Sample records for conversion fundamental model

  1. High-efficiency frequency doubling of continuous-wave laser light.

    PubMed

    Ast, Stefan; Nia, Ramon Moghadas; Schönbeck, Axel; Lastzka, Nico; Steinlechner, Jessica; Eberle, Tobias; Mehmet, Moritz; Steinlechner, Sebastian; Schnabel, Roman

    2011-09-01

    We report on the observation of high-efficiency frequency doubling of 1550 nm continuous-wave laser light in a nonlinear cavity containing a periodically poled potassium titanyl phosphate crystal (PPKTP). The fundamental field had a power of 1.10 W and was converted into 1.05 W at 775 nm, yielding a total external conversion efficiency of 95±1%. The latter value is based on the measured depletion of the fundamental field being consistent with the absolute values derived from numerical simulations. According to our model, the conversion efficiency achieved was limited by the nonperfect mode matching into the nonlinear cavity and by the nonperfect impedance matching for the maximum input power available. Our result shows that cavity-assisted frequency conversion based on PPKTP is well suited for low-decoherence frequency conversion of quantum states of light.

  2. Electron Transport Modeling of Molecular Nanoscale Bridges Used in Energy Conversion Schemes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dunietz, Barry D

    2016-08-09

    The goal of the research program is to reliably describe electron transport and transfer processes at the molecular level. Such insight is essential for improving molecular applications of solar and thermal energy conversion. We develop electronic structure models to study (1) photoinduced electron transfer and transport processes in organic semiconducting materials, and (2) charge and heat transport through molecular bridges. We seek fundamental understanding of key processes, which lead to design new experiments and ultimately to achieve systems with improved properties.

  3. Semiconducting Single-Walled Carbon Nanotubes in Solar Energy Harvesting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blackburn, Jeffrey L.

    Semiconducting single-walled carbon nanotubes (s-SWCNTs) represent a tunable model one-dimensional system with exceptional optical and electronic properties. High-throughput separation and purification strategies have enabled the integration of s-SWCNTs into a number of optoelectronic applications, including photovoltaics (PVs). In this Perspective, we discuss the fundamental underpinnings of two model PV interfaces involving s-SWCNTs. We first discuss s-SWCNT-fullerene heterojunctions where exciton dissociation at the donor-acceptor interface drives solar energy conversion. Next, we discuss charge extraction at the interface between s-SWCNTs and a photoexcited perovskite active layer. In each case, the use of highly enriched semiconducting SWCNT samples enables fundamental insights into themore » thermodynamic and kinetic mechanisms that drive the efficient conversion of solar photons into long-lived separated charges. As a result, these model systems help to establish design rules for next-generation PV devices containing well-defined organic semiconductor layers and help to frame a number of important outstanding questions that can guide future studies.« less

  4. Semiconducting Single-Walled Carbon Nanotubes in Solar Energy Harvesting

    DOE PAGES

    Blackburn, Jeffrey L.

    2017-06-14

    Semiconducting single-walled carbon nanotubes (s-SWCNTs) represent a tunable model one-dimensional system with exceptional optical and electronic properties. High-throughput separation and purification strategies have enabled the integration of s-SWCNTs into a number of optoelectronic applications, including photovoltaics (PVs). In this Perspective, we discuss the fundamental underpinnings of two model PV interfaces involving s-SWCNTs. We first discuss s-SWCNT-fullerene heterojunctions where exciton dissociation at the donor-acceptor interface drives solar energy conversion. Next, we discuss charge extraction at the interface between s-SWCNTs and a photoexcited perovskite active layer. In each case, the use of highly enriched semiconducting SWCNT samples enables fundamental insights into themore » thermodynamic and kinetic mechanisms that drive the efficient conversion of solar photons into long-lived separated charges. As a result, these model systems help to establish design rules for next-generation PV devices containing well-defined organic semiconductor layers and help to frame a number of important outstanding questions that can guide future studies.« less

  5. Fundamental-mode MMF transmission enabled by mode conversion

    NASA Astrophysics Data System (ADS)

    Wu, Zhongying; Li, Juhao; Tian, Yu; Ge, Dawei; Zhu, Jinglong; Ren, Fang; Mo, Qi; Yu, Jinyi; Li, Zhengbin; Chen, Zhangyuan; He, Yongqi

    2018-03-01

    Modal dispersion in conventional multi-mode fiber (MMF) will cause serious signal degradation and an effective solution is to restrict the signal transmission in the fundamental mode of MMF. In this paper, unlike previous methods by filtering out higher-order modes, we propose to adopt low-modal-crosstalk mode converters to realize fundamental-mode MMF transmission. We design and fabricate all-fiber mode-selective couplers (MSC), which perform mode conversion between the fundamental mode in single-mode fiber (SMF) and fundamental mode in MMF. The proposed scheme is experimentally compared with center launching method under different MMF links and then its wavelength division multiplexing (WDM) transmission performance is investigated. Experimental results indicate that the proposed mode conversion scheme could achieve better transmission performance and works well for the whole C-band.

  6. Construction of a Model Solar Building. A Learning Experience for Coastal and Oceanic Awareness Studies, No. 318. [Project COAST].

    ERIC Educational Resources Information Center

    Delaware Univ., Newark. Coll. of Education.

    This activity is designed for secondary school students. The process of constructing a model solar building includes consideration of many fundamental scientific principles, such as the nature of heat, light, electricity, and energy conversion technology. When the model solar building is completed, there are numerous possibilities for the use of…

  7. Dynamical modeling and experiment for an intra-cavity optical parametric oscillator pumped by a Q-switched self-mode-locking laser

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Liu, Nianqiao; Song, Peng; Zhang, Haikun

    2016-11-01

    The rate-equation-based model for the Q-switched mode-locking (QML) intra-cavity OPO (IOPO) is developed, which includes the behavior of the fundamental laser. The intensity fluctuation mechanism of the fundamental laser is first introduced into the dynamics of a mode-locking OPO. In the derived model, the OPO nonlinear conversion is considered as a loss for the fundamental laser and thus the QML signal profile originates from the QML fundamental laser. The rate equations are solved by a digital computer for the case of an IOPO pumped by an electro-optic (EO) Q-switched self-mode-locking fundamental laser. The simulated results for the temporal shape with 20 kHz EO repetition and 11.25 W pump power, the signal average power, the Q-switched pulsewidth and the Q-switched pulse energy are obtained from the rate equations. The signal trace and output power from an EO QML Nd3+: GdVO4/KTA IOPO are experimentally measured. The theoretical values from the rate equations agree with the experimental results well. The developed model explains the behavior, which is helpful to system optimization.

  8. The Volume Field Model about Strong Interaction and Weak Interaction

    NASA Astrophysics Data System (ADS)

    Liu, Rongwu

    2016-03-01

    For a long time researchers have believed that strong interaction and weak interaction are realized by exchanging intermediate particles. This article proposes a new mechanism as follows: Volume field is a form of material existence in plane space, it takes volume-changing motion in the form of non-continuous motion, volume fields have strong interaction or weak interaction between them by overlapping their volume fields. Based on these concepts, this article further proposes a ``bag model'' of volume field for atomic nucleus, which includes three sub-models of the complex structure of fundamental body (such as quark), the atom-like structure of hadron, and the molecule-like structure of atomic nucleus. This article also proposes a plane space model and formulates a physics model of volume field in the plane space, as well as a model of space-time conversion. The model of space-time conversion suggests that: Point space-time and plane space-time convert each other by means of merging and rupture respectively, the essence of space-time conversion is the mutual transformations of matter and energy respectively; the process of collision of high energy hadrons, the formation of black hole, and the Big Bang of universe are three kinds of space-time conversions.

  9. Frequency doubling in poled polymers using anomalous dispersion phase-matching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kowalczyk, T.C.; Singer, K.D.; Cahill, P.A.

    1995-10-01

    The authors report on a second harmonic generation in a poled polymer waveguide using anomalous dispersion phase-matching. Blue light ({lambda} = 407 nm) was produced by phase-matching the lowest order fundamental and harmonic modes over a distance of 32 {micro}m. The experimental conversion efficiency was {eta} = 1.2 {times} 10{sup {minus}4}, in agreement with theory. Additionally, they discuss a method of enhancing the conversion efficiency for second harmonic generation using anomalous dispersion phase-matching to optimize Cerenkov second harmonic generation. The modeling shows that a combination of phase-matching techniques creates larger conversion efficiencies and reduces critical fabrication requirements of the individualmore » phase-matching techniques.« less

  10. Thermodynamics fundamentals of energy conversion

    NASA Astrophysics Data System (ADS)

    Dan, Nicolae

    The work reported in the chapters 1-5 focuses on the fundamentals of heat transfer, fluid dynamics, thermodynamics and electrical phenomena related to the conversion of one form of energy to another. Chapter 6 is a re-examination of the fundamental heat transfer problem of how to connect a finite-size heat generating volume to a concentrated sink. Chapter 1 extends to electrical machines the combined thermodynamics and heat transfer optimization approach that has been developed for heat engines. The conversion efficiency at maximum power is 1/2. When, as in specific applications, the operating temperature of windings must not exceed a specified level, the power output is lower and efficiency higher. Chapter 2 addresses the fundamental problem of determining the optimal history (regime of operation) of a battery so that the work output is maximum. Chapters 3 and 4 report the energy conversion aspects of an expanding mixture of hot particles, steam and liquid water. At the elemental level, steam annuli develop around the spherical drops as time increases. At the mixture level, the density decreases while the pressure and velocity increases. Chapter 4 describes numerically, based on the finite element method, the time evolution of the expanding mixture of hot spherical particles, steam and water. The fluid particles are moved in time in a Lagrangian manner to simulate the change of the domain configuration. Chapter 5 describes the process of thermal interaction between the molten material and water. In the second part of the chapter the model accounts for the irreversibility due to the flow of the mixture through the cracks of the mixing vessel. The approach presented in this chapter is based on exergy analysis and represents a departure from the line of inquiry that was followed in chapters 3-4. Chapter 6 shows that the geometry of the heat flow path between a volume and one point can be optimized in two fundamentally different ways. In the "growth" method the structure is optimized starting from the smallest volume element of fixed size. In "design" method the overall volume is fixed, and the designer works "inward" by increasing the internal complexity of the paths for heat flow.

  11. CFD studies on biomass thermochemical conversion.

    PubMed

    Wang, Yiqun; Yan, Lifeng

    2008-06-01

    Thermochemical conversion of biomass offers an efficient and economically process to provide gaseous, liquid and solid fuels and prepare chemicals derived from biomass. Computational fluid dynamic (CFD) modeling applications on biomass thermochemical processes help to optimize the design and operation of thermochemical reactors. Recent progression in numerical techniques and computing efficacy has advanced CFD as a widely used approach to provide efficient design solutions in industry. This paper introduces the fundamentals involved in developing a CFD solution. Mathematical equations governing the fluid flow, heat and mass transfer and chemical reactions in thermochemical systems are described and sub-models for individual processes are presented. It provides a review of various applications of CFD in the biomass thermochemical process field.

  12. CFD Studies on Biomass Thermochemical Conversion

    PubMed Central

    Wang, Yiqun; Yan, Lifeng

    2008-01-01

    Thermochemical conversion of biomass offers an efficient and economically process to provide gaseous, liquid and solid fuels and prepare chemicals derived from biomass. Computational fluid dynamic (CFD) modeling applications on biomass thermochemical processes help to optimize the design and operation of thermochemical reactors. Recent progression in numerical techniques and computing efficacy has advanced CFD as a widely used approach to provide efficient design solutions in industry. This paper introduces the fundamentals involved in developing a CFD solution. Mathematical equations governing the fluid flow, heat and mass transfer and chemical reactions in thermochemical systems are described and sub-models for individual processes are presented. It provides a review of various applications of CFD in the biomass thermochemical process field. PMID:19325848

  13. Similarity Theory of Withdrawn Water Temperature Experiment

    PubMed Central

    2015-01-01

    Selective withdrawal from a thermal stratified reservoir has been widely utilized in managing reservoir water withdrawal. Besides theoretical analysis and numerical simulation, model test was also necessary in studying the temperature of withdrawn water. However, information on the similarity theory of the withdrawn water temperature model remains lacking. Considering flow features of selective withdrawal, the similarity theory of the withdrawn water temperature model was analyzed theoretically based on the modification of governing equations, the Boussinesq approximation, and some simplifications. The similarity conditions between the model and the prototype were suggested. The conversion of withdrawn water temperature between the model and the prototype was proposed. Meanwhile, the fundamental theory of temperature distribution conversion was firstly proposed, which could significantly improve the experiment efficiency when the basic temperature of the model was different from the prototype. Based on the similarity theory, an experiment was performed on the withdrawn water temperature which was verified by numerical method. PMID:26065020

  14. Operation ARIES!: Methods, Mystery, and Mixed Models: Discourse Features Predict Affect in a Serious Game

    ERIC Educational Resources Information Center

    Forsyth, Carol M.; Graesser, Arthur C.; Pavlik, Philip, Jr.; Cai, Zhiqiang; Butler, Heather; Halpern, Diane; Millis, Keith

    2013-01-01

    Operation ARIES! is an Intelligent Tutoring System that is designed to teach scientific methodology in a game-like atmosphere. A fundamental goal of this serious game is to engage students during learning through natural language tutorial conversations. A tight integration of cognition, discourse, motivation, and affect is desired to meet this…

  15. Parametric second Stokes Raman laser output pulse shortening to 300 ps due to depletion of pumping of intracavity Raman conversion

    NASA Astrophysics Data System (ADS)

    Smetanin, S. N.; Jelínek, M.; Kubeček, V.; Jelínková, H.; Ivleva, L. I.

    2016-10-01

    A new effect of the pulse shortening of the parametrically generated radiation down to hundreds of picosecond via depletion of pumping of intracavity Raman conversion in the miniature passively Q-switched Nd: SrMoO4 parametric self-Raman laser with the increasing energy of the shortened pulse under pulsed pumping by a high-power laser diode bar is demonstrated. The theoretical estimation of the depletion stage duration of the convertible fundamental laser radiation via intracavity Raman conversion is in agreement with the experimentally demonstrated duration of the parametrically generated pulse. Using the mathematical modeling of the pulse shortening quality and quantity deterioration is disclosed, and the solution ways are found by the optimization of the laser parameters.

  16. Development of a decision model for the techno-economic assessment of municipal solid waste utilization pathways.

    PubMed

    Khan, Md Mohib-Ul-Haque; Jain, Siddharth; Vaezi, Mahdi; Kumar, Amit

    2016-02-01

    Economic competitiveness is one of the key factors in making decisions towards the development of waste conversion facilities and devising a sustainable waste management strategy. The goal of this study is to develop a framework, as well as to develop and demonstrate a comprehensive techno-economic model to help county and municipal decision makers in establishing waste conversion facilities. The user-friendly data-intensive model, called the FUNdamental ENgineering PrinciplEs-based ModeL for Estimation of Cost of Energy and Fuels from MSW (FUNNEL-Cost-MSW), compares nine different waste management scenarios, including landfilling and composting, in terms of economic parameters such as gate fees and return on investment. In addition, a geographic information system (GIS) model was developed to determine suitable locations for waste conversion facilities and landfill sites based on integration of environmental, social, and economic factors. Finally, a case study on Parkland County and its surrounding counties in the province of Alberta, Canada, was conducted and a sensitivity analysis was performed to assess the influence of the key technical and economic parameters on the calculated results. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. 47 CFR 36.2 - Fundamental principles underlying procedures.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Fundamental principles underlying procedures... Fundamental principles underlying procedures. (a) The following general principles underlie the procedures... operating forces on a unit basis (e.g., conversation-minute-kilometers per message, weighted standard work...

  18. Realized niche shift during a global biological invasion

    PubMed Central

    Tingley, Reid; Vallinoto, Marcelo; Sequeira, Fernando; Kearney, Michael R.

    2014-01-01

    Accurate forecasts of biological invasions are crucial for managing invasion risk but are hampered by niche shifts resulting from evolved environmental tolerances (fundamental niche shifts) or the presence of novel biotic and abiotic conditions in the invaded range (realized niche shifts). Distinguishing between these kinds of niche shifts is impossible with traditional, correlative approaches to invasion forecasts, which exclusively consider the realized niche. Here we overcome this challenge by combining a physiologically mechanistic model of the fundamental niche with correlative models based on the realized niche to study the global invasion of the cane toad Rhinella marina. We find strong evidence that the success of R. marina in Australia reflects a shift in the species’ realized niche, as opposed to evolutionary shifts in range-limiting traits. Our results demonstrate that R. marina does not fill its fundamental niche in its native South American range and that areas of niche unfilling coincide with the presence of a closely related species with which R. marina hybridizes. Conversely, in Australia, where coevolved taxa are absent, R. marina largely fills its fundamental niche in areas behind the invasion front. The general approach taken here of contrasting fundamental and realized niche models provides key insights into the role of biotic interactions in shaping range limits and can inform effective management strategies not only for invasive species but also for assisted colonization under climate change. PMID:24982155

  19. VizieR Online Data Catalog: Flux conversion factors for the Swift/UVOT filters (Brown+, 2016)

    NASA Astrophysics Data System (ADS)

    Brown, P. J.; Breeveld, A.; Roming, P. W. A.; Siegel, M.

    2016-10-01

    The conversion of observed magnitudes (or the actual observed photon or electron count rates) to a flux density is one of the most fundamental calculations. The flux conversions factors for the six Swift/UVOT filters are tabulated in Table1. (1 data file).

  20. Electrifying model catalysts for understanding electrocatalytic reactions in liquid electrolytes.

    PubMed

    Faisal, Firas; Stumm, Corinna; Bertram, Manon; Waidhas, Fabian; Lykhach, Yaroslava; Cherevko, Serhiy; Xiang, Feifei; Ammon, Maximilian; Vorokhta, Mykhailo; Šmíd, Břetislav; Skála, Tomáš; Tsud, Nataliya; Neitzel, Armin; Beranová, Klára; Prince, Kevin C; Geiger, Simon; Kasian, Olga; Wähler, Tobias; Schuster, Ralf; Schneider, M Alexander; Matolín, Vladimír; Mayrhofer, Karl J J; Brummel, Olaf; Libuda, Jörg

    2018-07-01

    Electrocatalysis is at the heart of our future transition to a renewable energy system. Most energy storage and conversion technologies for renewables rely on electrocatalytic processes and, with increasing availability of cheap electrical energy from renewables, chemical production will witness electrification in the near future 1-3 . However, our fundamental understanding of electrocatalysis lags behind the field of classical heterogeneous catalysis that has been the dominating chemical technology for a long time. Here, we describe a new strategy to advance fundamental studies on electrocatalytic materials. We propose to 'electrify' complex oxide-based model catalysts made by surface science methods to explore electrocatalytic reactions in liquid electrolytes. We demonstrate the feasibility of this concept by transferring an atomically defined platinum/cobalt oxide model catalyst into the electrochemical environment while preserving its atomic surface structure. Using this approach, we explore particle size effects and identify hitherto unknown metal-support interactions that stabilize oxidized platinum at the nanoparticle interface. The metal-support interactions open a new synergistic reaction pathway that involves both metallic and oxidized platinum. Our results illustrate the potential of the concept, which makes available a systematic approach to build atomically defined model electrodes for fundamental electrocatalytic studies.

  1. Feedstock Supply System Design and Economics for Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels Conversion Pathway: Fast Pyrolysis and Hydrotreating Bio-Oil Pathway "The 2017 Design Case"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kevin L. Kenney; Kara G. Cafferty; Jacob J. Jacobson

    The U.S. Department of Energy promotes the production of liquid fuels from lignocellulosic biomass feedstocks by funding fundamental and applied research that advances the state of technology in biomass sustainable supply, logistics, conversion, and overall system sustainability. As part of its involvement in this program, Idaho National Laboratory (INL) investigates the feedstock logistics economics and sustainability of these fuels. Between 2000 and 2012, INL quantified and the economics and sustainability of moving biomass from the field or stand to the throat of the conversion process using conventional equipment and processes. All previous work to 2012 was designed to improve themore » efficiency and decrease costs under conventional supply systems. The 2012 programmatic target was to demonstrate a biomass logistics cost of $55/dry Ton for woody biomass delivered to fast pyrolysis conversion facility. The goal was achieved by applying field and process demonstration unit-scale data from harvest, collection, storage, preprocessing, handling, and transportation operations into INL’s biomass logistics model.« less

  2. Tuning quadratic nonlinear photonic crystal fibers for zero group-velocity mismatch.

    PubMed

    Bache, Morten; Nielsen, Hanne; Laegsgaard, Jesper; Bang, Ole

    2006-06-01

    We consider an index-guiding silica photonic crystal fiber with a triangular hole pattern and a periodically poled quadratic nonlinearity. By tuning the pitch and the relative hole size, second-harmonic generation with zero group-velocity mismatch is found for any fundamental wavelength above 780 nm. The nonlinear strength is optimized when the fundamental has maximum confinement in the core. The conversion bandwidth allows for femtosecond-pulse conversion, and 4%-180%W(-1)cm(-2) relative efficiencies were found.

  3. (Bio)Chemical Tailoring of Biogenic 3-D Nanopatterned Templates with Energy-Relevant Functionalities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandhage, Kenneth H; Kroger, Nils

    2014-09-08

    The overall aim of this research has been to obtain fundamental understanding of (bio)chemical methodologies that will enable utilization of the unique 3-D nanopatterned architectures naturally produced by diatoms for the syntheses of advanced functional materials attractive for applications in energy harvesting/conversion and storage. This research has been conducted in three thrusts: Thrust 1 (In vivo immobilization of proteins in diatom biosilica) is directed towards elucidating the fundamental mechanism(s) underlying the cellular processes of in vivo immobilization of proteins in diatom silica. Thrust 2 (Shape-preserving reactive conversion of diatom biosilica into porous, high-surface area inorganic replicas) is aimed at understandingmore » the fundamental mechanisms of shape preservation and nanostructural evolution associated with the reactive conversion and/or coating-based conversion of diatom biosilica templates into porous inorganic replicas. Thrust 3 (Immobilization of energy-relevant enzymes in diatom biosilica and onto diatom biosilica-derived inorganic replicas) involves use of the results from both Thrust 1 and 2 to develop strategies for in vivo and in vitro immobilization of enzymes in/on diatom biosilica and diatom biosilica-derived inorganic replicas, respectively. This Final Report describes progress achieved in all 3 of these thrusts.« less

  4. Atomistic Conversion Reaction Mechanism of WO 3 in Secondary Ion Batteries of Li, Na, and Ca

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Yang; Gu, Meng; Xiao, Haiyan

    2016-04-13

    Reversible insertion and extraction of ionic species into a host lattice governs the basic operating principle for both rechargeable battery (such as lithium batteries) and electrochromic devices (such as ANA Boeing 787-8 Dreamliner electrochromic window). Intercalation and/or conversion are two fundamental chemical processes for some materials in response to the ion insertion. The interplay between these two chemical processes has never been established. It is speculated that the conversion reaction is initiated by ion intercalation. However, experimental evidence of intercalation and subsequent conversion remains unexplored. Here, using in situ HRTEM and spectroscopy, we captured the atomistic conversion reaction processes duringmore » lithium, sodium and calcium ion insertion into tungsten trioxide (WO3) single crystal model electrodes. An intercalation step right prior to conversion is explicitly revealed at atomic scale for the first time for these three ion species. Combining nanoscale diffraction and ab initio molecular dynamics simulations, it is found that, beyond intercalation, the inserted ion-oxygen bonding formation destabilized the transition-metal framework which gradually shrunk, distorted and finally collapsed to a pseudo-amorphous structure. This study provides a full atomistic picture on the transition from intercalation to conversion, which is of essential for material applications in both secondary ion batteries and electrochromic devices.« less

  5. Academy Conversion: A View from the Governing Body

    ERIC Educational Resources Information Center

    Gann, Nigel

    2011-01-01

    The case for conversion to academy status is being made in a number of arenas, not least on the Department for Education website. As a matter of balance, school governors considering conversion need to take into account a range of factors. How does this fundamental shift in the ownership of schools fit into a discernible historical pattern?…

  6. Resonance coupling and polarization conversion in terahertz metasurfaces with twisted split-ring resonator pairs

    DOE PAGES

    Li, Chenyu; Chang, Chun-Chieh; Zhou, Qingli; ...

    2017-10-10

    Here, we investigate edge-coupling of twisted split-ring resonator (SRR) pairs in the terahertz (THz) frequency range. By using a simple coupled-resonator model we show that such a system exhibits resonance splitting and cross-polarization conversion. Numerical simulations and experimental measurements agree well with theoretical calculations, verifying the resonance splitting as a function of the coupling strength given by the SRR separation. We further show that a metal ground plane can be integrated to significantly enhance the resonance coupling, which enables the effective control of resonance splitting and the efficiency and bandwidth of the cross-polarization conversion. Our findings improve the fundamental understandingmore » of metamaterials with a view of accomplishing metamaterial functionalities with enhanced performance, which is of great interest in realizing THz functional devices required in a variety of applications.« less

  7. Solar thermal conversion

    NASA Technical Reports Server (NTRS)

    Selcuk, M. K.

    1978-01-01

    A brief review of the fundamentals of the conversion of solar energy into mechanical work (or electricity via generators) is given. Both past and present work on several conversion concepts are discussed. Solar collectors, storage systems, energy transport, and various types of engines are examined. Ongoing work on novel concepts of collectors, energy storage and thermal energy conversion are outlined and projections for the future are described. Energy costs for various options are predicted and margins and limitations are discussed.

  8. Identifying Hydrogeological Controls of Catchment Low-Flow Dynamics Using Physically Based Modelling

    NASA Astrophysics Data System (ADS)

    Cochand, F.; Carlier, C.; Staudinger, M.; Seibert, J.; Hunkeler, D.; Brunner, P.

    2017-12-01

    Identifying key catchment characteristics and processes which control the hydrological response under low-flow conditions is important to assess the catchments' vulnerability to dry periods. In the context of a Swiss Federal Office for the Environment (FOEN) project, the low-flow behaviours of two mountainous catchments were investigated. These neighboring catchments are characterized by the same meteorological conditions, but feature completely different river flow dynamics. The Roethenbach is characterized by high peak flows and low mean flows. Conversely, the Langete is characterized by relatively low peak flows and high mean flow rates. To understand the fundamentally different behaviour of the two catchments, a physically-based surface-subsurface flow HydroGeoSphere (HGS) model for each catchment was developed. The main advantage of a physically-based model is its ability to realistically reproduce processes which play a key role during low-flow periods such as surface-subsurface interactions or evapotranspiration. Both models were calibrated to reproduce measured groundwater heads and the surface flow dynamics. Subsequently, the calibrated models were used to explore the fundamental physics that control hydrological processes during low-flow periods. To achieve this, a comparative sensitivity analysis of model parameters of both catchments was carried out. Results show that the hydraulic conductivity of the bedrock (and weathered bedrock) controls the catchment water dynamics in both models. Conversely, the properties of other geological formations such as alluvial aquifer or soil layer hydraulic conductivity or porosity play a less important role. These results change significantly our perception of the streamflow catchment dynamics and more specifically the way to assess catchment vulnerability to dry period. This study suggests that by analysing catchment scale bedrock properties, the catchment dynamics and the vulnerability to dry period may be assessed.

  9. Mechanics of torque generation in the bacterial flagellar motor

    PubMed Central

    Mandadapu, Kranthi K.; Nirody, Jasmine A.; Berry, Richard M.; Oster, George

    2015-01-01

    The bacterial flagellar motor (BFM) is responsible for driving bacterial locomotion and chemotaxis, fundamental processes in pathogenesis and biofilm formation. In the BFM, torque is generated at the interface between transmembrane proteins (stators) and a rotor. It is well established that the passage of ions down a transmembrane gradient through the stator complex provides the energy for torque generation. However, the physics involved in this energy conversion remain poorly understood. Here we propose a mechanically specific model for torque generation in the BFM. In particular, we identify roles for two fundamental forces involved in torque generation: electrostatic and steric. We propose that electrostatic forces serve to position the stator, whereas steric forces comprise the actual “power stroke.” Specifically, we propose that ion-induced conformational changes about a proline “hinge” residue in a stator α-helix are directly responsible for generating the power stroke. Our model predictions fit well with recent experiments on a single-stator motor. The proposed model provides a mechanical explanation for several fundamental properties of the flagellar motor, including torque–speed and speed–ion motive force relationships, backstepping, variation in step sizes, and the effects of key mutations in the stator. PMID:26216959

  10. Mechanics of torque generation in the bacterial flagellar motor.

    PubMed

    Mandadapu, Kranthi K; Nirody, Jasmine A; Berry, Richard M; Oster, George

    2015-08-11

    The bacterial flagellar motor (BFM) is responsible for driving bacterial locomotion and chemotaxis, fundamental processes in pathogenesis and biofilm formation. In the BFM, torque is generated at the interface between transmembrane proteins (stators) and a rotor. It is well established that the passage of ions down a transmembrane gradient through the stator complex provides the energy for torque generation. However, the physics involved in this energy conversion remain poorly understood. Here we propose a mechanically specific model for torque generation in the BFM. In particular, we identify roles for two fundamental forces involved in torque generation: electrostatic and steric. We propose that electrostatic forces serve to position the stator, whereas steric forces comprise the actual "power stroke." Specifically, we propose that ion-induced conformational changes about a proline "hinge" residue in a stator α-helix are directly responsible for generating the power stroke. Our model predictions fit well with recent experiments on a single-stator motor. The proposed model provides a mechanical explanation for several fundamental properties of the flagellar motor, including torque-speed and speed-ion motive force relationships, backstepping, variation in step sizes, and the effects of key mutations in the stator.

  11. Recent Developments on the Production of Transportation Fuels via Catalytic Conversion of Microalgae: Experiments and Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Fan; Wang, Ping; Duan, Yuhua

    2012-08-02

    Due to continuing high demand, depletion of non-renewable resources and increasing concerns about climate change, the use of fossil fuel-derived transportation fuels faces relentless challenges both from a world markets and an environmental perspective. The production of renewable transportation fuel from microalgae continues to attract much attention because of its potential for fast growth rates, high oil content, ability to grow in unconventional scenarios, and inherent carbon neutrality. Moreover, the use of microalgae would minimize “food versus fuel” concerns associated with several biomass strategies, as microalgae do not compete with food crops in the food chain. This paper reviews themore » progress of recent research on the production of transportation fuels via homogeneous and heterogeneous catalytic conversions of microalgae. This review also describes the development of tools that may allow for a more fundamental understanding of catalyst selection and conversion processes using computational modelling. The catalytic conversion reaction pathways that have been investigated are fully discussed based on both experimental and theoretical approaches. Finally, this work makes several projections for the potential of various thermocatalytic pathways to produce alternative transportation fuels from algae, and identifies key areas where the authors feel that computational modelling should be directed to elucidate key information to optimize the process.« less

  12. Coherence-limited solar power conversion: the fundamental thermodynamic bounds and the consequences for solar rectennas

    NASA Astrophysics Data System (ADS)

    Mashaal, Heylal; Gordon, Jeffrey M.

    2014-10-01

    Solar rectifying antennas constitute a distinct solar power conversion paradigm where sunlight's spatial coherence is a basic constraining factor. In this presentation, we derive the fundamental thermodynamic limit for coherence-limited blackbody (principally solar) power conversion. Our results represent a natural extension of the eponymous Landsberg limit, originally derived for converters that are not constrained by the radiation's coherence, and are irradiated at maximum concentration (i.e., with a view factor of unity to the solar disk). We proceed by first expanding Landsberg's results to arbitrary solar view factor (i.e., arbitrary concentration and/or angular confinement), and then demonstrate how the results are modified when the converter can only process coherent radiation. The results are independent of the specific power conversion mechanism, and hence are valid for diffraction-limited as well as quantum converters (and not just classical heat engines or in the geometric optics regime). The derived upper bounds bode favorably for the potential of rectifying antennas as potentially high-efficiency solar converters.

  13. The Particle Adventure | What is fundamental? | Fundamental

    Science.gov Websites

    Quiz - What particles are made of The four interactions How does matter interact? The unseen effect structure Rutherford's result Rutherford's analysis How physicists experiment Deflected probe Detecting the Energy-mass conversion Accelerators How to obtain particles to accelerate Accelerating particles

  14. High efficiency and output power from second- and third-harmonic millimeter-wave InP-TED oscillators at frequencies above 170 GHz

    NASA Astrophysics Data System (ADS)

    Rydberg, Anders

    1990-10-01

    InP TED (transferred electron device) oscillators have been experimentally investigated for frequencies between 170 and 279 GHz. It has been found that output powers of more than 7 and 0.2 mW are possible at 180 and 272 GHz using second- and third-harmonic mode operation, respectively. Conversion efficiencies of more than 13 percent and 0.3 percent between fundamental and second harmonic and fundamental and third harmonic, respectively, have been found. The conversion efficiencies are comparable to GaAs TEDs. The output powers, conversion efficiencies, and tuning ranges (more than 22 percent) are the largest reported for InP TEDs at these frequencies. The output power at third harmonic was sufficient for supplying a superconducting mixer with local oscillator power.

  15. Electron-Ion Dynamics with Time-Dependent Density Functional Theory: Towards Predictive Solar Cell Modeling: Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maitra, Neepa

    2016-07-14

    This project investigates the accuracy of currently-used functionals in time-dependent density functional theory, which is today routinely used to predict and design materials and computationally model processes in solar energy conversion. The rigorously-based electron-ion dynamics method developed here sheds light on traditional methods and overcomes challenges those methods have. The fundamental research undertaken here is important for building reliable and practical methods for materials discovery. The ultimate goal is to use these tools for the computational design of new materials for solar cell devices of high efficiency.

  16. 75 FR 15573 - Fiduciary Duties at Federal Credit Unions; Mergers and Conversions of Insured Credit Unions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-29

    ... these commenters expressed concern that the fundamental changes brought about by the conversion and... disclosure to the members of information on any material increases in management compensation connected with... the cited provisions function, however, connects them to the [credit union's board of] directors...

  17. Automatic Intention Recognition in Conversation Processing

    ERIC Educational Resources Information Center

    Holtgraves, Thomas

    2008-01-01

    A fundamental assumption of many theories of conversation is that comprehension of a speaker's utterance involves recognition of the speaker's intention in producing that remark. However, the nature of intention recognition is not clear. One approach is to conceptualize a speaker's intention in terms of speech acts [Searle, J. (1969). "Speech…

  18. Recent progress in solution plasma-synthesized-carbon-supported catalysts for energy conversion systems

    NASA Astrophysics Data System (ADS)

    Lun Li, Oi; Lee, Hoonseung; Ishizaki, Takahiro

    2018-01-01

    Carbon-based materials have been widely utilized as the electrode materials in energy conversion and storage technologies, such as fuel cells and metal-air batteries. In these systems, the oxygen reduction reaction is an important step that determines the overall performance. A novel synthesis route, named the solution plasma process, has been recently utilized to synthesize various types of metal-based and heteroatom-doped carbon catalysts. In this review, we summarize cutting-edge technologies involving the synthesis and modeling of carbon-supported catalysts synthesized via solution plasma process, followed by current progress on the electrocatalytic performance of these catalysts. This review provides the fundamental and state-of-the-art performance of solution-plasma-synthesized electrode materials, as well as the remaining scientific and technological challenges for this process.

  19. An Overview of Major Terrestrial, Celestial, and Temporal Coordinate Systems for Target Tracking

    DTIC Science & Technology

    2016-08-10

    interp and Subroutines) http://hpiers.obspm.fr/eop-pc/index.php?index=models General Software for Astronomy and Time Conversions The IAU’s Standards...of Fundamental Astronomy Software [146] http://www.iausofa.org Software for Optimal 2D Assignment An overview of 2D assignment algorithms; the... Astronomy (SOFA) library were used to change the epoch of the data. The points in red are at the epoch of the Hipparcos catalog (1994.25 TT), and 20

  20. Research in millimeter wave techniques

    NASA Technical Reports Server (NTRS)

    Mcmillan, R. W.

    1977-01-01

    The following is investigated; (1) the design of a 183 GHz single ended fundamental mixer to serve as a back up mixer to the subharmonic mixer for airborne applications, (2) attainment of 6 db single sideband conversion loss with the 6 GHz subharmonic mixer model, together with initial tests to determine the feasibility of pumping the mixer at w sub s/4, (3) additional ground based radiometric measurements, and (4) derivation of equations for power transmission of wire grid interferometers, and initial tests to verify these equations.

  1. Piezoelectric ribbons printed onto rubber for flexible energy conversion.

    PubMed

    Qi, Yi; Jafferis, Noah T; Lyons, Kenneth; Lee, Christine M; Ahmad, Habib; McAlpine, Michael C

    2010-02-10

    The development of a method for integrating highly efficient energy conversion materials onto stretchable, biocompatible rubbers could yield breakthroughs in implantable or wearable energy harvesting systems. Being electromechanically coupled, piezoelectric crystals represent a particularly interesting subset of smart materials that function as sensors/actuators, bioMEMS devices, and energy converters. Yet, the crystallization of these materials generally requires high temperatures for maximally efficient performance, rendering them incompatible with temperature-sensitive plastics and rubbers. Here, we overcome these limitations by presenting a scalable and parallel process for transferring crystalline piezoelectric nanothick ribbons of lead zirconate titanate from host substrates onto flexible rubbers over macroscopic areas. Fundamental characterization of the ribbons by piezo-force microscopy indicates that their electromechanical energy conversion metrics are among the highest reported on a flexible medium. The excellent performance of the piezo-ribbon assemblies coupled with stretchable, biocompatible rubber may enable a host of exciting avenues in fundamental research and novel applications.

  2. The First NREL Conference on thermophotovoltaic generation of electricity: Proceedings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-08-01

    This collection of abstracts from the July 1994 meeting contains various information on thermophotovoltaic (TPV) conversion and converters. Discussed topics include: the current status of TPV conversion, TPV tutorials, heat source and emitter technologies, advanced TPV devices, selective emitter theory and practice, programmatic and systems issues, device fundamentals, and device and material characterization.

  3. Dual-cavity mode converter for a fundamental mode output in an over-moded relativistic backward-wave oscillator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jiawei; Huang, Wenhua; Science and Technology on High Power Microwave Laboratory, Northwest Institute of Nuclear Technology, Xi'an 710024

    2015-03-16

    A dual-cavity TM{sub 02}–TM{sub 01} mode converter is designed for a dual-mode operation over-moded relativistic backward-wave oscillator. With the converter, the fundamental mode output is achieved. Particle-in-cell simulation shows that the efficiency of beam-wave conversion was over 46% and a pureTM{sub 01} mode output was obtained. Effects of end reflection provided by the mode converter were studied. Adequate TM{sub 01} mode feedback provided by the converter enhances conversion efficiency. The distance between the mode converter and extraction cavity critically affect the generation of microwaves depending on the reflection phase of TM{sub 01} mode feedback.

  4. Rectenna session: Micro aspects. [energy conversion

    NASA Technical Reports Server (NTRS)

    Gutmann, R. J.

    1980-01-01

    Two micro aspects of the rectenna design are addressed: evaluation of the degradation in net rectenna RF to DC conversion efficiency due to power density variations across the rectenna (power combining analysis) and design of Yagi-Uda receiving elements to reduce rectenna cost by decreasing the number of conversion circuits (directional receiving elements). The first of these micro aspects involves resolving a fundamental question of efficiency potential with a rectenna, while the second involves a design modification with a large potential cost saving.

  5. The effect of thermal de-phasing on the beam quality of a high-power single-pass second harmonic generation

    NASA Astrophysics Data System (ADS)

    Sadat Hashemi, Somayeh; Ghavami Sabouri, Saeed; Khorsandi, Alireza

    2018-04-01

    We present a theoretical model in order to study the effect of a thermally loaded crystal on the quality of a second-harmonic (SH) beam generated in a high-power pumping regime. The model is provided based on using a particular structure of oven considered for MgO:PPsLT nonlinear crystal to compensate for the thermal de-phasing effect that as the pumping power reaches up to 50 W degrades the conversion efficiency and beam quality of the interacting beams. Hereupon, the quality of fundamental beam is involved in the modeling to investigate the final effect on the beam quality of generated SH beam. Beam quality evaluation is subsequently simulated using Hermite-Gaussian modal decomposition approach for a range of fundamental beam qualities varied from 1 to 3 and for different levels of input powers. To provide a meaningful comparison numerical simulation is correlated with real data deduced from a high-power SH generation (SHG) experimental device. It is found that when using the open-top oven scheme and fixing the fundamental M 2-factor at nearly 1, for a range of input powers changing from 15 to 30 W, the M 2-factor of SHG beam is degraded from 9% to 24%, respectively, confirming very good consistency with the reported experimental results.

  6. LakeMetabolizer: An R package for estimating lake metabolism from free-water oxygen using diverse statistical models

    USGS Publications Warehouse

    Winslow, Luke; Zwart, Jacob A.; Batt, Ryan D.; Dugan, Hilary; Woolway, R. Iestyn; Corman, Jessica; Hanson, Paul C.; Read, Jordan S.

    2016-01-01

    Metabolism is a fundamental process in ecosystems that crosses multiple scales of organization from individual organisms to whole ecosystems. To improve sharing and reuse of published metabolism models, we developed LakeMetabolizer, an R package for estimating lake metabolism from in situ time series of dissolved oxygen, water temperature, and, optionally, additional environmental variables. LakeMetabolizer implements 5 different metabolism models with diverse statistical underpinnings: bookkeeping, ordinary least squares, maximum likelihood, Kalman filter, and Bayesian. Each of these 5 metabolism models can be combined with 1 of 7 models for computing the coefficient of gas exchange across the air–water interface (k). LakeMetabolizer also features a variety of supporting functions that compute conversions and implement calculations commonly applied to raw data prior to estimating metabolism (e.g., oxygen saturation and optical conversion models). These tools have been organized into an R package that contains example data, example use-cases, and function documentation. The release package version is available on the Comprehensive R Archive Network (CRAN), and the full open-source GPL-licensed code is freely available for examination and extension online. With this unified, open-source, and freely available package, we hope to improve access and facilitate the application of metabolism in studies and management of lentic ecosystems.

  7. Full spectral optical modeling of quantum-dot-converted elements for light-emitting diodes considering reabsorption and reemission effect.

    PubMed

    Li, Jia-Sheng; Tang, Yong; Li, Zong-Tao; Cao, Kai; Yan, Cai-Man; Ding, Xin-Rui

    2018-07-20

    Quantum dots (QDs) have attracted significant attention in light-emitting diode (LED) illumination and display applications, owing to their high quantum yield and unique spectral properties. However, an effective optical model of quantum-dot-converted elements (QDCEs) for (LEDs) that entirely considers the reabsorption and reemission effect is lacking. This suppresses the design of QDCE structures and further investigation of light-extraction/conversion mechanisms in QDCEs. In this paper, we proposed a full spectral optical modeling method for QDCEs packaged in LEDs, entirely considering the reabsorption and reemission effect, and its results are compared with traditional models without reabsorption or reemission. The comparisons indicate that the QDCE absorption loss of QD emission light is a major factor decreasing the radiant efficacy of LEDs, which should be considered when designing QDCE structures. According to the measurements of fabricated LEDs, only calculation results that entirely consider reabsorption and reemission show good agreement with experimental radiant efficacy, spectra, and peak wavelength at the same down-conversion efficiency. Consequently, it is highly expected that QDCE will be modeled considering the reabsorption and reemission events. This study provides a simple and effective modeling method for QDCEs, which shows great potential for their structure designs and fundamental investigations.

  8. Full spectral optical modeling of quantum-dot-converted elements for light-emitting diodes considering reabsorption and reemission effect

    NASA Astrophysics Data System (ADS)

    Li, Jia-Sheng; Tang, Yong; Li, Zong-Tao; Cao, Kai; Yan, Cai-Man; Ding, Xin-Rui

    2018-07-01

    Quantum dots (QDs) have attracted significant attention in light-emitting diode (LED) illumination and display applications, owing to their high quantum yield and unique spectral properties. However, an effective optical model of quantum-dot-converted elements (QDCEs) for (LEDs) that entirely considers the reabsorption and reemission effect is lacking. This suppresses the design of QDCE structures and further investigation of light-extraction/conversion mechanisms in QDCEs. In this paper, we proposed a full spectral optical modeling method for QDCEs packaged in LEDs, entirely considering the reabsorption and reemission effect, and its results are compared with traditional models without reabsorption or reemission. The comparisons indicate that the QDCE absorption loss of QD emission light is a major factor decreasing the radiant efficacy of LEDs, which should be considered when designing QDCE structures. According to the measurements of fabricated LEDs, only calculation results that entirely consider reabsorption and reemission show good agreement with experimental radiant efficacy, spectra, and peak wavelength at the same down-conversion efficiency. Consequently, it is highly expected that QDCE will be modeled considering the reabsorption and reemission events. This study provides a simple and effective modeling method for QDCEs, which shows great potential for their structure designs and fundamental investigations.

  9. Nuclear conversion theory: molecular hydrogen in non-magnetic insulators

    NASA Astrophysics Data System (ADS)

    Ilisca, Ernest; Ghiglieno, Filippo

    2016-09-01

    The hydrogen conversion patterns on non-magnetic solids sensitively depend upon the degree of singlet/triplet mixing in the intermediates of the catalytic reaction. Three main `symmetry-breaking' interactions are brought together. In a typical channel, the electron spin-orbit (SO) couplings introduce some magnetic excitations in the non-magnetic solid ground state. The electron spin is exchanged with a molecular one by the electric molecule-solid electron repulsion, mixing the bonding and antibonding states and affecting the molecule rotation. Finally, the magnetic hyperfine contact transfers the electron spin angular momentum to the nuclei. Two families of channels are considered and a simple criterion based on the SO coupling strength is proposed to select the most efficient one. The denoted `electronic' conversion path involves an emission of excitons that propagate and disintegrate in the bulk. In the other denoted `nuclear', the excited electron states are transients of a loop, and the electron system returns to its fundamental ground state. The described model enlarges previous studies by extending the electron basis to charge-transfer states and `continui' of band states, and focuses on the broadening of the antibonding molecular excited state by the solid conduction band that provides efficient tunnelling paths for the hydrogen conversion. After working out the general conversion algebra, the conversion rates of hydrogen on insulating and semiconductor solids are related to a few molecule-solid parameters (gap width, ionization and affinity potentials) and compared with experimental measures.

  10. Bayesian Population Genomic Inference of Crossing Over and Gene Conversion

    PubMed Central

    Padhukasahasram, Badri; Rannala, Bruce

    2011-01-01

    Meiotic recombination is a fundamental cellular mechanism in sexually reproducing organisms and its different forms, crossing over and gene conversion both play an important role in shaping genetic variation in populations. Here, we describe a coalescent-based full-likelihood Markov chain Monte Carlo (MCMC) method for jointly estimating the crossing-over, gene-conversion, and mean tract length parameters from population genomic data under a Bayesian framework. Although computationally more expensive than methods that use approximate likelihoods, the relative efficiency of our method is expected to be optimal in theory. Furthermore, it is also possible to obtain a posterior sample of genealogies for the data using this method. We first check the performance of the new method on simulated data and verify its correctness. We also extend the method for inference under models with variable gene-conversion and crossing-over rates and demonstrate its ability to identify recombination hotspots. Then, we apply the method to two empirical data sets that were sequenced in the telomeric regions of the X chromosome of Drosophila melanogaster. Our results indicate that gene conversion occurs more frequently than crossing over in the su-w and su-s gene sequences while the local rates of crossing over as inferred by our program are not low. The mean tract lengths for gene-conversion events are estimated to be ∼70 bp and 430 bp, respectively, for these data sets. Finally, we discuss ideas and optimizations for reducing the execution time of our algorithm. PMID:21840857

  11. Nuclear conversion theory: molecular hydrogen in non-magnetic insulators

    PubMed Central

    Ghiglieno, Filippo

    2016-01-01

    The hydrogen conversion patterns on non-magnetic solids sensitively depend upon the degree of singlet/triplet mixing in the intermediates of the catalytic reaction. Three main ‘symmetry-breaking’ interactions are brought together. In a typical channel, the electron spin–orbit (SO) couplings introduce some magnetic excitations in the non-magnetic solid ground state. The electron spin is exchanged with a molecular one by the electric molecule–solid electron repulsion, mixing the bonding and antibonding states and affecting the molecule rotation. Finally, the magnetic hyperfine contact transfers the electron spin angular momentum to the nuclei. Two families of channels are considered and a simple criterion based on the SO coupling strength is proposed to select the most efficient one. The denoted ‘electronic’ conversion path involves an emission of excitons that propagate and disintegrate in the bulk. In the other denoted ‘nuclear’, the excited electron states are transients of a loop, and the electron system returns to its fundamental ground state. The described model enlarges previous studies by extending the electron basis to charge-transfer states and ‘continui’ of band states, and focuses on the broadening of the antibonding molecular excited state by the solid conduction band that provides efficient tunnelling paths for the hydrogen conversion. After working out the general conversion algebra, the conversion rates of hydrogen on insulating and semiconductor solids are related to a few molecule–solid parameters (gap width, ionization and affinity potentials) and compared with experimental measures. PMID:27703681

  12. How Internally Coupled Ears Generate Temporal and Amplitude Cues for Sound Localization.

    PubMed

    Vedurmudi, A P; Goulet, J; Christensen-Dalsgaard, J; Young, B A; Williams, R; van Hemmen, J L

    2016-01-15

    In internally coupled ears, displacement of one eardrum creates pressure waves that propagate through air-filled passages in the skull and cause displacement of the opposing eardrum, and conversely. By modeling the membrane, passages, and propagating pressure waves, we show that internally coupled ears generate unique amplitude and temporal cues for sound localization. The magnitudes of both these cues are directionally dependent. The tympanic fundamental frequency segregates a low-frequency regime with constant time-difference magnification from a high-frequency domain with considerable amplitude magnification.

  13. Producing and Consuming the Controversial--A Social Media Perspective on Political Conversations in the Social Science Classroom

    ERIC Educational Resources Information Center

    Andersson, Erik

    2016-01-01

    Teachers find it difficult to conduct political controversial conversations in the social science classroom and due to an increased use of social media in educational settings new challenges and possibilities are raised. The use of social media causes fundamental changes to the role of the learner who becomes a producer and consumer--a…

  14. Duration, Pitch, and Loudness in Kunqu Opera Stage Speech.

    PubMed

    Han, Qichao; Sundberg, Johan

    2017-03-01

    Kunqu is a special type of opera within the Chinese tradition with 600 years of history. In it, stage speech is used for the spoken dialogue. It is performed in Ming Dynasty's mandarin language and is a much more dominant part of the play than singing. Stage speech deviates considerably from normal conversational speech with respect to duration, loudness and pitch. This paper compares these properties in stage speech conversational speech. A famous, highly experienced female singer's performed stage speech and reading of the same lyrics in a conversational speech mode. Clear differences are found. As compared with conversational speech, stage speech had longer word and sentence duration and word duration was less variable. Average sound level was 16 dB higher. Also mean fundamental frequency was considerably higher and more varied. Within sentences, both loudness and fundamental frequency tended to vary according to a low-high-low pattern. Some of the findings fail to support current opinions regarding the characteristics of stage speech, and in this sense the study demonstrates the relevance of objective measurements in descriptions of vocal styles. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  15. Antenna-coupled photon emission from hexagonal boron nitride tunnel junctions.

    PubMed

    Parzefall, M; Bharadwaj, P; Jain, A; Taniguchi, T; Watanabe, K; Novotny, L

    2015-12-01

    The ultrafast conversion of electrical signals to optical signals at the nanoscale is of fundamental interest for data processing, telecommunication and optical interconnects. However, the modulation bandwidths of semiconductor light-emitting diodes are limited by the spontaneous recombination rate of electron-hole pairs, and the footprint of electrically driven ultrafast lasers is too large for practical on-chip integration. A metal-insulator-metal tunnel junction approaches the ultimate size limit of electronic devices and its operating speed is fundamentally limited only by the tunnelling time. Here, we study the conversion of electrons (localized in vertical gold-hexagonal boron nitride-gold tunnel junctions) to free-space photons, mediated by resonant slot antennas. Optical antennas efficiently bridge the size mismatch between nanoscale volumes and far-field radiation and strongly enhance the electron-photon conversion efficiency. We achieve polarized, directional and resonantly enhanced light emission from inelastic electron tunnelling and establish a novel platform for studying the interaction of electrons with strongly localized electromagnetic fields.

  16. Mnemonic convergence in social networks: The emergent properties of cognition at a collective level.

    PubMed

    Coman, Alin; Momennejad, Ida; Drach, Rae D; Geana, Andra

    2016-07-19

    The development of shared memories, beliefs, and norms is a fundamental characteristic of human communities. These emergent outcomes are thought to occur owing to a dynamic system of information sharing and memory updating, which fundamentally depends on communication. Here we report results on the formation of collective memories in laboratory-created communities. We manipulated conversational network structure in a series of real-time, computer-mediated interactions in fourteen 10-member communities. The results show that mnemonic convergence, measured as the degree of overlap among community members' memories, is influenced by both individual-level information-processing phenomena and by the conversational social network structure created during conversational recall. By studying laboratory-created social networks, we show how large-scale social phenomena (i.e., collective memory) can emerge out of microlevel local dynamics (i.e., mnemonic reinforcement and suppression effects). The social-interactionist approach proposed herein points to optimal strategies for spreading information in social networks and provides a framework for measuring and forging collective memories in communities of individuals.

  17. Investigations of Nitrogen Oxide Plasmas: Fundamental Chemistry and Surface Reactivity and Monitoring Student Perceptions in a General Chemistry Recitation

    ERIC Educational Resources Information Center

    Blechle, Joshua M.

    2016-01-01

    Part I of this dissertation focuses on investigations of nitrogen oxide plasma systems. With increasing concerns over the environmental presence of NxOy species, there is growing interest in utilizing plasma-assisted conversion techniques. Advances, however, have been limited because of the lack of knowledge regarding the fundamental chemistry of…

  18. Operation of magnetically assisted fluidized beds in microgravity and variable gravity: experiment and theory

    NASA Technical Reports Server (NTRS)

    Sornchamni, T.; Jovanovic, G. N.; Reed, B. P.; Atwater, J. E.; Akse, J. R.; Wheeler, R. R.

    2004-01-01

    The conversion of solid waste into useful resources in support of long duration manned missions in space presents serious technological challenges. Several technologies, including supercritical water oxidation, microwave powered combustion and fluidized bed incineration, have been tested for the conversion of solid waste. However, none of these technologies are compatible with microgravity or hypogravity operating conditions. In this paper, we present the gradient magnetically assisted fluidized bed (G-MAFB) as a promising operating platform for fluidized bed operations in the space environment. Our experimental and theoretical work has resulted in both the development of a theoretical model based on fundamental principles for the design of the G-MAFB, and also the practical implementation of the G-MAFB in the filtration and destruction of solid biomass waste particles from liquid streams. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.

  19. Understanding complex host-microbe interactions in Hydra

    PubMed Central

    Bosch, Thomas C.G.

    2012-01-01

    Any multicellular organism may be considered a metaorganism or holobiont—comprised of the macroscopic host and synergistic interdependence with bacteria, archaea, fungi, viruses, and numerous other microbial and eukaryotic species including algal symbionts. Defining the individual microbe-host conversations in these consortia is a challenging but necessary step on the path to understanding the function of the associations as a whole. Dissecting the fundamental principles that underlie all host-microbe interactions requires simple animal models with only a few specific bacterial species. Here I present Hydra as such a model with one of the simplest epithelia in the animal kingdom, with the availability of a fully sequenced genome and numerous genomic tools, and with few associated bacterial species. PMID:22688725

  20. [Charcot and hysteria].

    PubMed

    Widlöcher, D; Dantchev, N

    1994-01-01

    Charcot's work on hysteria has always been controversial. All his attitudes, whether on the theory of the ovary, the hysteroepileptic seizure or the use of hypnosis, have always been charicatured, misunderstood and separated from the wider context of his overall approach. Rereading Charcot's works shows that he developed his approach progressively over a period of more than 20 years before coming to his psychological model of hysteria. This model explains the formation of the symptom and the hysterical conversion via a mechanism of being ignorant of the motor representation. This concept has never been disproven and remains the only theory explaining the formation of the hysteria symptom. Based on Charcot's fundamental contribution, Freud and Janet further developed their work on the psychopathology of hysteria.

  1. Collaborative and Bidirectional Feedback Between Students and Clinical Preceptors: Promoting Effective Communication Skills on Health Care Teams.

    PubMed

    Myers, Kara; Chou, Calvin L

    2016-11-01

    Current literature on feedback suggests that clinical preceptors lead feedback conversations that are primarily unidirectional, from preceptor to student. While this approach may promote clinical competency, it does not actively develop students' competency in facilitating feedback discussions and providing feedback across power differentials (ie, from student to preceptor). This latter competency warrants particular attention given its fundamental role in effective health care team communication and its related influence on patient safety. Reframing the feedback process as collaborative and bidirectional, where both preceptors and students provide and receive feedback, maximizes opportunities for role modeling and skills practice in the context of a supportive relationship, thereby enhancing team preparedness. We describe an initiative to introduce these fundamental skills of collaborative, bidirectional feedback in the nurse-midwifery education program at the University of California, San Francisco. © 2016 by the American College of Nurse-Midwives.

  2. Integrated and spectral energetics of the GLAS general circulation model

    NASA Technical Reports Server (NTRS)

    Tenenbaum, J.

    1981-01-01

    Integrated and spectral error energetics of the Goddard Laboratory for Atmospheric Sciences (GLAS) general circulation model are compared with observations for periods in January 1975, 1976, and 1977. For two cases the model shows significant skill in predicting integrated energetics quantities out to two weeks, and for all three cases, the integrated monthly mean energetics show qualitative improvements over previous versions of the model in eddy kinetic energy and barotropic conversions. Fundamental difficulties remain with leakage of energy to the stratospheric level. General circulation model spectral energetics predictions are compared with the corresponding observational spectra on a day by day basis. Eddy kinetic energy can be correct while significant errors occur in the kinetic energy of wavenumber three. Single wavenumber dominance in eddy kinetic energy and the correlation of spectral kinetic and potential energy are demonstrated.

  3. Materials for high-temperature thermoelectric conversion

    NASA Technical Reports Server (NTRS)

    Feigelson, R. S.; Elwell, D.; Auld, B. A.

    1984-01-01

    The development of materials for high temperature thermoelectric energy conversion devices was investigated. The development of new criteria for the selection of materials which is based on understanding of the fundamental principles governing the behavior of high temperature thermoelectric materials is discussed. The synthesis and characterization of promising new materials and the growth of single crystals to eliminate possible problems associated with grain boundaries and other defects in polycrystalline materials are outlined.

  4. Catalytic Chemistry of Hydrocarbon Conversion Reactions on Metallic Single Crystals

    NASA Astrophysics Data System (ADS)

    Tysoe, Wilfred T.

    The ability to be able to follow the chemistry of adsorbates on model catalyst surfaces has, in principle, allowed us to peer inside the “black box” of a catalytic reaction and understand the pathway. Such a strategy is most simply implemented for well-ordered single crystal model catalysts for which the catalytic reaction proceeds in ultrahigh vacuum. Thus, in order to be a good model for the supported catalyst, the single crystal should catalyze the reactions with kinetics identical to those for the supported system. This chapter focuses on catalytic systems that fulfill these criteria, namely alkene and alkyne hydrogenation and acetylene cyclotrimerization on Pd(111). The surface chemistry and geometries of the reactants in ultrahigh vacuum are explored in detail allowing fundamental insights into the catalytic reaction pathways to be obtained.

  5. Plate and butt-weld stresses beyond elastic limit, material and structural modeling

    NASA Technical Reports Server (NTRS)

    Verderaime, V.

    1991-01-01

    Ultimate safety factors of high performance structures depend on stress behavior beyond the elastic limit, a region not too well understood. An analytical modeling approach was developed to gain fundamental insights into inelastic responses of simple structural elements. Nonlinear material properties were expressed in engineering stresses and strains variables and combined with strength of material stress and strain equations similar to numerical piece-wise linear method. Integrations are continuous which allows for more detailed solutions. Included with interesting results are the classical combined axial tension and bending load model and the strain gauge conversion to stress beyond the elastic limit. Material discontinuity stress factors in butt-welds were derived. This is a working-type document with analytical methods and results applicable to all industries of high reliability structures.

  6. Intrinsic selectivity and structure sensitivity of Rhodium catalysts for C 2+ oxygenate production [On the intrinsic selectivity and structure sensitivity of Rhodium catalysts for C 2+ oxygenate production

    DOE PAGES

    Yang, Nuoya; Medford, Andrew J.; Liu, Xinyan; ...

    2016-01-31

    Synthesis gas (CO + H 2) conversion is a promising route to converting coal, natural gas, or biomass into synthetic liquid fuels. Rhodium has long been studied as it is the only elemental catalyst that has demonstrated selectivity to ethanol and other C 2+ oxygenates. However, the fundamentals of syngas conversion over rhodium are still debated. In this work a microkinetic model is developed for conversion of CO and H 2 into methane, ethanol, and acetaldehyde on the Rh (211) and (111) surfaces, chosen to describe steps and close-packed facets on catalyst particles. The model is based on DFT calculationsmore » using the BEEF-vdW functional. The mean-field kinetic model includes lateral adsorbate–adsorbate interactions, and the BEEF-vdW error estimation ensemble is used to propagate error from the DFT calculations to the predicted rates. The model shows the Rh(211) surface to be ~6 orders of magnitude more active than the Rh(111) surface, but highly selective toward methane, while the Rh(111) surface is intrinsically selective toward acetaldehyde. A variety of Rh/SiO 2 catalysts are synthesized, tested for catalytic oxygenate production, and characterized using TEM. The experimental results indicate that the Rh(111) surface is intrinsically selective toward acetaldehyde, and a strong inverse correlation between catalytic activity and oxygenate selectivity is observed. Furthermore, iron impurities are shown to play a key role in modulating the selectivity of Rh/SiO 2 catalysts toward ethanol. The experimental observations are consistent with the structure-sensitivity predicted from theory. As a result, this work provides an improved atomic-scale understanding and new insight into the mechanism, active site, and intrinsic selectivity of syngas conversion over rhodium catalysts and may also guide rational design of alloy catalysts made from more abundant elements.« less

  7. Intrinsic selectivity and structure sensitivity of Rhodium catalysts for C 2+ oxygenate production [On the intrinsic selectivity and structure sensitivity of Rhodium catalysts for C 2+ oxygenate production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Nuoya; Medford, Andrew J.; Liu, Xinyan

    Synthesis gas (CO + H 2) conversion is a promising route to converting coal, natural gas, or biomass into synthetic liquid fuels. Rhodium has long been studied as it is the only elemental catalyst that has demonstrated selectivity to ethanol and other C 2+ oxygenates. However, the fundamentals of syngas conversion over rhodium are still debated. In this work a microkinetic model is developed for conversion of CO and H 2 into methane, ethanol, and acetaldehyde on the Rh (211) and (111) surfaces, chosen to describe steps and close-packed facets on catalyst particles. The model is based on DFT calculationsmore » using the BEEF-vdW functional. The mean-field kinetic model includes lateral adsorbate–adsorbate interactions, and the BEEF-vdW error estimation ensemble is used to propagate error from the DFT calculations to the predicted rates. The model shows the Rh(211) surface to be ~6 orders of magnitude more active than the Rh(111) surface, but highly selective toward methane, while the Rh(111) surface is intrinsically selective toward acetaldehyde. A variety of Rh/SiO 2 catalysts are synthesized, tested for catalytic oxygenate production, and characterized using TEM. The experimental results indicate that the Rh(111) surface is intrinsically selective toward acetaldehyde, and a strong inverse correlation between catalytic activity and oxygenate selectivity is observed. Furthermore, iron impurities are shown to play a key role in modulating the selectivity of Rh/SiO 2 catalysts toward ethanol. The experimental observations are consistent with the structure-sensitivity predicted from theory. As a result, this work provides an improved atomic-scale understanding and new insight into the mechanism, active site, and intrinsic selectivity of syngas conversion over rhodium catalysts and may also guide rational design of alloy catalysts made from more abundant elements.« less

  8. Astrophysical tests for radiative decay of neutrinos and fundamental physics implications

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.; Brown, R. W.

    1981-01-01

    The radiative lifetime tau for the decay of massious neutrinos was calculated using various physical models for neutrino decay. The results were then related to the astrophysical problem of the detectability of the decay photons from cosmic neutrinos. Conversely, the astrophysical data were used to place lower limits on tau. These limits are all well below predicted values. However, an observed feature at approximately 1700 A in the ultraviolet background radiation at high galactic latitudes may be from the decay of neutrinos with mass approximately 14 eV. This would require a decay rate much larger than the predictions of standard models but could be indicative of a decay rate possible in composite models or other new physics. Thus an important test for substructure in leptons and quarks or other physics beyond the standard electroweak model may have been found.

  9. Magnetic-field-free thermoelectronic power conversion based on graphene and related two-dimensional materials

    NASA Astrophysics Data System (ADS)

    Wanke, R.; Hassink, G. W. J.; Stephanos, C.; Rastegar, I.; Braun, W.; Mannhart, J.

    2016-06-01

    Mobile energy converters require, in addition to high conversion efficiency and low cost, a low mass. We propose to utilize thermoelectronic converters that use 2D-materials such as graphene for their gate electrodes. Deriving the ultimate limit for their specific energy output, we show that the positive energy output is likely close to the fundamental limit for any conversion of heat into electric power. These converters may be valuable as electric power sources of spacecraft, and with the addition of vacuum enclosures, for power generation in electric planes and cars.

  10. Advances in graphene-based semiconductor photocatalysts for solar energy conversion: fundamentals and materials engineering.

    PubMed

    Xie, Xiuqiang; Kretschmer, Katja; Wang, Guoxiu

    2015-08-28

    Graphene-based semiconductor photocatalysis has been regarded as a promising technology for solar energy storage and conversion. In this review, we summarized recent developments of graphene-based photocatalysts, including preparation of graphene-based photocatalysts, typical key advances in the understanding of graphene functions for photocatalytic activity enhancement and methodologies to regulate the electron transfer efficiency in graphene-based composite photocatalysts, by which we hope to offer enriched information to harvest the utmost fascinating properties of graphene as a platform to construct efficient graphene-based composite photocatalysts for solar-to-energy conversion.

  11. Photoassisted electrolysis of water - Conversion of optical to chemical energy

    NASA Technical Reports Server (NTRS)

    Wrighton, M. S.; Bolts, J. M.; Kaiser, S. W.; Ellis, A. B.

    1976-01-01

    A description is given of devices, termed photoelectrochemical cells, which can, in principle, be used to directly convert light to fuels and/or electricity. The fundamental principles on which the photoelectrochemical cell is based are related to the observation that irradiation of a semiconductor electrode in an electrochemical cell can result in the flow of an electric current in the external circuit. Attention is given to the basic mechanisms involved, the energy conversion efficiency, the advantages of photoelectrochemical cells, and the results of investigations related to the study of energy conversion via photoelectrochemical cells.

  12. Mnemonic convergence in social networks: The emergent properties of cognition at a collective level

    PubMed Central

    Coman, Alin; Momennejad, Ida; Drach, Rae D.; Geana, Andra

    2016-01-01

    The development of shared memories, beliefs, and norms is a fundamental characteristic of human communities. These emergent outcomes are thought to occur owing to a dynamic system of information sharing and memory updating, which fundamentally depends on communication. Here we report results on the formation of collective memories in laboratory-created communities. We manipulated conversational network structure in a series of real-time, computer-mediated interactions in fourteen 10-member communities. The results show that mnemonic convergence, measured as the degree of overlap among community members’ memories, is influenced by both individual-level information-processing phenomena and by the conversational social network structure created during conversational recall. By studying laboratory-created social networks, we show how large-scale social phenomena (i.e., collective memory) can emerge out of microlevel local dynamics (i.e., mnemonic reinforcement and suppression effects). The social-interactionist approach proposed herein points to optimal strategies for spreading information in social networks and provides a framework for measuring and forging collective memories in communities of individuals. PMID:27357678

  13. History-dependent ion transport through conical nanopipettes and the implications in energy conversion dynamics at nanoscale interfaces.

    PubMed

    Li, Yan; Wang, Dengchao; Kvetny, Maksim M; Brown, Warren; Liu, Juan; Wang, Gangli

    2015-01-01

    The dynamics of ion transport at nanostructured substrate-solution interfaces play vital roles in high-density energy conversion, stochastic chemical sensing and biosensing, membrane separation, nanofluidics and fundamental nanoelectrochemistry. Further advancements in these applications require a fundamental understanding of ion transport at nanoscale interfaces. The understanding of the dynamic or transient transport, and the key physical process involved, is limited, which contrasts sharply with widely studied steady-state ion transport features at atomic and nanometer scale interfaces. Here we report striking time-dependent ion transport characteristics at nanoscale interfaces in current-potential ( I - V ) measurements and theoretical analyses. First, a unique non-zero I - V cross-point and pinched I - V curves are established as signatures to characterize the dynamics of ion transport through individual conical nanopipettes. Second, ion transport against a concentration gradient is regulated by applied and surface electrical fields. The concept of ion pumping or separation is demonstrated via the selective ion transport against concentration gradients through individual nanopipettes. Third, this dynamic ion transport process under a predefined salinity gradient is discussed in the context of nanoscale energy conversion in supercapacitor type charging-discharging, as well as chemical and electrical energy conversion. The analysis of the emerging current-potential features establishes the urgently needed physical foundation for energy conversion employing ordered nanostructures. The elucidated mechanism and established methodology can be generalized into broadly-defined nanoporous materials and devices for improved energy, separation and sensing applications.

  14. History-dependent ion transport through conical nanopipettes and the implications in energy conversion dynamics at nanoscale interfaces

    DOE PAGES

    Li, Yan; Wang, Dengchao; Kvetny, Maksim M.; ...

    2014-08-20

    The dynamics of ion transport at nanostructured substrate–solution interfaces play vital roles in high-density energy conversion, stochastic chemical sensing and biosensing, membrane separation, nanofluidics and fundamental nanoelectrochemistry. Advancements in these applications require a fundamental understanding of ion transport at nanoscale interfaces. The understanding of the dynamic or transient transport, and the key physical process involved, is limited, which contrasts sharply with widely studied steady-state ion transport features at atomic and nanometer scale interfaces. Here we report striking time-dependent ion transport characteristics at nanoscale interfaces in current–potential (I–V) measurements and theoretical analyses. First, a unique non-zero I–V cross-point and pinched I–Vmore » curves are established as signatures to characterize the dynamics of ion transport through individual conical nanopipettes. Moreoever, ion transport against a concentration gradient is regulated by applied and surface electrical fields. The concept of ion pumping or separation is demonstrated via the selective ion transport against concentration gradients through individual nanopipettes. Third, this dynamic ion transport process under a predefined salinity gradient is discussed in the context of nanoscale energy conversion in supercapacitor type charging–discharging, as well as chemical and electrical energy conversion. Our analysis of the emerging current–potential features establishes the urgently needed physical foundation for energy conversion employing ordered nanostructures. The elucidated mechanism and established methodology can be generalized into broadly-defined nanoporous materials and devices for improved energy, separation and sensing applications.« less

  15. Adiabatically tapered splice for selective excitation of the fundamental mode in a multimode fiber.

    PubMed

    Jung, Yongmin; Jeong, Yoonchan; Brambilla, Gilberto; Richardson, David J

    2009-08-01

    We propose a simple and effective method to selectively excite the fundamental mode of a multimode fiber by adiabatically tapering a fusion splice to a single-mode fiber. We experimentally demonstrate the method by adiabatically tapering splice (taper waist=15 microm, uniform length=40 mm) between single-mode and multimode fiber and show that it provides a successful mode conversion/connection and allows for almost perfect fundamental mode excitation in the multimode fiber. Excellent beam quality (M(2) approximately 1.08) was achieved with low loss and high environmental stability.

  16. Einstein's conversion from his static to an expanding universe

    NASA Astrophysics Data System (ADS)

    Nussbaumer, Harry

    2014-02-01

    In 1917 Einstein initiated modern cosmology by postulating, based on general relativity, a homogenous, static, spatially curved universe. To counteract gravitational contraction he introduced the cosmological constant. In 1922 Alexander Friedman showed that Albert Einstein's fundamental equations also allow dynamical worlds, and in 1927 Georges Lemaître, backed by observational evidence, concluded that our universe was expanding. Einstein impetuously rejected Friedman's as well as Lemaître's findings. However, in 1931 he retracted his former static model in favour of a dynamic solution. This investigation follows Einstein on his hesitating path from a static to the expanding universe. Contrary to an often advocated belief the primary motive for his switch was not observational evidence, but the realisation that his static model was unstable.

  17. Structural determinants in the bulk heterojunction.

    PubMed

    Acocella, Angela; Höfinger, Siegfried; Haunschmid, Ernst; Pop, Sergiu C; Narumi, Tetsu; Yasuoka, Kenji; Yasui, Masato; Zerbetto, Francesco

    2018-02-21

    Photovoltaics is one of the key areas in renewable energy research with remarkable progress made every year. Here we consider the case of a photoactive material and study its structural composition and the resulting consequences for the fundamental processes driving solar energy conversion. A multiscale approach is used to characterize essential molecular properties of the light-absorbing layer. A selection of bulk-representative pairs of donor/acceptor molecules is extracted from the molecular dynamics simulation of the bulk heterojunction and analyzed at increasing levels of detail. Significantly increased ground state energies together with an array of additional structural characteristics are identified that all point towards an auxiliary role of the material's structural organization in mediating charge-transfer and -separation. Mechanistic studies of the type presented here can provide important insights into fundamental principles governing solar energy conversion in next-generation photovoltaic devices.

  18. Final technical report for the Center for Catalytic Hydrocarbon Functionalization (an EFRC)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gunnoe, Thomas Brent

    Greater than 95% of all materials produced by the chemical industry are derived from a small slate of simple hydrocarbons that are derived primarily from natural gas and petroleum, predominantly through oxygenation, C–C bond formation, halogenation or amination. Yet, current technologies for hydrocarbon conversion are typically high temperature, multi-step processes that are energy and capital intensive and result in excessive emissions (including carbon dioxide). The Center for Catalytic Hydrocarbon Functionalization (CCHF) brought together research teams with the broad coalition of skills and knowledge needed to make the fundamental advances in catalysis required for next-generation technologies to convert hydrocarbons (particularly lightmore » alkanes and methane) at high efficiency and low cost. Our new catalyst technologies offer many opportunities including enhanced utilization of natural gas in the transportation sector (via conversion to liquid fuels), more efficient generation of electricity from natural gas using direct methane fuel cells, reduced energy consumption and waste production for large petrochemical processes, and the preparation of high value molecules for use in biological/medical applications or the agricultural sector. The five year collaborative project accelerated fundamental understanding of catalyst design for the conversion of C–H bonds to functionalized products, essential to achieve the goals listed above, as evidenced by the publication of 134 manuscripts. Many of these fundamental advancements provide a foundation for potential commercialization, as evidenced by the submission of 11 patents from research support by the CCHF.« less

  19. High-Performance First-Principles Molecular Dynamics for Predictive Theory and Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gygi, Francois; Galli, Giulia; Schwegler, Eric

    This project focused on developing high-performance software tools for First-Principles Molecular Dynamics (FPMD) simulations, and applying them in investigations of materials relevant to energy conversion processes. FPMD is an atomistic simulation method that combines a quantum-mechanical description of electronic structure with the statistical description provided by molecular dynamics (MD) simulations. This reliance on fundamental principles allows FPMD simulations to provide a consistent description of structural, dynamical and electronic properties of a material. This is particularly useful in systems for which reliable empirical models are lacking. FPMD simulations are increasingly used as a predictive tool for applications such as batteries, solarmore » energy conversion, light-emitting devices, electro-chemical energy conversion devices and other materials. During the course of the project, several new features were developed and added to the open-source Qbox FPMD code. The code was further optimized for scalable operation of large-scale, Leadership-Class DOE computers. When combined with Many-Body Perturbation Theory (MBPT) calculations, this infrastructure was used to investigate structural and electronic properties of liquid water, ice, aqueous solutions, nanoparticles and solid-liquid interfaces. Computing both ionic trajectories and electronic structure in a consistent manner enabled the simulation of several spectroscopic properties, such as Raman spectra, infrared spectra, and sum-frequency generation spectra. The accuracy of the approximations used allowed for direct comparisons of results with experimental data such as optical spectra, X-ray and neutron diffraction spectra. The software infrastructure developed in this project, as applied to various investigations of solids, liquids and interfaces, demonstrates that FPMD simulations can provide a detailed, atomic-scale picture of structural, vibrational and electronic properties of complex systems relevant to energy conversion devices.« less

  20. Fundamental aspects of steady-state conversion of heat to work at the nanoscale

    NASA Astrophysics Data System (ADS)

    Benenti, Giuliano; Casati, Giulio; Saito, Keiji; Whitney, Robert S.

    2017-06-01

    In recent years, the study of heat to work conversion has been re-invigorated by nanotechnology. Steady-state devices do this conversion without any macroscopic moving parts, through steady-state flows of microscopic particles such as electrons, photons, phonons, etc. This review aims to introduce some of the theories used to describe these steady-state flows in a variety of mesoscopic or nanoscale systems. These theories are introduced in the context of idealized machines which convert heat into electrical power (heat-engines) or convert electrical power into a heat flow (refrigerators). In this sense, the machines could be categorized as thermoelectrics, although this should be understood to include photovoltaics when the heat source is the sun. As quantum mechanics is important for most such machines, they fall into the field of quantum thermodynamics. In many cases, the machines we consider have few degrees of freedom, however the reservoirs of heat and work that they interact with are assumed to be macroscopic. This review discusses different theories which can take into account different aspects of mesoscopic and nanoscale physics, such as coherent quantum transport, magnetic-field induced effects (including topological ones such as the quantum Hall effect), and single electron charging effects. It discusses the efficiency of thermoelectric conversion, and the thermoelectric figure of merit. More specifically, the theories presented are (i) linear response theory with or without magnetic fields, (ii) Landauer scattering theory in the linear response regime and far from equilibrium, (iii) Green-Kubo formula for strongly interacting systems within the linear response regime, (iv) rate equation analysis for small quantum machines with or without interaction effects, (v) stochastic thermodynamic for fluctuating small systems. In all cases, we place particular emphasis on the fundamental questions about the bounds on ideal machines. Can magnetic-fields change the bounds on power or efficiency? What is the relationship between quantum theories of transport and the laws of thermodynamics? Does quantum mechanics place fundamental bounds on heat to work conversion which are absent in the thermodynamics of classical systems?

  1. The Supercritical Pile Model: Prompt Emission Across the Electromagnetic Spectrum

    NASA Technical Reports Server (NTRS)

    Kazanas, Demos; Mastichiadis, A.

    2008-01-01

    The "Supercritical Pile" GRB model is an economical model that provides the dissipation necessary to convert explosively the energy stored in relativistic protons in the blast wave of a GRB into radiation; at the same time it produces spectra whose luminosity peaks at 1 MeV in the lab frame, the result of the kinematics of the proton-photon - pair production reaction that effects the conversion of proton energy to radiation. We outline the fundamental notions behind the "Supercritical Pile" model and discuss the resulting spectra of the prompt emission from optical to gamma-ray energies of order Gamma^2 m_ec^2, (Gamma is the Lorentz factor of the blast wave) present even in the absence of an accelerated particle distribution and compare our results to bursts that cover this entire energy range. Particular emphasis is given on the emission at the GLAST energy range both in the prompt and the afterglow stages of the burst.

  2. Rectenna session: Micro aspects

    NASA Technical Reports Server (NTRS)

    Gutmann, R. J.

    1980-01-01

    Two micro aspects of rectenna design are discussed: evaluation of the degradation in net rectenna RF to DC conversion efficiency due to power density variations across the rectenna (power combining analysis) and design of Yagi-Uda receiving elements to reduce rectenna cost by decreasing the number of conversion circuits (directional receiving elements). The first of these involves resolving a fundamental question of efficiency potential with a rectenna, while the second involves a design modification with a large potential cost saving.

  3. Techno-economic analysis of a biomass depot

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobson, Jacob Jordan; Lamers, Patrick; Roni, Mohammad Sadekuzzaman

    2014-10-01

    The U.S. Department of Energy (DOE) Bioenergy Technologies Office (BETO) promotes the production of an array of liquid fuels and fuel blendstocks from lignocellulosic biomass feedstocks by funding fundamental and applied research that advances the state of technology in biomass collection, conversion, and sustainability. As part of its involvement in this program, the Idaho National Laboratory (INL) investigates the technical, economic, and environmental performance of different feedstock supply systems and their impacts on the downstream conversion processes.

  4. History-dependent ion transport through conical nanopipettes and the implications in energy conversion dynamics at nanoscale interfaces† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c4sc02195a Click here for additional data file.

    PubMed Central

    Li, Yan; Wang, Dengchao; Kvetny, Maksim M.; Brown, Warren; Liu, Juan

    2015-01-01

    The dynamics of ion transport at nanostructured substrate–solution interfaces play vital roles in high-density energy conversion, stochastic chemical sensing and biosensing, membrane separation, nanofluidics and fundamental nanoelectrochemistry. Further advancements in these applications require a fundamental understanding of ion transport at nanoscale interfaces. The understanding of the dynamic or transient transport, and the key physical process involved, is limited, which contrasts sharply with widely studied steady-state ion transport features at atomic and nanometer scale interfaces. Here we report striking time-dependent ion transport characteristics at nanoscale interfaces in current–potential (I–V) measurements and theoretical analyses. First, a unique non-zero I–V cross-point and pinched I–V curves are established as signatures to characterize the dynamics of ion transport through individual conical nanopipettes. Second, ion transport against a concentration gradient is regulated by applied and surface electrical fields. The concept of ion pumping or separation is demonstrated via the selective ion transport against concentration gradients through individual nanopipettes. Third, this dynamic ion transport process under a predefined salinity gradient is discussed in the context of nanoscale energy conversion in supercapacitor type charging–discharging, as well as chemical and electrical energy conversion. The analysis of the emerging current–potential features establishes the urgently needed physical foundation for energy conversion employing ordered nanostructures. The elucidated mechanism and established methodology can be generalized into broadly-defined nanoporous materials and devices for improved energy, separation and sensing applications. PMID:28706626

  5. Unified Electromagnetic-Electronic Design of Light Trapping Silicon Solar Cells

    PubMed Central

    Boroumand, Javaneh; Das, Sonali; Vázquez-Guardado, Abraham; Franklin, Daniel; Chanda, Debashis

    2016-01-01

    A three-dimensional unified electromagnetic-electronic model is developed in conjunction with a light trapping scheme in order to predict and maximize combined electron-photon harvesting in ultrathin crystalline silicon solar cells. The comparison between a bare and light trapping cell shows significant enhancement in photon absorption and electron collection. The model further demonstrates that in order to achieve high energy conversion efficiency, charge separation must be optimized through control of the doping profile and surface passivation. Despite having a larger number of surface defect states caused by the surface patterning in light trapping cells, we show that the higher charge carrier generation and collection in this design compensates the absorption and recombination losses and ultimately results in an increase in energy conversion efficiency. The fundamental physics behind this specific design approach is validated through its application to a 3 μm thick functional light trapping solar cell which shows 192% efficiency enhancement with respect to the bare cell of same thickness. Such a unified design approach will pave the path towards achieving the well-known Shockley-Queisser (SQ) limit for c-Si in thin-film (<30 μm) geometries. PMID:27499446

  6. Theoretical insights into multiscale electronic processes in organic photovoltaics

    NASA Astrophysics Data System (ADS)

    Tretiak, Sergei

    Present day electronic devices are enabled by design and implementation of precise interfaces that control the flow of charge carriers. This requires robust and predictive multiscale approaches for theoretical description of underlining complex phenomena. Combined with thorough experimental studies such approaches provide a reliable estimate of physical properties of nanostructured materials and enable a rational design of devices. From this perspective I will discuss first principle modeling of small-molecule bulk-heterojunction organic solar cells and push-pull chromophores for tunable-color organic light emitters. The emphasis is on electronic processes involving intra- and intermolecular energy or charge transfer driven by strong electron-phonon coupling inherent to pi-conjugated systems. Finally I will describe how precise manipulation and control of organic-organic interfaces in a photovoltaic device can increase its power conversion efficiency by 2-5 times in a model bilayer system. Applications of these design principles to practical architectures like bulk heterojunction devices lead to an enhancement in power conversion efficiency from 4.0% to 7.0%. These interface manipulation strategies are universally applicable to any donor-acceptor interface, making them both fundamentally interesting and technologically important for achieving high efficiency organic electronic devices.

  7. Efficient second harmonic generation of a diode-laser-pumped CW Nd:YAG laser using monolithic MgO:LiNbO3 external resonant cavities

    NASA Technical Reports Server (NTRS)

    Kozlovsky, William J.; Nabors, C. D.; Byer, Robert L.

    1988-01-01

    56-percent efficient external-cavity-resonant second-harmonic generation of a diode-laser pumped, CW single-axial-mode Nd:YAG laser is reported. A theory of external doubling with a resonant fundamental is presented and compared to experimental results for three monolithic cavities of nonlinear MgO:LiNbO3. The best conversion efficiency was obtained with a 12.5-mm-long monolithic ring cavity doubler, which produced 29.7 mW of CW, single-axial model 532-nm radiation from an input of 52.5 mW.

  8. Efficient second-harmonic conversion of CW single-frequency Nd:YAG laser light by frequency locking to a monolithic ring frequency doubler

    NASA Technical Reports Server (NTRS)

    Gerstenberger, D. C.; Tye, G. E.; Wallace, R. W.

    1991-01-01

    Efficient second-harmonic conversion of the 1064-nm output of a diode-pumped CW single-frequency Nd:YAG laser to 532 nm was obtained by frequency locking the laser to a monolithic ring resonator constructed of magnesium-oxide-doped lithium niobate. The conversion efficiency from the fundamental to the second harmonic was 65 percent. Two hundred milliwatts of CW single-frequency 532-nm light were produced from 310 mW of power of 1064-nm light. This represents a conversion efficiency of 20 percent from the 1-W diode laser used to pump the Nd:YAG laser to single-frequency 532-nm output. No signs of degradation were observed for over 500 h of operation.

  9. The 'Supercritical Pile' GRB Model: Afterglows and GRB, XRR, XRF Unification

    NASA Technical Reports Server (NTRS)

    Kazanas, D.

    2007-01-01

    We present the general notions and observational consequences of the "Supercritical Pile" GRB model; the fundamental feature of this model is a detailed process for the conversion of the energy stored in relativistic protons in the GRB Relativistic Blast Waves (RBW) into relativistic electrons and then into radiation. The conversion is effected through the $p \\, \\gamma \\rightarrow p \\, e circumflex + e circumflex -$ reaction, whose kinematic threshold is imprinted on the GRB spectra to provide a peak of their emitted luminosity at energy \\Ep $\\sim 1$ MeV in the lab frame. We extend this model to include, in addition to the (quasi--)thermal relativistic post-shock protons an accelerated component of power law form. This component guarantees the production of $e circumflex +e circumflex- - $pairs even after the RBW has slowed down to the point that its (quasi-) thermal protons cannot fulfill the threshold of the above reaction. We suggest that this last condition marks the transition from the prompt to the afterglow GRB phase. We also discuss conditions under which this transition is accompanied by a significant drop in the flux and could thus account for several puzzling, recent observations. Finally, we indicate that the same mechanism applied to the late stages of the GRB evolution leads to a decrease in \\Ep $\\propto \\Gamma circumflex 2(t)\\propto t circumflex {-3/4}$, a feature amenable to future observational tests.

  10. Third harmonic frequency generation by type-I critically phase-matched LiB3O5 crystal by means of optically active quartz crystal.

    PubMed

    Gapontsev, Valentin P; Tyrtyshnyy, Valentin A; Vershinin, Oleg I; Davydov, Boris L; Oulianov, Dmitri A

    2013-02-11

    We present a method of third harmonic generation at 355 nm by frequency mixing of fundamental and second harmonic radiation of an ytterbium nanosecond pulsed all-fiber laser in a type-I phase-matched LiB(3)O(5) (LBO) crystal where originally orthogonal polarization planes of the fundamental and second harmonic beams are aligned by an optically active quartz crystal. 8 W of ultraviolet light at 355 nm were achieved with 40% conversion efficiency from 1064 nm radiation. The conversion efficiency obtained in a type-I phase-matched LBO THG crystal was 1.6 times higher than the one achieved in a type-II LBO crystal at similar experimental conditions. In comparison to half-wave plates traditionally used for polarization alignment the optically active quartz crystal has much lower temperature dependence and requires simpler optical alignment.

  11. Conversational Flow Promotes Solidarity

    PubMed Central

    Koudenburg, Namkje; Postmes, Tom; Gordijn, Ernestine H.

    2013-01-01

    Social interaction is fundamental to the development of various aspects of “we-ness”. Previous research has focused on the role the content of interaction plays in establishing feelings of unity, belongingness and shared reality (a cluster of variables referred to as solidarity here). The present paper is less concerned with content, but focuses on the form of social interaction. We propose that the degree to which conversations flow smoothly or not is, of itself, a cue to solidarity. We test this hypothesis in samples of unacquainted and acquainted dyads who communicate via headsets. Conversational flow is disrupted by introducing a delay in the auditory feedback (vs. no delay). Results of three studies show that smoothly coordinated conversations (compared with disrupted conversations and a control condition) increase feelings of belonging and perceptions of group entitativity, independently of conversation content. These effects are driven by the subjective experience of conversational flow. Our data suggest that this process occurs largely beyond individuals' control. We conclude that the form of social interaction is a powerful cue for inferring group solidarity. Implications for the impact of modern communication technology on developing a shared social identity are discussed. PMID:24265683

  12. Conversational flow promotes solidarity.

    PubMed

    Koudenburg, Namkje; Postmes, Tom; Gordijn, Ernestine H

    2013-01-01

    Social interaction is fundamental to the development of various aspects of "we-ness". Previous research has focused on the role the content of interaction plays in establishing feelings of unity, belongingness and shared reality (a cluster of variables referred to as solidarity here). The present paper is less concerned with content, but focuses on the form of social interaction. We propose that the degree to which conversations flow smoothly or not is, of itself, a cue to solidarity. We test this hypothesis in samples of unacquainted and acquainted dyads who communicate via headsets. Conversational flow is disrupted by introducing a delay in the auditory feedback (vs. no delay). Results of three studies show that smoothly coordinated conversations (compared with disrupted conversations and a control condition) increase feelings of belonging and perceptions of group entitativity, independently of conversation content. These effects are driven by the subjective experience of conversational flow. Our data suggest that this process occurs largely beyond individuals' control. We conclude that the form of social interaction is a powerful cue for inferring group solidarity. Implications for the impact of modern communication technology on developing a shared social identity are discussed.

  13. Cavity enhanced third harmonic generation in graphene

    NASA Astrophysics Data System (ADS)

    Beckerleg, Chris; Constant, Thomas J.; Zeimpekis, Ioannis; Hornett, Samuel M.; Craig, Chris; Hewak, Daniel W.; Hendry, Euan

    2018-01-01

    Graphene displays a surprisingly large third order nonlinearity. Here, we report that conversion efficiencies approaching 10-4 are possible for third harmonic generation (THG). Moreover, the atomically thin nature of graphene allows for simple integration in cavity designs to increase this even further. We demonstrate a 117-fold enhancement, of resonant vs non-resonant wavelengths in the THG from graphene due to the integration of a graphene layer with a resonant cavity. This large enhancement occurs as the cavity is resonant for both the fundamental field and the third harmonic. We model this effect using the finite difference time domain approach. By comparing our model with experiment, we are able to deduce the value of a bulk third order susceptibility of graphene of |χ(3)|=4 ×10-17(m/V ) 2 .

  14. Temperature-insensitive phase-matched optical harmonic conversion crystal

    DOEpatents

    Barker, Charles E.; Eimerl, David; Velsko, Stephan P.; Roberts, David

    1993-01-01

    Temperature-insensitive, phase-matched harmomic frequency conversion of laser light at a preferred wavelength of 1.064 microns can be achieved by use of a crystal of deuterated l-arginine phosphate. The crystal is cut and oriented so that the laser light propagates inside the crystal along one of several required directions, which correspond to a temperature-insensitive, phase-matching locus. The method of measuring and calculating the temperature-insensitive, phase-matching angles can be extended to other fundamental wavelengths and other crystal compositions.

  15. Temperature-insensitive phase-matched optical harmonic conversion crystal

    DOEpatents

    Barker, C.E.; Eimerl, D.; Velsko, S.P.; Roberts, D.

    1993-11-23

    Temperature-insensitive, phase-matched harmonic frequency conversion of laser light at a preferred wavelength of 1.064 microns can be achieved by use of a crystal of deuterated l-arginine phosphate. The crystal is cut and oriented so that the laser light propagates inside the crystal along one of several required directions, which correspond to a temperature-insensitive, phase-matching locus. The method of measuring and calculating the temperature-insensitive, phase-matching angles can be extended to other fundamental wavelengths and other crystal compositions. 12 figures.

  16. Adiabatically tapered microstructured mode converter for selective excitation of the fundamental mode in a few mode fiber.

    PubMed

    Taher, Aymen Belhadj; Di Bin, Philippe; Bahloul, Faouzi; Tartaret-Josnière, Etienne; Jossent, Mathieu; Février, Sébastien; Attia, Rabah

    2016-01-25

    We propose a new technique to selectively excite the fundamental mode in a few mode fiber (FMF). This method of excitation is made from a single mode fiber (SMF) which is inserted facing the FMF into an air-silica microstructured cane before the assembly is adiabatically tapered. We study theoretically and numerically this method by calculating the effective indices of the propagated modes, their amplitudes along the taper and the adiabaticity criteria, showing the ability to achieve an excellent selective excitation of the fundamental mode in the FMF with negligible loss. We experimentally demonstrate that the proposed solution provides a successful mode conversion and allows an almost excellent fundamental mode excitation in the FMF (representing 99.8% of the total power).

  17. Integrated and spectral energetics of the GLAS general circulation model

    NASA Technical Reports Server (NTRS)

    Tenenbaum, J.

    1982-01-01

    Integrated and spectral error energetics of the GLAS General circulation model are compared with observations for periods in January 1975, 1976, and 1977. For two cases the model shows significant skill in predicting integrated energetics quantities out to two weeks, and for all three cases, the integrated monthly mean energetics show qualitative improvements over previous versions of the model in eddy kinetic energy and barotropic conversions. Fundamental difficulties remain with leakage of energy to the stratospheric level, particularly above strong initial jet streams associated in part with regions of steep terrain. The spectral error growth study represents the first comparison of general circulation model spectral energetics predictions with the corresponding observational spectra on a day by day basis. The major conclusion is that eddy kinetics energy can be correct while significant errors occur in the kinetic energy of wavenumber 3. Both the model and observations show evidence of single wavenumber dominance in eddy kinetic energy and the correlation of spectral kinetics and potential energy.

  18. Photocatalytic CO2 conversion by polymeric carbon nitrides.

    PubMed

    Fang, Yuanxing; Wang, Xinchen

    2018-05-10

    CO2 is a vital compond for life, and its concentration significantly affects the living environment of the Earth. Extensive effort has been devoted to balance its concentration. Among the developed approaches, photocatalytic CO2 conversion is considered as an ideal option. Previous reports suggest polymeric carbon nitride (PCN) can be effectively used as a metal-free photocatalyst to convert CO2. Herein, the recent developments of PCN and the related photocatalysts for CO2 conversion are summarized from the fundamental of using PCN, and their extended applications through molecular modification and physical/chemical coupling with other substances. The concluding remarks finally indicate the future challenges of using PCN materials for relevant solar-driven applications.

  19. Magnetic Materials Suitable for Fission Power Conversion in Space Missions

    NASA Technical Reports Server (NTRS)

    Bowman, Cheryl L.

    2012-01-01

    Terrestrial fission reactors use combinations of shielding and distance to protect power conversion components from elevated temperature and radiation. Space mission systems are necessarily compact and must minimize shielding and distance to enhance system level efficiencies. Technology development efforts to support fission power generation scenarios for future space missions include studying the radiation tolerance of component materials. The fundamental principles of material magnetism are reviewed and used to interpret existing material radiation effects data for expected fission power conversion components for target space missions. Suitable materials for the Fission Power System (FPS) Project are available and guidelines are presented for bounding the elevated temperature/radiation tolerance envelope for candidate magnetic materials.

  20. Small

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montoya, Joseph

    Representing the Center on Nanostructuring for Efficient Energy Conversion (CNEEC), this document is one of the entries in the Ten Hundred and One Word Challenge. As part of the challenge, the 46 Energy Frontier Research Centers were invited to represent their science in images, cartoons, photos, words and original paintings, but any descriptions or words could only use the 1000 most commonly used words in the English language, with the addition of one word important to each of the EFRCs and the mission of DOE energy. The mission of CNEEC is to understand how nanostructuring can enhance efficiency for energymore » conversion and solve fundamental cross-cutting problems in advanced energy conversion and storage systems.« less

  1. Voice Conversion Using Pitch Shifting Algorithm by Time Stretching with PSOLA and Re-Sampling

    NASA Astrophysics Data System (ADS)

    Mousa, Allam

    2010-01-01

    Voice changing has many applications in the industry and commercial filed. This paper emphasizes voice conversion using a pitch shifting method which depends on detecting the pitch of the signal (fundamental frequency) using Simplified Inverse Filter Tracking (SIFT) and changing it according to the target pitch period using time stretching with Pitch Synchronous Over Lap Add Algorithm (PSOLA), then resampling the signal in order to have the same play rate. The same study was performed to see the effect of voice conversion when some Arabic speech signal is considered. Treatment of certain Arabic voiced vowels and the conversion between male and female speech has shown some expansion or compression in the resulting speech. Comparison in terms of pitch shifting is presented here. Analysis was performed for a single frame and a full segmentation of speech.

  2. Calorific values and combustion chemistry of animal manure

    USDA-ARS?s Scientific Manuscript database

    Combustion chemistry and calorific value analyses are the fundamental information for evaluating different biomass waste-to-energy conversion operations. Specific chemical exergy of manure and other biomass feedstock will provide a measure for the theoretically maximum attainable energy. The specifi...

  3. Empowerment model of biomass in west java

    NASA Astrophysics Data System (ADS)

    Mulyana, C.; Fitriani, N. I.; Saad, A.; Yuliah, Y.

    2017-06-01

    Scarcity of fossil energy accelerates the search of renewable energy sources as the substitution. In West Java, biomass has potential to be developed into bio-briquette because the resources are abundant. The objectives of this research are mapping the potency of biomass as bio-briquette in West Java, and making the model of the empowerment biomass potential involving five fundamental step which are raw material, pre-processing process, conversion mechanism, products, and end user. The main object of this model focused on 3 forms which are solid, liquid, and gas which was made by involving the community component as the owner biomass, district government, academics and researcher communities, related industries as users of biomass, and the central government as the policy holders and investors as a funder. In the model was described their respective roles and mutual relationship one with another so that the bio-briquette as a substitute of fossil fuels can be realized. Application of this model will provide the benefits in renewability energy sources, environmental, socio economical and energy security.

  4. Decomposing Fuel Economy and Greenhouse Gas Regulatory Standards in the Energy Conversion Efficiency and Tractive Energy Domain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pannone, Greg; Thomas, John F; Reale, Michael

    The three foundational elements that determine mobile source energy use and tailpipe carbon dioxide (CO2) emissions are the tractive energy requirements of the vehicle, the on-cycle energy conversion efficiency of the propulsion system, and the energy source. The tractive energy requirements are determined by the vehicle's mass, aerodynamic drag, tire rolling resistance, and parasitic drag. Oncycle energy conversion of the propulsion system is dictated by the tractive efficiency, non-tractive energy use, kinetic energy recovery, and parasitic losses. The energy source determines the mobile source CO2 emissions. For current vehicles, tractive energy requirements and overall energy conversion efficiency are readily availablemore » from the decomposition of test data. For future applications, plausible levels of mass reduction, aerodynamic drag improvements, and tire rolling resistance can be transposed into the tractive energy domain. Similarly, by combining thermodynamic, mechanical efficiency, and kinetic energy recovery fundamentals with logical proxies, achievable levels of energy conversion efficiency can be established to allow for the evaluation of future powertrain requirements. Combining the plausible levels of tractive energy and on-cycle efficiency provides a means to compute sustainable vehicle and propulsion system scenarios that can achieve future regulations. Using these principles, the regulations established in the United States (U.S.) for fuel consumption and CO2 emissions are evaluated. Fleet-level scenarios are generated and compared to the technology deployment assumptions made during rule-making. When compared to the rule-making assumptions, the results indicate that a greater level of advanced vehicle and propulsion system technology deployment will be required to achieve the model year 2025 U.S. standards for fuel economy and CO2 emissions.« less

  5. From frames to OWL2: Converting the Foundational Model of Anatomy.

    PubMed

    Detwiler, Landon T; Mejino, Jose L V; Brinkley, James F

    2016-05-01

    The Foundational Model of Anatomy (FMA) [Rosse C, Mejino JLV. A reference ontology for bioinformatics: the Foundational Model of Anatomy. J. Biomed. Inform. 2003;36:478-500] is an ontology that represents canonical anatomy at levels ranging from the entire body to biological macromolecules, and has rapidly become the primary reference ontology for human anatomy, and a template for model organisms. Prior to this work, the FMA was developed in a knowledge modeling language known as Protégé Frames. Frames is an intuitive representational language, but is no longer the industry standard. Recognizing the need for an official version of the FMA in the more modern semantic web language OWL2 (hereafter referred to as OWL), the objective of this work was to create a generalizable Frames-to-OWL conversion tool, to use the tool to convert the FMA to OWL, to "clean up" the converted FMA so that it classifies under an EL reasoner, and then to do all further development in OWL. The conversion tool is a Java application that uses the Protégé knowledge representation API for interacting with the initial Frames ontology, and uses the OWL-API for producing new statements (axioms, etc.) in OWL. The converter is relation centric. The conversion is configurable, on a property-by-property basis, via user-specifiable XML configuration files. The best conversion, for each property, was determined in conjunction with the FMA knowledge author. The convertor is potentially generalizable, which we partially demonstrate by using it to convert our Ontology of Craniofacial Development and Malformation as well as the FMA. Post-conversion cleanup involved using the Explain feature of Protégé to trace classification errors under the ELK reasoner in Protégé, fixing the errors, then re-running the reasoner. We are currently doing all our development in the converted and cleaned-up version of the FMA. The FMA (updated every 3 months) is available via our FMA web page http://si.washington.edu/projects/fma, which also provides access to mailing lists, an issue tracker, a SPARQL endpoint (updated every week), and an online browser. The converted OCDM is available at http://www.si.washington.edu/projects/ocdm. The conversion code is open source, and available at http://purl.org/sig/software/frames2owl. Prior to the post-conversion cleanup 73% of the more than 100,000 classes were unsatisfiable. After correction of six types of errors no classes remained unsatisfiable. Because our FMA conversion captures all or most of the information in the Frames version, is the only complete OWL version that classifies under an EL reasoner, and is maintained by the FMA authors themselves, we propose that this version should be the only official release version of the FMA in OWL, supplanting all other versions. Although several issues remain to be resolved post-conversion, release of a single, standardized version of the FMA in OWL will greatly facilitate its use in informatics research and in the development of a global knowledge base within the semantic web. Because of the fundamental nature of anatomy in both understanding and organizing biomedical information, and because of the importance of the FMA in particular in representing human anatomy, the FMA in OWL should greatly accelerate the development of an anatomically based structural information framework for organizing and linking a large amount of biomedical information. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Star formation trends in high-redshift galaxy surveys: the elephant or the tail?

    NASA Astrophysics Data System (ADS)

    Stringer, Martin; Cole, Shaun; Frenk, Carlos S.; Stark, Daniel P.

    2011-07-01

    Star formation rate and accumulated stellar mass are two fundamental physical quantities that describe the evolutionary state of a forming galaxy. Two recent attempts to determine the relationship between these quantities, by interpreting a sample of star-forming galaxies at redshift of z˜ 4, have led to opposite conclusions. Using a model galaxy population, we investigate possible causes for this discrepancy and conclude that minor errors in the conversion from observables to physical quantities can lead to a major misrepresentation when applied without awareness of sample selection. We also investigate, in a general way, the physical origin of the correlation between star formation rate and stellar mass within the hierarchical galaxy formation theory.

  7. Frequency conversion of structured light.

    PubMed

    Steinlechner, Fabian; Hermosa, Nathaniel; Pruneri, Valerio; Torres, Juan P

    2016-02-15

    Coherent frequency conversion of structured light, i.e. the ability to manipulate the carrier frequency of a wave front without distorting its spatial phase and intensity profile, provides the opportunity for numerous novel applications in photonic technology and fundamental science. In particular, frequency conversion of spatial modes carrying orbital angular momentum can be exploited in sub-wavelength resolution nano-optics and coherent imaging at a wavelength different from that used to illuminate an object. Moreover, coherent frequency conversion will be crucial for interfacing information stored in the high-dimensional spatial structure of single and entangled photons with various constituents of quantum networks. In this work, we demonstrate frequency conversion of structured light from the near infrared (803 nm) to the visible (527 nm). The conversion scheme is based on sum-frequency generation in a periodically poled lithium niobate crystal pumped with a 1540-nm Gaussian beam. We observe frequency-converted fields that exhibit a high degree of similarity with the input field and verify the coherence of the frequency-conversion process via mode projection measurements with a phase mask and a single-mode fiber. Our results demonstrate the suitability of exploiting the technique for applications in quantum information processing and coherent imaging.

  8. Nanostructured materials for advanced energy conversion and storage devices

    NASA Astrophysics Data System (ADS)

    Aricò, Antonino Salvatore; Bruce, Peter; Scrosati, Bruno; Tarascon, Jean-Marie; van Schalkwijk, Walter

    2005-05-01

    New materials hold the key to fundamental advances in energy conversion and storage, both of which are vital in order to meet the challenge of global warming and the finite nature of fossil fuels. Nanomaterials in particular offer unique properties or combinations of properties as electrodes and electrolytes in a range of energy devices. This review describes some recent developments in the discovery of nanoelectrolytes and nanoelectrodes for lithium batteries, fuel cells and supercapacitors. The advantages and disadvantages of the nanoscale in materials design for such devices are highlighted.

  9. Ionic Graphitization of Ultrathin Films of Ionic Compounds.

    PubMed

    Kvashnin, A G; Pashkin, E Y; Yakobson, B I; Sorokin, P B

    2016-07-21

    On the basis of ab initio density functional calculations, we performed a comprehensive investigation of the general graphitization tendency in rocksalt-type structures. In this paper, we determine the critical slab thickness for a range of ionic cubic crystal systems, below which a spontaneous conversion from a cubic to a layered graphitic-like structure occurs. This conversion is driven by surface energy reduction. Using only fundamental parameters of the compounds such as the Allen electronegativity and ionic radius of the metal atom, we also develop an analytical relation to estimate the critical number of layers.

  10. Process Design and Economics for the Conversion of Algal Biomass to Biofuels: Algal Biomass Fractionation to Lipid-and Carbohydrate-Derived Fuel Products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, R.; Kinchin, C.; Markham, J.

    2014-09-11

    The U.S. Department of Energy (DOE) promotes the production of a range of liquid fuels and fuel blendstocks from biomass feedstocks by funding fundamental and applied research that advances the state of technology in biomass production, conversion, and sustainability. As part of its involvement in this program, the National Renewable Energy Laboratory (NREL) investigates the conceptual production economics of these fuels. This includes fuel pathways from lignocellulosic (terrestrial) biomass, as well as from algal (aquatic) biomass systems.

  11. Mode conversion in a tapered fiber via a whispering gallery mode resonator and its application as add/drop filter.

    PubMed

    Huang, Ligang; Wang, Jie; Peng, Weihua; Zhang, Wending; Bo, Fang; Yu, Xuanyi; Gao, Feng; Chang, Pengfa; Song, Xiaobo; Zhang, Guoquan; Xu, Jingjun

    2016-02-01

    Based on the conversion between the fundamental mode (LP01) and the higher-order mode (LP11) in a tapered fiber via a whispering gallery mode resonator, an add/drop filter was proposed and demonstrated experimentally, in which the resonator only interacted with one tapered fiber, rather than two tapered fibers as in conventional configurations. The filter gains advantages of easy alignment and low scattering loss over the other filters based on tapered fiber and resonator, and will be useful in application.

  12. Electron magnetic reconnection without ion coupling in Earth's turbulent magnetosheath

    NASA Astrophysics Data System (ADS)

    Phan, T. D.; Eastwood, J. P.; Shay, M. A.; Drake, J. F.; Sonnerup, B. U. Ö.; Fujimoto, M.; Cassak, P. A.; Øieroset, M.; Burch, J. L.; Torbert, R. B.; Rager, A. C.; Dorelli, J. C.; Gershman, D. J.; Pollock, C.; Pyakurel, P. S.; Haggerty, C. C.; Khotyaintsev, Y.; Lavraud, B.; Saito, Y.; Oka, M.; Ergun, R. E.; Retino, A.; Le Contel, O.; Argall, M. R.; Giles, B. L.; Moore, T. E.; Wilder, F. D.; Strangeway, R. J.; Russell, C. T.; Lindqvist, P. A.; Magnes, W.

    2018-05-01

    Magnetic reconnection in current sheets is a magnetic-to-particle energy conversion process that is fundamental to many space and laboratory plasma systems. In the standard model of reconnection, this process occurs in a minuscule electron-scale diffusion region1,2. On larger scales, ions couple to the newly reconnected magnetic-field lines and are ejected away from the diffusion region in the form of bi-directional ion jets at the ion Alfvén speed3-5. Much of the energy conversion occurs in spatially extended ion exhausts downstream of the diffusion region6. In turbulent plasmas, which contain a large number of small-scale current sheets, reconnection has long been suggested to have a major role in the dissipation of turbulent energy at kinetic scales7-11. However, evidence for reconnection plasma jetting in small-scale turbulent plasmas has so far been lacking. Here we report observations made in Earth's turbulent magnetosheath region (downstream of the bow shock) of an electron-scale current sheet in which diverging bi-directional super-ion-Alfvénic electron jets, parallel electric fields and enhanced magnetic-to-particle energy conversion were detected. Contrary to the standard model of reconnection, the thin reconnecting current sheet was not embedded in a wider ion-scale current layer and no ion jets were detected. Observations of this and other similar, but unidirectional, electron jet events without signatures of ion reconnection reveal a form of reconnection that can drive turbulent energy transfer and dissipation in electron-scale current sheets without ion coupling.

  13. Electron magnetic reconnection without ion coupling in Earth's turbulent magnetosheath.

    PubMed

    Phan, T D; Eastwood, J P; Shay, M A; Drake, J F; Sonnerup, B U Ö; Fujimoto, M; Cassak, P A; Øieroset, M; Burch, J L; Torbert, R B; Rager, A C; Dorelli, J C; Gershman, D J; Pollock, C; Pyakurel, P S; Haggerty, C C; Khotyaintsev, Y; Lavraud, B; Saito, Y; Oka, M; Ergun, R E; Retino, A; Le Contel, O; Argall, M R; Giles, B L; Moore, T E; Wilder, F D; Strangeway, R J; Russell, C T; Lindqvist, P A; Magnes, W

    2018-05-01

    Magnetic reconnection in current sheets is a magnetic-to-particle energy conversion process that is fundamental to many space and laboratory plasma systems. In the standard model of reconnection, this process occurs in a minuscule electron-scale diffusion region 1,2 . On larger scales, ions couple to the newly reconnected magnetic-field lines and are ejected away from the diffusion region in the form of bi-directional ion jets at the ion Alfvén speed 3-5 . Much of the energy conversion occurs in spatially extended ion exhausts downstream of the diffusion region 6 . In turbulent plasmas, which contain a large number of small-scale current sheets, reconnection has long been suggested to have a major role in the dissipation of turbulent energy at kinetic scales 7-11 . However, evidence for reconnection plasma jetting in small-scale turbulent plasmas has so far been lacking. Here we report observations made in Earth's turbulent magnetosheath region (downstream of the bow shock) of an electron-scale current sheet in which diverging bi-directional super-ion-Alfvénic electron jets, parallel electric fields and enhanced magnetic-to-particle energy conversion were detected. Contrary to the standard model of reconnection, the thin reconnecting current sheet was not embedded in a wider ion-scale current layer and no ion jets were detected. Observations of this and other similar, but unidirectional, electron jet events without signatures of ion reconnection reveal a form of reconnection that can drive turbulent energy transfer and dissipation in electron-scale current sheets without ion coupling.

  14. Cell phone-induced ostracism threatens fundamental needs.

    PubMed

    Hales, Andrew H; Dvir, Maayan; Wesselmann, Eric D; Kruger, Daniel J; Finkenauer, Catrin

    2018-01-01

    Cell phones are useful tools with both practical and social benefits. However, using them in the context of face-to-face conversations may be problematic. We consider this behavior a form of ostracism and test its effects on the satisfaction of basic psychological needs for belonging, self-esteem, control, and meaningful existence. In Study 1 participants who recalled a time in which a friend was checking a cell phone during a serious conversation reported feeling more ostracized (ignored and excluded), greater pain, and threat to basic needs than participants recalling a conversation without a cell phone interruption or a control event. Study 2 replicated and extended this effect: Cell phone-induced ostracism's effects were partially mediated by decreased feelings of relational evaluation, and threatened basic needs both in serious and casual conversation contexts. Findings from both studies also indicated that cell phone-induced ostracism hurts women more so than men.

  15. Magnetic energy storage and conversion in the solar atmosphere

    NASA Technical Reports Server (NTRS)

    Spicer, D. S.; Mariska, J. T.; Boris, J. P.

    1986-01-01

    According to the approach employed in this investigation, particularly important simple configurations of magnetic field and plasma are identified, and it is attempted to achieve an understanding of the large-scale dynamic processes and transformations which these systems can undergo. Fundamental concepts are discussed, taking into account aspects of magnetic energy generation, ideal MHD theory, non-MHD properties, the concept of 'anomalous' resistivity, and global electrodynamic coupling. Questions of magnetically controlled energy conversion are examined, giving attention to magnetic modifications of plasma transport, the transition region structure and flows, channeling and acceleration of plasma, channeling and dissipation of MHD waves, and anomalous dissipation of field-aligned currents. A description of the characteristics of magnetohydrodynamic energy conversion is also provided, and outstanding questions are discussed.

  16. Frequency conversion of cw chemical HF laser radiation in nonlinear crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klement'ev, V.M.; Kolpakov, Y.G.; Pecherskii, Y.Y.

    1977-07-01

    A description is given of a cw chemical HF laser and its characteristics. The results are reported of investigations of the efficiency of conversion of the HF laser radiation into second harmonics and combination frequencies in LiNbO/sub 3/, LiIO/sub 3/, and Ag/sub 3/AsS/sub 3/ crystals. The most efficient conversion was achieved in proustite (Ag/sub 3/AsS/sub 3/) when the second-harmonic power was approx.3..mu..W and the fundamental-frequency power was approx.100 mW. Twenty-one emission lines were obtained in the 1.39--1.49 ..mu.. range. The HF laser radiation was converted to the visible range (0.522--0.516 ..mu..).

  17. Progress in Fast Ignition Studies with Electrons and Protons

    NASA Astrophysics Data System (ADS)

    MacKinnon, A. J.; Akli, K. U.; Bartal, T.; Beg, F. N.; Chawla, S.; Chen, C. D.; Chen, H.; Chen, S.; Chowdhury, E.; Fedosejevs, R.; Freeman, R. R.; Hey, D.; Higginson, D.; Key, M. H.; King, J. A.; Link, A.; Ma, T.; MacPhee, A. G.; Offermann, D.; Ovchinnikov, V.; Pasley, J.; Patel, P. K.; Ping, Y.; Schumacher, D. W.; Stephens, R. B.; Tsui, Y. Y.; Wei, M. S.; Van Woerkom, L. D.

    2009-09-01

    Isochoric heating of inertially confined fusion plasmas by laser driven MeV electrons or protons is an area of great topical interest in the inertial confinement fusion community, particularly with respect to the fast ignition (FI) concept for initiating burn in a fusion capsule. In order to investigate critical aspects needed for a FI point design, experiments were performed to study 1) laser-to-electrons or protons conversion issues and 2) laser-cone interactions including prepulse effects. A large suite of diagnostics was utilized to study these important parameters. Using cone—wire surrogate targets it is found that pre-pulse levels on medium scale lasers such as Titan at Lawrence Livermore National Laboratory produce long scale length plasmas that strongly effect coupling of the laser to FI relevant electrons inside cones. The cone wall thickness also affects coupling to the wire. Conversion efficiency to protons has also been measured and modeled as a function of target thickness, material. Conclusions from the proton and electron source experiments will be presented. Recent advances in modeling electron transport and innovative target designs for reducing igniter energy and increasing gain curves will also be discussed. In conclusion, a program of study will be presented based on understanding the fundamental physics of the electron or proton source relevant to FI.

  18. Effects of Real-Time Cochlear Implant Simulation on Speech Perception and Production

    ERIC Educational Resources Information Center

    Casserly, Elizabeth D.

    2013-01-01

    Real-time use of spoken language is a fundamentally interactive process involving speech perception, speech production, linguistic competence, motor control, neurocognitive abilities such as working memory, attention, and executive function, environmental noise, conversational context, and--critically--the communicative interaction between…

  19. Directional Radiometry and Radiative Transfer: the Convoluted Path From Centuries-old Phenomenology to Physical Optics

    NASA Technical Reports Server (NTRS)

    Mishchenko, Michael I.

    2014-01-01

    This Essay traces the centuries-long history of the phenomenological disciplines of directional radiometry and radiative transfer in turbid media, discusses their fundamental weaknesses, and outlines the convoluted process of their conversion into legitimate branches of physical optics.

  20. Teacher Professionalism: The Wrong Conversation.

    ERIC Educational Resources Information Center

    Coulter, David; Orme, Liz

    2000-01-01

    Defining teachers as professionals in the same way that doctors or engineers are professionals is reductionist because such definition generally distorts the moral dimensions of teaching by using the wrong language (clients, customers), focusing on limited forms of knowledge, and ignoring the fundamental democratic character of education.…

  1. Hybrid Inorganic/Organic Photovoltaics: Translating Fundamental Nanostructure Research to Enhanced Solar Conversion Efficiency

    DTIC Science & Technology

    2008-12-31

    component hybrid nanocrystals constituting pentacene or single wall carbon nanotube (SWCNT) as well as through control of interfacial chemistry and linkage...nanotubes-quantum dot conjugates or pentacene -quantum dot composits into organic matrices significantly improved photoconductivity of polymer/nanocrystal

  2. Electrostatic origin of the mechanochemical rotary mechanism and the catalytic dwell of F1-ATPase

    PubMed Central

    Mukherjee, Shayantani; Warshel, Arieh

    2011-01-01

    Understanding the nature of energy transduction in life processes requires a quantitative description of the energetics of the conversion of ATP to ADP by ATPases. Previous attempts to do so have provided an interesting insight but could not account for the rotary mechanism by a nonphenomenological structure/energy description. In particular it has been very challenging to account for the observations of the 80° and 40° rotational substates, without any prior information about such states in the simulation procedure. Here we use a coarse-grained model of F1-ATPase and generate, without the adjustment of phenomenological parameters, a structure-based free energy landscape that reproduces the energetics of the mechanochemical process. It is found that the landscape along the relevant rotary path is determined by the electrostatic free energy and not by steric effects. Furthermore, the generated surface and the corresponding Langevin dynamics simulations identify a hidden conformational barrier that provides a new fundamental interpretation of the catalytic dwell and illuminate the nature of the energy conversion process. PMID:22143769

  3. High-Efficiency Selective Electron Tunnelling in a Heterostructure Photovoltaic Diode.

    PubMed

    Jia, Chuancheng; Ma, Wei; Gu, Chunhui; Chen, Hongliang; Yu, Haomiao; Li, Xinxi; Zhang, Fan; Gu, Lin; Xia, Andong; Hou, Xiaoyuan; Meng, Sheng; Guo, Xuefeng

    2016-06-08

    A heterostructure photovoltaic diode featuring an all-solid-state TiO2/graphene/dye ternary interface with high-efficiency photogenerated charge separation/transport is described here. Light absorption is accomplished by dye molecules deposited on the outside surface of graphene as photoreceptors to produce photoexcited electron-hole pairs. Unlike conventional photovoltaic conversion, in this heterostructure both photoexcited electrons and holes tunnel along the same direction into graphene, but only electrons display efficient ballistic transport toward the TiO2 transport layer, thus leading to effective photon-to-electricity conversion. On the basis of this ipsilateral selective electron tunnelling (ISET) mechanism, a model monolayer photovoltaic device (PVD) possessing a TiO2/graphene/acridine orange ternary interface showed ∼86.8% interfacial separation/collection efficiency, which guaranteed an ultrahigh absorbed photon-to-current efficiency (APCE, ∼80%). Such an ISET-based PVD may become a fundamental device architecture for photovoltaic solar cells, photoelectric detectors, and other novel optoelectronic applications with obvious advantages, such as high efficiency, easy fabrication, scalability, and universal availability of cost-effective materials.

  4. Characteristics of fundamental combustion and NOx emission using various rank coals.

    PubMed

    Kim, Sung Su; Kang, Youn Suk; Lee, Hyun Dong; Kim, Jae-Kwan; Hong, Sung Chang

    2011-03-01

    Eight types of coals of different rank were selected and their fundamental combustion characteristics were examined along with the conversion of volatile nitrogen (N) to nitrogen oxides (NOx)/fuel N to NOx. The activation energy, onset temperature, and burnout temperature were obtained from the differential thermogravimetry curve and Arrhenius plot, which were derived through thermo-gravimetric analysis. In addition, to derive the combustion of volatile N to NOx/fuel N to NOx, the coal sample, which was pretreated at various temperatures, was burned, and the results were compared with previously derived fundamental combustion characteristics. The authors' experimental results confirmed that coal rank was highly correlated with the combustion of volatile N to NOx/fuel N to NOx.

  5. Monkeys and Humans Share a Common Computation for Face/Voice Integration

    PubMed Central

    Chandrasekaran, Chandramouli; Lemus, Luis; Trubanova, Andrea; Gondan, Matthias; Ghazanfar, Asif A.

    2011-01-01

    Speech production involves the movement of the mouth and other regions of the face resulting in visual motion cues. These visual cues enhance intelligibility and detection of auditory speech. As such, face-to-face speech is fundamentally a multisensory phenomenon. If speech is fundamentally multisensory, it should be reflected in the evolution of vocal communication: similar behavioral effects should be observed in other primates. Old World monkeys share with humans vocal production biomechanics and communicate face-to-face with vocalizations. It is unknown, however, if they, too, combine faces and voices to enhance their perception of vocalizations. We show that they do: monkeys combine faces and voices in noisy environments to enhance their detection of vocalizations. Their behavior parallels that of humans performing an identical task. We explored what common computational mechanism(s) could explain the pattern of results we observed across species. Standard explanations or models such as the principle of inverse effectiveness and a “race” model failed to account for their behavior patterns. Conversely, a “superposition model”, positing the linear summation of activity patterns in response to visual and auditory components of vocalizations, served as a straightforward but powerful explanatory mechanism for the observed behaviors in both species. As such, it represents a putative homologous mechanism for integrating faces and voices across primates. PMID:21998576

  6. An elegant route to overcome fundamentally-limited light extraction in AlGaN deep-ultraviolet light-emitting diodes: Preferential outcoupling of strong in-plane emission

    PubMed Central

    Lee, Jong Won; Kim, Dong Yeong; Park, Jun Hyuk; Schubert, E. Fred; Kim, Jungsub; Lee, Jinsub; Kim, Yong-Il; Park, Youngsoo; Kim, Jong Kyu

    2016-01-01

    While there is an urgent need for semiconductor-based efficient deep ultraviolet (DUV) sources, the efficiency of AlGaN DUV light-emitting diodes (LEDs) remains very low because the extraction of DUV photons is significantly limited by intrinsic material properties of AlGaN. Here, we present an elegant approach based on a DUV LED having multiple mesa stripes whose inclined sidewalls are covered by a MgF2/Al omni-directional mirror to take advantage of the strongly anisotropic transverse-magnetic polarized emission pattern of AlGaN quantum wells. The sidewall-emission-enhanced DUV LED breaks through the fundamental limitations caused by the intrinsic properties of AlGaN, thus shows a remarkable improvement in light extraction as well as operating voltage. Furthermore, an analytic model is developed to understand and precisely estimate the extraction of DUV photons from AlGaN DUV LEDs, and hence to provide promising routes for maximizing the power conversion efficiency. PMID:26935402

  7. An elegant route to overcome fundamentally-limited light extraction in AlGaN deep-ultraviolet light-emitting diodes: Preferential outcoupling of strong in-plane emission

    NASA Astrophysics Data System (ADS)

    Lee, Jong Won; Kim, Dong Yeong; Park, Jun Hyuk; Schubert, E. Fred; Kim, Jungsub; Lee, Jinsub; Kim, Yong-Il; Park, Youngsoo; Kim, Jong Kyu

    2016-03-01

    While there is an urgent need for semiconductor-based efficient deep ultraviolet (DUV) sources, the efficiency of AlGaN DUV light-emitting diodes (LEDs) remains very low because the extraction of DUV photons is significantly limited by intrinsic material properties of AlGaN. Here, we present an elegant approach based on a DUV LED having multiple mesa stripes whose inclined sidewalls are covered by a MgF2/Al omni-directional mirror to take advantage of the strongly anisotropic transverse-magnetic polarized emission pattern of AlGaN quantum wells. The sidewall-emission-enhanced DUV LED breaks through the fundamental limitations caused by the intrinsic properties of AlGaN, thus shows a remarkable improvement in light extraction as well as operating voltage. Furthermore, an analytic model is developed to understand and precisely estimate the extraction of DUV photons from AlGaN DUV LEDs, and hence to provide promising routes for maximizing the power conversion efficiency.

  8. Electricity from Sunlight: The Future of Photovoltaics. Worldwatch Paper 52.

    ERIC Educational Resources Information Center

    Flavin, Christopher

    Solar photovoltaic cells have been called the ultimate energy technology, environmentally benign and without moving parts, solar cells directly convert sunlight into electricity. Photovoltaic energy conversion is fundamentally different from all other forms of electricity generation. Without turbines, generators or other mechanical equipment, it…

  9. A Functional Syntax of German.

    ERIC Educational Resources Information Center

    Fichtner, Edward G.

    Students in intermediate language courses, especially conversational courses, can benefit from a simple set of instructions for combining words and phrases into sentences. A description of the basic concepts determining word order in German--the fundamental sequence of clause elements, the "infrastructure," and the movement rules by which the…

  10. Geothermal Today: 2003 Geothermal Technologies Program Highlights (Revised)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2004-05-01

    This outreach publication highlights milestones and accomplishments of the DOE Geothermal Technologies Program for 2003. Included in this publication are discussions of geothermal fundamentals, enhanced geothermal systems, direct-use applications, geothermal potential in Idaho, coating technology, energy conversion R&D, and the GeoPowering the West initiative.

  11. Fan Cart: The Next Generation

    ERIC Educational Resources Information Center

    Lamore, Brian

    2016-01-01

    For years the fan cart has provided physics students with an excellent resource for exploring fundamental mechanics concepts such as acceleration, Newton's laws, impulse, momentum, work-energy, and energy conversions. "The Physics Teacher" has even seen some excellent do-it-yourself (DIY) fan carts and activities. If you are interested…

  12. Design space for space design: Dialogs through boundary objects at the intersections of art, design, science, and engineering

    NASA Astrophysics Data System (ADS)

    Balint, Tibor S.; Pangaro, Paul

    2017-05-01

    For over half a century space exploration has been dominated by engineering and technology driven practices. This paradigm leaves limited room for art and design. Yet in other parts of our lives, art and design play important roles: they stimulate new ideas and connect people to their experiences and to each other at a deeper level, while affecting our worldview as we evolve our cognitive models. We develop these models through circular conversations with our environment, through perception and making sense through our sensory systems and responding back through language and interactions. Artists and designers create artifacts through conversation cycles of sense-giving and sense-making, thus increasing variety in the world in the form of evolving messages. Each message becomes information when the observer decodes it, through multiple sense-making and re-sampling cycles. The messages form triggers to the cognitive state of the observer. Having a shared key between the artist/designer and the observer-for example, in the form of language, gestures, and artistic/design styles-is fundamental to encode and decode the information, in conversations. Art, design, science, and engineering, are all creative practices. Yet, they often speak different languages, where some parts may correspond, while others address a different variety in a cybernetic sense. These specialized languages within disciplines streamline communications, but limit variety. Thus, different languages between disciplines may introduce communication blocks. Nevertheless, these differences are desired as they add variety to the interactions, and could lead to novel discourses and possibilities. We may dissolve communication blocks through the introduction of boundary objects in the intersection of multiple disciplines. Boundary objects can ground ideas and bridge language diversity across disciplines. These artifacts are created to facilitate circular cybernetic conversations, supporting convergence towards common shared languages between the actors. The shared language can also create new variety that evolves through conversations between the participants. Misunderstandings through conversations can also lead to new ideas, as they stimulate questions and may suggest novel solutions. In this paper we propose new categorizations for boundary objects, drawn from design and cybernetic approaches. We evidence these categories with a number of space-related object examples. Furthermore, we discuss how these boundary objects facilitate communications between diverse audiences, ranging from scientists, and engineers, to artists, designers, and the general public.

  13. Heterogeneous kinetic modeling of the catalytic conversion of cycloparaffins

    NASA Astrophysics Data System (ADS)

    Al-Sabawi, Mustafa N.

    The limited availability of high value light hydrocarbon feedstocks along with the rise in crude prices has resulted in the international recognition of the vast potential of Canada's oil sands. With the recent expansion of Canadian bitumen production come, however, many technical challenges, one of which is the significant presence of aromatics and cycloparaffins in bitumen-derived feedstocks. In addition to their negative environmental impact, aromatics limit fluid catalytic cracking (FCC) feedstock conversion, decrease the yield and quality of valuable products such as gasoline and middle distillates, increase levels of polyaromatic hydrocarbons prone to form coke on the catalyst, and ultimately compromise the FCC unit performance. Although cycloparaffins do not have such negative impacts, they are precursors of aromatics as they frequently undergo hydrogen transfer reactions. However, cycloparaffin cracking chemistry involves other competing reactions that are complex and need much investigation. This dissertation provides insights and understanding of the fundamentals of the catalytic cracking of cycloparaffins using carefully selected model compounds such as methylcyclohexane (MCH) and decalin. Thermal and catalytic cracking of these cycloparaffins on FCC-type catalysts are carried out using the CREC Riser Simulator under operating conditions similar to those of the industrial FCC units in terms of temperature, reaction time, reactant partial pressure and catalyst-to-hydrocarbon ratio. The crystallite size of the supported zeolites is varied between 0.4 and 0.9 microns, with both activity and selectivity being monitored. Catalytic conversions ranged between 4 to 16 wt% for MCH and between 8 to 27 wt% for decalin. Reaction pathways of cycloparaffins are determined, and these include ring-opening, protolytic cracking, isomerization, hydrogen transfer and transalkylation. The yields and selectivities of over 60 and 140 products, formed during MCH and decalin catalytic conversions respectively, are reported. Using these data, heterogeneous kinetic models accounting for intracrystallite molecular transport, adsorption and thermal and catalytic cracking of both cycloparaffin reactants are established. Results show that undesirable hydrogen transfer reactions are more pronounced and selectively favoured against other reactions at lower reaction temperatures, while the desirable ring-opening and cracking reactions predominate at the higher reaction temperatures. Moreover, results of the present work show that while crystallite size may have an effect on the overall conversion in some situations, there is a definite effect on the selectivity of products obtained during the cracking of MCH and decalin and the cracking of MCH in a mixture with co-reactants such as 1,3,5-triisopropylbenzene. Keywords. cycloparaffins, naphthenes, fluid catalytic cracking, kinetic modeling, Y-zeolites, diffusion, adsorption, ring-opening, hydrogen transfer, catalyst selectivity.

  14. Feedstock Supply System Design and Economics for Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels: Conversion Pathway: Biological Conversion of Sugars to Hydrocarbons The 2017 Design Case

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kevin Kenney; Kara G. Cafferty; Jacob J. Jacobson

    The U.S. Department of Energy promotes the production of a range of liquid fuels and fuel blendstocks from lignocellulosic biomass feedstocks by funding fundamental and applied research that advances the state of technology in biomass collection, conversion, and sustainability. As part of its involvement in this program, the Idaho National Laboratory (INL) investigates the feedstock logistics economics and sustainability of these fuels. Between 2000 and 2012, INL conducted a campaign to quantify the economics and sustainability of moving biomass from standing in the field or stand to the throat of the biomass conversion process. The goal of this program wasmore » to establish the current costs based on conventional equipment and processes, design improvements to the current system, and to mark annual improvements based on higher efficiencies or better designs. The 2012 programmatic target was to demonstrate a delivered biomass logistics cost of $35/dry ton. This goal was successfully achieved in 2012 by implementing field and process demonstration unit-scale data from harvest, collection, storage, preprocessing, handling, and transportation operations into INL’s biomass logistics model. Looking forward to 2017, the programmatic target is to supply biomass to the conversion facilities at a total cost of $80/dry ton and on specification with in-feed requirements. The goal of the 2017 Design Case is to enable expansion of biofuels production beyond highly productive resource areas by breaking the reliance of cost-competitive biofuel production on a single, abundant, low-cost feedstock. If this goal is not achieved, biofuel plants are destined to be small and/or clustered in select regions of the country that have a lock on low-cost feedstock. To put the 2017 cost target into perspective of past accomplishments of the cellulosic ethanol pathway, the $80 target encompasses total delivered feedstock cost, including both grower payment and logistics costs, while meeting all conversion in-feed quality targets. The 2012 $35 programmatic target included only logistics costs with a limited focus on biomass quality« less

  15. Characterization of dimethacrylate polymeric networks: a study of the crosslinked structure formed by monomers used in dental composites

    PubMed Central

    Shelton, Zachary R.; Braga, Roberto R.; Windmoller, Dario; Machado, José C.

    2011-01-01

    The resin phase of dental composites is mainly composed of combinations of dimethacrylate comonomers, with final polymeric network structure defined by monomer type/reactivity and degree of conversion. This fundamental study evaluates how increasing concentrations of the flexible triethylene glycol dimethacrylate (TEGDMA) influences void formation in bisphenol A diglycidyl dimethacrylate (BisGMA) co-polymerizations and correlates this aspect of network structure with reaction kinetic parameters and macroscopic volumetric shrinkage. Photopolymerization kinetics was followed in real-time by a near-infrared (NIR) spectroscopic technique, viscosity was assessed with a viscometer, volumetric shrinkage was followed with a linometer, free volume formation was determined by positron annihilation lifetime spectroscopy (PALS) and the sol-gel composition was determined by extraction with dichloromethane followed by 1H-NMR analysis. Results show that, as expected, volumetric shrinkage increases with TEGDMA concentration and monomer conversion. Extraction/1H-NMR studies show increasing participation of the more flexible TEGDMA towards the limiting stages of conversion/crosslinking development. As the conversion progresses, either based on longer irradiation times or greater TEGDMA concentrations, the network becomes more dense, which is evidenced by the decrease in free volume and weight loss after extraction in these situations. For the same composition (BisGMA/TEGDMA 60–40 mol%) light-cured for increasing periods of time (from 10 to 600 s), free volume decreased and volumetric shrinkage increased, in a linear relationship with conversion. However, the correlation between free volume and macroscopic volumetric shrinkage was shown to be rather complex for variable compositions exposed for the same time (600 s). The addition of TEGDMA decreases free-volume up to 40 mol% (due to increased conversion), but above that concentration, in spite of the increase in conversion/crosslinking, free volume pore size increases due to the high concentration of the more flexible monomer. In those cases, the increase in volumetric shrinkage was due to higher functional group concentration, in spite of the greater free volume. Therefore, through the application of the PALS model, this study elucidates the network formation in dimethacrylates commonly used in dental materials. PMID:21499538

  16. Characterization of dimethacrylate polymeric networks: a study of the crosslinked structure formed by monomers used in dental composites.

    PubMed

    Pfeifer, Carmem S; Shelton, Zachary R; Braga, Roberto R; Windmoller, Dario; Machado, José C; Stansbury, Jeffrey W

    2011-02-01

    The resin phase of dental composites is mainly composed of combinations of dimethacrylate comonomers, with final polymeric network structure defined by monomer type/reactivity and degree of conversion. This fundamental study evaluates how increasing concentrations of the flexible triethylene glycol dimethacrylate (TEGDMA) influences void formation in bisphenol A diglycidyl dimethacrylate (BisGMA) co-polymerizations and correlates this aspect of network structure with reaction kinetic parameters and macroscopic volumetric shrinkage. Photopolymerization kinetics was followed in real-time by a near-infrared (NIR) spectroscopic technique, viscosity was assessed with a viscometer, volumetric shrinkage was followed with a linometer, free volume formation was determined by positron annihilation lifetime spectroscopy (PALS) and the sol-gel composition was determined by extraction with dichloromethane followed by (1)H-NMR analysis. Results show that, as expected, volumetric shrinkage increases with TEGDMA concentration and monomer conversion. Extraction/(1)H-NMR studies show increasing participation of the more flexible TEGDMA towards the limiting stages of conversion/crosslinking development. As the conversion progresses, either based on longer irradiation times or greater TEGDMA concentrations, the network becomes more dense, which is evidenced by the decrease in free volume and weight loss after extraction in these situations. For the same composition (BisGMA/TEGDMA 60-40 mol%) light-cured for increasing periods of time (from 10 to 600 s), free volume decreased and volumetric shrinkage increased, in a linear relationship with conversion. However, the correlation between free volume and macroscopic volumetric shrinkage was shown to be rather complex for variable compositions exposed for the same time (600 s). The addition of TEGDMA decreases free-volume up to 40 mol% (due to increased conversion), but above that concentration, in spite of the increase in conversion/crosslinking, free volume pore size increases due to the high concentration of the more flexible monomer. In those cases, the increase in volumetric shrinkage was due to higher functional group concentration, in spite of the greater free volume. Therefore, through the application of the PALS model, this study elucidates the network formation in dimethacrylates commonly used in dental materials.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Mi; Pu, Yunqiao; Yoo, Chang Geun

    The native recalcitrance of plants hinders the biomass conversion process using current biorefinery techniques. Down-regulation of the caffeic acid O-methyltransferase (COMT) gene in the lignin biosynthesis pathway of switchgrass reduced the thermochemical and biochemical conversion recalcitrance of biomass. Due to potential environmental influences on lignin biosynthesis and deposition, studying the consequences of physicochemical changes in field-grown plants without pretreatment is essential to evaluate the performance of lignin-altered plants. In this study, we determined the chemical composition, cellulose crystallinity and the degree of its polymerization, molecular weight of hemicellulose, and cellulose accessibility of cell walls in order to better understand themore » fundamental features of why biomass is recalcitrant to conversion without pretreatment. The most important is to investigate whether traits and features are stable in the dynamics of field environmental effects over multiple years.« less

  18. High Photoelectric Conversion Efficiency of Metal Phthalocyanine/Fullerene Heterojunction Photovoltaic Device

    PubMed Central

    Lin, Chi-Feng; Zhang, Mi; Liu, Shun-Wei; Chiu, Tien-Lung; Lee, Jiun-Haw

    2011-01-01

    This paper introduces the fundamental physical characteristics of organic photovoltaic (OPV) devices. Photoelectric conversion efficiency is crucial to the evaluation of quality in OPV devices, and enhancing efficiency has been spurring on researchers to seek alternatives to this problem. In this paper, we focus on organic photovoltaic (OPV) devices and review several approaches to enhance the energy conversion efficiency of small molecular heterojunction OPV devices based on an optimal metal-phthalocyanine/fullerene (C60) planar heterojunction thin film structure. For the sake of discussion, these mechanisms have been divided into electrical and optical sections: (1) Electrical: Modification on electrodes or active regions to benefit carrier injection, charge transport and exciton dissociation; (2) Optical: Optional architectures or infilling to promote photon confinement and enhance absorption. PMID:21339999

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xiang; Shi, Hui; Szanyi, János

    Catalytic CO2 conversion to energy carriers and intermediates is of utmost importance to energy and environmental goals. However, the lack of fundamental understanding of the reaction mechanism renders designing a selective catalyst inefficient. We performed operando FTIR/SSITKA experiments to understand the correlation between the kinetics of product formation and that of surface species conversion during CO2 reduction over Pd/Al2O3 catalysts. We found that the rate-determining step for CO formation is the conversion of adsorbed formate, while that for CH4 formation is the hydrogenation of adsorbed carbonyl. The balance of the hydrogenation kinetics between adsorbed formates and carbonyls governs the selectivitiesmore » to CH4 and CO. We demonstrated how this knowledge can be used to design catalysts to achieve high selectivities to desired products.« less

  20. A Course in Fundamentals of Coal Utilization and Conversion Processes.

    ERIC Educational Resources Information Center

    Radovic, Ljubisa R.

    1985-01-01

    Describes the content, objectives, and requirements for a one-semester (30 20-hour sessions) graduate engineering course at the University of Concepcion, Chile. Major course topics include: structure and properties of coal; coal pyrolysis and carbonization; coal liquefaction; coal combustion and gasification; and economic and environmental…

  1. Accountable Talk: "Real" Conversations in Baltimore City Schools

    ERIC Educational Resources Information Center

    Ahmann, Chloe

    2017-01-01

    This article examines the fundamental disconnect between discourses of accountability in education policy and their interpretation on the ground by parents. Based on data from two sites in Baltimore--district-led teacher training and a community facing school restructuring--I argue that both parents and education professionals consider…

  2. 47 CFR 36.2 - Fundamental principles underlying procedures.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...” measurements, measurements of use are (i) determined for telecommunications plant or for work performed by operating forces on a unit basis (e.g., conversation-minute-kilometers per message, weighted standard work seconds per call) in studies of traffic handled or work performed during a representative period for all...

  3. Physiology and Genetics of Tree-Phytophage Interactions

    Treesearch

    Frances Lieutier; William J. Mattson; Michael R. Wagner

    1999-01-01

    Interactions between trees and phytophagous organisms represent an important fundamental process in the evolution of forest ecosystems. Through evolutionary time, the special traits of trees have lead the herbivore populations to differentiate and evolve in order to cope with the variability in natural resistance mechanisms of their hosts. Conversely, damage by...

  4. The Construction Site Project: Transforming Early Childhood Teacher Practice

    ERIC Educational Resources Information Center

    McNaughton, Kathryn; Krentz, Caroline

    2007-01-01

    The work of Malaguzzi (in Edwards, Gandini, & Forman, 1998; Fraser, 2006) has made the fundamentals of the preschools of Reggio Emilia familiar to many early childhood educators. The article describes an authentic project that enhanced undergraduate and postgraduate participants' understanding of the impact of collaboration, conversation, and…

  5. Spruce Budworm and Energy Metabolism?

    Treesearch

    Thakor R.  Patel

    1983-01-01

    The utilization of stored lipids (fat) for energy metabolism appears to be a fundamental process for many biological systems especially during the early stages of their development. The participation of the glyoxylate cycle (GOG) together with other metabolic sequences like gluconeogenesis and beta oxidation are necessary for the conversion of lipids to carbohydrates....

  6. A study of phycophysiology in controlled environments

    NASA Technical Reports Server (NTRS)

    Krauss, R. W.

    1971-01-01

    The primary objective of this research is to obtain fundamental data concerning the growth and metabolism of the unicellular green algae. These organisms are most likely to provide biological oxygen and a food source for space crews. Biochemical conversions, chemical composition, and cell growth and division are discussed. Chlorella sorokiniana is emphasized.

  7. Waking up Audiences: Lessons in Rhetorical Devices

    ERIC Educational Resources Information Center

    Lawrence, Samuel G.

    2015-01-01

    A fundamental challenge that all public speakers face is getting and keeping the attention of audiences. Because audiences absorb large amounts of talk with little chance of taking the floor, the potential for inattentiveness and boredom is significant. In conversational interchanges, the brief duration of speaking turns and regular transfers of…

  8. Recovery Act, EFRC Project: Solar Energy Conversion in Complex Materials (SECCM)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, Peter F.

    2015-06-25

    The goal of the Center was to design and to synthesize new materials for high efficiency photovoltaic (PV) and thermoelectric (TE) devices, predicated on new fundamental insights into equilibrium and non-equilibrium processes, including quantum phenomena, that occur in materials over various spatial and temporal scales.

  9. Jigsaw puzzle metasurface for multiple functions: polarization conversion, anomalous reflection and diffusion.

    PubMed

    Zhao, Yi; Cao, Xiangyu; Gao, Jun; Liu, Xiao; Li, Sijia

    2016-05-16

    We demonstrate a simple reconfigurable metasurface with multiple functions. Anisotropic tiles are investigated and manufactured as fundamental elements. Then, the tiles are combined in a certain sequence to construct a metasurface. Each of the tiles can be adjusted independently which is like a jigsaw puzzle and the whole metasurface can achieve diverse functions by different layouts. For demonstration purposes, we realize polarization conversion, anomalous reflection and diffusion by a jigsaw puzzle metasurface with 6 × 6 pieces of anisotropic tile. Simulated and measured results prove that our method offers a simple and effective strategy for metasurface design.

  10. Programming an Experiment Control System

    NASA Technical Reports Server (NTRS)

    Lange, Stuart

    2004-01-01

    As NASA develops plans for more and more ambitious missions into space, it is the job of NASA's researchers to develop the technologies that will make those planed missions feasible. One such technology is energy conversion. Energy is all around us; it is in the light that we see in the chemical bonds that hold compounds together, and in mass itself.Energy is the fundamental building block of our universe, yet it has always been straggle for humans to convert this energy into useable forms, like electricity. For space-based applications, NASA requires efficient energy conversion method that require little or no fuel.

  11. Quantum design of photosynthesis for bio-inspired solar-energy conversion.

    PubMed

    Romero, Elisabet; Novoderezhkin, Vladimir I; van Grondelle, Rienk

    2017-03-15

    Photosynthesis is the natural process that converts solar photons into energy-rich products that are needed to drive the biochemistry of life. Two ultrafast processes form the basis of photosynthesis: excitation energy transfer and charge separation. Under optimal conditions, every photon that is absorbed is used by the photosynthetic organism. Fundamental quantum mechanics phenomena, including delocalization, underlie the speed, efficiency and directionality of the charge-separation process. At least four design principles are active in natural photosynthesis, and these can be applied practically to stimulate the development of bio-inspired, human-made energy conversion systems.

  12. Mechanism of Resilin Elasticity

    PubMed Central

    Qin, Guokui; Hu, Xiao; Cebe, Peggy; Kaplan, David L.

    2012-01-01

    Resilin is critical in the flight and jumping systems of insects as a polymeric rubber-like protein with outstanding elasticity. However, insight into the underlying molecular mechanisms responsible for resilin elasticity remains undefined. Here we report the structure and function of resilin from Drosophila CG15920. A reversible beta-turn transition was identified in the peptide encoded by exon III and for full length resilin during energy input and release, features that correlate to the rapid deformation of resilin during functions in vivo. Micellar structures and nano-porous patterns formed after beta-turn structures were present via changes in either the thermal or mechanical inputs. A model is proposed to explain the super elasticity and energy conversion mechanisms of resilin, providing important insight into structure-function relationships for this protein. Further, this model offers a view of elastomeric proteins in general where beta-turn related structures serve as fundamental units of the structure and elasticity. PMID:22893127

  13. Gas Dynamics and Kinetics in the Cometary Coma: Theory and Observations

    NASA Technical Reports Server (NTRS)

    Combi, Michael R.; Harris, Walter M.; Smyth, William H.

    2005-01-01

    Our ability to describe the physical state of the expanding coma affects fundamental areas of cometary study both directly and indirectly. In order to convert measured abundances of gas species in the coma to gas production rates, models for the distribution and kinematics of gas species in the coma are required. Conversely, many different types of observations, together with laboratory data and theory, are still required to determine coma model attributes and parameters. Accurate relative and absolute gas production rates and their variations with time and from comet to comet are crucial to our basic understanding of the composition and structure of cometary nuclei and their place in the solar system. We review the gas dynamics and kinetics of cometary comae from both theoretical and observational perspectives, which are important for understanding the wide variety of physical conditions that are encountered.

  14. Self-regulating galaxy formation. Part 1: HII disk and Lyman alpha pressure

    NASA Technical Reports Server (NTRS)

    Cox, D. P.

    1983-01-01

    Assuming a simple but physically based prototype for behavior of interstellar material during formation of a disk galaxy, coupled with the lowest order description of infall, a scenario is developed for self-regulated disk galaxy formation. Radiation pressure, particularly that of Lyman depha (from fluorescence conversion Lyman continuum), is an essential component, maintaining an inflated disk and stopping infall when only a small fraction of the overall perturbation has joined the disk. The resulting galaxies consist of a two dimensional family whose typical scales and surface density are expressable in terms of fundamental constants. The model leads naturally to galaxies with a rich circumgalactic environment and flat rotation curves (but is weak in its analysis of the subsequent evolution of halo material).

  15. Teaching autistic children conversational speech using video modeling.

    PubMed Central

    Charlop, M H; Milstein, J P

    1989-01-01

    We assessed the effects of video modeling on acquisition and generalization of conversational skills among autistic children. Three autistic boys observed videotaped conversations consisting of two people discussing specific toys. When criterion for learning was met, generalization of conversational skills was assessed with untrained topics of conversation; new stimuli (toys); unfamiliar persons, siblings, and autistic peers; and other settings. The results indicated that the children learned through video modeling, generalized their conversational skills, and maintained conversational speech over a 15-month period. Video modeling shows much promise as a rapid and effective procedure for teaching complex verbal skills such as conversational speech. PMID:2793634

  16. Research in millimeter wave techniques

    NASA Technical Reports Server (NTRS)

    Mcmillan, R. W.

    1978-01-01

    During the past six months, efforts on this project have been devoted to: (1) continuation of construction and testing of a 6 GHz subharmonic mixer model with extension of the pumping frequency of this mixer to omega sub s/4, (2) construction of a 183 GHz subharmonic mixer based on the results of tests on this 6 GHz model, (3) ground-based radiometric measurements at 183 GHz, (4) fabrication and testing of wire grid interferometers, (5) calculations of reflected and lost power in these interferometers, and (6) calculations of the antenna temperature due to water vapor to be expected in down-looking radiometry as a function of frequency. Significant events during the past six months include: (1) Receipt of a 183 GHz single-ended fundamental mixer, (2) attainment of 6 db single sideband conversion loss with the 6 GHz subharmonic mixer model by using a 1.5 GHz (omega sub s/4) pump frequency, (3) additional ground-based radiometric measurements and (4) derivation of equations for reflection and loss for wire grid interferometers.

  17. Energy Conservation and Conversion in NIMROD Computations of Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Maddox, J. A.; Sovinec, C. R.

    2017-10-01

    Previous work modeling magnetic relaxation during non-inductive start-up at the Pegasus spherical tokamak indicates an order of magnitude gap between measured experimental temperature and simulated temperature in NIMROD. Potential causes of the plasma temperature gap include: insufficient transport modeling, too low modeled injector power input, and numerical loss of energy, as energy is not algorithmically conserved in NIMROD simulations. Simple 2D nonlinear MHD simulations explore numerical energy conservation discrepancies in NIMROD because understanding numerical loss of energy is fundamental to addressing the physical problems of the other potential causes of energy loss. Evolution of these configurations induces magnetic reconnection, which transfers magnetic energy to heat and kinetic energy. The kinetic energy is eventually damped so, magnetic energy loss must correspond to an increase in internal energy. Results in the 2D geometries indicate that numerical energy loss during reconnection depends on the temporal resolution of the dynamics. Work support from U.S. Department of Energy through a subcontract from the Plasma Science and Innovation Center.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whittingham, M. Stanley

    The chemical reactions that occur in batteries are complex, spanning a wide range of time and length scales from atomic jumps to the entire battery structure. The NECCES team of experimentalists and theorists made use of, and developed new methodologies to determine how model compound electrodes function in real time, as batteries are cycled. The team determined that kinetic control of intercalation reactions (reactions in which the crystalline structure is maintained) can be achieved by control of the materials morphology and explains and allows for the high rates of many intercalation reactions where the fundamental properties might indicate poor behaviormore » in a battery application. The small overvoltage required for kinetic control is technically effective and economically feasible. A wide range of state-of-the-art operando techniques was developed to study materials under realistic battery conditions, which are now available to the scientific community. The team also investigated the key reaction steps in conversion electrodes, where the crystal structure is destroyed on reaction with lithium and rebuilt on lithium removal. These so-called conversion reactions have in principle much higher capacities, but were found to form very reactive discharge products that reduce the overall energy efficiency on cycling. It was found that by mixing either the anion, as in FeOF, or the cation, as in Cu1-yFeyF2, the capacity on cycling could be improved. The fundamental understanding of the reactions occurring in electrode materials gained in this study will allow for the development of much improved battery systems for energy storage. This will benefit the public in longer lived electronics, higher electric vehicle ranges at lower costs, and improved grid storage that also enables renewable energy supplies such as wind and solar.« less

  19. Engineered microbial systems for enhanced conversion of lignocellulosic biomass.

    PubMed

    Elkins, James G; Raman, Babu; Keller, Martin

    2010-10-01

    In order for plant biomass to become a viable feedstock for meeting the future demand for liquid fuels, efficient and cost-effective processes must exist to breakdown cellulosic materials into their primary components. A one-pot conversion strategy or, consolidated bioprocessing, of biomass into ethanol would provide the most cost-effective route to renewable fuels and the realization of this technology is being actively pursued by both multi-disciplinary research centers and industrialists working at the very cutting edge of the field. Although a diverse range of bacteria and fungi possess the enzymatic machinery capable of hydrolyzing plant-derived polymers, none discovered so far meet the requirements for an industrial strength biocatalyst for the direct conversion of biomass to combustible fuels. Synthetic biology combined with a better fundamental understanding of enzymatic cellulose hydrolysis at the molecular level is enabling the rational engineering of microorganisms for utilizing cellulosic materials with simultaneous conversion to fuel. Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. Agricultural conversion without external water and nutrient inputs reduces terrestrial vegetation productivity

    USGS Publications Warehouse

    Smith, W. Kolby; Cleveland, Cory C.; Reed, Sasha C.; Running, Steven W.

    2014-01-01

    Driven by global population and standard of living increases, humanity co-opts a growing share of the planet's natural resources resulting in many well-known environmental trade-offs. In this study, we explored the impact of agriculture on a resource fundamental to life on Earth: terrestrial vegetation growth (net primary production; NPP). We demonstrate that agricultural conversion has reduced terrestrial NPP by ~7.0%. Increases in NPP due to agricultural conversion were observed only in areas receiving external inputs (i.e., irrigation and/or fertilization). NPP reductions were found for ~88% of agricultural lands, with the largest reductions observed in areas formerly occupied by tropical forests and savannas (~71% and ~66% reductions, respectively). Without policies that explicitly consider the impact of agricultural conversion on primary production, future demand-driven increases in agricultural output will likely continue to drive net declines in global terrestrial productivity, with potential detrimental consequences for net ecosystem carbon storage and subsequent climate warming.

  1. Teaching about Energy

    ERIC Educational Resources Information Center

    Roeder, John L.

    2009-01-01

    Energy is a fundamental concept in physics, playing an important role in every aspect of the world around us. The conversion of energy among its many forms has enabled both the sustenance of living organisms on Earth and our development of a society based on the manufacture of products for our own convenience. All of these aspects of energy are…

  2. Mutation of Photosystem II D1 protein that empower efficient phenotypes of Chlamydomonas Reinhardtii under extreme environment in space

    USDA-ARS?s Scientific Manuscript database

    Oxygenic photosynthesis involves capture and conversion of light energy into chemical energy, a process fundamental to life including plant productivity on Earth. Photosynthetic electron transport is catalyzed by two photochemical reaction centres in series, photosystem II (PS II) and photosytem I (...

  3. Dealing with Flexibility in Assessments for Students with Significant Cognitive Disabilities. Synthesis Report 60

    ERIC Educational Resources Information Center

    Gong, Brian; Marion, Scott

    2006-01-01

    Dealing with flexibility--or its converse, the extent of standardization--is fundamental to alignment, assessment design, and interpretation of results in fully inclusive assessment systems. Highly standardized tests make it easier to compare (performances, students, and schools) across time and to common standards because certain conditions are…

  4. Adam's Escape: Children and the Discordant Nature of Colonial Conversions

    ERIC Educational Resources Information Center

    Vallgarda, Karen A. A.

    2011-01-01

    The article traces the fundamental incoherency that structured the Danish Missionary Society's work at a boarding school for low-caste "heathen" children in South India in the 1860s and 1870s. Through elaborate disciplinary methods, the missionaries set out to Christianize and civilize the Indian children's morality, social behaviour and…

  5. The Music Goes Round and Round: How Music Means in School.

    ERIC Educational Resources Information Center

    Erickson, Frederick

    1995-01-01

    This essay shows how classroom conversation is musical and how this musicality is fundamental for one's sense of discourse coherence. To make its argument the paper looks at approaches to music and relationships between music and educational practice. Discussion covers symbols of affiliation and boundary, moral formation and discourse, and an…

  6. How to Create Healthy Indoor Environments in Schools

    ERIC Educational Resources Information Center

    Rhodes, Diane; Di Nella, Frank

    2012-01-01

    A green and healthy indoor environment should be a fundamental concern in the place where kids learn and grow. Good indoor air quality (IAQ) has been shown to have positive effects on student and staff productivity, performance, comfort and attendance. Conversely, poor IAQ in classrooms--caused by mold and moisture issues, problems with HVAC…

  7. Flux observations of isoprene oxidation products above a South East US forest point to chemical conversions on leaf canopy surface

    NASA Astrophysics Data System (ADS)

    Misztal, P. K.; Su, L.; Park, J.; Holzinger, R.; Nguyen, T.; Teng, A.; St Clair, J. M.; Wennberg, P. O.; Crounse, J.; Seco, R.; Karl, T.; Kaser, L.; Hansel, A.; Canaval, E.; Keutsch, F. N.; Mak, J. E.; Guenther, A. B.; Goldstein, A. H.; Mentler, B.; Lepesant, B.; Schnitzler, J. P.; Partoll, E.

    2016-12-01

    Isoprene is globally the dominant biogenic VOC (BVOC) emitted by the biosphere. Isoprene rapidly reacts with hydroxyl radicals in the atmosphere, forming oxidized carbonaceous gases some of which further react to form secondary organic aerosol. Isoprene oxidation proceeds simultaneously via NO and HO2 oxidation pathways with relative proportions depending mainly on the amount of available NOx (NO +NO2). Recent SOA modeling of HO2 oxidation of isoprene peroxides and epoxides reveal different SOA yields but few field studies are available to investigate these processes. Understanding of the fundamental chemical and physical processes controlling the fate of isoprene oxidation products is needed to improve SOA modeling under highly variable NOx concentrations and with the branching ratio between HO2 and NO pathways changing as a function of time of day. Plants are an important sink for many atmospheric chemicals formed in the atmosphere but the role of canopy surfaces is not typically accounted for when modeling atmospheric chemistry. Based on simultaneous flux measurements of isoprene carbonyls (MVK+MAC) by proton transfer reaction mass spectrometry and isoprene hydroxy hydroperoxides and epoxy diols (ISOPOOH+IEPOX) by tandem chemical ionization mass spectrometry, we show that the relative proportions of concentrations of these first-order isoprene products exhibit different diurnal patterns, dependent on NOx. Furthermore, a different diurnal flux pattern observed for first order products of NO and HO2 reactions reveals the occurrence of peroxide conversions to carbonyls at the canopy surface resulting in observed positive net emission flux of MVK+MAC in the afternoon. We hypothesize that the plant canopy provides an active surface which can catalyze chemical conversion. This hypothesis is supported by observation of consistent flux patterns at multiple different sites in the US and by a controlled ISOPOOH fumigation experiment of a plant in an enclosure chamber. In the chamber, we observe transformation of ISOPOOH to MVK+MAC on leaf surfaces even under dark conditions when the stomata are closed.

  8. Bright high-repetition-rate source of narrowband extreme-ultraviolet harmonics beyond 22 eV

    PubMed Central

    Wang, He; Xu, Yiming; Ulonska, Stefan; Robinson, Joseph S.; Ranitovic, Predrag; Kaindl, Robert A.

    2015-01-01

    Novel table-top sources of extreme-ultraviolet light based on high-harmonic generation yield unique insight into the fundamental properties of molecules, nanomaterials or correlated solids, and enable advanced applications in imaging or metrology. Extending high-harmonic generation to high repetition rates portends great experimental benefits, yet efficient extreme-ultraviolet conversion of correspondingly weak driving pulses is challenging. Here, we demonstrate a highly-efficient source of femtosecond extreme-ultraviolet pulses at 50-kHz repetition rate, utilizing the ultraviolet second-harmonic focused tightly into Kr gas. In this cascaded scheme, a photon flux beyond ≈3 × 1013 s−1 is generated at 22.3 eV, with 5 × 10−5 conversion efficiency that surpasses similar harmonics directly driven by the fundamental by two orders-of-magnitude. The enhancement arises from both wavelength scaling of the atomic dipole and improved spatio-temporal phase matching, confirmed by simulations. Spectral isolation of a single 72-meV-wide harmonic renders this bright, 50-kHz extreme-ultraviolet source a powerful tool for ultrafast photoemission, nanoscale imaging and other applications. PMID:26067922

  9. Strong guided mode resonant local field enhanced visible harmonic generation in an azo-polymer resonant waveguide grating.

    PubMed

    Lin, Jian Hung; Tseng, Chun-Yen; Lee, Ching-Ting; Young, Jeff F; Kan, Hung-Chih; Hsu, Chia Chen

    2014-02-10

    Guided mode resonance (GMR) enhanced second- and third-harmonic generation (SHG and THG) is demonstrated in an azo-polymer resonant waveguide grating (RWG), comprised of a poled azo-polymer layer on top of a textured SU8 substrate with a thin intervening layer of TiO2. Strong SHG and THG outputs are observed by matching either in-coming fundamental- or out-going harmonic-wavelength to the GMR wavelengths of the azo-polymer RWG. Without the azo-polymer coating, pure TiO2 RWGs, do not generate any detectable SHG using a fundamental beam peak intensity of 2 MW/cm(2). Without the textured TiO2 layer, a planar poled azo-polymer layer results in 3650 times less SHG than the full nonlinear RWG structure under identical excitation conditions. Rigorous coupled-wave analysis calculations confirm that this enhancement of the nonlinear conversion is due to strong local electric fields that are generated at the interfaces of the TiO2 and azo-polymer layers when the RWG is excited at resonant wavelengths associated with both SHG and THG conversion processes.

  10. A semiconductor nanowire Josephson junction microwave laser

    NASA Astrophysics Data System (ADS)

    Cassidy, Maja; Uilhoorn, Willemijn; Kroll, James; de Jong, Damaz; van Woerkom, David; Nygard, Jesper; Krogstrup, Peter; Kouwenhoven, Leo

    We present measurements of microwave lasing from a single Al/InAs/Al nanowire Josephson junction strongly coupled to a high quality factor superconducting cavity. Application of a DC bias voltage to the Josephson junction results in photon emission into the cavity when the bias voltage is equal to a multiple of the cavity frequency. At large voltage biases, the strong non-linearity of the circuit allows for efficient down conversion of high frequency microwave photons down to multiple photons at the fundamental frequency of the cavity. In this regime, the emission linewidth narrows significantly below the bare cavity linewidth to < 10 kHz and real time analysis of the emission statistics shows above threshold lasing with a power conversion efficiency > 50%. The junction-cavity coupling and laser emission can be tuned rapidly via an external gate, making it suitable to be integrated into a scalable qubit architecture as a versatile source of coherent microwave radiation. This work has been supported by the Netherlands Organisation for Scientific Research (NWO/OCW), Foundation for Fundamental Research on Matter (FOM), European Research Council (ERC), and Microsoft Corporation Station Q.

  11. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions.

    PubMed

    Jiao, Yan; Zheng, Yao; Jaroniec, Mietek; Qiao, Shi Zhang

    2015-04-21

    A fundamental change has been achieved in understanding surface electrochemistry due to the profound knowledge of the nature of electrocatalytic processes accumulated over the past several decades and to the recent technological advances in spectroscopy and high resolution imaging. Nowadays one can preferably design electrocatalysts based on the deep theoretical knowledge of electronic structures, via computer-guided engineering of the surface and (electro)chemical properties of materials, followed by the synthesis of practical materials with high performance for specific reactions. This review provides insights into both theoretical and experimental electrochemistry toward a better understanding of a series of key clean energy conversion reactions including oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER). The emphasis of this review is on the origin of the electrocatalytic activity of nanostructured catalysts toward the aforementioned reactions by correlating the apparent electrode performance with their intrinsic electrochemical properties. Also, a rational design of electrocatalysts is proposed starting from the most fundamental aspects of the electronic structure engineering to a more practical level of nanotechnological fabrication.

  12. Molecular Barriers to Zoonotic Transmission of Prions

    PubMed Central

    Barria, Marcelo A.; Balachandran, Aru; Morita, Masanori; Kitamoto, Tetsuyuki; Barron, Rona; Manson, Jean; Knight, Richard; Ironside, James W.

    2014-01-01

    The risks posed to human health by individual animal prion diseases cannot be determined a priori and are difficult to address empirically. The fundamental event in prion disease pathogenesis is thought to be the seeded conversion of normal prion protein to its pathologic isoform. We used a rapid molecular conversion assay (protein misfolding cyclic amplification) to test whether brain homogenates from specimens of classical bovine spongiform encephalopathy (BSE), atypical BSE (H-type BSE and L-type BSE), classical scrapie, atypical scrapie, and chronic wasting disease can convert normal human prion protein to the abnormal disease-associated form. None of the tested prion isolates from diseased animals were as efficient as classical BSE in converting human prion protein. However, in the case of chronic wasting disease, there was no absolute barrier to conversion of the human prion protein. PMID:24377702

  13. Conjugated Polymers Atypically Prepared in Water

    PubMed Central

    Invernale, Michael A.; Pendergraph, Samuel A.; Yavuz, Mustafa S.; Ombaba, Matthew; Sotzing, Gregory A.

    2010-01-01

    Processability remains a fundamental issue for the implementation of conducting polymer technology. A simple synthetic route towards processable precursors to conducting polymers (main chain and side chain) was developed using commercially available materials. These soluble precursor systems were converted to conjugated polymers electrochemically in aqueous media, offering a cheaper and greener method of processing. Oxidative conversion in aqueous and organic media each produced equivalent electrochromics. The precursor method enhances the yield of the electrochromic polymer obtained over that of electrodeposition, and it relies on a less corruptible electrolyte bath. However, electrochemical conversion of the precursor polymers often relies on organic salts and solvents. The ability to achieve oxidative conversion in brine offers a less costly and a more environmentally friendly processing step. It is also beneficial for biological applications. The electrochromics obtained herein were evaluated for electronic, spectral, and morphological properties. PMID:20959869

  14. Separating para and ortho water.

    PubMed

    Horke, Daniel A; Chang, Yuan-Pin; Długołęcki, Karol; Küpper, Jochen

    2014-10-27

    Water exists as two nuclear-spin isomers, para and ortho, determined by the overall spin of its two hydrogen nuclei. For isolated water molecules, the conversion between these isomers is forbidden and they act as different molecular species. Yet, these species are not readily separated, and no pure para sample has been produced. Accordingly, little is known about their specific physical and chemical properties, conversion mechanisms, or interactions. The production of isolated samples of both spin isomers is demonstrated in pure beams of para and ortho water in their respective absolute ground state. These single-quantum-state samples are ideal targets for unraveling spin-conversion mechanisms, for precision spectroscopy and fundamental symmetry-breaking studies, and for spin-enhanced applications, for example laboratory astrophysics and astrochemistry or hypersensitized NMR experiments. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Spoof four-wave mixing for all-optical wavelength conversion.

    PubMed

    Gong, Yongkang; Huang, Jungang; Li, Kang; Copner, Nigel; Martinez, J J; Wang, Leirang; Duan, Tao; Zhang, Wenfu; Loh, W H

    2012-10-08

    We present for the first time an all-optical wavelength conversion (AOWC) scheme supporting modulation format independency without requiring phase matching. The new scheme is named "spoof" four wave mixing (SFWM) and in contrast to the well-known FWM theory, where the induced dynamic refractive index grating modulates photons to create a wave at a new frequency, the SFWM is different in that the dynamic refractive index grating is generated in a nonlinear Bragg Grating (BG) to excite additional reflective peaks at either side of the original BG bandgap in reflection spectrum. This fundamental difference enable the SFWM to avoid the intrinsic shortcoming of stringent phase matching required in the conventional FWM, and allows AOWC with modulation format transparency and ultrabroad conversion range, which may have great potential applications for next generation of all-optical networks.

  16. An experimentally validated model for geometrically nonlinear plucking-based frequency up-conversion in energy harvesting

    NASA Astrophysics Data System (ADS)

    Kathpalia, B.; Tan, D.; Stern, I.; Erturk, A.

    2018-01-01

    It is well known that plucking-based frequency up-conversion can enhance the power output in piezoelectric energy harvesting by enabling cyclic free vibration at the fundamental bending mode of the harvester even for very low excitation frequencies. In this work, we present a geometrically nonlinear plucking-based framework for frequency up-conversion in piezoelectric energy harvesting under quasistatic excitations associated with low-frequency stimuli such as walking and similar rigid body motions. Axial shortening of the plectrum is essential to enable plucking excitation, which requires a nonlinear framework relating the plectrum parameters (e.g. overlap length between the plectrum and harvester) to the overall electrical power output. Von Kármán-type geometrically nonlinear deformation of the flexible plectrum cantilever is employed to relate the overlap length between the flexible (nonlinear) plectrum and the stiff (linear) harvester to the transverse quasistatic tip displacement of the plectrum, and thereby the tip load on the linear harvester in each plucking cycle. By combining the nonlinear plectrum mechanics and linear harvester dynamics with two-way electromechanical coupling, the electrical power output is obtained directly in terms of the overlap length. Experimental case studies and validations are presented for various overlap lengths and a set of electrical load resistance values. Further analysis results are reported regarding the combined effects of plectrum thickness and overlap length on the plucking force and harvested power output. The experimentally validated nonlinear plectrum-linear harvester framework proposed herein can be employed to design and optimize frequency up-conversion by properly choosing the plectrum parameters (geometry, material, overlap length, etc) as well as the harvester parameters.

  17. Preserving the person: The ethical imperative of recovery-oriented practices.

    PubMed

    Atterbury, Kendall

    2014-03-01

    For more than a decade the principles of mental health recovery have been promoted as an alternative to traditional models of care. Recovery-oriented practices are those that recognize the strengths of service users and empower them within the mental health system. In contrast to a more hierarchical model of care in which service providers make decisions with a pronounced absence of input from service users, recovery-oriented practices emphasize shared decision-making, respect for service user goals, and the recognition of the full humanity of all persons in care relationships. Recovery-oriented care has yet to be embraced by the majority of service providers, however. There are several reasons for this failure but among them is the lack of attention given to the ethical ground of recovery. This article seeks to bring recovery into conversation with moral philosophy by arguing that recovery-oriented care is essentially linked to fundamental rights and values of personhood within a liberal democracy. By joining together a conception of personhood rooted in essential vulnerability and a Rawlsian perspective on justice, this article argues that recovery is not only a desirable approach to mental health practice but that it is ethically necessary. It argues that recovery practices are not exceptional interventions to be reserved for a few but that a recovery-orientation entails fundamental elements of justice and respect to which all persons are entitled.

  18. Pyroelectric conversion in space: A conceptual design study

    NASA Technical Reports Server (NTRS)

    Olsen, R. B.

    1983-01-01

    Pyroelectric conversion is potentially a very lightweight means of providing electrical power generation in space. Two conceptualized systems approaches for the direct conversion of heat (from sunlight) into electrical energy using the pyroelectric effect of a new class of polar polymers were evaluated. Both of the approaches involved large area thin sheets of plastic which are thermally cycled by radiative input and output of thermal energy. The systems studied are expected to eventually achieve efficiencies of the order of 8% and may deliver as much as one half kilowatt per kilogram. In addition to potentially very high specific power, the pyroelectric conversion approaches outlined appear to offer low cost per watt in the form of an easily deployed, flexible, strong, electrically ""self-healing'', and high voltage sheet. This study assessed several potential problems such as plasma interactions and radiation degradation and suggests approaches to overcome them. The fundamental technological issues for space pyroelectric conversion are: (1) demonstration of the conversion cycle with the proposed class of polymers, (2) achievement of improved dielectric strength of the material, (3) demonstration of acceptable plasma power losses for low altitude, and (4) establishment of reasonable lifetime for the pyroelectric material in the space environment. Recommendations include an experimental demonstration of the pyroelectric conversion cycle followed by studies to improve the dielectric strength of the polymer and basic studies to discover additional pyroelectric materials.

  19. NASA’s Walter Olson poses in the New Energy Conversion Laboratory

    NASA Image and Video Library

    1963-07-21

    Walter Olson, Chief of the Chemistry and Energy Conversion Division, examines equipment in the new Energy Conversion Laboratory at the National Aeronautics and Space Administration (NASA) Lewis Research Center. The Energy Conversion Laboratory, built in 1961 and 1962, was a modest one-story brick structure with 30,000 square feet of working space. It was used to study fundamental elements pertaining to the conversion of energy into electrical power. The main application for this was space power, but in the 1970s it would also be applied for terrestrial applications. Olson joined the Lewis staff as a fuels and combustion researcher in 1942 and was among a handful or researchers who authored the new laboratory’s first technical report. The laboratory reorganized after the war and Olson was placed in charge of three sections of researchers in the Combustion Branch. They studied combustion and fuels for turbojets, ramjets, and small rockets. In 1950, Olson was named Chief of the entire Fuels and Combustion Research Division. In 1960 Olson was named Chief of the new Chemistry and Energy Conversion Division. It was in this role that Olson advocated for the construction of the Energy Conversion Laboratory. The new division expanded its focus from just fuels and combustion to new sources of energy and power such as solar cells, fuels cells, heat transfer, and thermionics.

  20. Conversion of the optical orbital angular momentum in a plasmon-assisted second-harmonic generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yongmei; Wei, Dunzhao; Zhu, Yunzhi

    We experimentally demonstrate the plasmon-assisted second-harmonic generation of an optical orbital angular momentum (OAM) beam. Because of the shape resonance, the plasmons in a periodic array of rectangular metal holes greatly enhance the nonlinear optical conversion of an OAM state. The OAM conservation (i.e., 2l{sub 1} = l{sub 2} with l{sub 1} and l{sub 2} being the OAM numbers of the fundamental and second-harmonic waves, respectively) holds well under our experimental configuration. Our results provide a potential way to realize nonlinear optical manipulation of an OAM mode in a nano-photonic device.

  1. Cultural analysis of communication behaviors among juveniles in a correctional facility.

    PubMed

    Sanger, D D; Creswell, J W; Dworak, J; Schultz, L

    2000-01-01

    This study addressed communication behaviors of female juvenile delinquents in a correctional facility. Qualitative methodology was used to study 78 participants ranging in age from 13.1 to 18.9 (years; months), over a five-month period. Data collection consisted of observations, participant observation, interviews, and a review of documents. Additionally, participants were tested on the Clinical Evaluation of Language Fundamentals-3. Listening and following rules, utterance types, topics of conversion, politeness, and conversational management emerged as themes. Findings indicated that as many as 22% of participants were potential candidates for language services. Implications for speech-language pathologists (SLPs) providing communication services will be provided.

  2. Conversion of ultrashort laser pulses to wavelengths above 3 mm in tapered germanate fibres

    NASA Astrophysics Data System (ADS)

    Anashkina, E. A.; Andrianov, A. V.; Kim, A. V.

    2015-05-01

    Tapered germanate fibres are proposed for effective adiabatic conversion of Raman soliton pulses to the mid-IR region. A theoretical analysis demonstrates that, in fibres with anomalous group velocity dispersion decreasing along their length, wavelengths of up to 3.5 μm can be reached, which are unattainable in fibres with a constant core diameter at the same parameters of a 2-μm input signal. The analysis relies on a one-way wave equation that takes into account the combined effect of dispersion, Kerr and Raman nonlinearities, nonlinear dispersion and optical losses and the frequency dependence of the effective fundamental transverse mode size.

  3. Scientific Computation Application Partnerships in Materials and Chemical Sciences, Charge Transfer and Charge Transport in Photoactivated Systems, Developing Electron-Correlated Methods for Excited State Structure and Dynamics in the NWChem Software Suite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cramer, Christopher J.

    Charge transfer and charge transport in photoactivated systems are fundamental processes that underlie solar energy capture, solar energy conversion, and photoactivated catalysis, both organometallic and enzymatic. We developed methods, algorithms, and software tools needed for reliable treatment of the underlying physics for charge transfer and charge transport, an undertaking with broad applicability to the goals of the fundamental-interaction component of the Department of Energy Office of Basic Energy Sciences and the exascale initiative of the Office of Advanced Scientific Computing Research.

  4. TiN-buffered substrates for photoelectrochemical measurements of oxynitride thin films

    NASA Astrophysics Data System (ADS)

    Pichler, Markus; Pergolesi, Daniele; Landsmann, Steve; Chawla, Vipin; Michler, Johann; Döbeli, Max; Wokaun, Alexander; Lippert, Thomas

    2016-04-01

    Developing novel materials for the conversion of solar to chemical energy is becoming an increasingly important endeavour. Perovskite compounds based on bandgap tunable oxynitrides represent an exciting class of novel photoactive materials. To date, literature mostly focuses on the characterization of oxynitride powder samples which have undeniable technological interest but do not allow the investigation of fundamental properties such as the role of the crystalline quality and/or the surface crystallographic orientation toward photo-catalytic activity. The challenge of growing high quality oxynitride thin films arises from the availability of a suitable substrate, owing to strict material and processing requirements: effective lattice matching, sufficiently high conductivities, stability under high temperatures and in strongly reducing environments. Here, we have established the foundations of a model system incorporating a TiN-buffer layer which enables fundamental investigations into crystallographic surface orientation and crystalline quality of the photocatalyst against photo(electro)chemical performance to be effectively performed. Furthermore, we find that TiN as current collector enables control over the nitrogen content of oxynitride thin films produced by a modified pulsed laser deposition method and allows the growth of highly ordered LaTiO3-xNx thin films.

  5. [Organic waste treatment by earthworm vermicomposting and larvae bioconversion: review and perspective].

    PubMed

    Zhang, Zhi-jian; Liu, Meng; Zhu, Jun

    2013-05-01

    There is a growing attention on the environmental pollution and loss of potential regeneration of resources due to the poor handling of organic wastes, while earthworm vermicomposting and larvae bioconversion are well-known as two promising biotechnologies for sustainable wastes treatments, where earthworms or housefly larvae are employed to convert the organic wastes into humus like material, together with value-added worm product. Taken earthworm ( Eisenia foetida) and housefly larvae ( Musca domestica) as model species, this work illustrates fundamental definition and principle, operational process, technical mechanism, main factors, and bio-chemical features of organisms of these two technologies. Integrated with the physical and biochemical mechanisms, processes of biomass conversion, intestinal digestion, enzyme degradation and microflora decomposition are comprehensively reviewed on waste treatments with purposes of waste reduction, value-addition, and stabilization.

  6. Nanoplasmonics: a frontier of photovoltaic solar cells

    NASA Astrophysics Data System (ADS)

    Gu, Min; Ouyang, Zi; Jia, Baohua; Stokes, Nicholas; Chen, Xi; Fahim, Narges; Li, Xiangping; Ventura, Michael James; Shi, Zhengrong

    2012-12-01

    Nanoplasmonics recently has emerged as a new frontier of photovoltaic research. Noble metal nanostructures that can concentrate and guide light have demonstrated great capability for dramatically improving the energy conversion efficiency of both laboratory and industrial solar cells, providing an innovative pathway potentially transforming the solar industry. However, to make the nanoplasmonic technology fully appreciated by the solar industry, key challenges need to be addressed; including the detrimental absorption of metals, broadband light trapping mechanisms, cost of plasmonic nanomaterials, simple and inexpensive fabrication and integration methods of the plasmonic nanostructures, which are scalable for full size manufacture. This article reviews the recent progress of plasmonic solar cells including the fundamental mechanisms, material fabrication, theoretical modelling and emerging directions with a distinct emphasis on solutions tackling the above-mentioned challenges for industrial relevant applications.

  7. X-ray Scattering Combined with Coordinate-Based Analyses for Applications in Natural and Artificial Photosynthesis

    PubMed Central

    Tiede, David M.; Mardis, Kristy L.; Zuo, Xiaobing

    2009-01-01

    Advances in x-ray light sources and detectors have created opportunities for advancing our understanding of structure and structural dynamics for supramolecular assemblies in solution by combining x-ray scattering measurement with coordinate-based modeling methods. In this review the foundations for x-ray scattering are discussed and illustrated with selected examples demonstrating the ability to correlate solution x-ray scattering measurements to molecular structure, conformation, and dynamics. These approaches are anticipated to have a broad range of applications in natural and artificial photosynthesis by offering possibilities for structure resolution for dynamic supramolecular assemblies in solution that can not be fully addressed with crystallographic techniques, and for resolving fundamental mechanisms for solar energy conversion by mapping out structure in light-excited reaction states. PMID:19636808

  8. Nondestructive evaluation of helicopter rotor blades using guided Lamb modes.

    PubMed

    Chakrapani, Sunil Kishore; Barnard, Daniel; Dayal, Vinay

    2014-03-01

    This paper presents an application for turning and direct modes in a complex composite laminate structure. The propagation and interaction of turning modes and fundamental Lamb modes are investigated in the skin, spar and web sections of a helicopter rotor blade. Finite element models were used to understand the various mode conversions at geometric discontinuities such as web-spar joints. Experimental investigation was carried out with the help of air coupled ultrasonic transducers. The turning and direct modes were confirmed with the help of particle displacements and velocities. Experimental B-Scans were performed on damaged and undamaged samples for qualitative and quantitative assessment of the structure. A strong correlation between the numerical and experimental results was observed and reported. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Introducing High School Students to NMR Spectroscopy through Percent Composition Determination Using Low-Field Spectrometers

    ERIC Educational Resources Information Center

    Bonjour, Jessica L.; Pitzer, Joy M.; Frost, John A.

    2015-01-01

    Mole to gram conversions, density, and percent composition are fundamental concepts in first year chemistry at the high school or undergraduate level; however, students often find it difficult to engage with these concepts. We present a simple laboratory experiment utilizing portable nuclear magnetic resonance spectroscopy (NMR) to determine the…

  10. Supercomputer Provides Molecular Insight into Cellulose (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2011-02-01

    Groundbreaking research at the National Renewable Energy Laboratory (NREL) has used supercomputing simulations to calculate the work that enzymes must do to deconstruct cellulose, which is a fundamental step in biomass conversion technologies for biofuels production. NREL used the new high-performance supercomputer Red Mesa to conduct several million central processing unit (CPU) hours of simulation.

  11. Introducing the Concept of Biocatalysis in the Classroom: The Conversion of Cholesterol to Provitamin D[subscript 3

    ERIC Educational Resources Information Center

    De Luca, Belén M.; Nudel, Clara B.; Gonzalez, Rodrigo H.; Nusblat, Alejandro D.

    2017-01-01

    Biocatalysis is a fundamental concept in biotechnology. The topic integrates knowledge of several disciplines; therefore, it was included in the course "design and optimization of biological systems" which is offered in the biochemistry curricula. We selected the ciliate tetrahymena as an example of a eukaryotic system with potential for…

  12. Charting an Alternate Pathway to Reaction Orders and Rate Laws in Introductory Chemistry Courses

    ERIC Educational Resources Information Center

    Rushton, Gregory T.; Criswell, Brett A.; McAllister, Nicole D.; Polizzi, Samuel J.; Moore, Lamesha A.; Pierre, Michelle S.

    2014-01-01

    Reaction kinetics is an axiomatic topic in chemistry that is often addressed as early as the high school course and serves as the foundation for more sophisticated conversations in college-level organic, physical, and biological chemistry courses. Despite the fundamental nature of reaction kinetics, students can struggle with transforming their…

  13. The Development of Vocational Calling, Identity, and Faith in College Students: A Preliminary Study of the Impact of Study Abroad

    ERIC Educational Resources Information Center

    Miller-Perrin, Cindy; Thompson, Don

    2010-01-01

    Living and learning in another country, primary conditions of the study abroad experience, are commonly associated with two fundamental outcomes. The first outcome is an increase in "external" connections, manifested through an increased ability to converse in another language and an increased understanding and sensitivity to another…

  14. Monet, Malaguzzi, and the Constructive Conversations of Preschoolers in a Reggio-Inspired Classroom

    ERIC Educational Resources Information Center

    Kim, Bo Sun; Darling, Linda Farr

    2009-01-01

    This study was conducted in a Reggio inspired child care classroom of 4-year olds where the fundamental principles of Reggio Emilia preschools are interpreted for a Canadian context. Qualitative case study methodology was employed to investigate how social interaction plays a role in young children's learning processes. Drawing on social…

  15. Understanding of Electrochemical Mechanisms for CO2 Capture and Conversion into Hydrocarbon Fuels in Transition-Metal Carbides (MXenes).

    PubMed

    Li, Neng; Chen, Xingzhu; Ong, Wee-Jun; MacFarlane, Douglas R; Zhao, Xiujian; Cheetham, Anthony K; Sun, Chenghua

    2017-11-28

    Two-dimensional (2D) transition-metal (groups IV, V, VI) carbides (MXenes) with formulas M 3 C 2 have been investigated as CO 2 conversion catalysts with well-resolved density functional theory calculations. While MXenes from the group IV to VI series have demonstrated an active behavior for the capture of CO 2 , the Cr 3 C 2 and Mo 3 C 2 MXenes exhibit the most promising CO 2 to CH 4 selective conversion capabilities. Our results predicted the formation of OCHO • and HOCO • radical species in the early hydrogenation steps through spontaneous reactions. This provides atomic level insights into the computer-aided screening for high-performance catalysts and the understanding of electrochemical mechanisms for CO 2 reduction to energy-rich hydrocarbon fuels, which is of fundamental significance to elucidate the elementary steps for CO 2 fixation.

  16. The Prosody of Topic Transition in Interaction: Pitch Register Variations.

    PubMed

    Riou, Marine

    2017-12-01

    In conversation, speakers can mobilize a variety of prosodic cues to signal a switch in topics. This paper uses a mixed-methods approach combining Conversation Analysis and Instrumental Prosody to investigate the prosody of topic transition in American English, and analyzes the ways in which speakers can play on register level and on register span. A cluster of three prosodic parameters was found to be predictive of transitions: a higher maximum fundamental frequency (F0), a higher median F0 (key), and an expanded register span. Relative to speakers' habitual profiles, the mobilization of such prosodic cues corresponds to a marked upgraded prosodic design. This finding is consistent with the general assumption that continuation constitutes the norm in conversation, and that departing from it, as in the case of a topic transition, requires a marked action and marked linguistic design. The disjunctive action of opening a new topic corresponds to the use of a marked prosodic cue.

  17. Fundamental limits of ultrathin metasurfaces

    PubMed Central

    Arbabi, Amir; Faraon, Andrei

    2017-01-01

    We present a set of universal relations which relate the local transmission, reflection, and polarization conversion coefficients of a general class of non-magnetic passive ultrathin metasurfaces. We show that these relations are a result of equal forward and backward scattering by single layer ultrathin metasurfaces, and they lead to confinement of the transmission, reflection, and polarization conversion coefficients to limited regions of the complex plane. Using these relations, we investigate the effect of the presence of a substrate, and show that the maximum polarization conversion efficiency for a transmissive metasurface decreases as the refractive index contrast between the substrate and cladding layer increases. Furthermore, we demonstrate that a single layer reflective metasurface can achieve full 2π phase shift coverage without altering the polarization if it is illuminated from the higher refractive index material. We also discuss two approaches for achieving asymmetric scattering from metasurfaces, and realizing metasurfaces which overcome the performance limitations of single layer ultrathin metasurfaces. PMID:28262739

  18. Energy conversion approaches and materials for high-efficiency photovoltaics.

    PubMed

    Green, Martin A; Bremner, Stephen P

    2016-12-20

    The past five years have seen significant cost reductions in photovoltaics and a correspondingly strong increase in uptake, with photovoltaics now positioned to provide one of the lowest-cost options for future electricity generation. What is becoming clear as the industry develops is that area-related costs, such as costs of encapsulation and field-installation, are increasingly important components of the total costs of photovoltaic electricity generation, with this trend expected to continue. Improved energy-conversion efficiency directly reduces such costs, with increased manufacturing volume likely to drive down the additional costs associated with implementing higher efficiencies. This suggests the industry will evolve beyond the standard single-junction solar cells that currently dominate commercial production, where energy-conversion efficiencies are fundamentally constrained by Shockley-Queisser limits to practical values below 30%. This Review assesses the overall prospects for a range of approaches that can potentially exceed these limits, based on ultimate efficiency prospects, material requirements and developmental outlook.

  19. Study of traits and recalcitrance reduction of field-grown COMT down-regulated switchgrass

    DOE PAGES

    Li, Mi; Pu, Yunqiao; Yoo, Chang Geun; ...

    2017-01-03

    The native recalcitrance of plants hinders the biomass conversion process using current biorefinery techniques. Down-regulation of the caffeic acid O-methyltransferase (COMT) gene in the lignin biosynthesis pathway of switchgrass reduced the thermochemical and biochemical conversion recalcitrance of biomass. Due to potential environmental influences on lignin biosynthesis and deposition, studying the consequences of physicochemical changes in field-grown plants without pretreatment is essential to evaluate the performance of lignin-altered plants. In this study, we determined the chemical composition, cellulose crystallinity and the degree of its polymerization, molecular weight of hemicellulose, and cellulose accessibility of cell walls in order to better understand themore » fundamental features of why biomass is recalcitrant to conversion without pretreatment. The most important is to investigate whether traits and features are stable in the dynamics of field environmental effects over multiple years.« less

  20. Huggable communication medium decreases cortisol levels.

    PubMed

    Sumioka, Hidenobu; Nakae, Aya; Kanai, Ryota; Ishiguro, Hiroshi

    2013-10-23

    Interpersonal touch is a fundamental component of social interactions because it can mitigate physical and psychological distress. To reproduce the psychological and physiological effects associated with interpersonal touch, interest is growing in introducing tactile sensations to communication devices. However, it remains unknown whether physical contact with such devices can produce objectively measurable endocrine effects like real interpersonal touching can. We directly tested this possibility by examining changes in stress hormone cortisol before and after a conversation with a huggable communication device. Participants had 15-minute conversations with a remote partner that was carried out either with a huggable human-shaped device or with a mobile phone. Our experiment revealed significant reduction in the cortisol levels for those who had conversations with the huggable device. Our approach to evaluate communication media with biological markers suggests new design directions for interpersonal communication media to improve social support systems in modern highly networked societies.

  1. Highly efficient frequency conversion with bandwidth compression of quantum light

    PubMed Central

    Allgaier, Markus; Ansari, Vahid; Sansoni, Linda; Eigner, Christof; Quiring, Viktor; Ricken, Raimund; Harder, Georg; Brecht, Benjamin; Silberhorn, Christine

    2017-01-01

    Hybrid quantum networks rely on efficient interfacing of dissimilar quantum nodes, as elements based on parametric downconversion sources, quantum dots, colour centres or atoms are fundamentally different in their frequencies and bandwidths. Although pulse manipulation has been demonstrated in very different systems, to date no interface exists that provides both an efficient bandwidth compression and a substantial frequency translation at the same time. Here we demonstrate an engineered sum-frequency-conversion process in lithium niobate that achieves both goals. We convert pure photons at telecom wavelengths to the visible range while compressing the bandwidth by a factor of 7.47 under preservation of non-classical photon-number statistics. We achieve internal conversion efficiencies of 61.5%, significantly outperforming spectral filtering for bandwidth compression. Our system thus makes the connection between previously incompatible quantum systems as a step towards usable quantum networks. PMID:28134242

  2. Huggable communication medium decreases cortisol levels

    PubMed Central

    Sumioka, Hidenobu; Nakae, Aya; Kanai, Ryota; Ishiguro, Hiroshi

    2013-01-01

    Interpersonal touch is a fundamental component of social interactions because it can mitigate physical and psychological distress. To reproduce the psychological and physiological effects associated with interpersonal touch, interest is growing in introducing tactile sensations to communication devices. However, it remains unknown whether physical contact with such devices can produce objectively measurable endocrine effects like real interpersonal touching can. We directly tested this possibility by examining changes in stress hormone cortisol before and after a conversation with a huggable communication device. Participants had 15-minute conversations with a remote partner that was carried out either with a huggable human-shaped device or with a mobile phone. Our experiment revealed significant reduction in the cortisol levels for those who had conversations with the huggable device. Our approach to evaluate communication media with biological markers suggests new design directions for interpersonal communication media to improve social support systems in modern highly networked societies. PMID:24150186

  3. Error free all optical wavelength conversion in highly nonlinear As-Se chalcogenide glass fiber.

    PubMed

    Ta'eed, Vahid G; Fu, Libin; Pelusi, Mark; Rochette, Martin; Littler, Ian C; Moss, David J; Eggleton, Benjamin J

    2006-10-30

    We present the first demonstration of all optical wavelength conversion in chalcogenide glass fiber including system penalty measurements at 10 Gb/s. Our device is based on As2Se3 chalcogenide glass fiber which has the highest Kerr nonlinearity (n(2)) of any fiber to date for which either advanced all optical signal processing functions or system penalty measurements have been demonstrated. We achieve wavelength conversion via cross phase modulation over a 10 nm wavelength range near 1550 nm with 7 ps pulses at 2.1 W peak pump power in 1 meter of fiber, achieving only 1.4 dB excess system penalty. Analysis and comparison of the fundamental fiber parameters, including nonlinear coefficient, two-photon absorption coefficient and dispersion parameter with other nonlinear glasses shows that As(2)Se(3) based devices show considerable promise for radically integrated nonlinear signal processing devices.

  4. Harmonizing routinely collected health information for strengthening quality management in health systems: requirements and practice.

    PubMed

    Prodinger, Birgit; Tennant, Alan; Stucki, Gerold; Cieza, Alarcos; Üstün, Tevfik Bedirhan

    2016-10-01

    Our aim was to specify the requirements of an architecture to serve as the foundation for standardized reporting of health information and to provide an exemplary application of this architecture. The World Health Organization's International Classification of Functioning, Disability and Health (ICF) served as the conceptual framework. Methods to establish content comparability were the ICF Linking Rules. The Rasch measurement model, as a special case of additive conjoint measurement, which satisfies the required criteria for fundamental measurement, allowed for the development of a common metric foundation for measurement unit conversion. Secondary analysis of data from the North Yorkshire Survey was used to illustrate these methods. Patients completed three instruments and the items were linked to the ICF. The Rasch measurement model was applied, first to each scale, and then to items across scales which were linked to a common domain. Based on the linking of items to the ICF, the majority of items were grouped into two domains, Mobility and Self-care. Analysis of the individual scales and of items linked to a common domain across scales satisfied the requirements of the Rasch measurement model. The measurement unit conversion between items from the three instruments linked to the Mobility and Self-care domains, respectively, was demonstrated. The realization of an ICF-based architecture for information on patients' functioning enables harmonization of health information while allowing clinicians and researchers to continue using their existing instruments. This architecture will facilitate access to comprehensive and consistently reported health information to serve as the foundation for informed decision-making. © The Author(s) 2016.

  5. New Estimates of Land Use Intensity of Potential Bioethanol Production in the U.S.A.

    NASA Astrophysics Data System (ADS)

    Kheshgi, H. S.; Song, Y.; Torkamani, S.; Jain, A. K.

    2016-12-01

    We estimate potential bioethanol land use intensity (the inverse of potential bioethanol yield per hectare) across the United States by modeling crop yields and conversion to bioethanol (via a fermentation pathway), based on crop field studies and conversion technology analyses. We apply the process-based land surface model, the Integrated Science Assessment model (ISAM), to estimate the potential yield of four crops - corn, Miscanthus, and two variants of switchgrass (Cave-in-Rock and Alamo) - across the U.S.A. landscape for the 14-year period from 1999 through 2012, for the case with fertilizer application but without irrigation. We estimate bioethanol yield based on recent experience for corn bioethanol production from corn kernel, and current cellulosic bioethanol process design specifications under the assumption of the maximum practical harvest fraction for the energy grasses (Miscanthus and switchgrasses) and a moderate (30%) harvest fraction of corn stover. We find that each of four crops included has regions where that crop is estimated to have the lowest land use intensity (highest potential bioethanol yield per hectare). We find that minimizing potential land use intensity by including both corn and the energy grasses only improves incrementally to that of corn (using both harvested kernel and stover for bioethanol). Bioethanol land use intensity is one fundamental factor influencing the desirability of biofuels, but is not the only one; others factors include economics, competition with food production and land use, water and climate, nitrogen runoff, life-cycle emissions, and the pace of crop and technology improvement into the future.

  6. Cellular automata model for drug release from binary matrix and reservoir polymeric devices.

    PubMed

    Johannes Laaksonen, Timo; Mikael Laaksonen, Hannu; Tapio Hirvonen, Jouni; Murtomäki, Lasse

    2009-04-01

    Kinetics of drug release from polymeric tablets, inserts and implants is an important and widely studied area. Here we present a new and widely applicable cellular automata model for diffusion and erosion processes occurring during drug release from polymeric drug release devices. The model divides a 2D representation of the release device into an array of cells. Each cell contains information about the material, drug, polymer or solvent that the domain contains. Cells are then allowed to rearrange according to statistical rules designed to match realistic drug release. Diffusion is modeled by a random walk of mobile cells and kinetics of chemical or physical processes by probabilities of conversion from one state to another. This is according to the basis of diffusion coefficients and kinetic rate constants, which are on fundamental level just probabilities for certain occurrences. The model is applied to three kinds of devices with different release mechanisms: erodable matrices, diffusion through channels or pores and membrane controlled release. The dissolution curves obtained are compared to analytical models from literature and the validity of the model is considered. The model is shown to be compatible with all three release devices, highlighting easy adaptability of the model to virtually any release system and geometry. Further extension and applications of the model are envisioned.

  7. Precision Muonium Spectroscopy

    NASA Astrophysics Data System (ADS)

    Jungmann, Klaus P.

    2016-09-01

    The muonium atom is the purely leptonic bound state of a positive muon and an electron. It has a lifetime of 2.2 µs. The absence of any known internal structure provides for precision experiments to test fundamental physics theories and to determine accurate values of fundamental constants. In particular ground state hyperfine structure transitions can be measured by microwave spectroscopy to deliver the muon magnetic moment. The frequency of the 1s-2s transition in the hydrogen-like atom can be determined with laser spectroscopy to obtain the muon mass. With such measurements fundamental physical interactions, in particular quantum electrodynamics, can also be tested at highest precision. The results are important input parameters for experiments on the muon magnetic anomaly. The simplicity of the atom enables further precise experiments, such as a search for muonium-antimuonium conversion for testing charged lepton number conservation and searches for possible antigravity of muons and dark matter.

  8. C-band fundamental/first-order mode converter based on multimode interference coupler on InP substrate

    NASA Astrophysics Data System (ADS)

    Limeng, Zhang; Dan, Lu; Zhaosong, Li; Biwei, Pan; Lingjuan, Zhao

    2016-12-01

    The design, fabrication and characterization of a fundamental/first-order mode converter based on multimode interference coupler on InP substrate were reported. Detailed optimization of the device parameters were investigated using 3D beam propagation method. In the experiments, the fabricated mode converter realized mode conversion from the fundamental mode to the first-order mode in the wavelength range of 1530-1565 nm with excess loss less than 3 dB. Moreover, LP01 and LP11 fiber modes were successfully excited from a few-mode fiber by using the device. This InP-based mode converter can be a possible candidate for integrated transceivers for future mode-division multiplexing system. Project supported by the National Basic Research Program of China (No. 2014CB340102) and in part by the National Natural Science Foundation of China (Nos. 61274045, 61335009).

  9. Using Video Modeling to Increase Variation in the Conversation of Children with Autism

    ERIC Educational Resources Information Center

    Charlop, Marjorie H.; Gilmore, Laura; Chang, Gina T.

    2009-01-01

    The present study assessed the effects of video modeling on acquisition and generalization of variation in the conversational speech of two boys with autism. A video was made showing several versions of several topics of conversation, thus providing multiple exemplars of each conversation. Video modeling consisted of showing each child a video…

  10. In-pixel conversion with a 10 bit SAR ADC for next generation X-ray FELs

    NASA Astrophysics Data System (ADS)

    Lodola, L.; Batignani, G.; Benkechkache, M. A.; Bettarini, S.; Casarosa, G.; Comotti, D.; Dalla Betta, G. F.; Fabris, L.; Forti, F.; Grassi, M.; Latreche, S.; Malcovati, P.; Manghisoni, M.; Mendicino, R.; Morsani, F.; Paladino, A.; Pancheri, L.; Paoloni, E.; Ratti, L.; Re, V.; Rizzo, G.; Traversi, G.; Vacchi, C.; Verzellesi, G.; Xu, H.

    2016-07-01

    This work presents the design of an interleaved Successive Approximation Register (SAR) ADC, part of the readout channel for the PixFEL detector. The PixFEL project aims at substantially advancing the state-of-the-art in the field of 2D X-ray imaging for applications at the next generation Free Electron Laser (FEL) facilities. For this purpose, the collaboration is developing the fundamental microelectronic building blocks for the readout channel. This work focuses on the design of the ADC carried out in a 65 nm CMOS technology. To obtain a good tradeoff between power consumption, conversion speed and area occupation, an interleaved SAR ADC architecture was adopted.

  11. Mode-locked Yb:YAG thin-disk oscillator with 41 µJ pulse energy at 145 W average infrared power and high power frequency conversion.

    PubMed

    Bauer, Dominik; Zawischa, Ivo; Sutter, Dirk H; Killi, Alexander; Dekorsy, Thomas

    2012-04-23

    We demonstrate the generation of 1.1 ps pulses containing more than 41 µJ of energy directly out of an Yb:YAG thin-disk without any additional amplification stages. The laser oscillator operates in ambient atmosphere with a 3.5 MHz repetition rate and 145 W of average output power at a fundamental wavelength of 1030 nm. An average output power of 91.5 W at 515 nm was obtained by frequency doubling with a conversion efficiency exceeding 65%. Third harmonic generation resulted in 34 W at 343 nm at 34% efficiency. © 2012 Optical Society of America

  12. Conference Support, 23rd Western Photosynthesis Conference 2014, Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wachter, Rebekka

    The Western Photosynthesis Conference is a regional conference that is held on an annual basis to bring together researchers primarily from the Western United States to share their newest research advances on photosynthetic processes. The 23rd conference was focused on both fundamental and more applied research on the biological conversion of solar energy to various energy storage forms. Several particular areas of solar energy conversion were emphasized in this conference (see below). Some of these topics, such as carbon limitations on photosynthesis, biomimicry and phenotyping, have traditionally not been incorporated extensively in the Western Photosynthesis Conference. We found that thesemore » topics have substantially broadened of the scope of this meeting.« less

  13. Complex systems as lenses on learning and teaching

    NASA Astrophysics Data System (ADS)

    Hurford, Andrew C.

    From metaphors to mathematized models, the complexity sciences are changing the ways disciplines view their worlds, and ideas borrowed from complexity are increasingly being used to structure conversations and guide research on teaching and learning. The purpose of this corpus of research is to further those conversations and to extend complex systems ideas, theories, and modeling to curricula and to research on learning and teaching. A review of the literatures of learning and of complexity science and a discussion of the intersections between those disciplines are provided. The work reported represents an evolving model of learning qua complex system and that evolution is the result of iterative cycles of design research. One of the signatures of complex systems is the presence of scale invariance and this line of research furnishes empirical evidence of scale invariant behaviors in the activity of learners engaged in participatory simulations. The offered discussion of possible causes for these behaviors and chaotic phase transitions in human learning favors real-time optimization of decision-making as the means for producing such behaviors. Beyond theoretical development and modeling, this work includes the development of teaching activities intended to introduce pre-service mathematics and science teachers to complex systems. While some of the learning goals for this activity focused on the introduction of complex systems as a content area, we also used complex systems to frame perspectives on learning. Results of scoring rubrics and interview responses from students illustrate attributes of the proposed model of complex systems learning and also how these pre-service teachers made sense of the ideas. Correlations between established theories of learning and a complex adaptive systems model of learning are established and made explicit, and a means for using complex systems ideas for designing instruction is offered. It is a fundamental assumption of this research and researcher that complex systems ideas and understandings can be appropriated from more complexity-developed disciplines and put to use modeling and building increasingly productive understandings of learning and teaching.

  14. Recharge and groundwater models: An overview

    USGS Publications Warehouse

    Sanford, W.

    2002-01-01

    Recharge is a fundamental component of groundwater systems, and in groundwater-modeling exercises recharge is either measured and specified or estimated during model calibration. The most appropriate way to represent recharge in a groundwater model depends upon both physical factors and study objectives. Where the water table is close to the land surface, as in humid climates or regions with low topographic relief, a constant-head boundary condition is used. Conversely, where the water table is relatively deep, as in drier climates or regions with high relief, a specified-flux boundary condition is used. In most modeling applications, mixed-type conditions are more effective, or a combination of the different types can be used. The relative distribution of recharge can be estimated from water-level data only, but flux observations must be incorporated in order to estimate rates of recharge. Flux measurements are based on either Darcian velocities (e.g., stream base-flow) or seepage velocities (e.g., groundwater age). In order to estimate the effective porosity independently, both types of flux measurements must be available. Recharge is often estimated more efficiently when automated inverse techniques are used. Other important applications are the delineation of areas contributing recharge to wells and the estimation of paleorecharge rates using carbon-14.

  15. Orbital angular momentum light frequency conversion and interference with quasi-phase matching crystals.

    PubMed

    Zhou, Zhi-Yuan; Ding, Dong-Sheng; Jiang, Yun-Kun; Li, Yan; Shi, Shuai; Wang, Xi-Shi; Shi, Bao-Sen

    2014-08-25

    Light with helical phase structures, carrying quantized orbital angular momentum (OAM), has many applications in both classical and quantum optics, such as high-capacity optical communications and quantum information processing. Frequency conversion is a basic technique to expand the frequency range of the fundamental light. The frequency conversion of OAM-carrying light gives rise to new physics and applications such as up-conversion detection of images and generation of high dimensional OAM entanglements. Quasi-phase matching (QPM) nonlinear crystals are good candidates for frequency conversion, particularly due to their high-valued effective nonlinear coefficients and no walk-off effect. Here we report the first experimental second-harmonic generation (SHG) of an OAM-carried light with a QPM crystal, where a UV light with OAM of 100 ℏ is generated. OAM conservation is verified using a specially designed interferometer. With a pump beam carrying an OAM superposition of opposite sign, we observe interesting interference phenomena in the SHG light; specifically, a photonics gear-like structure is obtained that gives direct evidence of OAM conservation, which will be very useful for ultra-sensitive angular measurements. Besides, we also develop a theory to reveal the underlying physics of the phenomena. The methods and theoretical analysis shown here are also applicable to other frequency conversion processes, such as sum frequency generation and difference-frequency generation, and may also be generalized to the quantum regime for single photons.

  16. Peer-Peer Interaction in a Speaking Test: The Case of the "First Certificate in English" Examination

    ERIC Educational Resources Information Center

    Galaczi, Evelina D.

    2008-01-01

    This discourse-based study turns its attention to paired test-taker discourse in the First Certificate in English speaking test. Its primary aim is to focus on fundamental conversation management concepts, such as overall structural organisation, turn-taking, sequencing, and topic organisation found in the dyadic test-taker interaction in 30 pairs…

  17. Biophysical regulations of carbon fluxes of a steppe and a cultivated cropland in semiarid Inner Mongolia

    Treesearch

    W.L. Zhang; S.P. Chen; J. Chen; L. Wei; X.G. Han; G.H. Lin

    2007-01-01

    An increasing amount of grasslands in Inner Mongolia of Northern China has been converted to cropland. The conversions in this extensive semiarid region have produced adverse ecological consequences at local and regional scales (e.g., dust storms). An important research need is to understand the fundamental ecosystem processes, such as energy and material fluxes,...

  18. Assistance and Feedback Mechanism in an Intelligent Tutoring System for Teaching Conversion of Natural Language into Logic

    ERIC Educational Resources Information Center

    Perikos, Isidoros; Grivokostopoulou, Foteini; Hatzilygeroudis, Ioannis

    2017-01-01

    Logic as a knowledge representation and reasoning language is a fundamental topic of an Artificial Intelligence (AI) course and includes a number of sub-topics. One of them, which brings difficulties to students to deal with, is converting natural language (NL) sentences into first-order logic (FOL) formulas. To assist students to overcome those…

  19. Fuel cells: principles, types, fuels, and applications.

    PubMed

    Carrette, L; Friedrich, K A; Stimming, U

    2000-12-15

    During the last decade, fuel cells have received enormous attention from research institutions and companies as novel electrical energy conversion systems. In the near future, they will see application in automotive propulsion, distributed power generation, and in low power portable devices (battery replacement). This review gives an introduction into the fundamentals and applications of fuel cells: Firstly, the environmental and social factors promoting fuel cell development are discussed, with an emphasis on the advantages of fuel cells compared to the conventional techniques. Then, the main reactions, which are responsible for the conversion of chemical into electrical energy in fuel cells, are given and the thermodynamic and kinetic fundamentals are stated. The theoretical and real efficiencies of fuel cells are also compared to that of internal combustion engines. Next, the different types of fuel cells and their main components are explained and the related material issues are presented. A section is devoted to fuel generation and storage, which is of paramount importance for the practical aspects of fuel cell use. Finally, attention is given to the integration of the fuel cells into complete systems. © 2000 WILEY-VCH Verlag GmbH, Weinheim, Fed. Rep. of Germany.

  20. Time-resolved vibrational spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tokmakoff, Andrei; Champion, Paul; Heilweil, Edwin J.

    2009-05-14

    This document contains the Proceedings from the 14th International Conference on Time-Resolved Vibrational Spectroscopy, which was held in Meredith, NH from May 9-14, 2009. The study of molecular dynamics in chemical reaction and biological processes using time-resolved spectroscopy plays an important role in our understanding of energy conversion, storage, and utilization problems. Fundamental studies of chemical reactivity, molecular rearrangements, and charge transport are broadly supported by the DOE's Office of Science because of their role in the development of alternative energy sources, the understanding of biological energy conversion processes, the efficient utilization of existing energy resources, and the mitigation ofmore » reactive intermediates in radiation chemistry. In addition, time-resolved spectroscopy is central to all fiveof DOE's grand challenges for fundamental energy science. The Time-Resolved Vibrational Spectroscopy conference is organized biennially to bring the leaders in this field from around the globe together with young scientists to discuss the most recent scientific and technological advances. The latest technology in ultrafast infrared, Raman, and terahertz spectroscopy and the scientific advances that these methods enable were covered. Particular emphasis was placed on new experimental methods used to probe molecular dynamics in liquids, solids, interfaces, nanostructured materials, and biomolecules.« less

  1. Factors limiting device efficiency in organic photovoltaics.

    PubMed

    Janssen, René A J; Nelson, Jenny

    2013-04-04

    The power conversion efficiency of the most efficient organic photovoltaic (OPV) cells has recently increased to over 10%. To enable further increases, the factors limiting the device efficiency in OPV must be identified. In this review, the operational mechanism of OPV cells is explained and the detailed balance limit to photovoltaic energy conversion, as developed by Shockley and Queisser, is outlined. The various approaches that have been developed to estimate the maximum practically achievable efficiency in OPV are then discussed, based on empirical knowledge of organic semiconductor materials. Subsequently, approaches made to adapt the detailed balance theory to incorporate some of the fundamentally different processes in organic solar cells that originate from using a combination of two complementary, donor and acceptor, organic semiconductors using thermodynamic and kinetic approaches are described. The more empirical formulations to the efficiency limits provide estimates of 10-12%, but the more fundamental descriptions suggest limits of 20-24% to be reachable in single junctions, similar to the highest efficiencies obtained for crystalline silicon p-n junction solar cells. Closing this gap sets the stage for future materials research and development of OPV. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Photoinduced electron transfer in a molecular dyad by nanosecond pump-pump-probe spectroscopy.

    PubMed

    Ha-Thi, M-H; Pham, V-T; Pino, T; Maslova, V; Quaranta, A; Lefumeux, C; Leibl, W; Aukauloo, A

    2018-06-01

    The design of robust and inexpensive molecular photocatalysts for the conversion of abundant stable molecules like H2O and CO2 into an energetic carrier is one of the major fundamental questions for scientists nowadays. The outstanding challenge is to couple single photoinduced charge separation events with the sequential accumulation of redox equivalents at the catalytic unit for performing multielectronic catalytic reactions. Herein, double excitation by nanosecond pump-pump-probe experiments was used to interrogate the photoinduced charge transfer and charge accumulation on a molecular dyad composed of a porphyrin chromophore and a ruthenium-based catalyst in the presence of a reversible electron acceptor. An accumulative charge transfer state is unattainable because of rapid reverse electron transfer to the photosensitizer upon the second excitation and the low driving force of the forward photodriven electron transfer reaction. Such a method allows the fundamental understanding of the relaxation mechanism after two sequential photon absorptions, deciphering the undesired electron transfer reactions that limit the charge accumulation efficiency. This study is a step toward the improvement of synthetic strategies of molecular photocatalysts for light-induced charge accumulation and more generally, for solar energy conversion.

  3. Size effects of 109° domain walls in rhombohedral barium titanate single crystals—A molecular statics analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Endres, Florian, E-mail: florian.endres@ltm.uni-erlangen.de; Steinmann, Paul, E-mail: paul.steinmann@ltm.uni-erlangen.de

    2016-01-14

    Ferroelectric functional materials are of great interest in science and technology due to their electromechanically coupled material properties. Therefore, ferroelectrics, such as barium titanate, are modeled and simulated at the continuum scale as well as at the atomistic scale. Due to recent advancements in related manufacturing technologies the modeling and simulation of smart materials at the nanometer length scale is getting more important not only to predict but also fundamentally understand the complex material behavior of such materials. In this study, we analyze the size effects of 109° nanodomain walls in ferroelectric barium titanate single crystals in the rhombohedral phasemore » using a recently proposed extended molecular statics algorithm. We study the impact of domain thicknesses on the spontaneous polarization, the coercive field, and the lattice constants. Moreover, we discuss how the electromechanical coupling of an applied electric field and the introduced strain in the converse piezoelectric effect is affected by the thickness of nanodomains.« less

  4. Exciton delocalization incorporated drift-diffusion model for bulk-heterojunction organic solar cells

    NASA Astrophysics Data System (ADS)

    Wang, Zi Shuai; Sha, Wei E. I.; Choy, Wallace C. H.

    2016-12-01

    Modeling the charge-generation process is highly important to understand device physics and optimize power conversion efficiency of bulk-heterojunction organic solar cells (OSCs). Free carriers are generated by both ultrafast exciton delocalization and slow exciton diffusion and dissociation at the heterojunction interface. In this work, we developed a systematic numerical simulation to describe the charge-generation process by a modified drift-diffusion model. The transport, recombination, and collection of free carriers are incorporated to fully capture the device response. The theoretical results match well with the state-of-the-art high-performance organic solar cells. It is demonstrated that the increase of exciton delocalization ratio reduces the energy loss in the exciton diffusion-dissociation process, and thus, significantly improves the device efficiency, especially for the short-circuit current. By changing the exciton delocalization ratio, OSC performances are comprehensively investigated under the conditions of short-circuit and open-circuit. Particularly, bulk recombination dependent fill factor saturation is unveiled and understood. As a fundamental electrical analysis of the delocalization mechanism, our work is important to understand and optimize the high-performance OSCs.

  5. Anisotropic structure of the mantle wedge beneath the Ryukyu arc from teleseismic receiver function analysis

    NASA Astrophysics Data System (ADS)

    McCormack, K. A.; Wirth, E. A.; Long, M. D.

    2011-12-01

    The recycling of oceanic plates back into the mantle through subduction is an important process taking place within our planet. However, many fundamental aspects of subduction systems, such as the dynamics of mantle flow, have yet to be completely understood. Subducting slabs transport water down into the mantle, but how and where that water is released, as well as how it affects mantle flow, is still an open question. In this study, we focus on the Ryukyu subduction zone in southwestern Japan and use anisotropic receiver function analysis to characterize the structure of the mantle wedge. We compute radial and transverse P-to-S receiver functions for eight stations of the broadband F-net array using a multitaper receiver function estimator. We observe coherent P-to-SV converted energy in the radial receiver functions at ~6 sec for most of the stations analyzed consistent with conversions originating at the top of the slab. We also observe conversions on the transverse receiver functions that are consistent with the presence of multiple anisotropic and/or dipping layers. The character of the transverse receiver functions varies significantly along strike, with the northernmost three stations exhibiting markedly different behavior than stations located in the center of the Ryukyu arc. We compute synthetic receiver functions using a forward modeling scheme that can handle dipping interfaces and anisotropic layers to create models for the depths, thicknesses, and strengths of anisotropic layers in the mantle wedge beneath Ryukyu.

  6. Atomic Detail Visualization of Photosynthetic Membranes with GPU-Accelerated Ray Tracing

    PubMed Central

    Vandivort, Kirby L.; Barragan, Angela; Singharoy, Abhishek; Teo, Ivan; Ribeiro, João V.; Isralewitz, Barry; Liu, Bo; Goh, Boon Chong; Phillips, James C.; MacGregor-Chatwin, Craig; Johnson, Matthew P.; Kourkoutis, Lena F.; Hunter, C. Neil

    2016-01-01

    The cellular process responsible for providing energy for most life on Earth, namely photosynthetic light-harvesting, requires the cooperation of hundreds of proteins across an organelle, involving length and time scales spanning several orders of magnitude over quantum and classical regimes. Simulation and visualization of this fundamental energy conversion process pose many unique methodological and computational challenges. We present, in two accompanying movies, light-harvesting in the photosynthetic apparatus found in purple bacteria, the so-called chromatophore. The movies are the culmination of three decades of modeling efforts, featuring the collaboration of theoretical, experimental, and computational scientists. We describe the techniques that were used to build, simulate, analyze, and visualize the structures shown in the movies, and we highlight cases where scientific needs spurred the development of new parallel algorithms that efficiently harness GPU accelerators and petascale computers. PMID:27274603

  7. A mechanistic model of tau amyloid aggregation based on direct observation of oligomers

    NASA Astrophysics Data System (ADS)

    Shammas, Sarah L.; Garcia, Gonzalo A.; Kumar, Satish; Kjaergaard, Magnus; Horrocks, Mathew H.; Shivji, Nadia; Mandelkow, Eva; Knowles, Tuomas P. J.; Mandelkow, Eckhard; Klenerman, David

    2015-04-01

    Protein aggregation plays a key role in neurodegenerative disease, giving rise to small oligomers that may become cytotoxic to cells. The fundamental microscopic reactions taking place during aggregation, and their rate constants, have been difficult to determine due to lack of suitable methods to identify and follow the low concentration of oligomers over time. Here we use single-molecule fluorescence to study the aggregation of the repeat domain of tau (K18), and two mutant forms linked with familial frontotemporal dementia, the deletion mutant ΔK280 and the point mutant P301L. Our kinetic analysis reveals that aggregation proceeds via monomeric assembly into small oligomers, and a subsequent slow structural conversion step before fibril formation. Using this approach, we have been able to quantitatively determine how these mutations alter the aggregation energy landscape.

  8. Full characterization of an attosecond pulse generated using an infrared driver

    PubMed Central

    Zhang, Chunmei; Brown, Graham G.; Kim, Kyung Taec; Villeneuve, D. M.; Corkum, P. B.

    2016-01-01

    The physics of attosecond pulse generation requires using infrared driving wavelength to reach the soft X-rays. However, with longer driving wavelength, the harmonic conversion efficiency drops significantly. It makes the conventional attosecond pulse measurement using streaking very difficult due to the low photoionization cross section in the soft X-rays region. In-situ measurement was developed for precisely this purpose. We use in-situ measurement to characterize, in both space and time, an attosecond pulse produced by ultrafast wavefront rotation of a 1.8 μm fundamental beam. We confirm what models suggest – that each beamlet is an isolated attosecond pulse in the time domain. We get almost constant flat wavefront curvature through the whole photon energy range. The measurement method is scalable to the soft X-ray spectral region. PMID:27230961

  9. Comparative analysis of internal friction and natural frequency measured by free decay and forced vibration.

    PubMed

    Wang, Y Z; Ding, X D; Xiong, X M; Zhang, J X

    2007-10-01

    Relations between various values of the internal friction (tgdelta, Q(-1), Q(-1*), and Lambda/pi) measured by free decay and forced vibration are analyzed systemically based on a fundamental mechanical model in this paper. Additionally, relations between various natural frequencies, such as vibration frequency of free decay omega(FD), displacement-resonant frequency of forced vibration omega(d), and velocity-resonant frequency of forced vibration omega(0) are calculated. Moreover, measurement of natural frequencies of a copper specimen of 99.9% purity has been made to demonstrate the relation between the measured natural frequencies of the system by forced vibration and free decay. These results are of importance for not only more accurate measurement of the elastic modulus of materials but also the data conversion between different internal friction measurements.

  10. Channel Modeling

    NASA Astrophysics Data System (ADS)

    Schmitz, Arne; Schinnenburg, Marc; Gross, James; Aguiar, Ana

    For any communication system the Signal-to-Interference-plus-Noise-Ratio of the link is a fundamental metric. Recall (cf. Chapter 9) that the SINR is defined as the ratio between the received power of the signal of interest and the sum of all "disturbing" power sources (i.e. interference and noise). From information theory it is known that a higher SINR increases the maximum possible error-free transmission rate (referred to as Shannon capacity [417] of any communication system and vice versa). Conversely, the higher the SINR, the lower will be the bit error rate in practical systems. While one aspect of the SINR is the sum of all distracting power sources, another issue is the received power. This depends on the transmitted power, the used antennas, possibly on signal processing techniques and ultimately on the channel gain between transmitter and receiver.

  11. Photocell Optimization Using Dark State Protection.

    PubMed

    Fruchtman, Amir; Gómez-Bombarelli, Rafael; Lovett, Brendon W; Gauger, Erik M

    2016-11-11

    Conventional photocells suffer a fundamental efficiency threshold imposed by the principle of detailed balance, reflecting the fact that good absorbers must necessarily also be fast emitters. This limitation can be overcome by "parking" the energy of an absorbed photon in a dark state which neither absorbs nor emits light. Here we argue that suitable dark states occur naturally as a consequence of the dipole-dipole interaction between two proximal optical dipoles for a wide range of realistic molecular dimers. We develop an intuitive model of a photocell comprising two light-absorbing molecules coupled to an idealized reaction center, showing asymmetric dimers are capable of providing a significant enhancement of light-to-current conversion under ambient conditions. We conclude by describing a road map for identifying suitable molecular dimers for demonstrating this effect by screening a very large set of possible candidate molecules.

  12. Magnetic reconnection in Earth's magnetotail: Energy conversion and its earthward-tailward asymmetry

    NASA Astrophysics Data System (ADS)

    Lu, San; Pritchett, P. L.; Angelopoulos, V.; Artemyev, A. V.

    2018-01-01

    Magnetic reconnection, a fundamental plasma process, releases magnetic energy and converts it to particle energy, by accelerating and heating ions and electrons. This energy conversion plays an important role in the Earth's magnetotail. A two-dimensional particle-in-cell simulation is performed to study such a conversion in a magnetotail topology, one with a nonzero Bz, and the energy conversion is found to be more efficient in the earthward outflow than in the tailward outflow. Such earthward-tailward asymmetry is manifested not only in j .E but also in Poynting flux, Hall electromagnetic fields, bulk kinetic energy flux, enthalpy flux, heat flux, bulk acceleration, heating, and suprathermal particle energization, all of which are more prevalent on the earthward side. Such asymmetries are consistent with spacecraft observations reported in the literature. Our study shows that in the magnetotail, most of the energy converted by reconnection flows predominantly toward the Earth and has the potential of being geoeffective, rather than being expelled to the solar wind by the tailward flow. The energy conversion asymmetry arises from the presence of the non-zero normal magnetic field, the stronger lobe magnetic field, and the stronger cross-tail current earthward of the reconnection site in the pre-reconnecting thin current sheet.

  13. Quantitative evaluation of the accuracy and variance of individual pixels in a scientific CMOS (sCMOS) camera for computational imaging

    NASA Astrophysics Data System (ADS)

    Watanabe, Shigeo; Takahashi, Teruo; Bennett, Keith

    2017-02-01

    The"scientific" CMOS (sCMOS) camera architecture fundamentally differs from CCD and EMCCD cameras. In digital CCD and EMCCD cameras, conversion from charge to the digital output is generally through a single electronic chain, and the read noise and the conversion factor from photoelectrons to digital outputs are highly uniform for all pixels, although quantum efficiency may spatially vary. In CMOS cameras, the charge to voltage conversion is separate for each pixel and each column has independent amplifiers and analog-to-digital converters, in addition to possible pixel-to-pixel variation in quantum efficiency. The "raw" output from the CMOS image sensor includes pixel-to-pixel variability in the read noise, electronic gain, offset and dark current. Scientific camera manufacturers digitally compensate the raw signal from the CMOS image sensors to provide usable images. Statistical noise in images, unless properly modeled, can introduce errors in methods such as fluctuation correlation spectroscopy or computational imaging, for example, localization microscopy using maximum likelihood estimation. We measured the distributions and spatial maps of individual pixel offset, dark current, read noise, linearity, photoresponse non-uniformity and variance distributions of individual pixels for standard, off-the-shelf Hamamatsu ORCA-Flash4.0 V3 sCMOS cameras using highly uniform and controlled illumination conditions, from dark conditions to multiple low light levels between 20 to 1,000 photons / pixel per frame to higher light conditions. We further show that using pixel variance for flat field correction leads to errors in cameras with good factory calibration.

  14. Sacred changes: Spiritual conversion and transformation.

    PubMed

    Mahoney, Annette; Pargament, Kenneth I

    2004-05-01

    We use Pargament's (1997) definition of religion-"the search for significance in ways related to the sacred"-as a framework to understand spiritual conversion. Like other life-changing transformations, spiritual conversion alters the destinations that clients perceive to be of greatest importance in life (significance) and the pathways by which clients discover what is most significant in life (search). Unlike other transformative experiences, however, spiritual conversion incorporates the third element of religion, "the sacred," into the content of change. To illustrate these points, we discuss two theological models of spiritual conversion rooted in Christianity: a traditional model based on classic western theology and an alternative model based on feminist theology. We then compare processes of spiritual conversion to nonreligious models of transformation. We also highlight the importance for clinical work of the fit between the context of a client's life and the type of spiritual conversion experienced. Copyright 2004 Wiley Periodicals, Inc.

  15. Effect of CdTe Back Surface Field on the Efficiency Enhancement of a CGS Based Thin Film Solar Cell

    NASA Astrophysics Data System (ADS)

    Khattak, Yousaf Hameed; Baig, Faisal; Marí, Bernabé; Beg, Saira; Gillani, Syed Rizwan; Ahmed, Tanveer

    2018-05-01

    Numerical analysis of the proposed solar cell is based on cadmium telluride (CdTe) and copper gallium sulfide (CuGaS2), also known as CGS, is proposed in this research work. Performance of a CdTe/CGS/CdS/ZnO cell is analyzed in Solar Cell Capacitance Simulator (SCAPS) software, by changing the physical parameters like doping density of acceptor, doping density of donor, absorber thickness and buffer thickness. The cell structure is in the same order as the CGS/CdS/ZnO with CdTe used for the back surface field layer. Power conversion efficiency of the CGS/CdS/ZnO solar cell without CdTe is 10.578% (with FF = 83.70%, V oc = 0.82 V, J sc = 15.40 mA/cm2) and conversion efficiency of CdTe/CGS/CdS/ZnO is 28.20% (with FF = 77.66%, V oc = 1.22 V, J sc = 29.63 mA/cm3). The overall investigation and simulation results from the modeling of a proposed device in SCAPS is very useful for the understanding of the fundamentals of photovoltaic devices and gives feedback to engineers and designers for the fabrication of CdTe/CGS based solar cells.

  16. Hybrid Inorganic/Organic Photovoltaics: Translating Fundamental Nanostructure Research to Enhanced Solar Conversion Efficiency

    DTIC Science & Technology

    2010-03-18

    quantum dots composed of a photopolymerizable outer corona constituting methacrylate and an inner siloxane layer, with a view making them photo...nanostructures. The inherent properties of photopolymerizable QDs such as their stability, PL, and ease of solution processability, make them suitable...Thiophenes are important compounds that are used as building blocks in many chemical synthesis. The thiophene oligomers and thiophene-based

  17. Mother-Child Conversations about Pictures and Objects: Referring to Categories and Individuals

    ERIC Educational Resources Information Center

    Gelman, Susan A.; Chesnick, Robert J.; Waxman, Sandra R.

    2005-01-01

    The distinction between individuals (e.g., Rin-Tin-Tin) and categories (e.g., dogs) is fundamental in human thought. Two studies examined factors that influence when 2- to 3-year-old children and adults focus on individuals versus categories. Mother-child dyads were presented with pictures and toys (e.g., a picture of a boat or a toy boat).…

  18. A LARGE LIFE INSURANCE COMPANY AUTOMATES. WORKFORCE IMPLICATIONS OF COMPUTER CONVERSION. AUTOMATION PROGRAM REPORT, NUMBER 3.

    ERIC Educational Resources Information Center

    CIBARICH, AUGUST L.; AND OTHERS

    THIS WAS ONE OF 20 DEMONSTRATION PROJECTS INITIATED IN 11 STATES IN 1961-63 TO GAIN EXPERIENCE WITH LABOR MARKET PROBLEMS ARISING FROM CHANGING TECHNOLOGY AND MASS LAYOFFS. THE FUNDAMENTAL AIM WAS TO COMBINE ACTION AND RESEARCH TO DEMONSTRATE WHAT THE STATE EMPLOYMENT SERVICE COULD DO IN AREAS WHERE THE LABOR MARKET WAS RAPIDLY CHANGING.…

  19. Experimental generation of complex noisy photonic entanglement

    NASA Astrophysics Data System (ADS)

    Dobek, K.; Karpiński, M.; Demkowicz-Dobrzański, R.; Banaszek, K.; Horodecki, P.

    2013-02-01

    We present an experimental scheme based on spontaneous parametric down-conversion to produce multiple-photon pairs in maximally entangled polarization states using an arrangement of two type-I nonlinear crystals. By introducing correlated polarization noise in the paths of the generated photons we prepare mixed-entangled states whose properties illustrate fundamental results obtained recently in quantum information theory, in particular those concerning bound entanglement and privacy.

  20. Fundamentals of Hydrocarbon Upgrading to Liquid Fuels and Commodity Chemicals over Catalytic Metallic Nanoparticles

    NASA Astrophysics Data System (ADS)

    Chen, Tao

    Promising new technologies for biomass conversion into fuels and chemical feedstocks rely on the production of bio-oils, which need to be upgraded in order to remove oxygen-containing hydrocarbons and water. A high oxygen concentration makes bio-oils acidic and corrosive, unstable during storage, and less energetically valuable per unit weight than petroleum-derived hydrocarbons. Although there are efficient processes for the production of bio-oils, there are no efficient technologies for their upgrading. Current technologies utilize traditional petroleum refining catalysts, which are not optimized for biomass processing. New upgrading technologies are, therefore, urgently needed for development of sustainable energy resources. Development of such new technologies, however, is severely hindered by a lack of fundamental understanding of how oxygen and oxygen-containing hydrocarbons derived from biomass interact with promising noble-metal catalysts. In this study, kinetic reaction measurements, catalyst characterization and quantum chemical calculations using density functional theory were combined for determining adsorption modes and reaction mechanisms of hydrocarbons in the presence of oxygen on surfaces of catalytic noble-metal nanoparticles. The results were used for developing improved catalyst formulations and optimization of reaction conditions. The addition of molybdenum to platinum catalysts was shown to improve catalytic activity, stability, and selectivity in hydrodeoxygenation of acetic acid, which served as a model biomass compound. The fundamental results that describe interactions of oxygen and hydrocarbons with noble-metal catalysts were extended to other reactions and fields of study: evaluation of the reaction mechanism for hydrogen peroxide decomposition, development of improved hydrogenation catalysts and determination of adsorption modes of a spectroscopic probe molecule.

  1. A sanctuary of safety: A study of how patients with dual diagnosis experience caring conversations.

    PubMed

    Priebe, Åsa; Wiklund Gustin, Lena; Fredriksson, Lennart

    2018-04-01

    The prevalence of dual diagnosis, that is, the combination of psychiatric illnesses and substance use disorders, is high. As a vast majority of previous research in this context focusses on the effects of different treatment methods, rather than interpersonal issues, the purpose of the present study was to explore and illuminate in what way patients with a dual diagnosis experience conversations with nurses in an outpatient clinic to be caring. Five patients were interviewed regarding their experiences of caring conversations. The analysis and interpretation were inspired by a previously-used hermeneutical process. These yielded three themes: (i) reciprocity creates safety and communion; (ii) suffering is made visible and understandable; and (iii) self-esteem is restored. When synthesized, these themes gave rise to a main theme - a sanctuary of safety - where suffering is alleviated and dignity and self-esteem are restored. It is concluded that the caring conversation contributes to experiences of safeness. In this specific context, safety appears to be more fundamental than trust for patients' recoveries. The caring conversation also contributes to recovery, as it supports the individual's learning and understanding as a way to cope with problems, which also enables patients to make informed decisions about their own care. The caring conversation contributes to the alleviation of suffering and restoration of dignity and self-esteem for patients with a dual diagnosis. However, there is a need for further research focussing on how the caring conversation can contribute to psychiatric nurses' caring expertise. © 2017 Australian College of Mental Health Nurses Inc.

  2. Fundamental and progress of Bi2Te3-based thermoelectric materials

    NASA Astrophysics Data System (ADS)

    Hong, Min; Chen, Zhi-Gang; Zou, Jin

    2018-04-01

    Thermoelectric materials, enabling the directing conversion between heat and electricity, are one of the promising candidates for overcoming environmental pollution and the upcoming energy shortage caused by the over-consumption of fossil fuels. Bi2Te3-based alloys are the classical thermoelectric materials working near room temperature. Due to the intensive theoretical investigations and experimental demonstrations, significant progress has been achieved to enhance the thermoelectric performance of Bi2Te3-based thermoelectric materials. In this review, we first explored the fundamentals of thermoelectric effect and derived the equations for thermoelectric properties. On this basis, we studied the effect of material parameters on thermoelectric properties. Then, we analyzed the features of Bi2Te3-based thermoelectric materials, including the lattice defects, anisotropic behavior and the strong bipolar conduction at relatively high temperature. Then we accordingly summarized the strategies for enhancing the thermoelectric performance, including point defect engineering, texture alignment, and band gap enlargement. Moreover, we highlighted the progress in decreasing thermal conductivity using nanostructures fabricated by solution grown method, ball milling, and melt spinning. Lastly, we employed modeling analysis to uncover the principles of anisotropy behavior and the achieved enhancement in Bi2Te3, which will enlighten the enhancement of thermoelectric performance in broader materials.

  3. Perovskites in catalysis and electrocatalysis

    NASA Astrophysics Data System (ADS)

    Hwang, Jonathan; Rao, Reshma R.; Giordano, Livia; Katayama, Yu; Yu, Yang; Shao-Horn, Yang

    2017-11-01

    Catalysts for chemical and electrochemical reactions underpin many aspects of modern technology and industry, from energy storage and conversion to toxic emissions abatement to chemical and materials synthesis. This role necessitates the design of highly active, stable, yet earth-abundant heterogeneous catalysts. In this Review, we present the perovskite oxide family as a basis for developing such catalysts for (electro)chemical conversions spanning carbon, nitrogen, and oxygen chemistries. A framework for rationalizing activity trends and guiding perovskite oxide catalyst design is described, followed by illustrations of how a robust understanding of perovskite electronic structure provides fundamental insights into activity, stability, and mechanism in oxygen electrocatalysis. We conclude by outlining how these insights open experimental and computational opportunities to expand the compositional and chemical reaction space for next-generation perovskite catalysts.

  4. Chiral Amine Synthesis Using ω-Transaminases: An Amine Donor that Displaces Equilibria and Enables High-Throughput Screening**

    PubMed Central

    Green, Anthony P; Turner, Nicholas J; O'Reilly, Elaine

    2014-01-01

    The widespread application of ω-transaminases as biocatalysts for chiral amine synthesis has been hampered by fundamental challenges, including unfavorable equilibrium positions and product inhibition. Herein, an efficient process that allows reactions to proceed in high conversion in the absence of by-product removal using only one equivalent of a diamine donor (ortho-xylylenediamine) is reported. This operationally simple method is compatible with the most widely used (R)- and (S)-selective ω-TAs and is particularly suitable for the conversion of substrates with unfavorable equilibrium positions (e.g., 1-indanone). Significantly, spontaneous polymerization of the isoindole by-product generates colored derivatives, providing a high-throughput screening platform to identify desired ω-TA activity. PMID:25138082

  5. Chip-Scale Architectures for Precise Optical Frequency Synthesis

    NASA Astrophysics Data System (ADS)

    Yang, Jinghui

    Scientists and engineers have investigated various types of stable and accurate optical synthesizers, where mode-locked laser based optical frequency comb synthesizers have been widely investigated. These frequency combs bridge the frequencies from optical domain to microwave domain with orders of magnitude difference, providing a metrological tool for various platforms. The demand for highly robust, scalable, compact and cost-effective femtosecond-laser synthesizers, however, are of great importance for applications in air- or space-borne platforms, where low cost and rugged packaging are particularly required. This has been afforded in the past several years due to breakthroughs in chip-scale nanofabrication, bringing advances in optical frequency combs down to semiconductor chips. These platforms, with significantly enhanced light-matter interaction, provide a fertile sandbox for research rich in nonlinear dynamics, and offer a reliable route towards low-phase noise photonic oscillators, broadband optical frequency synthesizers, miniaturized optical clockwork, and coherent terabit communications. The dissertation explores various types of optical frequency comb synthesizers based on nonlinear microresonators. Firstly, the fundamental mechanism of mode-locking in a high-quality factor microresonator is examined, supported by ultrafast optical characterizations, analytical closed-form solutions and numerical modeling. In the evolution of these frequency microcombs, the key nonlinear dynamical effect governing the comb state coherence is rigorously analyzed. Secondly, a prototype of chip-scale optical frequency synthesizer is demonstrated, with the laser frequency comb stabilized down to instrument-limited 50-mHz RF frequency inaccuracies and 10-16 fractional frequency inaccuracies, near the fundamental limits. Thirdly, a globally stable Turing pattern is achieved and characterized in these nonlinear resonators with high-efficiency conversion, subsequently generating coherent high-power terahertz radiation via plasmonic photomixers. Finally, a new universal modality of frequency combs is discussed, including satellite states, dynamical tunability, and high efficiency conversion towards direct chip-scale optical frequency synthesis at the precision metrology frontiers.

  6. Automatic conversational scene analysis in children with Asperger syndrome/high-functioning autism and typically developing peers.

    PubMed

    Tavano, Alessandro; Pesarin, Anna; Murino, Vittorio; Cristani, Marco

    2014-01-01

    Individuals with Asperger syndrome/High Functioning Autism fail to spontaneously attribute mental states to the self and others, a life-long phenotypic characteristic known as mindblindness. We hypothesized that mindblindness would affect the dynamics of conversational interaction. Using generative models, in particular Gaussian mixture models and observed influence models, conversations were coded as interacting Markov processes, operating on novel speech/silence patterns, termed Steady Conversational Periods (SCPs). SCPs assume that whenever an agent's process changes state (e.g., from silence to speech), it causes a general transition of the entire conversational process, forcing inter-actant synchronization. SCPs fed into observed influence models, which captured the conversational dynamics of children and adolescents with Asperger syndrome/High Functioning Autism, and age-matched typically developing participants. Analyzing the parameters of the models by means of discriminative classifiers, the dialogs of patients were successfully distinguished from those of control participants. We conclude that meaning-free speech/silence sequences, reflecting inter-actant synchronization, at least partially encode typical and atypical conversational dynamics. This suggests a direct influence of theory of mind abilities onto basic speech initiative behavior.

  7. The processive kinetics of gene conversion in bacteria

    PubMed Central

    Paulsson, Johan; El Karoui, Meriem; Lindell, Monica

    2017-01-01

    Summary Gene conversion, non‐reciprocal transfer from one homologous sequence to another, is a major force in evolutionary dynamics, promoting co‐evolution in gene families and maintaining similarities between repeated genes. However, the properties of the transfer – where it initiates, how far it proceeds and how the resulting conversion tracts are affected by mismatch repair – are not well understood. Here, we use the duplicate tuf genes in Salmonella as a quantitatively tractable model system for gene conversion. We selected for conversion in multiple different positions of tuf, and examined the resulting distributions of conversion tracts in mismatch repair‐deficient and mismatch repair‐proficient strains. A simple stochastic model accounting for the essential steps of conversion showed excellent agreement with the data for all selection points using the same value of the conversion processivity, which is the only kinetic parameter of the model. The analysis suggests that gene conversion effectively initiates uniformly at any position within a tuf gene, and proceeds with an effectively uniform conversion processivity in either direction limited by the bounds of the gene. PMID:28256783

  8. Ferromagnetic interaction model of activity level in workplace communication

    NASA Astrophysics Data System (ADS)

    Akitomi, Tomoaki; Ara, Koji; Watanabe, Jun-ichiro; Yano, Kazuo

    2013-03-01

    The nature of human-human interaction, specifically, how people synchronize with each other in multiple-participant conversations, is described by a ferromagnetic interaction model of people’s activity levels. We found two microscopic human interaction characteristics from a real-environment face-to-face conversation. The first characteristic is that people quite regularly synchronize their activity level with that of the other participants in a conversation. The second characteristic is that the degree of synchronization increases as the number of participants increases. Based on these microscopic ferromagnetic characteristics, a “conversation activity level” was modeled according to the Ising model. The results of a simulation of activity level based on this model well reproduce macroscopic experimental measurements of activity level. This model will give a new insight into how people interact with each other in a conversation.

  9. Comprehensive characterisation of sewage sludge for thermochemical conversion processes - Based on Singapore survey.

    PubMed

    Chan, Wei Ping; Wang, Jing-Yuan

    2016-08-01

    Recently, sludge attracted great interest as a potential feedstock in thermochemical conversion processes. However, compositions and thermal degradation behaviours of sludge were highly complex and distinctive compared to other traditional feedstock led to a need of fundamental research on sludge. Comprehensive characterisation of sludge specifically for thermochemical conversion was carried out for all existing Water Reclamation Plants in Singapore. In total, 14 sludge samples collected based on the type, plant, and batch categorisation. Existing characterisation methods for physical and chemical properties were analysed and reviewed using the collected samples. Qualitative similarities and quantitative variations of different sludge samples were identified and discussed. Oxidation of inorganic in sludge during ash forming analysis found to be causing significant deviations on proximate and ultimate analysis. Therefore, alternative parameters and comparison basis including Fixed Residues (FR), Inorganic Matters (IM) and Total Inorganics (TI) were proposed for better understanding on the thermochemical characteristics of sludge. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Enzyme-Embedded, Microstructural Reactors for Industrial Biocatalysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, Sarah E.; Knipe, J. M.; Oakdale, J.

    In this project we explored enzyme-catalyzed methane conversion to methanol. Industrial biological approaches to methane conversion using whole organisms are predicted to be more energy efficient than chemical approaches, but are limited by mass transfer of the gas phase reactants, methane and oxygen, to the organisms. We demonstrated that 3D printing the enzyme particulate Methane Mono Oxygenase (pMMO) embedded in a polymer can improve the kinetics of methane to methanol conversion. This improvement was likely due to the ability to increase the surface area of the catalytic material using 3D printing. We also demonstrated the first continuous use of pMMOmore » in a flow-through reactor. In order to understand the fundamental kinetic properties of pMMO, we conducted an in-depth study of pMMO kinetics using analytical tools developed in our lab. Finally, we developed a new copolymer system that allowed tuning of the gas permeability of the biocatalytic material.« less

  11. Development and application of a complex numerical model and software for the computation of dose conversion factors for radon progenies.

    PubMed

    Farkas, Árpád; Balásházy, Imre

    2015-04-01

    A more exact determination of dose conversion factors associated with radon progeny inhalation was possible due to the advancements in epidemiological health risk estimates in the last years. The enhancement of computational power and the development of numerical techniques allow computing dose conversion factors with increasing reliability. The objective of this study was to develop an integrated model and software based on a self-developed airway deposition code, an own bronchial dosimetry model and the computational methods accepted by International Commission on Radiological Protection (ICRP) to calculate dose conversion coefficients for different exposure conditions. The model was tested by its application for exposure and breathing conditions characteristic of mines and homes. The dose conversion factors were 8 and 16 mSv WLM(-1) for homes and mines when applying a stochastic deposition model combined with the ICRP dosimetry model (named PM-A model), and 9 and 17 mSv WLM(-1) when applying the same deposition model combined with authors' bronchial dosimetry model and the ICRP bronchiolar and alveolar-interstitial dosimetry model (called PM-B model). User friendly software for the computation of dose conversion factors has also been developed. The software allows one to compute conversion factors for a large range of exposure and breathing parameters and to perform sensitivity analyses. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abboud, Alexander; Guillen, Donna Post; Pokorny, Richard

    At the Hanford site in the state of Washington, more than 56 million gallons of radioactive waste is stored in underground tanks. The cleanup plan for this waste is vitrification at the Waste Treatment Plant (WTP), currently under construction. At the WTP, the waste will be blended with glass-forming materials and heated to 1423K, then poured into stainless steel canisters to cool and solidify. A fundamental understanding of the glass batch melting process is needed to optimize the process to reduce cost and decrease the life cycle of the cleanup effort. The cold cap layer that floats on the surfacemore » of the glass melt is the primary reaction zone for the feed-to-glass conversion. The conversion reactions include water release, melting of salts, evolution of batch gases, dissolution of quartz and the formation of molten glass. Obtaining efficient heat transfer to this region is crucial to achieving high rates of glass conversion. Computational fluid dynamics (CFD) modeling is being used to understand the heat transfer dynamics of the system and provide insight to optimize the process. A CFD model was developed to simulate the DM1200, a pilot-scale melter that has been extensively tested by the Vitreous State Laboratory (VSL). Electrodes are built into the melter to provide Joule heating to the molten glass. To promote heat transfer from the molten glass into the reactive cold cap layer, bubbling of the molten glass is used to stimulate forced convection within the melt pool. A three-phase volume of fluid approach is utilized to model the system, wherein the molten glass and cold cap regions are modeled as separate liquid phases, and the bubbling gas and plenum regions are modeled as one lumped gas phase. The modeling of the entire system with a volume of fluid model allows for the prescription of physical properties on a per-phase basis. The molten glass phase and the gas phase physical properties are obtained from previous experimental work. Finding representative properties for the cold cap region is more difficult, as this region is not a true liquid, but rather a multilayer region consisting of a porous and a foamy layer. Physical properties affecting heat transfer, namely the thermal conductivity and heat capacity, have been fit to closely match data and observations from laboratory experiments. Data from xray tomography and quenching of laboratory-scale cold caps provide insight into the topology of bubble distribution within the cold cap at various temperatures. Heat transfer within the melter was validated by comparison with VSL data for the pilot-scale melter.« less

  13. Bioelectrochemical conversion of CO2 to value added product formate using engineered Methylobacterium extorquens.

    PubMed

    Jang, Jungho; Jeon, Byoung Wook; Kim, Yong Hwan

    2018-05-08

    The conversion of carbon dioxide to formate is a fundamental step for building C1 chemical platforms. Methylobacterium extorquens AM1 was reported to show remarkable activity converting carbon dioxide into formate. Formate dehydrogenase 1 from M. extorquens AM1 (MeFDH1) was verified as the key responsible enzyme for the conversion of carbon dioxide to formate in this study. Using a 2% methanol concentration for induction, microbial harboring the recombinant MeFDH1 expressing plasmid produced the highest concentration of formate (26.6 mM within 21 hours) in electrochemical reactor. 60 μM of sodium tungstate in the culture medium was optimal for the expression of recombinant MeFDH1 and production of formate (25.7 mM within 21 hours). The recombinant MeFDH1 expressing cells showed maximum formate productivity of 2.53 mM/g-wet cell/hr, which was 2.5 times greater than that of wild type. Thus, M. extorquens AM1 was successfully engineered by expressing MeFDH1 as recombinant enzyme to elevate the production of formate from CO 2 after elucidating key responsible enzyme for the conversion of CO 2 to formate.

  14. The effect of an infinite plane-wave approximation on calculations for second-harmonic generation in a one-dimensional nonlinear crystal

    NASA Astrophysics Data System (ADS)

    Zhao, Jing; Zhao, Li-Ming

    2012-05-01

    In this paper, the second-harmonic generation (SHG) in a one-dimensional nonlinear crystal that is embedded in air is investigated. Previously, the identical configuration was studied in Li Z. Y. et al., Phys. Rev. B, 60 (1999) 10644, without the use of the slowly varying amplitude approximation (SVAA), but by adopting the infinite plane-wave approximation (PWA), despite the fact that this approximation is not quite applicable to such a system. We calculate the SHG conversion efficiency without a PWA, and compare the results with those from the quoted reference. The investigation reveals that conversion efficiencies of SHG as calculated by the two methods appear to exhibit significant differences, and that the SHG may be modulated by the field of a fundamental wave (FW). The ratio between SHG conversion efficiencies as produced by the two methods shows a periodic variation, and this oscillatory behavior is fully consistent with the variation in transmittance of the FW. Quasi-phase matching (QPM) is also studied, and we find that the location of the peak for SHG conversion efficiency deviates from Δd=0, which differs from the conventional QPM results.

  15. Direct Conversion of Methane to Value-Added Chemicals over Heterogeneous Catalysts: Challenges and Prospects.

    PubMed

    Schwach, Pierre; Pan, Xiulian; Bao, Xinhe

    2017-07-12

    The quest for an efficient process to convert methane efficiently to fuels and high value-added chemicals such as olefins and aromatics is motivated by their increasing demands and recently discovered large reserves and resources of methane. Direct conversion to these chemicals can be realized either oxidatively via oxidative coupling of methane (OCM) or nonoxidatively via methane dehydroaromatization (MDA), which have been under intensive investigation for decades. While industrial applications are still limited by their low yield (selectivity) and stability issues, innovations in new catalysts and concepts are needed. The newly emerging strategy using iron single sites to catalyze methane conversion to olefins, aromatics, and hydrogen (MTOAH) attracted much attention when it was reported. Because the challenge lies in controlled dehydrogenation of the highly stable CH 4 and selective C-C coupling, we focus mainly on the fundamentals of C-H activation and analyze the reaction pathways toward selective routes of OCM, MDA, and MTOAH. With this, we intend to provide some insights into their reaction mechanisms and implications for future development of highly selective catalysts for direct conversion of methane to high value-added chemicals.

  16. Demonstration of an ac Josephson junction laser

    NASA Astrophysics Data System (ADS)

    Cassidy, M. C.; Bruno, A.; Rubbert, S.; Irfan, M.; Kammhuber, J.; Schouten, R. N.; Akhmerov, A. R.; Kouwenhoven, L. P.

    2017-03-01

    Superconducting electronic devices have reemerged as contenders for both classical and quantum computing due to their fast operation speeds, low dissipation, and long coherence times. An ultimate demonstration of coherence is lasing. We use one of the fundamental aspects of superconductivity, the ac Josephson effect, to demonstrate a laser made from a Josephson junction strongly coupled to a multimode superconducting cavity. A dc voltage bias applied across the junction provides a source of microwave photons, and the circuit’s nonlinearity allows for efficient down-conversion of higher-order Josephson frequencies to the cavity’s fundamental mode. The simple fabrication and operation allows for easy integration with a range of quantum devices, allowing for efficient on-chip generation of coherent microwave photons at low temperatures.

  17. Hydrothermal reactions of agricultural and food processing wastes in sub- and supercritical water: a review of fundamentals, mechanisms, and state of research.

    PubMed

    Pavlovič, Irena; Knez, Željko; Škerget, Mojca

    2013-08-28

    Hydrothermal (HT) reactions of agricultural and food-processing waste have been proposed as an alternative to conventional waste treatment technologies due to allowing several improvements in terms of process performance and energy and economical advantages, especially due to their great ability to process high moisture content biomass waste without prior dewatering. Complex structures of wastes and unique properties of water at higher temperatures and pressures enable a variety of physical-chemical reactions and a wide spectra of products. This paper's aim is to give extensive information about the fundamentals and mechanisms of HT reactions and provide state of the research of agri-food waste HT conversion.

  18. Parameter space for the collective laser coupling in the laser fusion driver based on the concept of fiber amplification network.

    PubMed

    Huang, Zhihua; Lin, Honghuan; Xu, Dangpeng; Li, Mingzhong; Wang, Jianjun; Deng, Ying; Zhang, Rui; Zhang, Yongliang; Tian, Xiaocheng; Wei, Xiaofeng

    2013-07-15

    Collective laser coupling of the fiber array in the inertial confinement fusion (ICF) laser driver based on the concept of fiber amplification network (FAN) is researched. The feasible parameter space is given for laser coupling of the fundamental, second and third harmonic waves by neglecting the influence of the frequency conversion on the beam quality under the assumption of beam quality factor conservation. Third harmonic laser coupling is preferred due to its lower output energy requirement from a single fiber amplifier. For coplanar fiber array, the energy requirement is around 0.4 J with an effective mode field diameter of around 500 μm while maintaining the fundamental mode operation which is more than one order of magnitude higher than what can be achieved with state-of-the-art technology. Novel waveguide structure needs to be developed to enlarge the fundamental mode size while mitigating the catastrophic self-focusing effect.

  19. Neurologists' understanding and management of conversion disorder.

    PubMed

    Kanaan, Richard A; Armstrong, David; Wessely, Simon Charles

    2011-09-01

    Conversion disorder is largely managed by neurologists, for whom it presents great challenges to understanding and management. This study aimed to quantify these challenges, examining how neurologists understand conversion disorder, and what they tell their patients. A postal survey of all consultant neurologists in the UK registered with the Association of British Neurologists. 349 of 591 practising consultant neurologists completed the survey. They saw conversion disorder commonly. While they endorsed psychological models for conversion, they diagnosed it according to features of the clinical presentation, most importantly inconsistency and abnormal illness behaviour. Most of the respondents saw feigning as entangled with conversion disorder, with a minority seeing one as a variant of the other. They were quite willing to discuss psychological factors as long as the patient was receptive but were generally unwilling to discuss feigning even though they saw it as their responsibility. Those who favoured models in terms of feigning were older, while younger, female neurologists preferred psychological models, believed conversion would one day be understood neurologically and found communicating with their conversion patients easier than it had been in the past. Neurologists accept psychological models for conversion disorder but do not employ them in their diagnosis; they do not see conversion as clearly different from feigning. This may be changing as younger, female neurologists endorse psychological views more clearly and find it easier to discuss with their patients.

  20. Neurologists' understanding and management of conversion disorder

    PubMed Central

    Armstrong, David; Wessely, Simon Charles

    2011-01-01

    Background Conversion disorder is largely managed by neurologists, for whom it presents great challenges to understanding and management. This study aimed to quantify these challenges, examining how neurologists understand conversion disorder, and what they tell their patients. Methods A postal survey of all consultant neurologists in the UK registered with the Association of British Neurologists. Results 349 of 591 practising consultant neurologists completed the survey. They saw conversion disorder commonly. While they endorsed psychological models for conversion, they diagnosed it according to features of the clinical presentation, most importantly inconsistency and abnormal illness behaviour. Most of the respondents saw feigning as entangled with conversion disorder, with a minority seeing one as a variant of the other. They were quite willing to discuss psychological factors as long as the patient was receptive but were generally unwilling to discuss feigning even though they saw it as their responsibility. Those who favoured models in terms of feigning were older, while younger, female neurologists preferred psychological models, believed conversion would one day be understood neurologically and found communicating with their conversion patients easier than it had been in the past. Discussion Neurologists accept psychological models for conversion disorder but do not employ them in their diagnosis; they do not see conversion as clearly different from feigning. This may be changing as younger, female neurologists endorse psychological views more clearly and find it easier to discuss with their patients. PMID:21325661

  1. Rectenna System Design. [energy conversion solar power satellites

    NASA Technical Reports Server (NTRS)

    Woodcock, G. R.; Andryczyk, R. W.

    1980-01-01

    The fundamental processes involved in the operation of the rectenna system designed for the solar power satellite system are described. The basic design choices are presented based on the desired microwave rf field concentration prior to rectification and based on the ground clearance requirements for the rectenna structure. A nonconcentrating inclined planar panel with a 2 meter minimum clearance configuration is selected as a representative of the typical rectenna.

  2. Artificial perfect electric conductor-perfect magnetic conductor anisotropic metasurface for generating orbital angular momentum of microwave with nearly perfect conversion efficiency

    NASA Astrophysics Data System (ADS)

    Chen, Menglin L. N.; Jiang, Li Jun; Sha, Wei E. I.

    2016-02-01

    Orbital angular momentum (OAM) is a promising degree of freedom for fundamental studies in electromagnetics and quantum mechanics. The unlimited state space of OAM shows a great potential to enhance channel capacities of classical and quantum communications. By exploring the Pancharatnam-Berry phase concept and engineering anisotropic scatterers in a metasurface with spatially varying orientations, a plane wave with zero OAM can be converted to a vortex beam carrying nonzero OAM. In this paper, we proposed two types of novel perfect electric conductor-perfect magnetic conductor anisotropic metasurfaces. One is composed of azimuthally continuous loops and the other is constructed by azimuthally discontinuous dipole scatterers. Both types of metasurfaces are mounted on a mushroom-type high impedance surface. Compared to previous metasurface designs for generating OAM, the proposed ones achieve nearly perfect conversion efficiency. In view of the eliminated vertical component of electric field, the continuous metasurface shows very smooth phase pattern at the near-field region, which cannot be achieved by convectional metasurfaces composed of discrete scatterers. On the other hand, the metasurface with discrete dipole scatterers shows a great flexibility to generate OAM with arbitrary topological charges. Our work is fundamentally and practically important to high-performance OAM generation.

  3. Progress on Raman laser for sodium resonance fluorescence lidar

    NASA Astrophysics Data System (ADS)

    Li, Steven X.; Yu, Anthony W.; Krainak, Michael A.; Bai, Yingxin; Konoplev, Oleg; Fahey, Molly E.; Numata, Kenji

    2018-02-01

    We are developing a Q-switched narrow linewidth intra-cavity Raman laser for a space based sodium lidar application. A novel Raman laser injection seeding scheme is proposed and is experimentally verified. A Q-switched, diode pumped, c-cut Nd:YVO4 laser has been designed to emit a fundamental wavelength at 1066.6 nm. This fundamental wavelength is used as the pump in an intra-cavity Raman conversion in a Gd0.2Y0.8VO4 composite material. By tuning the temperature of the crystal, we tuned the Raman shifting to the desired sodium absorption line. A diode end pumped, T-shaped laser cavity has been built for experimental investigation. The fundamental pump laser cavity is a twisted mode cavity to eliminate the spatial hole burning for effective injection seeding. The Raman laser cavity is a linear standing wave cavity because Raman gain medium does not suffer spatial hole burning as traditional laser gain medium. The linewidth and temporal profile of the Raman laser is experimentally investigated with narrow and broadband fundamental pump emission. We have, for the first time, demonstrated an injection seeded, high peak power, narrow linewidth intra-cavity Raman laser for potential use in a sodium resonance fluorescence lidar.

  4. Social elements as mind.

    PubMed

    Harré, R

    1984-06-01

    The assumption that 'mind' is the product of individual development and that cognition and emotion must be sited in individual people has dominated psychology until recently. The new conception of a 'social construction of mind' is grounded in the idea that an interpersonal conversation is the fundamental psychological reality, and that individual minds are appropriations from it. Such a personal mind is created by making private what is originally and primarily public. This idea strikes at the Cartesian basis of both behaviourist and non-behaviourist psychology, suggesting a more complex multidimensional set of polar oppositions for defining the problems of scientific psychology. For example, perhaps knowledge should be studied as a collective resource rather than as individual beliefs. There is evidence from anthropology that even that intimate form of cognitive organization we call the 'self' may have social origins in favoured grammatical models and so may be expected to differ from one linguistic culture to another.

  5. Atomic detail visualization of photosynthetic membranes with GPU-accelerated ray tracing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stone, John E.; Sener, Melih; Vandivort, Kirby L.

    The cellular process responsible for providing energy for most life on Earth, namely, photosynthetic light-harvesting, requires the cooperation of hundreds of proteins across an organelle, involving length and time scales spanning several orders of magnitude over quantum and classical regimes. Simulation and visualization of this fundamental energy conversion process pose many unique methodological and computational challenges. In this paper, we present, in two accompanying movies, light-harvesting in the photosynthetic apparatus found in purple bacteria, the so-called chromatophore. The movies are the culmination of three decades of modeling efforts, featuring the collaboration of theoretical, experimental, and computational scientists. Finally, we describemore » the techniques that were used to build, simulate, analyze, and visualize the structures shown in the movies, and we highlight cases where scientific needs spurred the development of new parallel algorithms that efficiently harness GPU accelerators and petascale computers.« less

  6. Mesoscale magnetism

    DOE PAGES

    Hoffmann, Axel; Schultheiß, Helmut

    2014-12-17

    Magnetic interactions give rise to a surprising amount of complexity due to the fact that both static and dynamic magnetic properties are governed by competing short-range exchange interactions and long-range dipolar coupling. Even though the underlying dynamical equations are well established, the connection of magnetization dynamics to other degrees of freedom, such as optical excitations, charge and heat flow, or mechanical motion, make magnetism a mesoscale research problem that is still wide open for exploration. Synthesizing magnetic materials and heterostructures with tailored properties will allow to take advantage of magnetic interactions spanning many length-scales, which can be probed with advancedmore » spectroscopy and microscopy and modeled with multi-scale simulations. Finally, this paper highlights some of the current basic research topics in mesoscale magnetism, which beyond their fundamental science impact are also expected to influence applications ranging from information technologies to magnetism based energy conversion.« less

  7. Atomic detail visualization of photosynthetic membranes with GPU-accelerated ray tracing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stone, John E.; Sener, Melih; Vandivort, Kirby L.

    The cellular process responsible for providing energy for most life on Earth, namely, photosynthetic light-harvesting, requires the cooperation of hundreds of proteins across an organelle, involving length and time scales spanning several orders of magnitude over quantum and classical regimes. Simulation and visualization of this fundamental energy conversion process pose many unique methodological and computational challenges. We present, in two accompanying movies, light-harvesting in the photosynthetic apparatus found in purple bacteria, the so-called chromatophore. The movies are the culmination of three decades of modeling efforts, featuring the collaboration of theoretical, experimental, and computational scientists. We describe the techniques that weremore » used to build, simulate, analyze, and visualize the structures shown in the movies, and we highlight cases where scientific needs spurred the development of new parallel algorithms that efficiently harness GPU accelerators and petascale computers.« less

  8. Atomic detail visualization of photosynthetic membranes with GPU-accelerated ray tracing

    DOE PAGES

    Stone, John E.; Sener, Melih; Vandivort, Kirby L.; ...

    2015-12-12

    The cellular process responsible for providing energy for most life on Earth, namely, photosynthetic light-harvesting, requires the cooperation of hundreds of proteins across an organelle, involving length and time scales spanning several orders of magnitude over quantum and classical regimes. Simulation and visualization of this fundamental energy conversion process pose many unique methodological and computational challenges. In this paper, we present, in two accompanying movies, light-harvesting in the photosynthetic apparatus found in purple bacteria, the so-called chromatophore. The movies are the culmination of three decades of modeling efforts, featuring the collaboration of theoretical, experimental, and computational scientists. Finally, we describemore » the techniques that were used to build, simulate, analyze, and visualize the structures shown in the movies, and we highlight cases where scientific needs spurred the development of new parallel algorithms that efficiently harness GPU accelerators and petascale computers.« less

  9. Rate Dependence of Elementary Rearrangements and Spatiotemporal Correlations in the 3D Flow of Soft Solids

    NASA Astrophysics Data System (ADS)

    Vasisht, Vishwas V.; Dutta, Sudeep K.; Del Gado, Emanuela; Blair, Daniel L.

    2018-01-01

    We use a combination of confocal microscopy, rheology, and molecular dynamics simulations to investigate jammed emulsions under shear, by analyzing the 3D droplets rearrangements in the shear frame. Our quantitative analysis of local dynamics reveals elementary nonaffine rearrangements that underlie the onset of the flow at small strains. We find that the mechanism of unjamming and the upturn in the material flow curve are associated to a qualitative change in spatiotemporal correlations of such rearrangements with the applied shear rate. At high shear rates, droplet clusters follow coordinated, stringlike motion. Conversely, at low shear rates, the elementary nonaffine rearrangements exhibit longer-ranged correlations, with complex spatiotemporal patterns. The 3D microscopic details provide novel insights into the specific features of the material flow curve, common to a large class of technologically relevant soft disordered solids and new fundamental ingredients for constitutive models.

  10. Universals and cultural variation in turn-taking in conversation

    PubMed Central

    Stivers, Tanya; Enfield, N. J.; Brown, Penelope; Englert, Christina; Hayashi, Makoto; Heinemann, Trine; Hoymann, Gertie; Rossano, Federico; de Ruiter, Jan Peter; Yoon, Kyung-Eun; Levinson, Stephen C.

    2009-01-01

    Informal verbal interaction is the core matrix for human social life. A mechanism for coordinating this basic mode of interaction is a system of turn-taking that regulates who is to speak and when. Yet relatively little is known about how this system varies across cultures. The anthropological literature reports significant cultural differences in the timing of turn-taking in ordinary conversation. We test these claims and show that in fact there are striking universals in the underlying pattern of response latency in conversation. Using a worldwide sample of 10 languages drawn from traditional indigenous communities to major world languages, we show that all of the languages tested provide clear evidence for a general avoidance of overlapping talk and a minimization of silence between conversational turns. In addition, all of the languages show the same factors explaining within-language variation in speed of response. We do, however, find differences across the languages in the average gap between turns, within a range of 250 ms from the cross-language mean. We believe that a natural sensitivity to these tempo differences leads to a subjective perception of dramatic or even fundamental differences as offered in ethnographic reports of conversational style. Our empirical evidence suggests robust human universals in this domain, where local variations are quantitative only, pointing to a single shared infrastructure for language use with likely ethological foundations. PMID:19553212

  11. Predicting fundamental frequency from mel-frequency cepstral coefficients to enable speech reconstruction.

    PubMed

    Shao, Xu; Milner, Ben

    2005-08-01

    This work proposes a method to reconstruct an acoustic speech signal solely from a stream of mel-frequency cepstral coefficients (MFCCs) as may be encountered in a distributed speech recognition (DSR) system. Previous methods for speech reconstruction have required, in addition to the MFCC vectors, fundamental frequency and voicing components. In this work the voicing classification and fundamental frequency are predicted from the MFCC vectors themselves using two maximum a posteriori (MAP) methods. The first method enables fundamental frequency prediction by modeling the joint density of MFCCs and fundamental frequency using a single Gaussian mixture model (GMM). The second scheme uses a set of hidden Markov models (HMMs) to link together a set of state-dependent GMMs, which enables a more localized modeling of the joint density of MFCCs and fundamental frequency. Experimental results on speaker-independent male and female speech show that accurate voicing classification and fundamental frequency prediction is attained when compared to hand-corrected reference fundamental frequency measurements. The use of the predicted fundamental frequency and voicing for speech reconstruction is shown to give very similar speech quality to that obtained using the reference fundamental frequency and voicing.

  12. Measuring parameters of large-aperture crystals used for generating optical harmonics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    English, R. E.; Hibbard, R. L.; Michie, R. B.

    1999-02-23

    The purpose of this project was to develop tools for understanding the influence of crystal quality and crystal mounting on harmonic-generation efficiency at high irradiance. Measuring the homogeneity of crystals interferometrically, making detailed physics calculations of conversion efficiency, performing finite- element modeling of mounted crystals, and designing a new optical metrology tool were key elements in obtaining that understanding. For this work, we used the following frequency-tripling scheme: type I second- harmonic generation followed by type II sum-frequency mixing of the residual fundamental and the second harmonic light. The doubler was potassium dihydrogen phosphate (KDP), and the tripler was deuteratedmore » KDP (KD*P). With this scheme, near-infrared light (1053 nm) can be frequency tripled (to 351 nm) at high efficiency (theoretically >90%) for high irradiance (>3 GW/cm²). Spatial variations in the birefringence of the large crystals studied here (37 to 41 cm square by about 1 cm thick) imply that the ideal phase-matching orientation of the crystal with respect to the incident laser beam varies across the crystal. We have shown that phase-measuring interferometry can be used to measure these spatial variations. We observed transmitted wavefront differences between orthogonally polarized interferograms of {lambda}/50 to {lambda}/100, which correspond to index variations of order 10 -6. On some plates that we measured, the standard deviation of angular errors is 22-23 µrad; this corresponds to a 1% reduction in efficiency. Because these conversion crystals are relatively thin, their surfaces are not flat (deviate by k2.5 urn from flat). A crystal is mounted against a precision-machined surface that supports the crystal on four edges. This mounting surface is not flat either (deviates by +2.5 µm from flat). A retaining flange presses a compliant element against the crystal. The load thus applied near the edges of the crystal surface holds it in place. We performed detailed finite-element modeling to predict the resulting shape of the mounted crystal. The prediction agreed with measurements of mounted crystals. We computed the physics of the frequency-conversion process to better quantify the effects on efficiency of variation in the crystal' s axis, changes in the shape of the crystal, and mounting-induced stress. We were able to accurately predict the frequency-conversion performance of 37-cm square crystals on Beamlet, a one-beam scientific prototype of the NIF laser architecture, using interferometric measurements of the mounted crystals and the model. In a 2{omega} measurement campaign, the model predicted 64.9% conversion efficiency; 64.1% was observed. When detuned by 640 µrad, the model and measurement agreement is even better (both were 10.4%). Finally, we completed the design and initial testing of a new optical metrology tool to measure the spatial variation of frequency conversion. This system employs a high-power subaperture beam from a commercial laser oscillator and rod amplifier. The beam interrogates the crystal' s aperture by moving the crystal horizontally on a translation stage and translating the laser beam vertically on an optical periscope. Precision alignment is maintained by means of a full-aperture reference mirror, a precision-machined surface on the crystal mount, and autocollimators (the goal for angular errors is 10 µrad). The autocollimators track the mounting angle of the crystal and the direction of the laser beam with respect to the reference mirror. The conversion efficiency can be directly measured by recording l{omega}, 2{omega}, 3{omega} energy levels during the scan and by rocking (i.e., tilting) the crystal mount over an angular range.« less

  13. Automatic Conversational Scene Analysis in Children with Asperger Syndrome/High-Functioning Autism and Typically Developing Peers

    PubMed Central

    Tavano, Alessandro; Pesarin, Anna; Murino, Vittorio; Cristani, Marco

    2014-01-01

    Individuals with Asperger syndrome/High Functioning Autism fail to spontaneously attribute mental states to the self and others, a life-long phenotypic characteristic known as mindblindness. We hypothesized that mindblindness would affect the dynamics of conversational interaction. Using generative models, in particular Gaussian mixture models and observed influence models, conversations were coded as interacting Markov processes, operating on novel speech/silence patterns, termed Steady Conversational Periods (SCPs). SCPs assume that whenever an agent's process changes state (e.g., from silence to speech), it causes a general transition of the entire conversational process, forcing inter-actant synchronization. SCPs fed into observed influence models, which captured the conversational dynamics of children and adolescents with Asperger syndrome/High Functioning Autism, and age-matched typically developing participants. Analyzing the parameters of the models by means of discriminative classifiers, the dialogs of patients were successfully distinguished from those of control participants. We conclude that meaning-free speech/silence sequences, reflecting inter-actant synchronization, at least partially encode typical and atypical conversational dynamics. This suggests a direct influence of theory of mind abilities onto basic speech initiative behavior. PMID:24489674

  14. Kinetic modeling of cellulosic biomass to ethanol via simultaneous saccharification and fermentation: Part I. Accommodation of intermittent feeding and analysis of staged reactors.

    PubMed

    Shao, Xiongjun; Lynd, Lee; Wyman, Charles; Bakker, André

    2009-01-01

    The model of South et al. [South et al. (1995) Enzyme Microb Technol 17(9): 797-803] for simultaneous saccharification of fermentation of cellulosic biomass is extended and modified to accommodate intermittent feeding of substrate and enzyme, cascade reactor configurations, and to be more computationally efficient. A dynamic enzyme adsorption model is found to be much more computationally efficient than the equilibrium model used previously, thus increasing the feasibility of incorporating the kinetic model in a computational fluid dynamic framework in the future. For continuous or discretely fed reactors, it is necessary to use particle conversion in conversion-dependent hydrolysis rate laws rather than reactor conversion. Whereas reactor conversion decreases due to both reaction and exit of particles from the reactor, particle conversion decreases due to reaction only. Using the modified models, it is predicted that cellulose conversion increases with decreasing feeding frequency (feedings per residence time, f). A computationally efficient strategy for modeling cascade reactors involving a modified rate constant is shown to give equivalent results relative to an exhaustive approach considering the distribution of particles in each successive fermenter.

  15. Aeroelastic Stability of a Four-Bladed Semi-Articulated Soft-Inplane Tiltrotor Model

    NASA Technical Reports Server (NTRS)

    Nixon, Mark W.; Langston, Chester W.; Singleton, Jeffrey D.; Piatak, David J.; Kvaternik, Raymond G.; Corso, Lawrence M.; Brown, Ross K.

    2003-01-01

    A new four-bladed, semi-articulated, soft-inplane rotor system, designed as a candidate for future heavy-lift rotorcraft, was tested at model scale on the Wing and Rotor Aeroelastic Testing System (WRATS), a 1/5-size aeroelastic wind-tunnel model based on the V-22. The experimental investigation included a hover test with the model in helicopter mode subject to ground resonance conditions, and a forward flight test with the model in airplane mode subject to whirl-flutter conditions. An active control system designed to augment system damping was also tested as part of this investigation. Results of this study indicate that the new four-bladed, soft-inplane rotor system in hover has adequate damping characteristics and is stable throughout its rotor-speed envelope. However, in airplane mode it produces very low damping in the key wing beam-bending mode, and has a low whirl-flutter stability boundary with respect to airspeed. The active control system was successful in augmenting the damping of the fundamental system modes, and was found to be robust with respect to changes in rotor speed and airspeed. Finally, conversion-mode dynamic loads were measured on the rotor and these were found to be signi.cantly lower for the new soft-inplane hub than for the previous baseline stiff - inplane hub.

  16. Aeroelastic Stability of a Four-Bladed Semi-Articulated Soft-Inplane Tiltrotor Model

    NASA Technical Reports Server (NTRS)

    Nixon, Mark W.; Langston, Chester W.; Singleton, Jeffrey D.; Piatak, David J.; Kvaternik, Raymond G.; Corso, Lawrence M.; Brown, Ross

    2003-01-01

    A new four-bladed, semi-articulated, soft-inplane rotor system, designed as a candidate for future heavy-lift rotorcraft, was tested at model scale on the Wing and Rotor Aeroelastic Testing System (WRATS), a 1/5-size aeroelastic wind-tunnel model based on the V-22. The experimental investigation included a hover test with the model in helicopter mode subject to ground resonance conditions, and a forward flight test with the model in airplane mode subject to whirl-flutter conditions. An active control system designed to augment system damping was also tested as part of this investigation. Results of this study indicate that the new four-bladed, soft-inplane rotor system in hover has adequate damping characteristics and is stable throughout its rotor-speed envelope. However, in airplane mode it produces very low damping in the key wing beam-bending mode, and has a low whirl-flutter stability boundary with respect to airspeed. The active control system was successful in augmenting the damping of the fundamental system modes, and was found to be robust with respect to changes in rotor-speed and airspeed. Finally, conversion-mode dynamic loads were measured on the rotor and these were found to be significantly lower for the new soft-inplane hub than for the previous baseline stiff-inplane hub.

  17. Region-specific protein misfolding cyclic amplification reproduces brain tropism of prion strains.

    PubMed

    Privat, Nicolas; Levavasseur, Etienne; Yildirim, Serfildan; Hannaoui, Samia; Brandel, Jean-Philippe; Laplanche, Jean-Louis; Béringue, Vincent; Seilhean, Danielle; Haïk, Stéphane

    2017-10-06

    Human prion diseases such as Creutzfeldt-Jakob disease are transmissible brain proteinopathies, characterized by the accumulation of a misfolded isoform of the host cellular prion protein (PrP) in the brain. According to the prion model, prions are defined as proteinaceous infectious particles composed solely of this abnormal isoform of PrP (PrP Sc ). Even in the absence of genetic material, various prion strains can be propagated in experimental models. They can be distinguished by the pattern of disease they produce and especially by the localization of PrP Sc deposits within the brain and the spongiform lesions they induce. The mechanisms involved in this strain-specific targeting of distinct brain regions still are a fundamental, unresolved question in prion research. To address this question, we exploited a prion conversion in vitro assay, protein misfolding cyclic amplification (PMCA), by using experimental scrapie and human prion strains as seeds and specific brain regions from mice and humans as substrates. We show here that region-specific PMCA in part reproduces the specific brain targeting observed in experimental, acquired, and sporadic Creutzfeldt-Jakob diseases. Furthermore, we provide evidence that, in addition to cellular prion protein, other region- and species-specific molecular factors influence the strain-dependent prion conversion process. This important step toward understanding prion strain propagation in the human brain may impact research on the molecular factors involved in protein misfolding and the development of ultrasensitive methods for diagnosing prion disease. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Agricultural conversion reduces biospheric vegetation productivity in the absence of external inputs

    NASA Astrophysics Data System (ADS)

    Smith, W. K.; Cleveland, C. C.; Reed, S.; Running, S. W.

    2013-12-01

    Increasing global population, energy demand, and standard of living has driven humanity to co-opt a growing share of the planet's natural resources resulting in many well-known environmental trade-offs. Here, we explored the impact of global-scale agricultural production on a basic resource fundamental to life on Earth: global terrestrial vegetation growth (net primary production; NPP). First, we compared current rates of agricultural NPP - derived from crop-specific agricultural statistics - with rates of natural NPP - derived from satellite measurements. Next, we disaggregated our results by climate zone, conversion type, crop type, management intensity, and region to identify where agricultural conversion has driven significant degradation of biospheric NPP. At the global-scale, our data indicate that agricultural conversion has resulted in a ~7% reduction in biospheric NPP (ΔNPP), although the impact varied widely at the pixel level. Positive ΔNPP values, signifying an increase in NPP due to agricultural conversion, occurred only in areas receiving significant external water and nutrient inputs (i.e., intensively managed areas). Conversely, negative ΔNPP values, signifying a reduction in NPP due to agricultural conversion, occurred over ~90% of agricultural lands globally, with the largest reductions in areas formerly occupied by tropical forests and savannas (71% and 66% reductions in NPP, respectively). Without new global-scale policies that explicitly consider changes in NPP due to land cover conversion, future demand-driven increases in agricultural output - likely dependent on some level of expansion into natural ecosystems - could continue to drive net declines in biospheric NPP, with potential detrimental consequences for global carbon storage. A spatially explicit estimate of the effect of agricultural land cover conversion on natural primary production for 20 staple crops. ΔNPP was estimated independently for a) irrigated, b) high input, c) low input, and d) subsistence management intensities. All remaining vegetated land is represented in grey, while barren land is represented in white. Globally, agricultural land cover conversion has reduced natural primary production by 3.0 × 0.68 Pg C y-1 (i.e., a ~7% reduction in biospheric NPP), with a disproportionately large percentage of this reduction attributable to the conversion of temperate (~44%) and tropical (~50%) ecosystems.

  19. Recognizing the importance of conversation between experts and non-experts in science communication

    NASA Astrophysics Data System (ADS)

    Rushlow, C. R.; Soderquist, B.; Cohn, T.; Eitel, K.

    2016-12-01

    Science communication is often perceived by scientists as the flow of information from experts to non-experts, and institutions have responded by providing science communication training that focuses on best practices for disseminating information. This unidirectional approach neglects a key component of science communication: scientists must understand the needs and values of the stakeholders for whom they are producing information, whether the stakeholders are community members, resource managers, or policy makers. We designed an activity for graduate students enrolled in a science communication class at the McCall Outdoor Science School to both alert them to this misconception, and to give them an opportunity to rectify it. Over the course of 24-hours, we challenged students to have a conversation about climate change with someone they encountered in the community of McCall, ID. Using material from their conversations, students created a story in podcast or video form to share with the class. Through reflecting on this activity, students experienced a change in their perceptions of their identities as science communicators. Many students expressed an increased interest in listening to the stories of community members to learn more about the community's needs and values. We repeated the activity with early career scientists attending a climate workshop in McCall offered by the USGS Northwest Climate Science Center, focusing our evaluation around the science identity model of Carlone and Johnson (2007). Evaluations suggest that participants recognized their role as scientists in not only to providing information, but also in listening to the values and needs of the people for whom they are working. We believe this understanding is fundamental to being a good science communicator and ensuring that science remains relevant to communities.

  20. Resonant spin-flavor conversion of supernova neutrinos: Dependence on presupernova models and future prospects

    NASA Astrophysics Data System (ADS)

    Ando, Shin'ichiro; Sato, Katsuhiko

    2003-07-01

    We study the resonant spin-flavor (RSF) conversion of supernova neutrinos, which is induced by the interaction between the nonzero neutrino magnetic moment and the supernova magnetic fields, and its dependence on presupernova models. As the presupernova models, we adopt the latest ones by Woosley, Heger, and Weaver, and, further, models with both solar and zero metallicity are investigated. Since the (1-2Ye) profile of the new presupernova models, which is responsible for the RSF conversion, suddenly drops at the resonance region, the completely adiabatic RSF conversion is not realized, even if μνB0=(10-12μB)(1010 G), where B0 is the strength of the magnetic field at the surface of the iron core. In particular for the model with zero metallicity, the conversion is highly nonadiabatic in the high energy region, reflecting the (1-2Ye) profile of the model. In calculating the flavor conversion, we find that the shock wave propagation, which changes density profiles drastically, is a much more severe problem than it is for the pure Mikheyev-Smirnov-Wolfenstein (MSW) conversion case. This is because the RSF effect occurs at a far deeper region than the MSW effect. To avoid the uncertainty concerning the shock propagation, we restrict our discussion to 0.5 s after the core bounce (and for more conservative discussion, 0.25 s), during which the shock wave is not expected to affect the RSF region. We also evaluate the energy spectrum at the Super-Kamiokande detector for various models using the calculated conversion probabilities, and find that it is very difficult to obtain useful information on the supernova metallicities and magnetic fields or on the neutrino magnetic moment from the supernova neutrino observation. Future prospects are also discussed.

  1. Highly efficient solid state magnetoelectric gyrators

    NASA Astrophysics Data System (ADS)

    Leung, Chung Ming; Zhuang, Xin; Friedrichs, Daniel; Li, Jiefang; Erickson, Robert W.; Laletin, V.; Popov, M.; Srinivasan, G.; Viehland, D.

    2017-09-01

    An enhancement in the power-conversion-efficiency (η) of a magneto-electric (ME) gyrator has been found by the use of Mn-substituted nickel zinc ferrite. A trilayer gyrator of Mn-doped Ni0.8Zn0.2Fe2O3 and Pb(Zr,Ti)O3 has η = 85% at low power conditions (˜20 mW/in3) and η ≥ 80% at high power conditions (˜5 W/in3). It works close to fundamental electromechanical resonance in both direct and converse modes. The value of η is by far the highest reported so far, which is due to the high mechanical quality factor (Qm) of the magnetostrictive ferrite. Such highly efficient ME gyrators with a significant power density could become important elements in power electronics, potentially replacing electromagnetic and piezoelectric transformers.

  2. The Walk Forward of Sun-Grown Green-Thing Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huetteman, Carl; Burroff-Murr, Pam; Anderson, Sarah

    Representing the Center for Direct Catalytic Conversion of Biomass to Biofuels (C3Bio), this document is one of the entries in the Ten Hundred and One Word Challenge and was awarded "Best Tagline." As part of the challenge, the 46 Energy Frontier Research Centers were invited to represent their science in images, cartoons, photos, words and original paintings, but any descriptions or words could only use the 1000 most commonly used words in the English language, with the addition of one word important to each of the EFRCs and the mission of DOE: energy. The mission of C3Bio at Purdue Universitymore » is to integrate fundamental knowledge and enable technologies for catalytic conversion of engineered biomass to advanced biofuels and value-added products.« less

  3. Magnetospheric-ionospheric Poynting flux

    NASA Technical Reports Server (NTRS)

    Thayer, Jeffrey P.

    1994-01-01

    Over the past three years of funding SRI, in collaboration with the University of Texas at Dallas, has been involved in determining the total electromagnetic energy flux into the upper atmosphere from DE-B electric and magnetic field measurements and modeling the electromagnetic energy flux at high latitudes, taking into account the coupled magnetosphere-ionosphere system. This effort has been very successful in establishing the DC Poynting flux as a fundamental quantity in describing the coupling of electromagnetic energy between the magnetosphere and ionosphere. The DE-B satellite electric and magnetic field measurements were carefully scrutinized to provide, for the first time, a large data set of DC, field-aligned, Poynting flux measurement. Investigations describing the field-aligned Poynting flux observations from DE-B orbits under specific geomagnetic conditions and from many orbits were conducted to provide a statistical average of the Poynting flux distribution over the polar cap. The theoretical modeling effort has provided insight into the observations by formulating the connection between Poynting's theorem and the electromagnetic energy conversion processes that occur in the ionosphere. Modeling and evaluation of these processes has helped interpret the satellite observations of the DC Poynting flux and improved our understanding of the coupling between the ionosphere and magnetosphere.

  4. Ecosystem service provision: an operational way for marine biodiversity conservation and management.

    PubMed

    Cognetti, Giuseppe; Maltagliati, Ferruccio

    2010-11-01

    Since no extensive conceptual framework has been developed on the issues of ecosystem service (ES) and service provider (SP) in the marine environment, we have made an attempt to apply these to the conservation and management of marine biodiversity. Within this context, an accurate individuation of SPs, namely the biological component of a given ecosystem that supports human activities is fundamental. SPs are the agents responsible for making the ES-based approach operational. The application of these concepts to the marine environment should be based on an model different to the terrestrial one. In the latter, the basic model envisages a matrix of a human-altered landscape with fragments of original biodiversity; conversely, in the marine environment the model provides fragments where human activities are carried out and the matrix is represented by the original biodiversity. We have identified three main classes of ES provision: in natural, disturbed and human-controlled environments. Economic valuation of marine ESs is an essential condition for making conservation strategies financially sustainable, as it may stimulate the perceived need for investing in protection and exploitation of marine resources. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. Stratified mixing by microorganisms

    NASA Astrophysics Data System (ADS)

    Wagner, Gregory; Young, William; Lauga, Eric

    2013-11-01

    Vertical mixing is of fundamental significance to the general circulation, climate, and life in the ocean. In this work we consider whether organisms swimming at low Reynolds numbers might collectively contribute substantially to vertical mixing. Scaling analysis indicates that the mixing efficiency η, or the ratio between the rate of potential energy conversion and total work done on the fluid, should scale with η ~(a / l) 3 as a / l --> 0 , where a is the size of the organism and l = (νκ /N2)1/4 is an intrinsic length scale of a stratified fluid with kinematic viscosity ν, tracer diffusivity κ, and buoyancy frequency N2. A regularized singularity model demonstrates this scaling, indicating that in this same limit η ~ 1.2 (a / l) 3 for vertical swimming and η ~ 0.14 (a / l ) 3 for horizontal swimming. The model further predicts the absolute maximum mixing efficiency of an ensemble of randomly oriented organisms is around 6% and that the greatest mixing efficiencies in the ocean (in regions of strong salt-stratification) are closer to 0.1%, implying that the total contribution of microorganisms to vertical ocean mixing is negligible.

  6. Combustion Fundamentals Research

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Increased emphasis is placed on fundamental and generic research at Lewis Research Center with less systems development efforts. This is especially true in combustion research, where the study of combustion fundamentals has grown significantly in order to better address the perceived long term technical needs of the aerospace industry. The main thrusts for this combustion fundamentals program area are as follows: analytical models of combustion processes, model verification experiments, fundamental combustion experiments, and advanced numeric techniques.

  7. Modeling the fundamental characteristics and processes of the spacecraft functioning

    NASA Technical Reports Server (NTRS)

    Bazhenov, V. I.; Osin, M. I.; Zakharov, Y. V.

    1986-01-01

    The fundamental aspects of modeling of spacecraft characteristics by using computing means are considered. Particular attention is devoted to the design studies, the description of physical appearance of the spacecraft, and simulated modeling of spacecraft systems. The fundamental questions of organizing the on-the-ground spacecraft testing and the methods of mathematical modeling were presented.

  8. Continuous-wave, single-frequency 229  nm laser source for laser cooling of cadmium atoms.

    PubMed

    Kaneda, Yushi; Yarborough, J M; Merzlyak, Yevgeny; Yamaguchi, Atsushi; Hayashida, Keitaro; Ohmae, Noriaki; Katori, Hidetoshi

    2016-02-15

    Continuous-wave output at 229 nm for the application of laser cooling of Cd atoms was generated by the fourth harmonic using two successive second-harmonic generation stages. Employing a single-frequency optically pumped semiconductor laser as a fundamental source, 0.56 W of output at 229 nm was observed with a 10-mm long, Brewster-cut BBO crystal in an external cavity with 1.62 W of 458 nm input. Conversion efficiency from 458 nm to 229 nm was more than 34%. By applying a tapered amplifier (TA) as a fundamental source, we demonstrated magneto-optical trapping of all stable Cd isotopes including isotopes Cd111 and Cd113, which are applicable to optical lattice clocks.

  9. Fundamental care guided by the Careful Nursing Philosophy and Professional Practice Model©.

    PubMed

    Meehan, Therese Connell; Timmins, Fiona; Burke, Jacqueline

    2018-02-05

    To propose the Careful Nursing Philosophy and Professional Practice Model © as a conceptual and practice solution to current fundamental nursing care erosion and deficits. There is growing awareness of the crucial importance of fundamental care. Efforts are underway to heighten nurses' awareness of values that motivate fundamental care and thereby increase their attention to effective provision of fundamental care. However, there remains a need for nursing frameworks which motivate nurses to bring fundamental care values to life in their practice and strengthen their commitment to provide fundamental care. This descriptive position paper builds on the Careful Nursing Philosophy and Professional Practice Model © (Careful Nursing). Careful Nursing elaborates explicit nursing values and addresses both relational and pragmatic aspects of nursing practice, offering an ideal guide to provision of fundamental nursing care. A comparative alignment approach is used to review the capacity of Careful Nursing to address fundamentals of nursing care. Careful Nursing provides a value-based comprehensive and practical framework which can strengthen clinical nurses' ability to articulate and control their practice and, thereby, more effectively fulfil their responsibility to provide fundamental care and measure its effectiveness. This explicitly value-based nursing philosophy and professional practice model offers nurses a comprehensive, pragmatic and engaging framework designed to strengthen their control over their practice and ability to provide high-quality fundamental nursing care. © 2018 John Wiley & Sons Ltd.

  10. Fundamental Study of Compressive Strength Development in PAN-Based Carbon Fibers

    DTIC Science & Technology

    1992-03-20

    carbon fibers. The motivation here has been to explore not only the evolutionary aspects in the conversion of current commercial precursors, but also...current production are comprised pre- chosen for this purpose. Although their mechanical dominantly of poly(acrylonitrile) (PAN)f2-4] and properties in...morphologies. siderable interest in research on carbon fiber for- mation, motivated by the desire to reduce their cost . EXPERIMENTAL or the need to

  11. Hybrid Inorganic/Organic Photovoltaics: Translating Fundamental Nanostructure Research to Enhanced Solar Conversion Efficiency

    DTIC Science & Technology

    2010-11-15

    alkyl-terminated, (c) photpatternable QD with siloxane inner layer and the photopolymerizable methacrylate corona. (d)-(f) Effect of irradiation on PL...cross- linked QDs (scale 10 nm). The inherent properties of photopolymerizable QDs such as their stability, PL, and ease of solution...distinctive signature of both compounds , they are easily recognizable in the CIE coordinate system given in the inset. A second inset shows an image of the

  12. Thermodynamic-ensemble independence of solvation free energy.

    PubMed

    Chong, Song-Ho; Ham, Sihyun

    2015-02-10

    Solvation free energy is the fundamental thermodynamic quantity in solution chemistry. Recently, it has been suggested that the partial molar volume correction is necessary to convert the solvation free energy determined in different thermodynamic ensembles. Here, we demonstrate ensemble-independence of the solvation free energy on general thermodynamic grounds. Theoretical estimates of the solvation free energy based on the canonical or grand-canonical ensemble are pertinent to experiments carried out under constant pressure without any conversion.

  13. The Effects of Thermal Barrier Coating, Common-Rail Injection, and Reduced Compression Ratio on the Efficiency of Single-Cylinder Diesel Engines

    DTIC Science & Technology

    2010-05-12

    m) YXX:........................................Molar Fraction of Compound XX 12 1 Introduction and Background Small internal combustion...Heywood, John B. Internal Combustion Engine Fundamentals. New York: McGraw-Hill, 1988. [9] Judge, A.W. High Speed Diesel Engines. London...performance and exergy potential of the exhaust gas. Energy Conversion and Management 46:489-499. [11] Parlak A., Yasar H., and Sahin B. 2003. Performance

  14. Fundamentals of Electrical Propulsion Plant Design,

    DTIC Science & Technology

    1982-04-06

    through connection of resonant filters or through use of multiphase conversion power circuits. Figure 9.25. Block Diagram of a Frequency Converter Control...first harmonic, active power Pa’ consumed by the converter at the point of application of this emf, is determined from expression P. = 3EM i cos i...armature shunting contactor K3 KDD diesel starting contactor K.U KZ protection contactor K3 KMM maximum power contactor KM KO compensating winding KO

  15. Fundamental Physics and Practical Applications of Electromagnetic Local Flow Control in High Speed Flows (Rutgers)

    DTIC Science & Technology

    2010-02-16

    field. Techniques utilizing this design use an open- loop control and no flow monitoring sensors are required. Conversely, reactive (or closed - loop ...and closed (dashed line) configuration. 38 closed configuration described above, the ambiguity in the critical limits of the transition...flow; a new vortex is then shed from the cavity leading edge, closing the feedback loop .[31] Open cavities with an L/D approximately greater than

  16. Toward laboratory torsional spine magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Chesny, David L.; Orange, N. Brice; Oluseyi, Hakeem M.; Valletta, David R.

    2017-12-01

    Magnetic reconnection is a fundamental energy conversion mechanism in nature. Major attempts to study this process in controlled settings on Earth have largely been limited to reproducing approximately two-dimensional (2-D) reconnection dynamics. Other experiments describing reconnection near three-dimensional null points are non-driven, and do not induce any of the 3-D modes of spine fan, torsional fan or torsional spine reconnection. In order to study these important 3-D modes observed in astrophysical plasmas (e.g. the solar atmosphere), laboratory set-ups must be designed to induce driven reconnection about an isolated magnetic null point. As such, we consider the limited range of fundamental resistive magnetohydrodynamic (MHD) and kinetic parameters of dynamic laboratory plasmas that are necessary to induce the torsional spine reconnection (TSR) mode characterized by a driven rotational slippage of field lines - a feature that has yet to be achieved in operational laboratory magnetic reconnection experiments. Leveraging existing reconnection models, we show that within a 3$ apparatus, TSR can be achieved in dense plasma regimes ( 24~\\text{m}-3$ ) in magnetic fields of -1~\\text{T}$ . We find that MHD and kinetic parameters predict reconnection in thin current sheets on time scales of . While these plasma regimes may not explicitly replicate the plasma parameters of observed astrophysical phenomena, studying the dynamics of the TSR mode within achievable set-ups signifies an important step in understanding the fundamentals of driven 3-D magnetic reconnection and the self-organization of current sheets. Explicit control of this reconnection mode may have implications for understanding particle acceleration in astrophysical environments, and may even have practical applications to fields such as spacecraft propulsion.

  17. Optical analysis of down-conversion OLEDs

    NASA Astrophysics Data System (ADS)

    Krummacher, Benjamin; Klein, Markus; von Malm, Norwin; Winnacker, Albrecht

    2008-02-01

    Phosphor down-conversion of blue organic light-emitting diodes (OLEDs) is one approach to generate white light, which offers the possibility of easy color tuning, a simple device architecture and color stability over lifetime. In this article previous work on down-conversion devices in the field of organic solid state lighting is briefly reviewed. Further, bottom emitting down-conversion OLEDs are studied from an optical point of view. Therefore the physical processes occurring in the down-conversion layer are translated into a model which is implemented in a ray tracing simulation. By comparing its predictions to experimental results the model is confirmed. For the experiments a blue-emitting polymer OLED (PLED) panel optically coupled to a series of down-conversion layers is used. Based on results obtained from ray tracing simulation some of the implications of the model for the performance of down-conversion OLEDs are discussed. In particular it is analysed how the effective reflectance of the underlying blue OLED and the particle size distribution of the phosphor powder embedded in the matrix of the down-conversion layer influence extraction efficiency.

  18. Signaling cascades modulate the speed of signal propagation through space.

    PubMed

    Govern, Christopher C; Chakraborty, Arup K

    2009-01-01

    Cells are not mixed bags of signaling molecules. As a consequence, signals must travel from their origin to distal locations. Much is understood about the purely diffusive propagation of signals through space. Many signals, however, propagate via signaling cascades. Here, we show that, depending on their kinetics, cascades speed up or slow down the propagation of signals through space, relative to pure diffusion. We modeled simple cascades operating under different limits of Michaelis-Menten kinetics using deterministic reaction-diffusion equations. Cascades operating far from enzyme saturation speed up signal propagation; the second mobile species moves more quickly than the first through space, on average. The enhanced speed is due to more efficient serial activation of a downstream signaling module (by the signaling molecule immediately upstream in the cascade) at points distal from the signaling origin, compared to locations closer to the source. Conversely, cascades operating under saturated kinetics, which exhibit zero-order ultrasensitivity, can slow down signals, ultimately localizing them to regions around the origin. Signal speed modulation may be a fundamental function of cascades, affecting the ability of signals to penetrate within a cell, to cross-react with other signals, and to activate distant targets. In particular, enhanced speeds provide a way to increase signal penetration into a cell without needing to flood the cell with large numbers of active signaling molecules; conversely, diminished speeds in zero-order ultrasensitive cascades facilitate strong, but localized, signaling.

  19. Self-assembly based plasmonic arrays tuned by atomic layer deposition for extreme visible light absorption.

    PubMed

    Hägglund, Carl; Zeltzer, Gabriel; Ruiz, Ricardo; Thomann, Isabell; Lee, Han-Bo-Ram; Brongersma, Mark L; Bent, Stacey F

    2013-07-10

    Achieving complete absorption of visible light with a minimal amount of material is highly desirable for many applications, including solar energy conversion to fuel and electricity, where benefits in conversion efficiency and economy can be obtained. On a fundamental level, it is of great interest to explore whether the ultimate limits in light absorption per unit volume can be achieved by capitalizing on the advances in metamaterial science and nanosynthesis. Here, we combine block copolymer lithography and atomic layer deposition to tune the effective optical properties of a plasmonic array at the atomic scale. Critical coupling to the resulting nanocomposite layer is accomplished through guidance by a simple analytical model and measurements by spectroscopic ellipsometry. Thereby, a maximized absorption of light exceeding 99% is accomplished, of which up to about 93% occurs in a volume-equivalent thickness of gold of only 1.6 nm. This corresponds to a record effective absorption coefficient of 1.7 × 10(7) cm(-1) in the visible region, far exceeding those of solid metals, graphene, dye monolayers, and thin film solar cell materials. It is more than a factor of 2 higher than that previously obtained using a critically coupled dye J-aggregate, with a peak width exceeding the latter by 1 order of magnitude. These results thereby substantially push the limits for light harvesting in ultrathin, nanoengineered systems.

  20. Communicating Climate Change: The Intersection Between Science and Values

    NASA Astrophysics Data System (ADS)

    Abdalati, W.

    2013-12-01

    While the vast majority of scientists in climate-related fields take as fact anthropogenic global warming, public opinion is far less certain, as are the publicly stated views of many policy-makers. This disparity is often ascribed, at least in part, to effective campaigns to cast doubt on the evidence, which we as scientists naturally feel an obligation to rectify. While denial campaigns and propaganda do play a role in skewing public opinion away from the strong scientific consensus and often feed pre-defined narratives, the reality is more complicated. This disparity is rooted mainly the differing values, priorities, and perspectives of individuals, organizations, and other entities. As scientists, we sometimes view our role as needing to counter the more extreme claims of those trying to cast doubt on the evidence. This stems in part, from our need as scientists to refute misinformation, from our frustration with the success of some of these campaigns, and from our sense of urgency and concern about our changing environment. But this approach produces very limited results, and sometimes leads to our portrayal as being condescending and self-serving. The conversation is most effectively advanced, when we focus not on the striking down the forces of opposition, but rather framing the conversation in the context of values. Similarly, our success and credibility as scientist communicators depends fundamentally on our recognizing that we will not change the values of our audience. The vast majority of those who are uncertain about climate change and the role of humans are open to accurate and honestly-portrayed information that speaks to what is important to them and fairly takes into consideration the legitimacy of opposing concerns. Doing so strengthens our credibility in their eyes and can constructively engage a large fraction of the general public, policy makers, etc. Such engagement is fundamental to meaningful action, and thus allows us to fulfill our unique and critical role in the climate change response. From conversations with political leaders, to conversations with relatives, it is imperative that we keep in mind that effective communication begins with - and ends with - understanding the values of your audience.

  1. Conversion of microwave pyrolysed ASR's char using high temperature agents.

    PubMed

    Donaj, Pawel; Blasiak, Wlodzimierz; Yang, Weihong; Forsgren, Christer

    2011-01-15

    Pyrolysis enables to recover metals and organic feedstock from waste conglomerates such as: automotive shredder residue (ASR). ASR as well as its pyrolysis solid products, is a morphologically and chemically varied mixture, containing mineral materials, including hazardous heavy metals. The aim of the work is to generate fundamental knowledge on the conversion of the organic residues of the solid products after ASR's microwave pyrolysis, treated at various temperatures and with two different types of gasifying agent: pure steam or 3% (v/v) of oxygen. The research is conducted using a lab-scale, plug-flow gasifier, with an integrated scale for analysing mass loss changes over time of experiment, serving as macro TG at 950, 850 and 760 °C. The reaction rate of char decomposition was investigated, based on carbon conversion during gasification and pyrolysis stage. It was found in both fractions that char conversion rate decreases with the rise of external gas temperature, regardless of the gasifying agent. No significant differences between the reaction rates undergoing with steam and oxygen for char decomposition has been observed. This abnormal char behaviour might have been caused by the inhibiting effects of ash, especially alkali metals on char activity or due to deformation of char structure during microwave heating. Copyright © 2010 Elsevier B.V. All rights reserved.

  2. High-power 671  nm laser by second-harmonic generation with 93% efficiency in an external ring cavity.

    PubMed

    Cui, Xing-Yang; Shen, Qi; Yan, Mei-Chen; Zeng, Chao; Yuan, Tao; Zhang, Wen-Zhuo; Yao, Xing-Can; Peng, Cheng-Zhi; Jiang, Xiao; Chen, Yu-Ao; Pan, Jian-Wei

    2018-04-15

    Second-harmonic generation (SHG) is useful for obtaining single-frequency continuous-wave laser sources at various wavelengths for applications ranging from biology to fundamental physics. Using an external power-enhancement cavity is an effective approach to improve the frequency conversion efficiency. However, thermal effects limit the efficiency, particularly, in high-power operation. Therefore, reducing thermal effects is important when designing a cavity. This Letter reports the use of an external ring cavity for SHG, yielding a 5.2 W, 671 nm laser light with a conversion efficiency of 93.8±0.8% which, to the best of our knowledge, is a new record of conversion efficiency for an external ring cavity. It is achieved using a 10 mm length periodically poled potassium titanyl phosphate crystal and a 65 μm radius beam waist in the cavity so as to minimize thermal dephasing and thermal lensing. Furthermore, a method is developed to determine a conversion efficiency more accurately based on measuring the pump depletion using a photodiode detector and a maximum pump depletion up to 97% is recorded. In this method, the uncertainty is much less than that achieved in a common method by direct measuring with a power meter.

  3. Multifunctional Energy Storage and Conversion Devices.

    PubMed

    Huang, Yan; Zhu, Minshen; Huang, Yang; Pei, Zengxia; Li, Hongfei; Wang, Zifeng; Xue, Qi; Zhi, Chunyi

    2016-10-01

    Multifunctional energy storage and conversion devices that incorporate novel features and functions in intelligent and interactive modes, represent a radical advance in consumer products, such as wearable electronics, healthcare devices, artificial intelligence, electric vehicles, smart household, and space satellites, etc. Here, smart energy devices are defined to be energy devices that are responsive to changes in configurational integrity, voltage, mechanical deformation, light, and temperature, called self-healability, electrochromism, shape memory, photodetection, and thermal responsivity. Advisable materials, device designs, and performances are crucial for the development of energy electronics endowed with these smart functions. Integrating these smart functions in energy storage and conversion devices gives rise to great challenges from the viewpoint of both understanding the fundamental mechanisms and practical implementation. Current state-of-art examples of these smart multifunctional energy devices, pertinent to materials, fabrication strategies, and performances, are highlighted. In addition, current challenges and potential solutions from materials synthesis to device performances are discussed. Finally, some important directions in this fast developing field are considered to further expand their application. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Microwave-to-optical frequency conversion using a cesium atom coupled to a superconducting resonator

    NASA Astrophysics Data System (ADS)

    Gard, Bryan T.; Jacobs, Kurt; McDermott, R.; Saffman, M.

    2017-07-01

    A candidate for converting quantum information from microwave to optical frequencies is the use of a single atom that interacts with a superconducting microwave resonator on one hand and an optical cavity on the other. The large electric dipole moments and microwave transition frequencies possessed by Rydberg states allow them to couple strongly to superconducting devices. Lasers can then be used to connect a Rydberg transition to an optical transition to realize the conversion. Since the fundamental source of noise in this process is spontaneous emission from the atomic levels, the resulting control problem involves choosing the pulse shapes of the driving lasers so as to maximize the transfer rate while minimizing this loss. Here we consider the concrete example of a cesium atom, along with two specific choices for the levels to be used in the conversion cycle. Under the assumption that spontaneous emission is the only significant source of errors, we use numerical optimization to determine the likely rates for reliable quantum communication that could be achieved with this device. These rates are on the order of a few megaqubits per second.

  5. How Effective Leaders Harness the Future.

    PubMed

    Souba, Wiley; Souba, Matthew

    2018-02-01

    Human beings are fundamentally future oriented. Most of our decisions and undertakings are for the sake of a future to which we are committed or obligated. This future orientation is essential to effective leadership in health care, especially during this time of significant reform, when people are at risk of becoming cynical and disengaged. Conventional thinking holds that our effectiveness as leaders is primarily a function of what we have learned in the past-our knowledge, expertise, and experience. In contrast, the emerging model contends that our effectiveness is also a function of how the future (outcome) of our leadership challenges "shows up" for us. If, despite daunting circumstances, we can "see" an aspired future ahead, we are more likely to commit and engage. Our story of the future becomes the "narrative frame" through which we see and tackle leadership challenges today. Because organizations are fundamentally networks of conversations, an organization's ability to create new language practices is tantamount to its ability to evolve. What makes the future compelling is the embodiment of our deepest convictions and ideals in our image of the future. Because health care reform has challenged the medical profession along the entire spectrum of its traditional values and roles, working toward a unifying vision of the future has been difficult. To enroll others in creating a better future, effective leaders must underscore the purpose and importance of their work and motivate them with inspiring stories.

  6. Multi-views storage model and access methods of conversation history in converged IP messaging system

    NASA Astrophysics Data System (ADS)

    Lu, Meilian; Yang, Dong; Zhou, Xing

    2013-03-01

    Based on the analysis of the requirements of conversation history storage in CPM (Converged IP Messaging) system, a Multi-views storage model and access methods of conversation history are proposed. The storage model separates logical views from physical storage and divides the storage into system managed region and user managed region. It simultaneously supports conversation view, system pre-defined view and user-defined view of storage. The rationality and feasibility of multi-view presentation, the physical storage model and access methods are validated through the implemented prototype. It proves that, this proposal has good scalability, which will help to optimize the physical data storage structure and improve storage performance.

  7. Modeling mesoscopic cortical dynamics using a mean-field model of conductance-based networks of adaptive exponential integrate-and-fire neurons.

    PubMed

    Zerlaut, Yann; Chemla, Sandrine; Chavane, Frederic; Destexhe, Alain

    2018-02-01

    Voltage-sensitive dye imaging (VSDi) has revealed fundamental properties of neocortical processing at macroscopic scales. Since for each pixel VSDi signals report the average membrane potential over hundreds of neurons, it seems natural to use a mean-field formalism to model such signals. Here, we present a mean-field model of networks of Adaptive Exponential (AdEx) integrate-and-fire neurons, with conductance-based synaptic interactions. We study a network of regular-spiking (RS) excitatory neurons and fast-spiking (FS) inhibitory neurons. We use a Master Equation formalism, together with a semi-analytic approach to the transfer function of AdEx neurons to describe the average dynamics of the coupled populations. We compare the predictions of this mean-field model to simulated networks of RS-FS cells, first at the level of the spontaneous activity of the network, which is well predicted by the analytical description. Second, we investigate the response of the network to time-varying external input, and show that the mean-field model predicts the response time course of the population. Finally, to model VSDi signals, we consider a one-dimensional ring model made of interconnected RS-FS mean-field units. We found that this model can reproduce the spatio-temporal patterns seen in VSDi of awake monkey visual cortex as a response to local and transient visual stimuli. Conversely, we show that the model allows one to infer physiological parameters from the experimentally-recorded spatio-temporal patterns.

  8. Evolving anatomic and electrophysiologic considerations associated with Fontan conversion.

    PubMed

    Mavroudis, Constantine; Backer, Carl Lewis; Deal, Barbara J; Stewart, Robert D; Franklin, Wayne H; Tsao, Sabrina; Ward, Kendra

    2007-01-01

    The principles of Fontan conversion with arrhythmia surgery are to restore the cardiac anatomy by converting the original atriopulmonary connection to a total cavopulmonary artery extracardiac connection and treat the underlying atrial arrhythmias. Successful outcomes of this procedure are dependent on a thorough understanding of several factors: the patient's fundamental diagnosis of single-ventricle anatomy, the resultant cardiac configuration from the original atriopulmonary Fontan connection, right atrial dilatation that leads to atrial flutter or fibrillation, and associated congenital cardiac anomalies. The purpose of this article is to present some of the more challenging anatomic and electrophysiologic problems we have encountered with Fontan conversion and arrhythmia surgery and the innovative solutions we have used to treat them. The cases reviewed herein include: takedown of a Bjork-Fontan modification, right ventricular hypertension and tricuspid regurgitation after atriopulmonary Fontan for pulmonary atresia and intact ventricular septum, takedown of atrioventricular valve isolation patch for right-sided maze procedure, resultant hemodynamic considerations leading to intraoperative pulmonary vein stenosis after Fontan conversion, unwanted inferior vena cava retraction during the extracardiac connection, right atrial cannulation in the presence of a right atrial clot, distended left superior vena cava causing left pulmonary vein stenosis, dropped atrial septum, and the modified right-sided maze procedure for various single-ventricle pathology. Since 1994 we have performed Fontan conversion with arrhythmia surgery on 109 patients with a 0.9% mortality rate. We attribute our program's success in no small measure to the strong collaborative efforts of the cardiothoracic surgery and cardiology teams.

  9. Industrially relevant epoxy-acrylate hybrid resin photopolymerizations

    NASA Astrophysics Data System (ADS)

    Ajiboye, Gbenga I.

    Photopolymerization of epoxy-acrylate hybrid resins takes advantages of inherent properties present in the free-radical and cationic reactions to reduce oxygen inhibition problems that plague free-radical reactions. Similarly, the combined reaction mechanisms reduce moisture sensitivity of the cationic reactions. Despite the advantages of epoxy-acrylate hybrid resins, problems persist that need to be addressed. For example, low conversion and polymerization rate of the epoxides are a problem, because the fast acrylate conversion prevents the epoxide from reaching high conversion. Controlling phase separation is challenging, since two moieties with different properties are reacting. The physical properties of the polymer will be impacted by the availability of different moieties. High shrinkage stress results from the acrylate moiety, causing buckling and cracking in film and coating applications. The overall goal of this study is to use the fundamental knowledge of epoxy-acrylate hybrid resins to formulate industrially viable polymers. In order to achieve this goal, the study focuses on the following objectives: (I) determine the apparent activation energy of the hybrid monomer METHB, (II) increase epoxide conversion and polymerization rate of hybrid formulations, and (III) control physical properties in epoxy-acrylate hybrid resins. In order to increase the epoxide conversion and rate of polymerization, the sensitivity of epoxides to alcohol is used to facilitate the activated monomer (AM) mechanism and induce a covalent bond between the epoxide and acrylate polymers through the hydroxyl group. It is hypothesized that if the AM mechanism is facilitated, epoxide conversion will increase. As a result, the resins can be tailored to control phase separation and physical properties, and shrinkage stress can be reduced. In pursuit of these objectives, the hybrid monomer METHB was polymerized at temperatures ranging from 30°C to 70°C to obtain apparent activation energy of 23.49 kJ/mol for acrylate and 57 kJ/mol for epoxide moeities. Then, hybrid systems pairing hydroxyl-containing acrylates with epoxides were formulated to promote the faster AM mechanism. Monomer composition was changed in the presence of hydroxyl-containing acrylate, and initiators were carefully selected in order to control phase separation. The conversion of acrylate and epoxide was monitored in real time by Raman spectroscopy. The physical and mechanical properties were monitored using dynamic mechanical analysis. Epoxide conversion and rate of polymerization in epoxide-acrylate hybrid monomer systems were shown to increase through the introduction of a hydroxyl group on the meth/acrylate monomer, taking advantage of the faster AM mechanism. In addition, this covalent bond linking the epoxide network to the meth/acrylate polymer chains resulted in little or no phase separation and a reduction of the Tg for the hybrid polymer compared to the neat epoxide. Fundamental knowledge gained from this research will enable the use of epoxy-acrylate hybrid resins in variety of applications. For instance, shrinkage may be reduced in dental fillings, noise and vibration problems in aircraft and other machinery may be controlled, and photopolymerization cost could be reduced in thin film applications.

  10. Uncertainty about fundamentals and herding behavior in the FOREX market

    NASA Astrophysics Data System (ADS)

    Kaltwasser, Pablo Rovira

    2010-03-01

    It is traditionally assumed in finance models that the fundamental value of assets is known with certainty. Although this is an appealing simplifying assumption it is by no means based on empirical evidence. A simple heterogeneous agent model of the exchange rate is presented. In the model, traders do not observe the true underlying fundamental exchange rate and as a consequence they base their trades on beliefs about this variable. Despite the fact that only fundamentalist traders operate in the market, the model belongs to the heterogeneous agent literature, as traders have different beliefs about the fundamental rate.

  11. V/STOL tilt rotor study. Volume 6: Hover, low speed and conversion tests of a tilt rotor aeroelastic model (Model 300)

    NASA Technical Reports Server (NTRS)

    Marr, R. L.; Sambell, K. W.; Neal, G. T.

    1973-01-01

    Stability and control tests of a scale model of a tilt rotor research aircraft were conducted. The characteristics of the model for hover, low speed, and conversion flight were analyzed. Hover tests were conducted in a rotor whirl cage. Helicopter and conversion tests were conducted in a low speed wind tunnel. Data obtained from the tests are presented as tables and graphs. Diagrams and illustrations of the test equipment are provided.

  12. Slab and Plume Morphology in the Transition Zone and Below: a Comparison of Images From Recent P and S Velocity Models

    NASA Astrophysics Data System (ADS)

    Salmi, L. M.; French, S. W.; Romanowicz, B. A.

    2014-12-01

    Resolving subduction zones in the shallow upper mantle using global shear velocity tomography has long been a challenge, likely due to the rather narrow signature of the slabs down to ~400 km depth compared to the wavelength of fundamental mode and overtone surface waves, on which resolution of Vs at these depths often relies. On the other hand, models based on P wave travel times exhibit higher resolution in subduction zone regions, owing to both the higher frequencies of the P waves as well as an optimal illumination geometry. Conversely, the global Vs models typically have better resolution near the CMB, because of constraints provided by Sdiff and multiple ScS phases. Here we compare the morphology of subducted slabs throughout the mantle, as imaged by both a recent Vp model (GAP_P4, Fukao and Obayashi, 2013) and a new Vs model (SEMUCB-WM1, French and Romanowicz, GJI, in revision). The latter model was developed by inverting body (to 32s) and fundamental and overtone surface (to 60s) waveforms, with the forward seismic wavefield computed using the spectral element method. While the S velocity model is still "fuzzier" than the Vp model, it tracks the behavior of slabs trapped in the transition zone, and those ponding around 1000 km depth. We quantify the high correlation of the region of fast Vp and Vs anomalies, and thus derive a robust estimate of the R=dlnVs/dlnVp ratio as a function of depth in regions of faster than average velocity. We compare these results with estimates obtained with other combinations of available P and S models, as well as theoretical values from mineral physical calculations. Estimating R in slow velocity regions is more difficult, as resolution varies more among models. Here we compare slow velocity images in SEMUCB-WM1 with those of other recent Vs and Vp models and attempt to estimate R in those regions as well. Interestingly, we note that, in the SEMUCB-WM1 model, some of the columnar, lower than average velocity regions "rising" from the CMB through the lower mantle appear to be deflected horizontally at ~1000 km depth. This observation suggests that whatever mechanism causes the resistance to downward flow in subduction zones at this depth may also affect upwellings.

  13. Simple Correctors for Elimination of High-Order Modes in Corrugated Waveguide Transmission Lines

    PubMed Central

    Kowalski, Elizabeth J.; Shapiro, Michael A.; Temkin, Richard J.

    2014-01-01

    When using overmoded corrugated waveguide transmission lines for high power applications, it is necessary to control the mode content of the system. Ideally, overmoded corrugated transmission lines operate in the fundamental HE11 mode and provide low losses for long distances. Unwanted higher order modes (HOMs), particularly LP11 and HE12, are often excited in the experimental systems due to practical misalignments in the transmission line system. This paper discusses how the unwanted modes propagate along with the fundamental mode in the transmission line system by formulating an equation that relates the center of power offset and angle of propagation of a beam (for the HE11 and LP11 modes) or the waist size and phase front radius of curvature of a beam (for the HE11 and HE12 modes). By introducing two miter bend correctors into the transmission system—miter bends that have slightly angled or ellipsoidal mirrors—the HOMs can be precisely manipulated in the system. This technique can be used to eliminate small quantities of unwanted modes, thereby creating a nearly pure fundamental mode beam with minimal losses. Examples of these applications are calculated and show the theoretical conversion of up to 10% HOM content into the fundamental HE11 mode with minimal losses. PMID:25067859

  14. All-optical and broadband microwave fundamental/sub-harmonic I/Q down-converters.

    PubMed

    Gao, Yongsheng; Wen, Aijun; Jiang, Wei; Fan, Yangyu; He, You

    2018-03-19

    Microwave I/Q down-converters are frequently used in image-reject super heterodyne receivers, zero intermediate frequency (zero-IF) receivers, and phase/frequency discriminators. However, due to the electronic bottleneck, conventional microwave I/Q mixers face a serious bandwidth limitation, I/Q imbalance, and even-order distortion. In this paper, photonic microwave fundamental and sub-harmonic I/Q down-converters are presented using a polarization division multiplexing dual-parallel Mach-Zehnder modulator (PDM-DPMZM). Thanks to all-optical manipulation, the proposed system features an ultra-wide operating band (7-40 GHz in the fundamental I/Q down-converter, and 10-40 GHz in the sub-harmonic I/Q down-converter) and an excellent I/Q balance (maximum 0.7 dB power imbalance and 1 degree phase imbalance). The conversion gain, noise figure (NF), even-order distortion, and spurious free dynamic range (SFDR) are also improved by LO power optimization and balanced detection. Using the proposed system, a high image rejection ratio is demonstrated for a super heterodyne receiver, and good EVMs over a wide RF power range is demonstrated for a zero-IF receiver. The proposed broadband photonic microwave fundamental and sub-harmonic I/Q down-converters may find potential applications in multi-band satellite, ultra-wideband radar and frequency-agile electronic warfare systems.

  15. Cheyenne/Laramie County MX Impact Human Service System Refinements Project. Refinements Manual

    DTIC Science & Technology

    1986-01-01

    following are but four of many possible examples ofthese types of questions. A. Assume that your agency has decided to address the problem of hunger . Should...they do not represent a long-term solution to problems . Conversely, community problem solving and attempts to bring about fundamental changes may be...are victims of acts of violence in the home... Problem solving approaches include education, the provision of food and temporary shel~er, counseling

  16. Le vocabulaire disponible du francais, Tome 1. Le vocabulaire concret usuel des enfants francais et acadiens: Etude temoin (The Working French Vocabulary, Volume 1. Common Generic Terms Used by French and Acadian Children: A Field Study).

    ERIC Educational Resources Information Center

    Mackey, William F.; And Others

    The first of a two-volume study of the relative accessibility of French vocabulary in French-speaking Canada presents statistical data concerning the frequency, distribution, valence, and accessibility of vocabulary related to 16 fundamental centers of interest found in normal conversation. The scope, procedures, and results of the study are…

  17. The Prion Concept and Synthetic Prions.

    PubMed

    Legname, Giuseppe; Moda, Fabio

    2017-01-01

    Transmissible spongiform encephalopathies or prion diseases are a group of fatal neurodegenerative diseases caused by unconventional infectious agents, known as prions (PrP Sc ). Prions derive from a conformational conversion of the normally folded prion protein (PrP C ), which acquires pathological and infectious features. Moreover, PrP Sc is able to transmit the pathological conformation to PrP C through a mechanism that is still not well understood. The generation of synthetic prions, which behave like natural prions, is of fundamental importance to study the process of PrP C conversion and to assess the efficacy of therapeutic strategies to interfere with this process. Moreover, the ability of synthetic prions to induce pathology in animals confirms that the pathological properties of the prion strains are all enciphered in abnormal conformations, characterizing these infectious agents. © 2017 Elsevier Inc. All rights reserved.

  18. Building a Road from Light to Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Anton; Bilby, David; Barito, Adam

    Representing the Center for Solar and Thermal Energy Conversion (CSTEC), this document is one of the entries in the Ten Hundred and One Word Challenge. As part of the challenge, the 46 Energy Frontier Research Centers were invited to represent their science in images, cartoons, photos, words and original paintings, but any descriptions or words could only use the 1000 most commonly used words in the English language, with the addition of one word important to each of the EFRCs and the mission of DOE energy. The mission of the Center for Solar and Thermal Energy Conversion (CSTEC) is tomore » design and to synthesize new materials for high efficiency photovoltaic (PV) and thermoelectric (TE) devices, predicated on new fundamental insights into equilibrium and non-equilibrium processes, including quantum phenomena, that occur in materials over various spatial and temporal scales.« less

  19. Cellulosic Biomass Sugars to Advantage Jet Fuel: Catalytic Conversion of Corn Stover to Energy Dense, Low Freeze Point Paraffins and Naphthenes: Cooperative Research and Development Final Report, CRADA Number CRD-12-462

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elander, Rick

    NREL will provide scientific and engineering support to Virent Energy Systems in three technical areas: Process Development/Biomass Deconstruction; Catalyst Fundamentals; and Technoeconomic Analysis. The overarching objective of this project is to develop the first fully integrated process that can convert a lignocellulosic feedstock (e.g., corn stover) efficiently and cost effectively to a mix of hydrocarbons ideally suited for blending into jet fuel. The proposed project will investigate the integration of Virent Energy System’s novel aqueous phase reforming (APR) catalytic conversion technology (BioForming®) with deconstruction technologies being investigated by NREL at the 1-500L scale. Corn stover was chosen as a representativemore » large volume, sustainable feedstock.« less

  20. Perovskites in catalysis and electrocatalysis.

    PubMed

    Hwang, Jonathan; Rao, Reshma R; Giordano, Livia; Katayama, Yu; Yu, Yang; Shao-Horn, Yang

    2017-11-10

    Catalysts for chemical and electrochemical reactions underpin many aspects of modern technology and industry, from energy storage and conversion to toxic emissions abatement to chemical and materials synthesis. This role necessitates the design of highly active, stable, yet earth-abundant heterogeneous catalysts. In this Review, we present the perovskite oxide family as a basis for developing such catalysts for (electro)chemical conversions spanning carbon, nitrogen, and oxygen chemistries. A framework for rationalizing activity trends and guiding perovskite oxide catalyst design is described, followed by illustrations of how a robust understanding of perovskite electronic structure provides fundamental insights into activity, stability, and mechanism in oxygen electrocatalysis. We conclude by outlining how these insights open experimental and computational opportunities to expand the compositional and chemical reaction space for next-generation perovskite catalysts. Copyright © 2017, American Association for the Advancement of Science.

  1. Cosmological lepton asymmetry, primordial nucleosynthesis and sterile neutrinos

    NASA Astrophysics Data System (ADS)

    Abazajian, Kevork; Bell, Nicole F.; Fuller, George M.; Wong, Yvonne Y. Y.

    2005-09-01

    We study post weak decoupling coherent active-sterile and active-active matter-enhanced neutrino flavor transformation in the early Universe. We show that flavor conversion efficiency at Mikheyev-Smirnov-Wolfenstein resonances is likely to be high (adiabatic evolution) for relevant neutrino parameters and energies. However, we point out that these resonances cannot sweep smoothly and continuously with the expansion of the Universe. We show how neutrino flavor conversion in this way can leave both the active and sterile neutrinos with nonthermal energy spectra, and how, in turn, these distorted energy spectra can affect the neutron-to-proton ratio, primordial nucleosynthesis, and cosmological mass/closure constraints on sterile neutrinos. We demonstrate that the existence of a light sterile neutrino which mixes with active neutrinos can change fundamentally the relationship between the cosmological lepton numbers and the primordial nucleosynthesis He4 yield.

  2. A high power diode-side-pumped Nd:YAG/BaWO4 Raman laser at 1103 nm

    NASA Astrophysics Data System (ADS)

    Li, Lei; Zhang, Xingyu; Liu, Zhaojun; Wang, Qingpu; Cong, Zhenhua; Zhang, Yuangeng; Wang, Weitao; Wu, Zhenguo; Zhang, Huaijin

    2013-04-01

    Pulsed operation at 1103 nm of a diode-side-pumped Nd:YAG laser with intracavity Raman shifting in BaWO4 is reported. The first Stokes wavelength at 1103 nm was generated by a Raman shift of 332 cm-1 from the fundamental wave (1064 nm). A maximum power at 1103 nm of 9.4 W was obtained for a diode pump power of 115 W at a pulse repetition rate of 15 kHz. The pump-to-Stokes conversion efficiency was up to 8.2%. When the output power at 1103 nm was over 7 W, a second Stokes line at 1145 nm was also observed in the experiment. Our research indicates that efficient Raman conversion can be realized by a Raman frequency shift at 332 cm-1 in BaWO4 Raman lasers.

  3. Plasmolysis for efficient CO2 -to-fuel conversion

    NASA Astrophysics Data System (ADS)

    van Rooij, Gerard

    2015-09-01

    The strong non-equilibrium conditions provided by the plasma phase offer the opportunity to beat traditional thermal process energy efficiencies via preferential excitation of molecular vibrational modes. It is therefore a promising option for creating artificial solar fuels from CO2as raw material using (intermittently available) sustainable energy surpluses, which can easily be deployed within the present infrastructure for conventional fossil fuels. In this presentation, a common microwave reactor approach is evaluated experimentally with Rayleigh scattering and Fourier transform infrared spectroscopy to assess gas temperatures and conversion degrees, respectively. The results are interpreted on basis of estimates of the plasma dynamics obtained with electron energy distribution functions calculated with a Boltzmann solver. It indicates that the intrinsic electron energies are higher than is favourable for preferential vibrational excitation due to dissociative excitation, which causes thermodynamic equilibrium chemistry still to dominate the initial experiments. Novel reactor approaches are proposed to tailor the plasma dynamics to achieve the non-equilibrium in which vibrational excitation is dominant. In collaboration with Dirk van den Bekerom, Niek den Harder, Teofil Minea, Dutch Institute For Fundamental Energy Research, Eindhoven, Netherlands; Gield Berden, Institute for Molecules and Materials, FELIX facility, Radboud University, Nijmegen, Netherlands; Richard Engeln, Applied Physics, Plasma en Materials Processing, Eindhoven University of Technology; and Waldo Bongers, Martijn Graswinckel, Erwin Zoethout, Richard van de Sanden, Dutch Institute For Fundamental Energy Research, Eindhoven, Netherlands.

  4. Teaching Note--Constructing Critical Conversations: A Model for Facilitating Classroom Dialogue for Critical Learning

    ERIC Educational Resources Information Center

    Kang, Hye-Kyung; O'Neill, Peggy

    2018-01-01

    Discussions of power and privilege, oppression, and structural inequities in classrooms can produce complex understanding and critical analysis when facilitated effectively. In this article we present the critical conversations model for facilitating conversations that open up space for discussing such issues and encourage the development of…

  5. Oh Darn! I'd Love to Come, but I Already Have Plans: Television Invitations as Conversational Models.

    ERIC Educational Resources Information Center

    Salzman, Ann

    1989-01-01

    The degree to which television conversations follow the rules of naturally occurring conversation is investigated. The occurrences of 1 type of pragmatic behavior (the dispreferred behavior of refusing social invitations) in 25 television conversations are compared with a theoretical description of such conversational strategies. (seven…

  6. Excited state and charge-carrier dynamics in perovskite solar cell materials

    NASA Astrophysics Data System (ADS)

    Ponseca, Carlito S., Jr.; Tian, Yuxi; Sundström, Villy; Scheblykin, Ivan G.

    2016-02-01

    Organo-metal halide perovskites (OMHPs) have attracted enormous interest in recent years as materials for application in optoelectronics and solar energy conversion. These hybrid semiconductors seem to have the potential to challenge traditional silicon technology. In this review we will give an account of the recent development in the understanding of the fundamental light-induced processes in OMHPs from charge-photo generation, migration of charge carries through the materials and finally their recombination. Our and other literature reports on time-resolved conductivity, transient absorption and photoluminescence properties are used to paint a picture of how we currently see the fundamental excited state and charge-carrier dynamics. We will also show that there is still no fully coherent picture of the processes in OMHPs and we will indicate the problems to be solved by future research.

  7. Comparison of reconnection in magnetosphere and solar corona

    NASA Astrophysics Data System (ADS)

    Imada, Shinsuke; Hirai, Mariko; Isobe, Hiroaki; Oka, Mitsuo; Watanabe, Kyoko; Minoshima, Takashi

    One of the most famous rapid energy conversion mechanisms in space is a magnetic reconnec-tion. The general concept of a magnetic reconnection is that the rapid energy conversion from magnetic field energy to thermal energy, kinetic energy or non-thermal particle energy. The understanding of rapid energy conversion rates from magnetic field energy to other energy is the fundamental and essential problem in the space physics. One of the important goals for studying magnetic reconnection is to answer what plasma condition/parameter controls the energy conversion rates. Earth's magnetotail has been paid much attention to discuss a mag-netic reconnection, because we can discuss magnetic reconnection characteristics in detail with direct in-situ observation. Recently, solar atmosphere has been focused as a space laboratory for magnetic reconnection because of its variety in plasma condition. So far considerable effort has been devoted toward understanding the energy conversion rates of magnetic reconnection, and various typical features associated with magnetic reconnection have been observed in the Earth's magnetotail and the solar corona. In this talk, we first introduce the variety of plasma condition/parameter in solar corona and Earth's magnetotail. Later, we discuss what plasma condition/parameter controls the energy conversion from magnetic field to especially non-thermal particle. To compare non-thermal electron and ion acceleration in magnetic reconnection, we used Hard X-ray (electron) /Neu-tron monitor (ion) for solar corona and Geotail in-situ measurement (electron and ion) for magnetoatil. We found both of electron and ion accelerations are roughly controlled by re-connection electric field (reconnection rate). However, some detail points are different in ion and electron acceleration. Further, we will discuss what is the major difference between solar corona and Earth's magnetotail for particle acceleration.

  8. SCR atmosphere induced reduction of oxidized mercury over CuO-CeO2/TiO2 catalyst.

    PubMed

    Li, Hailong; Wu, Shaokang; Wu, Chang-Yu; Wang, Jun; Li, Liqing; Shih, Kaimin

    2015-06-16

    CuO-CeO2/TiO2 (CuCeTi) catalyst synthesized by a sol-gel method was employed to investigate mercury conversion under a selective catalytic reduction (SCR) atmosphere (NO, NH3 plus O2). Neither NO nor NH3 individually exhibited an inhibitive effect on elemental mercury (Hg(0)) conversion in the presence of O2. However, Hg(0) conversion over the CuCeTi catalyst was greatly inhibited under SCR atmosphere. Systematic experiments were designed to investigate the inconsistency and explore the in-depth mechanisms. The results show that the copresence of NO and NH3 induced reduction of oxidized mercury (Hg(2+), HgO in this study), which offset the effect of catalytic Hg(0) oxidation, and hence resulted in deactivation of Hg(0) conversion. High NO and NH3 concentrations with a NO/NH3 ratio of 1.0 facilitated Hg(2+) reduction and therefore lowered Hg(0) conversion. Hg(2+) reduction over the CuCeTi catalyst was proposed to follow two possible mechanisms: (1) direct reaction, in which NO and NH3 react directly with HgO to form N2 and Hg(0); (2) indirect reaction, in which the SCR reaction consumed active surface oxygen on the CuCeTi catalyst, and reduced species on the CuCeTi catalyst surface such as Cu2O and Ce2O3 robbed oxygen from adjacent HgO. Different from the conventionally considered mechanisms, that is, competitive adsorption responsible for deactivation of Hg(0) conversion, this study reveals that oxidized mercury can transform into Hg(0) under SCR atmosphere. Such knowledge is of fundamental importance in developing efficient and economical mercury control technologies for coal-fired power plants.

  9. Co-seismic deformation of the August 27, 2012 Mw 7.3 El Salvador and September 5, 2012 Mw 7.6 Costa Rica earthquakes

    NASA Astrophysics Data System (ADS)

    Geirsson, H.; La Femina, P. C.; DeMets, C.; Mattioli, G. S.; Hernández, D.

    2013-05-01

    We investigate the co-seismic deformation of two significant earthquakes that occurred along the Middle America trench in 2012. The August 27 Mw 7.3 El Salvador and September 5 Mw 7.6 Nicoya Peninsula, Costa Rica earthquakes, were examined using a combination of episodic and continuous Global Positioning System (GPS) data. USGS finite fault models based on seismic data predict fundamentally different characteristics for the two ruptures. The El Salvador event occurred in a historical seismic gap and on the shallow segment of the Middle America Trench main thrust, rupturing a large area, but with a low magnitude of slip. A small tsunami was observed along the coast in Nicaragua and El Salvador, additionally indicating near-trench rupture. Conversely, the Nicoya, Costa Rica earthquake was predicted to have an order of magnitude higher slip on a spatially smaller patch deeper on the main thrust. We present results from episodic and continuous geodetic GPS measurements made in conjunction with the two earthquakes, including data from newly installed COCONet (Continuously Operating Caribbean GPS Observational Network) sites. Episodic GPS measurements made in El Salvador, Honduras, and Nicaragua following the earthquakes, allow us to estimate the co-seismic deformation field from both earthquakes. Because of the small magnitude of the El Salvador earthquake and its shallow rupture the observed co-seismic deformation is small (<2 cm). Conversely, the Costa Rica earthquake occurred directly beneath a seismic and geodetic network specifically designed to capture such events. The observed displacements exceeded 0.5 m and there is a significant post-seismic transient following the earthquake. We use our estimated co-seismic offsets for both earthquakes to model the magnitude and spatial variability of slip for these two events.

  10. The model for Fundamentals of Endovascular Surgery (FEVS) successfully defines the competent endovascular surgeon.

    PubMed

    Duran, Cassidy; Estrada, Sean; O'Malley, Marcia; Sheahan, Malachi G; Shames, Murray L; Lee, Jason T; Bismuth, Jean

    2015-12-01

    Fundamental skills testing is now required for certification in general surgery. No model for assessing fundamental endovascular skills exists. Our objective was to develop a model that tests the fundamental endovascular skills and differentiates competent from noncompetent performance. The Fundamentals of Endovascular Surgery model was developed in silicon and virtual-reality versions. Twenty individuals (with a range of experience) performed four tasks on each model in three separate sessions. Tasks on the silicon model were performed under fluoroscopic guidance, and electromagnetic tracking captured motion metrics for catheter tip position. Image processing captured tool tip position and motion on the virtual model. Performance was evaluated using a global rating scale, blinded video assessment of error metrics, and catheter tip movement and position. Motion analysis was based on derivations of speed and position that define proficiency of movement (spectral arc length, duration of submovement, and number of submovements). Performance was significantly different between competent and noncompetent interventionalists for the three performance measures of motion metrics, error metrics, and global rating scale. The mean error metric score was 6.83 for noncompetent individuals and 2.51 for the competent group (P < .0001). Median global rating scores were 2.25 for the noncompetent group and 4.75 for the competent users (P < .0001). The Fundamentals of Endovascular Surgery model successfully differentiates competent and noncompetent performance of fundamental endovascular skills based on a series of objective performance measures. This model could serve as a platform for skills testing for all trainees. Copyright © 2015 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  11. Design and Establishment of Quality Model of Fundamental Geographic Information Database

    NASA Astrophysics Data System (ADS)

    Ma, W.; Zhang, J.; Zhao, Y.; Zhang, P.; Dang, Y.; Zhao, T.

    2018-04-01

    In order to make the quality evaluation for the Fundamental Geographic Information Databases(FGIDB) more comprehensive, objective and accurate, this paper studies and establishes a quality model of FGIDB, which formed by the standardization of database construction and quality control, the conformity of data set quality and the functionality of database management system, and also designs the overall principles, contents and methods of the quality evaluation for FGIDB, providing the basis and reference for carry out quality control and quality evaluation for FGIDB. This paper designs the quality elements, evaluation items and properties of the Fundamental Geographic Information Database gradually based on the quality model framework. Connected organically, these quality elements and evaluation items constitute the quality model of the Fundamental Geographic Information Database. This model is the foundation for the quality demand stipulation and quality evaluation of the Fundamental Geographic Information Database, and is of great significance on the quality assurance in the design and development stage, the demand formulation in the testing evaluation stage, and the standard system construction for quality evaluation technology of the Fundamental Geographic Information Database.

  12. Q Conversion Factor Models for Estimating Precipitable Water Vapor for Turkey

    NASA Astrophysics Data System (ADS)

    Deniz, Ilke; Mekik, Cetin; Gurbuz, Gokhan

    2015-04-01

    Global Navigation Satellite Systems (GNSS) have recently proved to be one of the crucial tools for determining continuous and precise precipitable water vapor (GNSS-MET networks). GNSS, especially CORS networks such as CORS-TR (the Turkish Network-RTK), provide high temporal and spatial accuracy for the wet tropospheric zenith delays which are then converted to the precipitable water vapor due to the fact that they can operate in all weather conditions continuously and economically. The accuracy of wet tropospheric zenith delay highly depends on the accuracy of precipitable water vapor content in the troposphere. Therefore, the precipitable water vapor is an important element of the tropospheric zenith delay. A number of studies can be found in the literature on the determination of the precipitable water vapor from the tropospheric zenith delay. Studies of Hogg showed that when the precipitable water vapor is known, the tropospheric zenith delay can be computed. Askne and Nodius have developed fundamental equations between the wet tropospheric zenith delay and the precipitable water vapor from the equation of the index of refraction in the troposphere. Furthermore, Bevis have developed a linear regression model to determine the weighted mean temperature (Tm) depending on the surface temperature (Ts) in Askne and Nodius studies. For this reason, nearly 9000 radiosonde profiles in USA were analyzed and the coefficients calculated. Similarly, there are other studies on the calculation of those coefficients for different regions: Solbrig for Germany, Liou for Taiwan, Jihyun for South Korea, Dongseob for North Korea, Suresh Raju for India, Boutiouta and Lahcene for Algeria, Bokoye for Canada, Baltink for Netherlands and Baltic, Bock for Africa. It is stated that the weighted mean temperature can be found with a root mean square error of ±2-5 K. In addition, there are studies on the calculation of the coefficients globally. Another model for the determination of precipitable water vapor is the conversion factor Q which is shown in Emardson and Derks' studies and also Jade and Vijayan's. Developing a regional model using either Tm-Ts equation or the conversion factor Q will provide a basis for GNSS Meteorology in Turkey which depends on the analysis of the radiosonde profile data. For this purpose, the radiosonde profiles from Istanbul, Ankara, Diyarbaki r, Samsun, Erzurum, Izmir, Isparta and Adana stations are analyzed with the radiosonde analysis algorithm in the context of the 'The Estimation of Atmospheric Water Vapour with GPS' Project which is funded by the Scientific and Technological Research Council of Turkey (TUBITAK). The Project is also in the COST Action ES1206: Advanced Global Navigation Satellite Systems tropospheric products for monitoring severe weather events and climate (GNSS4SWEC). In this study, regional models using the conversion factor Q are used for the determination of precipitable water vapor, and applied to the GNSS derived wet tropospheric zenith delays. Henceforth, the estimated precipitable water vapor and the precipitable water vapor obtained from the radiosonde station are compared. The average of the differences between RS and models for Istanbul and Ankara stations are obtained as 2.0±1.6 mm, 1.6±1.6 mm, respectively.

  13. Generation and Evaluation of User Tailored Responses in Multimodal Dialogue

    ERIC Educational Resources Information Center

    Walker, M. A.; Whittaker, S. J.; Stent, A.; Maloor, P.; Moore, J.; Johnston, M.; Vasireddy, G.

    2004-01-01

    When people engage in conversation, they tailor their utterances to their conversational partners, whether these partners are other humans or computational systems. This tailoring, or adaptation to the partner takes place in all facets of human language use, and is based on a "mental model" or a "user model" of the conversational partner. Such…

  14. Criticism of generally accepted fundamentals and methodologies of traffic and transportation theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerner, Boris S.

    It is explained why the set of the fundamental empirical features of traffic breakdown (a transition from free flow to congested traffic) should be the empirical basis for any traffic and transportation theory that can be reliable used for control and optimization in traffic networks. It is shown that generally accepted fundamentals and methodologies of traffic and transportation theory are not consistent with the set of the fundamental empirical features of traffic breakdown at a highway bottleneck. To these fundamentals and methodologies of traffic and transportation theory belong (i) Lighthill-Whitham-Richards (LWR) theory, (ii) the General Motors (GM) model class (formore » example, Herman, Gazis et al. GM model, Gipps’s model, Payne’s model, Newell’s optimal velocity (OV) model, Wiedemann’s model, Bando et al. OV model, Treiber’s IDM, Krauß’s model), (iii) the understanding of highway capacity as a particular stochastic value, and (iv) principles for traffic and transportation network optimization and control (for example, Wardrop’s user equilibrium (UE) and system optimum (SO) principles). Alternatively to these generally accepted fundamentals and methodologies of traffic and transportation theory, we discuss three-phase traffic theory as the basis for traffic flow modeling as well as briefly consider the network breakdown minimization (BM) principle for the optimization of traffic and transportation networks with road bottlenecks.« less

  15. Mathematical model of a parallel plate ammonia electrolyzer for combined wastewater remediation and hydrogen production.

    PubMed

    Estejab, Ali; Daramola, Damilola A; Botte, Gerardine G

    2015-06-15

    A mathematical model was developed for the simulation of a parallel plate ammonia electrolyzer to convert ammonia in wastewater to nitrogen and hydrogen under basic conditions. The model consists of fundamental transport equations, the ammonia oxidation kinetics at the anode, and the hydrogen evolution kinetics at the cathode of the electrochemical reactor. The model shows both qualitative and quantitative agreement with experimental measurements at ammonia concentrations found within wastewater (200-1200 mg L(-1)). The optimum electrolyzer performance is dependent on both the applied voltage and the inlet concentrations. Maximum conversion of ammonia to nitrogen at the rates of 0.569 and 0.766 mg L(-1) min(-1) are achieved at low (0.01 M NH4Cl and 0.1 M KOH) and high (0.07 M NH4Cl and 0.15 M KOH) inlet concentrations, respectively. At high and low concentrations, an initial increase in the cell voltage will cause an increase in the system response - current density generated and ammonia converted. These system responses will approach a peak value before they start to decrease due to surface blockage and/or depletion of solvated species at the electrode surface. Furthermore, the model predicts that by increasing the reactant and electrolyte concentrations at a certain voltage, the peak current density will plateau, showing an asymptotic response. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Statistical thermodynamics foundation for photovoltaic and photothermal conversion. II. Application to photovoltaic conversion

    NASA Astrophysics Data System (ADS)

    Badescu, Viorel; Landsberg, Peter T.

    1995-08-01

    The general theory developed in part I was applied to build up two models of photovoltaic conversion. To this end two different systems were analyzed. The first system consists of the whole absorber (converter), for which the balance equations for energy and entropy are written and then used to derive an upper bound for solar energy conversion. The second system covers a part of the absorber (converter), namely the valence and conduction electronic bands. The balance of energy is used in this case to derive, under additional assumptions, another upper limit for the conversion efficiency. This second system deals with the real location where the power is generated. Both models take into consideration the radiation polarization and reflection, and the effects of concentration. The second model yields a more accurate upper bound for the conversion efficiency. A generalized solar cell equation is derived. It is proved that other previous theories are particular cases of the present more general formalism.

  17. Alternative Payment Models Should Risk-Adjust for Conversion Total Hip Arthroplasty: A Propensity Score-Matched Study.

    PubMed

    McLawhorn, Alexander S; Schairer, William W; Schwarzkopf, Ran; Halsey, David A; Iorio, Richard; Padgett, Douglas E

    2017-12-06

    For Medicare beneficiaries, hospital reimbursement for nonrevision hip arthroplasty is anchored to either diagnosis-related group code 469 or 470. Under alternative payment models, reimbursement for care episodes is not further risk-adjusted. This study's purpose was to compare outcomes of primary total hip arthroplasty (THA) vs conversion THA to explore the rationale for risk adjustment for conversion procedures. All primary and conversion THAs from 2007 to 2014, excluding acute hip fractures and cancer patients, were identified in the National Surgical Quality Improvement Program database. Conversion and primary THA patients were matched 1:1 using propensity scores, based on preoperative covariates. Multivariable logistic regressions evaluated associations between conversion THA and 30-day outcomes. A total of 2018 conversions were matched to 2018 primaries. There were no differences in preoperative covariates. Conversions had longer operative times (148 vs 95 minutes, P < .001), more transfusions (37% vs 17%, P < .001), and longer length of stay (4.4 vs 3.1 days, P < .001). Conversion THA had increased odds of complications (odds ratio [OR] 1.75; 95% confidence interval [CI] 1.37-2.24), deep infection (OR 4.21; 95% CI 1.72-10.28), discharge to inpatient care (OR 1.52; 95% CI 1.34-1.72), and death (OR 2.39; 95% CI 1.04-5.47). Readmission odds were similar. Compared with primary THA, conversion THA is associated with more complications, longer length of stay, and increased discharge to continued inpatient care, implying greater resource utilization for conversion patients. As reimbursement models shift toward bundled payment paradigms, conversion THA appears to be a procedure for which risk adjustment is appropriate. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Role-modeling and conversations about giving in the socialization of adolescent charitable giving and volunteering.

    PubMed

    Ottoni-Wilhelm, Mark; Estell, David B; Perdue, Neil H

    2014-01-01

    This study investigated the relationship between the monetary giving and volunteering behavior of adolescents and the role-modeling and conversations about giving provided by their parents. The participants are a large nationally-representative sample of 12-18 year-olds from the Panel Study of Income Dynamics' Child Development Supplement (n = 1244). Adolescents reported whether they gave money and whether they volunteered. In a separate interview parents reported whether they talked to their adolescent about giving. In a third interview, parents reported whether they gave money and volunteered. The results show that both role-modeling and conversations about giving are strongly related to adolescents' giving and volunteering. Knowing that both role-modeling and conversation are strongly related to adolescents' giving and volunteering suggests an often over-looked way for practitioners and policy-makers to nurture giving and volunteering among adults: start earlier, during adolescence, by guiding parents in their role-modeling of, and conversations about, charitable giving and volunteering. Copyright © 2013 The Foundation for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.

  19. Evaluation of the mathematical and economic basis for conversion processes in the LEAP energy-economy model

    NASA Astrophysics Data System (ADS)

    Oblow, E. M.

    1982-10-01

    An evaluation was made of the mathematical and economic basis for conversion processes in the Long-term Energy Analysis Program (LEAP) energy economy model. Conversion processes are the main modeling subunit in LEAP used to represent energy conversion industries and are supposedly based on the classical economic theory of the firm. Questions about uniqueness and existence of LEAP solutions and their relation to classical equilibrium economic theory prompted the study. An analysis of classical theory and LEAP model equations was made to determine their exact relationship. The conclusions drawn from this analysis were that LEAP theory is not consistent with the classical theory of the firm. Specifically, the capacity factor formalism used by LEAP does not support a classical interpretation in terms of a technological production function for energy conversion processes. The economic implications of this inconsistency are suboptimal process operation and short term negative profits in years where plant operation should be terminated. A new capacity factor formalism, which retains the behavioral features of the original model, is proposed to resolve these discrepancies.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaufman, Allan N.; Tracy, Eugene R.; Brizard, Alain J.

    The process of resonant wave conversion (often called linear mode conversion) has traditionally been analyzed with a spatially one-dimensional slab model, for which the rays propagate in a two-dimensional phase space. However, it has recently been shown [E. R. Tracy and A. N. Kaufman, Phys. Rev. Lett. 91, 130402 (2003)] that multidimensional rays have a helical structure for conversion in two or more spatial dimensions (if their dispersion matrix is generic). In that case, a one-dimensional model is inadequate; a correct analysis requires two spatial dimensions and, thus, four-dimensional phase space. A cold-plasma model is introduced in this paper whichmore » exhibits ray helicity in conversion regions where the density and magnetic field gradients are significantly nonparallel. For illustration, such regions are identified in a model of the poloidal plane of a deuterium-tritium tokamak plasma. In each conversion region, characterized by a six-sector topology, rays in the sector for incident and reflected magnetosonic waves exhibit significant helicity. A detailed analytic and numerical study of helical rays in this sector is developed for a 'symmetric-wedge' model.« less

  1. Thermodynamic limits set relevant constraints to the soil-plant-atmosphere system and to optimality in terrestrial vegetation

    NASA Astrophysics Data System (ADS)

    Kleidon, Axel; Renner, Maik

    2016-04-01

    The soil-plant-atmosphere system is a complex system that is strongly shaped by interactions between the physical environment and vegetation. This complexity appears to demand equally as complex models to fully capture the dynamics of the coupled system. What we describe here is an alternative approach that is based on thermodynamics and which allows for comparatively simple formulations free of empirical parameters by assuming that the system is so complex that its emergent dynamics are only constrained by the thermodynamics of the system. This approach specifically makes use of the second law of thermodynamics, a fundamental physical law that is typically not being considered in Earth system science. Its relevance to land surface processes is that it fundamentally sets a direction as well as limits to energy conversions and associated rates of mass exchange, but it requires us to formulate land surface processes as thermodynamic processes that are driven by energy conversions. We describe an application of this approach to the surface energy balance partitioning at the diurnal scale. In this application the turbulent heat fluxes of sensible and latent heat are described as the result of a convective heat engine that is driven by solar radiative heating of the surface and that operates at its thermodynamic limit. The predicted fluxes from this approach compare very well to observations at several sites. This suggests that the turbulent exchange fluxes between the surface and the atmosphere operate at their thermodynamic limit, so that thermodynamics imposes a relevant constraint to the land surface-atmosphere system. Yet, thermodynamic limits do not entirely determine the soil-plant-atmosphere system because vegetation affects these limits, for instance by affecting the magnitude of surface heating by absorption of solar radiation in the canopy layer. These effects are likely to make the conditions at the land surface more favorable for photosynthetic activity, which then links this thermodynamic approach to optimality in vegetation. We also contrast this approach to common, semi-empirical approaches of surface-atmosphere exchange and discuss how thermodynamics may set a broader range of transport limitations and optimality in the soil-plant-atmosphere system.

  2. Enabling Catalytic Strategies for Biomass Conversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waymouth, Robert

    This research program employed a mix of fundamental investigations of catalytic reactivity with targeted approaches for the catalytic synthesis of monomers and renewable polymers. We investigated the mechanisms of selective aerobic oxidation of polyols and carbohydrates with Pd catalysts with a special focus on the role of hydrogen peroxide and peroxy intermediates in an effort to increase catalyst lifetime. We also extended our studies on the selective oxidation of sugars to ketoses and the oxidative lactonization of 1,5-diols to generate new families of lactone monomers.

  3. Cross-phase-modulation-induced instability in photonic-crystal fibers.

    PubMed

    Serebryannikov, E E; Konorov, S O; Ivanov, A A; Alfimov, M V; Scalora, M; Zheltikov, A M

    2005-08-01

    Cross-phase-modulation-induced instability is identified as a significant mechanism for efficient parametric four-wave-mixing frequency conversion in photonic-crystal fibers. Fundamental-wavelength femtosecond pulses of a Cr, forsterite laser are used in our experiments to transform the spectrum of copropagating second-harmonic pulses of the same laser in a photonic-crystal fiber. Efficient generation of sidebands shifted by more than 80 THz with respect to the central frequency of the second harmonic is observed in the output spectrum of the probe field.

  4. Principles of signal conditioning.

    PubMed

    Finkel, A; Bookman, R

    2001-05-01

    It is rare for biological, physiological, chemical, electrical, or physical signals to be measured in the appropriate format for recording and interpretation. Usually, a signal must be conditioned to optimize it for both of these functions. This overview describes the fundamentals of signal filtering, how to prepare signals for A/D conversion, signal averaging to increase the signal-to-noise ratio, line frequency pickup (hum), peak-to-peak and rms noise measurements, blanking, audio monitoring, testing of electrodes and the common-mode rejection ratio.

  5. Consequences of buffelgrass pasture development for primary productivity, perennial plant richness, and vegetation structure in the drylands of Sonora, Mexico.

    PubMed

    Franklin, Kimberly; Molina-Freaner, Francisco

    2010-12-01

    In large parts of northern Mexico native plant communities are being converted to non-native buffelgrass (Pennisetum ciliare) pastures, and this conversion could fundamentally alter primary productivity and species richness. In Sonora, Mexico land conversion is occurring at a regional scale along a rainfall-driven gradient of primary productivity, across which native plant communities transition from desert scrub to thorn scrub. We used a paired sampling design to compare a satellite-derived index of primary productivity, richness of perennial plant species, and canopy-height profiles of native plant communities with buffelgrass pastures. We sampled species richness across a gradient of primary productivity in desert scrub and thorn scrub vegetation to examine the influence of site productivity on the outcomes of land conversion. We also examined the influence of pasture age on species richness of perennial plants. Index values of primary productivity were lower in buffelgrass pastures than in native vegetation, which suggests a reduction in primary productivity. Land conversion reduced species richness by approximately 50% at local and regional scales, reduced tree and shrub cover by 78%, and reduced canopy height. Land conversion disproportionately reduced shrub species richness, which reflects the common practice among Sonoran ranchers of conserving certain tree and cactus species. Site productivity did not affect the outcomes of land conversion. The age of a buffelgrass pasture was unrelated to species richness within the pasture, which suggests that passive recovery of species richness to preconversion levels is unlikely. Our findings demonstrate that land conversion can result in large losses of plant species richness at local and regional scales and in substantial changes to primary productivity and vegetation structure, which casts doubt on the feasibility of restoring native plant communities without active intervention on the part of land managers. © 2010 Society for Conservation Biology.

  6. Thermochemical Conversion Techno-Economic Analysis | Bioenergy | NREL

    Science.gov Websites

    Conversion Techno-Economic Analysis Thermochemical Conversion Techno-Economic Analysis NREL's Thermochemical Conversion Analysis team focuses on the conceptual process design and techno-economic analysis , detailed process models, and TEA developed under this project provide insights into the potential economic

  7. Fundamental Aspects of Zeolite Waste Form Production by Hot Isostatic Pressing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jubin, Robert Thomas; Bruffey, Stephanie H.; Jordan, Jacob A.

    The direct conversion of iodine-bearing sorbents into a stable waste form is a research topic of interest to the US Department of Energy. The removal of volatile radioactive 129I from the off-gas of a nuclear fuel reprocessing facility will be necessary in order to comply with the regulatory requirements that apply to facilities sited within the United States (Jubin et al., 2012a), and any iodine-containing media or solid sorbents generated by this process would contain 129I and would be destined for eventual geological disposal. While recovery of iodine from some sorbents is possible, a method to directly convert iodineloaded sorbentsmore » to a durable waste form with little or no additional waste materials being formed and a potentially reduced volume would be beneficial. To this end, recent studies have investigated the conversion of iodine-loaded silver mordenite (I-AgZ) directly to a waste form by hot isostatic pressing (HIPing) (Bruffey and Jubin, 2015). Silver mordenite (AgZ), of the zeolite class of minerals, is under consideration for use in adsorbing iodine from nuclear reprocessing off-gas streams. Direct conversion of I-AgZ by HIPing may provide the following benefits: (1) a waste form of high density that is tolerant to high temperatures, (2) a waste form that is not significantly chemically hazardous, and (3) a robust conversion process that requires no pretreatment.« less

  8. The solusphere-its inferences and study

    USGS Publications Warehouse

    Rainwater, F.H.; White, W.F.

    1958-01-01

    Water is a fundamental geologic agent active in rock decomposition, erosion, and synthesis. Solutes in water are of particular interest to geochemists as sources of raw material for synthesis or as products of decomposition. When geochemical studies move from the laboratory into natural environment many variables relating to solute hydrology must be considered. As a focal point there has been designed a graphical representation of solute hydrology, the solusphere, which embodies the concepts of land-water occurrence and movement on which are superimposed geologic, biologic, physical, chemical, and cultural processes affecting solutes. The solusphere is demonstrated by passing an imaginary plane through the centre of the earth. This plane intercepts concentric zones designated as rock flowage, saturation, aeration, surface activity, and atmosphere. Transport processes carry solutes within and between zones without alteration or conversion. However, whether stationary or in motion, the water's solute character is constantly subject to (1) alteration processes that change concentration by addition or subtraction of solutes or solvent without loss of solute identities, and (2) conversion processes that change the chemical state and form of solutes. The geochemist is concerned with specific conversion processes, but he also must consider transport, alteration, and other conversion processes that are continually modifying the materials with which he is dealing in nature. The solusphere is an attempt to organize processes affecting the chemical quality of land waters into a unified field of science much like the field of marine chemistry. ?? 1958.

  9. The reciprocity law concerning light dose relationships applied to BisGMA/TEGDMA photopolymers: theoretical analysis and experimental characterization.

    PubMed

    Wydra, James W; Cramer, Neil B; Stansbury, Jeffrey W; Bowman, Christopher N

    2014-06-01

    A model BisGMA/TEGDMA unfilled resin was utilized to investigate the effect of varied irradiation intensity on the photopolymerization kinetics and shrinkage stress evolution, as a means for evaluation of the reciprocity relationship. Functional group conversion was determined by FTIR spectroscopy and polymerization shrinkage stress was obtained by a tensometer. Samples were polymerized with UV light from an EXFO Acticure with 0.1wt% photoinitiator. A one-dimensional kinetic model was utilized to predict the conversion-dose relationship. As irradiation intensity increased, conversion decreased at a constant irradiation dose and the overall dose required to achieve full conversion increased. Methacrylate conversion ranged from 64±2% at 3mW/cm(2) to 78±1% at 24mW/cm(2) while the final shrinkage stress varied from 2.4±0.1MPa to 3.0±0.1MPa. The ultimate conversion and shrinkage stress levels achieved were dependent not only upon dose but also the irradiation intensity, in contrast to an idealized reciprocity relationship. A kinetic model was utilized to analyze this behavior and provide theoretical conversion profiles versus irradiation time and dose. Analysis of the experimental and modeling results demonstrated that the polymerization kinetics do not and should not be expected to follow the reciprocity law behavior. As irradiation intensity is increased, the overall dose required to achieve full conversion also increased. Further, the ultimate conversion and shrinkage stress that are achieved are not dependent only upon dose but rather upon the irradiation intensity and corresponding polymerization rate. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  10. Electron-beam lithography with character projection exposure for throughput enhancement with line-edge quality optimization

    NASA Astrophysics Data System (ADS)

    Ikeno, Rimon; Maruyama, Satoshi; Mita, Yoshio; Ikeda, Makoto; Asada, Kunihiro

    2016-03-01

    Among various electron-beam lithography (EBL) techniques, variable-shaped beam (VSB) and character projection (CP) methods have attracted many EBL users for their high-throughput feature, but they are considered to be more suited to small-featured VLSI fabrication with regularly-arranged layouts like standard-cell logics and memory arrays. On the other hand, non-VLSI applications like photonics, MEMS, MOEMS, and so on, have not been fully utilized the benefit of CP method due to their wide variety of layout patterns. In addition, the stepwise edge shapes by VSB method often causes intolerable edge roughness to degrade device characteristics from its intended performance with smooth edges. We proposed an overall EBL methodology applicable to wade-variety of EBL applications utilizing VSB and CP methods. Its key idea is in our layout data conversion algorithm that decomposes curved or oblique edges of arbitrary layout patterns into CP shots. We expect significant reduction in EB shot count with a CP-bordered exposure data compared to the corresponding VSB-alone conversion result. Several CP conversion parameters are used to optimize EB exposure throughput, edge quality, and resultant device characteristics. We demonstrated out methodology using the leading-edge VSB/CP EBL tool, ADVANTEST F7000S-VD02, with high resolution Hydrogen Silsesquioxane (HSQ) resist. Through our experiments of curved and oblique edge lithography under various data conversion conditions, we learned correspondence of the conversion parameters to the resultant edge roughness and other conditions. They will be utilized as the fundamental data for further enhancement of our EBL strategy for optimized EB exposure.

  11. A consistent modelling methodology for secondary settling tanks in wastewater treatment.

    PubMed

    Bürger, Raimund; Diehl, Stefan; Nopens, Ingmar

    2011-03-01

    The aim of this contribution is partly to build consensus on a consistent modelling methodology (CMM) of complex real processes in wastewater treatment by combining classical concepts with results from applied mathematics, and partly to apply it to the clarification-thickening process in the secondary settling tank. In the CMM, the real process should be approximated by a mathematical model (process model; ordinary or partial differential equation (ODE or PDE)), which in turn is approximated by a simulation model (numerical method) implemented on a computer. These steps have often not been carried out in a correct way. The secondary settling tank was chosen as a case since this is one of the most complex processes in a wastewater treatment plant and simulation models developed decades ago have no guarantee of satisfying fundamental mathematical and physical properties. Nevertheless, such methods are still used in commercial tools to date. This particularly becomes of interest as the state-of-the-art practice is moving towards plant-wide modelling. Then all submodels interact and errors propagate through the model and severely hamper any calibration effort and, hence, the predictive purpose of the model. The CMM is described by applying it first to a simple conversion process in the biological reactor yielding an ODE solver, and then to the solid-liquid separation in the secondary settling tank, yielding a PDE solver. Time has come to incorporate established mathematical techniques into environmental engineering, and wastewater treatment modelling in particular, and to use proven reliable and consistent simulation models. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Land use change and conversion effects on ground water quality trends: An integration of land change modeler in GIS and a new Ground Water Quality Index developed by fuzzy multi-criteria group decision-making models.

    PubMed

    Shooshtarian, Mohammad Reza; Dehghani, Mansooreh; Margherita, Ferrante; Gea, Oliveri Conti; Mortezazadeh, Shima

    2018-04-01

    This study aggregated Land Change Modeller (LCM) as a useful model in GIS with an extended Groundwater Quality Index (GWQI) developed by fuzzy Multi-Criteria Group Decision-Making models to investigate the effect of land use change and conversion on groundwater quality being supplied for drinking. The model's performance was examined through an applied study in Shiraz, Iran, in a five year period (2011 to 2015). Four land use maps including urban, industrial, garden, and bare were employed in LCM model and the impact of change in area and their conversion to each other on GWQI changes was analysed. The correlation analysis indicated that increase in the urban land use area and conversion of bare to the residential/industrial land uses, had a relation with water quality decrease. Integration of LCM and GWQI can accurately and logically provide a numerical analysis of the possible impact of land use change and conversion, as one of the influencing factors, on the groundwater quality. Hence, the methodology could be used in urban development planning and management in macro level. Copyright © 2018. Published by Elsevier Ltd.

  13. Development of evaluation models of manpower needs for dismantling the dry conversion process-related equipment in uranium refining and conversion plant (URCP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sari Izumo; Hideo Usui; Mitsuo Tachibana

    Evaluation models for determining the manpower needs for dismantling various types of equipment in uranium refining and conversion plant (URCP) have been developed. The models are widely applicable to other uranium handling facilities. Additionally, a simplified model was developed for easily and accurately calculating the manpower needs for dismantling dry conversion process-related equipment (DP equipment). It is important to evaluate beforehand project management data such as manpower needs to prepare an optimized decommissioning plan and implement effective dismantling activity. The Japan Atomic Energy Agency (JAEA) has developed the project management data evaluation system for dismantling activities (PRODIA code), which canmore » generate project management data using evaluation models. For preparing an optimized decommissioning plan, these evaluation models should be established based on the type of nuclear facility and actual dismantling data. In URCP, the dry conversion process of reprocessed uranium and others was operated until 1999, and the equipment related to the main process was dismantled from 2008 to 2011. Actual data such as manpower for dismantling were collected during the dismantling activities, and evaluation models were developed using the collected actual data on the basis of equipment classification considering the characteristics of uranium handling facility. (authors)« less

  14. How exciton-vibrational coherences control charge separation in the photosystem II reaction center.

    PubMed

    Novoderezhkin, Vladimir I; Romero, Elisabet; van Grondelle, Rienk

    2015-12-14

    In photosynthesis absorbed sun light produces collective excitations (excitons) that form a coherent superposition of electronic and vibrational states of the individual pigments. Two-dimensional (2D) electronic spectroscopy allows a visualization of how these coherences are involved in the primary processes of energy and charge transfer. Based on quantitative modeling we identify the exciton-vibrational coherences observed in 2D photon echo of the photosystem II reaction center (PSII-RC). We find that the vibrations resonant with the exciton splittings can modify the delocalization of the exciton states and produce additional states, thus promoting directed energy transfer and allowing a switch between the two charge separation pathways. We conclude that the coincidence of the frequencies of the most intense vibrations with the splittings within the manifold of exciton and charge-transfer states in the PSII-RC is not occurring by chance, but reflects a fundamental principle of how energy conversion in photosynthesis was optimized.

  15. Securing Color Fidelity in 3D Architectural Heritage Scenarios.

    PubMed

    Gaiani, Marco; Apollonio, Fabrizio Ivan; Ballabeni, Andrea; Remondino, Fabio

    2017-10-25

    Ensuring color fidelity in image-based 3D modeling of heritage scenarios is nowadays still an open research matter. Image colors are important during the data processing as they affect algorithm outcomes, therefore their correct treatment, reduction and enhancement is fundamental. In this contribution, we present an automated solution developed to improve the radiometric quality of an image datasets and the performances of two main steps of the photogrammetric pipeline (camera orientation and dense image matching). The suggested solution aims to achieve a robust automatic color balance and exposure equalization, stability of the RGB-to-gray image conversion and faithful color appearance of a digitized artifact. The innovative aspects of the article are: complete automation, better color target detection, a MATLAB implementation of the ACR scripts created by Fraser and the use of a specific weighted polynomial regression. A series of tests are presented to demonstrate the efficiency of the developed methodology and to evaluate color accuracy ('color characterization').

  16. Transport mechanisms in nanopores and nanochannels: Can we mimic nature?

    DOE PAGES

    Tagliazucchi, Mario; Szleifer, Igal

    2014-11-03

    The last few years have witnessed major advancements in the synthesis, modification, characterization and modeling of nanometer-size solid-state channels and pores. Future applications in sensing, energy conversion and purification technologies will critically rely on qualitative improvements in the control over the selectivity, directionality and responsiveness of these nanochannels and nanopores. It is not surprising, therefore, that researchers in the field seek inspiration in biological ion channels and ion pumps, paradigmatic examples of transport selectivity. This work reviews our current fundamental understanding of the mechanisms of transport of ions and larger cargoes through nanopores and nanochannels by examining recent experimental andmore » theoretical work. It is argued that that structure and transport in biological channels and polyelectrolyte-modified synthetic nanopores are strongly coupled: the structure dictates transport and transport affects the structure. We compare synthetic and biological systems throughout this review to conclude that while they present interesting similarities, they also have striking differences.« less

  17. Free-energy minimization and the dark-room problem.

    PubMed

    Friston, Karl; Thornton, Christopher; Clark, Andy

    2012-01-01

    Recent years have seen the emergence of an important new fundamental theory of brain function. This theory brings information-theoretic, Bayesian, neuroscientific, and machine learning approaches into a single framework whose overarching principle is the minimization of surprise (or, equivalently, the maximization of expectation). The most comprehensive such treatment is the "free-energy minimization" formulation due to Karl Friston (see e.g., Friston and Stephan, 2007; Friston, 2010a,b - see also Fiorillo, 2010; Thornton, 2010). A recurrent puzzle raised by critics of these models is that biological systems do not seem to avoid surprises. We do not simply seek a dark, unchanging chamber, and stay there. This is the "Dark-Room Problem." Here, we describe the problem and further unpack the issues to which it speaks. Using the same format as the prolog of Eddington's Space, Time, and Gravitation (Eddington, 1920) we present our discussion as a conversation between: an information theorist (Thornton), a physicist (Friston), and a philosopher (Clark).

  18. Halide Perovskites: New Science or ``only'' future Energy Converters?

    NASA Astrophysics Data System (ADS)

    Cahen, David

    Over the years many new ideas and systems for photovoltaic, PV, solar to electrical energy conversion have been explored, but only a few have really impacted PV's role as a more sustainable, environmentally less problematic and safer source of electrical power than fossil or nuclear fuel-based generation. Will Halide Perovskites, HaPs, be able to join the very select group of commercial PV options? To try to address this question, we put Halide Perovskite(HaP) cells in perspective with respect to other PV cells. Doing so also allows to identify fundamental scientific issues that can be important for PV and beyond. What remains to be seen is if those issues lead to new science or scientific insights or additional use of existing models. Being more specific is problematic, given the fact that this will be 4 months after writing this abstract. Israel National Nano-initiative, Weizmann Institute of Science's Alternative sustainable Energy Research Initiative; Israel Ministries of -Science and of -Infrastructure, Energy & Water.

  19. Securing Color Fidelity in 3D Architectural Heritage Scenarios

    PubMed Central

    Apollonio, Fabrizio Ivan; Ballabeni, Andrea; Remondino, Fabio

    2017-01-01

    Ensuring color fidelity in image-based 3D modeling of heritage scenarios is nowadays still an open research matter. Image colors are important during the data processing as they affect algorithm outcomes, therefore their correct treatment, reduction and enhancement is fundamental. In this contribution, we present an automated solution developed to improve the radiometric quality of an image datasets and the performances of two main steps of the photogrammetric pipeline (camera orientation and dense image matching). The suggested solution aims to achieve a robust automatic color balance and exposure equalization, stability of the RGB-to-gray image conversion and faithful color appearance of a digitized artifact. The innovative aspects of the article are: complete automation, better color target detection, a MATLAB implementation of the ACR scripts created by Fraser and the use of a specific weighted polynomial regression. A series of tests are presented to demonstrate the efficiency of the developed methodology and to evaluate color accuracy (‘color characterization’). PMID:29068359

  20. Glyphosate resistance: state of knowledge

    PubMed Central

    Sammons, Robert Douglas; Gaines, Todd A

    2014-01-01

    Studies of mechanisms of resistance to glyphosate have increased current understanding of herbicide resistance mechanisms. Thus far, single-codon non-synonymous mutations of EPSPS (5-enolypyruvylshikimate-3-phosphate synthase) have been rare and, relative to other herbicide mode of action target-site mutations, unconventionally weak in magnitude for resistance to glyphosate. However, it is possible that weeds will emerge with non-synonymous mutations of two codons of EPSPS to produce an enzyme endowing greater resistance to glyphosate. Today, target-gene duplication is a common glyphosate resistance mechanism and could become a fundamental process for developing any resistance trait. Based on competition and substrate selectivity studies in several species, rapid vacuole sequestration of glyphosate occurs via a transporter mechanism. Conversely, as the chloroplast requires transporters for uptake of important metabolites, transporters associated with the two plastid membranes may separately, or together, successfully block glyphosate delivery. A model based on finite glyphosate dose and limiting time required for chloroplast loading sets the stage for understanding how uniquely different mechanisms can contribute to overall glyphosate resistance. PMID:25180399

  1. TRACE-P OH and HO2 Measurements with the Airborne Tropospheric Hydrogen Oxides Sensor (ATHOS) on the DC-8

    NASA Technical Reports Server (NTRS)

    Brune, William H.; Martinez-Harder, Monica; Harder, Hartwig

    2004-01-01

    The Airborne Tropospheric Hydrogen Oxides Sensor (ATHOS) measures OH and HO2 from the NASA DC-8. This instrument detects OH by laser induced fluorescence (LIF) in detection chambers at low pressure and detects HO2 by chemical conversion with NO followed by LIF detection. The demonstrated detection limit (S/N=2, 5 min.) for OH is about 0.005 pptv (1x10(exp 6)/cu cm at 2 km altitude) and for HO2 is 0.05 pptv (1x10(exp 6)/cu cm at 2 km altitude). We will use ATHOS to measure OH, HO2, and HO2/OH during TRACE- P, analyze these results by comparing them against fundamental relationships and computer models, and publish the analyses. TRACE-P HO(x), measurements will help develop a clearer picture of the atmospheric oxidation and 0 3 production that occur as Asian pollution spreads across the Pacific Ocean.

  2. An overview of Laser-Produced Relativistic Positrons in the Laboratory

    NASA Astrophysics Data System (ADS)

    Edghill, Brandon; Williams, Gerald; Chen, Hui; Beg, Farhat

    2017-10-01

    The production of relativistic positrons using ultraintense lasers can facilitate studies of fundamental pair plasma science in the relativistic regime and laboratory studies of scaled energetic astrophysical mechanisms such as gamma ray bursts. The positron densities and spatial scales required for these applications, however, are larger than current capabilities. Here, we present an overview of the experimental laser-produced positron results and their respective modeling for both the direct laser-irradiated process and the indirect process (laser wakefield accelerated electrons irradiating a high-Z converter). Conversion efficiency into positrons and positron beam characteristics are compared, including total pair yield, mean energy, angular divergence, and inferred pair density for various laser and target conditions. Prospects towards increasing positron densities and beam repetition rates will also be discussed. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, and funded by LDRD (#17-ERD-010).

  3. Parametric down-conversion with nonideal and random quasi-phase-matching

    NASA Astrophysics Data System (ADS)

    Yang, Chun-Yao; Lin, Chun; Liljestrand, Charlotte; Su, Wei-Min; Canalias, Carlota; Chuu, Chih-Sung

    2016-05-01

    Quasi-phase-matching (QPM) has enriched the capacity of parametric down-conversion (PDC) in generating biphotons for many fundamental tests and advanced applications. However, it is not clear how the nonidealities and randomness in the QPM grating of a parametric down-converter may affect the quantum properties of the biphotons. This paper intends to provide insights into the interplay between PDC and nonideal or random QPM structures. Using a periodically poled nonlinear crystal with short periodicity, we conduct experimental and theoretical studies of PDC subject to nonideal duty cycle and random errors in domain lengths. We report the observation of biphotons emerging through noncritical birefringent-phasematching, which is impossible to occur in PDC with an ideal QPM grating, and a biphoton spectrum determined by the details of nonidealities and randomness. We also observed QPM biphotons with a diminished strength. These features are both confirmed by our theory. Our work provides new perspectives for biphoton engineering with QPM.

  4. Emergency healthcare of the future.

    PubMed

    FitzGerald, Gerry; Toloo, Ghasem Sam; Romeo, Michele

    2014-06-01

    Emergency healthcare is a high profile component of modern healthcare systems, which over the past three decades has fundamentally transformed in many countries. However, despite this rapid development, and associated investments in service standards, there is a high level of concern with the performance of emergency health services relating principally to system wide congestion. The factors driving this problem are complex but relate largely to the combined impact of growing demand, expanded scope of care and blocked access to inpatient beds. These factors are unlikely to disappear in the medium term despite the National Emergency Access Target. The aim of this article is to stimulate a conversation about the future design and functioning of emergency healthcare systems; examining what we understand about the problem and proposing a rationale that may underpin future strategic approaches. This is also an invitation to join the conversation. © 2014 Australasian College for Emergency Medicine and Australasian Society for Emergency Medicine.

  5. Scintillator Non-Proportionality: Present Understanding and Future Challenges

    NASA Astrophysics Data System (ADS)

    Moses, W. W.; Payne, S. A.; Choong, W.-S.; Hull, G.; Reutter, B. W.

    2008-06-01

    Scintillator non-proportionality (the fact that the conversion factor between the energy deposited in a scintillator and the number of visible photons produced is not constant) has been studied both experimentally and theoretically for 50 years. Early research centered on the dependence of the conversion factor on the species of the ionizing radiation (gamma, alpha, beta, proton, etc.), and researchers during the 1960s discovered a strong correlation between the scintillation efficiency and the ionization density. In more recent years, non-proportionality has been proposed as the reason why the energy resolution of most scintillators is worse than that predicted by counting statistics. While much progress has been made, there are still major gaps in our understanding of both the fundamental causes of non-proportionality and their quantitative link to scintillator energy resolution. This paper summarizes the present state of knowledge on the nature of the light-yield non-proportionality and its effect on energy resolution.

  6. Multiple nonlinear Bragg diffraction of femtosecond laser pulses in a {\\chi^{(2)}} photonic lattice with hexagonal domains

    NASA Astrophysics Data System (ADS)

    Vyunishev, A. M.; Arkhipkin, V. G.; Baturin, I. S.; Akhmatkhanov, A. R.; Shur, V. Ya; Chirkin, A. S.

    2018-04-01

    The frequency doubling of femtosecond laser pulses in a two-dimensional (2D) rectangular nonlinear photonic lattice with hexagonal domains is studied experimentally and theoretically. The broad fundamental spectrum enables frequency conversion under nonlinear Bragg diffraction for a series of transverse orders at a fixed longitudinal quasi-phase-matching order. The consistent nonstationary theory of the frequency doubling of femtosecond laser pulses is developed using the representation based on the reciprocal lattice of the structure. The calculated spatial distribution of the second-harmonic spectral intensity agrees well with the experimental data. The condition for multiple nonlinear Bragg diffraction in a 2D nonlinear photonic lattice is offered. The hexagonal shape of the domains contributes to multibeam second harmonic excitation. The maximum conversion efficiency for a series of transverse orders in the range 0.01%-0.03% is obtained.

  7. Optimizing Energy Transduction of Fluctuating Signals with Nanofluidic Diodes and Load Capacitors.

    PubMed

    Ramirez, Patricio; Cervera, Javier; Gomez, Vicente; Ali, Mubarak; Nasir, Saima; Ensinger, Wolfgang; Mafe, Salvador

    2018-05-01

    The design and experimental implementation of hybrid circuits is considered allowing charge transfer and energy conversion between nanofluidic diodes in aqueous ionic solutions and conventional electronic elements such as capacitors. The fundamental concepts involved are reviewed for the case of fluctuating zero-average external potentials acting on single pore and multipore membranes. This problem is relevant to electrochemical energy conversion and storage, the stimulus-response characteristics of nanosensors and actuators, and the estimation of the accumulative effects caused by external signals on biological ion channels. Half-wave and full-wave voltage doublers and quadruplers can scale up the transduction between ionic and electronic signals. The network designs discussed here should be useful to convert the weak signals characteristic of the micro and nanoscale into robust electronic responses by interconnecting iontronics and electronic elements. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Stable Radical Materials for Energy Applications.

    PubMed

    Wilcox, Daniel A; Agarkar, Varad; Mukherjee, Sanjoy; Boudouris, Bryan W

    2018-06-07

    Although less studied than their closed-shell counterparts, materials containing stable open-shell chemistries have played a key role in many energy storage and energy conversion devices. In particular, the oxidation-reduction (redox) properties of these stable radicals have made them a substantial contributor to the progress of organic batteries. Moreover, the use of radical-based materials in photovoltaic devices and thermoelectric systems has allowed for these emerging molecules to have impacts in the energy conversion realm. Additionally, the unique doublet states of radical-based materials provide access to otherwise inaccessible spin states in optoelectronic devices, offering many new opportunities for efficient usage of energy in light-emitting devices. Here, we review the current state of the art regarding the molecular design, synthesis, and application of stable radicals in these energy-related applications. Finally, we point to fundamental and applied arenas of future promise for these designer open-shell molecules, which have only just begun to be evaluated in full.

  9. Review of nanostructured devices for thermoelectric applications

    PubMed Central

    2014-01-01

    Summary A big research effort is currently dedicated to the development of thermoelectric devices capable of a direct thermal-to-electrical energy conversion, aiming at efficiencies as high as possible. These devices are very attractive for many applications in the fields of energy recovery and green energy harvesting. In this paper, after a quick summary of the fundamental principles of thermoelectricity, the main characteristics of materials needed for high efficiency thermoelectric conversion will be discussed, and a quick review of the most promising materials currently under development will be given. This review paper will put a particular emphasis on nanostructured silicon, which represents a valid compromise between good thermoelectric properties on one side and material availability, sustainability, technological feasibility on the other side. The most important bottom-up and top-down nanofabrication techniques for large area silicon nanowire arrays, to be used for high efficiency thermoelectric devices, will be presented and discussed. PMID:25247111

  10. Acoustic analysis of speech under stress.

    PubMed

    Sondhi, Savita; Khan, Munna; Vijay, Ritu; Salhan, Ashok K; Chouhan, Satish

    2015-01-01

    When a person is emotionally charged, stress could be discerned in his voice. This paper presents a simplified and a non-invasive approach to detect psycho-physiological stress by monitoring the acoustic modifications during a stressful conversation. Voice database consists of audio clips from eight different popular FM broadcasts wherein the host of the show vexes the subjects who are otherwise unaware of the charade. The audio clips are obtained from real-life stressful conversations (no simulated emotions). Analysis is done using PRAAT software to evaluate mean fundamental frequency (F0) and formant frequencies (F1, F2, F3, F4) both in neutral and stressed state. Results suggest that F0 increases with stress; however, formant frequency decreases with stress. Comparison of Fourier and chirp spectra of short vowel segment shows that for relaxed speech, the two spectra are similar; however, for stressed speech, they differ in the high frequency range due to increased pitch modulation.

  11. Role of antenna modes and field enhancement in second harmonic generation from dipole nanoantennas.

    PubMed

    de Ceglia, Domenico; Vincenti, Maria Antonietta; De Angelis, Costantino; Locatelli, Andrea; Haus, Joseph W; Scalora, Michael

    2015-01-26

    We study optical second harmonic generation from metallic dipole antennas with narrow gaps. Enhancement of the fundamental-frequency field in the gap region plays a marginal role on conversion efficiency. In the symmetric configuration, i.e., with the gap located at the center of the antenna axis, reducing gap size induces a significant red-shift of the maximum conversion efficiency peak. Either enhancement or inhibition of second-harmonic emission may be observed as gap size is decreased, depending on the antenna mode excited at the harmonic frequency. The second-harmonic signal is extremely sensitive to the asymmetry introduced by gap's displacements with respect to the antenna center. In this situation, second-harmonic light can couple to all the available antenna modes. We perform a multipolar analysis that allows engineering the far-field SH emission and find that the interaction with quasi-odd-symmetry modes generates radiation patterns with a strong dipolar component.

  12. High-order Stokes generation in a KTP Raman laser pumped by a passively Q-switched ND:YLF laser

    NASA Astrophysics Data System (ADS)

    Wang, Maorong; Zhong, Kai; Mei, Jialin; Guo, Shibei; Xu, Degang; Yao, Jianquan

    2015-12-01

    High-order Stokes wave was observed in an x-cut KTP crystal based on stimulated Raman scattering (SRS) pumped by a passively Q-switched Nd:YLF laser with a Cr4+:YAG saturable absorber. Output spectra including the fundamental wave at 1047 nm and six Stokes wavelengths at 1077 nm, 1110 nm, 1130 nm, 1143 nm, 1164 nm, 1180 nm based on two Raman frequency shift at 267.4 cm-1 and 693.0 cm-1 were obtained simultaneously. We also detected green light generation with output power of 12 mW from self frequency mixing in the KTP crystal. The maximum total output power reached 452 mW at the repetition frequency of 8.1 kHz, corresponding to the optical-to-optical conversion efficiency of 4.61% and pump-to-Raman conversion efficiency of 3.6%.

  13. Consequences of Asexuality in Natural Populations: Insights from Stick Insects.

    PubMed

    Bast, Jens; Parker, Darren J; Dumas, Zoé; Jalvingh, Kirsten M; Tran Van, Patrick; Jaron, Kamil S; Figuet, Emeric; Brandt, Alexander; Galtier, Nicolas; Schwander, Tanja

    2018-07-01

    Recombination is a fundamental process with significant impacts on genome evolution. Predicted consequences of the loss of recombination include a reduced effectiveness of selection, changes in the amount of neutral polymorphisms segregating in populations, and an arrest of GC-biased gene conversion. Although these consequences are empirically well documented for nonrecombining genome portions, it remains largely unknown if they extend to the whole genome scale in asexual organisms. We identify the consequences of asexuality using de novo transcriptomes of five independently derived, obligately asexual lineages of stick insects, and their sexual sister-species. We find strong evidence for higher rates of deleterious mutation accumulation, lower levels of segregating polymorphisms and arrested GC-biased gene conversion in asexuals as compared with sexuals. Taken together, our study conclusively shows that predicted consequences of genome evolution under asexuality can indeed be found in natural populations.

  14. Growth, properties, and applications of potassium niobate single crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mizell, G.; Fay, W.R.; Alekel, T. III

    1994-12-31

    Production refinements and pragmatic optical properties of the frequency converter crystal KNbO{sub 3} (KN) are highlighted regarding its commercialization. The growth, morphological orientation, and processing of KN crystals into devices are outlined. Passive absorption data are presented that define the effective window range for KN devices. An absorption band at 2.85 {mu}m is attributed to the presence of OH groups in the crystal, and its vibrational strength varies with crystal growth conditions and incident polarized light orientation. Although blue light induced infrared absorption (BLIRA) can reduce second harmonic generation (SHG) efficiency at high power, single-pass conversion efficiencies of 1%/W{center_dot}cm maymore » be achieved with incident fundamental powers of 10 W. The ability of KN to non-critically phasematch by temperature tuning provides blue-green wavelengths; together with critical angle-tuned phasematching, the entire visible spectrum may be accessed with efficient SHG conversion.« less

  15. Potential high efficiency solar cells: Applications from space photovoltaic research

    NASA Technical Reports Server (NTRS)

    Flood, D. J.

    1986-01-01

    NASA involvement in photovoltaic energy conversion research development and applications spans over two decades of continuous progress. Solar cell research and development programs conducted by the Lewis Research Center's Photovoltaic Branch have produced a sound technology base not only for the space program, but for terrestrial applications as well. The fundamental goals which have guided the NASA photovoltaic program are to improve the efficiency and lifetime, and to reduce the mass and cost of photovoltaic energy conversion devices and arrays for use in space. The major efforts in the current Lewis program are on high efficiency, single crystal GaAs planar and concentrator cells, radiation hard InP cells, and superlattice solar cells. A brief historical perspective of accomplishments in high efficiency space solar cells will be given, and current work in all of the above categories will be described. The applicability of space cell research and technology to terrestrial photovoltaics will be discussed.

  16. Eye-Safe KGd(WO4)2:Nd Laser: Nano- and Subnanosecond Pulse Generation in Self-Frequency Raman Conversion Mode with Active Q-Switching

    NASA Astrophysics Data System (ADS)

    Dashkevich, V. I.; Orlovich, V. A.

    2017-03-01

    The shape of the multimode Stokes pulse generated by an eye-safe KGd(WO4)2:Nd laser with self-frequency Raman conversion and active Q-switching was shown to depend on the inhomogeneity of the active-medium pump. The laser generated a short and undistorted Stokes pulse of length 2.5 ns that increased with increasing laser cavity length for a moderately inhomogeneous pump characterized by a higher population inversion in the center of the active element. The energy of the Stokes pulse ( 11.5 mJ) varied little as the output-mirror reflectivity varied in the range 5-45%. The Raman pulse became distorted if the inhomogeneity of the pump was increased considerably. The degree of pump inhomogeneity was negligible with fundamental TEM00 mode selection. The laser generated subnanosecond Stokes pulses with peak power in the MW range.

  17. Vibrational energy flow controls internal conversion in a transition metal complex.

    PubMed

    Hedley, Gordon J; Ruseckas, Arvydas; Samuel, Ifor D W

    2010-09-02

    Internal conversion (IC) between excited electronic states is a fundamental photophysical process that is important for understanding protection from UV radiation, energy transfer pathways and electron injection in artificial photosynthetic systems and organic solar cells. We have studied IC between three singlet MLCT states in an iridium complex using femtosecond fluorescence spectroscopy. Very fast IC with a time constant of <20 fs is observed from the highest state and a much slower relaxation to the lowest energy singlet state on a 70 fs time scale. The abrupt slowdown of the relaxation rate occurs when there is >0.6 eV of vibrational energy stored in the complex that has to be dissipated by intramolecular vibrational redistribution before further IC to the lower energy states can occur. These results show that the ability to dissipate vibrational energy can control the relaxation process in this class of materials.

  18. Materials and structures for stretchable energy storage and conversion devices.

    PubMed

    Xie, Keyu; Wei, Bingqing

    2014-06-11

    Stretchable energy storage and conversion devices (ESCDs) are attracting intensive attention due to their promising and potential applications in realistic consumer products, ranging from portable electronics, bio-integrated devices, space satellites, and electric vehicles to buildings with arbitrarily shaped surfaces. Material synthesis and structural design are core in the development of highly stretchable supercapacitors, batteries, and solar cells for practical applications. This review provides a brief summary of research development on the stretchable ESCDs in the past decade, from structural design strategies to novel materials synthesis. The focuses are on the fundamental insights of mechanical characteristics of materials and structures on the performance of the stretchable ESCDs, as well as challenges for their practical applications. Finally, some of the important directions in the areas of material synthesis and structural design facing the stretchable ESCDs are discussed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Polymer-based chromophore-catalyst assemblies for solar energy conversion

    NASA Astrophysics Data System (ADS)

    Leem, Gyu; Sherman, Benjamin D.; Schanze, Kirk S.

    2017-12-01

    The synthesis of polymer-based assemblies for light harvesting has been motivated by the multi-chromophore antennas that play a role in natural photosynthesis for the potential use in solar conversion technologies. This review describes a general strategy for using polymer-based chromophore-catalyst assemblies for solar-driven water oxidation at a photoanode in a dye-sensitized photoelectrochemical cell (DSPEC). This report begins with a summary of the synthetic methods and fundamental photophysical studies of light harvesting polychormophores in solution which show these materials can transport excited state energy to an acceptor where charge-separation can occur. In addition, studies describing light harvesting polychromophores containing an anchoring moiety (ionic carboxylate) for covalent bounding to wide band gap mesoporous semiconductor surfaces are summarized to understand the photophysical mechanisms of directional energy flow at the interface. Finally, the performance of polychromophore/catalyst assembly-based photoanodes capable of light-driven water splitting to oxygen and hydrogen in a DSPEC are summarized.

  20. Polymer-based chromophore-catalyst assemblies for solar energy conversion.

    PubMed

    Leem, Gyu; Sherman, Benjamin D; Schanze, Kirk S

    2017-01-01

    The synthesis of polymer-based assemblies for light harvesting has been motivated by the multi-chromophore antennas that play a role in natural photosynthesis for the potential use in solar conversion technologies. This review describes a general strategy for using polymer-based chromophore-catalyst assemblies for solar-driven water oxidation at a photoanode in a dye-sensitized photoelectrochemical cell (DSPEC). This report begins with a summary of the synthetic methods and fundamental photophysical studies of light harvesting polychormophores in solution which show these materials can transport excited state energy to an acceptor where charge-separation can occur. In addition, studies describing light harvesting polychromophores containing an anchoring moiety (ionic carboxylate) for covalent bounding to wide band gap mesoporous semiconductor surfaces are summarized to understand the photophysical mechanisms of directional energy flow at the interface. Finally, the performance of polychromophore/catalyst assembly-based photoanodes capable of light-driven water splitting to oxygen and hydrogen in a DSPEC are summarized.

  1. 40 CFR 85.530 - Vehicle/engine labels and packaging labels.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... conversion test group/conversion engine family name and conversion evaporative/refueling emissions family name. (ii) You must identify your corporate name, address, and telephone number. (iii) You must include... family names and original model year to which your conversion is applicable as described in § 85.510(b)(1...

  2. 40 CFR 85.530 - Vehicle/engine labels and packaging labels.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... conversion test group/conversion engine family name and conversion evaporative/refueling emissions family name. (ii) You must identify your corporate name, address, and telephone number. (iii) You must include... family names and original model year to which your conversion is applicable as described in § 85.510(b)(1...

  3. Flow-combustion interactions in ducted flameholder-stabilized premixed flames

    NASA Astrophysics Data System (ADS)

    Soteriou, Marios; Arienti, Marco; Erickson, Robert

    2006-11-01

    Turbulent premixed combustion is present in many power generation and propulsion systems due to its large energy conversion rate (as compared to non-premixed combustion) and its potential for reduced emissions (at the lean limit). As a result, the study of turbulent premixed flames has received substantial attention in the past through experiment, analysis and simulation. In the recent past, unsteady Computational Fluid Dynamics (CFD) based models have been increasingly leveraged towards the in depth study of the physics of turbulent premixed flames. The bulk of this effort focuses on the response of the flame to turbulence. In contrast, we focus on the opposite problem, i.e. the modification of the turbulent flowfield by the flame. This topic has also received some attention but with a strong emphasis on planar (in the mean), flames propagating normal to the flow. Instead, we focus on flameholder-stabilized ducted flames, i.e. ones in which the flame is confined and substantially inclined to the incoming flow. The fundamental mechanisms by which the flame impacts the flow, i.e. dilatation, baroclinic vorticity generation and molecular diffusion enhancement are discussed in detail and their relative impact quantified. Limitations of modeling these mechanisms in current state of the art CFD models are also addressed.

  4. The Effects of Noncellulosic Compounds on the Nanoscale Interaction Forces Measured between Carbohydrate-Binding Module and Lignocellulosic Biomass.

    PubMed

    Arslan, Baran; Colpan, Mert; Ju, Xiaohui; Zhang, Xiao; Kostyukova, Alla; Abu-Lail, Nehal I

    2016-05-09

    The lack of fundamental understanding of the types of forces that govern how cellulose-degrading enzymes interact with cellulosic and noncellulosic components of lignocellulosic surfaces limits the design of new strategies for efficient conversion of biomass to bioethanol. In a step to improve our fundamental understanding of such interactions, nanoscale forces acting between a model cellulase-a carbohydrate-binding module (CBM) of cellobiohydrolase I (CBH I)-and a set of lignocellulosic substrates with controlled composition were measured using atomic force microscopy (AFM). The three model substrates investigated were kraft (KP), sulfite (SP), and organosolv (OPP) pulped substrates. These substrates varied in their surface lignin coverage, lignin type, and xylan and acetone extractives' content. Our results indicated that the overall adhesion forces of biomass to CBM increased linearly with surface lignin coverage with kraft lignin showing the highest forces among lignin types investigated. When the overall adhesion forces were decoupled into specific and nonspecific component forces via the Poisson statistical model, hydrophobic and Lifshitz-van der Waals (LW) forces dominated the binding forces of CBM to kraft lignin, whereas permanent dipole-dipole interactions and electrostatic forces facilitated the interactions of lignosulfonates to CBM. Xylan and acetone extractives' content increased the attractive forces between CBM and lignin-free substrates, most likely through hydrogen bonding forces. When the substrates treated differently were compared, it was found that both the differences in specific and nonspecific forces between lignin-containing and lignin-free substrates were the least for OPP. Therefore, cellulase enzymes represented by CBM would weakly bind to organosolv lignin. This will facilitate an easy enzyme recovery compared to other substrates treated with kraft or sulfite pulping. Our results also suggest that altering the surface hydrophobicity and the surface energy of lignin that facilitates the LW forces should be a priori to avoid nonproductive binding of cellulase to kraft lignin.

  5. 40 CFR 85.535 - Liability, recordkeeping, and end of year reporting.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., if we learn that your actions fall short of full compliance with applicable requirements we may... calendar year intermediate age conversions, outside useful life conversions, and the same conversion model...

  6. Giant osmotic energy conversion measured in a single transmembrane boron nitride nanotube.

    PubMed

    Siria, Alessandro; Poncharal, Philippe; Biance, Anne-Laure; Fulcrand, Rémy; Blase, Xavier; Purcell, Stephen T; Bocquet, Lydéric

    2013-02-28

    New models of fluid transport are expected to emerge from the confinement of liquids at the nanoscale, with potential applications in ultrafiltration, desalination and energy conversion. Nevertheless, advancing our fundamental understanding of fluid transport on the smallest scales requires mass and ion dynamics to be ultimately characterized across an individual channel to avoid averaging over many pores. A major challenge for nanofluidics thus lies in building distinct and well-controlled nanochannels, amenable to the systematic exploration of their properties. Here we describe the fabrication and use of a hierarchical nanofluidic device made of a boron nitride nanotube that pierces an ultrathin membrane and connects two fluid reservoirs. Such a transmembrane geometry allows the detailed study of fluidic transport through a single nanotube under diverse forces, including electric fields, pressure drops and chemical gradients. Using this device, we discover very large, osmotically induced electric currents generated by salinity gradients, exceeding by two orders of magnitude their pressure-driven counterpart. We show that this result originates in the anomalously high surface charge carried by the nanotube's internal surface in water at large pH, which we independently quantify in conductance measurements. The nano-assembly route using nanostructures as building blocks opens the way to studying fluid, ionic and molecule transport on the nanoscale, and may lead to biomimetic functionalities. Our results furthermore suggest that boron nitride nanotubes could be used as membranes for osmotic power harvesting under salinity gradients.

  7. Effect of Tree-to-Shrub Type Conversion in Lower Montane Forests of the Sierra Nevada (USA) on Streamflow

    PubMed Central

    Tague, Christina L.; Moritz, Max A.

    2016-01-01

    Higher global temperatures and increased levels of disturbance are contributing to greater tree mortality in many forest ecosystems. These same drivers can also limit forest regeneration, leading to vegetation type conversion. For the Sierra Nevada of California, little is known about how type conversion may affect streamflow, a critical source of water supply for urban, agriculture and environmental purposes. In this paper, we examined the effects of tree-to-shrub type conversion, in combination with climate change, on streamflow in two lower montane forest watersheds in the Sierra Nevada. A spatially distributed ecohydrologic model was used to simulate changes in streamflow, evaporation, and transpiration following type conversion, with an explicit focus on the role of vegetation size and aspect. Model results indicated that streamflow may show negligible change or small decreases following type conversion when the difference between tree and shrub leaf areas is small, partly due to the higher stomatal conductivity and the deep rooting depth of shrubs. In contrast, streamflow may increase when post-conversion shrubs have a small leaf area relative to trees. Model estimates also suggested that vegetation change could have a greater impact on streamflow magnitude than the direct hydrologic impacts of increased temperatures. Temperature increases, however, may have a greater impact on streamflow timing. Tree-to-shrub type conversion increased streamflow only marginally during dry years (annual precipitation < 800 mm), with most streamflow change observed during wetter years. These modeling results underscore the importance of accounting for changes in vegetation communities to accurately characterize future hydrologic regimes for the Sierra Nevada. PMID:27575592

  8. Effect of Tree-to-Shrub Type Conversion in Lower Montane Forests of the Sierra Nevada (USA) on Streamflow.

    PubMed

    Bart, Ryan R; Tague, Christina L; Moritz, Max A

    2016-01-01

    Higher global temperatures and increased levels of disturbance are contributing to greater tree mortality in many forest ecosystems. These same drivers can also limit forest regeneration, leading to vegetation type conversion. For the Sierra Nevada of California, little is known about how type conversion may affect streamflow, a critical source of water supply for urban, agriculture and environmental purposes. In this paper, we examined the effects of tree-to-shrub type conversion, in combination with climate change, on streamflow in two lower montane forest watersheds in the Sierra Nevada. A spatially distributed ecohydrologic model was used to simulate changes in streamflow, evaporation, and transpiration following type conversion, with an explicit focus on the role of vegetation size and aspect. Model results indicated that streamflow may show negligible change or small decreases following type conversion when the difference between tree and shrub leaf areas is small, partly due to the higher stomatal conductivity and the deep rooting depth of shrubs. In contrast, streamflow may increase when post-conversion shrubs have a small leaf area relative to trees. Model estimates also suggested that vegetation change could have a greater impact on streamflow magnitude than the direct hydrologic impacts of increased temperatures. Temperature increases, however, may have a greater impact on streamflow timing. Tree-to-shrub type conversion increased streamflow only marginally during dry years (annual precipitation < 800 mm), with most streamflow change observed during wetter years. These modeling results underscore the importance of accounting for changes in vegetation communities to accurately characterize future hydrologic regimes for the Sierra Nevada.

  9. Experiential Learning: From Discourse Model to Conversation. Interview with David Kolb.

    ERIC Educational Resources Information Center

    Hamalainen, Kauko; Siirala, Eeva

    1998-01-01

    In this interview, Kolb, developer of the experiential learning cycle model, explores learning motivation, aspects of conversation (as experiential learning and as evaluation), and standardization versus diversity in education. (SK)

  10. Evaluation of laser-driven ion energies for fusion fast-ignition research

    NASA Astrophysics Data System (ADS)

    Tosaki, S.; Yogo, A.; Koga, K.; Okamoto, K.; Shokita, S.; Morace, A.; Arikawa, Y.; Fujioka, S.; Nakai, M.; Shiraga, H.; Azechi, H.; Nishimura, H.

    2017-10-01

    We investigate laser-driven ion acceleration using kJ-class picosecond (ps) laser pulses as a fundamental study for ion-assisted fusion fast ignition, using a newly developed Thomson-parabola ion spectrometer (TPIS). The TPIS has a space- and weight-saving design, considering its use in an laser-irradiation chamber in which 12 beams of fuel implosion laser are incident, and, at the same time, demonstrates sufficient performance with its detectable range and resolution of the ion energy required for fast-ignition research. As a fundamental study on laser-ion acceleration using a ps pulse laser, we show proton acceleration up to 40 MeV at 1 × 10^{19} W cm^{-2}. The energy conversion efficiency from the incident laser into protons higher than 6 MeV is 4.6%, which encourages the realization of fusion fast ignition by laser-driven ions.

  11. Recombination in polymer-fullerene bulk heterojunction solar cells

    NASA Astrophysics Data System (ADS)

    Cowan, Sarah R.; Roy, Anshuman; Heeger, Alan J.

    2010-12-01

    Recombination of photogenerated charge carriers in polymer bulk heterojunction (BHJ) solar cells reduces the short circuit current (Jsc) and the fill factor (FF). Identifying the mechanism of recombination is, therefore, fundamentally important for increasing the power conversion efficiency. Light intensity and temperature-dependent current-voltage measurements on polymer BHJ cells made from a variety of different semiconducting polymers and fullerenes show that the recombination kinetics are voltage dependent and evolve from first-order recombination at short circuit to bimolecular recombination at open circuit as a result of increasing the voltage-dependent charge carrier density in the cell. The “missing 0.3 V” inferred from comparison of the band gaps of the bulk heterojunction materials and the measured open-circuit voltage at room-temperature results from the temperature dependence of the quasi-Fermi levels in the polymer and fullerene domains—a conclusion based on the fundamental statistics of fermions.

  12. Broadband pulsed difference frequency generation laser source centered 3326 nm based on ring fiber lasers

    NASA Astrophysics Data System (ADS)

    Chen, Guangwei; Li, Wenlei

    2018-03-01

    A broadband pulsed mid-infrared difference frequency generation (DFG) laser source based on MgO-doped congruent LiNbO3 bulk is experimentally demonstrated, which employs a homemade pulsed ytterbium-doped ring fiber laser and a continuous wave erbium-doped ring fiber laser to act as seed sources. The experimental results indicate that the perfect phase match crystal temperature is about 74.5∘C. The maximum spectrum bandwidth of idler is about 60 nm with suitable polarization states of fundamental lights. The central wavelength of idlers varies from 3293 nm to 3333 nm over the crystal temperature ranges of 70.4-76∘C. A jump of central wavelength exists around crystal temperature of 72∘C with variation of about 30 nm. The conversion efficiency of DFG can be tuned with the crystal temperature and polarization states of fundamental lights.

  13. Judicial virtues and decision-making in the VCAT Guardianship List.

    PubMed

    Polkinghorn, Richard

    2014-06-01

    The contemporary legal theory of virtue jurisprudence provides great insight into the proper practice of Australian tribunal members and the desired operation of tribunals. Virtue jurisprudence identifies the attributes of "good" tribunal members and provides guidance on how legal disputes should be decided. This article focuses on the fundamental virtues relevant to tribunal practice in the Guardianship List of the Victorian Civil and Administrative Tribunal. The special features of this tribunal jurisdiction, particularly the disadvantaged nature of its primary client group, require tribunal members to undertake a fact-finding, inquisitorial role, as well as a support and advisory role. Decision-makers must also become conversant with expert evidence and the process of testing expert evidence; they cannot simply defer to the expert on issues of decision-making capacity. This analysis considers the fundamental breaches of human rights that occur when tribunal members fail to execute this multilevel task properly.

  14. Realization of a mW-level 10.7-eV (λ = 115.6 nm) laser by cascaded third harmonic generation of a Yb:fiber CPA laser at 1-MHz.

    PubMed

    Zhao, Zhigang; Kobayashi, Yohei

    2017-06-12

    We demonstrate a 10.7-eV (λ = 115.6 nm) laser with mW levels of average power and a 1-MHz repetition rate, which was driven by the third harmonic radiation (THG), at 347 nm, of an Yb:fiber chirped pulse amplifier (CPA) laser. The 347 nm ultraviolet radiation was obtained by frequency conversion of the high power output of a 1-MHz Yb:fiber CPA, using beta barium borate (BBO) nonlinear crystals. The frequency converted output was focused down into a gas cell filled with a mixture of Ar and Xe, and was subjected to a second THG frequency conversion. The generated 10.7-eV laser was separated from the fundamental beam using a LiF prism and no further separation from other harmonic waves was required. The highest measured output power was ~80 μW, which corresponded to an average power of ~1.25 mW inside the gas cell when the transmission coefficients of the LiF optics were taken into account. The corresponding conversion efficiency from 347 nm down to 115.6 nm was ~2.5 × 10 -4 .

  15. Herschel/SPIRE observations of water production rates and ortho-to-para ratios in comets★

    NASA Astrophysics Data System (ADS)

    Wilson, Thomas G.; Rawlings, Jonathan M. C.; Swinyard, Bruce M.

    2017-04-01

    This paper presents Herschel/SPIRE (Spectral and Photometric Imaging Receiver) spectroscopic observations of several fundamental rotational ortho- and para-water transitions seen in three Jupiter-family comets and one Oort-cloud comet. Radiative transfer models that include excitation by collisions with neutrals and electrons, and by solar infrared radiation, were used to produce synthetic emission line profiles originating in the cometary coma. Ortho-to-para ratios (OPRs) were determined and used to derived water production rates for all comets. Comparisons are made with the water production rates derived using an OPR of 3. The OPR of three of the comets in this study is much lower than the statistical equilibrium value of 3; however they agree with observations of comets 1P/Halley and C/2001 A2 (LINEAR), and the protoplanetary disc TW Hydrae. These results provide evidence suggesting that OPR variation is caused by post-sublimation gas-phase nuclear-spin conversion processes. The water production rates of all comets agree with previous work and, in general, decrease with increasing nucleocentric offset. This could be due to a temperature profile, additional water source or OPR variation in the comae, or model inaccuracies.

  16. 3D Structural Model of High-Performance Non-Fullerene Polymer Solar Cells as Revealed by High-Resolution AFM.

    PubMed

    Shi, Shaowei; Chen, Xiaofeng; Liu, Xubo; Wu, Xuefei; Liu, Feng; Zhang, Zhi-Guo; Li, Yongfang; Russell, Thomas P; Wang, Dong

    2017-07-26

    Rapid improvements in nonfullerene polymer solar cells (PSCs) have brought power conversion efficiencies to greater than 12%. To further improve device performance, a fundamental understanding of the correlations between structure and performance is essential. In this paper, based on a typical high-performance system consisting of J61(one donor-acceptor (D-A) copolymer of benzodithiophene and fluorine substituted benzotriazole) and ITIC (3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone)-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3-d:2',3'-d']-s-indaceno[1,2-b:5,6-b']-dithiophene), a 3D structural model is directly imaged by employing high-resolution atomic force microscopy (AFM). Hierarchical morphologies ranging from fiberlike crystallites, several nanometers in size, to a bicontinuous morphology, having domains tens of nanometers in size, are observed. A fibrillar interpenetrating networks of J61-rich domains embedded in a matrix comprised of a J61/ITIC is seen, reflecting the partial miscibility of J61 with ITIC. These hierarchical nanostructural characteristics are coupled to significantly enhanced exciton dissociation, and further contribute to photocurrent and final device performance.

  17. Comprehensive kinetic model for the low-temperature oxidation of hydrocarbons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaffuri, P.; Faravelli, T.; Ranzi, E.

    1997-05-01

    The oxidation chemistry in the low- and intermediate-temperature regimes (600--900 K) is important and plays a significant role in the overall combustion process. Autoignition in diesel engines as well as end-gas autoignition and knock phenomena in s.i. engines are initiated at these low temperatures. The low-temperature oxidation chemistry of linear and branched alkanes is discussed with the aim of unifying their complex behavior in various experimental systems using a single detailed kinetic model. New experimental data, obtained in a pressurized flow reactor, as well as in batch- and jet-stirred reactors, are useful for a better definition of the region ofmore » cool flames and negative temperature coefficient (NTC) for pure hydrocarbons from propane up to isooctane. Thermochemical oscillations and the NTC region of the reaction rate of the low-temperature oxidation of n-heptane and isooctane in a jet-stirred flow reactor are reproduced quite well by the model, not only in a qualitative way but in terms of the experimental frequencies and intensities of cool flames. Very good agreement is also observed for fuel conversion and intermediate-species formation. Irrespective of the experimental system, the same critical reaction steps always control these phenomena. The results contribute to the definition of a limited set of fundamental kinetic parameters that should be easily extended to model heavier alkanes.« less

  18. In Vitro Disease Model of Microgravity Conditioning on Human Energy Metabolism

    NASA Technical Reports Server (NTRS)

    Snyder, Jessica; Culbertson, C.; Zhang, Ye; Emami, K.; Wu, H.; Sun, Wei

    2010-01-01

    NASA and its partners are committed to introducing appropriate new technology to enable learning and living safely beyond the Earth for extended periods of time in a sustainable and possibly indefinite manner. In the responsible acquisition of that goal, life sciences is tasked to tune and advance current medical technology to prepare for human health and wellness in the space environment. The space environment affects the condition and function of biological systems from organ level function to shape of individual organelles. The objective of this paper is to study the effect of microgravity on kinetics of drug metabolism. This fundamental characterization is meaningful to (1) scientific understanding of the response of biology to microgravity and (2) clinical dosing requirements and pharmacological thresholds during long term manned space exploration. Metabolism kinetics of the anti-nausea drug promethazine (PMZ) were determined by an in vitro ground model of 3-dimensional aggregates of human hepatocytes conditioned to weightlessness using a rotating wall bioreactor. The authors observed up-regulated PMZ conversion in model microgravity conditions and attribute this to effect to model microgravity conditioning acting on metabolic mechanisms of the cells. Further work is necessary to determine which particular cellular mechanisms are governing the experimental observations, but the authors conclude kinetics of drug metabolism are responsive to gravitational fields and further study of this sensitivity would improve dosing of pharmaceuticals to persons exposed to a microgravity environment.

  19. Energetics, adaptation, and adaptability.

    PubMed

    Ulijaszek, Stanley J

    1996-01-01

    Energy capture and conversion are fundamental to human existence, and over the past three decades biological anthropologists have used a number of approaches which incorporate energetics measures in studies of human population biology. Human groups can vary enormously in their energy expenditure. This review considers evidence for genetic adaptation and presents models for physiological adaptability to reduced physiological energy availability and/or negative energy balance. In industrialized populations, different aspects of energy expenditure have been shown to have a genetic component, including basal metabolic rate, habitual physical activity level, mechanical efficiency of work performance, and thermic effect of food. Metabolic adaptation to low energy intakes has been demonstrated in populations in both developing and industrialized nations. Thyroid hormone-related effects on energy metabolic responses to low physiological energy availability are unified in a model, linking energetic adaptability in physical activity and maintenance metabolism. Negative energy balance has been shown to be associated with reduced reproductive function in women experiencing seasonal environments in some developing countries. Existing models relating negative energy balance to menstrual or ovulatory function are largely descriptive, and do not propose any physiological mechanisms for this phenomenon. A model is proposed whereby reduced physiological energy availability could influence ovulatory function via low serum levels of the amino acid aspartate and reduced sympathetic nervous system activity. © 1996 Wiley-Liss, Inc. Copyright © 1996 Wiley-Liss, Inc.

  20. Finite Dimensional Approximations for Continuum Multiscale Problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berlyand, Leonid

    2017-01-24

    The completed research project concerns the development of novel computational techniques for modeling nonlinear multiscale physical and biological phenomena. Specifically, it addresses the theoretical development and applications of the homogenization theory (coarse graining) approach to calculation of the effective properties of highly heterogenous biological and bio-inspired materials with many spatial scales and nonlinear behavior. This theory studies properties of strongly heterogeneous media in problems arising in materials science, geoscience, biology, etc. Modeling of such media raises fundamental mathematical questions, primarily in partial differential equations (PDEs) and calculus of variations, the subject of the PI’s research. The focus of completed researchmore » was on mathematical models of biological and bio-inspired materials with the common theme of multiscale analysis and coarse grain computational techniques. Biological and bio-inspired materials offer the unique ability to create environmentally clean functional materials used for energy conversion and storage. These materials are intrinsically complex, with hierarchical organization occurring on many nested length and time scales. The potential to rationally design and tailor the properties of these materials for broad energy applications has been hampered by the lack of computational techniques, which are able to bridge from the molecular to the macroscopic scale. The project addressed the challenge of computational treatments of such complex materials by the development of a synergistic approach that combines innovative multiscale modeling/analysis techniques with high performance computing.« less

  1. Modeling and optimization of a typical fuel cell-heat engine hybrid system and its parametric design criteria

    NASA Astrophysics Data System (ADS)

    Zhao, Yingru; Chen, Jincan

    A theoretical modeling approach is presented, which describes the behavior of a typical fuel cell-heat engine hybrid system in steady-state operating condition based on an existing solid oxide fuel cell model, to provide useful fundamental design characteristics as well as potential critical problems. The different sources of irreversible losses, such as the electrochemical reaction, electric resistances, finite-rate heat transfer between the fuel cell and the heat engine, and heat-leak from the fuel cell to the environment are specified and investigated. Energy and entropy analyses are used to indicate the multi-irreversible losses and to assess the work potentials of the hybrid system. Expressions for the power output and efficiency of the hybrid system are derived and the performance characteristics of the system are presented and discussed in detail. The effects of the design parameters and operating conditions on the system performance are studied numerically. It is found that there exist certain optimum criteria for some important parameters. The results obtained here may provide a theoretical basis for both the optimal design and operation of real fuel cell-heat engine hybrid systems. This new approach can be easily extended to other fuel cell hybrid systems to develop irreversible models suitable for the investigation and optimization of similar energy conversion settings and electrochemistry systems.

  2. Personality influences temporal discounting preferences: behavioral and brain evidence.

    PubMed

    Manning, Joshua; Hedden, Trey; Wickens, Nina; Whitfield-Gabrieli, Susan; Prelec, Drazen; Gabrieli, John D E

    2014-09-01

    Personality traits are stable predictors of many life outcomes that are associated with important decisions that involve tradeoffs over time. Therefore, a fundamental question is how tradeoffs over time vary from person to person in relation to stable personality traits. We investigated the influence of personality, as measured by the Five-Factor Model, on time preferences and on neural activity engaged by intertemporal choice. During functional magnetic resonance imaging (fMRI), participants made choices between smaller-sooner and larger-later monetary rewards. For each participant, we estimated a constant-sensitivity discount function that dissociates impatience (devaluation of future consequences) from time sensitivity (consistency with rational, exponential discounting). Overall, higher neuroticism was associated with a relatively greater preference for immediate rewards and higher conscientiousness with a relatively greater preference for delayed rewards. Specifically, higher conscientiousness correlated positively with lower short-term impatience and more exponential time preferences, whereas higher neuroticism (lower emotional stability) correlated positively with higher short-term impatience and less exponential time preferences. Cognitive-control and reward brain regions were more activated when higher conscientiousness participants selected a smaller-sooner reward and, conversely, when higher neuroticism participants selected a larger-later reward. The greater activations that occurred when choosing rewards that contradicted personality predispositions may reflect the greater recruitment of mental resources needed to override those predispositions. These findings reveal that stable personality traits fundamentally influence how rewards are chosen over time. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Near-infrared light controlled photocatalytic activity of carbon quantum dots for highly selective oxidation reaction

    NASA Astrophysics Data System (ADS)

    Li, Haitao; Liu, Ruihua; Lian, Suoyuan; Liu, Yang; Huang, Hui; Kang, Zhenhui

    2013-03-01

    Selective oxidation of alcohols is a fundamental and significant transformation for the large-scale production of fine chemicals, UV and visible light driven photocatalytic systems for alcohol oxidation have been developed, however, the long wavelength near infrared (NIR) and infrared (IR) light have not yet fully utilized by the present photocatalytic systems. Herein, we reported carbon quantum dots (CQDs) can function as an effective near infrared (NIR) light driven photocatalyst for the selective oxidation of benzyl alcohol to benzaldehyde. Based on the NIR light driven photo-induced electron transfer property and its photocatalytic activity for H2O2 decomposition, this metal-free catalyst could realize the transformation from benzyl alcohol to benzaldehyde with high selectivity (100%) and conversion (92%) under NIR light irradiation. HO&z.rad; is the main active oxygen specie in benzyl alcohol selective oxidative reaction confirmed by terephthalic acid photoluminescence probing assay (TA-PL), selecting toluene as the substrate. Such metal-free photocatalytic system also selectively converts other alcohol substrates to their corresponding aldehydes with high conversion, demonstrating a potential application of accessing traditional alcohol oxidation chemistry.Selective oxidation of alcohols is a fundamental and significant transformation for the large-scale production of fine chemicals, UV and visible light driven photocatalytic systems for alcohol oxidation have been developed, however, the long wavelength near infrared (NIR) and infrared (IR) light have not yet fully utilized by the present photocatalytic systems. Herein, we reported carbon quantum dots (CQDs) can function as an effective near infrared (NIR) light driven photocatalyst for the selective oxidation of benzyl alcohol to benzaldehyde. Based on the NIR light driven photo-induced electron transfer property and its photocatalytic activity for H2O2 decomposition, this metal-free catalyst could realize the transformation from benzyl alcohol to benzaldehyde with high selectivity (100%) and conversion (92%) under NIR light irradiation. HO&z.rad; is the main active oxygen specie in benzyl alcohol selective oxidative reaction confirmed by terephthalic acid photoluminescence probing assay (TA-PL), selecting toluene as the substrate. Such metal-free photocatalytic system also selectively converts other alcohol substrates to their corresponding aldehydes with high conversion, demonstrating a potential application of accessing traditional alcohol oxidation chemistry. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr00092c

  4. Marine Hydrokinetic (MHK) Energy Conversion Research at UNH: From Fundamental Studies of Hydrofoil Sections, to Moderate Reynolds Number Turbine Tests in a Tow Tank, to Open Water Deployments at Tidal Energy Test Sites (Invited)

    NASA Astrophysics Data System (ADS)

    Wosnik, M.; Bachant, P.; Nedyalkov, I.; Rowell, M.; Dufresne, N.; Lyon, V.

    2013-12-01

    We report on research related to MHK turbines at the Center for Ocean Renewable Energy (CORE) at the University of New Hampshire (UNH). The research projects span varies scales, levels of complexity and environments - from fundamental studies of hydrofoil sections in a high speed water tunnel, to moderate Reynolds number turbine tests with inflow and wake studies in a large cross-section tow tank, to deployments of highly instrumented process models at tidal energy test sites in New England. A concerted effort over the past few years has brought significant new research infrastructure for marine hydrokinetic energy conversion online at UNH-CORE. It includes: a high-speed cavitation tunnel with independent control of velocity and pressure; a highly accurate tow mechanism, turbine test bed and wake traversing system for the 3.7m x 2.4m cross-section UNH tow tank; a 10.7m x 3.0m tidal energy test platform which can accommodate turbines up to 1.5m in diameter, for deployments at the UNH-CORE Tidal Energy Test Site in Great Bay Estuary, NH, a sheltered 'nursery site' suitable for intermediate scale tidal energy conversion device testing with peak currents typically above 2 m/s during each tidal cycle. Further, a large boundary layer wind tunnel, the new UNH Flow Physics Facility (W6.0m x H2.7m xL72m) is being used for detailed turbine wake studies, producing data and insight also applicable to MHK turbines in low Froude number deployments. Bi-directional hydrofoils, which perform equally well in either flow direction and could avoid the use of complex and maintenance-intensive yaw or blade pitch mechanisms, are being investigated theoretically, numerically and experimentally. For selected candidate shapes lift, drag, wake, and cavitation inception/desinence are measured. When combined with a cavitation inception model for MHK turbines, this information can be used to prescribe turbine design/operational parameters. Experiments were performed with a 1m diameter and 1m tall three-bladed cross-flow axis turbine (UNH RVAT) in a tow tank. For cross-flow axis turbines hydrofoil performance remains Reynolds number dependent at intermediate scales due to the large range of angles of attack encountered during turbine rotation. The experiments, with turbine diameter Reynolds numbers ReD = 0.5 x105 to 2.0 x106, were aimed at providing detailed data for model comparison at significantly higher Reynolds numbers than previously available. Measurements include rotor power, thrust, tip speed ratio, and detailed maps of mean flow and turbulence components in the near-wake. Mechanical exergy efficiency was calculated from power and drag measurements using an actuator disk approach. The spatial and temporal resolutions of different flow measurement techniques (ADCP, ADV, PIV) were systematically characterized. Finally, Reynolds-averaged Navier-Stokes (RANS) simulations were performed to assess their ability to predict the experimental results. A scaled version of a mixer-ejector hydrokinetic turbine, with a specially designed shroud to promotes wake mixing to enable increased mass flow through the turbine rotor, was evaluated experimentally at the UNH Tidal Energy Test Site in Great Bay Estuary, NH and in Muskeget Channel, MA. State-of-the-art instrumentation was used to measure the tidal energy resource and turbine wake flow velocities, turbine power extraction, test platform loadings and platform motion induced by sea state.

  5. HUMAN SPEECH: A RESTRICTED USE OF THE MAMMALIAN LARYNX

    PubMed Central

    Titze, Ingo R.

    2016-01-01

    Purpose Speech has been hailed as unique to human evolution. While the inventory of distinct sounds producible with vocal tract articulators is a great advantage in human oral communication, it is argued here that the larynx as a sound source in speech is limited in its range and capability because a low fundamental frequency is ideal for phonemic intelligibility and source-filter independence. Method Four existing data sets were combined to make an argument regarding exclusive use of the larynx for speech: (1) range of fundamental frequency, (2) laryngeal muscle activation, (3) vocal fold length in relation to sarcomere length of the major laryngeal muscles, and (4) vocal fold morphological development. Results Limited data support the notion that speech tends to produce a contracture of the larynx. The morphological design of the human vocal folds, like that of primates and other mammals, is optimized for vocal communication over distances for which higher fundamental frequency, higher intensity, and fewer unvoiced segments are utilized than in conversational speech. Conclusion The positive message is that raising one’s voice to call, shout, or sing, or executing pitch glides to stretch the vocal folds, can counteract this trend toward a contracted state. PMID:27397113

  6. A cure-rate model for the Shuttle filament-wound case

    NASA Technical Reports Server (NTRS)

    Cagliostro, D. E.; Islas, A.; Hsu, Ming-Ta

    1987-01-01

    An epoxy and carbon fiber composite has been used to produce a light-weight rocket case for the Space Shuttle. A kinetic model is developed which can predict the extent of epoxy conversion during the winding and curing of the case. The model accounts for both chemical and physical kinetics. In the model, chemical kinetics occur exclusively up to the time the transition temperature equals the reaction temperature. At this point the resin begins to solidify and the rate of this process limits the rate of epoxy conversion. A comparison of predicted and actual epoxy conversion is presented for isothermal and temperature programmed cure schedules.

  7. Predicting fundamental and realized distributions based on thermal niche: A case study of a freshwater turtle

    NASA Astrophysics Data System (ADS)

    Rodrigues, João Fabrício Mota; Coelho, Marco Túlio Pacheco; Ribeiro, Bruno R.

    2018-04-01

    Species distribution models (SDM) have been broadly used in ecology to address theoretical and practical problems. Currently, there are two main approaches to generate SDMs: (i) correlative, which is based on species occurrences and environmental predictor layers and (ii) process-based models, which are constructed based on species' functional traits and physiological tolerances. The distributions estimated by each approach are based on different components of species niche. Predictions of correlative models approach species realized niches, while predictions of process-based are more akin to species fundamental niche. Here, we integrated the predictions of fundamental and realized distributions of the freshwater turtle Trachemys dorbigni. Fundamental distribution was estimated using data of T. dorbigni's egg incubation temperature, and realized distribution was estimated using species occurrence records. Both types of distributions were estimated using the same regression approaches (logistic regression and support vector machines), both considering macroclimatic and microclimatic temperatures. The realized distribution of T. dorbigni was generally nested in its fundamental distribution reinforcing theoretical assumptions that the species' realized niche is a subset of its fundamental niche. Both modelling algorithms produced similar results but microtemperature generated better results than macrotemperature for the incubation model. Finally, our results reinforce the conclusion that species realized distributions are constrained by other factors other than just thermal tolerances.

  8. Reflexions sur les marqueurs de structuration de la conversation (Considerations on the Structural Markers of Conversation).

    ERIC Educational Resources Information Center

    Auchlin, Antoine

    1981-01-01

    Examines morphemic markers that signal the opening and closing of discourse units, emphasizing their complexity and their central role for a descriptive model of conversation. Then proceeds to analyze their functions within the overall structure of conversation, classifying them according to their properties and uses. Societe Nouvelle Didier…

  9. Inversion of high frequency surface waves with fundamental and higher modes

    USGS Publications Warehouse

    Xia, J.; Miller, R.D.; Park, C.B.; Tian, G.

    2003-01-01

    The phase velocity of Rayleigh-waves of a layered earth model is a function of frequency and four groups of earth parameters: compressional (P)-wave velocity, shear (S)-wave velocity, density, and thickness of layers. For the fundamental mode of Rayleigh waves, analysis of the Jacobian matrix for high frequencies (2-40 Hz) provides a measure of dispersion curve sensitivity to earth model parameters. S-wave velocities are the dominant influence of the four earth model parameters. This thesis is true for higher modes of high frequency Rayleigh waves as well. Our numerical modeling by analysis of the Jacobian matrix supports at least two quite exciting higher mode properties. First, for fundamental and higher mode Rayleigh wave data with the same wavelength, higher modes can "see" deeper than the fundamental mode. Second, higher mode data can increase the resolution of the inverted S-wave velocities. Real world examples show that the inversion process can be stabilized and resolution of the S-wave velocity model can be improved when simultaneously inverting the fundamental and higher mode data. ?? 2002 Elsevier Science B.V. All rights reserved.

  10. Organ dose conversion coefficients for voxel models of the reference male and female from idealized photon exposures

    NASA Astrophysics Data System (ADS)

    Schlattl, H.; Zankl, M.; Petoussi-Henss, N.

    2007-04-01

    A new series of organ equivalent dose conversion coefficients for whole body external photon exposure is presented for a standardized couple of human voxel models, called Rex and Regina. Irradiations from broad parallel beams in antero-posterior, postero-anterior, left- and right-side lateral directions as well as from a 360° rotational source have been performed numerically by the Monte Carlo transport code EGSnrc. Dose conversion coefficients from an isotropically distributed source were computed, too. The voxel models Rex and Regina originating from real patient CT data comply in body and organ dimensions with the currently valid reference values given by the International Commission on Radiological Protection (ICRP) for the average Caucasian man and woman, respectively. While the equivalent dose conversion coefficients of many organs are in quite good agreement with the reference values of ICRP Publication 74, for some organs and certain geometries the discrepancies amount to 30% or more. Differences between the sexes are of the same order with mostly higher dose conversion coefficients in the smaller female model. However, much smaller deviations from the ICRP values are observed for the resulting effective dose conversion coefficients. With the still valid definition for the effective dose (ICRP Publication 60), the greatest change appears in lateral exposures with a decrease in the new models of at most 9%. However, when the modified definition of the effective dose as suggested by an ICRP draft is applied, the largest deviation from the current reference values is obtained in postero-anterior geometry with a reduction of the effective dose conversion coefficient by at most 12%.

  11. Experimental feasibility of the airborne measurement of absolute oil fluorescence spectral conversion efficiency

    NASA Technical Reports Server (NTRS)

    Hoge, F. E.; Swift, R. N.

    1983-01-01

    Airborne lidar oil spill experiments carried out to determine the practicability of the AOFSCE (absolute oil fluorescence spectral conversion efficiency) computational model are described. The results reveal that the model is suitable over a considerable range of oil film thicknesses provided the fluorescence efficiency of the oil does not approach the minimum detection sensitivity limitations of the lidar system. Separate airborne lidar experiments to demonstrate measurement of the water column Raman conversion efficiency are also conducted to ascertain the ultimate feasibility of converting such relative oil fluorescence to absolute values. Whereas the AOFSCE model is seen as highly promising, further airborne water column Raman conversion efficiency experiments with improved temporal or depth-resolved waveform calibration and software deconvolution techniques are thought necessary for a final determination of suitability.

  12. Using Video-Based Modeling to Promote Acquisition of Fundamental Motor Skills

    ERIC Educational Resources Information Center

    Obrusnikova, Iva; Rattigan, Peter J.

    2016-01-01

    Video-based modeling is becoming increasingly popular for teaching fundamental motor skills to children in physical education. Two frequently used video-based instructional strategies that incorporate modeling are video prompting (VP) and video modeling (VM). Both strategies have been used across multiple disciplines and populations to teach a…

  13. Testing Direct and Indirect Effects of Identity, Media Use, Cognitions, and Conversations on Self-Reported Physical Activity Among a Sample of Hispanic Adults.

    PubMed

    Wirtz, John G; Wang, Zongyuan; Kulpavarapos, Supathida

    2017-03-01

    This article presents the results of a study testing the direct and indirect effects of identity, media use, cognitions and conversations on physical activity (PA). The study was guided by the O-S-O-R model (Markus & Zajonc, 1985), and it used data collected from a sample of Hispanic adults (N = 268) living in the U.S. Southwest. Exercise identity and ethnic identity were defined as pre-orientations (O 1 ); use of PA-related media content was defined as the stimulus (S); reflective integration and conversations about PA-related media were post-orientations (O 2 ); and self-reported physical activity was the behavioral response (R). Structural equation modeling was used to analyze the data, and several compelling results emerged. Exercise identity had a significant positive direct effect on PA and PA-related media use, as well as a significant positive indirect effect on conversations about PA-related media. PA-related media use exerted a strong and significant positive effect on conversations about PA-related media, as well as a significant positive indirect effect on PA. Finally, conversations about PA-related media content had a significant positive direct effect on PA. The results indicate that identity acts as a filter influencing what media content are selected and that cognitions and conversations about media content can serve as a link between media use and health behavior. Key words: O-S-O-R model, physical activity, Hispanic adults, identity, media use, conversation.

  14. High-capacity lithium-ion battery conversion cathodes based on iron fluoride nanowires and insights into the conversion mechanism.

    PubMed

    Li, Linsen; Meng, Fei; Jin, Song

    2012-11-14

    The increasing demands from large-scale energy applications call for the development of lithium-ion battery (LIB) electrode materials with high energy density. Earth abundant conversion cathode material iron trifluoride (FeF(3)) has a high theoretical capacity (712 mAh g(-1)) and the potential to double the energy density of the current cathode material based on lithium cobalt oxide. Such promise has not been fulfilled due to the nonoptimal material properties and poor kinetics of the electrochemical conversion reactions. Here, we report for the first time a high-capacity LIB cathode that is based on networks of FeF(3) nanowires (NWs) made via an inexpensive and scalable synthesis. The FeF(3) NW cathode yielded a discharge capacity as high as 543 mAh g(-1) at the first cycle and retained a capacity of 223 mAh g(-1) after 50 cycles at room temperature under the current of 50 mA g(-1). Moreover, high-resolution transmission electron microscopy revealed the existence of continuous networks of Fe in the lithiated FeF(3) NWs after discharging, which is likely an important factor for the observed improved electrochemical performance. The loss of active material (FeF(3)) caused by the increasingly ineffective reconversion process during charging was found to be a major factor responsible for the capacity loss upon cycling. With the advantages of low cost, large quantity, and ease of processing, these FeF(3) NWs are not only promising battery cathode materials but also provide a convenient platform for fundamental studies and further improving conversion cathodes in general.

  15. A pantropical analysis of the impacts of forest degradation and conversion on local temperature.

    PubMed

    Senior, Rebecca A; Hill, Jane K; González Del Pliego, Pamela; Goode, Laurel K; Edwards, David P

    2017-10-01

    Temperature is a core component of a species' fundamental niche. At the fine scale over which most organisms experience climate (mm to ha), temperature depends upon the amount of radiation reaching the Earth's surface, which is principally governed by vegetation. Tropical regions have undergone widespread and extreme changes to vegetation, particularly through the degradation and conversion of rainforests. As most terrestrial biodiversity is in the tropics, and many of these species possess narrow thermal limits, it is important to identify local thermal impacts of rainforest degradation and conversion. We collected pantropical, site-level (<1 ha) temperature data from the literature to quantify impacts of land-use change on local temperatures, and to examine whether this relationship differed aboveground relative to belowground and between wet and dry seasons. We found that local temperature in our sample sites was higher than primary forest in all human-impacted land-use types (N = 113,894 daytime temperature measurements from 25 studies). Warming was pronounced following conversion of forest to agricultural land (minimum +1.6°C, maximum +13.6°C), but minimal and nonsignificant when compared to forest degradation (e.g., by selective logging; minimum +1°C, maximum +1.1°C). The effect was buffered belowground (minimum buffering 0°C, maximum buffering 11.4°C), whereas seasonality had minimal impact (maximum buffering 1.9°C). We conclude that forest-dependent species that persist following conversion of rainforest have experienced substantial local warming. Deforestation pushes these species closer to their thermal limits, making it more likely that compounding effects of future perturbations, such as severe droughts and global warming, will exceed species' tolerances. By contrast, degraded forests and belowground habitats may provide important refugia for thermally restricted species in landscapes dominated by agricultural land.

  16. Biomass Conversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Decker, Steve; Brunecky, Roman; Lin, Chien-Yuan

    2017-08-02

    Biomass constitutes all the plant matter found on our planet, and is produced directly by photosynthesis, the fundamental engine of life on earth. It is the photosynthetic capability of plants to utilize carbon dioxide from the atmosphere that leads to its designation as a 'carbon neutral' fuel, meaning that it does not introduce new carbon into the atmosphere. This article discusses the life cycle assessments of biomass use and the magnitude of energy captured by photosynthesis in the form of biomass on the planet to appraise approaches to tap this energy to meet the ever-growing demand for energy.

  17. C2D8: An eight channel CCD readout electronics dedicated to low energy neutron detection

    NASA Astrophysics Data System (ADS)

    Bourrion, O.; Clement, B.; Tourres, D.; Pignol, G.; Xi, Y.; Rebreyend, D.; Nesvizhevsky, V. V.

    2018-02-01

    Position-sensitive detectors for cold and ultra-cold neutrons (UCN) are in use in fundamental research. In particular, measuring the properties of the quantum states of bouncing neutrons requires micro-metric spatial resolution. To this end, a Charge Coupled Device (CCD) coated with a thin conversion layer that allows a real time detection of neutron hits is under development at LPSC. In this paper, we present the design and performance of a dedicated electronic board designed to read-out eight CCDs simultaneously and operating under vacuum.

  18. Wide-band polarization controller for Si photonic integrated circuits.

    PubMed

    Velha, P; Sorianello, V; Preite, M V; De Angelis, G; Cassese, T; Bianchi, A; Testa, F; Romagnoli, M

    2016-12-15

    A circuit for the management of any arbitrary polarization state of light is demonstrated on an integrated silicon (Si) photonics platform. This circuit allows us to adapt any polarization into the standard fundamental TE mode of a Si waveguide and, conversely, to control the polarization and set it to any arbitrary polarization state. In addition, the integrated thermal tuning allows kilohertz speed which can be used to perform a polarization scrambler. The circuit was used in a WDM link and successfully used to adapt four channels into a standard Si photonic integrated circuit.

  19. Light and oxygenic photosynthesis: energy dissipation as a protection mechanism against photo-oxidation

    PubMed Central

    Szabó, Ildikó; Bergantino, Elisabetta; Giacometti, Giorgio Mario

    2005-01-01

    Efficient photosynthesis is of fundamental importance for plant survival and fitness. However, in oxygenic photosynthesis, the complex apparatus responsible for the conversion of light into chemical energy is susceptible to photodamage. Oxygenic photosynthetic organisms have therefore evolved several protective mechanisms to deal with light energy. Rapidly inducible non-photochemical quenching (NPQ) is a short-term response by which plants and eukaryotic algae dissipate excitation energy as heat. This review focuses on recent advances in the elucidation of the molecular mechanisms underlying this protective quenching pathway in higher plants. PMID:15995679

  20. Nanostructured MnO2 as Electrode Materials for Energy Storage

    PubMed Central

    Mauger, Alain

    2017-01-01

    Manganese dioxides, inorganic materials which have been used in industry for more than a century, now find great renewal of interest for storage and conversion of energy applications. In this review article, we report the properties of MnO2 nanomaterials with different morphologies. Techniques used for the synthesis, structural, physical properties, and electrochemical performances of periodic and aperiodic frameworks are discussed. The effect of the morphology of nanosized MnO2 particles on their fundamental features is evidenced. Applications as electrodes in lithium batteries and supercapacitors are examined. PMID:29149066

  1. Mining of Business-Oriented Conversations at a Call Center

    NASA Astrophysics Data System (ADS)

    Takeuchi, Hironori; Nasukawa, Tetsuya; Watanabe, Hideo

    Recently it has become feasible to transcribe textual records from telephone conversations at call centers by using automatic speech recognition. In this research, we extended a text mining system for call summary records and constructed a conversation mining system for the business-oriented conversations at the call center. To acquire useful business insights from the conversational data through the text mining system, it is critical to identify appropriate textual segments and expressions as the viewpoints to focus on. In the analysis of call summary data using a text mining system, some experts defined the viewpoints for the analysis by looking at some sample records and by preparing the dictionaries based on frequent keywords in the sample dataset. However with conversations it is difficult to identify such viewpoints manually and in advance because the target data consists of complete transcripts that are often lengthy and redundant. In this research, we defined a model of the business-oriented conversations and proposed a mining method to identify segments that have impacts on the outcomes of the conversations and can then extract useful expressions in each of these identified segments. In the experiment, we processed the real datasets from a car rental service center and constructed a mining system. With this system, we show the effectiveness of the method based on the defined conversation model.

  2. A double-strand break can trigger immunoglobulin gene conversion

    PubMed Central

    Bastianello, Giulia; Arakawa, Hiroshi

    2017-01-01

    All three B cell-specific activities of the immunoglobulin (Ig) gene re-modeling system—gene conversion, somatic hypermutation and class switch recombination—require activation-induced deaminase (AID). AID-induced DNA lesions must be further processed and dissected into different DNA recombination pathways. In order to characterize potential intermediates for Ig gene conversion, we inserted an I-SceI recognition site into the complementarity determining region 1 (CDR1) of the Ig light chain locus of the AID knockout DT40 cell line, and conditionally expressed I-SceI endonuclease. Here, we show that a double-strand break (DSB) in CDR1 is sufficient to trigger Ig gene conversion in the absence of AID. The pattern and pseudogene usage of DSB-induced gene conversion were comparable to those of AID-induced gene conversion; surprisingly, sometimes a single DSB induced multiple gene conversion events. These constitute direct evidence that a DSB in the V region can be an intermediate for gene conversion. The fate of the DNA lesion downstream of a DSB had more flexibility than that of AID, suggesting two alternative models: (i) DSBs during the physiological gene conversion are in the minority compared to single-strand breaks (SSBs), which are frequently generated following DNA deamination, or (ii) the physiological gene conversion is mediated by a tightly regulated DSB that is locally protected from non-homologous end joining (NHEJ) or other non-homologous DNA recombination machineries. PMID:27701075

  3. Implementing a Trauma-Informed Model of Care in a Community Acute Mental Health Team.

    PubMed

    Moloney, Bill; Cameron, Ian; Baker, Ashley; Feeney, Johanna; Korner, Anthony; Kornhaber, Rachel; Cleary, Michelle; McLean, Loyola

    2018-04-12

    In this paper, we demonstrate the value of implementing a Trauma-Informed Model of Care in a Community Acute Mental Health Team by providing brief intensive treatment (comprising risk interventions, brief counselling, collaborative formulation and pharmacological treatment). The team utilised the Conversational Model (CM), a psychotherapeutic approach for complex trauma. Key features of the CM are described in this paper using a clinical case study. The addition of the Conversational Model approach to practice has enabled better understandings of consumers' capacities and ways to then engage, converse, and intervene. The implementation of this intervention has led to a greater sense of self-efficacy amongst clinicians, who can now articulate a clear counselling model of care.

  4. Theoretical Framework for Interaction Game Design

    DTIC Science & Technology

    2016-05-19

    modeling. We take a data-driven quantitative approach to understand conversational behaviors by measuring conversational behaviors using advanced sensing...current state of the art, human computing is considered to be a reasonable approach to break through the current limitation. To solicit high quality and...proper resources in conversation to enable smooth and effective interaction. The last technique is about conversation measurement , analysis, and

  5. Graphitic design: prospects of graphene-based nanocomposites for solar energy conversion, storage, and sensing.

    PubMed

    Lightcap, Ian V; Kamat, Prashant V

    2013-10-15

    Graphene not only possesses interesting electrochemical behavior but also has a remarkable surface area and mechanical strength and is naturally abundant, all advantageous properties for the design of tailored composite materials. Graphene-semiconductor or -metal nanoparticle composites have the potential to function as efficient, multifunctional materials for energy conversion and storage. These next-generation composite systems could possess the capability to integrate conversion and storage of solar energy, detection, and selective destruction of trace environmental contaminants or achieve single-substrate, multistep heterogeneous catalysis. These advanced materials may soon become a reality, based on encouraging results in the key areas of energy conversion and sensing using graphene oxide as a support structure. Through recent advances, chemists can now integrate such processes on a single substrate while using synthetic designs that combine simplicity with a high degree of structural and composition selectivity. This progress represents the beginning of a transformative movement leveraging the advancements of single-purpose chemistry toward the creation of composites designed to address whole-process applications. The promising field of graphene nanocomposites for sensing and energy applications is based on fundamental studies that explain the electronic interactions between semiconductor or metal nanoparticles and graphene. In particular, reduced graphene oxide is a suitable composite substrate because of its two-dimensional structure, outstanding surface area, and electrical conductivity. In this Account, we describe common assembly methods for graphene composite materials and examine key studies that characterize its excited state interactions. We also discuss strategies to develop graphene composites and control electron capture and transport through the 2D carbon network. In addition, we provide a brief overview of advances in sensing, energy conversion, and storage applications that incorporate graphene-based composites. With these results in mind, we can envision a new class of semiconductor- or metal-graphene composites sensibly tailored to address the pressing need for advanced energy conversion and storage devices.

  6. The Role of Protected Areas in the Avoidance of Anthropogenic Conversion in a High Pressure Region: A Matching Method Analysis in the Core Region of the Brazilian Cerrado

    PubMed Central

    Paiva, Rodrigo José Oliveira; Brites, Ricardo Seixas; Machado, Ricardo Bomfim

    2015-01-01

    Global efforts to avoid anthropogenic conversion of natural habitat rely heavily on the establishment of protected areas. Studies that evaluate the effectiveness of these areas with a focus on preserving the natural habitat define effectiveness as a measure of the influence of protected areas on total avoided conversion. Changes in the estimated effectiveness are related to local and regional differences, evaluation methods, restriction categories that include the protected areas, and other characteristics. The overall objective of this study was to evaluate the effectiveness of protected areas to prevent the advance of the conversion of natural areas in the core region of the Brazil’s Cerrado Biome, taking into account the influence of the restriction degree, governmental sphere, time since the establishment of the protected area units, and the size of the area on the performance of protected areas. The evaluation was conducted using matching methods and took into account the following two fundamental issues: control of statistical biases caused by the influence of covariates on the likelihood of anthropogenic conversion and the non-randomness of the allocation of protected areas throughout the territory (spatial correlation effect) and the control of statistical bias caused by the influence of auto-correlation and leakage effect. Using a sample design that is not based on ways to control these biases may result in outcomes that underestimate or overestimate the effectiveness of those units. The matching method accounted for a bias reduction in 94–99% of the estimation of the average effect of protected areas on anthropogenic conversion and allowed us to obtain results with a reduced influence of the auto-correlation and leakage effects. Most protected areas had a positive influence on the maintenance of natural habitats, although wide variation in this effectiveness was dependent on the type, restriction, governmental sphere, size and age group of the unit. PMID:26222140

  7. Exchange Rates and Fundamentals.

    ERIC Educational Resources Information Center

    Engel, Charles; West, Kenneth D.

    2005-01-01

    We show analytically that in a rational expectations present-value model, an asset price manifests near-random walk behavior if fundamentals are I (1) and the factor for discounting future fundamentals is near one. We argue that this result helps explain the well-known puzzle that fundamental variables such as relative money supplies, outputs,…

  8. General Conversion for Obtaining Strongly Existentially Unforgeable Signatures

    NASA Astrophysics Data System (ADS)

    Teranishi, Isamu; Oyama, Takuro; Ogata, Wakaha

    We say that a signature scheme is strongly existentially unforgeable (SEU) if no adversary, given message/signature pairs adaptively, can generate a signature on a new message or a new signature on a previously signed message. We propose a general and efficient conversion in the standard model that transforms a secure signature scheme to SEU signature scheme. In order to construct that conversion, we use a chameleon commitment scheme. Here a chameleon commitment scheme is a variant of commitment scheme such that one can change the committed value after publishing the commitment if one knows the secret key. We define the chosen message security notion for the chameleon commitment scheme, and show that the signature scheme transformed by our proposed conversion satisfies the SEU property if the chameleon commitment scheme is chosen message secure. By modifying the proposed conversion, we also give a general and efficient conversion in the random oracle model, that transforms a secure signature scheme into a SEU signature scheme. This second conversion also uses a chameleon commitment scheme but only requires the key only attack security for it.

  9. Simulating the conversion of rural settlements to town land based on multi-agent systems and cellular automata.

    PubMed

    Liu, Yaolin; Kong, Xuesong; Liu, Yanfang; Chen, Yiyun

    2013-01-01

    Rapid urbanization in China has triggered the conversion of land from rural to urban use, particularly the conversion of rural settlements to town land. This conversion is the result of the joint effects of the geographic environment and agents involving the government, investors, and farmers. To understand the dynamic interaction dominated by agents and to predict the future landscape of town expansion, a small town land-planning model is proposed based on the integration of multi-agent systems (MAS) and cellular automata (CA). The MAS-CA model links the decision-making behaviors of agents with the neighbor effect of CA. The interaction rules are projected by analyzing the preference conflicts among agents. To better illustrate the effects of the geographic environment, neighborhood, and agent behavior, a comparative analysis between the CA and MAS-CA models in three different towns is presented, revealing interesting patterns in terms of quantity, spatial characteristics, and the coordinating process. The simulation of rural settlements conversion to town land through modeling agent decision and human-environment interaction is very useful for understanding the mechanisms of rural-urban land-use change in developing countries. This process can assist town planners in formulating appropriate development plans.

  10. [Ecological management model of agriculture-pasture ecotone based on the theory of energy and material flow--a case study in Houshan dryland area of Inner Mongolia].

    PubMed

    Fan, Jinlong; Pan, Zhihua; Zhao, Ju; Zheng, Dawei; Tuo, Debao; Zhao, Peiyi

    2004-04-01

    The degradation of ecological environment in the agriculture-pasture ecotone in northern China has been paid more attentions. Based on our many years' research and under the guide of energy and material flow theory, this paper put forward an ecological management model, with a hill as the basic cell and according to the natural, social and economic characters of Houshan dryland farming area inside the north agriculture-pasture ecotone. The input and output of three models, i.e., the traditional along-slope-tillage model, the artificial grassland model and the ecological management model, were observed and recorded in detail in 1999. Energy and material flow analysis based on field test showed that compared with traditional model, ecological management model could increase solar use efficiency by 8.3%, energy output by 8.7%, energy conversion efficiency by 19.4%, N output by 26.5%, N conversion efficiency by 57.1%, P output by 12.1%, P conversion efficiency by 45.0%, and water use efficiency by 17.7%. Among the models, artificial grassland model had the lowest solar use efficiency, energy output and energy conversion efficiency; while the ecological management model had the most outputs and benefits, was the best model with high economic effect, and increased economic benefits by 16.1%, compared with the traditional model.

  11. Toward Paradoxical Inconsistency in Electrostatics of Metallic Conductors

    DTIC Science & Technology

    Naturally, when dealing with fundamental problems, the V and V effort should include careful exploration and, if necessary, revision of the fundamentals...Current developments show a clear trend toward more serious efforts in validation and verification (V and V) of physical and engineering models...underlying the physics. With this understanding in mind, we review some fundamentals of the models of crystalline electric conductors and find a

  12. Examination and evaluation of the use of screen heaters for the measurement of the high temperature pyrolysis kinetics of polyethene and polypropene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Westerhout, R.W.J.; Balk, R.H.P.; Meijer, R.

    1997-08-01

    A screen heater with a gas sweep was developed and applied to study the pyrolysis kinetics of low density polyethene (LDPE) and polypropene (PP) at temperatures ranging from 450 to 530 C. The aim of this study was to examine the applicability of screen heaters to measure these kinetics. On-line measurement of the rate of volatiles formation using a hydrocarbon analyzer was applied to enable the determination of the conversion rate over the entire conversion range on the basis of a single experiment. Another important feature of the screen heater used in this study is the possibility to measure pyrolysismore » kinetics under nearly isothermal conditions. The kinetic constants for LDPE and PP pyrolysis were determined, using a first order model to describe the conversion rate in the 70--90% conversion range and the random chain dissociation model for the entire conversion range. In addition to the experimental work two single particle models have been developed which both incorporate a mass and a (coupled) enthalpy balance, which were used to assess the influence of internal and external heat transfer processes on the pyrolysis process. The first model assumes a variable density and constant volume during the pyrolysis process, whereas the second model assumes a constant density and a variable volume. An important feature of these models is that they can accommodate kinetic models for which no analytical representation of the pyrolysis kinetics is available.« less

  13. Maximum efficiency of state-space models of nanoscale energy conversion devices

    NASA Astrophysics Data System (ADS)

    Einax, Mario; Nitzan, Abraham

    2016-07-01

    The performance of nano-scale energy conversion devices is studied in the framework of state-space models where a device is described by a graph comprising states and transitions between them represented by nodes and links, respectively. Particular segments of this network represent input (driving) and output processes whose properly chosen flux ratio provides the energy conversion efficiency. Simple cyclical graphs yield Carnot efficiency for the maximum conversion yield. We give general proof that opening a link that separate between the two driving segments always leads to reduced efficiency. We illustrate these general result with simple models of a thermoelectric nanodevice and an organic photovoltaic cell. In the latter an intersecting link of the above type corresponds to non-radiative carriers recombination and the reduced maximum efficiency is manifested as a smaller open-circuit voltage.

  14. Maximum efficiency of state-space models of nanoscale energy conversion devices.

    PubMed

    Einax, Mario; Nitzan, Abraham

    2016-07-07

    The performance of nano-scale energy conversion devices is studied in the framework of state-space models where a device is described by a graph comprising states and transitions between them represented by nodes and links, respectively. Particular segments of this network represent input (driving) and output processes whose properly chosen flux ratio provides the energy conversion efficiency. Simple cyclical graphs yield Carnot efficiency for the maximum conversion yield. We give general proof that opening a link that separate between the two driving segments always leads to reduced efficiency. We illustrate these general result with simple models of a thermoelectric nanodevice and an organic photovoltaic cell. In the latter an intersecting link of the above type corresponds to non-radiative carriers recombination and the reduced maximum efficiency is manifested as a smaller open-circuit voltage.

  15. The Impact of Mutation and Gene Conversion on the Local Diversification of Antigen Genes in African Trypanosomes

    PubMed Central

    Gjini, Erida; Haydon, Daniel T.; Barry, J. David; Cobbold, Christina A.

    2012-01-01

    Patterns of genetic diversity in parasite antigen gene families hold important information about their potential to generate antigenic variation within and between hosts. The evolution of such gene families is typically driven by gene duplication, followed by point mutation and gene conversion. There is great interest in estimating the rates of these processes from molecular sequences for understanding the evolution of the pathogen and its significance for infection processes. In this study, a series of models are constructed to investigate hypotheses about the nucleotide diversity patterns between closely related gene sequences from the antigen gene archive of the African trypanosome, the protozoan parasite causative of human sleeping sickness in Equatorial Africa. We use a hidden Markov model approach to identify two scales of diversification: clustering of sequence mismatches, a putative indicator of gene conversion events with other lower-identity donor genes in the archive, and at a sparser scale, isolated mismatches, likely arising from independent point mutations. In addition to quantifying the respective probabilities of occurrence of these two processes, our approach yields estimates for the gene conversion tract length distribution and the average diversity contributed locally by conversion events. Model fitting is conducted using a Bayesian framework. We find that diversifying gene conversion events with lower-identity partners occur at least five times less frequently than point mutations on variant surface glycoprotein (VSG) pairs, and the average imported conversion tract is between 14 and 25 nucleotides long. However, because of the high diversity introduced by gene conversion, the two processes have almost equal impact on the per-nucleotide rate of sequence diversification between VSG subfamily members. We are able to disentangle the most likely locations of point mutations and conversions on each aligned gene pair. PMID:22735079

  16. Becoming Partners with Children: From Play to Conversation. A Developmental Guide for Professionals and Parents.

    ERIC Educational Resources Information Center

    MacDonald, James D.

    Focusing on the preconversational child who has yet to develop a stable or generalized habit of spontaneous conversation, this book presents ECO (Ecological Communication Model), a new intervention model for social and communicative development of developmentally delayed children. The model is based on two perspectives: the literature on the…

  17. Methodologie de la classe de conversation: Vers un enseignement de la competence a communiquer. (Methodology of the Conversation Class: Toward Education in Communicative Competence).

    ERIC Educational Resources Information Center

    Perez, Marcel

    This study presents a model for teaching a French conversation course on the college level. The research is based on French language classes in Quebec general education and professional colleges (CEGEP). The first part states the problem, examines several programs, describes the organization of the conversation classes, presents several language…

  18. Heterogeneous catalytic conversion of CO2: a comprehensive theoretical review.

    PubMed

    Li, Yawei; Chan, Siew Hwa; Sun, Qiang

    2015-05-21

    The conversion of CO2 into fuels and useful chemicals has been intensively pursued for renewable, sustainable and green energy. However, due to the negative adiabatic electron affinity (EA) and large ionization potential (IP), the CO2 molecule is chemically inert, thus making the conversion difficult under normal conditions. Novel catalysts, which have high stability, superior efficiency and low cost, are urgently needed to facilitate the conversion. As the first step to design such catalysts, understanding the mechanisms involved in CO2 conversion is absolutely indispensable. In this review, we have summarized the recent theoretical progress in mechanistic studies based on density functional theory, kinetic Monte Carlo simulation, and microkinetics modeling. We focus on reaction channels, intermediate products, the key factors determining the conversion of CO2 in solid-gas interface thermocatalytic reduction and solid-liquid interface electrocatalytic reduction. Furthermore, we have proposed some possible strategies for improving CO2 electrocatalysis and also discussed the challenges in theory, model construction, and future research directions.

  19. Laser power conversion system analysis, volume 1

    NASA Technical Reports Server (NTRS)

    Jones, W. S.; Morgan, L. L.; Forsyth, J. B.; Skratt, J. P.

    1979-01-01

    The orbit-to-orbit laser energy conversion system analysis established a mission model of satellites with various orbital parameters and average electrical power requirements ranging from 1 to 300 kW. The system analysis evaluated various conversion techniques, power system deployment parameters, power system electrical supplies and other critical supplies and other critical subsystems relative to various combinations of the mission model. The analysis show that the laser power system would not be competitive with current satellite power systems from weight, cost and development risk standpoints.

  20. The Particle Adventure | What is fundamental? | Fundamental

    Science.gov Websites

    ? The modern atom model The scale of the atom What are we looking for? The standard model The standard Major accelerators The event Detectors Detector shapes Modern detectors Typical detector components

  1. Administrative Decision Making and Resource Allocation.

    ERIC Educational Resources Information Center

    Sardy, Susan; Sardy, Hyman

    This paper considers selected aspects of the systems analysis of administrative decisionmaking regarding resource allocations in an educational system. A model of the instructional materials purchase system is presented. The major components of this model are: environment, input, decision process, conversion structure, conversion process, output,…

  2. Top-emitting white organic light-emitting devices with down-conversion phosphors: theory and experiment.

    PubMed

    Ji, Wenyu; Zhang, Letian; Gao, Ruixue; Zhang, Liming; Xie, Wenfa; Zhang, Hanzhuang; Li, Bin

    2008-09-29

    White top-emitting organic light-emitting devices (TEOLEDs) with down-conversion phosphors are investigated from theory and experiment. The theoretical simulation was described by combining the microcavity model with the down-conversion model. A White TEOLED by the combination of a blue TEOLED with organic down-conversion phosphor 3-(4-(diphenylamino)phenyl)-1-pheny1prop-2-en-1-one was fabricated to validate the simulated results. It is shown that this approach permits the generation of white light in TEOLEDs. The efficiency of the white TEOLED is twice over the corresponding blue TEOLED. The feasible methods to improve the performance of such white TEOLEDs are discussed.

  3. External validation of the Cairns Prediction Model (CPM) to predict conversion from laparoscopic to open cholecystectomy.

    PubMed

    Hu, Alan Shiun Yew; Donohue, Peter O'; Gunnarsson, Ronny K; de Costa, Alan

    2018-03-14

    Valid and user-friendly prediction models for conversion to open cholecystectomy allow for proper planning prior to surgery. The Cairns Prediction Model (CPM) has been in use clinically in the original study site for the past three years, but has not been tested at other sites. A retrospective, single-centred study collected ultrasonic measurements and clinical variables alongside with conversion status from consecutive patients who underwent laparoscopic cholecystectomy from 2013 to 2016 in The Townsville Hospital, North Queensland, Australia. An area under the curve (AUC) was calculated to externally validate of the CPM. Conversion was necessary in 43 (4.2%) out of 1035 patients. External validation showed an area under the curve of 0.87 (95% CI 0.82-0.93, p = 1.1 × 10 -14 ). In comparison with most previously published models, which have an AUC of approximately 0.80 or less, the CPM has the highest AUC of all published prediction models both for internal and external validation. Crown Copyright © 2018. Published by Elsevier Inc. All rights reserved.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaufman, Allan N.; Tracy, Eugene R.; Brizard, Alain J.

    The process of resonant wave conversion (often called linear mode conversion) has traditionally been analyzed with a spatially one-dimensional slab model, for which the rays propagate in a two-dimensional phase space. However, it has recently been shown [E.R. Tracy and A.N. Kaufman, Phys. Rev. Lett. 91, 130402 (2003)] that multidimensional rays have a helical structure for conversion in two or more spatial dimensions (if their dispersion matrix is generic). In that case, a one-dimensional model is inadequate; a correct analysis requires two spatial dimensions and, thus, four-dimensional phase space. In this paper we show that a cold plasma model willmore » exhibit ray helicity in conversion regions where the density and magnetic field gradients are significantly non-parallel. For illustration, we examine a model of the poloidal plane of a deuterium-tritium tokamak plasma, and identify such a region. In this region, characterized by a six-sector topology, rays in the sector for incident and reflected magnetosonic waves exhibit significant helicity. We introduce a ''symmetric-wedge'' model, to develop a detailed analytic and numerical study of helical rays in this sector.« less

  5. Wind Energy Conversion System Analysis Model (WECSAM) computer program documentation

    NASA Astrophysics Data System (ADS)

    Downey, W. T.; Hendrick, P. L.

    1982-07-01

    Described is a computer-based wind energy conversion system analysis model (WECSAM) developed to predict the technical and economic performance of wind energy conversion systems (WECS). The model is written in CDC FORTRAN V. The version described accesses a data base containing wind resource data, application loads, WECS performance characteristics, utility rates, state taxes, and state subsidies for a six state region (Minnesota, Michigan, Wisconsin, Illinois, Ohio, and Indiana). The model is designed for analysis at the county level. The computer model includes a technical performance module and an economic evaluation module. The modules can be run separately or together. The model can be run for any single user-selected county within the region or looped automatically through all counties within the region. In addition, the model has a restart capability that allows the user to modify any data-base value written to a scratch file prior to the technical or economic evaluation.

  6. Cosensitized Quantum Dot Solar Cells with Conversion Efficiency over 12.

    PubMed

    Wang, Wei; Feng, Wenliang; Du, Jun; Xue, Weinan; Zhang, Linlin; Zhao, Leilei; Li, Yan; Zhong, Xinhua

    2018-03-01

    The improvement of sunlight utilization is a fundamental approach for the construction of high-efficiency quantum-dot-based solar cells (QDSCs). To boost light harvesting, cosensitized photoanodes are fabricated in this work by a sequential deposition of presynthesized Zn-Cu-In-Se (ZCISe) and CdSe quantum dots (QDs) on mesoporous TiO 2 films via the control of the interactions between QDs and TiO 2 films using 3-mercaptopropionic acid bifunctional linkers. By the synergistic effect of ZCISe-alloyed QDs with a wide light absorption range and CdSe QDs with a high extinction coefficient, the incident photon-to-electron conversion efficiency is significantly improved over single QD-based QDSCs. It is found that the performance of cosensitized photoanodes can be optimized by adjusting the size of CdSe QDs introduced. In combination with titanium mesh supported mesoporous carbon as a counterelectrode and a modified polysulfide solution as an electrolyte, a champion power conversion efficiency up to 12.75% (V oc = 0.752 V, J sc = 27.39 mA cm -2 , FF = 0.619) is achieved, which is, as far as it is known, the highest efficiency for liquid-junction QD-based solar cells reported. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Compatibility of Niobium Alloys and Superalloys in a Flowing He-Xe Power Conversion System

    NASA Technical Reports Server (NTRS)

    Bowman, Cheryl L.; Ritzert, Frank J.; Smialek, James L.; Jaster, Mark L.; rker, Samuel P.

    2004-01-01

    Proposed concepts for an ambitious mission to explore Jupiter's three icy moons place significant demands on the various spacecraft systems. There are many challenges related to the high output power conversion systems being considered, and one example is the need to ensure system compatibility at all levels. The utilization of appropriate materials for component structures is important to ensuring long mission life. Refractory metal alloys have attractive high-temperature properties in inert environments, but these alloys are sometimes susceptible to contamination. Potential material compatibility issues exist between refractory metal candidates and more conventional alloys. Nb-1Zr has long been considered one of the most well characterized refractory alloys that is well suited for elevated-temperature use and liquid-metal compatibility. However, previous studies have suggested that niobium alloys can not co-exist in a closed system with traditional stainless steels or superalloys due to transport of contaminants. The relevance of this information to a proposed power conversion system is discussed. Also, experiments and fundamental calculations are being performed to determine contamination transport from candidate superalloys to Nb-1Zr in a closed system with an inert carrier gas. Potential protective schemes are explored to ensure system level compatibility between the refractory alloy Nb-1Zr and a nickel-based superalloy.

  8. Comparison of whole-genome bisulfite sequencing library preparation strategies identifies sources of biases affecting DNA methylation data.

    PubMed

    Olova, Nelly; Krueger, Felix; Andrews, Simon; Oxley, David; Berrens, Rebecca V; Branco, Miguel R; Reik, Wolf

    2018-03-15

    Whole-genome bisulfite sequencing (WGBS) is becoming an increasingly accessible technique, used widely for both fundamental and disease-oriented research. Library preparation methods benefit from a variety of available kits, polymerases and bisulfite conversion protocols. Although some steps in the procedure, such as PCR amplification, are known to introduce biases, a systematic evaluation of biases in WGBS strategies is missing. We perform a comparative analysis of several commonly used pre- and post-bisulfite WGBS library preparation protocols for their performance and quality of sequencing outputs. Our results show that bisulfite conversion per se is the main trigger of pronounced sequencing biases, and PCR amplification builds on these underlying artefacts. The majority of standard library preparation methods yield a significantly biased sequence output and overestimate global methylation. Importantly, both absolute and relative methylation levels at specific genomic regions vary substantially between methods, with clear implications for DNA methylation studies. We show that amplification-free library preparation is the least biased approach for WGBS. In protocols with amplification, the choice of bisulfite conversion protocol or polymerase can significantly minimize artefacts. To aid with the quality assessment of existing WGBS datasets, we have integrated a bias diagnostic tool in the Bismark package and offer several approaches for consideration during the preparation and analysis of WGBS datasets.

  9. All-silicon tandem solar cells: Practical limits for energy conversion and possible routes for improvement

    NASA Astrophysics Data System (ADS)

    Jia, Xuguang; Puthen-Veettil, Binesh; Xia, Hongze; Yang, Terry Chien-Jen; Lin, Ziyun; Zhang, Tian; Wu, Lingfeng; Nomoto, Keita; Conibeer, Gavin; Perez-Wurfl, Ivan

    2016-06-01

    Silicon nanocrystals (Si NCs) embedded in a dielectric matrix is regarded as one of the most promising materials for the third generation photovoltaics, owing to their tunable bandgap that allows fabrication of optimized tandem devices. Previous work has demonstrated fabrication of Si NCs based tandem solar cells by sputter-annealing of thin multi-layers of silicon rich oxide and SiO2. However, these device efficiencies were much lower than expected given that their theoretical values are much higher. Thus, it is necessary to understand the practical conversion efficiency limits for these devices. In this article, practical efficiency limits of Si NC based double junction tandem cells determined by fundamental material properties such as minority carrier, mobility, and lifetime are investigated. The practical conversion efficiency limits for these devices are significantly different from the reported efficiency limits which use Shockley-Queisser assumptions. Results show that the practical efficiency limit of a double junction cell (1.6 eV Si NC top cell and a 25% efficient c-Si PERL cell as the bottom cell) is 32%. Based on these results suggestions for improvement to the performance of Si nanocrystal based tandem solar cells in terms of the different parameters that were simulated are presented.

  10. Development of Support Service for Prevention and Recovery from Dementia and Science of Lethe

    NASA Astrophysics Data System (ADS)

    Otake, Mihoko

    Purpose of this study is to explore service design method through the development of support service for prevention and recovery from dementia towards science of lethe. We designed and implemented conversation support service via coimagination method based on multiscale service design method, both were proposed by the author. Multiscale service model consists of tool, event, human, network, style and rule. Service elements at different scales are developed according to the model. Interactive conversation supported by coimagination method activates cognitive functions so as to prevent progress of dementia. This paper proposes theoretical bases for science of lethe. Firstly, relationship among coimagination method and three cognitive functions including division of attention, planning, episodic memory which decline at mild cognitive imparement. Secondly, thought state transition model during conversation which describes cognitive enhancement via interactive communication. Thirdly, Set Theoretical Measure of Interaction is proposed for evaluating effectiveness of conversation to cognitive enhancement. Simulation result suggests that the ideas which cannot be explored by each speaker are explored during interactive conversation. Finally, coimagination method compared with reminiscence therapy and its possibility for collaboration is discussed.

  11. Proceedings of "Optical Probes of Dynamics in Complex Environments"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sension, R; Tokmakoff, A

    2008-04-01

    This document contains the proceedings from the symposium on Optical Probes of Dynamics in Complex Environments, which organized as part of the 235th National Meeting of the American Chemical Society in New Orleans, LA from April 6 to 10, 2008. The study of molecular dynamics in chemical reaction and biological processes using time ƒresolved spectroscopy plays an important role in our understanding of energy conversion, storage, and utilization problems. Fundamental studies of chemical reactivity, molecular rearrangements, and charge transport are broadly supported by the DOE Office of Science because of their role in the development of alternative energy sources, themore » understanding of biological energy conversion processes, the efficient utilization of existing energy resources, and the mitigation of reactive intermediates in radiation chemistry. In addition, time resolved spectroscopy is central to all of DOEs grand challenges for fundamental energy science. This symposium brought together leaders in the field of ultrafast spectroscopy, including experimentalists, theoretical chemists, and simulators, to discuss the most recent scientific and technological advances. DOE support for this conference was used to help young US and international scientists travel to the meeting. The latest technology in ultrafast infrared, optical, and xray spectroscopy and the scientific advances that these methods enable were covered. Particular emphasis was placed on new experimental methods used to probe molecular dynamics in liquids, solids, interfaces, nanostructured materials, and biomolecules.« less

  12. Promise-based management: the essence of execution.

    PubMed

    Sull, Donald N; Spinosa, Charles

    2007-04-01

    Critical initiatives stall for a variety of reasons--employee disengagement, a lack of coordination between functions, complex organizational structures that obscure accountability, and so on. To overcome such obstacles, managers must fundamentally rethink how work gets done. Most of the challenges stem from broken or poorly crafted commitments. That's because every company is, at its heart, a dynamic network of promises made between employees and colleagues, customers, outsourcing partners, or other stakeholders. Executives can overcome many problems in the short-term and foster productive, reliable workforces for the long-term by practicing what the authors call "promise-based management," which involves cultivating and coordinating commitments in a systematic way. Good promises share five qualities: They are public, active, voluntary, explicit, and mission based. To develop and execute an effective promise, the "provider" and the "customer" in the deal should go through three phases of conversation. The first, achieving a meeting of minds, entails exploring the fundamental questions of coordinated effort: What do you mean? Do you understand what I mean? What should I do? What will you do? Who else should we talk to? In the next phase, making it happen, the provider executes on the promise. In the final phase, closing the loop, the customer publicly declares that the provider has either delivered the goods or failed to do so. Leaders must weave and manage their webs of promises with great care-encouraging iterative conversation and making sure commitments are fulfilled reliably. If they do, they can enhance coordination and cooperation among colleagues, build the organizational agility required to seize new business opportunities, and tap employees' entrepreneurial energies.

  13. Cellulosic Biomass Sugars to Advantaged Jet Fuel – Catalytic Conversion of Corn Stover to Energy Dense, Low Freeze Point Paraffins and Naphthenes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cortright, Randy

    The purpose of this project was to demonstrate the technical and commercial feasibility of producing liquid fuels, particularly jet fuel, from lignocellulosic materials, such as corn stover. This project was led by Virent, Inc. (Virent) which has developed a novel chemical catalytic process (the BioForming ® platform) capable of producing “direct replacement” liquid fuels from biomass-derived feedstocks. Virent has shown it is possible to produce an advantaged jet fuel from biomass that meets or exceeds specifications for commercial and military jet fuel through Fuel Readiness Level (FRL) 5, Process Validation. This project leveraged The National Renewable Energy Lab’s (NREL) expertisemore » in converting corn stover to sugars via dilute acid pretreatment and enzymatic hydrolysis. NREL had previously developed this deconstruction technology for the conversion of corn stover to ethanol. In this project, Virent and NREL worked together to condition the NREL generated hydrolysate for use in Virent’s catalytic process through solids removal, contaminant reduction, and concentration steps. The Idaho National Laboratory (INL) was contracted in this project for the procurement, formatting, storage and analysis of corn stover and Northwestern University developed fundamental knowledge of lignin deconstruction that can help improve overall carbon recovery of the combined technologies. Virent conducted fundamental catalytic studies to improve the performance of the catalytic process and NREL provided catalyst characterization support. A technoeconomic analysis (TEA) was conducted at each stage of the project, with results from these analyses used to inform the direction of the project.« less

  14. Frontal photopolymerization for microfluidic applications.

    PubMed

    Cabral, João T; Hudson, Steven D; Harrison, Christopher; Douglas, Jack F

    2004-11-09

    Frontal photopolymerization (FPP) offers numerous advantages for the rapid prototyping of microfluidic devices. Quantitative utilization of this method, however, requires a control of the vertical dimensions of the patterned resist material. To address this fundamental problem, we study the ultraviolet (UV) photopolymerization of a series of multifunctional thiolene resists through a combination of experiments and analytical modeling of the polymerization fronts. We describe this nonlinear spatio-temporal growth process in terms of a "minimal" model involving an order parameter phi(x, t) characterizing the extent of monomer-to-polymer conversion, the optical attenuation T(x, t), and the solid front position h(t). The latter exhibits an induction time (or equivalent critical UV dose) characterizing the onset of frontal propagation. We also observe a novel transition between two logarithmic rates of growth, determined by the Beer-Lambert attenuation constants mu(0) and mu(infinity) of the monomer and fully polymerized material, respectively. The measured frontal kinetics and optical transmission of the thiolene resist materials are consistent with our photopolymerization model, exhibiting both "photodarkening" and "photoinvariant" polymerization. This is apparently the first observation of photodarkening reported in FPP. On the basis of these results, multilevel fluidic devices with controlled height are readily fabricated with modulated illumination. A representative two-level microfluidic device, incorporating a chaotic mixer, a T junction, and a series of controlled flow constrictions, illustrates the practical versatility of this fabrication method.

  15. Cardiorenal benefits of early versus late cyclosporine to sirolimus conversion in a rat model

    PubMed Central

    Sereno, José; Romão, Ana M.; Parada, Belmiro; Lopes, Patrícia; Carvalho, Eugénia; Teixeira, Frederico; Reis, Flávio

    2012-01-01

    Objective: To compare the cardiorenal effects of early versus late cyclosporine (CsA) to sirolimus (SRL) conversion, using a novel animal model that mimics these protocols used in the clinical practice, and focusing on blood pressure, heart rate (HR), biochemical data and heart and kidney lipid peroxidation. Materials and Methods: The study had five groups. Six male Wistar rats in each group were used during a 9-week study protocol: control, CsA (5 mg/kg/day), SRL (1 mg/kg/day); early conversion and late conversion. Cardiorenal evaluation was assessed by biochemical data, blood pressure, HR, and heart and kidney lipid peroxidation. Results: As expected, CsA promoted cardiorenal impairment, viewed by development of hypertension, tachycardia, increased urea, creatine kinase, and glucose levels, as well as heart and kidney oxidative stress. SRL, as expected, promoted less cardiorenal side effects, namely those related with nephrotoxicity. In agreement, both early and late conversions from CsA to SRL produced less side-effects, namely those related to the CsA-induced nephrotoxicity. Conclusions: In our model, both early and late CsA to SRL conversion promoted amelioration of the CsA -induced cardiorenal damage. However, early substitution seems to produce more benefits, in particular due to higher improvement of the cardiac profile. PMID:22629089

  16. Study of parameters affecting the conversion in a plug flow reactor for reactions of the type 2A→B

    NASA Astrophysics Data System (ADS)

    Beltran-Prieto, Juan Carlos; Long, Nguyen Huynh Bach Son

    2018-04-01

    Modeling of chemical reactors is an important tool to quantify reagent conversion, product yield and selectivity towards a specific compound and to describe the behavior of the system. Proposal of differential equations describing the mass and energy balance are among the most important steps required during the modeling process as they play a special role in the design and operation of the reactor. Parameters governing transfer of heat and mass have a strong relevance in the rate of the reaction. Understanding this information is important for the selection of reactor and operating regime. In this paper we studied the irreversible gas-phase reaction 2A→B. We model the conversion that can be achieved as function of the reactor volume and feeding temperature. Additionally, we discuss the effect of activation energy and the heat of reaction on the conversion achieved in the tubular reactor. Furthermore, we considered that dimerization occurs instantaneously in the catalytic surface to develop equations for the determination of rate of reaction per unit area of three different catalytic surface shapes. This data can be combined with information about the global rate of conversion in the reactor to improve regent conversion and yield of product.

  17. Echanges, interventions et actes de langage dans la structure de la conversation (Exchanges, Turns at Talk and Speech Acts in the Structure of Conversation).

    ERIC Educational Resources Information Center

    Roulet, Eddy

    1981-01-01

    Attempts to show how the surface structure of conversation can be described by means of a few principles and simple categories, regardless of its level of complexity. Accordingly, proposes a model that emphasizes the pragmatic functions of certain connectors and markers in the context of conversation exchanges. Societe Nouvelle Didier Erudition,…

  18. Study of a condition for the mode conversion from purely perpendicular electrostatic waves to electromagnetic waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalaee, Mohammad Javad, E-mail: mjkalaee@ut.ac.ir; Katoh, Yuto, E-mail: yuto@stpp.gp.tohoku.ac.jp

    One of the mechanisms for generating electromagnetic plasma waves (Z-mode and LO-mode) is mode conversion from electrostatic waves into electromagnetic waves in inhomogeneous plasma. Herein, we study a condition required for mode conversion of electrostatic waves propagating purely perpendicular to the ambient magnetic field, by numerically solving the full dispersion relation. An approximate model is derived describing the coupling between electrostatic waves (hot plasma Bernstein mode) and Z-mode waves at the upper hybrid frequency. The model is used to study conditions required for mode conversion from electrostatic waves (electrostatic electron cyclotron harmonic waves, including Bernstein mode) into electromagnetic plasma wavesmore » (LO-mode). It is shown that for mode conversion to occur in inhomogeneous plasma, the angle between the boundary surface and the magnetic field vector should be within a specific range. The range of the angle depends on the norm of the k vector of waves at the site of mode conversion in the inhomogeneous region. The present study reveals that inhomogeneity alone is not a sufficient condition for mode conversion from electrostatic waves to electromagnetic plasma waves and that the angle between the magnetic field and the density gradient plays an important role in the conversion process.« less

  19. Carbon nanotube nanostructured hybrid materials systems for renewable energy applications

    NASA Astrophysics Data System (ADS)

    Marquis, Fernand D. S.

    2011-01-01

    Global energy demand is growing at an alarming and unsustainable rate, drawing mainly on the use of fossil fuels. These reserves are decreasing rapidly and becoming increasingly expensive. The associated emissions of greenhouse gases and other toxic pollutants are becoming environmentally unacceptable. Energy security has become a major issue as fossil fuels are confined to few areas in the world and their availability is controlled by political, economic, and ecological factors. A global coherent energy strategy that encompasses the entire energy life cycle is required in order to address all the forms of energy harvesting, storage, conversion, transmission, and distribution. Hybrid nanomaterial systems hold the key to fundamental advances in direct renewable energy and energy storage and conversion which are needed to enable renewable energy and meet the general energy challenges and associated environmental effects. This paper presents new approaches and methodologies used to design and develop carbon nanotube nanostructured hybrid nanomaterial systems incorporating structural and light-absorbing electron donor polymers, inorganic semiconductors, metallic and ceramic nanoparticles as energy harvesting and storage systems.

  20. Switchable photovoltaic windows enabled by reversible photothermal complex dissociation from methylammonium lead iodide

    DOE PAGES

    Wheeler, Lance M.; Moore, David T.; Ihly, Rachelle; ...

    2017-11-23

    Materials with switchable absorption properties have been widely used for smart window applications to reduce energy consumption and enhance occupant comfort in buildings. In this work, we combine the benefits of smart windows with energy conversion by producing a photovoltaic device with a switchable absorber layer that dynamically responds to sunlight. Upon illumination, photothermal heating switches the absorber layer - composed of a metal halide perovskite-methylamine complex - from a transparent state (68% visible transmittance) to an absorbing, photovoltaic colored state (less than 3% visible transmittance) due to dissociation of methylamine. After cooling, the methylamine complex is re-formed, returning themore » absorber layer to the transparent state in which the device acts as a window to visible light. The thermodynamics of switching and performance of the device are described. In conclusion, this work validates a photovoltaic window technology that circumvents the fundamental tradeoff between efficient solar conversion and high visible light transmittance that limits conventional semitransparent PV window designs.« less

  1. The chemical biology of methanogenesis

    NASA Astrophysics Data System (ADS)

    Ferry, James G.

    2010-12-01

    Two distinct pathways account for most of the CH 4 produced in the majority of the diverse and vast anaerobic environments of Earth's biosphere by microbes that are classified in the Archaea domain of life: conversion of the methyl group of acetate to CH 4 in the aceticlastic pathway and reduction of CO 2 with electrons derived from H 2, formate or CO in the CO 2 reduction pathway. Minor, albeit ecologically important, amounts of CH 4 are produced by conversion of methylotrophic substrates methanol, methylamines and methyl sulfides. Although all pathways have terminal steps in common, they deviate in the initial steps leading to CH 4 and mechanisms for synthesizing ATP for growth. Hydrogen gas is the major reductant for CO 2-reducing methanogens in the deep subsurface, although H 2 is also utilized by CO 2-reducing microbes from the Bacteria domain that produce acetate for the aceticlastic methanogens. This review presents fundamentals of the two major CH 4-producing pathways with a focus on understanding the potential for biologically-produced CH 4 on Mars.

  2. Development of a 5.5 m diameter vertical axis wind turbine, phase 3

    NASA Astrophysics Data System (ADS)

    Dekitsch, A.; Etzler, C. C.; Fritzsche, A.; Lorch, G.; Mueller, W.; Rogalla, K.; Schmelzle, J.; Schuhwerk, W.; Vollan, A.; Welte, D.

    1982-06-01

    In continuation of development of a 5.5 m diameter vertical axis windmill that consists in conception, building, and wind tunnel testing, a Darrieus rotor windpowered generator feeding an isolated network under different wind velocity conditions and with optimal energy conversion efficiency was designed built, and field tested. The three-bladed Darrieus rotor tested in the wind tunnel was equiped with two variable pitch Savonius rotors 2 m in diameter. By means of separate measures of the aerodynamic factors and the energy consumption, effect of revisions and optimizations on different elements was assessed. Pitch adjustement of the Savonius blades, lubrication of speed reducer, rotor speed at cut-in of generator field excitation, time constant of field excitation, stability conditions, switch points of ohmic resistors which combined with a small electric battery simulated a larger isolated network connected with a large storage battery, were investigated. Fundamentals for the economic series production of windpowered generators with Darrieus rotors for the control and the electric conversion system are presented.

  3. Strategies for Efficient Charge Separation and Transfer in Artificial Photosynthesis of Solar Fuels.

    PubMed

    Xu, Yuxing; Li, Ailong; Yao, Tingting; Ma, Changtong; Zhang, Xianwen; Shah, Jafar Hussain; Han, Hongxian

    2017-11-23

    Converting sunlight to solar fuels by artificial photosynthesis is an innovative science and technology for renewable energy. Light harvesting, photogenerated charge separation and transfer (CST), and catalytic reactions are the three primary steps in the processes involved in the conversion of solar energy to chemical energy (SE-CE). Among the processes, CST is the key "energy pump and delivery" step in determining the overall solar-energy conversion efficiency. Efficient CST is always high priority in designing and assembling artificial photosynthesis systems for solar-fuel production. This Review not only introduces the fundamental strategies for CST but also the combinatory application of these strategies to five types of the most-investigated semiconductor-based artificial photosynthesis systems: particulate, Z-scheme, hybrid, photoelectrochemical, and photovoltaics-assisted systems. We show that artificial photosynthesis systems with high SE-CE efficiency can be rationally designed and constructed through combinatory application of these strategies, setting a promising blueprint for the future of solar fuels. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Wavelength adjustability of frequency conversion light of Yb-doped fiber laser based on FBGs

    NASA Astrophysics Data System (ADS)

    Dobashi, Kazuma; Tomihari, Yasuhiro; Imai, Koichi; Hirohashi, Junji; Makio, Satoshi

    2018-02-01

    We focused on wavelength conversion of simple and compact CW Yb-Doped fiber laser based on FBGs with wavelength adjustable function. By controlling temperatures of FBGs in fiber laser, it was possible to tune oscillated wavelength from 1064.101 nm to 1064.414 nm with more than 20 W in CW operation mode. Based on this fundamental light, frequency converted light (SHG and THG) were generated by utilizing two PP:Mg-SLT devises. We obtained more than 3 W of SHG light with tuning range of 150 pm and more than 35 mW of THG with tuning range of 100 pm. By selecting FBG grating and QPM grating properly, we can realize adjustable wavelength laser with the same scheme from 1040 nm to 1090 nm and their SHG/THG. With this combination of FBG based fiber laser and QPM devices, it is possible to tune the wavelength just by temperature tuning without any changes of beam shape and beam pointing.

  5. The Transformative Power of Authentic Conversations About Cancer.

    PubMed

    Dozier, David M; Beach, Wayne A; Gutzmer, Kyle; Yagade, Aileen

    2017-11-01

    Entertainment-education (E-E) assumes that actors performing content should be ethnically and culturally homogeneous with targeted audiences. The present study challenges this basic E-E assumption. Findings are presented from audience members who viewed When Cancer Calls… This theatrical production was constructed from verbatim transcriptions of naturally occurring telephone conversations between White family members as they communicated about and through their cancer journey. Non-White audience members were significantly more likely than White audience members to (a) regard the performance as authentic, (b) find it would influence "people like me," and (c) recommend the production to others. These findings suggest that all people must rely on communication when facing health challenges together. Such interactions that are fundamental to family membership are thus primal for the human social condition, regardless of differences in race and ethnicity. These findings also suggest innovative approaches to E-E health interventions that may contradict traditional market segmentation theories based on cultural differences and the principle of homophily.

  6. Halogen-Mediated Conversion of Hydrocarbons to Commodities.

    PubMed

    Lin, Ronghe; Amrute, Amol P; Pérez-Ramírez, Javier

    2017-03-08

    Halogen chemistry plays a central role in the industrial manufacture of various important chemicals, pharmaceuticals, and polymers. It involves the reaction of halogens or halides with hydrocarbons, leading to intermediate compounds which are readily converted to valuable commodities. These transformations, predominantly mediated by heterogeneous catalysts, have long been successfully applied in the production of polymers. Recent discoveries of abundant conventional and unconventional natural gas reserves have revitalized strong interest in these processes as the most cost-effective gas-to-liquid technologies. This review provides an in-depth analysis of the fundamental understanding and applied relevance of halogen chemistry in polymer industries (polyvinyl chloride, polyurethanes, and polycarbonates) and in the activation of light hydrocarbons. The reactions of particular interest include halogenation and oxyhalogenation of alkanes and alkenes, dehydrogenation of alkanes, conversion of alkyl halides, and oxidation of hydrogen halides, with emphasis on the catalyst, reactor, and process design. Perspectives on the challenges and directions for future development in this exciting field are provided.

  7. Switchable photovoltaic windows enabled by reversible photothermal complex dissociation from methylammonium lead iodide.

    PubMed

    Wheeler, Lance M; Moore, David T; Ihly, Rachelle; Stanton, Noah J; Miller, Elisa M; Tenent, Robert C; Blackburn, Jeffrey L; Neale, Nathan R

    2017-11-23

    Materials with switchable absorption properties have been widely used for smart window applications to reduce energy consumption and enhance occupant comfort in buildings. In this work, we combine the benefits of smart windows with energy conversion by producing a photovoltaic device with a switchable absorber layer that dynamically responds to sunlight. Upon illumination, photothermal heating switches the absorber layer-composed of a metal halide perovskite-methylamine complex-from a transparent state (68% visible transmittance) to an absorbing, photovoltaic colored state (less than 3% visible transmittance) due to dissociation of methylamine. After cooling, the methylamine complex is re-formed, returning the absorber layer to the transparent state in which the device acts as a window to visible light. The thermodynamics of switching and performance of the device are described. This work validates a photovoltaic window technology that circumvents the fundamental tradeoff between efficient solar conversion and high visible light transmittance that limits conventional semitransparent PV window designs.

  8. Supercurrent in ferromagnetic Josephson junctions with heavy metal interlayers

    NASA Astrophysics Data System (ADS)

    Satchell, Nathan; Birge, Norman O.

    2018-06-01

    The length scale over which supercurrent from conventional BCS, s -wave superconductors (S ) can penetrate an adjacent ferromagnetic (F ) layer depends on the ability to convert singlet Cooper pairs into triplet Cooper pairs. Spin-aligned triplet Cooper pairs are not dephased by the ferromagnetic exchange interaction and can thus penetrate an F layer over much longer distances than singlet Cooper pairs. These triplet Cooper pairs carry a dissipationless spin current and are the fundamental building block for the fledgling field of superspintronics. Singlet-triplet conversion by inhomogeneous magnetism is well established. Here, we describe an attempt to use spin-orbit coupling as an alternative mechanism to mediate singlet-triplet conversion in S-F-S Josephson junctions. We report that the addition of thin Pt spin-orbit-coupling layers in our Josephson junctions significantly increases supercurrent transmission, however the decay length of the supercurrent is not found to increase. We attribute the increased supercurrent transmission to Pt acting as a buffer layer to improve the growth of the Co F layer.

  9. Switchable photovoltaic windows enabled by reversible photothermal complex dissociation from methylammonium lead iodide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wheeler, Lance M.; Moore, David T.; Ihly, Rachelle

    Materials with switchable absorption properties have been widely used for smart window applications to reduce energy consumption and enhance occupant comfort in buildings. In this work, we combine the benefits of smart windows with energy conversion by producing a photovoltaic device with a switchable absorber layer that dynamically responds to sunlight. Upon illumination, photothermal heating switches the absorber layer - composed of a metal halide perovskite-methylamine complex - from a transparent state (68% visible transmittance) to an absorbing, photovoltaic colored state (less than 3% visible transmittance) due to dissociation of methylamine. After cooling, the methylamine complex is re-formed, returning themore » absorber layer to the transparent state in which the device acts as a window to visible light. The thermodynamics of switching and performance of the device are described. In conclusion, this work validates a photovoltaic window technology that circumvents the fundamental tradeoff between efficient solar conversion and high visible light transmittance that limits conventional semitransparent PV window designs.« less

  10. Chiral amine synthesis using ω-transaminases: an amine donor that displaces equilibria and enables high-throughput screening.

    PubMed

    Green, Anthony P; Turner, Nicholas J; O'Reilly, Elaine

    2014-09-26

    The widespread application of ω-transaminases as biocatalysts for chiral amine synthesis has been hampered by fundamental challenges, including unfavorable equilibrium positions and product inhibition. Herein, an efficient process that allows reactions to proceed in high conversion in the absence of by-product removal using only one equivalent of a diamine donor (ortho-xylylenediamine) is reported. This operationally simple method is compatible with the most widely used (R)- and (S)-selective ω-TAs and is particularly suitable for the conversion of substrates with unfavorable equilibrium positions (e.g., 1-indanone). Significantly, spontaneous polymerization of the isoindole by-product generates colored derivatives, providing a high-throughput screening platform to identify desired ω-TA activity. © 2014 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

  11. Thermoelectric Properties of Complex Oxide Heterostructures

    NASA Astrophysics Data System (ADS)

    Cain, Tyler Andrew

    Thermoelectrics are a promising energy conversion technology for power generation and cooling systems. The thermal and electrical properties of the materials at the heart of thermoelectric devices dictate conversion efficiency and technological viability. Studying the fundamental properties of potentially new thermoelectric materials is of great importance for improving device performance and understanding the electronic structure of materials systems. In this dissertation, investigations on the thermoelectric properties of a prototypical complex oxide, SrTiO3, are discussed. Hybrid molecular beam epitaxy (MBE) is used to synthesize La-doped SrTiO3 thin films, which exhibit high electron mobilities and large Seebeck coefficients resulting in large thermoelectric power factors at low temperatures. Large interfacial electron densities have been observed in SrTiO3/RTiO 3 (R=Gd,Sm) heterostructures. The thermoelectric properties of such heterostructures are investigated, including the use of a modulation doping approach to control interfacial electron densities. Low-temperature Seebeck coefficients of extreme electron-density SrTiO3 quantum wells are shown to provide insight into their electronic structure.

  12. Efficient and broadband Stokes wave generation by degenerate four-wave mixing at the mid-infrared wavelength in a silica photonic crystal fiber.

    PubMed

    Yuan, Jinhui; Sang, Xinzhu; Wu, Qiang; Zhou, Guiyao; Yu, Chongxiu; Wang, Kuiru; Yan, Binbin; Han, Ying; Farrell, Gerald; Hou, Lantian

    2013-12-15

    Based on degenerate four-wave mixing (FWM), the broadband Stokes waves are efficiently generated at the mid-infrared wavelength above 2 μm, for the first time to our knowledge, by coupling the femtosecond pulses into the fundamental mode of a silica photonic crystal fiber designed and fabricated in our laboratory. Influences of the power and wavelength of pump pulses on the phase-matched frequency conversion process are discussed. When pump pulses with central wavelength of 815 nm and average power of 300 mW are used, the output power ratio of the Stokes wave generated at 2226 nm and the residual pump wave P(s)/P(res) is estimated to be 10.8:1, and the corresponding conversion efficiency η(s) and bandwidth B(s) of the Stokes wave can be up to 26% and 33 nm, respectively. The efficient and broadband Stokes waves can be used as the ultrashort pulse sources for mid-infrared photonics and spectroscopy.

  13. Kinetic modelling of the optically stimulated conversion of peaks 5a and 5 to peak 4 in LiF:Mg,Ti (TLD-100).

    PubMed

    Weizman, Y; Horowitz, Y S; Oster, L

    2002-01-01

    The TC/LC conversion model for peaks 4, 5a and 5 in LiF:Mg,Ti (TLD-100) has been studied by solution of the coupled differential equations describing the charge carrier traffic following optical stimulation. Aspects of the model investigated were (i) the two-component exponential decay of the composite peak 5 TL intensity following the bleach, (ii) the role of retrapping during bleaching, (iii) the hole nature of peak 4 and (iv) the conversion of peak 5a traps to peak 4 traps. The high conversion efficiency is naturally explained due to the absence of conduction band competitive mechanisms in the optical ionisation of the electron in the e-h occupied structure corresponding to peak 5a and thereby leading to the hole-only occupied TC/LC leading to peak 4.

  14. Predicting attitude toward methamphetamine use: the role of antidrug campaign exposure and conversations about meth in Montana.

    PubMed

    Richards, Adam S

    2014-01-01

    This investigation utilized the integrative model of behavioral prediction to assess the Montana Meth Project (MMP) campaign by testing theoretical antecedents of attitude toward methamphetamine (meth) use. College students in Montana (N = 403) were surveyed about their exposure to MMP ads and communication about meth in conversation. Structural equation modeling showed that the data fit the specified model well. Significant parameters indicated that only beliefs about the negative relational outcomes of meth use, and not about personal well-being or physical appearance, were related to attitude. Attention, rather than encoded exposure, to MMP ads related to each belief about meth use. Conversation frequency related to engagement with MMP ads, and a conversational partner's conveyed attitude toward meth use related to personal and physical beliefs as well as attitudes. Theoretical and practical implications of the findings are discussed.

  15. Comparative life cycle assessment of lignocellulosic ethanol production: biochemical versus thermochemical conversion.

    PubMed

    Mu, Dongyan; Seager, Thomas; Rao, P Suresh; Zhao, Fu

    2010-10-01

    Lignocellulosic biomass can be converted into ethanol through either biochemical or thermochemical conversion processes. Biochemical conversion involves hydrolysis and fermentation while thermochemical conversion involves gasification and catalytic synthesis. Even though these routes produce comparable amounts of ethanol and have similar energy efficiency at the plant level, little is known about their relative environmental performance from a life cycle perspective. Especially, the indirect impacts, i.e. emissions and resource consumption associated with the production of various process inputs, are largely neglected in previous studies. This article compiles material and energy flow data from process simulation models to develop life cycle inventory and compares the fossil fuel consumption, greenhouse gas emissions, and water consumption of both biomass-to-ethanol production processes. The results are presented in terms of contributions from feedstock, direct, indirect, and co-product credits for four representative biomass feedstocks i.e., wood chips, corn stover, waste paper, and wheat straw. To explore the potentials of the two conversion pathways, different technological scenarios are modeled, including current, 2012 and 2020 technology targets, as well as different production/co-production configurations. The modeling results suggest that biochemical conversion has slightly better performance on greenhouse gas emission and fossil fuel consumption, but that thermochemical conversion has significantly less direct, indirect, and life cycle water consumption. Also, if the thermochemical plant operates as a biorefinery with mixed alcohol co-products separated for chemicals, it has the potential to achieve better performance than biochemical pathway across all environmental impact categories considered due to higher co-product credits associated with chemicals being displaced. The results from this work serve as a starting point for developing full life cycle assessment model that facilitates effective decision-making regarding lignocellulosic ethanol production.

  16. Comparative Life Cycle Assessment of Lignocellulosic Ethanol Production: Biochemical Versus Thermochemical Conversion

    NASA Astrophysics Data System (ADS)

    Mu, Dongyan; Seager, Thomas; Rao, P. Suresh; Zhao, Fu

    2010-10-01

    Lignocellulosic biomass can be converted into ethanol through either biochemical or thermochemical conversion processes. Biochemical conversion involves hydrolysis and fermentation while thermochemical conversion involves gasification and catalytic synthesis. Even though these routes produce comparable amounts of ethanol and have similar energy efficiency at the plant level, little is known about their relative environmental performance from a life cycle perspective. Especially, the indirect impacts, i.e. emissions and resource consumption associated with the production of various process inputs, are largely neglected in previous studies. This article compiles material and energy flow data from process simulation models to develop life cycle inventory and compares the fossil fuel consumption, greenhouse gas emissions, and water consumption of both biomass-to-ethanol production processes. The results are presented in terms of contributions from feedstock, direct, indirect, and co-product credits for four representative biomass feedstocks i.e., wood chips, corn stover, waste paper, and wheat straw. To explore the potentials of the two conversion pathways, different technological scenarios are modeled, including current, 2012 and 2020 technology targets, as well as different production/co-production configurations. The modeling results suggest that biochemical conversion has slightly better performance on greenhouse gas emission and fossil fuel consumption, but that thermochemical conversion has significantly less direct, indirect, and life cycle water consumption. Also, if the thermochemical plant operates as a biorefinery with mixed alcohol co-products separated for chemicals, it has the potential to achieve better performance than biochemical pathway across all environmental impact categories considered due to higher co-product credits associated with chemicals being displaced. The results from this work serve as a starting point for developing full life cycle assessment model that facilitates effective decision-making regarding lignocellulosic ethanol production.

  17. Fundamentals of Adaptive Intelligent Tutoring Systems for Self-Regulated Learning

    DTIC Science & Technology

    2015-03-01

    has 4 fundamental elements: a learner model, a pedagogical (instructional) model, a domain model, and a communication model. Figure 5 shows a...The TUI has been discussed in detail, so now the learner, pedagogical , and domain modules will be reviewed:  Learner module. In addition to...shared states, which are provided to the pedagogical module.  Pedagogical module. The pedagogical module models the instructional techniques

  18. Organ dose conversion coefficients based on a voxel mouse model and MCNP code for external photon irradiation.

    PubMed

    Zhang, Xiaomin; Xie, Xiangdong; Cheng, Jie; Ning, Jing; Yuan, Yong; Pan, Jie; Yang, Guoshan

    2012-01-01

    A set of conversion coefficients from kerma free-in-air to the organ absorbed dose for external photon beams from 10 keV to 10 MeV are presented based on a newly developed voxel mouse model, for the purpose of radiation effect evaluation. The voxel mouse model was developed from colour images of successive cryosections of a normal nude male mouse, in which 14 organs or tissues were segmented manually and filled with different colours, while each colour was tagged by a specific ID number for implementation of mouse model in Monte Carlo N-particle code (MCNP). Monte Carlo simulation with MCNP was carried out to obtain organ dose conversion coefficients for 22 external monoenergetic photon beams between 10 keV and 10 MeV under five different irradiation geometries conditions (left lateral, right lateral, dorsal-ventral, ventral-dorsal, and isotropic). Organ dose conversion coefficients were presented in tables and compared with the published data based on a rat model to investigate the effect of body size and weight on the organ dose. The calculated and comparison results show that the organ dose conversion coefficients varying the photon energy exhibits similar trend for most organs except for the bone and skin, and the organ dose is sensitive to body size and weight at a photon energy approximately <0.1 MeV.

  19. IJS procedure for RELAP5 to TRACE input model conversion using SNAP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prosek, A.; Berar, O. A.

    2012-07-01

    The TRAC/RELAP Advanced Computational Engine (TRACE) advanced, best-estimate reactor systems code developed by the U.S. Nuclear Regulatory Commission comes with a graphical user interface called Symbolic Nuclear Analysis Package (SNAP). Much of efforts have been done in the past to develop the RELAP5 input decks. The purpose of this study is to demonstrate the Institut 'Josef Stefan' (IJS) conversion procedure from RELAP5 to TRACE input model of BETHSY facility. The IJS conversion procedure consists of eleven steps and is based on the use of SNAP. For calculations of the selected BETHSY 6.2TC test the RELAP5/MOD3.3 Patch 4 and TRACE V5.0more » Patch 1 were used. The selected BETHSY 6.2TC test was 15.24 cm equivalent diameter horizontal cold leg break in the reference pressurized water reactor without high pressure and low pressure safety injection. The application of the IJS procedure for conversion of BETHSY input model showed that it is important to perform the steps in proper sequence. The overall calculated results obtained with TRACE using the converted RELAP5 model were close to experimental data and comparable to RELAP5/MOD3.3 calculations. Therefore it can be concluded, that proposed IJS conversion procedure was successfully demonstrated on the BETHSY integral test facility input model. (authors)« less

  20. Collective Contexts in Conversation: Grounding by Proxy

    ERIC Educational Resources Information Center

    Eshghi, Arash; Healey, Patrick G. T.

    2016-01-01

    Anecdotal evidence suggests that participants in conversation can sometimes act as a coalition. This implies a level of conversational organization in which groups of individuals form a coherent unit. This paper investigates the implications of this phenomenon for psycholinguistic and semantic models of shared context in dialog. We present a…

  1. Theme--Achieving 2020. Goal 3: All Students Are Conversationally Literate in Agriculture, Food, Fiber, and Natural Resource Systems.

    ERIC Educational Resources Information Center

    Trexler, Cary, Ed.

    2000-01-01

    Nine theme articles focus on the need for students to be conversationally literate about agriculture, food, fiber, and natural resources systems. Discusses the definition of conversational literacy, the human and institutional resources needed, and exemplary models for promoting literacy. (JOW)

  2. Recent rates of forest harvest and conversion in North America

    Treesearch

    Jeffrey G. Masek; Warren B. Cohen; Donald Leckie; Michael A. Wulder; Rodrigo Vargas; Ben de Jong; Sean Healey; Beverly Law; Richard Birdsey; R. A. Houghton; David Mildrexler; Samuel Goward; W. Brad Smith

    2011-01-01

    Incorporating ecological disturbance into biogeochemical models is critical for estimating current and future carbon stocks and fluxes. In particular, anthropogenic disturbances, such as forest conversion and wood harvest, strongly affect forest carbon dynamics within North America. This paper summarizes recent (2000-2008) rates of extraction, including both conversion...

  3. Conversational Coherency. Technical Report No. 95.

    ERIC Educational Resources Information Center

    Reichman, Rachel

    To analyze the process involved in maintaining conversational coherency, the study described in this paper used a construct called a "context space" that grouped utterances referring to a single issue or episode. The paper defines the types of context spaces, parses individual conversations to identify the underlying model or structure,…

  4. Comparative History as World History: Religious Conversion in Modern India.

    ERIC Educational Resources Information Center

    Eaton, Richard M.

    1997-01-01

    Explores the reasons for the extraordinary conversion to Christianity among the Naga peoples of northeastern India. Almost the entire population has converted within the last 100 years. Tests the usefulness of models of religious change generated from fieldwork on conversion in Africa, specifically Robin Horton's "intellectualist"…

  5. Exploratory analysis of real personal emergency response call conversations: considerations for personal emergency response spoken dialogue systems.

    PubMed

    Young, Victoria; Rochon, Elizabeth; Mihailidis, Alex

    2016-11-14

    The purpose of this study was to derive data from real, recorded, personal emergency response call conversations to help improve the artificial intelligence and decision making capability of a spoken dialogue system in a smart personal emergency response system. The main study objectives were to: develop a model of personal emergency response; determine categories for the model's features; identify and calculate measures from call conversations (verbal ability, conversational structure, timing); and examine conversational patterns and relationships between measures and model features applicable for improving the system's ability to automatically identify call model categories and predict a target response. This study was exploratory and used mixed methods. Personal emergency response calls were pre-classified according to call model categories identified qualitatively from response call transcripts. The relationships between six verbal ability measures, three conversational structure measures, two timing measures and three independent factors: caller type, risk level, and speaker type, were examined statistically. Emergency medical response services were the preferred response for the majority of medium and high risk calls for both caller types. Older adult callers mainly requested non-emergency medical service responders during medium risk situations. By measuring the number of spoken words-per-minute and turn-length-in-words for the first spoken utterance of a call, older adult and care provider callers could be identified with moderate accuracy. Average call taker response time was calculated using the number-of-speaker-turns and time-in-seconds measures. Care providers and older adults used different conversational strategies when responding to call takers. The words 'ambulance' and 'paramedic' may hold different latent connotations for different callers. The data derived from the real personal emergency response recordings may help a spoken dialogue system classify incoming calls by caller type with moderate probability shortly after the initial caller utterance. Knowing the caller type, the target response for the call may be predicted with some degree of probability and the output dialogue could be tailored to this caller type. The average call taker response time measured from real calls may be used to limit the conversation length in a spoken dialogue system before defaulting to a live call taker.

  6. Using Climate Models to Evaluate Mechanisms of Glacial Inception

    NASA Technical Reports Server (NTRS)

    Oglesby, Robert J.; Arnold, James E. (Technical Monitor)

    2001-01-01

    The initiation and subsequent growth of an ice sheet or large glacier is based on two primary factors: 1. Most fundamentally, a region must exist with a positive net snow accumulation, that is, cold season snowfall exceeds warm season snowmelt. Because snow can melt very rapidly, in a practical sense this probably means that little or no snow melt should occur in the warm season (mountain glaciers being one possible exception). 2. When sufficient ice builds in a region with a positive net snow accumulation, the ice will flow into adjoining regions with a negative mass balance. Feedbacks can also then arise between the emerging ice sheet and the overall climate, which, among other effects, may cause the mass balance in that region to turn positive. A key question is the relative importance of these two factors. In particular, is it possible for a large lowland region to experience a positive mass balance, such that the ice sheet can arise largely 'in-situ'? Or instead are uplands necessary, such that essentially mountain glaciers form first, and then, under the right conditions, grow and coalesce, eventually spreading out into the lowlands? This is probably the single most fundamental question to be addressed in the modeling of glacial inception. Other key questions then focus on how the (upland or low-land) positive mass balance is obtained at some times, but not others (the ice sheets are not continuously present). For Northern Hemisphere ice sheets in particular, what climatic conditions can lead to abundant winter snowfall in the Canadian Arctic and northern Labrador in conjunction with cool summertime conditions? Are both required, or will cool summer conditions alone suffice? Conversely, are a few years of abnormally heavy snowfall all that is required to trigger glacial inception? A major need at present is for carefully constructed climate model studies aimed at addressing these questions. A successful strategy will almost certainly require more than just a global model; while the global climate model might be necessary to properly simulate large-scale forcing, such models have insufficient spatial resolution to adequately address the roles of topography and the nature of the land surface. Necessary also is the use of a high-resolution regional climate model (in conjunction with a global model). Possible forcing mechanisms of Pleistocene ice ages are well known (e.g., orbital forcing; CO2 fluctuations) but we must understand and be able to successfully model the actual processes involved in glacial inception before we can fully understand the true roles played by these forcing mechanisms.

  7. Impact of Managers' Coaching Conversations on Staff Knowledge Use and Performance in Long-Term Care Settings.

    PubMed

    Cummings, Greta G; Hewko, Sarah J; Wang, Mengzhe; Wong, Carol A; Laschinger, Heather K Spence; Estabrooks, Carole A

    2018-02-01

    Extended lifespans and complex resident care needs have amplified resource demands on nursing homes. Nurse managers play an important role in staff job satisfaction, research use, and resident outcomes. Coaching skills, developed through leadership skill-building, have been shown to be of value in nursing. To test a theoretical model of nursing home staff perceptions of their work context, their managers' use of coaching conversations, and their use of instrumental, conceptual and persuasive research. Using a two-group crossover design, 33 managers employed in seven Canadian nursing homes were invited to attend a 2-day coaching development workshop. Survey data were collected from managers and staff at three time points; we analyzed staff data (n = 333), collected after managers had completed the workshop. We used structural equation modeling to test our theoretical model of contextual characteristics as causal variables, managers' characteristics, and coaching behaviors as mediating variables and staff use of research, job satisfaction, and burnout as outcome variables. The theoretical model fit the data well (χ 2 = 58, df = 43, p = .06) indicating no significant differences between data and model-implied matrices. Resonant leadership (a relational approach to influencing change) had the strongest significant relationship with manager support, which in turn influenced frequency of coaching conversations. Coaching conversations had a positive, non-significant relationship with staff persuasive use of research, which in turn significantly increased instrumental research use. Importantly, coaching conversations were significantly, negatively related to job satisfaction. Our findings add to growing research exploring the role of context and leadership in influencing job satisfaction and use of research by healthcare practitioners. One-on-one coaching conversations may be difficult for staff not used to participating in such conversations. Resonant leadership, as expected, has a significant impact on manager support and job satisfaction among nursing home staff. © 2017 Sigma Theta Tau International.

  8. Modal and thermal analysis of Les Arches unstable rock column (Vercors massif, French Alps)

    NASA Astrophysics Data System (ADS)

    Bottelin, P.; Lévy, C.; Baillet, L.; Jongmans, D.; Guéguen, P.

    2013-08-01

    A potentially unstable limestone column (˜1000 m3, Vercors, French Alps) delineated by an open rear fracture was continuously instrumented with two three-component seismic sensors from mid-May 2009 to mid-October 2011. Spectral analysis of seismic noise allowed several resonance frequencies to be determined, ranging from 6 to 21 Hz. The frequency domain decomposition (FDD) technique was applied to the ambient vibrations recorded on the top of the rock column. Three vibration modes were identified at 6, 7.5 and 9 Hz, describing the upper part of corresponding modal shapes. Finite element numerical modelling of the column dynamic response confirmed that the first two modes are bending modes perpendicular and parallel to the fracture, respectively, while the third one corresponds to torsion. Seismic noise monitoring also pointed out that resonance frequencies fluctuate with time, under thermomechanical control. For seasonal cycles, changes in frequency are due to the variations of the bulk elastic properties with temperature. At daily scale, increase in fundamental frequency with temperature has been interpreted as resulting from the rock expansion inducing a closure of the rear fracture rock bridges, hence stiffening the contact between the column and the rock mass. Conversely, the rock contraction induces a fracture opening and a decrease in resonance frequency. In winter, when the temperature drops below 0 °C, a dramatic increase in fundamental frequency is observed from 6 Hz to more than 25 Hz, resulting from ice formation in the fracture. During spring, the resonance frequency gradually diminishes with ice melting to reach the value measured before winter.

  9. The estimation of uniaxial compressive strength conversion factor of trona and interbeds from point load tests and numerical modeling

    NASA Astrophysics Data System (ADS)

    Ozturk, H.; Altinpinar, M.

    2017-07-01

    The point load (PL) test is generally used for estimation of uniaxial compressive strength (UCS) of rocks because of its economic advantages and simplicity in testing. If the PL index of a specimen is known, the UCS can be estimated using conversion factors. Several conversion factors have been proposed by various researchers and they are dependent upon the rock type. In the literature, conversion factors on different sedimentary, igneous and metamorphic rocks can be found, but no study exists on trona. In this study, laboratory UCS and field PL tests were carried out on trona and interbeds of volcano-sedimentary rocks. Based on these tests, PL to UCS conversion factors of trona and interbeds are proposed. The tests were modeled numerically using a distinct element method (DEM) software, particle flow code (PFC), in an attempt to guide researchers having various types of modeling problems (excavation, cavern design, hydraulic fracturing, etc.) of the abovementioned rock types. Average PFC parallel bond contact model micro properties for the trona and interbeds were determined within this study so that future researchers can use them to avoid the rigorous PFC calibration procedure. It was observed that PFC overestimates the tensile strength of the rocks by a factor that ranges from 22 to 106.

  10. Simulating the Conversion of Rural Settlements to Town Land Based on Multi-Agent Systems and Cellular Automata

    PubMed Central

    Liu, Yaolin; Kong, Xuesong; Liu, Yanfang; Chen, Yiyun

    2013-01-01

    Rapid urbanization in China has triggered the conversion of land from rural to urban use, particularly the conversion of rural settlements to town land. This conversion is the result of the joint effects of the geographic environment and agents involving the government, investors, and farmers. To understand the dynamic interaction dominated by agents and to predict the future landscape of town expansion, a small town land-planning model is proposed based on the integration of multi-agent systems (MAS) and cellular automata (CA). The MAS-CA model links the decision-making behaviors of agents with the neighbor effect of CA. The interaction rules are projected by analyzing the preference conflicts among agents. To better illustrate the effects of the geographic environment, neighborhood, and agent behavior, a comparative analysis between the CA and MAS-CA models in three different towns is presented, revealing interesting patterns in terms of quantity, spatial characteristics, and the coordinating process. The simulation of rural settlements conversion to town land through modeling agent decision and human-environment interaction is very useful for understanding the mechanisms of rural-urban land-use change in developing countries. This process can assist town planners in formulating appropriate development plans. PMID:24244472

  11. ELPIDA: a general architecture for medical imaging systems supporting telemedicine applications

    NASA Astrophysics Data System (ADS)

    Lymberopoulos, Dimitris C.; Spiropoulos, Kostas V.; Anastassopoulos, George C.; Kotsopoulos, Stavros A.; Solomou, Katerina G.

    1995-01-01

    During the next years, profound changes are expected in computer and communication technologies that will offer the medical imaging systems (MIS) industry a challenge to develop advanced telemedicine applications of high performance. Medical industry, vendors, and specialists need to agree on a universal MIS structure that will provide a stack of functions, protocols, and interfaces suitable for coordination and management of high-level image consults, reports, and review activities. Doctors and engineers have worked together to determine the types, targets, and range of such activities within a medical group working domain and to posit their impact on MIS structure. As a result, the fundamental MIS functions have been posed and organized in the form of a general MIS architecture, denoted as ELPIDA. The structure of this architecture was kept as simple as possible to allow its extension to diverse multimode operational schemes handling medical and conversational audiovisual information of different classes. The fundamentals of ELPIDA and pulmonary image diagnostic aspects have been employed for the development of a prototype MIS.

  12. Josephson parametric phase-locked oscillator and its application to dispersive readout of superconducting qubits

    NASA Astrophysics Data System (ADS)

    Lin, Z. R.; Inomata, K.; Koshino, K.; Oliver, W. D.; Nakamura, Y.; Tsai, J. S.; Yamamoto, T.

    2014-07-01

    The parametric phase-locked oscillator (PPLO) is a class of frequency-conversion device, originally based on a nonlinear element such as a ferrite ring, that served as a fundamental logic element for digital computers more than 50 years ago. Although it has long since been overtaken by the transistor, there have been numerous efforts more recently to realize PPLOs in different physical systems such as optical photons, trapped atoms, and electromechanical resonators. This renewed interest is based not only on the fundamental physics of nonlinear systems, but also on the realization of new, high-performance computing devices with unprecedented capabilities. Here we realize a PPLO with Josephson-junction circuitry and operate it as a sensitive phase detector. Using a PPLO, we demonstrate the demodulation of a weak binary phase-shift keying microwave signal of the order of a femtowatt. We apply PPLO to dispersive readout of a superconducting qubit, and achieved high-fidelity, single-shot and non-destructive readout with Rabi-oscillation contrast exceeding 90%.

  13. Understanding and Tailoring Grain Growth of Lead-Halide Perovskite for Solar Cell Application.

    PubMed

    Ma, Yongchao; Liu, Yanliang; Shin, Insoo; Hwang, In-Wook; Jung, Yun Kyung; Jeong, Jung Hyun; Park, Sung Heum; Kim, Kwang Ho

    2017-10-04

    The fundamental mechanism of grain growth evolution in the fabrication process from the precursor phase to the perovskite phase is not fully understood despite its importance in achieving high-quality grains in organic-inorganic hybrid perovskites, which are strongly affected by processing parameters. In this work, we investigate the fundamental conversion mechanism from the precursor phase of perovskite to the complete perovskite phase and how the intermediate phase promotes growth of the perovskite grains during the fabrication process. By monitoring the morphological evolution of the perovskite during the film fabrication process, we observed a clear rod-shaped intermediate phase in the highly crystalline perovskite and investigated the role of the nanorod intermediate phase on the growth of the grains of the perovskite film. Furthermore, on the basis of these findings, we developed a simple and effective method to tailor grain properties including the crystallinity, size, and number of grain boundaries, and then utilized the film with the tailored grains to develop perovskite solar cells.

  14. Research progress on organic-inorganic halide perovskite materials and solar cells

    NASA Astrophysics Data System (ADS)

    Ono, Luis K.; Qi, Yabing

    2018-03-01

    Owing to the intensive research efforts across the world since 2009, perovskite solar cell power conversion efficiencies (PCEs) are now comparable or even better than several other photovoltaic (PV) technologies. In this topical review article, we review recent progress in the field of organic-inorganic halide perovskite materials and solar cells. We associate these achievements with the fundamental knowledge gained in the perovskite research. The major recent advances in the fundamental perovskite material and solar cell research are highlighted, including the current efforts in visualizing the dynamical processes (in operando) taking place within a perovskite solar cell under operating conditions. We also discuss the existing technological challenges. Based on a survey of recently published works, we point out that to move the perovskite PV technology forward towards the next step of commercialization, what perovskite PV technology need the most in the coming next few years is not only further PCE enhancements, but also up-scaling, stability, and lead-toxicity.

  15. A fundamental mode Nd:GdVO4 laser pumped by a large aperture 808 nm VCSEL

    NASA Astrophysics Data System (ADS)

    Hao, Y. Q.; Ma, J. L.; Yan, C. L.; Liu, G. J.; Ma, X. H.; Gong, J. F.; Feng, Y.; Wei, Z. P.; Wang, Y. X.; Zhao, Y. J.

    2013-05-01

    A fundamental mode Nd:GdVO4 laser pumped by a vertical cavity surface emitting laser (VCSEL) is experimentally demonstrated. The VCSEL has a circular output-beam which makes it easier for it to be directly coupled to a Nd:GdVO4 microcrystal. In our research, a large aperture 808 nm VCSEL, with a multi-ring-shaped aperture (MRSA) and an almost Gaussian-shaped far-field profile, is used as the pumping source. Experimental results for the Nd:GdVO4 laser pumped by the VCSEL are presented. The maximum output peak power of 0.754 W is obtained under a pump peak power of 1.3 W, and the corresponding opto-optic conversion efficiency is 58.1%. The average slope efficiency is 65.8% from the threshold pump power of 0.2 W to the pump power of 1.3 W. The laser beam quality factors are measured to be {M}x2=1.2 0 and {M}y2=1.1 5.

  16. Temperature-dependent Schottky barrier in high-performance organic solar cells

    PubMed Central

    Li, Hui; He, Dan; Zhou, Qing; Mao, Peng; Cao, Jiamin; Ding, Liming; Wang, Jizheng

    2017-01-01

    Organic solar cells (OSCs) have attracted great attention in the past 30 years, and the power conversion efficiency (PCE) now reaches around 10%, largely owning to the rapid material developments. Meanwhile with the progress in the device performance, more and more interests are turning to understanding the fundamental physics inside the OSCs. In the conventional bulk-heterojunction architecture, only recently it is realized that the blend/cathode Schottky junction serves as the fundamental diode for the photovoltaic function. However, few researches have focused on such junctions, and their physical properties are far from being well-understood. In this paper based on PThBDTP:PC71BM blend, we fabricated OSCs with PCE exceeding 10%, and investigated temperature-dependent behaviors of the junction diodes by various characterization including current-voltage, capacitance-voltage and impedance measurements between 70 to 290 K. We found the Schottky barrier height exhibits large inhomogeneity, which can be described by two sets of Gaussian distributions. PMID:28071700

  17. Special cluster issue on tribocorrosion of dental materials

    NASA Astrophysics Data System (ADS)

    Mathew, Mathew T.; Stack, Margaret M.

    2013-10-01

    Tribocorrosion affects all walks of life from oil and gas conversion to biomedical materials. Wear can interact with corrosion to enhance it or impede it; conversely, corrosion can enhance or impede wear. The understanding of the interactions between physical and chemical phenomena has been greatly assisted by electrochemical and microscopic techniques. In dentistry, it is well recognized that erosion due to dissolution (a term physicists use to denote wear) of enamel can result in tooth decay; however, the effects of the oral environment, i.e. pH levels, electrochemical potential and any interactions due to the forces involved in chewing are not well understood. This special cluster issue includes investigations on the fundamentals of wear-corrosion interactions involved in simulated oral environments, including candidate dental implant and veneer materials. The issue commences with a fundamental study of titanium implants and this is followed by an analysis of the behaviour of commonly used temporomandibular devices in a synovial fluid-like environment. The analysis of tribocorrosion mechanisms of Ti6Al4V biomedical alloys in artificial saliva with different pHs is addressed and is followed by a paper on fretting wear, on hydroxyapatite-titanium composites in simulated body fluid, supplemented with protein (bovine serum albumin). The effects of acid treatments on tooth enamel, and as a surface engineering technique for dental implants, are investigated in two further contributions. An analysis of the physiological parameters of intraoral wear is addressed; this is followed by a study of candidate dental materials in common beverages such as tea and coffee with varying acidity and viscosity and the use of wear maps to identify the safety zones for prediction of material degradation in such conditions. Hence, the special cluster issue consists of a range of tribocorrosion contributions involving many aspects of dental tribocorrosion, from analysis of physiological approaches and tissue engineering to studying of the effects of the environments encountered in clinical practice and management which lead to tooth decay. A wide range of analytical techniques and tribocorrosion experimental approaches is used to simulate, assess and model the synergistic interactions of wear and corrosion, many of them leading to new insights. We hope it will lead to increased awareness of tribocorrosion phenomena for researchers and dental clinicians alike and 'food for thought' for further studies in this field.

  18. Dynamic Average-Value Modeling of Doubly-Fed Induction Generator Wind Energy Conversion Systems

    NASA Astrophysics Data System (ADS)

    Shahab, Azin

    In a Doubly-fed Induction Generator (DFIG) wind energy conversion system, the rotor of a wound rotor induction generator is connected to the grid via a partial scale ac/ac power electronic converter which controls the rotor frequency and speed. In this research, detailed models of the DFIG wind energy conversion system with Sinusoidal Pulse-Width Modulation (SPWM) scheme and Optimal Pulse-Width Modulation (OPWM) scheme for the power electronic converter are developed in detail in PSCAD/EMTDC. As the computer simulation using the detailed models tends to be computationally extensive, time consuming and even sometimes not practical in terms of speed, two modified approaches (switching-function modeling and average-value modeling) are proposed to reduce the simulation execution time. The results demonstrate that the two proposed approaches reduce the simulation execution time while the simulation results remain close to those obtained using the detailed model simulation.

  19. Performance analysis of 60-min to 1-min integration time rain rate conversion models in Malaysia

    NASA Astrophysics Data System (ADS)

    Ng, Yun-Yann; Singh, Mandeep Singh Jit; Thiruchelvam, Vinesh

    2018-01-01

    Utilizing the frequency band above 10 GHz is in focus nowadays as a result of the fast expansion of radio communication systems in Malaysia. However, rain fade is the critical factor in attenuation of signal propagation for frequencies above 10 GHz. Malaysia is located in a tropical and equatorial region with high rain intensity throughout the year, and this study will review rain distribution and evaluate the performance of 60-min to 1-min integration time rain rate conversion methods for Malaysia. Several conversion methods such as Segal, Chebil & Rahman, Burgeono, Emiliani, Lavergnat and Gole (LG), Simplified Moupfouma, Joo et al., fourth order polynomial fit and logarithmic model have been chosen to evaluate the performance to predict 1-min rain rate for 10 sites in Malaysia. After the completion of this research, the results show that Chebil & Rahman model, Lavergnat & Gole model, Fourth order polynomial fit and Logarithmic model have shown the best performances in 60-min to 1-min rain rate conversion over 10 sites. In conclusion, it is proven that there is no single model which can claim to perform the best across 10 sites. By averaging RMSE and SC-RMSE over 10 sites, Chebil and Rahman model is the best method.

  20. Fundamental Algorithms of the Goddard Battery Model

    NASA Technical Reports Server (NTRS)

    Jagielski, J. M.

    1985-01-01

    The Goddard Space Flight Center (GSFC) is currently producing a computer model to predict Nickel Cadmium (NiCd) performance in a Low Earth Orbit (LEO) cycling regime. The model proper is currently still in development, but the inherent, fundamental algorithms (or methodologies) of the model are defined. At present, the model is closely dependent on empirical data and the data base currently used is of questionable accuracy. Even so, very good correlations have been determined between model predictions and actual cycling data. A more accurate and encompassing data base has been generated to serve dual functions: show the limitations of the current data base, and be inbred in the model properly for more accurate predictions. The fundamental algorithms of the model, and the present data base and its limitations, are described and a brief preliminary analysis of the new data base and its verification of the model's methodology are presented.

Top