Sample records for conversion technology review

  1. A Historical Review of Brayton and Stirling Power Conversion Technologies for Space Applications

    NASA Technical Reports Server (NTRS)

    Mason, Lee S.; Schreiber, Jeffrey G.

    2007-01-01

    Dynamic power conversion technologies, such as closed Brayton and free-piston Stirling, offer many advantages for space power applications including high efficiency, long life, and attractive scaling characteristics. This paper presents a historical review of Brayton and Stirling power conversion technology for space and discusses on-going development activities in order to illustrate current technology readiness. The paper also presents a forecast of potential future space uses of these power technologies.

  2. SSTAC/ARTS review of the draft Integrated Technology Plan (ITP). Volume 3: Space power and thermal management

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Viewgraphs of briefings from the SSTAC/ARTS review of the draft integrated technology plan on thermal power and thermal management are presented. Topics covered include: space energy conversion research and technology; space photovoltaic energy conversion; chemical energy conversion and storage; thermal energy conversion; power management; thermal management; space nuclear power; high capacity power; surface power and thermal management; space platforms power and thermal management; and project SELENE.

  3. SSTAC/ARTS review of the draft Integrated Technology Plan (ITP). Volume 3: Space power and thermal management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Viewgraphs of briefings from the SSTAC/ARTS review of the draft integrated technology plan on thermal power and thermal management are presented. Topics covered include: space energy conversion research and technology; space photovoltaic energy conversion; chemical energy conversion and storage; thermal energy conversion; power management; thermal management; space nuclear power; high capacity power; surface power and thermal management; space platforms power and thermal management; and project SELENE.

  4. A summary of the status of biomass conversion technologies and opportunities for their use in developing countries

    NASA Astrophysics Data System (ADS)

    Waddle, D. B.; Perlack, R. D.; Wimberly, J.

    Biomass plays a significant role in energy use in developing countries: however, these resources are often used very inefficiently. Recent technology developments have made possible improved conversion efficiencies for utility scale technologies. These developments may be of interest in the wake of recent policy changes occurring in several developing countries, with respect to independent power production. Efforts are also being directed at developing biomass conversion technologies that can interface and/or compete with internal combustion engines for small, isolated loads. The technological status is reviewed of biomass conversion technologies appropriate for commercial, industrial, and small utility applications in developing countries. Market opportunities, constraints, and technology developments are also discussed.

  5. Thermochemical conversion of microalgal biomass into biofuels: a review.

    PubMed

    Chen, Wei-Hsin; Lin, Bo-Jhih; Huang, Ming-Yueh; Chang, Jo-Shu

    2015-05-01

    Following first-generation and second-generation biofuels produced from food and non-food crops, respectively, algal biomass has become an important feedstock for the production of third-generation biofuels. Microalgal biomass is characterized by rapid growth and high carbon fixing efficiency when they grow. On account of potential of mass production and greenhouse gas uptake, microalgae are promising feedstocks for biofuels development. Thermochemical conversion is an effective process for biofuel production from biomass. The technology mainly includes torrefaction, liquefaction, pyrolysis, and gasification. Through these conversion technologies, solid, liquid, and gaseous biofuels are produced from microalgae for heat and power generation. The liquid bio-oils can further be upgraded for chemicals, while the synthesis gas can be synthesized into liquid fuels. This paper aims to provide a state-of-the-art review of the thermochemical conversion technologies of microalgal biomass into fuels. Detailed conversion processes and their outcome are also addressed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. A summary of the status of biomass conversion technologies and opportunities for their use in Latin America

    NASA Astrophysics Data System (ADS)

    Waddle, D. B.; Perlack, R. D.

    1990-03-01

    Biomass plays a significant role in energy use in developing countries; however, these resources are often used very inefficiently. Recent technology developments have made possible improved conversion efficiencies for utility scale technologies. These developments may be of interest in the wake of recent policy changes occurring in Central America, with respect to independent power production. Efforts are also being directed at developing biomass conversion technologies that can interface and/or compete with internal combustion engines for small, isolated loads. This paper reviews the technological status of biomass conversion technologies appropriate for commercial, industrial, and small utility applications in developing countries, and in Latin America in particular. Market opportunities, constraints, and technology developments are also discussed.

  7. A summary of the status of biomass conversion technologies and opportunities for their use in developing countries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waddle, D.B.; Perlack, R.D.; Wimberly, J.

    1990-01-01

    Biomass plays a significant role in energy use in developing countries: however, these resources are often used very inefficiently. Recent technology developments have made possible improved conversion efficiencies for utility scale technologies. These developments may be of interest in the wake of recent policy changes occurring in several developing countries, with respect to independent power production. Efforts are also being directed at developing biomass conversion technologies that can interface and/or compete with internal combustion engines for small, isolated loads. This paper reviews the technological status of biomass conversion technologies appropriate for commercial, industrial, and small utility applications in developing countries.more » Market opportunities, constraints, and technology developments are also discussed. 25 refs., 1 fig., 1 tab.« less

  8. Direct conversion technology

    NASA Technical Reports Server (NTRS)

    Massier, P. F.; Bankston, C. P.; Fabris, G.; Kirol, L. D.

    1988-01-01

    The overall objective of the Direct Conversion Technology task is to develop an experimentally verified technology base for promising direct thermal-to-electric energy conversion systems that have potential application for energy conservation in the end-use sectors. This report contains progress of research on the Alkali Metal Thermal-to-Electric Converter (AMTEC), and on the Two-Phase Liquid-Metal MHD Electrical Generator (LMMHD) for the period January 1988 through December 1988. Research on these concepts was initiated during October 1987. In addition, status reviews and assessments are presented for thermomagnetic converter concepts and for thermoelastic converters (Nitinol heat engines). Reports prepared on previous occasions contain discussions on the following other direct conversion concepts: thermoelectric, pyroelectric, thermionic thermophotovoltaic and thermoacoustic; and also, more complete discussions of AMTEC and LMMHD systems. A tabulated summary of the various systems which have been reviewed thus far has been prepared. Some of the important technical research needs are listed and a schematic of each system is shown.

  9. Review of NASA programs in applying aerospace technology to energy

    NASA Technical Reports Server (NTRS)

    Schwenk, F. C.

    1981-01-01

    NASA's role in energy research and development, with the aid of aerospace technology, is reviewed. A brief history, which began in 1974 with studies of solar energy systems on earth, is presented, and the major energy programs, consisting of over 60 different projects, are described, and include solar terrestrial systems, conservation and fossil energy systems, and space utilization systems. Special attention is given to the Satellite Power System and the isolation of nuclear wastes in space. Emerging prospects for NASA programs in energy technology include bioenergy, and ocean thermal energy conversion, coal extraction and conversion technologies, and support to the nuclear industry in power plant systems safety.

  10. Advanced Radioisotope Power Conversion Technology Research and Development

    NASA Technical Reports Server (NTRS)

    Wong, Wayne A.

    2004-01-01

    NASA's Radioisotope Power Conversion Technology program is developing next generation power conversion technologies that will enable future missions that have requirements that cannot be met by either the ubiquitous photovoltaic systems or by current Radioisotope Power System (RPS) technology. Performance goals of advanced radioisotope power systems include improvement over the state-of-practice General Purpose Heat Source/Radioisotope Thermoelectric Generator by providing significantly higher efficiency to reduce the number of radioisotope fuel modules, and increase specific power (watts/kilogram). Other Advanced RPS goals include safety, long-life, reliability, scalability, multi-mission capability, resistance to radiation, and minimal interference with the scientific payload. NASA has awarded ten contracts in the technology areas of Brayton, Stirling, Thermoelectric, and Thermophotovoltaic power conversion including five development contracts that deal with more mature technologies and five research contracts. The Advanced RPS Systems Assessment Team includes members from NASA GRC, JPL, DOE and Orbital Sciences whose function is to review the technologies being developed under the ten Radioisotope Power Conversion Technology contracts and assess their relevance to NASA's future missions. Presented is an overview of the ten radioisotope power conversion technology contracts and NASA's Advanced RPS Systems Assessment Team.

  11. Solar Program Assessment: Environmental Factors - Ocean Thermal Energy Conversion.

    ERIC Educational Resources Information Center

    Energy Research and Development Administration, Washington, DC. Div. of Solar Energy.

    This report presents the environmental problems which may arise with the further development of Ocean Thermal Energy Conversion, one of the eight Federally-funded solar technologies. To provide a background for this environmental analysis, the history and basic concepts of the technology are reviewed, as are its economic and resource requirements.…

  12. Biomass CHP Catalog of Technologies

    EPA Pesticide Factsheets

    This report reviews the technical and economic characterization of biomass resources, biomass preparation, energy conversion technologies, power production systems, and complete integrated CHP systems.

  13. Plasma technology - a novel solution for CO2 conversion?

    PubMed

    Snoeckx, Ramses; Bogaerts, Annemie

    2017-10-02

    CO 2 conversion into value-added chemicals and fuels is considered as one of the great challenges of the 21st century. Due to the limitations of the traditional thermal approaches, several novel technologies are being developed. One promising approach in this field, which has received little attention to date, is plasma technology. Its advantages include mild operating conditions, easy upscaling, and gas activation by energetic electrons instead of heat. This allows thermodynamically difficult reactions, such as CO 2 splitting and the dry reformation of methane, to occur with reasonable energy cost. In this review, after exploring the traditional thermal approaches, we have provided a brief overview of the fierce competition between various novel approaches in a quest to find the most effective and efficient CO 2 conversion technology. This is needed to critically assess whether plasma technology can be successful in an already crowded arena. The following questions need to be answered in this regard: are there key advantages to using plasma technology over other novel approaches, and if so, what is the flip side to the use of this technology? Can plasma technology be successful on its own, or can synergies be achieved by combining it with other technologies? To answer these specific questions and to evaluate the potentials and limitations of plasma technology in general, this review presents the current state-of-the-art and a critical assessment of plasma-based CO 2 conversion, as well as the future challenges for its practical implementation.

  14. A Review of Tribomaterial Technology for Space Nuclear Power Systems

    NASA Technical Reports Server (NTRS)

    Stanford, Malcolm K.

    2007-01-01

    The National Aeronautics and Space Administration (NASA) has recently proposed a nuclear closed-cycle electric power conversion system for generation of 100-kW of electrical power for space exploration missions. A critical issue is the tribological performance of sliding components within the power conversion unit that will be exposed to neutron radiation. This paper presents a review of the main considerations that have been made in the selection of solid lubricants for similar applications in the past as well as a recommendations for continuing development of the technology.

  15. Thin film solar cells: research in an industrial perspective.

    PubMed

    Edoff, Marika

    2012-01-01

    Electricity generation by photovoltaic conversion of sunlight is a technology in strong growth. The thin film technology is taking market share from the dominant silicon wafer technology. In this article, the market for photovoltaics is reviewed, the concept of photovoltaic solar energy conversion is discussed and more details are given about the present technological limitations of thin film solar cell technology. Special emphasis is given for solar cells which employ Cu(In,Ga)Se(2) and Cu(2)ZnSn(S,Se)(4) as the sunlight-absorbing layer.

  16. On Technology and Schools: A Conversation with Chris Dede.

    ERIC Educational Resources Information Center

    O'Neil, John

    1995-01-01

    According to futurist/educational technology expert Chris Dede, new technologies will revolutionize education only when used to support new models of teaching and learning. Grafting technological solutions onto antiquated structures and learning approaches is misguided. Sidebars explain schools' technology access problems and review Clifford…

  17. Direct conversion technology: Annual summary report CY 1988

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Massier, P.F.; Bankston, C.P.; Fabris, G.

    1988-12-01

    The overall objective of the Direct Conversion Technology task is to develop an experimentally verified technology base for promising direct thermal-to-electric energy conversion systems that have potential application for energy conservation in the end-use sectors. This report contains progress of research on the Alkali Metal Thermal-to-Electric Converter (AMTEC), and on the Two-Phase Liquid-Metal MHD Electrical Generator (LMMHD) for the period January 1988 through December 1988. Research on these concepts was initiated during October 1987. In addition, status reviews and assessments are presented for thermomagnetic converter concepts and for thermoelastic converters (Nitinol heat engines). Reports prepared on previous occasions contain discussionsmore » on the following other direct conversion concepts: thermoelectric, pyroelectric, thermionic thermophotovoltaic and thermoacoustic; and also, more complete discussions of AMTEC and LMMHD systems. A tabulated summary of the various systems which have been reviewed thus far has been prepared. Some of the important technical research needs are listed and a schematic of each system is shown. These tabulations are included herein as figures. 43 refs., 26 figs., 1 tab.« less

  18. Mixed waste paper to ethanol fuel. A technology, market, and economic assessment for Washington

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-01-01

    The objectives of this study were to evaluate the use of mixed waste paper for the production of ethanol fuels and to review the available conversion technologies, and assess developmental status, current and future cost of production and economics, and the market potential. This report is based on the results of literature reviews, telephone conversations, and interviews. Mixed waste paper samples from residential and commercial recycling programs and pulp mill sludge provided by Weyerhauser were analyzed to determine the potential ethanol yields. The markets for ethanol fuel and the economics of converting paper into ethanol were investigated.

  19. Thermoelectric Energy Conversion: Future Directions and Technology Development Needs

    NASA Technical Reports Server (NTRS)

    Fleurial, Jean-Pierre

    2007-01-01

    This viewgraph presentation reviews the process of thermoelectric energy conversion along with key technology needs and challenges. The topics include: 1) The Case for Thermoelectrics; 2) Advances in Thermoelectrics: Investment Needed; 3) Current U.S. Investment (FY07); 4) Increasing Thermoelectric Materials Conversion Efficiency Key Science Needs and Challenges; 5) Developing Advanced TE Components & Systems Key Technology Needs and Challenges; 6) Thermoelectrics; 7) 200W Class Lightweight Portable Thermoelectric Generator; 8) Hybrid Absorption Cooling/TE Power Cogeneration System; 9) Major Opportunities in Energy Industry; 10) Automobile Waste Heat Recovery; 11) Thermoelectrics at JPL; 12) Recent Advances at JPL in Thermoelectric Converter Component Technologies; 13) Thermoelectrics Background on Power Generation and Cooling Operational Modes; 14) Thermoelectric Power Generation; and 15) Thermoelectric Cooling.

  20. Food waste-to-energy conversion technologies: current status and future directions.

    PubMed

    Pham, Thi Phuong Thuy; Kaushik, Rajni; Parshetti, Ganesh K; Mahmood, Russell; Balasubramanian, Rajasekhar

    2015-04-01

    Food waste represents a significantly fraction of municipal solid waste. Proper management and recycling of huge volumes of food waste are required to reduce its environmental burdens and to minimize risks to human health. Food waste is indeed an untapped resource with great potential for energy production. Utilization of food waste for energy conversion currently represents a challenge due to various reasons. These include its inherent heterogeneously variable compositions, high moisture contents and low calorific value, which constitute an impediment for the development of robust, large scale, and efficient industrial processes. Although a considerable amount of research has been carried out on the conversion of food waste to renewable energy, there is a lack of comprehensive and systematic reviews of the published literature. The present review synthesizes the current knowledge available in the use of technologies for food-waste-to-energy conversion involving biological (e.g. anaerobic digestion and fermentation), thermal and thermochemical technologies (e.g. incineration, pyrolysis, gasification and hydrothermal oxidation). The competitive advantages of these technologies as well as the challenges associated with them are discussed. In addition, the future directions for more effective utilization of food waste for renewable energy generation are suggested from an interdisciplinary perspective. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Adaptive Technologies for Accommodating Persons with Disabilities.

    ERIC Educational Resources Information Center

    Berliss, Jane; And Others

    1993-01-01

    Eight articles review the progress achieved in making library computing technologies and library services accessible to people with disabilities. Adaptive technologies, automated conversion into Braille, and successful programs that demonstrate compliance with the American with Disabilities Act are described. A resource list is included. (EA)

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryant, M.; Starkey, A.H.; Dick-Peddie, W.A.

    A brief overview of the present day geothermal applications for hydrothermal electrical generation and direct heat use and their environmental implications is provided. Technologies and environmental impacts are considered at all points on the pathway of development resource exploration; well field, plant and transmission line construction; and plant operation. The technologies for electrical generation-direct, dry steam conversion; separated steam conversion; single-flash conversion, separated-steam/single-flash conversion and binary cycle conversion and the technologies for direct heat use - direct use of geothermal waters, surface heat exhanger, down-the hole heat exchanger and heat pump are described. A summary of the geothermal technologies plannedmore » or in operation within New Mexico geothermal areas is provided. A review of regulations that affect geothermal development and its related environmental impact in New Mexico is presented. The regulatory pathway, both state and federal, of geothermal exploration after the securing of appropriate leases, development, and construction and implementation of a geothermal facility are described. Six categories (Geophysical, Water, Air, Noise, Biota and Socioeconomics) were selected for environmental assessment. The data available is described.« less

  3. Recent progress in solution plasma-synthesized-carbon-supported catalysts for energy conversion systems

    NASA Astrophysics Data System (ADS)

    Lun Li, Oi; Lee, Hoonseung; Ishizaki, Takahiro

    2018-01-01

    Carbon-based materials have been widely utilized as the electrode materials in energy conversion and storage technologies, such as fuel cells and metal-air batteries. In these systems, the oxygen reduction reaction is an important step that determines the overall performance. A novel synthesis route, named the solution plasma process, has been recently utilized to synthesize various types of metal-based and heteroatom-doped carbon catalysts. In this review, we summarize cutting-edge technologies involving the synthesis and modeling of carbon-supported catalysts synthesized via solution plasma process, followed by current progress on the electrocatalytic performance of these catalysts. This review provides the fundamental and state-of-the-art performance of solution-plasma-synthesized electrode materials, as well as the remaining scientific and technological challenges for this process.

  4. Molecular approaches to solar energy conversion: the energetic cost of charge separation from molecular-excited states.

    PubMed

    Durrant, James R

    2013-08-13

    This review starts with a brief overview of the technological potential of molecular-based solar cell technologies. It then goes on to focus on the core scientific challenge associated with using molecular light-absorbing materials for solar energy conversion, namely the separation of short-lived, molecular-excited states into sufficiently long-lived, energetic, separated charges capable of generating an external photocurrent. Comparisons are made between different molecular-based solar cell technologies, with particular focus on the function of dye-sensitized photoelectrochemical solar cells as well as parallels with the function of photosynthetic reaction centres. The core theme of this review is that generating charge carriers with sufficient lifetime and a high quantum yield from molecular-excited states comes at a significant energetic cost-such that the energy stored in these charge-separated states is typically substantially less than the energy of the initially generated excited state. The role of this energetic loss in limiting the efficiency of solar energy conversion by such devices is emphasized, and strategies to minimize this energy loss are compared and contrasted.

  5. Conversations about Science Education: A Retrospective of Science Education Research in "CJSTME"

    ERIC Educational Resources Information Center

    Pegg, Jerine; Wiseman, Dawn; Brown, Carol

    2015-01-01

    This review focuses on science education contributions to the "Canadian Journal of Science, Mathematics and Technology Education" (CJSMTE) from January 2001 through December 2014. Through a combination of content and citation analysis, we examine the journal as a location for conversations around specific themes and broader ideas related…

  6. Fair Oaks Dairy Farms Cellulosic Ethanol Technology Review Summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrew Wold; Robert Divers

    2011-06-23

    At Fair Oaks Dairy, dried manure solids (''DMS'') are currently used as a low value compost. United Power was engaged to evaluate the feasibility of processing these DMS into ethanol utilizing commercially available cellulosic biofuels conversion platforms. The Fair Oaks Dairy group is transitioning their traditional ''manure to methane'' mesophilic anaerobic digester platform to an integrated bio-refinery centered upon thermophilic digestion. Presently, the Digested Manure Solids (DMS) are used as a low value soil amendment (compost). United Power evaluated the feasibility of processing DMS into higher value ethanol utilizing commercially available cellulosic biofuels conversion platforms. DMS was analyzed and overmore » 100 potential technology providers were reviewed and evaluated. DMS contains enough carbon to be suitable as a biomass feedstock for conversion into ethanol by gasification technology, or as part of a conversion process that would include combined heat and power. In the first process, 100% of the feedstock is converted into ethanol. In the second process, the feedstock is combusted to provide heat to generate electrical power supporting other processes. Of the 100 technology vendors evaluated, a short list of nine technology providers was developed. From this, two vendors were selected as finalists (one was an enzymatic platform and one was a gasification platform). Their selection was based upon the technical feasibility of their systems, engineering expertise, experience in commercial or pilot scale operations, the ability or willingness to integrate the system into the Fair Oaks Biorefinery, the know-how or experience in producing bio-ethanol, and a clear path to commercial development.« less

  7. Direct digital conversion detector technology

    NASA Astrophysics Data System (ADS)

    Mandl, William J.; Fedors, Richard

    1995-06-01

    Future imaging sensors for the aerospace and commercial video markets will depend on low cost, high speed analog-to-digital (A/D) conversion to efficiently process optical detector signals. Current A/D methods place a heavy burden on system resources, increase noise, and limit the throughput. This paper describes a unique method for incorporating A/D conversion right on the focal plane array. This concept is based on Sigma-Delta sampling, and makes optimum use of the active detector real estate. Combined with modern digital signal processors, such devices will significantly increase data rates off the focal plane. Early conversion to digital format will also decrease the signal susceptibility to noise, lowering the communications bit error rate. Computer modeling of this concept is described, along with results from several simulation runs. A potential application for direct digital conversion is also reviewed. Future uses for this technology could range from scientific instruments to remote sensors, telecommunications gear, medical diagnostic tools, and consumer products.

  8. Scope of Algae as Third Generation Biofuels

    PubMed Central

    Behera, Shuvashish; Singh, Richa; Arora, Richa; Sharma, Nilesh Kumar; Shukla, Madhulika; Kumar, Sachin

    2015-01-01

    An initiative has been taken to develop different solid, liquid, and gaseous biofuels as the alternative energy resources. The current research and technology based on the third generation biofuels derived from algal biomass have been considered as the best alternative bioresource that avoids the disadvantages of first and second generation biofuels. Algal biomass has been investigated for the implementation of economic conversion processes producing different biofuels such as biodiesel, bioethanol, biogas, biohydrogen, and other valuable co-products. In the present review, the recent findings and advance developments in algal biomass for improved biofuel production have been explored. This review discusses about the importance of the algal cell contents, various strategies for product formation through various conversion technologies, and its future scope as an energy security. PMID:25717470

  9. Technology for satellite power conversion

    NASA Technical Reports Server (NTRS)

    Campbell, D. P.; Gouker, M. A.; Summers, C.; Gallagher, J. J.

    1984-01-01

    Techniques for satellite electromagnetic energy transfer and power conversion at millimeter and infrared wavelengths are discussed. The design requirements for rectenna receiving elements are reviewed for both coherent radiation sources and Earth thermal infrared emission. Potential power transmitters including gyrotrons, free electron lasers, and CO2 lasers are assessed along with the rectification properties of metal-oxide metal diode power converters.

  10. Overview study of Space Power Technologies for the advanced energetics program. [spacecraft

    NASA Technical Reports Server (NTRS)

    Taussig, R.; Gross, S.; Millner, A.; Neugebauer, M.; Phillips, W.; Powell, J.; Schmidt, E.; Wolf, M.; Woodcock, G.

    1981-01-01

    Space power technologies are reviewed to determine the state-of-the-art and to identify advanced or novel concepts which promise large increases in performance. The potential for incresed performance is judged relative to benchmarks based on technologies which have been flight tested. Space power technology concepts selected for their potentially high performance are prioritized in a list of R & D topical recommendations for the NASA program on Advanced Energetics. The technology categories studied are solar collection, nuclear power sources, energy conversion, energy storage, power transmission, and power processing. The emphasis is on electric power generation in space for satellite on board electric power, for electric propulsion, or for beamed power to spacecraft. Generic mission categories such as low Earth orbit missions and geosynchronous orbit missions are used to distinguish general requirements placed on the performance of power conversion technology. Each space power technology is judged on its own merits without reference to specific missions or power systems. Recommendations include 31 space power concepts which span the entire collection of technology categories studied and represent the critical technologies needed for higher power, lighter weight, more efficient power conversion in space.

  11. Use of mechanical refining to improve the production of low-cost sugars from lignocellulosic biomass.

    PubMed

    Park, Junyeong; Jones, Brandon; Koo, Bonwook; Chen, Xiaowen; Tucker, Melvin; Yu, Ju-Hyun; Pschorn, Thomas; Venditti, Richard; Park, Sunkyu

    2016-01-01

    Mechanical refining is widely used in the pulp and paper industry to enhance the end-use properties of products by creating external fibrillation and internal delamination. This technology can be directly applied to biochemical conversion processes. By implementing mechanical refining technology, biomass recalcitrance to enzyme hydrolysis can be overcome and carbohydrate conversion can be enhanced with commercially attractive levels of enzymes. In addition, chemical and thermal pretreatment severity can be reduced to achieve the same level of carbohydrate conversion, which reduces pretreatment cost and results in lower concentrations of inhibitors. Refining is versatile and a commercially proven technology that can be operated at process flows of ∼ 1500 dry tons per day of biomass. This paper reviews the utilization of mechanical refining in the pulp and paper industry and summarizes the recent development in applications for biochemical conversion, which potentially make an overall biorefinery process more economically viable. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Research and technology, Lewis Research Center

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Aeronautics, space, and terrestrial energy research is covered. Energy conversion processes and systems for propulsion in the atmosphere, in space, and on the ground are reviewed. Electric energy generation and storage for both terrestrial and space applications and materials and structures for such systems are also reviewed.

  13. Recent Progress on Integrated Energy Conversion and Storage Systems.

    PubMed

    Luo, Bin; Ye, Delai; Wang, Lianzhou

    2017-09-01

    Over the last few decades, there has been increasing interest in the design and construction of integrated energy conversion and storage systems (IECSSs) that can simultaneously capture and store various forms of energies from nature. A large number of IECSSs have been developed with different combination of energy conversion technologies such as solar cells, mechanical generators and thermoelectric generators and energy storage devices such as rechargeable batteries and supercapacitors. This review summarizes the recent advancements to date of IECSSs based on different energy sources including solar, mechanical, thermal as well as multiple types of energies, with a special focus on the system configuration and working mechanism. With the rapid development of new energy conversion and storage technologies, innovative high performance IECSSs are of high expectation to be realised for diverse practical applications in the near future.

  14. Recent Progress on Integrated Energy Conversion and Storage Systems

    PubMed Central

    Luo, Bin; Ye, Delai

    2017-01-01

    Over the last few decades, there has been increasing interest in the design and construction of integrated energy conversion and storage systems (IECSSs) that can simultaneously capture and store various forms of energies from nature. A large number of IECSSs have been developed with different combination of energy conversion technologies such as solar cells, mechanical generators and thermoelectric generators and energy storage devices such as rechargeable batteries and supercapacitors. This review summarizes the recent advancements to date of IECSSs based on different energy sources including solar, mechanical, thermal as well as multiple types of energies, with a special focus on the system configuration and working mechanism. With the rapid development of new energy conversion and storage technologies, innovative high performance IECSSs are of high expectation to be realised for diverse practical applications in the near future. PMID:28932673

  15. Mixed waste paper to ethanol fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-01-01

    The objectives of this study were to evaluate the use of mixed waste paper for the production of ethanol fuels and to review the available conversion technologies, and assess developmental status, current and future cost of production and economics, and the market potential. This report is based on the results of literature reviews, telephone conversations, and interviews. Mixed waste paper samples from residential and commercial recycling programs and pulp mill sludge provided by Weyerhauser were analyzed to determine the potential ethanol yields. The markets for ethanol fuel and the economics of converting paper into ethanol were investigated.

  16. Crucial Issues in the Applied Analysis of Verbal Behavior: Reflections on Crucial Conversations: Tools for Talking When the Stakes Are High

    PubMed Central

    Critchfield, Thomas S

    2010-01-01

    A popular-press self-help manual is reviewed with an eye toward two issues. First, the popularity of such books documents the existence of considerable demand for technologies that address the everyday problems (in the present case, troublesome conversations) of nondisordered individuals. Second, many ideas invoked in popular-press books may be interpretable within an analysis of verbal behavior, although much more than casual translation is required to develop technologies that outperform self-help manuals. I discuss several challenges relevant to research, theory refinement, technology development, and dissemination, and conclude that behavioral alternatives to existing popular-press resources may not emerge anytime soon. PMID:22477467

  17. Potential Impacts of Hydrokinetic and Wave Energy Conversion Technologies on Aquatic Environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Čada, Glenn F.

    2007-04-01

    A new generation of hydropower technologies, the kinetic hydro and wave energy conversion devices, offers the possibility of generating electricity from the movements of water, without the need for dams and diversions. The Energy Policy Act of 2005 encouraged the development of these sources of renewable energy in the United States, and there is growing interest in deploying them globally. The technologies that would extract electricity from free-flowing streams, estuaries, and oceans have not been widely tested. Consequently, the U.S. Department of Energy convened a workshop to (1) identify the varieties of hydrokinetic energy and wave energy conversion devices andmore » their stages of development, (2) identify where these technologies can best operate, (3) identify the potential environmental issues associated with these technologies and possible mitigation measures, and (4) develop a list of research needs and/or practical solutions to address unresolved environmental issues. The article reviews the results of that workshop, focusing on potential effects on freshwater, estuarine, and marine ecosystems, and we describe recent national and international developments.« less

  18. Crucial Issues in the Applied Analysis of Verbal Behavior: Reflections on "Crucial Conversations: Tools for Talking when the Stakes Are High"

    ERIC Educational Resources Information Center

    Critchfield, Thomas S.

    2010-01-01

    A popular-press self-help manual is reviewed with an eye toward two issues. First, the popularity of such books documents the existence of considerable demand for technologies that address the everyday problems (in the present case, troublesome conversations) of nondisordered individuals. Second, many ideas invoked in popular-press books may be…

  19. JPL CMOS Active Pixel Sensor Technology

    NASA Technical Reports Server (NTRS)

    Fossum, E. R.

    1995-01-01

    This paper will present the JPL-developed complementary metal- oxide-semiconductor (CMOS) active pixel sensor (APS) technology. The CMOS APS has achieved performance comparable to charge coupled devices, yet features ultra low power operation, random access readout, on-chip timing and control, and on-chip analog to digital conversion. Previously published open literature will be reviewed.

  20. Polymer:fullerene solar cells: materials, processing issues, and cell layouts to reach power conversion efficiency over 10%, a review

    NASA Astrophysics Data System (ADS)

    Etxebarria, Ikerne; Ajuria, Jon; Pacios, Roberto

    2015-01-01

    In spite of the impressive development achieved by organic photovoltaics throughout the last decades, especially in terms of reported power conversion efficiencies, there are still important technological and fundamental obstacles to circumvent before they can be implemented into reliable and long-lasting applications. Regarding device processing, the synthesis of highly soluble polymeric semiconductors first, and then fullerene derivatives, was initially considered as an important breakthrough that would definitely change the fabrication of photovoltaics once and for all. The potential and the expectation raised by this technology is such that it is very difficult to keep track of the most significant progresses being now published in different and even monographic journals. In this paper, we review the development of polymeric solar cells from its origin to the most efficient devices published to date. We separate these achievements into three different categories traditionally followed by the scientific community to push devices over 10% power conversion efficiency: active materials, strategies-fabrication/processing procedures-that can mainly modify the active film morphology, and all the different cell layout/architectures that have been used in order to extract as high a photocurrent as possible from the Sun. The synthesis of new donors, the use of additives and postprocessing techniques, buffer interlayers, inverted and tandem designs are some of the most important aspects that are reviewed in detail in this paper. All have equally contributed to develop this technology and bring it at the doors of commercialization.

  1. Review on the conversion of thermoacoustic power into electricity.

    PubMed

    Timmer, Michael A G; de Blok, Kees; van der Meer, Theo H

    2018-02-01

    Thermoacoustic engines convert heat energy into high amplitude acoustic waves and subsequently into electric power. This article provides a review of the four main methods to convert the (thermo)acoustic power into electricity. First, loudspeakers and linear alternators are discussed in a section on electromagnetic devices. This is followed by sections on piezoelectric transducers, magnetohydrodynamic generators, and bidirectional turbines. Each segment provides a literature review of the given technology for the field of thermoacoustics, focusing on possible configurations, operating characteristics, output performance, and analytical and numerical methods to study the devices. This information is used as an input to discuss the performance and feasibility of each method, and to identify challenges that should be overcome for a more successful implementation in thermoacoustic engines. The work is concluded by a comparison of the four technologies, concentrating on the possible areas of application, the conversion efficiency, maximum electrical power output and more generally the suggested focus for future work in the field.

  2. Energy harvesting: an integrated view of materials, devices and applications.

    PubMed

    Radousky, H B; Liang, H

    2012-12-21

    Energy harvesting refers to the set of processes by which useful energy is captured from waste, environmental, or mechanical sources and is converted into a usable form. The discipline of energy harvesting is a broad topic that includes established methods and materials such as photovoltaics and thermoelectrics, as well as more recent technologies that convert mechanical energy, magnetic energy and waste heat to electricity. This article will review various state-of-the-art materials and devices for direct energy conversion and in particular will include multistep energy conversion approaches. The article will highlight the nano-materials science underlying energy harvesting principles and devices, but also include more traditional bulk processes and devices as appropriate and synergistic. Emphasis is placed on device-design innovations that lead to higher efficiency energy harvesting or conversion technologies ranging from the cm/mm-scale down to MEMS/NEMS (micro- and nano-electromechanical systems) devices. Theoretical studies are reviewed, which address transport properties, crystal chemistry, thermodynamic analysis, energy transfer, system efficiency and device operation. New developments in experimental methods; device design and fabrication; nanostructured materials fabrication; materials properties; and device performance measurement techniques are discussed.

  3. Energy harvesting: an integrated view of materials, devices and applications

    NASA Astrophysics Data System (ADS)

    Radousky, H. B.; Liang, H.

    2012-12-01

    Energy harvesting refers to the set of processes by which useful energy is captured from waste, environmental, or mechanical sources and is converted into a usable form. The discipline of energy harvesting is a broad topic that includes established methods and materials such as photovoltaics and thermoelectrics, as well as more recent technologies that convert mechanical energy, magnetic energy and waste heat to electricity. This article will review various state-of-the-art materials and devices for direct energy conversion and in particular will include multistep energy conversion approaches. The article will highlight the nano-materials science underlying energy harvesting principles and devices, but also include more traditional bulk processes and devices as appropriate and synergistic. Emphasis is placed on device-design innovations that lead to higher efficiency energy harvesting or conversion technologies ranging from the cm/mm-scale down to MEMS/NEMS (micro- and nano-electromechanical systems) devices. Theoretical studies are reviewed, which address transport properties, crystal chemistry, thermodynamic analysis, energy transfer, system efficiency and device operation. New developments in experimental methods; device design and fabrication; nanostructured materials fabrication; materials properties; and device performance measurement techniques are discussed.

  4. Silicon nanowires for photovoltaic solar energy conversion.

    PubMed

    Peng, Kui-Qing; Lee, Shuit-Tong

    2011-01-11

    Semiconductor nanowires are attracting intense interest as a promising material for solar energy conversion for the new-generation photovoltaic (PV) technology. In particular, silicon nanowires (SiNWs) are under active investigation for PV applications because they offer novel approaches for solar-to-electric energy conversion leading to high-efficiency devices via simple manufacturing. This article reviews the recent developments in the utilization of SiNWs for PV applications, the relationship between SiNW-based PV device structure and performance, and the challenges to obtaining high-performance cost-effective solar cells.

  5. Research progress of infrared detecting and display integrated device based on infrared-visible up-conversion technology

    NASA Astrophysics Data System (ADS)

    Xu, Junfeng; Li, Weile; He, Bo; Wang, Haowei; Song, Yong; Yang, Shengyi; Ni, Guoqiang

    2018-01-01

    Infrared detecting and display device (IR-DDD) is a newly developed optical up-conversion device that integrates the light-emitting diode (LED) onto the infrared (IR) photo-detector, in order to convert IR light into the carriers photo-generated in detection materials and inject them into LED to emit visible light. This IR-DDD can achieve the direct up-conversion from IR ray to visible light, showing the considerable potential in night-vision application. This paper attempts a review of its working principle and current research progresses.

  6. Digitization of Full-Text Documents Before Publishing on the Internet: A Case Study Reviewing the Latest Optical Character Recognition Technologies.

    ERIC Educational Resources Information Center

    McClean, Clare M.

    1998-01-01

    Reviews strengths and weaknesses of five optical character recognition (OCR) software packages used to digitize paper documents before publishing on the Internet. Outlines options available and stages of the conversion process. Describes the learning experience of Eurotext, a United Kingdom-based electronic libraries project (eLib). (PEN)

  7. Mission analysis for the federal fuels from biomass program. Volume IV. Termochemical conversion of biomass to fuels and chemicals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kohan, S.M.; Barkhordar, P.M.

    1979-01-01

    The thermochemical conversion of biomass feedstocks generally denotes technologies that use elevated temperatures to convert the fixed carbon content of biomass materials to produce other, more useful energy forms. Examples are combustion to produce heat, steam, electricity, or combinations of these; pyrolysis to produce gas (low- or intermediate-Btu), pyrolytic liquids and chemicals, and char; gasification to produce low or intermediate Btu gas (and, from IBG, additional products such as SNG, ammonia, methanol, or Fischer-Tropsch liquids); and liquefaction to produce heavy fuel oil or, with upgrading, lighter-boiling liquid products such as distillates, light fuel oils, or gasoline. This section discusses themore » selection of the feedstock used in the analysis of thermochemical conversion technologies. The following sections present detailed technical and economic evaluations of biomass conversion to electricity and steam by combustion, SNG by gasification and methanation, methanol by gasification and synthesis, oil by catalytic liquefaction, oil and char by pyrolysis, and ammonia by gasification and synthesis. The conversion options were reviewed with DOE for approval at the start of the project.« less

  8. The status of power supplies for primary electric propulsion in the U.S.A.

    NASA Technical Reports Server (NTRS)

    Jones, R. M.; Scott-Monck, J. A.

    1984-01-01

    This paper reviews the status of and requirements on solar electric and nuclear electric power supplies for primary electric propulsion missions. The power supply requirements of power level, specific mass (kg/kWe) and lifetime are defined as a function of the mission and electric propulsion system characteristics for planetary missions. The technology status of planar and concentrator arrays is discussed. Nuclear reactors and thermoelectric, thermionic, Brayton and Rankine conversion technologies are reviewed, as well as recent nuclear power system design concepts and program activity. Technology projections for power supplies applicable to primary electric propulsion missions are included.

  9. Advances in graphene-based semiconductor photocatalysts for solar energy conversion: fundamentals and materials engineering.

    PubMed

    Xie, Xiuqiang; Kretschmer, Katja; Wang, Guoxiu

    2015-08-28

    Graphene-based semiconductor photocatalysis has been regarded as a promising technology for solar energy storage and conversion. In this review, we summarized recent developments of graphene-based photocatalysts, including preparation of graphene-based photocatalysts, typical key advances in the understanding of graphene functions for photocatalytic activity enhancement and methodologies to regulate the electron transfer efficiency in graphene-based composite photocatalysts, by which we hope to offer enriched information to harvest the utmost fascinating properties of graphene as a platform to construct efficient graphene-based composite photocatalysts for solar-to-energy conversion.

  10. Postextraction Separation, On-Board Storage, and Catalytic Conversion of Methane in Natural Gas: A Review.

    PubMed

    Saha, Dipendu; Grappe, Hippolyte A; Chakraborty, Amlan; Orkoulas, Gerassimos

    2016-10-12

    In today's perspective, natural gas has gained considerable attention, due to its low emission, indigenous availability, and improvement in the extraction technology. Upon extraction, it undergoes several purification protocols including dehydration, sweetening, and inert rejection. Although purification is a commercially established technology, several drawbacks of the current process provide an essential impetus for developing newer separation protocols, most importantly, adsorption and membrane separation. This Review summarizes the needs of natural gas separation, gives an overview of the current technology, and provides a detailed discussion of the progress in research on separation and purification of natural gas including the benefits and drawbacks of each of the processes. The transportation sector is another growing sector of natural gas utilization, and it requires an efficient and safe on-board storage system. Compressed natural gas (CNG) and liquefied natural gas (LNG) are the most common forms in which natural gas can be stored. Adsorbed natural gas (ANG) is an alternate storage system of natural gas, which is advantageous as compared to CNG and LNG in terms of safety and also in terms of temperature and pressure requirements. This Review provides a detailed discussion on ANG along with computation predictions. The catalytic conversion of methane to different useful chemicals including syngas, methanol, formaldehyde, dimethyl ether, heavier hydrocarbons, aromatics, and hydrogen is also reviewed. Finally, direct utilization of methane onto fuel cells is also discussed.

  11. Chemical Looping Technology: Oxygen Carrier Characteristics.

    PubMed

    Luo, Siwei; Zeng, Liang; Fan, Liang-Shih

    2015-01-01

    Chemical looping processes are characterized as promising carbonaceous fuel conversion technologies with the advantages of manageable CO2 capture and high energy conversion efficiency. Depending on the chemical looping reaction products generated, chemical looping technologies generally can be grouped into two types: chemical looping full oxidation (CLFO) and chemical looping partial oxidation (CLPO). In CLFO, carbonaceous fuels are fully oxidized to CO2 and H2O, as typically represented by chemical looping combustion with electricity as the primary product. In CLPO, however, carbonaceous fuels are partially oxidized, as typically represented by chemical looping gasification with syngas or hydrogen as the primary product. Both CLFO and CLPO share similar operational features; however, the optimum process configurations and the specific oxygen carriers used between them can vary significantly. Progress in both CLFO and CLPO is reviewed and analyzed with specific focus on oxygen carrier developments that characterize these technologies.

  12. Nuclear electric propulsion technologies - Overview of the NASA/DoE/DoD Nuclear Electric Propulsion Workshop

    NASA Technical Reports Server (NTRS)

    Barnett, John W.

    1991-01-01

    Nuclear propulsion technology offers substantial benefits to the ambitious piloted and robotic solar system exploration missions of the Space Exploration Initiative (SEI). This paper summarizes a workshop jointly sponsored by NASA, DoE, and DoD to assess candidate nuclear electric propulsion technologies. Twenty-one power and propulsion concepts are reviewed. Nuclear power concepts include solid and gaseous fuel concepts, with static and dynamic power conversion. Propulsion concepts include steady state and pulsed electromagnetic engines, a pulsed electrothermal engine, and a steady state electrostatic engine. The technologies vary widely in maturity. The workshop review panels concluded that compelling benefits would accrue from the development of nuclear electric propulsion systems, and that a focused, well-funded program is required to prepare the technologies for SEI missions.

  13. EDITORIAL: Non-thermal plasma-assisted fuel conversion for green chemistry Non-thermal plasma-assisted fuel conversion for green chemistry

    NASA Astrophysics Data System (ADS)

    Nozaki, Tomohiro; Gutsol, Alexander

    2011-07-01

    This special issue is based on the symposium on Non-thermal Plasma Assisted Fuel Conversion for Green Chemistry, a part of the 240th ACS National Meeting & Exposition held in Boston, MA, USA, 22-26 August 2010. Historically, the Division of Fuel Chemistry of the American Chemical Society (ACS) has featured three plasma-related symposia since 2000, and has launched special issues in Catalysis Today on three occasions: 'Catalyst Preparation using Plasma Technologies', Fall Meeting, Washington DC, USA, 2000. Special issue in Catalysis Today 72 (3-4) with 12 peer-reviewed articles. 'Plasma Technology and Catalysis', Spring Meeting, New Orleans, LA, USA, 2003. Special issue in Catalysis Today 89 (1-2) with more than 30 peer-reviewed articles. 'Utilization of Greenhouse Gases II' (partly focused on plasma-related technologies), Spring Meeting, Anaheim, CA, USA, 2004. Special issue in Catalysis Today 98 (4) with 25 peer-reviewed articles. This time, selected presentations are published in this Journal of Physics D: Applied Physics special issue. An industrial material and energy conversion technology platform is established on thermochemical processes including various catalytic reactions. Existing industry-scale technology is already well established; nevertheless, further improvement in energy efficiency and material saving has been continuously demanded. Drastic reduction of CO2 emission is also drawing keen attention with increasing recognition of energy and environmental issues. Green chemistry is a rapidly growing research field, and frequently highlights renewable bioenergy, bioprocesses, solar photocatalysis of water splitting, and regeneration of CO2 into useful chemicals. We would also like to emphasize 'plasma catalysis' of hydrocarbon resources as an important part of the innovative next-generation green technologies. The peculiarity of non-thermal plasma is that it can generate reactive species almost independently of reaction temperature. Plasma-generated reactive species are used to initiate chemical reactions at unexpectedly lower temperatures than conventional thermochemical reactions, leading to non-equilibrium product distribution or creating unconventional reaction pathways. When non-thermal plasma is combined with catalysts, a synergistic effect is frequently observed. Such unique properties of non-thermal plasma are expected to contribute excellent control over process parameters that meet the need for energy saving, environment protection, and material preservation. This special issue consists of eleven peer-reviewed papers including two invited publications. Professors Alexander Fridman and Alexander Rabinovich from Drexel University, and Dr Gutsol from the Chevron Energy Technology Company present a critical review of various industry-oriented practical plasma fuel conversion processes. Professor Richard Mallinson from University of Oklahoma describes his recent project on E85 (85%-ethanol/15%-gasoline) upgrading using non-thermal plasma and catalyst hybrid reactor, and highlights the synergistic effect on fuel conversion processes. Other papers focus on plasma/catalyst hybrid reactions for methane dry (CO2) reforming, plasma synthesis of carbon suboxide polymer from CO, the gas-to-liquid (GTL) process using a non-thermal plasma-combined micro-chemical reactor, and molecular beam characterization of plasma-generated reactive species. Much research regarding plasma catalysis is ongoing worldwide, but there is plenty of room for further development of plasma fuel processing, which could eventually provide a viable and flexible solution in future energy and material use. Finally, we would like to thank all symposium participants for their active discussion. We appreciate the sponsorship of the Division of Fuel Chemistry of the American Chemical Society. We express special thanks to the program chair of the Fuel Chemistry Division, Professor Chang-jun Liu at Tianjin University, for his dedication to the success of the symposium. We particularly express our appreciation to the Editorial Board of Journal of Physics D: Applied Physics for publication of the special issue.

  14. A critical review of the state of foreign space technology

    NASA Technical Reports Server (NTRS)

    Grey, J.; Gerard, M.

    1978-01-01

    A conference was held to exchange technical information in the area of space technology. Soviet system capability and technology both in Intersputnik and in the domestic Ekran system was discussed in detail. The thermonic power conversion system used in the Soviet Topaz nuclear power reactor was described in detail. Other areas of examination included: (1) Bioastronautics; (2) Space based industry; (3) Propulsion; (4) Astrodynamics; (5) Contact with extraterrestrial intelligence; and (6) Space rescue and safety.

  15. Advanced technology applications for second and third general coal gasification systems

    NASA Technical Reports Server (NTRS)

    Bradford, R.; Hyde, J. D.; Mead, C. W.

    1980-01-01

    The historical background of coal conversion is reviewed and the programmatic status (operational, construction, design, proposed) of coal gasification processes is tabulated for both commercial and demonstration projects as well as for large and small pilot plants. Both second and third generation processes typically operate at higher temperatures and pressures than first generation methods. Much of the equipment that has been tested has failed. The most difficult problems are in process control. The mechanics of three-phase flow are not fully understood. Companies participating in coal conversion projects are ordering duplicates of failure prone units. No real solutions to any of the significant problems in technology development have been developed in recent years.

  16. A Review of Operational Water Consumption and Withdrawal Factors for Electricity Generating Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Macknick, Jordan; Newmark, Robin; Heath, Garvin

    2011-03-01

    This report provides estimates of operational water withdrawal and water consumption factors for electricity generating technologies in the United States. Estimates of water factors were collected from published primary literature and were not modified except for unit conversions. The presented water factors may be useful in modeling and policy analyses where reliable power plant level data are not available.

  17. Parabolic Dish Solar Thermal Power Annual Program Review Proceedings

    NASA Technical Reports Server (NTRS)

    Holbeck, H. J.

    1981-01-01

    The development and testing of concentrators, receivers, and power conversion units are reported. System design and development for engineering experiments are described. Economic analysis and market assessments for advanced development activities are discussed. Technology development issues and application/user needs are highlighted.

  18. A review on solar cells from Si-single crystals to porous materials and quantum dots

    PubMed Central

    Badawy, Waheed A.

    2013-01-01

    Solar energy conversion to electricity through photovoltaics or to useful fuel through photoelectrochemical cells was still a main task for research groups and developments sectors. In this article we are reviewing the development of the different generations of solar cells. The fabrication of solar cells has passed through a large number of improvement steps considering the technological and economic aspects. The first generation solar cells were based on Si wafers, mainly single crystals. Permanent researches on cost reduction and improved solar cell efficiency have led to the marketing of solar modules having 12–16% solar conversion efficiency. Application of polycrystalline Si and other forms of Si have reduced the cost but on the expense of the solar conversion efficiency. The second generation solar cells were based on thin film technology. Thin films of amorphous Si, CIS (copper–indium–selenide) and t-Si were employed. Solar conversion efficiencies of about 12% have been achieved with a remarkable cost reduction. The third generation solar cells are based on nano-crystals and nano-porous materials. An advanced photovoltaic cell, originally developed for satellites with solar conversion efficiency of 37.3%, based on concentration of the solar spectrum up to 400 suns was developed. It is based on extremely thin concentration cells. New sensitizer or semiconductor systems are necessary to broaden the photo-response in solar spectrum. Hybrids of solar and conventional devices may provide an interim benefit in seeking economically valuable devices. New quantum dot solar cells based on CdSe–TiO2 architecture have been developed. PMID:25750746

  19. A review on solar cells from Si-single crystals to porous materials and quantum dots.

    PubMed

    Badawy, Waheed A

    2015-03-01

    Solar energy conversion to electricity through photovoltaics or to useful fuel through photoelectrochemical cells was still a main task for research groups and developments sectors. In this article we are reviewing the development of the different generations of solar cells. The fabrication of solar cells has passed through a large number of improvement steps considering the technological and economic aspects. The first generation solar cells were based on Si wafers, mainly single crystals. Permanent researches on cost reduction and improved solar cell efficiency have led to the marketing of solar modules having 12-16% solar conversion efficiency. Application of polycrystalline Si and other forms of Si have reduced the cost but on the expense of the solar conversion efficiency. The second generation solar cells were based on thin film technology. Thin films of amorphous Si, CIS (copper-indium-selenide) and t-Si were employed. Solar conversion efficiencies of about 12% have been achieved with a remarkable cost reduction. The third generation solar cells are based on nano-crystals and nano-porous materials. An advanced photovoltaic cell, originally developed for satellites with solar conversion efficiency of 37.3%, based on concentration of the solar spectrum up to 400 suns was developed. It is based on extremely thin concentration cells. New sensitizer or semiconductor systems are necessary to broaden the photo-response in solar spectrum. Hybrids of solar and conventional devices may provide an interim benefit in seeking economically valuable devices. New quantum dot solar cells based on CdSe-TiO2 architecture have been developed.

  20. Preliminary assessment of industrial needs for an advanced ocean technology

    NASA Technical Reports Server (NTRS)

    Mourad, A. G.; Maher, K. M.; Balon, J. E.; Coyle, A. G.; Henkener, J. A.

    1979-01-01

    A quick-look review of selected ocean industries is presented for the purpose of providing NASA OSTA with an assessment of technology needs and market potential. The size and growth potential, needs and problem areas, technology presently used and its suppliers, are given for industries involved in deep ocean mining, petrochemicals ocean energy conversion. Supporting services such as ocean bottom surveying; underwater transportation, data collection, and work systems; and inspection and diving services are included. Examples of key problem areas that are amenable to advanced technology solutions are included. Major companies are listed.

  1. Thermal plasma technology for the treatment of wastes: a critical review.

    PubMed

    Gomez, E; Rani, D Amutha; Cheeseman, C R; Deegan, D; Wise, M; Boccaccini, A R

    2009-01-30

    This review describes the current status of waste treatment using thermal plasma technology. A comprehensive analysis of the available scientific and technical literature on waste plasma treatment is presented, including the treatment of a variety of hazardous wastes, such as residues from municipal solid waste incineration, slag and dust from steel production, asbestos-containing wastes, health care wastes and organic liquid wastes. The principles of thermal plasma generation and the technologies available are outlined, together with potential applications for plasma vitrified products. There have been continued advances in the application of plasma technology for waste treatment, and this is now a viable alternative to other potential treatment/disposal options. Regulatory, economic and socio-political drivers are promoting adoption of advanced thermal conversion techniques such as thermal plasma technology and these are expected to become increasingly commercially viable in the future.

  2. De novo generation of HSCs from somatic and pluripotent stem cell sources

    PubMed Central

    Vo, Linda T.

    2015-01-01

    Generating human hematopoietic stem cells (HSCs) from autologous tissues, when coupled with genome editing technologies, is a promising approach for cellular transplantation therapy and for in vitro disease modeling, drug discovery, and toxicology studies. Human pluripotent stem cells (hPSCs) represent a potentially inexhaustible supply of autologous tissue; however, to date, directed differentiation from hPSCs has yielded hematopoietic cells that lack robust and sustained multilineage potential. Cellular reprogramming technologies represent an alternative platform for the de novo generation of HSCs via direct conversion from heterologous cell types. In this review, we discuss the latest advancements in HSC generation by directed differentiation from hPSCs or direct conversion from somatic cells, and highlight their applications in research and prospects for therapy. PMID:25762177

  3. Block copolymer based composition and morphology control in nanostructured hybrid materials for energy conversion and storage: solar cells, batteries, and fuel cells.

    PubMed

    Orilall, M Christopher; Wiesner, Ulrich

    2011-02-01

    The development of energy conversion and storage devices is at the forefront of research geared towards a sustainable future. However, there are numerous issues that prevent the widespread use of these technologies including cost, performance and durability. These limitations can be directly related to the materials used. In particular, the design and fabrication of nanostructured hybrid materials is expected to provide breakthroughs for the advancement of these technologies. This tutorial review will highlight block copolymers as an emerging and powerful yet affordable tool to structure-direct such nanomaterials with precise control over structural dimensions, composition and spatial arrangement of materials in composites. After providing an introduction to materials design and current limitations, the review will highlight some of the most recent examples of block copolymer structure-directed nanomaterials for photovoltaics, batteries and fuel cells. In each case insights are provided into the various underlying fundamental chemical, thermodynamic and kinetic formation principles enabling general and relatively inexpensive wet-polymer chemistry methodologies for the efficient creation of multiscale functional materials. Examples include nanostructured ceramics, ceramic-carbon composites, ceramic-carbon-metal composites and metals with morphologies ranging from hexagonally arranged cylinders to three-dimensional bi-continuous cubic networks. The review ends with an outlook towards the synthesis of multicomponent and hierarchical multifunctional hybrid materials with different nano-architectures from self-assembly of higher order blocked macromolecules which may ultimately pave the way for the further development of energy conversion and storage devices.

  4. Microalgal hydrogen production: prospects of an essential technology for a clean and sustainable energy economy.

    PubMed

    Bayro-Kaiser, Vinzenz; Nelson, Nathan

    2017-09-01

    Modern energy production is required to undergo a dramatic transformation. It will have to replace fossil fuel use by a sustainable and clean energy economy while meeting the growing world energy needs. This review analyzes the current energy sector, available energy sources, and energy conversion technologies. Solar energy is the only energy source with the potential to fully replace fossil fuels, and hydrogen is a crucial energy carrier for ensuring energy availability across the globe. The importance of photosynthetic hydrogen production for a solar-powered hydrogen economy is highlighted and the development and potential of this technology are discussed. Much successful research for improved photosynthetic hydrogen production under laboratory conditions has been reported, and attempts are underway to develop upscale systems. We suggest that a process of integrating these achievements into one system to strive for efficient sustainable energy conversion is already justified. Pursuing this goal may lead to a mature technology for industrial deployment.

  5. Biocatalytic conversion of methane to methanol as a key step for development of methane-based biorefineries.

    PubMed

    Hwang, In Yeub; Lee, Seung Hwan; Choi, Yoo Seong; Park, Si Jae; Na, Jeong Geol; Chang, In Seop; Kim, Choongik; Kim, Hyun Cheol; Kim, Yong Hwan; Lee, Jin Won; Lee, Eun Yeol

    2014-12-28

    Methane is considered as a next-generation carbon feedstock owing to the vast reserves of natural and shale gas. Methane can be converted to methanol by various methods, which in turn can be used as a starting chemical for the production of value-added chemicals using existing chemical conversion processes. Methane monooxygenase is the key enzyme that catalyzes the addition of oxygen to methane. Methanotrophic bacteria can transform methane to methanol by inhibiting methanol dehydrogenase. In this paper, we review the recent progress made on the biocatalytic conversion of methane to methanol as a key step for methane-based refinery systems and discuss future prospects for this technology.

  6. Magnetic Materials Suitable for Fission Power Conversion in Space Missions

    NASA Technical Reports Server (NTRS)

    Bowman, Cheryl L.

    2012-01-01

    Terrestrial fission reactors use combinations of shielding and distance to protect power conversion components from elevated temperature and radiation. Space mission systems are necessarily compact and must minimize shielding and distance to enhance system level efficiencies. Technology development efforts to support fission power generation scenarios for future space missions include studying the radiation tolerance of component materials. The fundamental principles of material magnetism are reviewed and used to interpret existing material radiation effects data for expected fission power conversion components for target space missions. Suitable materials for the Fission Power System (FPS) Project are available and guidelines are presented for bounding the elevated temperature/radiation tolerance envelope for candidate magnetic materials.

  7. Creating a Five-Minute Conversation about Cyberinfrastructure

    ERIC Educational Resources Information Center

    Jelinkova, Klara; Carvalho, Terezsa; Kerian, Dorette; Knosp, Boyd; Percival, Kent; Yagi, Stan

    2008-01-01

    Cyberinfrastructure is the IT infrastructure that enables scientific inquiry. It anticipates a scientific and scholarly world that is increasingly dependent on information technology. It has many facets, and each institution will need to review its own strengths and weaknesses to decide on areas of concentration. In higher education,…

  8. Proceedings of the First Semiannual Distributed Receiver Program Review

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Point focus and line focus distributed receiver solar thermal technology for the production of electric power and of industrial process heat is addressed. Concentrator, receiver, and power conversion development are covered along with hardware tests and evaluation. Mass production costing, parabolic dish applications, and trough and bowl systems are included.

  9. Solar Program Assessment: Environmental Factors - Fuels from Biomass.

    ERIC Educational Resources Information Center

    Energy Research and Development Administration, Washington, DC. Div. of Solar Energy.

    The purpose of this report is to present and prioritize the major environmental issues associated with the further development of biomass production and biomass conversion systems. To provide a background for this environmental analysis, the basic concepts of the technology are reviewed, as are resource requirements. The potential effects of this…

  10. Solar Spots - Activities to Introduce Solar Energy into the K-8 Curricula.

    ERIC Educational Resources Information Center

    Longe, Karen M.; McClelland, Michael J.

    Following an introduction to solar technology which reviews solar heating and cooling, passive solar systems (direct gain systems, thermal storage walls, sun spaces, roof ponds, and convection loops), active solar systems, solar electricity (photovoltaic and solar thermal conversion systems), wind energy, and biomass, activities to introduce solar…

  11. NASA Radioisotope Power Conversion Technology NRA Overview

    NASA Technical Reports Server (NTRS)

    Anderson, David J.

    2005-01-01

    The focus of the National Aeronautics and Space Administration's (NASA) Radioisotope Power Systems (RPS) Development program is aimed at developing nuclear power and technologies that would improve the effectiveness of space science missions. The Radioisotope Power Conversion Technology (RPCT) NASA Research Announcement (NRA) is an important mechanism through which research and technology activities are supported in the Advanced Power Conversion Research and Technology project of the Advanced Radioisotope Power Systems Development program. The purpose of the RPCT NRA is to advance the development of radioisotope power conversion technologies to provide higher efficiencies and specific powers than existing systems. These advances would enable a factor of two to four decrease in the amount of fuel and a reduction of waste heat required to generate electrical power, and thus could result in more cost effective science missions for NASA. The RPCT NRA selected advanced RPS power conversion technology research and development proposals in the following three areas: innovative RPS power conversion research, RPS power conversion technology development in a nominal 100 W(sub e) scale; and, milliwatt/multi-watt RPS (mWRPS) power conversion research. Ten RPCT NRA contracts were awarded in 2003 in the areas of Brayton, Stirling, thermoelectric (TE), and thermophotovoltaic (TPV) power conversion technologies. This paper will provide an overview of the RPCT NRA, a summary of the power conversion technologies approaches being pursued, and a brief digest of first year accomplishments.

  12. NASA Radioisotope Power Conversion Technology NRA Overview

    NASA Technical Reports Server (NTRS)

    Anderson, David J.

    2005-01-01

    The focus of the National Aeronautics and Space Administration s (NASA) Radioisotope Power Systems (RPS) Development program is aimed at developing nuclear power and technologies that would improve the effectiveness of space science missions. The Radioisotope Power Conversion Technology (RPCT) NASA Research Announcement (NRA) is an important mechanism through which research and technology activities are supported in the Advanced Power Conversion Research and Technology project of the Advanced Radioisotope Power Systems Development program. The purpose of the RPCT NRA is to advance the development of radioisotope power conversion technologies to provide higher efficiencies and specific powers than existing systems. These advances would enable a factor of 2 to 4 decrease in the amount of fuel and a reduction of waste heat required to generate electrical power, and thus could result in more cost effective science missions for NASA. The RPCT NRA selected advanced RPS power conversion technology research and development proposals in the following three areas: innovative RPS power conversion research, RPS power conversion technology development in a nominal 100We scale; and, milliwatt/multi-watt RPS (mWRPS) power conversion research. Ten RPCT NRA contracts were awarded in 2003 in the areas of Brayton, Stirling, thermoelectric (TE), and thermophotovoltaic (TPV) power conversion technologies. This paper will provide an overview of the RPCT NRA, a summary of the power conversion technologies approaches being pursued, and a brief digest of first year accomplishments.

  13. Space Photovoltaic Research and Technology 1995

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey (Compiler)

    1995-01-01

    The Fourteenth Space Photovoltaic Research and Technology conference was held at the NASA Lewis Research Center from October 24-26, 1995. The abstracts presented in this volume report substantial progress in a variety of areas in space photovoltaics. Technical and review papers were presented in many areas, including high efficiency GaAs and InP solar cells, GaAs/Ge cells as commercial items, high efficiency multiple bandgap cells, solar cell and array technology, heteroepitaxial cells, thermophotovoltaic energy conversion, and space radiation effects. Space flight data on a variety of cells were also presented.

  14. Space Photovoltaic Research and Technology 1995

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey (Compiler)

    1996-01-01

    The Fourteenth Space Photovoltaic Research and Technology conference was held at the NASA Lewis Research Center from October 24-26, 1995. The abstracts presented in this volume report substantial progress in a variety of areas in space photovoltaics. Technical and review papers were presented in many areas, including high efficiency GaAs and InP solar cells, GaAs/Ge cells as commercial items, high efficiency multiple bandgap cells, solar cell and array technology, heteroepitaxial cells, thermophotovoltaic energy conversion, and space radiation effects. Space flight data on a variety of cells were also presented.

  15. Wireless Power Transmission Technology State-Of-The-Art

    NASA Astrophysics Data System (ADS)

    Dickinson, R. M. T.

    2002-01-01

    This first Bill Brown SSP La Crescenta, CA 91214 technology , including microwave and laser systems for the transfer of electric , as related to eventually developing Space Solar Power (SSP) systems. Current and past technology accomplishments in ground based and air and space applied energy conversion devices, systems and modeling performance and cost information is presented, where such data are known to the author. The purpose of the presentation is to discuss and present data to encourage documenting and breaking the current technology records, so as to advance the SOA in WPT for SSP . For example, regarding DC to RF and laser converters, 83% efficient 2.45 GHz cooker-tube magnetrons with 800W CW output have been jointly developed by Russia and US. Over 50% wa11-plug efficient 1.5 kW/cm2 CW, water cooled, multibeam, solid state laser diode bar-arrays have been developed by LLNL at 808 nm wavelength. The Gennans have developed a 36% efficient, kW level, sing1e coherent beam, lateral pumped semiconductor laser. The record for end-to-end DC input to DC output power overall WPT link conversion efficiency is 54% during the Raytheon-JPL experiments in 1975 for 495.6 W recovered at 1.7-mrange at 2.4469 GAz. The record for usefully recovered electric power output ( as contrasted with thennally induced power in structures) is 34 kW OC output at a range of 1.55 km, using 2.388 GHz microwaves, during the JPL- Raytheon experiments by Bill Brown and the author at Goldstone, CA in 1975. The GaAs-diode rectenna array had an average collection-conversion efficiency of 82.5%. A single rectenna element operating a 6W RF input, developed by Bill Brown demonstrated 91.4% efficiency. The comparable record for laser light to OC output power conversion efficiency of photovoltaics is 590/0. for AlGaAs at 1.7 Wand 826nm wavelength. Russian cyclotron-wave converters have demonstrated 80% rectification efficiency at S-band. Concerning WPT technology equipment costs, magnetron conversion devices for microwave ovens are approximately O.O25/W, due to the large manufacturing quantities. Comparable, remanufactured lasers for industrial applications at the 4 kW CW level are of order 25/W. Industrial klystrons cost over 1/W and solid state power amplifiers cost over 3/W. Model tethered helicopters, model airplanes, a smal1 airship and several small rovers have been powered with microwave beams at 2.45, 5.8 and 35 GHz. Smal1 rovers have been powered with laser beams. Two space-to-space microwave power link experiments have been conducted by the Japanese and with Texas A&M assistance in one case. International records for WPT link electric power delivered, range, 1ink efficiency and other salient parameters for both wireless-laser and -microwave power demonstrations win be reviewed. Also, costing models for WPT -system figure- of-merit (FOM) in terms of capital costs, in /MW -km, as a fonction of range and power level are reviewed. Records in Japan. France, Korea, Russia, Canada and the US will be reviewed for various land based WPT demonstrations. SSP applicable elements of technology in fiber and wireless links, cell phones and base stations, aircraft, and spacecraft phased arrays, industrial and scientific klystrons and lasers, military equipment (where information is available in open literature) microwave heating, and other telecommunication activities win be presented, concerning power handling, frequency or wavelength, conversion efficiency, specific mass, specific cost, etc. Previously studied and proposed applications of WPT technology will be presented to show the range of WPT technology being considered for commercial and other applications that will lead to advancing the SOA of WPT technology that win benefit SSP .

  16. Review of nanostructured devices for thermoelectric applications

    PubMed Central

    2014-01-01

    Summary A big research effort is currently dedicated to the development of thermoelectric devices capable of a direct thermal-to-electrical energy conversion, aiming at efficiencies as high as possible. These devices are very attractive for many applications in the fields of energy recovery and green energy harvesting. In this paper, after a quick summary of the fundamental principles of thermoelectricity, the main characteristics of materials needed for high efficiency thermoelectric conversion will be discussed, and a quick review of the most promising materials currently under development will be given. This review paper will put a particular emphasis on nanostructured silicon, which represents a valid compromise between good thermoelectric properties on one side and material availability, sustainability, technological feasibility on the other side. The most important bottom-up and top-down nanofabrication techniques for large area silicon nanowire arrays, to be used for high efficiency thermoelectric devices, will be presented and discussed. PMID:25247111

  17. Carbon dioxide recycling: emerging large-scale technologies with industrial potential.

    PubMed

    Quadrelli, Elsje Alessandra; Centi, Gabriele; Duplan, Jean-Luc; Perathoner, Siglinda

    2011-09-19

    This Review introduces this special issue of ChemSusChem dedicated to CO(2) recycling. Its aim is to offer an up-to-date overview of CO(2) chemical utilization (inorganic mineralization, organic carboxylation, reduction reactions, and biochemical conversion), as a continuation and extension of earlier books and reviews on this topic, but with a specific focus on large-volume routes and projects/pilot plants that are currently emerging at (pre-)industrial level. The Review also highlights how some of these routes will offer a valuable opportunity to introduce renewable energy into the existing energy and chemical infrastructure (i.e., "drop-in" renewable energy) by synthesis of chemicals from CO(2) that are easy to transport and store. CO(2) conversion therefore has the potential to become a key pillar of the sustainable and resource-efficient production of chemicals and energy from renewables. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Developmental Considerations on the Free-Piston Stirling Power Convertor for Use in Space

    NASA Technical Reports Server (NTRS)

    Schreiber, Jeffrey G.

    2006-01-01

    Free-piston Stirling power conversion has been considered a candidate for radioisotope power systems for space for more than a decade. Prior to the free-piston Stirling architecture, systems were designed with kinematic Stirling engines with rotary alternators to convert heat to electricity. These systems were proposed with lightly loaded linkages to achieve the necessary life. When the free-piston configuration was initially proposed, it was thought to be attractive due to the relatively high conversion efficiency, acceptable mass, and the potential for long life and high reliability. These features have consistently been recognized by teams that have studied technology options for radioisotope power systems. Since free-piston Stirling power conversion was first considered for space power applications, there have been major advances in three general areas of development: demonstration of life and reliability, the success achieved by Stirling cryocoolers in flight, and the overall developmental maturity of the technology for both flight and terrestrial applications. Based on these advances, free-piston Stirling convertors are currently being developed for a number of terrestrial applications. They commonly operate with the power, efficiency, life, and reliability as intended, and much of the development now centers on system integration. This paper will summarize the accomplishments of free-piston Stirling power conversion technology over the past decade, review the status, and discuss the challenges that remain.

  19. Developmental Considerations on the Free-piston Stirling Power Convertor for Use in Space

    NASA Technical Reports Server (NTRS)

    Schreiber, Jeffrey G.

    2007-01-01

    Free-piston Stirling power conversion has been considered a candidate for radioisotope power systems for space for more than a decade. Prior to the free-piston Stirling architecture, systems were designed with kinematic Stirling engines with rotary alternators to convert heat to electricity. These systems were proposed with lightly loaded linkages to achieve the necessary life. When the free-piston configuration was initially proposed, it was thought to be attractive due to the relatively high conversion efficiency, acceptable mass, and the potential for long life and high reliability. These features have consistently been recognized by teams that have studied technology options for radioisotope power systems. Since free-piston Stirling power conversion was first considered for space power applications, there have been major advances in three general areas of development: demonstration of life and reliability, the success achieved by Stirling cryocoolers in flight, and the overall developmental maturity of the technology for both flight and terrestrial applications. Based on these advances, free-piston Stirling convertors are currently being developed for a number of terrestrial applications. They commonly operate with the power, efficiency, life, and reliability as intended, and much of the development now centers on system integration. This paper will summarize the accomplishments of free-piston Stirling power conversion technology over the past decade, review the status, and discuss the challenges that remain.

  20. State of Practice for Emerging Waste Conversion Technologies

    EPA Science Inventory

    New technologies to convert municipal and other waste streams into fuels and chemical commodities, termed conversion technologies, are rapidly developing. Conversion technologies are garnering increasing interest and demand due primarily to alternative energy initiatives. These t...

  1. Progress in understanding conversion disorder

    PubMed Central

    Allin, Matthew; Streeruwitz, Anna; Curtis, Vivienne

    2005-01-01

    Conversion disorder has a history that may reach back into antiquity, and it continues to present a clinical challenge to both psychiatrists and neurologists. This article reviews the current state of knowledge surrounding the prevalence, etiology, and neurobiology of conversion disorder. There have been improvements in the accuracy of diagnosis that are possibly related to improved technologies such as neuroimaging. Once the diagnosis is made, it is important to develop a therapeutic alliance between the patient and the medical team, and where comorbid psychiatric diagnoses have been made, these need to be adequately treated. While there have been no formal trials of medication or psychoanalytic treatments in this disorder, case reports suggest that a combination of antidepressants, psychotherapy, and a multidisciplinary approach to rehabilitation may be beneficial. PMID:18568070

  2. Energy supplies and future engines for land, sea, and air.

    PubMed

    Hidy, George M; Chow, Judith C; England, Glen C; Legge, Alan H; Lloyd, Alan C; Watson, John G

    2012-11-01

    The 2012 Critical Review Discussion complements Wilson, (2012), provides pointers to more detailed treatments of different topics and adds additional dimensions to the area of "energy". These include broader aspects of technologies driven by fuel resources and environmental issues, the concept of energy technology innovation, evolution in transportation resources, and complexities of energy policies addressing carbon taxes or carbon trading. National and global energy data bases are identified and evaluated and conversion factors are given to allow their comparability.

  3. Photovoltaic Power for Future NASA Missions

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey; Bailey, Sheila G.; Lyons, Valerie J. (Technical Monitor)

    2002-01-01

    Recent advances in crystalline solar cell technology are reviewed. Dual-junction and triple-junction solar cells are presently available from several U. S. vendors. Commercially available triple-junction cells consisting of GaInP, GaAs, and Ge layers can produce up to 27% conversion efficiency in production lots. Technology status and performance figures of merit for currently available photovoltaic arrays are discussed. Three specific NASA mission applications are discussed in detail: Mars surface applications, high temperature solar cell applications, and integrated microelectronic power supplies for nanosatellites.

  4. A review of integration strategies for solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Zhang, Xiongwen; Chan, S. H.; Li, Guojun; Ho, H. K.; Li, Jun; Feng, Zhenping

    Due to increasing oil and gas demand, the depletion of fossil resources, serious global warming, efficient energy systems and new energy conversion processes are urgently needed. Fuel cells and hybrid systems have emerged as advanced thermodynamic systems with great promise in achieving high energy/power efficiency with reduced environmental loads. In particular, due to the synergistic effect of using integrated solid oxide fuel cell (SOFC) and classical thermodynamic cycle technologies, the efficiency of the integrated system can be significantly improved. This paper reviews different concepts/strategies for SOFC-based integration systems, which are timely transformational energy-related technologies available to overcome the threats posed by climate change and energy security.

  5. Proceedings of the 14Th Space Photovoltaic Research and Technology Conference (SPRAT 14)

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey (Compiler)

    1995-01-01

    The Fourteenth Space Photovoltaic Research and Technology conference was held at the NASA Lewis Research Center from October 24-26, 1995. The abstracts presented in this volume report substantial progress in a variety of areas in space photovoltaics. Technical and review papers were presented in many areas, including high efficiency GaAs and InP solar cells, GaAs/Ge cells as commercial items, high efficiency multiple bandgap cells, solar cell and array technology, heteroepitaxial cells, thermophotovoltaic energy conversion, and space radiation effects. Space flight data on a variety of cells were also presented.

  6. An Overview and Status of NASA's Radioisotope Power Conversion Technology NRA

    NASA Technical Reports Server (NTRS)

    Anderson, David J.; Wong, Wayne A.; Tuttle, Karen L.

    2005-01-01

    NASA's Advanced Radioisotope Power Systems (RPS) development program is developing next generation radioisotope power conversion technologies that will enable future missions that have requirements that can not be met by either photovoltaic systems or by current Radioisotope Power System (RPS) technology. The Advanced Power Conversion Research and Technology project of the Advanced RPS development program is funding research and technology activities through the NASA Research Announcement (NRA) 02- OSS-01, "Research Opportunities in Space Science 2002" entitled "Radioisotope Power Conversion Technology" (RPCT), 13 August 2002. The objective of the RPCT NRA is to advance the development of radioisotope power conversion technologies to provide significant improvements over the state-of-practice General Purpose Heat Source/Radioisotope Thermoelectric Generator by providing significantly higher efficiency to reduce the number of radioisotope fuel modules, and increase specific power (watts/kilogram). Other Advanced RPS goals include safety, long-life, reliability, scalability, multi-mission capability, resistance to radiation, and minimal interference with the scientific payload. These advances would enable a factor of 2 to 4 decrease in the amount of fuel required to generate electrical power. The RPCT NRA selected advanced RPS power conversion technology research and development proposals in the following three areas: innovative RPS power conversion research, RPS power conversion technology development in a nominal 100We scale; and, milliwatt/multi-watt RPS (mWRPS) power conversion research. Ten RPCT NRA contracts were awarded in 2003 in the areas of Brayton, Stirling, thermoelectric (TE), and thermophotovoltaic (TPV) power conversion technologies. This paper will provide an overview of the RPCT NRA, and a brief summary of accomplishments over the first 18 months but focusing on advancements made over the last 6 months.

  7. Nitrogen cycling in Bioregenerative Life Support Systems: Challenges for waste refinery and food production processes

    NASA Astrophysics Data System (ADS)

    Clauwaert, Peter; Muys, Maarten; Alloul, Abbas; De Paepe, Jolien; Luther, Amanda; Sun, Xiaoyan; Ilgrande, Chiara; Christiaens, Marlies E. R.; Hu, Xiaona; Zhang, Dongdong; Lindeboom, Ralph E. F.; Sas, Benedikt; Rabaey, Korneel; Boon, Nico; Ronsse, Frederik; Geelen, Danny; Vlaeminck, Siegfried E.

    2017-05-01

    In order to sustain human life in an isolated environment, an efficient conversion of wasted nutrients to food might become mandatory. This is particularly the case for space missions where resupply from earth or in-situ resource utilization is not possible or desirable. A combination of different technologies is needed to allow full recycling of e.g. nitrogenous compounds in space. In this review, an overview is given of the different essential processes and technologies that enable closure of the nitrogen cycle in Bioregenerative Life Support Systems (BLSS). Firstly, a set of biological and physicochemical refinery stages ensures efficient conversion of waste products into the building blocks, followed by the production of food with a range of biological methods. For each technology, bottlenecks are identified. Furthermore, challenges and outlooks are presented at the integrated system level. Space adaptation and integration deserve key attention to enable the recovery of nitrogen for the production of nutritional food in space, but also in closed loop systems on earth.

  8. Satellite Power Systems /SPS/ - Overview of system studies and critical technology

    NASA Technical Reports Server (NTRS)

    Manson, S. V.

    1980-01-01

    Systems studies and critical technology issues for the development and evaluation of Satellite Power Systems (SPS) for the photovoltaic generation of electrical energy and its transmission to earth are reviewed. Initial concept studies completed in 1976 and system definition studies initiated in the same year have indicated the technical feasibility of SPS and identified challenging issues to be addressed as part of the SPS Concept Development and Evaluation Program. Systems considered in the study include photovoltaic and solar thermal power conversion configurations employing klystron or solid state microwave generators or lasers for power transmission, and power transmission options, system constructability and in-orbit and ground operations. Technology investigations are being performed in the areas of microwave power transmission, structure/controls interactions and the behavior of key materials in the space/SPS environment. Favorable results have been obtained in the areas of microwave phase distribution and phase control, dc-RF conversion, antenna radiating element, and no insurmountable problems have been discovered in any of the investigations to date.

  9. Status of the NASA Stirling Radioisotope Project

    NASA Technical Reports Server (NTRS)

    Schreiber, Jeffrey G.

    2007-01-01

    Free-piston Stirling power conversion has been considered a candidate for radioisotope power systems for space for more than a decade. Prior to the free-piston Stirling architecture, systems were designed with kinematic Stirling engines that used linkages and rotary alternators to convert heat to electricity. These systems were able to achieve long life by lightly loading the linkages; however, the live was nonetheless limited. When the free-piston configuration was initially proposed, it was thought to be attractive due to the relatively high conversion efficiency, acceptable mass, and the potential for long life and high reliability based on wear-free operation. These features have consistently been recognized by teams that have studied technology options for radioisotope space power systems. Since free-piston Stirling power conversion was first considered for space power applications, there have been major advances in three general areas of development: hardware that has demonstrated long-life and reliability, the success achieved by Stirling cryocoolers in space, and the overall developmental maturity of the technology for both space and terrestrial applications. Based on these advances, free-piston Stirling convertors are currently being developed for space power, and for a number of terrestrial applications. They commonly operate with the power, efficiency, life, and reliability as intended, and much of the development now centers on system integration. This paper will summarize the accomplishments of free-piston Stirling power conversion technology over the past decade, review the status of development with regard to space power, and discuss the challenges that remain.

  10. Educational Outcomes and Research from 1:1 Computing Settings

    ERIC Educational Resources Information Center

    Bebell, Damian; O'Dwyer, Laura M.

    2010-01-01

    Despite the growing interest in 1:1 computing initiatives, relatively little empirical research has focused on the outcomes of these investments. The current special edition of the Journal of Technology and Assessment presents four empirical studies of K-12 1:1 computing programs and one review of key themes in the conversation about 1:1 computing…

  11. Generating Human Hematopoietic Stem Cells In Vitro: Exploring Endothelial To Hematopoietic Transition As A Portal For Stemness Acquisition

    PubMed Central

    Slukvin, Igor I.

    2016-01-01

    Advances in cellular reprogramming technologies have created alternative platforms for the production of blood cells, either through inducing pluripotency in somatic cells or by way of direct conversion of non-hematopoietic cells into blood cells. However, de novo generation of hematopoietic stem cells (HSCs) with robust and sustained multilineage engraftment potential remains a significant challenge. Hemogenic endothelium (HE) has been recognized as a unique transitional stage of blood development from mesoderm at which HSCs arise in certain embryonic locations. The major aim of this review is to summarize historical perspectives and recent advances in the investigation of endothelial-hematopoietic transition (EHT) and HSC formation in the context of aiding in vitro approaches to instruct HSC fate from human pluripotent stem cells. In addition, direct conversion of somatic cells to blood and HSCs and progression of this conversion through HE stage are discussed. A thorough understanding of the intrinsic and microenvironmental regulators of EHT that lead to the acquisition of self-renewal potential by emerging blood cells, is essential to advance the technologies for HSC production and expansion. PMID:27391301

  12. A review of catalytic microwave pyrolysis of lignocellulosic biomass for value-added fuel and chemicals.

    PubMed

    Morgan, Hervan Marion; Bu, Quan; Liang, Jianghui; Liu, Yujing; Mao, Hanping; Shi, Aiping; Lei, Hanwu; Ruan, Roger

    2017-04-01

    Lignocellulosic biomass is an abundant renewable resource and can be efficiently converted into bio-energy by a bio-refinery. From the various techniques available for biomass thermo-chemical conversion; microwave assisted pyrolysis (MAP) seems to be the very promising. The principles of microwave technology were reviewed and the parameters for the efficient production of bio-oil using microwave technology were summarized. Microwave technology by itself cannot efficiently produce high quality bio-oil products, catalysts are used to improve the reaction conditions and selectivity for valued products during MAP. The catalysts used to optimize MAP are revised in the development of this article. The origins for bio-oils that are phenol rich or hydrocarbon rich are reviewed and their experimental results were summarized. The kinetics of MAP is discussed briefly in the development of the article. Future prospects and scientific development of MAP are also considered in the development of this article. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Advances in solid-state NMR of cellulose.

    PubMed

    Foston, Marcus

    2014-06-01

    Nuclear magnetic resonance (NMR) spectroscopy is a well-established analytical and enabling technology in biofuel research. Over the past few decades, lignocellulosic biomass and its conversion to supplement or displace non-renewable feedstocks has attracted increasing interest. The application of solid-state NMR spectroscopy has long been seen as an important tool in the study of cellulose and lignocellulose structure, biosynthesis, and deconstruction, especially considering the limited number of effective solvent systems and the significance of plant cell wall three-dimensional microstructure and component interaction to conversion yield and rate profiles. This article reviews common and recent applications of solid-state NMR spectroscopy methods that provide insight into the structural and dynamic processes of cellulose that control bulk properties and biofuel conversion. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Green technology for conversion of renewable hydrocarbon based on plasma-catalytic approach

    NASA Astrophysics Data System (ADS)

    Fedirchyk, Igor; Nedybaliuk, Oleg; Chernyak, Valeriy; Demchina, Valentina

    2016-09-01

    The ability to convert renewable biomass into fuels and chemicals is one of the most important steps on our path to green technology and sustainable development. However, the complex composition of biomass poses a major problem for established conversion technologies. The high temperature of thermochemical biomass conversion often leads to the appearance of undesirable byproducts and waste. The catalytic conversion has reduced yield and feedstock range. Plasma-catalytic reforming technology opens a new path for biomass conversion by replacing feedstock-specific catalysts with free radicals generated in the plasma. We studied the plasma-catalytic conversion of several renewable hydrocarbons using the air plasma created by rotating gliding discharge. We found that plasma-catalytic hydrocarbon conversion can be conducted at significantly lower temperatures (500 K) than during the thermochemical ( 1000 K) and catalytic (800 K) conversion. By using gas chromatography, we determined conversion products and found that conversion efficiency of plasma-catalytic conversion reaches over 85%. We used obtained data to determine the energy yield of hydrogen in case of plasma-catalytic reforming of ethanol and compared it with other plasma-based hydrogen-generating systems.

  15. Energy-efficient biomass processing with pulsed electric fields for bioeconomy and sustainable development.

    PubMed

    Golberg, Alexander; Sack, Martin; Teissie, Justin; Pataro, Gianpiero; Pliquett, Uwe; Saulis, Gintautas; Stefan, Töpfl; Miklavcic, Damijan; Vorobiev, Eugene; Frey, Wolfgang

    2016-01-01

    Fossil resources-free sustainable development can be achieved through a transition to bioeconomy, an economy based on sustainable biomass-derived food, feed, chemicals, materials, and fuels. However, the transition to bioeconomy requires development of new energy-efficient technologies and processes to manipulate biomass feed stocks and their conversion into useful products, a collective term for which is biorefinery. One of the technological platforms that will enable various pathways of biomass conversion is based on pulsed electric fields applications (PEF). Energy efficiency of PEF treatment is achieved by specific increase of cell membrane permeability, a phenomenon known as membrane electroporation. Here, we review the opportunities that PEF and electroporation provide for the development of sustainable biorefineries. We describe the use of PEF treatment in biomass engineering, drying, deconstruction, extraction of phytochemicals, improvement of fermentations, and biogas production. These applications show the potential of PEF and consequent membrane electroporation to enable the bioeconomy and sustainable development.

  16. Touch the Page and Mimic Me: Evaluation of a Talking-Pen Learning Tool

    ERIC Educational Resources Information Center

    Odakura, Abigail

    2013-01-01

    The purpose of this paper is to evaluate the talking-pen device called the Mimic Me, an educational technology product of a large English conversation school in Japan, as an educational learning tool. The product will be reviewed in terms of its developmental appropriateness for the target audience based on current research. Although the Mimic Me…

  17. Parabolic Dish Solar Thermal Power Annual Program Review Proceedings

    NASA Technical Reports Server (NTRS)

    Lucas, J. W.

    1982-01-01

    The results of activities of the parabolic dish technology and applications development element of DOE's Solar Thermal Energy System Program are presented. Topics include the development and testing of concentrators, receivers, and power conversion units; system design and development for engineering experiments; economic analysis and marketing assessment; and advanced development activities. A panel discussion concerning industrial support sector requirements is also documented.

  18. Physical Limits of Solar Energy Conversion in the Earth System.

    PubMed

    Kleidon, Axel; Miller, Lee; Gans, Fabian

    2016-01-01

    Solar energy provides by far the greatest potential for energy generation among all forms of renewable energy. Yet, just as for any form of energy conversion, it is subject to physical limits. Here we review the physical limits that determine how much energy can potentially be generated out of sunlight using a combination of thermodynamics and observed climatic variables. We first explain how the first and second law of thermodynamics constrain energy conversions and thereby the generation of renewable energy, and how this applies to the conversions of solar radiation within the Earth system. These limits are applied to the conversion of direct and diffuse solar radiation - which relates to concentrated solar power (CSP) and photovoltaic (PV) technologies as well as biomass production or any other photochemical conversion - as well as solar radiative heating, which generates atmospheric motion and thus relates to wind power technologies. When these conversion limits are applied to observed data sets of solar radiation at the land surface, it is estimated that direct concentrated solar power has a potential on land of up to 11.6 PW (1 PW=10(15) W), whereas photovoltaic power has a potential of up to 16.3 PW. Both biomass and wind power operate at much lower efficiencies, so their potentials of about 0.3 and 0.1 PW are much lower. These estimates are considerably lower than the incoming flux of solar radiation of 175 PW. When compared to a 2012 primary energy demand of 17 TW, the most direct uses of solar radiation, e.g., by CSP or PV, have thus by far the greatest potential to yield renewable energy requiring the least space to satisfy the human energy demand. Further conversions into solar-based fuels would be reduced by further losses which would lower these potentials. The substantially greater potential of solar-based renewable energy compared to other forms of renewable energy simply reflects much fewer and lower unavoidable conversion losses when solar radiation is directly converted into renewable energy.

  19. Research progress on organic-inorganic halide perovskite materials and solar cells

    NASA Astrophysics Data System (ADS)

    Ono, Luis K.; Qi, Yabing

    2018-03-01

    Owing to the intensive research efforts across the world since 2009, perovskite solar cell power conversion efficiencies (PCEs) are now comparable or even better than several other photovoltaic (PV) technologies. In this topical review article, we review recent progress in the field of organic-inorganic halide perovskite materials and solar cells. We associate these achievements with the fundamental knowledge gained in the perovskite research. The major recent advances in the fundamental perovskite material and solar cell research are highlighted, including the current efforts in visualizing the dynamical processes (in operando) taking place within a perovskite solar cell under operating conditions. We also discuss the existing technological challenges. Based on a survey of recently published works, we point out that to move the perovskite PV technology forward towards the next step of commercialization, what perovskite PV technology need the most in the coming next few years is not only further PCE enhancements, but also up-scaling, stability, and lead-toxicity.

  20. Profiling microbial lignocellulose degradation and utilization by emergent omics technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosnow, Joshua J.; Anderson, Lindsey N.; Nair, Reji N.

    2016-07-20

    The use of plant materials to generate renewable biofuels and other high-value chemicals is the sustainable and preferable option, but will require considerable improvements to increase the rate and efficiency of lignocellulose depolymerization. This review highlights novel and emergent technologies that are being developed and deployed to characterize the process of lignocellulose degradation. The review will also illustrate how microbial communities deconstruct and metabolize lignocellulose by identifying the necessary genes and enzyme activities along with the reaction products. These technologies include multi-omic measurements, cell sorting and isolation, nuclear magnetic resonance spectroscopy (NMR), activity-based protein profiling, and direct measurement of enzymemore » activity. The recalcitrant nature of lignocellulose necessitates the need to characterize the methods microbes employ to deconstruct lignocellulose to inform new strategies on how to greatly improve biofuel conversion processes. New technologies are yielding important insights into microbial functions and strategies employed to degrade lignocellulose, providing a mechanistic blueprint to advance biofuel production.« less

  1. Black liquor gasification integrated in pulp and paper mills: A critical review.

    PubMed

    Naqvi, M; Yan, J; Dahlquist, E

    2010-11-01

    Black liquor gasification (BLG) has potential to replace a Tomlinson recovery boiler as an alternative technology to increase safety, flexibility and energy efficiency of pulp and paper mills. This paper presents an extensive literature review of the research and development of various BLG technologies over recent years based on low and high temperature gasification that include SCA-Billerud process, Manufacturing and Technology Conversion International (MTCI) process, direct alkali regeneration system (DARS), BLG with direct causticization, Chemrec BLG system, and catalytic hydrothermal BLG. A few technologies were tested on pilot scale but most of them were abandoned due to technical inferiority and very fewer are now at commercial stage. The drivers for the commercialization of BLG enabling bio-refinery operations at modern pulp mills, co-producing pulp and value added energy products, are discussed. In addition, the potential areas of research and development in BLG required to solve the critical issues and to fill research knowledge gaps are addressed and highlighted. Copyright 2010 Elsevier Ltd. All rights reserved.

  2. Profiling microbial lignocellulose degradation and utilization by emergent omics technologies.

    PubMed

    Rosnow, Joshua J; Anderson, Lindsey N; Nair, Reji N; Baker, Erin S; Wright, Aaron T

    2017-08-01

    The use of plant materials to generate renewable biofuels and other high-value chemicals is the sustainable and preferable option, but will require considerable improvements to increase the rate and efficiency of lignocellulose depolymerization. This review highlights novel and emerging technologies that are being developed and deployed to characterize the process of lignocellulose degradation. The review will also illustrate how microbial communities deconstruct and metabolize lignocellulose by identifying the necessary genes and enzyme activities along with the reaction products. These technologies include multi-omic measurements, cell sorting and isolation, nuclear magnetic resonance spectroscopy (NMR), activity-based protein profiling, and direct measurement of enzyme activity. The recalcitrant nature of lignocellulose necessitates the need to characterize the methods microbes employ to deconstruct lignocellulose to inform new strategies on how to greatly improve biofuel conversion processes. New technologies are yielding important insights into microbial functions and strategies employed to degrade lignocellulose, providing a mechanistic blueprint in order to advance biofuel production.

  3. Review of Computational Stirling Analysis Methods

    NASA Technical Reports Server (NTRS)

    Dyson, Rodger W.; Wilson, Scott D.; Tew, Roy C.

    2004-01-01

    Nuclear thermal to electric power conversion carries the promise of longer duration missions and higher scientific data transmission rates back to Earth for both Mars rovers and deep space missions. A free-piston Stirling convertor is a candidate technology that is considered an efficient and reliable power conversion device for such purposes. While already very efficient, it is believed that better Stirling engines can be developed if the losses inherent its current designs could be better understood. However, they are difficult to instrument and so efforts are underway to simulate a complete Stirling engine numerically. This has only recently been attempted and a review of the methods leading up to and including such computational analysis is presented. And finally it is proposed that the quality and depth of Stirling loss understanding may be improved by utilizing the higher fidelity and efficiency of recently developed numerical methods. One such method, the Ultra HI-Fl technique is presented in detail.

  4. Magnetic materials and devices for the 21st century: stronger, lighter, and more energy efficient.

    PubMed

    Gutfleisch, Oliver; Willard, Matthew A; Brück, Ekkes; Chen, Christina H; Sankar, S G; Liu, J Ping

    2011-02-15

    A new energy paradigm, consisting of greater reliance on renewable energy sources and increased concern for energy efficiency in the total energy lifecycle, has accelerated research into energy-related technologies. Due to their ubiquity, magnetic materials play an important role in improving the efficiency and performance of devices in electric power generation, conditioning, conversion, transportation, and other energy-use sectors of the economy. This review focuses on the state-of-the-art hard and soft magnets and magnetocaloric materials, with an emphasis on their optimization for energy applications. Specifically, the impact of hard magnets on electric motor and transportation technologies, of soft magnetic materials on electricity generation and conversion technologies, and of magnetocaloric materials for refrigeration technologies, are discussed. The synthesis, characterization, and property evaluation of the materials, with an emphasis on structure-property relationships, are discussed in the context of their respective markets, as well as their potential impact on energy efficiency. Finally, considering future bottlenecks in raw materials, options for the recycling of rare-earth intermetallics for hard magnets will be discussed. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. A mini review on renewable sources for biofuel.

    PubMed

    Ho, Dang P; Ngo, Huu Hao; Guo, Wenshan

    2014-10-01

    Rapid growth in both global energy demand and carbon dioxide emissions associated with the use of fossil fuels has driven the search for alternative sources which are renewable and have a lower environmental impact. This paper reviews the availability and bioenergy potentials of the current biomass feedstocks. These include (i) food crops such as sugarcane, corn and vegetable oils, classified as the first generation feedstocks, and (ii) lignocellulosic biomass derived from agricultural and forestry residues and municipal waste, as second generation feedstocks. The environmental and socioeconomic limitations of the first generation feedstocks have placed greater emphasis on the lignocellulosic biomass, of which the conversion technologies still faces major constraints to full commercial deployment. Key technical challenges and opportunities of the lignocellulosic biomass-to-bioenergy production are discussed in comparison with the first generation technologies. The potential of the emerging third generation biofuel from algal biomass is also reviewed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Low-rank coal study: national needs for resource development. Volume 6. Peat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-11-01

    The requirements and potential for development of US peat resources for energy use are reviewed. Factors analyzed include the occurrence and properties of major peat deposits; technologies for extraction, dewatering, preparation, combustion, and conversion of peat to solid, liquid, or gaseous fuels; environmental, regulatory, and market constraints; and research, development, and demonstration (RD and D) needs. Based on a review of existing research efforts, recommendations are made for a comprehensive national RD and D program to enhance the use of peat as an energy source.

  7. Progress in space power technology

    NASA Technical Reports Server (NTRS)

    Mullin, J. P.; Randolph, L. P.; Hudson, W. R.

    1980-01-01

    The National Aeronautics and Space Administration's Space Power Research and Technology Program has the objective of providing the technology base for future space power systems. The current technology program which consists of photovoltaic energy conversion, chemical energy conversion and storage, thermal-to-electric conversion, power systems management and distribution, and advanced energetics is discussed. In each area highlights, current programs, and near-term directions will be presented.

  8. Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies.

    PubMed

    Logan, Bruce E; Rabaey, Korneel

    2012-08-10

    Waste biomass is a cheap and relatively abundant source of electrons for microbes capable of producing electrical current outside the cell. Rapidly developing microbial electrochemical technologies, such as microbial fuel cells, are part of a diverse platform of future sustainable energy and chemical production technologies. We review the key advances that will enable the use of exoelectrogenic microorganisms to generate biofuels, hydrogen gas, methane, and other valuable inorganic and organic chemicals. Moreover, we examine the key challenges for implementing these systems and compare them to similar renewable energy technologies. Although commercial development is already underway in several different applications, ranging from wastewater treatment to industrial chemical production, further research is needed regarding efficiency, scalability, system lifetimes, and reliability.

  9. Systematically reviewing and synthesizing evidence from conversation analytic and related discursive research to inform healthcare communication practice and policy: an illustrated guide

    PubMed Central

    2013-01-01

    Background Healthcare delivery is largely accomplished in and through conversations between people, and healthcare quality and effectiveness depend enormously upon the communication practices employed within these conversations. An important body of evidence about these practices has been generated by conversation analysis and related discourse analytic approaches, but there has been very little systematic reviewing of this evidence. Methods We developed an approach to reviewing evidence from conversation analytic and related discursive research through the following procedures: • reviewing existing systematic review methods and our own prior experience of applying these • clarifying distinctive features of conversation analytic and related discursive work which must be taken into account when reviewing • holding discussions within a review advisory team that included members with expertise in healthcare research, conversation analytic research, and systematic reviewing • attempting and then refining procedures through conducting an actual review which examined evidence about how people talk about difficult future issues including illness progression and dying Results We produced a step-by-step guide which we describe here in terms of eight stages, and which we illustrate from our ‘Review of Future Talk’. The guide incorporates both established procedures for systematic reviewing, and new techniques designed for working with conversation analytic evidence. Conclusions The guide is designed to inform systematic reviews of conversation analytic and related discursive evidence on specific domains and topics. Whilst we designed it for reviews that aim at informing healthcare practice and policy, it is flexible and could be used for reviews with other aims, for instance those aiming to underpin research programmes and projects. We advocate systematically reviewing conversation analytic and related discursive findings using this approach in order to translate them into a form that is credible and useful to healthcare practitioners, educators and policy-makers. PMID:23721181

  10. Do conversations with virtual avatars increase feelings of social anxiety?

    PubMed

    Powers, Mark B; Briceno, Nicole F; Gresham, Robert; Jouriles, Ernest N; Emmelkamp, Paul M G; Smits, Jasper A J

    2013-05-01

    Virtual reality (VR) technology provides a way to conduct exposure therapy with patients with social anxiety. However, the primary limitation of current technology is that the operator is limited to pre-programed avatars that cannot be controlled to interact/converse with the patient in real time. The current study piloted new technology allowing the operator to directly control the avatar (including speaking) during VR conversations. Using an incomplete repeated measures (VR vs. in vivo conversation) design and random starting order with rotation counterbalancing, participants (N = 26) provided ratings of fear and presence during both VR and in vivo conversations. Results showed that VR conversation successfully elevated fear ratings relative to baseline (d = 2.29). Participants also rated their fear higher during VR conversation than during in vivo conversation (d = 0.85). However, in vivo conversation was rated as more realistic than VR conversation (d = 0.74). No participants dropped out and 100% completed both VR and in vivo conversations. Qualitative participant comments suggested that the VR conversations would be more realistic if they did not meet the actor/operator and if they were not in the same room as the participant. Overall, the data suggest that the novel technology allowing real time interaction/conversation in VR may prove useful for the treatment of social anxiety in future studies. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. The Nature of Primary Students' Conversation in Technology Education

    ERIC Educational Resources Information Center

    Fox-Turnbull, Wendy H.

    2016-01-01

    Classroom conversations are core to establishing successful learning for students. This research explores the nature of conversation in technology education in the primary classroom and the implications for teaching and learning. Over a year, two units of work in technology were taught in two primary classrooms. Most data was gathered in Round 2…

  12. Induced neural stem cells as a means of treatment in Huntington's disease.

    PubMed

    Choi, Kyung-Ah; Hong, Sunghoi

    2017-11-01

    Huntington's disease (HD) is an inherited neurodegenerative disease characterized by chorea, dementia, and depression caused by progressive nerve cell degeneration, which is triggered by expanded CAG repeats in the huntingtin (Htt) gene. Currently, there is no cure for this disease, nor is there an effective medicine available to delay or improve the physical, mental, and behavioral severities caused by it. Areas covered: In this review, the authors describe the use of induced neural stem cells (iNSCs) by direct conversion technology, which offers great advantages as a therapeutic cell type to treat HD. Expert opinion: Cell conversion of somatic cells into a desired stem cell type is one of the most promising treatments for HD because it could be facilitated for the generation of patient-specific neural stem cells. The induced pluripotent stem cells (iPSCs) have a powerful potential for differentiation into neurons, but they may cause teratoma formation due to an undifferentiated pluripotent stem cell after transplantation Therefore, direct conversion of somatic cells into iNSCs is a promising alternative technology in regenerative medicine and the iNSCs may be provided as a therapeutic cell source for Huntington's disease.

  13. The NASA Space Power Technology Program

    NASA Technical Reports Server (NTRS)

    Mullin, J. P.; Hudson, W. R.; Randolph, L. P.

    1979-01-01

    This paper discusses the National Aeronautics and Space Administration's (NASA) Space Power Technology Program which is aimed at providing the needed technology for NASA's future missions. The technology program is subdivided into five areas: (1) photovoltaic energy conversion; (2) chemical energy conversion and storage; (3) thermal to electric conversion; (4) power system management and distribution, and (5) advanced energetics. Recent accomplishments, current status, and future directions are presented for each area.

  14. An Overview and Status of NASA's Radioisotope Power Conversion Technology NRA

    NASA Technical Reports Server (NTRS)

    Anderson, David J.; Wong, Wayne A.; Tuttle, Karen L.

    2005-01-01

    NASA's Advanced Radioisotope Power Systems (RPS) development program is developing next generation radioisotope power conversion technologies that will enable future missions that have requirements that can not be met by either photovoltaic systems or by current Radioisotope Power System (RPS) technology. The Advanced Power Conversion Research and Technology project of the Advanced RPS development program is funding research and technology activities through the NASA Research Announcement (NRA) 02-OSS-01, "Research Opportunities in Space Science 2002" entitled "Radioisotope Power Conversion Technology" (RPCT), August 13, 2002. The objective of the RPCT NRA is to advance the development of radioisotope power conversion technologies to provide significant improvements over the state-of-practice General Purpose Heat Source/Radioisotope Thermoelectric Generator by providing significantly higher efficiency to reduce the number of radioisotope fuel modules, and increase specific power (watts/kilogram). Other Advanced RPS goals include safety, long-life, reliability, scalability, multi-mission capability, resistance to radiation, and minimal interference with the scientific payload. Ten RPCT NRA contracts were awarded in 2003 in the areas of Brayton, Stirling, thermoelectric (TE), and thermophotovoltaic (TPV) power conversion technologies. This paper will provide an overview of the RPCT NRA, and a brief summary of accomplishments over the first 18 months but focusing on advancements made over the last 6 months.

  15. On the Edge of Research and Technological Application: A Critical Review of Electromethanogenesis

    PubMed Central

    Blasco-Gómez, Ramiro; Batlle-Vilanova, Pau; Villano, Marianna; Balaguer, Maria Dolors; Colprim, Jesús; Puig, Sebastià

    2017-01-01

    The conversion of electrical current into methane (electromethanogenesis) by microbes represents one of the most promising applications of bioelectrochemical systems (BES). Electromethanogenesis provides a novel approach to waste treatment, carbon dioxide fixation and renewable energy storage into a chemically stable compound, such as methane. This has become an important area of research since it was first described, attracting different research groups worldwide. Basics of the process such as microorganisms involved and main reactions are now much better understood, and recent advances in BES configuration and electrode materials in lab-scale enhance the interest in this technology. However, there are still some gaps that need to be filled to move towards its application. Side reactions or scaling-up issues are clearly among the main challenges that need to be overcome to its further development. This review summarizes the recent advances made in the field of electromethanogenesis to address the main future challenges and opportunities of this novel process. In addition, the present fundamental knowledge is critically reviewed and some insights are provided to identify potential niche applications and help researchers to overcome current technological boundaries. PMID:28425974

  16. On the Edge of Research and Technological Application: A Critical Review of Electromethanogenesis.

    PubMed

    Blasco-Gómez, Ramiro; Batlle-Vilanova, Pau; Villano, Marianna; Balaguer, Maria Dolors; Colprim, Jesús; Puig, Sebastià

    2017-04-20

    The conversion of electrical current into methane (electromethanogenesis) by microbes represents one of the most promising applications of bioelectrochemical systems (BES). Electromethanogenesis provides a novel approach to waste treatment, carbon dioxide fixation and renewable energy storage into a chemically stable compound, such as methane. This has become an important area of research since it was first described, attracting different research groups worldwide. Basics of the process such as microorganisms involved and main reactions are now much better understood, and recent advances in BES configuration and electrode materials in lab-scale enhance the interest in this technology. However, there are still some gaps that need to be filled to move towards its application. Side reactions or scaling-up issues are clearly among the main challenges that need to be overcome to its further development. This review summarizes the recent advances made in the field of electromethanogenesis to address the main future challenges and opportunities of this novel process. In addition, the present fundamental knowledge is critically reviewed and some insights are provided to identify potential niche applications and help researchers to overcome current technological boundaries.

  17. Cryogenic hydrogen-induced air-liquefaction technologies for combined-cycle propulsion applications

    NASA Technical Reports Server (NTRS)

    Escher, William J. D.

    1992-01-01

    Given here is a technical assessment of the realization of cryogenic hydrogen induced air liquefaction technologies in a prospective onboard aerospace vehicle process setting. The technical findings related to the status of air liquefaction technologies are reviewed. Compact lightweight cryogenic heat exchangers, heat exchanger atmospheric constituent fouling alleviation measures, para/ortho-hydrogen shift-conversion catalysts, cryogenic air compressors and liquid air pumps, hydrogen recycling using slush hydrogen as a heat sink, liquid hydrogen/liquid air rocket-type combustion devices, and technically related engine concepts are discussed. Much of the LACE work is related to aerospaceplane propulsion concepts that were developed in the 1960's. Emphasis is placed on the Liquid Air Cycle Engine (LACE).

  18. Materials for solar fuels and chemicals.

    PubMed

    Montoya, Joseph H; Seitz, Linsey C; Chakthranont, Pongkarn; Vojvodic, Aleksandra; Jaramillo, Thomas F; Nørskov, Jens K

    2016-12-20

    The conversion of sunlight into fuels and chemicals is an attractive prospect for the storage of renewable energy, and photoelectrocatalytic technologies represent a pathway by which solar fuels might be realized. However, there are numerous scientific challenges in developing these technologies. These include finding suitable materials for the absorption of incident photons, developing more efficient catalysts for both water splitting and the production of fuels, and understanding how interfaces between catalysts, photoabsorbers and electrolytes can be designed to minimize losses and resist degradation. In this Review, we highlight recent milestones in these areas and some key scientific challenges remaining between the current state of the art and a technology that can effectively convert sunlight into fuels and chemicals.

  19. Catalytic Wastewater Treatment Using Pillared Clays

    NASA Astrophysics Data System (ADS)

    Perathoner, Siglinda; Centi, Gabriele

    After introduction on the use of solid catalysts in wastewater treatment technologies, particularly advanced oxidation processes (AOPs), this review discussed the use of pillared clay (PILC) materials in three applications: (i) wet air catalytic oxidation (WACO), (ii) wet hydrogen peroxide catalytic oxidation (WHPCO) on Cu-PILC and Fe-PILC, and (iii) behavior of Ti-PILC and Fe-PILC in the photocatalytic or photo-Fenton conversion of pollutants. Literature data are critically analyzed to evidence the main direction to further investigate, in particularly with reference to the possible practical application of these technologies to treat industrial, municipal, or agro-food production wastewater.

  20. Current technologies, economics, and perspectives for 2,5-dimethylfuran production from biomass-derived intermediates.

    PubMed

    Saha, Basudeb; Abu-Omar, Mahdi M

    2015-04-13

    Since the U.S. Department of Energy (DOE) published a perspective article that described the potential of the top ten biomass-derived platform chemicals as petroleum replacements for high-value commodity and specialty chemicals, researchers around the world have been motivated to develop technologies for the conversion of biomass and biomass-derived intermediates into chemicals and fuels. Among several biorefinery processes, the conversion of biomass carbohydrates into 2,5-dimethylfuran (DMF) has received significant attention because of its low oxygen content, high energy content, and high octane value. DMF can further serve as a petroleum-replacement, biorenewable feedstock for the production of p-xylene (pX). In this review, we aim specifically to present a concise and up-to-date analysis of DMF production technologies with a critical discussion on catalytic systems, mechanistic insight, and process economics, which includes sensitivity analysis, so that more effective catalysts can be designed. Special emphasis has been given to bifunctional catalysts that improve DMF yields and selectivity and the synergistic effect of the bifunctional sites. Process economics for the current processes and the scope for further improvement are discussed. It is anticipated that the chemistry detailed in this review will guide researchers to develop more practical catalytic processes to enable the economic production of bio-based DMF. Processes for the upgrade of DMF to pX are also described. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Glycerol Production and Transformation: A Critical Review with Particular Emphasis on Glycerol Reforming Reaction for Producing Hydrogen in Conventional and Membrane Reactors.

    PubMed

    Bagnato, Giuseppe; Iulianelli, Adolfo; Sanna, Aimaro; Basile, Angelo

    2017-03-23

    Glycerol represents an emerging renewable bio-derived feedstock, which could be used as a source for producing hydrogen through steam reforming reaction. In this review, the state-of-the-art about glycerol production processes is reviewed, with particular focus on glycerol reforming reactions and on the main catalysts under development. Furthermore, the use of membrane catalytic reactors instead of conventional reactors for steam reforming is discussed. Finally, the review describes the utilization of the Pd-based membrane reactor technology, pointing out the ability of these alternative fuel processors to simultaneously extract high purity hydrogen and enhance the whole performances of the reaction system in terms of glycerol conversion and hydrogen yield.

  2. Glycerol Production and Transformation: A Critical Review with Particular Emphasis on Glycerol Reforming Reaction for Producing Hydrogen in Conventional and Membrane Reactors

    PubMed Central

    Bagnato, Giuseppe; Iulianelli, Adolfo; Sanna, Aimaro; Basile, Angelo

    2017-01-01

    Glycerol represents an emerging renewable bio-derived feedstock, which could be used as a source for producing hydrogen through steam reforming reaction. In this review, the state-of-the-art about glycerol production processes is reviewed, with particular focus on glycerol reforming reactions and on the main catalysts under development. Furthermore, the use of membrane catalytic reactors instead of conventional reactors for steam reforming is discussed. Finally, the review describes the utilization of the Pd-based membrane reactor technology, pointing out the ability of these alternative fuel processors to simultaneously extract high purity hydrogen and enhance the whole performances of the reaction system in terms of glycerol conversion and hydrogen yield. PMID:28333121

  3. Investigation Regarding Assertions Made by Former United Launch Alliance Executive (REDACTED)

    DTIC Science & Technology

    2016-12-05

    contractors; 3) a conversation occurred between the Under Secretary of Defense for Acquisition , Technology, and Logistics (USD[AT&L]) and the...contracting process; (2) after multiple interviews of DoD and ULA personnel and our reviews of acquisition planning documentation, contracts, and...internal DoD and ULA correspondence, we found no evidence of collusion; (3) the DoD’s implementation of its acquisition strategy was designed to

  4. Classroom Conversations in the Study of Race and the Disruption of Social and Educational Inequalities: A Review of Research

    ERIC Educational Resources Information Center

    Brown, Ayanna F.; Bloome, David; Morris, Jerome E.; Power-Carter, Stephanie; Willis, Arlette I.

    2017-01-01

    This review of research examines classroom conversations about race with a theoretical framing oriented to understanding how such conversations may disrupt social and educational inequalities. The review covers research on how classroom conversations on race contribute to students' and educators' understandings of a racialized society, their…

  5. Preliminary comparative assessment of land use for the Satellite Power System (SPS) and alternative electric energy technologies

    NASA Technical Reports Server (NTRS)

    Newsom, D. E.; Wolsko, T.

    1980-01-01

    A preliminary comparative assessment of land use for the satellite power system (SPS), other solar technologies, and alternative electric energy technologies was conducted. The alternative technologies are coal gasification/combined-cycle, coal fluidized-bed combustion (FBC), light water reactor (LWR), liquid metal fast breeder reactor (LMFBR), terrestrial photovoltaics (TPV), solar thermal electric (STE), and ocean thermal energy conversion (OTEC). The major issues of a land use assessment are the quantity, purpose, duration, location, and costs of the required land use. The phased methodology described treats the first four issues, but not the costs. Several past efforts are comparative or single technology assessment are reviewed briefly. The current state of knowledge about land use is described for each technology. Conclusions are drawn regarding deficiencies in the data on comparative land use and needs for further research.

  6. Sequestration and utilization of carbon dioxide by chemical and biological methods for biofuels and biomaterials by chemoautotrophs: Opportunities and challenges.

    PubMed

    Thakur, Indu Shekhar; Kumar, Manish; Varjani, Sunita J; Wu, Yonghong; Gnansounou, Edgard; Ravindran, Sindhu

    2018-05-01

    To meet the CO 2 emission reduction targets, carbon dioxide capture and utilization (CCU) comes as an evolve technology. CCU concept is turning into a feedstock and technologies have been developed for transformation of CO 2 into useful organic products. At industrial scale, utilization of CO 2 as raw material is not much significant as compare to its abundance. Mechanisms in nature have evolved for carbon concentration, fixation and utilization. Assimilation and subsequent conversion of CO 2 into complex molecules are performed by the photosynthetic and chemolithotrophic organisms. In the last three decades, substantial research is carry out to discover chemical and biological conversion of CO 2 in various synthetic and biological materials, such as carboxylic acids, esters, lactones, polymer biodiesel, bio-plastics, bio-alcohols, exopolysaccharides. This review presents an over view of catalytic transformation of CO 2 into biofuels and biomaterials by chemical and biological methods. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Geothermal Program Review XI: proceedings. Geothermal Energy - The Environmental Responsible Energy Technology for the Nineties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-10-01

    These proceedings contain papers pertaining to current research and development of geothermal energy in the USA. The seven sections of the document are: Overview, The Geysers, Exploration and Reservoir Characterization, Drilling, Energy Conversion, Advanced Systems, and Potpourri. The Overview presents current DOE energy policy and industry perspectives. Reservoir studies, injection, and seismic monitoring are reported for the geysers geothermal field. Aspects of geology, geochemistry and models of geothermal exploration are described. The Drilling section contains information on lost circulation, memory logging tools, and slim-hole drilling. Topics considered in energy conversion are efforts at NREL, condensation on turbines and geothermal materials.more » Advanced Systems include hot dry rock studies and Fenton Hill flow testing. The Potpourri section concludes the proceedings with reports on low-temperature resources, market analysis, brines, waste treatment biotechnology, and Bonneville Power Administration activities. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.« less

  8. Assessment of different pretreatment technologies for efficient bioconversion of lignocellulose to ethanol.

    PubMed

    Singh, Jitendra K; Vyas, Preeti; Dubey, Anamika; Upadhyaya, Chandrama Prakash; Kothari, Richa; Tyagi, Vineet Veer; Kumar, Ashwani

    2018-06-01

    The future supply of energy to meet growing energy demand of rapidly exapanding populations is based on wide energy resources, particularly the renewable ones. Among all resources, lignocellulosic biomasses such as agriculture, forest, and agro-industrial residues are the most abundant and easily available bioresource for biorefineries to provide fuels, chemicals, and materials. However, pretreatment of biomass is required to overcome the physical and chemical barriers that exist in the lignin-carbohydrate composite and pretreatment facilitate the entry of biocatalysts for the conversion of biomass into fermentable sugars and other by-products. Therefore, pretreatment of the biomass is necessary prerequisite for efficient hydrolysis of lignocelluloses into different type of fermentable sugars. The physiochemical, biochemical and biological pretreatment methods are considered as most promising technologies for the biomass hydrolysis and are discussed in this review article. We also discussed the recent advancements and modern trends in pretreatment methods of lignocelluloses conversion into ethanol with special focus on fermentation methods.

  9. Crystal growth and materials research in photovoltaics: progress and challenges

    NASA Astrophysics Data System (ADS)

    Surek, Thomas

    2005-02-01

    Photovoltaics (PV) is solar electric power—a semiconductor-based technology that converts sunlight to electricity. Three decades of research has led to the discovery of new materials and devices and new processing techniques for low-cost manufacturing. This has resulted in improved sunlight-to-electricity conversion efficiencies, improved outdoor reliability, and lower module and system costs. The manufacture and sale of PV has grown into a $5 billion industry worldwide, with more than 740 megawatts of PV modules shipped in 2003. This paper reviews the significant progress that has occurred in PV materials and devices research over the past 30 years, focusing on the advances in crystal growth and materials research, and examines the challenges to reaching the ultimate potential of current-generation (crystalline silicon), next-generation (thin films and concentrators), and future-generation PV technologies. The latter includes innovative materials and device concepts that hold the promise of significantly higher conversion efficiencies and/or much lower costs.

  10. Use of speech-to-text technology for documentation by healthcare providers.

    PubMed

    Ajami, Sima

    2016-01-01

    Medical records are a critical component of a patient's treatment. However, documentation of patient-related information is considered a secondary activity in the provision of healthcare services, often leading to incomplete medical records and patient data of low quality. Advances in information technology (IT) in the health system and registration of information in electronic health records (EHR) using speechto- text conversion software have facilitated service delivery. This narrative review is a literature search with the help of libraries, books, conference proceedings, databases of Science Direct, PubMed, Proquest, Springer, SID (Scientific Information Database), and search engines such as Yahoo, and Google. I used the following keywords and their combinations: speech recognition, automatic report documentation, voice to text software, healthcare, information, and voice recognition. Due to lack of knowledge of other languages, I searched all texts in English or Persian with no time limits. Of a total of 70, only 42 articles were selected. Speech-to-text conversion technology offers opportunities to improve the documentation process of medical records, reduce cost and time of recording information, enhance the quality of documentation, improve the quality of services provided to patients, and support healthcare providers in legal matters. Healthcare providers should recognize the impact of this technology on service delivery.

  11. Recent Advances in Power Conversion and Heat Rejection Technology for Fission Surface Power

    NASA Technical Reports Server (NTRS)

    Mason, Lee

    2010-01-01

    Under the Exploration Technology Development Program, the National Aeronautics and Space Administration (NASA) and the Department of Energy (DOE) are jointly developing Fission Surface Power (FSP) technology for possible use in human missions to the Moon and Mars. A preliminary reference concept was generated to guide FSP technology development. The concept consists of a liquid-metal-cooled reactor, Stirling power conversion, and water heat rejection, with Brayton power conversion as a backup option. The FSP project has begun risk reduction activities on some key components with the eventual goal of conducting an end-to-end, non-nuclear, integrated system test. Several power conversion and heat rejection hardware prototypes have been built and tested. These include multi-kilowatt Stirling and Brayton power conversion units, titanium-water heat pipes, and composite radiator panels.

  12. NASA Electronic Parts and Packaging (NEPP) Program - Update

    NASA Technical Reports Server (NTRS)

    LaBel, Kenneth A.; Sampson, Michael J.

    2010-01-01

    This slide presentation reviews the goals and mission of the NASA Electronic Parts and Packaging (NEPP) Program. The NEPP mission is to provide guidance to NASA for the selection and application of microelectronics technologies, to improve understanding of the risks related to the use of these technologies in the space environment and to ensure that appropriate research is performed to meet NASA mission assurance needs. The program has been supporting NASA for over 20 years. The focus is on the reliability aspects of electronic devices. In this work the program also supports the electronics industry. There are several areas that the program is involved in: Memories, systems on a chip (SOCs), data conversion devices, power MOSFETS, power converters, scaled CMOS, capacitors, linear devices, fiber optics, and other electronics such as sensors, cryogenic and SiGe that are used in space systems. Each of these area are reviewed with the work that is being done in reliability and effects of radiation on these technologies.

  13. Current scenario of chalcopyrite bioleaching: a review on the recent advances to its heap-leach technology.

    PubMed

    Panda, Sandeep; Akcil, Ata; Pradhan, Nilotpala; Deveci, Haci

    2015-11-01

    Chalcopyrite is the primary copper mineral used for production of copper metal. Today, as a result of rapid industrialization, there has been enormous demand to profitably process the low grade chalcopyrite and "dirty" concentrates through bioleaching. In the current scenario, heap bioleaching is the most advanced and preferred eco-friendly technology for processing of low grade, uneconomic/difficult-to-enrich ores for copper extraction. This paper reviews the current status of chalcopyrite bioleaching. Advanced information with the attempts made for understanding the diversity of bioleaching microorganisms; role of OMICs based research for future applications to industrial sectors and chemical/microbial aspects of chalcopyrite bioleaching is discussed. Additionally, the current progress made to overcome the problems of passivation as seen in chalcopyrite bioleaching systems have been conversed. Furthermore, advances in the designing of heap bioleaching plant along with microbial and environmental factors of importance have been reviewed with conclusions into the future prospects of chalcopyrite bioleaching. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Research planning criteria for regenerative life-support systems applicable to space habitats

    NASA Technical Reports Server (NTRS)

    Spurlock, J.; Cooper, W.; Deal, P.; Harlan, A.; Karel, M.; Modell, M.; Moe, P.; Phillips, J.; Putnam, D.; Quattrone, P.

    1979-01-01

    The second phase of analyses that were conducted by the Life Support Systems Group of the 1977 NASA Ames Summer Study is described. This phase of analyses included a preliminary review of relevant areas of technology that can contribute to the development of closed life-support systems for space habitats, the identification of research options in these areas of technology, and the development of guidelines for an effective research program. The areas of technology that were studied included: (1) nutrition, diet, and food processing; (2) higher plant agriculture; (3) animal agriculture; (4) waste conversion and resource recovery; and (5) system stability and safety. Results of these analyses, including recommended research options and criteria for establishing research priorities among these many options, are discussed.

  15. A comprehensive review on food waste anaerobic digestion: Research updates and tendencies.

    PubMed

    Ren, Yuanyuan; Yu, Miao; Wu, Chuanfu; Wang, Qunhui; Gao, Ming; Huang, Qiqi; Liu, Yu

    2018-01-01

    Anaerobic digestion has been practically applied in agricultural and industrial waste treatment and recognized as an economical-effective way for food waste disposal. This paper presented an overview on the researches about anaerobic digestion of food waste. Technologies (e.g., pretreatment, co-digestion, inhibition and mitigation, anaerobic digestion systems, etc.) were introduced and evaluated on the basis of bibliometric analysis. Results indicated that ethanol and aerobic prefermentation were novel approaches to enhance substrates hydrolysis and methane yield. With the promotion of resource recovery, more attention should be paid to biorefinery technologies which can produce more useful products toward zero emissions. Furthermore, a technological route for food waste conversion based on anaerobic digestion was proposed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. The Documentary Impulse.

    PubMed

    Shell, Hanna Rose; Mitman, Gregg

    This article has two interconnected goals. It is, first of all, a review of the film The Land Beneath Our Feet, an exemplary documentary that combines the history of technology, science and technology studies, and environmental history in its exploration of the social, cultural, and natural consequences of the rubber industry's expansion in Liberia. The essay's larger purpose, however, is to explore the powerful role documentary film-making practices have to play in the development of new approaches in the history of technology. Here, an interview with historian and film co-director Gregg Mitman provides the framework for an expansive conversation about both the "documentary impulse" that he explores in his film and related written works, and also the growing role of audiovisual practice in scholarly work.

  17. 800 Hours of Operational Experience from a 2 kW(sub e) Solar Dynamic System

    NASA Technical Reports Server (NTRS)

    Shaltens, Richard K.; Mason, Lee S.

    1999-01-01

    From December 1994 to September 1998, testing with a 2 kW(sub e) Solar Dynamic power system resulted in 33 individual tests, 886 hours of solar heating, and 783 hours of power generation. Power generation ranged from 400 watts to over 2 kW(sub e), and SD system efficiencies have been measured up to 17 per cent, during simulated low-Earth orbit operation. Further, the turbo-alternator-compressors successfully completed 100 start/stops on foil bearings. Operation was conducted in a large thermal/vacuum facility with a simulated Sun at the NASA Lewis Research Center. The Solar Dynamic system featured a closed Brayton conversion unit integrated with a solar heat receiver, which included thermal energy storage for continuous power output through a typical low-Earth orbit. Two power conversion units and three alternator configurations were used during testing. This paper will review the test program, provide operational and performance data, and review a number of technology issues.

  18. Augmented digestion of lignocellulose by steam explosion, acid and alkaline pretreatment methods: a review.

    PubMed

    Singh, Joginder; Suhag, Meenakshi; Dhaka, Anil

    2015-03-06

    Lignocellulosic materials can be explored as one of the sustainable substrates for bioethanol production through microbial intervention as they are abundant, cheap and renewable. But at the same time, their recalcitrant structure makes the conversion process more cumbersome owing to their chemical composition which adversely affects the efficiency of bioethanol production. Therefore, the technical approaches to overcome recalcitrance of biomass feedstock has been developed to remove the barriers with the help of pretreatment methods which make cellulose more accessible to the hydrolytic enzymes, secreted by the microorganisms, for its conversion to glucose. Pretreatment of lignocellulosic biomass in cost effective manner is a major challenge to bioethanol technology research and development. Hence, in this review, we have discussed various aspects of three commonly used pretreatment methods, viz., steam explosion, acid and alkaline, applied on various lignocellulosic biomasses to augment their digestibility alongwith the challenges associated with their processing. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Bermuda grass as feedstock for biofuel production: a review.

    PubMed

    Xu, Jiele; Wang, Ziyu; Cheng, Jay J

    2011-09-01

    Bermuda grass is a promising feedstock for the production of fuel ethanol in the Southern United States. This paper presents a review of the significant amount of research on the conversion of Bermuda grass to ethanol and a brief discussion on the factors affecting the biomass production in the field. The biggest challenge of biomass conversion comes from the recalcitrance of lignocellulose. A variety of chemical, physico-chemical, and biological pretreatment methods have been investigated to improve the digestibility of Bermuda grass with encouraging results reported. The subsequent enzymatic hydrolysis and fermentation steps have also been extensively studied and effectively optimized. It is expected that the development of genetic engineering technologies for the grass and fermenting organisms has the potential to greatly improve the economic viability of Bermuda grass-based fuel ethanol production systems. Other energy applications of Bermuda grass include anaerobic digestion for biogas generation and pyrolysis for syngas production. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Perovskites in catalysis and electrocatalysis

    NASA Astrophysics Data System (ADS)

    Hwang, Jonathan; Rao, Reshma R.; Giordano, Livia; Katayama, Yu; Yu, Yang; Shao-Horn, Yang

    2017-11-01

    Catalysts for chemical and electrochemical reactions underpin many aspects of modern technology and industry, from energy storage and conversion to toxic emissions abatement to chemical and materials synthesis. This role necessitates the design of highly active, stable, yet earth-abundant heterogeneous catalysts. In this Review, we present the perovskite oxide family as a basis for developing such catalysts for (electro)chemical conversions spanning carbon, nitrogen, and oxygen chemistries. A framework for rationalizing activity trends and guiding perovskite oxide catalyst design is described, followed by illustrations of how a robust understanding of perovskite electronic structure provides fundamental insights into activity, stability, and mechanism in oxygen electrocatalysis. We conclude by outlining how these insights open experimental and computational opportunities to expand the compositional and chemical reaction space for next-generation perovskite catalysts.

  1. Technology and Teaching: A Conversation among Faculty Regarding the Pros and Cons of Technology

    ERIC Educational Resources Information Center

    Kemp, Andrew T.; Preston, John; Page, C. Steven; Harper, Rebecca; Dillard, Benita; Flynn, Joseph; Yamaguchi, Misato

    2014-01-01

    Technology is often touted as the savior of education (Collins & Haverson, 2009). However, is technology the panacea that it is made out to be? This paper is an extended conversation among a group of faculty members at three different universities and their attitudes and beliefs about technology and education. Three professors shared their…

  2. Research and Technology Activities Supporting Closed-Brayton-Cycle Power Conversion System Development

    NASA Technical Reports Server (NTRS)

    Barrett, Michael J.

    2004-01-01

    The elements of Brayton technology development emphasize power conversion system risk mitigation. Risk mitigation is achieved by demonstrating system integration feasibility, subsystem/component life capability (particularly in the context of material creep) and overall spacecraft mass reduction. Closed-Brayton-cycle (CBC) power conversion technology is viewed as relatively mature. At the 2-kWe power level, a CBC conversion system Technology Readiness Level (TRL) of six (6) was achieved during the Solar Dynamic Ground Test Demonstration (SD-GTD) in 1998. A TRL 5 was demonstrated for 10 kWe-class CBC components during the development of the Brayton Rotating Unit (BRU) from 1968 to 1976. Components currently in terrestrial (open cycle) Brayton machines represent TRL 4 for similar uses in 100 kWe-class CBC space systems. Because of the baseline component and subsystem technology maturity, much of the Brayton technology task is focused on issues related to systems integration. A brief description of ongoing technology activities is given.

  3. Current development of biorefinery in China.

    PubMed

    Tan, Tianwei; Shang, Fei; Zhang, Xu

    2010-01-01

    To meet the demand of its fast growing economy, China has become already the second largest buyer of crude oil. China is facing critical problems of energy shortage and environment deterioration. Rational and efficient energy use and environment protection are both getting more attention in China. Biomass energy is renewable energy made from biological sources. China's biomass resources are abundant, which could provide energy for future social and economic development. However technologies for biomass resource conversion in China are still just beginning. In this paper, current biomass resource distribution and technologies of biomass energy, including power generation, biofuel production and biomass-based chemical production are reviewed. Copyright 2010 Elsevier Inc. All rights reserved.

  4. Enabling the space exploration initiative: NASA's exploration technology program in space power

    NASA Technical Reports Server (NTRS)

    Bennett, Gary L.; Cull, Ronald C.

    1991-01-01

    Space power requirements for Space Exploration Initiative (SEI) are reviewed, including the results of a NASA 90-day study and reports by the National Research Council, the American Institute of Aeronautics and Astronautics (AIAA), NASA, the Advisory Committee on the Future of the U.S. Space Program, and the Synthesis Group. The space power requirements for the SEI robotic missions, lunar spacecraft, Mars spacecraft, and human missions are summarized. Planning for exploration technology is addressed, including photovoltaic, chemical and thermal energy conversion; high-capacity power; power and thermal management for the surface, Earth-orbiting platform and spacecraft; laser power beaming; and mobile surface systems.

  5. An overview of thermionic power conversion technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, Morgan C.

    1996-12-01

    Thermionic energy conversion is one of the many concepts which make up the direct power conversion technologies. Specifically, thermionics is the process of changing heat directly into electricity via a material`s ability to emit electrons when heated. This thesis presents a broad overview of the engineering and physics necessary to make thermionic energy conversion (TEC) a practical reality. It begins with an introduction to the technology and the history of its development. This is followed by a discussion of the physics and engineering necessary to develop practical power systems. Special emphasis is placed on the critical issues which are stillmore » being researched. Finally, there is a discussion of the missions which this technology may fulfill.« less

  6. Laparoscopic Whipple procedure: review of the literature.

    PubMed

    Gagner, Michel; Palermo, Mariano

    2009-01-01

    Laparoscopic pancreatic surgery represents one of the most advanced applications for laparoscopic surgery currently in use. In the past, minimally invasive techniques were only used for diagnostic laparoscopy, staging of pancreatic cancer, and palliative procedures for unresectable pancreatic cancer. With new advances in technology and instrumentation, some sophisticated procedures are currently available, such as the Whipple procedure, one of the most sophisticated applications of minimally invasive surgery. A review of the literature shows that 146 laparoscopic Whipple procedures have been published worldwide since 1994. The authors analyzed blood loss, mean operating time, hospital stay, conversion rate, mean age, mortality rate, lymph nodes in the pathologic findings, follow up, and complications. Mean age was 59.1 years; mean operating time was 439 min. The average blood loss for the reviewed literature was 143 mL; median hospital stay was 18 days; conversion rate was 46%; number of lymph nodes in the pathologic findings was 19; and mortalities related to the procedure was low, 2 patients (1.3%) and the complication rate was 16% (23/46 patients). Complications included 2 hemorrhages, 4 bowel obstructions, 1 stress ulcer, 1 delay of gastric emptying, 4 pneumonias, and 11 leaks. This review demonstrates that the laparoscopic Whipple procedure is not only feasible but also safe, with low mortality and acceptable rates of complications.

  7. Energy Harvesting Research: The Road from Single Source to Multisource.

    PubMed

    Bai, Yang; Jantunen, Heli; Juuti, Jari

    2018-06-07

    Energy harvesting technology may be considered an ultimate solution to replace batteries and provide a long-term power supply for wireless sensor networks. Looking back into its research history, individual energy harvesters for the conversion of single energy sources into electricity are developed first, followed by hybrid counterparts designed for use with multiple energy sources. Very recently, the concept of a truly multisource energy harvester built from only a single piece of material as the energy conversion component is proposed. This review, from the aspect of materials and device configurations, explains in detail a wide scope to give an overview of energy harvesting research. It covers single-source devices including solar, thermal, kinetic and other types of energy harvesters, hybrid energy harvesting configurations for both single and multiple energy sources and single material, and multisource energy harvesters. It also includes the energy conversion principles of photovoltaic, electromagnetic, piezoelectric, triboelectric, electrostatic, electrostrictive, thermoelectric, pyroelectric, magnetostrictive, and dielectric devices. This is one of the most comprehensive reviews conducted to date, focusing on the entire energy harvesting research scene and providing a guide to seeking deeper and more specific research references and resources from every corner of the scientific community. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Session: Program Review X Wrap-Up

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1992-01-01

    This wrap-up session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of Closing Remarks by Roland R. Kessler and six NGA Industry Critique Panel presentations: ''Summary of Comments on DOE-Industry Cooperation by Geothermal Industry Panel'' by James B. Koenig, GeothermEx, Inc.; ''NGA Industry Critique of the Exploration Component'' by Joe L. Iovenitti, Weiss Associates; ''Critique of Drilling Research'' by Jerry Hamblin, UNOCAL Geothermal; ''Critique Panel Comments on Reservoir Engineering, DOE Geothermal Technology Development'' by Dennis Kaspereit, California Energy Company, Inc.; ''DOE Geothermal Program Review - Critique on Production'' by Douglas B. Jung, Two-Phase Engineeringmore » and Research; ''Comments on the DOE Hydrothermal Energy Conversion R&D Program'' by David L. Mendive, Geothermal Development Associates.« less

  9. Connecting with patients and instilling realism in an era of emerging communication possibilities: a review on palliative care communication heading to telecare practice.

    PubMed

    van Gurp, Jelle; Hasselaar, Jeroen; van Leeuwen, Evert; Hoek, Patrick; Vissers, Kris; van Selm, Martine

    2013-12-01

    Appropriate palliative care communication is pivotal to optimizing the quality of life in dying patients and their families. This review aims at describing communication patterns in palliative care and discussing potential relations between communication patterns and upcoming telecare in the practice of palliative care. This review builds on a systematic five-step qualitative analysis of the selected articles: 1. Development of a 'descriptive table of studies reviewed' based on the concept of genre, 2. Open coding of table content and first broad clustering of codes, 3. Intracluster categorization of inductive codes into substantive categories, 4. Constant inter- and intracluster comparison results in identification of genres, and 5. Labeling of genres. This review includes 71 articles. In the analysis, two communication genres in palliative care proved to be dominant: the conversation to connect, about creating and maintaining a professional-patient/family relationship, and the conversation to instill realism, about telling a clinical truth without diminishing hope. The abovementioned two genres clarify a logical intertwinement between communicative purposes, the socio-ethical background underlying palliative care practice and elements of form. Our study supports understanding of current communication in palliative care and anticipates future communicative actions in an era of new communication technologies. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  10. Robotic colorectal surgery: hype or new hope? A systematic review of robotics in colorectal surgery.

    PubMed

    Mirnezami, A H; Mirnezami, R; Venkatasubramaniam, A K; Chandrakumaran, K; Cecil, T D; Moran, B J

    2010-11-01

    Robotic colorectal surgery is an emerging field and may offer a solution to some of the difficulties inherent to conventional laparoscopic surgery. The aim of this review is to provide a comprehensive and critical analysis of the available literature on the use of robotic technology in colorectal surgery. Studies reporting outcomes of robotic colorectal surgery were identified by systematic searches of electronic databases. Outcomes examined included operating time, length of stay, blood loss, complications, cost, oncological outcome, and conversion rates. Seventeen Studies (nine case series, seven comparative studies, one randomized controlled trial) describing 288 procedures were identified and reviewed. Study heterogeneity precluded a meta-analysis of the data. Robotic procedures tend to take longer and cost more, but may reduce the length of stay, blood loss, and conversion rates. Complication profiles and short-term oncological outcomes are similar to laparoscopic surgery. Robotic colorectal surgery is a promising field and may provide a powerful additional tool for optimal management of more challenging pathology, including rectal cancer. Further studies are required to better define its role. © 2010 The Authors. Colorectal Disease © 2010 The Association of Coloproctology of Great Britain and Ireland.

  11. Biochemical Conversion Processes of Lignocellulosic Biomass to Fuels and Chemicals - A Review.

    PubMed

    Brethauer, Simone; Studer, Michael H

    2015-01-01

    Lignocellulosic biomass - such as wood, agricultural residues or dedicated energy crops - is a promising renewable feedstock for production of fuels and chemicals that is available at large scale at low cost without direct competition for food usage. Its biochemical conversion in a sugar platform biorefinery includes three main unit operations that are illustrated in this review: the physico-chemical pretreatment of the biomass, the enzymatic hydrolysis of the carbohydrates to a fermentable sugar stream by cellulases and finally the fermentation of the sugars by suitable microorganisms to the target molecules. Special emphasis in this review is put on the technology, commercial status and future prospects of the production of second-generation fuel ethanol, as this process has received most research and development efforts so far. Despite significant advances, high enzyme costs are still a hurdle for large scale competitive lignocellulosic ethanol production. This could be overcome by a strategy termed 'consolidated bioprocessing' (CBP), where enzyme production, enzymatic hydrolysis and fermentation is integrated in one step - either by utilizing one genetically engineered superior microorganism or by creating an artificial co-culture. Insight is provided on both CBP strategies for the production of ethanol as well as of advanced fuels and commodity chemicals.

  12. Monitoring the Thickness of Coal-Conversion Slag

    NASA Technical Reports Server (NTRS)

    Walsh, J. V.

    1984-01-01

    Technique adapts analogous ocean-floor-mapping technology. Existing ocean floor acoustic technology adapted for real-time monitoring of thickness and viscosity of flowing slag in coal-conversion processing.

  13. Intracellular cellobiose metabolism and its applications in lignocellulose-based biorefineries.

    PubMed

    Parisutham, Vinuselvi; Chandran, Sathesh-Prabu; Mukhopadhyay, Aindrila; Lee, Sung Kuk; Keasling, Jay D

    2017-09-01

    Complete hydrolysis of cellulose has been a key characteristic of biomass technology because of the limitation of industrial production hosts to use cellodextrin, the partial hydrolysis product of cellulose. Cellobiose, a β-1,4-linked glucose dimer, is a major cellodextrin of the enzymatic hydrolysis (via endoglucanase and exoglucanase) of cellulose. Conversion of cellobiose to glucose is executed by β-glucosidase. The complete extracellular hydrolysis of celluloses has several critical barriers in biomass technology. An alternative bioengineering strategy to make the bioprocessing less challenging is to engineer microbes with the abilities to hydrolyze and assimilate the cellulosic-hydrolysate cellodextrin. Microorganisms engineered to metabolize cellobiose rather than the monomeric glucose can provide several advantages for lignocellulose-based biorefineries. This review describes the recent advances and challenges in engineering efficient intracellular cellobiose metabolism in industrial hosts. This review also describes the limitations of and future prospectives in engineering intracellular cellobiose metabolism. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Intracellular cellobiose metabolism and its applications in lignocellulose-based biorefineries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parisutham, Vinuselvi; Chandran, Sathesh-Prabu; Mukhopadhyay, Aindrila

    Complete hydrolysis of cellulose has been noted as a key characteristic of biomass technology due to the limitation of industrial production hosts to use cellodextrin, the partial hydrolysis product of cellulose. Cellobiose, a β-1,4-linked glucose dimer, is a major cellodextrin of the enzymatic hydrolysis (via endoglucanase and exoglucanase) of cellulose. Conversion of cellobiose to glucose is executed by β-glucosidase. The complete extracellular hydrolysis of celluloses has several critical barriers in biomass technology. An alternative bioengineering strategy to make the bioprocessing less challenging is to engineer microbes with the abilities to hydrolyze and assimilate the cellulosic-hydrolysate cellodextrin. Microorganisms engineered to metabolizemore » cellobiose rather than the monomeric glucose can provide several advantages for lignocellulose-based biorefineries. This review describes the recent advances and challenges in engineering efficient intracellular cellobiose metabolism in industrial hosts. This review also describes the limitations of and future prospectives in engineering intracellular cellobiose metabolism.« less

  15. Direct conversion technology

    NASA Technical Reports Server (NTRS)

    Massier, Paul F.; Bankston, C. P.; Williams, R.; Underwood, M.; Jeffries-Nakamura, B.; Fabris, G.

    1989-01-01

    The overall objective of the Direct Conversion Technology task is to develop an experimentally verified technology base for promising direct conversion systems that have potential application for energy conservation in the end-use sectors. This report contains progress of research on the Alkali Metal Thermal-to-Electric Converter (AMTEC), and on the Two-Phase Liquid-Metal Magnetohydrodynamic Electrical Generator (LMMHD) for the period January 1, 1989 through December 31, 1989. Research on these concepts was initiated during October 1987. Reports prepared on previous occasions contain discussions on the following other direct conversion concepts: thermoelectric, pyroelectric, thermionic, thermophotovoltaic, thermoacoustic, thermomagnetic, thermoelastic (nitinol heat engines); and also, more complete discussions of AMTEC and LMMHD systems.

  16. OAST space power technology program

    NASA Technical Reports Server (NTRS)

    Mullin, J. P.

    1978-01-01

    The current research and technology (R and T) base program is first described, then special attention is directed toward outlining a new system technology specifically oriented toward providing the utility power plant technology base for semi-permanent earth orbital facilities expected to be needed in the middle to late 1980's. The R and T program involves five areas of research: (1) photovoltaic energy conversion; (2) chemical energy conversion and storage; (3) thermal-to-electric conversion; (4) environment interactions; and (5) power systems management and distribution. The general objectives and planned direction of efforts in each of these areas is summarized.

  17. The role of ion-exchange membrane in energy conversion

    NASA Astrophysics Data System (ADS)

    Khoiruddin, Aryanti, Putu T. P.; Hakim, Ahmad N.; Wenten, I. Gede

    2017-05-01

    Ion-exchange membrane (IEM) may play an important role in the future of electrical energy generation which is considered as renewable and clean energy. Fell cell (FC) is one of the promising technologies for solving energy issues in the future owing to the interesting features such as high electrical efficiency, low emissions, low noise level, and modularity. IEM-based processes, such as microbial fuel cell (MFC) and reverse electrodialysis (RED) may be combined with water or wastewater treatment into an integrated system. By using the integrated system, water and energy could be produced simultaneously. The IEM-based processes can be used for direct electricity generation or long term energy storage such as by harnessing surplus electricity from an existing renewable energy system to be converted into hydrogen gas via electrolysis or stored into chemical energy via redox flow battery (RFB). In this paper, recent development and applications of IEM-based processes in energy conversion are reviewed. In addition, perspective and challenges of IEM-based processes in energy conversion are pointed out.

  18. Biomass for thermochemical conversion: targets and challenges

    PubMed Central

    Tanger, Paul; Field, John L.; Jahn, Courtney E.; DeFoort, Morgan W.; Leach, Jan E.

    2013-01-01

    Bioenergy will be one component of a suite of alternatives to fossil fuels. Effective conversion of biomass to energy will require the careful pairing of advanced conversion technologies with biomass feedstocks optimized for the purpose. Lignocellulosic biomass can be converted to useful energy products via two distinct pathways: enzymatic or thermochemical conversion. The thermochemical pathways are reviewed and potential biotechnology or breeding targets to improve feedstocks for pyrolysis, gasification, and combustion are identified. Biomass traits influencing the effectiveness of the thermochemical process (cell wall composition, mineral and moisture content) differ from those important for enzymatic conversion and so properties are discussed in the language of biologists (biochemical analysis) as well as that of engineers (proximate and ultimate analysis). We discuss the genetic control, potential environmental influence, and consequences of modification of these traits. Improving feedstocks for thermochemical conversion can be accomplished by the optimization of lignin levels, and the reduction of ash and moisture content. We suggest that ultimate analysis and associated properties such as H:C, O:C, and heating value might be more amenable than traditional biochemical analysis to the high-throughput necessary for the phenotyping of large plant populations. Expanding our knowledge of these biomass traits will play a critical role in the utilization of biomass for energy production globally, and add to our understanding of how plants tailor their composition with their environment. PMID:23847629

  19. Influence of feedstock particle size on lignocellulose conversion--a review.

    PubMed

    Vidal, Bernardo C; Dien, Bruce S; Ting, K C; Singh, Vijay

    2011-08-01

    Feedstock particle sizing can impact the economics of cellulosic ethanol commercialization through its effects on conversion yield and energy cost. Past studies demonstrated that particle size influences biomass enzyme digestibility to a limited extent. Physical size reduction was able to increase conversion rates to maximum of ≈ 50%, whereas chemical modification achieved conversions of >70% regardless of biomass particle size. This suggests that (1) mechanical pretreatment by itself is insufficient to attain economically feasible biomass conversion, and, therefore, (2) necessary particle sizing needs to be determined in the context of thermochemical pretreatment employed for lignocellulose conversion. Studies of thermochemical pretreatments that have taken into account particle size as a factor have exhibited a wide range of maximal sizes (i.e., particle sizes below which no increase in pretreatment effectiveness, measured in terms of the enzymatic conversion resulting from the pretreatment, were observed) from <0.15 to 50 mm. Maximal sizes as defined above were dependent on the pretreatment employed, with maximal size range decreasing as follows: steam explosion > liquid hot water > dilute acid and base pretreatments. Maximal sizes also appeared dependent on feedstock, with herbaceous or grassy biomass exhibiting lower maximal size range (<3 mm) than woody biomass (>3 mm). Such trends, considered alongside the intensive energy requirement of size reduction processes, warrant a more systematic study of particle size effects across different pretreatment technologies and feedstock, as a requisite for optimizing the feedstock supply system.

  20. A review of high temperature co-electrolysis of H2O and CO2 to produce sustainable fuels using solid oxide electrolysis cells (SOECs): advanced materials and technology.

    PubMed

    Zheng, Yun; Wang, Jianchen; Yu, Bo; Zhang, Wenqiang; Chen, Jing; Qiao, Jinli; Zhang, Jiujun

    2017-03-06

    High-temperature solid oxide electrolysis cells (SOECs) are advanced electrochemical energy storage and conversion devices with high conversion/energy efficiencies. They offer attractive high-temperature co-electrolysis routes that reduce extra CO 2 emissions, enable large-scale energy storage/conversion and facilitate the integration of renewable energies into the electric grid. Exciting new research has focused on CO 2 electrochemical activation/conversion through a co-electrolysis process based on the assumption that difficult C[double bond, length as m-dash]O double bonds can be activated effectively through this electrochemical method. Based on existing investigations, this paper puts forth a comprehensive overview of recent and past developments in co-electrolysis with SOECs for CO 2 conversion and utilization. Here, we discuss in detail the approaches of CO 2 conversion, the developmental history, the basic principles, the economic feasibility of CO 2 /H 2 O co-electrolysis, and the diverse range of fuel electrodes as well as oxygen electrode materials. SOEC performance measurements, characterization and simulations are classified and presented in this paper. SOEC cell and stack designs, fabrications and scale-ups are also summarized and described. In particular, insights into CO 2 electrochemical conversions, solid oxide cell material behaviors and degradation mechanisms are highlighted to obtain a better understanding of the high temperature electrolysis process in SOECs. Proposed research directions are also outlined to provide guidelines for future research.

  1. Lignocellulosic ethanol production at high-gravity: challenges and perspectives.

    PubMed

    Koppram, Rakesh; Tomás-Pejó, Elia; Xiros, Charilaos; Olsson, Lisbeth

    2014-01-01

    In brewing and ethanol-based biofuel industries, high-gravity fermentation produces 10-15% (v/v) ethanol, resulting in improved overall productivity, reduced capital cost, and reduced energy input compared to processing at normal gravity. High-gravity technology ensures a successful implementation of cellulose to ethanol conversion as a cost-competitive process. Implementation of such technologies is possible if all process steps can be performed at high biomass concentrations. This review focuses on challenges and technological efforts in processing at high-gravity conditions and how these conditions influence the physiology and metabolism of fermenting microorganisms, the action of enzymes, and other process-related factors. Lignocellulosic materials add challenges compared to implemented processes due to high inhibitors content and the physical properties of these materials at high gravity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Solar Energy: Its Technologies and Applications

    DOE R&D Accomplishments Database

    Auh, P. C.

    1978-06-01

    Solar heat, as a potential source of clean energy, is available to all of us. Extensive R and D efforts are being made to effectively utilize this renewable energy source. A variety of different technologies for utilizing solar energy have been proven to be technically feasible. Here, some of the most promising technologies and their applications are briefly described. These are: Solar Heating and Cooling of Buildings (SHACOB), Solar Thermal Energy Conversion (STC), Wind Energy Conversion (WECS), Bioconversion to Fuels (BCF), Ocean Thermal Energy Conversion (OTEC), and Photovoltaic Electric Power Systems (PEPS). Special emphasis is placed on the discussion of the SHACOB technologies, since the technologies are being expeditiously developed for the near commercialization.

  3. NASA-OAST program in photovoltaic energy conversion

    NASA Technical Reports Server (NTRS)

    Mullin, J. P.; Flood, D. J.

    1982-01-01

    The NASA program in photovoltaic energy conversion includes research and technology development efforts on solar cells, blankets, and arrays. The overall objectives are to increase conversion efficiency, reduce mass, reduce cost, and increase operating life. The potential growth of space power requirements in the future presents a major challenge to the current state of technology in space photovoltaic systems.

  4. 2015 Peer Review Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    In the spring and summer of 2015, the Bioenergy Technologies Office (BETO or the Office) of the U.S. Department of Energy (DOE) implemented an external peer review of the projects in its research, development and demonstration (RD&D) portfolio. The Office manages a diverse portfolio of technologies across the spectrum of applied RD&D within the dynamic context of changing budgets and Administration priorities. The Office portfolio is organized according to the biomass-to-bioenergy supply chain—from the feedstock source to the end user (see Figure 1)—with major focus on feedstock supply and biomass conversion. The 2015 Project Peer Review took place March 23-27,more » 2015, outside of Washington, D.C., in Alexandria, Virginia, and evaluated most of the publicly funded projects in BETO’s portfolio. The subsequent Program Management Review took place on June 25, 2015, in Washington, D.C., and provided an Office- level assessment of strategic planning and programmatic initiatives. The peer review process enables external stakeholders to provide feedback on the responsible use of taxpayer funding and develop recommendations for the most efficient and effective ways to accelerate the development of an advanced bioenergy industry. The planning and execution of these reviews was completed over the course of 10 months, and this report includes the results of both events.« less

  5. Three-dimensional printing in surgery: a review of current surgical applications.

    PubMed

    Malik, Hammad H; Darwood, Alastair R J; Shaunak, Shalin; Kulatilake, Priyantha; El-Hilly, Abdulrahman A; Mulki, Omar; Baskaradas, Aroon

    2015-12-01

    Three-dimensional printing (3DP) is gaining increasing recognition as a technique that will transform the landscape of surgical practice. It allows for the rapid conversion of anatomic images into physical objects, which are being used across a variety of surgical specialties. It has been unclear which groups are leading the way in coming up with novel ways of using the technology and what specifically the technology is being used for. The aim of this article was to review the current applications of 3DP in modern surgical practice. An electronic search was carried out in MEDLINE, EMBASE, and PsycINFO for terms related to 3DP. These were then screened for relevance and practical applications of the technology in surgery. Four hundred eighty-eight articles were initially found, and these were eventually narrowed down to 93 full-text articles. It was determined that there were three main areas in which the technology is being used to print: (1) anatomic models, (2) surgical instruments, and (3) implants and prostheses. Different specialties are at different stages in the use of the technology. The costs involved with implementing the technology and time taken for printing are important factors to consider before widespread use. For the foreseeable future, this is an exciting and interesting technology with the capacity to radically change health care and revolutionize modern surgery. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Efficiency of bulk-heterojunction organic solar cells

    PubMed Central

    Scharber, M.C.; Sariciftci, N.S.

    2013-01-01

    During the last years the performance of bulk heterojunction solar cells has been improved significantly. For a large-scale application of this technology further improvements are required. This article reviews the basic working principles and the state of the art device design of bulk heterojunction solar cells. The importance of high power conversion efficiencies for the commercial exploitation is outlined and different efficiency models for bulk heterojunction solar cells are discussed. Assuming state of the art materials and device architectures several models predict power conversion efficiencies in the range of 10–15%. A more general approach assuming device operation close to the Shockley–Queisser-limit leads to even higher efficiencies. Bulk heterojunction devices exhibiting only radiative recombination of charge carriers could be as efficient as ideal inorganic photovoltaic devices. PMID:24302787

  7. Everyday conversation in dementia: a review of the literature to inform research and practice.

    PubMed

    Kindell, Jacqueline; Keady, John; Sage, Karen; Wilkinson, Ray

    2017-07-01

    There has been increasing interest in dementia care in recent years, including how practitioners, service providers and society in general can help individuals to live well with the condition. An important aspect to this is provision of advice to ensure conversation partners effectively support the person with dementia in conversation. To provide a descriptive review of the literature examining everyday conversation in dementia in order to inform practice and research. This review used a method specifically developed for reviewing conversation analytic and related literature. A range of databases were searched using key words and explicitly described inclusion criteria leading to a final corpus of 50 titles. Using this qualitative methodology, each paper was examined and data extracted. The contribution of each of these is described and the implications for practice and research are outlined. This review examined studies into conversation in Alzheimer's disease, vascular dementia and Lewy body dementia, grouping these into: early influential studies; work drawing on positioning theory; studies using social and linguistic approaches; collaborative storytelling; formulaic language; studies specifically using conversation analysis; and conversation as a target for individualized therapy. In addition, more recent work examining primary progressive aphasia and behavioural variant frontotemporal dementia was explored. Overall, this review indicates that research examining conversation in natural settings provides a rich source of data to explore not just the challenges within conversation for those taking part, but also the skills retained by the person with dementia. An important aspect of this understanding is the notion that these skills relate not only to information exchange but also aspects of social interaction. The role of others in scaffolding the conversation abilities of the person with dementia and the potential of this for developing interventions are discussed. The review indicates that interventions targeting conversation in dementia are often advocated in the literature but currently such approaches remain to be systematically evaluated. In addition, many of the important insights arising from these studies have yet to inform multidisciplinary dementia care practice. © 2016 The Authors International Journal of Language & Communication Disorders published by John Wiley & Sons Ltd on behalf of Royal College of Speech and Language Therapists.

  8. Everyday conversation in dementia: a review of the literature to inform research and practice

    PubMed Central

    Keady, John; Sage, Karen; Wilkinson, Ray

    2016-01-01

    Abstract Background There has been increasing interest in dementia care in recent years, including how practitioners, service providers and society in general can help individuals to live well with the condition. An important aspect to this is provision of advice to ensure conversation partners effectively support the person with dementia in conversation. Aims To provide a descriptive review of the literature examining everyday conversation in dementia in order to inform practice and research. Methods & Procedures This review used a method specifically developed for reviewing conversation analytic and related literature. A range of databases were searched using key words and explicitly described inclusion criteria leading to a final corpus of 50 titles. Using this qualitative methodology, each paper was examined and data extracted. The contribution of each of these is described and the implications for practice and research are outlined. Main Contribution This review examined studies into conversation in Alzheimer's disease, vascular dementia and Lewy body dementia, grouping these into: early influential studies; work drawing on positioning theory; studies using social and linguistic approaches; collaborative storytelling; formulaic language; studies specifically using conversation analysis; and conversation as a target for individualized therapy. In addition, more recent work examining primary progressive aphasia and behavioural variant frontotemporal dementia was explored. Overall, this review indicates that research examining conversation in natural settings provides a rich source of data to explore not just the challenges within conversation for those taking part, but also the skills retained by the person with dementia. An important aspect of this understanding is the notion that these skills relate not only to information exchange but also aspects of social interaction. The role of others in scaffolding the conversation abilities of the person with dementia and the potential of this for developing interventions are discussed. Conclusions & Implications The review indicates that interventions targeting conversation in dementia are often advocated in the literature but currently such approaches remain to be systematically evaluated. In addition, many of the important insights arising from these studies have yet to inform multidisciplinary dementia care practice. PMID:27891726

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Eric C. D.; Talmadge, Michael; Dutta, Abhijit

    This report was developed as part of the U.S. Department of Energy’s Bioenergy Technologies Office’s (BETO’s) efforts to enable the development of technologies for the production of infrastructure-compatible, cost-competitive liquid hydrocarbon fuels from lignocellulosic biomass feedstocks. The research funded by BETO is designed to advance the state of technology of biomass feedstock supply and logistics, conversion, and overall system sustainability. It is expected that these research improvements will be made within the 2022 timeframe. As part of their involvement in this research and development effort, the National Renewable Energy Laboratory and the Pacific Northwest National Laboratory investigate the economics ofmore » conversion pathways through the development of conceptual biorefinery process models and techno-economic analysis models. This report describes in detail one potential conversion process for the production of high-octane gasoline blendstock via indirect liquefaction of biomass. The processing steps of this pathway include the conversion of biomass to synthesis gas or syngas via indirect gasification, gas cleanup, catalytic conversion of syngas to methanol intermediate, methanol dehydration to dimethyl ether (DME), and catalytic conversion of DME to high-octane, gasoline-range hydrocarbon blendstock product. The conversion process configuration leverages technologies previously advanced by research funded by BETO and demonstrated in 2012 with the production of mixed alcohols from biomass. Biomass-derived syngas cleanup via reforming of tars and other hydrocarbons is one of the key technology advancements realized as part of this prior research and 2012 demonstrations. The process described in this report evaluates a new technology area for the downstream utilization of clean biomass-derived syngas for the production of high-octane hydrocarbon products through methanol and DME intermediates. In this process, methanol undergoes dehydration to DME, which is subsequently converted via homologation reactions to high-octane, gasoline-range hydrocarbon products.« less

  10. Catalytic upgrading of butyric acid towards fine chemicals and biofuels

    PubMed Central

    Matsakas, Leonidas; Christakopoulos, Paul; Rova, Ulrika

    2016-01-01

    Fermentation-based production of butyric acid is robust and efficient. Modern catalytic technologies make it possible to convert butyric acid to important fine chemicals and biofuels. Here, current chemocatalytic and biocatalytic conversion methods are reviewed with a focus on upgrading butyric acid to 1-butanol or butyl-butyrate. Supported Ruthenium- and Platinum-based catalyst and lipase exhibit important activities which can pave the way for more sustainable process concepts for the production of green fuels and chemicals. PMID:26994015

  11. Catalytic upgrading of butyric acid towards fine chemicals and biofuels.

    PubMed

    Sjöblom, Magnus; Matsakas, Leonidas; Christakopoulos, Paul; Rova, Ulrika

    2016-04-01

    Fermentation-based production of butyric acid is robust and efficient. Modern catalytic technologies make it possible to convert butyric acid to important fine chemicals and biofuels. Here, current chemocatalytic and biocatalytic conversion methods are reviewed with a focus on upgrading butyric acid to 1-butanol or butyl-butyrate. Supported Ruthenium- and Platinum-based catalyst and lipase exhibit important activities which can pave the way for more sustainable process concepts for the production of green fuels and chemicals. © FEMS 2016.

  12. Proceedings of the First ERDA Semiannual Solar Photovoltaic Conversion Program Conference

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Organization, basic research and applied technology for the Solar Photovoltaic Conversion Program are outlined. The program aims to provide a technology base for low cost thin film solar cells and solar arrays.

  13. Thermochemical Conversion: Using Heat and Catalysts to Make Biofuels and Bioproducts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2013-07-29

    This fact sheet discusses the Bioenergy Technologies Office's thermochemical conversion critical technology goal. And, how through the application of heat, robust thermochemical processes can efficiently convert a broad range of biomass.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Eric; Talmadge, M.; Dutta, Abhijit

    The U.S. Department of Energy (DOE) promotes research for enabling cost-competitive liquid fuels production from lignocellulosic biomass feedstocks. The research is geared to advance the state of technology (SOT) of biomass feedstock supply and logistics, conversion, and overall system sustainability. As part of their involvement in this program, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) investigate the economics of conversion pathways through the development of conceptual biorefinery process models. This report describes in detail one potential conversion process for the production of high octane gasoline blendstock via indirect liquefaction (IDL). The steps involve themore » conversion of biomass to syngas via indirect gasification followed by gas cleanup and catalytic syngas conversion to a methanol intermediate; methanol is then further catalytically converted to high octane hydrocarbons. The conversion process model leverages technologies previously advanced by research funded by the Bioenergy Technologies Office (BETO) and demonstrated in 2012 with the production of mixed alcohols from biomass. Biomass-derived syngas cleanup via tar and hydrocarbons reforming was one of the key technology advancements as part of that research. The process described in this report evaluates a new technology area with downstream utilization of clean biomass-syngas for the production of high octane hydrocarbon products through a methanol intermediate, i.e., dehydration of methanol to dimethyl ether (DME) which subsequently undergoes homologation to high octane hydrocarbon products.« less

  15. [Comparative analysis of the non-profit, for-profit and public hospital providers: American experiences].

    PubMed

    Mogyorósy, Zsolt

    2004-07-04

    The new legislation allowed hospitals and other health care facilities to be converted into for-profit status. The detailed regulatory framework is under development in Hungary. This article reviews the literature of studies comparing hospital financial performance and the quality of care before and after conversion from public or non-profit status to for-profit. Studies were identified through electronic search of Medline (Pubmed), EconLit, Cochrane Library, Economic Evaluation Database (EED), az Health Technology Assessment (HTA) databases, library files and reference lists. The literature search was extended to the Internet, World Bank, International Labor Office (ILO), Organization for Economic Cooperation and Development (OECD), and WHO websites as well as government, academic institutions and large insurance companies web pages for unpublished online information. Time series and before-after studies and systematic literature reviews were included. The conversion from non-profit to for-profit status improved the profitability of the hospitals. However the quality of care (measures in mortality, frequency of side effects, complications) might suffer in the first couple years of the conversion. The conversion may increase the total health care expenditures per capita. Trustful relationship between patients and physicians may also be threatened. The generalisability of the American experiences into the Hungarian single payer system may be limited. From societal point of view, for-profit providers could provide socially beneficial care in areas where it is possible to define, monitor and evaluate the nature and quality characteristics of the services, as well as market competition can be ensured. However most of the healthcare services are too complex to fall into this category.

  16. 77 FR 47119 - Agency Information Collection Activities; Submission for OMB Review; Comment Request; Collective...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-07

    ... for OMB Review; Comment Request; Collective Investment Funds Conversion Transactions Prohibited... Investment Funds Conversion Transactions Prohibited Transaction Class Exemption,'' to the Office of... Conversion Transactions Prohibited Transaction Class Exemption permits an employee benefit plan to purchase...

  17. Development of Lignocellulosic Biorefinery Technologies: Recent Advances and Current Challenges

    DOE PAGES

    Amore, Antonella; Ciesielski, Peter N.; Lin, Chien-Yuan; ...

    2016-06-06

    We describe some recent developments of the biorefinery concept within this review, which focuses on the efforts required to make the lignocellulosic biorefinery a sustainable and economically viable reality. In spite of the major research and development endeavours directed towards this goal over the past several decades, the integrated production of biofuel and other bio-based products still needs to be optimized from both technical and economical perspectives. This review will highlight recent progress towards the optimization of the major biorefinery processes, including biomass pretreatment and fractionation, saccharification of sugars, and conversion of sugars and lignin into fuels and chemical precursors.more » Additionally, advances in genetic modification of biomass structure and composition for the purpose of enhancing the efficacy of conversion processes, which is emerging as a powerful tool for tailoring biomass fated for the biorefinery, will be overviewed. The continual improvement of these processes and their integration in the format of a modern biorefinery is paving the way for a sustainable bio-economy which will displace large portions of petroleum-derived fuels and chemicals with renewable substitutes.« less

  18. Development of Lignocellulosic Biorefinery Technologies: Recent Advances and Current Challenges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amore, Antonella; Ciesielski, Peter N.; Lin, Chien-Yuan

    We describe some recent developments of the biorefinery concept within this review, which focuses on the efforts required to make the lignocellulosic biorefinery a sustainable and economically viable reality. In spite of the major research and development endeavours directed towards this goal over the past several decades, the integrated production of biofuel and other bio-based products still needs to be optimized from both technical and economical perspectives. This review will highlight recent progress towards the optimization of the major biorefinery processes, including biomass pretreatment and fractionation, saccharification of sugars, and conversion of sugars and lignin into fuels and chemical precursors.more » Additionally, advances in genetic modification of biomass structure and composition for the purpose of enhancing the efficacy of conversion processes, which is emerging as a powerful tool for tailoring biomass fated for the biorefinery, will be overviewed. The continual improvement of these processes and their integration in the format of a modern biorefinery is paving the way for a sustainable bio-economy which will displace large portions of petroleum-derived fuels and chemicals with renewable substitutes.« less

  19. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions.

    PubMed

    Jiao, Yan; Zheng, Yao; Jaroniec, Mietek; Qiao, Shi Zhang

    2015-04-21

    A fundamental change has been achieved in understanding surface electrochemistry due to the profound knowledge of the nature of electrocatalytic processes accumulated over the past several decades and to the recent technological advances in spectroscopy and high resolution imaging. Nowadays one can preferably design electrocatalysts based on the deep theoretical knowledge of electronic structures, via computer-guided engineering of the surface and (electro)chemical properties of materials, followed by the synthesis of practical materials with high performance for specific reactions. This review provides insights into both theoretical and experimental electrochemistry toward a better understanding of a series of key clean energy conversion reactions including oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER). The emphasis of this review is on the origin of the electrocatalytic activity of nanostructured catalysts toward the aforementioned reactions by correlating the apparent electrode performance with their intrinsic electrochemical properties. Also, a rational design of electrocatalysts is proposed starting from the most fundamental aspects of the electronic structure engineering to a more practical level of nanotechnological fabrication.

  20. Hollywood's Conversion to Color: The Technological, Economic and Aesthetic Factors.

    ERIC Educational Resources Information Center

    Kindem, Forham A.

    1979-01-01

    Discusses the film industry's conversion to color cinematography in the period between the 1920s and 1960s. Cites economic considerations, technological modifications, and aesthetic preferences by audiences as factors in this development. (JMF)

  1. Biological Conversion of Sugars to Hydrocarbons Technology Pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, Ryan; Biddy, Mary J.; Tan, Eric

    2013-03-31

    In support of the Bioenergy Technologies Office, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) are undertaking studies of biomass conversion technologies to identify barriers and target research toward reducing conversion costs. Process designs and preliminary economic estimates for each of these pathway cases were developed using rigorous modeling tools (Aspen Plus and Chemcad). These analyses incorporated the best information available at the time of development, including data from recent pilot and bench-scale demonstrations, collaborative industrial and academic partners, and published literature and patents. This technology pathway case investigates the biological conversion of biomass derivedmore » sugars to hydrocarbon biofuels, utilizing data from recent literature references and information consistent with recent pilot scale demonstrations at NREL. Technical barriers and key research needs have been identified that should be pursued for the pathway to become competitive with petroleum-derived gasoline, diesel and jet range hydrocarbon blendstocks.« less

  2. The NASA program in Space Energy Conversion Research and Technology

    NASA Astrophysics Data System (ADS)

    Mullin, J. P.; Flood, D. J.; Ambrus, J. H.; Hudson, W. R.

    The considered Space Energy Conversion Program seeks advancement of basic understanding of energy conversion processes and improvement of component technologies, always in the context of the entire power subsystem. Activities in the program are divided among the traditional disciplines of photovoltaics, electrochemistry, thermoelectrics, and power systems management and distribution. In addition, a broad range of cross-disciplinary explorations of potentially revolutionary new concepts are supported under the advanced energetics program area. Solar cell research and technology are discussed, taking into account the enhancement of the efficiency of Si solar cells, GaAs liquid phase epitaxy and vapor phase epitaxy solar cells, the use of GaAs solar cells in concentrator systems, and the efficiency of a three junction cascade solar cell. Attention is also given to blanket and array technology, the alkali metal thermoelectric converter, a fuel cell/electrolysis system, and thermal to electric conversion.

  3. The NASA program in Space Energy Conversion Research and Technology

    NASA Technical Reports Server (NTRS)

    Mullin, J. P.; Flood, D. J.; Ambrus, J. H.; Hudson, W. R.

    1982-01-01

    The considered Space Energy Conversion Program seeks advancement of basic understanding of energy conversion processes and improvement of component technologies, always in the context of the entire power subsystem. Activities in the program are divided among the traditional disciplines of photovoltaics, electrochemistry, thermoelectrics, and power systems management and distribution. In addition, a broad range of cross-disciplinary explorations of potentially revolutionary new concepts are supported under the advanced energetics program area. Solar cell research and technology are discussed, taking into account the enhancement of the efficiency of Si solar cells, GaAs liquid phase epitaxy and vapor phase epitaxy solar cells, the use of GaAs solar cells in concentrator systems, and the efficiency of a three junction cascade solar cell. Attention is also given to blanket and array technology, the alkali metal thermoelectric converter, a fuel cell/electrolysis system, and thermal to electric conversion.

  4. Comparative efficiency of technologies for conversion and transportation of energy resources of Russia's eastern regions to NEA countries

    NASA Astrophysics Data System (ADS)

    Kler, Aleksandr; Tyurina, Elina; Mednikov, Aleksandr

    2018-01-01

    The paper presents perspective technologies for combined conversion of fossil fuels into synthetic liquid fuels and electricity. The comparative efficiency of various process flows of conversion and transportation of energy resources of Russia's east that are aimed at supplying electricity to remote consumers is presented. These also include process flows based on production of synthetic liquid fuel.

  5. Molten Boron Phase-Change Thermal Energy Storage: Containment and Applicability to Microsatellites (Draft)

    DTIC Science & Technology

    2011-06-01

    technologies, including high temperature thermal insulation and thermal to electric power conversion, have been evaluated, and a preliminary design...support technologies, including high temperature thermal insulation and thermal to electric power conversion, have been evaluated, and a preliminary...vacuum gap with low emissivity surfaces on either side as the first insulating layer.11 D. Electrical Energy Conversion There are a wide variety

  6. Status of NASA's Advanced Radioisotope Power Conversion Technology Research and Development

    NASA Technical Reports Server (NTRS)

    Wong, Wayne A.; Anderson, David J.; Tuttle, Karen L.; Tew, Roy C.

    2006-01-01

    NASA s Advanced Radioisotope Power Systems (RPS) development program is funding the advancement of next generation power conversion technologies that will enable future missions that have requirements that can not be met by either the ubiquitous photovoltaic systems or by current Radioisotope Power Systems (RPS). Requirements of advanced radioisotope power systems include high efficiency and high specific power (watts/kilogram) in order to meet mission requirements with less radioisotope fuel and lower mass. Other Advanced RPS development goals include long-life, reliability, and scalability so that these systems can meet requirements for a variety of future space applications including continual operation surface missions, outer-planetary missions, and solar probe. This paper provides an update on the Radioisotope Power Conversion Technology Project which awarded ten Phase I contracts for research and development of a variety of power conversion technologies consisting of Brayton, Stirling, thermoelectrics, and thermophotovoltaics. Three of the contracts continue during the current Phase II in the areas of thermoelectric and Stirling power conversion. The accomplishments to date of the contractors, project plans, and status will be summarized.

  7. Biomass waste-to-energy valorisation technologies: a review case for banana processing in Uganda.

    PubMed

    Gumisiriza, Robert; Hawumba, Joseph Funa; Okure, Mackay; Hensel, Oliver

    2017-01-01

    Uganda's banana industry is heavily impeded by the lack of cheap, reliable and sustainable energy mainly needed for processing of banana fruit into pulp and subsequent drying into chips before milling into banana flour that has several uses in the bakery industry, among others. Uganda has one of the lowest electricity access levels, estimated at only 2-3% in rural areas where most of the banana growing is located. In addition, most banana farmers have limited financial capacity to access modern solar energy technologies that can generate sufficient energy for industrial processing. Besides energy scarcity and unreliability, banana production, marketing and industrial processing generate large quantities of organic wastes that are disposed of majorly by unregulated dumping in places such as swamps, thereby forming huge putrefying biomass that emit green house gases (methane and carbon dioxide). On the other hand, the energy content of banana waste, if harnessed through appropriate waste-to-energy technologies, would not only solve the energy requirement for processing of banana pulp, but would also offer an additional benefit of avoiding fossil fuels through the use of renewable energy. The potential waste-to-energy technologies that can be used in valorisation of banana waste can be grouped into three: Thermal (Direct combustion and Incineration), Thermo-chemical (Torrefaction, Plasma treatment, Gasification and Pyrolysis) and Biochemical (Composting, Ethanol fermentation and Anaerobic Digestion). However, due to high moisture content of banana waste, direct application of either thermal or thermo-chemical waste-to-energy technologies is challenging. Although, supercritical water gasification does not require drying of feedstock beforehand and can be a promising thermo-chemical technology for gasification of wet biomass such as banana waste, it is an expensive technology that may not be adopted by banana farmers in Uganda. Biochemical conversion technologies are reported to be more eco-friendly and appropriate for waste biomass with high moisture content such as banana waste. Uganda's banana industrialisation is rural based with limited technical knowledge and economic capability to setup modern solar technologies and thermo-conversions for drying banana fruit pulp. This review explored the advantages of various waste-to-energy technologies as well as their shortfalls. Anaerobic digestion stands out as the most feasible and appropriate waste-to-energy technology for solving the energy scarcity and waste burden in banana industry. Finally, potential options for the enhancement of anaerobic digestion of banana waste were also elucidated.

  8. Batteries and fuel cells for emerging electric vehicle markets

    NASA Astrophysics Data System (ADS)

    Cano, Zachary P.; Banham, Dustin; Ye, Siyu; Hintennach, Andreas; Lu, Jun; Fowler, Michael; Chen, Zhongwei

    2018-04-01

    Today's electric vehicles are almost exclusively powered by lithium-ion batteries, but there is a long way to go before electric vehicles become dominant in the global automotive market. In addition to policy support, widespread deployment of electric vehicles requires high-performance and low-cost energy storage technologies, including not only batteries but also alternative electrochemical devices. Here, we provide a comprehensive evaluation of various batteries and hydrogen fuel cells that have the greatest potential to succeed in commercial applications. Three sectors that are not well served by current lithium-ion-powered electric vehicles, namely the long-range, low-cost and high-utilization transportation markets, are discussed. The technological properties that must be improved to fully enable these electric vehicle markets include specific energy, cost, safety and power grid compatibility. Six energy storage and conversion technologies that possess varying combinations of these improved characteristics are compared and separately evaluated for each market. The remainder of the Review briefly discusses the technological status of these clean energy technologies, emphasizing barriers that must be overcome.

  9. Environmental Remediation and Conversion of Carbon Dioxide (CO2) into Useful Green Products by Accelerated Carbonation Technology

    PubMed Central

    Lim, Mihee; Han, Gi-Chun; Ahn, Ji-Whan; You, Kwang-Suk

    2010-01-01

    This paper reviews the application of carbonation technology to the environmental industry as a way of reducing carbon dioxide (CO2), a green house gas, including the presentation of related projects of our research group. An alternative technology to very slow natural carbonation is the co-called ‘accelerated carbonation’, which completes its fast reaction within few hours by using pure CO2. Carbonation technology is widely applied to solidify or stabilize solid combustion residues from municipal solid wastes, paper mill wastes, etc. and contaminated soils, and to manufacture precipitated calcium carbonate (PCC). Carbonated products can be utilized as aggregates in the concrete industry and as alkaline fillers in the paper (or recycled paper) making industry. The quantity of captured CO2 in carbonated products can be evaluated by measuring mass loss of heated samples by thermo-gravimetric (TG) analysis. The industrial carbonation technology could contribute to both reduction of CO2 emissions and environmental remediation. PMID:20195442

  10. Review of nonconventional bioreactor technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turick, C.E.; Mcllwain, M.E.

    1993-09-01

    Biotechnology will significantly affect many industrial sectors in the future. Industrial sectors that will be affected include pharmaceutical, chemical, fuel, agricultural, and environmental remediation. Future research is needed to improve bioprocessing efficiency and cost-effectiveness in order to compete with traditional technologies. This report describes recent advances in bioprocess technologies and bioreactor designs and relates them to problems encountered in many industrial bioprocessing operations. The primary focus is directed towards increasing gas and vapor transfer for enhanced bioprocess kinetics as well as unproved by-product separation and removal. The advantages and disadvantages of various conceptual designs such as hollow-fiber, gas-phase, hyperbaric/hypobaric, andmore » electrochemical bioreactors are also discussed. Specific applications that are intended for improved bioprocesses include coal desulfurization, coal liquefaction, soil bioremediation, biomass conversion to marketable chemicals, biomining, and biohydrometallurgy as well as bioprocessing of gases and vapors.« less

  11. Free-piston Stirling component test power converter

    NASA Technical Reports Server (NTRS)

    Dochat, George; Dhar, Manmohan

    1991-01-01

    The National Aeronautics and Space Administration (NASA) has been evaluating free-piston Stirling power converters (FPSPCs) for use on a wide variety of space missions. They provide high reliability, long life, and efficient operation and can be coupled with all potential heat sources, various heat input and heat rejection systems, and various power management and distribution systems. FPSPCs can compete favorably with alternative power conversion systems over a range of hundreds of watts to megawatts. Mechanical Technology Incorporated (MTI) is developing FPSPC technology under contract to NASA Lewis Research Center and will demonstrate this technology in two full-scale power converters operating at space temperature conditions. The testing of the first of these, the component test power converter (CTPC), was initiated in Spring 1991 to evaluate mechanical operation at space operating temperatures. The CTPC design, hardware fabrication, and initial test results are reviewed.

  12. A review on hydrothermal pre-treatment technologies and environmental profiles of algal biomass processing.

    PubMed

    Patel, Bhavish; Guo, Miao; Izadpanah, Arash; Shah, Nilay; Hellgardt, Klaus

    2016-01-01

    The need for efficient and clean biomass conversion technologies has propelled Hydrothermal (HT) processing as a promising treatment option for biofuel production. This manuscript discussed its application for pre-treatment of microalgae biomass to solid (biochar), liquid (biocrude and biodiesel) and gaseous (hydrogen and methane) products via Hydrothermal Carbonisation (HTC), Hydrothermal Liquefaction (HTL) and Supercritical Water Gasification (SCWG) as well as the utility of HT water as an extraction medium and HT Hydrotreatment (HDT) of algal biocrude. In addition, the Solar Energy Retained in Fuel (SERF) using HT technologies is calculated and compared with benchmark biofuel. Lastly, the Life Cycle Assessment (LCA) discusses the limitation of the current state of art as well as introduction to new potential input categories to obtain a detailed environmental profile. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Lifecycle Assessment of Biofuel Production from Wood Pyrolysis Technology

    ERIC Educational Resources Information Center

    Manyele, S. V.

    2007-01-01

    Due to a stronger dependency on biomass for energy, there is a need for improved technologies in biomass-to-energy conversion in Tanzania. This paper presents a life cycle assessment (LCA) of pyrolysis technology used for conversion of wood and wood waste to liquid biofuel. In particular, a survey of environmental impacts of the process is…

  14. 76 FR 2756 - Agency Information Collection (Application for Conversion) (Government Life Insurance) Activity...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-14

    ... DEPARTMENT OF VETERANS AFFAIRS [OMB Control No. 2900-0149] Agency Information Collection (Application for Conversion) (Government Life Insurance) Activity Under OMB Review AGENCY: Veterans Benefits... Conversion (Government Life Insurance), VA Form 29-0152. OMB Control Number: 2900-0149. Type of Review...

  15. Nanotechnology Based Green Energy Conversion Devices with Multifunctional Materials at Low Temperatures.

    PubMed

    Lu, Yuzheng; Afzal, Muhammad; Zhu, Bin; Wang, Baoyuan; Wang, Jun; Xia, Chen

    2017-07-10

    Nanocomposites (integrating the nano and composite technologies) for advanced fuel cells (NANOCOFC) demonstrate the great potential to reduce the operational temperature of solid oxide fuel cell (SOFC) significantly in the low temperature (LT) range 300-600ºC. NANOCOFC has offered the development of multi-functional materials composed of semiconductor and ionic materials to meet the requirements of low temperature solid oxide fuel cell (LTSOFC) and green energy conversion devices with their unique mechanisms. This work reviews the recent developments relevant to the devices and the patents in LTSOFCs from nanotechnology perspectives that reports advances including fabrication methods, material compositions, characterization techniques and cell performances. Finally, the future scope of LTSOFC with nanotechnology and the practical applications are also discussed. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. Perovskites in catalysis and electrocatalysis.

    PubMed

    Hwang, Jonathan; Rao, Reshma R; Giordano, Livia; Katayama, Yu; Yu, Yang; Shao-Horn, Yang

    2017-11-10

    Catalysts for chemical and electrochemical reactions underpin many aspects of modern technology and industry, from energy storage and conversion to toxic emissions abatement to chemical and materials synthesis. This role necessitates the design of highly active, stable, yet earth-abundant heterogeneous catalysts. In this Review, we present the perovskite oxide family as a basis for developing such catalysts for (electro)chemical conversions spanning carbon, nitrogen, and oxygen chemistries. A framework for rationalizing activity trends and guiding perovskite oxide catalyst design is described, followed by illustrations of how a robust understanding of perovskite electronic structure provides fundamental insights into activity, stability, and mechanism in oxygen electrocatalysis. We conclude by outlining how these insights open experimental and computational opportunities to expand the compositional and chemical reaction space for next-generation perovskite catalysts. Copyright © 2017, American Association for the Advancement of Science.

  17. Small reactor power system for space application

    NASA Technical Reports Server (NTRS)

    Shirbacheh, M.

    1987-01-01

    A development history and comparative performance capability evaluation is presented for spacecraft nuclear powerplant Small Reactor Power System alternatives. The choice of power conversion technology depends on the reactor's operating temperature; thermionic, thermoelectric, organic Rankine, and Alkali metal thermoelectric conversion are the primary power conversion subsystem technology alternatives. A tabulation is presented for such spacecraft nuclear reactor test histories as those of SNAP-10A, SP-100, and NERVA.

  18. Promoting transportation applications in defense conversion and other advanced technologies : summary of proceedings January 1994

    DOT National Transportation Integrated Search

    1994-01-01

    From September-November 1993, U.S. Department of Transportation (DOT) Secretary Federico Pena sponsored a series of meetings, called "Promoting Transportation Applications in Defense Conversion and Other Advanced Technologies," to advance President B...

  19. COAL CONVERSION CONTROL TECHNOLOGY. VOLUME I. ENVIRONMENTAL REGULATIONS; LIQUID EFFLUENTS

    EPA Science Inventory

    This volume is the product of an information-gathering effort relating to coal conversion process streams. Available and developing control technology has been evaluated in view of the requirements of present and proposed federal, state, regional, and international environmental ...

  20. COAL CONVERSION CONTROL TECHNOLOGY. VOLUME II. GASEOUS EMISSIONS; SOLID WASTES

    EPA Science Inventory

    This volume is the product of an information-gathering effort relating to coal conversion process streams. Available and developing control technology has been evaluated in view of the requirements of present and proposed federal, state, regional, and international environmental ...

  1. Cogeneration Technology Alternatives Study (CTAS). Volume 3: Energy conversion system characteristics

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Six current and thirty-six advanced energy conversion systems were defined and combined with appropriate balance of plant equipment. Twenty-six industrial processes were selected from among the high energy consuming industries to serve as a frame work for the study. Each conversion system was analyzed as a cogenerator with each industrial plant. Fuel consumption, costs, and environmental intrusion were evaluated and compared to corresponding traditional values. The advanced energy conversion technologies indicated reduced fuel consumption, costs, and emissions. Fuel energy savings of 10 to 25 percent were predicted compared to traditional on site furnaces and utility electricity. With the variety of industrial requirements, each advanced technology had attractive applications. Fuel cells indicated the greatest fuel energy savings and emission reductions. Gas turbines and combined cycles indicated high overall annual savings. Steam turbines and gas turbines produced high estimated returns. In some applications, diesels were most efficient. The advanced technologies used coal derived fuels, or coal with advanced fluid bed combustion or on site gasifications. Data and information for both current and advanced energy conversion technology are presented. Schematic and physical descriptions, performance data, equipment cost estimates, and predicted emissions are included. Technical developments which are needed to achieve commercialization in the 1985-2000 period are identified.

  2. 12 CFR 239.66 - Board review of the voluntary supervisory conversion application.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 12 Banks and Banking 4 2012-01-01 2012-01-01 false Board review of the voluntary supervisory conversion application. 239.66 Section 239.66 Banks and Banking FEDERAL RESERVE SYSTEM (CONTINUED) BOARD OF GOVERNORS OF THE FEDERAL RESERVE SYSTEM (CONTINUED) MUTUAL HOLDING COMPANIES (REGULATION MM) Conversions...

  3. 12 CFR 239.66 - Board review of the voluntary supervisory conversion application.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 12 Banks and Banking 4 2013-01-01 2013-01-01 false Board review of the voluntary supervisory conversion application. 239.66 Section 239.66 Banks and Banking FEDERAL RESERVE SYSTEM (CONTINUED) BOARD OF GOVERNORS OF THE FEDERAL RESERVE SYSTEM (CONTINUED) MUTUAL HOLDING COMPANIES (REGULATION MM) Conversions...

  4. 12 CFR 239.66 - Board review of the voluntary supervisory conversion application.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 12 Banks and Banking 4 2014-01-01 2014-01-01 false Board review of the voluntary supervisory conversion application. 239.66 Section 239.66 Banks and Banking FEDERAL RESERVE SYSTEM (CONTINUED) BOARD OF GOVERNORS OF THE FEDERAL RESERVE SYSTEM (CONTINUED) MUTUAL HOLDING COMPANIES (REGULATION MM) Conversions...

  5. Opportunities for Switzerland to Contribute to the Production of Algal Biofuels: the Hydrothermal Pathway to Bio-Methane.

    PubMed

    Bagnoud-Velásquez, Mariluz; Refardt, Dominik; Vuille, François; Ludwig, Christian

    2015-01-01

    Microalgae have a significant potential to be a sustainable source of fuel and thus are of interest in the transition to a sustainable energy system, in particular for resource-dependent countries such as Switzerland. Independence of fossil fuels, considerable reduction of CO(2) emissions, and abandoning nuclear energy may be possible with an integrated system approach including the sourcing of biofuels from different types of biomass. Today, a full carbon-to-fuel conversion is possible, and has been recently demonstrated with an advanced hydrothermal technology. The potential to develop algal biofuels is viewed as high thanks to the possibility they offer to uncouple bioenergy from food production. Nevertheless, technological breakthroughs must take place before commercial production becomes a reality, especially to meet the necessary cost savings and efficiency gains in the algae cultivation structure. In addition, an integrated management of waste resources to promote the nutrient recovery appears today as imperative to further improve the economic viability and the environmental sustainability of algal production. We provide here a review that includes the global technological status of both algae production and their conversion into biofuels in order to understand first the added value of algal energy in general before we focus on the potential of algae to contribute specifically to the Swiss energy system to the horizon 2050. In this respect, the hydrothermal conversion pathway of microalgal biomass into synthetic natural gas (SNG) is emphasized, as research into this technology has received considerable attention in Switzerland during the last decade. In addition, SNG is a particularly relevant fuel in the Swiss context due to the existing gas grid and to the opportunity it offers to cover a wide spectrum of energy applications, in particular cogeneration of heat and electricity or use as a transport fuel in the growing gas car fleet.

  6. A Case Study on the Nature of Informal Conversation in an Organization Utilizing Microblogging Technology

    ERIC Educational Resources Information Center

    Dembeck, Thomas J.

    2013-01-01

    The purpose of this case study was to determine the nature of conversations that occur within an organizational microblog and compare them to traditional informal conversations. Since informal conversations are closely associated with reaction to change, this study explored how organizational microblog conversations may be understood to affect…

  7. Carbon nanostructures for solar energy conversion schemes.

    PubMed

    Guldi, Dirk M; Sgobba, Vito

    2011-01-14

    Developing environmentally friendly, renewable energy is one of the challenges to society in the 21st century. One of the renewable energy technologies is solar energy conversion--a technology that directly converts daylight into electricity. This highlight surveys recent breakthroughs in the field of implementing carbon nanostructures--fullerenes (0D), carbon nanotubes (1D), carbon nanohorns, and graphene (2D)--into solar energy conversion schemes, that is, bulk heterojunction and dye-sensitized solar cells.

  8. High-throughput technology for novel SO2 oxidation catalysts

    PubMed Central

    Loskyll, Jonas; Stoewe, Klaus; Maier, Wilhelm F

    2011-01-01

    We review the state of the art and explain the need for better SO2 oxidation catalysts for the production of sulfuric acid. A high-throughput technology has been developed for the study of potential catalysts in the oxidation of SO2 to SO3. High-throughput methods are reviewed and the problems encountered with their adaptation to the corrosive conditions of SO2 oxidation are described. We show that while emissivity-corrected infrared thermography (ecIRT) can be used for primary screening, it is prone to errors because of the large variations in the emissivity of the catalyst surface. UV-visible (UV-Vis) spectrometry was selected instead as a reliable analysis method of monitoring the SO2 conversion. Installing plain sugar absorbents at reactor outlets proved valuable for the detection and quantitative removal of SO3 from the product gas before the UV-Vis analysis. We also overview some elements used for prescreening and those remaining after the screening of the first catalyst generations. PMID:27877427

  9. Functionalized nanostructures for enhanced photocatalytic performance under solar light.

    PubMed

    Guo, Liejin; Jing, Dengwei; Liu, Maochang; Chen, Yubin; Shen, Shaohua; Shi, Jinwen; Zhang, Kai

    2014-01-01

    Photocatalytic hydrogen production from water has been considered to be one of the most promising solar-to-hydrogen conversion technologies. In the last decade, various functionalized nanostructures were designed to address the primary requirements for an efficient photocatalytic generation of hydrogen by using solar energy: visible-light activity, chemical stability, appropriate band-edge characteristics, and potential for low-cost fabrication. Our aim is to present a short review of our recent attempts that center on the above requirements. We begin with a brief introduction of photocatalysts coupling two or more semiconductors, followed by a further discussion of the heterostructures with improved matching of both band structures and crystal lattices. We then elaborate on the heterostructure design of the targeted materials from macroscopic regulation of compositions and phases, to the more precise control at the nanoscale, i.e., materials with the same compositions but different phases with certain band alignment. We conclude this review with perspectives on nanostructure design that might direct future research of this technology.

  10. Monetization of Nigeria coal by conversion to hydrocarbon fuels through Fischer-Tropsch process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oguejiofor, G.C.

    Given the instability of crude oil prices and the disruptions in crude oil supply chains, this article offers a complementing investment proposal through diversification of Nigeria's energy source and dependence. Therefore, the following issues were examined and reported: A comparative survey of coal and hydrocarbon reserve bases in Nigeria was undertaken and presented. An excursion into the economic, environmental, and technological justifications for the proposed diversification and roll-back to coal-based resource was also undertaken and presented. The technology available for coal beneficiation for environmental pollution control was reviewed and reported. The Fischer-Tropsch synthesis and its advances into Sasol's slurry phasemore » distillate process were reviewed. Specifically, the adoption of Sasol's advanced synthol process and the slurry phase distillate process were recommended as ways of processing the products of coal gasification. The article concludes by discussing all the above-mentioned issues with regard to value addition as a means of wealth creation and investment.« less

  11. A review of biological delignification and detoxification methods for lignocellulosic bioethanol production.

    PubMed

    Moreno, Antonio D; Ibarra, David; Alvira, Pablo; Tomás-Pejó, Elia; Ballesteros, Mercedes

    2015-01-01

    Future biorefineries will integrate biomass conversion processes to produce fuels, power, heat and value-added chemicals. Due to its low price and wide distribution, lignocellulosic biomass is expected to play an important role toward this goal. Regarding renewable biofuel production, bioethanol from lignocellulosic feedstocks is considered the most feasible option for fossil fuels replacement since these raw materials do not compete with food or feed crops. In the overall process, lignin, the natural barrier of the lignocellulosic biomass, represents an important limiting factor in biomass digestibility. In order to reduce the recalcitrant structure of lignocellulose, biological pretreatments have been promoted as sustainable and environmentally friendly alternatives to traditional physico-chemical technologies, which are expensive and pollute the environment. These approaches include the use of diverse white-rot fungi and/or ligninolytic enzymes, which disrupt lignin polymers and facilitate the bioconversion of the sugar fraction into ethanol. As there is still no suitable biological pretreatment technology ready to scale up in an industrial context, white-rot fungi and/or ligninolytic enzymes have also been proposed to overcome, in a separated or in situ biodetoxification step, the effect of the inhibitors produced by non-biological pretreatments. The present work reviews the latest studies regarding the application of different microorganisms or enzymes as useful and environmentally friendly delignification and detoxification technologies for lignocellulosic biofuel production. This review also points out the main challenges and possible ways to make these technologies a reality for the bioethanol industry.

  12. Fungal Enzymes for Bio-Products from Sustainable and Waste Biomass.

    PubMed

    Gupta, Vijai K; Kubicek, Christian P; Berrin, Jean-Guy; Wilson, David W; Couturier, Marie; Berlin, Alex; Filho, Edivaldo X F; Ezeji, Thaddeus

    2016-07-01

    Lignocellulose, the most abundant renewable carbon source on earth, is the logical candidate to replace fossil carbon as the major biofuel raw material. Nevertheless, the technologies needed to convert lignocellulose into soluble products that can then be utilized by the chemical or fuel industries face several challenges. Enzymatic hydrolysis is of major importance, and we review the progress made in fungal enzyme technology over the past few years with major emphasis on (i) the enzymes needed for the conversion of polysaccharides (cellulose and hemicellulose) into soluble products, (ii) the potential uses of lignin degradation products, and (iii) current progress and bottlenecks for the use of the soluble lignocellulose derivatives in emerging biorefineries. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Development activities, challenges and prospects for the hydropower sector in Austria

    NASA Astrophysics Data System (ADS)

    Wagner, Beatrice; Hauer, Christoph; Habersack, Helmut

    2017-04-01

    This contribution intends to give an overview of hydropower development activities in Austria and deepen the knowledge on actual strategies and planning documents. Thereby, the focus is on a climate and energy policy based perspective, also analyzing economic trends at the hydropower sector due to energy market changes in the last years. This includes a comparison with other political strategies and programs dealing with hydropower exploitation based on selected countries. With respect to technology developments, a concise review on technological innovations, such as hydrokinetic energy conversion systems, and new constructive designs of conventional hydropower plants in Austria will be given. Moreover, potential impacts on environment and aquatic ecosystems are described. Finally, key challenges and prospects will be identified and discussed.

  14. Thermionic energy conversion technology - Present and future

    NASA Technical Reports Server (NTRS)

    Shimada, K.; Morris, J. F.

    1977-01-01

    Aerospace and terrestrial applications of thermionic direct energy conversion and advances in direct energy conversion (DEC) technology are surveyed. Electrode materials, the cesium plasma drop (the difference between the barrier index and the collector work function), DEC voltage/current characteristics, conversion efficiency, and operating temperatures are discussed. Attention is centered on nuclear reactor system thermionic DEC devices, for in-core or out-of-core operation. Thermionic fuel elements, the radiation shield, power conditions, and a waste heat rejection system are considered among the thermionic DEC system components. Terrestrial applications include topping power systems in fossil fuel and solar power generation.

  15. Fermentation of undetoxified sugarcane bagasse hydrolyzates using a two stage hydrothermal and mechanical refining pretreatment

    USDA-ARS?s Scientific Manuscript database

    Economical and environmentally friendly pretreatment technologies are required for commercial conversion of lignocellulosic feedstocks to fermentable sugars for fermentation to biofuels. In this paper, a novel pretreatment technology was developed for conversion of sugarcane bagasse into ethanol usi...

  16. Benefits of advanced technology in industrial cogeneration

    NASA Technical Reports Server (NTRS)

    Barna, G. J.; Burns, R. K.

    1979-01-01

    This broad study is aimed at identifying the most attractive advanced energy conversion systems for industrial cogeneration for the 1985 to 2000 time period and assessing the advantages of advanced technology systems compared to using today's commercially available technology. Energy conversion systems being studied include those using steam turbines, open cycle gas turbines, combined cycles, diesel engines, Stirling engines, closed cycle gas turbines, phosphoric acid and molten carbonate fuel cells and thermionics. Specific cases using today's commercially available technology are being included to serve as a baseline for assessing the advantages of advanced technology.

  17. Advanced Thermionic Technology Program

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Topics include surface studies (surface theory, basic surface experiments, and activation chamber experiments); plasma studies (converter theory and enhanced mode conversion experiments); and component development (low temperature conversion experiments, high efficiency conversion experiments, and hot shell development).

  18. Historical perspectives - The role of the NASA Lewis Research Center in the national space nuclear power programs

    NASA Technical Reports Server (NTRS)

    Bloomfield, H. S.; Sovie, R. J.

    1991-01-01

    The history of the NASA Lewis Research Center's role in space nuclear power programs is reviewed. Lewis has provided leadership in research, development, and the advancement of space power and propulsion systems. Lewis' pioneering efforts in nuclear reactor technology, shielding, high temperature materials, fluid dynamics, heat transfer, mechanical and direct energy conversion, high-energy propellants, electric propulsion and high performance rocket fuels and nozzles have led to significant technical and management roles in many natural space nuclear power and propulsion programs.

  19. Historical perspectives: The role of the NASA Lewis Research Center in the national space nuclear power programs

    NASA Technical Reports Server (NTRS)

    Bloomfield, H. S.; Sovie, R. J.

    1991-01-01

    The history of the NASA Lewis Research Center's role in space nuclear power programs is reviewed. Lewis has provided leadership in research, development, and the advancement of space power and propulsion systems. Lewis' pioneering efforts in nuclear reactor technology, shielding, high temperature materials, fluid dynamics, heat transfer, mechanical and direct energy conversion, high-energy propellants, electric propulsion and high performance rocket fuels and nozzles have led to significant technical and management roles in many national space nuclear power and propulsion programs.

  20. Solar to fuels conversion technologies: a perspective.

    PubMed

    Tuller, Harry L

    2017-01-01

    To meet increasing energy needs, while limiting greenhouse gas emissions over the coming decades, power capacity on a large scale will need to be provided from renewable sources, with solar expected to play a central role. While the focus to date has been on electricity generation via photovoltaic (PV) cells, electricity production currently accounts for only about one-third of total primary energy consumption. As a consequence, solar-to-fuel conversion will need to play an increasingly important role and, thereby, satisfy the need to replace high energy density fossil fuels with cleaner alternatives that remain easy to transport and store. The solar refinery concept (Herron et al. in Energy Environ Sci 8:126-157, 2015), in which captured solar radiation provides energy in the form of heat, electricity or photons, used to convert the basic chemical feedstocks CO 2 and H 2 O into fuels, is reviewed as are the key conversion processes based on (1) combined PV and electrolysis, (2) photoelectrochemically driven electrolysis and (3) thermochemical processes, all focused on initially converting H 2 O and CO 2 to H 2 and CO. Recent advances, as well as remaining challenges, associated with solar-to-fuel conversion are discussed, as is the need for an intensive research and development effort to bring such processes to scale.

  1. Alkali Metal Rankine Cycle Boiler Technology Challenges and Some Potential Solutions for Space Nuclear Power and Propulsion Applications

    NASA Technical Reports Server (NTRS)

    Stone, James R.

    1994-01-01

    Alkali metal boilers are of interest for application to future space Rankine cycle power conversion systems. Significant progress on such boilers was accomplished in the 1960's and early 1970's, but development was not continued to operational systems since NASA's plans for future space missions were drastically curtailed in the early 1970's. In particular, piloted Mars missions were indefinitely deferred. With the announcement of the Space Exploration Initiative (SEI) in July 1989 by President Bush, interest was rekindled in challenging space missions and, consequently in space nuclear power and propulsion. Nuclear electric propulsion (NEP) and nuclear thermal propulsion (NTP) were proposed for interplanetary space vehicles, particularly for Mars missions. The potassium Rankine power conversion cycle became of interest to provide electric power for NEP vehicles and for 'dual-mode' NTP vehicles, where the same reactor could be used directly for propulsion and (with an additional coolant loop) for power. Although the boiler is not a major contributor to system mass, it is of critical importance because of its interaction with the rest of the power conversion system; it can cause problems for other components such as excess liquid droplets entering the turbine, thereby reducing its life, or more critically, it can drive instabilities-some severe enough to cause system failure. Funding for the SEI and its associated technology program from 1990 to 1993 was not sufficient to support significant new work on Rankine cycle boilers for space applications. In Fiscal Year 1994, funding for these challenging missions and technologies has again been curtailed, and planning for the future is very uncertain. The purpose of this paper is to review the technologies developed in the 1960's and 1970's in the light of the recent SEI applications. In this way, future Rankine cycle boiler programs may be conducted most efficiently. This report is aimed at evaluating alkali metal boiler technology for space Rankine cycle systems. Research is summarized on the problems of flow stability, liquid carryover, pressure drop and heat transfer, and on potential solutions developed, primarily those developed by the NASA Lewis Research Center in the 1960's and early 1970's.

  2. Facing technological challenges of Solar Updraft Power Plants

    NASA Astrophysics Data System (ADS)

    Lupi, F.; Borri, C.; Harte, R.; Krätzig, W. B.; Niemann, H.-J.

    2015-01-01

    The Solar Updraft Power Plant technology addresses a very challenging idea of combining two kinds of renewable energy: wind and solar. The working principle is simple: a Solar Updraft Power Plant (SUPP) consists of a collector area to heat the air due to the wide-banded ultra-violet solar radiation, the high-rise solar tower to updraft the heated air to the atmosphere, and in between the power conversion unit, where a system of coupled turbines and generators transforms the stream of heated air into electric power. A good efficiency of the power plant can only be reached with extra-large dimensions of the tower and/or the collector area. The paper presents an up-to-date review of the SUPP technology, focusing on the multi-physics modeling of the power plant, on the structural behavior of the tower and, last but not least, on the modeling of the stochastic wind loading process.

  3. NASA's Advanced Radioisotope Power Conversion Technology Development Status

    NASA Technical Reports Server (NTRS)

    Anderson, David J.; Sankovic, John; Wilt, David; Abelson, Robert D.; Fleurial, Jean-Pierre

    2007-01-01

    NASA's Advanced Radioisotope Power Systems (ARPS) project is developing the next generation of radioisotope power conversion technologies that will enable future missions that have requirements that cannot be met by either photovoltaic systems or by current radioisotope power systems (RPSs). Requirements of advanced RPSs include high efficiency and high specific power (watts/kilogram) in order to meet future mission requirements with less radioisotope fuel and lower mass so that these systems can meet requirements for a variety of future space applications, including continual operation surface missions, outer-planetary missions, and solar probe. These advances would enable a factor of 2 to 4 decrease in the amount of fuel required to generate electrical power. Advanced RPS development goals also include long-life, reliability, and scalability. This paper provides an update on the contractual efforts under the Radioisotope Power Conversion Technology (RPCT) NASA Research Announcement (NRA) for research and development of Stirling, thermoelectric, and thermophotovoltaic power conversion technologies. The paper summarizes the current RPCT NRA efforts with a brief description of the effort, a status and/or summary of the contractor's key accomplishments, a discussion of upcoming plans, and a discussion of relevant system-level benefits and implications. The paper also provides a general discussion of the benefits from the development of these advanced power conversion technologies and the eventual payoffs to future missions (discussing system benefits due to overall improvements in efficiency, specific power, etc.).

  4. Review of Biojet Fuel Conversion Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Wei-Cheng; Tao, Ling; Markham, Jennifer

    Biomass-derived jet (biojet) fuel has become a key element in the aviation industry’s strategy to reduce operating costs and environmental impacts. Researchers from the oil-refining industry, the aviation industry, government, biofuel companies, agricultural organizations, and academia are working toward developing commercially viable and sustainable processes that produce long-lasting renewable jet fuels with low production costs and low greenhouse gas emissions. Additionally, jet fuels must meet ASTM International specifications and potentially be a 100% drop-in replacement for the current petroleum jet fuel. The combustion characteristics and engine tests demonstrate the benefits of running the aviation gas turbine with biojet fuels. Inmore » this study, the current technologies for producing renewable jet fuels, categorized by alcohols-to-jet, oil-to-jet, syngas-to-jet, and sugar-to-jet pathways, are reviewed. The main challenges for each technology pathway, including feedstock availability, conceptual process design, process economics, life-cycle assessment of greenhouse gas emissions, and commercial readiness, are discussed. Although the feedstock price and availability and energy intensity of the process are significant barriers, biomass-derived jet fuel has the potential to replace a significant portion of conventional jet fuel required to meet commercial and military demand.« less

  5. Renewable energy technology from underpinning physics to engineering application

    NASA Astrophysics Data System (ADS)

    Infield, D. G.

    2008-03-01

    The UK Energy Research Centre (UKERC) in it's submission to the DTI's 2006 Energy Review reminded us that the ''UK has abundant wind, wave and tidal resources available; its mild climate lends itself to bio-energy production, and solar radiation levels are sufficient to sustain a viable solar industry''. These technologies are at different stages of development but they all draw on basic and applied Science and Engineering. The paper will briefly review the renewable energy technologies and their potential for contributing to a sustainable energy supply. Three research topics will be highlighted that bridge the gap between the physics underpinning the energy conversion, and the engineering aspects of development and deployment; all three are highly relevant to the Government's programme on micro-generation. Two are these are taken from field of thin film photovoltaics (PV), one related to novel device development and the other to a measurement technique for assessing the manufacturing quality of PV modules and their performance. The third topic concerns the development of small building integrated wind turbines and examines the complex flow associated with such applications. The paper will conclude by listing key research challenges that are central to the search for efficient and cost-effective renewable energy generation.

  6. Palliative and end-of-life care for adults with advanced chronic obstructive pulmonary disease: a rapid review focusing on patient and family caregiver perspectives.

    PubMed

    Mathews, Gillian; Johnston, Bridget

    2017-12-01

    The aim of the review was to explore patient and family caregiver perspectives on key issues for ensuring quality of end-of-life care for people with chronic obstructive pulmonary disease (COPD). The growing evidence on the value of specialist palliative care services demonstrates significant improvements in treatments and provisions; however, much of the literature is generic in nature or centred on people with a cancer diagnosis. In this review, we examine the literature to ascertain the views and needs of patients and carers affected by advanced COPD, a highly debilitating condition that can have a profoundly negative impact on the quality of end-of-life experience. A total of 19 papers were included in the review. The main themes in the literature were Holistic Care, Illness Trajectory and Technology. Areas of unmet need emphasized across physical, psychosocial and spiritual domains were identified, particularly in relation to appropriate and timely conversations. Positive developments in the care and treatment of advanced COPD include the use of the STIOLTO Respimat inhaler, a brief educative and psychosocial intervention based on cognitive-behavioural therapy, and high-intensity exercise training. There is some evidence regarding the use of technology in end-stage COPD.

  7. Review of betavoltaic energy conversion

    NASA Astrophysics Data System (ADS)

    Olsen, Larry C.

    1993-05-01

    Betavoltaic energy conversion refers to the generation of power by coupling a beta source to a semiconductor junction device. The theory of betavoltaic energy conversion and some past studies of the subject are briefly reviewed. Calculations of limiting efficiencies for semiconductor cells versus bandgap are presented along with specific studies for Pm-147 and Ni-63 fueled devices. The approach used for fabricating Pm-147 fueled batteries by the author in the early 1970's is reviewed. Finally, the potential performance of advanced betavoltaic power sources is considered.

  8. Review of betavoltaic energy conversion

    NASA Technical Reports Server (NTRS)

    Olsen, Larry C.

    1993-01-01

    Betavoltaic energy conversion refers to the generation of power by coupling a beta source to a semiconductor junction device. The theory of betavoltaic energy conversion and some past studies of the subject are briefly reviewed. Calculations of limiting efficiencies for semiconductor cells versus bandgap are presented along with specific studies for Pm-147 and Ni-63 fueled devices. The approach used for fabricating Pm-147 fueled batteries by the author in the early 1970's is reviewed. Finally, the potential performance of advanced betavoltaic power sources is considered.

  9. Potentials of macroalgae as feedstocks for biorefinery.

    PubMed

    Jung, Kyung A; Lim, Seong-Rin; Kim, Yoori; Park, Jong Moon

    2013-05-01

    Macroalgae, so-called seaweeds, have recently attracted attention as a possible feedstock for biorefinery. Since macroalgae contain various carbohydrates (which are distinctively different from those of terrestrial biomasses), thorough assessments of macroalgae-based refinery are essential to determine whether applying terrestrial-based technologies to macroalgae or developing completely new technologies is feasible. This comprehensive review was performed to show the potentials of macroalgae as biorefinery feedstocks. Their basic background information was introduced: taxonomical classification, habitat environment, and carbon reserve capacity. Their global production status showed that macroalgae can be mass-cultivated with currently available farming technology. Their various carbohydrate compositions implied that new microorganisms are needed to effectively saccharify macroalgal biomass. Up-to-date macroalgae conversion technologies for biochemicals and biofuels showed that molecular bioengineering would contribute to the success of macroalgae-based biorefinery. It was concluded that more research is required for the utilization of macroalgae as a new promising biomass for low-carbon economy. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. 1.5-GW S-band relativistic klystron amplifier

    NASA Astrophysics Data System (ADS)

    Ferguson, Patrick E.

    1992-04-01

    There is a strong symbiotic relationship between a developing technology and its applications. New technologies can generate applications previously either unrealizable or impractical. Conversely, applications can demand the development of new technological capability. Examples of both types of development can be found in the evolution of HPM. The high power and energy output made possible by HPM have created a technology driven interest in directed energy weapons and short pulse radar. On the other hand, the requirements for heating of fusion plasmas have resulted in an application driven program to develop high average power microwave devices. In this paper we address these and other applications such as RF electron linacs, laser pumping, and beaming of power. Emerging applications, such as ionispheric modification and environmental cleanup, are also touched upon. The approach of this paper will be to review each application separately and then compare the requirements of the applications in terms of the power, frequency and other key requirements necessary for HPM to usefully address the application.

  11. Physics overview of AVLIS

    NASA Astrophysics Data System (ADS)

    Solarz, R. W.

    1985-02-01

    Atomic vapor laster isotope separation (AVLIS) represents the largest-scale potential application of tunable lasers that has received serious attention. The underlying physical principles were identified and optimized, the major technology components were developed, and the integrated enrichment performance of the process was tested. The central physical processes are outlined, progress to date on the technology elements is reviewed, and scaling laws are fomulated. Two primary applications are the production of light-water reactor fuel and the conversion of fuel-grade plutonium to weapons-grade material. A variety of applications exist that all potentially use a common base of AVLIS technology. These include missions such as the enrichment of mercury isotopes to improve fluorescent lamp efficiency, the enrichment of iodine isotopes for medical isotope use, and the cleanup of strontium from defense waste for recovering strontium isotopes for radiothermal mechanical generators. The ability to radidly assess the economic and technical feasibility of each mission is derived from the general applicability of AVLIS physics and AVLIS technology.

  12. Polymer-based chromophore-catalyst assemblies for solar energy conversion

    NASA Astrophysics Data System (ADS)

    Leem, Gyu; Sherman, Benjamin D.; Schanze, Kirk S.

    2017-12-01

    The synthesis of polymer-based assemblies for light harvesting has been motivated by the multi-chromophore antennas that play a role in natural photosynthesis for the potential use in solar conversion technologies. This review describes a general strategy for using polymer-based chromophore-catalyst assemblies for solar-driven water oxidation at a photoanode in a dye-sensitized photoelectrochemical cell (DSPEC). This report begins with a summary of the synthetic methods and fundamental photophysical studies of light harvesting polychormophores in solution which show these materials can transport excited state energy to an acceptor where charge-separation can occur. In addition, studies describing light harvesting polychromophores containing an anchoring moiety (ionic carboxylate) for covalent bounding to wide band gap mesoporous semiconductor surfaces are summarized to understand the photophysical mechanisms of directional energy flow at the interface. Finally, the performance of polychromophore/catalyst assembly-based photoanodes capable of light-driven water splitting to oxygen and hydrogen in a DSPEC are summarized.

  13. Polymer-based chromophore-catalyst assemblies for solar energy conversion.

    PubMed

    Leem, Gyu; Sherman, Benjamin D; Schanze, Kirk S

    2017-01-01

    The synthesis of polymer-based assemblies for light harvesting has been motivated by the multi-chromophore antennas that play a role in natural photosynthesis for the potential use in solar conversion technologies. This review describes a general strategy for using polymer-based chromophore-catalyst assemblies for solar-driven water oxidation at a photoanode in a dye-sensitized photoelectrochemical cell (DSPEC). This report begins with a summary of the synthetic methods and fundamental photophysical studies of light harvesting polychormophores in solution which show these materials can transport excited state energy to an acceptor where charge-separation can occur. In addition, studies describing light harvesting polychromophores containing an anchoring moiety (ionic carboxylate) for covalent bounding to wide band gap mesoporous semiconductor surfaces are summarized to understand the photophysical mechanisms of directional energy flow at the interface. Finally, the performance of polychromophore/catalyst assembly-based photoanodes capable of light-driven water splitting to oxygen and hydrogen in a DSPEC are summarized.

  14. Resistive switching phenomena: A review of statistical physics approaches

    DOE PAGES

    Lee, Jae Sung; Lee, Shinbuhm; Noh, Tae Won

    2015-08-31

    Here we report that resistive switching (RS) phenomena are reversible changes in the metastable resistance state induced by external electric fields. After discovery ~50 years ago, RS phenomena have attracted great attention due to their potential application in next-generation electrical devices. Considerable research has been performed to understand the physical mechanisms of RS and explore the feasibility and limits of such devices. There have also been several reviews on RS that attempt to explain the microscopic origins of how regions that were originally insulators can change into conductors. However, little attention has been paid to the most important factor inmore » determining resistance: how conducting local regions are interconnected. Here, we provide an overview of the underlying physics behind connectivity changes in highly conductive regions under an electric field. We first classify RS phenomena according to their characteristic current–voltage curves: unipolar, bipolar, and threshold switchings. Second, we outline the microscopic origins of RS in oxides, focusing on the roles of oxygen vacancies: the effect of concentration, the mechanisms of channel formation and rupture, and the driving forces of oxygen vacancies. Third, we review RS studies from the perspective of statistical physics to understand connectivity change in RS phenomena. We discuss percolation model approaches and the theory for the scaling behaviors of numerous transport properties observed in RS. Fourth, we review various switching-type conversion phenomena in RS: bipolar-unipolar, memory-threshold, figure-of-eight, and counter-figure-of-eight conversions. Finally, we review several related technological issues, such as improvement in high resistance fluctuations, sneak-path problems, and multilevel switching problems.« less

  15. Conversion Disorder- Mind versus Body: A Review.

    PubMed

    Ali, Shahid; Jabeen, Shagufta; Pate, Rebecca J; Shahid, Marwah; Chinala, Sandhya; Nathani, Milankumar; Shah, Rida

    2015-01-01

    In this article, the authors accentuate the signs and symptoms of conversion disorder and the significance of clinical judgment and expertise in order to reach the right diagnosis. The authors review the literature and provide information on the etiology, prevalence, diagnostic criteria, and the treatment methods currently employed in the management of conversion disorder. Of note, the advancements of neuropsychology and brain imaging have led to emergence of a relatively sophisticated picture of the neuroscientific psychopathology of complex mental illnesses, including conversion disorder. The available evidence suggests new methods with which to test hypotheses about the neural circuits underlying conversion symptoms. In context of this, the authors also explore the neurobiological understanding of conversion disorder.

  16. Conversion Disorder— Mind versus Body: A Review

    PubMed Central

    Jabeen, Shagufta; Pate, Rebecca J.; Shahid, Marwah; Chinala, Sandhya; Nathani, Milankumar; Shah, Rida

    2015-01-01

    In this article, the authors accentuate the signs and symptoms of conversion disorder and the significance of clinical judgment and expertise in order to reach the right diagnosis. The authors review the literature and provide information on the etiology, prevalence, diagnostic criteria, and the treatment methods currently employed in the management of conversion disorder. Of note, the advancements of neuropsychology and brain imaging have led to emergence of a relatively sophisticated picture of the neuroscientific psychopathology of complex mental illnesses, including conversion disorder. The available evidence suggests new methods with which to test hypotheses about the neural circuits underlying conversion symptoms. In context of this, the authors also explore the neurobiological understanding of conversion disorder. PMID:26155375

  17. Combinatorial enzyme technology: Conversion of pectin to oligo species and its effect on microbial growth

    USDA-ARS?s Scientific Manuscript database

    Plant cell wall polysaccharides, which consist of polymeric backbones with various types of substitution, were studied using the concept of combinatorial enzyme technology for conversion of agricultural fibers to functional products. Using citrus pectin as the starting substrate, an active oligo spe...

  18. Metal hydrides: an innovative and challenging conversion reaction anode for lithium-ion batteries

    PubMed Central

    Oumellal, Yassine; Bonnet, Jean-Pierre

    2015-01-01

    Summary The state of the art of conversion reactions of metal hydrides (MH) with lithium is presented and discussed in this review with regard to the use of these hydrides as anode materials for lithium-ion batteries. A focus on the gravimetric and volumetric storage capacities for different examples from binary, ternary and complex hydrides is presented, with a comparison between thermodynamic prediction and experimental results. MgH2 constitutes one of the most attractive metal hydrides with a reversible capacity of 1480 mA·h·g−1 at a suitable potential (0.5 V vs Li+/Li0) and the lowest electrode polarization (<0.2 V) for conversion materials. Conversion process reaction mechanisms with lithium are subsequently detailed for MgH2, TiH2, complex hydrides Mg2MHx and other Mg-based hydrides. The reversible conversion reaction mechanism of MgH2, which is lithium-controlled, can be extended to others hydrides as: MHx + xLi+ + xe− in equilibrium with M + xLiH. Other reaction paths—involving solid solutions, metastable distorted phases, and phases with low hydrogen content—were recently reported for TiH2 and Mg2FeH6, Mg2CoH5 and Mg2NiH4. The importance of fundamental aspects to overcome technological difficulties is discussed with a focus on conversion reaction limitations in the case of MgH2. The influence of MgH2 particle size, mechanical grinding, hydrogen sorption cycles, grinding with carbon, reactive milling under hydrogen, and metal and catalyst addition to the MgH2/carbon composite on kinetics improvement and reversibility is presented. Drastic technological improvement in order to the enhance conversion process efficiencies is needed for practical applications. The main goals are minimizing the impact of electrode volume variation during lithium extraction and overcoming the poor electronic conductivity of LiH. To use polymer binders to improve the cycle life of the hydride-based electrode and to synthesize nanoscale composite hydride can be helpful to address these drawbacks. The development of high-capacity hydride anodes should be inspired by the emergent nano-research prospects which share the knowledge of both hydrogen-storage and lithium-anode communities. PMID:26425434

  19. 2011 Biomass Program Platform Peer Review. Thermochemical Conversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grabowski, Paul E.

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the 2011 U.S. Department of Energy Biomass Program’s Thermochemical Conversion Platform Review meeting.

  20. Interfacing a quantum dot with a spontaneous parametric down-conversion source

    NASA Astrophysics Data System (ADS)

    Huber, Tobias; Prilmüller, Maximilian; Sehner, Michael; Solomon, Glenn S.; Predojević, Ana; Weihs, Gregor

    2017-09-01

    Quantum networks require interfacing stationary and flying qubits. These flying qubits are usually nonclassical states of light. Here we consider two of the leading source technologies for nonclassical light, spontaneous parametric down-conversion and single semiconductor quantum dots. Down-conversion delivers high-grade entangled photon pairs, whereas quantum dots excel at producing single photons. We report on an experiment that joins these two technologies and investigates the conditions under which optimal interference between these dissimilar light sources may be achieved.

  1. Review of Millimeter-Wave Integrated Circuits With Low Power Consumption for High Speed Wireless Communications

    NASA Astrophysics Data System (ADS)

    Ellinger, Frank; Fritsche, David; Tretter, Gregor; Leufker, Jan Dirk; Yodprasit, Uroschanit; Carta, C.

    2017-01-01

    In this paper we review high-speed radio-frequency integrated circuits operating up to 210 GHz and present selected state-of-the-art circuits with leading-edge performance, which we have designed at our chair. The following components are discussed employing bipolar complementary metal oxide semiconductors (BiCMOS) technologies: a 200 GHz amplifier with 17 dB gain and around 9 dB noise figure consuming only 18 mW, a 200 GHz down mixer with 5.5 dB conversion gain and 40 mW power consumption, a 190 GHz receiver with 47 dB conversion gain and 11 dB noise figure and a 60 GHz power amplifier with 24.5 dBm output power and 12.9 % power added efficiency (PAE). Moreover, we report on a single-core flash CMOS analogue-to-digital converter (ADC) with 3 bit resolution and a speed of 24 GS/s. Finally, we discuss a 60 GHz on-off keying (OOK) BiCMOS transceiver chip set. The wireless transmission of data with 5 Gb/s at 42 cm distance between transmitter and receiver was verified by experiments. The complete transceiver consumes 396 mW.

  2. The Mechanism of Room-Temperature Ionic-Liquid-Based Electrochemical CO₂ Reduction: A Review.

    PubMed

    Lim, Hyung-Kyu; Kim, Hyungjun

    2017-03-28

    Electrochemical CO₂ conversion technology is becoming indispensable in the development of a sustainable carbon-based economy. While various types of electrocatalytic systems have been designed, those based on room-temperature ionic liquids (RTILs) have attracted considerable attention because of their high efficiencies and selectivities. Furthermore, it should be possible to develop more advanced electrocatalytic systems for commercial use because target-specific characteristics can be fine-tuned using various combinations of RTIL ions. To achieve this goal, we require a systematic understanding of the role of the RTIL components in electrocatalytic systems, however, their role has not yet been clarified by experiment or theory. Thus, the purpose of this short review is to summarize recent experimental and theoretical mechanistic studies to provide insight into and to develop guidelines for the successful development of new CO₂ conversion systems. The results discussed here can be summarized as follows. Complex physical and chemical interactions between the RTIL components and the reaction intermediates, in particular at the electrode surface, are critical for determining the activity and selectivity of the electrocatalytic system, although no single factor dominates. Therefore, more fundamental research is required to understand the physical, chemical, and thermodynamic characteristics of complex RTIL-based electrocatalytic systems.

  3. Assessing the feasibility of N and P recovery by struvite precipitation from nutrient-rich wastewater: a review.

    PubMed

    Kumar, Ramesh; Pal, Parimal

    2015-11-01

    Literature on recovery of nitrogen and phosphorous from wastewater in the form of value-added struvite fertilizer has been critically reviewed towards the evolution of a sustainable management strategy. Presence of nitrogen and phosphorus is widespread in both domestic as well as industrial wastewater streams such as swine wastewater, landfill leachate, urine waste, dairy manure, coke wastewater, and beverage wastewater. Where these nitrogen and phosphorus compounds cause eutrophication of water bodies and considered as harmful discharges to the environment, they can be turned useful through simple chemical conversion into struvite (MgNH4PO4·6H2O). In extensive studies on wastewater treatment, aspects of recovery of valuable materials remain dispersed. In the present article, almost all relevant aspects of sources of raw materials, chemistry and technology of struvite production, and its detailed characterization have been captured in a systematic and classified way so as to help in planning and designing an integrated scheme of struvite production through conversion of nitrogen and phosphorus components of waste streams. The study will help in formulating a new waste management strategy in this context by shifting focus from removal to recovery of nutrients from waste streams.

  4. Biochemical Conversion: Using Enzymes, Microbes, and Catalysis to Make Fuels and Chemicals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2013-07-26

    This fact sheet describes the Bioenergy Technologies Office's biochemical conversion work and processes. BETO conducts collaborative research, development, and demonstration projects to improve several processing routes for the conversion of cellulosic biomass.

  5. Overview of the DOE/SERI Biochemical Conversion Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, J D

    1986-09-01

    The Solar Energy Research Institute manages a program of research and development on the biochemical conversion of renewable lignocellulosic materials to liquid fuels for the Department of Energy's Biofuels and Municipal Waste Technology Division. The Biochemical Conversion Program is mission oriented so effort is concentrated on technologies which appear to have the greatest potential for being adopted by the private sector to economically convert lignocellulosic materials into high value liquid transportation fuels such as ethanol. The program is structured to supply the technology for such fuels to compete economically first as an octane booster or fuel additive, and, with additionalmore » improvements, as a neat fuel. 18 refs., 3 figs., 1 tab.« less

  6. Making three-dimensional echocardiography more tangible: a workflow for three-dimensional printing with echocardiographic data.

    PubMed

    Mashari, Azad; Montealegre-Gallegos, Mario; Knio, Ziyad; Yeh, Lu; Jeganathan, Jelliffe; Matyal, Robina; Khabbaz, Kamal R; Mahmood, Feroze

    2016-12-01

    Three-dimensional (3D) printing is a rapidly evolving technology with several potential applications in the diagnosis and management of cardiac disease. Recently, 3D printing (i.e. rapid prototyping) derived from 3D transesophageal echocardiography (TEE) has become possible. Due to the multiple steps involved and the specific equipment required for each step, it might be difficult to start implementing echocardiography-derived 3D printing in a clinical setting. In this review, we provide an overview of this process, including its logistics and organization of tools and materials, 3D TEE image acquisition strategies, data export, format conversion, segmentation, and printing. Generation of patient-specific models of cardiac anatomy from echocardiographic data is a feasible, practical application of 3D printing technology. © 2016 The authors.

  7. An ecological approach to learning with technology: responding to tensions within the "wow-effect" phenomenon in teaching practices

    NASA Astrophysics Data System (ADS)

    Herro, Danielle

    2016-12-01

    This review explores Anne Kamstrupp's "The Wow-effect in Science Teacher Education" by examining her theorized "wow-effect" as a teaching enactment that may serve to engage students, but often fails to provide deep understanding of science content. My response extends her perspective of socio-materiality as means to understand the "wow-effect" by suggesting social constructivism provides a more accurate lens to disentangle the phenomenon. I react to her position that tension fields within the phenomenon include the relationship between new and old technologies, boredom and engagement, and active and sedentary learning. In this conversation, I point to a new way of conceptualizing using digital media in the classroom as ecology of learning that may serve to decrease problems associated with the "wow-effect".

  8. Thermoelectric silicides: A review

    NASA Astrophysics Data System (ADS)

    Nozariasbmarz, Amin; Agarwal, Aditi; Coutant, Zachary A.; Hall, Michael J.; Liu, Jie; Liu, Runze; Malhotra, Abhishek; Norouzzadeh, Payam; Öztürk, Mehmet C.; Ramesh, Viswanath P.; Sargolzaeiaval, Yasaman; Suarez, Francisco; Vashaee, Daryoosh

    2017-05-01

    Traditional research on thermoelectric materials focused on improving the figure-of-merit z T to enhance the energy conversion efficiency. With further growth and commercialization of thermoelectric technology beyond niche applications, other factors such as materials availability, toxicity, cost, recyclability, thermal stability, chemical and mechanical properties, and ease of fabrication become important for making viable technologies. Several silicide alloys were identified that have the potential to fulfill these requirements. These materials are of interest due to their abundancy in earth’s crust (e.g., silicon), non-toxicity, and good physical and chemical properties. In this paper, an overview of the silicide thermoelectrics from traditional alloys to advanced material structures is presented. In addition, some of the most effective approaches as well as fundamental physical concepts for designing and developing efficient thermoelectric materials are presented and future perspectives are discussed.

  9. Metal-halide perovskites for photovoltaic and light-emitting devices.

    PubMed

    Stranks, Samuel D; Snaith, Henry J

    2015-05-01

    Metal-halide perovskites are crystalline materials originally developed out of scientific curiosity. Unexpectedly, solar cells incorporating these perovskites are rapidly emerging as serious contenders to rival the leading photovoltaic technologies. Power conversion efficiencies have jumped from 3% to over 20% in just four years of academic research. Here, we review the rapid progress in perovskite solar cells, as well as their promising use in light-emitting devices. In particular, we describe the broad tunability and fabrication methods of these materials, the current understanding of the operation of state-of-the-art solar cells and we highlight the properties that have delivered light-emitting diodes and lasers. We discuss key thermal and operational stability challenges facing perovskites, and give an outlook of future research avenues that might bring perovskite technology to commercialization.

  10. Prospective Conversion: Data Transfer between Fossil and New Microcomputer Technologies in Libraries.

    ERIC Educational Resources Information Center

    Vratny-Watts, Janet; Valauskas, Edward J.

    1989-01-01

    Discusses the technological changes that will necessitate the prospective conversion of library data over the next decade and addresses the problems of converting data from obsolete personal computers to newer models that feature radically different operating systems. Three case studies are used to illustrate possible scenarios. (11 references)…

  11. What Students Want: Leave Me Alone...I'm Socializing

    ERIC Educational Resources Information Center

    Starkman, Neal

    2007-01-01

    Through conversations with students across different grade levels, there is clear evidence that two of the things they most desire contradict each other--and they use electronic technology to get both of them. This author had conversations with three groups of students in Seattle about their favorite electronic technologies, and any concerns they…

  12. Commercialization of waste gob gas and methane produced in conjunction with coal mining operations. Final report, August 1992--December 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-12-01

    The primary objectives of the project were to identify and evaluate existing processes for (1) using gas as a feedstock for production of marketable, value-added commodities, and (2) enriching contaminated gas to pipeline quality. The following gas conversion technologies were evaluated: (1) transformation to liquid fuels, (2) manufacture of methanol, (3) synthesis of mixed alcohols, and (4) conversion to ammonia and urea. All of these involved synthesis gas production prior to conversion to the desired end products. Most of the conversion technologies evaluated were found to be mature processes operating at a large scale. A drawback in all of themore » processes was the need to have a relatively pure feedstock, thereby requiring gas clean-up prior to conversion. Despite this requirement, the conversion technologies were preliminarily found to be marginally economic. However, the prohibitively high investment for a combined gas clean-up/conversion facility required that REI refocus the project to investigation of gas enrichment alternatives. Enrichment of a gas stream with only one contaminant is a relatively straightforward process (depending on the contaminant) using available technology. However, gob gas has a unique nature, being typically composed of from constituents. These components are: methane, nitrogen, oxygen, carbon dioxide and water vapor. Each of the four contaminants may be separated from the methane using existing technologies that have varying degrees of complexity and compatibility. However, the operating and cost effectiveness of the combined system is dependent on careful integration of the clean-up processes. REI is pursuing Phase 2 of this project for demonstration of a waste gas enrichment facility using the approach described above. This is expected to result in the validation of the commercial and technical viability of the facility, and the refinement of design parameters.« less

  13. Thermionic/AMTEC cascade converter concept for high-efficiency space power

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hagan, T.H. van; Smith, J.N. Jr.; Schuller, M.

    1996-12-31

    This paper presents trade studies that address the use of the thermionic/AMTEC cell--a cascaded, high-efficiency, static power conversion concept that appears well-suited to space power applications. Both the thermionic and AMTEC power conversion approaches have been shown to be promising candidates for space power. Thermionics offers system compactness via modest efficiency at high heat rejection temperatures, and AMTEC offers high efficiency at modest heat rejection temperature. From a thermal viewpoint the two are ideally suited for cascaded power conversion: thermionic heat rejection and AMTEC heat source temperatures are essentially the same. In addition to realizing conversion efficiencies potentially as highmore » as 35--40%, such a cascade offers the following perceived benefits: survivability; simplicity; technology readiness; and technology growth. Mechanical approaches and thermal/electric matching criteria for integrating thermionics and AMTEC into a single conversion device are described. Focusing primarily on solar thermal space power applications, parametric trends are presented to show the performance and cost potential that should be achievable with present-day technology in cascaded thermionic/AMTEC systems.« less

  14. Devices for Self-Monitoring Sedentary Time or Physical Activity: A Scoping Review.

    PubMed

    Sanders, James P; Loveday, Adam; Pearson, Natalie; Edwardson, Charlotte; Yates, Thomas; Biddle, Stuart J H; Esliger, Dale W

    2016-05-04

    It is well documented that meeting the guideline levels (150 minutes per week) of moderate-to-vigorous physical activity (PA) is protective against chronic disease. Conversely, emerging evidence indicates the deleterious effects of prolonged sitting. Therefore, there is a need to change both behaviors. Self-monitoring of behavior is one of the most robust behavior-change techniques available. The growing number of technologies in the consumer electronics sector provides a unique opportunity for individuals to self-monitor their behavior. The aim of this study is to review the characteristics and measurement properties of currently available self-monitoring devices for sedentary time and/or PA. To identify technologies, four scientific databases were systematically searched using key terms related to behavior, measurement, and population. Articles published through October 2015 were identified. To identify technologies from the consumer electronic sector, systematic searches of three Internet search engines were also performed through to October 1, 2015. The initial database searches identified 46 devices and the Internet search engines identified 100 devices yielding a total of 146 technologies. Of these, 64 were further removed because they were currently unavailable for purchase or there was no evidence that they were designed for, had been used in, or could readily be modified for self-monitoring purposes. The remaining 82 technologies were included in this review (73 devices self-monitored PA, 9 devices self-monitored sedentary time). Of the 82 devices included, this review identified no published articles in which these devices were used for the purpose of self-monitoring PA and/or sedentary behavior; however, a number of technologies were found via Internet searches that matched the criteria for self-monitoring and provided immediate feedback on PA (ActiGraph Link, Microsoft Band, and Garmin Vivofit) and sedentary time (activPAL VT, the Lumo Back, and Darma). There are a large number of devices that self-monitor PA; however, there is a greater need for the development of tools to self-monitor sedentary time. The novelty of these devices means they have yet to be used in behavior change interventions, although the growing field of wearable technology may facilitate this to change.

  15. Devices for Self-Monitoring Sedentary Time or Physical Activity: A Scoping Review

    PubMed Central

    Loveday, Adam; Pearson, Natalie; Edwardson, Charlotte; Yates, Thomas; Biddle, Stuart JH; Esliger, Dale W

    2016-01-01

    Background It is well documented that meeting the guideline levels (150 minutes per week) of moderate-to-vigorous physical activity (PA) is protective against chronic disease. Conversely, emerging evidence indicates the deleterious effects of prolonged sitting. Therefore, there is a need to change both behaviors. Self-monitoring of behavior is one of the most robust behavior-change techniques available. The growing number of technologies in the consumer electronics sector provides a unique opportunity for individuals to self-monitor their behavior. Objective The aim of this study is to review the characteristics and measurement properties of currently available self-monitoring devices for sedentary time and/or PA. Methods To identify technologies, four scientific databases were systematically searched using key terms related to behavior, measurement, and population. Articles published through October 2015 were identified. To identify technologies from the consumer electronic sector, systematic searches of three Internet search engines were also performed through to October 1, 2015. Results The initial database searches identified 46 devices and the Internet search engines identified 100 devices yielding a total of 146 technologies. Of these, 64 were further removed because they were currently unavailable for purchase or there was no evidence that they were designed for, had been used in, or could readily be modified for self-monitoring purposes. The remaining 82 technologies were included in this review (73 devices self-monitored PA, 9 devices self-monitored sedentary time). Of the 82 devices included, this review identified no published articles in which these devices were used for the purpose of self-monitoring PA and/or sedentary behavior; however, a number of technologies were found via Internet searches that matched the criteria for self-monitoring and provided immediate feedback on PA (ActiGraph Link, Microsoft Band, and Garmin Vivofit) and sedentary time (activPAL VT, the Lumo Back, and Darma). Conclusions There are a large number of devices that self-monitor PA; however, there is a greater need for the development of tools to self-monitor sedentary time. The novelty of these devices means they have yet to be used in behavior change interventions, although the growing field of wearable technology may facilitate this to change. PMID:27145905

  16. Color imaging technologies in the prepress industry

    NASA Astrophysics Data System (ADS)

    Silverman, Lee

    1992-05-01

    Over much of the last half century, electronic technologies have played an increasing role in the prepress production of film and plates prepared for printing presses. The last decade has seen an explosion of technologies capable of supplementing this production. The most outstanding technology infusing this growth has been the microcomputer, but other component technologies have also diversified the capacity for high-quality scanning of photographs. In addition, some fundamental software and affordable laser recorder technologies have provided new approaches to the merging of typographic and halftoned photographic data onto film. The next decade will evolve the methods and the technologies to achieve superior text and image communication on mass distribution media used in the printed page or instead of the printed page. This paper focuses on three domains of electronic prepress classified as the input, transformation, and output phases of the production process. The evolution of the component technologies in each of these three phases is described. The unique attributes in each are defined and then follows a discussion of the pertinent technologies which overlap all three domains. Unique to input is sensor technology and analogue to digital conversion. Unique to the transformation phase is the display on monitor for soft proofing and interactive processing. The display requires special technologies for digital frame storage and high-speed, gamma- compensated, digital to analogue conversion. Unique to output is the need for halftoning and binary recording device linearization or calibration. Specialized direct digital color technologies now allow color quality proofing without the need for writing intermediate separation films, but ultimately these technologies will be supplanted by direct printing technologies. First, dry film processing, then direct plate writing, and finally direct application of ink or toner onto paper at the 20 - 30 thousand impressions per hour now achieved by offset printing. In summary, a review of technological evolution guides industry methodologies that will define a transformation of workflow in graphic arts during the next decade. Prepress production will integrate component technologies with microcomputers in order to optimize the production cycle from graphic design to printed piece. These changes will drastically alter the business structures and tools used to put type and photographs on paper in the volumes expected from printing presses.

  17. JPL highlights

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Deep-space exploration; information systems and space technology development; technology applications; energy and energy conversion technology; and earth observational systems and orbital applications are discussed.

  18. [Organic waste treatment by earthworm vermicomposting and larvae bioconversion: review and perspective].

    PubMed

    Zhang, Zhi-jian; Liu, Meng; Zhu, Jun

    2013-05-01

    There is a growing attention on the environmental pollution and loss of potential regeneration of resources due to the poor handling of organic wastes, while earthworm vermicomposting and larvae bioconversion are well-known as two promising biotechnologies for sustainable wastes treatments, where earthworms or housefly larvae are employed to convert the organic wastes into humus like material, together with value-added worm product. Taken earthworm ( Eisenia foetida) and housefly larvae ( Musca domestica) as model species, this work illustrates fundamental definition and principle, operational process, technical mechanism, main factors, and bio-chemical features of organisms of these two technologies. Integrated with the physical and biochemical mechanisms, processes of biomass conversion, intestinal digestion, enzyme degradation and microflora decomposition are comprehensively reviewed on waste treatments with purposes of waste reduction, value-addition, and stabilization.

  19. Hydrothermal liquefaction of agricultural and forestry wastes: state-of-the-art review and future prospects.

    PubMed

    Cao, Leichang; Zhang, Cheng; Chen, Huihui; Tsang, Daniel C W; Luo, Gang; Zhang, Shicheng; Chen, Jianmin

    2017-12-01

    Hydrothermal liquefaction has been widely applied to obtain bioenergy and high-value chemicals from biomass in the presence of a solvent at moderate to high temperature (200-550°C) and pressure (5-25MPa). This article summarizes and discusses the conversion of agricultural and forestry wastes by hydrothermal liquefaction. The history and development of hydrothermal liquefaction technology for lignocellulosic biomass are briefly introduced. The research status in hydrothermal liquefaction of agricultural and forestry wastes is critically reviewed, particularly for the effects of liquefaction conditions on bio-oil yield and the decomposition mechanisms of main components in biomass. The limitations of hydrothermal liquefaction of agricultural and forestry wastes are discussed, and future research priorities are proposed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Role of Assessment Conversations in a Technology-Aided Classroom with English Language Learners: An Exploratory Study

    ERIC Educational Resources Information Center

    Menon, Preetha

    2018-01-01

    This article is drawn from a study conducted to explore how assessment conversations, a type of informal formative assessment, can support science learning in a technology-aided seventh-grade classroom in Northern California. The classroom setting where the study took place used interactive whiteboards in conjunction with the inquiry-based…

  1. The OAST space power program

    NASA Technical Reports Server (NTRS)

    Bennett, Gary L.

    1991-01-01

    The NASA Office of Aeronautics and Space Technology (OAST) space power program was established to provide the technology base to meet power system requirements for future space missions, including the Space Station, earth orbiting spacecraft, lunar and planetary bases, and solar system exploration. The program spans photovoltaic energy conversion, chemical energy conversion, thermal energy conversion, power management, thermal management, and focused initiatives on high-capacity power, surface power, and space nuclear power. The OAST space power program covers a broad range of important technologies that will enable or enhance future U.S. space missions. The program is well under way and is providing the kind of experimental and analytical information needed for spacecraft designers to make intelligent decisions about future power system options.

  2. Increasing conversion efficiency of two-step photon up-conversion solar cell with a voltage booster hetero-interface.

    PubMed

    Asahi, Shigeo; Kusaki, Kazuki; Harada, Yukihiro; Kita, Takashi

    2018-01-17

    Development of high-efficiency solar cells is one of the attractive challenges in renewable energy technologies. Photon up-conversion can reduce the transmission loss and is one of the promising concepts which improve conversion efficiency. Here we present an analysis of the conversion efficiency, which can be increased by up-conversion in a single-junction solar cell with a hetero-interface that boosts the output voltage. We confirm that an increase in the quasi-Fermi gap and substantial photocurrent generation result in a high conversion efficiency.

  3. NASA Office of Aeronautics and Space Technology Summer Workshop. Volume 4: Power technology panel

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Technology requirements in the areas of energy sources and conversion, power processing, distribution, conversion, and transmission, and energy storage are identified for space shuttle payloads. It is concluded that the power system technology currently available is adequate to accomplish all missions in the 1973 Mission Model, but that further development is needed to support space opportunities of the future as identified by users. Space experiments are proposed in the following areas: power generation in space, advanced photovoltaic energy converters, solar and nuclear thermoelectric technology, nickel-cadmium batteries, flywheels (mechanical storage), satellite-to-ground transmission and reconversion systems, and regenerative fuel cells.

  4. Modifying the red cell surface: towards an ABO-universal blood supply.

    PubMed

    Olsson, Martin L; Clausen, Henrik

    2008-01-01

    Eliminating the risk for ABO-incompatible transfusion errors and simplifying logistics by creating a universal blood inventory is a challenging idea. Goldstein and co-workers pioneered the field of enzymatic conversion of blood group A and B red blood cells (RBCs) to O (ECO). Using alpha-galactosidase from coffee beans to produce B-ECO RBCs, proof of principle for this revolutionary concept was achieved in clinical trials. However, because this enzyme has poor kinetic properties and low pH optimum the process was not economically viable. Conversion of group A RBCs was only achieved with the weak A2 subgroup with related enzymes having acidic pH optima. More recently, the identification of entirely new families of bacterial exoglycosidases with remarkably improved kinetic properties for cleaving A and B antigens has reinvigorated the field. Enzymatic conversion of groups A, B and AB RBCs with these novel enzymes resulting in ECO RBCs typing as O can now be achieved with low enzyme protein consumption, short incubation times and at neutral pH. Presently, clinical trials evaluating safety and efficacy of ECO RBCs are ongoing. Here, we review the status of the ECO technology, its impact and potential for introduction into clinical component preparation laboratories.

  5. Current progress of targetron technology: development, improvement and application in metabolic engineering.

    PubMed

    Liu, Ya-Jun; Zhang, Jie; Cui, Gu-Zhen; Cui, Qiu

    2015-06-01

    Targetrons are mobile group II introns that can recognize their DNA target sites by base-pairing RNA-DNA interactions with the aid of site-specific binding reverse transcriptases. Targetron technology stands out from recently developed gene targeting methods because of the flexibility, feasibility, and efficiency, and is particularly suitable for the genetic engineering of difficult microorganisms, including cellulolytic bacteria that are considered promising candidates for biomass conversion via consolidated bioprocessing. Along with the development of the thermotargetron method for thermophiles, targetron technology becomes increasingly important for the metabolic engineering of industrial microorganisms aiming at biofuel/chemical production. To summarize the current progress of targetron technology and provide new insights on the use of the technology, this paper reviews the retrohoming mechanisms of both mesophilic and thermophilic targetron methods based on various group II introns, investigates the improvement of targetron tools for high target efficiency and specificity, and discusses the current applications in the metabolic engineering for bacterial producers. Although there are still intellectual property and technical restrictions in targetron applications, we propose that targetron technology will contribute to both biochemistry research and the metabolic engineering for industrial productions. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Efficient electrochemical CO2 conversion powered by renewable energy.

    PubMed

    Kauffman, Douglas R; Thakkar, Jay; Siva, Rajan; Matranga, Christopher; Ohodnicki, Paul R; Zeng, Chenjie; Jin, Rongchao

    2015-07-22

    The catalytic conversion of CO2 into industrially relevant chemicals is one strategy for mitigating greenhouse gas emissions. Along these lines, electrochemical CO2 conversion technologies are attractive because they can operate with high reaction rates at ambient conditions. However, electrochemical systems require electricity, and CO2 conversion processes must integrate with carbon-free, renewable-energy sources to be viable on larger scales. We utilize Au25 nanoclusters as renewably powered CO2 conversion electrocatalysts with CO2 → CO reaction rates between 400 and 800 L of CO2 per gram of catalytic metal per hour and product selectivities between 80 and 95%. These performance metrics correspond to conversion rates approaching 0.8-1.6 kg of CO2 per gram of catalytic metal per hour. We also present data showing CO2 conversion rates and product selectivity strongly depend on catalyst loading. Optimized systems demonstrate stable operation and reaction turnover numbers (TONs) approaching 6 × 10(6) molCO2 molcatalyst(-1) during a multiday (36 h total hours) CO2 electrolysis experiment containing multiple start/stop cycles. TONs between 1 × 10(6) and 4 × 10(6) molCO2 molcatalyst(-1) were obtained when our system was powered by consumer-grade renewable-energy sources. Daytime photovoltaic-powered CO2 conversion was demonstrated for 12 h and we mimicked low-light or nighttime operation for 24 h with a solar-rechargeable battery. This proof-of-principle study provides some of the initial performance data necessary for assessing the scalability and technical viability of electrochemical CO2 conversion technologies. Specifically, we show the following: (1) all electrochemical CO2 conversion systems will produce a net increase in CO2 emissions if they do not integrate with renewable-energy sources, (2) catalyst loading vs activity trends can be used to tune process rates and product distributions, and (3) state-of-the-art renewable-energy technologies are sufficient to power larger-scale, tonne per day CO2 conversion systems.

  7. 78 FR 53152 - Submission for OMB Review; Comment Request: Palliative Care: Conversations Matter Evaluation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-28

    ...; Comment Request: Palliative Care: Conversations Matter Evaluation SUMMARY: Under the provisions of Section... must be requested in writing. Proposed Collection: Palliative Care: Conversations Matter Evaluation... Use of Information Collection: NINR developed Palliative Care: Conversations Matter, a pediatric...

  8. Recent Advances in Solar Cell Technology

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Bailey, Sheila G.; Piszczor, Michael F., Jr.

    1996-01-01

    The advances in solar cell efficiency, radiation tolerance, and cost over the last decade are reviewed. Potential performance of thin-film solar cells in space are discussed, and the cost and the historical trends in production capability of the photovoltaics industry are considered with respect to the requirements of space power systems. Concentrator cells with conversion efficiency over 30%, and nonconcentrating solar cells with efficiency over 25% are now available, and advanced radiation-tolerant cells and lightweight, thin-film arrays are both being developed. Nonsolar applications of solar cells, including thermophotovoltaics, alpha- and betavoltaics, and laser power receivers, are also discussed.

  9. Recent Progress in Some Amorphous Materials for Supercapacitors.

    PubMed

    Li, Qing; Xu, Yuxia; Zheng, Shasha; Guo, Xiaotian; Xue, Huaiguo; Pang, Huan

    2018-05-14

    A breakthrough in technologies having "green" and sustainable energy storage conversion is urgent, and supercapacitors play a crucial role in this area of research. Owing to their unique porous structure, amorphous materials are considered one of the best active materials for high-performance supercapacitors due to their high specific capacity, excellent cycling stability, and fast charging rate. This Review summarizes the synthesis of amorphous materials (transition metal oxides, carbon-based materials, transition metal sulfides, phosphates, hydroxides, and their complexes) to highlight their electrochemical performance in supercapacitors. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. More Than One Way to Debrief: A Critical Review of Healthcare Simulation Debriefing Methods.

    PubMed

    Sawyer, Taylor; Eppich, Walter; Brett-Fleegler, Marisa; Grant, Vincent; Cheng, Adam

    2016-06-01

    Debriefing is a critical component in the process of learning through healthcare simulation. This critical review examines the timing, facilitation, conversational structures, and process elements used in healthcare simulation debriefing. Debriefing occurs either after (postevent) or during (within-event) the simulation. The debriefing conversation can be guided by either a facilitator (facilitator-guided) or the simulation participants themselves (self-guided). Postevent facilitator-guided debriefing may incorporate several conversational structures. These conversational structures break the debriefing discussion into a series of 3 or more phases to help organize the debriefing and ensure the conversation proceeds in an orderly manner. Debriefing process elements are an array of techniques to optimize reflective experience and maximize the impact of debriefing. These are divided here into the following 3 categories: essential elements, conversational techniques/educational strategies, and debriefing adjuncts. This review provides both novice and advanced simulation educators with an overview of various methods of conducting healthcare simulation debriefing. Future research will investigate which debriefing methods are best for which contexts and for whom, and also explore how lessons from simulation debriefing translate to debriefing in clinical practice.

  11. Application of nanomaterials in solar thermal energy storage

    NASA Astrophysics Data System (ADS)

    Shamshirgaran, Seyed Reza; Khalaji Assadi, Morteza; Viswanatha Sharma, Korada

    2018-06-01

    Solar thermal conversion technology harvests the sun's energy, rather than fossil fuels, to generate low-cost, low/zero-emission energy in the form of heating, cooling or electrical form for residential, commercial, and industrial sectors. The advent of nanofluids and nanocomposites or phase change materials, is a new field of study which is adapted to enhance the efficiency of solar collectors. The concepts of thermal energy storage technologies are investigated and the role of nanomaterials in energy conversion is discussed. This review revealed that although the exploitation of nanomaterials will boost the performance of solar collectors almost in all cases, this would be accompanied by certain challenges such as production cost, instability, agglomeration and erosion. Earlier studies have dealt with the enhancement of thermal conductivity and heat capacity; however, less attention has been given to the facing challenges. Moreover, no exact criteria can be found for the selection of appropriate nanomaterials and their properties for a specific application. In most research studies, the nanoparticles' material and properties have not been selected based on estimated values so that all the aspects of desired application could be considered simultaneously. The wide spread use of nanomaterials can lead to cost effective solutions as well. Therefore, it seems there should be a sense of techno-economic optimization in exploiting nanomaterials for solar thermal energy storage applications. The optimization should cover the key parameters, particularly nanoparticle type, size, loading and shape which depends on the sort of application and also dispersion technology.

  12. Application of nanomaterials in solar thermal energy storage

    NASA Astrophysics Data System (ADS)

    Shamshirgaran, Seyed Reza; Khalaji Assadi, Morteza; Viswanatha Sharma, Korada

    2017-12-01

    Solar thermal conversion technology harvests the sun's energy, rather than fossil fuels, to generate low-cost, low/zero-emission energy in the form of heating, cooling or electrical form for residential, commercial, and industrial sectors. The advent of nanofluids and nanocomposites or phase change materials, is a new field of study which is adapted to enhance the efficiency of solar collectors. The concepts of thermal energy storage technologies are investigated and the role of nanomaterials in energy conversion is discussed. This review revealed that although the exploitation of nanomaterials will boost the performance of solar collectors almost in all cases, this would be accompanied by certain challenges such as production cost, instability, agglomeration and erosion. Earlier studies have dealt with the enhancement of thermal conductivity and heat capacity; however, less attention has been given to the facing challenges. Moreover, no exact criteria can be found for the selection of appropriate nanomaterials and their properties for a specific application. In most research studies, the nanoparticles' material and properties have not been selected based on estimated values so that all the aspects of desired application could be considered simultaneously. The wide spread use of nanomaterials can lead to cost effective solutions as well. Therefore, it seems there should be a sense of techno-economic optimization in exploiting nanomaterials for solar thermal energy storage applications. The optimization should cover the key parameters, particularly nanoparticle type, size, loading and shape which depends on the sort of application and also dispersion technology.

  13. 25th anniversary article: organic photovoltaic modules and biopolymer supercapacitors for supply of renewable electricity: a perspective from Africa.

    PubMed

    Inganäs, Olle; Admassie, Shimelis

    2014-02-12

    The role of materials in civilization is well demonstrated over the centuries and millennia, as materials have come to serve as the classifier of stages of civilization. With the advent of materials science, this relation has become even more pronounced. The pivotal role of advanced materials in industrial economies has not yet been matched by the influence of advanced materials during the transition from agricultural to modern societies. The role of advanced materials in poverty eradication can be very large, in particular if new trajectories of social and economic development become possible. This is the topic of this essay, different in format from the traditional scientific review, as we try to encompass not only two infant technologies of solar energy conversion and storage by means of organic materials, but also the social conditions for introduction of the technologies. The development of organic-based photovoltaic energy conversion has been rapid, and promises to deliver new alternatives to well-established silicon photovoltaics. Our recent development of organic biopolymer composite electrodes opens avenues towards the use of renewable materials in the construction of wooden batteries or supercapacitors for charge storage. Combining these new elements may give different conditions for introduction of energy technology in areas now lacking electrical grids, but having sufficient solar energy inputs. These areas are found close to the equator, and include some of the poorest regions on earth. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. 2009 Biochemical Conversion Platform Review Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferrell, John

    2009-12-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the U.S. Department of Energy Biomass Program’s Biochemical Conversion platform review meeting, held on April 14-16, 2009, at the Sheraton Denver Downtown, Denver, Colorado.

  15. Conversational Russian in Russkij Jazyk Za Rubezom

    ERIC Educational Resources Information Center

    Morgan, Thomas W.

    1976-01-01

    Reviews materials relating to Russian speech which have appeared in the journal "Russkij Jazyk Za Rubezom" since its first issue in 1967. The articles reviewed are divided into three categories: the stylistics of Russian speech, specific conversation expressions, and methodology. (CLK)

  16. Waste-to-Energy: Hawaii and Guam Energy Improvement Technology Demonstration Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, J.; Gelman, R.; Tomberlin, G.

    2014-03-01

    The National Renewable Energy Laboratory (NREL) and the U.S. Navy have worked together to demonstrate new or leading-edge commercial energy technologies whose deployment will support the U.S. Department of Defense (DOD) in meeting its energy efficiency and renewable energy goals while enhancing installation energy security. This is consistent with the 2010 Quadrennial Defense Review report1 that encourages the use of 'military installations as a test bed to demonstrate and create a market for innovative energy efficiency and renewable energy technologies coming out of the private sector and DOD and Department of Energy laboratories,' as well as the July 2010 memorandummore » of understanding between DOD and the U.S. Department of Energy (DOE) that documents the intent to 'maximize DOD access to DOE technical expertise and assistance through cooperation in the deployment and pilot testing of emerging energy technologies.' As part of this joint initiative, a promising waste-to-energy (WTE) technology was selected for demonstration at the Hickam Commissary aboard the Joint Base Pearl Harbor-Hickam (JBPHH), Hawaii. The WTE technology chosen is called high-energy densification waste-to-energy conversion (HEDWEC). HEDWEC technology is the result of significant U.S. Army investment in the development of WTE technology for forward operating bases.« less

  17. 76 FR 13504 - Conversions of Insured Credit Unions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-14

    ... Conversions of Insured Credit Unions AGENCY: National Credit Union Administration (NCUA). ACTION: Final rule... phrase ``Regional Director'' in NCUA's rule on credit union to mutual savings bank conversions. For... for the review and approval of certain types of credit union conversions from the Regional Directors...

  18. Converting lignocellulosic solid waste into ethanol for the State of Washington: an investigation of treatment technologies and environmental impacts.

    PubMed

    Schmitt, Elliott; Bura, Renata; Gustafson, Rick; Cooper, Joyce; Vajzovic, Azra

    2012-01-01

    There is little research literature on the conversion of lignocellulosic rich waste streams to ethanol, and even fewer have investigated both the technical aspects and environmental impacts together. This study assessed technical and environmental challenges of converting three lignocellulosic waste streams to ethanol: municipal solid waste (MSW), low grade mixed waste paper (MWP), and organic yard waste (YW). Experimental results showed high conversion yields for all three streams using suitable conversion methods. Environmental impacts are highly dependent on conversion technology, and process conditions used. Life cycle assessment results showed that both chemicals production and waste collection are important factors to be included within a waste-to-ethanol study. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jae Sung; Lee, Shinbuhm; Noh, Tae Won

    Here we report that resistive switching (RS) phenomena are reversible changes in the metastable resistance state induced by external electric fields. After discovery ~50 years ago, RS phenomena have attracted great attention due to their potential application in next-generation electrical devices. Considerable research has been performed to understand the physical mechanisms of RS and explore the feasibility and limits of such devices. There have also been several reviews on RS that attempt to explain the microscopic origins of how regions that were originally insulators can change into conductors. However, little attention has been paid to the most important factor inmore » determining resistance: how conducting local regions are interconnected. Here, we provide an overview of the underlying physics behind connectivity changes in highly conductive regions under an electric field. We first classify RS phenomena according to their characteristic current–voltage curves: unipolar, bipolar, and threshold switchings. Second, we outline the microscopic origins of RS in oxides, focusing on the roles of oxygen vacancies: the effect of concentration, the mechanisms of channel formation and rupture, and the driving forces of oxygen vacancies. Third, we review RS studies from the perspective of statistical physics to understand connectivity change in RS phenomena. We discuss percolation model approaches and the theory for the scaling behaviors of numerous transport properties observed in RS. Fourth, we review various switching-type conversion phenomena in RS: bipolar-unipolar, memory-threshold, figure-of-eight, and counter-figure-of-eight conversions. Finally, we review several related technological issues, such as improvement in high resistance fluctuations, sneak-path problems, and multilevel switching problems.« less

  20. A Review of Microwave-Assisted Reactions for Biodiesel Production

    PubMed Central

    Nomanbhay, Saifuddin; Ong, Mei Yin

    2017-01-01

    The conversion of biomass into chemicals and biofuels is an active research area as trends move to replace fossil fuels with renewable resources due to society’s increased concern towards sustainability. In this context, microwave processing has emerged as a tool in organic synthesis and plays an important role in developing a more sustainable world. Integration of processing methods with microwave irradiation has resulted in a great reduction in the time required for many processes, while the reaction efficiencies have been increased markedly. Microwave processing produces a higher yield with a cleaner profile in comparison to other methods. The microwave processing is reported to be a better heating method than the conventional methods due to its unique thermal and non-thermal effects. This paper provides an insight into the theoretical aspects of microwave irradiation practices and highlights the importance of microwave processing. The potential of the microwave technology to accomplish superior outcomes over the conventional methods in biodiesel production is presented. A green process for biodiesel production using a non-catalytic method is still new and very costly because of the supercritical condition requirement. Hence, non-catalytic biodiesel conversion under ambient pressure using microwave technology must be developed, as the energy utilization for microwave-based biodiesel synthesis is reported to be lower and cost-effective. PMID:28952536

  1. A Review of Microwave-Assisted Reactions for Biodiesel Production.

    PubMed

    Nomanbhay, Saifuddin; Ong, Mei Yin

    2017-06-15

    The conversion of biomass into chemicals and biofuels is an active research area as trends move to replace fossil fuels with renewable resources due to society's increased concern towards sustainability. In this context, microwave processing has emerged as a tool in organic synthesis and plays an important role in developing a more sustainable world. Integration of processing methods with microwave irradiation has resulted in a great reduction in the time required for many processes, while the reaction efficiencies have been increased markedly. Microwave processing produces a higher yield with a cleaner profile in comparison to other methods. The microwave processing is reported to be a better heating method than the conventional methods due to its unique thermal and non-thermal effects. This paper provides an insight into the theoretical aspects of microwave irradiation practices and highlights the importance of microwave processing. The potential of the microwave technology to accomplish superior outcomes over the conventional methods in biodiesel production is presented. A green process for biodiesel production using a non-catalytic method is still new and very costly because of the supercritical condition requirement. Hence, non-catalytic biodiesel conversion under ambient pressure using microwave technology must be developed, as the energy utilization for microwave-based biodiesel synthesis is reported to be lower and cost-effective.

  2. Maturation of biomass-to-biofuels conversion technology pathways for rapid expansion of biofuels production: A system dynamics perspective

    DOE PAGES

    Vimmerstedt, Laura J.; Bush, Brian W.; Hsu, Dave D.; ...

    2014-08-12

    The Biomass Scenario Model (BSM) is a system-dynamics simulation model intended to explore the potential for rapid expansion of the biofuels industry. The model is not predictive — it uses scenario assumptions based on various types of data to simulate industry development, emphasizing how incentives and technological learning-by-doing might accelerate industry growth. The BSM simulates major sectors of the biofuels industry, including feedstock production and logistics, conversion, distribution, and end uses, as well as interactions among sectors. The model represents conversion of biomass to biofuels as a set of technology pathways, each of which has allowable feedstocks, capital and operatingmore » costs, allowable products, and other defined characteristics. This study and the BSM address bioenergy modeling analytic needs that were identified in recent literature reviews. Simulations indicate that investments are most effective at expanding biofuels production through learning-by-doing when they are coordinated with respect to timing, pathway, and target sector within the biofuels industry. Effectiveness metrics include timing and magnitude of increased production, incentive cost and cost effectiveness, and avoidance of windfall profits. Investment costs and optimal investment targets have inherent risks and uncertainties, such as the relative value of investment in more-mature versus less mature pathways. These can be explored through scenarios, but cannot be precisely predicted. Dynamic competition, including competition for cellulosic feedstocks and ethanol market shares, intensifies during times of rapid growth. Ethanol production increases rapidly, even up to Renewable Fuel Standards-targeted volumes of biofuel, in simulations that allow higher blending proportions of ethanol in gasoline-fueled vehicles. Published 2014. This document is a U.S. Government work and is in the public domain in the USA. Biofuels, Bioproducts, Biorefining published by John Wiley & Sons, Ltd on behalf of Society of Chemical Industry.« less

  3. Biological Conversion of Sugars to Hydrocarbons Technology Pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, R.; Biddy, M.; Tan, E.

    2013-03-01

    This technology pathway case investigates the biological conversion of biomass-derived sugars to hydrocarbon biofuels, utilizing data from recent literature references and information consistent with recent pilot-scale demonstrations at NREL. Technical barriers and key research needs have been identified that should be pursued for the pathway to become competitive with petroleum-derived gasoline-, diesel-, and jet-range hydrocarbon blendstocks.

  4. Safety assessment of the post-harvest treatment of button mushrooms (Agaricus bisporus) using ultraviolet light.

    PubMed

    Simon, R R; Borzelleca, J F; DeLuca, H F; Weaver, C M

    2013-06-01

    Wild mushrooms are an excellent source of vitamin D. The presence of vitamin D in mushrooms is attributed to sunlight exposure, which catalyzes the conversion of fungal ergosterol to vitamin D2 via a series of photochemical/thermal reactions. Mushroom growers now incorporate UV light treatments during processing to produce mushrooms with levels of vitamin D that compare to those in wild mushrooms. Presented herein is a comprehensive review of information relevant to the safety of introducing vitamin D mushrooms, produced using UV light technologies, to the food supply. Historical reference to the use of UV light for production of vitamin D is discussed, and studies evaluating the nutritional value and safety of vitamin D mushrooms are reviewed. Traditional safety evaluation practices for food additives are not applicable to whole foods; therefore, the application of substantial equivalence and history-of-safe-use is presented. It was demonstrated that vitamin D in mushrooms, produced using UV light technologies, are equivalent to vitamin D in mushrooms exposed to sunlight, and that UV light has a long-history of safe use for production of vitamin D in food. Vitamin D mushrooms produced using UV light technologies were therefore considered safe and suitable for introduction to the marketplace. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Why All the Chatter about #EdChat?

    ERIC Educational Resources Information Center

    Herbert, Marion

    2012-01-01

    Although arguably one of the most popular education conversations to follow on Twitter, #edchat is hardly alone. Hashtag conversations have been popping up over the last few years, and many have caught on for specialized conversations on elementary schools, technology, professional development, mobile learning, principals and administrators, among…

  6. Methods of downstream processing for the production of biodiesel from microalgae.

    PubMed

    Kim, Jungmin; Yoo, Gursong; Lee, Hansol; Lim, Juntaek; Kim, Kyochan; Kim, Chul Woong; Park, Min S; Yang, Ji-Won

    2013-11-01

    Despite receiving increasing attention during the last few decades, the production of microalgal biofuels is not yet sufficiently cost-effective to compete with that of petroleum-based conventional fuels. Among the steps required for the production of microalgal biofuels, the harvest of the microalgal biomass and the extraction of lipids from microalgae are two of the most expensive. In this review article, we surveyed a substantial amount of previous work in microalgal harvesting and lipid extraction to highlight recent progress in these areas. We also discuss new developments in the biodiesel conversion technology due to the importance of the connectivity of this step with the lipid extraction process. Furthermore, we propose possible future directions for technological or process improvements that will directly affect the final production costs of microalgal biomass-based biofuels. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Conversational Agents in E-Learning

    NASA Astrophysics Data System (ADS)

    Kerry, Alice; Ellis, Richard; Bull, Susan

    This paper discusses the use of natural language or 'conversational' agents in e-learning environments. We describe and contrast the various applications of conversational agent technology represented in the e-learning literature, including tutors, learning companions, language practice and systems to encourage reflection. We offer two more detailed examples of conversational agents, one which provides learning support, and the other support for self-assessment. Issues and challenges for developers of conversational agent systems for e-learning are identified and discussed.

  8. Corner Store Inventories, Purchases, and Strategies for Intervention: A Review of the Literature.

    PubMed

    Langellier, Brent A; Garza, Jeremiah R; Prelip, Michael L; Glik, Deborah; Brookmeyer, Ron; Ortega, Alexander N

    2013-01-01

    An increasingly popular strategy to improving the food retail environment and promoting healthy eating in low-income and minority communities is the corner store conversion. This approach involves partnering with small 'corner' food stores to expand access to high-quality fruits, vegetables, and other healthy foods. We conducted a structured review of the literature to assess inventories and sales in corner stores, as well as to identify intervention strategies employed by corner store conversions. Our review returned eight descriptive studies that discussed corner store inventories and sales, as well as ten intervention studies discussing six unique corner store conversion interventions in the United States, the Marshall Islands, and Canada. Common intervention strategies included: 1) partnering with an existing store, 2) stocking healthy foods, and 3) social marketing and nutrition education. We summarize each strategy and review the effectiveness of overall corner store conversions at changing peoples' food purchasing, preparation, and consumption behaviors. Consumption of fresh, healthy, affordable foods could be improved by supporting existing retailers to expand their selection of healthy foods and promoting healthy eating at the neighborhood level. Additional corner store conversions should be conducted to determine the effectiveness and importance of specific intervention strategies.

  9. Conversion Preliminary Safety Analysis Report for the NIST Research Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diamond, D. J.; Baek, J. S.; Hanson, A. L.

    The NIST Center for Neutron Research (NCNR) is a reactor-laboratory complex providing the National Institute of Standards and Technology (NIST) and the nation with a world-class facility for the performance of neutron-based research. The heart of this facility is the NIST research reactor (aka NBSR); a heavy water moderated and cooled reactor operating at 20 MW. It is fueled with high-enriched uranium (HEU) fuel elements. A Global Threat Reduction Initiative (GTRI) program is underway to convert the reactor to low-enriched uranium (LEU) fuel. This program includes the qualification of the proposed fuel, uranium and molybdenum alloy foil clad in anmore » aluminum alloy, and the development of the fabrication techniques. This report is a preliminary version of the Safety Analysis Report (SAR) that would be submitted to the U.S. Nuclear Regulatory Commission (NRC) for approval prior to conversion. The report follows the recommended format and content from the NRC codified in NUREG-1537, “Guidelines for Preparing and Reviewing Applications for the Licensing of Non-power Reactors,” Chapter 18, “Highly Enriched to Low-Enriched Uranium Conversions.” The emphasis in any conversion SAR is to explain the differences between the LEU and HEU cores and to show the acceptability of the new design; there is no need to repeat information regarding the current reactor that will not change upon conversion. Hence, as seen in the report, the bulk of the SAR is devoted to Chapter 4, Reactor Description, and Chapter 13, Safety Analysis.« less

  10. Brayton Power Conversion System Study to Advance Technology Readiness for Nuclear Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Allen, Bog; Delventhal, Rex; Frye, Patrick

    2004-01-01

    Recently, there has been significant interest within the aerospace community to develop space based nuclear power conversion technologies especially for exploring the outer planets of our solar system where the solar energy density is very low. To investigate these technologies NASA awarded several contracts under Project Prometheus, the Nuclear Systems Program. The studies described in this paper were performed under one of those contracts, which was to investigate the use of a nuclear power conversion system based on the closed Brayton cycle (CBC).The investigation performed included BPCS (Brayton Power Conversion System) trade studies to minimize system weight and radiator area and advance the state of the art of BPCS technology. The primary requirements for studies were a power level of 100 kWe (to the PPU), a low overall power system mass and a lifetime of 15 years (10 years full power). For the radiation environment, the system was to be capable of operation in the generic space environment and withstand the extreme environments surrounding Jupiter. The studies defined a BPCS design traceable to NEP (Nuclear Electric Propulsion) requirements and suitable for future missions with a sound technology plan for technology readiness level (TRL) advancement identified. The studies assumed a turbine inlet temperature approx. 100 C above the current the state of the art capabilities with materials issues and related development tasks identified. Analyses and evaluations of six different HRS (heat rejection system) designs and three primary power management and distribution (PMAD) configurations will be discussed in the paper.

  11. Fiber optic position sensors

    NASA Astrophysics Data System (ADS)

    Miller, Glen E.

    1993-02-01

    About fifteen years ago, it became pretty clear that a combination of fiber optic and photonic technologies offered an opportunity to use light to perform almost any of the functions traditionally performed with wire and electronics--as well as to gain a number of unique advantages in the process. Sensors were quickly recognized as prime candidates for conversion to optics because the new technologies promised to eliminate noise susceptibility, a problem that has always plagued instrumentation engineers. As a bonus, the new technology also appeared to make the long-sought true digital sensors a practical reality. The benefits appeared so attractive that nearly all major suppliers and users of sensors began some kind of program to get on the bandwagon. The ensuing worldwide explosion of activity resulted in literally thousands of technical papers and patents, but a discouragingly small number of practical off- the-shelf devices. This paper will review the field of fiber optic position sensors, will categorize the various types, will discuss their relative advantages and disadvantages, and will outline the problem areas which still remain to be solved before the technology is likely to find the predicted widespread use.

  12. Semi-transparent solar cells

    NASA Astrophysics Data System (ADS)

    Sun, J.; Jasieniak, J. J.

    2017-03-01

    Semi-transparent solar cells are a type of technology that combines the benefits of visible light transparency and light-to-electricity conversion. One of the biggest opportunities for such technologies is in their integration as windows and skylights within energy-sustainable buildings. Currently, such building integrated photovoltaics (BIPV) are dominated by crystalline silicon based modules; however, the opaque nature of silicon creates a unique opportunity for the adoption of emerging photovoltaic candidates that can be made truly semi-transparent. These include: amorphous silicon-, kesterite-, chalcopyrite-, CdTe-, dye-sensitized-, organic- and perovskite- based systems. For the most part, amorphous silicon has been the workhorse in the semi-transparent solar cell field owing to its established, low-temperature fabrication processes. Excitement around alternative classes, particularly perovskites and the inorganic candidates, has recently arisen because of the major efficiency gains exhibited by these technologies. Importantly, each of these presents unique opportunities and challenges within the context of BIPV. This topic review provides an overview into the broader benefits of semi-transparent solar cells as building-integrated features, as well as providing the current development status into all of the major types of semi-transparent solar cells technologies.

  13. Is physiotherapy effective in the management of child and adolescent conversion disorder? A systematic review.

    PubMed

    FitzGerald, Tara L; Southby, Alesha K; Haines, Terrence P; Hough, Janet P; Skinner, Elizabeth H

    2015-02-01

    Child and adolescent conversion disorder has the potential to impart significant burden on health-care services and affect quality of life. Clinically, physiotherapists are involved in conversion disorder management; however, no systematic reviews have examined physiotherapy effectiveness in its management. The aim of this review is to identify the efficacy of physiotherapy management of child and adolescent conversion disorder. A search of multiple databases (Medline, CINAHL, Embase, PsychINFO, PEDro and the Cochrane Library) was completed along with manual searching of relevant reference lists to identify articles including children 0-18 years with a diagnosis of conversion disorder who received physical management. Two independent reviewers screened titles and abstracts using criteria. Data were extracted regarding study characteristics, functional outcome measures, length of stay, physiotherapy service duration and resolution of conversion symptoms. Methodological quality was assessed using a tool designed for observational studies. Twelve observational studies were included. No functional outcome measures were used to assess the effectiveness of the treatment protocols in the case studies. Resolution of symptoms occurred in all but two cases, with conversion symptoms still present at 11 months and at 2 years. Length of stay varied from 3 days to 16 weeks, with similar variation evident in length of physiotherapy service provision (2.5 weeks to 16 weeks). There was limited and poor quality evidence to establish the efficacy of physiotherapy management of child and adolescent conversion disorders. More rigorous study designs with consistent use of reliable, valid and sensitive functional outcome measures are needed in this area. © 2014 The Authors. Journal of Paediatrics and Child Health © 2014 Paediatrics and Child Health Division (Royal Australasian College of Physicians).

  14. Recovery of Navy distillate fuel from reclaimed product. Volume II. Literature review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brinkman, D.W.; Whisman, M.L.

    In an effort to assist the Navy to better utilize its waste hydrocarbons, NIPER, with support from the US Department of Energy, is conducting research designed to ultimately develop a practical technique for converting Reclaimed Product (RP) into specification Naval Distillate Fuel (F-76). This first phase of the project was focused on reviewing the literature and available information from equipment manufacturers. The literature survey has been carefully culled for methodology applicable to the conversion of RP into diesel fuel suitable for Navy use. Based upon the results of this study, a second phase has been developed and outlined in whichmore » experiments will be performed to determine the most practical recycling technologies. It is realized that the final selection of one particular technology may be site-specific due to vast differences in RP volume and available facilities. A final phase, if funded, would involve full-scale testing of one of the recommended techniques at a refueling depot. The Phase I investigations are published in two volumes. Volume 1, Technical Discussion, includes the narrative and Appendices I and II. Appendix III, a detailed Literature Review, includes both a narrative portion and an annotated bibliography containing about 800 references and abstracts. This appendix, because of its volume, has been published separately as Volume 2.« less

  15. 25th anniversary article: a decade of organic/polymeric photovoltaic research.

    PubMed

    Dou, Letian; You, Jingbi; Hong, Ziruo; Xu, Zheng; Li, Gang; Street, Robert A; Yang, Yang

    2013-12-10

    Organic photovoltaic (OPV) technology has been developed and improved from a fancy concept with less than 1% power conversion efficiency (PCE) to over 10% PCE, particularly through the efforts in the last decade. The significant progress is the result of multidisciplinary research ranging from chemistry, material science, physics, and engineering. These efforts include the design and synthesis of novel compounds, understanding and controlling the film morphology, elucidating the device mechanisms, developing new device architectures, and improving large-scale manufacture. All of these achievements catalyzed the rapid growth of the OPV technology. This review article takes a retrospective look at the research and development of OPV, and focuses on recent advances of solution-processed materials and devices during the last decade, particular the polymer version of the materials and devices. The work in this field is exciting and OPV technology is a promising candidate for future thin film solar cells. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. NASA technology applications team: Applications of aerospace technology

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Two critical aspects of the Applications Engineering Program were especially successful: commercializing products of Application Projects; and leveraging NASA funds for projects by developing cofunding from industry and other agencies. Results are presented in the following areas: the excimer laser was commercialized for clearing plaque in the arteries of patients with coronary artery disease; the ultrasound burn depth analysis technology is to be licensed and commercialized; a phased commercialization plan was submitted to NASA for the intracranial pressure monitor; the Flexible Agricultural Robotics Manipulator System (FARMS) is making progress in the development of sensors and a customized end effector for a roboticized greenhouse operation; a dual robot are controller was improved; a multisensor urodynamic pressure catherer was successful in clinical tests; commercial applications were examined for diamond like carbon coatings; further work was done on the multichannel flow cytometer; progress on the liquid airpack for fire fighters; a wind energy conversion device was tested in a low speed wind tunnel; and the Space Shuttle Thermal Protection System was reviewed.

  17. Material design and engineering of next-generation flow-battery technologies

    NASA Astrophysics Data System (ADS)

    Park, Minjoon; Ryu, Jaechan; Wang, Wei; Cho, Jaephil

    2017-01-01

    Spatial separation of the electrolyte and electrode is the main characteristic of flow-battery technologies, which liberates them from the constraints of overall energy content and the energy/power ratio. The concept of a flowing electrolyte not only presents a cost-effective approach for large-scale energy storage, but has also recently been used to develop a wide range of new hybrid energy storage and conversion systems. The advent of flow-based lithium-ion, organic redox-active materials, metal-air cells and photoelectrochemical batteries promises new opportunities for advanced electrical energy-storage technologies. In this Review, we present a critical overview of recent progress in conventional aqueous redox-flow batteries and next-generation flow batteries, highlighting the latest innovative alternative materials. We outline their technical feasibility for use in long-term and large-scale electrical energy-storage devices, as well as the limitations that need to be overcome, providing our view of promising future research directions in the field of redox-flow batteries.

  18. Hybrid fuel cell/diesel generation total energy system, part 2

    NASA Astrophysics Data System (ADS)

    Blazek, C. F.

    1982-11-01

    Meeting the Goldstone Deep Space Communications Complex (DGSCC) electrical and thermal requirements with the existing system was compared with using fuel cells. Fuel cell technology selection was based on a 1985 time frame for installation. The most cost-effective fuel feedstock for fuel cell application was identified. Fuels considered included diesel oil, natural gas, methanol and coal. These fuel feedstocks were considered not only on the cost and efficiency of the fuel conversion process, but also on complexity and integration of the fuel processor on system operation and thermal energy availability. After a review of fuel processor technology, catalytic steam reformer technology was selected based on the ease of integration and the economics of hydrogen production. The phosphoric acid fuel cell was selected for application at the GDSCC due to its commercial readiness for near term application. Fuel cell systems were analyzed for both natural gas and methanol feedstock. The subsequent economic analysis indicated that a natural gas fueled system was the most cost effective of the cases analyzed.

  19. Hybrid fuel cell/diesel generation total energy system, part 2

    NASA Technical Reports Server (NTRS)

    Blazek, C. F.

    1982-01-01

    Meeting the Goldstone Deep Space Communications Complex (DGSCC) electrical and thermal requirements with the existing system was compared with using fuel cells. Fuel cell technology selection was based on a 1985 time frame for installation. The most cost-effective fuel feedstock for fuel cell application was identified. Fuels considered included diesel oil, natural gas, methanol and coal. These fuel feedstocks were considered not only on the cost and efficiency of the fuel conversion process, but also on complexity and integration of the fuel processor on system operation and thermal energy availability. After a review of fuel processor technology, catalytic steam reformer technology was selected based on the ease of integration and the economics of hydrogen production. The phosphoric acid fuel cell was selected for application at the GDSCC due to its commercial readiness for near term application. Fuel cell systems were analyzed for both natural gas and methanol feedstock. The subsequent economic analysis indicated that a natural gas fueled system was the most cost effective of the cases analyzed.

  20. 75 FR 10560 - Application for Conversion From: (a) OTS-Regulated, State-Chartered Savings Association to...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-08

    ... DEPARTMENT OF THE TREASURY Office of Thrift Supervision Application for Conversion From: (a) OTS... Proposal: Application for Conversion from: (1) OTS- Regulated, State-Chartered Savings Association to... reviewed to determine whether it meets applicable eligibility requirements for conversion and complies with...

  1. [Initial experience in robot-assisted colorectal surgery in Mexico].

    PubMed

    Villanueva-Sáenz, Eduardo; Ramírez-Ramírez, Moisés Marino; Zubieta-O'Farrill, Gregorio; García-Hernández, Luis

    Colorectal surgery has advanced notably since the introduction of the mechanical suture and the minimally invasive approach. Robotic surgery began in order to satisfy the needs of the patient-doctor relationship, and migrated to the area of colorectal surgery. An initial report is presented on the experience of managing colorectal disease using robot-assisted surgery, as well as an analysis of the current role of this platform. A retrospective study was conducted in order to review five patients with colorectal disease operated using a robot-assisted technique over one year in the initial phase of the learning curve. Gender, age, diagnosis and surgical indication, surgery performed, surgical time, conversion, bleeding, post-operative complications, and hospital stay, were analysed and described. A literature review was performed on the role of robotic assisted surgery in colorectal disease and cancer. The study included 5 patients, 3 men and 2 women, with a mean age of 62.2 years. Two of them were low anterior resections with colorectal primary anastomoses, one of them extended with a loop protection ileostomy, a Frykman-Goldberg procedure, and two left hemicolectomies with primary anastomoses. The mean operating time was 6hours and robot-assisted 4hours 20minutes. There were no conversions and the mean hospital stay was 5 days. This technology is currently being used worldwide in different surgical centres because of its advantages that have been clinically demonstrated by various studies. We report the first colorectal surgical cases in Mexico, with promising results. There is enough evidence to support and recommend the use of this technology as a viable and safe option. Copyright © 2016 Academia Mexicana de Cirugía A.C. Publicado por Masson Doyma México S.A. All rights reserved.

  2. Fundamental Understanding of the Interaction of Acid Gases with CeO 2 : From Surface Science to Practical Catalysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tumuluri, Uma; Rother, Gernot; Wu, Zili

    Acid gases including CO 2, SO 2, and NO x are ubiquitous in large-scale energy applications including heterogeneous catalysis. The adverse environmental and health effects of these acid gases have resulted in high interest in the research and development of technologies to remove or convert these acid gases. The main challenge for the development of these technologies is to develop catalysts that are highly efficient, stable, and cost-effective, and many catalysts have been reported in this regard. CeO 2 and CeO 2-based catalysts have gained prominence in the removal and conversion of CO 2, SO 2, and NO x becausemore » of their structural robustness and redox and acid–base properties. In this article, we provide a brief overview of the application of CeO 2 and CeO 2-based catalysts for the removal of CO 2, SO 2, and NO x gases with an emphasis on the fundamental understanding of the interactions of these acid gases with CeO 2. The studies summarized in this review range from surface science using single crystals and thin films with precise crystallographic planes to practical catalysis applications of nanocrystalline and polycrystalline CeO 2 materials with defects and dopants. After an introduction to the properties of CeO 2 surfaces, their catalytic properties for conversions of different acid gases are reviewed and discussed. Lastly, we find that the surface atomic structure, oxygen vacancies, and surface acid–base properties of CeO 2 play vital roles in the surface chemistry and structure evolution during the interactions of acid gases with CeO 2 and CeO 2-based catalysts.« less

  3. Fundamental Understanding of the Interaction of Acid Gases with CeO 2 : From Surface Science to Practical Catalysis

    DOE PAGES

    Tumuluri, Uma; Rother, Gernot; Wu, Zili

    2016-03-21

    Acid gases including CO 2, SO 2, and NO x are ubiquitous in large-scale energy applications including heterogeneous catalysis. The adverse environmental and health effects of these acid gases have resulted in high interest in the research and development of technologies to remove or convert these acid gases. The main challenge for the development of these technologies is to develop catalysts that are highly efficient, stable, and cost-effective, and many catalysts have been reported in this regard. CeO 2 and CeO 2-based catalysts have gained prominence in the removal and conversion of CO 2, SO 2, and NO x becausemore » of their structural robustness and redox and acid–base properties. In this article, we provide a brief overview of the application of CeO 2 and CeO 2-based catalysts for the removal of CO 2, SO 2, and NO x gases with an emphasis on the fundamental understanding of the interactions of these acid gases with CeO 2. The studies summarized in this review range from surface science using single crystals and thin films with precise crystallographic planes to practical catalysis applications of nanocrystalline and polycrystalline CeO 2 materials with defects and dopants. After an introduction to the properties of CeO 2 surfaces, their catalytic properties for conversions of different acid gases are reviewed and discussed. Lastly, we find that the surface atomic structure, oxygen vacancies, and surface acid–base properties of CeO 2 play vital roles in the surface chemistry and structure evolution during the interactions of acid gases with CeO 2 and CeO 2-based catalysts.« less

  4. A review on energy harvesting approaches for renewable energies from ambient vibrations and acoustic waves using piezoelectricity

    NASA Astrophysics Data System (ADS)

    Ahmed, Riaz; Mir, Fariha; Banerjee, Sourav

    2017-08-01

    The principal objective of this article is to categorically review and compare the state of the art vibration based energy harvesting approaches. To evaluate the contemporary methodologies with respect to their physics, average power output and operational frequencies, systematically divided and easy readable tables are presented followed by the description of the energy harvesting methods. Energy harvesting is the process of obtaining electrical energy from the surrounding vibratory mechanical systems through an energy conversion method using smart structures, like, piezoelectric, electrostatic materials. Recent advancements in low power electronic gadgets, micro electro mechanical systems, and wireless sensors have significantly increased local power demand. In order to circumvent the energy demand; to allow limitless power supply, and to avoid chemical waste from conventional batteries, low power local energy harvesters are proposed for harvesting energy from different ambient energy sources. Piezoelectric materials have received tremendous interest in energy harvesting technology due to its unique ability to capitalize the ambient vibrations to generate electric potential. Their crystalline configuration allows the material to convert mechanical strain energy into electrical potential, and vice versa. This article discusses the various approaches in vibration based energy scavenging where piezoelectric materials are employed as the energy conversion medium.

  5. Alkali metal thermal to electric conversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sievers, R.K.; Ivanenok, J.F. III; Hunt, T.K.

    1995-10-01

    With potential efficiencies of up to 40%, AMTEC technology offers reliability and fuel flexibility for aerospace and ground power applications. Alkali Metal Thermal to Electric Conversion (AMTEC), a direct power-conversion technology, is emerging from the laboratory for use in a number of applications that require lightweight, long-running, efficient power systems. AMTEC is compatible with many heat and fuel sources, and it offers the reliability of direct (that is, no moving parts) thermal to electric conversion. These features make it an attractive technology for small spacecraft used in deep-space missions and for ground power applications, such as self-powered furnaces and themore » generators used in recreational vehicles. Researchers at Ford Scientific Laboratories, in Dearborn, Michigan, first conceived AMTEC technology in 1968 when they identified and patented a converter known as the sodium heat engine. This heat engine was based on the unique properties of {beta}-alumina solid electrolyte (BASE), a ceramic material that is an excellent sodium ion conductor but a poor electronic conductor. BASE was used to form a structural barrier across which a sodium concentration gradient could be produced from thermal energy. The engine provided a way to isothermally expand sodium through the BASE concentration gradient without moving mechanical components. Measured power density and calculated peak efficiencies were impressive, which led to funding from the Department of Energy for important material technology development.« less

  6. Robotic surgery for colorectal cancer: systematic review of the literature.

    PubMed

    Papanikolaou, Ioannis G

    2014-12-01

    Surgical practice has been changed since the introduction of robotic techniques and robotic colorectal surgery is an emerging field. Innovative robotic technologies have helped surgeons overcome many technical difficulties of conventional laparoscopic surgery. Herein, we review the clinical studies regarding the application of surgical robots in resections for colorectal cancer. A systematic review of the literature was conducted for articles published up to September 9, 2012, using the MEDLINE database. The keywords that were used in various combinations were: "surgical robotics," "robotic surgery," "computer-assisted surgery," "colectomy," "sigmoid resection," "sigmoidectomy," and "rectal resection." Fifty-nine articles reporting on robot-assisted resections of colon and/or rectum were identified and 41 studies were finally included in the analysis. A total of 1635 colorectal procedures were performed: 254 right colectomies, 185 left colectomies/sigmoid resections, 969 anterior resections, 182 abdominoperineal or intersphincteric resections, 34 colectomies (without being specified as right or left), and 11 total/subtotal colectomies. In general, blood loss, conversion rates, and complications were low but the operative time was longer than the open procedures, whereas the duration of hospitalization was shorter. The number of harvested lymph nodes was also quite satisfactory. Robotic colorectal operations provide favorable results, with acceptable operative times and low conversion rates and morbidity. Surgical robots may provide additional benefits treating challenging pathologies, such as rectal cancer. Further clinical studies and long-term follow-up are required to better evaluate the outcomes of robotic colorectal surgery.

  7. Technological advances in CO2 conversion electro-biorefinery: A step toward commercialization.

    PubMed

    ElMekawy, Ahmed; Hegab, Hanaa M; Mohanakrishna, Gunda; Elbaz, Ashraf F; Bulut, Metin; Pant, Deepak

    2016-09-01

    The global atmospheric warming due to increased emissions of carbon dioxide (CO2) has attracted great attention in the last two decades. Although different CO2 capture and storage platforms have been proposed, the utilization of captured CO2 from industrial plants is progressively prevalent strategy due to concerns about the safety of terrestrial and aquatic CO2 storage. Two utilization forms were proposed, direct utilization of CO2 and conversion of CO2 to chemicals and energy products. The latter strategy includes the bioelectrochemical techniques in which electricity can be used as an energy source for the microbial catalytic production of fuels and other organic products from CO2. This approach is a potential technique in which CO2 emissions are not only reduced, but it also produce more value-added products. This review article highlights the different methodologies for the bioelectrochemical utilization of CO2, with distinctive focus on the potential opportunities for the commercialization of these techniques. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Strategies for Efficient Charge Separation and Transfer in Artificial Photosynthesis of Solar Fuels.

    PubMed

    Xu, Yuxing; Li, Ailong; Yao, Tingting; Ma, Changtong; Zhang, Xianwen; Shah, Jafar Hussain; Han, Hongxian

    2017-11-23

    Converting sunlight to solar fuels by artificial photosynthesis is an innovative science and technology for renewable energy. Light harvesting, photogenerated charge separation and transfer (CST), and catalytic reactions are the three primary steps in the processes involved in the conversion of solar energy to chemical energy (SE-CE). Among the processes, CST is the key "energy pump and delivery" step in determining the overall solar-energy conversion efficiency. Efficient CST is always high priority in designing and assembling artificial photosynthesis systems for solar-fuel production. This Review not only introduces the fundamental strategies for CST but also the combinatory application of these strategies to five types of the most-investigated semiconductor-based artificial photosynthesis systems: particulate, Z-scheme, hybrid, photoelectrochemical, and photovoltaics-assisted systems. We show that artificial photosynthesis systems with high SE-CE efficiency can be rationally designed and constructed through combinatory application of these strategies, setting a promising blueprint for the future of solar fuels. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Compact SPAD-Based Pixel Architectures for Time-Resolved Image Sensors

    PubMed Central

    Perenzoni, Matteo; Pancheri, Lucio; Stoppa, David

    2016-01-01

    This paper reviews the state of the art of single-photon avalanche diode (SPAD) image sensors for time-resolved imaging. The focus of the paper is on pixel architectures featuring small pixel size (<25 μm) and high fill factor (>20%) as a key enabling technology for the successful implementation of high spatial resolution SPAD-based image sensors. A summary of the main CMOS SPAD implementations, their characteristics and integration challenges, is provided from the perspective of targeting large pixel arrays, where one of the key drivers is the spatial uniformity. The main analog techniques aimed at time-gated photon counting and photon timestamping suitable for compact and low-power pixels are critically discussed. The main features of these solutions are the adoption of analog counting techniques and time-to-analog conversion, in NMOS-only pixels. Reliable quantum-limited single-photon counting, self-referenced analog-to-digital conversion, time gating down to 0.75 ns and timestamping with 368 ps jitter are achieved. PMID:27223284

  10. Photovoltaic solar energy conversion in the '80s

    NASA Astrophysics Data System (ADS)

    Chevalier, I.

    1981-04-01

    The potential for photovoltaic solar energy conversion in the generation of electricity to meet the needs of industrial and developing nations in the 1980s is discussed. The current technology of photovoltaic cells and modules, which are for the most part based on single crystal silicon and can deliver peak powers of 2 to 40 W at 6 to 12 V, is reviewed and prospects for cost reduction in the short- and medium-term by the development of new materials and production methods and increased cell efficiency and in the long term by the development of thin film cells, alternative compounds and mass production are indicated. Possible applications of photovoltaic-derived electricity are pointed out, including educational television receivers, rural telephones, refrigerators, water pumping and hospitals in developing nations and telecommunications, cathodic protection, signaling, telemetry and low-power pumping applications in industrial nations. Predictions of a photovoltaic peak Watt installed costing less than 10 francs by 1990 and a market above 100 MW in 1985 are pointed out.

  11. How to Overcome Numerical Challenges to Modeling Stirling Engines

    NASA Technical Reports Server (NTRS)

    Dyson, Rodger W.; Wilson, Scott D.; Tew, Roy C.

    2004-01-01

    Nuclear thermal to electric power conversion carries the promise of longer duration missions and higher scientific data transmission rates back to Earth for a range of missions, including both Mars rovers and deep space missions. A free-piston Stirling convertor is a candidate technology that is considered an efficient and reliable power conversion device for such purposes. While already very efficient, it is believed that better Stirling engines can be developed if the losses inherent in current designs could be better understood. However, they are difficult to instrument and so efforts are underway to simulate a complete Stirling engine numerically. This has only recently been attempted and a review of the methods leading up to and including such computational analysis is presented. And finally it is proposed that the quality and depth of Stirling loss understanding may be improved by utilizing the higher fidelity and efficiency of recently developed numerical methods. One such method, the Ultra HI-FI technique is presented in detail.

  12. Halogen-Mediated Conversion of Hydrocarbons to Commodities.

    PubMed

    Lin, Ronghe; Amrute, Amol P; Pérez-Ramírez, Javier

    2017-03-08

    Halogen chemistry plays a central role in the industrial manufacture of various important chemicals, pharmaceuticals, and polymers. It involves the reaction of halogens or halides with hydrocarbons, leading to intermediate compounds which are readily converted to valuable commodities. These transformations, predominantly mediated by heterogeneous catalysts, have long been successfully applied in the production of polymers. Recent discoveries of abundant conventional and unconventional natural gas reserves have revitalized strong interest in these processes as the most cost-effective gas-to-liquid technologies. This review provides an in-depth analysis of the fundamental understanding and applied relevance of halogen chemistry in polymer industries (polyvinyl chloride, polyurethanes, and polycarbonates) and in the activation of light hydrocarbons. The reactions of particular interest include halogenation and oxyhalogenation of alkanes and alkenes, dehydrogenation of alkanes, conversion of alkyl halides, and oxidation of hydrogen halides, with emphasis on the catalyst, reactor, and process design. Perspectives on the challenges and directions for future development in this exciting field are provided.

  13. The energy crisis and energy from the sun; Proceedings of the Symposium on Solar Energy Utilization, Washington, D.C., April 30, 1974

    NASA Technical Reports Server (NTRS)

    Thekaekara, M. P.

    1974-01-01

    Papers on the state of the art and future prospects of solar energy utilization in the United States are included. Research and technologies for heating and cooling of buildings, solar thermal energy conversion, photovoltaic conversion, biomass production and conversion, wind energy conversion and ocean thermal energy conversion are covered. The increasing funding of the National Solar Energy Program is noted. Individual items are announced in this issue.

  14. A new direction in energy conversion - The all-electric aircraft

    NASA Technical Reports Server (NTRS)

    Spitzer, C. R.

    1985-01-01

    This paper reviews recent studies of all-electric aircraft that use electric-only secondary power and flight critical fly-by-wire flight controls, and brings to the attention of the power system designer the intrinsic advantages of such aircraft. The all-electric aircraft is made possible by the development of rare earth magnet materials and fault tolerant systems technologies. Recent studies have shown all-electric aircraft to be more efficient than conventional designs and offer substantial operating costs reductions. Compared to present aircraft, an all-electric transport can save at least 10 percent in fuel burn. The cornerstone of an all-electric aircraft is the electric secondary power system. This paper reviews the major features of flight critical electric secondary power systems. Research required to lay the foundation for an all-electric aircraft is briefly discussed.

  15. Improving Communication About Serious Illness in Primary Care: A Review.

    PubMed

    Lakin, Joshua R; Block, Susan D; Billings, J Andrew; Koritsanszky, Luca A; Cunningham, Rebecca; Wichmann, Lisa; Harvey, Doreen; Lamey, Jan; Bernacki, Rachelle E

    2016-09-01

    The Institute of Medicine recently called for systematic improvements in clinician-led conversations about goals, values, and care preferences for patients with serious and life-threatening illnesses. Studies suggest that these conversations are associated with improved outcomes for patients and their families, enhanced clinician satisfaction, and lower health care costs; however, the role of primary care clinicians in driving conversations about goals and priorities in serious illness is not well defined. To present a review of a structured search of the evidence base about communication in serious illness in primary care. MEDLINE was searched, via PubMed, on January 19, 2016, finding 911 articles; 126 articles were reviewed and selected titles were added from bibliography searches. Review of the literature informed 2 major topic areas: the role of primary care in communication about serious illness and clinician barriers and system failures that interfere with effective communication. Literature regarding the role that primary care plays in communication focused primarily on the ambiguity about whether primary care clinicians or specialists are responsible for initiating conversations, the benefits of primary care clinicians and specialists conducting conversations, and the quantity and quality of discussions. Timely and effective communication about serious illness in primary care is hampered by key clinician barriers, which include deficits in knowledge, skills, and attitudes; discomfort with prognostication; and lack of clarity about the appropriate timing and initiation of conversations. Finally, system failures in coordination, documentation, feedback, and quality improvement contribute to lack of conversations. Clinician and system barriers will challenge primary care clinicians and institutions to meet the needs of patients with serious illness. Ensuring that conversations about goals and values occur at the appropriate time for seriously ill patients will require improved training, validation, and dissemination of patient selection tools, systems for conducting and revisiting conversations, accessible documentation, and incentives for measurement, feedback, and continuous improvement.

  16. Air Force Successes and Challenges in Cr(VI) Elimination

    DTIC Science & Technology

    2011-05-10

    ion vapor deposited Al, and Cd coatings 2. Use trivalent chromium [Cr(III)] conversion coating (CC) on Dipsol IZ- C17+ zinc-nickel (Zn-Ni) coating...interested in results Anodized T-38 aileron levers 10 Chromium -Free Conversion Coatings  Identify and evaluate chromium -free conversion coatings (CFCCs...the chromium -based conversion coating for treatment of aluminum alloys at OC-ALC • Conduct technology assessment to identify suitable Cr-free

  17. Researcher Perspectives on Class Size Reduction

    ERIC Educational Resources Information Center

    Graue, Elizabeth; Rauscher, Erica

    2009-01-01

    This article applies to class size research Grant and Graue's (1999) position that reviews of research represent conversations in the academic community. By extending our understanding of the class size reduction conversation beyond published literature to the perspectives of researchers who have studied the topic, we create a review that includes…

  18. Education System Benefits of U.S. Metric Conversion.

    ERIC Educational Resources Information Center

    Phelps, Richard P.

    1996-01-01

    U.S. metric conversion efforts are reviewed as they have affected education. Education system benefits and costs are estimated for three possible system conversion plans. The soft-conversion-to-metric plan, which drops all inch-pound instruction, appears to provide the largest net benefits. The primary benefit is in class time saved. (SLD)

  19. Forest-land conversion, ecosystem services, and economic issues for policy: a review

    Treesearch

    Robert A. Smail; David J. Lewis

    2009-01-01

    The continued conversion and development of forest land pose a serious threat to the ecosystem services derived from forested landscapes. We argue that developing an understanding of the full range of consequences from forest conversion requires understanding the effects of such conversion on both components of ecosystem services: products and processes....

  20. Liquid Fuels from Lignins: Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chum, H. L.; Johnson, D. K.

    1986-01-01

    This task was initiated to assess the conversion of lignins into liquid fuels, primarily of lignins relevant to biomass-to-ethanol conversion processes. The task was composed of a literature review of this area and an experimental part to obtain pertinent data on the conversion of lignins germane to biomass-to-ethanol conversion processes.

  1. Work Began on Contracts for Radioisotope Power Conversion Technology Research and Development

    NASA Technical Reports Server (NTRS)

    Wong, Wayne A.

    2005-01-01

    NASA has had a history of successful space flight missions that depended on radioisotope-fueled power systems. These Radioisotope Power Systems (RPSs) converted the heat generated from the decay of radioisotope material into useful electrical power. An RPS is most attractive in applications where photovoltaics are not optimal, such as deep-space applications where the solar flux is too low or extended applications on planets such as Mars where the day/night cycle, settling of dust, and life requirements limit the usefulness of photovoltaics. NASA s Radioisotope Power Conversion Technology (RPCT) Program is developing next-generation power-conversion technologies that will enable future missions that have requirements that cannot be met by the two RPS flight systems currently being developed by the Department of Energy for NASA: the Multi-Mission Radioisotope Thermoelectric Generator and the Stirling Radioisotope Generator (SRG).

  2. Patellofemoral arthroplasty conversion to total knee arthroplasty: Retrieval analysis and clinical correlation.

    PubMed

    Christ, Alexander B; Baral, Elexis; Koch, Chelsea; Shubin Stein, Beth E; Gonzalez Della Valle, Alejandro; Strickland, Sabrina M

    2017-10-01

    Patellofemoral arthroplasty (PFA) can be a successful, bone-sparing treatment for isolated patellofemoral arthritis. However, progression of tibio-femoral arthritis or incorrect indications may predispose patients to early conversion to total knee arthroplasty (TKA). The purpose of this study was to review the clinical cases and perform retrieval analysis of PFA conversions to TKA at our institution. Twenty one patellofemoral arthroplasties in 18 patients that were converted to TKA were identified through our implant retrieval registry. Sixteen implants were available for review by biomechanical engineers, who recorded surface markings, wear patterns, and integrity of fixation. Patient charts were reviewed and time to conversion, tourniquet time, conversion implant, additional surgeries, infections, and Kellgren & Lawrence grade of the tibio-femoral joint on pre-operative radiographs were recorded. PFAs converted to TKAs at our institution were implanted for an average of 2.7years. The most common reason for conversion was pain, but most patients had significant tibio-femoral arthritis, as indicated by an average Kellgren & Lawrence grade of 2.6. The average tourniquet time for these conversions was 67min. These patients underwent an average of one additional surgery per PFA converted, and the infection rate of these conversions was approximately 14%. Success of PFA depends upon correct patient selection rather than implant failure or wear. Conversion of PFA to TKA is technically similar to primary TKA, with similar post-operative pain relief and range of motion. However, infection rates and complications requiring further surgery are more consistent with results seen in revision TKA. IV. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Efficient electrochemical CO 2 conversion powered by renewable energy

    DOE PAGES

    Kauffman, Douglas R.; Thakkar, Jay; Siva, Rajan; ...

    2015-06-29

    Here, the catalytic conversion of CO 2 into industrially relevant chemicals is one strategy for mitigating greenhouse gas emissions. Along these lines, electrochemical CO 2 conversion technologies are attractive because they can operate with high reaction rates at ambient conditions. However, electrochemical systems require electricity, and CO 2 conversion processes must integrate with carbon-free, renewable-energy sources to be viable on larger scales. We utilize Au 25 nanoclusters as renewably powered CO 2 conversion electrocatalysts with CO 2 → CO reaction rates between 400 and 800 L of CO 2 per gram of catalytic metal per hour and product selectivities betweenmore » 80 and 95%. These performance metrics correspond to conversion rates approaching 0.8–1.6 kg of CO 2 per gram of catalytic metal per hour. We also present data showing CO 2 conversion rates and product selectivity strongly depend on catalyst loading. Optimized systems demonstrate stable operation and reaction turnover numbers (TONs) approaching 6 × 10 6 mol CO 2 molcatalyst–1 during a multiday (36 hours total hours) CO 2electrolysis experiment containing multiple start/stop cycles. TONs between 1 × 10 6 and 4 × 10 6 molCO 2 molcatalyst–1 were obtained when our system was powered by consumer-grade renewable-energy sources. Daytime photovoltaic-powered CO 2 conversion was demonstrated for 12 h and we mimicked low-light or nighttime operation for 24 h with a solar-rechargeable battery. This proof-of-principle study provides some of the initial performance data necessary for assessing the scalability and technical viability of electrochemical CO 2 conversion technologies. Specifically, we show the following: (1) all electrochemical CO 2 conversion systems will produce a net increase in CO 2 emissions if they do not integrate with renewable-energy sources, (2) catalyst loading vs activity trends can be used to tune process rates and product distributions, and (3) state-of-the-art renewable-energy technologies are sufficient to power larger-scale, tonne per day CO 2 conversion systems.« less

  4. Fuel cell systems program plan, FY 1990

    NASA Astrophysics Data System (ADS)

    1989-10-01

    A principal goal of the Office of Fossil Energy is to increase the utilization of domestic fuels in an environmentally benign manner, through the development and transfer to the private sector of advanced energy conversion technology. Successful efforts to achieve this goal contribute to the stability and reliability of reasonably priced energy supplies, enhance the competitiveness of domestic fuels and energy technologies in domestic and international markets, and contribute to the development of cost effective strategies for control of acid rain and global warming. Several advanced energy conversion technologies are now under development by DOE which can help to achieve these objectives. Fuel cells are among those technologies. This report briefly describes fuel cell technology and the program plan of U.S. DOE fuel cell program.

  5. Cogeneration technology alternatives study. Volume 1: Summary report

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Data and information in the area of advanced energy conversion systems for industrial congeneration applications in the 1985-2000 time period was studied. Six current and thirty-one advanced energy conversion systems were defined and combined with appropriate balance-of-plant equipment. Twenty-six industrial processes were selected from among the high energy consuming industries to serve as a framework for the study. Each conversion system was analyzed as a cogenerator with each industrial plant. Fuel consumption, costs, and environmental intrusion were evaluated and compared to corresponding traditional values. Various cogeneration strategies were analyzed and both topping and bottoming (using industrial by-product heat) applications were included. The advanced energy conversion technologies indicated reduced fuel consumption, costs, and emissions. Typically fuel energy savings of 10 to 25 percent were predicted compared to traditional on-site furnaces and utility electricity. With the variety of industrial requirements, each advanced technology had attractive applications. Overall, fuel cells indicated the greatest fuel energy savings and emission reductions. Gas turbines and combined cycles indicated high overall annual cost savings. Steam turbines and gas turbines produced high estimated returns. In some applications, diesels were most efficient. The advanced technologies used coal-derived fuels, or coal with advanced fluid bed combustion or on-site gasification systems.

  6. Energy and cost savings results for advanced technology systems from the Cogeneration Technology Alternatives Study /CTAS/

    NASA Technical Reports Server (NTRS)

    Sagerman, G. D.; Barna, G. J.; Burns, R. K.

    1979-01-01

    The Cogeneration Technology Alternatives Study (CTAS), a program undertaken to identify the most attractive advanced energy conversion systems for industrial cogeneration applications in the 1985-2000 time period, is described, and preliminary results are presented. Two cogeneration options are included in the analysis: a topping application, in which fuel is input to the energy conversion system which generates electricity and waste heat from the conversion system is used to provide heat to the process, and a bottoming application, in which fuel is burned to provide high temperature process heat and waste heat from the process is used as thermal input to the energy conversion system which generates energy. Steam turbines, open and closed cycle gas turbines, combined cycles, diesel engines, Stirling engines, phosphoric acid and molten carbonate fuel cells and thermionics are examined. Expected plant level energy savings, annual energy cost savings, and other results of the economic analysis are given, and the sensitivity of these results to the assumptions concerning fuel prices, price of purchased electricity and the potential effects of regional energy use characteristics is discussed.

  7. Cogeneration Technology Alternatives Study (CTAS) Volume 5: Analytical approach and results

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Data and information in the area of advanced energy conversion systems for industrial cogeneration applications in the 1985 to 2000 time period are provided. Six current and thirty-six advanced energy conversion systems were defined and combined with appropriate balance of plant equipment. Twenty-six industrial processes were selected from among the high energy consuming industries to serve as a framework for the study. Each conversion system was analyzed as a cogenerator with each industrial plant. Fuel consumption, costs, and environmental intrusion were evaluated and compared to corresponding traditional values. Various cogeneration strategies were analyzed and both topping and bottoming (using industrial by-product heat) applications were included. The advanced energy conversion technologies indicated reduced fuel consumption, costs, and emissions. Typically fuel energy savings of 10 to 25 percent were predicted compared to traditional on site furnaces and utility electricity. Gas turbines and combined cycles indicated high overall annual cost savings. Steam turbines and gas turbines produced high estimated returns. In some applications, diesels were most efficient. The advanced technologies used coal derived fuels, or coal with advanced fluid bed combustion or on site gasification systems.

  8. Pharmacy 2.0: a scoping review of social media use in pharmacy.

    PubMed

    Grindrod, Kelly; Forgione, Andrea; Tsuyuki, Ross T; Gavura, Scott; Giustini, Dean

    2014-01-01

    New "social" information and communication technologies such as social media and smartphones are allowing non-experts to access, interpret and generate medical information for their own care and the care of others. Pharmacists may also benefit from increased connectivity, but first there needs to be an understanding of how pharmacists engage with social media. A scoping review methodology was used to describe pharmacist and pharmacy student participation in social media networks and to describe the gaps in research. Three themes that emerged from reviewing social media use in pharmacy education were student engagement, boundaries and e-professionalism. For pharmacists, the themes of liability and professional use were prominent. Few pharmacy leadership organizations are providing guidance on social media but that appears to be changing. As the control of medical knowledge shifts from health professionals to the larger social community, pharmacists need to be present. Social media use and training in undergraduate programs is promising but experienced pharmacists also need to join the conversation. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. International Standards and Reference Materials for Quantitative Molecular Infectious Disease Testing

    PubMed Central

    Madej, Roberta M.; Davis, Jack; Holden, Marcia J.; Kwang, Stan; Labourier, Emmanuel; Schneider, George J.

    2010-01-01

    The utility of quantitative molecular diagnostics for patient management depends on the ability to relate patient results to prior results or to absolute values in clinical practice guidelines. To do this, those results need to be comparable across time and methods, either by producing the same value across methods and test versions or by using reliable and stable conversions. Universally available standards and reference materials specific to quantitative molecular technologies are critical to this process but are few in number. This review describes recent history in the establishment of international standards for nucleic acid test development, organizations involved in current efforts, and future issues and initiatives. PMID:20075208

  10. Ada technology support for NASA-GSFC

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Utilization of the Ada programming language and environments to perform directorate functions was reviewed. The Mission and Data Operations Directorate Network (MNET) conversion effort was chosen as the first task for evaluation and assistance. The MNET project required the rewriting of the existing Network Control Program (NCP) in the Ada programming language. The DEC Ada compiler running on the VAX under WMS was used for the initial development efforts. Stress tests on the newly delivered version of the DEC Ada compiler were performed. The new Alsys Ada compiler was purchased for the IBM PC AT. A prevalidated version of the compiler was obtained. The compiler was then validated.

  11. Corner Store Inventories, Purchases, and Strategies for Intervention: A Review of the Literature

    PubMed Central

    Langellier, Brent A; Garza, Jeremiah R; Prelip, Michael L; Glik, Deborah; Brookmeyer, Ron; Ortega, Alexander N

    2014-01-01

    Introduction An increasingly popular strategy to improving the food retail environment and promoting healthy eating in low-income and minority communities is the corner store conversion. This approach involves partnering with small ‘corner’ food stores to expand access to high-quality fruits, vegetables, and other healthy foods. Methods We conducted a structured review of the literature to assess inventories and sales in corner stores, as well as to identify intervention strategies employed by corner store conversions. Results Our review returned eight descriptive studies that discussed corner store inventories and sales, as well as ten intervention studies discussing six unique corner store conversion interventions in the United States, the Marshall Islands, and Canada. Common intervention strategies included: 1) partnering with an existing store, 2) stocking healthy foods, and 3) social marketing and nutrition education. We summarize each strategy and review the effectiveness of overall corner store conversions at changing peoples’ food purchasing, preparation, and consumption behaviors. Conclusions Consumption of fresh, healthy, affordable foods could be improved by supporting existing retailers to expand their selection of healthy foods and promoting healthy eating at the neighborhood level. Additional corner store conversions should be conducted to determine the effectiveness and importance of specific intervention strategies. PMID:25374481

  12. SPS energy conversion and power management workshop. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-06-01

    In 1977 a four year study, the concept Development and Evaluation Program, was initiated by the US Department of Energy and the National Aeronautics and Space Administration. As part of this program, a series of peer reviews were carried out within the technical community to allow available information on SPS to be sifted, examined and, if need be, challenged. The SPS Energy Conversion and Power Management Workshop, held in Huntsville, Alabama, February 5 to 7, 1980, was one of these reviews. The results of studies in this particular field were presented to an audience of carefully selected scientists and engineers.more » This first report summarizes the results of that peer review. It is not intended to be an exhaustive treatment of the subject. Rather, it is designed to look at the SPS energy conversion and power management options in breadth, not depth, to try to foresee any troublesome and/or potentially unresolvable problems and to identify the most promising areas for future research and development. Topics include photovoltaic conversion, solar thermal conversion, and electric power distribution processing and power management. (WHK)« less

  13. Biotransformation of carbon dioxide in bioelectrochemical systems: State of the art and future prospects

    NASA Astrophysics Data System (ADS)

    Bajracharya, Suman; Srikanth, Sandipam; Mohanakrishna, Gunda; Zacharia, Renju; Strik, David PBTB; Pant, Deepak

    2017-07-01

    Carbon dioxide (CO2) utilization/recycling for the production of chemicals and gaseous/liquid energy-carriers is a way to moderate the rising CO2 in the atmosphere. One of the possible solutions for the CO2 sequestration is the electrochemical reduction of this stable molecule to useful fuel/products. Nevertheless, the surface chemistry of CO2 reduction is a challenge due to the presence of large energy barriers, requiring noticeable catalysis. The recent approach of microbial electrocatalysis of CO2 reduction has promising prospects to reduce the carbon level sustainably, taking full advantage of CO2-derived chemical commodities. We review the currently investigated bioelectrochemical approaches that could possibly be implemented to enable the handling of CO2 emissions. This review covers the most recent advances in the bioelectrochemical approaches of CO2 transformations in terms of biocatalysts development and process design. Furthermore, the extensive research on carbon fixation and conversion to different value added chemicals is reviewed. The review concludes by detailing the key challenges and future prospects that could enable economically feasible microbial electrosynthesis technology.

  14. Advanced Reactor Technology/Energy Conversion Project FY17 Accomplishments.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rochau, Gary E.

    The purpose of the ART Energy Conversion (EC) Project is to provide solutions to convert the heat from an advanced reactor to useful products that support commercial application of the reactor designs.

  15. 250 Robotic Pancreatic Resections: Safety and Feasibility

    PubMed Central

    Zureikat, Amer H.; Moser, A. James; Boone, Brian A.; Bartlett, David L.; Zenati, Mazen; Zeh, Herbert J.

    2015-01-01

    Background and Objectives Computer Assisted Robotic Surgery allows complex resections and anastomotic reconstructions to be performed with nearly identical standards to open surgery. We applied this technology to a variety of pancreatic resections to assess the safety, feasibility, versatility and reliability of this technology. Methods A retrospective review of a prospective database of robotic pancreatic resections at a single institution between August 2008 and November 2012 was performed. Peri-operative outcomes were analyzed. Results 250 consecutive robotic pancreatic resections were analyzed; pancreaticoduodenectomy (PD =132), distal pancreatectomy (DP=83), central pancreatectomy (CP=13), pancreatic enucleation (10), total pancreatectomy (TP=5), Appleby resection (4), and Frey procedure (3). Thirty day and 90 day mortality was 0.8 % and 2.0%. Rate of Clavien 3 and 4 complications was 14 and 6 %. The ISGPF grade C fistula rate was 4%. Mean operative time for the two most common procedures was 529 ± 103 mins for PD, and 257 ± 93 mins for DP. Continuous improvement in operative times was observed over the course of the experience. Conversion to open procedure was required in 16 patients (6%);(11 PD, 2 DP, 2 CP, 1 TP) for failure to progress (14) and bleeding (2). Conclusions This represents to our knowledge the largest series of robotic pancreatic resections. Safety and feasibility metrics including the low incidence of conversion support the robustness of this platform and suggest no unanticipated risks inherent to this new technology. By defining these early outcome metrics this report begins to establish a framework for comparative effectiveness studies of this platform. PMID:24002300

  16. Coal conversion: description of technologies and necessary biomedical and environmental research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1976-08-01

    This document contains a description of the biomedical and environmental research necessary to ensure the timely attainment of coal conversion technologies amenable to man and his environment. The document is divided into three sections. The first deals with the types of processes currently being considered for development; the data currently available on composition of product, process and product streams, and their potential effects; and problems that might arise from transportation and use of products. Section II is concerned with a description of the necessary research in each of the King-Muir categories, while the third section presents the research strategies necessarymore » to assess the potential problems at the conversion plant (site specific) and those problems that might effect the general public and environment as a result of the operation of large-scale coal conversion plants.« less

  17. Reassessment of NRC`s dollar per person-rem conversion factor policy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-12-01

    The US Nuclear Regulatory Commission (NRC) has completed a review and analysis of its dollar per person-rem conversion factor policy. As a result of this review, the NRC has decided to adopt a $2000 per person-rem conversion factor, subject it to present worth considerations, and limit its scope solely to health effects. This is in contrast to the previous policy and staff practice of using an undiscounted $1000 per person-rem conversion factor that served as a surrogate for all offsite consequences (health and offsite property). The policy shift has been incorporated in ``Regulatory Analysis Guidelines of the US Nuclear Regulatorymore » Commission,`` NUREG/BR-0058, Revision 2, November 1995.« less

  18. 78 FR 70558 - Review of Proposed Changes with ICD-10-CM/PCS; Conversion of Quality IndicatorsTM

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-26

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Agency for Healthcare Research and Quality Review of... Healthcare Research and Quality (AHRQ), HHS. ACTION: Notice of request for public comments. SUMMARY: The Agency for Healthcare Research and Quality (AHRQ) seeks comments on the proposed conversion of the AHRQ...

  19. A Reflective Conversation with Ugur Sak: Gifted Education in Turkey

    ERIC Educational Resources Information Center

    Shaughnessy, Michael F.; Sak, Ugur

    2015-01-01

    In this reflective conversation, Ugur Sak discusses the current "state of the art" of gifted education in Turkey. He reviews the use of enrichment, discusses acceleration and reviews curricular procedures in Turkey. He responds to questions about the identification of gifted students and discusses the age old debate of talent versus…

  20. Metal catalysts for steam reforming of tar derived from the gasification of lignocellulosic biomass.

    PubMed

    Li, Dalin; Tamura, Masazumi; Nakagawa, Yoshinao; Tomishige, Keiichi

    2015-02-01

    Biomass gasification is one of the most important technologies for the conversion of biomass to electricity, fuels, and chemicals. The main obstacle preventing the commercial application of this technology is the presence of tar in the product gas. Catalytic reforming of tar appears a promising approach to remove tar and supported metal catalysts are among the most effective catalysts. Nevertheless, improvement of catalytic performances including activity, stability, resistance to coke deposition and aggregation of metal particles, as well as catalyst regenerability is greatly needed. This review focuses on the design and catalysis of supported metal catalysts for the removal of tar in the gasification of biomass. The recent development of metal catalysts including Rh, Ni, Co, and their alloys for steam reforming of biomass tar and tar model compounds is introduced. The role of metal species, support materials, promoters, and their interfaces is described. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Microbial synthesis gas utilization and ways to resolve kinetic and mass-transfer limitations.

    PubMed

    Yasin, Muhammad; Jeong, Yeseul; Park, Shinyoung; Jeong, Jiyeong; Lee, Eun Yeol; Lovitt, Robert W; Kim, Byung Hong; Lee, Jinwon; Chang, In Seop

    2015-02-01

    Microbial conversion of syngas to energy-dense biofuels and valuable chemicals is a potential technology for the efficient utilization of fossils (e.g., coal) and renewable resources (e.g., lignocellulosic biomass) in an environmentally friendly manner. However, gas-liquid mass transfer and kinetic limitations are still major constraints that limit the widespread adoption and successful commercialization of the technology. This review paper provides rationales for syngas bioconversion and summarizes the reaction limited conditions along with the possible strategies to overcome these challenges. Mass transfer and economic performances of various reactor configurations are compared, and an ideal case for optimum bioreactor operation is presented. Overall, the challenges with the bioprocessing steps are highlighted, and potential solutions are suggested. Future research directions are provided and a conceptual design for a membrane-based syngas biorefinery is proposed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Challenges towards Economic Fuel Generation from Renewable Electricity: The Need for Efficient Electro-Catalysis.

    PubMed

    Formal, Florian Le; Bourée, Wiktor S; Prévot, Mathieu S; Sivula, Kevin

    2015-01-01

    Utilizing renewable sources of energy is very attractive to provide the growing population on earth in the future but demands the development of efficient storage to mitigate their intermittent nature. Chemical storage, with energy stored in the bonds of chemical compounds such as hydrogen or carbon-containing molecules, is promising as these energy vectors can be reserved and transported easily. In this review, we aim to present the advantages and drawbacks of the main water electrolysis technologies available today: alkaline and PEM electrolysis. The choice of electrode materials for utilization in very basic and very acid conditions is discussed, with specific focus on anodes for the oxygen evolution reaction, considered as the most demanding and energy consuming reaction in an electrolyzer. State-of-the-art performance of materials academically developed for two alternative technologies: electrolysis in neutral or seawater, and the direct electrochemical conversion from solar to hydrogen are also introduced.

  3. An empirical study of innovation-performance linkage in the paper industry

    NASA Astrophysics Data System (ADS)

    Farooquie, Parveen; Gani, Abdul; Zuberi, Arsalanullah K.; Hashmi, Imran

    2012-10-01

    To enter new markets and remain competitive in the existing markets, companies need to shift their focus from traditional means and ways to some innovative approaches. Though the paper industry in India has improved remarkably on its technological and environmental issues, yet it shows a low rate of innovation. The present paper attempts to review the industry in the perspective of technological innovations and investigates empirically the role of innovations in performance improvement and pollution control. Multivariate analysis of variance and discriminant function analysis are applied for data processing. The findings reveal that the mean scores on the factors, such as sales, quality, and flexibility, are higher for the good innovators than those for the poor innovators. Conversely, the factors which are likely to be reduced as a result of innovations, such as time, cost, emissions, and disposal of waste, have shown higher means for the poor innovators.

  4. High-performance semiconductor quantum-dot single-photon sources

    NASA Astrophysics Data System (ADS)

    Senellart, Pascale; Solomon, Glenn; White, Andrew

    2017-11-01

    Single photons are a fundamental element of most quantum optical technologies. The ideal single-photon source is an on-demand, deterministic, single-photon source delivering light pulses in a well-defined polarization and spatiotemporal mode, and containing exactly one photon. In addition, for many applications, there is a quantum advantage if the single photons are indistinguishable in all their degrees of freedom. Single-photon sources based on parametric down-conversion are currently used, and while excellent in many ways, scaling to large quantum optical systems remains challenging. In 2000, semiconductor quantum dots were shown to emit single photons, opening a path towards integrated single-photon sources. Here, we review the progress achieved in the past few years, and discuss remaining challenges. The latest quantum dot-based single-photon sources are edging closer to the ideal single-photon source, and have opened new possibilities for quantum technologies.

  5. Continuing Spanish in Grade Four: MLA Teacher's Guide. A Course of Study Including Methods, Materials, and Aids for Teaching Conversational Spanish to Fourth-Grade Children.

    ERIC Educational Resources Information Center

    Thompson, Mary P.; And Others

    This is the second volume in a series of texts in a conversational Spanish course for elementary school children. Fourteen basic units present introductory linguistic patterns and cultural insights into the lives of the Spanish people. They include: (1) Review Unit 1, (2) Review Unit 2, (3) Special Unit A--"Cristobal Colon," (4) Review Unit 3, (5)…

  6. Technologies, Multitasking, and Driving: Attending to and Preparing for a Mobile Phone Conversation in a Car

    ERIC Educational Resources Information Center

    Haddington, Pentti; Rauniomaa, Mirka

    2011-01-01

    This article investigates mobile phone calls initiated or received by drivers and passengers in cars and focuses on the participants' actions before the telephone conversation proper. Drawing on video-recorded data of real driving situations, and building on conversation analysis and multimodal interaction analysis, this article discusses how…

  7. A Dynamic Dialog System Using Semantic Web Technologies

    ERIC Educational Resources Information Center

    Ababneh, Mohammad

    2014-01-01

    A dialog system or a conversational agent provides a means for a human to interact with a computer system. Dialog systems use text, voice and other means to carry out conversations with humans in order to achieve some objective. Most dialog systems are created with specific objectives in mind and consist of preprogrammed conversations. The primary…

  8. ERDA-NASA wind energy project ready to involve users

    NASA Technical Reports Server (NTRS)

    Thomas, R.; Puthoff, R.; Savino, J.; Johnson, W.

    1976-01-01

    The NASA contribution to the Wind Energy Project is discussed. NASA is responsible for the following: (1) identification of cost-effective configurations and sizes of wind-conversion systems, (2) the development of technology needed to produce these systems, (3) the design of wind-conversion systems that are compatible with user requirements, particularly utility networks, and (4) technology transfer obtained from the program to stimulate rapid commercial application of wind systems. Various elements of the NASA program are outlined, including industry-built user operation, the evaluation phase, the proposed plan and schedule for site selection and user involvement, supporting research and technology (e.g., energy storage), and component and subsystem technology development.

  9. NASA - Johnson Space Center's New Capabilities for Air Purification

    NASA Technical Reports Server (NTRS)

    Graf, John

    2015-01-01

    NASA has some unique and challenging air purification problems that cannot be adequately met with COTS technology: 1) ammonia removal from air, 2) hydrazine removal from air, 3) CO conversion to CO2 in low temperature, high humidity environments. NASA has sponsored the development of new sorbents and new catalysts. These new sorbents and catalysts work better than COTS technology for our application. If attendees have a need for an effective ammonia sorbent, an effective hydrazine sorbent, or an effective CO conversion catalyst, we should learn to see if NASA sponsored technology development can help.

  10. Cogeneration Technology Alternatives Study (CTAS). Volume 2: Analytical approach

    NASA Technical Reports Server (NTRS)

    Gerlaugh, H. E.; Hall, E. W.; Brown, D. H.; Priestley, R. R.; Knightly, W. F.

    1980-01-01

    The use of various advanced energy conversion systems were compared with each other and with current technology systems for their savings in fuel energy, costs, and emissions in individual plants and on a national level. The ground rules established by NASA and assumptions made by the General Electric Company in performing this cogeneration technology alternatives study are presented. The analytical methodology employed is described in detail and is illustrated with numerical examples together with a description of the computer program used in calculating over 7000 energy conversion system-industrial process applications. For Vol. 1, see 80N24797.

  11. Status of the NASA Space Power Program

    NASA Technical Reports Server (NTRS)

    Mullin, J. P.; Holcomb, L.

    1977-01-01

    The NASA Space Power Research and Technology Program has the objective to provide the technological basis for satisfying the nation's future needs regarding electrical power in space. The development of power sources of low mass and increased environmental resistance is considered. Attention is given to advances in the area of photovoltaic energy conversion, improved Ni-Cd battery components, a nickel-hydrogen battery, remotely activated silver-zinc and lithium-water batteries, the technology of an advanced water electrolysis/regenerative fuel cell system, aspects of thermal-to-electric conversion, environmental interactions, multi-kW low cost systems, and high-performance systems.

  12. New Concepts for Compact Space Reactor Power Systems for Space Based Radar Applications: A Feasibility Study

    DTIC Science & Technology

    1989-12-01

    SPENT FUEL REPROCESSING COULD ALSO BE EMPLOYED IRRADIATION EXPERIENCE - EXTREMELY LIMITED - JOINT US/UK PROGRAM (ONGOING) - TUI/KFK PROGRAM (CANCELED...only the use of off-the-shelf technologies. For example, conventional fuel technology (uranium dioxide), conventional thermionic conversion...advanced fuel (Americium oxide, A1TI2O3) and advanced thermionic conversion. Concept C involves use of an advanced fuel (Americium oxide, Arri203

  13. Pharmacological conversion of recent-onset atrial fibrillation: a systematic review.

    PubMed

    Heldal, Magnus; Atar, Dan

    2013-02-01

    Recent-onset (duration ≤ 1 week) atrial fibrillation (AF) has a high rate of spontaneous conversion to sinus rhythm (SR); still anti-arrhythmic drugs (AAD) are given for conversion purposes. We assessed the effect of AADs by reviewing the literature regarding conversion rates of available drugs in a systematic manner. PubMed searches were performed using the terms "drug name", "atrial fibrillation", and "clinical study/RCT", and a list of 1302 titles was generated. These titles, including abstracts or complete papers when needed, were reviewed for recent-onset of AF, the use of a control group, and the endpoint of SR within 24 hours. Postoperative and intensive care settings were excluded. Five AADs were demonstrated to have an effect, and these were Amiodarone, Ibutilide (only one study and risk of torsade de pointes), Flecainide and Propafenone (only to be used in patients without structural heart disease) and Vernakalant. The time taken for conversion differed markedly; Vernakalant converted after 10 minutes, while Amiodarone converted only after 24 hours; Propafenone and Flecainide had conversion times in-between. For a rapid response in a broad group of patients, Vernakalant appears to be a reasonable first choice, while Flecainide and Propafenone can be used in patients without structural heart disease.

  14. Conversion disorder and mass psychogenic illness in child neurology.

    PubMed

    Mink, Jonathan W

    2013-11-01

    A common problem faced by neurologists is the existence of disorders that present with neurological symptoms but do not have identifiable neurological bases. Conversion disorder is the most common of these disorders. In some situations, members of a cohesive social group will develop the same or similar symptoms. This review discusses conversion disorder in children, with an emphasis on function movement disorders. It also reviews a recent occurrence of mass psychogenic illness in New York State with discussion of the key features of mass psychogenic illness. © 2013 New York Academy of Sciences.

  15. Hybrid photocathodes for solar fuel production: coupling molecular fuel-production catalysts with solid-state light harvesting and conversion technologies.

    PubMed

    Cedeno, Diana; Krawicz, Alexandra; Moore, Gary F

    2015-06-06

    Artificial photosynthesis is described as the great scientific and moral challenge of our time. We imagine a future where a significant portion of our energy is supplied by such technologies. However, many scientific, engineering and policy challenges must be addressed for this realization. Scientific challenges include the development of effective strategies to couple light absorption, electron transfer and catalysis for efficient conversion of light energy to chemical energy as well as the construction and study of structurally diverse assemblies to carry out these processes. In this article, we review recent efforts from our own research to develop a modular approach to interfacing molecular fuel-production catalysts to visible-light-absorbing semiconductors and discuss the role of the interfacing material as a protection layer for the catalysts as well as the underpinning semiconductor. In concluding, we briefly discuss the potential benefits of a globally coordinated project on artificial photosynthesis that interfaces teams of scientists, engineers and policymakers. Further, we offer cautions that such a large interconnected organization should consider. This article is inspired by, and draws largely from, an invited presentation given by the corresponding author at the Royal Society at Chicheley Hall, home of the Kavli Royal Society International Centre, Buckinghamshire on the themed meeting topic: 'Do we need a global project on artificial photosynthesis?'

  16. Industrial enzymatic production of cephalosporin-based beta-lactams.

    PubMed

    Barber, Michael S; Giesecke, Ulrich; Reichert, Arno; Minas, Wolfgang

    2004-01-01

    Cephalosporins are chemically closely related to penicillins both work by inhibiting the cell wall synthesis of bacteria. The first generation cephalosporins entered the market in 1964. Second and third generation cephalosporins were subsequently developed that were more powerful than the original products. Fourth generation cephalosporins are now reaching the market. Each newer generation of cephalosporins has greater Gram-negative antimicrobial properties than the preceding generation. Conversely, the 'older' generations of cephalosporins have greater Gram-positive (Staphylococcus and Streptococcus) coverage than the 'newer' generations. Frequency of dosing decreases and palatability generally improve with increasing generations. The advent of fourth generation cephalosporins with the launch of cefepime extended the spectrum against Gram-positive organisms without a significant loss of activity towards Gram-negative bacteria. Its greater stability to beta-lactamases increases its efficacy against drug-resistant bacteria. In this review we present the current situation of this mature market. In addition, we present the current state of the technologies employed for the production of cephalosporins, focusing on the new and environmentally safer 'green' routes to the products. Starting with the fermentation and purification of CPC, enzymatic conversion in conjunction with aqueous chemistry will lead to some key intermediates such as 7-ACA, TDA and TTA, which then can be converted into the active pharmaceutical ingredient (API), again applying biocatalytic technologies and aqueous chemistry. Examples for the costing of selected products are provided as well.

  17. Gliding Arc Plasmatron: Providing an Alternative Method for Carbon Dioxide Conversion.

    PubMed

    Ramakers, Marleen; Trenchev, Georgi; Heijkers, Stijn; Wang, Weizong; Bogaerts, Annemie

    2017-06-22

    Low-temperature plasmas are gaining a lot of interest for environmental and energy applications. A large research field in these applications is the conversion of CO 2 into chemicals and fuels. Since CO 2 is a very stable molecule, a key performance indicator for the research on plasma-based CO 2 conversion is the energy efficiency. Until now, the energy efficiency in atmospheric plasma reactors is quite low, and therefore we employ here a novel type of plasma reactor, the gliding arc plasmatron (GAP). This paper provides a detailed experimental and computational study of the CO 2 conversion, as well as the energy cost and efficiency in a GAP. A comparison with thermal conversion, other plasma types and other novel CO 2 conversion technologies is made to find out whether this novel plasma reactor can provide a significant contribution to the much-needed efficient conversion of CO 2 . From these comparisons it becomes evident that our results are less than a factor of two away from being cost competitive and already outperform several other new technologies. Furthermore, we indicate how the performance of the GAP can still be improved by further exploiting its non-equilibrium character. Hence, it is clear that the GAP is very promising for CO 2 conversion. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Design of batch audio/video conversion platform based on JavaEE

    NASA Astrophysics Data System (ADS)

    Cui, Yansong; Jiang, Lianpin

    2018-03-01

    With the rapid development of digital publishing industry, the direction of audio / video publishing shows the diversity of coding standards for audio and video files, massive data and other significant features. Faced with massive and diverse data, how to quickly and efficiently convert to a unified code format has brought great difficulties to the digital publishing organization. In view of this demand and present situation in this paper, basing on the development architecture of Sptring+SpringMVC+Mybatis, and combined with the open source FFMPEG format conversion tool, a distributed online audio and video format conversion platform with a B/S structure is proposed. Based on the Java language, the key technologies and strategies designed in the design of platform architecture are analyzed emphatically in this paper, designing and developing a efficient audio and video format conversion system, which is composed of “Front display system”, "core scheduling server " and " conversion server ". The test results show that, compared with the ordinary audio and video conversion scheme, the use of batch audio and video format conversion platform can effectively improve the conversion efficiency of audio and video files, and reduce the complexity of the work. Practice has proved that the key technology discussed in this paper can be applied in the field of large batch file processing, and has certain practical application value.

  19. Catalytic Deoxygenation of Biomass Pyrolysis Vapors to Improve Bio-oil Stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dayton, David C.

    2016-12-22

    The President’s Advanced Energy Initiative called for a change in the way Americans fuel their vehicles to promote improved energy security. Increasing biofuels production from domestic lignocellulosic resources requires advanced technology development to achieve the aggressive targets set forth to reduce motor gasoline consumption by 20% in ten years (by 2017). The U.S. Department of Energy (USDOE) Office of the Biomass Program (currently Bioenergy Technologies Office) is actively funding research and development in both biochemical and thermochemical conversion technologies to accelerate the deployment of biofuels technologies in the near future to meet the goals of the Advanced Energy Initiative. Thermochemicalmore » conversion technology options include both gasification and pyrolysis to enable the developing lignocellulosic biorefineries and maximize biomass resource utilization for production of biofuels.« less

  20. Heterogeneous catalytic conversion of CO2: a comprehensive theoretical review.

    PubMed

    Li, Yawei; Chan, Siew Hwa; Sun, Qiang

    2015-05-21

    The conversion of CO2 into fuels and useful chemicals has been intensively pursued for renewable, sustainable and green energy. However, due to the negative adiabatic electron affinity (EA) and large ionization potential (IP), the CO2 molecule is chemically inert, thus making the conversion difficult under normal conditions. Novel catalysts, which have high stability, superior efficiency and low cost, are urgently needed to facilitate the conversion. As the first step to design such catalysts, understanding the mechanisms involved in CO2 conversion is absolutely indispensable. In this review, we have summarized the recent theoretical progress in mechanistic studies based on density functional theory, kinetic Monte Carlo simulation, and microkinetics modeling. We focus on reaction channels, intermediate products, the key factors determining the conversion of CO2 in solid-gas interface thermocatalytic reduction and solid-liquid interface electrocatalytic reduction. Furthermore, we have proposed some possible strategies for improving CO2 electrocatalysis and also discussed the challenges in theory, model construction, and future research directions.

  1. Potential impact of ZT = 4 thermoelectric materials on solar thermal energy conversion technologies.

    PubMed

    Xie, Ming; Gruen, Dieter M

    2010-11-18

    State-of-the-art methodologies for the conversion of solar thermal power to electricity are based on conventional electromagnetic induction techniques. If appropriate ZT = 4 thermoelectric materials were available, it is likely that conversion efficiencies of 30-40% could be achieved. The availability of all solid state electricity generation would be a long awaited development in part because of the elimination of moving parts. This paper presents a preliminary examination of the potential performance of ZT = 4 power generators in comparison with Stirling engines taking into account specific mass, volume and cost as well as system reliability. High-performance thermoelectrics appear to have distinct advantages over magnetic induction technologies.

  2. PREFACE: The 15th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS 2015)

    NASA Astrophysics Data System (ADS)

    Livermore, C.; Velásquez-García, L. F.

    2015-12-01

    Greetings, and welcome to Boston, MA and PowerMEMS 2015 - the 15th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications! The objective of PowerMEMS 2015 is to catalyze innovation in micro- and nano-scale technologies for the energy domain. The scope of the meeting ranges from basic principles, to materials and fabrication, to devices and systems, to applications. The many applications of Power MEMS range from the harvesting, storage, conversion and conditioning of energy, to integrated systems that manage these processes, to actuation, pumping, and propulsion. Our Conference aims to stimulate the exchange of insights and information, as well as the development of new ideas, in the Power MEMS field. Our goal is to allow the attendees to interact and network within our multidisciplinary community that includes professionals from many branches of science and engineering, as well as energy, policy, and entrepreneurial specialists interested in the commercialization of Power MEMS technologies. Since the first PowerMEMS in Sendai, Japan in 2000, the Conference has grown in size, reputation, impact, and technical breadth. This continuing growth is evident in this year's technical program, which includes an increasing number of papers on nanomaterials, additive manufacturing for energy systems, actuators, energy storage, harvesting strategies and integrated energy harvesting systems, for example. This year's technical program is highlighted by six plenary talks from prominent experts on piezoelectrics, robotic insects, thermoelectrics, photovoltaics, nanocomposite cathodes, and thermal energy conversion systems. The contributed program received a large number of abstract submissions this year, 169 in total. After careful review by the 34-member Technical Program Committee, a total of 135 papers were selected for presentation. The 60 contributed oral presentations are arranged in two parallel sessions. The 75 posters are arranged in a ''two-in-one'' poster session in which the poster session time is divided in two; half the posters will be presented during each half-session, allowing the poster presenters to also browse the posters during the poster session. Posters will remain up during the meeting, so please feel free to peruse them at your leisure. The Proceedings will be visible and accessible through IOP after conclusion of the Conference. We hope to maximize interaction among participants and stimulate lively discussion through the technical program and social events. For the first time at the Conference, a great many sponsors are making their presence known at PowerMEMS through tabletop displays, which will catalyze engaging conversations between our industrial partners and the research community. Also, for the first time at PowerMEMS, we will host a Rump Session - an informal event in which Conference participants engage in honest and fun discussions of topics of relevance to the community while strengthening bonds within the community. This meeting is made possible by many generous contributions of time, effort, and financial support. Thanks are due to the Technical Program Committee for their intensive efforts in reviewing abstract submissions, and to the International Steering Committee for their advice and support. We are grateful to Preferred Meeting Management Inc. for their many and key contributions to the management and organization of our Conference. Finally, we gratefully acknowledge the organizational and financial support provided for this meeting by the Transducers Research Foundation, Northeastern University, the Massachusetts Institute of Technology, and our exhibitors and other supporters. We hope that you find our Conference enjoyable and fruitful, and that you enjoy your stay in the Boston, MA area.

  3. Diffusion in energy materials: Governing dynamics from atomistic modelling

    NASA Astrophysics Data System (ADS)

    Parfitt, D.; Kordatos, A.; Filippatos, P. P.; Chroneos, A.

    2017-09-01

    Understanding diffusion in energy materials is critical to optimising the performance of solid oxide fuel cells (SOFCs) and batteries both of which are of great technological interest as they offer high efficiency for cleaner energy conversion and storage. In the present review, we highlight the insights offered by atomistic modelling of the ionic diffusion mechanisms in SOFCs and batteries and how the growing predictive capability of high-throughput modelling, together with our new ability to control compositions and microstructures, will produce advanced materials that are designed rather than chosen for a given application. The first part of the review focuses on the oxygen diffusion mechanisms in cathode and electrolyte materials for SOFCs and in particular, doped ceria and perovskite-related phases with anisotropic structures. The second part focuses on disordered oxides and two-dimensional materials as these are very promising systems for battery applications.

  4. Towards Versatile and Sustainable Hydrogen Production through Electrocatalytic Water Splitting: Electrolyte Engineering

    PubMed Central

    Shinagawa, Tatsuya

    2017-01-01

    Abstract Recent advances in power generation from renewable resources necessitate conversion of electricity to chemicals and fuels in an efficient manner. Electrocatalytic water splitting is one of the most powerful and widespread technologies. The development of highly efficient, inexpensive, flexible, and versatile water electrolysis devices is desired. This review discusses the significance and impact of the electrolyte on electrocatalytic performance. Depending on the circumstances under which the water splitting reaction is conducted, the required solution conditions, such as the identity and molarity of ions, may significantly differ. Quantitative understanding of such electrolyte properties on electrolysis performance is effective to facilitate the development of efficient electrocatalytic systems. The electrolyte can directly participate in reaction schemes (kinetics), affect electrode stability, and/or indirectly impact the performance by influencing the concentration overpotential (mass transport). This review aims to guide fine‐tuning of the electrolyte properties, or electrolyte engineering, for (photo)electrochemical water splitting reactions. PMID:27984671

  5. Evaluation of hydrotropic pretreatment on lignocellulosic biomass.

    PubMed

    Devendra, Leena P; Kiran Kumar, M; Pandey, Ashok

    2016-08-01

    The production of cellulosic ethanol from biomass is considered as a promising alternative to fossil fuels, providing a sustainable option for fuels production in an environmentally compatible manner. The presence of lignin poses a significant challenge for obtaining biofuels and bioproducts from biomass. Part of that problem involves understanding fundamental aspects of lignin structure which can provide a pathway for the development of improved technologies for biomass conversion. Hydrotropic pretreatment has several attractive features that make it an attractive alternative for biofuel production. This review highlights the recent developments on hydrotropic pretreatment processes for lignocellulosic biomass on a molecular structure basis for recalcitrance, with emphasis on lignin concerning chemical structure, transformation and recalcitrance. The review also evaluates the hydrotropic delignification in comparison to alkaline delignification on lignin reduction and surface coverage by lignin. The effect of hydrotrope pretreatment on enzymatic saccharification has also been discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. [Biogas production from cellulose-containing substrates: a review].

    PubMed

    Tsavkelova, E A; Netrusov, A I

    2012-01-01

    Anaerobic microbial conversion of organic substrates to various biofuels is one of the alternative energy sources attracting the greatest attention of scientists. The advantages of biogas production over other technologies are the ability of methanogenic communities to degrade a broad range of substrates and concomitant benefits: neutralization of organic waste, reduction of greenhouse gas emission, and fertilizer production. Cellulose-containing materials are a good substrate, but their full-scale utilization encounters a number of problems, including improvement of the quality and amount ofbiogas produced and maintenance of the stability and high efficiency of microbial communities. We review data on microorganisms that form methanogenic cellulolytic communities, enzyme complexes of anaerobes essential for cellulose fiber degradation, and feedstock pretreatment, as biodegradation is hindered in the presence of lignin. Methods for improving biogas production by optimization of microbial growth conditions are considered on the examples of biogas formation from various types of plant and paper materials: writing paper and cardboard.

  7. A Deep Space Power System Option Based on Synergistic Power Conversion Technologies

    NASA Technical Reports Server (NTRS)

    Schreiber, Jeffrey G.

    2000-01-01

    Deep space science missions have typically used radioisotope thermoelectric generator (RTG) power systems. The RTG power system has proven itself to be a rugged and highly reliable power system over many missions, however the thermal-to-electric conversion technology used was approximately 5% efficient. While the relatively low efficiency has some benefits in terms of system integration, there are compelling reasons why a more efficient conversion system should be pursued. The cost savings alone that are available as a result of the reduced isotope inventory are significant. The Advanced Radioisotope Power System (ARPS) project was established to fulfill this goal. Although it was not part of the ARPS project, Stirling conversion technology is being demonstrated with a low level of funding by both NASA and DOE. A power system with Stirling convertors. although intended for use with an isotope heat source. can be combined with other advanced technologies to provide a novel power system for deep space missions. An inflatable primary concentrator would be used in combination with a refractive secondary concentrator (RSC) as the heat source to power the system. The inflatable technology as a structure has made great progress for a variety of potential applications such as communications reflectors, radiators and solar arrays. The RSC has been pursued for use in solar thermal propulsion applications, and it's unique properties allow some advantageous system trades to be made. The power system proposed would completely eliminate the isotope heat source and could potentially provide power for science missions to planets as distant as Uranus. This paper will present the background and developmental status of the technologies and will then describe the power system being proposed.

  8. Molecular Breeding Algae For Improved Traits For The Conversion Of Waste To Fuels And Commodities.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bagwell, C.

    This Exploratory LDRD aimed to develop molecular breeding methodology for biofuel algal strain improvement for applications in waste to energy / commodity conversion technologies. Genome shuffling technologies, specifically protoplast fusion, are readily available for the rapid production of genetic hybrids for trait improvement and have been used successfully in bacteria, yeast, plants and animals. However, genome fusion has not been developed for exploiting the remarkable untapped potential of eukaryotic microalgae for large scale integrated bio-conversion and upgrading of waste components to valued commodities, fuel and energy. The proposed molecular breeding technology is effectively sexual reproduction in algae; though compared tomore » traditional breeding, the molecular route is rapid, high-throughput and permits selection / improvement of complex traits which cannot be accomplished by traditional genetics. Genome fusion technologies are the cutting edge of applied biotechnology. The goals of this Exploratory LDRD were to 1) establish reliable methodology for protoplast production among diverse microalgal strains, and 2) demonstrate genome fusion for hybrid strain production using a single gene encoded trait as a proof of the concept.« less

  9. Techno-economic analysis of a biomass depot

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobson, Jacob Jordan; Lamers, Patrick; Roni, Mohammad Sadekuzzaman

    2014-10-01

    The U.S. Department of Energy (DOE) Bioenergy Technologies Office (BETO) promotes the production of an array of liquid fuels and fuel blendstocks from lignocellulosic biomass feedstocks by funding fundamental and applied research that advances the state of technology in biomass collection, conversion, and sustainability. As part of its involvement in this program, the Idaho National Laboratory (INL) investigates the technical, economic, and environmental performance of different feedstock supply systems and their impacts on the downstream conversion processes.

  10. Application of Synchronous Text-Based Dialogue Systems in Mental Health Interventions: Systematic Review

    PubMed Central

    Milne, David N

    2017-01-01

    Background Synchronous written conversations (or “chats”) are becoming increasingly popular as Web-based mental health interventions. Therefore, it is of utmost importance to evaluate and summarize the quality of these interventions. Objective The aim of this study was to review the current evidence for the feasibility and effectiveness of online one-on-one mental health interventions that use text-based synchronous chat. Methods A systematic search was conducted of the databases relevant to this area of research (Medical Literature Analysis and Retrieval System Online [MEDLINE], PsycINFO, Central, Scopus, EMBASE, Web of Science, IEEE, and ACM). There were no specific selection criteria relating to the participant group. Studies were included if they reported interventions with individual text-based synchronous conversations (ie, chat or text messaging) and a psychological outcome measure. Results A total of 24 articles were included in this review. Interventions included a wide range of mental health targets (eg, anxiety, distress, depression, eating disorders, and addiction) and intervention design. Overall, compared with the waitlist (WL) condition, studies showed significant and sustained improvements in mental health outcomes following synchronous text-based intervention, and post treatment improvement equivalent but not superior to treatment as usual (TAU) (eg, face-to-face and telephone counseling). Conclusions Feasibility studies indicate substantial innovation in this area of mental health intervention with studies utilizing trained volunteers and chatbot technologies to deliver interventions. While studies of efficacy show positive post-intervention gains, further research is needed to determine whether time requirements for this mode of intervention are feasible in clinical practice. PMID:28784594

  11. Megawatt Class Nuclear Space Power Systems (MCNSPS) conceptual design and evaluation report. Volume 3, technologies 2: Power conversion

    NASA Technical Reports Server (NTRS)

    Wetch, J. R.

    1988-01-01

    The major power conversion concepts considered for the Megawatt Class Nuclear Space Power System (MCNSPS) are discussed. These concepts include: (1) Rankine alkali-metal-vapor turbine alternators; (2) in-core thermionic conversion; (3) Brayton gas turbine alternators; and (4) free piston Stirling engine linear alternators. Considerations important to the coupling of these four conversion alternatives to an appropriate nuclear reactor heat source are examined along with the comparative performance characteristics of the combined systems meeting MCNSPS requirements.

  12. Cost/efficacy evaluation of the technologies applied to video-assisted thoracoscopic surgery lobectomy.

    PubMed

    Menna, Cecilia; Ibrahim, Mohsen; Rendina, Erino Angelo; Venuta, Federico; Andreetti, Claudio

    2017-01-01

    Superior outcomes after video-assisted thoracoscopic surgery (VATS) pulmonary lobectomy have been demonstrated, compared with thoracotomy, for patients affected by early-stage non-small cell lung cancer (NSCLC). However, in an era of rising health care costs and controlled resources, the overall medical cost of surgical procedures is measured by the hospitals' marketing offices. Several factors such as surgical technique, conversion rate, length of stay, post-operative complications occurrence and mainly the introduction of new surgical technologies (disposables and devices) could influence the cost-effectiveness of VATS procedures. However, increased operating room costs are counteracted by shorter hospital stay and reduced ward bed stays providing further resources for other patients. Thus, choosing a surgical approach and assessing whether a specific technique is cost-effective is mandatory for a modern thoracic surgeon to justify its expenses. This review tries to reach a conclusion by comparing all recent studies reporting a cost analysis for VATS lobectomy, especially for new technologies used for VATS lobectomy. Nevertheless, no sufficient evidences are published to assess VATS new technologies sustainability and further cost analyses are necessary before VATS lobectomy expense is deemed justified.

  13. Irradiation enhancement of biomass conversion

    NASA Astrophysics Data System (ADS)

    Smith, G. S.; Kiesling, H. E.; Galyean, M. L.; Bader, J. R.

    The vast supply of cellulosic agricultural residues and industrial by-products that is produced each year is a prospective resource of biomass suitable for conversion to useful products such as feedstock for the chemicals industry and feedstuffs for the livestock industry. Conversions of such biomass is poor at present, and utilization is inefficient, because of physio-chemical barriers to biological degradation and (or) anti-quality components such as toxicants that restrict biological usages. Improvements in biodegradability of ligno-cellulosic materials have been accomplished by gamma-ray and electron-beam irradiation at intermediate dosage (˜ 50 Mrad; .5 MGy); but applications of the technology have been hampered by questionable interpretations of results. Recent research with organic wastes such as sewage sludge and straw suggests opportunity for important applications of irradiation technology in enhancement of biomass conversion. Data from experiments using irradiated straw as feed for ruminants are presented and discussed in relation to research on prospective usage of sewage products as feed for ruminants. Findings are discussed in regard to prospective applications in industrial fermentation processes. Possible usage of irradiation technology for destruction of toxicants in exotic plants is considered in regard to prospective new feedstuffs.

  14. Exploring the Effects of Conversational Repair as a Scaffolding Strategy to Promote Mathematics Explanations of Students with Learning Disabilities

    ERIC Educational Resources Information Center

    Liu, Jia

    2013-01-01

    Conversational repair often occurs in conversations when people attempt to address communicative breakdowns or inaccuracy by way of repeating what have been said or putting them in another way. The review of literature on conversational repair revealed that as an important concept in pragmatic aspect of language, it is an effective strategy to…

  15. Sonochemistry: what potential for conversion of lignocellulosic biomass into platform chemicals?

    PubMed

    Chatel, Gregory; De Oliveira Vigier, Karine; Jérôme, François

    2014-10-01

    This Review focuses on the use of ultrasound to produce chemicals from lignocellulosic biomass. However, the question about the potential of sonochemistry for valorization/conversion of lignocellulosic biomass into added-value chemicals is rather conceptual. Until now, this technology has been mainly used for the production of low-value chemicals such as biodiesel or as simple method for pretreatment or extraction. According to preliminary studies reported in literature, access to added-value chemicals can be easily and sometimes solely obtained by the use of ultrasound. The design of sonochemical parameters offers many opportunities to develop new eco-friendly and efficient processes. The goal of this Review is to understand why the use of ultrasound is focused rather on pretreatment or extraction of lignocellulosic biomass rather than on the production of chemicals and to understand, through the reported examples, which directions need to be followed to favor strategies based on ultrasound-assisted production of chemicals from lignocellulosic biomass. We believe that ultrasound-assisted processes represent an innovative approach and will create a growing interest in academia but also in the industry in the near future. Based on the examples reported in the literature, we critically discuss how sonochemistry could offer new strategies and give rise to new results in lignocellulosic biomass valorization. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Designing Instructional Text in a Conversational Style: A Meta-Analysis

    ERIC Educational Resources Information Center

    Ginns, Paul; Martin, Andrew J.; Marsh, Herbert W.

    2013-01-01

    This article reviews research on the effects of conversational style on learning. Studies of conversational style have variously investigated "personalization" through changing instances of first-person address to second or third person, including sentences that directly address the learner; including more polite forms of address; and…

  17. Future mission opportunities and requirements for advanced space photovoltaic energy conversion technology

    NASA Technical Reports Server (NTRS)

    Flood, Dennis J.

    1990-01-01

    The variety of potential future missions under consideration by NASA will impose a broad range of requirements on space solar arrays, and mandates the development of new solar cells which can offer a wide range of capabilities to mission planners. Major advances in performance have recently been achieved at several laboratories in a variety of solar cell types. Many of those recent advances are reviewed, the areas are examined where possible improvements are yet to be made, and the requirements are discussed that must be met by advanced solar cell if they are to be used in space. The solar cells of interest include single and multiple junction cells which are fabricated from single crystal, polycrystalline and amorphous materials. Single crystal cells on foreign substrates, thin film single crystal cells on superstrates, and multiple junction cells which are either mechanically stacked, monolithically grown, or hybrid structures incorporating both techniques are discussed. Advanced concentrator array technology for space applications is described, and the status of thin film, flexible solar array blanket technology is reported.

  18. EDITORIAL: Selected papers from the 9th International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS 2009) Selected papers from the 9th International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS 2009)

    NASA Astrophysics Data System (ADS)

    Ghodssi, Reza; Livermore, Carol; Arnold, David

    2010-10-01

    This special section of the Journal of Micromechanics and Microengineering presents papers selected from the 9th International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS 2009), which was held in Washington DC, USA from 1-4 December 2009. Since it was first held in Sendai, Japan in 2000, the PowerMEMS workshop has focused on small-scale systems that process, convert, or generate macroscopically significant amounts of power, typically with high power density or high energy density. In the workshop's early years, much of the research presented was on small-scale fueled systems, such as micro heat engines and micro fuel cells. The past nine years have seen a dramatic expansion in the range of technologies that are brought to bear on the challenge of high-power, small-scale systems, as well as an increase in the applications for such technologies. At this year's workshop, 158 contributed papers were presented, along with invited and plenary presentations. The papers focused on applications from micro heat engines and fuel cells, to energy harvesting and its enabling electronics, to thermal management and propulsion. Also presented were the technologies that enable these applications, such as the structuring of microscale, nanoscale and biological systems for power applications, as well as combustion and catalysis at small scales. This special section includes a selection of 12 expanded papers representing energy harvesting, chemical and fueled systems, and elastic energy storage at small scales. We would like to express our appreciation to the members of the International Steering Committee, the Technical Program Committee, the Local Organizing Committee, and to the workshop's financial supporters. We are grateful to the referees for their contributions to the review process. Finally, we would like to thank Dr Ian Forbes, the editorial staff of the Journal of Micromechanics and Microengineering, and the staff of IOP Publishing for making this special section possible.

  19. Conversion system overview assessment. Volume 1: solar thermoelectrics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jayadev, T. S.; Henderson, J.; Finegold, J.

    1979-08-01

    An assessment of thermoelectrics for solar energy conversion is given. There is significant potential for solar thermoelectrics in solar technologies where collector costs are low; e.g., Ocean Thermal Energy Conversion (OTEC) and solar ponds. Reports of two studies by manufacturers assessing the cost of thermoelectric generators in large scale production are included in the appendix and several new concepts thermoelectric systems are presented. (WHK)

  20. State-of-the-art Architectures and Technologies of High-Efficiency Solar Cells Based on III-V Heterostructures for Space and Terrestrial Applications

    NASA Astrophysics Data System (ADS)

    Pakhanov, N. A.; Andreev, V. M.; Shvarts, M. Z.; Pchelyakov, O. P.

    2018-03-01

    Multi-junction solar cells based on III-V compounds are the most efficient converters of solar energy to electricity and are widely used in space solar arrays and terrestrial photovoltaic modules with sunlight concentrators. All modern high-efficiency III-V solar cells are based on the long-developed triple-junction III-V GaInP/GaInAs/Ge heterostructure and have an almost limiting efficiency for a given architecture — 30 and 41.6% for space and terrestrial concentrated radiations, respectively. Currently, an increase in efficiency is achieved by converting from the 3-junction to the more efficient 4-, 5-, and even 6-junction III-V architectures: growth technologies and methods of post-growth treatment of structures have been developed, new materials with optimal bandgaps have been designed, and crystallographic parameters have been improved. In this review, we consider recent achievements and prospects for the main directions of research and improvement of architectures, technologies, and materials used in laboratories to develop solar cells with the best conversion efficiency: 35.8% for space, 38.8% for terrestrial, and 46.1% for concentrated sunlight. It is supposed that by 2020, the efficiency will approach 40% for direct space radiation and 50% for concentrated terrestrial solar radiation. This review considers the architecture and technologies of solar cells with record-breaking efficiency for terrestrial and space applications. It should be noted that in terrestrial power plants, the use of III-V SCs is economically advantageous in systems with sunlight concentrators.

  1. Regional characteristics relevant to advanced technology cogeneration development. [industrial energy

    NASA Technical Reports Server (NTRS)

    Manvi, R.

    1981-01-01

    To assist DOE in establishing research and development funding priorities in the area of advanced energy conversion technoloy, researchers at the Jet Propulsion Laboratory studied those specific factors within various regions of the country that may influence cogeneration with advanced energy conversion systems. Regional characteristics of advanced technology cogeneration possibilities are discussed, with primary emphasis given to coal derived fuels. Factors considered for the study were regional industry concentration, purchased fuel and electricity prices, environmental constraints, and other data of interest to industrial cogeneration.

  2. Research and evolution of mid-infrared optical source

    NASA Astrophysics Data System (ADS)

    Chen, Changshui; Hu, Hui; Xu, Lei

    2016-10-01

    3-5 μm mid-infrared wave band is in the atmosphere window, it has lots of promising applications on the spectroscopy, remote sensing, medical treatment, environmental protection and military affairs. So, it has been a hot topic around the world to research the lasers at this wave band. In recent years, adiabatic passage technology has been applied in frequency conversion area, which borrowed from atomic physics. In this paper we will introduce efficient nonlinear optics frequency conversion by suing this technology.

  3. Space Photovoltaic Research and Technology, 1989

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Remarkable progress on a wide variety of approaches in space photovoltaics, for both near and far term applications is reported. Papers were presented in a variety of technical areas, including multi-junction cell technology, GaAs and InP cells, system studies, cell and array development, and non-solar direct conversion. Five workshops were held to discuss the following topics: mechanical versus monolithic multi-junction cells; strategy in space flight experiments; non-solar direct conversion; indium phosphide cells; and space cell theory and modeling.

  4. Synthesis of ceramic-based porous gradient structures for applications in energy conversion and related fields

    NASA Astrophysics Data System (ADS)

    Graule, Thomas; Ozog, Paulina; Durif, Caroline; Wilkens-Heinecke, Judit; Kata, Dariusz

    2016-06-01

    Porous, graded ceramic structures are of high relevance in the field of energy conversion as well as in catalysis, and additionally in filtration technology and in biomedical applications. Among different technologies for the tailored design for such structures we demonstrate here a new environmental friendly UV curing-based concept to prepare laminated structures with pore sizes ranging from a few microns up to 50 microns in diameter and with porosities ranging from 10% up to 75 vol.% porosity.

  5. Turning carbon dioxide into fuel.

    PubMed

    Jiang, Z; Xiao, T; Kuznetsov, V L; Edwards, P P

    2010-07-28

    Our present dependence on fossil fuels means that, as our demand for energy inevitably increases, so do emissions of greenhouse gases, most notably carbon dioxide (CO2). To avoid the obvious consequences on climate change, the concentration of such greenhouse gases in the atmosphere must be stabilized. But, as populations grow and economies develop, future demands now ensure that energy will be one of the defining issues of this century. This unique set of (coupled) challenges also means that science and engineering have a unique opportunity-and a burgeoning challenge-to apply their understanding to provide sustainable energy solutions. Integrated carbon capture and subsequent sequestration is generally advanced as the most promising option to tackle greenhouse gases in the short to medium term. Here, we provide a brief overview of an alternative mid- to long-term option, namely, the capture and conversion of CO2, to produce sustainable, synthetic hydrocarbon or carbonaceous fuels, most notably for transportation purposes. Basically, the approach centres on the concept of the large-scale re-use of CO2 released by human activity to produce synthetic fuels, and how this challenging approach could assume an important role in tackling the issue of global CO2 emissions. We highlight three possible strategies involving CO2 conversion by physico-chemical approaches: sustainable (or renewable) synthetic methanol, syngas production derived from flue gases from coal-, gas- or oil-fired electric power stations, and photochemical production of synthetic fuels. The use of CO2 to synthesize commodity chemicals is covered elsewhere (Arakawa et al. 2001 Chem. Rev. 101, 953-996); this review is focused on the possibilities for the conversion of CO2 to fuels. Although these three prototypical areas differ in their ultimate applications, the underpinning thermodynamic considerations centre on the conversion-and hence the utilization-of CO2. Here, we hope to illustrate that advances in the science and engineering of materials are critical for these new energy technologies, and specific examples are given for all three examples. With sufficient advances, and institutional and political support, such scientific and technological innovations could help to regulate/stabilize the CO2 levels in the atmosphere and thereby extend the use of fossil-fuel-derived feedstocks.

  6. Sodium Hydroxide Pretreatment of Switchgrass for Ethanol Production

    USDA-ARS?s Scientific Manuscript database

    Lignocellulose-to-ethanol conversion is a promising technology to supplement corn-based ethanol production. However, the recalcitrant structure of lignocellulosic material is a major obstacle to the efficient conversion. To improve the enzymatic digestibility of switchgrass for the fermentable sugar...

  7. Survey of power tower technology

    NASA Astrophysics Data System (ADS)

    Hildebrandt, A. F.; Dasgupta, S.

    1980-05-01

    The history of the power tower programs is reviewed, and attention is given to the current state of heliostat, receiver, and storage design. Economic considerations are discussed, as are simulation studies and implications. Also dealt with are alternate applications for the power tower and some financing and energy aspects of solar electric conversion. It is noted that with a national commitment to solar energy, the power tower concept could generate 40 GW of electricity and double this amount in process heat by the year 2000. Calculations show an energy amplification factor of 20 for solar energy plants; that is, the ratio of the electric energy produced over the lifetime of a power plant to the thermal energy required to produce the plant.

  8. The features that distinguish lichenases from other polysaccharide-hydrolyzing enzymes and the relevance of lichenases for biotechnological applications.

    PubMed

    Goldenkova-Pavlova, Irina V; Tyurin, Alexander А; Mustafaev, Orkhan N

    2018-05-01

    The main specific features of β-1,3-1,4-glucanases (or lichenases, EC 3.2.1.73), the enzymes that in a strictly specific manner hydrolyze β-glucans of many cereal species and lichens containing β-1,3 and β-1,4 bonds, are reviewed as well as the current strategies used for their protein design, which have been successfully applied to make lichenases more attractive and promising for biocatalytic conversion of biomass, in particular, in the areas of their biotechnological application, such as brewing industry, animal feed manufacture, and biofuel production, which will in future allow these technologies to be economically and ecologically beneficial.

  9. Applications of chemogenomic library screening in drug discovery.

    PubMed

    Jones, Lyn H; Bunnage, Mark E

    2017-04-01

    The allure of phenotypic screening, combined with the industry preference for target-based approaches, has prompted the development of innovative chemical biology technologies that facilitate the identification of new therapeutic targets for accelerated drug discovery. A chemogenomic library is a collection of selective small-molecule pharmacological agents, and a hit from such a set in a phenotypic screen suggests that the annotated target or targets of that pharmacological agent may be involved in perturbing the observable phenotype. In this Review, we describe opportunities for chemogenomic screening to considerably expedite the conversion of phenotypic screening projects into target-based drug discovery approaches. Other applications are explored, including drug repositioning, predictive toxicology and the discovery of novel pharmacological modalities.

  10. Roadmap on optical energy conversion

    NASA Astrophysics Data System (ADS)

    Boriskina, Svetlana V.; Green, Martin A.; Catchpole, Kylie; Yablonovitch, Eli; Beard, Matthew C.; Okada, Yoshitaka; Lany, Stephan; Gershon, Talia; Zakutayev, Andriy; Tahersima, Mohammad H.; Sorger, Volker J.; Naughton, Michael J.; Kempa, Krzysztof; Dagenais, Mario; Yao, Yuan; Xu, Lu; Sheng, Xing; Bronstein, Noah D.; Rogers, John A.; Alivisatos, A. Paul; Nuzzo, Ralph G.; Gordon, Jeffrey M.; Wu, Di M.; Wisser, Michael D.; Salleo, Alberto; Dionne, Jennifer; Bermel, Peter; Greffet, Jean-Jacques; Celanovic, Ivan; Soljacic, Marin; Manor, Assaf; Rotschild, Carmel; Raman, Aaswath; Zhu, Linxiao; Fan, Shanhui; Chen, Gang

    2016-07-01

    For decades, progress in the field of optical (including solar) energy conversion was dominated by advances in the conventional concentrating optics and materials design. In recent years, however, conceptual and technological breakthroughs in the fields of nanophotonics and plasmonics combined with a better understanding of the thermodynamics of the photon energy-conversion processes reshaped the landscape of energy-conversion schemes and devices. Nanostructured devices and materials that make use of size quantization effects to manipulate photon density of states offer a way to overcome the conventional light absorption limits. Novel optical spectrum splitting and photon-recycling schemes reduce the entropy production in the optical energy-conversion platforms and boost their efficiencies. Optical design concepts are rapidly expanding into the infrared energy band, offering new approaches to harvest waste heat, to reduce the thermal emission losses, and to achieve noncontact radiative cooling of solar cells as well as of optical and electronic circuitries. Light-matter interaction enabled by nanophotonics and plasmonics underlie the performance of the third- and fourth-generation energy-conversion devices, including up- and down-conversion of photon energy, near-field radiative energy transfer, and hot electron generation and harvesting. Finally, the increased market penetration of alternative solar energy-conversion technologies amplifies the role of cost-driven and environmental considerations. This roadmap on optical energy conversion provides a snapshot of the state of the art in optical energy conversion, remaining challenges, and most promising approaches to address these challenges. Leading experts authored 19 focused short sections of the roadmap where they share their vision on a specific aspect of this burgeoning research field. The roadmap opens up with a tutorial section, which introduces major concepts and terminology. It is our hope that the roadmap will serve as an important resource for the scientific community, new generations of researchers, funding agencies, industry experts, and investors.

  11. A New Technological Framework: Education, Technology and Entertainment.

    ERIC Educational Resources Information Center

    Elsner, Paul A.

    2000-01-01

    Recounts the conversations at three Sedona Conferences that attempted to align entertainment, education, and technology around a futures framework. Explores how linking insights from the entertainment world, especially from film and video production, from education, and from technology, unravels some secrets about who we are, why we are here, and…

  12. Multifunctional nanostructured electrocatalysts for energy conversion and storage: current status and perspectives.

    PubMed

    Ghosh, Srabanti; Basu, Rajendra N

    2018-06-21

    Electrocatalytic oxygen reduction reaction (ORR), oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) have attracted widespread attention because of their important role in the application of various energy storage and conversion devices, such as fuel cells, metal-air batteries and water splitting devices. However, the sluggish kinetics of the HER/OER/ORR and their dependency on expensive noble metal catalysts (e.g., Pt) obstruct their large-scale application. Hence, the development of efficient and robust bifunctional or trifunctional electrocatalysts in nanodimension for both oxygen reduction/evolution and hydrogen evolution reactions is highly desired and challenging for their commercialization in renewable energy technologies. This review describes some recent developments in the discovery of bifunctional or trifunctional nanostructured catalysts with improved performances for application in rechargeable metal-air batteries and fuel cells. The role of the electronic structure and surface redox chemistry of nanocatalysts in the improvement of their performance for the ORR/OER/HER under an alkaline medium is highlighted and the associated reaction mechanisms developed in the recent literature are also summarized.

  13. Recent advances on conversion and co-production of acetone-butanol-ethanol into high value-added bioproducts.

    PubMed

    Xin, Fengxue; Dong, Weiliang; Jiang, Yujia; Ma, Jiangfeng; Zhang, Wenming; Wu, Hao; Zhang, Min; Jiang, Min

    2018-06-01

    Butanol is an important bulk chemical and has been regarded as an advanced biofuel. Large-scale production of butanol has been applied for more than 100 years, but its production through acetone-butanol-ethanol (ABE) fermentation process by solventogenic Clostridium species is still not economically viable due to the low butanol titer and yield caused by the toxicity of butanol and a by-product, such as acetone. Renewed interest in biobutanol as a biofuel has spurred technological advances to strain modification and fermentation process design. Especially, with the development of interdisciplinary processes, the sole product or even the mixture of ABE produced through ABE fermentation process can be further used as platform chemicals for high value added product production through enzymatic or chemical catalysis. This review aims to comprehensively summarize the most recent advances on the conversion of acetone, butanol and ABE mixture into various products, such as isopropanol, butyl-butyrate and higher-molecular mass alkanes. Additionally, co-production of other value added products with ABE was also discussed.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aabakken, J.

    This report, prepared by NREL's Strategic Energy Analysis Center, includes up-to-date information on power technologies, including complete technology profiles. The data book also contains charts on electricity restructuring, power technology forecasts, electricity supply, electricity capability, electricity generation, electricity demand, prices, economic indicators, environmental indicators, and conversion factors.

  15. PRELIMINARY COST ESTIMATES OF POLLUTION CONTROL TECHNOLOGIES FOR GEOTHERMAL DEVELOPMENTS

    EPA Science Inventory

    This report provides preliminary cost estimates of air and water pollution control technologies for geothermal energy conversion facilities. Costs for solid waste disposal are also estimated. The technologies examined include those for control of hydrogen sulfide emissions and fo...

  16. Risk factors for failed conversion of labor epidural analgesia to cesarean delivery anesthesia: a systematic review and meta-analysis of observational trials.

    PubMed

    Bauer, M E; Kountanis, J A; Tsen, L C; Greenfield, M L; Mhyre, J M

    2012-10-01

    This systematic review and meta-analysis evaluates evidence for seven risk factors associated with failed conversion of labor epidural analgesia to cesarean delivery anesthesia. Online scientific literature databases were searched using a strategy which identified observational trials, published between January 1979 and May 2011, which evaluated risk factors for failed conversion of epidural analgesia to anesthesia or documented a failure rate resulting in general anesthesia. 1450 trials were screened, and 13 trials were included for review (n=8628). Three factors increase the risk for failed conversion: an increasing number of clinician-administered boluses during labor (OR=3.2, 95% CI 1.8-5.5), greater urgency for cesarean delivery (OR=40.4, 95% CI 8.8-186), and a non-obstetric anesthesiologist providing care (OR=4.6, 95% CI 1.8-11.5). Insufficient evidence is available to support combined spinal-epidural versus standard epidural techniques, duration of epidural analgesia, cervical dilation at the time of epidural placement, and body mass index or weight as risk factors for failed epidural conversion. The risk of failed conversion of labor epidural analgesia to anesthesia is increased with an increasing number of boluses administered during labor, an enhanced urgency for cesarean delivery, and care being provided by a non-obstetric anesthesiologist. Further high-quality studies are needed to evaluate the many potential risk factors associated with failed conversion of labor epidural analgesia to anesthesia for cesarean delivery. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. The Canadian Experience: Implications for Metric Conversion in Education.

    ERIC Educational Resources Information Center

    Chalupsky, Albert B.; And Others

    The findings of a study of metric conversion in Canada are reported, with special attention to its impact on education. Some 40 interviews with metric education leaders in 8 provinces, coupled with an extensive review of documents and correspondence with key individuals in metric conversion throughout Canada, served as the information source for…

  18. Ethical Issues Associated with Client Values Conversion and Therapist Value Agendas in Family Therapy.

    ERIC Educational Resources Information Center

    Odell, Mark; Stewart, Scott Philip

    1993-01-01

    Raises ethical concerns inherent in dealing with issue of values in family therapy, focusing on conversion of client values and therapists who may hold evangelistic agendas. Presents brief review of research addressing client values conversion in individual psychotherapy, along with proposed solutions for dealing with values. Offers suggestions…

  19. Sun Exposure across the Life Course Significantly Modulates Early Multiple Sclerosis Clinical Course.

    PubMed

    Simpson, Steve; van der Mei, Ingrid; Lucas, Robyn M; Ponsonby, Anne-Louise; Broadley, Simon; Blizzard, Leigh; Taylor, Bruce

    2018-01-01

    Low vitamin D and/or sun exposure have been associated with increased risk of multiple sclerosis (MS) onset. However, comparatively, few studies have prospectively examined associations between these factors and clinical course. To evaluate the association of sun exposure parameters and vitamin D levels with conversion to MS and relapse risk in a prospectively monitored cohort of 145 participants followed after a first demyelinating event up to 5-year review (AusLong Study). Sun exposure prior to and after onset measured by annual questionnaire; ultraviolet radiation (UVR) "load" estimated by location of residence over the life course and ambient UVR levels. Serum 25-hydroxyvitamin D [25(OH)D] concentrations measured at baseline, 2/3-year, and 5-year review. MS conversion and relapse assessed by neurologist assessment and medical record review. Over two-thirds (69%) of those followed to 5-year review (100/145) converted to MS, with a total of 252 relapses. Higher pre-MS onset sun exposure was associated with reduced risk of MS conversion, with internal consistency between measures and dose-response relationships. Analogous associations were also seen with risk of relapse, albeit less strong. No consistent associations were observed between postonset sun exposure and clinical course, however. Notably, those who increased their sun exposure during follow-up had significantly reduced hazards of MS conversion and relapse. Serum 25(OH)D levels and vitamin D supplementation were not associated with conversion to MS or relapse hazard. We found that preonset sun exposure was protective against subsequent conversion to MS and relapses. While consistent associations between postonset sun exposure or serum 25(OH)D level and clinical course were not evident, possibly masked by behavior change, those participants who markedly increased their sun exposure demonstrated a reduced MS conversion and relapse hazard, suggesting beneficial effects of sun exposure on clinical course.

  20. Gas Turbine Energy Conversion Systems for Nuclear Power Plants Applicable to LiFTR Liquid Fluoride Thorium Reactor Technology

    NASA Technical Reports Server (NTRS)

    Juhasz, Albert J.

    2014-01-01

    This panel plans to cover thermal energy and electric power production issues facing our nation and the world over the next decades, with relevant technologies ranging from near term to mid-and far term.Although the main focus will be on ground based plants to provide baseload electric power, energy conversion systems (ECS) for space are also included, with solar- or nuclear energy sources for output power levels ranging tens of Watts to kilo-Watts for unmanned spacecraft, and eventual mega-Watts for lunar outposts and planetary surface colonies. Implications of these technologies on future terrestrial energy systems, combined with advanced fracking, are touched upon.Thorium based reactors, and nuclear fusion along with suitable gas turbine energy conversion systems (ECS) will also be considered by the panelists. The characteristics of the above mentioned ECS will be described, both in terms of their overall energy utilization effectiveness and also with regard to climactic effects due to exhaust emissions.

  1. Advanced Controller Developed for the Free-Piston Stirling Convertor

    NASA Technical Reports Server (NTRS)

    Gerber, Scott S.

    2005-01-01

    A free-piston Stirling power convertor is being considered as an advanced power-conversion technology for future NASA deep-space missions requiring long-life radioisotope power systems. The NASA Glenn Research Center has identified key areas where advanced technologies can enhance the capability of Stirling energy-conversion systems. One of these is power electronic controls. Current power-conversion technology for Glenn-tested Stirling systems consists of an engine-driven linear alternator generating an alternating-current voltage controlled by a tuning-capacitor-based alternating-current peak voltage load controller. The tuning capacitor keeps the internal alternator electromotive force (EMF) in phase with its respective current (i.e., passive power factor correction). The alternator EMF is related to the piston velocity, which must be kept in phase with the alternator current in order to achieve stable operation. This tuning capacitor, which adds volume and mass to the overall Stirling convertor, can be eliminated if the controller can actively drive the magnitude and phase of the alternator current.

  2. Recent advances in visible-light-responsive photocatalysts for hydrogen production and solar energy conversion--from semiconducting TiO2 to MOF/PCP photocatalysts.

    PubMed

    Horiuchi, Yu; Toyao, Takashi; Takeuchi, Masato; Matsuoka, Masaya; Anpo, Masakazu

    2013-08-28

    The present perspective describes recent advances in visible-light-responsive photocatalysts intended to develop novel and efficient solar energy conversion technologies, including water splitting and photofuel cells. Water splitting is recognized as one of the most promising techniques to convert solar energy as a clean and abundant energy resource into chemical energy in the form of hydrogen. In recent years, increasing concern is directed to not only the development of new photocatalytic materials but also the importance of technologies to produce hydrogen and oxygen separately. Photofuel cells can convert solar energy into electrical energy by decomposing bio-related compounds and livestock waste as fuels. The advances of photocatalysts enabling these solar energy conversion technologies have been going on since the discovery of semiconducting titanium dioxide materials and have extended to organic-inorganic hybrid materials, such as metal-organic frameworks and porous coordination polymers (MOF/PCP).

  3. Atlanta I-85 HOV-to-HOT conversion : analysis of vehicle and person throughput.

    DOT National Transportation Integrated Search

    2013-10-01

    This report summarizes the vehicle and person throughput analysis for the High Occupancy Vehicle to High Occupancy Toll Lane : conversion in Atlanta, GA, undertaken by the Georgia Institute of Technology research team. The team tracked changes in : o...

  4. Design and validation of wireless system for oil monitoring base on optical sensing unit

    NASA Astrophysics Data System (ADS)

    Niu, Liqun; Wang, Weiming; Zhang, Shuaishuai; Li, Zhirui; Yu, Yan; Huang, Hui

    2017-04-01

    According to the situation of oil leakage and the development of oil detection technology, a wireless monitoring system, combining with the sensor technology, optical measurement technology, and wireless technology, is designed. In this paper, the architecture of a wireless system is designed. In the hardware, the collected data, acquired by photoelectric conversion and analog to digital conversion equipment, will be sent to the upper machine where they are saved and analyzed. The experimental results reveals that the wireless system has the characteristics of higher precision, more real-time and more convenient installation, it can reflect the condition of the measuring object truly and implement the dynamic monitoring for a long time on-site, stability—thus it has a good application prospect in the oil monitoring filed.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, R.; Tao, L.; Scarlata, C.

    This report describes one potential conversion process to hydrocarbon products by way of catalytic conversion of lignocellulosic-derived hydrolysate. This model leverages expertise established over time in biomass deconstruction and process integration research at NREL, while adding in new technology areas for sugar purification and catalysis. The overarching process design converts biomass to die die diesel- and naphtha-range fuels using dilute-acid pretreatment, enzymatic saccharification, purifications, and catalytic conversion focused on deoxygenating and oligomerizing biomass hydrolysates.

  6. The Quest for Value-Added Products from Carbon Dioxide and Water in a Dielectric Barrier Discharge: A Chemical Kinetics Study.

    PubMed

    Snoeckx, Ramses; Ozkan, Alp; Reniers, Francois; Bogaerts, Annemie

    2017-01-20

    Recycling of carbon dioxide by its conversion into value-added products has gained significant interest owing to the role it can play for use in an anthropogenic carbon cycle. The combined conversion with H 2 O could even mimic the natural photosynthesis process. An interesting gas conversion technique currently being considered in the field of CO 2 conversion is plasma technology. To investigate whether it is also promising for this combined conversion, we performed a series of experiments and developed a chemical kinetics plasma chemistry model for a deeper understanding of the process. The main products formed were the syngas components CO and H 2 , as well as O 2 and H 2 O 2 , whereas methanol formation was only observed in the parts-per-billion to parts-per-million range. The syngas ratio, on the other hand, could easily be controlled by varying both the water content and/or energy input. On the basis of the model, which was validated with experimental results, a chemical kinetics analysis was performed, which allowed the construction and investigation of the different pathways leading to the observed experimental results and which helped to clarify these results. This approach allowed us to evaluate this technology on the basis of its underlying chemistry and to propose solutions on how to further improve the formation of value-added products by using plasma technology. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Beetle-kill to carbon-negative bioenergy in the Rockies: stand, enterprise, and regional-scale perspectives

    NASA Astrophysics Data System (ADS)

    Field, J.; Paustian, K.

    2016-12-01

    The interior mountain West is particularly vulnerable to climate change with potential impacts including drought and wildfire intensification, and wide-scale species disruptions due to shifts in habitable elevation ranges or other effects. One such example is the current outbreak of native mountain pine and spruce beetles across the Rockies, with warmer winters, dryer summers, and a legacy of logging and fire suppression all interacting to result in infestation and unprecedented tree mortality over more than 42 million acres. Current global climate change mitigation commitments imply that shifts to renewable energy must be supplemented with widespread deployment of carbon-negative technologies such as BECCS and biochar. Carefully-designed forest bioenergy and biochar industries can play an important role in meeting these targets, valorizing woody biomass and allowing more acres to be actively managed under existing land management goals while simultaneously displacing fossil energy use and directly sequestering carbon. In this work we assess the negative emissions potential from the deployment of biochar co-producing thermochemical bioenergy technologies in the Rockies using beetle-kill wood as a feedstock, a way of leveraging a climate change driven problem for climate mitigation. We start with a review and classification of bioenergy lifecycle assessment emission source categories, clarifying the differences in mechanism and confidence around emissions sources, offsets, sequestration, and leakage effects. Next we develop methods for modeling ecosystem carbon response to biomass removals at the stand scale, considering potential species shifts and regrowth rates under different harvest systems deployed in different areas. We then apply a lifecycle assessment framework to evaluate the performance of a set of real-world bioenergy technologies at enterprise scale, including biomass logistics and conversion product yields. We end with an exploration of regional-scale mitigation capacity considering wide-scale deployment and potential wildfire feedback effects of harvest, highlighting the relative importance of supply chain, conversion technology, ecological, and epistemological uncertainties in realizing wide-scale negative emissions in this region.

  8. Energy and cost saving results for advanced technology systems from the Cogeneration Technology Alternatives Study (CTAS)

    NASA Technical Reports Server (NTRS)

    Sagerman, G. D.; Barna, G. J.; Burns, R. K.

    1979-01-01

    An overview of the organization and methodology of the Cogeneration Technology Alternatives Study is presented. The objectives of the study were to identify the most attractive advanced energy conversion systems for industrial cogeneration applications in the future and to assess the advantages of advanced technology systems compared to those systems commercially available today. Advanced systems studied include steam turbines, open and closed cycle gas turbines, combined cycles, diesel engines, Stirling engines, phosphoric acid and molten carbonate fuel cells and thermionics. Steam turbines, open cycle gas turbines, combined cycles, and diesel engines were also analyzed in versions typical of today's commercially available technology to provide a base against which to measure the advanced systems. Cogeneration applications in the major energy consuming manufacturing industries were considered. Results of the study in terms of plant level energy savings, annual energy cost savings and economic attractiveness are presented for the various energy conversion systems considered.

  9. Solar thermal conversion

    NASA Technical Reports Server (NTRS)

    Selcuk, M. K.

    1978-01-01

    A brief review of the fundamentals of the conversion of solar energy into mechanical work (or electricity via generators) is given. Both past and present work on several conversion concepts are discussed. Solar collectors, storage systems, energy transport, and various types of engines are examined. Ongoing work on novel concepts of collectors, energy storage and thermal energy conversion are outlined and projections for the future are described. Energy costs for various options are predicted and margins and limitations are discussed.

  10. Solar thermal technology report, FY 1981. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The activities of the Department of Energy's Solar Thermal Technology Program are discussed. Highlights of technical activities and brief descriptions of each technology are given. Solar thermal conversion concepts are discussed in detail, particularily concentrating collectors and salt-gradient solar ponds.

  11. Selected papers from the 12th International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS 2012) (Atlanta, GA, USA, 2-5 December 2012)

    NASA Astrophysics Data System (ADS)

    Allen, Mark G.; Lang, Jeffrey

    2013-11-01

    Welcome to this special section of the Journal of Micromechanics and Microengineering (JMM). This section, co-edited by myself and by Professor Jeffrey Lang of the Massachusetts Institute of Technology, contains expanded versions of selected papers presented at the Power MEMS meeting held in Atlanta, GA, USA, in December of 2012. Professor Lang and I had the privilege of co-chairing Power MEMS 2012, the 12th International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications. The scope of the PowerMEMS series of workshops ranges from basic principles, to materials and fabrication, to devices and systems, to applications. The many applications of power MEMS (microelectromehcanical systems) range from MEMS-enabled energy harvesting, storage, conversion and conditioning, to integrated systems that manage these processes. Why is the power MEMS field growing in importance? Smaller-scale power and power supplies (microwatts to tens of watts) are gaining in prominence due to many factors, including the ubiquity of low power portable electronic equipment and the proliferation of wireless sensor nodes that require extraction of energy from their embedding environment in order to function. MEMS manufacturing methods can be utilized to improve the performance of traditional power supply elements, such as allowing batteries to charge faster or shrinking the physical size of passive elements in small-scale power supplies. MEMS technologies can be used to fabricate energy harvesters that extract energy from an embedding environment to power wireless sensor nodes, in-body medical implants and other devices, in which the harvesters are on the small scales that are appropriately matched to the overall size of these microsystems. MEMS can enable the manufacturing of energy storage elements from nontraditional materials by bringing appropriate structure and surface morphology to these materials as well as fabricating the electrical interfaces required for their operation and interconnection. Clearly, the marriage of MEMS technologies and energy conversion is a vital application space; and we are pleased to bring you some of the latest results from that space in this special section. Approximately 130 papers were presented at the Power MEMS 2012 conference. From these, the 20 papers you have before you were selected based on paper quality and topical balance. As you can see, papers representing many of the important areas of power MEMS are included: energy harvesters using multiple transduction schemes; MEMS-based fabrication of compact passive elements (inductors, supercapacitors, transformers); MEMS-enabled power diagnostics; MEMS-based batteries; and low power circuitry adapted to interfacing MEMS-based harvesters to overall systems. All of the papers you will read in this special section comprise substantial expansion from the proceedings articles and were reviewed through JMM's normal reviewing process. Both Professor Lang and I hope that you will share our enthusiasm for the field of power MEMS and that you will find this special section of JMM exciting, interesting and useful.  Sincerely,  Mark G Allen

  12. Development and application of co-culture for ethanol production by co-fermentation of glucose and xylose: a systematic review.

    PubMed

    Chen, Yanli

    2011-05-01

    This article reviews current co-culture systems for fermenting mixtures of glucose and xylose to ethanol. Thirty-five co-culture systems that ferment either synthetic glucose and xylose mixture or various biomass hydrolysates are examined. Strain combinations, fermentation modes and conditions, and fermentation performance for these co-culture systems are compared and discussed. It is noted that the combination of Pichia stipitis with Saccharomyces cerevisiae or its respiratory-deficient mutant is most commonly used. One of the best results for fermentation of glucose and xylose mixture is achieved by using co-culture of immobilized Zymomonas mobilis and free cells of P. stipitis, giving volumetric ethanol production of 1.277 g/l/h and ethanol yield of 0.49-0.50 g/g. The review discloses that, as a strategy for efficient conversion of glucose and xylose, co-culture fermentation for ethanol production from lignocellulosic biomass can increase ethanol yield and production rate, shorten fermentation time, and reduce process costs, and it is a promising technology although immature.

  13. Neuroanatomy of conversion disorder: towards a network approach.

    PubMed

    Conejero, Ismael; Thouvenot, Eric; Abbar, Mocrane; Mouchabac, Stéphane; Courtet, Philippe; Olié, Emilie

    2018-06-27

    The pathophysiology of conversion disorder is not well understood, although studies using functional brain imaging in patients with motor and sensory symptoms are progressively increasing. We conducted a systematic review of the literature with the aim of summarising the available data on the neuroanatomical features of this disorder. We also propose a general model of the neurobiological disturbance in motor conversion disorder. We systematically searched articles in Medline using the Medical Subject Headings terms '(conversion disorder or hysterical motor disorder) and (neuropsychology or cognition) or (functional magnetic resonance imaging or positron emission tomography or neuroimaging) or (genetics or polymorphisms or epigenetics) or (biomarkers or biology)', following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Two authors independently reviewed the retrieved records and abstracts, assessed the exhaustiveness of data abstraction, and confirmed the quality rating. Analysis of the available literature data shows that multiple specialised brain networks (self-agency, action monitoring, salience system, and memory suppression) influence action selection and modulate supplementary motor area activation. Some findings suggest that conceptualisation of movement and motor intention is preserved in patients with limb weakness. More studies are needed to fully understand the brain alterations in conversion disorders and pave the way for the development of effective therapeutic strategies.

  14. Bioelectrochemical Integration of Waste Heat Recovery, Waste-to- Energy Conversion, and Waste-to-Chemical Conversion with Industrial Gas and Chemical Manufacturing Processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mac Dougall, James

    2016-02-05

    Many U.S. manufacturing facilities generate unrecovered, low-grade waste heat, and also generate or are located near organic-content waste effluents. Bioelectrochemical systems, such as microbial fuel cells and microbial electrolysis cells, provide a means to convert organic-content effluents into electric power and useful chemical products. A novel biochemical electrical system for industrial manufacturing processes uniquely integrates both waste heat recovery and waste effluent conversion, thereby significantly reducing manufacturing energy requirements. This project will enable the further development of this technology so that it can be applied across a wide variety of US manufacturing segments, including the chemical, food, pharmaceutical, refinery, andmore » pulp and paper industries. It is conservatively estimated that adoption of this technology could provide nearly 40 TBtu/yr of energy, or more than 1% of the U.S. total industrial electricity use, while reducing CO 2 emissions by more than 6 million tons per year. Commercialization of this technology will make a significant contribution to DOE’s Industrial Technology Program goals for doubling energy efficiency and providing a more robust and competitive domestic manufacturing base.« less

  15. A physiologically informed virtual reality based social communication system for individuals with autism.

    PubMed

    Lahiri, Uttama; Bekele, Esubalew; Dohrmann, Elizabeth; Warren, Zachary; Sarkar, Nilanjan

    2015-04-01

    Clinical applications of advanced technology may hold promise for addressing impairments associated with autism spectrum disorders (ASD). This project evaluated the application of a novel physiologically responsive virtual reality based technological system for conversation skills in a group of adolescents with ASD. The system altered components of conversation based on (1) performance alone or (2) the composite effect of performance and physiological metrics of predicted engagement (e.g., gaze pattern, pupil dilation, blink rate). Participants showed improved performance and looking pattern within the physiologically sensitive system as compared to the performance based system. This suggests that physiologically informed technologies may have the potential of being an effective tool in the hands of interventionists.

  16. Experimental research of technology activating catalysts for SCR DeNOx in boiler

    NASA Astrophysics Data System (ADS)

    Zeng, Xi; Yang, Zhengde; Li, Yan; Chen, Donglin

    2018-01-01

    In order to improve activity of the catalysts used in SCR DeNOx system of flue gas, a series of catalysts activated by different activating liquids under varied conditions in boiler directly were conducted. Then these catalysts were characterized by SEM, FT-IR and BET technology. And NO conversions of the activated catalysts were studied and compared with that of inactivated catalyst. The above experiment shows that NO conversion of the activated catalyst can be up to 99%, which 30% higher than that of inactivated catalyst, so activity of catalysts were improved greatly. Furthermore, optimal activating liquid labeled L2 and effective technology parameters were gained in the experiment.

  17. Conversational Agents in Virtual Worlds: Bridging Disciplines

    ERIC Educational Resources Information Center

    Veletsianos, George; Heller, Robert; Overmyer, Scott; Procter, Mike

    2010-01-01

    This paper examines the effective deployment of conversational agents in virtual worlds from the perspective of researchers/practitioners in cognitive psychology, computing science, learning technologies and engineering. From a cognitive perspective, the major challenge lies in the coordination and management of the various channels of information…

  18. Basic and applied research related to the technology of space energy conversion systems, 1982 - 1983

    NASA Technical Reports Server (NTRS)

    Hertzberg, A.

    1983-01-01

    Topics on solar energy conversion concepts and applications are discussed. An overview of the current status and future utilization of radiation receivers for electrical energy generation, liquid droplet radiation systems, and liquid droplet heat exchangers is presented.

  19. Assessment of Intergenerational Communication and Relationships

    ERIC Educational Resources Information Center

    Strom, Robert D.; Strom, Paris S.

    2015-01-01

    The revolution in communication technology has resulted in more age-segregated conversation among adolescents. In a similar way, older adults have increased online conversations with their peers. This article explores some obstacles that prevent the intergenerational connections needed for mutual understanding and care. Several research emphases…

  20. Turning manure into biochar through thermochemical conversion has the potential to become an exciting new way to handle waste

    USDA-ARS?s Scientific Manuscript database

    The livestock sector remains vigilant to address effective manure treatment that also safeguards natural resources. Livestock operations must balance business concerns, efficient energy management and environmental stewardship. Fortunately, thermochemical conversion technologies for converting lives...

  1. State of Practice for Emerging Waste Conversion Technologies

    EPA Science Inventory

    RTI International (RTI) was contracted by the U.S. Environmental Protection Agency (EPA), Office of Research and Development to conduct research to prepare a “State of Practice” report to support State and local decision-makers on the subject of emerging waste conversion technolo...

  2. Insisting on Digital Equity: Reframing the Dominant Discourse on Multicultural Education and Technology

    ERIC Educational Resources Information Center

    Gorski, Paul C.

    2009-01-01

    In the United States, where technological progress is portrayed as humanistic progress, computer technologies often are hailed as the great equalizers. Even within progressive education movements, such as multicultural education, the conversation about instructional technology tends to center more on this or that wonderful Web site or piece of…

  3. 78 FR 30346 - Submission for OMB Review; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-22

    ... conversations with fund representatives, we estimate that the reporting burden is approximately 620 hours per... approximately 103,580 hours. In addition to the burden hours, based on conversations with fund representatives...

  4. Conversation Therapy for Agrammatism: Exploring the Therapeutic Process of Engagement and Learning by a Person with Aphasia

    ERIC Educational Resources Information Center

    Beckley, Firle; Best, Wendy; Johnson, Fiona; Edwards, Susan; Maxim, Jane; Beeke, Suzanne

    2013-01-01

    Background & Aims: A recent systematic review of conversation training for communication partners of people with aphasia has shown that it is effective, and improves participation in conversation for people with chronic aphasia. Other research suggests that people with aphasia are better able to learn communication strategies in an environment…

  5. Silicon carbide: A unique platform for metal-oxide-semiconductor physics

    NASA Astrophysics Data System (ADS)

    Liu, Gang; Tuttle, Blair R.; Dhar, Sarit

    2015-06-01

    A sustainable energy future requires power electronics that can enable significantly higher efficiencies in the generation, distribution, and usage of electrical energy. Silicon carbide (4H-SiC) is one of the most technologically advanced wide bandgap semiconductor that can outperform conventional silicon in terms of power handling, maximum operating temperature, and power conversion efficiency in power modules. While SiC Schottky diode is a mature technology, SiC power Metal Oxide Semiconductor Field Effect Transistors are relatively novel and there is large room for performance improvement. Specifically, major initiatives are under way to improve the inversion channel mobility and gate oxide stability in order to further reduce the on-resistance and enhance the gate reliability. Both problems relate to the defects near the SiO2/SiC interface, which have been the focus of intensive studies for more than a decade. Here we review research on the SiC MOS physics and technology, including its brief history, the state-of-art, and the latest progress in this field. We focus on the two main scientific problems, namely, low channel mobility and bias temperature instability. The possible mechanisms behind these issues are discussed at the device physics level as well as the atomic scale, with the support of published physical analysis and theoretical studies results. Some of the most exciting recent progress in interface engineering for improving the channel mobility and fundamental understanding of channel transport is reviewed.

  6. The journey to femtosecond laser-assisted cataract surgery: new beginnings or a false dawn?

    PubMed Central

    Trikha, S; Turnbull, A M J; Morris, R J; Anderson, D F; Hossain, P

    2013-01-01

    Femtosecond laser-assisted cataract surgery (FLACS) represents a potential paradigm shift in cataract surgery, but it is not without controversy. Advocates of the technology herald FLACS as a revolution that promises superior outcomes and an improved safety profile for patients. Conversely, detractors point to the large financial costs involved and claim that similar results are achievable with conventional small-incision phacoemulsification. This review provides a balanced and comprehensive account of the development of FLACS since its inception. It explains the physiology and mechanics underlying the technology, and critically reviews the outcomes and implications of initial studies. The benefits and limitations of using femtosecond laser accuracy to create corneal incisions, anterior capsulotomy, and lens fragmentation are explored, with reference to the main platforms, which currently offer FLACS. Economic considerations are discussed, in addition to the practicalities associated with the implementation of FLACS in a healthcare setting. The influence on surgical training and skills is considered and possible future applications of the technology introduced. While in its infancy, FLACS sets out the exciting possibility of a new level of precision in cataract surgery. However, further work in the form of large scale, phase 3 randomised controlled trials are required to demonstrate whether its theoretical benefits are significant in practice and worthy of the necessary huge financial investment and system overhaul. Whether it gains widespread acceptance is likely to be influenced by a complex interplay of scientific and socio-economic factors in years to come. PMID:23370418

  7. A review on on-board challenges of magnesium-based hydrogen storage materials for automobile applications

    NASA Astrophysics Data System (ADS)

    Rahman, Md. Wasikur

    2017-06-01

    The attempt of the review is to realize on-board hydrogen storage technologies concerning magnesium based solid-state matrix to allow fuel cell devices to facilitate sufficient storage capacity, cost, safety and performance requirements to be competitive with current vehicles. Hydrogen, a potential and clean fuel, can be applied in the state-of-the-art technology of `zero emission' vehicles. Hydrogen economy infrastructure both for stationary and mobile purposes is complicated due to its critical physico-chemical properties and materials play crucial roles in every stage of hydrogen production to utilization in fuel cells in achieving high conversion efficiency, safety and robustness of the technologies involved. Moreover, traditional hydrogen storage facilities are rather complicated due to its anomalous properties such as highly porous solids and polymers have intrinsic microporosity, which is the foremost favorable characteristics of fast kinetics and reversibility, but the major drawback is the low storage capacity. In contrast, metal hydrides and complex hydrides have high hydrogen storage capacity but thermodynamically unfavorable. Therefore, hydrogen storage is a real challenge to realize `hydrogen economy' that will solve the critical issues of humanity such as energy depletion, greenhouse emission, air pollution and ultimately climate change. Magnesium based materials, particularly magnesium hydride (MgH2) has been proposed as a potential hydrogen storage material due to its high gravimetric and volumetric capacity as well as environmentally benign properties to work the grand challenge out.

  8. Continuing Spanish in Grade Five: MLA Teacher's Guide. A Course of Study Including Methods, Materials, and Aids for Teaching Conversational Spanish to Fifth-Grade Children.

    ERIC Educational Resources Information Center

    Thompson, Mary P.; And Others

    This is the third volume in a series of texts in a conversational Spanish course for elementary school children. Nine basic units present introductory linguistic patterns and cultural insights into the lives of the Spanish people. They include: (1) Review Unit 1, ("Cristobal Colon"), (2) Review Unit 2, (3) "Un Accidente,""La Navidad," and…

  9. Embodied Conversational Agents in Clinical Psychology: A Scoping Review

    PubMed Central

    Lau, Ho Ming; Ruwaard, Jeroen; Riper, Heleen

    2017-01-01

    Background Embodied conversational agents (ECAs) are computer-generated characters that simulate key properties of human face-to-face conversation, such as verbal and nonverbal behavior. In Internet-based eHealth interventions, ECAs may be used for the delivery of automated human support factors. Objective We aim to provide an overview of the technological and clinical possibilities, as well as the evidence base for ECA applications in clinical psychology, to inform health professionals about the activity in this field of research. Methods Given the large variety of applied methodologies, types of applications, and scientific disciplines involved in ECA research, we conducted a systematic scoping review. Scoping reviews aim to map key concepts and types of evidence underlying an area of research, and answer less-specific questions than traditional systematic reviews. Systematic searches for ECA applications in the treatment of mood, anxiety, psychotic, autism spectrum, and substance use disorders were conducted in databases in the fields of psychology and computer science, as well as in interdisciplinary databases. Studies were included if they conveyed primary research findings on an ECA application that targeted one of the disorders. We mapped each study’s background information, how the different disorders were addressed, how ECAs and users could interact with one another, methodological aspects, and the study’s aims and outcomes. Results This study included N=54 publications (N=49 studies). More than half of the studies (n=26) focused on autism treatment, and ECAs were used most often for social skills training (n=23). Applications ranged from simple reinforcement of social behaviors through emotional expressions to sophisticated multimodal conversational systems. Most applications (n=43) were still in the development and piloting phase, that is, not yet ready for routine practice evaluation or application. Few studies conducted controlled research into clinical effects of ECAs, such as a reduction in symptom severity. Conclusions ECAs for mental disorders are emerging. State-of-the-art techniques, involving, for example, communication through natural language or nonverbal behavior, are increasingly being considered and adopted for psychotherapeutic interventions in ECA research with promising results. However, evidence on their clinical application remains scarce. At present, their value to clinical practice lies mostly in the experimental determination of critical human support factors. In the context of using ECAs as an adjunct to existing interventions with the aim of supporting users, important questions remain with regard to the personalization of ECAs’ interaction with users, and the optimal timing and manner of providing support. To increase the evidence base with regard to Internet interventions, we propose an additional focus on low-tech ECA solutions that can be rapidly developed, tested, and applied in routine practice. PMID:28487267

  10. Embodied Conversational Agents in Clinical Psychology: A Scoping Review.

    PubMed

    Provoost, Simon; Lau, Ho Ming; Ruwaard, Jeroen; Riper, Heleen

    2017-05-09

    Embodied conversational agents (ECAs) are computer-generated characters that simulate key properties of human face-to-face conversation, such as verbal and nonverbal behavior. In Internet-based eHealth interventions, ECAs may be used for the delivery of automated human support factors. We aim to provide an overview of the technological and clinical possibilities, as well as the evidence base for ECA applications in clinical psychology, to inform health professionals about the activity in this field of research. Given the large variety of applied methodologies, types of applications, and scientific disciplines involved in ECA research, we conducted a systematic scoping review. Scoping reviews aim to map key concepts and types of evidence underlying an area of research, and answer less-specific questions than traditional systematic reviews. Systematic searches for ECA applications in the treatment of mood, anxiety, psychotic, autism spectrum, and substance use disorders were conducted in databases in the fields of psychology and computer science, as well as in interdisciplinary databases. Studies were included if they conveyed primary research findings on an ECA application that targeted one of the disorders. We mapped each study's background information, how the different disorders were addressed, how ECAs and users could interact with one another, methodological aspects, and the study's aims and outcomes. This study included N=54 publications (N=49 studies). More than half of the studies (n=26) focused on autism treatment, and ECAs were used most often for social skills training (n=23). Applications ranged from simple reinforcement of social behaviors through emotional expressions to sophisticated multimodal conversational systems. Most applications (n=43) were still in the development and piloting phase, that is, not yet ready for routine practice evaluation or application. Few studies conducted controlled research into clinical effects of ECAs, such as a reduction in symptom severity. ECAs for mental disorders are emerging. State-of-the-art techniques, involving, for example, communication through natural language or nonverbal behavior, are increasingly being considered and adopted for psychotherapeutic interventions in ECA research with promising results. However, evidence on their clinical application remains scarce. At present, their value to clinical practice lies mostly in the experimental determination of critical human support factors. In the context of using ECAs as an adjunct to existing interventions with the aim of supporting users, important questions remain with regard to the personalization of ECAs' interaction with users, and the optimal timing and manner of providing support. To increase the evidence base with regard to Internet interventions, we propose an additional focus on low-tech ECA solutions that can be rapidly developed, tested, and applied in routine practice. ©Simon Provoost, Ho Ming Lau, Jeroen Ruwaard, Heleen Riper. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 09.05.2017.

  11. SPS Energy Conversion Power Management Workshop

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Energy technology concerning photovoltaic conversion, solar thermal conversion systems, and electrical power distribution processing is discussed. The manufacturing processes involving solar cells and solar array production are summarized. Resource issues concerning gallium arsenides and silicon alternatives are reported. Collector structures for solar construction are described and estimates in their service life, failure rates, and capabilities are presented. Theories of advanced thermal power cycles are summarized. Power distribution system configurations and processing components are presented.

  12. Technology Evaluation for Paintable Computing and Paintable Displays RF Nixel Seedling

    DTIC Science & Technology

    2006-04-15

    0.32 mm2• 111-V LED’s may be fabricated on Si wafers using SiGe virtual substrates. The MIT Media Lab selected technologies for a 17" diagonal, 640 x...energy conversion, though betavoltaic devices, tends to have a very low efficiency, about 1%. [15] With 1% conversion efficiency on the lOmW released...200 J.!Cilyear of 63Ni, assuming that this was this person’s only exposure to man-made radiation. A prototype betavoltaic cell has been constructed

  13. Rate and predictors of conversion from unipolar to bipolar disorder: A systematic review and meta-analysis.

    PubMed

    Kessing, Lars Vedel; Willer, Inge; Andersen, Per Kragh; Bukh, Jens Drachman

    2017-08-01

    For the first time to present a systematic review and meta-analysis of the conversion rate and predictors of conversion from unipolar disorder to bipolar disorder. A systematic literature search up to October 2016 was performed. For the meta-analysis, we only included studies that used survival analysis to estimate the conversion rate. A total of 31 studies were identified, among which 11 used survival analyses, including two register-based studies. The yearly rate of conversion to bipolar disorder decreased with time from 3.9% in the first year after study entry with a diagnosis of unipolar disorder to 3.1% in years 1-2, 1.0% in years 2-5 and 0.8% in years 5-10. A total of eight risk factors were evaluated comprising gender, age at onset of unipolar disorder, number of depressive episodes, treatment resistance to antidepressants, family history of bipolar disorder, the prevalence of psychotic depression, the prevalence of chronic depression, and severity of depression. It was not possible to identify risk factors that were consistently or mainly confirmed to predict conversion across studies. The conversion rate from unipolar to bipolar disorder decreases with time. It was not possible to identify predictors of conversion that were consistently or mainly confirmed across studies, which may be due to variations in methodology across studies. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Workshop proceedings: Photovoltaic conversion of solar energy for terrestrial applications. Volume 2: Invited papers

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A photovoltaic device development plan is reported that considers technological as well as economical aspects of single crystal silicon, polycrystal silicon, cadmium sulfide/copper sulfide thin films, as well as other materials and devices for solar cell energy conversion systems.

  15. Adam Bratis, Ph.D. | NREL

    Science.gov Websites

    Sciences & Technology Adam.Bratis@nrel.gov | 303-384-7852 Areas of Expertise Adam Bratis joined the managerial oversight in the areas of biochemical conversion, thermochemical conversion, algal biofuels with 11 years of experience with ExxonMobil in the areas of research and development, corporate

  16. Direct-Conversion Molecular Breast Imaging of Invasive Breast Cancer: Imaging Features, Extent of Invasive Disease, and Comparison Between Invasive Ductal and Lobular Histology.

    PubMed

    Conners, Amy Lynn; Jones, Katie N; Hruska, Carrie B; Geske, Jennifer R; Boughey, Judy C; Rhodes, Deborah J

    2015-09-01

    The purposes of this study were to compare the tumor appearance of invasive breast cancer on direct-conversion molecular breast imaging using a standardized lexicon and to determine how often direct-conversion molecular breast imaging identifies all known invasive tumor foci in the breast, and whether this differs for invasive ductal versus lobular histologic profiles. Patients with prior invasive breast cancer and concurrent direct-conversion molecular breast imaging examinations were retrospectively reviewed. Blinded review of direct-conversion molecular breast imaging examinations was performed by one of two radiologists, according to a validated lexicon. Direct-conversion molecular breast imaging findings were matched with lesions described on the pathology report to exclude benign reasons for direct-conversion molecular breast imaging findings and to document direct-conversion molecular breast imaging-occult tumor foci. Associations between direct-conversion molecular breast imaging findings and tumor histologic profiles were examined using chi-square tests. In 286 patients, 390 invasive tumor foci were present in 294 breasts. A corresponding direct-conversion molecular breast imaging finding was present for 341 of 390 (87%) tumor foci described on the pathology report. Invasive ductal carcinoma (IDC) tumor foci were more likely to be a mass (40% IDC vs 15% invasive lobular carcinoma [ILC]; p < 0.001) and to have marked intensity than were ILC foci (63% IDC vs 32% ILC; p < 0.001). Direct-conversion molecular breast imaging correctly revealed all pathology-proven foci of invasive disease in 79.8% of cases and was more likely to do so for IDC than for ILC (86.1% vs 56.7%; p < 0.0001). Overall, direct-conversion molecular breast imaging showed all known invasive foci in 249 of 286 (87%) patients. Direct-conversion molecular breast imaging features of invasive cancer, including lesion type and intensity, differ by histologic subtype. Direct-conversion molecular breast imaging is less likely to show all foci of ILC compared with IDC.

  17. Application of Synchronous Text-Based Dialogue Systems in Mental Health Interventions: Systematic Review.

    PubMed

    Hoermann, Simon; McCabe, Kathryn L; Milne, David N; Calvo, Rafael A

    2017-07-21

    Synchronous written conversations (or "chats") are becoming increasingly popular as Web-based mental health interventions. Therefore, it is of utmost importance to evaluate and summarize the quality of these interventions. The aim of this study was to review the current evidence for the feasibility and effectiveness of online one-on-one mental health interventions that use text-based synchronous chat. A systematic search was conducted of the databases relevant to this area of research (Medical Literature Analysis and Retrieval System Online [MEDLINE], PsycINFO, Central, Scopus, EMBASE, Web of Science, IEEE, and ACM). There were no specific selection criteria relating to the participant group. Studies were included if they reported interventions with individual text-based synchronous conversations (ie, chat or text messaging) and a psychological outcome measure. A total of 24 articles were included in this review. Interventions included a wide range of mental health targets (eg, anxiety, distress, depression, eating disorders, and addiction) and intervention design. Overall, compared with the waitlist (WL) condition, studies showed significant and sustained improvements in mental health outcomes following synchronous text-based intervention, and post treatment improvement equivalent but not superior to treatment as usual (TAU) (eg, face-to-face and telephone counseling). Feasibility studies indicate substantial innovation in this area of mental health intervention with studies utilizing trained volunteers and chatbot technologies to deliver interventions. While studies of efficacy show positive post-intervention gains, further research is needed to determine whether time requirements for this mode of intervention are feasible in clinical practice. ©Simon Hoermann, Kathryn L McCabe, David N Milne, Rafael A Calvo. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 21.07.2017.

  18. Cell reprogramming: Therapeutic potential and the promise of rejuvenation for the aging brain.

    PubMed

    López-León, Micaela; Outeiro, Tiago F; Goya, Rodolfo G

    2017-11-01

    Aging is associated with a progressive increase in the incidence of neurodegenerative diseases, with Alzheimer's (AD) and Parkinson's (PD) disease being the most conspicuous examples. Within this context, the absence of efficacious therapies for most age-related brain pathologies has increased the interest in regenerative medicine. In particular, cell reprogramming technologies have ushered in the era of personalized therapies that not only show a significant potential for the treatment of neurodegenerative diseases but also promise to make biological rejuvenation feasible. We will first review recent evidence supporting the emerging view that aging is a reversible epigenetic phenomenon. Next, we will describe novel reprogramming approaches that overcome some of the intrinsic limitations of conventional induced-pluripotent-stem-cell technology. One of the alternative approaches, lineage reprogramming, consists of the direct conversion of one adult cell type into another by transgenic expression of multiple lineage-specific transcription factors (TF). Another strategy, termed pluripotency factor-mediated direct reprogramming, uses universal TF to generate epigenetically unstable intermediates able to differentiate into somatic cell types in response to specific differentiation factors. In the third part we will review studies showing the potential relevance of the above approaches for the treatment of AD and PD. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Product information representation for feature conversion and implementation of group technology automated coding

    NASA Astrophysics Data System (ADS)

    Medland, A. J.; Zhu, Guowang; Gao, Jian; Sun, Jian

    1996-03-01

    Feature conversion, also called feature transformation and feature mapping, is defined as the process of converting features from one view of an object to another view of the object. In a relatively simple implementation, for each application the design features are automatically converted into features specific for that application. All modifications have to be made via the design features. This is the approach that has attracted most attention until now. In the ideal situation, however, conversions directly from application views to the design view, and to other applications views, are also possible. In this paper, some difficulties faced in feature conversion are discussed. A new representation scheme of feature-based parts models has been proposed for the purpose of one-way feature conversion. The parts models consist of five different levels of abstraction, extending from an assembly level and its attributes, single parts and their attributes, single features and their attributes, one containing the geometric reference element and finally one for detailed geometry. One implementation of feature conversion for rotational components within GT (Group Technology) has already been undertaken using an automated coding procedure operating on a design-feature database. This database has been generated by a feature-based design system, and the GT coding scheme used in this paper is a specific scheme created for a textile machine manufacturing plant. Such feature conversion techniques presented here are only in their early stages of development and further research is underway.

  20. Expanding ELSI to all areas of innovative science and technology.

    PubMed

    Greenbaum, Dov

    2015-04-01

    New curricula in the study of the ethical, legal and social implications of scientific research aims to further the conversation among all stakeholders in the interactions between science, technology and society.

  1. Hole-Transporting Materials for Printable Perovskite Solar Cells

    PubMed Central

    Salunke, Jagadish K.; Priimagi, Arri

    2017-01-01

    Perovskite solar cells (PSCs) represent undoubtedly the most significant breakthrough in photovoltaic technology since the 1970s, with an increase in their power conversion efficiency from less than 5% to over 22% in just a few years. Hole-transporting materials (HTMs) are an essential building block of PSC architectures. Currently, 2,2’,7,7’-tetrakis-(N,N’-di-p-methoxyphenylamine)-9,9’-spirobifluorene), better known as spiro-OMeTAD, is the most widely-used HTM to obtain high-efficiency devices. However, it is a tremendously expensive material with mediocre hole carrier mobility. To ensure wide-scale application of PSC-based technologies, alternative HTMs are being proposed. Solution-processable HTMs are crucial to develop inexpensive, high-throughput and printable large-area PSCs. In this review, we present the most recent advances in the design and development of different types of HTMs, with a particular focus on mesoscopic PSCs. Finally, we outline possible future research directions for further optimization of the HTMs to achieve low-cost, stable and large-area PSCs. PMID:28914823

  2. Component technology for space power systems

    NASA Technical Reports Server (NTRS)

    Finke, R. C.

    1982-01-01

    Progress made by NASA toward implementation of equipment for the conversion, management, and distribution of voltage power in space applications are reviewed. Work has been carried forward on components such as bipolar transistors, deep impurity semiconductors, conductors, dielectrics, magnetic devices, and rotary power transfer. Specific programs for the high voltage systems have included research on lightweight, low-cost conductors featuring graphite fibers containing electron donor materials for wires and cables with reduced mass and the conductivity of copper. Attention has also been given p-n junction technology for high-speed, high-current, high-voltage materials and diamond-like dielectric films which are hard, have high dielectric strength, and can operate up to 300 C. A transistor has been fabricated with a voltage of 1200 V at 100 A, with a gain of 10 and a 0.5 microsec rise/fall time. A 25 kW transformer has also been built which performs at 20 kHz with an efficiency of 99.2%.

  3. Navy applications experience with small wind power systems

    NASA Astrophysics Data System (ADS)

    Pal, D.

    1985-05-01

    This report describes the experience gained and lesson learned from the ongoing field evaluations of seven small, 2-to 20-kW wind energy conversion systems (WECS) at Navy installations located in the Southern California desert, on San Nicolas Island, in California, and in Kaneohe Bay, Hawaii. The field tests show that the WECS's bearings and yaw slip-rings are prone to failure. The failures were attributed to the corrosive environment and poor design practices. Based upon the field tests, it is concluded that a reliable WECS must use a permanent magnet alternator without a gearbox and yaw slip-rings that are driven by a fixed pitch wind turbine rotor. The present state-of-the-art in small WECS technology, including environmental concerns, is reviewed. Also presented is how the technology is advancing to improve reliability and availability for effectively using wind power at Navy bases. The field evaluations are continuing on the small WECS in order to develop operation, maintenance, and reliability data.

  4. Reminiscences of research on the chemistry and biology of natural sterols in insects, plants and humans.

    PubMed

    Ikekawa, Nobuo; Fujimoto, Yoshinori; Ishiguro, Masaji

    2013-01-01

    Natural sterols often occur as a heterogeneous mixture of homologs, which had disturbed the progress of steroid research. Development and application of GC methodology overcame this difficulty and enabled us to obtain detailed sterol profiles. Together, fine synthesis of stereo-defined isomers and homologs of steroids having oxygenated side chains allowed us to compare them with natural samples as well as to investigate structure-activity relationship. Advance of HPLC technology also facilitated the determination of the stereochemical structure of naturally occurring steroidal compounds, which were obtained only in minute amounts. This review highlights three topics out of our steroid research that have been performed mainly at Tokyo Institute of Technology around 1970-1990. These are sterol metabolism in insects focusing on the mechanism of the conversion of plant sterols to cholesterol and ecdysone biosynthesis, the synthesis and biochemical research of active forms of vitamin D3 derivatives, and the synthesis and microanalysis of plant hormone brassinosteroids.

  5. Waste biomass toward hydrogen fuel supply chain management for electricity: Malaysia perspective

    NASA Astrophysics Data System (ADS)

    Zakaria, Izatul Husna; Ibrahim, Jafni Azhan; Othman, Abdul Aziz

    2016-08-01

    Green energy is becoming an important aspect of every country in the world toward energy security by reducing dependence on fossil fuel import and enhancing better life quality by living in the healthy environment. This conceptual paper is an approach toward determining physical flow's characteristic of waste wood biomass in high scale plantation toward producing gas fuel for electricity using gasification technique. The scope of this study is supply chain management of syngas fuel from wood waste biomass using direct gasification conversion technology. Literature review on energy security, Malaysia's energy mix, Biomass SCM and technology. This paper uses the theoretical framework of a model of transportation (Lumsden, 2006) and the function of the terminal (Hulten, 1997) for research purpose. To incorporate biomass unique properties, Biomass Element Life Cycle Analysis (BELCA) which is a novel technique develop to understand the behaviour of biomass supply. Theoretical framework used to answer the research questions are Supply Chain Operations Reference (SCOR) framework and Sustainable strategy development in supply chain management framework

  6. Silicon wafer-based tandem cells: The ultimate photovoltaic solution?

    NASA Astrophysics Data System (ADS)

    Green, Martin A.

    2014-03-01

    Recent large price reductions with wafer-based cells have increased the difficulty of dislodging silicon solar cell technology from its dominant market position. With market leaders expected to be manufacturing modules above 16% efficiency at 0.36/Watt by 2017, even the cost per unit area (60-70/m2) will be difficult for any thin-film photovoltaic technology to significantly undercut. This may make dislodgement likely only by appreciably higher energy conversion efficiency approaches. A silicon wafer-based cell able to capitalize on on-going cost reductions within the mainstream industry, but with an appreciably higher than present efficiency, might therefore provide the ultimate PV solution. With average selling prices of 156 mm quasi-square monocrystalline Si photovoltaic wafers recently approaching 1 (per wafer), wafers now provide clean, low cost templates for overgrowth of thin, wider bandgap high performance cells, nearly doubling silicon's ultimate efficiency potential. The range of possible Si-based tandem approaches is reviewed together with recent results and ultimate prospects.

  7. Geothermal Today: 2003 Geothermal Technologies Program Highlights (Revised)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2004-05-01

    This outreach publication highlights milestones and accomplishments of the DOE Geothermal Technologies Program for 2003. Included in this publication are discussions of geothermal fundamentals, enhanced geothermal systems, direct-use applications, geothermal potential in Idaho, coating technology, energy conversion R&D, and the GeoPowering the West initiative.

  8. Indigenous knowledges driving technological innovation

    Treesearch

    Lilian Alessa; Carlos Andrade; Phil Cash Cash; Christian P. Giardina; Matt Hamabata; Craig Hammer; Kai Henifin; Lee Joachim; Jay T. Johnson; Kekuhi Kealiikanakaoleohaililani; Deanna Kingston; Andrew Kliskey; Renee Pualani Louis; Amanda Lynch; Daryn McKenny; Chels Marshall; Mere Roberts; Taupouri Tangaro; Jyl Wheaton-Abraham; Everett Wingert

    2011-01-01

    This policy brief explores the use and expands the conversation on the ability of geospatial technologies to represent Indigenous cultural knowledge. Indigenous peoples' use of geospatial technologies has already proven to be a critical step for protecting tribal self-determination. However, the ontological frameworks and techniques of Western geospatial...

  9. Radiation energy conversion in space; Conference, 3rd, NASA Ames Research Center, Moffett Field, Calif., January 26-28, 1978, Technical Papers

    NASA Technical Reports Server (NTRS)

    Billman, K. W.

    1978-01-01

    Concepts for space-based conversion of space radiation energy into useful energy for man's needs are developed and supported by studies of costs, material and size requirements, efficiency, and available technology. Besides the more studied solar power satellite system using microwave transmission, a number of alternative space energy concepts are considered. Topics covered include orbiting mirrors for terrestrial energy supply, energy conversion at a lunar polar site, ultralightweight structures for space power, radiatively sustained cesium plasmas for solar electric conversion, solar pumped CW CO2 laser, superelastic laser energy conversion, laser-enhanced dynamics in molecular rate processes, and electron beams in space for energy storage.

  10. The Homestake Interim Laboratory and Homestake DUSEL

    NASA Astrophysics Data System (ADS)

    Lesko, Kevin T.

    2011-12-01

    The former Homestake gold mine in Lead South Dakota is proposed for the National Science Foundation's Deep Underground Science and Engineering Laboratory (DUSEL). The gold mine provides expedient access to depths in excess of 8000 feet below the surface (>7000 mwe). Homestake's long history of promoting scientific endeavours includes the Davis Solar Neutrino Experiment, a chlorine-based experiment that was hosted at the 4850 Level for more than 30 years. As DUSEL, Homestake would be uncompromised by competition with mining interests or other shared uses. The facility's 600-km of drifts would be available for conversion for scientific and educational uses. The State of South Dakota, under Governor Rounds' leadership, has demonstrated exceptionally strong support for Homestake and the creation of DUSEL. The State has provided funding totalling $46M for the preservation of the site for DUSEL and for the conversion and operation of the Homestake Interim Laboratory. Motivated by the strong educational and outreach potential of Homestake, the State contracted a Conversion Plan by world-recognized mine-engineering contractor to define the process of rehabilitating the facility, establishing the appropriate safety program, and regaining access to the facility. The State of South Dakota has established the South Dakota Science and Technology Authority to oversee the transfer of the Homestake property to the State and the rehabilitation and preservation of the facility. The Homestake Scientific Collaboration and the State of South Dakota's Science and Technology Authority has called for Letters of Interest from scientific, educational and engineering collaborations and institutions that are interested in hosting experiments and uses in the Homestake Interim Facility in advance of the NSF's DUSEL, to define experiments starting as early as 2007. The Homestake Program Advisory Committee has reviewed these Letters and their initial report has been released. Options for developing the Homestake Interim Laboratory and evolving this facility into DUSEL are presented.

  11. [Conversation analysis for improving nursing communication].

    PubMed

    Yi, Myungsun

    2007-08-01

    Nursing communication has become more important than ever before because quality of nursing services largely depends on the quality of communication in a very competitive health care environment. This article was to introduce ways to improve nursing communication using conversation analysis. This was a review study on conversation analysis, critically examining previous studies in nursing communication and interpersonal relationships. This study provided theoretical backgrounds and basic assumptions of conversation analysis which was influenced by ethnomethodology, phenomenology, and sociolinguistic. In addition, the characteristics and analysis methods of conversation analysis were illustrated in detail. Lastly, how conversation analysis could help improve communication was shown, by examining researches using conversation analysis not only for ordinary conversations but also for extraordinary or difficult conversations such as conversations between patients with dementia and their professional nurses. Conversation analysis can help in improving nursing communication by providing various structures and patterns as well as prototypes of conversation, and by suggesting specific problems and problem-solving strategies in communication.

  12. Environmental assessment of digestate treatment technologies using LCA methodology.

    PubMed

    Vázquez-Rowe, Ian; Golkowska, Katarzyna; Lebuf, Viooltje; Vaneeckhaute, Céline; Michels, Evi; Meers, Erik; Benetto, Enrico; Koster, Daniel

    2015-09-01

    The production of biogas from energy crops, organic waste and manure has augmented considerably the amounts of digestate available in Flanders. This has pushed authorities to steadily introduce legislative changes to promote its use as a fertilising agent. There is limited arable land in Flanders, which entails that digestate has to compete with animal manure to be spread. This forces many anaerobic digestion plants to further treat digestate in such a way that it can either be exported or the nitrogen be removed. Nevertheless, the environmental impact of these treatment options is still widely unknown, as well as the influence of these impacts on the sustainability of Flemish anaerobic digestion plants in comparison to other regions where spreading of raw digestate is allowed. Despite important economic aspects that must be considered, the use of Life Cycle Assessment (LCA) is suggested in this study to identify the environmental impacts of spreading digestate directly as compared to four different treatment technologies. Results suggest relevant environmental gains when the digestate mix is treated using the examined conversion technologies prior to spreading, although important trade-offs between impact categories were observed and discussed. The promising results of digestate conversion technologies suggest that further LCA analyses should be performed to delve into, for instance, the appropriateness to shift to nutrient recovery technologies rather than digestate conversion treatments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Visible-to-telecom quantum frequency conversion of light from a single quantum emitter.

    PubMed

    Zaske, Sebastian; Lenhard, Andreas; Keßler, Christian A; Kettler, Jan; Hepp, Christian; Arend, Carsten; Albrecht, Roland; Schulz, Wolfgang-Michael; Jetter, Michael; Michler, Peter; Becher, Christoph

    2012-10-05

    We demonstrate efficient (>30%) quantum frequency conversion of visible single photons (711 nm) emitted by a quantum dot to a telecom wavelength (1313 nm). Analysis of the first- and second-order coherence before and after wavelength conversion clearly proves that pivotal properties, such as the coherence time and photon antibunching, are fully conserved during the frequency translation process. Our findings underline the great potential of single photon sources on demand in combination with quantum frequency conversion as a promising technique that may pave the way for a number of new applications in quantum technology.

  14. Conversation Analysis in Computer-Assisted Language Learning

    ERIC Educational Resources Information Center

    González-Lloret, Marta

    2015-01-01

    The use of Conversation Analysis (CA) in the study of technology-mediated interactions is a recent methodological addition to qualitative research in the field of Computer-assisted Language Learning (CALL). The expansion of CA in Second Language Acquisition research, coupled with the need for qualitative techniques to explore how people interact…

  15. Workshop proceedings: Photovoltaic conversion of solar energy for terrestrial applications. Volume 1: Working group and panel reports

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Technological aspects of solar energy conversion by photovoltaic cells are considered. The advantage of the single crystal silicon solar cell approach is developed through comparisons with polycrystalline silicon, cadmium sulfide/copper sulfide thin film cells, and other materials and devices.

  16. Architecture for Building Conversational Agents that Support Collaborative Learning

    ERIC Educational Resources Information Center

    Kumar, R.; Rose, C. P.

    2011-01-01

    Tutorial Dialog Systems that employ Conversational Agents (CAs) to deliver instructional content to learners in one-on-one tutoring settings have been shown to be effective in multiple learning domains by multiple research groups. Our work focuses on extending this successful learning technology to collaborative learning settings involving two or…

  17. Department of Combat Medic Training-Technology Enhancement

    DTIC Science & Technology

    2011-04-15

    SAYS : ............................................................................................................................ 6 2 INTRODUCTION...determined to be exempt from IRB protocol per Appendix 1.3 What this report says : Section 1 – Executive Summary: (this section) Section 2...with automatic conversion to digital text (conversion of handwriting to text) or use pre-scripted comments from a drop-down menu. b. Validation of

  18. Palomar College: A Technological Transformation.

    ERIC Educational Resources Information Center

    Halttunen, Lynda Gavigan

    2002-01-01

    Offers advice for colleges intending to undergo software conversions, asserting that sufficient resources are key to a smooth process. Describes the conversion process at Palomar College (California) in 1997, when Palomar purchased PeopleSoft enterprise-wide software in response to Y2K compliance issues. Stresses the ongoing need for training and…

  19. DIRECT CONVERSION OF MUNICIPAL AND AGRICULTURAL WASTES TO BIODIESEL AND ETHANOL UTILIZING A UNIQUE EXTREMOPHILIC FUNGUS - PHASE I

    EPA Science Inventory

    Sustainable Bioproducts LLC’s proposed research will further develop an efficient, economical and scalable process for conversion of municipal solid wastes and agricultural wastes to biodiesel and ethanol. The technology is based on use of a novel extremophilic fun...

  20. Intravenous to oral conversion of fluoroquinolones: knowledge versus clinical practice patterns.

    PubMed

    Conort, Ornella; Gabardi, Steven; Didier, Marie-Pauline; Hazebroucq, Georges; Cariou, Alain

    2002-04-01

    To assess the knowledge of prescribers regarding intravenous to oral conversions of fluoroquinolones, the frequency and time until conversion, and to compare prescriber knowledge with the data collected concerning the reasons stated for continuation of intravenous fluoroquinolones. Prospective chart review and questionnaire. Large teaching hospital in Paris, France. Fifty-one males and females. Data were collected on in-patients receiving intravenous fluoroquinolone for at least three days and hospitalized in one of six in-patient units. Patients receiving intravenous fluoroquinolone for less than three days were excluded. A questionnaire to assess the awareness of a potential conversion was distributed to those practitioners who had patients reviewed during the data-collection phase. The questionnaire revealed the ten most common reasons for continuing intravenous administration for more than three days. However, the physicians agreed that most patients should be converted as soon as possible. Practice patterns differed, with only 17 of 51 patients actually converted to oral therapy. In theory, the clinicians were aware of when to perform the conversion. However, in practice, the frequency of conversion was lower than optimum. Changes in clinical practice are needed to decrease the costs of intravenous therapy, without jeopardizing quality of care.

  1. Global robotic experience and the type of surgical system impact the types of robotic malfunctions and their clinical consequences: an FDA MAUDE review.

    PubMed

    Lucas, Steven M; Pattison, Erik A; Sundaram, Chandru P

    2012-04-01

    To assess annual rates of robotic system malfunctions and compare the da Vinci S(®) system (dVS) and da Vinci(®) surgical system (dV). To assess the types of malfunctions and associated outcomes for robotic cases and determine the extent to which experience and technological improvements impact these. This study is a retrospective review of the US Food and Drug Administration (FDA) MAUDE (Manufacturer and User Facility Device Experience) database, a publicly available, voluntary reporting system (http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfmaude/search.cfm). The database was searched using the two phrases 'da Vinci' and 'Intuitive Surgical' from 2003 to 2009. Malfunctions of the instruments, console, patient-side cart, camera and cannula were recorded. Data on intraoperative injuries, case delays and conversions were also collected. In all, 1914 reports were reviewed (991 dVS and 878 dV, 45 unclassified) with peak years for reports of 2008 for dVS (571) and 2007 for dV (211), P < 0.001. With respect to time, the proportion of console and patient-side cart malfunctions declined from 2007 onward compared with the proportions prior to 2007 (5.1% vs 9.4% and 6.6% vs 10.9%). Patient injury did not change with year of surgery (0.5-5.4% of malfunctions, P= 0.358), open conversions declined (21.3% of malfunctions before 2007 vs 9.9% from 2007 onward, P < 0.001) and patient deaths increased (0.0013% of cases before 2007 vs 0.0061% of cases from 2007 onward, P < 0.001). With regard to robotic system, console and patient-side cart malfunctions were more frequent with the dV than the dVS: 82/878 vs 39/991 and 100/878 vs 48/991, P < 0.001. Open conversion was more frequent with dV than dVS (19.3% vs 7.7% of reported malfunctions, P < 0.001), while patient injury was less with dV than dVS (3.5% vs 5.9%, P= 0.021). The dVS decreased console and patient-side cart errors relative to total malfunctions, which were also influenced by surgical year. Open conversions were reduced by increased robotic experience and newer surgical system. Differences in patient injury may reflect changes in reporting or case complexity. © 2011 THE AUTHORS. BJU INTERNATIONAL © 2011 BJU INTERNATIONAL.

  2. ACHP | Citizen's Guide to Section 106 Review

    Science.gov Websites

    print PDF files, you need the Adobe Acrobat Reader. Please visit Adobe to download the free Acrobat Reader. For conversion of PDF to HTML, visit Access Adobe's free conversion service. Return to Top

  3. 77 FR 62271 - Submission for OMB Review; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-12

    ... to rule 30e-1 annually. Based on conversations with fund representatives, we estimate that it takes... hours (84 hours x 10,750 portfolios). In addition to the burden hours, based on conversations with fund...

  4. 10Gbit/s all-optical NRZ to RZ conversion based on TOAD

    NASA Astrophysics Data System (ADS)

    Yan, Yumei; Yin, Lina; Zhou, Yunfeng; Liu, Guoming; Wu, Jian; Lin, Jintong

    2006-01-01

    Future network will include wavelength division multiplexing (WDM) and optical time division multiplexing (OTDM) technologies. All-optical format conversion between their respective preferable data formats, non-return-to-zero (NRZ) and return-to-zero (RZ), may become an important technology. In this paper, 10Gbit/s all-optical NRZ-to-RZ conversion is demonstrated based on terahertz optical asymmetric demultiplexer (TOAD) using clock all-optically recovered from the NRZ signal for the first time. The clock component is enhanced in an SOA and the pseudo-return-to-zero (PRZ) signal is filtered. The PRZ signal is input into an injection mode-locked fiber ring laser for clock recovery. The recovered clock and the NRZ signal are input into TOAD as pump signal and probe signal, respectively, and format conversion is performed. The quality of the converted RZ signal is determined by that of the recovered clock and the NRZ signal, whereas hardly influenced by gain recovery time of the SOA. In the experimental demonstration, the obtained RZ signal has an extinction ratio of 8.7dB and low pattern dependency. After conversion, the spectrum broadens obviously and shows multimode structure with spectrum interval of 0.08nm, which matches with the bit rate 10Gbit/s. Furthermore, this format conversion method has some tolerance on the pattern dependency of the clock signal.

  5. Ultra-low-power conversion and management techniques for thermoelectric energy harvesting applications

    NASA Astrophysics Data System (ADS)

    Fleming, Jerry W.

    2010-04-01

    Thermoelectric energy harvesting has increasingly gained acceptance as a potential power source that can be used for numerous commercial and military applications. However, power electronic designers have struggled to incorporate energy harvesting methods into their designs due to the relatively small voltage levels available from many harvesting device technologies. In order to bridge this gap, an ultra-low input voltage power conversion method is needed to convert small amounts of scavenged energy into a usable form of electricity. Such a method would be an enabler for new and improved medical devices, sensor systems, and other portable electronic products. This paper addresses the technical challenges involved in ultra-low-voltage power conversion by providing a solution utilizing novel power conversion techniques and applied technologies. Our solution utilizes intelligent power management techniques to control unknown startup conditions. The load and supply management functionality is also controlled in a deterministic manner. The DC to DC converter input operating voltage is 20mV with a conversion efficiency of 90% or more. The output voltage is stored into a storage device such as an ultra-capacitor or lithium-ion battery for use during brown-out or unfavorable harvesting conditions. Applications requiring modular, low power, extended maintenance cycles, such as wireless instrumentation would significantly benefit from the novel power conversion and harvesting techniques outlined in this paper.

  6. Roles Played by Electrostatic Waves in Producing Radio Emissions

    NASA Technical Reports Server (NTRS)

    Cairns, Iver H.

    2000-01-01

    Processes in which electromagnetic radiation is produced directly or indirectly via intermediate waves are reviewed. It is shown that strict theoretical constraints exist for electrons to produce nonthermal levels of radiation directly by the Cerenkov or cyclotron resonances. In contrast, indirect emission processes in which intermediary plasma waves are converted into radiation are often favored on general and specific grounds. Four classes of mechanisms involving the conversion of electrostatic waves into radiation are linear mode conversion, hybrid linear/nonlinear mechanisms, nonlinear wave-wave and wave-particle processes, and radiation from localized wave packets. These processes are reviewed theoretically and observational evidence summarized for their occurrence. Strong evidence exists that specific nonlinear wave processes and mode conversion can explain quantitatively phenomena involving type III solar radio bursts and ionospheric emissions. On the other hand, no convincing evidence exists that magnetospheric continuum radiation is produced by mode conversion instead of nonlinear wave processes. Further research on these processes is needed.

  7. Video scrambling for privacy protection in video surveillance: recent results and validation framework

    NASA Astrophysics Data System (ADS)

    Dufaux, Frederic

    2011-06-01

    The issue of privacy in video surveillance has drawn a lot of interest lately. However, thorough performance analysis and validation is still lacking, especially regarding the fulfillment of privacy-related requirements. In this paper, we first review recent Privacy Enabling Technologies (PET). Next, we discuss pertinent evaluation criteria for effective privacy protection. We then put forward a framework to assess the capacity of PET solutions to hide distinguishing facial information and to conceal identity. We conduct comprehensive and rigorous experiments to evaluate the performance of face recognition algorithms applied to images altered by PET. Results show the ineffectiveness of naïve PET such as pixelization and blur. Conversely, they demonstrate the effectiveness of more sophisticated scrambling techniques to foil face recognition.

  8. Solar-to-Chemical Energy Conversion with Photoelectrochemical Tandem Cells.

    PubMed

    Sivula, Kevin

    2013-01-01

    Efficiently and inexpensively converting solar energy into chemical fuels is an important goal towards a sustainable energy economy. An integrated tandem cell approach could reasonably convert over 20% of the sun's energy directly into chemical fuels like H2 via water splitting. Many different systems have been investigated using various combinations of photovoltaic cells and photoelectrodes, but in order to be economically competitive with the production of H2 from fossil fuels, a practical water splitting tandem cell must optimize cost, longevity and performance. In this short review, the practical aspects of solar fuel production are considered from the perspective of a semiconductor-based tandem cell and the latest advances with a very promising technology - metal oxide photoelectrochemical tandem cells - are presented.

  9. Electrocatalysts by atomic layer deposition for fuel cell applications

    DOE PAGES

    Cheng, Niancai; Shao, Yuyan; Liu, Jun; ...

    2016-01-22

    Here, fuel cells are a promising technology solution for reliable and clean energy because they offer high energy conversion efficiency and low emission of pollutants. However, high cost and insufficient durability are considerable challenges for widespread adoption of polymer electrolyte membrane fuel cells (PEMFCs) in practical applications. Current PEMFCs catalysts have been identified as major contributors to both the high cost and limited durability. Atomic layer deposition (ALD) is emerging as a powerful technique for solving these problems due to its exclusive advantages over other methods. In this review, we summarize recent developments of ALD in PEMFCs with a focusmore » on design of materials for improved catalyst activity and durability. New research directions and future trends have also been discussed.« less

  10. Interferometric architectures based All-Optical logic design methods and their implementations

    NASA Astrophysics Data System (ADS)

    Singh, Karamdeep; Kaur, Gurmeet

    2015-06-01

    All-Optical Signal Processing is an emerging technology which can avoid costly Optical-electronic-optical (O-E-O) conversions which are usually compulsory in traditional Electronic Signal Processing systems, thus greatly enhancing operating bit rate with some added advantages such as electro-magnetic interference immunity and low power consumption etc. In order to implement complex signal processing tasks All-Optical logic gates are required as backbone elements. This review describes the advances in the field of All-Optical logic design methods based on interferometric architectures such as Mach-Zehnder Interferometer (MZI), Sagnac Interferometers and Ultrafast Non-Linear Interferometer (UNI). All-Optical logic implementations for realization of arithmetic and signal processing applications based on each interferometric arrangement are also presented in a categorized manner.

  11. Hydrothermal reactions of agricultural and food processing wastes in sub- and supercritical water: a review of fundamentals, mechanisms, and state of research.

    PubMed

    Pavlovič, Irena; Knez, Željko; Škerget, Mojca

    2013-08-28

    Hydrothermal (HT) reactions of agricultural and food-processing waste have been proposed as an alternative to conventional waste treatment technologies due to allowing several improvements in terms of process performance and energy and economical advantages, especially due to their great ability to process high moisture content biomass waste without prior dewatering. Complex structures of wastes and unique properties of water at higher temperatures and pressures enable a variety of physical-chemical reactions and a wide spectra of products. This paper's aim is to give extensive information about the fundamentals and mechanisms of HT reactions and provide state of the research of agri-food waste HT conversion.

  12. Wastes to Resources: Appropriate Technologies for Sewage Treatment and Conversion.

    ERIC Educational Resources Information Center

    Anderson, Stephen P.

    Appropriate technology options for sewage management systems are explained in this four-chapter report. The use of appropriate technologies is advocated for its health, environmental, and economic benefits. Chapter 1 presents background information on sewage treatment in the United States and the key issues facing municipal sewage managers.…

  13. Converging Technology, Pedagogy, and Critical Thinking

    ERIC Educational Resources Information Center

    Moeller, Aleidine J.; Van Alstine, Megan

    2011-01-01

    The theme of children and technology has been a prevailing topic of conversation among parents, teachers and researchers, stirring debate in all sectors of society. What is gained and what is lost by these "digital natives" born into an age of globalization, social connections, instant communication and gratification? How can technology be…

  14. Discursive Psychology and Educational Technology: Beyond the Cognitive Revolution

    ERIC Educational Resources Information Center

    Friesen, Norm

    2009-01-01

    As an alternative to dominant cognitive-constructivist approaches to educational technology, this article makes the case for what has been termed a discursive, or postcognitive, psychological research paradigm. It does so by adapting discursive psychological analyses of conversational activity to the study of educational technology use. It applies…

  15. Introducing Technology Education at the Elementary Level

    ERIC Educational Resources Information Center

    McKnight, Sean

    2012-01-01

    Many school districts are seeing a need to introduce technology education to students at the elementary level. Pennsylvania's Penn Manor School District is one of them. Pennsylvania has updated science and technology standards for grades 3-8, and after several conversations the author had with elementary principals and the assistant superintendent…

  16. A Physiologically Informed Virtual Reality Based Social Communication System for Individuals with Autism

    PubMed Central

    Bekele, Esubalew; Dohrmann, Elizabeth; Warren, Zachary; Sarkar, Nilanjan

    2014-01-01

    Clinical applications of advanced technology may hold promise for addressing impairments associated with autism spectrum disorders (ASD). This project evaluated the application of a novel physiologically responsive virtual reality based technological system for conversation skills in a group of adolescents with ASD. The system altered components of conversation based on (1) performance alone or (2) the composite effect of performance and physiological metrics of predicted engagement (e.g., gaze pattern, pupil dilation, blink rate). Participants showed improved performance and looking pattern within the physiologically sensitive system as compared to the performance based system. This suggests that physiologically informed technologies may have the potential of being an effective tool in the hands of interventionists. PMID:25261247

  17. Critical technology limits to silicon material and sheet production

    NASA Technical Reports Server (NTRS)

    Leipold, M. H.

    1982-01-01

    Earlier studies have indicated that expenditures related to the preparation of high-purity silicon and its conversion to silicon sheet represent from 40 to 52 percent of the cost of the entire panel. The present investigation is concerned with the elements which were selected for study in connection with the Flat-Plate Solar Array (FSA) Project. The first of two technologies which are being developed within the FSA Project involves the conversion of metallurgical-grade silicon through a silane purification process to silicon particles. The second is concerned with the conversion of trichlorosilane to dichlorosilane, and the subsequent production of silicon using modified rod reactors of the Siemens type. With respect to silicon sheet preparation, efforts have been focused both on the preparation of ingots, followed by wafering, and the direct crystallization of molten silicon into a ribbon or film.

  18. Roadmap on optical energy conversion

    DOE PAGES

    Boriskina, Svetlana V.; Green, Martin A.; Catchpole, Kylie; ...

    2016-06-24

    For decades, progress in the field of optical (including solar) energy conversion was dominated by advances in the conventional concentrating optics and materials design. In recent years, however, conceptual and technological breakthroughs in the fields of nanophotonics and plasmonics combined with a better understanding of the thermodynamics of the photon energy-conversion processes reshaped the landscape of energy-conversion schemes and devices. Nanostructured devices and materials that make use of size quantization effects to manipulate photon density of states offer a way to overcome the conventional light absorption limits. Novel optical spectrum splitting and photon-recycling schemes reduce the entropy production in themore » optical energy-conversion platforms and boost their efficiencies. Optical design concepts are rapidly expanding into the infrared energy band, offering new approaches to harvest waste heat, to reduce the thermal emission losses, and to achieve noncontact radiative cooling of solar cells as well as of optical and electronic circuitries. Light-matter interaction enabled by nanophotonics and plasmonics underlie the performance of the third- and fourth-generation energy-conversion devices, including up- and down-conversion of photon energy, near-field radiative energy transfer, and hot electron generation and harvesting. Finally, the increased market penetration of alternative solar energy-conversion technologies amplifies the role of cost-driven and environmental considerations. This roadmap on optical energy conversion provides a snapshot of the state of the art in optical energy conversion, remaining challenges, and most promising approaches to address these challenges. Leading experts authored 19 focused short sections of the roadmap where they share their vision on a specific aspect of this burgeoning research field. The roadmap opens up with a tutorial section, which introduces major concepts and terminology. As a result, it is our hope that the roadmap will serve as an important resource for the scientific community, new generations of researchers, funding agencies, industry experts, and investors.« less

  19. Thermophotovoltaic Energy Conversion for Space Applications

    NASA Astrophysics Data System (ADS)

    Teofilo, V. L.; Choong, P.; Chen, W.; Chang, J.; Tseng, Y.-L.

    2006-01-01

    Thermophotovoltaic (TPV) energy conversion cells have made steady and over the years considerable progress since first evaluated by Lockheed Martin for direct conversion using nuclear power sources in the mid 1980s. The design trades and evaluations for application to the early defensive missile satellites of the Strategic Defense Initiative found the cell technology to be immature with unacceptably low cell efficiencies comparable to thermoelectric of <10%. Rapid advances in the epitaxial growth technology for ternary compound semiconductors, novel double hetero-structure junctions, innovative monolithic integrated cell architecture, and bandpass tandem filter have, in concert, significantly improved cell efficiencies to 25% with the promise of 35% using solar cell like multi-junction approach in the near future. Recent NASA sponsored design and feasibility testing programs have demonstrated the potential for 19% system efficiency for 100 We radioisotopic power sources at an integrated specific power of ~14 We/kg. Current state of TPV cell technology however limits the operating temperature of the converter cells to < 400K due to radiator mass consideration. This limitation imposes no system mass penalty for the low power application for use with radioisotopes power sources because of the high specific power of the TPV cell converters. However, the application of TPV energy conversion for high power sources has been perceived as having a major impediment above 1 kWe due to the relative low waste heat rejection temperature. We explore this limitation and compare the integrated specific power of TPV converters with current and projected TPV cells with other advanced space power conversion technologies. We find that when the redundancy needed required for extended space exploration missions is considered, the TPV converters have a much higher range of applicability then previously understood. Furthermore, we believe that with a relatively modest modifications of the current epitaxial growth in MOCVD, an optimal cell architecture for elevated TPV operation can be found to out-perform the state-of-the-art TPV at an elevated temperature.

  20. Low-temperature, Low-Energy, and High-Efficiency Pretreatment Technology for Large Wood Chips with a Redox Couple Catalyst.

    PubMed

    Gogoi, Parikshit; Zhang, Zhe; Geng, Zhishuai; Liu, Wei; Hu, Weize; Deng, Yulin

    2018-03-22

    The pretreatment of lignocellulosic biomass plays a vital role in the conversion of cellulosic biomass to bioethanol, especially for softwoods and hardwoods. Although many pretreatment technologies have been reported so far, only a few pretreatment methods can handle large woodchips directly. To improve the efficiency of pretreatment, existing technologies require the grinding of the wood into small particles, which is an energy-consuming process. Herein, for the first time, we report a simple, effective, and low-temperature (≈100 °C) process for the pretreatment of hardwood (HW) and softwood (SW) chips directly by using a catalytic system of FeCl 3 /NaNO 3 (FCSNRC). The pretreatment experiments were conducted systematically, and a conversion of 71.53 and 70.66 % of cellulose to sugar could be obtained for the direct use of large HW and SW chips. The new method reported here overcomes one of the critical barriers in biomass-to-biofuel conversion, and both grinding and thermal energies can be reduced significantly. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Evaluative studies in nuclear medicine research. Progress report, October 1, 1979-June 30, 1980

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Potchen, E.J.

    Effort since the last progress report (September 1979) has been directed toward assessing the potential short and long term benefits of continued development and application and medical research of emission computed tomograhy (ECT). This report contains a review of existing ECT technology, including functional descriptions of current and proposed image systems, for both sngle-photon ECT (SPECT) and positron ECT (PECT) approaches. Medical research and clinical topics to which ECT has been, or may be, applied are presented. One such area of investigation involves the effects of stroke. The application of ECT to laboratory research, and to clinical diagnosis and prognosis,more » of stroke may result in improved management of the disease. An illustration of the potential savings in the cost of management of stroke due to the effects of applied ECT research is included. The results represent a compilation of data collected from conversations with, and conference presentations by, ECT users, researchers and image system designers, and from a review of the literature.« less

  2. Effective production of fermentable sugars from brown macroalgae biomass.

    PubMed

    Wang, Damao; Kim, Do Hyoung; Kim, Kyoung Heon

    2016-11-01

    Brown macroalgae are renewable and sustainable biomass resources for the production of biofuels and chemicals, owing to their high levels of carbohydrates and low levels of lignin. To increase the biological usage of brown macroalgae, it is necessary to depolymerize the polysaccharides that generate macroalgal monomeric sugars or sugar derivatives and to convert them into fermentable sugars for the production of biofuels and chemicals. In this review, we discuss the chemical and enzymatic saccharification of the major carbohydrates found in brown macroalgae and the use of the resulting constituents in the production of biofuels and chemicals, as well as high-value health-benefiting functional oligosaccharides and sugars. We also discuss recently reported experimental results, novel enzymes, and technological breakthroughs that are related to polysaccharide depolymerization, fermentable sugar production, and the biological conversion of non-favorable sugars for fermentation using industrial microorganisms. This review provides a comprehensive perspective of the efficient utilization of brown macroalgae as renewable resources for the production of biofuels and chemicals.

  3. High-Power Broad-Area Diode Lasers and Laser Bars

    NASA Astrophysics Data System (ADS)

    Erbert, Goetz; Baerwolff, Arthur; Sebastian, Juergen; Tomm, Jens

    This review presents the basic ideas and some examples of the chip technology of high-power diode lasers ( λ= 650,-1060,) in connection with the achievements of mounted single-stripe emitters in recent years.In the first section the optimization of the epitaxial layer structure for a low facet load and high conversion efficiency is discussed. The so-called broadened waveguide Large Optical Cavity (LOC) concept is described and also some advantages and disadvantages of Al-free material. The next section deals with the processing steps of epitaxial wafers to make single emitters and bars. Several possibilities to realize contact windows (implantation, insulators, and wet chemical oxidation) and laser mirrors are presented. The impact of heating in the CW regime and some aspects of reliability are the following topics. The calculation of thermal distributions in diode lasers, which shows the need for sophisticated mounting, will be given. In the last part the current state-of-the-art of single-stripe emitters will be reviewed.

  4. CO2 utilization: an enabling element to move to a resource- and energy-efficient chemical and fuel production.

    PubMed

    Ampelli, Claudio; Perathoner, Siglinda; Centi, Gabriele

    2015-03-13

    CO(2) conversion will be at the core of the future of low-carbon chemical and energy industry. This review gives a glimpse into the possibilities in this field by discussing (i) CO(2) circular economy and its impact on the chemical and energy value chain, (ii) the role of CO(2) in a future scenario of chemical industry, (iii) new routes for CO(2) utilization, including emerging biotechnology routes, (iv) the technology roadmap for CO(2) chemical utilization, (v) the introduction of renewable energy in the chemical production chain through CO(2) utilization, and (vi) CO(2) as a suitable C-source to move to a low-carbon chemical industry, discussing in particular syngas and light olefin production from CO(2). There are thus many stimulating possibilities offered by using CO(2) and this review shows this new perspective on CO(2) at the industrial, societal and scientific levels. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  5. A review on bioconversion of lignocellulosic biomass to H2: Key challenges and new insights.

    PubMed

    Ren, Nan-Qi; Zhao, Lei; Chen, Chuan; Guo, Wan-Qian; Cao, Guang-Li

    2016-09-01

    With the increasing energy crisis and rising concern over climate change, the development of clean alternative energy sources is of great importance. Biohydrogen produced from lignocellulosic biomass is a promising candidate, because of its positives such as readily available, no harmful emissions, environment friendly, efficient, and renewable. However, obstacles still exist to enable the commercialization of biological hydrogen production from lignocellulosic biomass. Thus the objective of this work is to provide update information about the recent progress on lignocellulosic hydrogen conversion via dark fermentation. In this review, the most important technologies associated with lignocellulosic hydrogen fermentation were covered. Firstly, pretreatment methods for better utilization of lignocellulosic biomass are presented, at the same time, hydrolysis methods assisting to achieve efficient hydrogen fermentation were discussed. Afterwards, issues related to bioprocesses for hydrogen production purposes were presented. Additionally, the paper gave challenges and new insights of lignocellulosic biohydrogen production. Copyright © 2016. Published by Elsevier Ltd.

  6. Transport mechanisms in nanopores and nanochannels: Can we mimic nature?

    DOE PAGES

    Tagliazucchi, Mario; Szleifer, Igal

    2014-11-03

    The last few years have witnessed major advancements in the synthesis, modification, characterization and modeling of nanometer-size solid-state channels and pores. Future applications in sensing, energy conversion and purification technologies will critically rely on qualitative improvements in the control over the selectivity, directionality and responsiveness of these nanochannels and nanopores. It is not surprising, therefore, that researchers in the field seek inspiration in biological ion channels and ion pumps, paradigmatic examples of transport selectivity. This work reviews our current fundamental understanding of the mechanisms of transport of ions and larger cargoes through nanopores and nanochannels by examining recent experimental andmore » theoretical work. It is argued that that structure and transport in biological channels and polyelectrolyte-modified synthetic nanopores are strongly coupled: the structure dictates transport and transport affects the structure. We compare synthetic and biological systems throughout this review to conclude that while they present interesting similarities, they also have striking differences.« less

  7. Dry fractionation process as an important step in current and future lignocellulose biorefineries: a review.

    PubMed

    Barakat, Abdellatif; de Vries, Hugo; Rouau, Xavier

    2013-04-01

    The use of lignocellulosic biomass is promising for biofuels and materials and new technologies for the conversion need to be developed. However, the inherent properties of native lignocellulosic materials make them resistant to enzymatic and chemical degradation. Lignocellulosic biomass requires being pretreated to change the physical and chemical properties of lignocellulosic matrix in order to increase cell wall polymers accessibility and bioavailability. Mechanical size reduction may be chemical free intensive operation thanks to decreasing particles size and cellulose crystallinity, and increasing accessible surface area. Changes in these parameters improve the digestibility and the bioconversion of lignocellulosic biomass. However, mechanical size reduction requires cost-effective approaches from an energy input point of view. Therefore, the energy consumption in relation to physicochemical properties of lignocellulosic biomass was discussed. Even more, chemical treatments combined with physicochemical size reduction approaches are proposed to reduce energy consumption in this review. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Towards Versatile and Sustainable Hydrogen Production through Electrocatalytic Water Splitting: Electrolyte Engineering.

    PubMed

    Shinagawa, Tatsuya; Takanabe, Kazuhiro

    2017-04-10

    Recent advances in power generation from renewable resources necessitate conversion of electricity to chemicals and fuels in an efficient manner. Electrocatalytic water splitting is one of the most powerful and widespread technologies. The development of highly efficient, inexpensive, flexible, and versatile water electrolysis devices is desired. This review discusses the significance and impact of the electrolyte on electrocatalytic performance. Depending on the circumstances under which the water splitting reaction is conducted, the required solution conditions, such as the identity and molarity of ions, may significantly differ. Quantitative understanding of such electrolyte properties on electrolysis performance is effective to facilitate the development of efficient electrocatalytic systems. The electrolyte can directly participate in reaction schemes (kinetics), affect electrode stability, and/or indirectly impact the performance by influencing the concentration overpotential (mass transport). This review aims to guide fine-tuning of the electrolyte properties, or electrolyte engineering, for (photo)electrochemical water splitting reactions. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  9. Biomass for energy in the European Union - a review of bioenergy resource assessments

    PubMed Central

    2012-01-01

    This paper reviews recent literature on bioenergy potentials in conjunction with available biomass conversion technologies. The geographical scope is the European Union, which has set a course for long term development of its energy supply from the current dependence on fossil resources to a dominance of renewable resources. A cornerstone in European energy policies and strategies is biomass and bioenergy. The annual demand for biomass for energy is estimated to increase from the current level of 5.7 EJ to 10.0 EJ in 2020. Assessments of bioenergy potentials vary substantially due to methodological inconsistency and assumptions applied by individual authors. Forest biomass, agricultural residues and energy crops constitute the three major sources of biomass for energy, with the latter probably developing into the most important source over the 21st century. Land use and the changes thereof is a key issue in sustainable bioenergy production as land availability is an ultimately limiting factor. PMID:22546368

  10. Environmental implications of increased biomass energy use

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miles, T.R. Sr.; Miles, T.R. Jr.

    1992-03-01

    This study reviews the environmental implications of continued and increased use of biomass for energy to determine what concerns have been and need to be addressed and to establish some guidelines for developing future resources and technologies. Although renewable biomass energy is perceived as environmentally desirable compared with fossil fuels, the environmental impact of increased biomass use needs to be identified and recognized. Industries and utilities evaluating the potential to convert biomass to heat, electricity, and transportation fuels must consider whether the resource is reliable and abundant, and whether biomass production and conversion is environmentally preferred. A broad range ofmore » studies and events in the United States were reviewed to assess the inventory of forest, agricultural, and urban biomass fuels; characterize biomass fuel types, their occurrence, and their suitability; describe regulatory and environmental effects on the availability and use of biomass for energy; and identify areas for further study. The following sections address resource, environmental, and policy needs. Several specific actions are recommended for utilities, nonutility power generators, and public agencies.« less

  11. Enhancement of microalgal growth and biocomponent-based transformations for improved biofuel recovery: A review.

    PubMed

    Salama, El-Sayed; Hwang, Jae-Hoon; El-Dalatony, Marwa M; Kurade, Mayur B; Kabra, Akhil N; Abou-Shanab, Reda A I; Kim, Ki-Hyun; Yang, Il-Seung; Govindwar, Sanjay P; Kim, Sunjoon; Jeon, Byong-Hun

    2018-06-01

    Microalgal biomass has received much attention as feedstock for biofuel production due to its capacity to accumulate a substantial amount of biocomponents (including lipid, carbohydrate, and protein), high growth rate, and environmental benefit. However, commercial realization of microalgal biofuel is a challenge due to its low biomass production and insufficient technology for complete utilization of biomass. Recently, advanced strategies have been explored to overcome the challenges of conventional approaches and to achieve maximum possible outcomes in terms of growth. These strategies include a combination of stress factors; co-culturing with other microorganisms; and addition of salts, flue gases, and phytohormones. This review summarizes the recent progress in the application of single and combined abiotic stress conditions to stimulate microalgal growth and its biocomponents. An innovative schematic model is presented of the biomass-energy conversion pathway that proposes the transformation of all potential biocomponents of microalgae into biofuels. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Final Scientific/Technical Report – March 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armstrong, Neal R.

    The Center for Interface Science: Solar Electric Materials (CISSEM) was funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences (BES) from August 1, 2009 – December 31, 2014 under Award Number DE-SC0001084, as part of a broad set of Energy Frontier Research Centers (EFRCs) designed to underpin the development of economical energy conversion platforms for the 21st century. CISSEM successfully integrated the research groups of 19 principal investigators at The University of Arizona (the lead institution), the Georgia Institute of Technology, Princeton University, the University of Washington, and the National Renewable Energy Laboratory (NREL) into amore » coordinated and synergistic program, while also building a highly productive collaboration with the SLAC National Accelerator Laboratory. Our mission was to advance the understanding of interface science underlying solar energy conversion technologies based on organic and organic-inorganic hybrid materials – specifically in organic photovoltaic solar cells (OPVs); and to inspire, recruit and train future scientists and leaders in the basic science of solar electric energy conversion. CISSEM researchers focused on establishing a foundational understanding of the electronic properties of interfaces in area-scalable, thin-film photovoltaic platforms. Metal oxide interlayers used in OPVs to improve the efficiency of charge harvesting at electrodes was our central focus. A key feature of CISSEM research has been our ability to develop a comprehensive understanding of interfaces and interfacial processes at the atomic and molecular scales. This is a scientific foundation for thin-film photovoltaic technologies and our nation’s pursuit of lowering the costs of transforming the sun’s energy into electricity. Our efforts combined: i) theoretical modeling; ii) new materials development; iii) developing new measurement science approaches to characterize composition, molecular and supramolecular structure, band edge energies, electrical properties, and charge harvesting or injection; and iv) integrating our use-inspired new materials and enhanced knowledge of interfaces and interfacial processes into OPV platforms. The strengths of the characterization methodologies developed in CISSEM were recognized within the EFRC network, and were a major component of our interactions with other DOE-funded programs including EFRCs. CISSEM research has resulted in a legacy of 120+ peer-reviewed publications describing our basic science. Much of this highly collaborative research will now be built upon at CISSEM member institutions, with other extramural funding sources. Furthermore, the state-of-the-art facilities and expertise created for modern interface science, especially as they pertain to energy conversion and energy storage challenges, will ensure their broadest continued impact. DOE EFRC funding has positively impacted and enhanced the training and development of more than 140 graduate students, postdoctoral researchers and research scientists at the five CISSEM institutions, and students from three Colorado universities associated with NREL. Our legacy also includes these student, postdoctoral researcher and scientist alumni who have taken positions of impact and responsibility in technology industries, government agencies and academia in the U.S., Asia and Europe.« less

  13. Biomass pyrolysis liquid to citric acid via 2-step bioconversion.

    PubMed

    Yang, Zhiguang; Bai, Zhihui; Sun, Hongyan; Yu, Zhisheng; Li, Xingxing; Guo, Yifei; Zhang, Hongxun

    2014-12-31

    The use of fossil carbon sources for fuels and petrochemicals has serious impacts on our environment and is unable to meet the demand in the future. A promising and sustainable alternative is to substitute fossil carbon sources with microbial cell factories converting lignocellulosic biomass into desirable value added products. However, such bioprocesses require tolerance to inhibitory compounds generated during pretreatment of biomass. In this study, the process of sequential two-step bio-conversion of biomass pyrolysis liquid containing levoglucosan (LG) to citric acid without chemical detoxification has been explored, which can greatly improve the utilization efficiency of lignocellulosic biomass. The sequential two-step bio-conversion of corn stover pyrolysis liquid to citric acid has been established. The first step conversion by Phanerochaete chrysosporium (P. chrysosporium) is desirable to decrease the content of other compounds except levoglucosan as a pretreatment for the second conversion. The remaining levoglucosan in solution was further converted into citric acid by Aspergillus niger (A. niger) CBX-209. Thus the conversion of cellulose to citric acid is completed by both pyrolysis and bio-conversion technology. Under experimental conditions, levoglucosan yield is 12% based on the feedstock and the citric acid yield can reach 82.1% based on the levoglucosan content in the pyrolysis liquid (namely 82.1 g of citric acid per 100 g of levoglucosan). The study shows that P. chrysosporium and A. niger have the potential to be used as production platforms for value-added products from pyrolyzed lignocellulosic biomass. Selected P. chrysosporium is able to decrease the content of other compounds except levoglucosan and levoglucosan can be further converted into citric acid in the residual liquids by A. niger. Thus the conversion of cellulose to citric acid is completed by both pyrolysis and bio-conversion technology.

  14. What heat is telling us about microbial conversions in nature and technology: from chip‐ to megacalorimetry

    PubMed Central

    Maskow, Thomas; Kemp, Richard; Buchholz, Friederike; Schubert, Torsten; Kiesel, Baerbel; Harms, Hauke

    2010-01-01

    Summary The exploitation of microorganisms in natural or technological systems calls for monitoring tools that reflect their metabolic activity in real time and, if necessary, are flexible enough for field application. The Gibbs energy dissipation of assimilated substrates or photons often in the form of heat is a general feature of life processes and thus, in principle, available to monitor and control microbial dynamics. Furthermore, the combination of measured heat fluxes with material fluxes allows the application of Hess' law to either prove expected growth stoichiometries and kinetics or identify and estimate unexpected side reactions. The combination of calorimetry with respirometry is theoretically suited for the quantification of the degree of coupling between catabolic and anabolic reactions. New calorimeter developments overcome the weaknesses of conventional devices, which hitherto limited the full exploitation of this powerful analytical tool. Calorimetric systems can be integrated easily into natural and technological systems of interest. They are potentially suited for high‐throughput measurements and are robust enough for field deployment. This review explains what information calorimetric analyses provide; it introduces newly emerging calorimetric techniques and it exemplifies the application of calorimetry in different fields of microbial research. PMID:21255327

  15. Advances of zeolite based membrane for hydrogen production via water gas shift reaction

    NASA Astrophysics Data System (ADS)

    Makertihartha, I. G. B. N.; Zunita, M.; Rizki, Z.; Dharmawijaya, P. T.

    2017-07-01

    Hydrogen is considered as a promising energy vector which can be obtained from various renewable sources. However, an efficient hydrogen production technology is still challenging. One technology to produce hydrogen with very high capacity with low cost is through water gas shift (WGS) reaction. Water gas shift reaction is an equilibrium reaction that produces hydrogen from syngas mixture by the introduction of steam. Conventional WGS reaction employs two or more reactors in series with inter-cooling to maximize conversion for a given volume of catalyst. Membrane reactor as new technology can cope several drawbacks of conventional reactor by removing reaction product and the reaction will favour towards product formation. Zeolite has properties namely high temperature, chemical resistant, and low price makes it suitable for membrane reactor applications. Moreover, it has been employed for years as hydrogen selective layer. This review paper is focusing on the development of membrane reactor for efficient water gas shift reaction to produce high purity hydrogen and carbon dioxide. Development of membrane reactor is discussed further related to its modification towards efficient reaction and separation from WGS reaction mixture. Moreover, zeolite framework suitable for WGS membrane reactor will be discussed more deeply.

  16. E-detailing: information technology applied to pharmaceutical detailing.

    PubMed

    Montoya, Isaac D

    2008-11-01

    E-detailing can be best described as the use of information technology in the field of pharmaceutical detailing. It is becoming highly popular among pharmaceutical companies because it maximizes the time of the sales force, cuts down the cost of detailing and increases physician prescribing. Thus, the application of information technology is proving to be beneficial to both physicians and pharmaceutical companies. When e-detailing was introduced in 1996, it was limited to the US; however, numerous other countries soon adopted this novel approach to detailing and now it is popular in many developed nations. The objective of this paper is to demonstrate the rapid growth of e-detailing in the field of pharmaceutical marketing. A review of e-detailing literature was conducted in addition to personal conversations with physicians. E-detailing has the potential to reduce marketing costs, increase accessibility to physicians and offer many of the advantages of face-to-face detailing. E-detailing is gaining acceptance among physicians because they can access the information of a pharmaceutical product at their own time and convenience. However, the drug safety aspect of e-detailing has not been examined and e-detailing remains a supplement to traditional detailing and is not yet a replacement to it.

  17. Speech comprehension training and auditory and cognitive processing in older adults.

    PubMed

    Pichora-Fuller, M Kathleen; Levitt, Harry

    2012-12-01

    To provide a brief history of speech comprehension training systems and an overview of research on auditory and cognitive aging as background to recommendations for future directions for rehabilitation. Two distinct domains were reviewed: one concerning technological and the other concerning psychological aspects of training. Historical trends and advances in these 2 domains were interrelated to highlight converging trends and directions for future practice. Over the last century, technological advances have influenced both the design of hearing aids and training systems. Initially, training focused on children and those with severe loss for whom amplification was insufficient. Now the focus has shifted to older adults with relatively little loss but difficulties listening in noise. Evidence of brain plasticity from auditory and cognitive neuroscience provides new insights into how to facilitate perceptual (re-)learning by older adults. There is a new imperative to complement training to increase bottom-up processing of the signal with more ecologically valid training to boost top-down information processing based on knowledge of language and the world. Advances in digital technologies enable the development of increasingly sophisticated training systems incorporating complex meaningful materials such as music, audiovisual interactive displays, and conversation.

  18. TU-EF-304-06: A Comparison of CT Number to Relative Linear Stopping Power Conversion Curves Used by Proton Therapy Centers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, P; Lowenstein, J; Kry, S

    Purpose: To compare the CT Number (CTN) to Relative Linear Stopping Power (RLSP) conversion curves used by 14 proton institutions in their dose calculations. Methods: The proton institution’s CTN to RLSP conversion curves were collected by the Imaging and Radiation Oncology Core (IROC) Houston QA Center during its on-site dosimetry review audits. The CTN values were converted to scaled CT Numbers. The scaling assigns a CTN of 0 to air and 1000 to water to allow intercomparison. The conversion curves were compared and the mean curve was calculated based on institutions’ predicted RLSP values for air (CTN 0), lung (CTNmore » 250), fat (CTN 950), water (1000), liver (CTN 1050), and bone (CTN 2000) points. Results: One institution’s curve was found to have a unique curve shape between the scaled CTN of 1025 to 1225. This institution modified its curve based on the findings. Another institution had higher RLSP values than expected for both low and high CTNs. This institution recalibrated their two CT scanners and the new data placed their curve closer to the mean of all institutions. After corrections were made to several conversion curves, four institutions still fall outside 2 standard deviations at very low CTNs (100–200), and two institutions fall outside between CTN 850–900. The largest percent difference in RLSP values between institutions for the specific tissues reviewed was 22% for the lung point. Conclusion: The review and comparison of CTN to RLSP conversion curves allows IROC Houston to identify any outliers and make recommendations for improvement. Several institutions improved their clinical dose calculation accuracy as a Result of this review. There is still area for improvement, particularly in the lung area of the curve. The IROC Houston QA Center is supported by NCI grant CA180803.« less

  19. Integrating Technology in Early Literacy: A Snapshot of Community Innovation in Family Engagement

    ERIC Educational Resources Information Center

    Cook, Shayna

    2016-01-01

    As a growing number of young children across the country are using media and interactive technology on a daily basis, the conversation has shifted from whether technology is appropriate to use at all to how it should be used to best support children's early language and literacy development. A new brief released today, Integrating Technology in…

  20. Resources in Technology.

    ERIC Educational Resources Information Center

    McCrory, David L.; Maughan, George R.

    This document--intended for secondary school and college students--contains technology education instructional units on engines and power, energy conversion, energy futures, energy sources, communication and society, energy and power in communication, communication systems, microelectronics in communication, transportation in society, energy and…

Top