Cognitive impairment at diagnosis predicts 10-year multiple sclerosis progression.
Moccia, Marcello; Lanzillo, Roberta; Palladino, Raffaele; Chang, Kiara Chu-Mei; Costabile, Teresa; Russo, Cinzia; De Rosa, Anna; Carotenuto, Antonio; Saccà, Francesco; Maniscalco, Giorgia Teresa; Brescia Morra, Vincenzo
2016-04-01
Cognitive impairment occurs from the early phases of multiple sclerosis (MS), and more frequently affects secondary progressive (SP) subjects than relapsing-remitting (RR). To investigate relationships between cognitive dysfunctions in newly diagnosed RRMS, and long-term MS-related outcomes. The present 10-year retrospective longitudinal study included 155 RRMS subjects, tested with the Rao Brief Repeatable Battery at MS diagnosis. The reaching of Expanded Disability Status Scale (EDSS) 4.0, and the SP conversion were recorded. 67 subjects (43.2%) reached EDSS 4.0, and 34 subjects (21.9%) converted to SP during a follow-up period of 10.0±1.8 years. Subjects with cognitive impairment at diagnosis had a rate of reaching EDSS 4.0 more than three times greater (p<0.001; HR=3.183), and a rate of SP conversion more than two times greater, as compared to cognitively preserved subjects (p=0.008; HR=2.535). In particular, better scores in the Selective Reminding Test-Delayed Recall and in the Symbol Digit Modalities Test at baseline were associated with lower SP conversion rates during the follow-up period (p=0.018; HR=0.835; and p=0.001; HR=0.941, respectively). Cognitive impairment, with particular involvement of processing speed and memory, predicts disability progression and SP conversion in newly diagnosed RRMS, highlighting the importance of cognitive assessment from the beginning of MS. © The Author(s), 2015.
Investigation of the hydrochlorination of SiCL4
NASA Technical Reports Server (NTRS)
Mui, J. Y. P.
1982-01-01
Reaction kinetic measurements on the hydrochlorination of SiCl4 and metallurgical grade (m.g.) silicon metal were made at a wide range of experimental variables. The effect of pressure on the reaction rate was studied at 25 psig, 100 psig, 150 psig and 200 psig, respectively. Results of these experiments show a large pressure effect on the hydrochlorination reaction. As expected, higher pressures produce a higher equilibrium SiHC13 conversion, since the hydrochlorination reaction results in a net volume contraction as product SiHC1 is formed. However, the reaction rate, namely, the rate at which the hydrochlorination reaction reaches its equilibrium SiHC13 conversion, was found to be much faster at low pressures.
Hou, Xiaohu; Ge, Xiangyang; Wu, Di; Qian, He; Zhang, Weiguo
2012-01-01
Brevibacterium flavum ATCC14067 was engineered for L: -valine production by overexpression of different ilv genes; the ilvEBN(r)C genes from B. flavum NV128 provided the best candidate for L: -valine production. In traditional fermentation, L: -valine production reached 30.08 ± 0.92 g/L at 31°C in 72 h with a low conversion efficiency of 0.129 g/g. To further improve the L: -valine production and conversion efficiency based on the optimum temperatures of L: -valine biosynthesis enzymes (above 35°C) and the thermotolerance of B. flavum, the fermentation temperature was increased to 34, 37, and 40°C. As a result, higher metabolic rate and L: -valine biosynthesis enzymes activity were obtained at high temperature, and the maximum L: -valine production, conversion efficiency, and specific L: -valine production rate reached 38.08 ± 1.32 g/L, 0.241 g/g, and 0.133 g g(-1) h(-1), respectively, at 37°C in 48 h fermentation. The strategy for enhancing L: -valine production by overexpression of key enzymes in thermotolerant strains may provide an alternative approach to enhance branched-chain amino acids production with other strains.
Unravelling biocomplexity of electroactive biofilms for producing hydrogen from biomass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, Alex J.; Campa, Maria F.; Hazen, Terry C.
Nature recruits various types of microbes to transform its waste products into reusable building blocks. In order to develop engineered systems to enable humans to generate useful products from complex sources such as biomass, a better understanding of the synergy between microbial species is necessary. Here we investigate a bioelectrochemical system for conversion of a complex biomass-derived pyrolysis stream into hydrogen via microbial electrolysis. Interaction between the exoelectrogens and fermentative organisms is key in this process. Comparing bioelectroconversion of a switchgrass-derived bio-oil aqueous phase (BOAP) with a model exoelectrogenic substrate, acetic acid, we demonstrate that fermentative breakdown of BOAP tomore » acetate is the limiting step in the syntophic conversion process. The anode microbial community displayed simultaneous conversion of sugar derivatives, phenolic compounds, carboxylic acids, etc. present in BOAP, but at differing rates through division of labor and syntrophic exchange. Maximum removal for BOAP reached 43 mg COD/h vs. 59 mg COD/h for pure acetic acid. Furthermore, maximum hydrogen production for BOAP reached 11 L/L-d vs. 35 L/L-day for pure acetic acid. Coulombic efficiency for both substrates was >80%. Unpoising of the anode haulted exoelectrogenesis and allowed fermentative processes to proceed resulting in acetic acid accumulation at the rate of 8.4 mg/h. Coupled to the simultaneous conversion of compounds present within BOAP, these results support the division of labor and syntrophic interactions suggested here. The hydrogen productivity is the highest achieved to date for a biomass-derived stream. The exoelectrogenic rates achieved signify that commercial feasibility can be achieved if fermentative rates can be improved.« less
Unravelling biocomplexity of electroactive biofilms for producing hydrogen from biomass
Lewis, Alex J.; Campa, Maria F.; Hazen, Terry C.; ...
2017-07-11
Nature recruits various types of microbes to transform its waste products into reusable building blocks. In order to develop engineered systems to enable humans to generate useful products from complex sources such as biomass, a better understanding of the synergy between microbial species is necessary. Here we investigate a bioelectrochemical system for conversion of a complex biomass-derived pyrolysis stream into hydrogen via microbial electrolysis. Interaction between the exoelectrogens and fermentative organisms is key in this process. Comparing bioelectroconversion of a switchgrass-derived bio-oil aqueous phase (BOAP) with a model exoelectrogenic substrate, acetic acid, we demonstrate that fermentative breakdown of BOAP tomore » acetate is the limiting step in the syntophic conversion process. The anode microbial community displayed simultaneous conversion of sugar derivatives, phenolic compounds, carboxylic acids, etc. present in BOAP, but at differing rates through division of labor and syntrophic exchange. Maximum removal for BOAP reached 43 mg COD/h vs. 59 mg COD/h for pure acetic acid. Furthermore, maximum hydrogen production for BOAP reached 11 L/L-d vs. 35 L/L-day for pure acetic acid. Coulombic efficiency for both substrates was >80%. Unpoising of the anode haulted exoelectrogenesis and allowed fermentative processes to proceed resulting in acetic acid accumulation at the rate of 8.4 mg/h. Coupled to the simultaneous conversion of compounds present within BOAP, these results support the division of labor and syntrophic interactions suggested here. The hydrogen productivity is the highest achieved to date for a biomass-derived stream. The exoelectrogenic rates achieved signify that commercial feasibility can be achieved if fermentative rates can be improved.« less
Qiao, Hua; Wang, He-ling; Feng, Hua-jun; Yao, Jun; Shen, Dong-sheng; Tang, Zhi-jian
2010-07-15
To account for the fast disappearance of TNT in anaerobic fermentative liquid, we investigated TNT (TNT(0)=50 mg/L) reduction by Na(2)S at 30+/-1 degrees C in two types of buffer systems, a phosphate buffer (PB, system A) and a CH(3)COOH-NaHCO(3) buffer (system B). The effects of pH, sulfide concentration and buffer system on the conversion and reaction rate of TNT were investigated. The effect of different variables on the conversion of TNT decreased in the following order: Na(2)S concentration>pH>buffer system. A kinetics study showed that TNT reduction by Na(2)S occurred in two stages separated by a change point. The observed rate constants of the first stage K(obs-1) were 1 order of magnitude lower than those of the second stage. The TNT conversion rate increased and the time to reach the change point became shorter with increasing Na(2)S concentration and pH. A 5-fold increase in Na(2)S concentration above the theoretical stoichiometric concentration was optimum. Observed rate constants of the first stage K(obs-1) were proportional to the hydrosulfide ion concentration and the conversion rate of TNT was greater and faster in buffer system B than in system A. 2010 Elsevier B.V. All rights reserved.
The Formation of Ethane from Carbon Dioxide under Cold Plasma
NASA Astrophysics Data System (ADS)
Zhang, Xiu-ling; Zhang, Lin; Dai, Bin; Gong, Wei-min; Liu, Chang-hou
2001-04-01
Pulsed-corona plasma has been used as a new method for ethane dehydrogenation at low temperature and normal pressure using carbon dioxide as an oxidant in this paper. The effect of carbon dioxide content in the feed, power input, and flow rate of the reactants on the ethane dehydrogenation has been investigated. The experimental results show that the conversion of ethane increases with the increase in the amount of carbon dioxide in the feed. The yield of ethylene and acetylene decreases with the increase in the yield of carbon monoxide, indicating that the increased carbon dioxide leads to the part of ethylene and acetylene being oxidized to carbon monoxide. Power input is primarily an electrical parameter in pulsed-corona plasma, which plays an important role in reactant conversion and product formation. When the power input reaches 16 W, ethane conversion is 41.0% and carbon dioxide conversion is 26.3%. The total yield of ethylene and acetylene is 15.6%. The reduced flow rate of feed improves the conversion of ethane, carbon dioxide and the yield of acetylene, and induces carbon deposit as well.
Conversational Behaviors in Youth with High-functioning ASD and Asperger Syndrome
Orlovski, Stephanie Miles; Marcinko, Hillary Chuba; Volkmar, Fred
2010-01-01
Twenty-nine youth with autism spectrum disorders and 26 with typical development between 12 and 18 years of age were engaged in structured interviews (ADOS). The interviews were videotaped and rated for atypical conversational behaviors by trained raters, using the Pragmatic Rating Scale (Landa et al. Psychol Med 22:245–254, 1992). The ASD group was divided into AS and HFA/PDD-NOS subgroups. Significant differences were found among groups on approximately one-third of the PRS items. These items involved primarily the management of topics and information, reciprocity, intonation, and gaze management. The only differences to reach significance between the AS and HFA/PDD-NOS group were a greater tendency for overly formal speech on the part of the AS group, and more difficulty with gaze management on the part of the group with HFA/PDD-NOS. The implications of these findings for understanding and treating conversational deficits in ASD are discussed. PMID:18607708
Catalytical Conversion of Carbohydrates into Lactic Acid via Hydrothermal Reaction
NASA Astrophysics Data System (ADS)
Wei, Zhen; Jin, Fangming; Zhang, Guangyi; Zhang, Shiping; Yao, Guodong
2010-11-01
This paper focuses on catalytical conversion of carbohydrates into lactic acid, under the hydrothermal conditions, which may have a promising future for its high speediness and effectiveness. The catalysis of ZnO was investigated to improve the lactic acid yields. The results showed that the lactic acid yields increased immensely by the addition of ZnO. The effects of the reaction time and the addition amount of ZnO on the conversion of carbohydrates to lactic acid were studied. The highest lactic acid yields reached up to 28% starting from glucose after the reaction time of 60 s under the conditions of 0.2 mmol ZnO, 300° C, the filling rate of 35%, and over 30% starting from fructose at the same temperature and filling rate when the reaction time of 40 s and 2.0 mmol ZnO were employed. The collaborative effects of ZnO and NaOH used as the catalysts together at the same time were also studied. Furthermore, the catalytic mechanism of ZnO in the hydrothermal conversion of carbohydrates into lactic acid was discussed.
Thermal Catalytic Syngas Cleanup for High-Efficiency Waste-to-Energy Converters
2015-12-01
characteristics for a full-scale WEC based on the collected experimental data. 20 RESULTS AND DISCUSSION Task 1 – Tar-Cracking Reactor...prepared to show the effect of reaching the target throughput rate of 50 lb/hr on conversion efficiency. In scaling up the experimental results , the...Midmoisture Full Moisture Fuel Feed Rate, kg/hr 22.3 22.3 22.3 Results Using the Experimental Recuperator Effectiveness Fuel Energy In, kWth 160 136 121
[Production of sugar syrup containing rare sugar using dual-enzyme coupled reaction system].
Han, Wenjia; Zhu, Yueming; Bai, Wei; Izumori, Ken; Zhang, Tongcun; Sun, Yuanxia
2014-01-01
Enzymatic conversion is very important to produce functional rare sugars, but the conversion rate of single enzymes is generally low. To increase the conversion rate, a dual-enzyme coupled reaction system was developed. Dual-enzyme coupled reaction system was constructed using D-psicose-3-epimerase (DPE) and L-rhamnose isomerase (L-RhI), and used to convert D-fructose to D-psicose and D-allose. The ratio of DPE and L-RhI was 1:10 (W/W), and the concentration of DPE was 0.05 mg/mL. The optimum temperature was 60 degrees C and pH was 9.0. When the concentration of D-fructose was 2%, the reaction reached its equilibrium after 10 h, and the yield of D-psicose and D-allose was 5.12 and 2.04 g/L, respectively. Using the dual-enzymes coupled system developed in the current study, we could obtain sugar syrup containing functional rare sugar from fructose-rich raw material, such as high fructose corn syrup.
Use of near-IR to monitor the influence of external heating on dental composite photopolymerization.
Trujillo, Marianela; Newman, Sheldon M; Stansbury, Jeffrey W
2004-10-01
This study was conducted to determine the effect of modest external heating on the photopolymerization kinetics and conversion of commercial dental composite restorative materials. A transmission-mode, real-time near-infrared spectroscopic technique was used to monitor the photopolymerization process in the composite materials at various temperatures between 23 and 70 degrees C. Several light curing units, differing in spectral output and power densities were compared at the different cure temperatures. Several significantly different commercial composites were compared for their response. Regardless of the curing light or composite material used, photopolymerization at a moderate curing temperature of 54.5 degrees C resulted in significantly higher immediate and final conversion values compared with room temperature photocuring. Contrary to the room temperature cured materials, at the elevated cure temperature the extent of post-cure was minor and different curing lights produced very uniform conversion values within a given material. The time required to reach a given level of conversion, established as full conversion with the room temperature cure, was reduced typically by 80-90% using the elevated curing conditions. Complementary kinetic studies confirmed the effect of cure temperature on increasing the polymerization rate in dental composites as significant. Increasing the temperature of composite resin within potentially biologically compatible limits can significantly influences resin polymerization. These increased rates and conversion could lead to improved properties of composite restorative materials.
Chow, C W; Lin, Y H
2012-04-09
To provide broadband services in a single and low cost perform, the convergent optical wired and wireless access network is promising. Here, we propose and demonstrate a convergent optical wired and wireless long-reach access networks based on orthogonal wavelength division multiplexing (WDM). Both the baseband signal and the radio-over-fiber (ROF) signal are multiplexed and de-multiplexed in optical domain, hence it is simple and the operation speed is not limited by the electronic bottleneck caused by the digital signal processing (DSP). Error-free de-multiplexing and down-conversion can be achieved for all the signals after 60 km (long-reach) fiber transmission. The scalability of the system for higher bit-rate (60 GHz) is also simulated and discussed.
Díaz, I; Pérez, C; Alfaro, N; Fdz-Polanco, F
2015-06-01
In this study, the potential of a pilot hollow-fiber membrane bioreactor for the conversion of H2 and CO2 to CH4 was evaluated. The system transformed 95% of H2 and CO2 fed at a maximum loading rate of 40.2 [Formula: see text] and produced 0.22m(3) of CH4 per m(3) of H2 fed at thermophilic conditions. H2 mass transfer to the liquid phase was identified as the limiting step for the conversion, and kLa values of 430h(-1) were reached in the bioreactor by sparging gas through the membrane module. A simulation showed that the bioreactor could upgrade biogas at a rate of 25m(3)/mR(3)d, increasing the CH4 concentration from 60 to 95%v. This proof-of-concept study verified that gas sparging through a membrane module can efficiently transfer H2 from gas to liquid phase and that the conversion of H2 and CO2 to biomethane is feasible on a pilot scale at noteworthy load rates. Copyright © 2015 Elsevier Ltd. All rights reserved.
Improving the performance of immobilized β-glucosidase using a microreactor.
Wei, Ce; Zhou, Yan; Zhuang, Wei; Li, Ganlu; Jiang, Min; Zhang, Hongman
2018-04-01
Here, we have presented a technically simple and efficient method for preparing a continuous flow microreactor by employing immobilized β-glucosidase in a silica quartz capillary tube. Developing an immobilized enzyme layer on the inner wall of the capillary tube involved the modification of the inner wall using bifunctional crosslinking agents 3-aminopropyltriethoxysilane and glutaraldehyde before attaching β-glucosidase. The microreactor afforded unique reaction capacities compared with conventional batch operational configurations. These included enhanced pH and thermal stability during storage tests, increased conversion rates of cellobiose, and reduced product inhibition. The maximum conversion rate of soluble substrate cellobiose digestion in the microreactor was 76% at 50°C and pH 4.8 when the microreactor was operated continually over 10 h at a flow rate of 7 μL/min. This was markedly contrasting to the observed conversion rate of 56% when cellobiose was digested in a conventional batch mode under the same pH and temperature conditions. Reaction inhibition by glucose was significantly reduced in the microreactor. We postulate that the increased capacity of glucose to diffuse into the continual flowing media above the immobilized enzyme layer prevents glucose from reaching inhibitory concentrations at the substrate-enzyme interface. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Lewis, Alex J.; Borole, Abhijeet P.
2016-06-16
We investigated the effect of flow rate and recycle on the conversion of a biomass-derived pyrolysis aqueous phase in amicrobial electrolysis cell (MEC) to demonstrate production of renewable hydrogen in biorefinery. A continuous MEC operation was investigated under one-pass and recycle conditions usingthe complex, biomass-derived, fermentable, mixed substrate feed at a constant concentration of 0.026 g/L,while testing flow rates ranging from 0.19 to 3.6 mL/min. This corresponds to an organic loading rate (OLR) of 0.54₋10 g/L-day. Mass transfer issues observed at low flow rates were alleviated using high flow rates.Increasing the flow rate to 3.6 mL/min (3.7 min HRT) duringmore » one-pass operation increased the hydrogen productivity 3-fold, but anode conversion efficiency (ACE) decreased from 57.9% to 9.9%. Recycle of the anode liquid helped to alleviate kinetic limitations and the ACE increased by 1.8-fold and the hydrogen productivity by 1.2-fold compared to the one-pass condition at the flow rate of 3.6 mL/min (10 g/L-d OLR). High COD removal was also achieved under recycle conditions, reaching 74.2 1.1%, with hydrogen production rate of 2.92 ± 0.51 L/L-day. This study demonstrates the advantages of combining faster flow rates with a recycle process to improve rate of hydrogen production from a switchgrass-derived stream in the biorefinery.« less
Polarized positrons in Jefferson lab electron ion collider (JLEIC)
NASA Astrophysics Data System (ADS)
Lin, Fanglei; Grames, Joe; Guo, Jiquan; Morozov, Vasiliy; Zhang, Yuhong
2018-05-01
The Jefferson Lab Electron Ion Collider (JLEIC) is designed to provide collisions of electron and ion beams with high luminosity and high polarization to reach new frontier in exploration of nuclear structure. The luminosity, exceeding 1033 cm-2s-1 in a broad range of the center-of-mass (CM) energy and maximum luminosity above 1034 cm-2s-1, is achieved by high-rate collisions of short small-emittance low-charge bunches with proper cooling of the ion beam and synchrotron radiation damping of the electron beam. The polarization of light ion species (p, d, 3He) and electron can be easily preserved, manipulated and maintained by taking advantage of the unique figure-8 shape rings. With a growing physics interest, polarized positron-ion collisions are considered to be carried out in the JLEIC to offer an additional probe to study the substructure of nucleons and nuclei. However, the creation of polarized positrons with sufficient intensity is particularly challenging. We propose a dedicated scheme to generate polarized positrons. Rather than trying to accumulate "hot" positrons after conversion, we will accumulate "cold" electrons before conversion. Charge accumulation additionally provides a novel means to convert high repetition rate (>100 MHz) electron beam from the gun to a low repetition rate (<100 MHz) positron beam for broad applications. In this paper, we will address the scheme, provide preliminary estimated parameters and explain the key areas to reach the desired goal.
Eze, Valentine C; Phan, Anh N; Harvey, Adam P
2014-03-01
A more robust kinetic model of base-catalysed transesterification than the conventional reaction scheme has been developed. All the relevant reactions in the base-catalysed transesterification of rapeseed oil (RSO) to fatty acid methyl ester (FAME) were investigated experimentally, and validated numerically in a model implemented using MATLAB. It was found that including the saponification of RSO and FAME side reactions and hydroxide-methoxide equilibrium data explained various effects that are not captured by simpler conventional models. Both the experiment and modelling showed that the "biodiesel reaction" can reach the desired level of conversion (>95%) in less than 2min. Given the right set of conditions, the transesterification can reach over 95% conversion, before the saponification losses become significant. This means that the reaction must be performed in a reactor exhibiting good mixing and good control of residence time, and the reaction mixture must be quenched rapidly as it leaves the reactor. Copyright © 2014 Elsevier Ltd. All rights reserved.
Vagedes, Jan; Bialkowski, Anja; Wiechers, Cornelia; Poets, Christian F.; Dietz, Klaus
2014-01-01
Objective The number of desaturations determined in recordings of pulse oximeter saturation (SpO2) primarily depends on the time over which values are averaged. As the averaging time in pulse oximeters is not standardized, it varies considerably between centers. To make SpO2 data comparable, it is thus desirable to have a formula that allows conversion between desaturation rates obtained using different averaging times for various desaturation levels and minimal durations. Methods Oxygen saturation was measured for 170 hours in 12 preterm infants with a mean number of 65 desaturations <90% per hour of arbitrary duration by using a pulse oximeter in a 2–4 s averaging mode. Using 7 different averaging times between 3 and 16 seconds, the raw red-to-infrared data were reprocessed to determine the number of desaturations (D). The whole procedure was carried out for 7 different minimal desaturation durations (≥1, ≥5, ≥10, ≥15, ≥20, ≥25, ≥30 s) below SpO2 threshold values of 80%, 85% or 90% to finally reach a conversion formula. The formula was validated by splitting the infants into two groups of six children each and using one group each as a training set and the other one as a test set. Results Based on the linear relationship found between the logarithm of the desaturation rate and the logarithm of the averaging time, the conversion formula is: D2 = D1 (T2/T1)c, where D2 is the desaturation rate for the desired averaging time T2, and D1 is the desaturation rate for the original averaging time T1, with the exponent c depending on the desaturation threshold and the minimal desaturation duration. The median error when applying this formula was 2.6%. Conclusion This formula enables the conversion of desaturation rates between different averaging times for various desaturation thresholds and minimal desaturation durations. PMID:24489887
Vagedes, Jan; Bialkowski, Anja; Wiechers, Cornelia; Poets, Christian F; Dietz, Klaus
2014-01-01
The number of desaturations determined in recordings of pulse oximeter saturation (SpO2) primarily depends on the time over which values are averaged. As the averaging time in pulse oximeters is not standardized, it varies considerably between centers. To make SpO2 data comparable, it is thus desirable to have a formula that allows conversion between desaturation rates obtained using different averaging times for various desaturation levels and minimal durations. Oxygen saturation was measured for 170 hours in 12 preterm infants with a mean number of 65 desaturations <90% per hour of arbitrary duration by using a pulse oximeter in a 2-4 s averaging mode. Using 7 different averaging times between 3 and 16 seconds, the raw red-to-infrared data were reprocessed to determine the number of desaturations (D). The whole procedure was carried out for 7 different minimal desaturation durations (≥ 1, ≥ 5, ≥ 10, ≥ 15, ≥ 20, ≥ 25, ≥ 30 s) below SpO2 threshold values of 80%, 85% or 90% to finally reach a conversion formula. The formula was validated by splitting the infants into two groups of six children each and using one group each as a training set and the other one as a test set. Based on the linear relationship found between the logarithm of the desaturation rate and the logarithm of the averaging time, the conversion formula is: D2 = D1 (T2/T1)(c), where D2 is the desaturation rate for the desired averaging time T2, and D1 is the desaturation rate for the original averaging time T1, with the exponent c depending on the desaturation threshold and the minimal desaturation duration. The median error when applying this formula was 2.6%. This formula enables the conversion of desaturation rates between different averaging times for various desaturation thresholds and minimal desaturation durations.
Direct catalytic production of sorbitol from waste cellulosic materials.
Ribeiro, Lucília Sousa; Órfão, José J de Melo; Pereira, Manuel Fernando Ribeiro
2017-05-01
Cotton wool, cotton textile, tissue paper and printing paper, all potential waste cellulosic materials, were directly converted to sorbitol using a Ru/CNT catalyst in the presence of H 2 and using only water as solvent, without any acids. Conversions up to 38% were attained for the raw substrates, with sorbitol yields below 10%. Ball-milling of the materials disrupted their crystallinity, allowing reaching 100% conversion of cotton wool, cotton textile and tissue paper after 4h, with sorbitol yields around 50%. Mix-milling these materials with the catalyst greatly enhanced their conversion rate, and the materials were efficiently converted to sorbitol with a yield around 50% in 2h. However, ball- and mix-milled printing paper presented a conversion of only 50% after 5h, with sorbitol yields of 7%. Amounts of sorbitol of 0.525, 0.511 and 0.559g could be obtained from 1g of cotton wool, cotton textile and tissue paper, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.
Edgerton, Elizabeth; Reiney, Erin; Mueller, Siobhan; Reicherter, Barry; Curtis, Katherine; Waties, Stephanie; Limber, Susan P
2016-05-01
Every day in classrooms, playgrounds and school hallways, through text messages and mobile technology apps, children are bullied by other children. Conversations about this bullying-what it is, who is involved, and how to stop it-are taking place online. To fill a need for relevant, research-based materials on bullying, the U.S. Department of Health and Human Services' Health Resources and Services Administration worked with Widmeyer Communications to investigate the scope of media conversations about bullying and discover new strategies for promoting appropriate public health messages about bullying to intended audiences. Key components of the methodology included: analyzing common search terms and aligning social media content with terms used in searches rather than technical language; identifying influencers in social media spheres, cultivating relationships with them, and sharing their positive, relevant content; examining which digital formats are most popular for sharing and creating content across platforms; tracking and reporting on a wide variety of metrics (such as click-through and engagement rates and reach, resonance, relevance, and Klout scores) to understand conversations around bullying; and looking at online conversations and engaging participants using applicable resources and calls to action. A key finding included a significant gap between search terms and online content and has led to recommendations and comprehensive ideas for improving the reach and resonance of StopBullying.gov content and communications. © 2016 Society for Public Health Education.
Photonic-Assisted mm-Wave and THz Wireless Transmission towards 100 Gbit/s Data Rate
NASA Astrophysics Data System (ADS)
Freire Hermelo, Maria; Chuenchom, Rattana; Rymanov, Vitaly; Kaiser, Thomas; Sheikh, Fawad; Czylwik, Andreas; Stöhr, Andreas
2017-09-01
This paper presents photonic-assisted 60 GHz mm-wave and 325 GHz system approaches that enable the transmission of spectral-efficient and high data rate signals over fiber and over air. First, we focus on generic channel characteristics within the mm-wave 60 GHz band and at the terahertz (THz) band around 325 GHz. Next, for generating the high data rate baseband signals, we present a technical solution for constructing an extreme bandwidth arbitrary waveform generator (AWG). We then report the development of a novel coherent photonic mixer (CPX) module for direct optic-to-RF conversion of extreme wideband optical signals, with a>5 dB higher conversion gain compared to conventional photodiodes. Finally, we experimentally demonstrate record spectral efficient wireless transmission for both bands. The achieved spectral efficiencies reach 10 bit/s/Hz for the 60 GHz band and 6 bit/s/Hz for the 325 GHz band. The maximum data rate transmitted at THz frequencies in the 325 GHz band is 59 Gbit/s using a 64-QAM-OFDM modulation format and a 10 GHz wide data signal.
Comprehensive feedback on trainee surgeons’ non-technical skills
Dieckmann, Peter; Beier-Holgersen, Randi; Rosenberg, Jacob; Oestergaard, Doris
2015-01-01
Objectives This study aimed to explore the content of conversations, feedback style, and perceived usefulness of feedback to trainee surgeons when conversations were stimulated by a tool for assessing surgeons’ non-technical skills. Methods Trainee surgeons and their supervisors used the Non-Technical Skills for Surgeons in Denmark tool to stimulate feedback conversations. Audio recordings of post-operation feedback conversations were collected. Trainees and supervisors provided questionnaire responses on the usefulness and comprehensiveness of the feedback. The feedback conversations were qualitatively analyzed for content and feedback style. Usefulness was investigated using a scale from 1 to 5 and written comments were qualitatively analyzed. Results Six trainees and six supervisors participated in eight feedback conversations. Eighty questionnaires (response rate 83 percent) were collected from 13 trainees and 12 supervisors. Conversations lasted median eight (2-15) minutes. Supervisors used the elements and categories in the tool to structure the content of the conversations. Supervisors tended to talk about the trainees’ actions and their own frames rather than attempting to understand the trainees’ perceptions. Supervisors and trainees welcomed the feedback opportunity and agreed that the conversations were useful and comprehensive. Conclusions The content of the feedback conversations reflected the contents of the tool and the feedback was considered useful and comprehensive. However, supervisors talked primarily about their own frames, so in order for the feedback to reach its full potential, supervisors may benefit from training techniques to stimulate a deeper reflection among trainees. PMID:25602262
Terenzi, Camilla; Bouguet-Bonnet, Sabine; Canet, Daniel
2015-05-07
We report that at ambient temperature and with 100% enriched para-hydrogen (p-H2) dissolved in organic solvents, paramagnetic spin catalysis of para → ortho hydrogen conversion is accompanied at the onset by a negative ortho-hydrogen (o-H2) proton NMR signal. This novel finding indicates an electron spin polarization transfer, and we show here that this can only occur if the H2 molecule is dissociated upon its transient adsorption by the paramagnetic catalyst. Following desorption, o-H2 is created until the thermodynamic equilibrium is reached. A simple theory confirms that in the presence of a static magnetic field, the hyperfine coupling between unpaired electrons and nuclear spins is responsible for the observed polarization transfer. Owing to the negative electron gyromagnetic ratio, this explains the experimental results and ascertains an as yet unexplored mechanism for para → ortho conversion. Finally, we show that the recovery of o-H2 magnetization toward equilibrium can be simply modeled, leading to the para → ortho conversion rate.
Tamis, J; van Schouwenburg, G; Kleerebezem, R; van Loosdrecht, M C M
2011-11-15
Sludge predation can be an effective solution to reduce sludge production at a wastewater treatment plant. Oligochaete worms are the natural consumers of biomass in benthic layers in ecosystems. In this study the results of secondary sludge degradation by the aquatic Oligochaete worm Aulophorus furcatus in a 125 m(3) reactor and further sludge conversion in an anaerobic tank are presented. The system was operated over a period of 4 years at WWTP Wolvega, the Netherlands and was fed with secondary sludge from a low loaded activated sludge process. It was possible to maintain a stable and active population of the aquatic worm species A. furcatus during the full period. Under optimal conditions a sludge conversion of 150-200 kg TSS/d or 1.2-1.6 kg TSS/m(3)/d was established in the worm reactor. The worms grew as a biofilm on carrier material in the reactor. The surface specific conversion rate reached 140-180 g TSS/m(2)d and the worm biomass specific conversion rate was 0.5-1 g TSS sludge/g dry weight worms per day. The sludge reduction under optimal conditions in the worm reactor was 30-40%. The degradation by worms was an order of magnitude larger than the endogenous conversion rate of the secondary sludge. Effluent sludge from the worm reactor was stored in an anaerobic tank where methanogenic processes became apparent. It appeared that besides reducing the sludge amount, the worms' activity increased anaerobic digestibility, allowing for future optimisation of the total system by maximising sludge reduction and methane formation. In the whole system it was possible to reduce the amount of sludge by at least 65% on TSS basis. This is a much better total conversion than reported for anaerobic biodegradability of secondary sludge of 20-30% efficiency in terms of TSS reduction. Copyright © 2011 Elsevier Ltd. All rights reserved.
Characteristics of H2S emission from aged refuse after excavation exposure.
Shen, Dong-Sheng; Du, Yao; Fang, Yuan; Hu, Li-Fang; Fang, Cheng-Ran; Long, Yu-Yang
2015-05-01
Hydrogen sulfide (H2S(g)) emission from landfills is a widespread problem, especially when aged refuse is excavated. H2S(g) emission from aged refuse exposed to air was investigated and the results showed that large amounts of H2S(g) can be released, especially in the first few hours after excavation, when H2S(g) concentrations in air near refuse could reach 2.00 mg m(-3). Initial exposure to air did not inhibit the emission of H2S(g), as is generally assumed, but actually promoted it. The amounts of H2S(g) emitted in the first 2 d after excavation can be very dangerous, and the risks associated with the emission of H2S(g) could decrease significantly with time. Unlike a large number of sulfide existed under anaerobic conditions, the sulfide in aged municipal solid waste can be oxidized chemically to elemental sulfur (but not sulfate) under aerobic conditions, and its conversion rate was higher than 80%. Only microorganisms can oxidize the reduced sulfur species to sulfate, and the conversion rate could reach about 50%. Using appropriate techniques to enhance these chemical and biological transformations could allow the potential health risks caused by H2S(g) after refuse excavation to be largely avoided. Copyright © 2015 Elsevier Ltd. All rights reserved.
Huang, Wenhai; Day, Delbert E; Kittiratanapiboon, Kanisa; Rahaman, Mohamed N
2006-07-01
Bioactive glasses with controllable conversion rates to hydroxyapatite (HA) may provide a novel class of scaffold materials for bone tissue engineering. The objective of the present work was to comprehensively characterize the conversion of a silicate bioactive glass (45S5), a borate glass, and two intermediate borosilicate glass compositions to HA in a dilute phosphate solution at 37 degrees Celsius. The borate glass and the borosilicate glasses were derived from the 45S5 glass by fully or partially replacing the SiO(2) with B(2)O(3). Higher B(2)O(3) content produced a more rapid conversion of the glass to HA and a lower pH value of the phosphate solution. Whereas the borate glass was fully converted to HA in less than 4 days, the silicate (45S5) and borosilicate compositions were only partially converted even after 70 days, and contained residual SiO(2) in a Na-depleted core. The concentration of Na(+) in the phosphate solution increased with reaction time whereas the PO(4) (3-) concentration decreased, both reaching final limiting values at a rate that increased with the B(2)O(3) content of the glass. However, the Ca(2+) concentration in the solution remained low, below the detection limit of atomic absorption, throughout the reaction. Immersion of the glasses in a mixed solution of K(2)HPO(4) and K(2)CO(3) produced a carbonate-substituted HA but the presence of the K(2)CO(3) had little effect on the kinetics of conversion to HA. The kinetics and mechanisms of the conversion process of the four glasses to HA are compared and used to develop a model for the process.
Ma, Bao Jun; Sun, Yuan; Lin, Ke Ying; Li, Bing; Liu, Wan Yi
2014-03-01
Potential commercial physicochemical pretreatment methods, NaOH/microwave and NaOH/ultrasound were developed, and the carbon-based sulfonated solid acid catalysts were prepared for furfural residues conversion into reducing sugars. After the two optimum pretreatments, both the content of cellulose increased (74.03%, 72.28%, respectively) and the content of hemicellulose (94.11%, 94.17% of removal rate, respectively) and lignin (91.75%, 92.09% of removal rate, respectively) decreased in furfural residues. The reducing sugar yields of furfural residues with the two physicochemical pretreatments on coal tar-based solid acid reached 33.94% and 33.13%, respectively, higher than that pretreated via NaOH alone (27%) and comparable to that pretreated via NaOH/H2O2 (35.67%). The XRD patterns, IR spectra and SEM images show microwave and ultrasound improve the pretreatment effect. The results demonstrate the carbon-based sulfonated solid acids and the physicochemical pretreatments are green, effective, low-cost for furfural residues conversion. Copyright © 2014 Elsevier Ltd. All rights reserved.
Preparation of gentiooligosaccharides using Trichoderma viride β-glucosidase.
Wang, Fei; Wu, Jing; Chen, Sheng
2018-05-15
The recombinant plasmid pPIC9K-bgl1 containing β-glucosidase bgl1 from Trichoderma viride was constructed by overlapping PCR and integrated into Pichia pastoris KM71. In order to assist the formation of disulfide bonds and thus improve protein folding efficiency, protein disulfide isomerase pdi was co-expressed in the P. pastoris KM71/pPIC9K-bgl1/pPICZ-A-pdi strain, and fermentation in flasks resulted in enzyme activity of 143 U/ml. The enzyme activity of β-glucosidase reached 1402 U/ml following optimisation of fermentation conditions in a 3.6 l bioreactor. With 80% glucose as substrate, gentiooligosaccharides were synthesised by β-glucosidase-based reverse hydrolysis. A yield of 130 g/l was achieved with a conversion rate of 16.25%. With 20% glucose and 40% cellobiose as substrates, gentiooligosaccharides were synthesised by transglycosylation with a yield of 116 g/l and a conversion rate of 19.4%. Copyright © 2017 Elsevier Ltd. All rights reserved.
Li, Yuzhong; Tong, Huiling; Zhuo, Yuqun; Wang, Shujuan; Xu, Xuchang
2006-12-15
Sulfur dioxide (SO2) and trace elements are all pollutants derived from coal combustion. This study relates to the simultaneous removal of SO2 and trace selenium dioxide (SeO2) from flue gas by calcium oxide (CaO) adsorption in the moderate temperature range, especially the effect of SO2 presence on selenium capture. Experiments performed on a thermogravimetric analyzer (TGA) can reach the following conclusions. When the CaO conversion is relatively low and the reaction rate is controlled by chemical kinetics, the SO2 presence does not affect the selenium capture. When the CaO conversion is very high and the reaction rate is controlled by product layer diffusion, the SO2 presence and the product layer diffusion resistance jointly reduce the selenium capture. On the basis of the kinetics study, a method to estimate the trace selenium removal efficiency using kinetic parameters and the sulfur removal efficiency is developed.
Pace-Asciak, C R; Rosenthal, A; Domazet, Z
1979-07-27
Intravenous bolus injection of prostaglandin I2 in the Inactin-anaesthetised rat produces a slow dose-dependant vasodepression which reaches maximum approximately 15 s. after injection. Administration of 9 beta-[3H1]-prostaglandin I2 by the same route followed by serial arterial sampling and TLC analysis revealed a slow conversion into one less polar metabolite starting after 20 s and reaching 40% by two minutes in the circulation. These experiments indicate that prostaglandin I2 survives pulmonary transit for a sufficiently long time to elicit a biological action. Thus its continuous systemic vascular synthesis could play an important role in the control of hypertension.
Shin, Hye Won; Yu, Hae Na; Bae, Go Eun; Huh, Hyub; Park, Ji Yong; Kim, Ji Young
2017-01-19
Anesthesia machines have been developed by the application of new technology for rapid and easier control of anesthetic concentration. In this study, we used a test lung to investigate whether the time taken to reach the target sevoflurane concentration varies with the rate of fresh gas flow (FGF) and type of anesthesia machine (AM). We measured the times taken to reach the target sevoflurane concentration (2 minimum alveolar concentration = 4%) at variable rates of FGF (0.5, 1, or 3 L/min) and different types of AM (Primus ® , Perseus ® , and Zeus ® [Zeus ® -F; Zeus ® fresh gas mode, Zeus ® -A; Zeus ® auto-mode]). Concomitant ventilation was supplied using 100% O 2. The AMs were connected to a test lung. A sevoflurane vaporizer setting of 6% was used in Primus ® , Perseus ® , and Zeus ® -F; a target end-tidal setting of 4% was used in Zeus ® -A (from a vaporizer setting of 0%). The time taken to reach the target concentration was measured in every group. When the same AM was used (Primus ® , Perseus ® , or Zeus ® -F), the times to target concentration shortened as the FGF rate increased (P < 0.05). Conversely, when the same FGF rate was used, but with different AMs, the time to target concentration was shortest in Perseus ® , followed by Primus ® , and finally by Zeus ® -F (P < 0.05). With regards to both modes of Zeus ® , at FGF rates of 0.5 and 1 L/min, the time to target concentration was shorter in Zeus ® -A than in Zeus ® -F; however, the time was longer in Zeus ® -A than in Zeus ® -F at FGF rate of 3 L/min (P < 0.05). Shorter times taken to reach the target concentration were associated with high FGF rates, smaller internal volume of the AM, proximity of the fresh gas inlets to patients, absence of a decoupling system, and use of blower-driven ventilators in AM.
A New Energy-Saving Catalytic System: Carbon Dioxide Activation by a Metal/Carbon Catalyst.
Yun, Danim; Park, Dae Sung; Lee, Kyung Rok; Yun, Yang Sik; Kim, Tae Yong; Park, Hongseok; Lee, Hyunjoo; Yi, Jongheop
2017-09-22
The conversion of CO 2 into useful chemicals is an attractive method to reduce greenhouse gas emissions and to produce sustainable chemicals. However, the thermodynamic stability of CO 2 means that a lot of energy is required for its conversion into chemicals. Here, we suggest a new catalytic system with an alternative heating system that allows minimal energy consumption during CO 2 conversion. In this system, electrical energy is transferred as heat energy to the carbon-supported metal catalyst. Fast ramping rates allow high operating temperatures (T app =250 °C) to be reached within 5 min, which leads to an 80-fold decrease of energy consumption in methane reforming using CO 2 (DRM). In addition, the consumed energy normalized by time during the DRM reaction in this current-assisted catalysis is sixfold lower (11.0 kJ min -1 ) than that in conventional heating systems (68.4 kJ min -1 ). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mulder, A; Versprille, A I; van Braak, D
2012-01-01
The feasibility of sustainable nitrogen removal was investigated in a two stage biofilm configuration consisting of a MBBR (Moving Bed Biofilm Reactor) and a Deamox reactor (Biobed-EGSB). The MBBR is used for nitrification and the denitrifying ammonium oxidation (Deamox) is aimed at a nitrogen removal process in which part of the required nitrite for the typical anammox reaction originated from nitrate. Anaerobic pre-treated potato wastewater was supplied to a MBBR and Deamox reactor operated in series with a bypass flow of 30%. The MBBR showed stable nitrite production at ammonium-loading rates of 0.9-1.0 kg NH₄-N/m³ d with ammonium conversion rates of 0.80-0.85 kg NH₄-N/m³ d. The nitrogen-loading rate and conversion rate of the Deamox reactor were 1.6-1.8 and 1.6 kg N/m³ d. The maximum ammonium removal capacity in the Deamox reactor was 0.6 kg NH₄-N/m³ d. The removal efficiency of soluble total nitrogen reached 90%. The Deamox process performance was found to be negatively affected during decline of the operating temperature from 33 to 22 °C and by organic loading rates with a chemical oxygen demand (COD)/NO₂-N ratio >1.
Thermodynamic analysis of tar reforming through auto-thermal reforming process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nurhadi, N., E-mail: nurhadi@tekmira.esdm.go.id; Diniyati, Dahlia; Efendi, M. Ade Andriansyah
2015-12-29
Fixed bed gasification is a simple and suitable technology for small scale power generation. One of the disadvantages of this technology is producing tar. So far, tar is not utilized yet and being waste that should be treated into a more useful product. This paper presents a thermodynamic analysis of tar conversion into gas producer through non-catalytic auto-thermal reforming technology. Tar was converted into components, C, H, O, N and S, and then reacted with oxidant such as mixture of air or pure oxygen. Thus, this reaction occurred auto-thermally and reached chemical equilibrium. The sensitivity analysis resulted that the mostmore » promising process performance occurred at flow rate of air was reached 43% of stoichiometry while temperature of process is 1100°C, the addition of pure oxygen is 40% and preheating of oxidant flow is 250°C. The yield of the most promising process performance between 11.15-11.17 kmol/h and cold gas efficiency was between 73.8-73.9%.The results of this study indicated that thermodynamically the conversion of tar into producer gas through non-catalytic auto-thermal reformingis more promising.« less
Zhu, Longbao; Zhou, Li; Huang, Nan; Cui, Wenjing; Liu, Zhongmei; Xiao, Ke; Zhou, Zhemin
2014-01-01
An efficient enzymatic process was developed to produce optically pure D-phenylalanine through asymmetric resolution of the racemic DL-phenylalanine using immobilized phenylalanine ammonia-lyase (RgPAL) from Rhodotorula glutinis JN-1. RgPAL was immobilized on a modified mesoporous silica support (MCM-41-NH-GA). The resulting MCM-41-NH-GA-RgPAL showed high activity and stability. The resolution efficiency using MCM-41-NH-GA-RgPAL in a recirculating packed-bed reactor (RPBR) was higher than that in a stirred-tank reactor. Under optimal operational conditions, the volumetric conversion rate of L-phenylalanine and the productivity of D-phenylalanine reached 96.7 mM h⁻¹ and 0.32 g L⁻¹ h⁻¹, respectively. The optical purity (eeD) of D-phenylalanine exceeded 99%. The RPBR ran continuously for 16 batches, the conversion ratio did not decrease. The reactor was scaled up 25-fold, and the productivity of D-phenylalanine (eeD>99%) in the scaled-up reactor reached 7.2 g L⁻¹ h⁻¹. These results suggest that the resolution process is an alternative method to produce highly pure D-phenylalanine.
Huang, Nan; Cui, Wenjing; Liu, Zhongmei; Xiao, Ke; Zhou, Zhemin
2014-01-01
An efficient enzymatic process was developed to produce optically pure D-phenylalanine through asymmetric resolution of the racemic DL-phenylalanine using immobilized phenylalanine ammonia-lyase (RgPAL) from Rhodotorula glutinis JN-1. RgPAL was immobilized on a modified mesoporous silica support (MCM-41-NH-GA). The resulting MCM-41-NH-GA-RgPAL showed high activity and stability. The resolution efficiency using MCM-41-NH-GA-RgPAL in a recirculating packed-bed reactor (RPBR) was higher than that in a stirred-tank reactor. Under optimal operational conditions, the volumetric conversion rate of L-phenylalanine and the productivity of D-phenylalanine reached 96.7 mM h−1 and 0.32 g L−1 h−1, respectively. The optical purity (ee D) of D-phenylalanine exceeded 99%. The RPBR ran continuously for 16 batches, the conversion ratio did not decrease. The reactor was scaled up 25-fold, and the productivity of D-phenylalanine (ee D>99%) in the scaled-up reactor reached 7.2 g L−1 h−1. These results suggest that the resolution process is an alternative method to produce highly pure D-phenylalanine. PMID:25268937
5 CFR 315.703 - Employees formerly reached on a register.
Code of Federal Regulations, 2011 CFR
2011-01-01
... coverage. An employee who was serving in a position when his or her name was within reach for career or... verifies that the employee would have been within reach; (2) The register was being used for career and... within reach and available for appointment. (b) Tenure on conversion. An employee whose appointment is...
Cusack, P M V
2008-01-01
To examine the effects of a dietary humic and fulvic acid complex, FeedMAX 15, on the health, growth rate, feed conversion ratio, and carcase characteristics of feedlot cattle. Cattle, in eight pens of 125 animals each, were fed either a diet containing a humic and fulvic acid complex (FeedMAX 15, FeedMAX Industries, Toowoomba, Queensland) or the same diet without the additive. Control or FeedMAX 15 diets were allocated to each pen at random. Individual cattle were allocated alternately to control or treatment pens based on order of presentation. Comparisons of disease incidence, mortality, feed intake, growth rate, feed conversion ratio, fat depth, dressing percentage, meat colour, fat colour and marbling were made at the conclusion of the feeding period. No differences were found between cattle fed FeedMAX 15 and cattle not fed the additive in entry body weight (P = 0.99), exit body weight (P = 0.91), dressing percentage (P = 0.66), P8 fat depth (P = 0.57), meat colour (P = 0.67), marbling (P = 0.70), all diseases (P = 0.64), bovine respiratory disease (P = 0.91), or mortalities (P = 1.0). Cattle fed FeedMAX 15 reached the market specifications for body weight and fat depth in fewer mean days (P = 0.0001), had a greater average daily gain (P = 0.05), a lower feed conversion ratio (P = 0.05) and whiter fat (P < 0.0001). Feeding the humic and fulvic acid complex, FeedMAX 15, at 0.055 g per kg body weight per day, can increase growth rate and feed conversion efficiency in feedlot cattle.
Gaspar, John G; Street, Whitney N; Windsor, Matthew B; Carbonari, Ronald; Kaczmarski, Henry; Kramer, Arthur F; Mathewson, Kyle E
2014-12-01
Cell-phone use impairs driving safety and performance. This impairment may stem from the remote partner's lack of awareness about the driving situation. In this study, pairs of participants completed a driving simulator task while conversing naturally in the car and while talking on a hands-free cell phone. In a third condition, the driver drove while the remote conversation partner could see video of both the road ahead and the driver's face. We tested the extent to which this additional visual information diminished the negative effects of cell-phone distraction and increased situational awareness. Collision rates for unexpected merging events were high when participants drove in a cell-phone condition but were reduced when they were in a videophone condition, reaching a level equal to that observed when they drove with an in-car passenger or drove alone. Drivers and their partners made shorter utterances and made longer, more frequent traffic references when they spoke in the videophone rather than the cell-phone condition. Providing a view of the driving scene allows remote partners to help drivers by modulating their conversation and referring to traffic more often. © The Author(s) 2014.
NH3-SCR denitration catalyst performance over vanadium-titanium with the addition of Ce and Sb.
Xu, Chi; Liu, Jian; Zhao, Zhen; Yu, Fei; Cheng, Kai; Wei, Yuechang; Duan, Aijun; Jiang, Guiyuan
2015-05-01
Selective catalytic reduction technology using NH3 as a reducing agent (NH3-SCR) is an effective control method to remove nitrogen oxides. TiO2-supported vanadium oxide catalysts with different levels of Ce and Sb modification were prepared by an impregnation method and were characterized by X-ray diffractometer (XRD), Brunauer-Emmett-Teller (BET), Transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS), Raman and Hydrogen temperature-programmed reduction (H2-TPR). The catalytic activities of V5CexSby/TiO2 catalysts for denitration were investigated in a fixed bed flow microreactor. The results showed that cerium, vanadium and antimony oxide as the active components were well dispersed on TiO2, and the catalysts exhibited a large number of d-d electronic transitions, which were helpful to strengthen SCR reactivity. The V5CexSby/TiO2 catalysts exhibited a good low temperature NH3-SCR catalytic activity. In the temperature range of 210 to 400°C, the V5CexSby/TiO2 catalysts gave NO conversion rates above 90%. For the best V5Ce35Sb2/TiO2 catalyst, at a reaction temperature of 210°C, the NO conversion rate had already reached 90%. The catalysts had different catalytic activity with different Ce loadings. With the increase of Ce loading, the NO conversion rate also increased. Copyright © 2015. Published by Elsevier B.V.
Diffusion affected magnetic field effect in exciplex fluorescence
NASA Astrophysics Data System (ADS)
Burshtein, Anatoly I.; Ivanov, Anatoly I.
2014-07-01
The fluorescence of the exciplex, 1[D+δA-δ], formed at contact of photoexcited acceptor 1A* with an electron donor 1D, is known to be very sensitive to an external magnetic field, reducing the spin conversion efficiency in the resulting geminate radical ion pair, 1, 3[D+…A-]. The relative increase of the exciplex fluorescence in the highest magnetic field compared to the lowest one, known as the magnetic field effect, crucially depends on the viscosity of the solvent. This phenomenon first studied experimentally is at first reproduced here theoretically. The magnetic field effect is shown to vanish in both limits of high and low solvent diffusivity reaching a maximum in between. It is also very sensitive to the solvent dielectric constant and to the exciplex and radical-ion pair conversion rates.
Diffusion affected magnetic field effect in exciplex fluorescence.
Burshtein, Anatoly I; Ivanov, Anatoly I
2014-07-14
The fluorescence of the exciplex, (1)[D(+δ)A(-δ)], formed at contact of photoexcited acceptor (1)A(*) with an electron donor (1)D, is known to be very sensitive to an external magnetic field, reducing the spin conversion efficiency in the resulting geminate radical ion pair, (1, 3)[D(+)…A(-)]. The relative increase of the exciplex fluorescence in the highest magnetic field compared to the lowest one, known as the magnetic field effect, crucially depends on the viscosity of the solvent. This phenomenon first studied experimentally is at first reproduced here theoretically. The magnetic field effect is shown to vanish in both limits of high and low solvent diffusivity reaching a maximum in between. It is also very sensitive to the solvent dielectric constant and to the exciplex and radical-ion pair conversion rates.
Irinislimane, Ratiba; Belhaneche-Bensemra, Naima
2012-12-01
Commercial sunflower oil was epoxidized at the laboratory-scale. The epoxidized sunflower oil (ESFO) was modified following the acrylation reaction. Modification was carried out simultaneously using acrylic acid (AA) and triethylamine (TEA). To optimize the reaction conditions, the effects of four temperatures (40, 60, 80, and 100 °C), the ESFO:AA (100:100) ratio, and 0.2% TEA were investigated. The rate of conversion was analyzed with both FT-IR and titration of the oxirane ring. After that, the temperature with the highest conversion was selected and used throughout for all modification reactions. Then, four ratios (100:100, 100:90, 100:80, and 100:75) of ESFO:AA were analyzed at four different concentrations of TEA (0.2, 0.3, 0.4, and 0.5%) to determine the best estimate for both the ESFO:AA ratio and the catalyst concentration. Conversion rate was analyzed using FT-IR spectroscopy by measuring the concentrations of ester, carbonyl, and alcohol groups. Moreover, oxirane-ring concentration was estimated using the titration method (with gentian violet as indicator) and FT-IR spectroscopy (epoxy ring absorptions at 1270 cm(-1) and 877 cm(-1)). Based on conversion yield, the optimum ESFO:AA ratio corresponds to 100:80; the best temperature reaction was at 60 °C, and the best TEA concentration was 0.2%. The critical amounts of reactants needed to reach maximum conversion were established. The final acid value of the acrylated ESFO after washing (pH = 7) was 2.1 mg potassium hydroxide (KOH)·g(-1). All results show that FT-IR spectroscopy is a simple, low-cost, rapid method for investigating the kinetics of a reaction.
Schutyser, Wouter; Van den Bosch, Sander; Dijkmans, Jan; Turner, Stuart; Meledina, Maria; Van Tendeloo, Gustaaf; Debecker, Damien P; Sels, Bert F
2015-05-22
Valorization of lignin is essential for the economics of future lignocellulosic biorefineries. Lignin is converted into novel polymer building blocks through four steps: catalytic hydroprocessing of softwood to form 4-alkylguaiacols, their conversion into 4-alkylcyclohexanols, followed by dehydrogenation to form cyclohexanones, and Baeyer-Villiger oxidation to give caprolactones. The formation of alkylated cyclohexanols is one of the most difficult steps in the series. A liquid-phase process in the presence of nickel on CeO2 or ZrO2 catalysts is demonstrated herein to give the highest cyclohexanol yields. The catalytic reaction with 4-alkylguaiacols follows two parallel pathways with comparable rates: 1) ring hydrogenation with the formation of the corresponding alkylated 2-methoxycyclohexanol, and 2) demethoxylation to form 4-alkylphenol. Although subsequent phenol to cyclohexanol conversion is fast, the rate is limited for the removal of the methoxy group from 2-methoxycyclohexanol. Overall, this last reaction is the rate-limiting step and requires a sufficient temperature (>250 °C) to overcome the energy barrier. Substrate reactivity (with respect to the type of alkyl chain) and details of the catalyst properties (nickel loading and nickel particle size) on the reaction rates are reported in detail for the Ni/CeO2 catalyst. The best Ni/CeO2 catalyst reaches 4-alkylcyclohexanol yields over 80 %, is even able to convert real softwood-derived guaiacol mixtures and can be reused in subsequent experiments. A proof of principle of the projected cascade conversion of lignocellulose feedstock entirely into caprolactone is demonstrated by using Cu/ZrO2 for the dehydrogenation step to produce the resultant cyclohexanones (≈80 %) and tin-containing beta zeolite to form 4-alkyl-ε-caprolactones in high yields, according to a Baeyer-Villiger-type oxidation with H2 O2 . © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Skibinski, Bertram; Götze, Christoph; Worch, Eckhard; Uhl, Wolfgang
2018-04-01
Overall apparent reaction rates for the removal of monochloramine (MCA) in granular activated carbon (GAC) beds were determined using a fixed-bed reactor system and under conditions typical for swimming pool water treatment. Reaction rates dropped and quasi-stationary conditions were reached quickly. Diffusional mass transport in the pores was shown to be limiting the overall reaction rate. This was reflected consistently in the Thiele modulus, in the effect of temperature, pore size distribution and of grain size on the reaction rates. Pores <2.5 times the diameter of the monochloramine molecule were shown to be barely accessible for the monochloramine conversion reaction. GACs with a significant proportion of large mesopores were found to have the highest overall reactivity for monochloramine removal. Copyright © 2017 Elsevier Ltd. All rights reserved.
Sauer, Julian P; Kinfe, Thomas M; Pintea, Bogdan; Schäfer, Andreas; Boström, Jan P
2018-05-23
Data concerning the clinical usefulness of steady-state sequences (SSS) for vestibular schwannomas (VS) after linear accelerator (LINAC) stereotactic radiosurgery (SRS) or stereotactic radiotherapy (SRT) are scarce. The aim of the study was to investigate whether SSS provide an additional useful follow-up (FU) tool to the established thin-layered T1 sequences with contrast enhancement. Pre- and post-treatment SSS were identified in 45 consecutive VS patients (2012-2016) with a standardized FU protocol including SSS at 2-3 months and 6 months/yearly in our prospective database and were retrospectively re-evaluated. The SSS were used throughout for the segmentation of the cochlea and partly of the trigeminal nerve in the treatment planning. Data analysis included signal conversion in SSS and possible correlation with neuro-otological outcome and volumetric assessment after a certain time interval. The series included 42 SRS and 3 SRT patients (31 female/14 male; mean age 59.3 years, range: 25-81 years). An SSS signal conversion was observed in 20 tumors (44.4%) within a mean time of 11 months (range: 7-15 months). Mean FU time was 26 months (median of 4 FU visits) and demonstrated tumor volume shrinkage in 29 cases (64.4%) correlating with FU time (p = 0.07). The incidence rate of combined shrinkage and signal conversion (48.3%) compared to those without signal conversion (51.7%) did not differ significantly (p = 0.49). In case of an early signal conversion at the first FU, a weak statistical significance (p = 0.05) for a higher shrinkage rate of VS with signal conversion was found. Side effects in cases with signal conversion (9/20, 45%) were more frequently than without signal conversion (6/25, 24%) without reaching statistical significance (p = 0.13). Our data confirmed the usefulness of SSS for anatomical segmentation of VS in LINAC-SRS/SRT treatment planning and add data supporting their potential as an adjunctive FU option in VS patients.
Uju; Goto, Masahiro; Kamiya, Noriho
2016-08-01
The aim of this work was to design a new method for the efficient saccharification of lignocellulosic biomass (LB) using a combination of peracetic acid (PAA) pretreatment with ionic liquid (IL)-HCl hydrolysis. The pretreatment of LBs with PAA disrupted the lignin fractions, enhanced the dissolution of LB and led to a significant increase in the initial rate of the IL-HCl hydrolysis. The pretreatment of Bagasse with PAA prior to its 1-buthyl-3-methylimidazolium chloride ([Bmim][Cl])-HCl hydrolysis, led to an improvement in the cellulose conversion from 20% to 70% in 1.5h. Interestingly, the 1-buthyl-3-methylpyridium chloride ([Bmpy][Cl])-HCl hydrolysis of Bagasse gave a cellulose conversion greater than 80%, with or without the PAA pretreatment. For LB derived from seaweed waste, the cellulose conversion reached 98% in 1h. The strong hydrolysis power of [Bmpy][Cl] was attributed to its ability to transform cellulose I to II, and lowering the degree of polymerization of cellulose. Copyright © 2016 Elsevier Ltd. All rights reserved.
Irmak Aslan, Dilan; Parthasarathy, Prakash; Goldfarb, Jillian L; Ceylan, Selim
2017-10-01
Land applied disposal of waste tires has far-reaching environmental, economic, and human health consequences. Pyrolysis represents a potential waste management solution, whereby the solid carbonaceous residue is heated in the absence of oxygen to produce liquid and gaseous fuels, and a solid char. The design of an efficient conversion unit requires information on the reaction kinetics of pyrolysis. This work is the first to probe the appropriate reaction model of waste tire pyrolysis. The average activation energy of pyrolysis was determined via iso-conversional methods over a mass fraction conversion range between 0.20 and 0.80 to be 162.8±23.2kJmol -1 . Using the Master Plots method, a reaction order of three was found to be the most suitable model to describe the pyrolytic decomposition. This suggests that the chemical reactions themselves (cracking, depolymerization, etc.), not diffusion or boundary layer interactions common with carbonaceous biomasses, are the rate-limiting steps in the pyrolytic decomposition of waste tires. Copyright © 2017 Elsevier Ltd. All rights reserved.
Biodiesel production from triolein and short chain alcohols through biocatalysis.
Salis, Andrea; Pinna, Marcella; Monduzzi, Maura; Solinas, Vincenzo
2005-09-29
Oleic acid alkyl esters (biodiesel) were synthesised by biocatalysis in solvent-free conditions. Different commercial immobilised lipases, namely Candida antarctica B, Rizhomucor miehei, and Pseudomonas cepacia, were tested towards the reaction between triolein and butanol to produce butyl oleate. Pseudomonas cepacia lipase resulted to be the most active enzyme reaching 100% of conversion after 6h. Different operative conditions such as reaction temperature, water activity, and reagent stoichiometric ratio were investigated and optimised. These conditions were then used to investigate the effect of linear and branched short chain alcohols. Methanol and 2-butanol were the worst alcohols: the former, probably, due to its low miscibility with the oil and the latter because secondary alcohols usually are less reactive than primary alcohols. Conversely, linear and branched primary alcohols with short alkyl chains (C(2)--C(4)) showed high reaction rate and conversion. A mixture of linear and branched short chain alcohols that mimics the residual of ethanol distillation (fusel oil) was successfully used for oleic acid ester synthesis. These compounds are important in biodiesel mixtures since they improve low temperature properties.
Anti-prelog reduction of prochiral carbonyl compounds by Oenococcus oeni in a biphasic system.
Hu, Jian; Xu, Yan
2006-07-01
An aqueous-organic biphasic system was established and used with whole cells of Oenococcus oeni to reduce 2-octanone to (R)-2-octanol. The conversion reached 99% when the Tris/borate buffer was increased from 50 mM to 300 mM in the aqueous phase. In addition, the conversion increased as the log P value of the organic solvent changed from 0.5 to 6.6. Under optimized conditions, the conversion of (R)-2-octanol reached 99% from 0.5 M 2-octanone with an optical purity of 99% e.e. The biphasic system allows the anti-Prelog reduction of aliphatic and aromatic ketones to furnish (R)-configurated alcohols in high optical purity as well.
[Screening and optimization of cholesterol conversion strain].
Fan, Dan; Xiong, Bingjian; Pang, Cuiping; Zhu, Xiangdong
2014-10-04
Bacterial strain SE-1 capable of transforming cholesterol was isolated from soil and characterized. The transformation products were identified. Fermentation conditions were optimized for conversion. Cholesterol was used as sole carbon source to isolate strain SE-1. Morphology, physiological and biochemical characteristics of strain SE-1 were studied. 16S rRNA gene was sequenced and subjected to phylogenetic analysis. Fermentation supernatants were extracted with chloroform, the transformation products were analyzed by silica gel thin layer chromatography and Sephadex LH20. Their structures were identified by 1H-NMR and 13C-NMR. Fermentation medium including carbon and nitrogen, methods of adding substrates and fermentation conditions for Strain SE-1 were optimized. Strain SE-1 was a Gram-negative bacterium, exhibiting the highest homologs to Burkholderia cepacia based on the physiological analysis. The sequence analysis of 16S rRNA gene of SE-1 strain and comparison with related Burkholderia show that SE-1 strain was very close to B. cepacia (Genbank No. U96927). The similarity was 99%. The result of silica gel thin layer chromatography shows that strain SE-1 transformed cholesterol to two products, 7beta-hydroxycholesterol and the minor product was 7-oxocholesterol. The optimum culture conditions were: molasses 5%, (NH4 )2SO4 0.3%, 4% of inoculation, pH 7.5 and 36 degrees C. Under the optimum culture condition, the conversion rate reached 34.4% when concentration of cholesterol-Tween 80 was 1 g/L. Cholesterol 7beta-hydroxylation conversion rate under optimal conditions was improved by 20.8%. Strain SE-1 isolated from soil is capable of converting cholesterol at lab-scale.
“Grain for Green” driven land use change and carbon sequestration on the Loess Plateau, China
Deng, Lei; Shangguan, Zhou-ping; Sweeney, Sandra
2014-01-01
Land-use change is widely considered to be a major factor affecting soil carbon (C) sequestration (ΔCs). This paper studied changes to soil C stocks (Cs) following the conversion of farmland to forest, shrub and grassland across the key area for implementing China's “Grain for Green” — the Loess Plateau. The results are based on a synthesis of 44 recent publications (including 424 observations at 70 sites) which has allowed us to further refine our understanding of the mechanisms driving the increase in Cs following farmland conversion. This synthesis suggests that the ΔCs potential of the Loess Plateau could reach 0.59 Tg yr−1 based on an estimated annual average ΔCs rate of 0.29 Mg ha−1 yr−1. In the region's different rainfall zones both the main contributing factors and Cs dynamics varied. Across the entire Loess Plateau, Cs showed first an increasing (<5 yr) then a decreasing (6–10 yr) tendency only to increase (>10 yr) yet again. In addition, the ΔCs rates depended primarily on restoration age. This synthesis demonstrates that both the initial s Cs and the average annual temperature have a significant effect on ΔCs while the effect of land-use conversion type, rainfall zone, and average annual precipitation were minimal. PMID:25391219
King, Kylie; Turnure, Jackie; Sukunesan, Suku; Phelps, Andrea; Pirkis, Jane
2018-01-01
Background It has been suggested that some dominant aspects of traditional masculinity are contributing to the high suicide rates among Australian men. We developed a three-episode documentary called Man Up, which explores the complex relationship between masculinity and suicide and encourages men to question socially imposed rules about what it means to be a man and asks them to open up, express difficult emotions, and seek help if and when needed. We ran a three-phase social media campaign alongside the documentary using 5 channels (Twitter, Facebook, Instagram, YouTube, and Tumblr). Objective This study aimed to examine the extent to which the Man Up Twitter campaign influenced the social media conversation about masculinity and suicide. Methods We used Twitter insights data to assess the reach of and engagement with the campaign (using metrics on followers, likes, retweets, and impressions) and to determine the highest and lowest performing tweets in the campaign (using an aggregated performance measure of reactions). We used original content tweets to determine whether the campaign increased the volume of relevant Twitter conversations (aggregating the number of tweets for selected campaign hashtags over time), and we used a subset of these data to gain insight into the main content themes with respect to audience engagement. Results The campaign generated a strong following that was engaged with the content of the campaign; over its whole duration, the campaign earned approximately 5000 likes and 2500 retweets and gained around 1,022,000 impressions. The highest performing tweets posted by the host included video footage and occurred during the most active period of the campaign (around the screening of the documentary). The volume of conversations in relation to commonly used hashtags (#MANUP, #ABCMANUP, #LISTENUP, and #SPEAKUP) grew in direct relation to the campaign activities, achieving strongest growth during the 3 weeks when the documentary was aired. Strongest engagement was found with content related to help-seeking, masculinity, and expressing emotions. A number of followers tweeted personal stories that revealed overwhelmingly positive perceptions of the content of the documentary and strongly endorsed its messages. Conclusions The Man Up Twitter campaign triggered conversations about masculinity and suicide that otherwise may not have happened. For some, this may have been game-changing in terms of shifting attitudes toward expressing emotions and reaching out to others for help. The campaign was particularly effective in disseminating information and promoting conversations in real time, an advantage that it had over more traditional health promotion campaigns. This sort of approach could well be adapted to other areas of mental (and physical) health promotion campaigns to increase their reach and effectiveness. PMID:29449203
Hydrodeoxygenation of lignin-derived phenolic compounds to hydrocarbons over Ni/SiO2-ZrO2 catalysts.
Zhang, Xinghua; Zhang, Qi; Wang, Tiejun; Ma, Longlong; Yu, Yuxiao; Chen, Lungang
2013-04-01
Inexpensive non-sulfided Ni-based catalysts were evaluated for hydrodeoxygenation (HDO) using guaiacol as model compound. SiO2-ZrO2 (SZ), a complex oxide synthesized by precipitation method with different ratio of Si/Zr, was impregnated with Ni(NO3)2·6H2O and calcined at 500°C. Conversion rates and product distribution for guaiacol HDO at 200-340°C were determined. Guaiacol conversion reached the maximum at 300°C in the presence of Ni/SZ-3. When HDO reaction was carried out with real lignin-derived phenolic compounds under the optimal conditions determined for guaiacol, the total yield of hydrocarbons was 62.81%. These hydrocarbons were comprised of cyclohexane, alkyl-substituted cyclohexane and alkyl-substituted benzene. They have high octane number, would be the most desirable components for fungible liquid transportation fuel. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wu, Jingjie; Ma, Sichao; Sun, Jing; Gold, Jake I.; Tiwary, Chandrasekhar; Kim, Byoungsu; Zhu, Lingyang; Chopra, Nitin; Odeh, Ihab N.; Vajtai, Robert; Yu, Aaron Z.; Luo, Raymond; Lou, Jun; Ding, Guqiao; Kenis, Paul J. A.; Ajayan, Pulickel M.
2016-12-01
Electroreduction of carbon dioxide into higher-energy liquid fuels and chemicals is a promising but challenging renewable energy conversion technology. Among the electrocatalysts screened so far for carbon dioxide reduction, which includes metals, alloys, organometallics, layered materials and carbon nanostructures, only copper exhibits selectivity towards formation of hydrocarbons and multi-carbon oxygenates at fairly high efficiencies, whereas most others favour production of carbon monoxide or formate. Here we report that nanometre-size N-doped graphene quantum dots (NGQDs) catalyse the electrochemical reduction of carbon dioxide into multi-carbon hydrocarbons and oxygenates at high Faradaic efficiencies, high current densities and low overpotentials. The NGQDs show a high total Faradaic efficiency of carbon dioxide reduction of up to 90%, with selectivity for ethylene and ethanol conversions reaching 45%. The C2 and C3 product distribution and production rate for NGQD-catalysed carbon dioxide reduction is comparable to those obtained with copper nanoparticle-based electrocatalysts.
One-step preparing magnesium hydroxide particles from mother liquor of salt production
NASA Astrophysics Data System (ADS)
Guo, H.; Peng, C. S.; Ding, Z. W.; Yuan, H. T.; Yang, K.
2018-01-01
In this study, MH particles were prepared from mother liquor of salt production in one-step through employing ammonia gas as precipitant and stearic acid as dispersant respectively. Since adopting microporous plate to bubble ammonia gas, the percent conversion of magnesium was boosted obviously. The influence of operating condition of reacting temperature, stirring rate, ammonia flowrate and pore size of plate to magnesium percent conversion were investigated, the maximum is 88.1 % at optimum condition according to experimental results. The MH particle preparing from mother liquor in optimum condition was characterized by XRD, the result indicated the volume of brucite was reach to 99.7% within the composition of the product. In addition, the size distribution and crystal morphology was also detected, the median particle diameter d50 is 883 nm and possessing good dispersibility. From the thermogravimetric analysis of MH particles, the thermostability of product is suitable as flame-retardant composite materials.
NASA Astrophysics Data System (ADS)
Li, Hanshan
2016-04-01
To enhance the stability and reliability of multi-screens testing system, this paper studies multi-screens target optical information transmission link properties and performance in long-distance, sets up the discrete multi-tone modulation transmission model based on geometric model of laser multi-screens testing system and visible light information communication principle; analyzes the electro-optic and photoelectric conversion function of sender and receiver in target optical information communication system; researches target information transmission performance and transfer function of the generalized visible-light communication channel; found optical information communication transmission link light intensity space distribution model and distribution function; derives the SNR model of information transmission communication system. Through the calculation and experiment analysis, the results show that the transmission error rate increases with the increment of transmission rate in a certain channel modulation depth; when selecting the appropriate transmission rate, the bit error rate reach 0.01.
NASA Technical Reports Server (NTRS)
Sullivan, T. L.
1984-01-01
Applying vortex generators from 20 to 100 percent span of the Mod-2 rotor resulted in a projected increase in annual energy capture of 20 percent and reduced the wind speed at which rated power is reached by nearly 3 m/sec. Application of vortex generators from 20 to 70 percent span, the fixed portion of the Mod-2 rotor, resulted in a projected increase in annual energy capture of about half this. This improved performance came at the cost of a small increase in cyclic blade loads in below rated power conditions. Cyclic blade loads were found to correlate well with the change in wind speed during one rotor revolution.
Li, Ruirui; Gu, Pengfei; Fan, Xiangyu; Shen, Junyu; Wu, Yulian; Huang, Lixuan; Li, Qiang
2018-03-21
A polyhydroxyalkanoate (PHA)-producing strain was isolated from propylene oxide (PO) saponification wastewater activated sludge and was identified as Brevundimonas vesicularis UJN1 through 16S rDNA sequencing and Biolog microbiological identification. Single-factor and response surface methodology experiments were used to optimize the culture medium and conditions. The optimal C/N ratio was 100/1.04, and the optimal carbon and nitrogen sources were sucrose (10 g/L) and NH 4 Cl (0.104 g/L) respectively. The optimal culture conditions consisted of initial pH of 6.7 and an incubation temperature of 33.4 °C for 48 h, with 15% inoculum and 100 mL medium at an agitation rate of 180 rpm. The PHA concentration reached 34.1% of the cell dry weight and increased three times compared with that before optimization. The only report of PHA-producing bacteria by Brevundimonas vesicularis showed that the conversion rate of PHAs using glucose as the optimal carbon source was 1.67%. In our research, the conversion rate of PHAs with sucrose as the optimal carbon source was 3.05%, and PHA production using sucrose as the carbon source was much cheaper than that using glucose as the carbon source.
Sylla, Youssouf Boundou; Kuroda, Masao; Yamada, Masayuki; Matsumoto, Naoko
2006-10-01
Pilot-scale composting was carried out with cow manure to evaluate the performances of two passive aeration systems: a conventional passive aeration system equipped with horizontal pipes and an unusual passive aeration method based on air delivery by means of vertical pipes. The effects of both types of passive aeration apparatus were investigated in order to determine the degree of composting rate by continuously monitoring temperature, moisture content, organic matter, electrical conductivity, pH and C/N ratio in the piles. Temperatures in the range of thermophily (55-65 degrees C) were reached in all runs within 1-2 days then lasting for about 1 week, a span long enough for pathogen abatement. Results suggest that passive aeration carried out by vertical pipes is more effective for air delivery into compost piles than conventional passive aeration of air adduction with horizontal pipes. The variation in the number of vertical pipes was revealed to be an important parameter for the control of composting rate and temperature. Composting rates estimated from the heat balance equation were substantially in agreement with those computed through the conversion ratio of total organic matter decrement. The conversion ratios and composting rates obtained in this study using passive aeration with vertical pipes were well aligned with those found using forced air delivery systems.
Jiang, Yannan; Wang, Lei; Wang, Jiao; Akwuruoha, Charles Nwakanma; Cao, Weiping
2017-10-30
The polarization conversion of electromagnetic (EM) waves, especially linear-to-circular (LTC) polarization conversion, is of great significance in practical applications. In this study, we propose an ultra-wideband high-efficiency reflective LTC polarization converter based on a metasurface in the terahertz regime. It consists of periodic unit cells, each cell of which is formed by a double split resonant square ring, dielectric layer, and fully reflective gold mirror. In the frequency range of 0.60 - 1.41 THz, the magnitudes of the reflection coefficients reach approximately 0.7, and the phase difference between the two orthogonal electric field components of the reflected wave is close to 90° or -270°. The results indicate that the relative bandwidth reaches 80% and the efficiency is greater than 88%, thus, ultra-wideband high-efficiency LTC polarization conversion has been realized. Finally, the physical mechanism of the polarization conversion is revealed. This converter has potential applications in antenna design, EM measurement, and stealth technology.
LD end pumped mode locked and cavity dumped Nd:YAP laser at 1.34 μm
NASA Astrophysics Data System (ADS)
Wang, X.; Wang, S.; Rhee, H.; Eichler, H. J.; Meister, S.
2011-06-01
We report a LD end pumped actively mode locked, passively Q switched and cavity dumped Nd:YAP laser at 1.34 μm. The dumped output pulse energy of 160 μJ is obtained at a repetition rate of 10 Hz. Passing through a LD end pumped, double-passed Nd:YAP amplifier the pulse energy is amplified to 1.44 mJ. The corresponding amplification factor is 9. Stimulated Raman scattering experiment is taken with a 9 mm long PbWO4 Raman crystal. Maximum of 20% Raman conversion is reached.
Rochetto, Ursula Luana; Tomaz, Edson
2015-07-01
This work presents an overview over heterogeneous photocatalysis performed in gas phase towards the degradation of o-xylene, n-hexane, n-octane, n-decane, methylcyclohexane and 2,2,4-trimethylpentane. The experimental set-up composed by a titanium plug flow reactor vessel contained a quartz tube with a 100 W UV lamp placed at center position from 1.7 cm to the quartz wall. A titanium dioxide film was immobilized on the internal walls of the reactor and used as catalyst. All measurements were taken after reaching steady state condition and evaluated at the inlet and outlet of the system. Conversion rates were studied in a wide range of residence times yielding to a 90% or above conversion as from 20 seconds of residence time. During experiments the temperature of reactor's wall was monitored and remained between 52 and 62 °C. Temperature influence over degradation rates was negligible once a control experiment performed at 15 °C did not modify outgoing results. Humidity effect was also evaluated showing an ideal working range of 10-80% with abrupt conversion decay outside the range. By varying inlet concentration between 60 and 110 ppmv the VOC degradation curves remained unchanged. Loss over catalytic activity was only observed for o-xylene after 30 minutes of reaction, the catalyst was reactivated with a solution of hydrogen peroxide and UV light followed by additional deposition of the catalytic layer. The kinetic study suggests a first order reaction rate. The study of effective and economically viable techniques on the treatment of volatile organic compounds (VOCs) has being highlighted as an important parameter on the environmental research. The heterogeneous photocatalysis in gas phase was proved to be an effective process for the degradation of the nonaromatic VOCs tested, yielding high conversion values for the optimized systems.
Hu, Hui; Qian, Jiangchao; Chu, Ju; Wang, Yonghong; Zhuang, Yingping; Zhang, Siliang
2009-07-01
The recombinant Pichia pastoris harboring an improved methionine adenosyltransferase (MAT) shuffled gene was employed to biosynthesize S-adenosyl-L: -methionine (SAM). Two L: -methionine (L: -Met) addition strategies were used to supply the precursor: the batch addition strategy (L: -Met was added separately at three time points) and the continuous feeding strategies (L: -Met was fed continuously at the rate of 0.1, 0.2, and 0.5 g l(-1) h(-1), respectively). SAM accumulation, L: -Met conversion rate, and SAM productivity with the continuous feeding strategies were all improved over the batch addition strategy, which reached 8.46 +/- 0.31 g l(-1), 41.7 +/- 1.4%, and 0.18 +/- 0.01 g l(-1) h(-1) with the best continuous feeding strategy (0.2 g l(-1) h(-1)), respectively. The bottleneck for SAM production with the low L: -Met feeding rate (0.1 g L(-1) h(-1)) was the insufficient L: -Met supply. The analysis of the key enzyme activities indicated that the tricarboxylic acid cycle and glycolytic pathway were reduced with the increasing L: -Met feeding rate, which decreased the adenosine triphosphate (ATP) synthesis. The MAT activity also decreased as the L: -Met feeding rate rose. The reduced ATP synthesis and MAT activity were probably the reason for the low SAM accumulation when the L: -Met feeding rate reached 0.5 g l(-1) h(-1).
Conversion Disorder- Mind versus Body: A Review.
Ali, Shahid; Jabeen, Shagufta; Pate, Rebecca J; Shahid, Marwah; Chinala, Sandhya; Nathani, Milankumar; Shah, Rida
2015-01-01
In this article, the authors accentuate the signs and symptoms of conversion disorder and the significance of clinical judgment and expertise in order to reach the right diagnosis. The authors review the literature and provide information on the etiology, prevalence, diagnostic criteria, and the treatment methods currently employed in the management of conversion disorder. Of note, the advancements of neuropsychology and brain imaging have led to emergence of a relatively sophisticated picture of the neuroscientific psychopathology of complex mental illnesses, including conversion disorder. The available evidence suggests new methods with which to test hypotheses about the neural circuits underlying conversion symptoms. In context of this, the authors also explore the neurobiological understanding of conversion disorder.
Conversion Disorder— Mind versus Body: A Review
Jabeen, Shagufta; Pate, Rebecca J.; Shahid, Marwah; Chinala, Sandhya; Nathani, Milankumar; Shah, Rida
2015-01-01
In this article, the authors accentuate the signs and symptoms of conversion disorder and the significance of clinical judgment and expertise in order to reach the right diagnosis. The authors review the literature and provide information on the etiology, prevalence, diagnostic criteria, and the treatment methods currently employed in the management of conversion disorder. Of note, the advancements of neuropsychology and brain imaging have led to emergence of a relatively sophisticated picture of the neuroscientific psychopathology of complex mental illnesses, including conversion disorder. The available evidence suggests new methods with which to test hypotheses about the neural circuits underlying conversion symptoms. In context of this, the authors also explore the neurobiological understanding of conversion disorder. PMID:26155375
Keurentjes, José H M; Briët, Justine M; de Bock, Geertruida H; Mourits, Marian J E
2018-02-01
A multicenter, retrospective, cohort study was conducted in the Netherlands. The aim was to evaluate whether surgical volume of laparoscopic hysterectomies (LHs) performed by proven skilled gynecologists had an impact on the conversion rate from laparoscopy to laparotomy. In 14 hospitals, all LHs performed by 19 proven skilled gynecologists between 2007 and 2010 were included in the analysis. Surgical volume, conversion rate and type of conversion (reactive or strategic) were retrospectively assessed. To estimate the impact of surgical volume on the conversion rate, logistic regressions were performed. These regressions were adjusted for patient's age, Body Mass Index (BMI), ASA classification, previous abdominal surgery and the indication (malignant versus benign) for the LH. During the study period, 19 proven skilled gynecologists performed a total of 1051 LHs. Forty percent of the gynecologists performed over 20 LHs per year (median 17.3, range 5.4-49.5). Conversion to laparotomy occurred in 5.0% of all LHs (53 of 1051); 38 (3.6%) were strategic and 15 (1.4%) were reactive conversions. Performing over 20 LHs per year was significantly associated with a lower overall conversion rate (OR adjusted 0.43, 95% CI 0.24-0.77), a lower strategic conversion rate (OR adjusted 0.32, 95% CI 0.16-0.65), but not with a lower reactive conversion rate (OR adjusted 0.96, 95% CI 0.33-2.79). A higher annual surgical volume of LHs by proven skilled gynecologists is inversely related to the conversion rate to laparotomy, and results in a lower strategic conversion rate.
Dai, Dazhang; Xia, Liming
2006-07-01
The lipase from Penicillium expansum PED-03 (PEL) was immobilized onto modified ultrastable-Y (USY) molecular sieve and the resolution of (R, S)- 2-octanol was carried out in a bioreactor in nonaqueous media by the immobilized lipase. It was found that the conversion rate, enantiomeric excess (ee) value, and enantioselectivity (E) value of the resolution catalyzed by PEL immobilized on modified USY molecular sieve were much higher than those of the reaction catalyzed by free PEL and PEL immobilized on other supports. Immobilized on modified USY molecular sieve, the PEL exhibited obvious activity within a wider pH range and at a much higher temperature and showed a markedly enhanced stability against thermal inactivation, by which the suitable pH of the buffer used for immobilization could be "memorized." The conversion rate of the reaction catalyzed by PEL immobilized on modified USY molecular sieve reached 48.84%, with excellent enantioselectivity (average E value of eight batches >460) in nonaqueous media at "memorial" pH 9.5, 50 degrees C for 24 h, demonstrating a good application potential in the production of optically pure (R, S)-2-octanol.
Zhang, Ting-Zhou; Yang, Li-Rong; Zhu, Zi-Qiang
2005-03-01
Optically active form of alpha-cyano-3-phenoxybenzyl (CPB) alcohol, building block of pyrethroid insecticides, was synthesized as its acetate by the combination of anion-exchange resin (D301)-catalyzed transcyanation between m-phenoxybenzaldehyde (m-PBA) and acetone cyanohydrin (AC), and lipase (from Alcaligenes sp.)-catalyzed enantioselective transesterification of the resulting cyanohydrin with vinyl acetate. Through optimizing technological conditions, the catalyzing efficiency was improved considerably compared to methods previously reported. Concentrations of CPB acetate were determined by gas chromatograph. The enantio excess (e.e.) values of CPB acetate were measured by NMR (nuclear magnetic resonance) method. Effects of solvents and temperatures on this reaction were studied. Cyclohexane was shown to be the best solvent among the three tested solvents. 55 degrees C was the optimal temperature for higher degree of conversion. External diffusion limitation was excluded by raising the rotational speed to 220 r/min. However, internal diffusion could not be ignored, since the catalyst (lipase) was an immobilized enzyme and its particle dimension was not made small enough. The reaction rate was substantially accelerated when the reactant (m-PBA) concentration was as high as 249 mmol/L, but decreased when the initial concentration of m-PBA reached to 277 mmol/L. It was also found that the catalyzing capability of recovered lipase was high enough to use several batches. Study of the mole ratio of AC to m-PBA showed that 2:1 was the best choice. The strategy of adding base catalyst D301 was found to be an important factor in improving the degree of conversion of the reaction from 20% to 80%. The highest degree of conversion of the reaction has reached up to 80%.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-28
... gaps in existing knowledge regarding equianalgesic opioid conversion in clinical practice, to develop a... organization as well as the total number of participants based on space limitations. Registrants will receive... be based on space availability. If registration reaches maximum capacity, FDA will post a notice...
Gasification of refinery sludge in an updraft reactor for syngas production
NASA Astrophysics Data System (ADS)
Ahmed, Reem; Sinnathambi, Chandra M.; Eldmerdash, Usama
2014-10-01
The study probes into the investigation on gasification of dry refinery sludge. The details of the study includes; influence of operation time, oxidation temperature and equivalence ratios on carbon gas conversion rate, gasification efficiency, heating value and fuel gas yield are presented. The results show that, the oxidation temperature increased sharply up to 858°C as the operating time increased up to 36 min then bridging occurred at 39 min which cause drop in reaction temperature up to 819 °C. This bridging was found to affect also the syngas compositions, meanwhile as the temperature decreased the CO, H2, CH4 compositions are also found to be decreases. Higher temperature catalyzed the reduction reaction (CO2+ C = 450 2CO ), and accelerated the carbon conversion and gasification efficiencies, resulted in more solid fuel is converted to a high heating value gas fuel. The equivalence ratio of 0.195 was found to be the optimum value for carbon conversion and cold gas efficiencies, high heating value of gas, and fuel gas yield to reach their maximum values of 96.1 % and 53.7 %, 5.42 MJ Nm-3 of, and 2.5 Nm3 kg-1 respectively.
Graphene-based magnetless converter of terahertz wave polarization
NASA Astrophysics Data System (ADS)
Melnikova, Veronica S.; Polischuk, Olga V.; Popov, Vyacheslav V.
2016-04-01
The polarization conversion of terahertz radiation by the periodic array of graphene nanoribbons located at the surface of a high-refractive-index dielectric substrate (terahertz prism) is studied theoretically. Giant polarization conversion at the plasmon resonance frequencies takes place without applying external DC magnetic field. It is shown that the total polarization conversion can be reached at the total internal reflection of THz wave from the periodic array of graphene nanoribbons even at room temperature.
Letsou, Anthea; Liskay, R. Michael
1987-01-01
With the intent of further exploring the nature of gene conversion in mammalian cells, we systematically addressed the effects of the molecular nature of mutation on the efficiency of intrachromosomal gene conversion in cultured mouse cells. Comparison of conversion rates revealed that all mutations studied were suitable substrates for gene conversion; however, we observed that the rates at which different mutations converted to wild-type could differ by two orders of magnitude. Differences in conversion rates were correlated with the molecular nature of the mutations. In general, rates of conversion decreased with increasing size of the molecular lesions. In comparisons of conversion rates for single base pair insertions and deletions we detected a genotype-directed path for conversion, by which an insertion was converted to wild-type three to four times more efficiently than was a deletion which maps to the same site. The data are discussed in relation to current theories of gene conversion, and are consistent with the idea that gene conversion in mammalian cells can result from repair of heteroduplex DNA (hDNA) intermediates. PMID:2828159
Loaces, Inés; Rodríguez, Cecilia; Amarelle, Vanesa; Fabiano, Elena; Noya, Francisco
2016-10-01
Crude glycerol obtained as a by-product of biodiesel production is a reliable feedstock with the potential to be converted into reduced chemicals with high yields. It has been previously shown that ethanol is the primary product of glycerol fermentation by Escherichia coli. However, few efforts were made to enhance this conversion by means of the expression of heterologous genes with the potential to improve glycerol transport or metabolism. In this study, a fosmid-based metagenomic library constructed from an anaerobic reactor purge sludge was screened for genetic elements that promote the use and fermentation of crude glycerol by E. coli. One clone was selected based on its improved growth rate on this feedstock. The corresponding fosmid, named G1, was fully sequenced (41 kbp long) and the gene responsible for the observed phenotype was pinpointed by in vitro insertion mutagenesis. Ethanol production from both pure and crude glycerol was evaluated using the parental G1 clone harboring the ethanologenic plasmid pLOI297 or the industrial strain LY180 complemented with G1. In mineral salts media containing 50 % (v/v) pure glycerol, ethanol concentrations increased two-fold on average when G1 was present in the cells reaching up to 20 g/L after 24 h fermentation. Similar fermentation experiments were done using crude instead of pure glycerol. With an initial OD620 of 8.0, final ethanol concentrations after 24 h were much higher reaching 67 and 75 g/L with LY180 cells carrying the control fosmid or the G1 fosmid, respectively. This translates into a specific ethanol production rate of 0.39 g h(-1) OD(-1) L(-1).
Wang, Miaomiao; Wu, Jing; Wu, Dan
2018-02-15
Kojibiose as a prebiotic and inhibitor of α-glucosidase exhibits potential for a wide range of applications in the food and medicine fields; however, large-scale separation and extraction of kojibiose from nature is difficult. Sucrose phosphorylase (SPase) can be used for the production of kojibiose, and currently, SPase is only heterologously expressed in E. coli, making it unsuitable for use in the food industry. However, Bacillus subtilis is generally considered to be a safe organism potentially useful for SPase expression. Here, for the first time, we heterologously expressed Bifidobacterium adolescentis SPase in a food-grade B. subtilis strain. The results showed that SPase was efficiently secreted into the extracellular medium in the absence of a signal peptide. After culturing the recombinant strain in a 3-L bioreactor, crude SPase yield and activity reached 7.5 g/L and 5.3 U/mL, respectively, the highest levels reported to date. The optimal reaction conditions for kojibiose synthesis catalyzed by recombinant SPase were as follows: 0.5 M sucrose, 0.5 M glucose, 0.02 U enzyme /mg all_substrates , pH 7.0, 50 °C, and 30 h. Furthermore, the substrate-conversion rate reached 40.01%, with kojibiose accounting for 104.45 g/L and selectivity for kojibiose production at 97%. Here, we successfully expressed SPase in B. subtilis in the absence of a signal peptide and demonstrated its secretion into the extracellular medium. Our results indicated high levels of recombinant enzyme expression, with a substrate-conversion rate of 40.01%. These results provide a basis for large-scale preparation of kojibiose by the recombinant SPase.
NASA Astrophysics Data System (ADS)
Tamborini, D.; Portaluppi, D.; Villa, F.; Tisa, S.; Tosi, A.
2014-11-01
We present a Time-to-Digital Converter (TDC) card with a compact form factor, suitable for multichannel timing instruments or for integration into more complex systems. The TDC Card provides 10 ps timing resolution over the whole measurement range, which is selectable from 160 ns up to 10 μs, reaching 21 ps rms precision, 1.25% LSB rms differential nonlinearity, up to 3 Mconversion/s with 400 mW power consumption. The I/O edge card connector provides timing data readout through either a parallel bus or a 100 MHz serial interface and further measurement information like input signal rate and valid conversion rate (typically useful for time-correlated single-photon counting application) through an independent serial link.
Tamborini, D; Portaluppi, D; Villa, F; Tisa, S; Tosi, A
2014-11-01
We present a Time-to-Digital Converter (TDC) card with a compact form factor, suitable for multichannel timing instruments or for integration into more complex systems. The TDC Card provides 10 ps timing resolution over the whole measurement range, which is selectable from 160 ns up to 10 μs, reaching 21 ps rms precision, 1.25% LSB rms differential nonlinearity, up to 3 Mconversion/s with 400 mW power consumption. The I/O edge card connector provides timing data readout through either a parallel bus or a 100 MHz serial interface and further measurement information like input signal rate and valid conversion rate (typically useful for time-correlated single-photon counting application) through an independent serial link.
Schlichthorst, Marisa; King, Kylie; Turnure, Jackie; Sukunesan, Suku; Phelps, Andrea; Pirkis, Jane
2018-02-15
It has been suggested that some dominant aspects of traditional masculinity are contributing to the high suicide rates among Australian men. We developed a three-episode documentary called Man Up, which explores the complex relationship between masculinity and suicide and encourages men to question socially imposed rules about what it means to be a man and asks them to open up, express difficult emotions, and seek help if and when needed. We ran a three-phase social media campaign alongside the documentary using 5 channels (Twitter, Facebook, Instagram, YouTube, and Tumblr). This study aimed to examine the extent to which the Man Up Twitter campaign influenced the social media conversation about masculinity and suicide. We used Twitter insights data to assess the reach of and engagement with the campaign (using metrics on followers, likes, retweets, and impressions) and to determine the highest and lowest performing tweets in the campaign (using an aggregated performance measure of reactions). We used original content tweets to determine whether the campaign increased the volume of relevant Twitter conversations (aggregating the number of tweets for selected campaign hashtags over time), and we used a subset of these data to gain insight into the main content themes with respect to audience engagement. The campaign generated a strong following that was engaged with the content of the campaign; over its whole duration, the campaign earned approximately 5000 likes and 2500 retweets and gained around 1,022,000 impressions. The highest performing tweets posted by the host included video footage and occurred during the most active period of the campaign (around the screening of the documentary). The volume of conversations in relation to commonly used hashtags (#MANUP, #ABCMANUP, #LISTENUP, and #SPEAKUP) grew in direct relation to the campaign activities, achieving strongest growth during the 3 weeks when the documentary was aired. Strongest engagement was found with content related to help-seeking, masculinity, and expressing emotions. A number of followers tweeted personal stories that revealed overwhelmingly positive perceptions of the content of the documentary and strongly endorsed its messages. The Man Up Twitter campaign triggered conversations about masculinity and suicide that otherwise may not have happened. For some, this may have been game-changing in terms of shifting attitudes toward expressing emotions and reaching out to others for help. The campaign was particularly effective in disseminating information and promoting conversations in real time, an advantage that it had over more traditional health promotion campaigns. This sort of approach could well be adapted to other areas of mental (and physical) health promotion campaigns to increase their reach and effectiveness. ©Marisa Schlichthorst, Kylie King, Jackie Turnure, Suku Sukunesan, Andrea Phelps, Jane Pirkis. Originally published in JMIR Mental Health (http://mental.jmir.org), 15.02.2018.
Photoisomerization of alfa calcidol by a sensitized quantum chain reaction.
Estruch, Gastón A; Aramendía, Pedro F
2012-01-01
The production of vitamin D3 is a pharmaceutically relevant process, producing high added-value products. Precursors are extracts from vegetal origin but bearing mainly an E geometry in the 5,6 double bond. The synthesis of vitamin D3 (5-E-α-calcidol) with the correct Z stereochemistry in the 5,6 double bond from the E isomer using anthracene and triethylamine (TEA) as the sensitizer system was studied from the kinetic and mechanistic point of view. The sensitized isomerization of E-calcidol by irradiation of anthracene takes place only in deoxygenated solution and yields the Z isomer in ca 5% yield in the photostationary state. When TEA is added to the system, the E-Z reaction is not inhibited by oxygen any more, the quantum yield of photoisomerization to the Z isomer grows linearly with the concentration of E-calcidol, while conversions higher than 95% to the Z isomer are reached in the photostationary state and E-Z quantum yields as high as 45 at [E-calcidol] = 25 mM are reached. If TEA is replaced by 1,4-diazabicyclo[2.2.2]octane, the reaction rate drops to one-third at the same amine concentration. The observations can be explained by a quantum chain reaction mechanism. The high conversion achieved eliminates the need of isomer separation. © 2011 Wiley Periodicals, Inc. Photochemistry and Photobiology © 2011 The American Society of Photobiology.
NASA Astrophysics Data System (ADS)
Azhariyah, A. S.; Pradyasti, A.; Dianty, A. G.; Bismo, S.
2018-03-01
This research was based on ozone decomposition in industrial environment. Ozone is harmful to human. Therefore, catalysts were made as a mask filter to decompose ozone. Comparison studies of catalyst supports were done using Granular Activated Carbon (GAC), Natural Zeolite (NZ), and Green Sand (GS). GAC showed the highest catalytic activity compared to other supports with conversion of 98%. Meanwhile, the conversion using NZ was only 77% and GS had been just 27%. GAC had the highest catalytic activity because it had the largest pore volume, which is 0.478 cm3/g. So GAC was used as catalyst supports. To have a higher conversion in ozone decomposition, GAC was impregnated with metal oxide as the active site of the catalyst. Active site comparison was made using CuOX and ZnO as the active site. Morphology, composition, and crystal phase were analyzed using SEM-EDX, XRF, and XRD methods. Mask filter, which contained catalysts for ozone decomposition, was tested using a fixed bed reactor at room temperature and atmospheric pressure. The result of conversion was analyzed using iodometric method. CuOX/GAC and ZnO/GAC 2%-w showed the highest catalytic activity and conversion reached 100%. From the durability test, CuOX/GAC 2%-w was better than ZnO/GAC 2%-w because the conversion of ozone to oxygen reached 100% with the lowest conversion was 70% for over eight hours.
Ren, Hong-Yu; Liu, Bing-Feng; Kong, Fanying; Zhao, Lei; Xing, Defeng; Ren, Nan-Qi
2014-04-01
A two-stage process of sequential dark fermentative hydrogen production and microalgal cultivation was applied to enhance the energy conversion efficiency from high strength synthetic organic wastewater. Ethanol fermentation bacterium Ethanoligenens harbinense B49 was used as hydrogen producer, and the energy conversion efficiency and chemical oxygen demand (COD) removal efficiency reached 18.6% and 28.3% in dark fermentation. Acetate was the main soluble product in dark fermentative effluent, which was further utilized by microalga Scenedesmus sp. R-16. The final algal biomass concentration reached 1.98gL(-1), and the algal biomass was rich in lipid (40.9%) and low in protein (23.3%) and carbohydrate (11.9%). Compared with single dark fermentation stage, the energy conversion efficiency and COD removal efficiency of two-stage system remarkably increased 101% and 131%, respectively. This research provides a new approach for efficient energy production and wastewater treatment using a two-stage process combining dark fermentation and algal cultivation. Copyright © 2014 Elsevier Ltd. All rights reserved.
X-ray conversion efficiency of high-Z hohlraum wall materials for indirect drive ignition
NASA Astrophysics Data System (ADS)
Dewald, E. L.; Rosen, M.; Glenzer, S. H.; Suter, L. J.; Girard, F.; Jadaud, J. P.; Schein, J.; Constantin, C.; Wagon, F.; Huser, G.; Neumayer, P.; Landen, O. L.
2008-07-01
The conversion efficiency of 351nm laser light to soft x rays (0.1-5keV) was measured for Au, U, and high Z mixture "cocktails" used as hohlraum wall materials in indirect drive fusion experiments. For the spherical targets in a direct drive geometry, flattop laser pulses and laser smoothing with phase plates are employed to achieve constant and uniform laser intensities of 1014 and 1015W/cm2 over the target surface that are relevant for the future ignition experiments at the National Ignition Facility [G. H. Miller, E. I. Moses, and C. R. Wuest, Nucl. Fusion 44, 228 (2004)]. The absolute time and spectrally resolved radiation flux is measured with a multichannel soft x-ray power diagnostic. The conversion efficiency is then calculated by dividing the measured x-ray power by the incident laser power from which the measured laser backscattering losses are subtracted. After ˜0.5ns, the time resolved x-ray conversion efficiency reaches a slowly increasing plateau of 95% at 1014W/cm2 laser intensity and of 80% at 1015W/cm2. The M-band flux (2-5keV) is negligible at 1014W/cm2 reaching ˜1% of the total x-ray flux for all target materials. In contrast, the M-band flux is significant and depends on the target material at 1015W/cm2 laser intensity, reaching values between 10% of the total flux for U and 27% for Au. LASNEX simulations [G. B. Zimmerman and W. L. Kruer, Comm. Plasma Phys. Contr. Fusion 2, 51 (1975)] show good agreement in conversion efficiency and radiated spectra with data when using XSN atomic physics model and a flux limiter of 0.15, but they underestimate the generated M-band flux.
Breeding Perspectives and Programs at East Lansing
USDA-ARS?s Scientific Manuscript database
USDA-ARS sugar beet breeding activities for both Aphanomyces resistance and CMS/O-type conversion at East Lansing reach back to the 1940’s, with variety testing activities at Michigan State University reaching back to circa 1911. Many of those contributions are well known in the sugar beet breeding ...
Ammonia chemistry in a flameless jet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zieba, Mariusz; Schuster, Anja; Scheffknecht, Guenter
2009-10-15
In this paper, the nitrogen chemistry in an ammonia (NH{sub 3}) doped flameless jet is investigated using a kinetic reactor network model. The reactor network model is used to explain the main differences in ammonia chemistry for methane (CH{sub 4})-containing fuels and methane-free fuels. The chemical pathways of nitrogen oxides (NO{sub x}) formation and destruction are identified using rate-of-production analysis. The results show that in the case of natural gas, ammonia reacts relatively late at fuel lean condition leading to high NO{sub x} emissions. In the pre-ignition zone, the ammonia chemistry is blocked due to the absence of free radicalsmore » which are consumed by methane-methyl radical (CH{sub 3}) conversion. In the case of methane-free gas, the ammonia reacted very rapidly and complete decomposition was reached in the fuel rich region of the jet. In this case the necessary radicals for the ammonia conversion are generated from hydrogen (H{sub 2}) oxidation. (author)« less
Zhao, Lei; Cao, Guang-Li; Sheng, Tao; Ren, Hong-Yu; Wang, Ai-Jie; Zhang, Jian; Zhong, Ying-Juan; Ren, Nan-Qi
2017-11-01
Mycelia pellets were employed as biological carrier in a continuous stirred tank reactor to reduce biomass washout and enhance hydrogen production from cornstalk hydrolysate. Hydraulic retention time (HRT) and influent substrate concentration played critical roles on hydrogen production of the bioreactor. The maximum hydrogen production rate of 14.2mmol H 2 L -1 h -1 was obtained at optimized HRT of 6h and influent concentration of 20g/L, 2.6 times higher than the counterpart without mycelia pellets. With excellent immobilization ability, biomass accumulated in the reactor and reached 1.6g/L under the optimum conditions. Upon further energy conversion analysis, continuous hydrogen production with mycelia pellets gave the maximum energy conversion efficiency of 17.8%. These results indicate mycelia pellet is an ideal biological carrier to improve biomass retention capacity of the reactor and enhance hydrogen recovery efficiency from lignocellulosic biomass, and meanwhile provides a new direction for economic and efficient hydrogen production process. Copyright © 2017 Elsevier Ltd. All rights reserved.
Wu, Jingjie; Ma, Sichao; Sun, Jing; Gold, Jake I.; Tiwary, ChandraSekhar; Kim, Byoungsu; Zhu, Lingyang; Chopra, Nitin; Odeh, Ihab N.; Vajtai, Robert; Yu, Aaron Z.; Luo, Raymond; Lou, Jun; Ding, Guqiao; Kenis, Paul J. A.; Ajayan, Pulickel M.
2016-01-01
Electroreduction of carbon dioxide into higher-energy liquid fuels and chemicals is a promising but challenging renewable energy conversion technology. Among the electrocatalysts screened so far for carbon dioxide reduction, which includes metals, alloys, organometallics, layered materials and carbon nanostructures, only copper exhibits selectivity towards formation of hydrocarbons and multi-carbon oxygenates at fairly high efficiencies, whereas most others favour production of carbon monoxide or formate. Here we report that nanometre-size N-doped graphene quantum dots (NGQDs) catalyse the electrochemical reduction of carbon dioxide into multi-carbon hydrocarbons and oxygenates at high Faradaic efficiencies, high current densities and low overpotentials. The NGQDs show a high total Faradaic efficiency of carbon dioxide reduction of up to 90%, with selectivity for ethylene and ethanol conversions reaching 45%. The C2 and C3 product distribution and production rate for NGQD-catalysed carbon dioxide reduction is comparable to those obtained with copper nanoparticle-based electrocatalysts. PMID:27958290
Integration process of biodiesel production from filamentous oleaginous microalgae Tribonema minus.
Wang, Hui; Gao, Lili; Chen, Lin; Guo, Fajin; Liu, Tianzhong
2013-08-01
Biodiesel production from microalgae has been receiving considerable attention. Past studies mainly relied on tiny sized single-cell oleaginous microalgal species, the biodiesel based on filamentous oleaginous microalgae was rarely reported. Thus, integrated process of biodiesel production from filamentous oleaginous microalgal strain Tribonema minus was studied in this work. The filamentous microalgae was cultivated for 21 days in 40 L glass panel, microalgae cells was harvested by DAF without any flocculants after the lipid content was 50.23%. After that, total lipid was extracted by subcritical ethanol from wet algal paste and 44.55% of crude lipid was triacylglycerols. Two-step catalytic conversion of pre-esterification and transesterification was adopted to convert the crude algal oil to biodiesel. The conversion rate of triacylglycerols reached 96.52% under the methanol to oil molar ratio of 12:1 during catalysis with 2% potassium hydroxide at 65°C for 30 min. The biodiesel product from T. minus conformed to Chinese National Standards. Copyright © 2013 Elsevier Ltd. All rights reserved.
Reduction of NO/sub 2/ to NO by rush and other plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nishimura, H.; Hayamizu, T.; Yanagiawa, Y.
1986-04-01
Previously the authors reported that rush carpets used in Japanese houses had the capacity to adsorb ambient NO/sub 2/ and the capacity endured for several years. The fate of adsorbed NO/sub 2/ was investigated in the present report. The outlet gas of a contacting tube packed with test material was monitored with a chemiluminescence analyzer for NO/sub 2/ and NO. Rush, lawn grass, and ginkgo leaves were found to adsorb NO/sub 2/ and to liberate NO. At steady state, the conversion of adsorbed NO/sub 2/ to NO reached 70%. The high conversion meant the reduction of adsorbed NO/sub 2/ bymore » some organic matter. The reducing component was isolated by fractionation and identified as a kind of polysaccharide contained in the free sugar fraction of rush. The reduction rate was highly dependent on humidity, and a relation with clustered water in sugar was suggested. 8 references, 7 figures, 3 tables.« less
Efficient high-power narrow-linewidth all-fibred linearly polarized ytterbium laser source
NASA Astrophysics Data System (ADS)
Bertrand, Anthony; Liégeois, Flavien; Hernandez, Yves; Giannone, Domenico
2012-06-01
We report on experimental results on a high power, all-fibred, linearly polarized, mode-locked laser at 1.03 μm. The laser generates pulses of 40 ps wide at a repetition rate of 52 MHz, exhibiting 12 kW peak power. Dispersion in optical fibres is controlled to obtain both high power and narrow spectral linewidth. The average output power reached is 25 W with a spectral linewidth of 380 pm and a near diffraction limit beam (M2 < 1.2). This laser is an ideal candidate for applications like IR spectroscopy, where high peak power and narrow linewidth are required for subsequent wavelength conversion.
Calculation Methods and Conversions for Pesticide Application.
ERIC Educational Resources Information Center
Cole, Herbert, Jr.
This agriculture extension service publication from Pennsylvania State University consists of conversion tables and formulas for determining concentration and rate of application of pesticides. Contents include: (1) Area and volume conversions; (2) Important conversion formulae; (3) Conversions for rates of application; (4) Quantities of pesticide…
2000-05-01
significant increase in the LDL-C levels of patients (p=.113 for atorvastatin to simvastatin conversion, p=.072 for pravastatin to simvastatin conversion...the ability for a patient to reach their LDL-C goal (p=.571 for atorvastatin to simvastatin conversion, p=.579 for pravastatin to simvastatin...two were available under special order criteria ( atorvastatin and fluvastatin) during the period of FY 97 to FY 99. Due to double-digit inflation in the
Survival dynamics of scleractinian coral larvae and implications for dispersal
NASA Astrophysics Data System (ADS)
Graham, E. M.; Baird, A. H.; Connolly, S. R.
2008-09-01
Survival of pelagic marine larvae is an important determinant of dispersal potential. Despite this, few estimates of larval survival are available. For scleractinian corals, few studies of larval survival are long enough to provide accurate estimates of longevity. Moreover, changes in mortality rates during larval life, expected on theoretical grounds, have implications for the degree of connectivity among reefs and have not been quantified for any coral species. This study quantified the survival of larvae from five broadcast-spawning scleractinian corals ( Acropora latistella, Favia pallida, Pectinia paeonia, Goniastrea aspera, and Montastraea magnistellata) to estimate larval longevity, and to test for changes in mortality rates as larvae age. Maximum lifespans ranged from 195 to 244 d. These longevities substantially exceed those documented previously for coral larvae that lack zooxanthellae, and they exceed predictions based on metabolic rates prevailing early in larval life. In addition, larval mortality rates exhibited strong patterns of variation throughout the larval stage. Three periods were identified in four species: high initial rates of mortality; followed by a low, approximately constant rate of mortality; and finally, progressively increasing mortality after approximately 100 d. The lifetimes observed in this study suggest that the potential for long-distance dispersal may be substantially greater than previously thought. Indeed, detection of increasing mortality rates late in life suggests that energy reserves do not reach critically low levels until approximately 100 d after spawning. Conversely, increased mortality rates early in life decrease the likelihood that larvae transported away from their natal reef will survive to reach nearby reefs, and thus decrease connectivity at regional scales. These results show how variation in larval survivorship with age may help to explain the seeming paradox of high genetic structure at metapopulation scales, coupled with the maintenance of extensive geographic ranges observed in many coral species.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-15
... Maker has reached the Monthly Market Maker Cap, except for reversal and conversion strategies executed... reversal or conversion strategy \\8\\ execution. Today, the maximum rebate the Exchange will pay in a given month for QCC Orders is $275,000. Today, QCC Transaction Fees for a Specialist,\\9\\ Market Maker,\\10...
Pressure-enhanced ortho-para conversion in solid hydrogen up to 58 GPa.
Eggert, J H; Karmon, E; Hemley, R J; Mao, A; Goncharov, A F
1999-10-26
We measured the ortho-para conversion rate in solid hydrogen by using Raman scattering in a diamond-anvil cell, extending previous measurements by a factor of 60 in pressure. We confirm previous experiments that suggested a decrease in the conversion rate above about 0.5 GPa. We observe a distinct minimum at 3 GPa followed by a drastic increase in the conversion rate to our maximum pressure of 58 GPa. This pressure enhancement of conversion is not predicted by previous theoretical treatments and must be due to a new conversion pathway.
Katz, Mira L; Bauermeister, Jose A; Shoben, Abigail B; Paskett, Electra D; McRee, Annie-Laurie
2017-01-01
Background Web-based approaches, specifically social media sites, represent a promising approach for recruiting young gay and bisexual men for research studies. Little is known, however, about how the performance of social media advertisements (ads) used to recruit this population is affected by ad content (ie, image and text). Objective The aim of this study was to evaluate the effects of different images and text included in social media ads used to recruit young gay and bisexual men for the pilot test of a Web-based human papillomavirus (HPV) vaccination intervention. Methods In July and September 2016, we used paid Facebook advertisements to recruit men who were aged 18-25 years, self-identified as gay or bisexual, US resident, and had not received HPV vaccine. A 4x2x2 factorial experiment varied ad image (a single young adult male, a young adult male couple, a group of young adult men, or a young adult male talking to a doctor), content focus (text mentioning HPV or HPV vaccine), and disease framing (text mentioning cancer or a sexually transmitted disease [STD]). Poisson regression determined whether these experimental factors affected ad performance. Results The recruitment campaign reached a total of 35,646 users who viewed ads for 36,395 times. This resulted in an overall unique click-through rate of 2.01% (717/35,646) and an overall conversion rate of 0.66% (241/36,395). Reach was higher for ads that included an image of a couple (incidence rate ratio, IRR=4.91, 95% CI 2.68-8.97, P<.001) or a group (IRR=2.65, 95% CI 1.08-6.50, P=.03) compared with those that included an image of a single person. Ads that included an image of a couple also had a higher conversion rate (IRR=2.56, 95% CI 1.13-5.77, P=.02) than ads that included an image of a single person. Ads with text mentioning an STD had a higher unique click-through rate compared with ads with text mentioning cancer (IRR=1.34, 95% CI 1.06-1.69, P=.01). The campaign cost a total of US $413.72 and resulted in 150 eligible and enrolled individuals (US $2.76 per enrolled participant). Conclusions Facebook ads are a convenient and cost-efficient strategy for reaching and recruiting young gay and bisexual men for a Web-based HPV vaccination intervention. To help optimize ad performance among this population, researchers should consider the importance of the text and image included in the social media recruitment ads. PMID:28576758
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tamborini, D., E-mail: davide.tamborini@polimi.it; Portaluppi, D.; Villa, F.
We present a Time-to-Digital Converter (TDC) card with a compact form factor, suitable for multichannel timing instruments or for integration into more complex systems. The TDC Card provides 10 ps timing resolution over the whole measurement range, which is selectable from 160 ns up to 10 μs, reaching 21 ps rms precision, 1.25% LSB rms differential nonlinearity, up to 3 Mconversion/s with 400 mW power consumption. The I/O edge card connector provides timing data readout through either a parallel bus or a 100 MHz serial interface and further measurement information like input signal rate and valid conversion rate (typically usefulmore » for time-correlated single-photon counting application) through an independent serial link.« less
Compact 200 kHz HHG source driven by a few-cycle OPCPA
NASA Astrophysics Data System (ADS)
Harth, Anne; Guo, Chen; Cheng, Yu-Chen; Losquin, Arthur; Miranda, Miguel; Mikaelsson, Sara; Heyl, Christoph M.; Prochnow, Oliver; Ahrens, Jan; Morgner, Uwe; L'Huillier, Anne; Arnold, Cord L.
2018-01-01
We present efficient high-order harmonic generation (HHG) based on a high-repetition rate, few-cycle, near infrared (NIR), carrier-envelope phase stable, optical parametric chirped pulse amplifier (OPCPA), emitting 6 fs pulses with 9 μJ pulse energy. In krypton, we reach conversion efficiencies from the NIR to the extreme ultraviolet (XUV) radiation pulse energy on the order of ˜10-6 with less than 3 μJ driving pulse energy. This is achieved by optimizing the OPCPA for a spatially and temporally clean pulse and by a specially designed high-pressure gas target. In the future, the high efficiency of the HHG source will be beneficial for high-repetition rate two-colour (NIR-XUV) pump-probe experiments, where the available pulse energy from the laser has to be distributed economically between pump and probe pulses.
Hupp, Cliff R.; Schenk, Edward R.; Kroes, Daniel; Willard, Debra A.; Townsend, Phil A.; Peet, Robert K.
2015-01-01
The lower Roanoke River on the Coastal Plain of North Carolina is not embayed and maintains a floodplain that is among the largest on the mid-Atlantic Coast. This floodplain has been impacted by substantial aggradation in response to upstream colonial and post-colonial agriculture between the mid-eighteenth and mid-nineteenth centuries. Additionally, since the mid-twentieth century stream flow has been regulated by a series of high dams. We used artificial markers (clay pads), tree-ring (dendrogeomorphic) techniques, and pollen analyses to document sedimentation rates/amounts over short-, intermediate-, and long-term temporal scales, respectively. These analyses occurred along 58 transects at 378 stations throughout the lower river floodplain from near the Fall Line to the Albemarle Sound. Present sediment deposition rates ranged from 0.5 to 3.4 mm/y and 0.3 to 5.9 mm/y from clay pad and dendrogeomorphic analyses, respectively. Deposition rates systematically increased from upstream (high banks and floodplain) to downstream (low banks) reaches, except the lowest reaches. Conversely, legacy sediment deposition (A.D. 1725 to 1850) ranged from 5 to about 40 mm/y, downstream to upstream, respectively, and is apparently responsible for high banks upstream and large/wide levees along some of the middle stream reaches. Dam operations have selectively reduced levee deposition while facilitating continued backswamp deposition. A GIS-based model predicts 453,000 Mg of sediment is trapped annually on the floodplain and that little watershed-derived sediment reaches the Albemarle Sound. Nearly all sediment in transport and deposited is derived from the channel bed and banks. Legacy deposits (sources) and regulated discharges affect most aspects of present fluvial sedimentation dynamics. The lower river reflects complex relaxation conditions following both major human alterations, yet continues to provide the ecosystem service of sediment trapping.
Industrially relevant epoxy-acrylate hybrid resin photopolymerizations
NASA Astrophysics Data System (ADS)
Ajiboye, Gbenga I.
Photopolymerization of epoxy-acrylate hybrid resins takes advantages of inherent properties present in the free-radical and cationic reactions to reduce oxygen inhibition problems that plague free-radical reactions. Similarly, the combined reaction mechanisms reduce moisture sensitivity of the cationic reactions. Despite the advantages of epoxy-acrylate hybrid resins, problems persist that need to be addressed. For example, low conversion and polymerization rate of the epoxides are a problem, because the fast acrylate conversion prevents the epoxide from reaching high conversion. Controlling phase separation is challenging, since two moieties with different properties are reacting. The physical properties of the polymer will be impacted by the availability of different moieties. High shrinkage stress results from the acrylate moiety, causing buckling and cracking in film and coating applications. The overall goal of this study is to use the fundamental knowledge of epoxy-acrylate hybrid resins to formulate industrially viable polymers. In order to achieve this goal, the study focuses on the following objectives: (I) determine the apparent activation energy of the hybrid monomer METHB, (II) increase epoxide conversion and polymerization rate of hybrid formulations, and (III) control physical properties in epoxy-acrylate hybrid resins. In order to increase the epoxide conversion and rate of polymerization, the sensitivity of epoxides to alcohol is used to facilitate the activated monomer (AM) mechanism and induce a covalent bond between the epoxide and acrylate polymers through the hydroxyl group. It is hypothesized that if the AM mechanism is facilitated, epoxide conversion will increase. As a result, the resins can be tailored to control phase separation and physical properties, and shrinkage stress can be reduced. In pursuit of these objectives, the hybrid monomer METHB was polymerized at temperatures ranging from 30°C to 70°C to obtain apparent activation energy of 23.49 kJ/mol for acrylate and 57 kJ/mol for epoxide moeities. Then, hybrid systems pairing hydroxyl-containing acrylates with epoxides were formulated to promote the faster AM mechanism. Monomer composition was changed in the presence of hydroxyl-containing acrylate, and initiators were carefully selected in order to control phase separation. The conversion of acrylate and epoxide was monitored in real time by Raman spectroscopy. The physical and mechanical properties were monitored using dynamic mechanical analysis. Epoxide conversion and rate of polymerization in epoxide-acrylate hybrid monomer systems were shown to increase through the introduction of a hydroxyl group on the meth/acrylate monomer, taking advantage of the faster AM mechanism. In addition, this covalent bond linking the epoxide network to the meth/acrylate polymer chains resulted in little or no phase separation and a reduction of the Tg for the hybrid polymer compared to the neat epoxide. Fundamental knowledge gained from this research will enable the use of epoxy-acrylate hybrid resins in variety of applications. For instance, shrinkage may be reduced in dental fillings, noise and vibration problems in aircraft and other machinery may be controlled, and photopolymerization cost could be reduced in thin film applications.
POLYMERIZATION OF /cap alpha/-METHYLSTYRENE BY ELECTRON IRRADIATION (in German)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Braun, D.; Heufer, G.; Seufert, W.
1964-01-01
Ampoules of alpha -methylstyrene sealed under vacuum were irradiated with 1-Mev electrons in a type JS Van de Graaff generator; comparative experiments with gamma rays were carried out with a /sup 60/Co source of 3000 deg C. High doses of electrons (ca. 10/sup 8/ rad) are necessary for polymerization. The conversion is graphed as a function of dose at 0 deg C; it reaches a maximum plateau of 65% at 4 x 10/sup 8/ rad; this may point to radiolysis of the polymer at doses above this. Polymerization conversion increases with decreasing dose rate, when dose and temperature are heldmore » constant; and conversion increases with decreasing temperature (22% at --22 deg C; 10% at 15 deg C; <1% at 60 deg C), as has been found with gamma rays. In the solid state between --40 deg C and --80 deg C the maximum yield is only about 5%. The molecular weights of all poly- alpha -methylstyrenes thus formed lie between 3000 and 12,000, independently of dose rate and temperature. All polymethylstyrenes formed in the liquid state have approximately the same tacticity independent of temperature (isotactic about 20%; syndiotactic about 80%). This corresponds to the tacticity of polymers formed cationically with Lewis acids. In the solid state the tacticity is: isotactic 38%, syndiotactic, 62%, comparable with the tacticity of anionic polymerization. In the liquid state the tacticity and the sensitivity towards water indicate a cationic mechanism for the reaction. NMR studies also indicate a cationic mechanism. (BBB)« less
Yao, Jiandong; Zheng, Zhaoqiang; Yang, Guowei
2018-02-08
Solar energy-driven water evaporation lays a solid foundation for important photothermal applications such as sterilization, seawater desalination, and electricity generation. Due to the strong light-matter coupling, broad absorption wavelength range, and prominent quantum confinement effect, layered tin monoselenide (SnSe) holds a great potential to effectively harness solar irradiation and convert it to heat energy. In this study, SnSe is successfully deposited on a centimeter-scale nickel foam using a facile one-step pulsed-laser deposition approach. Importantly, the maximum evaporation rate of SnSe-coated nickel foam (SnSe@NF) reaches 0.85 kg m -2 h -1 , which is even 21% larger than that obtained with the commercial super blue coating (0.7 kg m -2 h -1 ) under the same condition. A systematic analysis reveals that its good photothermal conversion capability is attributed to the synergetic effect of multi-scattering-induced light trapping and the optimal trade-off between light absorption and phonon emission. Finally, the SnSe@NF device is further used for seawater evaporation, demonstrating a comparable evaporation rate (0.8 kg m -2 h -1 ) to that of fresh water and good stability over many cycles of usage. In summary, the current contribution depicts a facile one-step scenario for the economical and efficient solar-enabled SnSe@NF evaporation devices. More importantly, an in-depth analysis of the photothermal conversion mechanism underneath the layered materials depicts a fundamental paradigm for the design and application of photothermal devices based on them in the future.
Wellons, John C; Shannon, Chevis N; Holubkov, Richard; Riva-Cambrin, Jay; Kulkarni, Abhaya V; Limbrick, David D; Whitehead, William; Browd, Samuel; Rozzelle, Curtis; Simon, Tamara D; Tamber, Mandeep S; Oakes, W Jerry; Drake, James; Luerssen, Thomas G; Kestle, John
2017-07-01
OBJECTIVE Previous Hydrocephalus Clinical Research Network (HCRN) retrospective studies have shown a 15% difference in rates of conversion to permanent shunts with the use of ventriculosubgaleal shunts (VSGSs) versus ventricular reservoirs (VRs) as temporization procedures in the treatment of hydrocephalus due to high-grade intraventricular hemorrhage (IVH) of prematurity. Further research in the same study line revealed a strong influence of center-specific decision-making on shunt outcomes. The primary goal of this prospective study was to standardize decision-making across centers to determine true procedural superiority, if any, of VSGS versus VR as a temporization procedure in high-grade IVH of prematurity. METHODS The HCRN conducted a prospective cohort study across 6 centers with an approximate 1.5- to 3-year accrual period (depending on center) followed by 6 months of follow-up. Infants with premature birth, who weighed less than 1500 g, had Grade 3 or 4 IVH of prematurity, and had more than 72 hours of life expectancy were included in the study. Based on a priori consensus, decisions were standardized regarding the timing of initial surgical treatment, upfront shunt versus temporization procedure (VR or VSGS), and when to convert a VR or VSGS to a permanent shunt. Physical examination assessment and surgical technique were also standardized. The primary outcome was the proportion of infants who underwent conversion to a permanent shunt. The major secondary outcomes of interest included infection and other complication rates. RESULTS One hundred forty-five premature infants were enrolled and met criteria for analysis. Using the standardized decision rubrics, 28 infants never reached the threshold for treatment, 11 initially received permanent shunts, 4 were initially treated with endoscopic third ventriculostomy (ETV), and 102 underwent a temporization procedure (36 with VSGSs and 66 with VRs). The 2 temporization cohorts were similar in terms of sex, race, IVH grade, head (orbitofrontal) circumference, and ventricular size at temporization. There were statistically significant differences noted between groups in gestational age, birth weight, and bilaterality of clot burden that were controlled for in post hoc analysis. By Kaplan-Meier analysis, the 180-day rates of conversion to permanent shunts were 63.5% for VSGS and 74.0% for VR (p = 0.36, log-rank test). The infection rate for VSGS was 14% (5/36) and for VR was 17% (11/66; p = 0.71). The overall compliance rate with the standardized decision rubrics was noted to be 90% for all surgeons. CONCLUSIONS A standardized protocol was instituted across all centers of the HCRN. Compliance was high. Choice of temporization techniques in premature infants with IVH does not appear to influence rates of conversion to permanent ventricular CSF diversion. Once management decisions and surgical techniques are standardized across HCRN sites, thus minimizing center effect, the observed difference in conversion rates between VSGSs and VRs is mitigated.
Speech Rate Entrainment in Children and Adults With and Without Autism Spectrum Disorder.
Wynn, Camille J; Borrie, Stephanie A; Sellers, Tyra P
2018-05-03
Conversational entrainment, a phenomenon whereby people modify their behaviors to match their communication partner, has been evidenced as critical to successful conversation. It is plausible that deficits in entrainment contribute to the conversational breakdowns and social difficulties exhibited by people with autism spectrum disorder (ASD). This study examined speech rate entrainment in children and adult populations with and without ASD. Sixty participants including typically developing children, children with ASD, typically developed adults, and adults with ASD participated in a quasi-conversational paradigm with a pseudoconfederate. The confederate's speech rate was digitally manipulated to create slow and fast speech rate conditions. Typically developed adults entrained their speech rate in the quasi-conversational paradigm, using a faster rate during the fast speech rate conditions and a slower rate during the slow speech rate conditions. This entrainment pattern was not evident in adults with ASD or in children populations. Findings suggest that speech rate entrainment is a developmentally acquired skill and offers preliminary evidence of speech rate entrainment deficits in adults with ASD. Impairments in this area may contribute to the conversational breakdowns and social difficulties experienced by this population. Future work is needed to advance this area of inquiry.
A new-generation of Bacillus subtilis cell factory for further elevated scyllo-inositol production.
Tanaka, Kosei; Natsume, Ayane; Ishikawa, Shu; Takenaka, Shinji; Yoshida, Ken-Ichi
2017-04-21
A stereoisomer of inositol, scyllo-inositol (SI), has been regarded as a promising therapeutic agent for Alzheimer's disease. However, this compound is relatively rare, whereas another stereoisomer of inositol, myo-inositol (MI) is abundant in nature. Bacillus subtilis 168 has the ability to metabolize inositol stereoisomers, including MI and SI. Previously, we reported a B. subtilis cell factory with modified inositol metabolism that converts MI into SI in the culture medium. The strain was constructed by deleting all genes related to inositol metabolism and overexpressing key enzymes, IolG and IolW. By using this strain, 10 g/l of MI initially included in the medium was completely converted into SI within 48 h of cultivation in a rich medium containing 2% (w/v) Bacto soytone. When the initial concentration of MI was increased to 50 g/l, conversion was limited to 15.1 g/l of SI. Therefore, overexpression systems of IolT and PntAB, the main transporter of MI in B. subtilis and the membrane-integral nicotinamide nucleotide transhydrogenase in Escherichia coli respectively, were additionally introduced into the B. subtilis cell factory, but the conversion efficiency hardly improved. We systematically determined the amount of Bacto soytone necessary for ultimate conversion, which was 4% (w/v). As a result, the conversion of SI reached to 27.6 g/l within 48 h of cultivation. The B. subtilis cell factory was improved to yield a SI production rate of 27.6 g/l/48 h by simultaneous overexpression of IolT and PntAB, and by addition of 4% (w/v) Bacto soytone in the conversion medium. The concentration of SI was increased even in the stationary phase perhaps due to nutrients in the Bacto soytone that contribute to the conversion process. Thus, MI conversion to SI may be further optimized via identification and control of these unknown nutrients.
Green technology for conversion of renewable hydrocarbon based on plasma-catalytic approach
NASA Astrophysics Data System (ADS)
Fedirchyk, Igor; Nedybaliuk, Oleg; Chernyak, Valeriy; Demchina, Valentina
2016-09-01
The ability to convert renewable biomass into fuels and chemicals is one of the most important steps on our path to green technology and sustainable development. However, the complex composition of biomass poses a major problem for established conversion technologies. The high temperature of thermochemical biomass conversion often leads to the appearance of undesirable byproducts and waste. The catalytic conversion has reduced yield and feedstock range. Plasma-catalytic reforming technology opens a new path for biomass conversion by replacing feedstock-specific catalysts with free radicals generated in the plasma. We studied the plasma-catalytic conversion of several renewable hydrocarbons using the air plasma created by rotating gliding discharge. We found that plasma-catalytic hydrocarbon conversion can be conducted at significantly lower temperatures (500 K) than during the thermochemical ( 1000 K) and catalytic (800 K) conversion. By using gas chromatography, we determined conversion products and found that conversion efficiency of plasma-catalytic conversion reaches over 85%. We used obtained data to determine the energy yield of hydrogen in case of plasma-catalytic reforming of ethanol and compared it with other plasma-based hydrogen-generating systems.
Enhanced compositing of radiation disinfected sewage sludge
NASA Astrophysics Data System (ADS)
Kawakami, W.; Hashimoto, S.
Studies on isothermal composting of radiation disinfected sewage sludge and liquid chromatography of water extracts of the products were carried out. The optimum temperature and pH were around 50 °C and 7-8, respectively. The repeated use of products as seeds increased the rate of CO 2 evolution. The rate reached a maximum within 10 hours and decreased rapidly, and the CO 2 evolution ceased after about 3 days. The conversion of organic carbon to carbon dioxide attained to about 40% for the repeated use of products as seeds at the optimum conditions. As long as seeds in available were used, no remarkable difference was found in the composting of unirradiated and irradiated sludges. The composting process using radiation, however, can be carried out at the optimum conditions and is expected to shorten the composting period, because it is not necessary to keep fermentation temperature higher to reduce pathogen in sludge. Liquid chromatographic studies of the products showed that low molecular components decreased and higher molecular ones increased with fermentation. An index expressing the degree of reduction of easily decomposable organics was presented. The index also showed that the optimum temperature for fermentation was 50 °C, and that the easily decomposable organics disappeared above 30% of the conversion of organic carbon.
Sparse Learning with Stochastic Composite Optimization.
Zhang, Weizhong; Zhang, Lijun; Jin, Zhongming; Jin, Rong; Cai, Deng; Li, Xuelong; Liang, Ronghua; He, Xiaofei
2017-06-01
In this paper, we study Stochastic Composite Optimization (SCO) for sparse learning that aims to learn a sparse solution from a composite function. Most of the recent SCO algorithms have already reached the optimal expected convergence rate O(1/λT), but they often fail to deliver sparse solutions at the end either due to the limited sparsity regularization during stochastic optimization (SO) or due to the limitation in online-to-batch conversion. Even when the objective function is strongly convex, their high probability bounds can only attain O(√{log(1/δ)/T}) with δ is the failure probability, which is much worse than the expected convergence rate. To address these limitations, we propose a simple yet effective two-phase Stochastic Composite Optimization scheme by adding a novel powerful sparse online-to-batch conversion to the general Stochastic Optimization algorithms. We further develop three concrete algorithms, OptimalSL, LastSL and AverageSL, directly under our scheme to prove the effectiveness of the proposed scheme. Both the theoretical analysis and the experiment results show that our methods can really outperform the existing methods at the ability of sparse learning and at the meantime we can improve the high probability bound to approximately O(log(log(T)/δ)/λT).
Pressure-enhanced ortho-para conversion in solid hydrogen up to 58 GPa
Eggert, Jon H.; Karmon, Eran; Hemley, Russell J.; Mao, Ho-kwang; Goncharov, Alexander F.
1999-01-01
We measured the ortho-para conversion rate in solid hydrogen by using Raman scattering in a diamond-anvil cell, extending previous measurements by a factor of 60 in pressure. We confirm previous experiments that suggested a decrease in the conversion rate above about 0.5 GPa. We observe a distinct minimum at 3 GPa followed by a drastic increase in the conversion rate to our maximum pressure of 58 GPa. This pressure enhancement of conversion is not predicted by previous theoretical treatments and must be due to a new conversion pathway. PMID:10535910
Ardhaoui, M; Falcimaigne, A; Ognier, S; Engasser, J M; Moussou, P; Pauly, G; Ghoul, M
2004-06-10
Rutin and esculin were enzymatically acylated with different aliphatic acids as acyl donors (fatty acids, dicarboxylic acids and omega-substituted fatty acids) by an immobilized lipase from Candida antarctica. The effect of the water content and the acyl donors pattern on the flavonoid initial acylation rate and conversion yield were investigated. The obtained results indicated that the water content of the medium has a strong effect on the performance of these reactions. The best conversion yields were reached when the water content was kept lower than 200 ppm. At low water content of the medium, these syntheses are influenced by carbon chain length and substitution pattern of the acyl donors. Higher conversion yields of esculin and rutin (>70%) were obtained with aliphatic acids having high carbon chain length (>12). Moreover, it has been found that the amine and thiol groups on omega-substituted fatty acid chain were unfavourable to these reactions. The 1H NMR and 13C NMR analyses of some synthesized esters (esculin and rutin palmitate) show that only monoesters were produced and that the esterification takes place on the primary OH of glucose moiety of the esculin and on the secondary 4"'-OH of the rhamnose residue of rutin. Copyright 2004 Elsevier B.V.
Oğuz, Yüksel; Güney, İrfan; Çalık, Hüseyin
2013-01-01
The control strategy and design of an AC/DC/AC IGBT-PMW power converter for PMSG-based variable-speed wind energy conversion systems (VSWECS) operation in grid/load-connected mode are presented. VSWECS consists of a PMSG connected to a AC-DC IGBT-based PWM rectifier and a DC/AC IGBT-based PWM inverter with LCL filter. In VSWECS, AC/DC/AC power converter is employed to convert the variable frequency variable speed generator output to the fixed frequency fixed voltage grid. The DC/AC power conversion has been managed out using adaptive neurofuzzy controlled inverter located at the output of controlled AC/DC IGBT-based PWM rectifier. In this study, the dynamic performance and power quality of the proposed power converter connected to the grid/load by output LCL filter is focused on. Dynamic modeling and control of the VSWECS with the proposed power converter is performed by using MATLAB/Simulink. Simulation results show that the output voltage, power, and frequency of VSWECS reach to desirable operation values in a very short time. In addition, when PMSG based VSWECS works continuously with the 4.5 kHz switching frequency, the THD rate of voltage in the load terminal is 0.00672%. PMID:24453905
Oğuz, Yüksel; Güney, İrfan; Çalık, Hüseyin
2013-01-01
The control strategy and design of an AC/DC/AC IGBT-PMW power converter for PMSG-based variable-speed wind energy conversion systems (VSWECS) operation in grid/load-connected mode are presented. VSWECS consists of a PMSG connected to a AC-DC IGBT-based PWM rectifier and a DC/AC IGBT-based PWM inverter with LCL filter. In VSWECS, AC/DC/AC power converter is employed to convert the variable frequency variable speed generator output to the fixed frequency fixed voltage grid. The DC/AC power conversion has been managed out using adaptive neurofuzzy controlled inverter located at the output of controlled AC/DC IGBT-based PWM rectifier. In this study, the dynamic performance and power quality of the proposed power converter connected to the grid/load by output LCL filter is focused on. Dynamic modeling and control of the VSWECS with the proposed power converter is performed by using MATLAB/Simulink. Simulation results show that the output voltage, power, and frequency of VSWECS reach to desirable operation values in a very short time. In addition, when PMSG based VSWECS works continuously with the 4.5 kHz switching frequency, the THD rate of voltage in the load terminal is 0.00672%.
Gasification of refinery sludge in an updraft reactor for syngas production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmed, Reem; Eldmerdash, Usama; Sinnathambi, Chandra M., E-mail: chandro@petronas.com.my
2014-10-24
The study probes into the investigation on gasification of dry refinery sludge. The details of the study includes; influence of operation time, oxidation temperature and equivalence ratios on carbon gas conversion rate, gasification efficiency, heating value and fuel gas yield are presented. The results show that, the oxidation temperature increased sharply up to 858°C as the operating time increased up to 36 min then bridging occurred at 39 min which cause drop in reaction temperature up to 819 °C. This bridging was found to affect also the syngas compositions, meanwhile as the temperature decreased the CO, H{sub 2}, CH{sub 4}more » compositions are also found to be decreases. Higher temperature catalyzed the reduction reaction (CO{sub 2}+C = 450 2CO), and accelerated the carbon conversion and gasification efficiencies, resulted in more solid fuel is converted to a high heating value gas fuel. The equivalence ratio of 0.195 was found to be the optimum value for carbon conversion and cold gas efficiencies, high heating value of gas, and fuel gas yield to reach their maximum values of 96.1 % and 53.7 %, 5.42 MJ Nm{sup −3} of, and 2.5 Nm{sup 3} kg{sup −1} respectively.« less
Yang, Libin; Si, Buchun; Martins, Marcio Arêdes; Watson, Jamison; Chu, Huaqiang; Zhang, Yuanhui; Tan, Xiaobo; Zhou, Xuefei; Zhang, Yalei
2017-04-01
Hydrothermal liquefaction is a promising technology to convert wet biomass into bio-oil. However, post-hydrothermal liquefaction wastewater (PHWW) is also produced during the process. This wastewater contains a high concentration of organic compounds, including phenols and N-heterocyclic compounds which are two main inhibitors for biological treatment. Thus, proper treatment is required. In this work, ozone was used to convert phenols and N-heterocyclic compounds with a dosage range of 0-4.64 mg O 3 /mL PHWW. After ozone treatment, the phenols were fully converted, and acids were produced. However, N-heterocyclic compounds were found to have a low conversion rate (21.7%). The kinetic analysis for the degradation of phenols and N-heterocyclic compounds showed that the substitute played an important role in determining the priority of ozone reactions. The OH moiety in the ring compounds (phenols and pyridinol) may form hydroxyl radical, which lead to an efficient reaction. A substantial improved biodegradability of PHWW was observed after ozone treatment. The ratio of BOD 5 /COD was increased by about 32.36%, and reached a maximum of 0.41. The improved biodegradability of PHWW was justified by the conversion of phenols and N-heterocyclic compounds.
Commercially Available Activated Carbon Fiber Felt Enables Efficient Solar Steam Generation.
Li, Haoran; He, Yurong; Hu, Yanwei; Wang, Xinzhi
2018-03-21
Sun-driven steam generation is now possible and has the potential to help meet future energy needs. Current technologies often use solar condensers to increase solar irradiance. More recently, a technology for solar steam generation that uses heated surface water and low optical concentration is reported. In this work, a commercially available activated carbon fiber felt is used to generate steam efficiently under one sun illumination. The evaporation rate and solar conversion efficiency reach 1.22 kg m -2 h -1 and 79.4%, respectively. The local temperature of the evaporator with a floating activated carbon fiber felt reaches 48 °C. Apart from the high absorptivity (about 94%) of the material, the evaporation performance is enhanced thanks to the well-developed pores for improved water supply and steam escape and the low thermal conductivity, which enables reduced bulk water temperature increase. This study helps to find a promising material for solar steam generation using a water evaporator that can be produced economically (∼6 $/m 2 ) with long-term stability.
Great majority of recombination events in Arabidopsis are gene conversion events
Yang, Sihai; Yuan, Yang; Wang, Long; Li, Jing; Wang, Wen; Liu, Haoxuan; Chen, Jian-Qun; Hurst, Laurence D.; Tian, Dacheng
2012-01-01
The evolutionary importance of meiosis may not solely be associated with allelic shuffling caused by crossing-over but also have to do with its more immediate effects such as gene conversion. Although estimates of the crossing-over rate are often well resolved, the gene conversion rate is much less clear. In Arabidopsis, for example, next-generation sequencing approaches suggest that the two rates are about the same, which contrasts with indirect measures, these suggesting an excess of gene conversion. Here, we provide analysis of this problem by sequencing 40 F2 Arabidopsis plants and their parents. Small gene conversion tracts, with biased gene conversion content, represent over 90% (probably nearer 99%) of all recombination events. The rate of alteration of protein sequence caused by gene conversion is over 600 times that caused by mutation. Finally, our analysis reveals recombination hot spots and unexpectedly high recombination rates near centromeres. This may be responsible for the previously unexplained pattern of high genetic diversity near Arabidopsis centromeres. PMID:23213238
DOE Office of Scientific and Technical Information (OSTI.GOV)
Desai, S.G.; Converse, A.O.
1997-12-20
In an effort to better understand the role of the substrate in the rapid fall off in the rate of enzymatic hydrolysis of cellulose with conversion, substrate reactivity was measured as a function of conversion. These measurements were made by interrupting the hydrolysis of pretreated wood at various degrees of conversion; and, after boiling and washing, restarting the hydrolysis in fresh butter with fresh enzyme. The comparison of the restart rate per enzyme adsorbed with the initial rate per enzyme adsorbed, both extrapolated back to zero conversion, provides a measurement of the substrate reactivity without the complications of product inhibitionmore » or cellulase inactivation. The results indicate that the substrate reactivity falls only modestly as conversion increases. However, the restart rate is still higher than the rate of the uninterrupted hydrolysis, particularly at high conversion. Hence the authors conclude that the loss of substrate reactivity is not the principal cause for the long residence time required for complete conversion.« less
Code of Federal Regulations, 2010 CFR
2010-10-01
... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Product Recovery Rates for Groundfish Species and Conversion Rates for Pacific Halibut 3 Table 3 to Part 679 Wildlife and Fisheries FISHERY... Rates for Groundfish Species and Conversion Rates for Pacific Halibut ER28JA02.074 ER10JY02.000 ER28JA02...
GLASS TRANSITION AND DEGREE OF CONVERSION OF A LIGHT-CURED ORTHODONTIC COMPOSITE
Sostena, Michela M. D. S.; Nogueira, Renata A.; Grandini, Carlos R.; Moraes, João Carlos Silos
2009-01-01
Objective: This study evaluated the glass transition temperature (Tg) and degree of conversion (DC) of a light-cured (Fill Magic) versus a chemically cured (Concise) orthodontic composite. Material and Methods: Anelastic relaxation spectroscopy was used for the first time to determine the Tg of a dental composite, while the DC was evaluated by infrared spectroscopy. The light-cured composite specimens were irradiated with a commercial LED light-curing unit using different exposure times (40, 90 and 120 s). Results: Fill Magic presented lower Tg than Concise (35-84°C versus 135°C), but reached a higher DC. Conclusions: The results of this study suggest that Fill Magic has lower Tg than Concise due to its higher organic phase content, and that when this light-cured composite is used to bond orthodontic brackets, a minimum energy density of 7.8 J/cm2 is necessary to reach adequate conversion level and obtain satisfactory adhesion. PMID:20027428
ICRF fast wave current drive and mode conversion current drive in EAST tokamak
NASA Astrophysics Data System (ADS)
Yin, L.; Yang, C.; Gong, X. Y.; Lu, X. Q.; Du, D.; Chen, Y.
2017-10-01
Fast wave in the ion-cyclotron resonance frequency (ICRF) range is a promising candidate for non-inductive current drive (CD), which is essential for long pulse and high performance operation of tokamaks. A numerical study on the ICRF fast wave current drive (FWCD) and mode-conversion current drive (MCCD) in the Experimental Advanced Superconducting Tokamak (EAST) is carried out by means of the coupled full wave and Ehst-Karney parameterization methods. The results show that FWCD efficiency is notable in two frequency regimes, i.e., f ≥ 85 MHz and f = 50-65 MHz, where ion cyclotron absorption is effectively avoided, and the maximum on-axis driven current per unit power can reach 120 kA/MW. The sensitivity of the CD efficiency to the minority ion concentration is confirmed, owing to fast wave mode conversion, and the peak MCCD efficiency is reached for 22% minority-ion concentration. The effects of the wave-launch position and the toroidal wavenumber on the efficiency of current drive are also investigated.
NASA Astrophysics Data System (ADS)
Shabanov, N. S.; Isaev, A. B.; Orudzhev, F. F.; Murliev, E. K.
2018-01-01
The solar-energy conversion in eosin-sensitized solar cells based on cobalt and yttrium modified TiO2 nanotubes has been studied.It is established that the doping with metal ions shifts the absorption edge for Co and Y doped titanium dioxide samples to longer and shorter wavelengths, respectively. The efficiency of solar energy conversion depends on the wide bandgap of the semiconductor anode and reaches a maximum (4.4%) for yttrium-doped TiO2 in comparison to that (4.1%) for pure titanium dioxide.
Do conversations with virtual avatars increase feelings of social anxiety?
Powers, Mark B; Briceno, Nicole F; Gresham, Robert; Jouriles, Ernest N; Emmelkamp, Paul M G; Smits, Jasper A J
2013-05-01
Virtual reality (VR) technology provides a way to conduct exposure therapy with patients with social anxiety. However, the primary limitation of current technology is that the operator is limited to pre-programed avatars that cannot be controlled to interact/converse with the patient in real time. The current study piloted new technology allowing the operator to directly control the avatar (including speaking) during VR conversations. Using an incomplete repeated measures (VR vs. in vivo conversation) design and random starting order with rotation counterbalancing, participants (N = 26) provided ratings of fear and presence during both VR and in vivo conversations. Results showed that VR conversation successfully elevated fear ratings relative to baseline (d = 2.29). Participants also rated their fear higher during VR conversation than during in vivo conversation (d = 0.85). However, in vivo conversation was rated as more realistic than VR conversation (d = 0.74). No participants dropped out and 100% completed both VR and in vivo conversations. Qualitative participant comments suggested that the VR conversations would be more realistic if they did not meet the actor/operator and if they were not in the same room as the participant. Overall, the data suggest that the novel technology allowing real time interaction/conversation in VR may prove useful for the treatment of social anxiety in future studies. Copyright © 2013 Elsevier Ltd. All rights reserved.
Highly-efficient enzymatic conversion of crude algal oils into biodiesel.
Wang, Yao; Liu, Jin; Gerken, Henri; Zhang, Chengwu; Hu, Qiang; Li, Yantao
2014-11-01
Energy-intensive chemical conversion of crude algal oils into biodiesel is a major barrier for cost-effective algal biofuel production. To overcome this problem, we developed an enzyme-based platform for conversion of crude algal oils into fatty acid methyl esters. Crude algal oils were extracted from the oleaginous microalga Nannochloropsis oceanica IMET1 and converted by an immobilized lipase from Candida antarctica. The effects of different acyl acceptors, t-butanol as a co-solvent, oil to t-butanol ratio, oil to methanol ratio, temperature and reaction time on biodiesel conversion efficiency were studied. The conversion efficiency reached 99.1% when the conversion conditions were optimized, i.e., an oil to t-butanol weight ratio of 1:1, an oil to methanol molar ratio of 1:12, and a reaction time of 4h at 25°C. The enzymatic conversion process developed in this study may hold a promise for low energy consumption, low wastewater-discharge biochemical conversion of algal feedstocks into biofuels. Published by Elsevier Ltd.
Meiotic gene-conversion rate and tract length variation in the human genome.
Padhukasahasram, Badri; Rannala, Bruce
2013-02-27
Meiotic recombination occurs in the form of two different mechanisms called crossing-over and gene-conversion and both processes have an important role in shaping genetic variation in populations. Although variation in crossing-over rates has been studied extensively using sperm-typing experiments, pedigree studies and population genetic approaches, our knowledge of variation in gene-conversion parameters (ie, rates and mean tract lengths) remains far from complete. To explore variability in population gene-conversion rates and its relationship to crossing-over rate variation patterns, we have developed and validated using coalescent simulations a comprehensive Bayesian full-likelihood method that can jointly infer crossing-over and gene-conversion rates as well as tract lengths from population genomic data under general variable rate models with recombination hotspots. Here, we apply this new method to SNP data from multiple human populations and attempt to characterize for the first time the fine-scale variation in gene-conversion parameters along the human genome. We find that the estimated ratio of gene-conversion to crossing-over rates varies considerably across genomic regions as well as between populations. However, there is a great degree of uncertainty associated with such estimates. We also find substantial evidence for variation in the mean conversion tract length. The estimated tract lengths did not show any negative relationship with the local heterozygosity levels in our analysis.European Journal of Human Genetics advance online publication, 27 February 2013; doi:10.1038/ejhg.2013.30.
COAL/POLYMER COPROCESSING WITH EFFICIENT USE OF HYDROGEN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dr. Linda J. Broadbelt; Matthew J. DeWitt; Hsi-Wu Wong
2000-09-30
The final project period was devoted to investigating the binary mixture pyrolysis of polypropylene and polystyrene. Their interactions were assessed in order to provide a baseline for experiments with multicomponent mixtures of polymers with coal. Pyrolysis of polypropylene, polystyrene and their binary mixture was investigated at temperatures of 350 C and 420 C with reaction times from 1 to 180 minutes. Two different loadings, 10 mg and 20 mg, were studied for neat polypropylene and polystyrene to assess the effect of total pressure on product yields and selectivities. For neat pyrolysis of polypropylene, total conversion was much higher at 420more » C, and no significant effect of loading on the total conversion was observed. Four classes of products, alkanes, alkenes, dienes, and aromatic compounds, were observed, and their distribution was explained by a typical free radical mechanism. For neat polystyrene pyrolysis, conversion reached approximately 75% at 350 C, while at 420 C the conversion reached a maximum around 90% at 10 minutes and decreased at longer times because of condensation reactions. The selectivities to major products were slightly different for the two different loadings due to the effect of total reaction pressure on secondary reactions. For binary mixture pyrolysis, the overall conversion was higher than the average of the two neat cases. The conversion of polystyrene remained the same, but a significant enhancement in the polypropylene conversion was observed. This suggests that the less reactive polypropylene was initiated by polystyrene-derived radicals. These results are summarized in detail in an attached manuscript that is currently in preparation. The other results obtained during the lifetime of this grant are documented in the set of attached manuscripts.« less
Xu, Lisheng; Wang, Zhiyuan; Mao, Pingting; Liu, Junzhong; Zhang, Hongjuan; Liu, Qian; Jiao, Qing-Cai
2013-04-01
An economical method for production of S-phenyl-L-cysteine from keratin acid hydrolysis wastewater (KHW) containing L-serine was developed by recombinant tryptophan synthase. This study provides us with an alternative KHW utilization strategy to synthesize S-phenyl-L-cysteine. Tryptophan synthase could efficiently convert L-serine contained in KHW to S-phenyl-L-cysteine at pH 9.0, 40°C and Trion X-100 of 0.02%. In a scale up study, L-serine conversion rate reach 97.1% with a final S-phenyl-L-cysteine concentration of 38.6 g l(-1). Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhou, Xiuhong; Ge, Chunmei; Yao, Jianming; Pan, Renrui; Yu, Zengliang
2005-10-01
In order to obtain an industrial strain with a higher L(+)-lactic acid yield, the strain Rhizopus oryzae RF3608 was mutated by means of nitrogen ion beam implantation and the mutant strain RLC41-6 was isolated. Under optimal conditions the yield of L(+)-lactic acid produced in a shake-flask reached 133 g/L-137 g/L after 36 h cultivation, indicating that the conversion rate based on glucose was as high as 88%-91% and the productivity was 3.75 g/L.h. It was almost a 115% increase in lactic acid production compared with the original strain RF3608.
High energy 523 nm ND:YLF pulsed slab laser with novel pump beam waveguide design
NASA Astrophysics Data System (ADS)
Yang, Qi; Zhu, Xiaolei; Ma, Jian; Lu, Tingting; Ma, Xiuhua; Chen, Weibiao
2015-11-01
A laser diode pumped Nd:YLF master oscillator power amplifier (MOPA) green laser system with high pulse energy and high stable output is demonstrated. At a repetition rate of 50 Hz, 840 mJ pulse energy, 9.1 ns pulse width of 1047 nm infrared laser emitting is obtained from the MOPA system. The corresponding peak power is 93 MW. Extra-cavity frequency doubling with a LiB3O5 crystal, pulse energy of 520 mJ at 523 nm wavelength is achieved. The frequency conversion efficiency reaches up to 62%. The output pulse energy instability of the laser system is less than 0.6% for one hour.
Hoffart, Eugenia; Grenz, Sebastian; Lange, Julian; Nitschel, Robert; Müller, Felix; Schwentner, Andreas; Feith, André; Lenfers-Lücker, Mira; Takors, Ralf; Blombach, Bastian
2017-09-08
The productivity of industrial fermentation processes is essentially limited by the biomass specific substrate consumption rate (q S ) of the applied microbial production system. Since q S depends on the growth rate (μ), we highlight the potential of the fastest growing non-pathogenic bacterium, Vibrio natriegens , as novel candidate for future biotechnological processes. V. natriegens grows rapidly in BHIN complex medium with a μ of up to 4.43 h -1 (doubling time of 9.4 min) as well as in minimal medium supplemented with various industrially relevant substrates. Bioreactor cultivations in minimal medium with glucose showed that V. natriegens possesses an exceptionally high q S under aerobic (3.90 ± 0.08 g g -1 h -1 ) and anaerobic (7.81 ± 0.71 g g -1 h -1 ) conditions. Fermentations with resting cells of genetically engineered V. natriegens under anaerobic conditions yielded an overall volumetric productivity of 0.56 ± 0.10 g alanine L -1 min -1 (i.e. 34 g L -1 h -1 ). These inherent properties render V. natriegens a promising new microbial platform for future industrial fermentation processes operating with high productivity. Importance Low conversion rates are one major challenge to realize microbial fermentation processes for the production of commodities operating competitively to existing petrochemical approaches. For this reason, we screened for a novel platform organism possessing superior characteristics to traditionally employed microbial systems. We identified the fast growing Vibrio natriegens which exhibits a versatile metabolism and shows striking growth and conversion rates, as a solid candidate to reach outstanding productivities. Due to these inherent characteristics V. natriegens can speed up common laboratory routines, is suitable for already existing production procedures, and forms an excellent foundation to engineer next generation bioprocesses. Copyright © 2017 American Society for Microbiology.
NASA Astrophysics Data System (ADS)
Chen, Lijuan; Wang, Zhengping; Yu, Haohai; Zhuang, Shidong; Han, Shuo; Zhao, Yongguang; Xu, Xinguang
2012-11-01
Diode-end-pumped high-power Nd:GdVO4 lasers at 1083 nm are presented. The maximum continuous-wave output power was 10.1 W with an optical conversion efficiency of 31.3%. For acoustooptic (AO) Q-switched operation, the largest pulse energy, shortest pulse width, and highest peak power were 111 µJ, 77 ns, and 1.44 kW, respectively. By decreasing the 1063 nm transmission of the output coupler, we also achieved efficient CW dual-wavelength operation at 1083 and 1063 nm. Their total output power reached 6.7 W, and the optical conversion efficiency reached 31.6%. These lasers have special requirements in the treatment of facial telangiectasia.
NASA Astrophysics Data System (ADS)
Michelini, Fabienne; Crépieux, Adeline; Beltako, Katawoura
2017-05-01
We discuss some thermodynamic aspects of energy conversion in electronic nanosystems able to convert light energy into electrical or/and thermal energy using the non-equilibrium Green’s function formalism. In a first part, we derive the photon energy and particle currents inside a nanosystem interacting with light and in contact with two electron reservoirs at different temperatures. Energy conservation is verified, and radiation laws are discussed from electron non-equilibrium Green’s functions. We further use the photon currents to formulate the rate of entropy production for steady-state nanosystems, and we recast this rate in terms of efficiency for specific photovoltaic-thermoelectric nanodevices. In a second part, a quantum dot based nanojunction is closely examined using a two-level model. We show analytically that the rate of entropy production is always positive, but we find numerically that it can reach negative values when the derived particule and energy currents are empirically modified as it is usually done for modeling realistic photovoltaic systems.
Michelini, Fabienne; Crépieux, Adeline; Beltako, Katawoura
2017-05-04
We discuss some thermodynamic aspects of energy conversion in electronic nanosystems able to convert light energy into electrical or/and thermal energy using the non-equilibrium Green's function formalism. In a first part, we derive the photon energy and particle currents inside a nanosystem interacting with light and in contact with two electron reservoirs at different temperatures. Energy conservation is verified, and radiation laws are discussed from electron non-equilibrium Green's functions. We further use the photon currents to formulate the rate of entropy production for steady-state nanosystems, and we recast this rate in terms of efficiency for specific photovoltaic-thermoelectric nanodevices. In a second part, a quantum dot based nanojunction is closely examined using a two-level model. We show analytically that the rate of entropy production is always positive, but we find numerically that it can reach negative values when the derived particule and energy currents are empirically modified as it is usually done for modeling realistic photovoltaic systems.
A smart repetitive-rate wideband high power microwave source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Wei; Zhang, Jun; Qian, Bao-liang
2016-01-15
A smart repetitive-rate wideband High Power Microwave (HPM) source based on the A6 Magnetron with Diffraction Output is described in this paper. The length of the HPM source is 30 cm and its weight is 35 kg. Computer simulations show that the source can produce microwave with central frequency of 1.91 GHz and bandwidth of about 11%. Experimental measurements show that the output microwave power from the source reaches in maximum 110 MW when the input electric power from the pulsed driver is ∼500 MW, which gives the power conversion efficiency 22%. Central frequency of the output HPM in the experiment is 1.94 GHz withmore » the bandwidth ranging from 1.82 GHz to 2.02 GHz. The jitter of the output HPM power is lower than 3 dB when the source operates in the repetition mode with 50 Hz rate.« less
Liu, Qing; Cheng, Ke-ke; Zhang, Jian-an; Li, Jin-ping; Wang, Ge-hua
2010-01-01
A central composite design of the response surface methodology (RSM) was employed to study the effects of temperature, enzyme concentration, and stirring rate on recycled-paper enzymatic hydrolysis. Among the three variables, temperature and enzyme concentration significantly affected the conversion efficiency of substrate, whereas stirring rate was not effective. A quadratic polynomial equation was obtained for enzymatic hydrolysis by multiple regression analysis using RSM. The results of validation experiments were coincident with the predicted model. The optimum conditions for enzymatic hydrolysis were temperature, enzyme concentration, and stirring rate of 43.1 degrees C, 20 FPU g(-1) substrate, and 145 rpm, respectively. In the subsequent simultaneous saccharification and fermentation (SSF) experiment under the optimum conditions, the highest 28.7 g ethanol l(-1) was reached in the fed-batch SSF when 5% (w/v) substrate concentration was used initially, and another 5% added after 12 h fermentation. This ethanol output corresponded to 77.7% of the theoretical yield based on the glucose content in the raw material.
Selig, Daniela; Haenel, Thomas; Hausnerová, Berenika; Moeginger, Bernhard; Labrie, Daniel; Sullivan, Braden; Price, Richard B T
2015-05-01
Exposure reciprocity suggests that, as long as the same radiant exposure is delivered, different combinations of irradiance and exposure time will achieve the same degree of resin polymerization. This study examined the validity of exposure reciprocity using real time degree of conversion results from one commercial flowable dental resin. Additionally a new fitting function to describe the polymerization kinetics is proposed. A Plasma Arc Light Curing Unit (LCU) was used to deliver 0.75, 1.2, 1.5, 3.7 or 7.5 W/cm(2) to 2mm thick samples of Tetric EvoFlow (Ivoclar Vivadent). The irradiances and radiant exposures received by the resin were determined using an integrating sphere connected to a fiber-optic spectrometer. The degree of conversion (DC) was recorded at a rate of 8.5 measurements a second at the bottom of the resin using attenuated total reflectance Fourier Transform mid-infrared spectroscopy (FT-MIR). Five specimens were exposed at each irradiance level. The DC reached after 170s and after 5, 10 and 15 J/cm(2) had been delivered was compared using analysis of variance and Fisher's PLSD post hoc multiple comparison tests (alpha=0.05). The same DC values were not reached after the same radiant exposures of 5, 10 and 15 J/cm(2) had been delivered at an irradiance of 3.7 and 7.5 W/cm(2). Thus exposure reciprocity was not supported for Tetric EvoFlow (p<0.05). For Tetric EvoFlow, there was no significant difference in the DC when 5, 10 and 15J/cm(2) were delivered at irradiance levels of 0.75, 1.2 and 1.5 W/cm(2). The optimum combination of irradiance and exposure time for this commercial dental resin may be close to 1.5 W/cm(2) for 12s. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Two-stage dilute-acid and organic-solvent lignocellulosic pretreatment for enhanced bioprocessing.
Brodeur, G; Telotte, J; Stickel, J J; Ramakrishnan, S
2016-11-01
A two stage pretreatment approach for biomass is developed in the current work in which dilute acid (DA) pretreatment is followed by a solvent based pretreatment (N-methyl morpholine N oxide - NMMO). When the combined pretreatment (DAWNT) is applied to sugarcane bagasse and corn stover, the rates of hydrolysis and overall yields (>90%) are seen to dramatically improve and under certain conditions 48h can be taken off the time of hydrolysis with the additional NMMO step to reach similar conversions. DAWNT shows a 2-fold increase in characteristic rates and also fractionates different components of biomass - DA treatment removes the hemicellulose while the remaining cellulose is broken down by enzymatic hydrolysis after NMMO treatment to simple sugars. The remaining residual solid is high purity lignin. Future work will focus on developing a full scale economic analysis of DAWNT for use in biomass fractionation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Two-stage dilute-acid and organic-solvent lignocellulosic pretreatment for enhanced bioprocessing
Brodeur, G.; Telotte, J.; Stickel, J. J.; ...
2016-08-26
A two stage pretreatment approach for biomass is developed in the current work in which dilute acid (DA) pretreatment is followed by a solvent based pretreatment (N-methyl morpholine N oxide -- NMMO). When the combined pretreatment (DAWNT) is applied to sugarcane bagasse and corn stover, the rates of hydrolysis and overall yields (>90%) are seen to dramatically improve and under certain conditions 48 h can be taken off the time of hydrolysis with the additional NMMO step to reach similar conversions. DAWNT shows a 2-fold increase in characteristic rates and also fractionates different components of biomass -- DA treatment removesmore » the hemicellulose while the remaining cellulose is broken down by enzymatic hydrolysis after NMMO treatment to simple sugars. The remaining residual solid is high purity lignin. Lastly, future work will focus on developing a full scale economic analysis of DAWNT for use in biomass fractionation.« less
5 CFR 534.406 - Conversion to the SES pay system.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 5 Administrative Personnel 1 2011-01-01 2011-01-01 false Conversion to the SES pay system. 534.406... UNDER OTHER SYSTEMS Pay and Performance Awards Under the Senior Executive Service § 534.406 Conversion... senior executive's converted rate of basic pay. Conversion to a new SES rate of basic pay is not...
Optimal Design of Magnetic ComponentsinPlasma Cutting Power Supply
NASA Astrophysics Data System (ADS)
Jiang, J. F.; Zhu, B. R.; Zhao, W. N.; Yang, X. J.; Tang, H. J.
2017-10-01
Phase-shifted transformer and DC reactor are usually needed in chopper plasma cutting power supply. Because of high power rate, the loss of magnetic components may reach to several kilowatts, which seriously affects the conversion efficiency. Therefore, it is necessary to research and design low loss magnetic components by means of efficient magnetic materials and optimal design methods. The main task in this paper is to compare the core loss of different magnetic material, to analyze the influence of transformer structure, winding arrangement and wire structure on the characteristics of magnetic component. Then another task is to select suitable magnetic material, structure and wire in order to reduce the loss and volume of magnetic components. Based on the above outcome, the optimization design process of transformer and dc reactor are proposed in chopper plasma cutting power supply with a lot of solutions. These solutions are analyzed and compared before the determination of the optimal solution in order to reduce the volume and power loss of the two magnetic components and improve the conversion efficiency of plasma cutting power supply.
Savvas, Savvas; Donnelly, Joanne; Patterson, Tim P; Dinsdale, Richard; Esteves, Sandra R
2017-03-01
A novel eco-engineered mixed anaerobic culture was successfully demonstrated for the first time to be capable of continuous regeneration in nutrient limiting conditions. Microbial catabolism has been found to support a closed system of nutrients able to enrich a culture of lithotrophic methanogens and provide microbial cell recycling. After enrichment, the hydrogenotrophic species was the dominating methanogens while a bacterial substratum was responsible for the redistribution of nutrients. q-PCR results indicated that 7% of the total population was responsible for the direct conversion of the gases. The efficiency of H 2 /CO 2 conversion to CH 4 reached 100% at a gassing rate of above 60v/v/d. The pH of the culture media was effectively sustained at optimal levels (pH 7-8) through a buffering system created by the dissolved CO 2 . The novel approach can reduce the process nutrient/metal requirement and enhance the environmental and financial performance of hydrogenotrophic methanogenesis for renewable energy storage. Copyright © 2016 Elsevier Ltd. All rights reserved.
Measurements of ion-molecule reactions of He plus, H plus, HeH plus with H sub 2 and D sub 2
NASA Technical Reports Server (NTRS)
Johnsen, R.; Biondi, M. A.
1974-01-01
A drift tube mass spectrometer apparatus has been used to determine the rate coefficient, energy dependence and product ions of the reaction He(+) +H2. The total rate coefficient at 300 K is 1.1 plus or minus 0.1) 10 to minus 13th power cu cm/sec. The reaction proceeds principally by dissociative charge transfer to produce H(+), with the small remainder going by charge transfer to produce H2(+) and by atom rearrangement to produce HeH(+). The rate coefficient increases slowly with increasing ion mean energy, reaching a value of 2.8 x ten to the minus 13th power cu cm sec at 0.18 eV. The corresponding reaction with deuterium, He(+) + D2, exhibits a value (5 plus or minus 1) x 10 to the minus 14th cu cm/sec at 300K. The reaction rates for conversion of H(+) and HeH(+) to H3(+) on collisions with H2 molecules are found to agree well with results of previous investigations.
Streak camera imaging of single photons at telecom wavelength
NASA Astrophysics Data System (ADS)
Allgaier, Markus; Ansari, Vahid; Eigner, Christof; Quiring, Viktor; Ricken, Raimund; Donohue, John Matthew; Czerniuk, Thomas; Aßmann, Marc; Bayer, Manfred; Brecht, Benjamin; Silberhorn, Christine
2018-01-01
Streak cameras are powerful tools for temporal characterization of ultrafast light pulses, even at the single-photon level. However, the low signal-to-noise ratio in the infrared range prevents measurements on weak light sources in the telecom regime. We present an approach to circumvent this problem, utilizing an up-conversion process in periodically poled waveguides in Lithium Niobate. We convert single photons from a parametric down-conversion source in order to reach the point of maximum detection efficiency of commercially available streak cameras. We explore phase-matching configurations to apply the up-conversion scheme in real-world applications.
Reiter, Paul L; Katz, Mira L; Bauermeister, Jose A; Shoben, Abigail B; Paskett, Electra D; McRee, Annie-Laurie
2017-06-02
Web-based approaches, specifically social media sites, represent a promising approach for recruiting young gay and bisexual men for research studies. Little is known, however, about how the performance of social media advertisements (ads) used to recruit this population is affected by ad content (ie, image and text). The aim of this study was to evaluate the effects of different images and text included in social media ads used to recruit young gay and bisexual men for the pilot test of a Web-based human papillomavirus (HPV) vaccination intervention. In July and September 2016, we used paid Facebook advertisements to recruit men who were aged 18-25 years, self-identified as gay or bisexual, US resident, and had not received HPV vaccine. A 4x2x2 factorial experiment varied ad image (a single young adult male, a young adult male couple, a group of young adult men, or a young adult male talking to a doctor), content focus (text mentioning HPV or HPV vaccine), and disease framing (text mentioning cancer or a sexually transmitted disease [STD]). Poisson regression determined whether these experimental factors affected ad performance. The recruitment campaign reached a total of 35,646 users who viewed ads for 36,395 times. This resulted in an overall unique click-through rate of 2.01% (717/35,646) and an overall conversion rate of 0.66% (241/36,395). Reach was higher for ads that included an image of a couple (incidence rate ratio, IRR=4.91, 95% CI 2.68-8.97, P<.001) or a group (IRR=2.65, 95% CI 1.08-6.50, P=.03) compared with those that included an image of a single person. Ads that included an image of a couple also had a higher conversion rate (IRR=2.56, 95% CI 1.13-5.77, P=.02) than ads that included an image of a single person. Ads with text mentioning an STD had a higher unique click-through rate compared with ads with text mentioning cancer (IRR=1.34, 95% CI 1.06-1.69, P=.01). The campaign cost a total of US $413.72 and resulted in 150 eligible and enrolled individuals (US $2.76 per enrolled participant). Facebook ads are a convenient and cost-efficient strategy for reaching and recruiting young gay and bisexual men for a Web-based HPV vaccination intervention. To help optimize ad performance among this population, researchers should consider the importance of the text and image included in the social media recruitment ads. ©Paul L Reiter, Mira L Katz, Jose A Bauermeister, Abigail B Shoben, Electra D Paskett, Annie-Laurie McRee. Originally published in JMIR Public Health and Surveillance (http://publichealth.jmir.org), 02.06.2017.
NASA Astrophysics Data System (ADS)
Hong, Liu; Chen, De-Zhen; Yin, Li-Jie; Chen, Hui; Wang, Du; Hu, Yu-Yan
2016-09-01
The NO conversion efficiency in a pulsed corona discharge plasma (PCDP) reactor in the presence of a new additive, hydrazine hydrate (N2H4.H2O), was studied, and the reaction mechanism was analyzed. The NO conversion efficiency reached 62.5%, and the NO conversion Energy Yield (EY) reached 20.9 gNO/kWh, which is higher than that obtained using water or ammonia additives under the same conditions. The predominant elementary reactions and radicals, as well as the mechanism by which the additive enhanced the NO conversion process, were determined by comparing experimental data with theoretical simulation results and by performing a sensitivity analysis. After the addition of N2H4.H2O, the N2H4 reacts with radicals generated in the PCDP reactor to form a large quantity of strongly reducing species with NH2 as the predominant component, which can directly reduce NO to N2 and effectively prevent the generation of N2O. Compared with the traditional PCDP-based De-NOx process in which nitric acid is generated by oxidation with an additional neutralization step required, this new PCDP-based De-NOx process with N2H4.H2O addition is superior because NO is mostly reduced to N2. The study provides a basis for the application of N2H4.H2O as a synergist to improve NO abatement in a PCDP reactor.
Ackerman, Stacey J; Daniel, Shoshana; Baik, Rebecca; Liu, Emelline; Mehendale, Shilpa; Tackett, Scott; Hellan, Minia
2018-03-01
To compare (1) complication and (2) conversion rates to open surgery (OS) from laparoscopic surgery (LS) and robotic-assisted surgery (RA) for rectal cancer patients who underwent rectal resection. (3) To identify patient, physician, and hospital predictors of conversion. A US-based database study was conducted utilizing the 2012-2014 Premier Healthcare Data, including rectal cancer patients ≥18 with rectal resection. ICD-9-CM diagnosis and procedural codes were utilized to identify surgical approaches, conversions to OS, and surgical complications. Propensity score matching on patient, surgeon, and hospital level characteristics was used to create comparable groups of RA\\LS patients (n = 533 per group). Predictors of conversion from LS and RA to OS were identified with stepwise logistic regression in the unmatched sample. Post-match results suggested comparable perioperative complication rates (RA 29% vs LS 29%; p = .7784); whereas conversion rates to OS were 12% for RA vs 29% for LS (p < .0001). Colorectal surgeons (RA 9% vs LS 23%), general surgeons (RA 13% vs LS 35%), and smaller bed-size hospitals (RA 14% vs LS 33%) have reduced conversion rates for RA vs LS (p < .0001). Statistically significant predictors of conversion included LS, non-colorectal surgeon, and smaller bed-size hospitals. Retrospective observational study limitations apply. Analysis of the hospital administrative database was subject to the data captured in the database and the accuracy of coding. Propensity score matching limitations apply. RA and LS groups were balanced with respect to measured patient, surgeon, and hospital characteristics. Compared to LS, RA offers a higher probability of completing a successful minimally invasive surgery for rectal cancer patients undergoing rectal resection without exacerbating complications. Male, obese, or moderately-to-severely ill patients had higher conversion rates. While colorectal surgeons had lower conversion rates from RA than LS, the reduction was magnified for general surgeons and smaller bed-size hospitals.
Hydrogen generation from deliquescence of ammonia borane using Ni-Co/r-GO catalyst
NASA Astrophysics Data System (ADS)
Chou, Chang-Chen; Chen, Bing-Hung
2015-10-01
Hydrogen generation from the catalyzed deliquescence/hydrolysis of ammonia borane (AB) using the Ni-Co catalyst supported on the graphene oxide (Ni-Co/r-GO catalyst) under the conditions of limited water supply was studied with the molar feed ratio of water to ammonia borane (denoted as H2O/AB) at 2.02, 3.97 and 5.93, respectively. The conversion efficiency of ammonia borane to hydrogen was estimated both from the cumulative volume of the hydrogen gas generated and the conversion of boron chemistry in the hydrolysates analyzed by the solid-state 11B NMR. The conversion efficiency of ammonia borane could reach nearly 100% under excess water dosage, that is, H2O/AB = 3.97 and 5.93. Notably, the hydrogen storage capacity could reach as high as 6.5 wt.% in the case with H2O/AB = 2.02. The hydrolysates of ammonia borane in the presence of Ni-Co/r-GO catalyst were mainly the mixture of boric acid and metaborate according to XRD, FT-IR and solid-state 11B NMR analyses.
[Hydroxylamine conversion by anammox enrichment].
Hu, Anhui; Zheng, Ping; Lu, Huifeng; Ding, Shuang; Wang, Caihua
2010-04-01
Hydroxylamine is an important intermediate product of anammox. This study was focused on the characteristics of hydroxylamine and nitrite conversions by anammox enrichment. The changes of nitrogenous substrates and related products with time were measured using batch tests with anammox enrichment as inoculum. Since hydroxylamine didn't react with nitrite in uninoculated control culture, these two compounds were chemically stable. Both of them decreased with time in anammox enrichment inoculated cultures, in which ammonia as intermediate product would be produced and converted with the maximum concentration being 0.338 mg/L. The total nitrogen concentration decreased from 4.694 mmol/L to 0.812 mmol/L with conversion rate 82.7% in the end. When hydroxylamine and nitrite concentrations were about 2.5 mmol/L respectively, the maximum specific sludge conversion rates of hydroxylamine was 0.535 mmol/(gVSS.h), which was 1.81 times bigger than that of ammonia in ammonia reaction system; the maximum specific sludge rate of total nitrogen was slightly higher than that in ammonia reaction system. When hydroxylamine concentration increased to 5.0 mmol/L, the hydroxylamine and nitrite conversion rates promoted by 26.7% and 120.7% respectively; and the maximum ammonia accumulated was 1.810 mmol/L. When nitrite concentration increased to 5.0 mmol/L, the hydroxylamine and nitrite conversion rates promoted by 6.9% and 9.0% respectively; and the maximum ammonia accumulated was 0.795 mmol/L. Anammox enrichment was capable of converting hydroxylamine and nitrite simultaneously and had the higher conversion rate of hydroxylamine than ammonia conversion rate. Hydroxylamine and nitrite conversion rates were less affected by increase in nitrite concentration, but more significantly influenced by increase in hydroxylamine. The maximum ammonia concentration accumulated would rise as the result of increasing both hydroxylamine and nitrite. The result of experiment was consistent with pathway model presented by van de Graaf AA.
Yang, Yi; Zhang, Huiping; Yan, Ying
2018-03-01
Fe 2 O 3 -ZSM-5 catalysts (0.6 wt% Fe load) prepared by metal-organic chemical vapour deposition (MOCVD) method were evaluated in the catalytic wet peroxide oxidation (CWPO) of m -cresol in a batch reactor. The catalysts have a good iron dispersion and small iron crystalline size, and exhibit high stability during reaction. In addition, the kinetics of the reaction were studied and the initial oxidation rate equation was given. Catalysts were first characterized by N 2 adsorption-desorption isotherms, scanning electronic microscopy, energy-dispersive spectroscopy, X-ray diffraction and X-ray photoelectron spectroscopy. Results show that extra-framework Fe 3+ species (presenting in the form of Fe 2 O 3 ) are successfully loaded on ZSM-5 supports by MOCVD method. Performances of catalysts were tested and effects of different temperature, stirring rate, catalyst amount on hydrogen peroxide, m -cresol, total organic carbon (TOC) conversion and Fe leaching concentration were studied. Results reveal that catalytic activity increased with higher temperature, faster stirring rate and larger catalyst amount. In all circumstances, m -cresol conversion could reach 99% in 0.5-2.5 h, and the highest TOC removal (80.5%) is obtained after 3 h under conditions of 60°C, 400 r.p.m. and catalyst amount of 2.5 g l -1 . The iron-leaching concentrations are less than 1.1 mg l -1 under all conditions. The initial oxidation rate equation [Formula: see text] is obtained for m -cresol degradation with Fe 2 O 3 -ZSM-5 catalysts.
Estimating forest conversion rates with annual forest inventory data
Paul C. Van Deusen; Francis A. Roesch
2009-01-01
The rate of land-use conversion from forest to nonforest or natural forest to forest plantation is of interest for forest certification purposes and also as part of the process of assessing forest sustainability. Conversion rates can be estimated from remeasured inventory plots in general, but the emphasis here is on annual inventory data. A new estimator is proposed...
A reliable, compact, and repetitive-rate high power microwave generation system.
Li, Wei; Li, Zhi-qiang; Sun, Xiao-liang; Zhang, Jun
2015-11-01
A compact high power microwave (HPM) generation system is described in this paper. The main parts of the HPM system are a Marx generator with a pulse forming line and a magnetron with diffraction output. The total weight and length of the system are 250 kg and 120 cm, respectively. The output microwave power of the HPM system at 550 kV of applied voltage and 0.33 T of magnetic field reaches 1 GW at 2.32 GHz of central frequency with 38 ns of pulse duration, 23% of power conversion efficiency, and Gaussian radiation pattern. In the bursts operation, both time and amplitude jitters are less than 4 ns and lower than 1.5 dB, respectively.
A reliable, compact, and repetitive-rate high power microwave generation system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Wei; Li, Zhi-qiang; Sun, Xiao-liang
2015-11-15
A compact high power microwave (HPM) generation system is described in this paper. The main parts of the HPM system are a Marx generator with a pulse forming line and a magnetron with diffraction output. The total weight and length of the system are 250 kg and 120 cm, respectively. The output microwave power of the HPM system at 550 kV of applied voltage and 0.33 T of magnetic field reaches 1 GW at 2.32 GHz of central frequency with 38 ns of pulse duration, 23% of power conversion efficiency, and Gaussian radiation pattern. In the bursts operation, both timemore » and amplitude jitters are less than 4 ns and lower than 1.5 dB, respectively.« less
Jang, Soo-Kyeong; Jeong, Hanseob; Kim, Ho-Yong; Choi, June-Ho; Kim, Jong-Hwa; Koo, Bon-Wook; Choi, In-Gyu
2017-07-01
The main purpose of this study was to investigate the glucan conversion rate after enzymatic hydrolysis depending on the treatment methods and conditions with changes in the chemical composition of treated solid fraction of Jabon Merah. The glucan conversion rate (17.4%) was not significantly improved after liquid hot water treatment (1st step) even though most of the hemicellulose was dissolved into liquid hydrolysate. Subsequently, dilute acid, organosolv, and peracetic acid treatment (2nd step) was conducted under various conditions to enhance glucan conversion. Among the 2nd step treatment, the glucan conversion rate of organosolv (max. 46.0%) and peracetic acid treatment (max. 65.9%) was increased remarkably through decomposition of acid-insoluble lignin (AIL). Finally, the glucan conversion rate and AIL content were highly correlated, which was revealed by the R-squared value (0.84), but inhibitory factors including cellulose crystallinity must be considered for advanced glucan conversion from highly recalcitrant biomasses, such as Jabon Merah. Copyright © 2017 Elsevier Ltd. All rights reserved.
Absolute Position Encoders With Vertical Image Binning
NASA Technical Reports Server (NTRS)
Leviton, Douglas B.
2005-01-01
Improved optoelectronic patternrecognition encoders that measure rotary and linear 1-dimensional positions at conversion rates (numbers of readings per unit time) exceeding 20 kHz have been invented. Heretofore, optoelectronic pattern-recognition absoluteposition encoders have been limited to conversion rates <15 Hz -- too low for emerging industrial applications in which conversion rates ranging from 1 kHz to as much as 100 kHz are required. The high conversion rates of the improved encoders are made possible, in part, by use of vertically compressible or binnable (as described below) scale patterns in combination with modified readout sequences of the image sensors [charge-coupled devices (CCDs)] used to read the scale patterns. The modified readout sequences and the processing of the images thus read out are amenable to implementation by use of modern, high-speed, ultra-compact microprocessors and digital signal processors or field-programmable gate arrays. This combination of improvements makes it possible to greatly increase conversion rates through substantial reductions in all three components of conversion time: exposure time, image-readout time, and image-processing time.
Effects of Moisture Content in Solid Waste Landfills
2000-03-01
C02 + CH4 + NH3 + H2S + Heat The biological conversion of the organic fraction of the solid waste during anaerobic transformation is thought to occur...of placement (Blight, 1995: 11). In dry climates, the field capacity of the waste may never be naturally reached. Conversely , in a wet climate, the...detected in the cellulase activity (Barlaz and others, 1990: 570). Protease, amylase, and cellulase are the enzymes that degrade proteins, starches, and
Kessing, Lars Vedel; Willer, Inge; Andersen, Per Kragh; Bukh, Jens Drachman
2017-08-01
For the first time to present a systematic review and meta-analysis of the conversion rate and predictors of conversion from unipolar disorder to bipolar disorder. A systematic literature search up to October 2016 was performed. For the meta-analysis, we only included studies that used survival analysis to estimate the conversion rate. A total of 31 studies were identified, among which 11 used survival analyses, including two register-based studies. The yearly rate of conversion to bipolar disorder decreased with time from 3.9% in the first year after study entry with a diagnosis of unipolar disorder to 3.1% in years 1-2, 1.0% in years 2-5 and 0.8% in years 5-10. A total of eight risk factors were evaluated comprising gender, age at onset of unipolar disorder, number of depressive episodes, treatment resistance to antidepressants, family history of bipolar disorder, the prevalence of psychotic depression, the prevalence of chronic depression, and severity of depression. It was not possible to identify risk factors that were consistently or mainly confirmed to predict conversion across studies. The conversion rate from unipolar to bipolar disorder decreases with time. It was not possible to identify predictors of conversion that were consistently or mainly confirmed across studies, which may be due to variations in methodology across studies. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
5 CFR 531.221 - Maximum payable rate rule.
Code of Federal Regulations, 2010 CFR
2010-01-01
... before the reassignment. (ii) If the rate resulting from the geographic conversion under paragraph (c)(2... previous rate (i.e., the former special rate after the geographic conversion) with the rates on the current... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false Maximum payable rate rule. 531.221...
Tomaru, Yohei; Yoshioka, Tomokazu; Sugaya, Hisashi; Shimizu, Yukiyo; Aoto, Katsuya; Wada, Hiroshi; Akaogi, Hiroshi; Yamazaki, Masashi; Mishima, Hajime
2018-04-28
We had previously established concentrated autologous bone marrow aspirate transplantation (CABMAT), a one-step, low-invasive, joint-preserving surgical technique for treating osteonecrosis of the femoral head (ONFH). This study aimed to evaluate the effects of CABMAT as a hip-preserving surgical approach, preventing conversion to total hip arthroplasty (THA) and femoral head collapse in patients with systemic lupus erythematosus (SLE). Since 2003, 52 SLE patients (8 male, 44 female, 92 hips, mean age 35.3 (16-77) (years) were treated with CABMAT. The mean follow-up period was 5.5 (0.7-14) years. Conversion rate to THA and its predicting factors were analyzed. The overall conversion rate to THA was 29% (27/92). Conversion rate to THA was 0% (0/3), 0% (0/4), 22% (9/41), and 41% (18/44) in types A, B, C1, and C2, respectively. Conversion rate to THA was 26% (5/19), 26% (6/23), 28% (11/39), 44% (4/9), and 50% (1/2) in stages 1, 2, 3A, 3B, and 4, respectively. In multivariate logistic regression analysis, sex, body mass index (BMI), pre-operative type, and pre-operative stage were significantly correlated with conversion to THA. The conversion rate to THA was lower than that in the natural course and core decompression, but was higher than that seen in other bone marrow transplantation and osteotomy. Since sex, pre-operative type, and pre-operative stage were significantly correlated with conversion to THA, it is suggested that the higher proportion of women, advanced stage (stage 3A or above), and advanced type (type C or above) in this study affected the THA conversion rate.
Li, Yinping; Cui, Jiefen; Zhang, Gaoli; Liu, Zhengkun; Guan, Huashi; Hwang, Hueymin; Aker, Winfred G; Wang, Peng
2016-08-01
The seaweed Ulva prolifera, distributed in inter-tidal zones worldwide, contains a large percentage of cellulosic materials. The technical feasibility of using U. prolifera residue (UPR) obtained after extraction of polysaccharides as a renewable energy resource was investigated. An environment-friendly and economical pretreatment process was conducted using hydrogen peroxide. The hydrogen peroxide pretreatment improved the efficiency of enzymatic hydrolysis. The resulting yield of reducing sugar reached a maximum of 0.42g/g UPR under the optimal pretreatment condition (hydrogen peroxide 0.2%, 50°C, pH 4.0, 12h). The rate of conversion of reducing sugar in the concentrated hydrolysates to bioethanol reached 31.4% by Saccharomyces cerevisiae fermentation, which corresponds to 61.7% of the theoretical maximum yield. Compared with other reported traditional processes on Ulva biomass, the reducing sugar and bioethanol yield are substantially higher. Thus, hydrogen peroxide pretreatment is an effective enhancement of the process of bioethanol production from the seaweed U. prolifera. Copyright © 2016 Elsevier Ltd. All rights reserved.
Hierarchical Graphene Foam for Efficient Omnidirectional Solar-Thermal Energy Conversion.
Ren, Huaying; Tang, Miao; Guan, Baolu; Wang, Kexin; Yang, Jiawei; Wang, Feifan; Wang, Mingzhan; Shan, Jingyuan; Chen, Zhaolong; Wei, Di; Peng, Hailin; Liu, Zhongfan
2017-10-01
Efficient solar-thermal energy conversion is essential for the harvesting and transformation of abundant solar energy, leading to the exploration and design of efficient solar-thermal materials. Carbon-based materials, especially graphene, have the advantages of broadband absorption and excellent photothermal properties, and hold promise for solar-thermal energy conversion. However, to date, graphene-based solar-thermal materials with superior omnidirectional light harvesting performances remain elusive. Herein, hierarchical graphene foam (h-G foam) with continuous porosity grown via plasma-enhanced chemical vapor deposition is reported, showing dramatic enhancement of broadband and omnidirectional absorption of sunlight, which thereby can enable a considerable elevation of temperature. Used as a heating material, the external solar-thermal energy conversion efficiency of the h-G foam impressively reaches up to ≈93.4%, and the solar-vapor conversion efficiency exceeds 90% for seawater desalination with high endurance. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
III-V-on-silicon solar cells reaching 33% photoconversion efficiency in two-terminal configuration
NASA Astrophysics Data System (ADS)
Cariou, Romain; Benick, Jan; Feldmann, Frank; Höhn, Oliver; Hauser, Hubert; Beutel, Paul; Razek, Nasser; Wimplinger, Markus; Bläsi, Benedikt; Lackner, David; Hermle, Martin; Siefer, Gerald; Glunz, Stefan W.; Bett, Andreas W.; Dimroth, Frank
2018-04-01
Silicon dominates the photovoltaic industry but the conversion efficiency of silicon single-junction solar cells is intrinsically constrained to 29.4%, and practically limited to around 27%. It is possible to overcome this limit by combining silicon with high-bandgap materials, such as III-V semiconductors, in a multi-junction device. Significant challenges associated with this material combination have hindered the development of highly efficient III-V/Si solar cells. Here, we demonstrate a III-V/Si cell reaching similar performances to standard III-V/Ge triple-junction solar cells. This device is fabricated using wafer bonding to permanently join a GaInP/GaAs top cell with a silicon bottom cell. The key issues of III-V/Si interface recombination and silicon's weak absorption are addressed using poly-silicon/SiOx passivating contacts and a novel rear-side diffraction grating for the silicon bottom cell. With these combined features, we demonstrate a two-terminal GaInP/GaAs//Si solar cell reaching a 1-sun AM1.5G conversion efficiency of 33.3%.
Cipriani, Federica; Ratti, Francesca; Fiorentini, Guido; Catena, Marco; Paganelli, Michele; Aldrighetti, Luca
2018-03-28
Previous abdominal surgery has traditionally been considered an additional element of difficulty to later laparoscopic procedures. The aim of the study is to analyze the effect of previous surgery on the feasibility and safety of laparoscopic liver resection (LLR), and its role as a risk factor for conversion. After matching, 349 LLR in patients known for previous abdominal surgery (PS group) were compared with 349 LLR on patients with a virgin abdomen (NPS group). Subgroup analysis included 161 patients with previous upper abdominal surgery (UPS subgroup). Feasibility and safety were evaluated in terms of conversion rate, reasons for conversion and outcomes, and risk factors for conversion assessed via uni/multivariable analysis. Conversion rate was 9.4%, and higher for PS patients compared with NPS patients (13.7% versus 5.1%, P = .021). Difficult adhesiolysis resulted the commonest reason for conversion in PS group (5.7%). However, operative time (P = .840), blood loss (P = .270), transfusion (P = .650), morbidity rate (P = .578), hospital stay (P = .780), and R1 rate (P = .130) were comparable between PS and NPS group. Subgroup analysis confirmed higher conversion rates for UPS patients (23%) compared with both NPS (P = .015) and PS patients (P = .041). Previous surgery emerged as independent risk factor for conversion (P = .033), alongside the postero-superior location and major hepatectomy. LLR are feasible in case of previous surgery and proved to be safe and maintain the benefits of LLR carried out in standard settings. However, a history of surgery should be considered a risk factor for conversion.
Lee, Yongjin F; Albright, Jeremy; Akram, Warqaa M; Wu, Juan; Ferraro, Jane; Cleary, Robert K
2018-06-01
Laparoscopic conversion-to-open colorectal surgery is associated with worse outcomes when compared to operations completed without conversion. Consequences of robotic conversion have not yet been determined. The purpose of this study is to compare short-term outcomes of converted robotic colorectal cases with those that are completed without conversion, as well as with cases done by the open approach. The ACS-NSQIP database was queried for patients who underwent robotic completed, robotic converted-to-open, and open colorectal resection between 2012 and 2015. Propensity scores were estimated using gradient-boosted machines and converted to weights. Generalized linear models were fit using propensity score-weighted data. A total of 25,253 patients met inclusion criteria-21,356 (84.5%) open, 3663 (14.5%) robotic completed, and 234 (0.9%) conversions. Conversion rate was 6.0%. Converted cases had significantly higher 30-day mortality rate, higher complication rate, and longer hospital length of stay than completed cases. Converted patients also had significantly higher rates of the following complications: surgical site infections, cardiac complications, deep venous thrombosis, postoperative ileus, postoperative re-intubation, renal failure, and 30-day reoperation. Compared to the open approach, converted patients had significantly more cardiac complications, postoperative reintubation, and longer operating times with no significant difference in 30-day mortality. Unplanned robotic conversion-to-open is associated with worse outcomes than completed cases and outcomes that more closely resemble traditional open colorectal surgery. Patients should be counseled with regard to minimally invasive conversion rates and outcomes. The continued pursuit of technological advancements that decrease the risk for conversion in minimally invasive colorectal surgery is clearly warranted.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Jun; Niu, Hai-jun; Wen, Hai-lin
2013-03-15
Graphical abstract: The overall energy conversion efficiency of the DSSC employing the MWCNT/PPy CE reached 3.78%. Compared with a reference DSSC using single MWCNT film CE with efficiency of 2.68%, the energy conversion efficiency was increased by 41.04%. Highlights: ► MWCNT/PPy composite film prepared by electrodeposition layer by layer was used as counter electrode in DSSC. ► The overall energy conversion efficiency of the DSSC was 3.78% by employing the composite film. ► The energy conversion efficiency increased by 41.04% compared with efficiency of 2.68% by using the single MWCNT film. ► We analyzed the mechanism and influence factor ofmore » electron transfer in the composite electrode by EIS. - Abstract: For the purpose of replacing the precious Pt counter electrode in dye-sensitized solar cells (DSSCs) with higher energy conversion efficiency, multi-wall carbon nanotube (MWCNT)/polypyrrole (PPy) double layers film counter electrode (CE) was fabricated by electrophoresis and cyclic voltammetry (CV) layer by layer. Atom force microscopy (AFM), scanning electron microscopy (SEM) and transmission electron microscope (TEM) demonstrated the morphologies of the composite electrode and Raman spectroscopy verified the PPy had come into being. The overall energy conversion efficiency of the DSSC employing the MWCNT/PPy CE reached 3.78%. Compared with a reference DSSC using single MWCNT film CE with efficiency of 2.68%, the energy conversion efficiency was increased by 41.04%. The result of impedance showed that the charge transfer resistance R{sub ct} of the MWCNT/PPy CE had the lowest value compared to that of MWCNT or PPy electrode. These results indicate that the composite film with high conductivity, high active surface area, and good catalytic properties for I{sub 3}{sup −} reduction can potentially be used as the CE in a high-performance DSSC.« less
Recent rates of forest harvest and conversion in North America
Jeffrey G. Masek; Warren B. Cohen; Donald Leckie; Michael A. Wulder; Rodrigo Vargas; Ben de Jong; Sean Healey; Beverly Law; Richard Birdsey; R. A. Houghton; David Mildrexler; Samuel Goward; W. Brad Smith
2011-01-01
Incorporating ecological disturbance into biogeochemical models is critical for estimating current and future carbon stocks and fluxes. In particular, anthropogenic disturbances, such as forest conversion and wood harvest, strongly affect forest carbon dynamics within North America. This paper summarizes recent (2000-2008) rates of extraction, including both conversion...
NASA Astrophysics Data System (ADS)
Biancamaria, S.; Garambois, P. A.; Calmant, S.; Roux, H.; Paris, A.; Monnier, J.; Santos da Silva, J.
2015-12-01
Hydrodynamic laws predict that irregularities in a river bed geometry produce spatial and temporal variations in the water level, hence in its slope. Conversely, observation of these changes is a goal of the SWOT mission with the determination of the discharge as a final objective. In this study, we analyse the relationship between river bed undulations and water surface for an ungauged reach of the Xingu river, a first order tributary of the Amazon river. It is crosscut more than 10 times by a single ENVISAT track over a hundred of km. We have determined time series of water levelsat each of these crossings, called virtual stations (VS), hence slopes of the flow line. Using the discharge series computed by Paiva et al. (2013) between 1998 and 2009, Paris et al. (submitted) determined at each VS a rating curve relating these simulated discharge with the ENVISAT height series. One parameter of these rating curves is the zero-flow depth Z 0 . We show that it is possible to explain the spatial and temporal variations of the water surface slope in terms of hydrodynamical response of the longitudinal changes of the river bed geometry given by the successive values of Z 0 . Our experiment is based on an effective, single thread representation of a braided river, realistic values for the Manning coefficient and river widths picked up on JERS images. This study confirms that simulated flow lines are consistent with water surface elevations (WSE) and slopes gained by satellite altimetry. Hydrodynamical signatures are more visible where the river bed geometry varies significantly, and for reaches with a strong downstream control. Therefore, this study suggests that the longitudinal variations of the slope might be an interesting criteria for the question of river segmentation into elementary reaches for the SWOT mission which will provide continuous measurements of the water surface elevation, the slope and the reach width.
Method and apparatus for optical encoding with compressible imaging
NASA Technical Reports Server (NTRS)
Leviton, Douglas B. (Inventor)
2006-01-01
The present invention presents an optical encoder with increased conversion rates. Improvement in the conversion rate is a result of combining changes in the pattern recognition encoder's scale pattern with an image sensor readout technique which takes full advantage of those changes, and lends itself to operation by modern, high-speed, ultra-compact microprocessors and digital signal processors (DSP) or field programmable gate array (FPGA) logic elements which can process encoder scale images at the highest speeds. Through these improvements, all three components of conversion time (reciprocal conversion rate)--namely exposure time, image readout time, and image processing time--are minimized.
Converting positive and negative symptom scores between PANSS and SAPS/SANS.
van Erp, Theo G M; Preda, Adrian; Nguyen, Dana; Faziola, Lawrence; Turner, Jessica; Bustillo, Juan; Belger, Aysenil; Lim, Kelvin O; McEwen, Sarah; Voyvodic, James; Mathalon, Daniel H; Ford, Judith; Potkin, Steven G; Fbirn
2014-01-01
The Scale for the Assessment of Positive Symptoms (SAPS), the Scale for the Assessment of Negative Symptoms (SANS), and the Positive and Negative Syndrome Scale for Schizophrenia (PANSS) are the most widely used schizophrenia symptom rating scales, but despite their co-existence for 25 years no easily usable between-scale conversion mechanism exists. The aim of this study was to provide equations for between-scale symptom rating conversions. Two-hundred-and-five schizophrenia patients [mean age±SD=39.5±11.6, 156 males] were assessed with the SANS, SAPS, and PANSS. Pearson's correlations between symptom scores from each of the scales were computed. Linear regression analyses, on data from 176 randomly selected patients, were performed to derive equations for converting ratings between the scales. Intraclass correlations, on data from the remaining 29 patients, not part of the regression analyses, were performed to determine rating conversion accuracy. Between-scale positive and negative symptom ratings were highly correlated. Intraclass correlations between the original positive and negative symptom ratings and those obtained via conversion of alternative ratings using the conversion equations were moderate to high (ICCs=0.65 to 0.91). Regression-based equations may be useful for conversion between schizophrenia symptom severity as measured by the SANS/SAPS and PANSS, though additional validation is warranted. This study's conversion equations, implemented at http:/converteasy.org, may aid in the comparison of medication efficacy studies, in meta- and mega-analyses examining symptoms as moderator variables, and in retrospective combination of symptom data in multi-center data sharing projects that need to pool symptom rating data when such data are obtained using different scales. Copyright © 2013 Elsevier B.V. All rights reserved.
Liu, Lina; Chen, Sheng; Wu, Jing
2017-10-01
Escherichia coli FB-04(pta1), a recombinant L-tryptophan production strain, was constructed in our laboratory. However, the conversion rate (L-tryptophan yield per glucose) of this strain is somewhat low. In this study, additional genes have been deleted in an effort to increase the conversion rate of E. coli FB-04(pta1). Initially, the pykF gene, which encodes pyruvate kinase I (PYKI), was inactivated to increase the accumulation of phosphoenolpyruvate, a key L-tryptophan precursor. The resulting strain, E. coli FB-04(pta1)ΔpykF, showed a slightly higher L-tryptophan yield and a higher conversion rate in fermentation processes. To further improve the conversion rate, the phosphoenolpyruvate:glucose phosphotransferase system (PTS) was disrupted by deleting the ptsH gene, which encodes the phosphocarrier protein (HPr). The levels of biomass, L-tryptophan yield, and conversion rate of this strain, E. coli FB-04(pta1)ΔpykF/ptsH, were especially low during fed-batch fermentation process, even though it achieved a significant increase in conversion rate during shake-flask fermentation. To resolve this issue, four HPr mutations (N12S, N12A, S46A, and S46N) were introduced into the genomic background of E. coli FB-04(pta1)ΔpykF/ptsH, respectively. Among them, the strain harboring the N12S mutation (E. coli FB-04(pta1)ΔpykF-ptsHN12S) showed a prominently increased conversion rate of 0.178 g g -1 during fed-batch fermentation; an increase of 38.0% compared with parent strain E. coli FB-04(pta1). Thus, mutation of the genomic of ptsH gene provided an alternative method to weaken the PTS and improve the efficiency of carbon source utilization.
Efficient electrochemical CO2 conversion powered by renewable energy.
Kauffman, Douglas R; Thakkar, Jay; Siva, Rajan; Matranga, Christopher; Ohodnicki, Paul R; Zeng, Chenjie; Jin, Rongchao
2015-07-22
The catalytic conversion of CO2 into industrially relevant chemicals is one strategy for mitigating greenhouse gas emissions. Along these lines, electrochemical CO2 conversion technologies are attractive because they can operate with high reaction rates at ambient conditions. However, electrochemical systems require electricity, and CO2 conversion processes must integrate with carbon-free, renewable-energy sources to be viable on larger scales. We utilize Au25 nanoclusters as renewably powered CO2 conversion electrocatalysts with CO2 → CO reaction rates between 400 and 800 L of CO2 per gram of catalytic metal per hour and product selectivities between 80 and 95%. These performance metrics correspond to conversion rates approaching 0.8-1.6 kg of CO2 per gram of catalytic metal per hour. We also present data showing CO2 conversion rates and product selectivity strongly depend on catalyst loading. Optimized systems demonstrate stable operation and reaction turnover numbers (TONs) approaching 6 × 10(6) molCO2 molcatalyst(-1) during a multiday (36 h total hours) CO2 electrolysis experiment containing multiple start/stop cycles. TONs between 1 × 10(6) and 4 × 10(6) molCO2 molcatalyst(-1) were obtained when our system was powered by consumer-grade renewable-energy sources. Daytime photovoltaic-powered CO2 conversion was demonstrated for 12 h and we mimicked low-light or nighttime operation for 24 h with a solar-rechargeable battery. This proof-of-principle study provides some of the initial performance data necessary for assessing the scalability and technical viability of electrochemical CO2 conversion technologies. Specifically, we show the following: (1) all electrochemical CO2 conversion systems will produce a net increase in CO2 emissions if they do not integrate with renewable-energy sources, (2) catalyst loading vs activity trends can be used to tune process rates and product distributions, and (3) state-of-the-art renewable-energy technologies are sufficient to power larger-scale, tonne per day CO2 conversion systems.
Álvarez, José M; Cortizo, Millán; Ordás, Ricardo J
2012-01-01
Pinus pinaster is one of the most economically important conifers in the world. Somatic embryogenesis is a powerful tool in breeding programmes because it allows the generation of a great number of different clonal lines from seeds of superior genotypes. Unfortunately, embryogenic competence decreases with the age of cultures. Therefore, it is necessary to have a cryopreservation protocol that ensures a continuous supply of juvenile mass while allowing good maturation and conversion rates into vigorously growing plants. In this work we studied the influence of several cryopreservation parameters, such as cryoprotectant solution and pre-cooling temperature, on embryogenic culture regrowth and embryo maturation. Recovery of rewarmed samples after cryopreservation in a -150 degree C freezer depended on the cooling temperature reached prior to plunging the tubes into liquid nitrogen. As a result, we present an optimised cryopreservation protocol that ensures high recovery and embryo maturation rates. The protocol presented is a simple and fast alternative and enabled successful cryopreservation and recovery of 100 percent of the lines tested. Cryopreserved lines presented the same maturation rates as non-cryopreserved controls.
Property evolution during vitrification of dimethacrylate photopolymer networks
Abu-Elenain, Dalia; Lewis, Steven H.; Stansbury, Jeffrey W.
2013-01-01
Objectives This study seeks to correlate the interrelated properties of conversion, shrinkage, modulus and stress as dimethacrylate networks transition from rubbery to glassy states during photopolymerization. Methods An unfilled BisGMA/TEGDMA resin was photocured for various irradiation intervals (7–600 s) to provide controlled levels of immediate conversion, which was monitored continuously for 10 min. Fiber optic near-infrared spectroscopy permitted coupling of real-time conversion measurement with dynamic polymerization shrinkage (linometer), modulus (dynamic mechanical analyzer) and stress (tensometer) development profiles. Results The varied irradiation conditions produced final conversion ranging from 6 % to more than 60 %. Post-irradiation conversion (dark cure) was quite limited when photopolymerization was interrupted either at very low or very high levels of conversion while significant dark cure contributions were possible for photocuring reactions suspended within the post-gel, rubbery regime. Analysis of conversion-based property evolution during and subsequent to photocuring demonstrated that the shrinkage rate increased significantly at about 40 % conversion followed by late-stage suppression in the conversion-dependent shrinkage rate that begins at about 45–50 % conversion. The gradual vitrification process over this conversion range is evident based on the broad but well-defined inflection in the modulus versus conversion data. As limiting conversion is approached, modulus and, to a somewhat lesser extent, stress rise precipitously as a result of vitrification with the stress profile showing little if any late-stage suppression as seen with shrinkage. Significance Near the limiting conversion for this model resin, the volumetric polymerization shrinkage rate slows while an exponential rise in modulus promotes the vitrification process that appears to largely dictate stress development. PMID:24080378
NASA Astrophysics Data System (ADS)
Kruger, N.; Kurtulik, M.; Revivo, N.; Manor, A.; Sabapathy, T.; Rotschild, C.
2018-05-01
The radiance of thermal emission, as described by Planck’s law, depends only on the emissivity and temperature of a body, and increases monotonically with the temperature rise at any emitted wavelength. Non-thermal radiation, such as photoluminescence (PL), is a fundamental light–matter interaction that conventionally involves the absorption of an energetic photon, thermalization, and the emission of a redshifted photon. Such a quantum process is governed by rate conservation, which is contingent on the quantum efficiency. In the past, the role of rate conservation for significant thermal excitation had not been studied. Recently, we presented the theory and an experimental demonstration that showed, in contrast to thermal emission, that the PL rate is conserved when the temperature increases while each photon is blueshifted. A further rise in temperature leads to an abrupt transition to thermal emission where the photon rate increases sharply. We also demonstrated how such thermally enhanced PL (TEPL) generates orders of magnitude more energetic photons than thermal emission at similar temperatures. These findings show that TEPL is an ideal optical heat pump that can harvest thermal losses in photovoltaics with a maximal theoretical efficiency of 70%, and practical concepts potentially reaching 45% efficiency. Here we move the TEPL concept onto the engineering level and present Cr:Nd:YAG as device grade PL material, absorbing solar radiation up to 1 μm wavelength and heated by thermalization of energetic photons. Its blueshifted emission, which can match GaAs cells, is 20% of the absorbed power. Based on a detailed balance simulation, such a material coupled with proper photonic management can reach 34% power conversion efficiency. These results raise confidence in the potential of TEPL becoming a disruptive technology in photovoltaics.
Studies on biomass char gasification and dynamics
NASA Astrophysics Data System (ADS)
You, Zhanping; You, Shijun; Ma, Xiaoyan
2018-01-01
The gasification performances of two kinds of biomass char by experiment methods are studied, including conversion rate and gasification gas component with temperature and time. Experimental results show that gasification temperature has important effects on the conversion rate and gas component. In the range of experimental temperature, char conversion rates are no more than 30.0%. The apparent activation energies and apparent reaction frequency factors of two biomass chars are obtained through kinetic studies.
Minimal model for the secondary structures and conformational conversions in proteins
NASA Astrophysics Data System (ADS)
Imamura, Hideo
Better understanding of protein folding process can provide physical insights on the function of proteins and makes it possible to benefit from genetic information accumulated so far. Protein folding process normally takes place in less than seconds but even seconds are beyond reach of current computational power for simulations on a system of all-atom detail. Hence, to model and explore protein folding process it is crucial to construct a proper model that can adequately describe the physical process and mechanism for the relevant time scale. We discuss the reduced off-lattice model that can express _-helix and ?-hairpin conformations defined solely by a given sequence in order to investigate a protein folding mechanism of conformations such as a ?-hairpin and also to investigate conformational conversions in proteins. The first two chapters introduce and review essential concepts in protein folding modelling physical interaction in proteins, various simple models, and also review computational methods, in particular, the Metropolis Monte Carlo method, its dynamic interpretation and thermodynamic Monte Carlo algorithms. Chapter 3 describes the minimalist model that represents both _-helix and ?-sheet conformations using simple potentials. The native conformation can be specified by the sequence without particular conformational biases to a reference state. In Chapter 4, the model is used to investigate the folding mechanism of ?-hairpins exhaustively using the dynamic Monte Carlo and a thermodynamic Monte Carlo method an effcient combination of the multicanonical Monte Carlo and the weighted histogram analysis method. We show that the major folding pathways and folding rate depend on the location of a hydrophobic. The conformational conversions between _-helix and ?-sheet conformations are examined in Chapter 5 and 6. First, the conformational conversion due to mutation in a non-hydrophobic system and then the conformational conversion due to mutation with a hydrophobic pair at a different position at various temperatures are examined.
Simulation of an offshore wind farm using fluid power for centralized electricity generation
NASA Astrophysics Data System (ADS)
Jarquin-Laguna, A.
2016-09-01
A centralized approach for electricity generation within a wind farm is explored through the use of fluid power technology. This concept considers a new way of generation, collection and transmission of wind energy inside a wind farm, in which electrical conversion does not occur during any intermediate conversion step before the energy has reached the offshore central platform. A numerical model was developed to capture the relevant physics from the dynamic interaction between different turbines coupled to a common hydraulic network and controller. This paper presents two examples of the time-domain simulation results for an hypothetical hydraulic wind farm subject to turbulent wind conditions. The performance and operational parameters of individual turbines are compared with those of a reference wind farm with conventional technology turbines, using the same wind farm layout and environmental conditions. For the presented case study, results indicate that the individual wind turbines are able to operate within operational limits with the current pressure control concept. Despite the stochastic turbulent wind input and wake effects, the hydraulic wind farm is able to produce electricity with reasonable performance in both below and above rated conditions.
Lin, Chensheng; Cheng, Wendan; Guo, Zhengxiao; Chai, Guoliang; Zhang, Hao
2017-08-30
Efficient thermoelectric energy conversion is both crucial and challenging, and requires new material candidates by design. From first principles simulations, we identify that a "star-like" SnSe nanotube - with alternating dense and loose rings along the tube direction - gives rise to an ultra-low lattice thermal conductivity, 0.18 W m -1 K -1 at 750 K, and a large Seebeck coefficient, compared with single crystal SnSe. The power factor of the p-type SnSe nanotube reaches its maximum value of 235 μW cm -1 K -2 at a moderate doping level of around 10 20 -10 21 cm -3 . The p-type nanotube shows better thermoelectric properties than the n-type one. The phonon anharmonic scattering rate of the SnSe nanotube is larger than that of the SnSe crystal. All of these factors lead to an exceptional figure-of-merit (ZT) value of 3.5-4.6 under the optimal conditions, compared to 0.6-2.6 for crystalline SnSe. Such a large ZT value should lead to a six-fold increase in the energy conversion efficiency to about 30%.
High Performance Electrocatalytic Reaction of Hydrogen and Oxygen on Ruthenium Nanoclusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ye, Ruquan; Liu, Yuanyue; Peng, Zhiwei
2017-01-18
The development of catalytic materials for the hydrogen oxidation, hydrogen evolution, oxygen reduction or oxygen evolution reactions with high reaction rates and low overpotentials are key goals for the development of renewable energy. We report here Ru(0) nanoclusters supported on nitrogen-doped graphene as high-performance multifunctional catalysts for the hydrogen evolution reaction (HER) and oxygen reduction reaction (ORR), showing activities similar to that of commercial Pt/C in alkaline solution. For HER performance in alkaline media, sample Ru/NG-750 reaches 10 mA cm-2 at an overpotential of 8 mV with a Tafel slope of 30 mV dec-1. The high HER performance in alkalinemore » solution is advantageous because most catalysts for ORR and oxygen evolution reaction (OER) also prefer alkaline solution environment whereas degrade in acidic electrolytes. For ORR performance, Ru/NG effectively catalyzes the conversion of O2 into OH- via a 4e process at a current density comparable to that of Pt/C. The unusual catalytic activities of Ru(0) nanoclusters reported here are important discoveries for the advancement of renewable energy conversion reactions.« less
Zhang, Xinyu; Yu, Jiang; Zeng, Aiwu
2017-03-01
In this paper, cotton seed oil deodorizer distillate (CSODD), was recovered to obtain fatty acid sterol ester (FASE), which is one of the biological activated substances added as human therapeutic to lower cholesterol. Esterification reactions were carried out using Candida rugosa lipase as a catalyst, and the conversion of phytosterol was optimized using response surface methodology. The highest conversion (90.8 ± 0.4%) was reached at 0.84 wt% enzyme load, 1:25 solvent/CSODD mass ratio, and 44.2 °C after 12 H reaction. A kinetic model based on the reaction rate equation was developed to describe the reaction process. The activation energy of the reaction was calculated to be 56.9 kJ/mol and the derived kinetic parameters provided indispensable basics for further study. The optimization and kinetic research of synthesizing FASE from deodorizer distillate provided necessary information for the industrial applications in the near future. Experimental results showed that the proposed process is a promising alternative to recycle sterol esters from vegetable oil deodorizer distillates in a mild, efficient, and environmental friendly method. © 2016 International Union of Biochemistry and Molecular Biology, Inc.
A method for evaluating photovoltaic potential in China based on GIS platform
NASA Astrophysics Data System (ADS)
Wang, L. Z.; Tan, H. W.; Ji, L.; Wang, D.
2017-11-01
Solar photovoltaic systems are commonly utilized in China. However, the associated research is still lack of its resource potential analysis in all regions in China. Based on the existed data about solar radiation and system conversion efficiency data, a new method for distributed photovoltaic potential assessment has been presented. The experiment of three kinds of solar photovoltaic system has been set up for the purpose of analyzing the relationship between conversion efficiency and environmental parameters. This paper fits the relationship between conversion efficiency and solar radiation intensity. This method takes into account the amount of solar radiation that is effectively generated and drives away the weak values. With the spatial analysis function of geographic information system (GIS) platform, frequency distribution of solar radiation intensity and PV potential in China can be derived. Furthermore, analytical results show that monocrystalline-silicon PV generation in the north-western and northern areas have reached a level of more than 200 kWh/(m2.a), making those areas be suitable for the development of PV system. However, the potential for southwest areas reaches a level of only 130 kWh/(m2.a). This paper can provide the baseline reference for solar energy development planning.
James, Anthony; Wotton, Clare J; Duffy, Anne; Hoang, Uy; Goldacre, Michael
2015-10-01
To estimate the conversion rate from unipolar depression (ICD10 codes F32-F33) to bipolar disorder (BP) (ICD10 codes F31) in an English national cohort. It was hypothesised that early-onset BP (age <18 years) is a more severe form of the disorder, with a more rapid, and higher rate of conversion from depression to BP. This record linkage study used English national Hospital Episode Statistics (HES) covering all NHS inpatient and day case admissions between 1999 and 2011. The overall rate of conversion from depression to BP for all ages was 5.65% (95% CI: 5.48-5.83) over a minimum 4-year follow-up period. The conversion rate from depression to BP increased in a linear manner with age from 10-14 years - 2.21% (95% C: 1.16-4.22) to 30-34 years - 7.06% (95% CI: 6.44-7.55) (F1,23=77.6, p=0.001, R(2)=0.77). The time to conversion was constant across the age range. The rate of conversion was higher in females (6.77%; 95% CI: 6.53-7.02) compared to males, (4.17%; 95% CI: 3.95-4.40) (χ(2)=194, p<0.0001), and in those with psychotic depression 8.12% (95% CI: 7.65-8.62) compared to non-psychotic depression 5.65% (95% CI: 5.48-5.83) (χ(2)=97.0, p<0.0001). The study was limited to hospital discharges and diagnoses were not standardised. Increasing conversion rate from depression to bipolar disorder with age, and constant time for conversion across the age range does not support the notion that early-onset BP is a more severe form of the disorder. Copyright © 2015 Elsevier B.V. All rights reserved.
1982-05-01
FACTORS: U.S. CUSTOMARY TO METRIC (SI) UNITS OF MEASUREMENT These conversion factors include all the significant digits given in the conversion...where suspended (Wuebben et al. 1978a). ships pass through narrow channels. Also, the ra- This disruption of river bottom sediments can pid water level...graphs that showed sites in the middle of the pic - 29 of these reaches (5.2 miles) showed evidence ture. The average photographic scale was deter- of
NASA Astrophysics Data System (ADS)
Pan, Pei; Chen, Lihui; Ding, Yu; Du, Jun; Feng, Chuanqi; Fu, Zhengbin; Qin, Caiqin; Wang, Feng
2018-05-01
Nitrogen-doped carbon (NC) decorated Cu2NiSnS4 (CNTS) microflower composites (NC@CNTS) were fabricated through a facile solvothermal and pyrrole polymerization with further annealing treatment. The NC@CNTS composites possessed a three-dimension (3D) microflower-like hierarchical structure. The unique microflower structure of NC@CNTS composites exhibited remarkable electrochemical performance as electrode materials for long life lithium ion batteries. The as-prepared composites had a stable and reversible capacity that reached 943 mA h g-1 after 160 cycles at a current rate of 0.1 A g-1. It showed satisfactory cycle stability and rate capability even at 2 A g-1, and specific capacity stabilized at 288 mA g-1 after 1000 cycles. The present facile and cost-effective strategy can be applied for the synthesis of other transition metal sulfide nanomaterials for energy storage and conversion applications.
van der Heijden, R T; Heijnen, J J; Hellinga, C; Romein, B; Luyben, K C
1994-01-05
Measurements provide the basis for process monitoring and control as well as for model development and validation. Systematic approaches to increase the accuracy and credibility of the empirical data set are therefore of great value. In (bio)chemical conversions, linear conservation relations such as the balance equations for charge, enthalpy, and/or chemical elements, can be employed to relate conversion rates. In a pactical situation, some of these rates will be measured (in effect, be calculated directly from primary measurements of, e.g., concentrations and flow rates), as others can or cannot be calculated from the measured ones. When certain measured rates can also be calculated from other measured rates, the set of equations, the accuracy and credibility of the measured rates can indeed be improved by, respectively, balancing and gross error diagnosis. The balanced conversion rates are more accurate, and form a consistent set of data, which is more suitable for further application (e.g., to calculate nonmeasured rates) than the raw measurements. Such an approach has drawn attention in previous studies. The current study deals mainly with the problem of mathematically classifying the conversion rates into balanceable and calculable rates, given the subset of measured rates. The significance of this problem is illustrated with some examples. It is shown that a simple matrix equation can be derived that contains the vector of measured conversion rates and the redundancy matrix R. Matrix R plays a predominant role in the classification problem. In supplementary articles, significance of the redundancy matrix R for an improved gross error diagnosis approach will be shown. In addition, efficient equations have been derived to calculate the balanceable and/or calculable rates. The method is completely based on matrix algebra (principally different from the graph-theoretical approach), and it is easily implemented into a computer program. (c) 1994 John Wiley & Sons, Inc.
Reactive heart rate variability in male patients with first-episode major depressive disorder.
Liang, Chih-Sung; Lee, Jia-Fu; Chen, Chia-Chi; Chang, Yue-Cune
2015-01-02
The association between cardiovascular reactivity and major depressive disorder (MDD) remains unclear. This study aimed to examine this association via reactive heart rate variability (HRV) in a well-diagnosed first-episode MDD group and a control group. A total of 160 physically healthy, drug-naive patients presenting with their first-episode MDD and 50 healthy controls were recruited. All participants underwent a 5-min electrocardiography at rest and during a mental arithmetic task. Depression severity was assessed using the Beck Depression Inventory II (BDI). HRV measures that showed between-group differences at rest did not reached significance during mental stress. In contrast, HRV measures that revealed between-group differences during stress did not reach significance at rest. In response to mental stress, HRV measures did not significantly change in both group. However, LF and HF in response to stress were different between groups. Patients with MDD revealed an increasing trend in HF and a decreasing trend in LF; conversely, healthy controls had a decreasing trend in HF and an increasing trend in LF. BDI scores correlated with changes in heart rate in the control group. The fundamental change to reactive HRV in patients with first-episode MDD appears qualitative, not quantitative. A distinctly reverse trend in reactive HRV measures were evident between these two groups. Moreover, patients with MDD showed entirely distinct changes in reactive HRV from those in resting HRV. We suggest that in patients with MDD, autonomic system shifts to sympathetic dominance at rest but toward parasympathetic dominance in response to stress. Copyright © 2014 Elsevier Inc. All rights reserved.
Paracetamol degradation in aqueous solution by non-thermal plasma
NASA Astrophysics Data System (ADS)
Baloul, Yasmine; Aubry, Olivier; Rabat, Hervé; Colas, Cyril; Maunit, Benoît; Hong, Dunpin
2017-08-01
This study deals with paracetamol degradation in water using a non-thermal plasma (NTP) created by a dielectric barrier discharge (DBD). The effects of the NTP operating conditions on the degradation were studied, showing that the treatment efficiency of the process was highly dependent on the electrical parameters and working gas composition in the reactor containing the aqueous solution. A conversion rate higher than 99% was reached with an energy yield of 12 g/kWh. High resolution mass spectrometry (HRMS) measurements showed that the main species produced in water during the process were nitrogen compounds, carboxylic acids and aromatic compounds. Contribution to the topical issue "The 15th International Symposium on High Pressure Low Temperature Plasma Chemistry (HAKONE XV)", edited by Nicolas Gherardi and Tomáš Hoder
Photoswitchable Sn-Cyt c Solid-State Devices.
Nakamaru, Satoshi; Scholz, Frank; Ford, William E; Goto, Yoshio; von Wrochem, Florian
2017-06-01
Electron transfer across proteins plays an important role in many biological processes, including those relevant for the conversion of solar photons to chemical energy. Previous studies demonstrated the generation of photocurrents upon light irradiation in a number of photoactive proteins, such as photosystem I or bacteriorhodopsin. Here, it is shown that Sn-cytochrome c layers act as reversible and efficient photoelectrochemical switches upon integration into large-area solid-state junctions. Photocurrents are observed both in the Soret band (λ = 405 nm) and in the Q band (λ = 535 nm), with current on/off ratios reaching values of up to 25. The underlying modulation in charge-transfer rate is attributed to a hole-transport channel created by the photoexcitation of the Sn-porphyrin. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Optimization of γ-amino butyric acid production in a newly isolated Lactobacillus brevis.
Binh, Tran Thi Thanh; Ju, Wan-Taek; Jung, Woo-Jin; Park, Ro-Dong
2014-01-01
An isolate from kimchi, identified as Lactobacillus brevis, accumulated γ-aminobutyric acid (GABA), a major inhibitory neurotransmitter, in the culture medium. Optimal culture conditions for growth of L. brevis and production of GABA were 6 % (w/v) l-glutamic acid, 4 % (w/v) maltose, 2 % (w/v) yeast extract, 1 % (w/v) NaCl, 1 % (w/v) CaCl2, 2 g Tween 80/l, and 0.02 mM pyridoxal 5′-phosphate at initial pH 5.25 and 37 °C. GABA reached 44.4 g/l after 72 h cultivation with a conversion rate 99.7 %, based on the amount (6 %) of l-glutamic acid added. GABA was purified using ion exchange column chromatography with 70 % recovery and 97 % purity.
Unity-Efficiency Parametric Down-Conversion via Amplitude Amplification.
Niu, Murphy Yuezhen; Sanders, Barry C; Wong, Franco N C; Shapiro, Jeffrey H
2017-03-24
We propose an optical scheme, employing optical parametric down-converters interlaced with nonlinear sign gates (NSGs), that completely converts an n-photon Fock-state pump to n signal-idler photon pairs when the down-converters' crystal lengths are chosen appropriately. The proof of this assertion relies on amplitude amplification, analogous to that employed in Grover search, applied to the full quantum dynamics of single-mode parametric down-conversion. When we require that all Grover iterations use the same crystal, and account for potential experimental limitations on crystal-length precision, our optimized conversion efficiencies reach unity for 1≤n≤5, after which they decrease monotonically for n values up to 50, which is the upper limit of our numerical dynamics evaluations. Nevertheless, our conversion efficiencies remain higher than those for a conventional (no NSGs) down-converter.
Boone, Brian A; Zenati, Mazen; Hogg, Melissa E; Steve, Jennifer; Moser, Arthur James; Bartlett, David L; Zeh, Herbert J; Zureikat, Amer H
2015-05-01
Quality assessment is an important instrument to ensure optimal surgical outcomes, particularly during the adoption of new surgical technology. The use of the robotic platform for complex pancreatic resections, such as the pancreaticoduodenectomy, requires close monitoring of outcomes during its implementation phase to ensure patient safety is maintained and the learning curve identified. To report the results of a quality analysis and learning curve during the implementation of robotic pancreaticoduodenectomy (RPD). A retrospective review of a prospectively maintained database of 200 consecutive patients who underwent RPD in a large academic center from October 3, 2008, through March 1, 2014, was evaluated for important metrics of quality. Patients were analyzed in groups of 20 to minimize demographic differences and optimize the ability to detect statistically meaningful changes in performance. Robotic pancreaticoduodenectomy. Optimization of perioperative outcome parameters. No statistical differences in mortality rates or major morbidity were noted during the study. Statistical improvements in estimated blood loss and conversions to open surgery occurred after 20 cases (600 mL vs 250 mL [P = .002] and 35.0% vs 3.3% [P < .001], respectively), incidence of pancreatic fistula after 40 cases (27.5% vs 14.4%; P = .04), and operative time after 80 cases (581 minutes vs 417 minutes [P < .001]). Complication rates, lengths of stay, and readmission rates showed continuous improvement that did not reach statistical significance. Outcomes for the last 120 cases (representing optimized metrics beyond the learning curve) included a mean operative time of 417 minutes, median estimated blood loss of 250 mL, a conversion rate of 3.3%, 90-day mortality of 3.3%, a clinically significant (grade B/C) pancreatic fistula rate of 6.9%, and a median length of stay of 9 days. Continuous assessment of quality metrics allows for safe implementation of RPD. We identified several inflexion points corresponding to optimization of performance metrics for RPD that can be used as benchmarks for surgeons who are adopting this technology.
Li, Xingang; San, Xiaoguang; Zhang, Yi; Ichii, Takashi; Meng, Ming; Tan, Yisheng; Tsubaki, Noritatsu
2010-10-25
Ethanol was directly synthesized from dimethyl ether (DME) and syngas with the combined H-Mordenite and Cu/ZnO catalysts that were separately loaded in a dual-catalyst bed reactor. Methyl acetate (MA) was formed by DME carbonylation over the H-Mordenite catalyst. Thereafter, ethanol and methanol were produced by MA hydrogenation over the Cu/ZnO catalyst. With the reactant gas containing 1.0% DME, the optimized temperature for the reaction was at 493 K to reach 100% conversion. In the products, the yield of methanol and ethanol could reach 46.3% and 42.2%, respectively, with a small amount of MA, ethyl acetate, and CO(2). This process is environmentally friendly as the main byproduct methanol can be recycled to DME by a dehydration reaction. In contrast, for the physically mixed catalysts, the low conversion of DME and high selectivity of methanol were observed.
Soft currencies, cash economies, new monies: Past and present
Guyer, Jane I.
2012-01-01
Current variation in the forms of money challenges economic anthropologists and historians to review theory and comparative findings on multiple currency systems. There are four main sections to the paper devoted to (i) the present continuum of hard to soft currencies as an instance of multiplicity, including discussion of different combinations of the classic four functions of money, especially the relationship between store of value and medium of exchange; (ii) the logic of anthropological inquiry into multiple currency economies; (iii) the case of the monies of Atlantic Africa, applying the analytics of exchange rates as conversions to African transactions; and (iv) the return to economic life in a present day Nigerian economy lived in soft currency and cash. The paper identifies five findings that suggest foci for future research. (i) The widespread occurrence of conversions, which bring together ranking principles within transactions. (ii) Several types of positional ranking ranging from simple stepwise ordinal scales to iconic ordinality that creates a parabolic curve of value. (iii) Fictional units of account that serve to mediate both the memorization of nonreductive transactions and their nature as conversions. (iv) The importance of the temporal reach of what constitutes wealth: over the short run, the life span, intergenerational succession, and in (legal) perpetuity (as for corporate and sovereign debts and specified assets). (v) The social niches in which these qualities are brought together in transactional regimes. In conclusion, the paper returns to the exchange function of cash, soft currencies, and new money forms. PMID:22308423
Performance study of single undoped CsI crystals for the Mu2e experiment
NASA Astrophysics Data System (ADS)
Donghia, R.; Mu2e Calorimeter Group
2016-03-01
The Mu2e experiment at Fermilab aims to measure the neutrinoless muon-to-electron conversion, which is a charged-lepton flavor-violating process. The goal of the experiment is to reach a single event sensitivity of 2.5 × 10^{-17} , to set an upper limit on the muon conversion rate at 6.7 × 10^{-17} in a three-year run. For this purpose, the Mu2e detector is designed to identify electrons from muon conversion and reduce the background to a negligible level. It consists of a low-mass straw tracker and a pure CsI crystal calorimeter. In this paper, the performance of undoped CsI single crystal is reported. Crystals from many vendors have been characterized by determining their Light Yield (LY) and Longitudinal Response Uniformity (LRU), when read with a UV extended PMT, and their time resolution when coupled to a silicon photomultiplier. The crystals show a LY of ˜100 photoelectrons per MeV when wrapped with Tyvek and coupled to the PMT without optical grease. The LRU is well represented by a linear slope that is on average 0.6%/cm. Both measurements have been performed using a ^{22} Na source. The timing performance has been evaluated exploiting cosmic rays, with MPPC readout. A timing resolution lower than 400ps has been achieved (at ˜20{ MeV} , which is the energy released by a minimum ionizing particle in the crystal).
Li, Yan-Hong; Bai, Yan-Xia; Pan, Chun-Mei; Li, Wei-Wei; Zheng, Hui-Qin; Zhang, Jing-Nan; Fan, Yao-Ting; Hou, Hong-Wei
2015-12-01
The enhanced H2 production from maize straw had been achieved through the two-stage process of integrating H2 fermentation and microbial electrolysis cells (MECs) in the present work. Several key parameters affecting hydrolysis of maize straw through subcritical H2O were optimized by orthogonal design for saccharification of maize straw followed by H2 production through H2 fermentation. The maximum reducing sugar (RS) content of maize straw reached 469.7 mg/g-TS under the optimal hydrolysis condition with subcritical H2O combining with dilute HCl of 0.3% at 230 °C. The maximum H2 yield, H2 production rate, and H2 content was 115.1 mL/g-TVS, 2.6 mL/g-TVS/h, and 48.9% by H2 fermentation, respectively. In addition, the effluent from H2 fermentation was used as feedstock of MECs for additional H2 production. The maximum H2 yield of 1060 mL/g-COD appeared at an applied voltage of 0.8 V, and total COD removal reached about 35%. The overall H2 yield from maize straw reached 318.5 mL/g-TVS through two-stage processes. The structural characterization of maize straw was also carefully investigated by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD) spectra.
Green technology for conversion of food scraps to biodegradable thermoplastic polyhydroxyalkanoates.
Du, Guocheng; Yu, Jian
2002-12-15
A new technology is developed and demonstrated that couples anaerobic digestion of food scraps with production of biodegradable thermoplastics, polyhydroxyalkanoates (PHAs). The food wastes were digested in an anaerobic reactor producing four major organic acids. The concentrations of acetic, propionic, butyric, and lactic acids reached 5.5, 1.8, 27.4, and 32.7 g/L, respectively. The fermentative acids were transferred through membranes via molecule diffusion into an air-bubbling reactor where the acids were utilized to produce PHAs in an enriched culture of Ralstonia eutropha. With a silicone rubber membrane, butyric acid and small amounts of acetic and propionic acids were transferred and used, producing a homopolymer PHA, poly(3-hydroxybutyrate). The dry cell weight and PHA content reached 11.3 g/L and 60.2% (w/w), respectively. With a dialysis membrane, the mass transfer rates of fermentative acids were enhanced, and the PHA production was significantly improved. The dry cell weight and its PHA content reached 22.7 g/L and 72.6% (w/w), respectively. The formed PHA was a copolymer of 3-hydroxybutyrate and 3-hydroxyvalerate (HV) with 2.8 mol % HV monomer unit. The polymer content (72.6% of dry cell mass) reported in this study is the highest one obtained from organic wastes and is comparable with the PHA content from pure glucose fermentation.
Hou, Jin-Jun; Guo, Ji-Ling; Cao, Chun-Mei; Yao, Shuai; Long, Hua-Li; Cai, Lu-Ying; Da, Juan; Wu, Wan-Ying; Guo, De-An
2018-04-01
Triglycerides are the primary constituents of some seed kernels used in traditional Chinese medicine. Quality control of seed kernels containing multiple components with an environmentally friendly method is indispensable for establishing their quality standards (called monographs) in pharmacopeia. Using coix seeds (Semen Coicis) as an example, a green quantification strategy was proposed by combining C 8 core-shell particles with single standard to determine multicomponent technologies to quantify seven triglycerides simultaneously. A core-shell column, namely, Halo C 8 (3.0 × 100 mm, 2.7 µm), was used. Methanol was used as the mobile phase at a flow rate of 0.3 mL/min, enabling UV detection of the elutes. Seven triglycerides were well separated in 20 min, and simultaneously quantified using triolein as a single standard. The conversion factor for each standard was set as 1.0 on ELSD, while for the conversion factors at 203 nm, the values increased with the reduction of linoleate. The recovery values were all in the range of 97 - 107% (RSD < 3.0%). The RSD values of precision, including intraday and intermediate precision, were < 3.0% when the total content of triglycerides was calculated. The linearity reached r ≥ 0.9990, and the limit of quantitation reached 40 - 70 ng. Forty-nine batches of coix seeds from four different places of origins and eight batches of adulterants were evaluated and differentiated using principal component analysis. In addition, the validated method was used successfully to quantity seven triglycerides in Semen Persicae, Semen Armeniacae Amarum, and Semen Pruni. Georg Thieme Verlag KG Stuttgart · New York.
Dane, Pierre; Copley, Charles J; Pienaar, Cara; Parsons, Annie Neo; Engelhard, Matt; Woods, David; Bekker, Marcha; Benjamin, Peter; Pillay, Yogan; Barron, Peter; Mohan, Diwakar
2018-01-01
Despite calls to address broader evidence gaps in linking digital technologies to outcome and impact level health indicators, limited attention has been paid to measuring processes pertaining to the performance of programs. In this paper, we assess the program reach and message exposure of a mobile health information messaging program for mothers (MomConnect) in South Africa. In this descriptive study, we draw from system generated data to measure exposure to the program through registration attempts and conversions, message delivery, opt-outs and drop-outs. Using a logit model, we additionally explore determinants for early registration, opt-outs and drop-outs. From August 2014 to April 2017, 1 159 431 women were registered to MomConnect; corresponding to half of women attending antenatal care 1 (ANC1) and nearly 60% of those attending ANC1 estimated to own a mobile phone. In 2016, 26% of registrations started to get women onto MomConnect did not succeed. If registration attempts were converted to successful registrations, coverage of ANC1 attendees would have been 74% in 2016 and 86% in 2017. When considered as percentage of ANC1 attendees with access to a mobile phone, addressing conversion challenges bring registration coverage to an estimated 83%–89% in 2016 and 97%–100% in 2017. Among women registered, nearly 80% of expected short messaging service messages were received. While registration coverage and message delivery success rates exceed those observed for mobile messaging programs elsewhere, study findings highlight opportunities for program improvement and reinforce the need for rigorous and continuous monitoring of delivery systems. PMID:29713510
LeFevre, Amnesty E; Dane, Pierre; Copley, Charles J; Pienaar, Cara; Parsons, Annie Neo; Engelhard, Matt; Woods, David; Bekker, Marcha; Benjamin, Peter; Pillay, Yogan; Barron, Peter; Seebregts, Christopher John; Mohan, Diwakar
2018-01-01
Despite calls to address broader evidence gaps in linking digital technologies to outcome and impact level health indicators, limited attention has been paid to measuring processes pertaining to the performance of programs. In this paper, we assess the program reach and message exposure of a mobile health information messaging program for mothers (MomConnect) in South Africa. In this descriptive study, we draw from system generated data to measure exposure to the program through registration attempts and conversions, message delivery, opt-outs and drop-outs. Using a logit model, we additionally explore determinants for early registration, opt-outs and drop-outs. From August 2014 to April 2017, 1 159 431 women were registered to MomConnect; corresponding to half of women attending antenatal care 1 (ANC1) and nearly 60% of those attending ANC1 estimated to own a mobile phone. In 2016, 26% of registrations started to get women onto MomConnect did not succeed. If registration attempts were converted to successful registrations, coverage of ANC1 attendees would have been 74% in 2016 and 86% in 2017. When considered as percentage of ANC1 attendees with access to a mobile phone, addressing conversion challenges bring registration coverage to an estimated 83%-89% in 2016 and 97%-100% in 2017. Among women registered, nearly 80% of expected short messaging service messages were received. While registration coverage and message delivery success rates exceed those observed for mobile messaging programs elsewhere, study findings highlight opportunities for program improvement and reinforce the need for rigorous and continuous monitoring of delivery systems.
Modelling and assessment of the electric field strength caused by mobile phone to the human head.
Buckus, Raimondas; Strukcinskiene, Birute; Raistenskis, Juozas; Stukas, Rimantas
2016-06-01
Electromagnetic field exposure is the one of the most important physical agents that actively affects live organisms and environment. Active use of mobile phones influences the increase of electromagnetic field radiation. The aim of the study was to measure and assess the electric field strength caused by mobile phones to the human head. In this paper the software "COMSOL Multiphysics" was used to establish the electric field strength created by mobile phones around the head. The second generation (2G) Global System for Mobile (GSM) phones that operate in the frequency band of 900 MHz and reach the power of 2 W have a stronger electric field than (2G) GSM mobile phones that operate in the higher frequency band of 1,800 MHz and reach the power up to 1 W during conversation. The third generation of (3G) UMTS smart phones that effectively use high (2,100 MHz) radio frequency band emit the smallest electric field strength values during conversation. The highest electric field strength created by mobile phones is around the ear, i.e. the mobile phone location. The strength of mobile phone electric field on the phantom head decreases exponentially while moving sidewards from the center of the effect zone (the ear), and constitutes 1-12% of the artificial head's surface. The highest electric field strength values of mobile phones are associated with their higher power, bigger specific energy absorption rate (SAR) and lower frequency of mobile phone. The stronger electric field emitted by the more powerful mobile phones takes a higher percentage of the head surface. The highest electric field strength created by mobile phones is distributed over the user's ear.
Improving Donor Conversion Rates at a Level One Trauma Center: Impact of Best Practice Guidelines.
Alban, Rodrigo F; Gibbons, Bobby L; Bershad, Vanessa L
2016-11-22
Organ availability is a consistently limiting factor in transplant surgery. A primary driver of this limitation is donor conversion rate, which is defined as the percentage of eligible donors for whom procurement is actually performed. An alternative way to increase organ availability is through improved utilization of organs from donors after cardiac death (DCD). Recently, a concerted, multidisciplinary effort has been made within our system to improve conversion rates and DCD utilization, thus increasing organ availability. Retrospective analysis of a prospectively collected database from TransLife, our local organ procurement organization (OPO), as well as the Orlando Regional Medical Center (ORMC) trauma registry, from 2009-2012 (up to 2013 for DCD). During which time, this organization implemented best practice guidelines to improve conversions and DCD utilization. We analyzed yearly conversion rates, DCD donations and population demographics before and after implementation of these policies. During the study period, donor conversion rates significantly improved from 58% in 2009 to 82% percent in 2012 hospital-wide (P<0.05); and from 50% in 2009 to 81% in 2012 among trauma patients alone (P<0.05). In addition, total organs transplanted increased from 13 to 31 organs (P<0.05) after implementation of best practice guidelines. No significant differences in trauma population demographics were noted during the study period. Based on our experience, the establishment of best practice policies for referral of potential donors, coupled with programs to educate hospital staff on the existence and importance of these policies, leads to significant improvement in donor conversion rates and increased utilization of DCD donors.
Conversion of carbon dioxide to carbon monoxide by pulse dielectric barrier discharge plasma
NASA Astrophysics Data System (ADS)
Wang, Taobo; Liu, Hongxia; Xiong, Xiang; Feng, Xinxin
2017-01-01
The conversion of carbon dioxide (CO2) to carbon monoxide (CO) was investigated in a non-thermal plasma dielectric barrier discharge (DBD) reactor, and the effects of different process conditions on the CO2 conversion were investigated. The results showed that the increase of input power could optimize the conversion of CO2 to CO. The CO2 conversion and CO yield were negatively correlated with the gas flow rate, but there was an optimum gas flow rate, that made the CO selectivity best. The carrier gas (N2, Ar) was conducive to the conversion of CO2, and the effect of N2 as carrier gas was better than Ar. The conversion of CO2 to CO was enhanced by addition of the catalyst (5A molecular sieve).
Minimally invasive video-assisted thyroidectomy: Ascending the learning curve
Capponi, Michela Giulii; Bellotti, Carlo; Lotti, Marco; Ansaloni, Luca
2015-01-01
BACKGROUND: Minimally invasive video-assisted thyroidectomy (MIVAT) is a technically demanding procedure and requires a surgical team skilled in both endocrine and endoscopic surgery. The aim of this report is to point out some aspects of the learning curve of the video-assisted thyroid surgery, through the analysis of our preliminary series of procedures. PATIENTS AND METHODS: Over a period of 8 months, we selected 36 patients for minimally invasive video-assisted surgery of the thyroid. The patients were considered eligible if they presented with a nodule not exceeding 35 mm and total thyroid volume <20 ml; presence of biochemical and ultrasound signs of thyroiditis and pre-operative diagnosis of cancer were exclusion criteria. We analysed surgical results, conversion rate, operating time, post-operative complications, hospital stay and cosmetic outcomes of the series. RESULTS: We performed 36 total thyroidectomy and in one case we performed a consensual parathyroidectomy. The procedure was successfully carried out in 33 out of 36 cases (conversion rate 8.3%). The mean operating time was 109 min (range: 80-241 min) and reached a plateau after 29 MIVAT. Post-operative complications included three transient recurrent nerve palsies and two transient hypocalcemias; no definitive hypoparathyroidism was registered. The cosmetic result was considered excellent by most patients. CONCLUSIONS: Advances in skills and technology allow surgeons to easily reproduce the standard open total thyroidectomy with video-assistance. Although the learning curve represents a time-consuming step, training remains a crucial point in gaining a reasonable confidence with video-assisted surgical technique. PMID:25883451
Falavigna, C; Lazzaro, I; Galaverna, G; Dall'Asta, C; Battilani, P
2016-01-18
Fatty acid esters of fumonisins, namely oleoyl- and linoleoyl esters of fumonisin B1 (EFB1OA and EFB1LA, respectively), are modified forms of fumonisins whose formation and occurrence have been reported so far in naturally infected maize and in artificially inoculated rice. There is a lack of knowledge about the mechanism of formation, mainly in relation to the role played by the substrate. Therefore, in this work we studied the dynamics of accumulation of the toxin and its esters, together with their precursor, in maize and rice based media inoculated with different strains of F. verticillioides and incubated at 25 °C for 7-45 days. The production pattern of FB1 and its modified forms was significantly influenced by growth media, reaching a higher concentration in cornmeal compared to rice based medium. Similarly, cornmeal was more supportive for the conversion of FB1 by considering the esterification rate, with a prevalence of linoleoyl esters compared to oleoyl esters resembling the OA/LA rate in both media. The conversion of FB1 into fatty acid esters was also shown as strain-related. Results, thus, strongly support the hypothesis that fatty acid esters of FB1 are produced by the fungus itself at a late stage of growth, or at a certain point of FB1 accumulation in the medium, using fatty acids from the substrate.
Property evolution during vitrification of dimethacrylate photopolymer networks.
Abu-elenain, Dalia A; Lewis, Steven H; Stansbury, Jeffrey W
2013-11-01
This study seeks to correlate the interrelated properties of conversion, shrinkage, modulus and stress as dimethacrylate networks transition from rubbery to glassy states during photopolymerization. An unfilled BisGMA/TEGDMA resin was photocured for various irradiation intervals (7-600 s) to provide controlled levels of immediate conversion, which was monitored continuously for 10 min. Fiber optic near-infrared spectroscopy permitted coupling of real-time conversion measurement with dynamic polymerization shrinkage (linometer), modulus (dynamic mechanical analyzer) and stress (tensometer) development profiles. The varied irradiation conditions produced final conversion ranging from 6% to more than 60%. Post-irradiation conversion (dark cure) was quite limited when photopolymerization was interrupted either at very low or very high levels of conversion while significant dark cure contributions were possible for photocuring reactions suspended within the post-gel, rubbery regime. Analysis of conversion-based property evolution during and subsequent to photocuring demonstrated that the shrinkage rate increased significantly at about 40% conversion followed by late-stage suppression in the conversion-dependent shrinkage rate that begins at about 45-50% conversion. The gradual vitrification process over this conversion range is evident based on the broad but well-defined inflection in the modulus versus conversion data. As limiting conversion is approached, modulus and, to a somewhat lesser extent, stress rise precipitously as a result of vitrification with the stress profile showing little if any late-stage suppression as seen with shrinkage. Near the limiting conversion for this model resin, the volumetric polymerization shrinkage rate slows while an exponential rise in modulus promotes the vitrification process that appears to largely dictate stress development. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Energetics of the Brazil Current in the Rio Grande Cone region
NASA Astrophysics Data System (ADS)
Brum, André Lopes; Azevedo, José Luiz Lima de; Oliveira, Leopoldo Rota de; Calil, Paulo Henrique Rezende
2017-10-01
The energetics of the Brazil Current (BC) in the region of the Rio Grande Cone (RGC, 30-35.5°S), a topographic rise in the southwest portion of the Brazilian continental margin, are analyzed using 16 years of numerical data from the Ocean General Circulation Model (OGCM) for the Earth Simulator (OFES). The main focus of this study is the eddy-mean flow interactions of the BC and the local energy budgets in the study region. The kinetic and potential energy balance equations are derived for mean and eddy flows, and the resulting terms are presented and discussed. The eddy-mean flow interactions exhibit complex spatial distributions, and the intensities of the energy budgets decrease with increasing depth. However, only the mean potential energy (MPE) budget decreases southward. Eddy kinetic energy (EKE) and eddy potential energy (EPE) exhibit similar horizontal distribution patterns. Additionally, the baroclinic and barotropic conversion rates increase downstream of the bump, where the eddy energy field exhibits along-stream variability that increases southward. Barotropic conversion is more intense between 50 and 200 m, where mean kinetic energy (MKE) and EKE are concentrated, and it exhibits a horizontal cross-stream variation pattern, with mean-to-eddy energy conversion observed on the offshore side of the BC. This result indicates that the turbulence associated with the stream jet increases as the BC moves away from the coast, with the conversion term acting to stabilize the flow. Baroclinic conversion exhibits a high intensity below 300 m (where MPE and EPE display peaks), and it has a greater influence on the eddy-mean flow interaction than does the barotropic conversion. The RGC directly affects the local dynamics of the BC by increasing the eddy field as soon as the BC reaches the bump. The energy diagrams illustrate a stream characterized by evolving barotropic and baroclinic instability processes throughout the water column. This result indicates an intrinsically unstable jet in the study region. Moreover, baroclinic instability is the main source of EKE in the RGC region.
Petrov, Kaloyan; Popova, Luiza; Petrova, Penka
2017-06-01
Lactobacillus paracasei DSM 23505 is able to produce high amounts of lactic acid (LA) by simultaneous saccharification and fermentation (SSF) of inulin. Aiming to obtain the highest possible amounts of LA and fructose, the present study is devoted to evaluate the impact of bivalent metal ions on the process of inulin conversion. It was shown that Mn 2+ strongly increases the activity of the purified key enzyme β-fructosidase. In vivo, batch fermentation kinetics revealed that the high Mn 2+ concentrations accelerated inulin hydrolysis by raise of the inulinase activity, and increased sugars conversion to LA through enhancement of the whole glycolytic flux. The highest LA concentration and yield were reached by addition of 15 mM Mn 2+ -151 g/L (corresponding to 40% increase) and 0.83 g/g, respectively. However, the relative quantification by real-time reverse transcription assay showed that the presence of Mn 2+ decreases the expression levels of fosE gene encoding β-fructosidase. Contrariwise, the full exclusion of metal ions resulted in fosE gene expression enhancement, blocked fructose transport, and hindered fructose conversion thus leading to huge fructose accumulation. During fed-batch with optimized medium and fermentation parameters, the fructose content reached 35.9% (w/v), achieving yield of 467 g fructose from 675 g inulin containing chicory flour powder (0.69 g/g). LA received in course of the batch fermentation and fructose gained by the fed-batch are the highest amounts ever obtained from inulin, thus disclosing the key role of Mn 2+ as a powerful tool to guide inulin conversion to targeted bio-chemicals.
Mansor, Yosif; Perets, Itay; Close, Mary R; Mu, Brian H; Domb, Benjamin G
2018-06-01
Femoroplasty performed for the treatment of cam-type femoroacetabular impingement (FAI) has become a common procedure. Underresection may result in residual FAI. Conversely, overresection may disrupt the labral seal, which is responsible for chondroprotective fluid dynamics of the hip. Hypothesis/Purpose: It was hypothesized that cam overresection negatively affects hip function. The purpose was to examine the effect of the accuracy of previous femoroplasty on hips presenting for revision hip arthroscopic surgery. Cohort study; Level of evidence, 3. Data were prospectively collected for patients presenting for revision hip arthroscopic surgery between June 2010 and August 2014. On the basis of measurements on Dunn view radiographs, cases were divided into 3 groups: overresection (OR group) in which overresection measured over 5% of the diameter of the femoral head, underresection (UR group) in which there was a residual cam lesion (alpha angle >60°), and neutral resection (neutral group). Data collection included the modified Harris Hip Score (mHHS), Nonarthritic Hip Score (NAHS), Hip Outcome Score-Sports-Specific Subscale, and visual analog scale at presentation and at a minimum 2-year follow-up after revision hip arthroscopic surgery and rates of conversion to total hip arthroplasty (THA). One hundred thirty hips (120 patients) were included. Twenty hips (15.4%) were classified as the OR group, 16 (12.3%) as the UR group, and 94 (72.3%) as the neutral group. The mean follow-up was 39.6 ± 15.9 months. The mHHS and NAHS values at presentation were lower in the OR group compared with the UR group (50.2 ± 15.5 vs 64.7 ± 19.4 [ P = .033] and 48.5 ± 18.6 vs 63.0 ± 19.1 [ P = .044], respectively). The mHHS value at a minimum 2-year follow-up after revision was lower for the OR group (66.7 ± 19.8) than for the UR group (81.0 ± 14.5) ( P = .031). Conversion to THA was more common in the OR group than in the UR group (30% vs 0%, respectively; P = .024). Fifty percent of cases in the OR group, 69.9% in the neutral group, and 75% in the UR group met the minimal clinically important difference for the mHHS (Δ). The latest mHHS value reached the patient acceptable symptomatic state (PASS) in 35% of the cases in the OR group, 53.2% in the neutral group, and 75% in the UR group. Hips in the OR group had a significantly lower chance of reaching the PASS than the UR group (odds ratio, 0.1795 [95% CI, 0.0418-0.7711]; P = .0209). Cam overresection of more than 5% of the diameter of the femoral head on the Dunn view predicts inferior clinical outcomes compared with cam underresection in this population. Furthermore, overresection predicts inferior outcomes after revision hip arthroscopic surgery and higher rates of conversion to THA.
The new conversion model MODERN to derive erosion rates from inventories of fallout radionuclides
NASA Astrophysics Data System (ADS)
Arata, Laura; Meusburger, Katrin; Frenkel, Elena; A'Campo-Neuen, Annette; Iurian, Andra-Rada; Ketterer, Michael E.; Mabit, Lionel; Alewell, Christine
2016-04-01
The measurement of fallout radionuclides (FRNs) has become one of the most commonly used methods to quantify soil erosion and depositional processes. FRNs include anthropogenic radionuclides (e.g. 137Cs, 239+240Pu) released into the atmosphere during nuclear bomb tests and power plant accidents (e.g Chernobyl, Fukushima-Daiichi), as well as natural radiotracers such as 210Pbex and 7Be. FRNs reach the land surface by dry and wet fallouts from the atmosphere. Once deposited, FRNs are tightly adsorbed by fine soil particles and their subsequent redistribution is mostly associated with soil erosion processes. FRNs methods are based on a qualitative comparison: the inventory (total radionuclide activity per unit area) at a given sampling site is compared to that of a so called reference site. The conversion of FRN inventories into soil erosion and deposition rates is done with a variety of models, which suitability is dependent on the selected FRN, soil cultivation (ploughed or unploughed) and movement (erosion or deposition). The authors propose a new conversion model, which can be easily and comprehensively used for different FRNs, land uses and soil redistribution processes. This new model i.e. MODERN (MOdelling Deposition and Erosion rates with RadioNuclides) considers the precise depth distribution of a given FRN at a reference site, and allows adapting it for any specific site conditions. MODERN adaptability and performance has been tested on two published case studies: (i) a 137Cs study in an alpine and unploughed area in the Aosta valley (Italy) and (ii) a 210Pbex study on a ploughed area located in Romania. The results show a good agreement and a significant correlation (r= 0.91, p<0.0001) between the results of MODERN and the published models currently used by the FRN scientific community (i.e. the Profile Distribution Model and the Mass Balance Model). The open access code and the cost free accessibility of MODERN will ensure the promotion of a wider application of FRNs for investigating soil erosion and sedimentation processes.
Efficient electrochemical CO 2 conversion powered by renewable energy
Kauffman, Douglas R.; Thakkar, Jay; Siva, Rajan; ...
2015-06-29
Here, the catalytic conversion of CO 2 into industrially relevant chemicals is one strategy for mitigating greenhouse gas emissions. Along these lines, electrochemical CO 2 conversion technologies are attractive because they can operate with high reaction rates at ambient conditions. However, electrochemical systems require electricity, and CO 2 conversion processes must integrate with carbon-free, renewable-energy sources to be viable on larger scales. We utilize Au 25 nanoclusters as renewably powered CO 2 conversion electrocatalysts with CO 2 → CO reaction rates between 400 and 800 L of CO 2 per gram of catalytic metal per hour and product selectivities betweenmore » 80 and 95%. These performance metrics correspond to conversion rates approaching 0.8–1.6 kg of CO 2 per gram of catalytic metal per hour. We also present data showing CO 2 conversion rates and product selectivity strongly depend on catalyst loading. Optimized systems demonstrate stable operation and reaction turnover numbers (TONs) approaching 6 × 10 6 mol CO 2 molcatalyst–1 during a multiday (36 hours total hours) CO 2electrolysis experiment containing multiple start/stop cycles. TONs between 1 × 10 6 and 4 × 10 6 molCO 2 molcatalyst–1 were obtained when our system was powered by consumer-grade renewable-energy sources. Daytime photovoltaic-powered CO 2 conversion was demonstrated for 12 h and we mimicked low-light or nighttime operation for 24 h with a solar-rechargeable battery. This proof-of-principle study provides some of the initial performance data necessary for assessing the scalability and technical viability of electrochemical CO 2 conversion technologies. Specifically, we show the following: (1) all electrochemical CO 2 conversion systems will produce a net increase in CO 2 emissions if they do not integrate with renewable-energy sources, (2) catalyst loading vs activity trends can be used to tune process rates and product distributions, and (3) state-of-the-art renewable-energy technologies are sufficient to power larger-scale, tonne per day CO 2 conversion systems.« less
Method to monitor HC-SCR catalyst NOx reduction performance for lean exhaust applications
Viola, Michael B [Macomb Township, MI; Schmieg, Steven J [Troy, MI; Sloane, Thompson M [Oxford, MI; Hilden, David L [Shelby Township, MI; Mulawa, Patricia A [Clinton Township, MI; Lee, Jong H [Rochester Hills, MI; Cheng, Shi-Wai S [Troy, MI
2012-05-29
A method for initiating a regeneration mode in selective catalytic reduction device utilizing hydrocarbons as a reductant includes monitoring a temperature within the aftertreatment system, monitoring a fuel dosing rate to the selective catalytic reduction device, monitoring an initial conversion efficiency, selecting a determined equation to estimate changes in a conversion efficiency of the selective catalytic reduction device based upon the monitored temperature and the monitored fuel dosing rate, estimating changes in the conversion efficiency based upon the determined equation and the initial conversion efficiency, and initiating a regeneration mode for the selective catalytic reduction device based upon the estimated changes in conversion efficiency.
Schairer, William W; Nwachukwu, Benedict U; McCormick, Frank; Lyman, Stephen; Mayman, David
2016-04-01
To use population-level data to (1) evaluate the conversion rate of total hip arthroplasty (THA) within 2 years of hip arthroscopy and (2) assess the influence of age, arthritis, and obesity on the rate of conversion to THA. We used the State Ambulatory Surgery Databases and State Inpatient Databases for California and Florida from 2005 through 2012, which contain 100% of patient visits. Hip arthroscopy patients were tracked for subsequent primary THA within 2 years. Out-of-state patients and patients with less than 2 years follow-up were excluded. Multivariate analysis identified risks for subsequent hip arthroplasty after arthroscopy. We identified 7,351 patients who underwent hip arthroscopy with 2 years follow-up. The mean age was 43.9 ± 13.7 years, and 58.8% were female patients. Overall, 11.7% of patients underwent THA conversion within 2 years. The conversion rate was lowest in patients aged younger than 40 years (3.0%) and highest in the 60- to 69-year-old group (35.0%) (P < .001). We found an increased risk of THA conversion in older patients and in patients with osteoarthritis or obesity at the time of hip arthroscopy. Patients treated at high-volume hip arthroscopy centers had a lower THA conversion rate than those treated at low-volume centers (15.1% v 9.7%, P < .001). Hip arthroscopy is performed in patients of various ages, including middle-aged and elderly patients. Older patients have a higher rate of conversion to THA, as do patients with osteoarthritis or obesity. Level III, retrospective comparative study. Copyright © 2016 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.
5 CFR 536.305 - Adjusting an employee's retained rate when a pay schedule is adjusted.
Code of Federal Regulations, 2010 CFR
2010-01-01
... conversion under § 536.303(b) or any other simultaneous pay action. The retained rate adjustment under... new retained rate must be determined under the geographic conversion rule in § 536.303(b). (4... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false Adjusting an employee's retained rate...
Improving Donor Conversion Rates at a Level One Trauma Center: Impact of Best Practice Guidelines
Gibbons, Bobby L; Bershad, Vanessa L
2016-01-01
Background Organ availability is a consistently limiting factor in transplant surgery. A primary driver of this limitation is donor conversion rate, which is defined as the percentage of eligible donors for whom procurement is actually performed. An alternative way to increase organ availability is through improved utilization of organs from donors after cardiac death (DCD). Recently, a concerted, multidisciplinary effort has been made within our system to improve conversion rates and DCD utilization, thus increasing organ availability. Study design Retrospective analysis of a prospectively collected database from TransLife, our local organ procurement organization (OPO), as well as the Orlando Regional Medical Center (ORMC) trauma registry, from 2009-2012 (up to 2013 for DCD). During which time, this organization implemented best practice guidelines to improve conversions and DCD utilization. We analyzed yearly conversion rates, DCD donations and population demographics before and after implementation of these policies. Results During the study period, donor conversion rates significantly improved from 58% in 2009 to 82% percent in 2012 hospital-wide (P<0.05); and from 50% in 2009 to 81% in 2012 among trauma patients alone (P<0.05). In addition, total organs transplanted increased from 13 to 31 organs (P<0.05) after implementation of best practice guidelines. No significant differences in trauma population demographics were noted during the study period. Conclusions Based on our experience, the establishment of best practice policies for referral of potential donors, coupled with programs to educate hospital staff on the existence and importance of these policies, leads to significant improvement in donor conversion rates and increased utilization of DCD donors. PMID:28018761
Retrospective Conversion of Three Library Collections.
ERIC Educational Resources Information Center
Johnson, Carolyn A.
1982-01-01
Reports on the retrospective conversion via OCLC of cataloging for three library collections at the University of South Carolina--the main, rare book, and historical collections. Backgrounds of the collections, conversion procedures, determinants of conversion rates, and cost factors are discussed. (Author/JL)
Klem, Thea Blystad; Kjæstad, Hans Petter; Kummen, Eiliv; Holen, Hallstein; Stokstad, Maria
2016-01-25
Cost-benefit evaluation of measures against respiratory disease in cattle requires accounting with the associated production losses. Investigations of naturally occurring respiratory infections in a herd setting are an opportunity for accurate estimates of the consequences. This article presents estimates based on individual monitoring of weight and concentrate intake of several hundred bulls previous to, during and after a respiratory infection outbreak with bovine respiratory syncytial virus (BRSV) as the main pathogen. The aim of the study was to analyse the association between exposure to BRSV, weight gain and feed conversion rate, quantify any change in these parameters, and estimate the duration of the change in production. A comparison of growth curves for the bulls that were present during the outbreak revealed that bulls with severe clinical signs had a clear and consistent trend of poorer growth rate than those with milder or no signs. The weight/age-ratio was 0.04-0.10 lower in the severely affected bulls, and evident throughout the study period of 8 months. A comparison of growth rates between apparently healthy bulls being present during the outbreak and a comparable group of bulls exactly 1 year later (n = 377) showed a reduced growth rate of 111 g/day in the first group. The difference amounted to 23 extra days needed to reach the reference weight. Feed conversion was also reduced by 79 g weight gain/kilogram concentrate consumed in the outbreak year. This study indicates significant negative effects on performance of animals that develop severe clinical signs in the acute stage, and that the growth and production is negatively affected many months after apparent recovery. In addition, the performance of apparently healthy animals that are exposed during an outbreak are severely negatively affected. The duration of this decrease in production in animals after recovery, or animals that have not shown disease at all, has not previously been documented. These losses will easily be underestimated, but contribute significantly to the costs for the producer. The findings emphasize the importance of BRSV infection for profitability and animal welfare in cattle husbandry. The study also illustrates that utilising intra-herd comparison of health and production parameters is a productive approach to estimate consequences of an outbreak.
Strong emission in Yb3+/Er3+ co-doped phosphate glass ceramics
NASA Astrophysics Data System (ADS)
Liu, Yanling; Song, Feng; Jia, Guozhi; Zhang, Yanbang; Tang, Yi
Yb3+/Er3+ co-doped phosphate glass and glass ceramics were prepared by high-temperature melting method. The X-ray diffraction, transmission electron micrographs, up-conversion and infrared emissions, photothermal conversion properties of the samples have been measured. The results showed the annealing time had a great impact on the microstructure and luminous performance of the phosphate glass. At the beginning of annealing, the metaphosphate crystals were firstly dissolved out. The metaphosphate crystals gradually turned into the orthophosphate with the increasing of annealing time. The emission intensity of the sample was obviously improved after the precursor glass was annealed. The up-conversion and infrared emissions of the sample annealed at 600 °C for 24 h, reached the maximum intensity. Compared with the photothermal properties of glass, the lower photothermal conversion efficiency of the glass ceramics testified the strong emission.
Hartl, Monika; Gillis, Robert Chad; Daemen, Luke; Olds, Daniel P; Page, Katherine; Carlson, Stefan; Cheng, Yongqiang; Hügle, Thomas; Iverson, Erik B; Ramirez-Cuesta, A J; Lee, Yongjoong; Muhrer, Günter
2016-06-29
Molecular hydrogen exists in two spin-rotation coupled states: parahydrogen and orthohydrogen. Due to the variation of energy with rotational level, the occupation of ortho- and parahydrogen states is temperature dependent, with parahydrogen being the dominant species at low temperatures. The equilibrium at 20 K (99.8% parahydrogen) can be reached by natural conversion only after a lengthy process. With the use of a suitable catalyst, this process can be shortened significantly. Two types of commercial catalysts currently being used for ortho- to parahydrogen conversion are: iron(iii) oxide (Fe2O3, IONEX®), and chromium(ii) oxide doped silica catalyst (CrO·SiO2, OXISORB®). We investigate the interaction of ortho- and parahydrogen with the surfaces of these ortho-para conversion catalysts using neutron vibrational spectroscopy. The catalytic surfaces have been characterized using X-ray absorption fine structure (XAFS) and X-ray/neutron pair distribution function measurements.
Mu2e, a coherent μ --> e conversion experiment at Fermilab
NASA Astrophysics Data System (ADS)
Brown, D. N.; Mu2e Collaboration
2012-09-01
We describe a proposed experiment to search for Charged Lepton Flavor Violation (CLFV) using stopped muons at Fermilab. A primary Proton beam will strike a gold target, producing pions which decay to muons. Low-momentum negative muons will be collected, selected, and transported by a custom arrangement of solenoidal magnets and collimators. Muons will stop in thin foil targets, creating muonic atoms with significant nuclear overlap. Mu2e will search for the coherent conversion of nuclear bound muons to electrons, with an experimental signature of a single mono-energetic electron. Conversion electrons will be detected and measured in a low-mass straw tracker and a crystal calorimeter. Mu2e will have a sensitivity four orders of magnitude better than the most sensitive published result for μ → e conversion, and will have complementary physics reach to LHC experiments and μ → eγ decay experiments such as MEG.
Supercritical water oxidation of landfill leachate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang Shuzhong, E-mail: s_z_wang@yahoo.cn; Guo Yang; Chen Chongming
2011-09-15
Highlights: > Thermal analysis of NH{sub 3} in supercritical water oxidation reaction. > Research on the catalytic reaction of landfill leachate by using response surface method. > Kinetic research of supercritical water oxidation of NH{sub 3} with and without MnO{sub 2} catalyst. - Abstract: In this paper, ammonia as an important ingredient in landfill leachate was mainly studied. Based on Peng-Robinson formulations and Gibbs free energy minimization method, the estimation of equilibrium composition and thermodynamic analysis for supercritical water oxidation of ammonia (SCWO) was made. As equilibrium is reached, ammonia could be totally oxidized in SCW. N{sub 2} is themore » main product, and the formation of NO{sub 2} and NO could be neglected. The investigation on SCWO of landfill leachate was conducted in a batch reactor at temperature of 380-500 deg. C, reaction time of 50-300 s and pressure of 25 MPa. The effect of reaction parameters such as oxidant equivalent ratio, reaction time and temperature were investigated. The results showed that COD and NH{sub 3} conversion improved as temperature, reaction time and oxygen excess increased. Compared to organics, NH{sub 3} is a refractory compound in supercritical water. The conversion of COD and NH{sub 3} were higher in the presence of MnO{sub 2} than that without catalyst. The interaction between reaction temperature and time was analyzed by using response surface method (RSM) and the results showed that its influence on the NH{sub 3} conversion was relatively insignificant in the case without catalyst. A global power-law rate expression was regressed from experimental data to estimate the reaction rate of NH{sub 3}. The activation energy with and without catalyst for NH{sub 3} oxidation were 107.07 {+-} 8.57 kJ/mol and 83.22 {+-} 15.62 kJ/mol, respectively.« less
Kumar, A; Gross, R A
2000-01-01
Engineering of the reaction medium and study of an expanded range of reaction temperatures were carried out in an effort to positively influence the outcome of Novozyme-435 (immobilized Lipase B from Candida antarctica) catalyzed epsilon-CL polymerizations. A series of solvents including acetonitrile, dioxane, tetrahydrofuran, chloroform, butyl ether, isopropyl ether, isooctane, and toluene (log P from -1.1 to 4.5) were evaluated at 70 degrees C. Statistically (ANOVA), two significant regions were observed. Solvents having log P values from -1.1 to 0.49 showed low propagation rates (< or = 30% epsilon-CL conversion in 4 h) and gave products of short chain length (Mn < or = 5200 g/mol). In contrast, solvents with log P values from 1.9 to 4.5 showed enhanced propagation rates and afforded polymers of higher molecular weight (Mn = 11,500-17,000 g/mol). Toluene, a preferred solvent for this work, was studied at epsilon-CL to toluene (wt/vol) ratios from 1:1 to 10:1. The ratio 1:2 was selected since, for polymerizations at 70 degrees C, 0.3 mL of epsilon-CL and 4 h, gave high monomer conversions and Mn values (approximately 85% and approximately 17,000 g/mol, respectively). Increasing the scale of the reaction from 0.3 to 10 mL of CL resulted in a similar isolated product yield, but the Mn increased from 17,200 to 44,800 g/mol. Toluene appeared to help stabilize Novozyme-435 so that lipase-catalyzed polymerizations could be conducted effectively at 90 degrees C. For example, within only 2 h at 90 degrees C (toluene-d8 to epsilon-CL, 5:1, approximately 1% protein), the % monomer conversion reached approximately 90%. Also, the controlled character of these polymerizations as a function of reaction temperature was evaluated.
Towards improved photovoltaic conversion using dilute magnetic semiconductors (abstract only)
NASA Astrophysics Data System (ADS)
Olsson, Pär; Guillemoles, J.-F.; Domain, C.
2008-02-01
Present photovoltaic devices, based on p/n junctions, are limited from first principles to maximal efficiencies of 31% (40% under full solar concentration; Shockley and Queisser 1961 J. Appl. Phys. 32 510). However, more innovative schemes may overcome the Shockley-Queisser limit since the theoretical maximal efficiency of solar energy conversion is higher than 85% (Harder and Würfel 2003 Semicond. Sci. Technol. 18 S151). To date, the only practical realization of such an innovative scheme has been multi-junction devices, which at present hold the world record for efficiency at nearly 41% at significant solar concentration (US DOE news site: http://www.energy.gov/news/4503.htm). It has been proposed that one could make use of the solar spectrum in much the same way as the multi-junction devices do but in a single cell, using impurity induced intermediate levels to create gaps of different sizes. This intermediate level semiconductor (ILSC) concept (Green and Wenham 1994 Appl. Phys. Lett. 65 2907; Luque and Martí1997 Phys. Rev. Lett. 78 5014) has a maximal efficiency similar to that of multi-junction devices but suffers from prohibitively large non-radiative recombination rates. We here propose to use a ferromagnetic impurity scheme in order to reduce the non-radiative recombination rates while maintaining the high theoretical maximum efficiency of the ILSC scheme, that is about 46%. Using density functional theory calculations, the electronic and energetic properties of transition metal impurities for a wide range of semiconductors have been analysed. Of the several hundred compounds studied, only a few fulfil the design criteria that we present here. As an example, wide gap AlP is one of the most promising compounds. It was found that inclusion of significant amounts of Mn in AlP induces band structures providing conversion efficiencies potentially close to the theoretical maximum, with an estimated Curie temperature reaching above 100 K.
Influence of light-curing sources on polymerization reaction kinetics of a restorative system.
D'Alpino, Paulo H P; Svizero, Nádia R; Pereira, José C; Rueggeberg, Frederick A; Carvalho, Ricardo M; Pashley, David H
2007-02-01
To determine the effect of using a variety of commercial light-curing units on polymerization of a dentin-bonding agent (Adper Single Bond) and of a resin composite (Filtek Z250). Infrared (IR) spectra were obtained kinetically at one scan/second at 2 cm(-1) resolution for a period of 5 minutes and were analyzed for: maximum conversion rate (%/s), time into exposure when maximum rate occurred (seconds), conversion at maximum rate (%), and total conversion (%) at 300 seconds by comparison of aliphatic-to-aromatic absorption IR peak ratios, before and after polymerization. Light units used were: QTH 540 mW/cm2 (XL3000); LED 750 mW/cm2 (Elipar FreeLight 2); PAC 2,130 mW/cm2 (ARC II). Exposure followed manufacturers' recommendations: dentin bonding agent for 10 seconds, RC for 20 seconds (QTH), and 10 seconds (LED and PAC). Polymerization kinetics was evaluated at the bottom surface (2.5 mm thick) for the resin composite and as a thin film for the dentin bonding agent on the diamond surface of an attenuated total reflectance accessory in the IR spectrometer. Values (n = 5) were compared using ANOVA and Tukey's pairwise post-hoc test: pre-set alpha 0.05. PAC produced the highest total conversion and conversion rate for the resin composite (P < 0.05). Total conversion was lower for dentin bonding adhesive using PAC than with LED or QTH (P < 0.05). LED provided the highest proportion of conversion at the maximum rate with respect to conversion at 300 seconds for both materials. QTH demonstrated the lowest maximum rate value that occurred at a longer time into exposure (P < 0.05). Polymerization kinetic parameters varied greatly between the restorative materials as well as among light-curing unit types when compared to values observed when using a QTH light as control.
Saisho, Yoshifumi; Manesso, Erica; Gurlo, Tatyana; Huang, Chang-jiang; Toffolo, Gianna M.; Cobelli, Claudio; Butler, Peter C.
2009-01-01
An obstacle to development of methods to quantify β-cell turnover from pancreas tissue is the lack of conversion factors for the frequency of β-cell replication or apoptosis detected by immunohistochemistry to rates of replication or apoptosis. We addressed this obstacle in islets from 1-mo-old rats by quantifying the relationship between the rate of β-cell replication observed directly by time-lapse video microscopy (TLVM) and the frequency of β-cell replication in the same islets detected by immunohistochemistry using antibodies against Ki67 and insulin in the same islets fixed immediately after TLVM. Similarly, we quantified the rate of β-cell apoptosis by TLVM and then the frequency of apoptosis in the same islets using TdT-mediated dUTP nick-end labeling and insulin. Conversion factors were developed by regression analysis. The conversion factor from Ki67 labeling frequency (%) to actual replication rate (%events/h) is 0.025 ± 0.003 h−1. The conversion factor from TdT-mediated dUTP nick-end labeling frequency (%) to actual apoptosis rate (%events/h) is 0.41 ± 0.05 h−1. These conversion factors will permit development of models to evaluate β-cell turnover in fixed pancreas tissue. PMID:18940937
Pretreatment of corn stover by solid acid for d-lactic acid fermentation.
Wang, Xiqing; Wang, Gang; Yu, Xiaoxiao; Chen, Huan; Sun, Yang; Chen, Guang
2017-09-01
Solid acid is a new acid that is safe and green, which has been widely used in the fields of acid pickling. In this study, we adopted solid acid to pretreat corn stover and used the pretreated corn stover in the fermentation of d-lactic acid. Finally, we obtained optimal conditions for the pretreatment of corn stover by solid acid: digestion temperature of 120°C, digestion time of 80min, and solid acid concentration of 1.5%. Then adding cellulase of 30FPU/g, the conversion rate of glucose reached 71.06% after enzymatic hydrolysis for 72h. In addition, the changes of corn stover structure after pretreatment were further represented by using scanning electron microscope (SEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). At the same time, we used the pretreated corn stover as fermentation substrate and Lactobacillus. delbrueckii sp. bulgaricus as the starting strain to produce d-lactic acid. The yield reached 18g/L, with the optical purity being 99%e.e. This research has provided a new way to comprehensively utilizae corn stover. Copyright © 2017 Elsevier Ltd. All rights reserved.
Progress in understanding conversion disorder
Allin, Matthew; Streeruwitz, Anna; Curtis, Vivienne
2005-01-01
Conversion disorder has a history that may reach back into antiquity, and it continues to present a clinical challenge to both psychiatrists and neurologists. This article reviews the current state of knowledge surrounding the prevalence, etiology, and neurobiology of conversion disorder. There have been improvements in the accuracy of diagnosis that are possibly related to improved technologies such as neuroimaging. Once the diagnosis is made, it is important to develop a therapeutic alliance between the patient and the medical team, and where comorbid psychiatric diagnoses have been made, these need to be adequately treated. While there have been no formal trials of medication or psychoanalytic treatments in this disorder, case reports suggest that a combination of antidepressants, psychotherapy, and a multidisciplinary approach to rehabilitation may be beneficial. PMID:18568070
Multicenter Trial of the VenaTech Convertible Vena Cava Filter.
Hohenwalter, Eric J; Stone, James R; O'Moore, Paul V; Smith, Steven J; Selby, J Bayne; Lewandowski, Robert J; Samuels, Shaun; Kiproff, Paul M; Trost, David W; Madoff, David C; Handel, Jeremy; Gandras, Eric J; Vlahos, Athanasios; Rilling, William S
2017-10-01
To demonstrate rates of successful filter conversion and 6-month major device-related adverse events in subjects with converted caval filters. An investigational device exemption multicenter, prospective, single-arm study was performed at 11 sites enrolling 149 patients. The VenaTech Convertible Vena Cava Filter (B. Braun Interventional Systems, Inc, Bethlehem, Pennsylvania) was implanted in 149 patients with venous thromboembolism and contraindication to or failure of anticoagulation (n = 119), with high-risk trauma (n = 14), and for surgical prophylaxis (n = 16). When the patient was no longer at risk for pulmonary embolism as determined by clinical assessment, an attempt at filter conversion was made. Follow-up of converted patients (n = 93) was conducted at 30 days, 3 months, and 6 months after conversion. Patients who did not undergo a conversion attempt (n = 53) had follow-up at 6 months after implant. All implants were successful. One 7-day migration to the right atrium required surgical removal. Technical success rate for filter conversion was 92.7% (89/96). Mean time from placement to conversion was 130.7 days (range, 15-391 d). No major conversion-related events were reported. The mean conversion procedure time was 30.7 minutes (range, 7-135 min). There were 89 converted and 32 unconverted patients who completed 6-month follow-up with no delayed complications. The VenaTech Convertible filter has a high conversion rate and low 6-month device-related adverse event rate. Further studies are necessary to determine long-term safety and efficacy in both converted and unconverted patients. Copyright © 2017 SIR. Published by Elsevier Inc. All rights reserved.
2010-04-01
to be 700 km. The scale of devel- opment is therefore within the fast -growing, smaller wavenumber portion of the large cyclone growth regime...the baroclinic conversion term CA increases about half as fast as it does in the corresponding moist experiment. In the moist case, CA reaches its...conversion of mean-state APE to eddy APE is slower, so the occlusion process is delayed and the system con- tinues deepening, although not as fast as in the
Jung, Jae Woong; Chueh, Chu-Chen; Jen, Alex K. -Y.
2015-07-06
High-performance planar heterojunction perovskite (CH3NH3PbI3) solar cell (PVSC) is demonstrated by utilizing CuSCN as a hole-transporting layer. Efficient hole-transport and hole-extraction at the CuSCN/CH3NH3PbI3 interface facilitate the PVSCs to reach 16% power conversion efficiency (PCE). In addition, excellent transparency of CuSCN enables high-performance semitransparent PVSC (10% PCE and 25% average visible transmittance) to be realized.
Complete energy conversion by autoresonant three-wave mixing in nonuniform media.
Yaakobi, O; Caspani, L; Clerici, M; Vidal, F; Morandotti, R
2013-01-28
Resonant three-wave interactions appear in many fields of physics e.g. nonlinear optics, plasma physics, acoustics and hydrodynamics. A general theory of autoresonant three-wave mixing in a nonuniform media is derived analytically and demonstrated numerically. It is shown that due to the medium nonuniformity, a stable phase-locked evolution is automatically established. For a weak nonuniformity, the efficiency of the energy conversion between the interacting waves can reach almost 100%. One of the potential applications of our theory is the design of highly-efficient optical parametric amplifiers.
Gravity flow rate of solids through orifices and pipes
NASA Technical Reports Server (NTRS)
Gardner, J. F.; Smith, J. E.; Hobday, J. M.
1977-01-01
Lock-hopper systems are the most common means for feeding solids to and from coal conversion reactor vessels. The rate at which crushed solids flow by gravity through the vertical pipes and valves in lock-hopper systems affects the size of pipes and valves needed to meet the solids-handling requirements of the coal conversion process. Methods used to predict flow rates are described and compared with experimental data. Preliminary indications are that solids-handling systems for coal conversion processes are over-designed by a factor of 2 or 3.
Xu, Lin; Ophir, Noam; Menard, Michael; Lau, Ryan Kin Wah; Turner-Foster, Amy C; Foster, Mark A; Lipson, Michal; Gaeta, Alexander L; Bergman, Keren
2011-06-20
We experimentally demonstrate four-wave-mixing (FWM)-based continuous wavelength conversion of optical differential-phase-shift-keyed (DPSK) signals with large wavelength conversion ranges as well as simultaneous wavelength conversion of dual-wavelength channels with mixed modulation formats in 1.1-cm-long dispersion-engineered silicon waveguides. We first validate up to 100-nm wavelength conversion range for 10-Gb/s DPSK signals, showcasing the capability to perform phase-preserving operations at high bit rates in chip-scale devices over wide conversion ranges. We further validate the wavelength conversion of dual-wavelength channels modulated with 10-Gb/s packetized phase-shift-keyed (PSK) and amplitude-shift-keyed (ASK) signals; demonstrate simultaneous operation on multiple channels with mixed formats in chip-scale devices. For both configurations, we measure the spectral and temporal responses and evaluate the performances using bit-error-rate (BER) measurements.
The rate of meiotic gene conversion varies by sex and age
Halldorsson, Bjarni V.; Hardarson, Marteinn T.; Kehr, Birte; Styrkarsdottir, Unnur; Gylfason, Arnaldur; Thorleifsson, Gudmar; Zink, Florian; Jonasdottir, Adalbjorg; Jonasdottir, Aslaug; Sulem, Patrick; Masson, Gisli; Thorsteinsdottir, Unnur; Helgason, Agnar; Kong, Augustine; Gudbjartsson, Daniel F.; Stefansson, Kari
2016-01-01
Meiotic recombination involves a combination of gene conversion and crossover events that along with mutations produce germline genetic diversity. Here, we report the discovery of 3,176 SNP and 61 indel gene conversions. Our estimate of the non-crossover (NCO) gene conversion rate (G) is 7.0 for SNPs and 5.8 for indels per Mb per generation, and the GC bias is 67.6%. For indels we demonstrate a 65.6% preference for the shorter allele. NCO gene conversions from mothers are longer than those from fathers and G is 2.17 times greater in mothers. Notably, G increases with the age of mothers, but not fathers. A disproportionate number of NCO gene conversions in older mothers occur outside double strand break (DSB) regions and in regions with relatively low GC content. This points to age-related changes in the mechanisms of meiotic gene conversions in oocytes. PMID:27643539
Can quantum coherent solar cells break detailed balance?
NASA Astrophysics Data System (ADS)
Kirk, Alexander P.
2015-07-01
Carefully engineered coherent quantum states have been proposed as a design attribute that is hypothesized to enable solar photovoltaic cells to break the detailed balance (or radiative) limit of power conversion efficiency by possibly causing radiative recombination to be suppressed. However, in full compliance with the principles of statistical mechanics and the laws of thermodynamics, specially prepared coherent quantum states do not allow a solar photovoltaic cell—a quantum threshold energy conversion device—to exceed the detailed balance limit of power conversion efficiency. At the condition given by steady-state open circuit operation with zero nonradiative recombination, the photon absorption rate (or carrier photogeneration rate) must balance the photon emission rate (or carrier radiative recombination rate) thus ensuring that detailed balance prevails. Quantum state transitions, entropy-generating hot carrier relaxation, and photon absorption and emission rate balancing are employed holistically and self-consistently along with calculations of current density, voltage, and power conversion efficiency to explain why detailed balance may not be violated in solar photovoltaic cells.
NASA Technical Reports Server (NTRS)
Maahs, H. G.
1983-01-01
Results are presented from a laboratory study of the kinetics of the S(IV)-O3 reaction in aqueous solution, including measurements of the effects of UV radiation, dissolved transition metals, and an antioxidant (hydroquinone) on the rate. On the basis of the results, relative rates of S(IV) conversion by O3 in tropospheric cloud water are compared with those predicted for H2O2 and for O2. The reaction mechanism is discussed, with an outline given of the elements of a possible reaction scheme. Application of the rate constants obtained to SO2 conversion in cloud water predicts conversion rates by ozone to be competitive with those by H2O2 at pH above about 4.5 and to dominate at pH above about 5.5. It is pointed out that since these pH's are typical for nonurban tropospheric cloud water, ozone is a potentially important contributor to the overall oxidative conversion of SO2 to sulfate in the nonurban troposphere.
NASA Astrophysics Data System (ADS)
Pushkin, A. V.; Bychkov, A. S.; Karabutov, A. A.; Potemkin, F. V.
2018-06-01
The processes of conversion of light energy into mechanical energy under mid-IR nanosecond laser excitation on a rigid boundary of water are investigated. Strong water absorption of Q-switched Cr:Yb:Ho:YSGG (2.85 µm, 6 mJ, 45 ns) laser radiation provides rapid energy deposition of ~8 kJ cm‑3 accompanied with strong mechanical transients. The evolution of shock waves and cavitation bubbles is studied using the technique of shadowgraphy and acoustic measurements, and the conversion efficiency into these energy channels for various laser fluence (0.75–2.0 J cm‑2) is calculated. For 6 mJ laser pulse with fluence of 2.0 J cm‑2, the conversion into shock wave energy reaches 67%. The major part of the shock wave energy (92%) is dissipated when the shock front travels the first 250 µm, and the remaining 8% is transferred to the acoustic far field. The calculated pressure in the vicinity of water-silicon interface is 0.9 GPa. Cavitation efficiency is significantly less and reaches up to 5% of the light energy. The results of the current study could be used in laser parameters optimization for micromachining and biological tissue ablation.
Chang, Ho; Yu, Zhi-Rong
2012-08-01
This study self-develops a novel type of photothermoelectric power generation modules. Dye-sensitized solar cells (DSSCs) serve as the photoelectric conversion system and a copper (Cu) heat-transfer nanofilm coating on both sides of the thermoelectric generator (TEG) acts as a thermoelectric conversion system. Thus module assembly absorbs light and generates electricity by DSSCs, and also recycles waste heat and generates power by the TEG. In addition, a set of pulsating heat pipes (PHP) filled with Cu nanofluid is placed on the cooling side to increase cooling effects and enhance the power generation efficiency. Results show that when the heat source of thermoelectric modules reaches 90 degrees C, TEG power output is increased by 85.7%. Besides, after thermoelectric modules are heated by additional heat source at 80 degrees C, the electrical energy generated by them can let a NiMH cell (1.25 V) be sufficiently charged in about 30 minutes. When photothermoelectric modules is illumined by simulated light, the temperature difference of two sides of TEG can reach 7 degrees C and the thermoelectric conversion efficiency is 2.17%. Furthermore, the power output of the thermoelectric modules is 11.48 mW/cm2, enhancing 1.4 % compared to merely using DSSCs module.
Bioinspired catalytic materials for energy-relevant conversions
NASA Astrophysics Data System (ADS)
Artero, Vincent
2017-09-01
The structure of active sites of enzymes involved in bioenergetic processes can inspire design of active, stable and cost-effective catalysts for renewable-energy technologies. For these materials to reach maturity, the benefits of bioinspired systems must be combined with practical technological requirements.
Yang, Pan; Hu, Zi-Jun; Lin, Hong; Lai, Xin-Chun; Zhao, Xiao-Chong; Yang, Li-Jun
2018-06-01
Low-cost carbon materials (carbon black and graphite power) were applied as substitution of platinum (Pt) in counter electrodes (CEs) for dye-sensitized solar cells (DSSCs). Three fabrication methods, such as ball-milled, pulp-refined, and ultrasonic-crushed, were applied to remove the particle aggregation in the carbon pastes. Then the carbon based pastes were printed on fluorine-doped transparent conducting oxide (FTO) glasses, used as the CEs for DSSCs. Under illumination of 100 mW/cm2, DSSCs with ultrasonic-crushed CEs (U-CEs) show an energy conversion efficiency of 3.57%, which reach to 65.38% of that with conventional sputtered platinum CEs (5.46%). In addition, U-CEs exhibit a higher catalytic activity and a faster charge transfer rate toward the reduction of I-3 to I-.
Single-walled carbon nanotube film-silicon heterojunction radioisotope betavoltaic microbatteries
NASA Astrophysics Data System (ADS)
Liu, Peng; Chang, Yiyang; Zhang, Jinwen
2014-05-01
Ever since the appearance of nanomaterials and nanotechnologies, they have been used in almost every type of microbattery except for nuclear ones. Here we present a radioisotope betavoltaic (BV) microbattery based on a single-walled carbon nanotube (SWCNT) film that acts as a carrier separator. SWCNT film also provides a shortcut for carrier transportation. The energy conversion efficiency of a BV microbattery can reach up to 0.15% after the subtraction of the energy loss of beta particles in air and SWCNT film, proving that the SWCNT film-silicon heterojunction presents a promising configuration suitable for use in radioisotope BV microbatteries. Tracing the particle route, we achieved a charge collection rate of 59.9%, indicating that our device could potentially achieve higher performance. Primary strategies to improve the performance of the BV microbattery are discussed.
Smith, Benjamin T; Knutsen, Jeffrey S; Davis, Robert H
2010-05-01
The cellulose hydrolysis kinetics during batch enzymatic saccharification are typified by a rapid initial rate that subsequently decays, resulting in incomplete conversion. Previous studies suggest that changes associated with the solution, substrate, or enzymes may be responsible. In this work, kinetic experiments were conducted to determine the relative magnitude of these effects. Pretreated corn stover (PCS) was used as a lignocellulosic substrate likely to be found in a commercial saccharification process, while Avicel and Kraft lignin were used to create model substrates. Glucose inhibition was observed by spiking the reaction slurry with glucose during initial-rate experiments. Increasing the glucose concentration from 7 to 48 g/L reduced the cellulose conversion rate by 94%. When product sugars were removed using ultrafiltration with a 10 kDa membrane, the glucose-based conversion increased by 9.5%. Reductions in substrate reactivity with conversion were compared directly by saccharifying PCS and Avicel substrates that had been pre-reacted to different conversions. Reaction of substrate with a pre-conversion of 40% resulted in about 40% reduction in the initial rate of saccharification, relative to fresh substrate with identical cellulose concentration. Overall, glucose inhibition and reduced substrate reactivity appear to be dominant factors, whereas minimal reductions of enzyme activity were observed.
Kinetics of beta-haematin formation from suspensions of haematin in aqueous benzoic acid.
Egan, Timothy J; Tshivhase, Mmboneni G
2006-11-14
Kinetics of beta-haematin (synthetic malaria pigment) formation from haematin have been studied in the presence of aqueous benzoic acid and derivatives of benzoic acid. Formation of the beta-haematin product is demonstrated by X-ray diffraction and IR spectroscopy. Reactions were followed by determining the fraction of unreacted haematin at various time points during the process via reaction of extracted aliquots with pyridine. The kinetics can be fitted to the Avrami equation, indicating that the process involves nucleation and growth. Reaction kinetics in stirred benzoic acid are similar to those previously observed in acetic acid, except that benzoic acid is far more active in promoting the reaction than acetic acid. The reaction reaches completion within 2 h in the presence of 0.050 M benzoic acid (pH 4.5, 60 degrees C). This compares with 1 h in the presence of 4.5 M acetic acid and 4 h in the presence of 2 M acetic acid. The reaction rate in benzoic acid is not affected if the stirring rate is decreased to zero, but very vigorous stirring appears to disrupt nucleation. The rate constant for beta-haematin formation in benzoic acid has a linear dependence on benzoic acid concentration and follows Arrhenius behaviour with temperature. There is a bell-shaped dependence on pH. This suggests that the haematin species in which one propionate group is protonated and the other is deprotonated is optimal for beta-haematin formation. When the reaction is conducted in para-substituted benzoic acid derivatives, the log of the rate constant increases linearly with the Hammett constant. These findings suggest that the role of the carboxylic acid may be to disrupt hydrogen bonding and pi-stacking in haematin, facilitating conversion to beta-haematin. The large activation energy for conversion of precipitated haematin to beta-haematin suggests that the reaction in vivo most likely involves direct nucleation from solution and probably does not occur in aqueous medium.
Montiel Corona, Virginia; Razo-Flores, Elías
2018-02-01
Continuous H 2 and CH 4 production in a two-stage process to increase energy recovery from agave bagasse enzymatic-hydrolysate was studied. In the first stage, the effect of organic loading rate (OLR) and stirring speed on volumetric hydrogen production rate (VHPR) was evaluated in a continuous stirred tank reactor (CSTR); by controlling the homoacetogenesis with the agitation speed and maintaining an OLR of 44 g COD/L-d, it was possible to reach a VHPR of 6 L H 2 /L-d, equivalent to 1.34 kJ/g bagasse. In the second stage, the effluent from CSTR was used as substrate to feed a UASB reactor for CH 4 production. Volumetric methane production rate (VMPR) of 6.4 L CH 4 /L-d was achieved with a high OLR (20 g COD/L-d) and short hydraulic retention time (HRT, 14 h), producing 225 mL CH 4 /g-bagasse equivalent to 7.88 kJ/g bagasse. The two-stage continuous process significantly increased energy conversion efficiency (56%) compared to one-stage hydrogen production (8.2%). Copyright © 2017 Elsevier Ltd. All rights reserved.
Conversion tables for use with the National Fire-Danger Rating System in the Intermountain area
Dwight S. Stockstad; Richard J. Barney
1964-01-01
Two tables prepared for use with the National Fire-Danger Rating System replace 10 tables previously used with the Model-8 Fire-Danger Rating System. They provide for the conversion of Spread Index values at various altitudes, aspects, and times of day. A rate of spread table facilitates converting Spread Index values to chains per hour of perimeter increase for...
Does quality improvement work? Evaluation of the Organ Donation Breakthrough Collaborative.
Howard, David H; Siminoff, Laura A; McBride, Virginia; Lin, Monica
2007-12-01
The Organ Donation Breakthrough Collaborative is a quality improvement initiative to encourage adoption of "best practices" for identifying potential donors and obtaining consent for deceased organ donation. We evaluate the impact of the first phase on organ donation rates. We study donation rates in the 95 hospitals that participated in the first phase and a control group of 125 hospitals. We use a controlled pre/post design. The preperiod is the year before the start of the Collaborative (September 2002 to August 2003), the postperiod is the final 6 months of the first phase (March 2004 to August 2004). We use administrative data from the Organ Procurement and Transplantation Network to compute the conversion rate in each hospital group and time period. The conversion rate is the proportion of eligible donors who became actual donors. Preperiod conversion rates in Collaborative and control hospitals were similar: 52 and 51 percent, respectively. In the postperiod, the conversion rate increased to 60 percent among Collaborative hospitals and remained at 51 percent among control hospitals. The relative change was 8 percentage points (95 percent confidence interval: 2-13: p<.001). Our findings suggest that the Breakthrough Collaborative led to an increase in donation rates at participating hospitals.
Retrospective Conversion: A Question of Time, Standards, and Purpose.
ERIC Educational Resources Information Center
Valentine, Phyllis A.; McDonald, David R.
1986-01-01
Examines the factors that determine the cost of retrospective conversion (definition of conversion, standards of acceptance, method of conversion, hit rate, standards for creation of machine-readable records for nonhits); reports results of cost study at University of Michigan library; and introduces an alternative strategy for discussion. Seven…
Treatment of corn ethanol distillery wastewater using two-stage anaerobic digestion.
Ráduly, B; Gyenge, L; Szilveszter, Sz; Kedves, A; Crognale, S
In this study the mesophilic two-stage anaerobic digestion (AD) of corn bioethanol distillery wastewater is investigated in laboratory-scale reactors. Two-stage AD technology separates the different sub-processes of the AD in two distinct reactors, enabling the use of optimal conditions for the different microbial consortia involved in the different process phases, and thus allowing for higher applicable organic loading rates (OLRs), shorter hydraulic retention times (HRTs) and better conversion rates of the organic matter, as well as higher methane content of the produced biogas. In our experiments the reactors have been operated in semi-continuous phase-separated mode. A specific methane production of 1,092 mL/(L·d) has been reached at an OLR of 6.5 g TCOD/(L·d) (TCOD: total chemical oxygen demand) and a total HRT of 21 days (5.7 days in the first-stage, and 15.3 days in the second-stage reactor). Nonetheless the methane concentration in the second-stage reactor was very high (78.9%); the two-stage AD outperformed the reference single-stage AD (conducted at the same reactor loading rate and retention time) by only a small margin in terms of volumetric methane production rate. This makes questionable whether the higher methane content of the biogas counterbalances the added complexity of the two-stage digestion.
Degradation of palm oil empty fruit bunch (EFB) into bio-oil in sub-and supercritical solvents
NASA Astrophysics Data System (ADS)
Sarwono, Rakhman; Pusfitasari, Eka Dian
2017-01-01
Hydrothemal Liquefaction (HTL) of empty fruit bunch (EFB) of palm oil in different solvents (water, ethanol and hexane) were comparatively investigated. Experiments were carried out in an autoclave in different EFB loading of 9%, 11%, and 13%. The temperature operation was 350 oC, without any catalysts and reaction time of 5 hours. The efficiency of above solvents in terms of conversion rate, soluble liquid and carbon products were found in this experiments. The water solvent gave higher conversion rate of 35 - 36.5 %, while hexane gave conversion of 17 - 25.25 %, and ethanol gave the lower conversion rate of 12.65 - 30.3%, respectively. Increasing the EFB load decreased the conversion rate for ethanol and hexane solvents, for water there are no significant change in the conversion rate. The bio-oil as soluble liquid produced were in order of water, ethanol, and hexane solvents, respectively. The chemical properties of bio-oil products were significantly affected by the type of liquefaction solvent. The compositional of bio-oil consists of mostly of a mixture of organic acids, ketones, and esters. The hexane and ethanol solvents resulted mostly organic acids. In water solvent resulted 2-pentanone, 4-hydroxy-4-methyl and others substances. According to the bio-oil results, organic solvents resulted higher HHV compared to water solvent. The higher heating value (HHV) of the carbon products were also comparatively, ethanol solvent resulted soluble liquid with higher HHV compared to the water solvent.
Communication nonaccommodation in family conversations about end-of-life health decisions.
Scott, Allison M; Caughlin, John P
2015-01-01
Furthering our understanding of how communication can improve end-of-life decision making requires a shift in focus from whether people talk to how people talk about end-of-life health decisions. This study used communication accommodation theory to examine the extent to which communication nonaccommodation distinguished more from less successful end-of-life conversations among family members. We analyzed elicited conversations about end-of-life health decisions from 121 older parent/adult child dyads using outside ratings of communication over- and underaccommodation and self-reported conversational outcomes. Results of multilevel linear modeling revealed that outside ratings of underaccommodation predicted self-reported and partner-reported uncertainty, and ratings of overaccommodation predicted self-reported decision-making efficacy and change in concordance accuracy. We discuss the methodological, theoretical, and practical implications of these findings.
Leveraging Distant Relatedness to Quantify Human Mutation and Gene-Conversion Rates
Palamara, Pier Francesco; Francioli, Laurent C.; Wilton, Peter R.; Genovese, Giulio; Gusev, Alexander; Finucane, Hilary K.; Sankararaman, Sriram; Sunyaev, Shamil R.; de Bakker, Paul I.W.; Wakeley, John; Pe’er, Itsik; Price, Alkes L.
2015-01-01
The rate at which human genomes mutate is a central biological parameter that has many implications for our ability to understand demographic and evolutionary phenomena. We present a method for inferring mutation and gene-conversion rates by using the number of sequence differences observed in identical-by-descent (IBD) segments together with a reconstructed model of recent population-size history. This approach is robust to, and can quantify, the presence of substantial genotyping error, as validated in coalescent simulations. We applied the method to 498 trio-phased sequenced Dutch individuals and inferred a point mutation rate of 1.66 × 10−8 per base per generation and a rate of 1.26 × 10−9 for <20 bp indels. By quantifying how estimates varied as a function of allele frequency, we inferred the probability that a site is involved in non-crossover gene conversion as 5.99 × 10−6. We found that recombination does not have observable mutagenic effects after gene conversion is accounted for and that local gene-conversion rates reflect recombination rates. We detected a strong enrichment of recent deleterious variation among mismatching variants found within IBD regions and observed summary statistics of local sharing of IBD segments to closely match previously proposed metrics of background selection; however, we found no significant effects of selection on our mutation-rate estimates. We detected no evidence of strong variation of mutation rates in a number of genomic annotations obtained from several recent studies. Our analysis suggests that a mutation-rate estimate higher than that reported by recent pedigree-based studies should be adopted in the context of DNA-based demographic reconstruction. PMID:26581902
King, Thomas C; Upfal, Mark; Gottlieb, Andrew; Adamo, Philip; Bernacki, Edward; Kadlecek, Chris P; Jones, Jeffrey G; Humphrey-Carothers, Frances; Rielly, Albert F; Drewry, Pamela; Murray, Kathy; DeWitt, Marcie; Matsubara, Janet; O'Dea, Louis; Balser, John; Wrighton-Smith, Peter
2015-08-01
Interferon-γ release assays have significant advantages over tuberculin skin testing in many clinical situations. However, recent studies have called into question their reliability in serial testing of healthcare workers because of reportedly high rates of positivity and high conversion/reversion rates on retesting. To define the performance characteristics of the T-SPOT.TB test, an interferon-γ release assay, during serial screening programs of healthcare workers at 19 U.S. hospitals. A total of 42,155 T-SPOT.TB test results from healthcare workers at 19 geographically diverse hospitals obtained for routine tuberculosis screening programs were analyzed to determine the rates of positivity, reversion, and conversion in serial testing data. In 19,630 evaluable serial pairs from 16,076 healthcare workers, the mean test positivity rate was 2.3% (range, 0.0-27.4%). The mean conversion rate was 0.8% (range, 0.0-2.5%), and the mean reversion rate was 17.6%. Positivity and conversion rates correlated with known tuberculosis risk factors including age and sex. The observed specificity of the T-SPOT.TB test was at least 98.6%. The high concordance and test completion rates in this study suggest that the T-SPOT.TB test is a reliable tool for healthcare worker serial screening. As expected, the observed positivity rates were lower compared with the tuberculin skin test, likely reflecting the higher specificity of this test. Furthermore, the observed rates of conversion were low and significantly correlated with the geographic incidence of tuberculosis. Our findings suggest that the T-SPOT.TB test is an accurate and reliable way to screen healthcare workers.
Communicating with sentences: A multi-word naming game model
NASA Astrophysics Data System (ADS)
Lou, Yang; Chen, Guanrong; Hu, Jianwei
2018-01-01
Naming game simulates the process of naming an object by a single word, in which a population of communicating agents can reach global consensus asymptotically through iteratively pair-wise conversations. We propose an extension of the single-word model to a multi-word naming game (MWNG), simulating the case of describing a complex object by a sentence (multiple words). Words are defined in categories, and then organized as sentences by combining them from different categories. We refer to a formatted combination of several words as a pattern. In such an MWNG, through a pair-wise conversation, it requires the hearer to achieve consensus with the speaker with respect to both every single word in the sentence as well as the sentence pattern, so as to guarantee the correct meaning of the saying; otherwise, they fail reaching consensus in the interaction. We validate the model in three typical topologies as the underlying communication network, and employ both conventional and man-designed patterns in performing the MWNG.
Designation of a polarization-converting system and its enhancement of double-frequency efficiency
NASA Astrophysics Data System (ADS)
Wang, Peng; Li, Xiao; Shang, YaPing; Xu, XiaoJun
2015-08-01
A polarization-converting system is designed by using axicons and wave plate transforming naturally polarized laser to linearly polarized laser at real time to resolve difficulties of generating high-power linearly polarized laser. The energy conversion efficiency reaches 96.9% with an enhancement of extinction ratio from 29.7% to 98%. The system also keeps excellent far field divergence. In the one-way SHG experiment the double frequency efficiency reached 4.32% using the generated linearly polarized laser, much higher than that of the naturally polarized laser but lower than that of the linearly polarized laser from PBS. And the phenomenon of the SHG experiment satisfies the principle of phase matching. The experiment proves that this polarization-converting system will not affect laser structure which controls easily and needs no feedback and controlling system with stable and reliable properties at the same time. It can absolutely be applied to the polarization-conversion of high power laser and enhance the SHG efficiency and the energy efficiency.
49 CFR 583.14 - Currency conversion rate.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 7 2013-10-01 2013-10-01 false Currency conversion rate. 583.14 Section 583.14 Transportation Other Regulations Relating to Transportation (Continued) NATIONAL HIGHWAY TRAFFIC SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AUTOMOBILE PARTS CONTENT LABELING § 583.14 Currency...
49 CFR 583.14 - Currency conversion rate.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 7 2011-10-01 2011-10-01 false Currency conversion rate. 583.14 Section 583.14 Transportation Other Regulations Relating to Transportation (Continued) NATIONAL HIGHWAY TRAFFIC SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AUTOMOBILE PARTS CONTENT LABELING § 583.14 Currency...
49 CFR 583.14 - Currency conversion rate.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 7 2012-10-01 2012-10-01 false Currency conversion rate. 583.14 Section 583.14 Transportation Other Regulations Relating to Transportation (Continued) NATIONAL HIGHWAY TRAFFIC SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AUTOMOBILE PARTS CONTENT LABELING § 583.14 Currency...
49 CFR 583.14 - Currency conversion rate.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 7 2010-10-01 2010-10-01 false Currency conversion rate. 583.14 Section 583.14 Transportation Other Regulations Relating to Transportation (Continued) NATIONAL HIGHWAY TRAFFIC SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AUTOMOBILE PARTS CONTENT LABELING § 583.14 Currency...
49 CFR 583.14 - Currency conversion rate.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 7 2014-10-01 2014-10-01 false Currency conversion rate. 583.14 Section 583.14 Transportation Other Regulations Relating to Transportation (Continued) NATIONAL HIGHWAY TRAFFIC SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AUTOMOBILE PARTS CONTENT LABELING § 583.14 Currency...
Song, Yanliang; Zhang, Jingzhi; Zhang, Xu; Tan, Tianwei
2015-10-01
H2SO4, NaOH and H3PO4 were applied to decompose lignocellulose samples (giant reeds, pennisetum and cotton stalks) to investigate the correlation between cellulose allomorphs (cellulose I and II) and conversion of cellulose. The effect of removal of hemicellulose and lignin on the surface morphology, crystallinity index (CrI), cellulose allomorphs (cellulose I and II), and enzymatic hydrolysis under different pretreatments was also studied. CrI caused by H3PO4 pretreatment reached 11.19%, 24.93% and 8.15% for the three samples, respectively. Corn stalk showed highest conversion of cellulose among three samples, irrespective of the pretreatment used. This accounted for the widely use of corn stalk as the renewable crop substrate to synthesize biofuels like ethanol. CrI of cellulose I (CrI-I) negatively affects cellulose conversion but CrI of cellulose II (CrI-II) positively affects cellulose conversion. It contributes to make the strategy to transform cellulose I to cellulose II and enhancing enzymatic hydrolysis of lignocellulose. Copyright © 2015 Elsevier Ltd. All rights reserved.
Mathematical model of the stack region of a commercial lead blast furnace
NASA Astrophysics Data System (ADS)
Hussain, Mansoor M.; Morris, David R.
1989-02-01
A mathematical model of the stack region of a commercial lead blast furnace is presented. The mass and heat balance equations were solved in conjunction with the kinetic expression for the rate of re-duction of the solids based upon the grain model, utilizing the measured structural parameters of the sinter feed and the measured kinetic parameters. Satisfactory agreement has been achieved between the computed and experimental axial profiles of gas and solids temperature, pressure, gas composi-tion, and condensed phases composition. The model is used to predict the effects of changes of bed voidage, physical properties, and chemical constitution of the sinter and the effects of gas and solids flow maldistribution on the operation of the furnace. In particular, it is noted that for a sinter with the typical physical properties of a commercial sinter, improved conversion in the upper reaches of the furnace is predicted when lead is in the form of lead oxide rather than as the relatively unreac-tive lead calcium silicates. The improved conversion is accompanied by better utilization of carbon monoxide. Further, the model suggests that the formation of scaffolds in the furnace may be due to flow maldistribution causing high temperatures in the vicinity of the furnace wall.
Bedogni, Gabriel A; Acevedo, Mauro D; Aguzín, Federico; Okulik, Nora B; Padró, Cristina L
2017-07-07
In this paper, glycerol esterification with acetic acid (AA) was studied on several solid acid catalysts: Al 2 O 3 , Al-MCM-41, HPA/SiO 2 , HBEA, Amberlyst 15 and Amberlyst 36 with the aim of determining the reaction conditions and the nature of the surface acid sites required to produce selectively triacetylglycerol (triacetin). The acidity of the catalysts (nature, density and strength of acid sites) was characterized by temperature-programmed desorption of NH 3 and FTIR of adsorbed pyridine. Al 2 O 3 (Lewis acidity) did not show any activity in the reaction. In contrast, highest activity and selectivity to the triacetylated product (triacetin) were obtained on catalysts with Brønsted acidity: Amberlyst 15 and Amberlyst 36. The effect of temperature and molar ratio of AA to glycerol was studied, and the results showed that both parameters have a significant impact on the production of the desired product. Glycerol conversion rate and selectivity to triacetin increased when temperature or AA to glycerol molar ratio were increased, reaching a triacetin yield on Amberlyst 36 of 44% at 393 K and AA to glycerol molar ratio of 6. Deactivation and reusability of Amberlyst 36 were evaluated by performing consecutive catalytic tests. The presence of some irreversible deactivation due to sulfur loss was observed. In addition, the feasibility of using crude glycerol from biodiesel production as reactant was also investigated. Conversion of crude pretreated glycerol yielded values of triacetin and diacetin similar to those obtained with the commercial pure glycerol although at a lower rate.
Field-aligned Poynting flux observations in the high-latitude ionosphere
NASA Astrophysics Data System (ADS)
Gary, J. B.; Heelis, R. A.; Hanson, W. B.; Slavin, J. A.
1994-06-01
We have used data from Dynamics Explorer 2 to investigate the rate of conversion of electromagnetic energy into both thermal and bulk flow particle kinetic energy in the high-latitude ionosphere. The flux tube integrated conversion rate E.J can be determined from spacecraft measurements of the electric and magnetic field vectors by deriving the field-aligned Poynting flux, S∥=S.B0, where B0 is in the direction of the geomagnetic field. Determination of the Poynting flux from satellite observations is critically dependent upon the establishment of accurate values of the fields and is especially sensitive to errors in the baseline (unperturbed) geomagnetic field. We discuss our treatment of the data in some detail, particularly in regard to systematically correcting the measured magnetic field to account for attitude changes and model deficiencies. S∥ can be used to identify the relative strengths of the magnetosphere and thermospheric winds as energy drivers and we present observations demonstrating the dominance of each of these. Dominance of the magnetospheric driver is indicated by S∥ directed into the ionosphere. Electromagnetic energy is delivered to and dissipated within the region. Dominance of the neutral wind requires that the conductivity weighted neutral wind speed in the direction of the ion drift be larger than the ion drift, resulting in observations of an upward directed Poynting flux. Electromagnetic energy is generated within the ionospheric region in this case. We also present observations of a case where the neutral atmosphere motion may be reaching a state of sustained bulk flow velocity as evidenced by very small Poynting flux in the presence of large electric fields.
NASA Astrophysics Data System (ADS)
Fussell, A. L.; Garbacik, E. T.; Löbmann, K.; Offerhaus, H. L.; Kleinebudde, P.; Strachan, C. J.
2014-02-01
A custom-built intrinsic flow-through dissolution setup was developed and incorporated into a home-built CARS microscope consisting of a synchronously pumped optical parametric oscillator (OPO) and an inverted microscope with a 20X/0.5NA objective. CARS dissolution images (512×512 pixels) were collected every 1.12s for the duration of the dissolution experiment. Hyperspectral CARS images were obtained pre- and postdissolution by rapidly imaging while sweeping the wavelength of the OPO in discrete steps so that each frame in the data stack corresponds to a vibrational frequency. An image-processing routine projects this hyperspectral data into a single image wherein each compound appears with a unique color. Dissolution was conducted using theophylline and cimetidine-naproxen co-amorphous mixture. After 15 minutes of theophylline dissolution, hyperspectral imaging showed a conversion of theophylline anhydrate to the monohydrate, confirmed by a peak shift in the CARS spectra. CARS dissolution images showed that monohydrate crystal growth began immediately and reached a maximum with complete surface coverage at about 300s. This result correlated with the UV dissolution data where surface crystal growth on theophylline compacts resulted in a rapidly reducing dissolution rate during the first 300s. Co-amorphous cimetidinenaproxen didn't appear to crystallize during dissolution. We observed solid-state conversions on the compact's surface in situ during dissolution. Hyperspectral CARS imaging allowed visual discrimination between the solid-state forms on the compact's surface. In the case of theophylline we were able to correlate the solid-state change with a change in dissolution rate.
A Cooperative Conversion Project from Vertical File Hardcopy to Jacketed Microfiche.
ERIC Educational Resources Information Center
Worden, Diane D.
1981-01-01
Describes a cooperative project to convert a library's hardcopy materials to microfiche, including the steps involved in conversion, conversion costs, sources of funding, and staff performance rates. Six references are listed. (FM)
Yin, Jia Yuan; Wan, Xiang; Zhang, Qian; Cui, Tie Jun
2015-07-23
We propose an ultra-wideband polarization-conversion metasurface with polarization selective and incident-angle insensitive characteristics using anchor-shaped units through multiple resonances. The broadband characteristic is optimized by the genetic optimization algorithm, from which the anchor-shaped unit cell generates five resonances, resulting in expansion of the operating frequency range. Owing to the structural feature of the proposed metasurface, only x- and y-polarized incident waves can reach high-efficiency polarization conversions, realizing the polarization-selective property. The proposed metasurface is also insensitive to the angle of incident waves, which indicates a promising future in modern communication systems. We fabricate and measure the proposed metasurface, and both the simulated and measured results show ultra-wide bandwidth for the x- and y-polarized incident waves.
Matter effects on the flavor conversions of solar neutrinos and high-energy astrophysical neutrinos
NASA Astrophysics Data System (ADS)
Huang, Guo-yuan; Liu, Jun-Hao; Zhou, Shun
2018-06-01
Can we observe the solar eclipses in the neutrino light? In principle, this is possible by identifying the lunar matter effects on the flavor conversions of solar neutrinos when they traverse the Moon before reaching the detectors at the Earth. Unfortunately, we show that the lunar matter effects on the survival probability of solar 8B neutrinos are suppressed by an additional factor of 1.2%, compared to the day-night asymmetry. However, we point out that the matter effects on the flavor conversions of high-energy astrophysical neutrinos, when they propagate through the Sun, can be significant. Though the flavor composition of high-energy neutrinos can be remarkably modified, it is quite challenging to observe such effects even in the next-generation of neutrino telescopes.
Yin, Jia Yuan; Wan, Xiang; Zhang, Qian; Cui, Tie Jun
2015-01-01
We propose an ultra-wideband polarization-conversion metasurface with polarization selective and incident-angle insensitive characteristics using anchor-shaped units through multiple resonances. The broadband characteristic is optimized by the genetic optimization algorithm, from which the anchor-shaped unit cell generates five resonances, resulting in expansion of the operating frequency range. Owing to the structural feature of the proposed metasurface, only x- and y-polarized incident waves can reach high-efficiency polarization conversions, realizing the polarization-selective property. The proposed metasurface is also insensitive to the angle of incident waves, which indicates a promising future in modern communication systems. We fabricate and measure the proposed metasurface, and both the simulated and measured results show ultra-wide bandwidth for the x- and y-polarized incident waves. PMID:26202495
Biorefinery of instant noodle waste to biofuels.
Yang, Xiaoguang; Lee, Sang Jun; Yoo, Hah Young; Choi, Han Suk; Park, Chulhwan; Kim, Seung Wook
2014-05-01
Instant noodle waste, one of the main residues of the modern food industry, was employed as feedstock to convert to valuable biofuels. After isolation of used oil from the instant noodle waste surface, the starch residue was converted to bioethanol by Saccharomyces cerevisiae K35 with simultaneous saccharification and fermentation (SSF). The maximum ethanol concentration and productivity was 61.1g/l and 1.7 g/lh, respectively. After the optimization of fermentation, ethanol conversion rate of 96.8% was achieved within 36 h. The extracted oil was utilized as feedstock for high quality biodiesel conversion with typical chemical catalysts (KOH and H2SO4). The optimum conversion conditions for these two catalysts were estimated; and the highest biodiesel conversion rates were achieved 98.5% and 97.8%, within 2 and 3h, respectively. The high conversion rates of both bioethanol and biodiesel demonstrate that novel substrate instant noodle waste can be an attractive biorefinery feedstock in the biofuels industry. Copyright © 2014 Elsevier Ltd. All rights reserved.
Predictive models for conversion of prediabetes to diabetes.
Yokota, N; Miyakoshi, T; Sato, Y; Nakasone, Y; Yamashita, K; Imai, T; Hirabayashi, K; Koike, H; Yamauchi, K; Aizawa, T
2017-08-01
To clarify the natural course of prediabetes and develop predictive models for conversion to diabetes. A retrospective longitudinal study of 2105 adults with prediabetes was carried out with a mean observation period of 4.7years. Models were developed using multivariate logistic regression analysis and verified by 10-fold cross-validation. The relationship between [final BMI minus baseline BMI] (δBMI) and incident diabetes was analyzed post hoc by comparing the diabetes conversion rate for low (< -0.31kg/m 2 ) and high δBMI (≥ -0.31kg/m 2 ) subjects after matching the two groups for the covariates. Diabetes developed in 252 (2.5%/year), and positive family history, male sex, higher systolic blood pressure, plasma glucose (fasting and 1h- and 2h-values during 75g OGTT), hemoglobin A1c (HbA1c) and alanine aminotransferase were significant, independent predictors for the conversion. By using a risk score (RS) that took account of all these variables, incident diabetes was predicted with an area under the ROC curve (95% CI) of 0.80 (0.70-0.87) and a specificity of prediction of 61.8% at 80% sensitivity. On division of the participants into high- (n=248), intermediate- (n=336) and low-risk (n=1521) populations, the conversion rates were 40.1%, 18.5% and 5.9%, respectively. The conversion rate was lower in subjects with low than high δBMI (9.2% vs 14.4%, p=0.003). Prediabetes conversion to diabetes could be predicted with accuracy, and weight reduction during the observation was associated with lowered conversion rate. Copyright © 2017 Elsevier Inc. All rights reserved.
Interaction of H2 @C60 and nitroxide through conformationally constrained peptide bridges.
Garbuio, Luca; Li, Yongjun; Antonello, Sabrina; Gascón, José A; Lawler, Ronald G; Lei, Xuegong; Murata, Yasujiro; Turro, Nicholas J; Maran, Flavio
2014-01-01
We synthesized two molecular systems, in which an endofullerene C60 , incarcerating one hydrogen molecule (H2 @C60 ) and a nitroxide radical are connected by a folded 310 -helical peptide. The difference between the two molecules is the direction of the peptide orientation. The nuclear spin relaxation rates and the para → ortho conversion rate of the incarcerated hydrogen molecule were determined by (1) H NMR spectroscopy. The experimental results were analyzed using DFT-optimized molecular models. The relaxation rates and the conversion rates of the two peptides fall in the expected distance range. One of the two peptides is particularly rigid and thus ideal to keep the H2 @C60 /nitroxide separation, r, as large and controlled as possible, which results in particularly low relaxation and conversion rates. Despite the very similar optimized distance, however, the rates measured with the other peptide are considerably higher and thus are compatible with a shorter effective distance. The results strengthen the outcome of previous investigations that while the para → ortho conversion rates satisfactorily obey the Wigner's theory, the nuclear spin relaxation rates are in excellent agreement with the Solomon-Bloembergen equation predicting a 1/r(6) dependence. © 2013 The American Society of Photobiology.
Tomasello, Gianluca; Petrelli, Fausto; Ghidini, Michele; Russo, Alessandro; Passalacqua, Rodolfo; Barni, Sandro
2017-07-13
The combination of fluorouracil, oxaliplatin, and irinotecan plus bevacizumab (FOLFOXIRI-Bev) is an established and effective first-line chemotherapy regimen for metastatic colorectal cancer. However, resection rates of metastases and overall survival with this schedule have never been systematically evaluated in published studies including, but not limited to, the TRIBE (TRIplet plus BEvacizumab) trial. To assess the clinical efficacy of FOLFOXIRI-Bev, including outcomes and rates of surgical conversions. A systematic review was conducted in October 2016 in concordance with the PRISMA guidelines of PubMed, the Cochrane Central Register of Controlled Trials, SCOPUS, Web of Science, Google Scholar, CINAHL, Ovid, and EMBASE using the terms FOLFOXIRI and bevacizumab and (colorectal cancer). Clinical trials, retrospective case series, and prospective case series that used FOLFOXIRI-Bev for the treatment of initially unresectable metastatic colorectal cancer in humans were included. Individual case reports and retrospective case series with fewer than 10 patients were excluded. Data were extracted independently by 2 reviewers on a predesigned, standardized form. Ultimately, data were aggregated to obtain the pooled effect size of efficacy, according to the random-effects model and weighted for the number of patients included in each trial. Median overall survival and progression-free survival, overall response rates, and rates of R0 surgical conversions and overall surgical conversions. Eleven FOLFOXIRI-Bev studies published between 2010 and 2016 met the inclusion criteria and were pooled for analysis. The studies included 889 patients, with 877 patients clinically evaluable for overall response rates. The objective response rate to FOLFOXIRI-Bev was 69% (95% CI, 65%-72%; I2 = 25%). The rate of overall surgical conversions was 39.1% (95% CI, 26.9%-52.8%), and the rate of R0 surgical conversions was 28.1% (95% CI, 18.1%-40.8%). Median pooled overall survival was 30.2 months (95% CI, 26.5-33.7 months) in 6 trials with data available, and progression-free survival was 12.4 months (95% CI, 10.0-14.3 months) in 9 trials with data available. In meta-regression analysis, variables significantly associated with conversion surgery were disease limited to the liver and a higher median number of cycles (close to 12). For patients with surgically unresectable metastatic colorectal cancer, FOLFOXIRI-Bev is associated with a significant overall response rate. Such an effective regimen leads to a probability of surgical conversion of distant metastases approaching 40%, with more than one-fourth of patients having an R0 resection.
NASA Technical Reports Server (NTRS)
Davis, D. D.; Philen, D.; Mcgee, T.; Heaps, W.
1979-01-01
Direct measurements of the OH radical in the vicinity of an isolated power plant plume are reported. These measurements were used to estimate the conversion time of SO2 to H2SO4-sulfate aerosol via the initiating step OH + SO2 + M yields HSO3. Using the near-high-noon measured value of OH (9.5 million per cu cm), resulted in a 1/e conversion time of 1.4 days. The latter lifetime would correspond to a conversion rate of about 2%/hr. When the lifetime calculation was modified to take into consideration the OH diurnal cycle, the 1/e conversion time for SO2 was found to be 4.4 days, giving an apparent overall rate of conversion of about 0.7%/hr. Similar calculations carried out for the conversion of NO2 to NHO3 resulted in 1/e lifetimes for NO2 of 2-3 h for midday time periods.
Having "The Talk": Youth-Parent Climate Conversations
NASA Astrophysics Data System (ADS)
Anderson, R. K.; Flora, J. A.; Lertzman, R.; Saphir, M.
2017-12-01
Youth are concerned about climate change. Recent research conducted by the Alliance for Climate Education, in partnership with the Skoll Global Threats Fund, demonstrates that youth have agency within their families regarding climate relevant behaviors, particularly resulting from conversations that rely on listening. In this pilot project, we examined whether youth involved in a year-long climate action program will carry out climate related conversations with their parents, and whether youth who have engaged online with a climate education group, will carry out similar conversations with their parents when asked to do so via SMS. In study one, we used mixed methods to determine if youth participating in a training would carry out a climate conversation with their parents, adhere to guidelines such as reflective listening, and have positive experiences. Further, we investigated to what extent parents would experience the conversation as a positive and impactful event. Parents overall reported a positive experience, and were proud of their child's work. In study two, in a randomized controlled trial conducted entirely via SMS, we investigated whether youth would watch a brief instructional animated video, and have a conversation with a parent. Results showed the majority of youth reported gained confidence in conducting a climate conversation and intended to speak to relatives. Preliminary results indicate when youth can express their climate engagement to a parent using these techniques, they have positive experiences, gain confidence in future engagements and can influence family. The studies highlight the positive impact of climate conversations as well as the potential to scale climate conversations to reach more youth and families.
Code of Federal Regulations, 2010 CFR
2010-04-01
... March 16, 2009, the specified vacancy rate is 15 percent. For a conversion analysis performed after that... housing developments subject to required conversion. 972.124 Section 972.124 Housing and Urban Development... INDIAN HOUSING, DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT CONVERSION OF PUBLIC HOUSING TO TENANT-BASED...
Brief Report: A Scale for Rating Conversational Impairment in Autism Spectrum Disorder
ERIC Educational Resources Information Center
de Villiers, Jessica; Fine, Jonathan; Ginsberg, Gary; Vaccarella, Liezanne; Szatmari, Peter
2007-01-01
There are few well-standardized measures of conversational breakdown in Autism Spectrum Disorders (ASD). The study's objective was to develop a scale for measuring pragmatic impairments in conversations of individuals with ASD. We analyzed 46 semi-structured conversations of children and adolescents with high-functioning ASD using a functional…
Cell phone-induced failures of visual attention during simulated driving
DOT National Transportation Integrated Search
2003-01-01
Synopsis This experiment finds that conversing on a hands-free cell phone with a stream of traffic passing in the left lane leads participants to take longer to respond when the car ahead brakes and to a longer time before they reach their slowes...
ERIC Educational Resources Information Center
Johnston, Peter
2012-01-01
This article begins with examples that illustrate four important points about feedback that one often misses. First, giving feedback does not necessarily mean telling students what is good or bad. Second, feedback should be inseparable from the larger classroom conversations. Third, feedback is not merely cognitive in reach, nor merely corrective…
The Educational Experience. The Redfield Lectures.
ERIC Educational Resources Information Center
Redfield, Robert
In these lectures, three aspects of the educational experience are discussed: exploration, conversation, and creation. Exploration is the free reaching outward, compelled by curiosity, wonder, and excitement. This is not necessarily associated with formal education, but must be achieved through the discipline of order and precision; such growth…
Lessons Learned in Technology Transition (Briefing Charts)
2011-02-01
recertification • Environmental regulations • Federal clean air act • OSHA and EPA requirements – Cadmium, hexavalent chromium, VOC reduction • ReaCH Copyright...Efforts • Non-Chromated Exterior System Non-chromated conversion coat and primer • Non- Chrome for other areas • Chemical topcoat reactivation Future
Loman, Abdullah Al; Islam, S M Mahfuzul; Li, Qian; Ju, Lu-Kwang
2017-10-01
Despite having high protein and carbohydrate, soybean flour utilization is limited to partial replacement of animal feed to date. Enzymatic process can be exploited to increase its value by enriching protein content and separating carbohydrate for utilization as fermentation feedstock. Enzyme hydrolysis with fed-batch and recycle designs were evaluated here for achieving this goal with high productivities. Fed-batch process improved carbohydrate conversion, particularly at high substrate loadings of 250-375g/L. In recycle process, hydrolysate retained a significant portion of the limiting enzyme α-galactosidase to accelerate carbohydrate monomerization rate. At single-pass retention time of 6h and recycle rate of 62.5%, reducing sugar concentration reached up to 120g/L using 4ml/g enzyme. When compared with batch and fed-batch processes, the recycle process increased the volumetric productivity of reducing sugar by 36% (vs. fed-batch) to 57% (vs. batch) and that of protein product by 280% (vs. fed-batch) to 300% (vs. batch). Copyright © 2017 Elsevier Ltd. All rights reserved.
de Castro, Aline Machado; Carniel, Adriano; Nicomedes Junior, José; da Conceição Gomes, Absai; Valoni, Érika
2017-06-01
Poly(ethylene terephthalate) (PET) is one of the most consumed plastics in the world. The development of efficient technologies for its depolymerization for monomers reuse is highly encouraged, since current recycling rates are still very low. In this study, 16 commercial lipases and cutinases were evaluated for their abilities to catalyze the hydrolysis of two PET samples. Humicola insolens cutinase showed the best performance and was then used in reactions on other PET sources, solely or in combination with the efficient mono(hydroxyethyl terephthalate)-converting lipase from Candida antarctica. Synergy degrees of the final titers of up to 2.2 (i.e., more than double of the concentration when both enzymes were used, as compared to their use alone) were found, with increased terephthalic acid formation rates, reaching a maximum of 59,989 µmol/L (9.36 g/L). These findings open up new possibilities for the conversion of post-consumer PET packages into their minimal monomers, which can be used as drop in at existing industrial facilities.
Cheng, Jun; Zhang, Meng; Wu, Gai; Wang, Xin; Zhou, Junhu; Cen, Kefa
2014-06-17
The photoelectrocatalytic (PEC) reduction of CO2 into high-value chemicals is beneficial in alleviating global warming and advancing a low-carbon economy. In this work, Pt-modified reduced graphene oxide (Pt-RGO) and Pt-modified TiO2 nanotubes (Pt-TNT) were combined as cathode and photoanode catalysts, respectively, to form a PEC reactor for converting CO2 into valuable chemicals. XRD, XPS, TEM, AFM, and SEM were employed to characterize the microstructures of the Pt-RGO and Pt-TNT catalysts. Reduction products, such as C2H5OH and CH3COOH, were obtained from CO2 under band gap illumination and biased voltage. A combined liquid product generation rate (CH3OH, C2H5OH, HCOOH, and CH3COOH) of approximately 600 nmol/(h·cm(2)) was observed. Carbon atom conversion rate reached 1,130 nmol/(h·cm(2)), which were much higher than those achieved using Pt-modified carbon nanotubes and platinum carbon as cathode catalysts.
Supercritical water oxidation of quinazoline: Reaction kinetics and modeling.
Gong, Yanmeng; Guo, Yang; Wang, Shuzhong; Song, Wenhan; Xu, Donghai
2017-03-01
This paper presents a first quantitative kinetic model for supercritical water oxidation (SCWO) of quinazoline that describes the formation and interconversion of intermediates and final products at 673-873 K. The set of 11 reaction pathways for phenol, pyrimidine, naphthalene, NH 3 , etc, involved in the simplified reaction network proved sufficient for fitting the experimental results satisfactorily. We validated the model prediction ability on CO 2 yields at initial quinazoline loading not used in the parameter estimation. Reaction rate analysis and sensitivity analysis indicate that nearly all reactions reach their thermodynamic equilibrium within 300 s. The pyrimidine yielding from quinazoline is the dominant ring-opening pathway and provides a significant contribution to CO 2 formation. Low sensitivity of NH 3 decomposition rate to concentration confirms its refractory nature in SCWO. Nitrogen content in liquid products decreases whereas that in gaseous phase increases as reaction time prolonged. The nitrogen predicted by the model in gaseous phase combined with the experimental nitrogen in liquid products gives an accurate nitrogen balance of conversion process. Copyright © 2016 Elsevier Ltd. All rights reserved.
Waste paper for recycling: Overview and identification of potentially critical substances.
Pivnenko, Kostyantyn; Eriksson, Eva; Astrup, Thomas F
2015-11-01
Paper product manufacturing involves a variety of chemicals used either directly in paper and pulp production or in the conversion processes (i.e. printing, gluing) that follow. Due to economic and environmental initiatives, paper recycling rates continue to rise. In Europe, recycling has increased by nearly 20% within the last decade or so, reaching a level of almost 72% in 2012. With increasing recycling rates, lower quality paper fractions may be included. This may potentially lead to accumulation or un-intended spreading of chemical substances contained in paper, e.g. by introducing chemicals contained in waste paper into the recycling loop. This study provides an overview of chemicals potentially present in paper and applies a sequential hazard screening procedure based on the intrinsic hazard, physical-chemical and biodegradability characteristics of the substances. Based on the results, 51 substances were identified as potentially critical (selected mineral oils, phthalates, phenols, parabens, as well as other groups of chemicals) in relation to paper recycling. It is recommended that these substances receive more attention in waste paper. Copyright © 2015 Elsevier Ltd. All rights reserved.
Sexual Violence in the Backlands: Toward a Macro-Level Understanding of Rural Sex Crimes.
Braithwaite, Jeremy
2015-10-01
This research focuses on structural covariates of sex crimes in rural communities (using urban and urbanizing communities as comparison groups), with particular analysis on exploring how the magnitude and direction of such covariates differ with respect to type of sex crime. Using 2000 sex crime data from the National Incident-Based Reporting System (NIBRS) for the population of reporting U.S. cities, negative binomial and logistic regression procedures were used to explore the relationship between resource disadvantage, local investment, and economic inequality and sex crime subtypes. For sex crimes that occurred almost exclusively in the home, urban and urbanizing community rates were largely influenced by resource disadvantage and local investment, while these measures did not reach significance for explaining rural rates. Conversely, local investment was a significant predictor of sex crimes that occurred outside the home in rural communities. This research indicates that a structural analysis of sexual victimization (widely absent from the scientific literature) does yield significant findings and that disaggregation of crime into subtypes allows for a more detailed differentiation between urban and rural communities. © The Author(s) 2014.
Zhang, Lin-Lin; Li, Huan-Huan; Shi, Yan-Hong; Fan, Chao-Ying; Wu, Xing-Long; Wang, Hai-Feng; Sun, Hai-Zhu; Zhang, Jing-Ping
2016-02-17
In this paper, gelatin as a natural biomass was selected to successfully prepare an oxygen-enriched carbon with layered sedimentary rocks structure, which exhibited ultrahigh-rate performance and excellent cycling stability as supercapacitors. The specific capacitance reached 272.6 F g(-1) at 1 A g(-1) and still retained 197.0 F g(-1) even at 100 A g(-1) (with high capacitance retention of 72.3%). The outstanding electrochemical performance resulted from the special layered structure with large surface area (827.8 m(2) g(-1)) and high content of oxygen (16.215 wt %), which effectively realized the synergistic effects of the electrical double-layer capacitance and pseudocapacitance. Moreover, it delivered an energy density of 25.3 Wh kg(-1) even with a high power density of 34.7 kW kg(-1) and ultralong cycling stability (with no capacitance decay even over 10,000 cycles at 2 A g(-1)) in a symmetric supercapacitor, which are highly desirable for their practical application in energy storage devices and conversion.
Selling the story: narratives and charisma in adults with TBI.
Jones, Corinne A; Turkstra, Lyn S
2011-01-01
To examine storytelling performance behaviours in adults with traumatic brain injury (TBI) and relate these behaviours to perceived charisma and desirability as a conversation partner. Seven adult males with traumatic brain injury (TBI) told their accident narratives to a male confederate. Ten male undergraduate students rated 1-minute video clips from the beginning of each narrative using the Charismatic Leadership Communication Scale (CLCS). Raters also indicated whether or not they would like to engage in conversation with each participant. Of the performative behaviours analysed, gestures alone significantly influenced CLCS ratings and reported likelihood of engaging in future conversation with the participant. Post-hoc analysis revealed that speech rate was significantly correlated with all of the preceding measures. There was a significant correlation between self- and other-ratings of charisma. The findings suggest that aspects of non-verbal performance, namely gesture use and speech rate, influence how charismatic an individual is perceived to be and how likely someone is to engage in conversation with that person. Variability in these performance behaviours may contribute to the variation in social outcomes seen in the TBI population.
Spreading the "good news" of total quality management: faith, conversion, and commitment.
Fleming, S T; Bopp, K D; Anderson, K G
1993-01-01
In many ways the spread of total quality management (TQM) across this country can be compared to a religious conversion. Both cases are characterized by a philosophical shift with far-reaching changes in responsibilities and incentives for the people involved. This article bridges the disciplines of theology and health services management by elaborating a metaphor in which TQM is compared to various aspects of the Judeo-Christian faiths, such as the role of laws and standards; the importance of miracles, prophets, and evangelists; and the practical applications of living out the faith.
Michael E. Montgomery
1983-01-01
Spruce budworm larvae grew faster than gypsy moth larvae both in a temporal and relative sense. The budworm larvae had a higher relative growth rate (RGR), biomass conversion efficiency (EGI), and nitrogen utilization efficiency (NOE) than the gypsy moth larvae. As both species matured, relative growth rates, rates of consumption, and conversion efficiencies declined....
Predictors of delayed culture conversion among Ugandan patients.
Atwine, Daniel; Orikiriza, Patrick; Taremwa, Ivan; Ayebare, Arnold; Logoose, Suzan; Mwanga-Amumpaire, Juliet; Jindani, Amina; Bonnet, Maryline
2017-04-24
Estimates of month-2 culture conversion, a proxy indicator of tuberculosis (TB) treatment efficacy in phase-2 trials can vary by culture-type and geographically with lower rates reported among African sites. The sub-study aimed at comparing TB detection rates of different culture media, within and across rifampicin-based regimens (R10, 15 and 20 mg/Kg) over a 6-month treatment follow-up period, and to establish predictors of month-2 culture non-conversion among HIV-negative TB patients enrolled at RIFATOX trial site in Uganda. Unlike in other Rifatox Trial sites, it is only in Uganda were Lowenstein-Jensen (LJ) and Mycobacteria growth indicator tube (MGIT) were used throughout 6-months for treatment monitoring. Conversion rates were compared at month-2, 4 and 6 across cultures and treatment-type. Binomial regression analysis performed for predictors of month-2 non-conversion. Of the 100 enrolled patients, 45% had converted based on combined LJ and MGIT by month-2, with no significant differences across treatment arms, p = 0.721. LJ exhibited higher conversion rates than MGIT at month-2 (58.4% vs 56.0%, p = 0.0707) and month-4 (98.9% vs 88.4%, p = 0.0391) respectively, more so within the high-dose rifampicin arms. All patients had converted by month-6. Time-to-TB detection (TTD) on MGIT and social service jobs independently predict month-2 non-conversion. The month-2 culture conversion used in phase 2 clinical trials as surrogate marker of treatment efficacy is influenced by the culture method used for monitoring mycobacterial response to TB treatment. Therefore, multi-centric TB therapeutic trials using early efficacy endpoint should use the same culture method across sites. The Time-to-detection of MTB on MGIT prior to treatment and working in Social service jobs bear an increased risk of culture non-conversion at month-2. ISRCTN ISRCTN55670677 . Registered 09th November 2010. Retrospectively registered.
NASA Astrophysics Data System (ADS)
Georgiadis, Petros; Stupak, Inge; Vesterdal, Lars; Raulund-Rasmussen, Karsten
2015-04-01
Increased demand for bioenergy has intensified the production of Short Rotation Coppice (SRC) willow and poplar in temperate zones. We used a combined chronosequence and paired plot approach to study the potential of SRC willow and poplar stands to increase the soil carbon stock compared to stocks of the previous arable land-use. The study focused on well-drained soils. We sampled soil from 30 SRC stands in Denmark and southern Sweden including soils from their adjacent arable fields. The 18 willow and 12 poplar stands formed a chronosequence ranging between 4 and 29 years after conversion. The soil was sampled both with soil cores taken by fixed depths of 0-5, 5-10, 10-15, 15-25, and 25-40 cm and by genetic horizons from soil pits to 1m depth. The aim of the study was to estimate the difference and the ratio between soil carbon contents of the SRC and annual crop land and analyze the results as a chronosequence to examine the effect of age after conversion on the difference. Covariates such as soil type, fertilization type and harvest frequency were also taken into account. Preliminary results suggest an overall increase in carbon stocks over time with average accumulation rates ranging from 0.25 to 0.4 Mg ha-1 yr-1 in willow and poplar stands. Poplar stands had higher rates of C gain, probably due to less frequent harvesting. The differences in carbon between the SRC and the paired cropland were initially negative but changed to positive over time, implying loss of carbon after conversion and a later gain in soil carbon with stand age. Pairwise differences ranged from -25 Mg C ha-1 to 37 Mg C ha-1 for the top 40 cm. The carbon stock ratio of the SRC stand to the arable land was estimated to minimize the effect of site-related factors. The results of this analysis suggested that the ratio increased significantly with age after conversion for the top 10 cm of the soil, both for poplar and willow. A slight increase with age was also noticed at the deeper depths, but it was not significant. The increasing soil carbon stocks in SRC stands on former cropland can be attributed to the increased leaf and litter input from the perennial SRC plantations as well as less stimulation of organic matter decomposition after cessation of annual. Initial losses of soil carbon after the land use change have also been reported by other studies, but the soil carbon accumulation high rates suggest that SRC can act as sinks at least for some decades. Our results indicate that a steady state has not yet been reached after 29 years. Key words: Bioenergy,Land Use Change, poplar, Short Rotation Coppice, Soil Organic Carbon, willow,
Investigation of operating parameters on CO2 splitting by dielectric barrier discharge plasma
NASA Astrophysics Data System (ADS)
Pan, CHEN; Jun, SHEN; Tangchun, RAN; Tao, YANG; Yongxiang, YIN
2017-12-01
Experiments of CO2 splitting by dielectric barrier discharge (DBD) plasma were carried out, and the influence of CO2 flow rate, plasma power, discharge voltage, discharge frequency on CO2 conversion and process energy efficiency were investigated. It was shown that the absolute quantity of CO2 decomposed was only proportional to the amount of conductive electrons across the discharge gap, and the electron amount was proportional to the discharge power; the energy efficiency of CO2 conversion was almost a constant at a lower level, which was limited by CO2 inherent discharge character that determined a constant gap electric field strength. This was the main reason why CO2 conversion rate decreased as the CO2 flow rate increase and process energy efficiency was decreased a little as applied frequency increased. Therefore, one can improve the CO2 conversion by less feed flow rate or larger discharge power in DBD plasma, but the energy efficiency is difficult to improve.
Detailed kinetics of titanium nitride synthesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rode, H.; Hlavacek, V.
1995-02-01
A thermogravimetric analyzer is used to study the synthesis of TiN from Ti powder over a wide range of temperature, conversion and heating rate, and for two Ti precursor powders with different morphologies. Conversions to TiN up to 99% are obtained with negligible oxygen contamination. Nonisothermal initial rate and isothermal data are used in a nonlinear least-squares minimization to determine the most appropriate rate law. The logarithmic rate law offers an excellent agreement between the experimental and calculated conversions to TiN and can predict afterburning, which is an important experimentally observed phenomenon. Due to the form of the logarithmic ratemore » law, the observed activation energy is a function of effective particle size, extent of conversion, and temperature even when the intrinsic activation energy remains constant. This aspect explains discrepancies among activation energies obtained in previous studies. The frequently used sedimentation particle size is a poor measure of the powder reactivity. The BET surface area indicates the powder reactivity much better.« less
High repetition rate laser induced fluorescence applied to Surfatron Induced Plasmas
NASA Astrophysics Data System (ADS)
van der Mullen, J. J. A. M.; Palomares, J. M.; Carbone, E. A. D.; Graef, W.; Hübner, S.
2012-05-01
The reaction kinetics in the excitation space of Ar and the conversion space of Ar-molecule mixtures are explored using a combination of high rep-rate YAG-Dye laser systems with a well defined and easily controllable Surfatron Induced Plasma set-up. Applying the method of Saturation Time Resolved Laser Induced Fluorescence (SaTiRe-LIF), we could trace excitation and conversion channels and determine rates of electron and heavy particle excitation kinetics. The time resolved density disturbances observed in the Ar excitation space, which are initiated by the laser, reveal the excitation channels and corresponding rates; responses of the molecular radiation in Ar-molecule mixtures corresponds to the presence of conversion processes induced by heavy particle excitation kinetics.
Honjo, T; Yamamoto, S; Yamamoto, T; Kamada, H; Nishida, Y; Tadanaga, O; Asobe, M; Inoue, K
2007-11-26
We report a field trial of differential phase shift quantum key distribution (QKD) using polarization independent frequency up-conversion detectors. A frequency up-conversion detector is a promising device for achieving a high key generation rate when combined with a high clock rate QKD system. However, its polarization dependence prevents it from being applied to practical QKD systems. In this paper, we employ a modified polarization diversity configuration to eliminate the polarization dependence. Applying this method, we performed a long-term stability test using a 17.6-km installed fiber. We successfully demonstrated stable operation for 6 hours and achieved a sifted key generation rate of 120 kbps and an average quantum bit error rate of 3.14 %. The sifted key generation rate was not the estimated value but the effective value, which means that the sifted key was continuously generated at a rate of 120 kbps for 6 hours.
Photon up-conversion increases biomass yield in Chlorella vulgaris.
Menon, Kavya R; Jose, Steffi; Suraishkumar, Gadi K
2014-12-01
Photon up-conversion, a process whereby lower energy radiations are converted to higher energy levels via the use of appropriate phosphor systems, was employed as a novel strategy for improving microalgal growth and lipid productivity. Photon up-conversion enables the utilization of regions of the solar spectrum, beyond the typical photosynthetically active radiation, that are usually wasted or are damaging to the algae. The effects of up-conversion of red light by two distinct sets of up-conversion phosphors were studied in the model microalgae Chlorella vulgaris. Up-conversion by set 1 phosphors led to a 2.85 fold increase in biomass concentration and a 3.2 fold increase in specific growth rate of the microalgae. While up-conversion by set 2 phosphors resulted in a 30% increase in biomass and 12% increase in specific intracellular neutral lipid, while the specific growth rates were comparable to that of the control. Furthermore, up-conversion resulted in higher levels of specific intracellular reactive oxygen species in C. vulgaris. Up-conversion of red light (654 nm) was shown to improve biomass yields in C. vulgaris. In principle, up-conversion can be used to increase the utilization range of the electromagnetic spectrum for improved cultivation of photosynthetic systems such as plants, algae, and microalgae. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Noel, P.; Thomas, C.; Fu, Y.; Vila, L.; Haas, B.; Jouneau, P.-H.; Gambarelli, S.; Meunier, T.; Ballet, P.; Attané, J. P.
2018-04-01
We report the observation of spin-to-charge current conversion in strained mercury telluride at room temperature, using spin pumping experiments. We show that a HgCdTe barrier can be used to protect the HgTe from direct contact with the ferromagnet, leading to very high conversion rates, with inverse Edelstein lengths up to 2.0 ±0.5 nm . The influence of the HgTe layer thickness on the conversion efficiency is found to differ strongly from what is expected in spin Hall effect systems. These measurements, associated with the temperature dependence of the resistivity, suggest that these high conversion rates are due to the spin momentum locking property of HgTe surface states.
NASA Astrophysics Data System (ADS)
Maqueo, P. D. G.; Maier, M.; Evans, M. D. G.; Coulombe, S.; Bergthorson, J. M.
2018-04-01
The operation of a nanosecond repetitively pulsed discharge for partial oxidation of CH4 is characterized at atmospheric pressure and room temperature. Two regimes are observed: diffuse and filamentary. The first is a low power regime, characterized by low rotational temperatures around 400 K. The second is much more energetic with rotational temperatures close to 600 K. Both have vibrational temperatures of at least 10 times their rotational temperatures. The average electron number density was determined to be 8.9×1015 and 4.0×1017 cm-3, respectively, showing an increase in the ionization fraction in the more powerful filamentary regime. Results of CH4 conversion to H2, CO, CO2 and C2H6 are presented for the filamentary regime, while the diffuse regime shows no measurable conversion ability. As expected, oxidative mixtures show higher conversion ability than pure CH4. A maximum conversion efficiency of 26.3% and a maximum energy efficiency of 19.7% were reached for the oxidative mixtures.
Energy conversion in isothermal nonlinear irreversible processes - struggling for higher efficiency
NASA Astrophysics Data System (ADS)
Ebeling, W.; Feistel, R.
2017-06-01
First we discuss some early work of Ulrike Feudel on structure formation in nonlinear reactions including ions and the efficiency of the conversion of chemical into electrical energy. Then we give some survey about isothermal energy conversion from chemical to higher forms of energy like mechanical, electrical and ecological energy. Isothermal means here that there are no temperature gradients within the model systems. We consider examples of energy conversion in several natural processes and in some devices like fuel cells. Further, as an example, we study analytically the dynamics and efficiency of a simple "active circuit" converting chemical into electrical energy and driving currents which is roughly modeling fuel cells. Finally we investigate an analogous ecological system of Lotka-Volterra type consisting of an "active species" consuming some passive "chemical food". We show analytically for both these models that the efficiency increases with the load, reaches values higher then 50 percent in a narrow regime of optimal load and goes beyond some maximal load abruptly to zero.
Geiger, Barbara; Nguyen, Hoang-Minh; Wenig, Stefanie; Nguyen, Hoang Anh; Lorenz, Cindy; Kittl, Roman; Mathiesen, Geir; Eijsink, Vincent G H; Haltrich, Dietmar; Nguyen, Thu-Ha
2016-12-15
β-Galactosidase from Streptococcus thermophilus was overexpressed in a food-grade organism, Lactobacillus plantarum WCFS1. Laboratory cultivations yielded 11,000 U of β-galactosidase activity per liter of culture corresponding to approximately 170 mg of enzyme. Crude cell-free enzyme extracts obtained by cell disruption and subsequent removal of cell debris showed high stability and were used for conversion of lactose in whey permeate. The enzyme showed high transgalactosylation activity. When using an initial concentration of whey permeate corresponding to 205 g L -1 lactose, the maximum yield of galacto-oligosaccharides (GOS) obtained at 50°C reached approximately 50% of total sugar at 90% lactose conversion, meaning that efficient valorization of the whey lactose was obtained. GOS are of great interest for both human and animal nutrition; thus, efficient conversion of lactose in whey into GOS using an enzymatic approach will not only decrease the environmental impact of whey disposal, but also create additional value.
NASA Astrophysics Data System (ADS)
Wiegand, Andrew L.
The goal of the thesis "Conversion of a Micro, Glow-Ignition, Two-Stroke Engine from Nitromethane-Methanol Blend Fuel to Military Jet Propellant (JP-8)" was to demonstrate the ability to operate a small engine on JP-8 and was completed in two phases. The first phase included choosing, developing a test stand for, and baseline testing a nitromethane-methanol-fueled engine. The chosen engine was an 11.5 cc, glow-ignition, two-stroke engine designed for remote-controlled helicopters. A micro engine test stand was developed to load and motor the engine. Instrumentation specific to the low flow rates and high speeds of the micro engine was developed and used to document engine behavior. The second phase included converting the engine to operate on JP-8, completing JP-8-fueled steady-state testing, and comparing the performance of the JP-8-fueled engine to the nitromethane-methanol-fueled engine. The conversion was accomplished through a novel crankcase heating method; by heating the crankcase for an extended period of time, a flammable fuel-air mixture was generated in the crankcase scavenged engine, which greatly improved starting times. To aid in starting and steady-state operation, yttrium-zirconia impregnated resin (i.e. ceramic coating) was applied to the combustion surfaces. This also improved the starting times of the JP-8-fueled engine and ultimately allowed for a 34-second starting time. Finally, the steady-state data from both the nitromethane-methanol and JP-8-fueled micro engine were compared. The JP-8-fueled engine showed signs of increased engine friction while having higher indicated fuel conversion efficiency and a higher overall system efficiency. The minimal ability of JP-8 to cool the engine via evaporative effects, however, created the necessity of increased cooling air flow. The conclusion reached was that JP-8-fueled micro engines could be viable in application, but not without additional research being conducted on combustion phenomenon and cooling requirements.
NASA Astrophysics Data System (ADS)
Tilgner, A.; Herrmann, H.
2010-12-01
Model studies on the aqueous phase radical-driven processing of carbonyl compounds and acids in clouds and deliquescent particles were performed. The model exposed that aqueous radical conversions of carbonyl compounds and its oxidation products can contribute potentially to the formation of functionalised organic acids. The main identified C 2-C 4 organic gas phase precursors are ethylene glycol, glycolaldehyde, glyoxal, methylglyoxal and 1,4-butenedial. The aqueous phase is shown to contribute significantly with about 93%/63%, 47%/8%, 31%/4%, 7%/4%, 36%/8% to the multiphase oxidative fate of these compounds under remote/urban conditions. Interestingly, the studies revealed that aqueous chemical processing is not only limited to in-cloud conditions but also proceeds in deliquescent particle phase with significant fluxes. Oxalic acid is shown to be formed preferably in deliquescent particles subsequent to the in-cloud oxidations. Mean aqueous phase oxalate formation fluxes of about 12, 42 and 0.4 ng m -3 h -1 in the remote, urban and maritime scenario, respectively. Additionally, the turnovers of the oxidation of organics such as methylglyoxal by NO 3 radical reactions are identified to be competitive to their OH pendants. At the current state of CAPRAM, mean C 2-C 4 in-cloud oxidation fluxes of about 0.12 and 0.5 μg m -3 h -1 are modelled under the idealised remote and urban cloud conditions. Finally, turnovers from radical oxidations were compared with those of thermal reactions. It is demonstrated that, based on the sparse kinetic data available organic accretion reaction might be of interest in just a few cases for cloud droplets and aqueous particles but generally do not reach the oxidative conversion rates of the main radical oxidants OH and NO 3. Interestingly, oxidation reactions of H 2O 2 are shown to be competitive to the OH radical conversions in cases when H 2O 2 is not readily used up by the S(IV) oxidation.
Takayasu, Kenichi; Muramatsu, Yukio; Mizuguchi, Yasunori; Okusaka, Takuji; Shimada, Kazuaki; Takayama, Tadatoshi; Sakamoto, Michiie
2006-08-01
The purpose of this study was to clarify the natural outcomes of hypoattenuating nodular lesions in patients with virus-related chronic liver disease depicted on dynamic CT. Sixty lesions (mean size, 1.3 cm) exhibiting hypoattenuation or isoattenuation in the arterial and delayed phases of dynamic CT were retrospectively evaluated with additional CT (mean, six examinations) for a mean period of 838 days. The primary end point was emergence of hyperattenuating areas within hypoattenuating lesions, a phenomenon called attenuation conversion. Cumulative attenuation conversion rates suggesting rates of malignant transformation were calculated with the Kaplan-Meier method, and factors affecting attenuation conversion rate were analyzed with the Cox proportional hazard model. Thirty-six (60%) of 60 hypoattenuating lesions developed to hyperattenuating lesions, 21 were unchanged, and three disappeared spontaneously. The 36 lesions that became hyperattenuating were divided into two subgroups according to lesion enhancement pattern: hyper-in-hypoattenuating (n = 25) and entirely hyperattenuating (n = 11). The cumulative attenuation conversion rates for the 60 hypoattenuating lesions were 15.8%, 44.3%, and 58.7% at 1, 2, and 3 years. The hyper-in-hypoattenuating lesions showed more rapid progression to entirely enhanced lesions. Positive results for hepatitis C viral antibody (p = 0.028) and initial lesion size (p = 0.007) showed a positive correlation with attenuation conversion rate. Hypoattenuating hepatic nodular lesions in chronic liver disease depicted on dynamic CT have high malignant potential and should be followed with special attention to conversion from hypoattenuation to hyperattenuation to determine the optimal timing of treatment.
Elhanafi, Sherif; Ortiz, Arleen M; Yarlagadda, Anita; Tsai, Cindy; Eloliby, Mohamed; Mallawaarachchi, Indika; Dwivedi, Alok; Zuckerman, Marc J; Othman, Mohamed O
2015-08-01
Calculating the adenoma detection rate (ADR) is a complex process in contrast to the polyp detection rate (PDR) that can be easily calculated. The average adenoma to polyp detection rate quotient (APDRQ) was proposed as a conversion factor to estimate the ADR for individual endoscopists from the endoscopist's PDR. However, this conversion factor was not validated in different practice settings. To validate the use of the proposed conversion factor in a practice setting with a predominantly Hispanic population. We conducted a retrospective, cross-sectional study (December 2007 to November 2012) of screening colonoscopies at a university practice setting with an 86.9% Hispanic population. The actual ADR and PDR were calculated for all endoscopists. The weighted average of ADR to PDR ratio for each endoscopist was used to obtain APDRQ. The APDRQ was used as a conversion multiplier to estimate each endoscopist's ADR using the single endoscopist's PDR. A total of 2148 screening colonoscopies were included. The average PDR for the whole group was 36.9% (range, 11% to 49%). The actual ADR was estimated as 25.5% (range, 11% to 37%). The average APDRQ for our group was 0.68. The estimated ADR was 25.48% (range, 8% to 33%). There was a high correlation between actual ADR and the estimated ADR (Pearson correlation=0.92). In a practice setting with a predominantly Hispanic population, a conversion factor can be used to estimate ADR from PDR providing a high degree of correlation with the actual ADR.
Risk factors associated with conversion of laparoscopic simple closure in perforated duodenal ulcer.
Kim, Ji-Hyun; Chin, Hyung-Min; Bae, You-Jin; Jun, Kyong-Hwa
2015-03-01
Precise patient selection criteria are necessary to guide the surgeon in selecting laparoscopic repair for patients with perforated peptic ulcers. The aims of this study are to report surgical outcomes after surgery for perforated duodenal ulcers and identify risk factors for predicting failure of laparoscopic simple closure for perforated duodenal ulcer. In total, 77 patients who underwent laparoscopic simple closure for perforated duodenal ulcers from January 2007 to September 2013 were retrospectively analyzed. Patients were divided into totally laparoscopic and conversion groups. The characteristics of patients, intraoperative findings, postoperative complications, conversion rates and suture leakage rates of each group were investigated. Laparoscopic repair was completed in 69 (89.6%) of 77 patients, while 8 (10.4%) underwent conversion to open repair. Patients in the conversion group had longer perforation time, larger perforation size, more suture leakage, longer hospital stay, and higher 30-day mortality rate than those in the totally laparoscopic group. The size of perforation was the only risk factor for conversion in multivariable analysis. Patients with an ulcer perforation size of ≥9 mm or with perforation duration of ≥12.5 h had a significantly increased risk for conversion and suture leakage. Ulcer size of ≥9 mm is a significant risk factor for predicting conversion in laparoscopic simple closure. Suture leakage is associated with ulcer size (9 mm) and duration of perforation (12.5 h). Copyright © 2015 Surgical Associates Ltd. Published by Elsevier Ltd. All rights reserved.
A cure-rate model for the Shuttle filament-wound case
NASA Technical Reports Server (NTRS)
Cagliostro, D. E.; Islas, A.; Hsu, Ming-Ta
1987-01-01
An epoxy and carbon fiber composite has been used to produce a light-weight rocket case for the Space Shuttle. A kinetic model is developed which can predict the extent of epoxy conversion during the winding and curing of the case. The model accounts for both chemical and physical kinetics. In the model, chemical kinetics occur exclusively up to the time the transition temperature equals the reaction temperature. At this point the resin begins to solidify and the rate of this process limits the rate of epoxy conversion. A comparison of predicted and actual epoxy conversion is presented for isothermal and temperature programmed cure schedules.
Marcos, G; Santabárbara, J; Lopez-Anton, R; De-la-Cámara, C; Gracia-García, P; Lobo, E; Pírez, G; Menchón, J M; Palomo, T; Stephan, B C M; Brayne, C; Lobo, A
2016-05-01
In a background of revision of criteria for states of increased risk for progression to dementia, we compare the conversion rate to dementia and Alzheimer's disease (AD) of mild cognitive impairment (MCI) as diagnosed using DSM-5 (DSM-5-MCI) and Petersen's (P-MCI) criteria. A population representative cohort of 4057 dementia-free individuals 55+ years of age was followed up at 2.5 and 4.5 years in Zaragoza, Spain (ZARADEMP). Using the Geriatric Mental State- AGECAT for assessment, research psychiatrists diagnosed DSM-5-MCI and P-MCI following operationalized criteria. 'Conversion rate' (CR), 'annual conversion rate' (ACR), and incidence rate (IR) were calculated along with incidence rate ratio (IRR) to compare the performance of the intermediate cognitive definitions. At 4.5-year follow-up, in individuals aged 65+ years, ACRs for non-cases, P-MCI, and DSM-5-MCI were 0.8, 1.9 and 3.4, respectively, for global dementia. The IRRs were 2.9 and 5.3 for P-MCI and DSM5-MCI, respectively, being the non-cases the reference category. The corresponding values were slightly lower for AD. Conversion rate to dementia and AD was higher using DSM-5-MCI criteria than using Petersen's criteria. However, prediction of the construct still has some way to go, as most MCI individuals did not convert at 4.5-year follow-up. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
1984-09-01
7D-Rt46 982 JOINT DOD VERSUS NAVY SPECIFIC LEAD GENERATION j/j ADVERTISING : COMPARISON OF..(U) J B FUGUR SCHOOL OF N BUSINESS DURHAM NC R C MOREY...REPORT I PEPIO0 COV9cO JOINT DOD VERSUS NAVY SPECIFIC LEAD GENERATION Technical Report ADVERTISING : Comparison of Conversion Rates to (0 Quality...block number) . Upper-Mental, High School Degree, enlistment contracts, national leads, Z Joint DOD advertising , Service Specific Advertising , conversion
Implementing Year-Round School--Monroe Style.
ERIC Educational Resources Information Center
Cruz, John
Planning for conversion to a year-round school in James Monroe School, Madera, California, began in 1984 as educators and community faced the fact that continued enrollment increases had reached a critical point. This report describes program development and implementation; an appendix with program worksheets comprises over one-half of the…
Yu, Jia; Yang, Yulin; Fan, Ruiqing; Liu, Danqing; Wei, Liguo; Chen, Shuo; Li, Liang; Yang, Bin; Cao, Wenwu
2014-08-04
New near-infrared (NIR)-to-green upconversion nanoparticles of Ho(3+)-Yb(3+)-F(-) tridoped TiO2 (UC-F-TiO2) were designed and fabricated via the hydrosol-hydrothermal method. Under 980 nm NIR excitation, UC-F-TiO2 emit strong green upconversion fluorescence with three emission bands at 543, 644, and 751 nm and convert the NIR light in situ to the dye-sensitive visible light that could effectively reduce the distance between upconversion materials and sensitizers; thus, they minimize the loss of the converted light. Our results show that this UC-F-TiO2 offers excellent opportunities for the other types of solar cells applications, such as organic solar cells, c-Si solar cells, multijunction solar cells, and so on. When integrating the UC-F-TiO2 into dye-sensitized solar cells (DSSCs), superior total energy conversion efficiency was achieved. Under AM1.5G light, open-circuit voltage reached 0.77 ± 0.01 V, short-circuit current density reached 21.00 ± 0.69 mA cm(-2), which resulted in an impressive overall energy conversion efficiency of 9.91 ± 0.30%, a 37% enhancement compared to DSSCs with pristine TiO2 photoanode.
Emotion Analysis of Telephone Complaints from Customer Based on Affective Computing.
Gong, Shuangping; Dai, Yonghui; Ji, Jun; Wang, Jinzhao; Sun, Hai
2015-01-01
Customer complaint has been the important feedback for modern enterprises to improve their product and service quality as well as the customer's loyalty. As one of the commonly used manners in customer complaint, telephone communication carries rich emotional information of speeches, which provides valuable resources for perceiving the customer's satisfaction and studying the complaint handling skills. This paper studies the characteristics of telephone complaint speeches and proposes an analysis method based on affective computing technology, which can recognize the dynamic changes of customer emotions from the conversations between the service staff and the customer. The recognition process includes speaker recognition, emotional feature parameter extraction, and dynamic emotion recognition. Experimental results show that this method is effective and can reach high recognition rates of happy and angry states. It has been successfully applied to the operation quality and service administration in telecom and Internet service company.
Engineering radical polymer electrodes for electrochemical energy storage
NASA Astrophysics Data System (ADS)
Nevers, Douglas R.; Brushett, Fikile R.; Wheeler, Dean R.
2017-06-01
In principle a wide range of organic materials can store energy in the form of reversible redox conversions of stable radicals. Such chemistry holds great promise for energy storage applications due to high theoretical capacities, high rate capabilities, intrinsic structural tunability, and the possibility of low-cost "green" syntheses from renewable sources. There have been steady improvements in the design of organic radical polymers, in which radicals are incorporated into the backbone and/or as pendant groups. This review highlights opportunities for improved redox molecule and polymer design along with the key challenges (e.g., transport phenomena, solubility, and reaction mechanisms) to transitioning known organic radicals into high-performance electrodes. Ultimately, organic-based batteries are still a nascent field with many open questions. Further advances in molecular design, electrode engineering, and device architecture will be required for these systems to reach their full potential and meet the diverse and increasing demands for energy storage.
Chen, Yongxing; Ren, Xiulian; Wei, Qifeng; Guo, Jingjing
2016-12-01
This study investigated the effect of trimethylamine (TMA) on the hydrothermal liquefaction (HTL) process and the recycle of TMA. The results suggest that the peeling reaction occurred on the surface and the cleavage of cellulose leading to water-soluble substances and bio-oil. The highest content of organic acids was found in the water-soluble phase. Model compounds, different glucides with TMA were used to investigate the mechanism of the HTL. Results suggest that the OH - appeared to selectively interact with C-O-C bonds, and thus causing the key linkages of cellulose to become much easier to be cleaved under mild conditions. In addition, the conditions for TMA recovery were optimized and the highest TMA recovery rate reached 98.89%. The recovered TMA had the same properties as the original compound, and it was perfectly re-usable in the conversion process of HTL. Copyright © 2016 Elsevier Ltd. All rights reserved.
Comparison of Ultrasonic and CO2 Laser Pretreatment Methods on Enzyme Digestibility of Corn Stover
Tian, Shuang-Qi; Wang, Zhen-Yu; Fan, Zi-Luan; Zuo, Li-Li
2012-01-01
To decrease the cost of bioethanol production, biomass recalcitrance needs to be overcome so that the conversion of biomass to bioethanol becomes more efficient. CO2 laser irradiation can disrupt the lignocellulosic physical structure and reduce the average size of fiber. Analyses with Fourier transform infrared spectroscopy, specific surface area, and the microstructure of corn stover were used to elucidate the enhancement mechanism of the pretreatment process by CO2 laser irradiation. The present work demonstrated that the CO2 laser had potential to enhance the bioconversion efficiency of lignocellulosic waste to renewable bioethanol. The saccharification rate of the CO2 laser pretreatment was significantly higher than ultrasonic pretreatment, and reached 27.75% which was 1.34-fold of that of ultrasonic pretreatment. The results showed the impact of CO2 laser pretreatment on corn stover to be more effective than ultrasonic pretreatment. PMID:22605970
Comparison of ultrasonic and CO₂laser pretreatment methods on enzyme digestibility of corn stover.
Tian, Shuang-Qi; Wang, Zhen-Yu; Fan, Zi-Luan; Zuo, Li-Li
2012-01-01
To decrease the cost of bioethanol production, biomass recalcitrance needs to be overcome so that the conversion of biomass to bioethanol becomes more efficient. CO(2) laser irradiation can disrupt the lignocellulosic physical structure and reduce the average size of fiber. Analyses with Fourier transform infrared spectroscopy, specific surface area, and the microstructure of corn stover were used to elucidate the enhancement mechanism of the pretreatment process by CO(2) laser irradiation. The present work demonstrated that the CO(2) laser had potential to enhance the bioconversion efficiency of lignocellulosic waste to renewable bioethanol. The saccharification rate of the CO(2) laser pretreatment was significantly higher than ultrasonic pretreatment, and reached 27.75% which was 1.34-fold of that of ultrasonic pretreatment. The results showed the impact of CO(2) laser pretreatment on corn stover to be more effective than ultrasonic pretreatment.
Mimicking a New 2-Phenylethanol Production Pathway from Proteus mirabilis JN458 in Escherichia coli.
Liu, Jinbin; Jiang, Jing; Bai, Yajun; Fan, Tai-Ping; Zhao, Ye; Zheng, Xiaohui; Cai, Yujie
2018-04-04
Bacteria rarely produce natural 2-phenylethanol. We verified a new pathway from Proteus mirabilis JN458 to produce 2-phenylethanol using Escherichia coli to coexpress l-amino acid deaminase, α-keto acid decarboxylase, and alcohol dehydrogenase from P. mirabilis. Based on this pathway, a glucose dehydrogenase coenzyme regeneration system was constructed. The optimal conditions of biotransformation by the recombinant strain E-pAEAKaG were at 40 °C and pH 7.0. Finally, the recombinant strain E-pAEAKaG produced 3.21 ± 0.10 g/L 2-phenylethanol in M9 medium containing 10 g/L l-phenylalanine after a 16 h transformation. Furthermore, when the concentration of l-phenylalanine was 4 g/L (24 mM), the production of 2-phenylethanol reached 2.88 ± 0.18 g/L and displayed a higher conversion rate of 97.38 mol %.
[The heating effect of the Er3+/Yb3+ doped Y2O3 nanometer powder by 980 nm laser diode pumping].
Zheng, Long-Jiang; Gao, Xiao-Yang; Liu, Hai-Long; Li, Bing; Xu, Chen-Xi
2013-01-01
The Er3+ and Yb3+ doped Y2O3 Nano powder was prepared by sol-gel method. Based on 2H11/2 --> 4I15/2 and 4S3/2 --> 4I15/2 green conversion luminescence intensity rate of Er3+, the sample surface temperature changes caused by the increase in 980 nm diode laser pump power were studied. The results show that with pump power increasing, the sample surface temperature substantially rises. And the surface temperature reached to 820 K when the pump power was 1 000 mW. The phenomenon plays an important role in the analysis of upconversion process, especially with saturation power. And this feature has a potential application prospect in the biomedicine, soft tissue hole burning as well as the field of temperature sensing materials.
Wang, Yilong; Zhang, Yun; Hu, Yunfeng
2016-11-01
One novel microbial esterase PHE21 was cloned from the genome of Pseudomonas oryzihabitans HUP022 identified from the deep sea of the Western Pacific. PHE21 was heterologously expressed and functionally characterized to be a robust esterase which behaved high resistance to various metal ions, organic solvents, surfactants, and NaCl. Despite the fact that the two enantiomers of ethyl 3-hydroxybutyrate were hard to be enzymatically resolved before, we successfully resolved racemic ethyl 3-hydroxybutyrate through direct hydrolysis reactions and generated chiral ethyl (S)-3-hydroxybutyrate using esterase PHE21. After process optimization, the enantiomeric excess, the conversion rate, and the yield of desired product ethyl (S)-3-hydroxybutyrate could reach 99, 65, and 87 %, respectively. PHE21 is a novel marine microbial esterase with great potential in asymmetric synthesis as well as in other industries.
Emotion Analysis of Telephone Complaints from Customer Based on Affective Computing
Gong, Shuangping; Ji, Jun; Wang, Jinzhao; Sun, Hai
2015-01-01
Customer complaint has been the important feedback for modern enterprises to improve their product and service quality as well as the customer's loyalty. As one of the commonly used manners in customer complaint, telephone communication carries rich emotional information of speeches, which provides valuable resources for perceiving the customer's satisfaction and studying the complaint handling skills. This paper studies the characteristics of telephone complaint speeches and proposes an analysis method based on affective computing technology, which can recognize the dynamic changes of customer emotions from the conversations between the service staff and the customer. The recognition process includes speaker recognition, emotional feature parameter extraction, and dynamic emotion recognition. Experimental results show that this method is effective and can reach high recognition rates of happy and angry states. It has been successfully applied to the operation quality and service administration in telecom and Internet service company. PMID:26633967
Bioconversion of AHX to AOH by resting cells of Burkholderia contaminans CH-1.
Choi, Jae-Hoon; Kikuchi, Ayaka; Pumkaeo, Panyapon; Hirai, Hirofumi; Tokuyama, Shinji; Kawagishi, Hirokazu
2016-10-01
Fairy rings are zones of stimulated grass growth owing to the interaction between a fungus and a plant. We previously reported the discovery of two novel plant-growth regulating compounds related to forming fairy rings, 2-azahypoxanthine (AHX) and 2-aza-8-oxohypoxanthine (AOH). In this study, a bacterial strain CH-1 was isolated from an airborne-contaminated nutrient medium containing AHX. The strain converted AHX to AOH and identified as Burkholderia contaminans based on the gene sequence of its 16S rDNA. The quantitative production of AOH by resting cells of the strain was achieved. Among seven Burkholderia species, two bacteria and two yeasts tested, B. contaminans CH-1 showed the highest rate of conversion of AHX to AOH. By batch system, up to 10.6 mmol AHX was converted to AOH using the resting cells. The yield of this process reached at 91%.
Yan, Kun; Gao, Xiang; Luo, Yingwu
2015-07-01
A highly living polymer with over 100 kg mol(-1) molecular weight is very difficult to achieve by controlled radical polymerization since the unavoidable side reactions of irreversible radical termination and radical chain transfer to monomer reaction become significant. It is reported that over 500 kg mol(-1) polystyrene with high livingness and low dispersity could be synthesized by a facile two-stage reversible addition-fragmentation transfer emulsion polymerization. The monomer conversion reaches 90% within 10 h. High livingness of the product is ascribed to the extremely low initiator concentration and the chain transfer constant for monomer unexpectedly much lower than the well-accepted values in the conventional radical polymerization. The two-stage monomer feeding policy much decreases the dispersity of the product. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Enhanced enzymatic saccharification of pretreated biomass using glycerol thermal processing (GTP).
Zhang, Wei; Sathitsuksanoh, Noppadon; Barone, Justin R; Renneckar, Scott
2016-01-01
Biomass was heated (200-240°C) in the presence of glycerol, for 4-12 min, under shear to disrupt the native cell wall architecture. The impact of this method, named glycerol thermal processing (GTP), on saccharification efficiency of the hardwood Liquidambar styraciflua, and a control cellulose sample was studied as a function of treatment severity. Furthermore, the enzymatic conversion of samples with varying compositions was studied after extraction of the structural polymers. Interestingly, the sweet gum processed materials crystallinity index increased by 10% of the initial value. The experiments revealed that the residual lignin was not a barrier to limiting the digestibility of cellulose after pretreatment yielding up to 70% glucose based on the starting wood material. Further xylan removal greatly improved the cellulose hydrolysis rate, converting nearly 70% of the cellulose into glucose within 24h, and reaching 78% of ultimate glucan digestibility after 72 h. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Zhizhen; Xu, Kaiqi; Rong, Xiaohui; Hu, Yong-Sheng; Li, Hong; Huang, Xuejie; Chen, Liquan
2017-12-01
Solid electrolytes with high ionic conductivity and excellent electrochemical stability are of prime significance to enable the application of solid-state batteries in energy storage and conversion. In this study, solid composite polymer electrolytes (CPEs) based on sodium bis(trifluorosulfonyl) imide (NaTFSI) and poly (ethylene oxide) (PEO) incorporated with active ceramic filler (NASICON) are reported for the first time. With the addition of NASICON fillers, the thermal stability and electrochemical stability of the CPEs are improved. A high conductivity of 2.8 mS/cm (at 80 °C) is readily achieved when the content of the NASICON filler in the composite polymer reaches 50 wt%. Furthermore, Na3V2(PO4)3/CPE/Na solid-state batteries using this composite electrolyte display good rate and excellent cycle performance.
Lima, Marisa A; Lavorente, Gabriela B; da Silva, Hana Kp; Bragatto, Juliano; Rezende, Camila A; Bernardinelli, Oigres D; Deazevedo, Eduardo R; Gomez, Leonardo D; McQueen-Mason, Simon J; Labate, Carlos A; Polikarpov, Igor
2013-05-09
In recent years, the growing demand for biofuels has encouraged the search for different sources of underutilized lignocellulosic feedstocks that are available in sufficient abundance to be used for sustainable biofuel production. Much attention has been focused on biomass from grass. However, large amounts of timber residues such as eucalyptus bark are available and represent a potential source for conversion to bioethanol. In the present paper, we investigate the effects of a delignification process with increasing sodium hydroxide concentrations, preceded or not by diluted acid, on the bark of two eucalyptus clones: Eucalyptus grandis (EG) and the hybrid, E. grandis x urophylla (HGU). The enzymatic digestibility and total cellulose conversion were measured, along with the effect on the composition of the solid and the liquor fractions. Barks were also assessed using Fourier-transform infrared spectroscopy (FTIR), solid-state nuclear magnetic resonance (NMR), X-Ray diffraction, and scanning electron microscopy (SEM). Compositional analysis revealed an increase in the cellulose content, reaching around 81% and 76% of glucose for HGU and EG, respectively, using a two-step treatment with HCl 1%, followed by 4% NaOH. Lignin removal was 84% (HGU) and 79% (EG), while the hemicellulose removal was 95% and 97% for HGU and EG, respectively. However, when we applied a one-step treatment, with 4% NaOH, higher hydrolysis efficiencies were found after 48 h for both clones, reaching almost 100% for HGU and 80% for EG, in spite of the lower lignin and hemicellulose removal. Total cellulose conversion increased from 5% and 7% to around 65% for HGU and 59% for EG. NMR and FTIR provided important insight into the lignin and hemicellulose removal and SEM studies shed light on the cell-wall unstructuring after pretreatment and lignin migration and precipitation on the fibers surface, which explain the different hydrolysis rates found for the clones. Our results show that the single step alkaline pretreatment improves the enzymatic digestibility of Eucalyptus bark. Furthermore, the chemical and physical methods combined in this study provide a better comprehension of the pretreatment effects on cell-wall and the factors that influence enzymatic digestibility of this forest residue.
2013-01-01
Background In recent years, the growing demand for biofuels has encouraged the search for different sources of underutilized lignocellulosic feedstocks that are available in sufficient abundance to be used for sustainable biofuel production. Much attention has been focused on biomass from grass. However, large amounts of timber residues such as eucalyptus bark are available and represent a potential source for conversion to bioethanol. In the present paper, we investigate the effects of a delignification process with increasing sodium hydroxide concentrations, preceded or not by diluted acid, on the bark of two eucalyptus clones: Eucalyptus grandis (EG) and the hybrid, E. grandis x urophylla (HGU). The enzymatic digestibility and total cellulose conversion were measured, along with the effect on the composition of the solid and the liquor fractions. Barks were also assessed using Fourier-transform infrared spectroscopy (FTIR), solid-state nuclear magnetic resonance (NMR), X-Ray diffraction, and scanning electron microscopy (SEM). Results Compositional analysis revealed an increase in the cellulose content, reaching around 81% and 76% of glucose for HGU and EG, respectively, using a two-step treatment with HCl 1%, followed by 4% NaOH. Lignin removal was 84% (HGU) and 79% (EG), while the hemicellulose removal was 95% and 97% for HGU and EG, respectively. However, when we applied a one-step treatment, with 4% NaOH, higher hydrolysis efficiencies were found after 48 h for both clones, reaching almost 100% for HGU and 80% for EG, in spite of the lower lignin and hemicellulose removal. Total cellulose conversion increased from 5% and 7% to around 65% for HGU and 59% for EG. NMR and FTIR provided important insight into the lignin and hemicellulose removal and SEM studies shed light on the cell-wall unstructuring after pretreatment and lignin migration and precipitation on the fibers surface, which explain the different hydrolysis rates found for the clones. Conclusion Our results show that the single step alkaline pretreatment improves the enzymatic digestibility of Eucalyptus bark. Furthermore, the chemical and physical methods combined in this study provide a better comprehension of the pretreatment effects on cell-wall and the factors that influence enzymatic digestibility of this forest residue. PMID:23657132
Kagan, Aura; Winckel, Joanne; Black, Sandra; Duchan, Judith Felson; Simmons-Mackie, Nina; Square, Paula
2004-01-01
Conversation partners of individuals with aphasia, including health care professionals, families, and others, play a role that is as important for communication as the language disorder suffered by individuals with aphasia. Two complementary measures designed to capture elements of conversation between adults with aphasia and their speaking conversation partners have been developed. The first measure provides an index of the conversation partner's skill in providing conversational support. The second provides an index of the level of participation in conversation by the person with aphasia. This article describes the development of the measures, including preliminary psychometric data, and discusses applications.
Conversion of rat muscle fiber types. A time course study.
Oakley, C R; Gollnick, P D
1985-01-01
Rats were used in this study to determine the time course of conversion of muscle fiber types. The right or left gastrocnemius muscle was removed thereby causing an overload on the ipsilateral soleus and plantaris muscles. The contralateral limb served as a control. The type II to type I fiber conversion was followed histochemically in the soleus and plantaris muscles for one to six weeks following surgery. Muscle sections were stained for myofibrillar actomyosin ATPase and NADH tetrazolium reductase. The type I population in the soleus muscle was 99.3% six weeks after synergist removal. The plantaris muscle underwent a two fold increase in the percentage of type I fibers after six weeks. Transitional fibers were prominent in the plantaris muscle and reached their peak at 4% (P less than 0.05) of the total population, four weeks after surgery.
Peterson, Donald W.; Tilling, Robert I.
1980-01-01
Nearly all Hawaiian basaltic lava erupts as pahoehoe, and some changes to aa during flowage and cooling; factors governing the transition involve certain critical relations between viscosity and rate of shear strain. If the lava slows, cools, and stops in direct response to concomitant increase in viscosity before these critical relations are reached, it remains pahoehoe. But, if flow mechanics (flow rate, flow dimensions, slope, momentum, etc.) impel the lava to continue to move and deform even after it has become highly viscous, the critical relations may be reached and the lava changes to aa.Typical modes of transition from pahoehoe to aa include: (1) spontaneous formation of relatively stiff clots in parts of the flowing lava where shear rate is highest; these clots grow into discrete, rough, sticky masses to which the remaining fluid lava incrementally adheres; (2) fragmentation and immersion of solid or semi-solid surface crusts of pahoehoe by roiling movements of the flow, forming cores of discrete, tacky masses; (3) sudden renewed movement of lava stored and cooled within surface reservoirs to form clots. The masses, fragments, and clots in these transition modes are characterized by spinose, granulated surfaces; as flow movement continues, the masses and fragments aggregate, fracture, and grind together, completing the transition to aa.Observations show that the critical relation between viscosity and rate of shear strain is inverse: if viscosity is low, a high rate of shear is required to begin the transition to aa; conversely, if viscosity is high, a much lower rate of shear will induce the transition. These relations can be demonstrated qualitatively with simple graphs, which can be used to examine the flow history of any selected finite lava element by tracing the path represented by its changing viscosity and shear rate. A broad, diffuse “transition threshold zone” in these graphs portrays the inverse critical relation between viscosity and shear rate; the transition to aa is represented by the path of the lava element crossing this zone.Moving lava flows can be regarded as natural viscometers, by which shear stress and rate of shear strain at selected points can be determined and viscosity can be computed. By making such determinations under a wide range of conditions on pahoehoe, aa, and transitional flow types, the critical relations that control the pahoehoe-aa transition can be quantified.
The Use of Facebook in Recruiting Participants for Health Research Purposes: A Systematic Review
Stevelink, Sharon; Fear, Nicola
2017-01-01
Background Social media is a popular online tool that allows users to communicate and exchange information. It allows digital content such as pictures, videos and websites to be shared, discussed, republished and endorsed by its users, their friends and businesses. Adverts can be posted and promoted to specific target audiences by demographics such as region, age or gender. Recruiting for health research is complex with strict requirement criteria imposed on the participants. Traditional research recruitment relies on flyers, newspaper adverts, radio and television broadcasts, letters, emails, website listings, and word of mouth. These methods are potentially poor at recruiting hard to reach demographics, can be slow and expensive. Recruitment via social media, in particular Facebook, may be faster and cheaper. Objective The aim of this study was to systematically review the literature regarding the current use and success of Facebook to recruit participants for health research purposes. Methods A literature review was completed in March 2017 in the English language using MEDLINE, EMBASE, Web of Science, PubMed, PsycInfo, Google Scholar, and a hand search of article references. Papers from the past 12 years were included and number of participants, recruitment period, number of impressions, cost per click or participant, and conversion rate extracted. Results A total of 35 studies were identified from the United States (n=22), Australia (n=9), Canada (n=2), Japan (n=1), and Germany (n=1) and appraised using the Critical Appraisal Skills Programme (CASP) checklist. All focused on the feasibility of recruitment via Facebook, with some (n=10) also testing interventions, such as smoking cessation and depression reduction. Most recruited young age groups (16-24 years), with the remaining targeting specific demographics, for example, military veterans. Information from the 35 studies was analyzed with median values being 264 recruited participants, a 3-month recruitment period, 3.3 million impressions, cost per click of US $0.51, conversion rate of 4% (range 0.06-29.50), eligibility of 61% (range 17-100), and cost per participant of US $14.41. The studies showed success in penetrating hard to reach populations, finding the results representative of their control or comparison demographic, except for an over representation of young white women. Conclusions There is growing evidence to suggest that Facebook is a useful recruitment tool and its use, therefore, should be considered when implementing future health research. When compared with traditional recruitment methods (print, radio, television, and email), benefits include reduced costs, shorter recruitment periods, better representation, and improved participant selection in young and hard to reach demographics. It however, remains limited by Internet access and the over representation of young white women. Future studies should recruit across all ages and explore recruitment via other forms of social media. PMID:28851679
Novel epoxy activated hydrogels for solving lactose intolerance.
Elnashar, Magdy M M; Hassan, Mohamed E
2014-01-01
"Lactose intolerance" is a medical problem for almost 70% of the world population. Milk and dairy products contain 5-10% w/v lactose. Hydrolysis of lactose by immobilized lactase is an industrial solution. In this work, we succeeded to increase the lactase loading capacity to more than 3-fold to 36.3 U/g gel using epoxy activated hydrogels compared to 11 U/g gel using aldehyde activated carrageenan. The hydrogel's mode of interaction was proven by FTIR, DSC, and TGA. The high activity of the epoxy group was regarded to its ability to attach to the enzyme's -SH, -NH, and -OH groups, whereas the aldehyde group could only bind to the enzyme's -NH2 group. The optimum conditions for immobilization such as epoxy chain length and enzyme concentration have been studied. Furthermore, the optimum enzyme conditions were also deliberated and showed better stability for the immobilized enzyme and the Michaelis constants, K m and V max, were doubled. Results revealed also that both free and immobilized enzymes reached their maximum rate of lactose conversion after 2 h, albeit, the aldehyde activated hydrogel could only reach 63% of the free enzyme. In brief, the epoxy activated hydrogels are more efficient in immobilizing more enzymes than the aldehyde activated hydrogel.
NASA Astrophysics Data System (ADS)
Tsodikov, M. V.; Ellert, O. G.; Nikolaev, S. A.; Arapova, O. V.; Bukhtenko, O. V.; Maksimov, Yu. V.; Kirdyankin, D. I.; Vasil'kov, A. Yu.
2018-03-01
Active iron-containing nanosized components have been formed on the lignin surface. The metal was deposited on the lignin from an ethanol solution of Fe(acac)3 and from a colloid solution of iron metal particles obtained beforehand by metal vapor synthesis. These active components are able to absorb microwave radiation and are suitable for microwave-assisted high-rate dehydrogenation and dry reforming of lignin without addition of a carbon adsorbent, as a supplementary radiation absorbing material, to the feedstock. The dependence of the solid lignin heating dynamics on the concentration of supported iron particles was investigated. The threshold Fe concentration equal to 0.5 wt.%, providing the highest rate of sample heating up to the reforming and plasma generation temperature was identified. The microstructure and magnetic properties of iron-containing nanoparticles supported on lignin were studied before and after the reforming. The Fe3O4 nanoparticles and also core-shell Fe3O4@γ-Fe-C nanostructures are formed during the reforming of lignin samples. The catalytic performance of iron-based nanoparticles toward the lignin conversion is manifested as increasing selectivity to hydrogen and syngas, which reaches 94% at the Fe concentration of 2 wt.%. It was found that with microwave irradiation under argon, hydrogen predominates in the gas. In the CO2 atmosphere, dry reforming takes place to give syngas with the CO/H2 ratio of 0.9. In both cases, the degree of hydrogen recovery from lignin reaches 90-94%. [Figure not available: see fulltext.
NASA Astrophysics Data System (ADS)
Frolking, S. E.; Dommain, R.; Glaser, P. H.; Joos, F.; Jeltsch-Thommes, A.
2016-12-01
The climate mitigation potential of tropical peatlands has gained increased attention as Southeast Asian tropical peat swamp forests are being deforested, drained and burned at very high rates, causing globally significant carbon dioxide (CO2) emissions to the atmosphere. We used a simple force-restore model to represent the perturbation to the atmospheric CO2 and CH4 burdens, and net radiative forcing, resulting from long-term conversion of tropical peat swamp forests to oil palm or acacia plantations. Drainage ditches are installed in land-use conversion to both oil palm and acacia, leading to a persistent change in the system greenhouse gas balance with the atmosphere. Drainage causes the net CO2 exchange to switch from a weak sink (removal from the atmosphere) in the accumulating peat of a swamp forest to a relatively strong source as the peat is oxidized. CH4 emissions increase due to relatively high emissions from the ditches themselves. For these systems, persistent CO2 fluxes have a much stronger impact on atmospheric radiative forcing than do the CH4 fluxes. Prior to conversion, slow peat accumulation (net CO2 uptake) over millennia establishes a slowly increasing net radiative cooling perturbation to the atmosphere. Upon conversion, CO2 loss rates are 16-32 times higher than pre-conversion CO2 uptake rates. Rapid loss rates cause the net radiative forcing perturbation to quickly (decades) become a net warming, which can persist for many centuries after the peat has all been oxidized.
Conversion of Nuclear Waste to Molten Glass: Cold-Cap Reactions in Crucible Tests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Kai; Hrma, Pavel; Rice, Jarrett A.
2016-05-23
The feed-to-glass conversion, which comprises complex chemical reactions and phase transitions, occurs in the cold-cap zone during nuclear waste vitrification. Knowledge of the chemistry and physics of feed-to-glass conversion will help us control the conversion path by changing the melter feed makeup to maximize the glass production rate. To investigate the conversion process, we analyzed heat-treated samples of a simulated high-level waste feed using X-ray diffraction, electron probe microanalysis – wavelength dispersive X-ray spectroscopy, leaching tests, and residual anion analysis. Feed dehydration, gas evolution, and borate phase formation occurred at temperatures below 700 °C before the emerging glass-forming melt wasmore » completely connected. Above 800 °C, intermediate aluminosilicate phases and quartz particles were gradually dissolving in the continuous borosilicate melt, which expanded into transient foam. Knowledge of the chemistry and physics of feed-to-glass conversion will help us control the conversion path by changing the melter feed makeup to maximize the glass production rate.« less
NASA Astrophysics Data System (ADS)
Susanto, L.; Siregar, Y.; Kusumawati, L.
2018-03-01
The failure of first-line tuberculosis treatment greatly affects multiple drug-resistant tuberculosis. In vitro study of vitamin C induces the death of M. tuberculosis bacteria and accelerates healing of tuberculosis, so the multiple drug-resistant tuberculosis can be avoided. This research aimed to identify the effect of vitamin C as a supportive treatment on the sputum conversion rate. The randomizedand double group with a parallel design by matching pair method was used to collect samples. The first group was treated with standard tuberculosis treatment, and the other was given vitamin C supplementation. Vitamin C plasma level analyzation was performed before and after two months of treatment. Sputum conversion was evaluated every week for eight weeks. The comparison of vitamin C plasma level in pre and post-treatment group was significant (p=0.03) but not in the other group. There was no significant difference in vitamin C plasma level between two groups (p=0.21). The proportion of sputum conversion rate in both group in the first week was 0% vs. 9.6% (p=0.83) and the last week of study was 83.9% vs. 100% (p=0.02). In conclusion, vitamin C supplementation has effects in improving the healing process of tuberculosis patients as indicated by higher in sputum conversion rate.
Sonnaert, Maarten; Papantoniou, Ioannis; Luyten, Frank P; Schrooten, Jan Ir
2015-06-01
As the fields of tissue engineering and regenerative medicine mature toward clinical applications, the need for online monitoring both for quantitative and qualitative use becomes essential. Resazurin-based metabolic assays are frequently applied for determining cytotoxicity and have shown great potential for monitoring 3D bioreactor-facilitated cell culture. However, no quantitative correlation between the metabolic conversion rate of resazurin and cell number has been defined yet. In this work, we determined conversion rates of Presto Blue, a resazurin-based metabolic assay, for human periosteal cells during 2D and 3D static and 3D perfusion cultures. Our results showed that for the evaluated culture systems there is a quantitative correlation between the Presto Blue conversion rate and the cell number during the expansion phase with no influence of the perfusion-related parameters, that is, flow rate and shear stress. The correlation between the cell number and Presto Blue conversion subsequently enabled the definition of operating windows for optimal signal readouts. In conclusion, our data showed that the conversion of the resazurin-based Presto Blue metabolic assay can be used as a quantitative readout for online monitoring of cell proliferation in a 3D perfusion bioreactor system, although a system-specific validation is required.
Sonnaert, Maarten; Papantoniou, Ioannis; Luyten, Frank P.
2015-01-01
As the fields of tissue engineering and regenerative medicine mature toward clinical applications, the need for online monitoring both for quantitative and qualitative use becomes essential. Resazurin-based metabolic assays are frequently applied for determining cytotoxicity and have shown great potential for monitoring 3D bioreactor-facilitated cell culture. However, no quantitative correlation between the metabolic conversion rate of resazurin and cell number has been defined yet. In this work, we determined conversion rates of Presto Blue™, a resazurin-based metabolic assay, for human periosteal cells during 2D and 3D static and 3D perfusion cultures. Our results showed that for the evaluated culture systems there is a quantitative correlation between the Presto Blue conversion rate and the cell number during the expansion phase with no influence of the perfusion-related parameters, that is, flow rate and shear stress. The correlation between the cell number and Presto Blue conversion subsequently enabled the definition of operating windows for optimal signal readouts. In conclusion, our data showed that the conversion of the resazurin-based Presto Blue metabolic assay can be used as a quantitative readout for online monitoring of cell proliferation in a 3D perfusion bioreactor system, although a system-specific validation is required. PMID:25336207
Terenzi, Camilla; Bouguet-Bonnet, Sabine; Canet, Daniel
2017-04-21
At ambient temperature, conversion from 100% enriched para-hydrogen (p-H 2 ; singlet state) to ortho-hydrogen (o-H 2 ; triplet state) leads necessarily to the thermodynamic equilibrium proportions: 75% of o-H 2 and 25% of p-H 2 . When p-H 2 is dissolved in a diamagnetic organic solvent, conversion is very slow and can be considered as arising from nuclear spin relaxation phenomena. A first relaxation mechanism, specific to the singlet state and involving a combination of auto-correlation and cross correlation spectral densities, can be retained: randomly fluctuating magnetic fields due to inter-molecular dipolar interactions. We demonstrate here that (i) this dipolar mechanism is not sufficient for accounting for the para→ortho conversion rate, (ii) spin-rotation interaction, an intra-molecular mechanism, behaves similarly to random-field interaction and, thus, may be involved in the singlet relaxation rate. Also, as the para→ortho conversion is monitored by proton nuclear magnetic resonance (NMR) of dissolved o-H 2 (p-H 2 is NMR-silent), one has to account for H 2 exchange between the liquid phase and the gas phase within the NMR tube, as well as for dissolution effects. Experimental evidence of the above statements is brought here in the case of two organic solvents: acetone-d 6 and carbon disulfide. The observed temperature dependence of the para→ortho conversion rate shows that spin-rotation can be the dominant contribution to the p-H 2 relaxation rate in the absence of tangible dipolar interactions. Our findings shed new light on the "mysterious" mechanism of the para→ortho conversion which has been searched for several decades.
New ortho-para conversion mechanism in dense solid hydrogen.
Strzhemechny, M A; Hemley, R J
2000-12-25
Analysis of recent measurements of striking changes in the rate of ortho-para conversion of solid H(2) up to 58 GPa shows that the conversion mechanism must differ from that at ambient pressure. A new conversion mechanism is identified in which the emerging excitations are coupled to the converting molecules via electric quadrupole-quadrupole rather than nuclear spin-spin interactions. The latter only initiates conversion while the coupling enhancement associated with the new mechanism is ensured by high compression and a gap closing, with the conversion energy diminishing strongly with increasing pressure.
Kinetic phase evolution of spinel cobalt oxide during lithiation
Li, Jing; He, Kai; Meng, Qingping; ...
2016-09-15
Spinel cobalt oxide has been proposed to undergo a multiple-step reaction during the electrochemical lithiation process. Understanding the kinetics of the lithiation process in this compound is crucial to optimize its performance and cyclability. In this work, we have utilized a low-angle annular dark-field scanning transmission electron microscopy method to visualize the dynamic reaction process in real time and study the reaction kinetics at different rates. We show that the particles undergo a two-step reaction at the single-particle level, which includes an initial intercalation reaction followed by a conversion reaction. At low rates, the conversion reaction starts after the intercalationmore » reaction has fully finished, consistent with the prediction of density functional theoretical calculations. At high rates, the intercalation reaction is overwhelmed by the subsequently nucleated conversion reaction, and the reaction speeds of both the intercalation and conversion reactions are increased. Phase-field simulations show the crucial role of surface diffusion rates of lithium ions in controlling this process. Furthermore, this work provides microscopic insights into the reaction dynamics in non-equilibrium conditions and highlights the effect of lithium diffusion rates on the overall reaction homogeneity as well as the performance.« less
Kinetic phase evolution of spinel cobalt oxide during lithiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Jing; He, Kai; Meng, Qingping
Spinel cobalt oxide has been proposed to undergo a multiple-step reaction during the electrochemical lithiation process. Understanding the kinetics of the lithiation process in this compound is crucial to optimize its performance and cyclability. In this work, we have utilized a low-angle annular dark-field scanning transmission electron microscopy method to visualize the dynamic reaction process in real time and study the reaction kinetics at different rates. We show that the particles undergo a two-step reaction at the single-particle level, which includes an initial intercalation reaction followed by a conversion reaction. At low rates, the conversion reaction starts after the intercalationmore » reaction has fully finished, consistent with the prediction of density functional theoretical calculations. At high rates, the intercalation reaction is overwhelmed by the subsequently nucleated conversion reaction, and the reaction speeds of both the intercalation and conversion reactions are increased. Phase-field simulations show the crucial role of surface diffusion rates of lithium ions in controlling this process. Furthermore, this work provides microscopic insights into the reaction dynamics in non-equilibrium conditions and highlights the effect of lithium diffusion rates on the overall reaction homogeneity as well as the performance.« less
Selling the story: Narratives and charisma in adults with TBI
JONES, CORINNE A.; TURKSTRA, LYN S.
2015-01-01
Objective To examine storytelling performance behaviours in adults with traumatic brain injury (TBI) and relate these behaviours to perceived charisma and desirability as a conversation partner. Design and methods Seven adult males with traumatic brain injury (TBI) told their accident narratives to a male confederate. Ten male undergraduate students rated 1-minute video clips from the beginning of each narrative using the Charismatic Leadership Communication Scale (CLCS). Raters also indicated whether or not they would like to engage in conversation with each participant. Results Of the performative behaviours analysed, gestures alone significantly influenced CLCS ratings and reported likelihood of engaging in future conversation with the participant. Post-hoc analysis revealed that speech rate was significantly correlated with all of the preceding measures. There was a significant correlation between self- and other-ratings of charisma. Conclusions The findings suggest that aspects of non-verbal performance, namely gesture use and speech rate, influence how charismatic an individual is perceived to be and how likely someone is to engage in conversation with that person. Variability in these performance behaviours may contribute to the variation in social outcomes seen in the TBI population. PMID:21714624
In-Depth Investigation of Interpersonal Discussions in Response to a Safer Sex Mass Media Campaign
Helme, Donald W.; Noar, Seth M.; Allard, Suzanne; Zimmerman, Rick S.; Palmgreen, Philip; McClanahan, Karen J.
2015-01-01
We know from theory and limited research that people talk about campaign messages—and that these conversations may play an important role in campaign reach and possibly even efficacy. We know very little, however, about what individuals talk about and with whom they talk. The current study seeks to fill this gap by reporting qualitative and descriptive quantitative data from interviews conducted with 139 young adults about conversations that took place in the context of a large, televised safer sex mass media campaign. Results indicated that public service announcements (PSAs) were often viewed in the company of friends and significant others, and that it was not uncommon for conversations about the PSAs to take place. Three broad categories of conversations that took place involved discussions about PSA realism, the seriousness of the message, and humor. While in some cases conversations seemed to advance the goal of the campaign (e.g., participants discussed sexually transmitted disease [STD] risk and condom use), in other cases they did not (e.g., participants discussed the lack of realism in a particular PSA). Implications for campaign theory, design, and implementation are discussed. PMID:21409674
Study of parameters affecting the conversion in a plug flow reactor for reactions of the type 2A→B
NASA Astrophysics Data System (ADS)
Beltran-Prieto, Juan Carlos; Long, Nguyen Huynh Bach Son
2018-04-01
Modeling of chemical reactors is an important tool to quantify reagent conversion, product yield and selectivity towards a specific compound and to describe the behavior of the system. Proposal of differential equations describing the mass and energy balance are among the most important steps required during the modeling process as they play a special role in the design and operation of the reactor. Parameters governing transfer of heat and mass have a strong relevance in the rate of the reaction. Understanding this information is important for the selection of reactor and operating regime. In this paper we studied the irreversible gas-phase reaction 2A→B. We model the conversion that can be achieved as function of the reactor volume and feeding temperature. Additionally, we discuss the effect of activation energy and the heat of reaction on the conversion achieved in the tubular reactor. Furthermore, we considered that dimerization occurs instantaneously in the catalytic surface to develop equations for the determination of rate of reaction per unit area of three different catalytic surface shapes. This data can be combined with information about the global rate of conversion in the reactor to improve regent conversion and yield of product.
Zhou, Weiran; Zhou, Pengcheng; Lei, Xunyong; Fang, Zhimin; Zhang, Mengmeng; Liu, Qing; Chen, Tao; Zeng, Hualing; Ding, Liming; Zhu, Jun; Dai, Songyuan; Yang, Shangfeng
2018-01-17
Organometal halide CH 3 NH 3 PbI 3 (MAPbI 3 ) has been commonly used as the light absorber layer of perovskite solar cells (PSCs), and, especially, another halide element chlorine (Cl) has been often incorporated to assist the crystallization of perovskite film. However, in most cases, a predominant MAPbI 3 phase with trace of Cl - is obtained ultimately and the role of Cl involvement remains unclear. Herein, we develop a low-cost and facile method, named hydrochloric acid vapor annealing (HAVA) post-treatment, and realize a rapid conversion of MAPbI 3 to phase-pure MAPbCl 3 , demonstrating a new concept of phase engineering of perovskite materials toward efficiency enhancement of PSCs for the first time. The average grain size of perovskite film after HAVA post-treatment increases remarkably through an Ostwald ripening process, leading to a denser and smoother perovskite film with reduced trap states and enhanced crystallinity. More importantly, the generation of MAPbCl 3 secondary phase via phase engineering is beneficial for improving the carrier mobility with a more balanced carrier transport rate and enlarging the band gap of perovskite film along with optimized energy level alignment. As a result, under the optimized HAVA post-treatment time (2 min), we achieved a significant enhancement of the power conversion efficiency (PCE) of the MAPbI 3 -based planar heterojunction-PSC device from 14.02 to 17.40% (the highest PCE reaches 18.45%) with greatly suppressed hysteresis of the current-voltage response.
Selective methane chlorination to methyl chloride by zeolite Y-based catalysts
NASA Astrophysics Data System (ADS)
Joo, Hyeonho; Kim, Daeho; Lim, Kwang Soo; Choi, Yong Nam; Na, Kyungsu
2018-03-01
The CH4 chlorination over Y zeolites was investigated to produce CH3Cl in a high yield. Three different catalytic systems based on Y zeolite were tested for enhancement of CH4 conversion and CH3Cl selectivity: (i) HY zeolites in H+-form having various Si/Al ratios, (ii) Pt/HY zeolites supporting Pt metal nanoparticles, (iii) Pt/NaY zeolites in Na+-form supporting Pt metal nanoparticles. The reaction was carried out using the gas mixture of CH4 and Cl2 with the respective flow rates of 15 and 10 mL min-1 at 300-350 °C using a fixed-bed reactor under a continuous gas flow condition (gas hourly space velocity = 3000 mL g-1 h-1). Above the reaction temperature of 300 °C, the CH4 chlorination is spontaneous even in the absence of catalyst, achieving 23.6% of CH4 conversion with 73.4% of CH3Cl selectivity. Under sufficient supplement of thermal energy, Cl2 molecules can be dissociated to two chlorine radicals, which triggered the C-H bond activation of CH4 molecule and thereby various chlorinated methane products (i.e., CH3Cl, CH2Cl2, CHCl3, CCl4) could be produced. When the catalysts were used under the same reaction condition, enhancement in the CH4 conversion was observed. The Pt-free HY zeolite series with varied Si/Al ratios gave around 27% of CH4 conversion, but there was a slight decrease in CH3Cl selectivity with about 64%. Despite the difference in acidity of HY zeolites having different Si/Al ratios, no prominent effect of the Si/Al ratios on the catalytic performance was observed. This suggests that the catalytic contribution of HY zeolites under the present reaction condition is not strong enough to overcome the spontaneous CH4 chlorination. When the Pt/HY zeolite catalysts were used, the CH4 conversion reached further up to 30% but the CH3Cl selectivity decreased to 60%. Such an enhancement of CH4 conversion could be attributed to the strong catalytic activity of HY and Pt/HY zeolite catalysts. However, both catalysts induced the radical cleavage of Cl2 more favorably, which ultimately decreased the CH3Cl selectivity. Such trade-off relationship between CH4 conversion and CH3Cl selectivity can be slightly broken by using Pt/NaY zeolite catalyst that is known to possess Frustrated Lewis Pairs (FLP) that are very useful for ionic cleavage of H2 to H+ and H-. Similarly, in the present work, Pt/NaY(FLP) catalysts enhanced the CH4 conversion while keeping the CH3Cl selectivity as compared to the Pt/HY zeolite catalysts.
Historical Shoreline Changes at Rincon, Puerto Rico, 1936-2006
Thieler, E. Robert; Rodriguez, Rafael W.; Himmelstoss, Emily A.
2007-01-01
The coast from Punta Higuero to Punta Cadena in Rincon, Puerto Rico is experiencing long-term erosion. This study documents historical shoreline changes at Rincon for the period 1936-2006 and constitutes a significant expansion and revision of previous work. The study area extends approximately 8 km from Punta Higuero to Punta Cadena. Fourteen historical shoreline positions were compiled from existing data, new orthophotography, and Global Positioning System (GPS) field surveys. The study area can be divided into four distinct reaches on the basis of observed erosion rates, consistent with previous work. The coast of Reach A, from Punta Higuero to the north end of the Balneario de Rincon, is fairly stable and has a long-term (70 years) average erosion rate of -0.2 ? 0.1 m/yr. The coast of Reach B, from the Balneario de Rincon to 500 m south of the mouth of Quebrada los Ramos, has an average long-term erosion rate of -1.1 ? 0.3 m/yr. The coast of Reach C, from 500 m south of the mouth of Quebrada los Ramos to Corcega, has an average long-term erosion rate of -0.4 ? 0.2 m/yr. The coast of Reach D, from Corcega to Punta Cadena, has an average long-term change rate of -0.2 ? 0.2 m/yr. Previous work (Thieler and others, 1995) identified an apparent increase in erosion rate in Reach B that probably began between 1977 and 1987. New data and statistical analysis suggest that long-term and short-term rates of shoreline change are statistically similar. Nevertheless, the coast in Reach B is eroding at a rapid and statistically significant rate that is 2 to 10 times greater than in the other three reaches. Comparison of the 1994 and 2006 GPS shoreline positions indicates the following erosion rates occurred over the past 12 years: Reach A, -0.3 ? 0.4 m/yr; Reach B, -1.0 ? 0.4 m/yr; Reach C, -0.7 ? 0.4 m/yr; and Reach D, -0.3 ? 0.4 m/yr. Thieler and others (1995) speculated that the increased erosion rate in Reach B could be attributed to the effects of marina construction in 1983 on the local sediment budget. New data and analysis suggest, however, that other factors may be equally or perhaps more important. For example, high-resolution lidar bathymetric data collected in 2001 show a complex nearshore bathymetry that may substantially affect wave refraction, diffraction, and reflection in Reach B where erosion rates are the highest. In addition, several historical photographs dating from 1951 to 2006 show a wide array of complex wave patterns that suggest the bathymetric influence on nearshore processes to be a long-term, rather than recent, phenomenon. In addition, removal of sand from the beach system may be contributing further to the elevated erosion rates in Reach B. Development of potential options for addressing coastal erosion in Rincon was beyond the scope of this study, but the data and interpretations presented here provide a sound scientific foundation for further work to identify the causes of the increased erosion and to develop strategies to mitigate its effect.
Lee, Ji Yeon; Kim, Deog Kyeom; Lee, Jung-Kyu; Yoon, Ho Il; Jeong, Ina; Heo, Eunyoung; Park, Young Sik; Lee, Jae Ho; Park, Sung Soo; Lee, Sang-Min; Lee, Chang-Hoon; Lee, Jinwoo; Choi, Sun Mi; Park, Jong Sun; Joh, Joon-Sung; Cho, Young-Jae; Lee, Yeon Joo; Kim, Se Joong; Hwang, Young Ran; Kim, Hyeonjeong; Ki, Jongeun; Choi, Hyungsook; Han, Jiyeon; Ahn, Heejung; Hahn, Seokyung; Yim, Jae-Joon
2017-02-13
Linezolid, an oxazolidinone, substantially improves treatment outcomes of multidrug-resistant tuberculosis and extensively drug-resistant tuberculosis. We started a trial to test whether the use of linezolid instead of ethambutol could increase the rate of sputum culture conversion as of 8 weeks of treatment in patients with drug-susceptible tuberculosis. This is a phase II, multicenter, randomized study with three arms. We are enrolling patients with pulmonary tuberculosis without rifampicin resistance screened by the Xpert MTB/RIF® assay. The standard treatment arm uses isoniazid (6 months), rifampicin (6 months), pyrazinamide (2 months), and ethambutol (2 months). Experimental arm 1 uses linezolid (600 mg/day) for 4 weeks instead of ethambutol. Experimental arm 2 uses linezolid (600 mg/day) for 2 weeks instead of ethambutol. The primary outcome is the sputum culture conversion rate on liquid media after 2 months of treatment. Secondary outcomes include the sputum culture conversion rate on solid media after 2 months of treatment, time to sputum culture conversion on liquid and solid media, cure rate, and treatment success rate. The frequencies of total adverse events (AEs) and serious AEs will be described and documented. Based on an α = 0.05 level of significance, a power of 85%, a 15% difference in the culture conversion rate after 2 months between the control arm and experimental arm 1 (75% vs. 90%), a 10% default (loss to follow-up) rate, and a 10% culture failure, the required number per arm was calculated to be 143 (429 in total). This trial will reveal the effectiveness and safety of 2 or 4 weeks of use of linezolid instead of ethambutol for patients with drug-susceptible pulmonary tuberculosis. If a new regimen including linezolid shows a higher culture conversion rate by week 8, and is safe, it could be tested as a 4-month antituberculosis treatment regimen in the future. ClincalTrials.gov, NCT01994460 . Registered on 13 November 2013.
ERIC Educational Resources Information Center
Haley, Katarina L.; And Others
1994-01-01
Fifteen preschool children with specific language impairment engaged in typical language intervention activities during conversation-based and imitation-based language programs. A higher number of positive social valence ratings; higher frequency of smiling, laughing, and engagement; and higher rate of verbal initiations were noted within…
5 CFR 536.302 - Optional pay retention.
Code of Federal Regulations, 2010 CFR
2010-01-01
... conversion rule in § 536.303(a) before determining whether an employee's rate of basic pay otherwise would be... entitled to pay retention under § 536.301, but whose payable rate of basic pay otherwise would be reduced (after application of any applicable geographic conversion under § 536.303(a)) as the result of a...
5 CFR 9901.314 - National security compensation comparability.
Code of Federal Regulations, 2010 CFR
2010-01-01
... conversion of such employees to the NSPS; and (2) Adjustments for normal step increases and rates of... disadvantaged in terms of the overall amount of compensation available as a result of conversion to the NSPS.... 5304, special rate supplement under 5 U.S.C. 5305, local market supplement under § 9901.332, or...
Condensed phase conversion and growth of nanorods and other materials instead of from vapor
Geohegan, David B.; Seals, Roland D.; Puretzky, Alex A.; Fan, Xudong
2010-10-19
Compositions, systems and methods are described for condensed phase conversion and growth of nanorods and other materials. A method includes providing a condensed phase matrix material; and activating the condensed phase matrix material to produce a plurality of nanorods by condensed phase conversion and growth from the condensed phase matrix material instead of from vapor. The compositions are very strong. The compositions and methods provide advantages because they allow (1) formation rates of nanostructures necessary for reasonable production rates, and (2) the near net shaped production of component structures.
Condensed phase conversion and growth of nanorods instead of from vapor
Geohegan, David B.; Seals, Roland D.; Puretzky, Alex A.; Fan, Xudong
2005-08-02
Compositions, systems and methods are described for condensed phase conversion and growth of nanorods and other materials. A method includes providing a condensed phase matrix material; and activating the condensed phase matrix material to produce a plurality of nanorods by condensed phase conversion and growth from the condensed chase matrix material instead of from vacor. The compositions are very strong. The compositions and methods provide advantages because they allow (1) formation rates of nanostructures necessary for reasonable production rates, and (2) the near net shaped production of component structures.
Douglas, Jim
2007-01-01
In this conversation, Vermont's Republican governor, Jim Douglas, discusses his role in and views on the state's comprehensive health reforms adopted in 2006. The reforms are designed to provide universal access to coverage, improve the quality and performance of the health care system, and promote health and wellness across the lifespan. He describes the specific features of the reforms, the plan for their financing, and the difficult compromises that had to be reached with the Democratically controlled legislature. He talks about his need, as governor, to balance the goals of health reform against other state priorities such as education and economic development.
Conversion of ultrashort laser pulses to wavelengths above 3 mm in tapered germanate fibres
NASA Astrophysics Data System (ADS)
Anashkina, E. A.; Andrianov, A. V.; Kim, A. V.
2015-05-01
Tapered germanate fibres are proposed for effective adiabatic conversion of Raman soliton pulses to the mid-IR region. A theoretical analysis demonstrates that, in fibres with anomalous group velocity dispersion decreasing along their length, wavelengths of up to 3.5 μm can be reached, which are unattainable in fibres with a constant core diameter at the same parameters of a 2-μm input signal. The analysis relies on a one-way wave equation that takes into account the combined effect of dispersion, Kerr and Raman nonlinearities, nonlinear dispersion and optical losses and the frequency dependence of the effective fundamental transverse mode size.
Controlled higher-order transverse mode conversion from a fiber laser by polarization manipulation
NASA Astrophysics Data System (ADS)
Huang, Bin; Yi, Qian; Yang, Lingling; Zhao, Chujun; Wen, Shuangchun
2018-02-01
We report a vectorial fiber laser with controlled transverse mode conversion by intra-cavity polarization manipulation. By combining a q-plate and two quarter-wave plates (QWPs), we can generate a switchable polarization state output represented by the higher-order Poincaré sphere (l = +1, l = -1), and distinguish the fourfold degenerate LP11 mode. The four transverse vector modes can be obtained and switched in a flexible way, and the slope efficiency of the fiber laser can reach up to 39.4%. This compactness, high efficiency, and switchable operation potential will benefit a range of applications, such as materials processing, particle manipulation, etc.
Wang, Ruifei; Unrean, Pornkamol; Franzén, Carl Johan
2016-01-01
High content of water-insoluble solids (WIS) is required for simultaneous saccharification and co-fermentation (SSCF) operations to reach the high ethanol concentrations that meet the techno-economic requirements of industrial-scale production. The fundamental challenges of such processes are related to the high viscosity and inhibitor contents of the medium. Poor mass transfer and inhibition of the yeast lead to decreased ethanol yield, titre and productivity. In the present work, high-solid SSCF of pre-treated wheat straw was carried out by multi-feed SSCF which is a fed-batch process with additions of substrate, enzymes and cells, integrated with yeast propagation and adaptation on the pre-treatment liquor. The combined feeding strategies were systematically compared and optimized using experiments and simulations. For high-solid SSCF process of SO2-catalyzed steam pre-treated wheat straw, the boosted solubilisation of WIS achieved by having all enzyme loaded at the beginning of the process is crucial for increased rates of both enzymatic hydrolysis and SSCF. A kinetic model was adapted to simulate the release of sugars during separate hydrolysis as well as during SSCF. Feeding of solid substrate to reach the instantaneous WIS content of 13 % (w/w) was carried out when 60 % of the cellulose was hydrolysed, according to simulation results. With this approach, accumulated WIS additions reached more than 20 % (w/w) without encountering mixing problems in a standard bioreactor. Feeding fresh cells to the SSCF reactor maintained the fermentation activity, which otherwise ceased when the ethanol concentration reached 40-45 g L(-1). In lab scale, the optimized multi-feed SSCF produced 57 g L(-1) ethanol in 72 h. The process was reproducible and resulted in 52 g L(-1) ethanol in 10 m(3) scale at the SP Biorefinery Demo Plant. SSCF of WIS content up to 22 % (w/w) is reproducible and scalable with the multi-feed SSCF configuration and model-aided process design. For simultaneous saccharification and fermentation, the overall efficiency relies on balanced rates of substrate feeding and conversion. Multi-feed SSCF provides the possibilities to balance interdependent rates by systematic optimization of the feeding strategies. The optimization routine presented in this work can easily be adapted for optimization of other lignocellulose-based fermentation systems.
26 CFR 1.305-6 - Distributions of convertible preferred.
Code of Federal Regulations, 2010 CFR
2010-04-01
... the following conditions exist: (i) The conversion right must be exercised within a relatively short... the dividend rate, the redemption provisions, the marketability of the convertible stock, and the conversion price, it may be anticipated that some shareholders will exercise their conversion rights and some...
Cui, Feng-Jie; Zhao, Hong-Xia; Sun, Wen-Jing; Wei, Zhuan; Yu, Si-Lian; Zhou, Qiang; Dong, Ying
2013-12-09
D-isoascorbic acid is a food antioxidant additive and used in accordance with Good Manufacturing Practice (GMP). High solubility in water (about 150 g/L at 25°C) reduces its effectiveness in stabilizing fats and oils. Our research group had successfully synthesized D-isoascorbyl palmitate using immobilized lipase Novozym 435 as a biocatalyst. Low production efficiency of D-isoascorbyl palmitate is still a problem for industrial production due to the long reaction time of over 24 h. In the present work, ultrasonic treatment was applied for accelerating the reaction process. The operation parameters were optimized to obtain the maximum D-isoascorbyl palmitate conversion rate by using a 5-level-4-factor Central Composite Design (CCD) and Response Surface Methdology (RSM). The reaction apparent kinetic parameters under the ultrasound treatment and mechanical shaking conditions were also determined and compared. Results showed that ultrasound treatment decreased the reaction time by over 50%. D-isoascorbyl palmitate yielded to 94.32 ± 0.17% and the productivity reached to 8.67 g L-1 h-1 under the optimized conditions as: 9% of enzyme load (w/w), 61°C of reaction temperature, 1:5 of D- isoascorbic-to-palmitic acid molar ratio, and 137 W of the ultrasound power. The immobilized lipase Novozym 435 could be reused for 7 times with 65% of the remained D-isoascorbyl palmitate conversion rate. The reaction kinetics showed that the maximum apparent reaction rate (vmax) of the ultrasound-assisted reaction was 2.85 times higher than that of the mechanical shaking, which proved that ultrasound treatment significantly enhanced the reaction efficiency. A systematic study on ultrasound-assisted enzymatic esterification for D-isoascorbyl palmitate production is reported. The results show a promising perspective of the ultrasound technique to reduce the reaction time and improve the production efficiency. The commercial D-isoascorbyl palmitate synthesis will be potentially realized due to this ultrasound-promoted esters synthesis method.
ERIC Educational Resources Information Center
Passonneau, Sarah; Coffey, Dan
2011-01-01
Electronic communication technologies continue to change the landscape of reference services. For many users, virtual communication is the preferred means of conversing. Synchronous virtual reference, similar to other synchronous means of communication, is an important method for reaching students and for providing teaching and learning…
The increasing use of silver (Ag) nanoparticles [containing either elemental Ag (Ag-NPs) or AgCl (AgCl-NPs)] in commercial products such as textiles will most likely result in these materials reaching wastewater treatment plants. Previous studies indicate that a conversion of Ag-...
Curing Provincialism: Why We Educate the Way We Do. A Conversation with Jacques Barzun.
ERIC Educational Resources Information Center
American Educator, 2002
2002-01-01
This interview with author and cultural historian Jacques Barzun discusses the origins of history, science, art, literature, and math, calling them the core of intellectual inheritance. Notes how the frameworks they provide enable people to extend their understanding of the world and reach beyond natural, human parochialism. Discusses the…
The Farther Reaches of Gestalt Therapy: A Conversation with George Brown
ERIC Educational Resources Information Center
Carter, Betsie; Vargiu, Susan
1977-01-01
This interview evokes much of the essential spirit of Gestalt Therapy and some of its techniques. Gestalt is a method of growth for developing the potential of the healthy individual. It emphasizes acquiring awareness of the existential moment, integrating unconscious aspects of self, and taking responsibility for one's actions. (Author/BP)
Transitional Highways: Reaching Students with Disabilities in Appalachia
ERIC Educational Resources Information Center
Sweet, Debbie; Dezarn, Shirley; Belluscio, Teresa
2011-01-01
A transition can be described as a change, a switch, a move, or a conversion to another place or frame of mind. Eastern Kentucky University (EKU) has implemented a transition project serving middle and high school students with disabilities. Each year, hundreds of students are provided with information and activities designed to stimulate their…
ERIC Educational Resources Information Center
Jacobs, Victoria R.; Martin, Heather A.; Ambrose, Rebecca C.; Philipp, Randolph A.
2014-01-01
In this article the authors explain that when engaging in a problem-solving conversation with a child, their goal goes beyond helping the child reach a correct answer. They want to learn about the child's mathematical thinking, support that thinking, and extend it as far as possible. This exploration of children's thinking is central to…
Voices of Chinese International Students in USA Colleges: "I Want to Tell Them That … "
ERIC Educational Resources Information Center
Heng, Tang T.
2017-01-01
As international student mobility worldwide reach new heights, there have been increasing conversations around how tertiary institutions need to rethink how they relate to and support international students for success. This study asks mainland Chinese students, the largest proportion of international students worldwide, to voice their desires…
Online School Psychology: Blueprint to Higher Education Conversations
ERIC Educational Resources Information Center
Dixon, Robert J.
2018-01-01
The author is convinced that the school psychology profession needs to develop innovative programs to address the shortages of school psychologists across the nation, specifically, online programs that can reach the rural and underserved districts of each state. Current educators seeking to expand their skill set can be the untapped answer to…
NASA Astrophysics Data System (ADS)
Chen, Zhixin; Xu, Jingjing; Ren, Zhuyun; He, Yunhui; Xiao, Guangcan
2013-09-01
Hexagonal ZnIn2S4 samples have been synthesized by a solvothermal method. Their properties have been determined by X-ray diffraction, ultraviolet-visible-light diffuse reflectance spectra, field emission scanning electron microscopy, nitrogen adsorption-desorption and X-ray photoelectron spectra. These results demonstrate that ethanol solvent has significant influence on the morphology, optical and electronic nature for such marigold-like ZnIn2S4 microspheres. The visible light photocatalytic activities of the ZnIn2S4 have been evaluated by selective oxidation of benzyl alcohol to benzaldehyde using molecular oxygen as oxidant. The results show that 100% conversion along with >99% selectivity are reached over ZnIn2S4 prepared in ethanol solvent under visible light irradiation (λ>420 nm) of 2 h, but only 58% conversion and 57% yield are reached over ZnIn2S4 prepared in aqueous solvent. A possible mechanism of the high photocatalytic activity for selective oxidation of benzyl alcohol over ZnIn2S4 is proposed and discussed.
Zhang, Qiu; Li, Zhongwu; Huang, Bin; Luo, Ninglin; Long, Lingzhi; Huang, Mei; Zhai, Xiuqing; Zeng, Guangming
2017-01-01
The influence of land use change from paddy soil to vegetable soil on the adsorption-desorption behavior of Cd in soil aggregates and the variation in soil properties were investigated. The vegetable soil was characterized by lower pH, organic matter content, cation exchange capacity (CEC), free iron oxides, manganese oxides, and catalase activity and higher urease activity compared with the paddy soil. In the isothermal adsorption and desorption experiments, the adsorption characteristics of Cd of the two soils could be well described by Langmuir and Freundlich equations. The adsorption capacity of vegetable soil decreased 22.72 %, and the desorption rate increased 35 % with respect to paddy soil. Therefore, conversion from paddy to vegetable field can reduce the adsorption ability to Cd of the soil to a certain extent. Both the two soils reached the maximum adsorption capacity and the minimum desorption rate in the <0.002-mm faction. The adsorption capacity of Cd in paddy and vegetable soils exhibited great reliance on the content of CEC. Desorption rate was negatively correlated with the four indicators: organic matter, CEC, free iron oxides, and manganese oxides, and specific adsorption was primarily controlled by soil organic matter and manganese oxides.
NASA Astrophysics Data System (ADS)
Mortuza, S. M.; Taufique, M. F. N.; Banerjee, Soumik
2017-02-01
The power conversion efficiency (PCE) of planar perovskite solar cells (PSCs) has reached up to ∼20%. However, structural and chemicals defects that lead to hysteresis in the perovskite based thin film pose challenges. Recent work has shown that thin films of [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) deposited on the photo absorption layer, using solution processing techniques, minimize surface pin holes and defects thereby increasing the PCE. We developed and employed a multiscale model based on molecular dynamics (MD) and kinetic Monte Carlo (kMC) to establish a relationship between deposition rate and surface coverage on perovskite surface. The MD simulations of PCBMs dispersed in chlorobenzene, sandwiched between (110) perovskite substrates, indicate that PCBMs are deposited through anchoring of the oxygen atom of carbonyl group to the exposed lead (Pb) atom of (110) perovskite surface. Based on rates of distinct deposition events calculated from MD, kMC simulations were run to determine surface coverage at much larger time and length scales than accessible by MD alone. Based on the model, a generic relationship is established between deposition rate of PCBMs and surface coverage on perovskite crystal. The study also provides detailed insights into the morphology of the deposited film.
Jayakumar, Niranjana; Gnanasekaran, Dhivyalakshmi
2014-01-01
Background: Revised National Tuberculosis Control Programme (RNTCP) in India has achieved improved cure rates. Objectives: This study describes the achievements under RNTCP in terms of conversion rates, treatment outcomes and pattern of time of default in patients on directly observed short-course treatment for Tuberculosis in Puducherry, Southern India. Settings: Retrospective cohort study; Tuberculosis Unit in District Tuberculosis Centre, Puducherry, India. Materials and Methods: Cohort analysis of patients of registered at the Tuberculosis Unit during 1st and 2nd quarter of the year 2011. Details about sputum conversion, treatment outcome and time of default were obtained from the tuberculosis register. Statistical Analysis: Kaplan-Meier plots & log rank tests. Results: RNTCP targets with respect to success rate (85.7%), death rate (2.7%) and failure rate (2.1%) in new cases have been achieved but the sputum conversion rate (88%) and default rate (5.9%) targets have not been achieved. The overall default rate for all registered TB patients was 7.4%; significantly higher in category II. In retreatment cases registered as treatment after default, the default rate was high (9%). The cumulative default rate; though similar in the initial two months of treatment; was consistently higher in category II as compared to that in category I. Nearly 40% of all defaulters interrupted treatment between the second and fourth month after treatment initiation. Conclusion: Defaulting from treatment is more common among the retreatment cases and usually occurs during the transition phase from intensive phase to continuation phase. PMID:25478371
The cost of conversion in robotic and laparoscopic colorectal surgery.
Cleary, Robert K; Mullard, Andrew J; Ferraro, Jane; Regenbogen, Scott E
2018-03-01
Conversion from minimally invasive to open colorectal surgery remains common and costly. Robotic colorectal surgery is associated with lower rates of conversion than laparoscopy, but institutions and payers remain concerned about equipment and implementation costs. Recognizing that reimbursement reform and bundled payments expand perspectives on cost to include the entire surgical episode, we evaluated the role of minimally invasive conversion in total payments. This is an observational study from a linked data registry including clinical data from the Michigan Surgical Quality Collaborative and payment data from the Michigan Value Collaborative between July 2012 and April 2015. We evaluated colorectal resections initiated with open and minimally invasive approaches, and compared reported risk-adjusted and price-standardized 30-day episode payments and their components. We identified 1061 open, 1604 laparoscopic, and 275 robotic colorectal resections. Adjusted episode payments were significantly higher for open operations than for minimally invasive procedures completed without conversion ($19,489 vs. $15,518, p < 0.001). The conversion rate was significantly higher with laparoscopic than robotic operations (15.1 vs. 7.6%, p < 0.001). Adjusted episode payments for minimally invasive operations converted to open were significantly higher than for those completed by minimally invasive approaches ($18,098 vs. $15,518, p < 0.001). Payments for operations completed robotically were greater than those completed laparoscopically ($16,949 vs. $15,250, p < 0.001), but the difference was substantially decreased when conversion to open cases was included ($16,939 vs. $15,699, p = 0.041). Episode payments for open colorectal surgery exceed both laparoscopic and robotic minimally invasive options. Conversion to open surgery significantly increases the payments associated with minimally invasive colorectal surgery. Because conversion rates in robotic colorectal operations are half of those in laparoscopy, the excess expenditures attributable to robotics are attenuated by consideration of the cost of conversions.
Direct digital conversion detector technology
NASA Astrophysics Data System (ADS)
Mandl, William J.; Fedors, Richard
1995-06-01
Future imaging sensors for the aerospace and commercial video markets will depend on low cost, high speed analog-to-digital (A/D) conversion to efficiently process optical detector signals. Current A/D methods place a heavy burden on system resources, increase noise, and limit the throughput. This paper describes a unique method for incorporating A/D conversion right on the focal plane array. This concept is based on Sigma-Delta sampling, and makes optimum use of the active detector real estate. Combined with modern digital signal processors, such devices will significantly increase data rates off the focal plane. Early conversion to digital format will also decrease the signal susceptibility to noise, lowering the communications bit error rate. Computer modeling of this concept is described, along with results from several simulation runs. A potential application for direct digital conversion is also reviewed. Future uses for this technology could range from scientific instruments to remote sensors, telecommunications gear, medical diagnostic tools, and consumer products.
Mac Kenzie, William R.; Heilig, Charles M.; Bozeman, Lorna; Johnson, John L.; Muzanye, Grace; Dunbar, Denise; Jost, Kenneth C.; Diem, Lois; Metchock, Beverly; Eisenach, Kathleen; Dorman, Susan; Goldberg, Stefan
2011-01-01
Background Tuberculosis Trials Consortium Study 28, was a double blind, randomized, placebo-controlled, phase 2 clinical trial examining smear positive pulmonary Mycobacterium tuberculosis. Over the course of intensive phase therapy, patients from African sites had substantially delayed and lower rates of culture conversion to negative in liquid media compared to non-African patients. We explored potential explanations of this finding. Methods In TBTC Study 28, protocol-correct patients (n = 328) provided spot sputum specimens for M. tuberculosis culture in liquid media, at baseline and weeks 2, 4, 6 and 8 of study therapy. We compared sputum culture conversion for African and non-African patients stratified by four baseline measures of disease severity: AFB smear quantification, extent of disease on chest radiograph, cavity size and the number of days to detection of M. tuberculosis in liquid media using the Kaplan-Meier product-limit method. We evaluated specimen processing and culture procedures used at 29 study laboratories serving 27 sites. Results African TB patients had more extensive disease at enrollment than non-African patients. However, African patients with the least disease by the 4 measures of disease severity had conversion rates on liquid media that were substantially lower than conversion rates in non-African patients with the greatest extent of disease. HIV infection, smoking and diabetes did not explain delayed conversion in Africa. Some inter-site variation in laboratory processing and culture procedures within accepted practice for clinical diagnostic laboratories was found. Conclusions Compared with patients from non-African sites, African patients being treated for TB had delayed sputum culture conversion and lower sputum conversion rates in liquid media that were not explained by baseline severity of disease, HIV status, age, smoking, diabetes or race. Further investigation is warranted into whether modest variation in laboratory processes substantially influences the efficacy outcomes of phase 2 TB treatment trials or if other factors (e.g., nutrition, host response) are involved. Trial Registration ClinicalTrials.gov NCT00144417 PMID:21494548
VizieR Online Data Catalog: Flux conversion factors for the Swift/UVOT filters (Brown+, 2016)
NASA Astrophysics Data System (ADS)
Brown, P. J.; Breeveld, A.; Roming, P. W. A.; Siegel, M.
2016-10-01
The conversion of observed magnitudes (or the actual observed photon or electron count rates) to a flux density is one of the most fundamental calculations. The flux conversions factors for the six Swift/UVOT filters are tabulated in Table1. (1 data file).
Agarwal, Daksh; Aspetti, Carlos O; Cargnello, Matteo; Ren, MingLiang; Yoo, Jinkyoung; Murray, Christopher B; Agarwal, Ritesh
2017-03-08
The field of plasmonics has attracted considerable attention in recent years because of potential applications in various fields such as nanophotonics, photovoltaics, energy conversion, catalysis, and therapeutics. It is becoming increasing clear that intrinsic high losses associated with plasmons can be utilized to create new device concepts to harvest the generated heat. It is therefore important to design cavities, which can harvest optical excitations efficiently to generate heat. We report a highly engineered nanowire cavity, which utilizes a high dielectric silicon core with a thin plasmonic film (Au) to create an effective metallic cavity to strongly confine light, which when coupled with localized surface plasmons in the nanoparticles of the thin metal film produces exceptionally high temperatures upon laser irradiation. Raman spectroscopy of the silicon core enables precise measurements of the cavity temperature, which can reach values as high as 1000 K. The same Si-Au cavity with enhanced plasmonic activity when coupled with TiO 2 nanorods increases the hydrogen production rate by ∼40% compared to similar Au-TiO 2 system without Si core, in ethanol photoreforming reactions. These highly engineered thermoplasmonic devices, which integrate three different cavity concepts (high refractive index core, metallo-dielectric cavity, and localized surface plasmons) along with the ease of fabrication demonstrate a possible pathway for designing optimized plasmonic devices with applications in energy conversion and catalysis.
Laadan, Boaz; Wallace-Salinas, Valeria; Carlsson, Åsa Janfalk; Almeida, João Rm; Rådström, Peter; Gorwa-Grauslund, Marie F
2014-08-09
A previously discovered mutant of Saccharomyces cerevisiae alcohol dehydrogenase 1 (Adh1p) was shown to enable a unique NADH-dependent reduction of 5-hydroxymethylfurfural (HMF), a well-known inhibitor of yeast fermentation. In the present study, site-directed mutagenesis of both native and mutated ADH1 genes was performed in order to identify the key amino acids involved in this substrate shift, resulting in Adh1p-variants with different substrate specificities. In vitro activities of the Adh1p-variants using two furaldehydes, HMF and furfural, revealed that HMF reduction ability could be acquired after a single amino acid substitution (Y295C). The highest activity, however, was reached with the double mutation S110P Y295C. Kinetic characterization with both aldehydes and the in vivo primary substrate acetaldehyde also enabled to correlate the alterations in substrate affinity with the different amino acid substitutions. We demonstrated the key role of Y295C mutation in HMF reduction by Adh1p. We generated and kinetically characterized a group of protein variants using two furaldehyde compounds of industrial relevance. Also, we showed that there is a threshold after which higher in vitro HMF reduction activities do not correlate any more with faster in vivo rates of HMF conversion, indicating other cell limitations in the conversion of HMF.
Ferric sulphate catalysed esterification of free fatty acids in waste cooking oil.
Gan, Suyin; Ng, Hoon Kiat; Ooi, Chun Weng; Motala, Nafisa Osman; Ismail, Mohd Anas Farhan
2010-10-01
In this work, the esterification of free fatty acids (FFA) in waste cooking oil catalysed by ferric sulphate was studied as a pre-treatment step for biodiesel production. The effects of reaction time, methanol to oil ratio, catalyst concentration and temperature on the conversion of FFA were investigated on a laboratory scale. The results showed that the conversion of FFA reached equilibrium after an hour, and was positively dependent on the methanol to oil molar ratio and temperature. An optimum catalyst concentration of 2 wt.% gave maximum FFA conversion of 59.2%. For catalyst loadings of 2 wt.% and below, this catalysed esterification was proposed to follow a pseudo-homogeneous pathway akin to mineral acid-catalysed esterification, driven by the H(+) ions produced through the hydrolysis of metal complex [Fe(H(2)O)(6)](3+) (aq). Copyright 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Horne, R. B.; Yoshizumi, M.
2017-12-01
Magnetosonic waves and electromagnetic ion cyclotron (EMIC) waves are important for electron acceleration and loss from the radiation belts. It is generally understood that these waves are generated by unstable ion distributions that form during geomagnetically disturbed times. Here we show that magnetosonic waves could be a source of EMIC waves as a result of propagation and a process of linear mode conversion. The converse is also possible. We present ray tracing to show how magnetosonic (EMIC) waves launched with large (small) wave normal angles can reach a location where the wave normal angle is zero and the wave frequency equals the so-called cross-over frequency whereupon energy can be converted from one mode to another without attenuation. While EMIC waves could be a source of magnetosonic waves below the cross-over frequency magnetosonic waves could be a source of hydrogen band waves but not helium band waves.
Application of Fenton oxidation to cosmetic wastewaters treatment.
Bautista, P; Mohedano, A F; Gilarranz, M A; Casas, J A; Rodriguez, J J
2007-05-08
The removal of organic matter (TOC and COD) from a cosmetic wastewater by Fenton oxidation treatment has been evaluated. The operating conditions (temperature as well as ferrous ion and hydrogen peroxide dosage) have been optimized. Working at an initial pH equal to 3.0, a Fe(2+) concentration of 200 mg/L and a H(2)O(2) concentration to COD initial weight ratio corresponding to the theoretical stoichiometric value (2.12), a TOC conversion higher than 45% at 25 degrees C and 60% at 50 degrees C was achieved. Application of the Fenton oxidation process allows to reach the COD regional limit for industrial wastewaters discharges to the municipal sewer system. A simple kinetic analysis based on TOC was carried out. A second-order equation describes well the overall kinetics of the process within a wide TOC conversion range covering up to the 80-90% of the maximum achievable conversion.
Zhu, Baozhong; Yin, Shoulai; Sun, Yunlan; Zhu, Zicheng; Li, Jiaxin
2017-11-01
Different types of manganese ore raw materials were prepared for use as catalysts, and the effects of different manganese ore raw materials and calcination temperature on the NO conversion were analyzed. The catalysts were characterized by XRF, XRD, BET, XPS, H 2 -TPR, NH 3 -TPD, and SEM techniques. The results showed that the NO conversion of calcined manganese ore with a Mn:Fe:Al:Si ratio of 1.51:1.26:0.34:1 at 450 °C reached 80% at 120 °C and 98% at 180~240 °C. The suitable proportions and better dispersibility of active ingredients, larger BET surface area, good reductibility, a lot of acid sites, contents of Mn 4+ and Fe 3+ , and surface-adsorbed oxygen played important roles in improving the NO conversion.
Prevalence and conversion to dementia of Mild Cognitive Impairment in an elderly Italian population.
Limongi, Federica; Siviero, Paola; Noale, Marianna; Gesmundo, Antonella; Crepaldi, Gaetano; Maggi, Stefania
2017-06-01
Mild Cognitive Impairment (MCI) represents a significant risk factor for dementia but there are only a few Italian population studies on its prevalence and its rate of conversion to dementia. Aim of this study was to assess the prevalence of MCI, its subtypes, and rates of conversion to dementia 1 year later in an elderly Italian population. The data are based on an Italian multicenter population-based cohort study with both cross-sectional and longitudinal components. Two thousand three hundred thirty-seven individuals over 65 underwent screening, clinical confirmation and 1-year follow-up. The prevalence of MCI was 21.6% and the amnestic multiple domain was the most frequent subtype (63.2%). The conversion rate to dementia was 4.1% and was found only in the amnestic multiple domain and in the unclassifiable subjects, persons with cognitive deficit but neither demented nor with MCI. The prevalence of MCI in this population sample was similar to that found in other population studies using Petersen's modified MCI criteria as well as his original criteria. With regard to conversion to dementia, our results emphasize the importance to better classify the unclassifiable subjects at high risk of progression to dementia and also at risk of being undiagnosed and untreated. MCI is characterized by extreme variability and instability. Data on the prevalence and the rate of conversion from MCI to dementia are difficult to compare given the important differences from study to study especially with regard to the diagnostic criteria utilized and their operationalization.
Evolutionary Stasis in Cycad Plastomes and the First Case of Plastome GC-Biased Gene Conversion
Wu, Chung-Shien; Chaw, Shu-Miaw
2015-01-01
In angiosperms, gene conversion has been known to reduce the mutational load of plastid genomes (the plastomes). Particularly, more frequent gene conversions in inverted repeat (IR) than in single copy (SC) regions result in contrasting substitution rates between these two regions. However, little has been known about the effect of gene conversion in the evolution of gymnosperm plastomes. Cycads (Cycadophyta) are the second largest gymnosperm group. Evolutionary study of their plastomes is limited to the basal cycad genus, Cycas. In this study, we addressed three questions. 1) Do the plastomes of other cycad genera evolve slowly as previously observed in the plastome of Cycas taitungensis? 2) Do substitution rates differ between their SC and IR regions? And 3) Does gene conversion occur in the cycad plastomes? If yes, is it AT-biased or GC-biased? Plastomes of eight species from other eight genera of cycads were sequenced. These plastomes are highly conserved in genome organization. Excluding ginkgo, cycad plastomes have significantly lower synonymous and nonsynonymous substitution rates than other gymnosperms, reflecting their evolutionary stasis in nucleotide mutations. In the IRs of cycad plastomes, the reduced substitution rates and GC-biased mutations are associated with a GC-biased gene conversion (gBGC) mechanism. Further investigations suggest that in cycads, gBGC is able to rectify plastome-wide mutations. Therefore, this study is the first to uncover the plastomic gBGC in seed plants. We also propose a gBGC model to interpret the dissimilar evolutionary patterns as well as the compositionally biased mutations in the SC and IR regions of cycad plastomes. PMID:26116919
Conversational Behaviors in Youth with High-Functioning ASD and Asperger Syndrome
ERIC Educational Resources Information Center
Paul, Rhea; Orlovski, Stephanie Miles; Marcinko, Hillary Chuba; Volkmar, Fred
2009-01-01
Twenty-nine youth with autism spectrum disorders and 26 with typical development between 12 and 18 years of age were engaged in structured interviews (ADOS). The interviews were videotaped and rated for atypical conversational behaviors by trained raters, using the Pragmatic Rating Scale (Landa et al. "Psychol Med" 22:245-254, 1992). The ASD group…
Zhang, Peng; Zhang, Jian-Zhong; Wu, Li-Yang; Zhang, Xiao-Dong
2017-02-20
Sacral neuromodulation (SNM) has become an effective method for treating lower urinary tract voiding dysfunction during the past 20 years. Because of the expensive cost, the number of implantable pulse generator (IPG) implantations per year in China is far lower than that in Western developed countries since 2012. This study was to summarize the effects of the appropriate prolonged SNM testing time in improving the implantation rate of a permanent IPG in patients with refractory lower urinary tract symptoms (LUTS) in mainland China. From January 2013 to June 2016, 51 patients with refractory LUTS received SNM therapy. In this study, we compared the conversion rate 2 weeks after the Stage I test and final actual conversion rate. We also observed the complications (such as pain, infection, and electrode displacement) and effectiveness. We tried to improve an appropriate prolonged test time which was favorable for improving the SNM conversion rate while ensuring safety and effectiveness. Among 51 patients receiving SNM therapy, 19 patients (mean age 45.0 ± 16.9 years) had poor Stage I test results, and on an average, the electrode was removed 27.4 ± 9.6 days after the surgery. In one patient, the electrode was removed within 2 weeks; when the remaining 18 patients were questioned 2 weeks after testing, none of the patients wanted to terminate the test, and all the 18 patients desired to prolong the testing time to further observe the treatment effect. The remaining 32 patients (mean age 46.7 ± 15.3 years) received Stage II permanent implantation at 19.6 ± 10.4 days after the surgery. The overall Stage I-II conversion was 62.7% (32/51) in this study. Within 2 weeks after the surgery, only eight patients received Stage II permanent implantation, and the conversion rate was only 15.7% (8/51), which was much lower than the overall conversion rate of 62.7%. Nearly 84.4% (27/32) of the patients received Stage II implantation within 4 weeks. None of the patients had incision infections. In one patient, the entire system was removed 1 month after Stage II implantation due to pain in the implantation site. Appropriate extension of the Stage I testing time of an SNM-barbed electrode could significantly improve the Stage II permanent implantation rate in Chinese refractory LUTS patients; there were no wound infections, and the postoperative complication rate was low. This study recommended that Stage I period of SNM therapy should be 4 weeks according to safety and successful conversion rate.
Fishman, Zachary S; He, Yulian; Yang, Ke R; Lounsbury, Amanda W; Zhu, Junqing; Tran, Thanh Minh; Zimmerman, Julie B; Batista, Victor S; Pfefferle, Lisa D
2017-09-14
Understanding how nano-dimensionality impacts iron oxide based catalysis is central to a wide range of applications. Here, we focus on hematite nanosheets, nanowires and nanoparticles as applied to catalyze the reverse water gas shift (RWGS) probe reaction. We introduce a novel approach to synthesize ultrathin (4-7 nm) hematite nanosheets using copper oxide nanosheets as a hard template and propose a reaction mechanism based on density functional theory (DFT) calculations. Hematite nanowires and nanoparticles were also synthesized and characterized. H 2 temperature programmed reduction (H 2 -TPR) and RWGS reactions were performed to glean insights into the mechanism of CO 2 conversion to CO over the iron oxide nanomaterials and were compared to H 2 binding energy calculations based on density functional theory. While the nanosheets did exhibit high CO 2 conversion, 28% at 510 °C, we found that the iron oxide nanowires had the highest CO 2 conversion, reaching 50% at 750 °C under atmospheric pressure. No products besides CO and H 2 O were detected.
Dual functions of YF3:Eu3+ for improving photovoltaic performance of dye-sensitized solar cells
Wu, Jihuai; Wang, Jiangli; Lin, Jianming; Xiao, Yaoming; Yue, Gentian; Huang, Miaoliang; Lan, Zhang; Huang, Yunfang; Fan, Leqing; Yin, Shu; Sato, Tsugio
2013-01-01
In order to enhance the photovoltaic performance of dye-sensitized solar cell (DSSC), a novel design is demonstrated by introducing rare-earth compound europium ion doped yttrium fluoride (YF3:Eu3+) in TiO2 film in the DSSC. As a conversion luminescence medium, YF3:Eu3+ transfers ultraviolet light to visible light via down-conversion, and increases incident harvest and photocurrent of DSSC. As a p-type dopant, Eu3+ elevates the Fermi level of TiO2 film and thus heightens photovoltage of the DSSC. The conversion luminescence and p-type doping effect are demonstrated by photoluminescence spectra and Mott-Schottky plots. When the ratio of YF3:Eu3+/TiO2 in the doping layer is optimized as 5 wt.%, the light-to-electric energy conversion efficiency of the DSSC reaches 7.74%, which is increased by 32% compared to that of the DSSC without YF3:Eu3+ doping. Double functions of doped rare-earth compound provide a new route for enhancing the photovoltaic performance of solar cells. PMID:23792787
CuO/CeO2 catalysts for glycerol selective conversion to lactic acid.
Palacio, Ruben; Torres, Sebastian; Royer, Sébastien; Mamede, Anne Sophie; López, Diana; Hernández, Diana
2018-03-26
Ceria supported copper oxide catalysts were produced by a deposition-precipitation method, at a high copper loading (up to >25 wt%). These materials demonstrated excellent properties for glycerol selective conversion to lactic acid, with a conversion reaching up to 87% with a selectivity to lactic acid of 74% (8 h reaction, 220 °C, under N2 pressure). These catalysts also exhibited high stability upon 5 successive reaction cycles. The formation of a crystalline CuO phase was demonstrated in the nanocomposites at a high Cu loading, with elongated shaped particles formed on the cerium oxide surface. Such particles were however, not observed at low Cu loadings. XPS analysis revealed that Cu(ii) was the main Cu species on the fresh catalyst, and that this species was reduced to Cu(i) during the reaction. Complementary characterization over the spent catalyst clearly showed the morphological modifications of the CuO phase, however, did not impact significantly either glycerol conversion or selectivity to lactic acid upon recycling. For instance, apparently, the catalytic activity of CuO largely depends on the Cu(ii) species.
Xylose production from corn stover biomass by steam explosion combined with enzymatic digestibility.
Liu, Zhi-Hua; Chen, Hong-Zhang
2015-10-01
A novel conversion process using steam explosion combined with enzymatic digestibility was exploited to increase sugar yield. Results showed that glucan and xylan recovery decreased with the increase of holding temperature and residence time in SE, respectively, while glucan and xylan conversion exhibited an opposite trend. The optimal conditions of steam explosion were 160 °C and 48 min, under which glucan and xylan recovery was 93.4% and 71.6%, respectively. Glucan and xylan conversion at 18% solid loading by periodic peristalsis increased by 3.4-5.8% and 4.5-6.2%, respectively, compared with that by water baths shaker. In the whole process, glucose, xylose and total sugar yield reached to 77.3%, 62.8% and 72.3%, respectively. The yield of hydroxymethyl furfural, furfural and lignin-derived products was 6.3 × 10(-2), 7.5 × 10(-2) and less than 3.7 × 10(-2) g/100 g feedstock, respectively. This novel conversion process increased sugar recovery, reduced degradation products formation, improved digestibility efficiency, and hence increased sugar yield. Copyright © 2015 Elsevier Ltd. All rights reserved.
Kadota, Jun-Ichi; Kurashima, Atsuyuki; Suzuki, Katsuhiro
2017-05-01
The revised 2007 American Thoracic Society/Infectious Diseases Society of America statement recommend clarithromycin-based combination therapy for treatment of Mycobacterium avium complex lung disease and stipulates approximately 1 year of continuous treatment after bacilli negative conversion. However, supporting data are insufficient. Our objective was to obtain data on the clinical outcome of clarithromycin-based daily regimens by conducting a nationwide retrospective post-marketing study of M. avium complex lung disease. In accordance with the Japanese guidelines, patients were enrolled in this survey according to their chest radiographic findings and microbiologic test results. They were treated with a multidrug regimen including clarithromycin, rifampicin, and ethambutol (clarithromycin-based regimen) until bacilli negative conversion, and the treatment was continued for approximately 1 year after the initial conversion. Data were collected before administration, at the time of bacilli negative conversion, at the end of treatment, and at 6 months after the end of treatment. Of the 466 subjects enrolled in the study, 271 patients who received clarithromycin at 800 mg/day underwent evaluation for M. avium complex disease. The final bacilli negative conversion rate in those patients was 94.7%. The bacteriological relapse rate was 5.0% (5/100 patients). Bacteriological relapse was noted in patients treated for less than 15 months after conversion. No life-threatening or serious adverse drug reactions were observed. This study demonstrated that a clarithromycin-based daily regimen can yield a high bacteriological conversion rate in M. avium complex disease. After conversion, treatment for less than 15 months might be insufficient to prevent bacteriological relapse. Copyright © 2017 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.
Automated detection of brain atrophy patterns based on MRI for the prediction of Alzheimer's disease
Plant, Claudia; Teipel, Stefan J.; Oswald, Annahita; Böhm, Christian; Meindl, Thomas; Mourao-Miranda, Janaina; Bokde, Arun W.; Hampel, Harald; Ewers, Michael
2010-01-01
Subjects with mild cognitive impairment (MCI) have an increased risk to develop Alzheimer's disease (AD). Voxel-based MRI studies have demonstrated that widely distributed cortical and subcortical brain areas show atrophic changes in MCI, preceding the onset of AD-type dementia. Here we developed a novel data mining framework in combination with three different classifiers including support vector machine (SVM), Bayes statistics, and voting feature intervals (VFI) to derive a quantitative index of pattern matching for the prediction of the conversion from MCI to AD. MRI was collected in 32 AD patients, 24 MCI subjects and 18 healthy controls (HC). Nine out of 24 MCI subjects converted to AD after an average follow-up interval of 2.5 years. Using feature selection algorithms, brain regions showing the highest accuracy for the discrimination between AD and HC were identified, reaching a classification accuracy of up to 92%. The extracted AD clusters were used as a search region to extract those brain areas that are predictive of conversion to AD within MCI subjects. The most predictive brain areas included the anterior cingulate gyrus and orbitofrontal cortex. The best prediction accuracy, which was cross-validated via train-and-test, was 75% for the prediction of the conversion from MCI to AD. The present results suggest that novel multivariate methods of pattern matching reach a clinically relevant accuracy for the a priori prediction of the progression from MCI to AD. PMID:19961938
Zhang, Xianxi; Du, Yuchang; Chen, Qianqian; Sun, Huafei; Pan, Tingting; Hu, Guiqi; Ma, Ruimin; Sun, Yuanwei; Li, Dacheng; Dou, Jianmin; Pan, Xu
2014-12-10
Alkyne bridged porphyrin sensitizers have attracted great attention in the field of dye-sensitized solar cells (DSSCs) because of their excellent photo-to-electric conversion efficiencies, among which YD2 has reached 11% while YD2-o-C8 has reached 11.9% solely and 12.3% co-sensitized with other sensitizers. Design and screening of porphyrin sensitizer candidates with wider electronic absorption spectra to further improve the photo-to-electric conversion efficiencies of corresponding solar cells is still very important. Twenty novel alkyne bridged zinc porphyrin sensitizer candidates composed of the donors diarylamino-, tri-4-methylphenyl-, tri-hydroxyl- and tri-amino-substituted zinc porphyrins as well as the selected acceptors E, M, Q, R and S have been designed and calculated at the density functional B3LYP level. YD2 and YD2-o-C8 are also calculated at the same level for comparison. The result shows that the sensitizer candidates all have smaller HOMO-LUMO gaps as well as wider and red-shifted absorption bands than those of YD2 and YD2-o-C8. Most of the sensitizer candidates have appropriate HOMO and LUMO energy levels relative to the redox potential of the mediator and the TiO2 conduction band, showing that they are promising to provide comparable or even higher photo-to-electric conversion efficiencies than 11% of YD-2 or 11.9% of YD2-o-C8. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Xianxi; Du, Yuchang; Chen, Qianqian; Sun, Huafei; Pan, Tingting; Hu, Guiqi; Ma, Ruimin; Sun, Yuanwei; Li, Dacheng; Dou, Jianmin; Pan, Xu
2014-12-01
Alkyne bridged porphyrin sensitizers have attracted great attention in the field of dye-sensitized solar cells (DSSCs) because of their excellent photo-to-electric conversion efficiencies, among which YD2 has reached 11% while YD2-o-C8 has reached 11.9% solely and 12.3% co-sensitized with other sensitizers. Design and screening of porphyrin sensitizer candidates with wider electronic absorption spectra to further improve the photo-to-electric conversion efficiencies of corresponding solar cells is still very important. Twenty novel alkyne bridged zinc porphyrin sensitizer candidates composed of the donors diarylamino-, tri-4-methylphenyl-, tri-hydroxyl- and tri-amino-substituted zinc porphyrins as well as the selected acceptors E, M, Q, R and S have been designed and calculated at the density functional B3LYP level. YD2 and YD2-o-C8 are also calculated at the same level for comparison. The result shows that the sensitizer candidates all have smaller HOMO-LUMO gaps as well as wider and red-shifted absorption bands than those of YD2 and YD2-o-C8. Most of the sensitizer candidates have appropriate HOMO and LUMO energy levels relative to the redox potential of the mediator and the TiO2 conduction band, showing that they are promising to provide comparable or even higher photo-to-electric conversion efficiencies than 11% of YD-2 or 11.9% of YD2-o-C8.
Multi-keV x-ray sources from metal-lined cylindrical hohlraums
NASA Astrophysics Data System (ADS)
Jacquet, L.; Girard, F.; Primout, M.; Villette, B.; Stemmler, Ph.
2012-08-01
As multi-keV x-ray sources, plastic hohlraums with inner walls coated with titanium, copper, and germanium have been fired on Omega in September 2009. For all the targets, the measured and calculated multi-keV x-ray power time histories are in a good qualitative agreement. In the same irradiation conditions, measured multi-keV x-ray conversion rates are ˜6%-8% for titanium, ˜2% for copper, and ˜0.5% for germanium. For titanium and copper hohlraums, the measured conversion rates are about two times higher than those given by hydroradiative computations. Conversely, for the germanium hohlraum, a rather good agreement is found between measured and computed conversion rates. To explain these findings, multi-keV integrated emissivities calculated with RADIOM [M. Busquet, Phys. Fluids 85, 4191 (1993)], the nonlocal-thermal-equilibrium atomic physics model used in our computations, have been compared to emissivities obtained from different other models. These comparisons provide an attractive way to explain the discrepancies between experimental and calculated quantitative results.
Yu, Hongbo; Zhang, Xiaoyu
2009-07-01
We evaluated the effect of biological pretreatment with white rot fungus Trametes vesicolor on the enzymatic hydrolysis of two wood species, Chinese willow (Salix babylonica, hardwood) and China-fir (Cunninghamia lanceolata, softwood). The result indicated that the pretreated woods showed significant increases in the final conversion ratios of enzymatic hydrolysis (4.78-fold for hardwood and 4.02-fold for softwood). In order to understand the role of biological pretreatment we investigated the enzyme-substrate interactions. Biological pretreatment enhanced the substrate accessibility to cellulase but not always correlated with the initial conversion rate. However, the change of the conversion rate decreased dramatically with increased desorption values after biological pretreatment. Thus, the biological pretreatment slowed down the declines in conversion rates during enzymatic hydrolysis by reducing the irreversible adsorption of cellulase and then improved the enzymatic hydrolysis. Moreover, the decreases of the irreversible adsorption may be attributed to the partial lignin degradation and alteration in lignin structure after biological pretreatment.
Chen, Hsiao-Ching; Ju, Hen-Yi; Wu, Tsung-Ta; Liu, Yung-Chuan; Lee, Chih-Chen; Chang, Cheng; Chung, Yi-Lin; Shieh, Chwen-Jen
2011-01-01
An optimal continuous production of biodiesel by methanolysis of soybean oil in a packed-bed reactor was developed using immobilized lipase (Novozym 435) as a catalyst in a tert-butanol solvent system. Response surface methodology (RSM) and Box-Behnken design were employed to evaluate the effects of reaction temperature, flow rate, and substrate molar ratio on the molar conversion of biodiesel. The results showed that flow rate and temperature have significant effects on the percentage of molar conversion. On the basis of ridge max analysis, the optimum conditions were as follows: flow rate 0.1 mL/min, temperature 52.1°C, and substrate molar ratio 1 : 4. The predicted and experimental values of molar conversion were 83.31 ± 2.07% and 82.81 ± .98%, respectively. Furthermore, the continuous process over 30 days showed no appreciable decrease in the molar conversion. The paper demonstrates the applicability of using immobilized lipase and a packed-bed reactor for continuous biodiesel synthesis.
Pharmacologic Conversion during Dofetilide Treatment for Persistent Atrial Fibrillation.
Steinberg, Jonathan S; Shah, Yash; Szepietowska, Barbara
2017-06-01
Dofetilide is a pure I Kr blocker and is one of the few drugs specifically studied and approved in the United States for the management of persistent atrial fibrillation (AF). Dofetilide has been noted to have a high rate of pharmacologic conversion during initial dosing in prior smaller studies. The intent of the study was to examine the safety of an inpatient loading strategy, and the incidence and patterns of pharmacologic conversion by dofetilide during the treatment of persistent AF in a large consecutive cohort. This is a retrospective analysis of 308 consecutive patients with persistent AF electively admitted for inpatient dofetilide loading. The initiation dose of dofetilide was determined by the creatinine clearance. Overall, 88% (n = 271) successfully completed initiation of dofetilide and were discharged in sinus rhythm. The most common reason for failure to complete initiation of dofetilide loading was QTc prolongation in 24 patients (7.8%), and torsade de pointes occurred in three patients (1%). Pharmacologic conversion was observed in 56% (n = 151) after a median of two doses. The rate of pharmacologic conversion based on the final dose was 75%, 9%, and 0% for 500 mcg, 250 mcg, and 125 mcg, respectively (P < 0.05). Dofetilide is a well-tolerated antiarrhythmic drug with a low incidence of proarrhythmia and an especially high rate of pharmacologic conversion in patients with persistent AF. © 2017 Wiley Periodicals, Inc.
Process relevant screening of cellulolytic organisms for consolidated bioprocessing.
Antonov, Elena; Schlembach, Ivan; Regestein, Lars; Rosenbaum, Miriam A; Büchs, Jochen
2017-01-01
Although the biocatalytic conversion of cellulosic biomass could replace fossil oil for the production of various compounds, it is often not economically viable due to the high costs of cellulolytic enzymes. One possibility to reduce costs is consolidated bioprocessing (CBP), integrating cellulase production, hydrolysis of cellulose, and the fermentation of the released sugars to the desired product into one process step. To establish such a process, the most suitable cellulase-producing organism has to be identified. Thereby, it is crucial to evaluate the candidates under target process conditions. In this work, the chosen model process was the conversion of cellulose to the platform chemical itaconic acid by a mixed culture of a cellulolytic fungus with Aspergillus terreus as itaconic acid producer. Various cellulase producers were analyzed by the introduced freeze assay that measures the initial carbon release rate, quantifying initial cellulase activity under target process conditions. Promising candidates were then characterized online by monitoring their respiration activity metabolizing cellulose to assess the growth and enzyme production dynamics. The screening of five different cellulase producers with the freeze assay identified Trichoderma reesei and Penicillium verruculosum as most promising. The measurement of the respiration activity revealed a retarded induction of cellulase production for P. verruculosum but a similar cellulase production rate afterwards, compared to T. reesei . The freeze assay measurement depicted that P. verruculosum reaches the highest initial carbon release rate among all investigated cellulase producers. After a modification of the cultivation procedure, these results were confirmed by the respiration activity measurement. To compare both methods, a correlation between the measured respiration activity and the initial carbon release rate of the freeze assay was introduced. The analysis revealed that the different initial enzyme/cellulose ratios as well as a discrepancy in cellulose digestibility are the main differences between the two approaches. With two complementary methods to quantify cellulase activity and the dynamics of cellulase production for CBP applications, T. reesei and P. verruculosum were identified as compatible candidates for the chosen model process. The presented methods can easily be adapted to screen for suitable cellulose degrading organisms for various other applications.
Retrospective Conversion at a Two-Year College.
ERIC Educational Resources Information Center
Krieger, Michael T.
1982-01-01
Findings of a project to convert a single LC class from cards to machine readable tapes at a two-year college suggest that an in-house retrospective conversion is feasible for academic libraries. A high conversion hit rate, implying minimal original cataloging, will keep project costs and duration low. There are five references. (RAA)
5 CFR 531.217 - Special conversion rules for certain non-GS employees.
Code of Federal Regulations, 2012 CFR
2012-01-01
... be converted to GS-equivalent rates immediately before leaving the non-GS system, the employee is... 5 Administrative Personnel 1 2012-01-01 2012-01-01 false Special conversion rules for certain non... Appointment Or Position Changes § 531.217 Special conversion rules for certain non-GS employees. When an...
5 CFR 531.217 - Special conversion rules for certain non-GS employees.
Code of Federal Regulations, 2014 CFR
2014-01-01
... be converted to GS-equivalent rates immediately before leaving the non-GS system, the employee is... 5 Administrative Personnel 1 2014-01-01 2014-01-01 false Special conversion rules for certain non... Appointment Or Position Changes § 531.217 Special conversion rules for certain non-GS employees. When an...
5 CFR 531.217 - Special conversion rules for certain non-GS employees.
Code of Federal Regulations, 2011 CFR
2011-01-01
... be converted to GS-equivalent rates immediately before leaving the non-GS system, the employee is... 5 Administrative Personnel 1 2011-01-01 2011-01-01 false Special conversion rules for certain non... Appointment Or Position Changes § 531.217 Special conversion rules for certain non-GS employees. When an...
5 CFR 531.217 - Special conversion rules for certain non-GS employees.
Code of Federal Regulations, 2013 CFR
2013-01-01
... be converted to GS-equivalent rates immediately before leaving the non-GS system, the employee is... 5 Administrative Personnel 1 2013-01-01 2013-01-01 false Special conversion rules for certain non... Appointment Or Position Changes § 531.217 Special conversion rules for certain non-GS employees. When an...
5 CFR 531.217 - Special conversion rules for certain non-GS employees.
Code of Federal Regulations, 2010 CFR
2010-01-01
... be converted to GS-equivalent rates immediately before leaving the non-GS system, the employee is... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false Special conversion rules for certain non... Appointment Or Position Changes § 531.217 Special conversion rules for certain non-GS employees. When an...
Mechanism of nuclear spin initiated para-H2 to ortho-H2 conversion.
Buntkowsky, G; Walaszek, B; Adamczyk, A; Xu, Y; Limbach, H-H; Chaudret, B
2006-04-28
In this paper a quantitative explanation for a diamagnetic ortho/para H2 conversion is given. The description is based on the quantum-mechanical density matrix formalism originally developed by Alexander and Binsch for studies of exchange processes in NMR spectra. Only the nuclear spin system is treated quantum-mechanically. Employing the model of a three spin system, the reactions of the hydrogen gas with the catalysts are treated as a phenomenological rate process, described by a rate constant. Numerical calculations reveal that for nearly all possible geometrical arrangements of the three spin system an efficient spin conversion is obtained. Only in the chemically improbable case of a linear group H-X-H no spin conversion is obtained. The efficiency of the spin conversion depends strongly on the lifetime of the H-X-H complex and on the presence of exchange interactions between the two hydrogens. Even moderate exchange couplings cause a quench of the spin conversion. Thus a sufficiently strong binding of the dihydrogen to the S spin is necessary to render the quenching by the exchange interaction ineffective.
Positioning New Patterns of Privilege in Learning: A Response to Ware
ERIC Educational Resources Information Center
Paxton-Buursma, Debra J.; Mariage, Troy V.
2011-01-01
This special series represents collective courage because what is willing to be risked may be profound. At center is a willingness to reach out and cultivate new conversations on disability. Indeed, the artists who contribute to Ware's article are key co-authors; their art ushers us into a new disability literacy that extends and challenges…
ERIC Educational Resources Information Center
Christiansen, Helen, Ed.; Ramadevi, S., Ed.
This collection of papers focuses on community building within teacher education programs in Canada, Israel, Australia, and the United States, suggesting that teacher educators must go beyond localized experiences and reach out to each other in a global discussion. There are 12 chapters in 4 parts. Part 1, "Opening the Conversation,"…
1,000 Days: Mobilizing Investments for Healthier, More Prosperous Futures
ERIC Educational Resources Information Center
Sullivan, Lucy Martinez; Sakayan, Mannik; Cernak, Kimberly
2018-01-01
Good nutrition during the 1,000-day window between pregnancy and 2 years old can give children the opportunity to reach their full potential. Conversely, malnutrition early in life can cause irreversible damage to a child's brain development and physical growth, leading to a lifetime of poor health and lost potential. Each year, malnutrition costs…
Gender Gap in the Perception of Communication in Virtual Learning Environments
ERIC Educational Resources Information Center
von Neuforn, Daniela Stokar
2007-01-01
To support and continue the motivation of participants in virtual learning environments it is important to achieve a successful learning atmosphere. Therefore, it is necessary to reach the participants on a personal level and to perceive their personal needs and emotions when conversing with them. These factors of learning motivation depend on the…
NREL's Capabilities Boost a Wide Range of Innovative ARPA-E Research | News
the United States reach its energy goals." ARPA-E announced its OPEN 2015 program awards under a highly competitive, open solicitation. Awards fund a broad spectrum of projects from across the country achieving greater than 30 percent solar conversion efficiency. This can open new markets to high-efficiency
Search for Artificial Stellar Sources of Infrared Radiation.
Dyson, F J
1960-06-03
If extraterrestrial intelligent beings exist and have reached a high level of technical development, one by-product of their energy metabolism is likely to be the large-scale conversion of starlight into far-infrared radiation. It is proposed that a search for sources of infrared radiation should accompany the recently initiated search for interstellar radio communications.
Mother-child conversations about safety: implications for socializing safety values in children.
O'Neal, Elizabeth E; Plumert, Jodie M
2014-05-01
This study examined how mothers socialize their children about safety through conversations about potentially unsafe activities. Mothers and their 8- and 10-year-old children discussed and rated the safety of 12 photographs depicting another same-gender child engaged in potentially dangerous activities. Conversations usually unfolded with children giving the first rating or rationale, followed by additional discussion between the mother and child. Mothers and children relied on 2 main types of rationales to justify their ratings: potential outcomes of the activity and specific features of the situation (dangerous and nondangerous). Mothers (but not children) used dangerous feature rationales more often than dangerous outcome rationales. When disagreements arose, mothers typically guided children to adopt their own rating rather than the child's rating. Additionally, children who used more nondangerous feature and outcome rationales had experienced more injuries requiring medical attention. Mothers' focus on dangerous features appears to reflect their efforts to help children make causal connections between dangerous elements of the situation and adverse outcomes that might result.
Starzer, Marie Stefanie Kejser; Nordentoft, Merete; Hjorthøj, Carsten
2018-04-01
The authors investigated the rates of conversion to schizophrenia and bipolar disorder after a substance-induced psychosis, as well as risk factors for conversion. All patient information was extracted from the Danish Civil Registration System and the Psychiatric Central Research Register. The study population included all persons who received a diagnosis of substance-induced psychosis between 1994 and 2014 (N=6,788); patients were followed until first occurrence of schizophrenia or bipolar disorder or until death, emigration, or August 2014. The Kaplan-Meier method was used to obtain cumulative probabilities for the conversion from a substance-induced psychosis to schizophrenia or bipolar disorder. Cox proportional hazards regression models were used to calculate hazard ratios for all covariates. Overall, 32.2% (95% CI=29.7-34.9) of patients with a substance-induced psychosis converted to either bipolar or schizophrenia-spectrum disorders. The highest conversion rate was found for cannabis-induced psychosis, with 47.4% (95% CI=42.7-52.3) converting to either schizophrenia or bipolar disorder. Young age was associated with a higher risk of converting to schizophrenia. Self-harm after a substance-induced psychosis was significantly linked to a higher risk of converting to both schizophrenia and bipolar disorder. Half the cases of conversion to schizophrenia occurred within 3.1 years after a substance-induced psychosis, and half the cases of conversion to bipolar disorder occurred within 4.4 years. Substance-induced psychosis is strongly associated with the development of severe mental illness, and a long follow-up period is needed to identify the majority of cases.
CO2 conversion in non-thermal plasma and plasma/g-C3N4 catalyst hybrid processes
NASA Astrophysics Data System (ADS)
Lu, Na; Sun, Danfeng; Zhang, Chuke; Jiang, Nan; Shang, Kefeng; Bao, Xiaoding; Li, Jie; Wu, Yan
2018-03-01
Carbon dioxide conversion at atmosphere pressure and low temperature has been studied in a cylindrical dielectric barrier discharge (DBD) reactor. Pure CO2 feed flows to the discharge zone and typical filamentary discharges were obtained in each half-cycle of the applied voltage. The gas temperature increased with discharge time and discharge power, which was found to affect the CO2 decomposition deeply. As the DBD reactor was cooled to ambient temperature, both the conversion of CO2 and the CO yield were enhanced. Especially the energy efficiencies changed slightly with the increase of discharge power and were much higher in cooling condition comparing to those without cooling. At a discharge power of 40 W, the energy efficiency under cooling condition was approximately six times more than that without cooling. Gas flow rate was observed to affect CO2 conversion and 0.1 L min-1 was obtained as optimum gas flow rate under cooling condition. In addition, the CO2 conversion rate in plasma/g-C3N4 catalyst hybrid system was twice times as that in plasma-alone system. In case of cooling, the existence of g-C3N4 catalyst contributed to a 47% increase of CO2 conversion compared to the sole plasma process. The maximum energy-efficiency with g-C3N4 was 0.26 mmol kJ-1 at 20 W, which increased by 157% compared to that without g-C3N4. The synergistic effect of DBD plasma with g-C3N4 on pure CO2 conversion was verified.
Macfarlane, Craig; Adams, Mark A; Hansen, Lee D
2002-01-01
The enthalpy balance model of growth uses measurements of the rates of heat and CO(2) production to quantify rates of decarboxylation, oxidative phosphorylation and net anabolism. Enthalpy conversion efficiency (eta(H)) and the net rate of conservation of enthalpy in reduced biosynthetic products (R(SG)DeltaH(B)) can be calculated from metabolic heat rate (q) and CO(2) rate (R(CO2)). eta(H) is closely related to carbon conversion efficiency and the efficiency of conservation of available electrons in biosynthetic products. R(SG)DeltaH(B) and eta(H) can be used, together with biomass composition, to describe the rate and efficiency of growth of plant tissues. q is directly related to the rate of O(2) consumption and the ratio q:R(CO2) is inversely related to the respiratory quotient. We grew seedlings of Eucalyptus globulus at 16 and 28 degrees C for four to six weeks, then measured q and R(CO2) using isothermal calorimetry. Respiratory rate at a given temperature was increased by a lower growth temperature but eta(H) was unaffected. Enthalpy conversion efficiency - and, therefore, carbon conversion efficiency - decreased with increasing temperature from 15 to 35 degrees C. The ratio of oxidative phosphorylation to oxygen consumption (P/O ratio) was inferred in vivo from eta(H) and by assuming a constant ratio of growth to maintenance respiration with changing temperature. The P/O ratio decreased from 2.1 at 10-15 degrees C to less than 0.3 at 35 degrees C, suggesting that decreased efficiency was not only due to activity of the alternative oxidase pathway. In agreement with predictions from non-equilibrium thermodynamics, growth rate was maximal near 25 degrees C, where the calculated P/O ratio was about half maximum. We propose that less efficient pathways, such as the alternative oxidase pathway, are necessary to satisfy the condition of conductance matching whilst maintaining a near constant phosphorylation potential. These conditions minimize entropy production and maximize the efficiency of mitochondrial energy conversions as growing conditions change, while maintaining adequate finite rates of energy processing. PMID:12137581
ERIC Educational Resources Information Center
Nadig, Aparna; Shaw, Holly
2012-01-01
Are there consistent markers of atypical prosody in speakers with high functioning autism (HFA) compared to typically-developing speakers? We examined: (1) acoustic measurements of pitch range, mean pitch and speech rate in conversation, (2) perceptual ratings of conversation for these features and overall prosody, and (3) acoustic measurements of…
12 CFR Appendix B to Subpart A of... - Conversion of Scorecard Measures into Score
Code of Federal Regulations, 2014 CFR
2014-01-01
... 327—Conversion of Scorecard Measures into Score 1. Weighted Average CAMELS Rating Weighted average CAMELS ratings between 1 and 3.5 are assigned a score between 25 and 100 according to the following equation: S = 25 + [(20/3) * (C 2 −1)], where: S = the weighted average CAMELS score; and C = the weighted...
12 CFR Appendix B to Subpart A of... - Conversion of Scorecard Measures into Score
Code of Federal Regulations, 2013 CFR
2013-01-01
... 327—Conversion of Scorecard Measures into Score 1. Weighted Average CAMELS Rating Weighted average CAMELS ratings between 1 and 3.5 are assigned a score between 25 and 100 according to the following equation: S = 25 + [(20/3) * (C 2 −1)], where: S = the weighted average CAMELS score; and C = the weighted...
12 CFR Appendix B to Subpart A of... - Conversion of Scorecard Measures into Score
Code of Federal Regulations, 2012 CFR
2012-01-01
... 327—Conversion of Scorecard Measures into Score 1. Weighted Average CAMELS Rating Weighted average CAMELS ratings between 1 and 3.5 are assigned a score between 25 and 100 according to the following equation: S = 25 + [(20/3) * (C 2 −1)], where: S = the weighted average CAMELS score; and C = the weighted...
Negotiation of Meaning as a Tool for Evaluating Conversational Skills in the OPI
ERIC Educational Resources Information Center
Kitajima, Ryu
2009-01-01
Though the oral proficiency interview (OPI) rates the examinee's overall language proficiency in face-to-face interaction, the rating is based solely upon the evaluation of the examinee's contribution in isolation. No attempt is made to evaluate conversational skills in interaction. A criticism that has been made of the OPI is that the format is…
Analysis of the “naming game” with learning errors in communications
NASA Astrophysics Data System (ADS)
Lou, Yang; Chen, Guanrong
2015-07-01
Naming game simulates the process of naming an objective by a population of agents organized in a certain communication network. By pair-wise iterative interactions, the population reaches consensus asymptotically. We study naming game with communication errors during pair-wise conversations, with error rates in a uniform probability distribution. First, a model of naming game with learning errors in communications (NGLE) is proposed. Then, a strategy for agents to prevent learning errors is suggested. To that end, three typical topologies of communication networks, namely random-graph, small-world and scale-free networks, are employed to investigate the effects of various learning errors. Simulation results on these models show that 1) learning errors slightly affect the convergence speed but distinctively increase the requirement for memory of each agent during lexicon propagation; 2) the maximum number of different words held by the population increases linearly as the error rate increases; 3) without applying any strategy to eliminate learning errors, there is a threshold of the learning errors which impairs the convergence. The new findings may help to better understand the role of learning errors in naming game as well as in human language development from a network science perspective.
Passive Q-switching of microchip lasers based on Ho:YAG ceramics.
Lan, R; Loiko, P; Mateos, X; Wang, Y; Li, J; Pan, Y; Choi, S Y; Kim, M H; Rotermund, F; Yasukevich, A; Yumashev, K; Griebner, U; Petrov, V
2016-06-20
A Ho:YAG ceramic microchip laser pumped by a Tm fiber laser at 1910 nm is passively Q-switched by single- and multi-layer graphene, single-walled carbon nanotubes (SWCNTs), and Cr2+:ZnSe saturable absorbers (SAs). Employing SWCNTs, this laser generated an average power of 810 mW at 2090 nm with a slope efficiency of 68% and continuous wave to Q-switching conversion efficiency of 70%. The shortest pulse duration was 85 ns at a repetition rate of 165 kHz, and the pulse energy reached 4.9 μJ. The laser performance and pulse stability were superior compared to graphene SAs even for a different number of graphene layers (n=1 to 4). A model for the description of the Ho:YAG laser Q-switched by carbon nanostructures is presented. This modeling allowed us to estimate the saturation intensity for multi-layered graphene and SWCNT SAs to be 1.2±0.2 and 7±1 MW/cm2, respectively. When using Cr2+:ZnSe, the Ho:YAG microchip laser generated 11 ns/25 μJ pulses at a repetition rate of 14.8 kHz.
Hou, Ying; Hossain, Gazi Sakir; Li, Jianghua; Shin, Hyun-Dong; Liu, Long; Du, Guocheng; Chen, Jian
2016-01-01
Phenylpyruvic acid (PPA) is widely used in the pharmaceutical, food, and chemical industries. Here, a two-step bioconversion process, involving growing and resting cells, was established to produce PPA from l-phenylalanine using the engineered Escherichia coli constructed previously. First, the biotransformation conditions for growing cells were optimized (l-phenylalanine concentration 20.0 g·L-1, temperature 35°C) and a two-stage temperature control strategy (keep 20°C for 12 h and increase the temperature to 35°C until the end of biotransformation) was performed. The biotransformation conditions for resting cells were then optimized in 3-L bioreactor and the optimized conditions were as follows: agitation speed 500 rpm, aeration rate 1.5 vvm, and l-phenylalanine concentration 30 g·L-1. The total maximal production (mass conversion rate) reached 29.8 ± 2.1 g·L-1 (99.3%) and 75.1 ± 2.5 g·L-1 (93.9%) in the flask and 3-L bioreactor, respectively. Finally, a kinetic model was established, and it was revealed that the substrate and product inhibition were the main limiting factors for resting cell biotransformation.
Analysis of the "naming game" with learning errors in communications.
Lou, Yang; Chen, Guanrong
2015-07-16
Naming game simulates the process of naming an objective by a population of agents organized in a certain communication network. By pair-wise iterative interactions, the population reaches consensus asymptotically. We study naming game with communication errors during pair-wise conversations, with error rates in a uniform probability distribution. First, a model of naming game with learning errors in communications (NGLE) is proposed. Then, a strategy for agents to prevent learning errors is suggested. To that end, three typical topologies of communication networks, namely random-graph, small-world and scale-free networks, are employed to investigate the effects of various learning errors. Simulation results on these models show that 1) learning errors slightly affect the convergence speed but distinctively increase the requirement for memory of each agent during lexicon propagation; 2) the maximum number of different words held by the population increases linearly as the error rate increases; 3) without applying any strategy to eliminate learning errors, there is a threshold of the learning errors which impairs the convergence. The new findings may help to better understand the role of learning errors in naming game as well as in human language development from a network science perspective.
Tomeš, Petr; Trottmann, Matthias; Suter, Clemens; Aguirre, Myriam Heidi; Steinfeld, Aldo; Haueter, Philipp; Weidenkaff, Anke
2010-01-01
The direct conversion of concentrated high temperature solar heat into electrical energy was demonstrated with a series of four–leg thermoelectric oxide modules (TOM). These temperature stable modules were not yet optimized for high efficiency conversion, but served as proof-of-principle for high temperature conversion. They were constructed by connecting two p- (La1.98Sr0.02CuO4) and two n-type (CaMn0.98Nb0.02O3) thermoelements electrically in series and thermally in parallel. The temperature gradient ΔT was applied by a High–Flux Solar Simulator source (HFSS) which generates a spectrum similar to solar radiation. The influence of the graphite layer coated on the hot side of the Al2O3 substrate compared to the uncoated surface on ΔT, Pmax and η was studied in detail. The measurements show an almost linear temperature profile along the thermoelectric legs. The maximum output power of 88.8 mW was reached for a TOM with leg length of 5 mm at ΔT = 622 K. The highest conversion efficiency η was found for a heat flux of 4–8 W cm-2 and the dependence of η on the leg length was investigated.
Cheng, Xi-Yu; Liu, Chun-Zhao
2012-01-01
A three-stage anaerobic fermentation process including H(2) fermentation I, H(2) fermentation II, methane fermentation was developed for the coproduction of hydrogen and methane from cornstalks. Hydrogen production from cornstalks using direct microbial conversion by Clostridium thermocellum 7072 was markedly enhanced in the two-stage thermophilic hydrogen fermentation process integrated with alkaline treatment. The highest total hydrogen yield from cornstalks in the two-stage fermentation process reached 74.4 mL/g-cornstalk. The hydrogen fermentation effluents and alkaline hydrolyzate were further used for methane fermentation by anaerobic granular sludge, and the total methane yield reached 205.8 mL/g-cornstalk. The total energy recovery in the three-stage anaerobic fermentation process integrated with alkaline hydrolysis reached 70.0%. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Terenzi, Camilla; Bouguet-Bonnet, Sabine; Canet, Daniel
2017-04-01
At ambient temperature, conversion from 100% enriched para-hydrogen (p-H2; singlet state) to ortho-hydrogen (o-H2; triplet state) leads necessarily to the thermodynamic equilibrium proportions: 75% of o-H2 and 25% of p-H2. When p-H2 is dissolved in a diamagnetic organic solvent, conversion is very slow and can be considered as arising from nuclear spin relaxation phenomena. A first relaxation mechanism, specific to the singlet state and involving a combination of auto-correlation and cross correlation spectral densities, can be retained: randomly fluctuating magnetic fields due to inter-molecular dipolar interactions. We demonstrate here that (i) this dipolar mechanism is not sufficient for accounting for the p a r a →o r t h o conversion rate, (ii) spin-rotation interaction, an intra-molecular mechanism, behaves similarly to random-field interaction and, thus, may be involved in the singlet relaxation rate. Also, as the p a r a →o r t h o conversion is monitored by proton nuclear magnetic resonance (NMR) of dissolved o-H2 (p-H2 is NMR-silent), one has to account for H2 exchange between the liquid phase and the gas phase within the NMR tube, as well as for dissolution effects. Experimental evidence of the above statements is brought here in the case of two organic solvents: acetone-d6 and carbon disulfide. The observed temperature dependence of the p a r a →o r t h o conversion rate shows that spin-rotation can be the dominant contribution to the p-H2 relaxation rate in the absence of tangible dipolar interactions. Our findings shed new light on the "mysterious" mechanism of the p a r a →o r t h o conversion which has been searched for several decades.
Talking Less during Social Interactions Predicts Enjoyment: A Mobile Sensing Pilot Study
Sandstrom, Gillian M.; Tseng, Vincent Wen-Sheng; Costa, Jean; Okeke, Fabian; Choudhury, Tanzeem; Dunn, Elizabeth W.
2016-01-01
Can we predict which conversations are enjoyable without hearing the words that are spoken? A total of 36 participants used a mobile app, My Social Ties, which collected data about 473 conversations that the participants engaged in as they went about their daily lives. We tested whether conversational properties (conversation length, rate of turn taking, proportion of speaking time) and acoustical properties (volume, pitch) could predict enjoyment of a conversation. Surprisingly, people enjoyed their conversations more when they spoke a smaller proportion of the time. This pilot study demonstrates how conversational properties of social interactions can predict psychologically meaningful outcomes, such as how much a person enjoys the conversation. It also illustrates how mobile phones can provide a window into everyday social experiences and well-being. PMID:27438475
Advanced thermionic energy conversion
NASA Technical Reports Server (NTRS)
1979-01-01
Developments towards space and terrestrial applications of thermionic energy conversion are presented. Significant accomplishments for the three month period include: (1) devised a blade-type distributed lead design with many advantages compared to the stud-type distributed lead; (2) completed design of Marchuk tube test apparatus; (3) concluded, based on current understanding, that residual hydrogen should not contribute to a negative space charge barrier at the collector; (4) modified THX design program to include series-coupled designs as well as inductively-coupled designs; (5) initiated work on the heat transfer technology, THX test module, output power transfer system, heat transfer system, and conceptual plant design tasks; and (6) reached 2200 hours of operation in JPL-5 cylindrical converter envelope test.
Hydrogenation of carboxylic acids with a homogeneous cobalt catalyst.
Korstanje, Ties J; van der Vlugt, Jarl Ivar; Elsevier, Cornelis J; de Bruin, Bas
2015-10-16
The reduction of esters and carboxylic acids to alcohols is a highly relevant conversion for the pharmaceutical and fine-chemical industries and for biomass conversion. It is commonly performed using stoichiometric reagents, and the catalytic hydrogenation of the acids previously required precious metals. Here we report the homogeneously catalyzed hydrogenation of carboxylic acids to alcohols using earth-abundant cobalt. This system, which pairs Co(BF4)2·6H2O with a tridentate phosphine ligand, can reduce a wide range of esters and carboxylic acids under relatively mild conditions (100°C, 80 bar H2) and reaches turnover numbers of up to 8000. Copyright © 2015, American Association for the Advancement of Science.
Electrostatic micromotor based on ferroelectric ceramics
NASA Astrophysics Data System (ADS)
Baginsky, I. L.; Kostsov, E. G.
2004-11-01
A new electrostatic micromotor is described that utilizes the electromechanical energy conversion principle earlier described by the authors. The electromechanical energy conversion is based on reversible electrostatic rolling of thin metallic films (petals) on a ferroelectric surface. The motor's active media are layers of ferroelectric ceramics (about 100 µm in thickness). The characteristics of the electrostatic rolling of the petals on different ceramic surfaces are studied, as well as the dynamic characteristics of the micromotors. It is shown that the use of antiferroelectric material allows one to reach a specific energy capacitance comparable to that of the micromotors based on ferroelectric films and to achieve a specific power of 30-300 µW mm-2.
Study on nickel and vanadium removal in thermal conversion of oil sludge and oil shale sludge
NASA Astrophysics Data System (ADS)
Sombral, L. G. S.; Pickler, A. C.; Aires, J. R.; Riehl, C. A.
2003-05-01
The petroleum refining processes and of oil shale industrialization generate solid and semi-solid residues. In those residues heavy metals are found in concentrations that vary according to the production sector. The destination of those residues is encouraging researches looking for new technologies that reach the specifications of environmental organisms, and are being developed and applied to the industry. In this work it is shown that the heavy metals concentrations, previously in the petroleum oily solid residues and in those of the oils shale, treated by low temperature thermal conversion, obtaining in both cases concentrations below Ippm to Nickel and below 5ppm to vanadium.
Singlet fission in pentacene dimers
Zirzlmeier, Johannes; Lehnherr, Dan; Coto, Pedro B.; Chernick, Erin T.; Casillas, Rubén; Basel, Bettina S.; Thoss, Michael; Tykwinski, Rik R.; Guldi, Dirk M.
2015-01-01
Singlet fission (SF) has the potential to supersede the traditional solar energy conversion scheme by means of boosting the photon-to-current conversion efficiencies beyond the 30% Shockley–Queisser limit. Here, we show unambiguous and compelling evidence for unprecedented intramolecular SF within regioisomeric pentacene dimers in room-temperature solutions, with observed triplet quantum yields reaching as high as 156 ± 5%. Whereas previous studies have shown that the collision of a photoexcited chromophore with a ground-state chromophore can give rise to SF, here we demonstrate that the proximity and sufficient coupling through bond or space in pentacene dimers is enough to induce intramolecular SF where two triplets are generated on one molecule. PMID:25858954
Comparison of reconnection in magnetosphere and solar corona
NASA Astrophysics Data System (ADS)
Imada, Shinsuke; Hirai, Mariko; Isobe, Hiroaki; Oka, Mitsuo; Watanabe, Kyoko; Minoshima, Takashi
One of the most famous rapid energy conversion mechanisms in space is a magnetic reconnec-tion. The general concept of a magnetic reconnection is that the rapid energy conversion from magnetic field energy to thermal energy, kinetic energy or non-thermal particle energy. The understanding of rapid energy conversion rates from magnetic field energy to other energy is the fundamental and essential problem in the space physics. One of the important goals for studying magnetic reconnection is to answer what plasma condition/parameter controls the energy conversion rates. Earth's magnetotail has been paid much attention to discuss a mag-netic reconnection, because we can discuss magnetic reconnection characteristics in detail with direct in-situ observation. Recently, solar atmosphere has been focused as a space laboratory for magnetic reconnection because of its variety in plasma condition. So far considerable effort has been devoted toward understanding the energy conversion rates of magnetic reconnection, and various typical features associated with magnetic reconnection have been observed in the Earth's magnetotail and the solar corona. In this talk, we first introduce the variety of plasma condition/parameter in solar corona and Earth's magnetotail. Later, we discuss what plasma condition/parameter controls the energy conversion from magnetic field to especially non-thermal particle. To compare non-thermal electron and ion acceleration in magnetic reconnection, we used Hard X-ray (electron) /Neu-tron monitor (ion) for solar corona and Geotail in-situ measurement (electron and ion) for magnetoatil. We found both of electron and ion accelerations are roughly controlled by re-connection electric field (reconnection rate). However, some detail points are different in ion and electron acceleration. Further, we will discuss what is the major difference between solar corona and Earth's magnetotail for particle acceleration.
Evolutionary Stasis in Cycad Plastomes and the First Case of Plastome GC-Biased Gene Conversion.
Wu, Chung-Shien; Chaw, Shu-Miaw
2015-06-27
In angiosperms, gene conversion has been known to reduce the mutational load of plastid genomes (the plastomes). Particularly, more frequent gene conversions in inverted repeat (IR) than in single copy (SC) regions result in contrasting substitution rates between these two regions. However, little has been known about the effect of gene conversion in the evolution of gymnosperm plastomes. Cycads (Cycadophyta) are the second largest gymnosperm group. Evolutionary study of their plastomes is limited to the basal cycad genus, Cycas. In this study, we addressed three questions. 1) Do the plastomes of other cycad genera evolve slowly as previously observed in the plastome of Cycas taitungensis? 2) Do substitution rates differ between their SC and IR regions? And 3) Does gene conversion occur in the cycad plastomes? If yes, is it AT-biased or GC-biased? Plastomes of eight species from other eight genera of cycads were sequenced. These plastomes are highly conserved in genome organization. Excluding ginkgo, cycad plastomes have significantly lower synonymous and nonsynonymous substitution rates than other gymnosperms, reflecting their evolutionary stasis in nucleotide mutations. In the IRs of cycad plastomes, the reduced substitution rates and GC-biased mutations are associated with a GC-biased gene conversion (gBGC) mechanism. Further investigations suggest that in cycads, gBGC is able to rectify plastome-wide mutations. Therefore, this study is the first to uncover the plastomic gBGC in seed plants. We also propose a gBGC model to interpret the dissimilar evolutionary patterns as well as the compositionally biased mutations in the SC and IR regions of cycad plastomes. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Lunevicius, Raimundas; Morkevicius, Matas
2005-09-01
Clear patient selection criteria and indications for laparoscopic repair of perforated duodenal ulcers are necessary. The aims of our study are to report the early outcome results after operation and to define the predictive values of risk factors influencing conversion rate and genesis of suture leakage. Sixty nonrandomly selected patients operated on laparoscopically in a tertiary care academic center between October 1996 and May 2004 for perforated duodenal ulcers were retrospectively analyzed. The primary outcome measures included the duration of symptoms, shock, underlying medical illness, ulcer size, age, Boey score, and the collective predictive value of these variables for conversion and suture leakage rates. Laparoscopic repair was completed in 46 patients (76.7%). Fourteen patients (23.3%) underwent conversion to open repair. Eight patients (13.3%) had postoperative complications. Suture leakage was confirmed in four patients (6.7%). Hospital stay was 7.8+/-5.3 days. There was no mortality. Patients with an ulcer perforation size of >8 mm had a significantly increased risk for conversion to open repair (p<0.05): positive predictive value (PPV) 75%, sensitivity 27%, specificity 98%, and negative predictive value (NPV) 85%. The significance of ulcer perforation size was confirmed by a stepwise logistic regression test (p=0.0201). All patients who developed suture leakage had acute symptoms for >9 h preoperatively (p<0.001): PPV 31%, specificity 84%, sensitivity 100%, and NPV 100%. Conversions happened with surgeons whose previous experience involved 1.8+/-2.3 cases compared to 3.9+/-2.9 cases in successful laparoscopic repair (p=0.039, t test). Ulcer perforation size of >8 mm is a significant risk factor influencing the conversion rate. An increase in the suture leakage rate is predicted by delayed presentation of >9 h.
Xiao, Xiaopeng; Mazza, Lorenzo; Yu, Yongqiang; Cai, Minmin; Zheng, Longyu; Tomberlin, Jeffery K; Yu, Jeffrey; van Huis, Arnold; Yu, Ziniu; Fasulo, Salvatore; Zhang, Jibin
2018-07-01
A chicken manure management process was carried out through co-conversion of Hermetia illucens L. larvae (BSFL) with functional bacteria for producing larvae as feed stuff and organic fertilizer. Thirteen days co-conversion of 1000 kg of chicken manure inoculated with one million 6-day-old BSFL and 10 9 CFU Bacillus subtilis BSF-CL produced aging larvae, followed by eleven days of aerobic fermentation inoculated with the decomposing agent to maturity. 93.2 kg of fresh larvae were harvested from the B. subtilis BSF-CL-inoculated group, while the control group only harvested 80.4 kg of fresh larvae. Chicken manure reduction rate of the B. subtilis BSF-CL-inoculated group was 40.5%, while chicken manure reduction rate of the control group was 35.8%. The weight of BSFL increased by 15.9%, BSFL conversion rate increased by 12.7%, and chicken manure reduction rate increased by 13.4% compared to the control (no B. subtilis BSF-CL). The residue inoculated with decomposing agent had higher maturity (germination index >92%), compared with the no decomposing agent group (germination index ∼86%). The activity patterns of different enzymes further indicated that its production was more mature and stable than that of the no decomposing agent group. Physical and chemical production parameters showed that the residue inoculated with the decomposing agent was more suitable for organic fertilizer than the no decomposing agent group. Both, the co-conversion of chicken manure by BSFL with its synergistic bacteria and the aerobic fermentation with the decomposing agent required only 24 days. The results demonstrate that co-conversion process could shorten the processing time of chicken manure compared to traditional compost process. Gut bacteria could enhance manure conversion and manure reduction. We established efficient manure co-conversion process by black soldier fly and bacteria and harvest high value-added larvae mass and biofertilizer. Copyright © 2018 Elsevier Ltd. All rights reserved.
Complete and simultaneous removal of ammonium and m-cresol in a nitrifying sequencing batch reactor.
Zepeda, Alejandro; Ben-Youssef, Chérif; Rincón, Susana; Cuervo-López, Flor; Gómez, Jorge
2013-06-01
The kinetic behavior, oxidizing ability and tolerance to m-cresol of a nitrifying sludge exposed to different initial concentrations of m-cresol (0-150 mg C L(-1)) were evaluated in a sequencing batch reactor fed with 50 mg NH4 (+)-N L(-1) and operated during 4 months. Complete removal of ammonium and m-cresol was achieved independently of the initial concentration of aromatic compound in all the assays. Up to 25 mg m-cresol-C L(-1) (C/N ratio of 0.5), the nitrifying yield (Y-NO3 (-)) was 0.86 ± 0.05, indicating that the nitrate was the main product of the process; no biomass growth was detected. From 50 to 150 mg m-cresol-C L(-1) (1.0 ≤ C/N ≤ 3.0), simultaneous microbial growth and partial ammonium-to-nitrate conversion were obtained, reaching a maximum microbial total protein concentration of 0.763 g L(-1) (247 % of its initial value) and the lowest Y-NO3 (-) 0.53 ± 0.01 at 150 mg m-cresol-C L(-1). m-Cresol induced a significant decrease in the values of both specific rates of ammonium and nitrite oxidation, being the ammonium oxidation pathway the mainly inhibited. The nitrifying sludge was able to completely oxidize up to 150 mg m-cresol-C L(-1) by SBR cycle, reaching a maximum specific removal rate of 6.45 g m-cresol g(-1) microbial protein-N h(-1). The number of SBR cycles allowed a metabolic adaptation of the nitrifying consortium since nitrification inhibition decreased and faster oxidation of m-cresol took place throughout the cycles.
Unprecedented rates of land-use transformation in modeled climate change mitigation pathways
NASA Astrophysics Data System (ADS)
Turner, P. A.; Field, C. B.; Lobell, D. B.; Sanchez, D.; Mach, K. J.
2017-12-01
Integrated assessment models (IAMs) generate climate change mitigation scenarios consistent with global temperature targets. To limit warming to 2°, stylized cost-effective mitigation pathways rely on extensive deployments of carbon dioxide (CO2) removal (CDR) technologies, including multi-gigatonne yearly carbon removal from the atmosphere through bioenergy with carbon capture and storage (BECCS) and afforestation/reforestation. These assumed CDR deployments keep ambitious temperature limits in reach, but associated rates of land-use transformation have not been evaluated. For IAM scenarios from the IPCC Fifth Assessment Report, we compare rates of modeled land-use conversion to recent observed commodity crop expansions. In scenarios with a likely chance of limiting warming to 2° in 2100, the rate of energy cropland expansion supporting BECCS exceeds past commodity crop rates by several fold. In some cases, mitigation scenarios include abrupt reversal of deforestation, paired with massive afforestation/reforestation. Specifically, energy cropland in <2° scenarios expands, on average, by 8.2 Mha yr-1 and 11.7% p.a. across scenarios. This rate exceeds, by more than 3-fold, the observed expansion of soybean, the most rapidly expanding commodity crop. If energy cropland instead increases at rates equal to recent soybean and oil palm expansions, the scale of CO2 removal possible with BECCS is 2.6 to 10-times lower, respectively, than the deployments <2° IAM scenarios rely upon in 2100. IAM mitigation pathways may favor multi-gigatonne biomass-based CDR given undervalued sociopolitical and techno-economic deployment barriers. Heroic modeled rates for land-use transformation imply that large-scale biomass-based CDR is not an easy solution to the climate challenge.
5 CFR 9901.372 - Conversion or movement out of NSPS pay system.
Code of Federal Regulations, 2010 CFR
2010-01-01
... worksite, and pay as of the day immediately before the date of conversion or movement out of NSPS. An... employee's pay band. If the employee's adjusted salary equals or exceeds the step 4 rate of the second... 5 Administrative Personnel 3 2010-01-01 2010-01-01 false Conversion or movement out of NSPS pay...
Wang, J-Y; Wang, J-T; Tsai, T-H; Hsu, C-L; Yu, C-J; Hsueh, P-R; Lee, L-N; Yang, P-C
2010-01-01
To investigate whether adding moxifloxacin (MXF) to the standard anti-tuberculosis regimen can shorten the time to sputum culture conversion in pulmonary tuberculosis (PTB). Adults with culture-positive PTB were divided into two treatment groups by their choice: standard regimen alone (HERZ group) and standard regimen plus daily 400 mg MXF in the first 2 months (MXF group). Sputum samples were collected thrice weekly in the first 8 weeks. The propensity score was calculated to estimate the conditional probability of entering the MXF group. Factors influencing time to culture conversion were investigated using Cox proportional hazards regression analysis stratified by propensity score. Sixty-two patients were enrolled in the MXF group and 88 in the HERZ group; respectively 51 and 72 completed the study. The regimen was modified before culture conversion in respectively 6 (12%) and 12 (16%; P = 0.47) patients, due to adverse effects. The time to culture conversion was shorter in the MXF group (HR 2.1, 95%CI 1.4-3.2). The culture conversion rate after 6 weeks of treatment was respectively 82% and 61% (P = 0.011, <0.05/4, calculated using the modified Bonferroni method). Adding MXF to the standard anti-tuberculosis regimen in the first 2 months was associated with a shorter time to culture conversion, a higher 6-week culture conversion rate and reduced transmission of tuberculosis.
Biomass pyrolysis liquid to citric acid via 2-step bioconversion.
Yang, Zhiguang; Bai, Zhihui; Sun, Hongyan; Yu, Zhisheng; Li, Xingxing; Guo, Yifei; Zhang, Hongxun
2014-12-31
The use of fossil carbon sources for fuels and petrochemicals has serious impacts on our environment and is unable to meet the demand in the future. A promising and sustainable alternative is to substitute fossil carbon sources with microbial cell factories converting lignocellulosic biomass into desirable value added products. However, such bioprocesses require tolerance to inhibitory compounds generated during pretreatment of biomass. In this study, the process of sequential two-step bio-conversion of biomass pyrolysis liquid containing levoglucosan (LG) to citric acid without chemical detoxification has been explored, which can greatly improve the utilization efficiency of lignocellulosic biomass. The sequential two-step bio-conversion of corn stover pyrolysis liquid to citric acid has been established. The first step conversion by Phanerochaete chrysosporium (P. chrysosporium) is desirable to decrease the content of other compounds except levoglucosan as a pretreatment for the second conversion. The remaining levoglucosan in solution was further converted into citric acid by Aspergillus niger (A. niger) CBX-209. Thus the conversion of cellulose to citric acid is completed by both pyrolysis and bio-conversion technology. Under experimental conditions, levoglucosan yield is 12% based on the feedstock and the citric acid yield can reach 82.1% based on the levoglucosan content in the pyrolysis liquid (namely 82.1 g of citric acid per 100 g of levoglucosan). The study shows that P. chrysosporium and A. niger have the potential to be used as production platforms for value-added products from pyrolyzed lignocellulosic biomass. Selected P. chrysosporium is able to decrease the content of other compounds except levoglucosan and levoglucosan can be further converted into citric acid in the residual liquids by A. niger. Thus the conversion of cellulose to citric acid is completed by both pyrolysis and bio-conversion technology.
Vergara, Franz H; Sheridan, Daniel J; Sullivan, Nancy J; Budhathoki, Chakra
The purpose of this study was to determine whether a face-to-face meeting with patients by a telephonic case manager prehospital discharge would result in increased telephone follow-up (TFU) reach rates posthospital discharge. Acute care adult medicine inpatient units. A quasiexperimental design was utilized. Two adult inpatient medicine units were selected as the intervention and comparison groups. The framework of the study is the transitions theory. A convenience sampling technique was used, whereby 88 eligible patients on the intervention unit received face-to-face meetings prehospital discharge whereas 123 patients on the comparison unit received standard care (no face-to-face meetings). Cross-tabulation and chi-square tests were employed to examine the association of face-to-face meeting intervention and TFU reach rates. Implementing brief (<10 min) face-to-face meetings by a telephonic case manager prehospital discharge resulted in a TFU reach rate of 87% on the intervention unit, whereas the comparison unit only had a 58% TFU reach rate (p < .001). Increasing reach rates by a telephonic case manager facilitates communication with more patients posthospital discharge. A brief prehospital discharge face-to-face meeting with patients assisted them to understand the reasons for a posthospital discharge telephone call, identified the best times to call using accurate telephone numbers, and taught patients how best to prepare for the call. In addition, by meeting patients face-to-face, the telephonic case manager was no longer an unknown person on the telephone asking them questions about their medical condition. These factors combined may have significantly helped to increase TFU reach rates.
Tian, Sicong; Jiang, Jianguo
2012-12-18
Direct gas-solid carbonation reactions of residues from an air pollution control system (APCr) were conducted using different combinations of simulated flue gas to study the impact on CO₂ sequestration. X-ray diffraction analysis of APCr determined the existence of CaClOH, whose maximum theoretical CO₂ sequestration potential of 58.13 g CO₂/kg APCr was calculated by the reference intensity ratio method. The reaction mechanism obeyed a model of a fast kinetics-controlled process followed by a slow product layer diffusion-controlled process. Temperature is the key factor in direct gas-solid carbonation and had a notable influence on both the carbonation conversion and the CO₂ sequestration rate. The optimal CO₂ sequestrating temperature of 395 °C was easily obtained for APCr using a continuous heating experiment. CO₂ content in the flue gas had a definite influence on the CO₂ sequestration rate of the kinetics-controlled process, but almost no influence on the final carbonation conversion. Typical concentrations of SO₂ in the flue gas could not only accelerate the carbonation reaction rate of the product layer diffusion-controlled process, but also could improve the final carbonation conversion. Maximum carbonation conversions of between 68.6% and 77.1% were achieved in a typical flue gas. Features of rapid CO₂ sequestration rate, strong impurities resistance, and high capture conversion for direct gas-solid carbonation were proved in this study, which presents a theoretical foundation for the applied use of this encouraging technology on carbon capture and storage.
40 CFR 63.626 - Performance tests and compliance provisions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... affected facility. P = equivalent P2O5 feed rate, metric ton/hr (ton/hr). K = conversion factor, 1000 mg/g... P2O5 stored, metric tons (tons). K = conversion factor, 1000 mg/g (453,600 mg/lb). (ii) Method 13A or... Where: E = emission rate of total fluorides, g/metric ton (lb/ton) of equivalent P2O5 feed. Csi...
40 CFR 63.626 - Performance tests and compliance provisions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... affected facility. P = equivalent P2O5 feed rate, metric ton/hr (ton/hr). K = conversion factor, 1000 mg/g... P2O5 stored, metric tons (tons). K = conversion factor, 1000 mg/g (453,600 mg/lb). (ii) Method 13A or... Where: E = emission rate of total fluorides, g/metric ton (lb/ton) of equivalent P2O5 feed. Csi...
40 CFR 63.626 - Performance tests and compliance provisions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... affected facility. P = equivalent P2O5 feed rate, metric ton/hr (ton/hr). K = conversion factor, 1000 mg/g... P2O5 stored, metric tons (tons). K = conversion factor, 1000 mg/g (453,600 mg/lb). (ii) Method 13A or... Where: E = emission rate of total fluorides, g/metric ton (lb/ton) of equivalent P2O5 feed. Csi...
ERIC Educational Resources Information Center
Thoms, Brian
2009-01-01
In this dissertation I examine the design, construction and implementation of an online blog ratings and user recommender system for the Claremont Conversation Online (CCO). In line with constructivist learning models and practical information systems (IS) design, I implemented a blog ratings system (a system that can be extended to allow for…
ERIC Educational Resources Information Center
Ferguson, Sarah Hargus; Morgan, Shae D.
2018-01-01
Purpose: The purpose of this study is to examine talker differences for subjectively rated speech clarity in clear versus conversational speech, to determine whether ratings differ for young adults with normal hearing (YNH listeners) and older adults with hearing impairment (OHI listeners), and to explore effects of certain talker characteristics…
Hip Arthroscopy in Patients Age 40 or Older: A Systematic Review.
Horner, Nolan S; Ekhtiari, Seper; Simunovic, Nicole; Safran, Marc R; Philippon, Marc J; Ayeni, Olufemi R
2017-02-01
To (1) report clinical outcomes, complication rates, and total hip arthroplasty (THA) conversion rates for patients age 40 or older who underwent hip arthroscopy, and (2) report any age-related predictors of outcome identified in the literature. MEDLINE, EMBASE, and PubMed were searched for relevant studies and pertinent data were abstracted from eligible studies. No meta-analysis was performed because of heterogeneity amongst studies. Seventeen studies were included in this review comprising 16,327 patients, including 9,954 patients age 40 or older. All studies reported statistically significant improvements in outcomes after hip arthroscopy for femoral osteochondroplasty, labral repair, or unspecified indications. In patients 40 or older who underwent labral debridement, these improvements were not clinically significant. Obesity and osteoarthritic changes predicted poorer outcomes. Only 1 of 3 studies directly comparing the 2 groups found that patients 40 or older had a significantly less improvement in a standardized hip outcome score than patients under 40 after hip arthroscopy, but all found that patients 40 or older had significantly higher rates of THA conversion. The rate of conversion to THA was 18.1% for patients 40 or older, 23.1% for patients over 50, and 25.2% for patients over 60 with a mean of 25.0 months to THA. Indications for hip arthroscopy including femoral osteochondroplasty and labral repair resulted in clinically significant improvements in patients 40 or older in most research studies examined in this review, whereas labral debridement did not produce clinically significant improvements postoperatively in the same studies. In these studies, the rate of conversion to THA is higher than in patients under 40 and increases with each decade of life, with many individual studies showing a significant increase in the rate of THA conversion. Hip arthroscopy may be suitable for some patients 40 or older, but patient selection is key and patients should be informed of the higher risk of conversion to THA. Level IV, systematic review of Level III and IV studies. Copyright © 2016 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.
Preda, Adrian; Nguyen, Dana D; Bustillo, Juan R; Belger, Aysenil; O'Leary, Daniel S; McEwen, Sarah; Ling, Shichun; Faziola, Lawrence; Mathalon, Daniel H; Ford, Judith M; Potkin, Steven G; van Erp, Theo G M
2018-06-20
To provide quantitative conversions between commonly used scales for the assessment of negative symptoms in schizophrenia. Linear regression analyses generated conversion equations between symptom scores from the Scale for the Assessment of Negative Symptoms (SANS), the Schedule for the Deficit Syndrome (SDS), the Positive and Negative Syndrome Scale (PANSS), or the Negative Symptoms Assessment (NSA) based on a cross sectional sample of 176 individuals with schizophrenia. Intraclass correlations assessed the rating conversion accuracy based on a separate sub-sample of 29 patients who took part in the initial study as well as an independent sample of 28 additional subjects with schizophrenia. Between-scale negative symptom ratings were moderately to highly correlated (r = 0.73-0.91). Intraclass correlations between the original negative symptom rating scores and those obtained via using the conversion equations were in the range of 0.61-0.79. While there is a degree of non-overlap, several negative symptoms scores reflect measures of similar constructs and may be reliably converted between some scales. The conversion equations are provided at http://www.converteasy.org and may be used for meta- and mega-analyses that examine negative symptoms. Copyright © 2018 Elsevier B.V. All rights reserved.
Stein, Nienke E; Hamelers, Hubertus V M; Buisman, Cees N J
2010-04-01
A MFC-based biosensor can act as online toxicity sensor. Electrical current is a direct linear measure for metabolic activity of electrochemically active microorganisms. Microorganisms gain energy from anodic overpotential and current strongly depends on anodic overpotential. Therefore control of anodic overpotential is necessary to detect toxic events and prevent false positive alarms. Anodic overpotential and thus current is influenced by anode potential, pH, substrate and bicarbonate concentrations. In terms of overpotential all factor showed a comparable effect, anode potential 1.2% change in current density per mV, pH 0.43%/mV, bicarbonate 0.75%/mV and acetate 0.8%/mV. At acetate saturation the maximum acetate conversion rate is reached and with that a constant bicarbonate concentration. Control of acetate and bicarbonate concentration can be less strict than control of anode potential and pH. Current density changes due to changing anode potential and pH are in the same order of magnitude as changes due to toxicity. Strict control of pH and anode potential in a small range is required. The importance of anodic overpotential control for detection of toxic compounds is shown. To reach a stable baseline current under nontoxic conditions a MFC-based biosensor should be operated at controlled anode potential, controlled pH and saturated substrate concentrations. 2009 Elsevier B.V. All rights reserved.
Passenger and cell phone conversations in simulated driving.
Drews, Frank A; Pasupathi, Monisha; Strayer, David L
2008-12-01
This study examines how conversing with passengers in a vehicle differs from conversing on a cell phone while driving. We compared how well drivers were able to deal with the demands of driving when conversing on a cell phone, conversing with a passenger, and when driving without any distraction. In the conversation conditions, participants were instructed to converse with a friend about past experiences in which their life was threatened. The results show that the number of driving errors was highest in the cell phone condition; in passenger conversations more references were made to traffic, and the production rate of the driver and the complexity of speech of both interlocutors dropped in response to an increase in the demand of the traffic. The results indicate that passenger conversations differ from cell phone conversations because the surrounding traffic not only becomes a topic of the conversation, helping driver and passenger to share situation awareness, but the driving condition also has a direct influence on the complexity of the conversation, thereby mitigating the potential negative effects of a conversation on driving. PsycINFO Database Record (c) 2008 APA, all rights reserved.
Effects of conversation interference on annoyance due to aircraft noise
NASA Technical Reports Server (NTRS)
Key, K. F.; Powell, C. A.
1980-01-01
The annoyance and interference effects of aircraft flyover noise on face to face conversation were investigated. Twenty 5 minute sessions, each composed of three flyovers, were presented to each of 20 pairs of female subjects in a simulated living room. Flyovers varied in peak noise level (55-79 dB, A-weighted) and spectrum (low or high frequency components). Subjects engaged in conversation for 10 sessions and in reverie for the other 10 sessions, and completed subjective ratings following every session. Annoyance was affected by noise level, but was not significantly different for the two activities of reverie and conversation. A noise level of 77 db was found unacceptable for conversation by 50 percent of the subjects. Conversation interference was assessed by incidence of increased vocal effort and/or interruption of conversation during flyovers. Although conversation interference increased with noise level, the conversation interference measures did not improve prediction of individual annoyance judgments.
1.5- μm single photon counting using polarization-independent up-conversion detector
NASA Astrophysics Data System (ADS)
Takesue, Hiroki; Diamanti, Eleni; Langrock, Carsten; Fejer, M. M.; Yamamoto, Yoshihisa
2006-12-01
We report a 1.5- μm band polarization independent single photon detector based on frequency up-conversion in periodically poled lithium niobate (PPLN) waveguides. To overcome the polarization dependence of the PPLN waveguides, we employed a polarization diversity configuration composed of two up-conversion detectors connected with a polarization beam splitter. We experimentally confirmed polarization independent single photon counting using our detector. We undertook a proof-of-principle differential phase shift quantum key distribution experiment using the detector, and confirmed that the sifted key rate and error rate remained stable when the polarization state was changed during single photon transmission.
Mandal, Pranab Kumar; Mandal, Abhijit; Bhattacharyya, Sujit Kumar
2013-02-01
Tuberculosis (TB) is a major health problem in the universe and India is no longer exempted from this crisis .The emergence of HIV and MDRTB (Multi Drug Resistant Tuberculosis) have further made the situation critical. Our aim was to compare the efficacy of the daily and the intermittent doses of the Anti Tubercular Drug (ATD) therapy which is under the Revised National Tuberculosis Control Programme, amongst the sputum positive pulmonary tuberculosis in terms of the sputum conversion rate at the end of the initial phase , the default rate and the adverse drug reactions. This was an observational prospective study. Eighty three patients were selected from the out patient and the inpatient departments of a tertiary medical centre in India. Forty three cases received an intermittent regimen, where the major age group belonged to the under 40 years age group, the default rate to the therapy was 9.3%, the sputum conversion rate was 94.87% and adverse drug reactions were found in 25.58% of the patients. In the daily regimen, there was an equal proportion of the age group of the patients, both above and below 40 yrs, the sputum conversion rate was 94.74%, a default rate was found in 5% cases and adverse reactions were found in 35% of the cases. Both the intermittent and the daily regimens showed equal sputum conversion rates and the drug default cases were found more in the intermittent group. However, the adverse reactions were found more in the daily regimen category.
Quan, Jiannong; Liu, Yangang; Liu, Quan; ...
2015-09-30
In this study, the effect of heterogeneous aqueous reactions on the secondary formation of inorganic aerosols during haze events was investigated by analysis of comprehensive measurements of aerosol composition and concentrations [e.g., particular matters (PM 2.5), nitrate (NO 3), sulfate (SO 4), ammonium (NH 4)], gas-phase precursors [e.g., nitrogen oxides (NOx), sulfur dioxide (SO 2), and ozone (O 3)], and relevant meteorological parameters [e.g., visibility and relative humidity (RH)]. The measurements were conducted in Beijing, China from Sep. 07, 2012 to Jan. 16, 2013. The results show that the conversion ratios of N from NOx to nitrate (N ratio) andmore » S from SO 2 to sulfate (S ratio) both significantly increased in haze events, suggesting enhanced conversions from NOx and SO 2 to their corresponding particle phases in the late haze period. Further analysis shows that N ratio and S ratio increased with increasing RH, with N ratio and S ratio being only 0.04 and 0.03, respectively, when RH < 40%, and increasing up to 0.16 and 0.12 when RH reached 60–80%, respectively. The enhanced conversion ratios of N and S in the late haze period is likely due to heterogeneous aqueous reactions, because solar radiation and thus the photochemical capacity are reduced by the increases in aerosols and RH. This point was further affirmed by the relationships of N ratio and S ratio to O 3: the conversion ratios increase with decreasing O 3 concentration when O 3 concentration is lower than <15 ppb but increased with increasing O 3 when O 3 concentration is higher than 15 ppb. The results suggest that heterogeneous aqueous reactions likely changed aerosols and their precursors during the haze events: in the beginning of haze events, the precursor gases accumulated quickly due to high emission and low reaction rate; the occurrence of heterogeneous aqueous reactions in the late haze period, together with the accumulated high concentrations of precursor gases such as SO 2 and NOx, accelerated the formation of secondary inorganic aerosols, and led to rapid increase of the PM 2.5 concentration.« less
Tishkoff, D. X.; Rockmill, B.; Roeder, G. S.; Kolodner, R. D.
1995-01-01
Strand exchange protein 1 (Sep1) from Saccharomyces cerevisiae promotes homologous pairing of DNA in vitro and sep1 mutants display pleiotropic phenotypes in both vegetative and meiotic cells. In this study, we examined in detail the ability of the sep1 mutant to progress through meiosis I prophase and to undergo meiotic recombination. In meiotic return-to-growth experiments, commitment to meiotic recombination began at the same time in wild type and mutant; however, recombinants accumulated at decreased rates in the mutant. Gene conversion eventually reached nearly wild-type levels, whereas crossing over reached 15-50% of wild type. In an assay of intrachromosomal pop-out recombination, the sep1, dmc1 and rad51 single mutations had only small effects; however, pop-out recombination was virtually eliminated in the sep1 dmc1 and sep1 rad51 double mutants, providing evidence for multiple recombination pathways. Analysis of meiotic recombination intermediates indicates that the sep1 mutant is deficient in meiotic double-strand break repair. In a physical assay, the formation of mature reciprocal recombinants in the sep1 mutant was delayed relative to wild type and ultimately reached only 50% of the wild-type level. Electron microscopic analysis of meiotic nuclear spreads indicates that the sep1δ mutant arrests in pachytene, with apparently normal synaptonemal complex. This arrest is RAD9-independent. We hypothesize that the Sep1 protein participates directly in meiotic recombination and that other strand exchange enzymes, acting in parallel recombination pathways, are able to substitute partially for the absence of the Sep1 protein. PMID:7713413
Wipfli, M.S.; Richardson, J.S.; Naiman, R.J.
2007-01-01
Headwater streams make up a large proportion of the total length and watershed area of fluvial networks, and are partially characterized by the large volume of organic matter (large wood, detritus, and dissolved organic matter) and invertebrate inputs from the riparian forest, relative to stream size. Much of those inputs are exported to downstream reaches through time where they potentially subsidize river communities. The relative rates, timing, and conversion processes that carry inputs from small streams to downstream reaches are reasonably well quantified. For example, larger particles are converted to smaller particles, which are more easily exported. Also, dissolved organic matter and surface biofilms are converted to larger particles which can be more easily intercepted by consumers. However, the quality of these materials as it affects biological activity downstream is not well known, nor is the extent to which timing permits biological use of those particles. These ecological unknowns need to be resolved. Further, land uses may disrupt and diminish material transport to downstream reaches by removing sources (e.g., forest harvest), by affecting transport and decomposition processes (e.g., flow regulation, irrigation, changes in biotic communities), and by altering mechanisms of storage within headwaters (e.g., channelization). We present conceptual models of energy and nutrient fluxes that outline small stream processes and pathways important to downstream communities, and we identify informational gaps that, if filled, could significantly advance the understanding of linkages between headwater streams and larger rivers. The models, based on empirical evidence and best professional judgment, suggest that navigable waters are significantly influenced by headwater streams through hydrological and ecological connectivities, and land use can dramatically influence these natural connectivities, impacting downstream riverine ecosystems. ?? 2007 American Water Resources Association.
Two-Stage Variable Sample-Rate Conversion System
NASA Technical Reports Server (NTRS)
Tkacenko, Andre
2009-01-01
A two-stage variable sample-rate conversion (SRC) system has been pro posed as part of a digital signal-processing system in a digital com munication radio receiver that utilizes a variety of data rates. The proposed system would be used as an interface between (1) an analog- todigital converter used in the front end of the receiver to sample an intermediatefrequency signal at a fixed input rate and (2) digita lly implemented tracking loops in subsequent stages that operate at v arious sample rates that are generally lower than the input sample r ate. This Two-Stage System would be capable of converting from an input sample rate to a desired lower output sample rate that could be var iable and not necessarily a rational fraction of the input rate.
Enhancing conversation skills in patients with Alzheimer's disease using a prosthetic memory aid.
Bourgeois, M S
1990-01-01
The effectiveness of teaching Alzheimer's disease subjects to use a prosthetic memory aid when conversing with familiar partners was evaluated. Effects of the training of three topics by caregivers was assessed in daily probes with the experimenter and twice weekly probes with a familiar conversational partner. All 3 subjects learned to use the memory aid with both conversational partners and improved the quality of their conversational content. Subjects made significantly more statements of fact and fewer ambiguous utterances after training on each topic according to a multiple baseline design. All subjects also generated novel, untrained statements in conversations with both partners. Treatment effects were maintained at high levels throughout training and at 3- and 6-week follow-up sessions. Naive judges rated baseline and posttreatment conversational samples as significantly improved on all eight conversational dimensions.
Simorov, Anton; Shaligram, Abhijit; Shostrom, Valerie; Boilesen, Eugene; Thompson, Jon; Oleynikov, Dmitry
2012-09-01
This study aims to examine trends of utilization and rates of conversion to open procedure for patients undergoing laparoscopic colon resections (LCR). This study is a national database review of academic medical centers and a retrospective analysis utilizing the University HealthSystem Consortium administrative database-an alliance of more than 300 academic and affiliate hospitals. A total of 85,712 patients underwent colon resections between October 2008 and December 2011. LCR was attempted in 36,228 patients (42.2%), with 5751 patients (15.8%) requiring conversion to an open procedure. There was a trend toward increasing utilization of LCR from 37.5% in 2008 to 44.1% in 2011. Attempted laparoscopic transverse colectomy had the highest rate of conversion (20.8%), followed by left (20.7%), right (15.6%), and sigmoid (14.3%) colon resections. The rate of utilization was highest in the Mid-Atlantic region (50.5%) and in medium- to large-sized hospitals (47.0%-49.0%).Multivariate logistic regression has shown that increasing age [odds ratio (OR) = 4.8, 95% confidence interval (CI) = 3.6-6.4], male sex (OR = 1.2, 95% CI = 1.1-1.3), open as compared with laparoscopic approach (OR = 2.6, 95%, CI = 2.3-3.1), and greater severity of illness category (OR = 27.1, 95% CI = 23.0-31.9) were all associated with increased mortality and morbidity and prolonged length of hospital stay. There is a trend of increasing utilization of LCR, with acceptable conversion rates, across hospitals in the United States over the recent years. When feasible, attempted LCR had better outcomes than open colectomy in the immediate perioperative period.
Oxidative desulfurization of benzene fraction on transition metal oxides
NASA Astrophysics Data System (ADS)
Boikov, E. B.; Vishnetskaya, M. V.
2013-02-01
It is established that molecular oxygen is able to oxidize thiophene selectively in a mixture with benzene on V2O5 · MoO3. The introduction of thiophene inhibits the oxidation of benzene. It is shown that the conversion of thiophene during operation of the catalyst is reduced at first and then increases until it reaches its initial value.
ERIC Educational Resources Information Center
Turnbull, Paul
1996-01-01
The origins and current use of H-Net, an online humanities network on the World Wide Web, are examined. H-Net currently sponsors 73 electronic discussion lists that reach subscribers in 68 countries. Discussion groups have not met expectations for scholarly exchange, possibly because of plagiarism and copyright concerns. New ventures include book…
Dislocation or Afterthought?--A Conversation Analytic Account of Incremental Sentences in Chinese
ERIC Educational Resources Information Center
Luke, Kang-kwong
2012-01-01
For almost 80 years, Chinese linguists have been fascinated by sentences like "Pijiu ba, he dianr!" ("Beer, I'll have some!"), which look superficially like a jumbled-up version of "normal-order sentences." Numerous accounts have been proposed to explain their structure and meaning, but no consensus has been reached as to how their true essence…
Alternative Fuels (Briefing Charts)
2009-06-19
Fuels Focus Various conversion processes Upgraded to meet fuel specs Diverse energy sources Petroleum Crude Oil Petroleum based Single Fuel in the...feedstock for HRJ, plant cost for F-T) Courtesy AFRL, Dr. Tim Edwards Unclassified • Agricultural crop oils (canola, jatropha, soy, palm, etc...Products (Volume Anticipated / Required) World crude oil production reaches its peak Concerns about Global Warming dictates addressing worldwide carbon
Lin, Xiaomu; Wang, Lei; Ding, Yujie J
2012-09-01
We efficiently generated far-infrared radiation at the wavelengths centered at 20.8 μm in the vicinity of one of the polariton resonances of lithium niobate. Such an efficient nonlinear conversion is made possible by exploiting phase matching for difference-frequency generation in lithium niobate. The highest peak power reached 233 W.
dePaula, S M; Huila, M F G; Araki, K; Toma, H E
2010-12-01
Conversion of Pomacea lineate shells into hydroxyapatite (HA) bioceramic materials was investigated by their in vitro treatment with phosphate solutions, at room temperature. Confocal Raman microscopy revealed that the conversion proceeds at distinct rates through the nacreous or periostracum sides of the shell. The conversion can be accelerated using powdered samples, yielding biocompatible materials of great interest in biomedicine. Copyright © 2010 Elsevier Ltd. All rights reserved.
A solar photovoltaic system with ideal efficiency close to the theoretical limit.
Zhao, Yuan; Sheng, Ming-Yu; Zhou, Wei-Xi; Shen, Yan; Hu, Er-Tao; Chen, Jian-Bo; Xu, Min; Zheng, Yu-Xiang; Lee, Young-Pak; Lynch, David W; Chen, Liang-Yao
2012-01-02
In order to overcome some physical limits, a solar system consisting of five single-junction photocells with four optical filters is studied. The four filters divide the solar spectrum into five spectral regions. Each single-junction photocell with the highest photovoltaic efficiency in a narrower spectral region is chosen to optimally fit into the bandwidth of that spectral region. Under the condition of solar radiation ranging from 2.4 SUN to 3.8 SUN (AM1.5G), the measured peak efficiency under 2.8 SUN radiation reaches about 35.6%, corresponding to an ideal efficiency of about 42.7%, achieved for the photocell system with a perfect diode structure. Based on the detailed-balance model, the calculated theoretical efficiency limit for the system consisting of 5 single-junction photocells can be about 52.9% under 2.8 SUN (AM1.5G) radiation, implying that the ratio of the highest photovoltaic conversion efficiency for the ideal photodiode structure to the theoretical efficiency limit can reach about 80.7%. The results of this work will provide a way to further enhance the photovoltaic conversion efficiency for solar cell systems in future applications.
Wang, Yilong; Xu, Yongkai; Zhang, Yun; Sun, Aijun; Hu, Yunfeng
2018-06-08
We previously identified and characterized 1 novel deep-sea microbial esterase PHE21 and used PHE21 as a green biocatalyst to generate chiral ethyl (S)-3-hydroxybutyrate, 1 key chiral chemical, with high enantiomeric excess and yield through kinetic resolution. Herein, we further explored the potential of esterase PHE21 in the enantioselective preparation of secondary butanol, which was hard to be resolved by lipases/esterases. Despite the fact that chiral secondary butanols and their ester derivatives were hard to prepare, esterase PHE21 was used as a green biocatalyst in the generation of (S)-sec-butyl acetate through hydrolytic reactions and the enantiomeric excess, and the conversion of (S)-sec-butyl acetate reached 98% and 52%, respectively, after process optimization. Esterase PHE21 was also used to generate (R)-sec-butyl acetate through asymmetric transesterification reactions, and the enantiomeric excess and conversion of (R)-sec-butyl acetate reached 64% and 43%, respectively, after process optimization. Deep-sea microbial esterase PHE21 was characterized to be a useful biocatalyst in the kinetic resolution of secondary butanol and other valuable chiral secondary alcohols. © 2018 Wiley Periodicals, Inc.
The Use of Facebook in Recruiting Participants for Health Research Purposes: A Systematic Review.
Whitaker, Christopher; Stevelink, Sharon; Fear, Nicola
2017-08-28
Social media is a popular online tool that allows users to communicate and exchange information. It allows digital content such as pictures, videos and websites to be shared, discussed, republished and endorsed by its users, their friends and businesses. Adverts can be posted and promoted to specific target audiences by demographics such as region, age or gender. Recruiting for health research is complex with strict requirement criteria imposed on the participants. Traditional research recruitment relies on flyers, newspaper adverts, radio and television broadcasts, letters, emails, website listings, and word of mouth. These methods are potentially poor at recruiting hard to reach demographics, can be slow and expensive. Recruitment via social media, in particular Facebook, may be faster and cheaper. The aim of this study was to systematically review the literature regarding the current use and success of Facebook to recruit participants for health research purposes. A literature review was completed in March 2017 in the English language using MEDLINE, EMBASE, Web of Science, PubMed, PsycInfo, Google Scholar, and a hand search of article references. Papers from the past 12 years were included and number of participants, recruitment period, number of impressions, cost per click or participant, and conversion rate extracted. A total of 35 studies were identified from the United States (n=22), Australia (n=9), Canada (n=2), Japan (n=1), and Germany (n=1) and appraised using the Critical Appraisal Skills Programme (CASP) checklist. All focused on the feasibility of recruitment via Facebook, with some (n=10) also testing interventions, such as smoking cessation and depression reduction. Most recruited young age groups (16-24 years), with the remaining targeting specific demographics, for example, military veterans. Information from the 35 studies was analyzed with median values being 264 recruited participants, a 3-month recruitment period, 3.3 million impressions, cost per click of US $0.51, conversion rate of 4% (range 0.06-29.50), eligibility of 61% (range 17-100), and cost per participant of US $14.41. The studies showed success in penetrating hard to reach populations, finding the results representative of their control or comparison demographic, except for an over representation of young white women. There is growing evidence to suggest that Facebook is a useful recruitment tool and its use, therefore, should be considered when implementing future health research. When compared with traditional recruitment methods (print, radio, television, and email), benefits include reduced costs, shorter recruitment periods, better representation, and improved participant selection in young and hard to reach demographics. It however, remains limited by Internet access and the over representation of young white women. Future studies should recruit across all ages and explore recruitment via other forms of social media. ©Christopher Whitaker, Sharon Stevelink, Nicola Fear. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 28.08.2017.
Lundy, Mark E.; Parrella, Michael P.
2015-01-01
It has been suggested that the ecological impact of crickets as a source of dietary protein is less than conventional forms of livestock due to their comparatively efficient feed conversion and ability to consume organic side-streams. This study measured the biomass output and feed conversion ratios of house crickets (Acheta domesticus) reared on diets that varied in quality, ranging from grain-based to highly cellulosic diets. The measurements were made at a much greater population scale and density than any previously reported in the scientific literature. The biomass accumulation was strongly influenced by the quality of the diet (p<0.001), with the nitrogen (N) content, the ratio of N to acid detergent fiber (ADF) content, and the crude fat (CF) content (y=N/ADF+CF) explaining most of the variability between feed treatments (p = 0.02; R2 = 0.96). In addition, for populations of crickets that were able to survive to a harvestable size, the feed conversion ratios measured were higher (less efficient) than those reported from studies conducted at smaller scales and lower population densities. Compared to the industrial-scale production of chickens, crickets fed a poultry feed diet showed little improvement in protein conversion efficiency, a key metric in determining the ecological footprint of grain-based livestock protein. Crickets fed the solid filtrate from food waste processed at an industrial scale via enzymatic digestion were able to reach a harvestable size and achieve feed and protein efficiencies similar to that of chickens. However, crickets fed minimally-processed, municipal-scale food waste and diets composed largely of straw experienced >99% mortality without reaching a harvestable size. Therefore, the potential for A. domesticus to sustainably supplement the global protein supply, beyond what is currently produced via grain-fed chickens, will depend on capturing regionally scalable organic side-streams of relatively high-quality that are not currently being used for livestock production. PMID:25875026
Lundy, Mark E; Parrella, Michael P
2015-01-01
It has been suggested that the ecological impact of crickets as a source of dietary protein is less than conventional forms of livestock due to their comparatively efficient feed conversion and ability to consume organic side-streams. This study measured the biomass output and feed conversion ratios of house crickets (Acheta domesticus) reared on diets that varied in quality, ranging from grain-based to highly cellulosic diets. The measurements were made at a much greater population scale and density than any previously reported in the scientific literature. The biomass accumulation was strongly influenced by the quality of the diet (p<0.001), with the nitrogen (N) content, the ratio of N to acid detergent fiber (ADF) content, and the crude fat (CF) content (y=N/ADF+CF) explaining most of the variability between feed treatments (p = 0.02; R2 = 0.96). In addition, for populations of crickets that were able to survive to a harvestable size, the feed conversion ratios measured were higher (less efficient) than those reported from studies conducted at smaller scales and lower population densities. Compared to the industrial-scale production of chickens, crickets fed a poultry feed diet showed little improvement in protein conversion efficiency, a key metric in determining the ecological footprint of grain-based livestock protein. Crickets fed the solid filtrate from food waste processed at an industrial scale via enzymatic digestion were able to reach a harvestable size and achieve feed and protein efficiencies similar to that of chickens. However, crickets fed minimally-processed, municipal-scale food waste and diets composed largely of straw experienced >99% mortality without reaching a harvestable size. Therefore, the potential for A. domesticus to sustainably supplement the global protein supply, beyond what is currently produced via grain-fed chickens, will depend on capturing regionally scalable organic side-streams of relatively high-quality that are not currently being used for livestock production.
Pendleton, Linwood; Donato, Daniel C; Murray, Brian C; Crooks, Stephen; Jenkins, W Aaron; Sifleet, Samantha; Craft, Christopher; Fourqurean, James W; Kauffman, J Boone; Marbà, Núria; Megonigal, Patrick; Pidgeon, Emily; Herr, Dorothee; Gordon, David; Baldera, Alexis
2012-01-01
Recent attention has focused on the high rates of annual carbon sequestration in vegetated coastal ecosystems--marshes, mangroves, and seagrasses--that may be lost with habitat destruction ('conversion'). Relatively unappreciated, however, is that conversion of these coastal ecosystems also impacts very large pools of previously-sequestered carbon. Residing mostly in sediments, this 'blue carbon' can be released to the atmosphere when these ecosystems are converted or degraded. Here we provide the first global estimates of this impact and evaluate its economic implications. Combining the best available data on global area, land-use conversion rates, and near-surface carbon stocks in each of the three ecosystems, using an uncertainty-propagation approach, we estimate that 0.15-1.02 Pg (billion tons) of carbon dioxide are being released annually, several times higher than previous estimates that account only for lost sequestration. These emissions are equivalent to 3-19% of those from deforestation globally, and result in economic damages of $US 6-42 billion annually. The largest sources of uncertainty in these estimates stems from limited certitude in global area and rates of land-use conversion, but research is also needed on the fates of ecosystem carbon upon conversion. Currently, carbon emissions from the conversion of vegetated coastal ecosystems are not included in emissions accounting or carbon market protocols, but this analysis suggests they may be disproportionally important to both. Although the relevant science supporting these initial estimates will need to be refined in coming years, it is clear that policies encouraging the sustainable management of coastal ecosystems could significantly reduce carbon emissions from the land-use sector, in addition to sustaining the well-recognized ecosystem services of coastal habitats.
NASA Astrophysics Data System (ADS)
Treuhaft, R. N.; Baccini, A.; Goncalves, F. G.; Lei, Y.; Keller, M.; Walker, W. S.
2017-12-01
Tropical forests account for about 50% of the world's forested biomass, and play a critical role in the control of atmospheric carbon dioxide. Large-scale (1000's of km) changes in forest structure and biomass bear on global carbon source-sink dynamics, while small-scale (< 100 m) changes bear on deforestation and degradation monitoring. After describing the interferometric SAR (InSAR) phase-height observation, we show forest phase-height time series from the TanDEM-X radar interferometer at X-band (3 cm), taken with monthly and sub-hectare temporal and spatial resolution, respectively. The measurements were taken with more than 30 TanDEM-X passes over Tapajós National Forest in the Brazilian Amazon between 2011 and 2014. The transformation of phase-height rates into aboveground biomass (AGB) rates is based on the idea that the change in AGB due to a change in phase-height depends on the plot's AGB. Plots with higher AGB will produce more AGB for a given increase in height or phase-height. Postulating a power-law dependence of plot-level mass density on physical height, we previously found that the best conversion factors for transforming phase-height rate to AGB rate were indeed dependent on AGB. For 78 plots, we demonstrated AGB rates from InSAR phase-height rates using AGB from field measurements. For regional modeling of the Amazon Basin, field measurements of AGB, to specify the conversion factors, is impractical. Conversion factors from InSAR phase-height rate to AGB rate in this talk will be based on AGB derived from the Moderate Resolution Imaging Spectroradiometer (MODIS). AGB measurement from MODIS is based on the spectral reflectance of 7 bands from the visible to short wave infrared, and auxiliary metrics describing the variance in reflectance. The mapping of MODIS reflectance to AGB is enabled by training a machine learning algorithm with lidar-derived AGB data, which are in turn trained by field measurements for small areas. The performance of TanDEM-X AGB rate from MODIS-derived conversion factors will be compared to that derived from field-based conversion factors. We will also attempt to improve phase-height rate to AGB rate transformation by deriving improved models of mass density dependences on height, based on the aggregation of single-stem allometrics.
Experimental investigation on the hydrodynamic performance of a wave energy converter
NASA Astrophysics Data System (ADS)
Zheng, Xiong-bo; Ma, Yong; Zhang, Liang; Jiang, Jin; Liu, Heng-xu
2017-06-01
Wave energy is an important type of marine renewable energy. A wave energy converter (WEC) moored with two floating bodies was developed in the present study. To analyze the dynamic performance of the WEC, an experimental device was designed and tested in a tank. The experiment focused on the factors which impact the motion and energy conversion performance of the WEC. Dynamic performance was evaluated by the relative displacements and velocities of the oscillator and carrier which served as the floating bodies of WEC. Four factors were tested, i.e. wave height, wave period, power take-off (PTO) damping, and mass ratio ( R M) of the oscillator and carrier. Experimental results show that these factors greatly affect the energy conversion performance, especially when the wave period matches R M and PTO damping. According to the results, we conclude that: (a) the maximization of the relative displacements and velocities leads to the maximization of the energy conversion efficiency; (b) the larger the wave height, the higher the energy conversion efficiency will be; (c) the relationships of energy conversion efficiency with wave period, PTO damping, and R M are nonlinear, but the maximum efficiency is obtained when these three factors are optimally matched. Experimental results demonstrated that the energy conversion efficiency reached the peak at 28.62% when the wave height was 120 mm, wave period was 1.0 s, R M was 0.21, and the PTO damping was corresponding to the resistance of 100 Ω.
High yield hydrolysis of seaweed-waste biomass using peracetic acid and ionic liquid treatments
NASA Astrophysics Data System (ADS)
Uju, Wijayanta, Agung Tri; Goto, Masahiro; Kamiya, Noriho
2018-02-01
Seaweed is one of the most promising bioethanol feedstocks. This water plant has high carbohydrate content but low lignin content, as a result it will be easier to be hydrolysed. This paper described hydrolysis of seaweed-waste biomass from the carrageenan (SWBC) industry using enzymatic saccharification or ionic liquids-HCl hydrolysis. In the first work, SWBC pretreated by peracetic acid (PAA) followed by ionic liquid (IL) caused enhance the cellulose conversion of enzymatic saccharification. At 48h saccharification, the value conversion almost reached 100%. In addition, the untreated SWBC also produced the cellulose conversion 77%. In the second work, SWBC or Bagasse with or without pretreated by PAA was hydrolyzed using ILs-HCl hydrolysis. The ILs used were 1-buthyl-3-methylpyridium chloride, [Bmpy][Cl] and 1-butyl-3-metyl imidazolium chloride ([Bmim][Cl]). [Bmpy][Cl]-HCl hydrolysis produced higher cellulose conversion than [Bmim][Cl]-HCl hydrolysis. The phenomenon was clearly observed on the Bagasse, which without pretreated by PAA. Furthermore, SWBC hydrolyzed by both ILs in the presence low concentration of HCl produced cellulose conversion 70-98% at 60-90 min of hydrolysis time. High cellulose conversion of SWBC on the both hydrolysis was caused by SWBC had the low lignin (4%). Moreover, IL treatments caused lowering of cellulose hydrogen bonds or even changed the cellulose characteristics from cellulose I to cellulose II which easily to be hydrolyzed. In the case of [Bmpy][Cl], this IL may reduce the degree polymerization of celluloses.
40 CFR 61.67 - Emission tests.
Code of Federal Regulations, 2011 CFR
2011-07-01
... = Conversion factor from ppmw to units of emission standard, 0.001 (metric units) = 0.002 (English units) PPVC...(a), or § 61.64(a)(1), (b), (c), or (d), or from any control system to which reactor emissions are... conversion factor, 1,000 g/kg (1 lb/lb). 10−6 = Conversion factor for ppm. Z = Production rate, kg/hr (lb/hr...
40 CFR 61.67 - Emission tests.
Code of Federal Regulations, 2012 CFR
2012-07-01
... = Conversion factor from ppmw to units of emission standard, 0.001 (metric units) = 0.002 (English units) PPVC...(a), or § 61.64(a)(1), (b), (c), or (d), or from any control system to which reactor emissions are... conversion factor, 1,000 g/kg (1 lb/lb). 10−6 = Conversion factor for ppm. Z = Production rate, kg/hr (lb/hr...
Shao, Xiongjun; Lynd, Lee; Wyman, Charles; Bakker, André
2009-01-01
The model of South et al. [South et al. (1995) Enzyme Microb Technol 17(9): 797-803] for simultaneous saccharification of fermentation of cellulosic biomass is extended and modified to accommodate intermittent feeding of substrate and enzyme, cascade reactor configurations, and to be more computationally efficient. A dynamic enzyme adsorption model is found to be much more computationally efficient than the equilibrium model used previously, thus increasing the feasibility of incorporating the kinetic model in a computational fluid dynamic framework in the future. For continuous or discretely fed reactors, it is necessary to use particle conversion in conversion-dependent hydrolysis rate laws rather than reactor conversion. Whereas reactor conversion decreases due to both reaction and exit of particles from the reactor, particle conversion decreases due to reaction only. Using the modified models, it is predicted that cellulose conversion increases with decreasing feeding frequency (feedings per residence time, f). A computationally efficient strategy for modeling cascade reactors involving a modified rate constant is shown to give equivalent results relative to an exhaustive approach considering the distribution of particles in each successive fermenter.
Kinetics of Scheelite Conversion in Sulfuric Acid
NASA Astrophysics Data System (ADS)
Shen, Leiting; Li, Xiaobin; Zhou, Qiusheng; Peng, Zhihong; Liu, Guihua; Qi, Tiangui; Taskinen, Pekka
2018-02-01
Complete conversion of scheelite in H2SO4 solution plays a key role in exploration of cleaner technology for producing ammonium paratungstate. In this work, the factors influencing scheelite conversion were investigated experimentally to model its kinetics. The results indicated that the conversion rate increases with increasing temperature and reducing particle size, but is almost independent of stirring speed. Moreover, although the conversion rate increases with increasing initial H2SO4 concentration (≤ 1.25 mol/L), it decreases rapidly at 1.5 mol/L H2SO4 after 10 min due to formation of a H2WO4 layer. The experimental data agree quite well with the shrinking core model under chemical reaction control in ≤ 1.25 mol/L H2SO4 solution, and the kinetic equation was established as: 1- ( 1- α )^{ 1 / 3} = 2 2 2 5 4 6. 6\\cdot C_{{{H}_{ 2} {SO}_{ 4} }}^{ 1. 2 2 6} \\cdot r_{ 0}^{ - 1} \\cdot e^{{ - 3 9 2 6 0/RT}} \\cdot t (t, min). This work could contribute to better understanding of scheelite conversion in H2SO4 solution and development of a new route for ammonium paratungstate production.
Wagner, Shawn
2014-06-01
To determine the storability of para-hydrogen before reestablishment of the room temperature thermal equilibrium mixture. Para-hydrogen was produced at near 100% purity and mixed with different oxygen quantities to determine the rate of conversion to the thermal equilibrium mixture of 75: 25% (ortho: para) by detecting the ortho-hydrogen (1)H nuclear magnetic resonance using a 9.4 T imager. The para-hydrogen to ortho-hydrogen velocity constant, k, near room temperature (292 K) was determined to be 8.27 ± 1.30 L/mol · min(-1). This value was calculated utilizing four different oxygen fractions. Para-hydrogen conversion to ortho-hydrogen by oxygen can be minimized for long term storage with judicious removal of oxygen contamination. Prior calculated velocity rates were confirmed demonstrating a dependence on only the oxygen concentration.
Li, Si-Wen; Li, Jia-Rong; Jin, Qi-Ping; Yang, Zhi; Zhang, Rong-Lan; Gao, Rui-Min; Zhao, Jian-She
2017-09-05
Two different synthetic methods, the direct method and the substitution method, were used to synthesize the Cs-POM@MOF-199@MCM-41 (Cs-PMM), in which the modified heteropolyacid with cesium salt has been encapsulated into the pores with the mixture of MOF and MCM-41. The structural properties of the as-prepared catalysts were characterized using various analytical techniques: powder X-ray diffraction, FT-IR, SEM, TEM, XPS and BET, confirming that the Cs-POM active species retained its Keggin structure after immobilization. The substitution method of Cs-PMM exhibited more excellent catalytic performance for oxidative desulfurization of dibenzothiophene in the presence of oxygen. Under optimal conditions, the DBT conversion rate reached up to 99.6% and could be recycled 10 times without significant loss of catalytic activity, which is mainly attributed to the slow leaching of the active heteropolyacid species from the strong fixed effect of the mixture porous materials. Copyright © 2017. Published by Elsevier B.V.
He, Tengxia; Li, Zhenlun; Sun, Quan; Xu, Yi; Ye, Qing
2016-01-01
A hypothermia aerobic nitrite-denitrifying bacterium, Pseudomonas tolaasii strain Y-11, was found to display high removal capabilities for heterotrophic nitrification with ammonium and for aerobic denitrification with nitrate or nitrite nitrogen. When strain Y-11 was cultivated for 4days at 15°C with the initial ammonium, nitrate and nitrite nitrogen concentrations of 209.62, 204.61 and 204.33mg/L (pH 7.2), the ammonium, nitrate and nitrite removal efficiencies were 93.6%, 93.5% and 81.9% without nitrite accumulation, and the corresponding removal rates reached as high as 2.04, 1.99 and 1.74mg/L/h, respectively. Additionally, ammonium was removed mainly during the simultaneous nitrification and denitrification process. All results demonstrate that P. tolaasii strain Y-11 has the particularity to remove ammonium, nitrate and nitrite nitrogen at low temperatures, which guarantees it for future application in winter wastewater treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.
a New Broadband Cavity Enhanced Frequency Comb Spectroscopy Technique Using GHz Vernier Filtering.
NASA Astrophysics Data System (ADS)
Morville, Jérôme; Rutkowski, Lucile; Dobrev, Georgi; Crozet, Patrick
2015-06-01
We present a new approach to Cavity Enhanced - Direct Frequency Comb Spectroscopy where the full emission bandwidth of a Titanium:Sapphire laser is exploited at GHz resolution. The technique is based on a low-resolution Vernier filtering obtained with an appreciable -actively stabilized- mismatch between the cavity Free Spectral Range and the laser repetition rate, using a diffraction grating and a split-photodiode. This particular approach provides an immunity to frequency-amplitude noise conversion, reaching an absorption baseline noise in the 10-9 cm-1 range with a cavity finesse of only 3000. Spectra covering 1800 cm-1 (˜ 55 THz) are acquired in recording times of about 1 second, providing an absorption figure of merit of a few 10-11 cm-1/√{Hz}. Initially tested with ambient air, we report progress in using the Vernier frequency comb method with a discharge source of small radicals. Rutkowski et al, Opt. Lett., 39(23)2014
NASA Astrophysics Data System (ADS)
Zhou, Wen; Qin, Chaoyi
2017-09-01
We demonstrate multi-frequency QPSK millimeter-wave (mm-wave) vector signal generation enabled by MZM-based optical carrier suppression (OCS) modulation and in-phase/quadrature (I/Q) modulation. We numerically simulate the generation of 40-, 80- and 120-GHz vector signal. Here, the three different signals carry the same QPSK modulation information. We also experimentally realize 11Gbaud/s QPSK vector signal transmission over 20 km fiber, and the generation of the vector signals at 40-GHz, 80-GHz and 120-GHz. The experimental results show that the bit-error-rate (BER) for all the three different signals can reach the forward-error-correction (FEC) threshold of 3.8×10-3. The advantage of the proposed system is that provide high-speed, high-bandwidth and high-capacity seamless access of TDM and wireless network. These features indicate the important application prospect in wireless access networks for WiMax, Wi-Fi and 5G/LTE.
Treatment Strategies for the Opioid-Dependent Patient.
Teckchandani, Shweta; Barad, Meredith
2017-09-20
This review is intended to help the headache physician think through and plan for management issues concerning the use of opioids. We ask the headache physician to consider if there are instances where prescribing or continuing prescriptions of opiates is plausible, and if so, how can the physician proceed as safely as possible. Our goal is to start a conversation regarding the inevitable encounter with a patient on opiates or requesting opiates. The use of opiates in our society has reached a crisis in staggering death and addiction rates. Recent guideline published by the CDC can assist us in developing an algorithmic approach towards opiate use. Recent advances in addiction medicine can also assist us in protecting our patients. Every headache physician will undoubtedly encounter patients on opiates. There still are appropriate reasons to treat patients with opiates. Every headache physician may need to prescribe opiates and they may be indicated. It is important to learn the correct way to approach, manage, and treat patients on opiates.
Development of high repetition rate nitric oxide planar laser induced fluorescence imaging
NASA Astrophysics Data System (ADS)
Jiang, Naibo
This thesis has documented the development of a MHz repitition rate pulse burst laser system. Second harmonic and third harmonic efficiencies are improved by adding a Phase Conjugate Mirror to the system. Some high energy fundamental, second harmonic, and third harmonic burst sequences consisting of 1--12 pulses separated in time by between 4 and 12 microseconds are now routinely obtained. The reported burst envelopes are quite uniform. We have also demonstrated the ability to generate ultra-high frequency sequences of broadly wavelength tunable, high intensity laser pulses using a home built injection seeded Optical Parametric Oscillator (OPO), pumped by the second and third harmonic output of the pulse burst laser. Typical OPO output burst sequences consist of 6--10 pulses, separated in time by between 6 and 10 microseconds. With third harmonic pumping of the OPO system, we studied four conditions, two-crystal Singly Resonant OPO (SRO) cavity, three-crystal OPO cavity, single pass two-crystal Doubly Resonant OPO (DRO) cavity and double pass two-crystal OPO cavity. The double pass two-crystal OPO cavity gives the best operation in burst mode. For single pass OPO, the average total OPO conversion efficiency is approximately 25%. For double pass OPO, the average total OPO conversion efficiency is approximately 35%. As a preliminary work, we studied 532nm pumping of a single crystal OPO cavity. With single pulse pumping, the conversion efficiency can reach 30%. For both 355nm and 532nm pumping OPO, we have demonstrated injection seeding. The OPO output light linewidth is significantly narrowed. Some preliminary etalon traces are also reported. By mixing the OPO signal output at 622nm with residual third harmonic at 355nm, we obtained 226nm burst sequences with average pulse energy of ˜0.2 mJ. Injection seeding of the OPO increases the energy achieved by a factor of ˜2. 226nm burst sequences with reasonably uniform burst envelopes are reported. Using the system we have obtained, for the first time by any known optical method, Planar Laser Induced Fluorescence (PLIF) image sequences at ultrahigh (≥100kHz) frame rates, in particular NO PLIF image sequences, have been obtained in a Mach 2 jet. We also studied the possibility of utilizing a 250 kHz pulsed Nd:YVO 4 laser as the master oscillator. 10-pulse-10-mus spacing burst sequences with reasonably uniform burst envelope have been obtained. The total energy of the burst sequence is ˜2.5J.
Thirty years of the World Health Organization's target caesarean section rate: time to move on.
Robson, Stephen J; de Costa, Caroline M
2017-03-06
It has been 30 years since the World Health Organization first recommended a "maximum" caesarean section (CS) rate of 15%. There are demographic differences across the 194 WHO member countries; recent analyses suggest the optimal global CS rate is almost 20%. Attempts to reduce CS rates in developed countries have not worked. The strongest predictor of caesarean delivery for the first birth of "low risk" women appears to be maternal age; a factor that continues to increase. Most women whose first baby is born by caesarean delivery will have all subsequent children by caesarean delivery. Outcomes that informed the WHO recommendation primarily relate to maternal and perinatal mortality, which are easy to measure. Longer term outcomes, such as pelvic organ prolapse and urinary incontinence, are closely related to mode of birth, and up to 20% of women will undergo surgery for these conditions. Pelvic floor surgery is typically undertaken for older women who are less fit for surgery. Serious complications such as placenta accreta occur with repeat caesarean deliveries, but the odds only reach statistical significance at the third or subsequent caesarean delivery. However, in Australia, parity is falling, and only 20% of women will have more than two births. We should aim to provide CS to women in need and to continue including women in the conversation about the benefits and disadvantages, both short and long term, of birth by caesarean delivery.
Compact binary merger rates: Comparison with LIGO/Virgo upper limits
Belczynski, Krzysztof; Repetto, Serena; Holz, Daniel E.; ...
2016-03-03
Here, we compare evolutionary predictions of double compact object merger rate densities with initial and forthcoming LIGO/Virgo upper limits. We find that: (i) Due to the cosmological reach of advanced detectors, current conversion methods of population synthesis predictions into merger rate densities are insufficient. (ii) Our optimistic models are a factor of 18 below the initial LIGO/Virgo upper limits for BH–BH systems, indicating that a modest increase in observational sensitivity (by a factor of ~2.5) may bring the first detections or first gravitational wave constraints on binary evolution. (iii) Stellar-origin massive BH–BH mergers should dominate event rates in advanced LIGO/Virgo and can be detected out to redshift z sime 2 with templates including inspiral, merger, and ringdown. Normal stars (more » $$\\lt 150\\;{M}_{\\odot }$$) can produce such mergers with total redshifted mass up to $${M}_{{\\rm{tot,z}}}\\simeq 400\\;{M}_{\\odot }$$. (iv) High black hole (BH) natal kicks can severely limit the formation of massive BH–BH systems (both in isolated binary and in dynamical dense cluster evolution), and thus would eliminate detection of these systems even at full advanced LIGO/Virgo sensitivity. We find that low and high BH natal kicks are allowed by current observational electromagnetic constraints. (v) The majority of our models yield detections of all types of mergers (NS–NS, BH–NS, BH–BH) with advanced detectors. Numerous massive BH–BH merger detections will indicate small (if any) natal kicks for massive BHs.« less
Disease burden of herpes zoster in Korea.
Choi, Won Suk; Noh, Ji Yun; Huh, Joong Yeon; Jo, Yu Mi; Lee, Jacob; Song, Joon Young; Kim, Woo Joo; Cheong, Hee Jin
2010-04-01
The occurrence of herpes zoster can deteriorate the quality of life considerably, resulting in high disease burden. While Korea is assumed to have high disease burden of herpes zoster, there has been no researches analyzing this. We performed this study to investigate the disease burden of herpes zoster in the Korean population as a whole. We used the database of the Health Insurance Review & Assessment Service of Korea and analyzed the data of patients who had herpes zoster as a principal diagnosis during the period from 2003 to 2007. We investigated the annual prevalence, rate of clinical visits, rate of hospitalization, and the pattern of medical services use. The socioeconomic burden of herpes zoster was calculated by a conversion into cost. Rates of clinic visits and hospitalizations due to herpes zoster during the 5-year period from 2003 to 2007 were 7.93-12.54 per 1000 population and 0.22-0.32 per 1000 population, respectively. Prevalence rates according to age increased sharply after 50 years and reached a peak at 70 years. The total socioeconomic cost of herpes zoster was $75.9-143.8 million per year, increasing every year by 14-20%. There is a heavy socioeconomic burden due to herpes zoster in Korea and indicate that appropriate policies need to be established to reduce this burden. Additional researches are also necessary to assess the safety, efficacy and cost-effectiveness of a herpes zoster vaccine in the Korean population. Copyright 2010 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Bo; Pan, Zihe; Cheng, Huaigang; Chen, Zuliang; Cheng, Fangqin
2018-06-01
Vaterite-type calcium carbonate particles have some unique properties such as high hydrophilicity, large surface areas, and hierarchical structures consisting of primary vaterite particles in comparison with calcite or aragonite-type polymorphs. In this paper, gypsum (CaSO4·2H2O) suspension is used to synthesize micro-sized vaterite CaCO3 through magnetic stirring (MS) and ultrasonic probe vibration (UPV) methods. The effects of ammonia concentration, CO2 flow rate, solid-liquid ratio on the gypsum carbonation process, mineral phase composition, morphology and particle size distribution of CaCO3 are investigated. The results show that the carbonation process is significantly influenced by ammonia concentration, CO2 flow rate and ultrasound. Comparing with magnetic stirring, ultrasonic probe vibration take less time to reach the complete carbonate reaction. Gypsum is transformed to vaterite with the conversion rate about ∼95% when the mole ratio of NH4+/Ca2+ is 2.4 otherwise the carbonation reaction was uncompleted with gypsum residues left. Comparing with MS method, the UPV method resulted in smaller size and narrower size distribution of as-prepared microparticles and approximately 80% reduction of the particle size was achieved. It is established that increasing the solid-liquid ratio resulted in larger particle size in MS system and smaller particle size in UPV system. Increasing CO2 flow rate caused the particle size decreased in MS system and increased in UPV system.
Multi-scale controls on spatial variability in river biogeochemical cycling
NASA Astrophysics Data System (ADS)
Blaen, Phillip; Kurz, Marie; Knapp, Julia; Mendoza-Lera, Clara; Lee-Cullin, Joe; Klaar, Megan; Drummond, Jennifer; Jaeger, Anna; Zarnetske, Jay; Lewandowski, Joerg; Marti, Eugenia; Ward, Adam; Fleckenstein, Jan; Datry, Thibault; Larned, Scott; Krause, Stefan
2016-04-01
Excessive nutrient concentrations are common in surface waters and groundwaters in agricultural catchments worldwide. Increasing geomorphological heterogeneity in river channels may help to attenuate nutrient pollution by facilitating water exchange fluxes with the hyporheic zone; a site of intense microbial activity where biogeochemical cycling rates can be high. However, the controls on spatial variability in biogeochemical cycling, particularly at scales relevant for river managers, are largely unknown. Here, we aimed to assess: 1) how differences in river geomorphological heterogeneity control solute transport and rates of biogeochemical cycling at sub-reach scales (102 m); and 2) the relative magnitude of these differences versus those relating to reach scale substrate variability (103 m). We used the reactive tracer resazurin (Raz), a weakly fluorescent dye that transforms to highly fluorescent resorufin (Rru) under mildly reducing conditions, as a proxy to assess rates of biogeochemical cycling in a lowland river in southern England. Solute tracer tests were conducted in two reaches with contrasting substrates: one sand-dominated and the other gravel-dominated. Each reach was divided into sub-reaches that varied in geomorphic complexity (e.g. by the presence of pool-riffle sequences or the abundance of large woody debris). Slug injections of Raz and the conservative tracer fluorescein were conducted in each reach during baseflow conditions (Q ≈ 80 L/s) and breakthrough curves monitored using in-situ fluorometers. Preliminary results indicate overall Raz:Rru transformation rates in the gravel-dominated reach were more than 50% higher than those in the sand-dominated reach. However, high sub-reach variability in Raz:Rru transformation rates and conservative solute transport parameters suggests small scale targeted management interventions to alter geomorphic heterogeneity may be effective in creating hotspots of river biogeochemical cycling and nutrient load attenuation.
Performance analysis of 60-min to 1-min integration time rain rate conversion models in Malaysia
NASA Astrophysics Data System (ADS)
Ng, Yun-Yann; Singh, Mandeep Singh Jit; Thiruchelvam, Vinesh
2018-01-01
Utilizing the frequency band above 10 GHz is in focus nowadays as a result of the fast expansion of radio communication systems in Malaysia. However, rain fade is the critical factor in attenuation of signal propagation for frequencies above 10 GHz. Malaysia is located in a tropical and equatorial region with high rain intensity throughout the year, and this study will review rain distribution and evaluate the performance of 60-min to 1-min integration time rain rate conversion methods for Malaysia. Several conversion methods such as Segal, Chebil & Rahman, Burgeono, Emiliani, Lavergnat and Gole (LG), Simplified Moupfouma, Joo et al., fourth order polynomial fit and logarithmic model have been chosen to evaluate the performance to predict 1-min rain rate for 10 sites in Malaysia. After the completion of this research, the results show that Chebil & Rahman model, Lavergnat & Gole model, Fourth order polynomial fit and Logarithmic model have shown the best performances in 60-min to 1-min rain rate conversion over 10 sites. In conclusion, it is proven that there is no single model which can claim to perform the best across 10 sites. By averaging RMSE and SC-RMSE over 10 sites, Chebil and Rahman model is the best method.
Experimental study of NO2 reduction in N2/Ar and O2/Ar mixtures by pulsed corona discharge.
Zhu, Xinbo; Zheng, Chenghang; Gao, Xiang; Shen, Xu; Wang, Zhihua; Luo, Zhongyang; Cen, Kefa
2014-11-01
Non-thermal plasma technology has been regarded as a promising alternative technology for NOx removal. The understanding of NO2 reduction characteristics is extremely important since NO2 reduction could lower the total NO oxidation rate in the plasma atmosphere. In this study, NO2 reduction was experimentally investigated using a non-thermal plasma reactor driven by a pulsed power supply for different simulated gas compositions and operating parameters. The NO2 reduction was promoted by increasing the specific energy density (SED), and the highest conversion rates were 33.7%, 42.1% and 25.7% for Ar, N2/Ar and O2/Ar, respectively. For a given SED, the NO2 conversion rate had the order N2/Ar>Ar>O2/Ar. The highest energy yield of 3.31g/kWh was obtained in N2/Ar plasma and decreased with increasing SED; the same trends were also found in the other two gas compositions. The conversion rate decreased with increasing initial NO2 concentration. Furthermore, the presence of N2 or O2 led to different reaction pathways for NO2 conversion due to the formation of different dominating reactive radicals. Copyright © 2014. Published by Elsevier B.V.
Christ, Alexander B; Baral, Elexis; Koch, Chelsea; Shubin Stein, Beth E; Gonzalez Della Valle, Alejandro; Strickland, Sabrina M
2017-10-01
Patellofemoral arthroplasty (PFA) can be a successful, bone-sparing treatment for isolated patellofemoral arthritis. However, progression of tibio-femoral arthritis or incorrect indications may predispose patients to early conversion to total knee arthroplasty (TKA). The purpose of this study was to review the clinical cases and perform retrieval analysis of PFA conversions to TKA at our institution. Twenty one patellofemoral arthroplasties in 18 patients that were converted to TKA were identified through our implant retrieval registry. Sixteen implants were available for review by biomechanical engineers, who recorded surface markings, wear patterns, and integrity of fixation. Patient charts were reviewed and time to conversion, tourniquet time, conversion implant, additional surgeries, infections, and Kellgren & Lawrence grade of the tibio-femoral joint on pre-operative radiographs were recorded. PFAs converted to TKAs at our institution were implanted for an average of 2.7years. The most common reason for conversion was pain, but most patients had significant tibio-femoral arthritis, as indicated by an average Kellgren & Lawrence grade of 2.6. The average tourniquet time for these conversions was 67min. These patients underwent an average of one additional surgery per PFA converted, and the infection rate of these conversions was approximately 14%. Success of PFA depends upon correct patient selection rather than implant failure or wear. Conversion of PFA to TKA is technically similar to primary TKA, with similar post-operative pain relief and range of motion. However, infection rates and complications requiring further surgery are more consistent with results seen in revision TKA. IV. Copyright © 2017 Elsevier B.V. All rights reserved.
Ghunmi, Lina Abu; Zeeman, Grietje; Fayyad, Manar; van Lier, Jules B
2011-02-01
Knowing the biodegradability characteristics of grey water constituents is imperative for a proper design and operation of a biological treatment system of grey water. This study characterizes the different COD fractions of dormitory grey water and investigates the effect of applying different conditions in the biodegradation test. The maximum aerobic and anaerobic biodegradability and conversion rate for the different COD fractions is determined. The results show that, on average, dormitory grey water COD fractions are 28% suspended, 32% colloidal and 40% dissolved. The studied factors incubation time, inoculum addition and temperature are influencing the determined biodegradability. The maximum biodegradability and biodegradation rate differ between different COD fractions, viz. COD(ss), COD(col) and COD(diss). The dissolved COD fraction is characterised by the lowest degradation rate, both for anaerobic and aerobic conditions. The maximum biodegradability for aerobic and anaerobic conditions is 86 and 70% respectively, whereas the first order conversion rate constant, k₂₀, is 0.119 and 0.005 day⁻¹, respectively. The anaerobic and aerobic conversion rates in relation to temperature can be described by the Arrhenius relation, with temperature coefficients of 1.069 and 1.099, respectively.
Penn, D L; Kohlmaier, J R; Corrigan, P W
2000-09-29
This study investigated the interpersonal factors (i.e., social skills, symptoms, perceived physical attractiveness) which are related to the stigma of schizophrenia. Social skills performance was assessed for 39 individuals with schizophrenia who participated in two role-plays with a confederate. Social skills ratings comprised 'overall social skill', 'meshing', 'clarity', and 'fluency' of speech, 'gaze', 'pleasantness' of conversation, 'involvement' in conversation, 'number of questions asked' during conversation, and 'perceived strangeness'. Symptomatology was assessed with the Brief Psychiatric Rating Scale. Ratings of perceived physical attractiveness were obtained by pausing the videotaped role-plays after the first 2s of the interaction. Ratings of 'social distance', based on an independent sample who observed the role-plays, were used as a proxy measure of stigma. The results showed that social distance was best statistically predicted by perceived strangeness, which in turn, was best statistically predicted by ratings of overall social skill. Negative symptoms appeared to have a more robust association with desired social distance than positive symptoms. Interpersonal factors, such as overall social skill, negative symptoms, and perceived strangeness, may contribute to stigma.
Kinesin-5, a mitotic microtubule-associated motor protein, modulates neuronal migration
Falnikar, Aditi; Tole, Shubha; Baas, Peter W.
2011-01-01
Kinesin-5 (also called Eg5 or kif11) is a homotetrameric motor protein that functions by modulating microtubule (MT)–MT interactions. In the case of mitosis, kinesin-5 slows the rate of separation of the half-spindles. In the case of the axon, kinesin-5 limits the frequency of transport of short MTs, and also limits the rate of axonal growth. Here we show that experimental inhibition of kinesin-5 in cultured migratory neurons results in a faster but more randomly moving neuron with a shorter leading process. As is the case with axons of stationary neurons, short MT transport frequency is notably enhanced in the leading process of the migratory neuron when kinesin-5 is inhibited. Conversely, overexpression of kinesin-5, both in culture and in developing cerebral cortex, causes migration to slow and even cease. Regions of anti-parallel MT organization behind the centrosome were shown to be especially rich in kinesin-5, implicating these regions as potential sites where kinesin-5 forces may be especially relevant. We posit that kinesin-5 acts as a “brake” on MT–MT interactions that modulates the advance of the entire MT apparatus. In so doing, kinesin-5 regulates the rate and directionality of neuronal migration and possibly the cessation of migration when the neuron reaches its destination. PMID:21411631
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horlait, D.; Clavier, N.; Szenknect, S.
2012-03-15
The dissolution of Ce{sub 1-x}Ln{sub x}O{sub 2-x/2} solid solutions was undertaken in various acid media in order to evaluate the effects of several physicochemical parameters such as chemical composition, temperature, and acidity on the reaction kinetics. The normalized dissolution rates (R{sub L,0}) were found to be strongly modified by the trivalent lanthanide incorporation rate, due to the presence of oxygen vacancies decreasing the samples cohesion. Conversely, the nature of the trivalent cation considered only weakly impacted the R{sub L,0} values. The dependence of the normalized dissolution rates on the temperature then appeared to be of the same order of magnitudemore » than that of chemical composition. Moreover, it allowed determining the corresponding activation energy (E{sub A} ≅ 60-85 kJ.mol{sup -1}) which accounts for a dissolution driven by surface-controlled reactions. A similar conclusion was made regarding the acidity of the solution: the partial order related to (H{sub 3}O{sup +}) reaching about 0.7. Finally, the prevailing effect of the incorporation of aliovalent cations in the fluorite-type CeO{sub 2} matrix on the dissolution kinetics precluded the observation of slight effects such as those linked to the complexing agents or to the crystal structure of the samples. (authors)« less
van der Werf, Marieke J; Bonfigli, Sandro; Hruba, Frantiska
2017-07-06
The Millennium Development Goals (MDG) provide targets for 2015. MDG 6 includes a target to reduce the tuberculosis (TB) death rate by 50% compared with 1990. We aimed to assess whether this target was reached by the European Union (EU) and European Economic Area countries. We used Eurostat causes of death data to assess whether the target was reached in the EU. We calculated the reduction in reported and adjusted death rates and the annual average percentage decline based on the available data. Between 1999 and 2014, the TB death rate decreased by 50%, the adjusted death rate by 56% and the annual average percentage decline was 5.43% (95% confidence interval 4.94-6.74) for the EU. Twenty of 26 countries reporting >5 TB deaths in the first reporting year reached the target of 50% reduction in adjusted death rate. The EU reached the MDG target of a 50% reduction of the TB death rate and also the annual average percentage decline was larger than the 2.73% needed to reach the target. The World Health Organization 'End TB Strategy' requires a further reduction of the number of TB deaths of 35% by 2020 compared to 2015, which will challenge TB prevention and care services in the EU.
Kumar, Bijandra; Atla, Veerendra; Brian, J Patrick; Kumari, Sudesh; Nguyen, Tu Quang; Sunkara, Mahendra; Spurgeon, Joshua M
2017-03-20
Electrochemical conversion of CO 2 into energy-dense liquids, such as formic acid, is desirable as a hydrogen carrier and a chemical feedstock. SnO x is one of the few catalysts that reduce CO 2 into formic acid with high selectivity but at high overpotential and low current density. We show that an electrochemically reduced SnO 2 porous nanowire catalyst (Sn-pNWs) with a high density of grain boundaries (GBs) exhibits an energy conversion efficiency of CO 2 -into-HCOOH higher than analogous catalysts. HCOOH formation begins at lower overpotential (350 mV) and reaches a steady Faradaic efficiency of ca. 80 % at only -0.8 V vs. RHE. A comparison with commercial SnO 2 nanoparticles confirms that the improved CO 2 reduction performance of Sn-pNWs is due to the density of GBs within the porous structure, which introduce new catalytically active sites. Produced with a scalable plasma synthesis technology, the catalysts have potential for application in the CO 2 conversion industry. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.