboratory astrophysics program.« less
Thermal design and performance of the REgolith x-ray imaging spectrometer (REXIS) instrument
NASA Astrophysics Data System (ADS)
Stout, Kevin D.; Masterson, Rebecca A.
2014-08-01
The REgolith X-ray Imaging Spectrometer (REXIS) instrument is a student collaboration instrument on the OSIRIS-REx asteroid sample return mission scheduled for launch in September 2016. The REXIS science mission is to characterize the elemental abundances of the asteroid Bennu on a global scale and to search for regions of enhanced elemental abundance. The thermal design of the REXIS instrument is challenging due to both the science requirements and the thermal environment in which it will operate. The REXIS instrument consists of two assemblies: the spectrometer and the solar X-ray monitor (SXM). The spectrometer houses a 2x2 array of back illuminated CCDs that are protected from the radiation environment by a one-time deployable cover and a collimator assembly with coded aperture mask. Cooling the CCDs during operation is the driving thermal design challenge on the spectrometer. The CCDs operate in the vicinity of the electronics box, but a 130 °C thermal gradient is required between the two components to cool the CCDs to -60 °C in order to reduce noise and obtain science data. This large thermal gradient is achieved passively through the use of a copper thermal strap, a large radiator facing deep space, and a two-stage thermal isolation layer between the electronics box and the DAM. The SXM is mechanically mounted to the sun-facing side of the spacecraft separately from the spectrometer and characterizes the highly variable solar X-ray spectrum to properly interpret the data from the asteroid. The driving thermal design challenge on the SXM is cooling the silicon drift detector (SDD) to below -30 °C when operating. A two-stage thermoelectric cooler (TEC) is located directly beneath the detector to provide active cooling, and spacecraft MLI blankets cover all of the SXM except the detector aperture to radiatively decouple the SXM from the flight thermal environment. This paper describes the REXIS thermal system requirements, thermal design, and analyses, with a focus on the driving thermal design challenges for the instrument. It is shown through both analysis and early testing that the REXIS instrument can perform successfully through all phases of its mission.
SU‐C‐105‐05: Reference Dosimetry of High‐Energy Electron Beams with a Farmer‐Type Ionization Chamber
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muir, B; Rogers, D
2013-06-15
Purpose: To investigate gradient effects and provide Monte Carlo calculated beam quality conversion factors to characterize the Farmer‐type NE2571 ion chamber for high‐energy reference dosimetry of clinical electron beams. Methods: The EGSnrc code system is used to calculate the absorbed dose to water and to the gas in a fully modeled NE2571 chamber as a function of depth in a water phantom. Electron beams incident on the surface of the phantom are modeled using realistic BEAMnrc accelerator simulations and electron beam spectra. Beam quality conversion factors are determined using calculated doses to water and to air in the chamber inmore » high‐energy electron beams and in a cobalt‐60 reference field. Calculated water‐to‐air stopping power ratios are employed for investigation of the overall ion chamber perturbation factor. Results: An upstream shift of 0.3–0.4 multiplied by the chamber radius, r-cav, both minimizes the variation of the overall ion chamber perturbation factor with depth and reduces the difference between the beam quality specifier (R{sub 5} {sub 0}) calculated using ion chamber simulations and that obtained with simulations of dose‐to‐water in the phantom. Beam quality conversion factors are obtained at the reference depth and gradient effects are optimized using a shift of 0.2r-cav. The photon‐electron conversion factor, k-ecal, amounts to 0.906 when gradient effects are minimized using the shift established here and 0.903 if no shift of the data is used. Systematic uncertainties in beam quality conversion factors are investigated and amount to between 0.4 to 1.1% depending on assumptions used. Conclusion: The calculations obtained in this work characterize the use of an NE2571 ion chamber for reference dosimetry of high‐energy electron beams. These results will be useful as the AAPM continues to review their reference dosimetry protocols.« less
Study of solid-conversion gaseous detector based on GEM for high energy X-ray industrial CT.
Zhou, Rifeng; Zhou, Yaling
2014-01-01
The general gaseous ionization detectors are not suitable for high energy X-ray industrial computed tomography (HEICT) because of their inherent limitations, especially low detective efficiency and large volume. The goal of this study was to investigate a new type of gaseous detector to solve these problems. The novel detector was made by a metal foil as X-ray convertor to improve the conversion efficiency, and the Gas Electron Multiplier (hereinafter "GEM") was used as electron amplifier to lessen its volume. The detective mechanism and signal formation of the detector was discussed in detail. The conversion efficiency was calculated by using EGSnrc Monte Carlo code, and the transport course of photon and secondary electron avalanche in the detector was simulated with the Maxwell and Garfield codes. The result indicated that this detector has higher conversion efficiency as well as less volume. Theoretically this kind of detector could be a perfect candidate for replacing the conventional detector in HEICT.
NASA Astrophysics Data System (ADS)
Ranković, Milos Lj.; Giuliani, Alexandre; Milosavljević, Aleksandar R.
2016-06-01
A new apparatus was designed, coupling an electron gun with a linear quadrupole ion trap mass spectrometer, to perform m/ z (mass over charge) selected ion activation by electron impact for tandem mass spectrometry and action spectroscopy. We present in detail electron tracing simulations of a 300 eV electron beam inside the ion trap, design of the mechanical parts, electron optics and electronic circuits used in the experiment. We also report examples of electron impact activation tandem mass spectra for Ubiquitin protein, Substance P and Melittin peptides, at incident electron energies in the range from 280 eV to 300 eV.
NASA Astrophysics Data System (ADS)
Gladen, R. W.; Chirayath, V. A.; McDonald, A. D.; Fairchild, A. J.; Chrysler, M. D.; Imam, S. K.; Koymen, A. R.; Weiss, A. H.
We describe herein a digital data acquisition system for a time-of-flight Positron annihilation-induced Auger Electron Spectrometer. This data acquisition system consists of a high-speed digitizer collecting signals induced by Auger electrons and annihilation gammas in a multi-channel plate electron detector and a BaF2 gamma detector, respectively. The time intervals between these two signals is used to determine the times of flight of the Auger electrons, which are analyzed by algorithms based on traditional nuclear electronics methods. Ultimately, this digital data acquisition system will be expanded to incorporate the first coincidence measurements of Auger electron and annihilation gamma energies.
Preparation and Degradation of Polysilylenes
1991-05-02
Grignard reagent formation from Mg and alkyl iodides in comparison with less reactive alkyl chlorides 2 3 . Electron transfer to the chlorides occur at...stoichiometric balance of reagents and nearly complete conversions (e.g. DPN-100 at 99% conversion in a homogeneous polycondensation with exact stoichiometric...the magnesium surface, whereas alkyl iodides accept electrons through Ŝ. larger distance and could not efficiently form organomagneslum reagents but
Thermo-electronic solar power conversion with a parabolic concentrator
NASA Astrophysics Data System (ADS)
Olukunle, Olawole C.; De, Dilip K.
2016-02-01
We consider the energy dynamics of the power generation from the sun when the solar energy is concentrated on to the emitter of a thermo-electronic converter with the help of a parabolic mirror. We use the modified Richardson-Dushman equation. The emitter cross section is assumed to be exactly equal to the focused area at a height h from the base of the mirror to prevent loss of efficiency. We report the variation of output power with solar insolation, height h, reflectivity of the mirror, and anode temperature, initially assuming that there is no space charge effect. Our methodology allows us to predict the temperature at which the anode must be cooled in order to prevent loss of efficiency of power conversion. Novel ways of tackling the space charge problem have been discussed. The space charge effect is modeled through the introduction of a parameter f (0 < f < 1) in the thermos-electron emission equation. We find that the efficiency of the power conversion depends on solar insolation, height h, apart from radii R of the concentrator aperture and emitter, and the collector material properties. We have also considered solar thermos electronic power conversion by using single atom-layer graphene as an emitter.
Dissociative attachment of electrons with Si2H6
NASA Technical Reports Server (NTRS)
Krishnakumar, E.; Srivastava, S. K.; Iga, I.
1991-01-01
Cross-sections for the production of negative ion fragments by electron attachment to Si2H6 and ion pair formation from it have been measured by utilizing the crossed electron beam-molecular beam collision technique. The negative ions are mass-analyzed by employing a quadrupole mass spectrometer. There are serious disagreements between the present and two previously published results. In the present paper cross-section values, appearance potentials, and the various channels of dissociation for the formation of negative monosilane fragments are presented.
Photon enhanced thermionic emission
Schwede, Jared; Melosh, Nicholas; Shen, Zhixun
2014-10-07
Photon Enhanced Thermionic Emission (PETE) is exploited to provide improved efficiency for radiant energy conversion. A hot (greater than 200.degree. C.) semiconductor cathode is illuminated such that it emits electrons. Because the cathode is hot, significantly more electrons are emitted than would be emitted from a room temperature (or colder) cathode under the same illumination conditions. As a result of this increased electron emission, the energy conversion efficiency can be significantly increased relative to a conventional photovoltaic device. In PETE, the cathode electrons can be (and typically are) thermalized with respect to the cathode. As a result, PETE does not rely on emission of non-thermalized electrons, and is significantly easier to implement than hot-carrier emission approaches.
Spin-charge conversion in disordered two-dimensional electron gases lacking inversion symmetry
NASA Astrophysics Data System (ADS)
Huang, Chunli; Milletarı, Mirco; Cazalilla, Miguel A.
2017-11-01
We study the spin-charge conversion mechanisms in a two-dimensional gas of electrons moving in a smooth disorder potential by accounting for both Rashba-type and Mott's skew scattering contributions. We find that the quantum interference effects between spin-flip and skew scattering give rise to anisotropic spin precession scattering (ASP), a direct spin-charge conversion mechanism that was discovered in an earlier study of graphene decorated with adatoms [Huang et al., Phys. Rev. B 94, 085414 (2016), 10.1103/PhysRevB.94.085414]. Our findings suggest that, together with other spin-charge conversion mechanisms such as the inverse galvanic effect, ASP is a fairly universal phenomenon that should be present in disordered two-dimensional systems lacking inversion symmetry.
Fast-Response Fiber-Optic Anemometer with Temperature Self-Compensation
2015-05-18
be considered to be a function of time only. With a heating source within the sensor, the model for LSA is expressed as [13], ( ) ( ),s w s s shA ... shA C Vρ , in the exponent of the transient term in RHS of Eq. (7) characterizes the response time of the anemometer. Conversion of the temperature...circulator, and the reflected signal night was acquired by a high-speed spectrometer (Ibsen Photonics, I-MON 256 USB) which was connected to a computer