Sample records for conversion type core

  1. Effect of the shell material and confinement type on the conversion efficiency of core/shell quantum dot nanocrystal solar cells

    NASA Astrophysics Data System (ADS)

    Sahin, Mehmet

    2018-05-01

    In this study, the effects of the shell material and confinement type on the conversion efficiency of core/shell quantum dot nanocrystal (QDNC) solar cells have been investigated in detail. For this purpose, the conventional, i.e. original, detailed balance model, developed by Shockley and Queisser to calculate an upper limit for the conversion efficiency of silicon p–n junction solar cells, is modified in a simple and effective way to calculate the conversion efficiency of core/shell QDNC solar cells. Since the existing model relies on the gap energy () of the solar cell, it does not make an estimation about the effect of QDNC materials on the efficiency of the solar cells, and gives the same efficiency values for several QDNC solar cells with the same . The proposed modification, however, estimates a conversion efficiency in relation to the material properties and also the confinement type of the QDNCs. The results of the modified model show that, in contrast to the original one, the conversion efficiencies of different QDNC solar cells, even if they have the same , become different depending upon the confinement type and shell material of the core/shell QDNCs, and this is crucial in the design and fabrication of the new generation solar cells to predict the confinement type and also appropriate QDNC materials for better efficiency.

  2. Effect of the shell material and confinement type on the conversion efficiency of core/shell quantum dot nanocrystal solar cells.

    PubMed

    Sahin, Mehmet

    2018-05-23

    In this study, the effects of the shell material and confinement type on the conversion efficiency of core/shell quantum dot nanocrystal (QDNC) solar cells have been investigated in detail. For this purpose, the conventional, i.e. original, detailed balance model, developed by Shockley and Queisser to calculate an upper limit for the conversion efficiency of silicon p-n junction solar cells, is modified in a simple and effective way to calculate the conversion efficiency of core/shell QDNC solar cells. Since the existing model relies on the gap energy ([Formula: see text]) of the solar cell, it does not make an estimation about the effect of QDNC materials on the efficiency of the solar cells, and gives the same efficiency values for several QDNC solar cells with the same [Formula: see text]. The proposed modification, however, estimates a conversion efficiency in relation to the material properties and also the confinement type of the QDNCs. The results of the modified model show that, in contrast to the original one, the conversion efficiencies of different QDNC solar cells, even if they have the same [Formula: see text], become different depending upon the confinement type and shell material of the core/shell QDNCs, and this is crucial in the design and fabrication of the new generation solar cells to predict the confinement type and also appropriate QDNC materials for better efficiency.

  3. Determining the spatial variability of wetland soil bulk density, organic matter, and the conversion factor between organic matter and organic carbon across coastal Louisiana, U.S.A.

    USGS Publications Warehouse

    Wang, Hongqing; Piazza, Sarai C.; Sharp, Leigh A.; Stagg, Camille L.; Couvillion, Brady R.; Steyer, Gregory D.; McGinnis, Thomas E.

    2016-01-01

    Soil bulk density (BD), soil organic matter (SOM) content, and a conversion factor between SOM and soil organic carbon (SOC) are often used in estimating SOC sequestration and storage. Spatial variability in BD, SOM, and the SOM–SOC conversion factor affects the ability to accurately estimate SOC sequestration, storage, and the benefits (e.g., land building area and vertical accretion) associated with wetland restoration efforts, such as marsh creation and sediment diversions. There are, however, only a few studies that have examined large-scale spatial variability in BD, SOM, and SOM–SOC conversion factors in coastal wetlands. In this study, soil cores, distributed across the entire coastal Louisiana (approximately 14,667 km2) were used to examine the regional-scale spatial variability in BD, SOM, and the SOM–SOC conversion factor. Soil cores for BD and SOM analyses were collected during 2006–09 from 331 spatially well-distributed sites in the Coastwide Reference Monitoring System network. Soil cores for the SOM–SOC conversion factor analysis were collected from 15 sites across coastal Louisiana during 2006–07. Results of a split-plot analysis of variance with incomplete block design indicated that BD and SOM varied significantly at a landscape level, defined by both hydrologic basins and vegetation types. Vertically, BD and SOM varied significantly among different vegetation types. The SOM–SOC conversion factor also varied significantly at the landscape level. This study provides critical information for the assessment of the role of coastal wetlands in large regional carbon budgets and the estimation of carbon credits from coastal restoration.

  4. Feed Me! Rethinking Traditional Modes of Library Access and Content Delivery

    ERIC Educational Resources Information Center

    Hutchens, Chad; Clark, Jason

    2008-01-01

    At their core, XML feeds are content-delivery vehicles. This fact has not always been highlighted in library conversations surrounding RSS and ATOM. The authors have looked to extend the conversation by offering a proof of concept application using RSS as a means to deliver all types of library data: PDFs, docs, images, video--to people where and…

  5. Effect of core quantum-dot size on power-conversion-efficiency for silicon solar-cells implementing energy-down-shift using CdSe/ZnS core/shell quantum dots.

    PubMed

    Baek, Seung-Wook; Shim, Jae-Hyoung; Seung, Hyun-Min; Lee, Gon-Sub; Hong, Jin-Pyo; Lee, Kwang-Sup; Park, Jea-Gun

    2014-11-07

    Silicon solar cells mainly absorb visible light, although the sun emits ultraviolet (UV), visible, and infrared light. Because the surface reflectance of a textured surface with SiNX film on a silicon solar cell in the UV wavelength region (250-450 nm) is higher than ∼27%, silicon solar-cells cannot effectively convert UV light into photo-voltaic power. We implemented the concept of energy-down-shift using CdSe/ZnS core/shell quantum-dots (QDs) on p-type silicon solar-cells to absorb more UV light. CdSe/ZnS core/shell QDs demonstrated clear evidence of energy-down-shift, which absorbed UV light and emitted green-light photoluminescence signals at a wavelength of 542 nm. The implementation of 0.2 wt% (8.8 nm QDs layer) green-light emitting CdSe/ZnS core/shell QDs reduced the surface reflectance of the textured surface with SiNX film on a silicon solar-cell from 27% to 15% and enhanced the external quantum efficiency (EQE) of silicon solar-cells to around 30% in the UV wavelength region, thereby enhancing the power conversion efficiency (PCE) for p-type silicon solar-cells by 5.5%.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stillman, J. A.; Feldman, E. E.; Wilson, E. H.

    This report contains the results of reactor accident analyses for the University of Missouri Research Reactor (MURR). The calculations were performed as part of the conversion from the use of highly-enriched uranium (HEU) fuel to the use of low-enriched uranium (LEU) fuel. The analyses were performed by staff members of the Global Threat Reduction Initiative (GTRI) Reactor Conversion Program at the Argonne National Laboratory (ANL), the MURR Facility, and the Nuclear Engineering Program – College of Engineering, University of Missouri-Columbia. The core conversion to LEU is being performed with financial support from the U. S. government. This report contains themore » results of reactor accident analyses for the University of Missouri Research Reactor (MURR). The calculations were performed as part of the conversion from the use of highly-enriched uranium (HEU) fuel to the use of low-enriched uranium (LEU) fuel. The analyses were performed by staff members of the Global Threat Reduction Initiative (GTRI) Reactor Conversion Program at the Argonne National Laboratory (ANL), the MURR Facility, and the Nuclear Engineering Program – College of Engineering, University of Missouri-Columbia. The core conversion to LEU is being performed with financial support from the U. S. government. In the framework of non-proliferation policies, the international community presently aims to minimize the amount of nuclear material available that could be used for nuclear weapons. In this geopolitical context most research and test reactors, both domestic and international, have started a program of conversion to the use of LEU fuel. A new type of LEU fuel based on an alloy of uranium and molybdenum (U-Mo) is expected to allow the conversion of U.S. domestic high performance reactors like MURR. This report presents the results of a study of core behavior under a set of accident conditions for MURR cores fueled with HEU U-Alx dispersion fuel or LEU monolithic U-Mo alloy fuel with 10 wt% Mo (U-10Mo).« less

  7. NIR stimulus-responsive core-shell type nanoparticles based on photothermal conversion for enhanced antitumor efficacy through chemo-photothermal therapy.

    PubMed

    Sun, Kai; You, Chaoqun; Wang, Senlin; Gao, Zhiguo; Wu, Hongshuai; Tao, W Andy; Zhu, Xiaoli; Sun, Baiwang

    2018-07-13

    A novel core-shell type nanoparticle (CSNP) was designed here to target co-delivery of doxorubicin (DOX) and photosensitizer indocyanine green (ICG) to tumor sites by the aid of NIR induced photothermal conversion effect for the purpose of synergistic chemo-photothermal cancer therapy. The electrostatically self-assembled CSNPs were prepared by amino-functionalized mesoporous silica nanoparticles (MSN-NH 2 ) as the positive inner core and DSPE-PEG 2000 -COOH and DSPE-PEG 2000 -FA modified lecithin as the negative outer shell. The obtained CSNPs were nanospheres with a uniform size of 47 nm, which were kept stable at 4 °C in PBS (pH = 7). Research on the release of NIR stimulus (808 nm, 1.54 W cm -2 , 6 min) manifested that the release property of the CSNPs was controllable under low pH conditions. In addition, specific concentration (40 μg ml -1 ) ICG-loaded CSNPs, achieving an appropriate temperature up to 45 °C, indicated a desired photothermal conversion efficiency. For targeting the folate receptor, the folate modified CSNPs enabled us to reach a higher cellular uptake by the mean fluorescence intensity. In vitro cell assay, the prepared CSNPs showed outstanding inhibitory efficiency (2.07% cell viability and 91.8% cell apoptosis) on MCF-7 cells for 24 h when irradiated by an 808 nm laser with a power of 1.54 W cm -2 for 6 min. Our research highlights that the prepared nanoparticles hold potential promise for cancer treatment based on photothermal conversion performance and FA-targeted delivery.

  8. Solvation and Evolution Dynamics of an Excess Electron in Supercritical CO2

    NASA Astrophysics Data System (ADS)

    Wang, Zhiping; Liu, Jinxiang; Zhang, Meng; Cukier, Robert I.; Bu, Yuxiang

    2012-05-01

    We present an ab initio molecular dynamics simulation of the dynamics of an excess electron solvated in supercritical CO2. The excess electron can exist in three types of states: CO2-core localized, dual-core localized, and diffuse states. All these states undergo continuous state conversions via a combination of long lasting breathing oscillations and core switching, as also characterized by highly cooperative oscillations of the excess electron volume and vertical detachment energy. All of these oscillations exhibit a strong correlation with the electron-impacted bending vibration of the core CO2, and the core-switching is controlled by thermal fluctuations.

  9. Analysis on Reactor Criticality Condition and Fuel Conversion Capability Based on Different Loaded Plutonium Composition in FBR Core

    NASA Astrophysics Data System (ADS)

    Permana, Sidik; Saputra, Geby; Suzuki, Mitsutoshi; Saito, Masaki

    2017-01-01

    Reactor criticality condition and fuel conversion capability are depending on the fuel arrangement schemes, reactor core geometry and fuel burnup process as well as the effect of different fuel cycle and fuel composition. Criticality condition of reactor core and breeding ratio capability have been investigated in this present study based on fast breeder reactor (FBR) type for different loaded fuel compositions of plutonium in the fuel core regions. Loaded fuel of Plutonium compositions are based on spent nuclear fuel (SNF) of light water reactor (LWR) for different fuel burnup process and cooling time conditions of the reactors. Obtained results show that different initial fuels of plutonium gives a significant chance in criticality conditions and fuel conversion capability. Loaded plutonium based on higher burnup process gives a reduction value of criticality condition or less excess reactivity. It also obtains more fuel breeding ratio capability or more breeding gain. Some loaded plutonium based on longer cooling time of LWR gives less excess reactivity and in the same time, it gives higher breeding ratio capability of the reactors. More composition of even mass plutonium isotopes gives more absorption neutron which affects to decresing criticality or less excess reactivity in the core. Similar condition that more absorption neutron by fertile material or even mass plutonium will produce more fissile material or odd mass plutonium isotopes to increase the breeding gain of the reactor.

  10. Mid-term results of concentrated autologous bone marrow aspirate transplantation for corticosteroid-associated osteonecrosis of the femoral head in systemic lupus erythematosus.

    PubMed

    Tomaru, Yohei; Yoshioka, Tomokazu; Sugaya, Hisashi; Shimizu, Yukiyo; Aoto, Katsuya; Wada, Hiroshi; Akaogi, Hiroshi; Yamazaki, Masashi; Mishima, Hajime

    2018-04-28

    We had previously established concentrated autologous bone marrow aspirate transplantation (CABMAT), a one-step, low-invasive, joint-preserving surgical technique for treating osteonecrosis of the femoral head (ONFH). This study aimed to evaluate the effects of CABMAT as a hip-preserving surgical approach, preventing conversion to total hip arthroplasty (THA) and femoral head collapse in patients with systemic lupus erythematosus (SLE). Since 2003, 52 SLE patients (8 male, 44 female, 92 hips, mean age 35.3 (16-77) (years) were treated with CABMAT. The mean follow-up period was 5.5 (0.7-14) years. Conversion rate to THA and its predicting factors were analyzed. The overall conversion rate to THA was 29% (27/92). Conversion rate to THA was 0% (0/3), 0% (0/4), 22% (9/41), and 41% (18/44) in types A, B, C1, and C2, respectively. Conversion rate to THA was 26% (5/19), 26% (6/23), 28% (11/39), 44% (4/9), and 50% (1/2) in stages 1, 2, 3A, 3B, and 4, respectively. In multivariate logistic regression analysis, sex, body mass index (BMI), pre-operative type, and pre-operative stage were significantly correlated with conversion to THA. The conversion rate to THA was lower than that in the natural course and core decompression, but was higher than that seen in other bone marrow transplantation and osteotomy. Since sex, pre-operative type, and pre-operative stage were significantly correlated with conversion to THA, it is suggested that the higher proportion of women, advanced stage (stage 3A or above), and advanced type (type C or above) in this study affected the THA conversion rate.

  11. Nurses' fidelity to theory-based core components when implementing Family Health Conversations - a qualitative inquiry.

    PubMed

    Östlund, Ulrika; Bäckström, Britt; Lindh, Viveca; Sundin, Karin; Saveman, Britt-Inger

    2015-09-01

    A family systems nursing intervention, Family Health Conversation, has been developed in Sweden by adapting the Calgary Family Assessment and Intervention Models and the Illness Beliefs Model. The intervention has several theoretical assumptions, and one way translate the theory into practice is to identify core components. This may produce higher levels of fidelity to the intervention. Besides information about how to implement an intervention in accordance to how it was developed, evaluating whether it was actually implemented as intended is important. Accordingly, we describe the nurses' fidelity to the identified core components of Family Health Conversation. Six nurses, working in alternating pairs, conducted Family Health Conversations with seven families in which a family member younger than 65 had suffered a stroke. The intervention contained a series of three-1-hour conversations held at 2-3 week intervals. The nurses followed a conversation structure based on 12 core components identified from theoretical assumptions. The transcripts of the 21 conversations were analysed using manifest qualitative content analysis with a deductive approach. The 'core components' seemed to be useful even if nurses' fidelity varied among the core components. Some components were followed relatively well, but others were not. This indicates that the process for achieving fidelity to the intervention can be improved, and that it is necessary for nurses to continually learn theory and to practise family systems nursing. We suggest this can be accomplished through reflections, role play and training on the core components. Furthermore, as in this study, joint reflections on how the core components have been implemented can lead to deeper understanding and knowledge of how Family Health Conversation can be delivered as intended. © 2014 Nordic College of Caring Science.

  12. Transformation of Au144(SCH2CH2Ph)60 to Au133(SPh-tBu)52 Nanomolecules: Theoretical and Experimental Study.

    PubMed

    Nimmala, Praneeth Reddy; Theivendran, Shevanuja; Barcaro, Giovanni; Sementa, Luca; Kumara, Chanaka; Jupally, Vijay Reddy; Apra, Edoardo; Stener, Mauro; Fortunelli, Alessandro; Dass, Amala

    2015-06-04

    Ultrastable gold nanomolecule Au144(SCH2CH2Ph)60 upon etching with excess tert-butylbenzenethiol undergoes a core-size conversion and compositional change to form an entirely new core of Au133(SPh-tBu)52. This conversion was studied using high-resolution electrospray mass spectrometry which shows that the core size conversion is initiated after 22 ligand exchanges, suggesting a relatively high stability of the Au144(SCH2CH2Ph)38(SPh-tBu)22 intermediate. The Au144 → Au133 core size conversion is surprisingly different from the Au144 → Au99 core conversion reported in the case of thiophenol, -SPh. Theoretical analysis and ab initio molecular dynamics simulations show that rigid p-tBu groups play a crucial role by reducing the cluster structural freedom, and protecting the cluster from adsorption of exogenous and reactive species, thus rationalizing the kinetic factors that stabilize the Au133 core size. This 144-atom to 133-atom nanomolecule's compositional change is reflected in optical spectroscopy and electrochemistry.

  13. Fast neutrino flavor conversions near the supernova core with realistic flavor-dependent angular distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dasgupta, Basudeb; Sen, Manibrata; Mirizzi, Alessandro, E-mail: bdasgupta@theory.tifr.res.in, E-mail: alessandro.mirizzi@ba.infn.it, E-mail: manibrata.sen@gmail.com

    2017-02-01

    It has been recently pointed out that neutrino fluxes from a supernova can show substantial flavor conversions almost immediately above the core. Using linear stability analyses and numerical solutions of the fully nonlinear equations of motion, we perform a detailed study of these fast conversions , focussing on the region just above the supernova core. We carefully specify the instabilities for evolution in space or time, and find that neutrinos travelling towards the core make fast conversions more generic, i.e., possible for a wider range of flux ratios and angular asymmetries that produce a crossing between the zenith-angle spectra ofmore » ν {sub e} and ν-bar {sub e} . Using fluxes and angular distributions predicted by supernova simulations, we find that fast conversions can occur within tens of nanoseconds, only a few meters away from the putative neutrinospheres. If these fast flavor conversions indeed take place, they would have important implications for the supernova explosion mechanism and nucleosynthesis.« less

  14. A stretch of residues within the protease-resistant core is not necessary for prion structure and infectivity

    PubMed Central

    Munoz-Montesino, Carola; Sizun, Christina; Moudjou, Mohammed; Herzog, Laetitia; Reine, Fabienne; Igel-Egalon, Angelique; Barbereau, Clément; Chapuis, Jérôme; Ciric, Danica; Laude, Hubert; Béringue, Vincent; Rezaei, Human; Dron, Michel

    2017-01-01

    ABSTRACT Mapping out regions of PrP influencing prion conversion remains a challenging issue complicated by the lack of prion structure. The portion of PrP associated with infectivity contains the α-helical domain of the correctly folded protein and turns into a β-sheet-rich insoluble core in prions. Deletions performed so far inside this segment essentially prevented the conversion. Recently we found that deletion of the last C-terminal residues of the helix H2 was fully compatible with prion conversion in the RK13-ovPrP cell culture model, using 3 different infecting strains. This was in agreement with preservation of the overall PrPC structure even after removal of up to one-third of this helix. Prions with internal deletion were infectious for cells and mice expressing the wild-type PrP and they retained prion strain-specific characteristics. We thus identified a piece of the prion domain that is neither necessary for the conformational transition of PrPC nor for the formation of a stable prion structure. PMID:28281924

  15. A stretch of residues within the protease-resistant core is not necessary for prion structure and infectivity.

    PubMed

    Munoz-Montesino, Carola; Sizun, Christina; Moudjou, Mohammed; Herzog, Laetitia; Reine, Fabienne; Igel-Egalon, Angelique; Barbereau, Clément; Chapuis, Jérôme; Ciric, Danica; Laude, Hubert; Béringue, Vincent; Rezaei, Human; Dron, Michel

    2017-01-02

    Mapping out regions of PrP influencing prion conversion remains a challenging issue complicated by the lack of prion structure. The portion of PrP associated with infectivity contains the α-helical domain of the correctly folded protein and turns into a β-sheet-rich insoluble core in prions. Deletions performed so far inside this segment essentially prevented the conversion. Recently we found that deletion of the last C-terminal residues of the helix H2 was fully compatible with prion conversion in the RK13-ovPrP cell culture model, using 3 different infecting strains. This was in agreement with preservation of the overall PrP C structure even after removal of up to one-third of this helix. Prions with internal deletion were infectious for cells and mice expressing the wild-type PrP and they retained prion strain-specific characteristics. We thus identified a piece of the prion domain that is neither necessary for the conformational transition of PrP C nor for the formation of a stable prion structure.

  16. Broadband absorption and enhanced photothermal conversion property of octopod-like Ag@Ag2S core@shell structures with gradually varying shell thickness.

    PubMed

    Jiang, Qian; Zeng, Wenxia; Zhang, Canying; Meng, Zhaoguo; Wu, Jiawei; Zhu, Qunzhi; Wu, Daxiong; Zhu, Haitao

    2017-12-19

    Photothermal conversion materials have promising applications in many fields and therefore they have attracted tremendous attention. However, the multi-functionalization of a single nanostructure to meet the requirements of multiple photothermal applications is still a challenge. The difficulty is that most nanostructures have specific absoprtion band and are not flexible to different demands. In the current work, we reported the synthesis and multi-band photothermal conversion of Ag@Ag 2 S core@shell structures with gradually varying shell thickness. We synthesized the core@shell structures through the sulfidation of Ag nanocubes by taking the advantage of their spatially different reactivity. The resulting core@shell structures show an octopod-like mopgorlogy with a Ag 2 S bulge sitting at each corner of the Ag nanocubes. The thickness of the Ag 2 S shell gradually increases from the central surface towards the corners of the structure. The synthesized core@shell structures show a broad band absorption spectrum from 300 to 1100 nm. Enhanced photothermal conversion effect is observed under the illuminations of 635, 808, and 1064 nm lasers. The results indicate that the octopod-like Ag@Ag 2 S core@shell structures have characteristics of multi-band photothermal conversion. The current work might provide a guidance for the design and synthesis of multifunctional photothermal conversion materials.

  17. Changes in core food intake among Australian children between 1995 and 2007.

    PubMed

    Rangan, A M; Kwan, J S L; Louie, J C Y; Flood, V M; Gill, T P

    2011-11-01

    To assess the changes in the consumption of core foods among Australian children between the 1995 National Nutrition Survey (1995 NNS) and the 2007 Australian National Children's Nutrition and Physical Activity Survey (2007 Children's Survey). Core food consumption was analysed using 24-h recall data from 2-16 year old children using the 1995 NNS (n=2435) and the 2007 Children's Survey (n=4380). Differences in percent consuming, amounts consumed and percent energy contribution were assessed. The consumption of core foods increased significantly between the 1995 and 2007 surveys, including per-capita consumption and percent energy contribution (both P0.001). Core foods contributed to 59% of energy intake in 1995 compared with 65% in 2007. The types of core foods consumed also changed during this time period with more children reporting eating healthy options such as wholemeal bread, reduced-fat milk, reduced-fat cheese and fruit in the 2007 Children's Survey. Conversely, the consumption of white bread, full-fat milk and low-fibre breakfast cereals was lower in 2007. Overall, reported dietary intake had improved from 1995 to 2007 among Australian children with an increase in the amounts of core foods consumed and healthier types of foods being chosen. Continued health-promotion activities and monitoring of food consumption are highly warranted.

  18. Evidence of significant down-conversion in a Si-based solar cell using CuInS2/ZnS core shell quantum dots

    NASA Astrophysics Data System (ADS)

    Gardelis, Spiros; Nassiopoulou, Androula G.

    2014-05-01

    We report on the increase of up to 37.5% in conversion efficiency of a Si-based solar cell after deposition of light-emitting Cd-free, CuInS2/ZnS core shell quantum dots on the active area of the cell due to the combined effect of down-conversion and the anti- reflecting property of the dots. We clearly distinguished the effect of down-conversion from anti-reflection and estimated an enhancement of up to 10.5% in the conversion efficiency due to down-conversion.

  19. Polyethylenimine-immobilized core-shell nanoparticles: synthesis, characterization, and biocompatibility test.

    PubMed

    Ratanajanchai, Montri; Soodvilai, Sunhapas; Pimpha, Nuttaporn; Sunintaboon, Panya

    2014-01-01

    Herein, we prepared PEI-immobilized core-shell particles possessing various types of polymer cores via a visible light-induced surfactant-free emulsion polymerization (SFEP) of three vinyl monomers: styrene (St), methyl methacrylate (MMA), and 2-hydroxyethyl methacrylate (HEMA). An effect of monomers on the polymerization and characteristics of resulting products was investigated. Monomers with high polarity can provide high monomer conversion, high percentage of grafted PEI, stable particles with uniform size distribution but less amino groups per particles. All prepared nanoparticles exhibited a core-shell nanostructure, containing PEI on the shell with hydrodynamic size around 140-230nm. For in-vitro study in Caco-2 cells, we found that the incorporation of PEI into these core-shell nanoparticles can significantly reduce its cytotoxic effect and also be able to internalized within the cells. Accordingly, these biocompatible particles would be useful for various biomedical applications, including gene transfection and intracellular drug delivery. © 2013.

  20. Analysis of closed cycle megawatt class space power systems with nuclear reactor heat sources

    NASA Technical Reports Server (NTRS)

    Juhasz, A. J.; Jones, B. I.

    1987-01-01

    The analysis and integration studies of multimegawatt nuclear power conversion systems for potential SDI applications is presented. A study is summarized which considered 3 separate types of power conversion systems for steady state power generation with a duty requirement of 1 yr at full power. The systems considered are based on the following conversion cycles: direct and indirect Brayton gas turbine, direct and indirect liquid metal Rankine, and in core thermionic. A complete mass analysis was performed for each system at power levels ranging from 1 to 25 MWe for both heat pipe and liquid droplet radiator options. In the modeling of common subsystems, reactor and shield calculations were based on multiparameter correlation and an in-house analysis for the heat rejection and other subsystems.

  1. Analysis on fuel breeding capability of FBR core region based on minor actinide recycling doping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Permana, Sidik; Novitrian,; Waris, Abdul

    Nuclear fuel breeding based on the capability of fuel conversion capability can be achieved by conversion ratio of some fertile materials into fissile materials during nuclear reaction processes such as main fissile materials of U-233, U-235, Pu-239 and Pu-241 and for fertile materials of Th-232, U-238, and Pu-240 as well as Pu-238. Minor actinide (MA) loading option which consists of neptunium, americium and curium will gives some additional contribution from converted MA into plutonium such as conversion Np-237 into Pu-238 and it's produced Pu-238 converts to Pu-239 via neutron capture. Increasing composition of Pu-238 can be used to produce fissilemore » material of Pu-239 as additional contribution. Trans-uranium (TRU) fuel (Mixed fuel loading of MOX (U-Pu) and MA composition) and mixed oxide (MOX) fuel compositions are analyzed for comparative analysis in order to show the effect of MA to the plutonium productions in core in term of reactor criticality condition and fuel breeding capability. In the present study, neptunium (Np) nuclide is used as a representative of MAin trans-uranium (TRU) fuel composition as Np-MOX fuel type. It was loaded into the core region gives significant contribution to reduce the excess reactivity in comparing to mixed oxide (MOX) fuel and in the same time it contributes to increase nuclear fuel breeding capability of the reactor. Neptunium fuel loading scheme in FBR core region gives significant production of Pu-238 as fertile material to absorp neutrons for reducing excess reactivity and additional contribution for fuel breeding.« less

  2. Cd-free Cu-Zn-In-S/ZnS quantum dots@SiO2 multiple cores nanostructure: preparation and application for white LEDs

    NASA Astrophysics Data System (ADS)

    Jiang, Tongtong; Shen, Mohan; Dai, Peng; Wu, Mingzai; Yu, Xinxin; Li, Guang; Xu, Xiaoliang; Zeng, Haibo

    2017-10-01

    The work reports the fabrication of Cu doped Zn-In-S (CZIS) alloy quantum dots (QDs) using dodecanethiol and oleic acid as stabilizing ligands. With the increase of doped Cu element, the photoluminescence (PL) peak is monotonically red shifted. After coating ZnS shell, the PL quantum yield of CZIS QDs can reach 78%. Using reverse micelle microemulsion method, CZIS/ZnS QDs@SiO2 multi-core nanospheres were synthesized to improve the colloidal stability and avoid the aggregation of QDs. The obtained multi-core nanospheres were dispersed in curing adhesive, and applied as a color conversion layer in down converted light-emitting diodes. After encapsulation in curing adhesive, the newly designed LEDs show artifically regulated color coordinates with varying the weight ratio of green QDs and red QDs, and the concentrations of these two types of QDs. Moreover, natural white and warm white LEDs with correlated color temperature of 5287, 6732, 2731, and 3309 K can be achieved, which indicates that CZIS/ZnS QDs@SiO2 nanostructures are promising color conversion layer material for solid-state lighting application.

  3. Full-spectrum volumetric solar thermal conversion via photonic nanofluids.

    PubMed

    Liu, Xianglei; Xuan, Yimin

    2017-10-12

    Volumetric solar thermal conversion is an emerging technique for a plethora of applications such as solar thermal power generation, desalination, and solar water splitting. However, achieving broadband solar thermal absorption via dilute nanofluids is still a daunting challenge. In this work, full-spectrum volumetric solar thermal conversion is demonstrated over a thin layer of the proposed 'photonic nanofluids'. The underlying mechanism is found to be the photonic superposition of core resonances, shell plasmons, and core-shell resonances at different wavelengths, whose coexistence is enabled by the broken symmetry of specially designed composite nanoparticles, i.e., Janus nanoparticles. The solar thermal conversion efficiency can be improved by 10.8% compared with core-shell nanofluids. The extinction coefficient of Janus dimers with various configurations is also investigated to unveil the effects of particle couplings. This work provides the possibility to achieve full-spectrum volumetric solar thermal conversion, and may have potential applications in efficient solar energy harvesting and utilization.

  4. Optimize out-of-core thermionic energy conversion for nuclear electric propulsion

    NASA Technical Reports Server (NTRS)

    Morris, J. F.

    1977-01-01

    Current designs for out of core thermionic energy conversion (TEC) to power nuclear electric propulsion (NEP) were evaluated. Approaches to improve out of core TEC are emphasized and probabilities for success are indicated. TEC gains are available with higher emitter temperatures and greater power densities. Good potentialities for accommodating external high temperature, high power density TEC with heat pipe cooled reactors exist.

  5. Unraveling Core Functional Microbiota in Traditional Solid-State Fermentation by High-Throughput Amplicons and Metatranscriptomics Sequencing.

    PubMed

    Song, Zhewei; Du, Hai; Zhang, Yan; Xu, Yan

    2017-01-01

    Fermentation microbiota is specific microorganisms that generate different types of metabolites in many productions. In traditional solid-state fermentation, the structural composition and functional capacity of the core microbiota determine the quality and quantity of products. As a typical example of food fermentation, Chinese Maotai-flavor liquor production involves a complex of various microorganisms and a wide variety of metabolites. However, the microbial succession and functional shift of the core microbiota in this traditional food fermentation remain unclear. Here, high-throughput amplicons (16S rRNA gene amplicon sequencing and internal transcribed space amplicon sequencing) and metatranscriptomics sequencing technologies were combined to reveal the structure and function of the core microbiota in Chinese soy sauce aroma type liquor production. In addition, ultra-performance liquid chromatography and headspace-solid phase microextraction-gas chromatography-mass spectrometry were employed to provide qualitative and quantitative analysis of the major flavor metabolites. A total of 10 fungal and 11 bacterial genera were identified as the core microbiota. In addition, metatranscriptomic analysis revealed pyruvate metabolism in yeasts (genera Pichia, Schizosaccharomyces, Saccharomyces , and Zygosaccharomyces ) and lactic acid bacteria (genus Lactobacillus ) classified into two stages in the production of flavor components. Stage I involved high-level alcohol (ethanol) production, with the genus Schizosaccharomyces serving as the core functional microorganism. Stage II involved high-level acid (lactic acid and acetic acid) production, with the genus Lactobacillus serving as the core functional microorganism. The functional shift from the genus Schizosaccharomyces to the genus Lactobacillus drives flavor component conversion from alcohol (ethanol) to acid (lactic acid and acetic acid) in Chinese Maotai-flavor liquor production. Our findings provide insight into the effects of the core functional microbiota in soy sauce aroma type liquor production and the characteristics of the fermentation microbiota under different environmental conditions.

  6. Fabrication, characterization and comparison of composite magnetic materials for high efficiency integrated voltage regulators with embedded magnetic core micro-inductors

    NASA Astrophysics Data System (ADS)

    Bellaredj, Mohamed L. F.; Mueller, Sebastian; Davis, Anto K.; Mano, Yasuhiko; Kohl, Paul A.; Swaminathan, Madhavan

    2017-11-01

    High-efficiency integrated voltage regulators (IVRs) require the integration of power inductors, which have low loss and reduced size at very high frequency. The use of a magnetic material core can reduce significantly the inductor area and simultaneously increase the inductance. This paper focuses on the fabrication, characterization and modeling of nickel zinc (NiZn) ferrite and carbonyl iron powder (CIP)-epoxy magnetic composite materials, which are used as the magnetic core materials of embedded inductors in a printed wiring board (PWB) for a system in package (SIP) based buck type IVR. The fabricated composite materials and process are fully compatible with FR4 epoxy resin prepreg and laminate. For 85% weight loading of the magnetic powder (around 100 MHz at room temperature), the composite materials show a relative permeability of 7.5-8.1 for the NiZn ferrite composite and 5.2-5.6 for the CIP composite and a loss tangent value of 0.24-0.28 for the NiZn ferrite composite and 0.09-0.1 for the CIP-composite. The room temperature saturation flux density values are 0.1351 T and 0.5280 T for the NiZn ferrite and the CIP composites, respectively. The frequency dispersion parameters of the magnetic composites are modeled using a simplified Lorentz and Landau-Lifshitz-Gilbert equation for a Debye type relaxation. Embedded magnetic core solenoid inductors were designed based on the composite materials for the output filter of a high-efficiency SIP based buck type IVR. Evaluation of a SIP based buck type IVR with the designed inductors shows that it can reach peak efficiencies of 91.7% at 11 MHz for the NiZn ferrite-composite, 91.6% at 14 MHz for CIP-composite and 87.5% (NiZn ferrite-composite) and 87.3% (CIP-composite) efficiency at 100 MHz for a 1.7 V:1.05 V conversion. For a direct 5 V:1 V conversion using a stacked topology, a peak efficiency of 82% at 10 MHz and 72% efficiency at 100 MHz can be achieved for both materials.

  7. Biological computational approaches: new hopes to improve (re)programming robustness, regenerative medicine and cancer therapeutics.

    PubMed

    Ebrahimi, Behnam

    2016-01-01

    Hundreds of transcription factors (TFs) are expressed and work in each cell type, but the identity of the cells is defined and maintained through the activity of a small number of core TFs. Existing reprogramming strategies predominantly focus on the ectopic expression of core TFs of an intended fate in a given cell type regardless of the state of native/somatic gene regulatory networks (GRNs) of the starting cells. Interestingly, an important point is that how much products of the reprogramming, transdifferentiation and differentiation (programming) are identical to their in vivo counterparts. There is evidence that shows that direct fate conversions of somatic cells are not complete, with target cell identity not fully achieved. Manipulation of core TFs provides a powerful tool for engineering cell fate in terms of extinguishment of native GRNs, the establishment of a new GRN, and preventing installation of aberrant GRNs. Conventionally, core TFs are selected to convert one cell type into another mostly based on literature and the experimental identification of genes that are differentially expressed in one cell type compared to the specific cell types. Currently, there is not a universal standard strategy for identifying candidate core TFs. Remarkably, several biological computational platforms are developed, which are capable of evaluating the fidelity of reprogramming methods and refining existing protocols. The current review discusses some deficiencies of reprogramming technologies in the production of a pure population of authentic target cells. Furthermore, it reviews the role of computational approaches (e.g. CellNet, KeyGenes, Mogrify, etc.) in improving (re)programming methods and consequently in regenerative medicine and cancer therapeutics. Copyright © 2016 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

  8. Interfacial charge separation and recombination in InP and quasi-type II InP/CdS core/shell quantum dot-molecular acceptor complexes.

    PubMed

    Wu, Kaifeng; Song, Nianhui; Liu, Zheng; Zhu, Haiming; Rodríguez-Córdoba, William; Lian, Tianquan

    2013-08-15

    Recent studies of group II-VI colloidal semiconductor heterostuctures, such as CdSe/CdS core/shell quantum dots (QDs) or dot-in-rod nanorods, show that type II and quasi-type II band alignment can facilitate electron transfer and slow down charge recombination in QD-molecular electron acceptor complexes. To explore the general applicability of this wave function engineering approach for controlling charge transfer properties, we investigate exciton relaxation and dissociation dynamics in InP (a group III-V semiconductor) and InP/CdS core/shell (a heterostructure beween group III-V and II-VI semiconductors) QDs by transient absorption spectroscopy. We show that InP/CdS QDs exhibit a quasi-type II band alignment with the 1S electron delocalized throughout the core and shell and the 1S hole confined in the InP core. In InP-methylviologen (MV(2+)) complexes, excitons in the QD can be dissociated by ultrafast electron transfer to MV(2+) from the 1S electron level (with an average time constant of 11.4 ps) as well as 1P and higher electron levels (with a time constant of 0.39 ps), which is followed by charge recombination to regenerate the complex in its ground state (with an average time constant of 47.1 ns). In comparison, InP/CdS-MV(2+) complexes show similar ultrafast charge separation and 5-fold slower charge recombination rates, consistent with the quasi-type II band alignment in these heterostructures. This result demonstrates that wave function engineering in nanoheterostructures of group III-V and II-VI semiconductors provides a promising approach for optimizing their light harvesting and charge separation for solar energy conversion applications.

  9. Electrodeposited Nanolaminated CoNiFe Cores for Ultracompact DC-DC Power Conversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, J; Kim, M; Herrault, F

    2015-09-01

    Laminated metallic alloy cores (i.e., alternating layers of thin film metallic alloy and insulating material) of appropriate lamination thickness enable suppression of eddy current losses at high frequencies. Magnetic cores comprised of many such laminations yield substantial overall magnetic volume, thereby enabling high-power operation. Previously, we reported nanolaminated permalloy (Ni-80 Fe-20) cores based on a sequential electrodeposition technique, demonstrating negligible eddy current losses at peak flux densities up to 0.5 T and operating at megahertz frequencies. This paper demonstrates improved performance of nanolaminated cores comprising tens to hundreds of layers of 300-500-nm-thick CoNiFe films that exhibit superior magnetic properties (e.g.,more » higher saturation flux density and lower coercivity) than permalloy. Nanolaminated CoNiFe cores can be operated up to a peak flux density of 0.9 T, demonstrating improved power handling capacity and exhibiting 30% reduced volumetric core loss, attributed to lowered hysteresis losses compared to the nanolaminated permalloy core of the same geometry. Operating these cores in a buck dc-dc power converter at a switching frequency of 1 MHz, the nanolaminated CoNiFe cores achieved a conversion efficiency exceeding 90% at output power levels up to 7 W, compared to an achieved permalloy core conversion efficiency below 86% at 6 W.« less

  10. Thermionic energy conversion technology - Present and future

    NASA Technical Reports Server (NTRS)

    Shimada, K.; Morris, J. F.

    1977-01-01

    Aerospace and terrestrial applications of thermionic direct energy conversion and advances in direct energy conversion (DEC) technology are surveyed. Electrode materials, the cesium plasma drop (the difference between the barrier index and the collector work function), DEC voltage/current characteristics, conversion efficiency, and operating temperatures are discussed. Attention is centered on nuclear reactor system thermionic DEC devices, for in-core or out-of-core operation. Thermionic fuel elements, the radiation shield, power conditions, and a waste heat rejection system are considered among the thermionic DEC system components. Terrestrial applications include topping power systems in fossil fuel and solar power generation.

  11. Alkaline decomposition of synthetic jarosite with arsenic

    PubMed Central

    2013-01-01

    The widespread use of jarosite-type compounds to eliminate impurities in the hydrometallurgical industry is due to their capability to incorporate several elements into their structures. Some of these elements are of environmental importance (Pb2+, Cr6+, As5+, Cd2+, Hg2+). For the present paper, AsO43- was incorporated into the lattice of synthetic jarosite in order to carry out a reactivity study. Alkaline decomposition is characterized by removal of sulfate and potassium ions from the lattice and formation of a gel consisting of iron hydroxides with absorbed arsenate. Decomposition curves show an induction period followed by a conversion period. The induction period is independent of particle size and exponentially decreases with temperature. The conversion period is characterized by formation of a hydroxide halo that surrounds an unreacted jarosite core. During the conversion period in NaOH media for [OH-] > 8 × 10-3 mol L-1, the process showed a reaction order of 1.86, and an apparent activation energy of 60.3 kJ mol-1 was obtained. On the other hand, during the conversion period in Ca(OH)2 media for [OH-] > 1.90 × 10-2 mol L-1, the reaction order was 1.15, and an apparent activation energy of 74.4 kJ mol-1 was obtained. The results are consistent with the spherical particle model with decreasing core and chemical control. PMID:23566061

  12. Single-mode fiber laser based on core-cladding mode conversion.

    PubMed

    Suzuki, Shigeru; Schülzgen, Axel; Peyghambarian, N

    2008-02-15

    A single-mode fiber laser based on an intracavity core-cladding mode conversion is demonstrated. The fiber laser consists of an Er-doped active fiber and two fiber Bragg gratings. One Bragg grating is a core-cladding mode converter, and the other Bragg grating is a narrowband high reflector that selects the lasing wavelength. Coupling a single core mode and a single cladding mode by the grating mode converter, the laser operates as a hybrid single-mode laser. This approach for designing a laser cavity provides a much larger mode area than conventional large-mode-area step-index fibers.

  13. Finite element simulation of core inspection in helicopter rotor blades using guided waves.

    PubMed

    Chakrapani, Sunil Kishore; Barnard, Daniel; Dayal, Vinay

    2015-09-01

    This paper extends the work presented earlier on inspection of helicopter rotor blades using guided Lamb modes by focusing on inspecting the spar-core bond. In particular, this research focuses on structures which employ high stiffness, high density core materials. Wave propagation in such structures deviate from the generic Lamb wave propagation in sandwich panels. To understand the various mode conversions, finite element models of a generalized helicopter rotor blade were created and subjected to transient analysis using a commercial finite element code; ANSYS. Numerical simulations showed that a Lamb wave excited in the spar section of the blade gets converted into Rayleigh wave which travels across the spar-core section and mode converts back into Lamb wave. Dispersion of Rayleigh waves in multi-layered half-space was also explored. Damage was modeled in the form of a notch in the core section to simulate a cracked core, and delamination was modeled between the spar and core material to simulate spar-core disbond. Mode conversions under these damaged conditions were examined numerically. The numerical models help in assessing the difficulty of using nondestructive evaluation for complex structures and also highlight the physics behind the mode conversions which occur at various discontinuities. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. FUEL ELEMENT CONSTRUCTION

    DOEpatents

    Zumwalt, L.R.

    1961-08-01

    Fuel elements having a solid core of fissionable material encased in a cladding material are described. A conversion material is provided within the cladding to react with the fission products to form stable, relatively non- volatile compounds thereby minimizing the migration of the fission products into the coolant. The conversion material is preferably a metallic fluoride, such as lead difluoride, and may be in the form of a coating on the fuel core or interior of the cladding, or dispersed within the fuel core. (AEC)

  15. Vector mode conversion based on tilted fiber Bragg grating in ring-core fibers

    NASA Astrophysics Data System (ADS)

    Mi, Yuean; Ren, Guobin; Gao, Yixiao; Li, Haisu; Zhu, Bofeng; Liu, Yu

    2018-03-01

    We propose a vector mode conversion approach based on tilted fiber Bragg grating (TFBG) written in ring-core fiber with effective separation of eigenmodes. The mode coupling properties of TFBG are numerically investigated. It is shown that under the constraint of phase matching, the conversion of high-order vector modes could be achieved at specific wavelengths. Moreover, the polarization of incident light and tilt angle of TFBG play critical roles in mode coupling process. The proposed TFBG provides an efficient method to realize high-order vector mode conversion, and it shows great potential for fibers based OAM beam generation and fiber lasers with vortex beams output.

  16. Volume and Mass Estimation of Three-Phase High Power Transformers for Space Applications

    NASA Technical Reports Server (NTRS)

    Kimnach, Greg L.

    2004-01-01

    Spacecraft historically have had sub-1kW(sub e), electrical requirements for GN&C, science, and communications: Galileo at 600W(sub e), and Cassini at 900W(sub e), for example. Because most missions have had the same order of magnitude power requirements, the Power Distribution Systems (PDS) use existing, space-qualified technology and are DC. As science payload and mission duration requirements increase, however, the required electrical power increases. Subsequently, this requires a change from a passive energy conversion (solar arrays and batteries) to dynamic (alternator, solar dynamic, etc.), because dynamic conversion has higher thermal and conversion efficiencies, has higher power densities, and scales more readily to higher power levels. Furthermore, increased power requirements and physical distribution lengths are best served with high-voltage, multi-phase AC to maintain distribution efficiency and minimize voltage drops. The generated AC-voltage must be stepped-up (or down) to interface with various subsystems or electrical hardware. Part of the trade-space design for AC distribution systems is volume and mass estimation of high-power transformers. The volume and mass are functions of the power rating, operating frequency, the ambient and allowable temperature rise, the types and amount of heat transfer available, the core material and shape, the required flux density in a core, the maximum current density, etc. McLyman has tabulated the performance of a number of transformers cores and derived a "cookbook" methodology to determine the volume of transformers, whereas Schawrze had derived an empirical method to estimate the mass of single-phase transformers. Based on the work of McLyman and Schwarze, it is the intent herein to derive an empirical solution to the volume and mass estimation of three-phase, laminated EI-core power transformers, having radiated and conducted heat transfer mechanisms available. Estimation of the mounting hardware, connectors, etc. is not included.

  17. Unraveling Core Functional Microbiota in Traditional Solid-State Fermentation by High-Throughput Amplicons and Metatranscriptomics Sequencing

    PubMed Central

    Song, Zhewei; Du, Hai; Zhang, Yan; Xu, Yan

    2017-01-01

    Fermentation microbiota is specific microorganisms that generate different types of metabolites in many productions. In traditional solid-state fermentation, the structural composition and functional capacity of the core microbiota determine the quality and quantity of products. As a typical example of food fermentation, Chinese Maotai-flavor liquor production involves a complex of various microorganisms and a wide variety of metabolites. However, the microbial succession and functional shift of the core microbiota in this traditional food fermentation remain unclear. Here, high-throughput amplicons (16S rRNA gene amplicon sequencing and internal transcribed space amplicon sequencing) and metatranscriptomics sequencing technologies were combined to reveal the structure and function of the core microbiota in Chinese soy sauce aroma type liquor production. In addition, ultra-performance liquid chromatography and headspace-solid phase microextraction-gas chromatography-mass spectrometry were employed to provide qualitative and quantitative analysis of the major flavor metabolites. A total of 10 fungal and 11 bacterial genera were identified as the core microbiota. In addition, metatranscriptomic analysis revealed pyruvate metabolism in yeasts (genera Pichia, Schizosaccharomyces, Saccharomyces, and Zygosaccharomyces) and lactic acid bacteria (genus Lactobacillus) classified into two stages in the production of flavor components. Stage I involved high-level alcohol (ethanol) production, with the genus Schizosaccharomyces serving as the core functional microorganism. Stage II involved high-level acid (lactic acid and acetic acid) production, with the genus Lactobacillus serving as the core functional microorganism. The functional shift from the genus Schizosaccharomyces to the genus Lactobacillus drives flavor component conversion from alcohol (ethanol) to acid (lactic acid and acetic acid) in Chinese Maotai-flavor liquor production. Our findings provide insight into the effects of the core functional microbiota in soy sauce aroma type liquor production and the characteristics of the fermentation microbiota under different environmental conditions. PMID:28769888

  18. Supplemental materials for the ICDP-USGS Eyreville A, B, and C core holes, Chesapeake Bay impact structure: Core-box photographs, coring-run tables, and depth-conversion files

    USGS Publications Warehouse

    Durand, C.T.; Edwards, L.E.; Malinconico, M.L.; Powars, D.S.

    2009-01-01

    During 2005-2006, the International Continental Scientific Drilling Program and the U.S. Geological Survey drilled three continuous core holes into the Chesapeake Bay impact structure to a total depth of 1766.3 m. A collection of supplemental materials that presents a record of the core recovery and measurement data for the Eyreville cores is available on CD-ROM at the end of this volume and in the GSA Data Repository. The supplemental materials on the CD-ROM include digital photographs of each core box from the three core holes, tables of the three coring-run logs, as recorded on site, and a set of depth-conversion programs. In this chapter, the contents, purposes, and basic applications of the supplemental materials are briefly described. With this information, users can quickly decide if the materials will apply to their specific research needs. ?? 2009 The Geological Society of America.

  19. Managing Conversations: The Medium for Achieving "Breakthrough" Results.

    ERIC Educational Resources Information Center

    Bolton, Robert

    1998-01-01

    Unlike traditional management development, use of conversations in coaching high-performance work teams addresses core processes of speaking and listening. Management of conversations aims to create learning that will lead to breakthroughs in team performance. (SK)

  20. The Role of Protected Areas in the Avoidance of Anthropogenic Conversion in a High Pressure Region: A Matching Method Analysis in the Core Region of the Brazilian Cerrado

    PubMed Central

    Paiva, Rodrigo José Oliveira; Brites, Ricardo Seixas; Machado, Ricardo Bomfim

    2015-01-01

    Global efforts to avoid anthropogenic conversion of natural habitat rely heavily on the establishment of protected areas. Studies that evaluate the effectiveness of these areas with a focus on preserving the natural habitat define effectiveness as a measure of the influence of protected areas on total avoided conversion. Changes in the estimated effectiveness are related to local and regional differences, evaluation methods, restriction categories that include the protected areas, and other characteristics. The overall objective of this study was to evaluate the effectiveness of protected areas to prevent the advance of the conversion of natural areas in the core region of the Brazil’s Cerrado Biome, taking into account the influence of the restriction degree, governmental sphere, time since the establishment of the protected area units, and the size of the area on the performance of protected areas. The evaluation was conducted using matching methods and took into account the following two fundamental issues: control of statistical biases caused by the influence of covariates on the likelihood of anthropogenic conversion and the non-randomness of the allocation of protected areas throughout the territory (spatial correlation effect) and the control of statistical bias caused by the influence of auto-correlation and leakage effect. Using a sample design that is not based on ways to control these biases may result in outcomes that underestimate or overestimate the effectiveness of those units. The matching method accounted for a bias reduction in 94–99% of the estimation of the average effect of protected areas on anthropogenic conversion and allowed us to obtain results with a reduced influence of the auto-correlation and leakage effects. Most protected areas had a positive influence on the maintenance of natural habitats, although wide variation in this effectiveness was dependent on the type, restriction, governmental sphere, size and age group of the unit. PMID:26222140

  1. Porting plasma physics simulation codes to modern computing architectures using the libmrc framework

    NASA Astrophysics Data System (ADS)

    Germaschewski, Kai; Abbott, Stephen

    2015-11-01

    Available computing power has continued to grow exponentially even after single-core performance satured in the last decade. The increase has since been driven by more parallelism, both using more cores and having more parallelism in each core, e.g. in GPUs and Intel Xeon Phi. Adapting existing plasma physics codes is challenging, in particular as there is no single programming model that covers current and future architectures. We will introduce the open-source libmrc framework that has been used to modularize and port three plasma physics codes: The extended MHD code MRCv3 with implicit time integration and curvilinear grids; the OpenGGCM global magnetosphere model; and the particle-in-cell code PSC. libmrc consolidates basic functionality needed for simulations based on structured grids (I/O, load balancing, time integrators), and also introduces a parallel object model that makes it possible to maintain multiple implementations of computational kernels, on e.g. conventional processors and GPUs. It handles data layout conversions and enables us to port performance-critical parts of a code to a new architecture step-by-step, while the rest of the code can remain unchanged. We will show examples of the performance gains and some physics applications.

  2. Modification of Ga2O3 by an Ag-Cr core-shell cocatalyst enhances photocatalytic CO evolution for the conversion of CO2 by H2O.

    PubMed

    Pang, Rui; Teramura, Kentaro; Tatsumi, Hiroyuki; Asakura, Hiroyuki; Hosokawa, Saburo; Tanaka, Tsunehiro

    2018-01-25

    A core-shell structure of Ag-Cr dual cocatalyst loaded-Ga 2 O 3 was found to significantly enhance the formation rate of CO and selectivity toward CO evolution for the photocatalytic conversion of CO 2 where H 2 O is used as an electron donor.

  3. Cascaded-cladding-pumped cascaded Raman fiber amplifier.

    PubMed

    Jiang, Huawei; Zhang, Lei; Feng, Yan

    2015-06-01

    The conversion efficiency of double-clad Raman fiber laser is limited by the cladding-to-core area ratio. To get high conversion efficiency, the inner-cladding-to-core area ratio has to be less than about 8, which limits the brightness enhancement. To overcome the problem, a cascaded-cladding-pumped cascaded Raman fiber laser with multiple-clad fiber as the Raman gain medium is proposed. A theoretical model of Raman fiber amplifier with multiple-clad fiber is developed, and numerical simulation proves that the proposed scheme can improve the conversion efficiency and brightness enhancement of cladding pumped Raman fiber laser.

  4. Development of suspended core soft glass fibers for far-detuned parametric conversion

    NASA Astrophysics Data System (ADS)

    Rampur, Anupamaa; Ciąćka, Piotr; Cimek, Jarosław; Kasztelanic, Rafał; Buczyński, Ryszard; Klimczak, Mariusz

    2018-04-01

    Light sources utilizing χ (2) parametric conversion combine high brightness with attractive operation wavelengths in the near and mid-infrared. In optical fibers, it is possible to use χ (3) degenerate four-wave mixing in order to obtain signal-to-idler frequency detuning of over 100 THz. We report on a test series of nonlinear soft glass suspended core fibers intended for parametric conversion of 1000-1100 nm signal wavelengths available from an array of mature lasers into the near-to-mid-infrared range of 2700-3500 nm under pumping with an erbium sub-picosecond laser system. The presented discussion includes modelling of the fiber properties, details of their physical development and characterization, and experimental tests of parametric conversion.

  5. Epigenetic profiles signify cell fate plasticity in unipotent spermatogonial stem and progenitor cells.

    PubMed

    Liu, Ying; Giannopoulou, Eugenia G; Wen, Duancheng; Falciatori, Ilaria; Elemento, Olivier; Allis, C David; Rafii, Shahin; Seandel, Marco

    2016-04-27

    Spermatogonial stem and progenitor cells (SSCs) generate adult male gametes. During in vitro expansion, these unipotent murine cells spontaneously convert to multipotent adult spermatogonial-derived stem cells (MASCs). Here we investigate this conversion process through integrative transcriptomic and epigenomic analyses. We find in SSCs that promoters essential to maintenance and differentiation of embryonic stem cells (ESCs) are enriched with histone H3-lysine4 and -lysine 27 trimethylations. These bivalent modifications are maintained at most somatic promoters after conversion, bestowing MASCs an ESC-like promoter chromatin. At enhancers, the core pluripotency circuitry is activated partially in SSCs and completely in MASCs, concomitant with loss of germ cell-specific gene expression and initiation of embryonic-like programs. Furthermore, SSCs in vitro maintain the epigenomic characteristics of germ cells in vivo. Our observations suggest that SSCs encode innate plasticity through the epigenome and that both conversion of promoter chromatin states and activation of cell type-specific enhancers are prominent features of reprogramming.

  6. Epigenetic profiles signify cell fate plasticity in unipotent spermatogonial stem and progenitor cells

    PubMed Central

    Liu, Ying; Giannopoulou, Eugenia G.; Wen, Duancheng; Falciatori, Ilaria; Elemento, Olivier; Allis, C. David; Rafii, Shahin; Seandel, Marco

    2016-01-01

    Spermatogonial stem and progenitor cells (SSCs) generate adult male gametes. During in vitro expansion, these unipotent murine cells spontaneously convert to multipotent adult spermatogonial-derived stem cells (MASCs). Here we investigate this conversion process through integrative transcriptomic and epigenomic analyses. We find in SSCs that promoters essential to maintenance and differentiation of embryonic stem cells (ESCs) are enriched with histone H3-lysine4 and -lysine 27 trimethylations. These bivalent modifications are maintained at most somatic promoters after conversion, bestowing MASCs an ESC-like promoter chromatin. At enhancers, the core pluripotency circuitry is activated partially in SSCs and completely in MASCs, concomitant with loss of germ cell-specific gene expression and initiation of embryonic-like programs. Furthermore, SSCs in vitro maintain the epigenomic characteristics of germ cells in vivo. Our observations suggest that SSCs encode innate plasticity through the epigenome and that both conversion of promoter chromatin states and activation of cell type-specific enhancers are prominent features of reprogramming. PMID:27117588

  7. Identification of Ccr4-Not Complex Components as Regulators of Transition from Partial to Genuine Induced Pluripotent Stem Cells

    PubMed Central

    Kamon, Masayoshi; Katano, Miyuki; Hiraki-Kamon, Keiko; Hishida, Tomoaki; Nakachi, Yutaka; Mizuno, Yosuke; Okazaki, Yasushi; Suzuki, Ayumu; Hirasaki, Masataka; Ueda, Atsushi; Nishimoto, Masazumi; Kato, Hidemasa

    2014-01-01

    Somatic cells can be reprogrammed to induced pluripotent stem cells (iPSCs) by defined factors. However, substantial cell numbers subjected to iPSC induction stray from the main reprogramming route and are immortalized as partial iPSCs. These partial iPSCs can become genuine iPSCs by exposure to the ground state condition. However, such conversion is only possible for mouse partial iPSCs, and it is not applicable to human cells. Moreover, the molecular basis of this conversion is completely unknown. Therefore, we performed genome-wide screening with a piggyBac vector to identify genes involved in conversion from partial to genuine iPSCs. This screening led to identification of Cnot2, one of the core components of the Ccr4-Not complex. Subsequent analyses revealed that other core components, Cnot1 and Cnot3, also contributed to the conversion. Thus, our data have uncovered a novel role of core components of the Ccr4-Not complex as regulators of transition from partial to genuine iPSCs. PMID:24200330

  8. Conversational Competence in Academic Settings

    ERIC Educational Resources Information Center

    Bowman, Richard F.

    2014-01-01

    Conversational competence is a process, not a state. Ithaca does not exist, only the voyage to Ithaca. Vibrant campuses are a series of productive conversations. At its core, communicative competence in academic settings mirrors a collective search for meaning regarding the purpose and direction of a campus community. Communicative competence…

  9. Steady-State Thermal-Hydraulics Analyses for the Conversion of the BR2 Reactor to LEU

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Licht, J. R.; Bergeron, A.; Dionne, B.

    BR2 is a research reactor used for radioisotope production and materials testing. It’s a tank-in-pool type reactor cooled by light water and moderated by beryllium and light water. The reactor core consists of a beryllium moderator forming a matrix of 79 hexagonal prisms in a hyperboloid configuration; each having a central bore that can contain a variety of different components such as a fuel assembly, a control or regulating rod, an experimental device, or a beryllium or aluminum plug. Based on a series of tests, the BR2 operation is currently limited to a maximum allowable heat flux of 470 W/cmmore » 2 to ensure fuel plate integrity during steady-state operation and after a loss-of-flow/loss-of-pressure accident. A feasibility study for the conversion of the BR2 reactor from highly-enriched uranium (HEU) to low-enriched uranium (LEU) fuel was previously performed to verify it can operate safely at the same maximum nominal steady-state heat flux. An assessment was also performed to quantify the heat fluxes at which the onset of flow instability and critical heat flux occur for each fuel type. This document updates and expands these results for the current representative core configuration (assuming a fresh beryllium matrix) by evaluating the onset of nucleate boiling (ONB), onset of fully developed nucleate boiling (FDNB), onset of flow instability (OFI) and critical heat flux (CHF).« less

  10. ZnO/ZnSxSe1-x core/shell nanowire arrays as photoelectrodes with efficient visible light absorption

    NASA Astrophysics Data System (ADS)

    Wang, Zhenxing; Zhan, Xueying; Wang, Yajun; Safdar, Muhammad; Niu, Mutong; Zhang, Jinping; Huang, Ying; He, Jun

    2012-08-01

    ZnO/ZnSxSe1-x core/shell nanowires have been synthesized on n+-type silicon substrate via a two-step chemical vapor deposition method. Transmission electron microscopy reveals that ZnSxSe1-x can be deposited on the entire surface of ZnO nanowire, forming coaxial heterojunction along ZnO nanowire with very smooth shell surface and high shell thickness uniformity. The photoelectrode after deposition of the ternary alloy shell significantly improves visible light absorption efficiency. Electrochemical impedance spectroscopy results explicitly indicate that the introduction of ZnSxSe1-x shell to ZnO nanowires effectively improves the photogenerated charge separation process. Our finding opens up an efficient means for achieving high efficient energy conversion devices.

  11. Flexible Power Distribution Based on Point of Load Converters

    NASA Astrophysics Data System (ADS)

    Dhallewin, G.; Galiana, D.; Mollard, J. M.; Schaper, W.; Strixner, E.; Tonicello, F.; Triggianese, M.

    2014-08-01

    Present digital electronic loads require low voltages and suffer from high currents. In addition, they need several different voltage levels to supply the different parts of digital devices like the core, the input/output I/F, etc. Distributed Power Architectures (DPA) with point-of- load (POL) converters (synchronous buck type) offer excellent performance in term of efficiency and load step behaviour. They occupy little PCB area and are well suited for very low voltage (VLV) DC conversion (1V to 3.3V). The paper presents approaches to architectural design of POL based supplies including redundancy and protection as well as the requirements on a European hardware implementation. The main driver of the analysis is the flexibility of each element (DC/DC converter, protection, POL core) to cover a wide range of space applications.

  12. Surface profile control of FeNiPt/Pt core/shell nanowires for oxygen reduction reaction

    DOE PAGES

    Zhu, Huiyuan; Zhang, Sen; Su, Dong; ...

    2015-03-18

    The ever-increasing energy demand requires renewable energy schemes with low environmental impacts. Electrochemical energy conversion devices, such as fuel cells, combine fuel oxidization and oxygen reduction reactions and have been studied extensively for renewable energy applications. However, their energy conversion efficiency is often limited by kinetically sluggish chemical conversion reactions, especially oxygen reduction reaction (ORR). [1-5] To date, extensive efforts have been put into developing efficient ORR catalysts with controls on catalyst sizes, compositions, shapes and structures. [6-12] Recently, Pt-based catalysts with core/shell and one-dimensional nanowire (NW) morphologies were found to be promising to further enhance ORR catalysis.more » With the core/shell structure, the ORR catalysis of a nanoparticle (NP) catalyst can be tuned by both electronic and geometric effects at the core/shell interface. [10,13,14] With the NW structure, the catalyst interaction with the conductive support can be enhanced to facilitate electron transfer between the support and the NW catalyst and to promote ORR. [11,15,16]« less

  13. Initial Neutronics Analyses for HEU to LEU Fuel Conversion of the Transient Reactor Test Facility (TREAT) at the Idaho National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kontogeorgakos, D.; Derstine, K.; Wright, A.

    2013-06-01

    The purpose of the TREAT reactor is to generate large transient neutron pulses in test samples without over-heating the core to simulate fuel assembly accident conditions. The power transients in the present HEU core are inherently self-limiting such that the core prevents itself from overheating even in the event of a reactivity insertion accident. The objective of this study was to support the assessment of the feasibility of the TREAT core conversion based on the present reactor performance metrics and the technical specifications of the HEU core. The LEU fuel assembly studied had the same overall design, materials (UO 2more » particles finely dispersed in graphite) and impurities content as the HEU fuel assembly. The Monte Carlo N–Particle code (MCNP) and the point kinetics code TREKIN were used in the analyses.« less

  14. Descriptions and Implementations of DL_F Notation: A Natural Chemical Expression System of Atom Types for Molecular Simulations.

    PubMed

    Yong, Chin W

    2016-08-22

    DL_F Notation is an easy-to-understand, standardized atom typesetting expression for molecular simulations for a range of organic force field (FF) schemes such as OPLSAA, PCFF, and CVFF. It is implemented within DL_FIELD, a software program that facilitates the setting up of molecular FF models for DL_POLY molecular dynamics simulation software. By making use of the Notation, a single core conversion module (the DL_F conversion Engine) implemented within DL_FIELD can be used to analyze a molecular structure and determine the types of atoms for a given FF scheme. Users only need to provide the molecular input structure in a simple xyz format and DL_FIELD can produce the necessary force field file for DL_POLY automatically. In commensurate with the development concept of DL_FIELD, which placed emphasis on robustness and user friendliness, the Engine provides a single-step solution to setup complex FF models. This allows users to switch from one of the above-mentioned FF seamlessly to another while at the same time provides a consistent atom typing that is expressed in a natural chemical sense.

  15. Overview of the Core Commitments Initiative

    ERIC Educational Resources Information Center

    McTighe Musil, Caryn

    2013-01-01

    This chapter provides an overview of the Core Commitments Initiative conducted by the Association of American Colleges and Universities (AAC&U). Core Commitments was intended to reinvigorate the conversation about personal and social responsibility within higher education, and served as the impetus for this "New Directions" volume.

  16. Multiphysics Computational Analysis of a Solid-Core Nuclear Thermal Engine Thrust Chamber

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See; Canabal, Francisco; Cheng, Gary; Chen, Yen-Sen

    2007-01-01

    The objective of this effort is to develop an efficient and accurate computational heat transfer methodology to predict thermal, fluid, and hydrogen environments for a hypothetical solid-core, nuclear thermal engine - the Small Engine. In addition, the effects of power profile and hydrogen conversion on heat transfer efficiency and thrust performance were also investigated. The computational methodology is based on an unstructured-grid, pressure-based, all speeds, chemically reacting, computational fluid dynamics platform, while formulations of conjugate heat transfer were implemented to describe the heat transfer from solid to hydrogen inside the solid-core reactor. The computational domain covers the entire thrust chamber so that the afore-mentioned heat transfer effects impact the thrust performance directly. The result shows that the computed core-exit gas temperature, specific impulse, and core pressure drop agree well with those of design data for the Small Engine. Finite-rate chemistry is very important in predicting the proper energy balance as naturally occurring hydrogen decomposition is endothermic. Locally strong hydrogen conversion associated with centralized power profile gives poor heat transfer efficiency and lower thrust performance. On the other hand, uniform hydrogen conversion associated with a more uniform radial power profile achieves higher heat transfer efficiency, and higher thrust performance.

  17. Heat deposition analysis for the High Flux Isotope Reactor’s HEU and LEU core models

    DOE PAGES

    Davidson, Eva E.; Betzler, Benjamin R.; Chandler, David; ...

    2017-08-01

    The High Flux Isotope Reactor at Oak Ridge National Laboratory is an 85 MW th pressurized light-water-cooled and -moderated flux-trap type research reactor. The reactor is used to conduct numerous experiments, advancing various scientific and engineering disciplines. As part of an ongoing program sponsored by the US Department of Energy National Nuclear Security Administration Office of Material Management and Minimization, studies are being performed to assess the feasibility of converting the reactor’s highly enriched uranium fuel to low-enriched uranium fuel. To support this conversion project, reference models with representative experiment target loading and explicit fuel plate representation were developed andmore » benchmarked for both fuels to (1) allow for consistent comparison between designs for both fuel types and (2) assess the potential impact of low-enriched uranium conversion. These high-fidelity models were used to conduct heat deposition analyses at the beginning and end of the reactor cycle and are presented herein. This article (1) discusses the High Flux Isotope Reactor models developed to facilitate detailed heat deposition analyses of the reactor’s highly enriched and low-enriched uranium cores, (2) examines the computational approach for performing heat deposition analysis, which includes a discussion on the methodology for calculating the amount of energy released per fission, heating rates, power and volumetric heating rates, and (3) provides results calculated throughout various regions of the highly enriched and low-enriched uranium core at the beginning and end of the reactor cycle. These are the first detailed high-fidelity heat deposition analyses for the High Flux Isotope Reactor’s highly enriched and low-enriched core models with explicit fuel plate representation. Lastly, these analyses are used to compare heat distributions obtained for both fuel designs at the beginning and end of the reactor cycle, and they are essential for enabling comprehensive thermal hydraulics and safety analyses that require detailed estimates of the heat source within all of the reactor’s fuel element regions.« less

  18. The Nature of Primary Students' Conversation in Technology Education

    ERIC Educational Resources Information Center

    Fox-Turnbull, Wendy H.

    2016-01-01

    Classroom conversations are core to establishing successful learning for students. This research explores the nature of conversation in technology education in the primary classroom and the implications for teaching and learning. Over a year, two units of work in technology were taught in two primary classrooms. Most data was gathered in Round 2…

  19. An Analysis of How Carl Rogers Enacted Client-Centered Conversation with Gloria.

    ERIC Educational Resources Information Center

    Wickman, Scott A.; Campbell, Cynthia

    2003-01-01

    This study analyzed Carl Rogers's session with Gloria in "Three Approaches to Psychotherapy" to determine how Rogers's conversational style functioned to enact his core conditions of empathy, genuineness, and unconditional positive regard. Rogers's conversational style was found to be congruent with his espoused theory as well as a…

  20. The influence of linear elements on plant species diversity of Mediterranean rural landscapes: assessment of different indices and statistical approaches.

    PubMed

    García del Barrio, J M; Ortega, M; Vázquez De la Cueva, A; Elena-Rosselló, R

    2006-08-01

    This paper mainly aims to study the linear element influence on the estimation of vascular plant species diversity in five Mediterranean landscapes modeled as land cover patch mosaics. These landscapes have several core habitats and a different set of linear elements--habitat edges or ecotones, roads or railways, rivers, streams and hedgerows on farm land--whose plant composition were examined. Secondly, it aims to check plant diversity estimation in Mediterranean landscapes using parametric and non-parametric procedures, with two indices: Species richness and Shannon index. Land cover types and landscape linear elements were identified from aerial photographs. Their spatial information was processed using GIS techniques. Field plots were selected using a stratified sampling design according to relieve and tree density of each habitat type. A 50x20 m2 multi-scale sampling plot was designed for the core habitats and across the main landscape linear elements. Richness and diversity of plant species were estimated by comparing the observed field data to ICE (Incidence-based Coverage Estimator) and ACE (Abundance-based Coverage Estimator) non-parametric estimators. The species density, percentage of unique species, and alpha diversity per plot were significantly higher (p < 0.05) in linear elements than in core habitats. ICE estimate of number of species was 32% higher than of ACE estimate, which did not differ significantly from the observed values. Accumulated species richness in core habitats together with linear elements, were significantly higher than those recorded only in the core habitats in all the landscapes. Conversely, Shannon diversity index did not show significant differences.

  1. Loss-of-Flow and Loss-of-Pressure Simulations of the BR2 Research Reactor with HEU and LEU Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Licht, J.; Bergeron, A.; Dionne, B.

    2016-01-01

    Belgian Reactor 2 (BR2) is a research and test reactor located in Mol, Belgium and is primarily used for radioisotope production and materials testing. The Materials Management and Minimization (M3) Reactor Conversion Program of the National Nuclear Security Administration (NNSA) is supporting the conversion of the BR2 reactor from Highly Enriched Uranium (HEU) fuel to Low Enriched Uranium (LEU) fuel. The reactor core of BR2 is located inside a pressure vessel that contains 79 channels in a hyperboloid configuration. The core configuration is highly variable as each channel can contain a fuel assembly, a control or regulating rod, an experimentalmore » device, or a beryllium or aluminum plug. Because of this variability, a representative core configuration, based on current reactor use, has been defined for the fuel conversion analyses. The code RELAP5/Mod 3.3 was used to perform the transient thermal-hydraulic safety analyses of the BR2 reactor to support reactor conversion. The input model has been modernized relative to that historically used at BR2 taking into account the best modeling practices developed by Argonne National Laboratory (ANL) and BR2 engineers.« less

  2. Controlled growth of ZnO/Zn₁-xPbxSe core-shell nanowires and their interfacial electronic energy alignment.

    PubMed

    Chen, Z H; Yeung, S Y; Li, H; Qian, J C; Zhang, W J; Li, Y Y; Bello, I

    2012-05-21

    ZnO/Zn(1-x)Pb(x)Se core-shell nanowires (NWs) have been synthesized by a solution based surface ion transfer method at various temperatures. The energy dispersive spectroscopic (EDS) mapping of single NWs suggests that the Zn, Pb and Se atoms are uniformly distributed in their shell layers. The ternary Zn(1-x)Pb(x)Se layers with tunable bandgaps extend the band-edge of optical absorption from 450 nm to 700 nm contrasting with the binary ZnSe layers. The ultraviolet photoelectron spectroscopic (UPS) analysis reveals a transition from the type I to type II band alignment when the x fraction decreases from 0.66 to the value of 0.36 in the nanoshell layers. This quantitative investigation of electronic energy levels at ZnO and Zn(1-x)Pb(x)Se interfaces indicates that the proper type II band alignment is well suited for photovoltaic energy conversion. The photovoltaic cells comprising a ZnO/Zn(1-x)Pb(x)Se nano-heterojunction with the optimized Pb content are expected to be more efficient than the devices sensitized by binary ZnSe or PbSe.

  3. H2 Ortho-to-para Conversion on Grains: A Route to Fast Deuterium Fractionation in Dense Cloud Cores?

    NASA Astrophysics Data System (ADS)

    Bovino, S.; Grassi, T.; Schleicher, D. R. G.; Caselli, P.

    2017-11-01

    Deuterium fractionation, I.e., the enhancement of deuterated species with respect to non-deuterated ones, is considered to be a reliable chemical clock of star-forming regions. This process is strongly affected by the ortho-to-para H2 ratio. In this Letter we explore the effect of the ortho-para (o-p) H2 conversion on grains on the deuteration timescale in fully-depleted dense cores, including the most relevant uncertainties that affect this complex process. We show that (I) the o-p H2 conversion on grains is not strongly influenced by the uncertainties on the conversion time and the sticking coefficient, and (II) that the process is controlled by the temperature and the residence time of ortho-H2 on the surface, I.e., by the binding energy. We find that for binding energies between 330 and 550 K, depending on the temperature, the o-p H2 conversion on grains can shorten the deuterium fractionation timescale by orders of magnitude, opening a new route for explaining the large observed deuteration fraction D frac in dense molecular cloud cores. Our results suggest that the star formation timescale, when estimated through the timescale to reach the observed deuteration fractions, might be shorter than previously proposed. However, more accurate measurements of the binding energy are needed in order to better assess the overall role of this process.

  4. Munc13 controls the location and efficiency of dense-core vesicle release in neurons.

    PubMed

    van de Bospoort, Rhea; Farina, Margherita; Schmitz, Sabine K; de Jong, Arthur; de Wit, Heidi; Verhage, Matthijs; Toonen, Ruud F

    2012-12-10

    Neuronal dense-core vesicles (DCVs) contain diverse cargo crucial for brain development and function, but the mechanisms that control their release are largely unknown. We quantified activity-dependent DCV release in hippocampal neurons at single vesicle resolution. DCVs fused preferentially at synaptic terminals. DCVs also fused at extrasynaptic sites but only after prolonged stimulation. In munc13-1/2-null mutant neurons, synaptic DCV release was reduced but not abolished, and synaptic preference was lost. The remaining fusion required prolonged stimulation, similar to extrasynaptic fusion in wild-type neurons. Conversely, Munc13-1 overexpression (M13OE) promoted extrasynaptic DCV release, also without prolonged stimulation. Thus, Munc13-1/2 facilitate DCV fusion but, unlike for synaptic vesicles, are not essential for DCV release, and M13OE is sufficient to produce efficient DCV release extrasynaptically.

  5. Complete Au@ZnO core-shell nanoparticles with enhanced plasmonic absorption enabling significantly improved photocatalysis

    NASA Astrophysics Data System (ADS)

    Sun, Yiqiang; Sun, Yugang; Zhang, Tao; Chen, Guozhu; Zhang, Fengshou; Liu, Dilong; Cai, Weiping; Li, Yue; Yang, Xianfeng; Li, Cuncheng

    2016-05-01

    Nanostructured ZnO exhibits high chemical stability and unique optical properties, representing a promising candidate among photocatalysts in the field of environmental remediation and solar energy conversion. However, ZnO only absorbs the UV light, which accounts for less than 5% of total solar irradiation, significantly limiting its applications. In this article, we report a facile and efficient approach to overcome the poor wettability between ZnO and Au by carefully modulating the surface charge density on Au nanoparticles (NPs), enabling rapid synthesis of Au@ZnO core-shell NPs at room temperature. The resulting Au@ZnO core-shell NPs exhibit a significantly enhanced plasmonic absorption in the visible range due to the Au NP cores. They also show a significantly improved photocatalytic performance in comparison with their single-component counterparts, i.e., the Au NPs and ZnO NPs. Moreover, the high catalytic activity of the as-synthesized Au@ZnO core-shell NPs can be maintained even after many cycles of photocatalytic reaction. Our results shed light on the fact that the Au@ZnO core-shell NPs represent a promising class of candidates for applications in plasmonics, surface-enhanced spectroscopy, light harvest devices, solar energy conversion, and degradation of organic pollutants.Nanostructured ZnO exhibits high chemical stability and unique optical properties, representing a promising candidate among photocatalysts in the field of environmental remediation and solar energy conversion. However, ZnO only absorbs the UV light, which accounts for less than 5% of total solar irradiation, significantly limiting its applications. In this article, we report a facile and efficient approach to overcome the poor wettability between ZnO and Au by carefully modulating the surface charge density on Au nanoparticles (NPs), enabling rapid synthesis of Au@ZnO core-shell NPs at room temperature. The resulting Au@ZnO core-shell NPs exhibit a significantly enhanced plasmonic absorption in the visible range due to the Au NP cores. They also show a significantly improved photocatalytic performance in comparison with their single-component counterparts, i.e., the Au NPs and ZnO NPs. Moreover, the high catalytic activity of the as-synthesized Au@ZnO core-shell NPs can be maintained even after many cycles of photocatalytic reaction. Our results shed light on the fact that the Au@ZnO core-shell NPs represent a promising class of candidates for applications in plasmonics, surface-enhanced spectroscopy, light harvest devices, solar energy conversion, and degradation of organic pollutants. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00933f

  6. Feasibility study on AFR-100 fuel conversion from uranium-based fuel to thorium-based fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heidet, F.; Kim, T.; Grandy, C.

    2012-07-30

    Although thorium has long been considered as an alternative to uranium-based fuels, most of the reactors built to-date have been fueled with uranium-based fuel with the exception of a few reactors. The decision to use uranium-based fuels was initially made based on the technology maturity compared to thorium-based fuels. As a result of this experience, lot of knowledge and data have been accumulated for uranium-based fuels that made it the predominant nuclear fuel type for extant nuclear power. However, following the recent concerns about the extent and availability of uranium resources, thorium-based fuels have regained significant interest worldwide. Thorium ismore » more abundant than uranium and can be readily exploited in many countries and thus is now seen as a possible alternative. As thorium-based fuel technologies mature, fuel conversion from uranium to thorium is expected to become a major interest in both thermal and fast reactors. In this study the feasibility of fuel conversion in a fast reactor is assessed and several possible approaches are proposed. The analyses are performed using the Advanced Fast Reactor (AFR-100) design, a fast reactor core concept recently developed by ANL. The AFR-100 is a small 100 MW{sub e} reactor developed under the US-DOE program relying on innovative fast reactor technologies and advanced structural and cladding materials. It was designed to be inherently safe and offers sufficient margins with respect to the fuel melting temperature and the fuel-cladding eutectic temperature when using U-10Zr binary metal fuel. Thorium-based metal fuel was preferred to other thorium fuel forms because of its higher heavy metal density and it does not need to be alloyed with zirconium to reduce its radiation swelling. The various approaches explored cover the use of pure thorium fuel as well as the use of thorium mixed with transuranics (TRU). Sensitivity studies were performed for the different scenarios envisioned in order to determine the best core performance characteristics for each of them. With the exception of the fuel type and enrichment, the reference AFR-100 core design characteristics were kept unchanged, including the general core layout and dimensions, assembly dimensions, materials and power rating. In addition, the mass of {sup 235}U required was kept within a reasonable range from that of the reference AFR-100 design. The core performance characteristics, kinetics parameters and reactivity feedback coefficients were calculated using the ANL suite of fast reactor analysis code systems. Orifice design calculations and the steady-state thermal-hydraulic analyses were performed using the SE2-ANL code. The thermal margins were evaluated by comparing the peak temperatures to the design limits for parameters such as the fuel melting temperature and the fuel-cladding eutectic temperature. The inherent safety features of AFR-100 cores proposed were assessed using the integral reactivity parameters of the quasi-static reactivity balance analysis. The design objectives and requirements, the computation methods used as well as a description of the core concept are provided in Section 2. The three major approaches considered are introduced in Section 3 and the neutronics performances of those approaches are discussed in the same section. The orifice zoning strategies used and the steady-state thermal-hydraulic performance are provided in Section 4. The kinetics and reactivity coefficients, including the inherent safety characteristics, are provided in Section 5, and the Conclusions in Section 6. Other scenarios studied and sensitivity studies are provided in the Appendix section.« less

  7. Core/shell colloidal quantum dot exciplex states for the development of highly efficient quantum-dot-sensitized solar cells.

    PubMed

    Wang, Jin; Mora-Seró, Iván; Pan, Zhenxiao; Zhao, Ke; Zhang, Hua; Feng, Yaoyu; Yang, Guang; Zhong, Xinhua; Bisquert, Juan

    2013-10-23

    Searching suitable panchromatic QD sensitizers for expanding the light-harvesting range, accelerating charge separation, and retarding charge recombination is an effective way to improve power conversion efficiency (PCE) of quantum-dot-sensitized solar cells (QDSCs). One possible way to obtain a wide absorption range is to use the exciplex state of a type-II core/shell-structured QDs. In addition, this system could also provide a fast charge separation and low charge-recombination rate. Herein, we report on using a CdTe/CdSe type-II core/shell QD sensitizer with an absorption range extending into the infrared region because of its exciplex state, which is covalently linked to TiO2 mesoporous electrodes by dropping a bifunctional linker molecule mercaptopropionic acid (MPA)-capped QD aqueous solution onto the film electrode. High loading and a uniform distribution of QD sensitizer throughout the film electrode thickness have been confirmed by energy dispersive X-ray (EDX) elemental mapping. The accelerated electron injection and retarded charge-recombination pathway in the built CdTe/CdSe QD cells in comparison with reference CdSe QD-based cells have been confirmed by impedance spectroscopy, fluorescence decay, and intensity-modulated photocurrent/photovoltage spectroscopy (IMPS/IMVS) analysis. With the combination of the high QD loading and intrinsically superior optoelectronic properties of type-II core/shell QD (wide absorption range, fast charge separation, and slow charge recombination), the resulting CdTe/CdSe QD-based regenerative sandwich solar cells exhibit a record PCE of 6.76% (J(sc) = 19.59 mA cm(-2), V(oc) = 0.606 V, and FF = 0.569) with a mask around the active film under a full 1 sun illumination (simulated AM 1.5), which is the highest reported to date for liquid-junction QDSCs.

  8. The effect of the DSSC photoanode area based on TiO2/Ag on the conversion efficiency of solar energy into electrical energy

    NASA Astrophysics Data System (ADS)

    Ibrayev, N.; Serikov, T.; Zavgorodniy, A.; Sadykova, A.

    2018-01-01

    A module based on dye-sensitized solar cells with Ag/TiO2 structure was developed. It is shown that the addition of the core-shell structure to the semiconductor film of titanium dioxide, where the nanoparticle Ag serves as the core, and the TiO2 is shell, increases the coefficient of solar energy conversion into electrical energy. The effect of the photoanode area on the efficiency of conversion of solar energy into electrical energy is studied. It is shown that the density of the photocurrent decreases with increasing of the photoanode area, which leads to a drop in the efficiency of solar cells.

  9. NIR stimulus-responsive core–shell type nanoparticles based on photothermal conversion for enhanced antitumor efficacy through chemo-photothermal therapy

    NASA Astrophysics Data System (ADS)

    Sun, Kai; You, Chaoqun; Wang, Senlin; Gao, Zhiguo; Wu, Hongshuai; Tao, W. Andy; Zhu, Xiaoli; Sun, Baiwang

    2018-07-01

    A novel core–shell type nanoparticle (CSNP) was designed here to target co-delivery of doxorubicin (DOX) and photosensitizer indocyanine green (ICG) to tumor sites by the aid of NIR induced photothermal conversion effect for the purpose of synergistic chemo-photothermal cancer therapy. The electrostatically self-assembled CSNPs were prepared by amino-functionalized mesoporous silica nanoparticles (MSN-NH2) as the positive inner core and DSPE-PEG2000-COOH and DSPE-PEG2000-FA modified lecithin as the negative outer shell. The obtained CSNPs were nanospheres with a uniform size of 47 nm, which were kept stable at 4 °C in PBS (pH = 7). Research on the release of NIR stimulus (808 nm, 1.54 W cm‑2, 6 min) manifested that the release property of the CSNPs was controllable under low pH conditions. In addition, specific concentration (40 μg ml‑1) ICG-loaded CSNPs, achieving an appropriate temperature up to 45 °C, indicated a desired photothermal conversion efficiency. For targeting the folate receptor, the folate modified CSNPs enabled us to reach a higher cellular uptake by the mean fluorescence intensity. In vitro cell assay, the prepared CSNPs showed outstanding inhibitory efficiency (2.07% cell viability and 91.8% cell apoptosis) on MCF-7 cells for 24 h when irradiated by an 808 nm laser with a power of 1.54 W cm‑2 for 6 min. Our research highlights that the prepared nanoparticles hold potential promise for cancer treatment based on photothermal conversion performance and FA-targeted delivery.

  10. Nanolaminated Permalloy Core for High-Flux, High-Frequency Ultracompact Power Conversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, J; Kim, M; Galle, P

    2013-09-01

    Metallic magnetic materials have desirable magnetic properties, including high permeability, and high saturation flux density, when compared with their ferrite counterparts. However, eddy-current losses preclude their use in many switching converter applications, due to the challenge of simultaneously achieving sufficiently thin laminations such that eddy currents are suppressed (e.g., 500 nm-1 mu m for megahertz frequencies), while simultaneously achieving overall core thicknesses such that substantial power can be handled. A CMOS-compatible fabrication process based on robot-assisted sequential electrodeposition followed by selective chemical etching has been developed for the realization of a core of substantial overall thickness (tens to hundreds ofmore » micrometers) comprised of multiple, stacked permalloy (Ni80Fe20) nanolaminations. Tests of toroidal inductors with nanolaminated cores showed negligible eddy-current loss relative to total core loss even at a peak flux density of 0.5 T in the megahertz frequency range. To illustrate the use of these cores, a buck power converter topology is implemented with switching frequencies of 1-2 MHz. Power conversion efficiency greater than 85% with peak operating flux density of 0.3-0.5 T in the core and converter output power level exceeding 5 W was achieved.« less

  11. Hypomorphic mutations of SEC23B gene account for mild phenotypes of congenital dyserythropoietic anemia type II

    PubMed Central

    Russo, Roberta; Langella, Concetta; Esposito, Maria Rosaria; Gambale, Antonella; Vitiello, Francesco; Vallefuoco, Fara; Ek, Torben; Yang, Elizabeth; Iolascon, Achille

    2013-01-01

    Congenital dyserythropoietic anemia type II, a recessive disorder of erythroid differentiation, is due to mutations in SEC23B, a component of the core trafficking machinery COPII. In no case homozygosity or compound heterozygosity for nonsense mutation(s) was found. This study represents the first description of molecular mechanisms underlying SEC23B hypomorphic genotypes by the analysis of five novel mutations. Our findings suggest that reduction of SEC23B gene expression is not associated with CDA II severe clinical presentation; conversely, the combination of a hypomorphic allele with one functionally altered results in more severe phenotypes. We propose a mechanism of compensation SEC23A-mediated which justifies these observations. PMID:23453696

  12. Apparatus and method for compensating for electron beam emittance in synchronizing light sources

    DOEpatents

    Neil, George R.

    1996-01-01

    A focused optical beam is used to change the path length of the core electrons in electron light sources thereby boosting their efficiency of conversion of electron beam energy to light. Both coherent light in the free electron laser and incoherent light in the synchrotron is boosted by this technique. By changing the path length of the core electrons by the proper amount, the core electrons are caused to stay in phase with the electrons in the outer distribution of the electron beam. This increases the fraction of the electron beam energy that is converted to light thereby improving the efficiency of conversion of energy to light and therefore boosting the power output of the free electron laser and synchrotron.

  13. Apparatus and method for compensating for electron beam emittance in synchronizing light sources

    DOEpatents

    Neil, G.R.

    1996-07-30

    A focused optical beam is used to change the path length of the core electrons in electron light sources thereby boosting their efficiency of conversion of electron beam energy to light. Both coherent light in the free electron laser and incoherent light in the synchrotron is boosted by this technique. By changing the path length of the core electrons by the proper amount, the core electrons are caused to stay in phase with the electrons in the outer distribution of the electron beam. This increases the fraction of the electron beam energy that is converted to light thereby improving the efficiency of conversion of energy to light and therefore boosting the power output of the free electron laser and synchrotron. 4 figs.

  14. Comparative assessment of out-of-core nuclear thermionic power systems

    NASA Technical Reports Server (NTRS)

    Estabrook, W. C.; Koenig, D. R.; Prickett, W. Z.

    1975-01-01

    The hardware selections available for fabrication of a nuclear electric propulsion stage for planetary exploration were explored. The investigation was centered around a heat-pipe-cooled, fast-spectrum nuclear reactor for an out-of-core power conversion system with sufficient detail for comparison with the in-core system studies completed previously. A survey of competing power conversion systems still indicated that the modular reliability of thermionic converters makes them the desirable choice to provide the 240-kWe end-of-life power for at least 20,000 full power hours. The electrical energy will be used to operate a number of mercury ion bombardment thrusters with a specific impulse in the range of about 4,000-5,000 seconds.

  15. A broadening temperature sensitivity range with a core-shell YbEr@YbNd double ratiometric optical nanothermometer

    NASA Astrophysics Data System (ADS)

    Marciniak, L.; Prorok, K.; Francés-Soriano, L.; Pérez-Prieto, J.; Bednarkiewicz, A.

    2016-02-01

    The chemical architecture of lanthanide doped core-shell up-converting nanoparticles can be engineered to purposely design the properties of luminescent nanomaterials, which are typically inaccessible to their homogeneous counterparts. Such an approach allowed to shift the up-conversion excitation wavelength from ~980 to the more relevant ~808 nm or enable Tb or Eu up-conversion emission, which was previously impossible to obtain or inefficient. Here, we address the issue of limited temperature sensitivity range of optical lanthanide based nano-thermometers. By covering Yb-Er co-doped core nanoparticles with the Yb-Nd co-doped shell, we have intentionally combined temperature dependent Er up-conversion together with temperature dependent Nd --> Yb energy transfer, and thus have expanded the temperature response range ΔT of a single nanoparticle based optical nano-thermometer under single ~808 nm wavelength photo-excitation from around ΔT = 150 K to over ΔT = 300 K (150-450 K). Such engineered nanocrystals are suitable for remote optical temperature measurements in technology and biotechnology at the sub-micron scale.The chemical architecture of lanthanide doped core-shell up-converting nanoparticles can be engineered to purposely design the properties of luminescent nanomaterials, which are typically inaccessible to their homogeneous counterparts. Such an approach allowed to shift the up-conversion excitation wavelength from ~980 to the more relevant ~808 nm or enable Tb or Eu up-conversion emission, which was previously impossible to obtain or inefficient. Here, we address the issue of limited temperature sensitivity range of optical lanthanide based nano-thermometers. By covering Yb-Er co-doped core nanoparticles with the Yb-Nd co-doped shell, we have intentionally combined temperature dependent Er up-conversion together with temperature dependent Nd --> Yb energy transfer, and thus have expanded the temperature response range ΔT of a single nanoparticle based optical nano-thermometer under single ~808 nm wavelength photo-excitation from around ΔT = 150 K to over ΔT = 300 K (150-450 K). Such engineered nanocrystals are suitable for remote optical temperature measurements in technology and biotechnology at the sub-micron scale. Electronic supplementary information (ESI) available: Characterization, structural and morphological characterization of nanocrystals, the measurement setup. See DOI: 10.1039/c5nr08223d

  16. H{sub 2} Ortho-to-para Conversion on Grains: A Route to Fast Deuterium Fractionation in Dense Cloud Cores?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bovino, S.; Grassi, T.; Schleicher, D. R. G.

    Deuterium fractionation, i.e., the enhancement of deuterated species with respect to non-deuterated ones, is considered to be a reliable chemical clock of star-forming regions. This process is strongly affected by the ortho-to-para H{sub 2} ratio. In this Letter we explore the effect of the ortho–para (o–p) H{sub 2} conversion on grains on the deuteration timescale in fully-depleted dense cores, including the most relevant uncertainties that affect this complex process. We show that (i) the o–p H{sub 2} conversion on grains is not strongly influenced by the uncertainties on the conversion time and the sticking coefficient, and (ii) that the processmore » is controlled by the temperature and the residence time of ortho-H{sub 2} on the surface, i.e., by the binding energy. We find that for binding energies between 330 and 550 K, depending on the temperature, the o–p H{sub 2} conversion on grains can shorten the deuterium fractionation timescale by orders of magnitude, opening a new route for explaining the large observed deuteration fraction D {sub frac} in dense molecular cloud cores. Our results suggest that the star formation timescale, when estimated through the timescale to reach the observed deuteration fractions, might be shorter than previously proposed. However, more accurate measurements of the binding energy are needed in order to better assess the overall role of this process.« less

  17. Comparison of biological activities of human antithrombins with high-mannose or complex-type nonfucosylated N-linked oligosaccharides

    PubMed Central

    Yamada, Tsuyoshi; Kanda, Yutaka; Takayama, Makoto; Hashimoto, Akitoshi; Sugihara, Tsutomu; Satoh-Kubota, Ai; Suzuki-Takanami, Eri; Yano, Keiichi; Iida, Shigeru; Satoh, Mitsuo

    2016-01-01

    The structure of the N-linked oligosaccharides attached to antithrombin (AT) has been shown to affect its anticoagulant activity and pharmacokinetics. Human AT has biantennary complex-type oligosaccharides with the unique feature of lacking a core fucose, which affects its biological activities by changing its heparin-binding affinity. In human plasma, AT circulates as a mixture of the α-form bearing four oligosaccharides and the β-form lacking an oligosaccharide at Asn135. However, it remains unclear how the immature high-mannose-type oligosaccharides produced by mammalian cells affect biological activities of AT. Here, we succeeded in directly comparing the activities between the high-mannose and complex types. Interestingly, although there were no substantial differences in thrombin inhibitory activity, the high-mannose type showed higher heparin-binding affinity. The anticoagulant activities were increased by heparin and correlated with the heparin-binding affinity, resulting in the strongest anticoagulant activity being displayed in the β-form with the high-mannose type. In pharmacokinetic profiling, the high-mannose type showed a much shorter plasma half-life than the complex type. The β-form was found to have a prolonged plasma half-life compared with the α-form for the high-mannose type; conversely, the α-form showed a longer half-life than the β-form for the complex-type. The present study highlights that AT physiological activities are strictly controlled not only by a core fucose at the reducing end but also by the high-mannose-type structures at the nonreducing end. The β-form with the immature high-mannose type appears to function as a more potent anticoagulant than the AT typically found in human plasma, once it emerges in the blood. PMID:26747427

  18. Comparison of biological activities of human antithrombins with high-mannose or complex-type nonfucosylated N-linked oligosaccharides.

    PubMed

    Yamada, Tsuyoshi; Kanda, Yutaka; Takayama, Makoto; Hashimoto, Akitoshi; Sugihara, Tsutomu; Satoh-Kubota, Ai; Suzuki-Takanami, Eri; Yano, Keiichi; Iida, Shigeru; Satoh, Mitsuo

    2016-05-01

    The structure of the N-linked oligosaccharides attached to antithrombin (AT) has been shown to affect its anticoagulant activity and pharmacokinetics. Human AT has biantennary complex-type oligosaccharides with the unique feature of lacking a core fucose, which affects its biological activities by changing its heparin-binding affinity. In human plasma, AT circulates as a mixture of the α-form bearing four oligosaccharides and the β-form lacking an oligosaccharide at Asn135. However, it remains unclear how the immature high-mannose-type oligosaccharides produced by mammalian cells affect biological activities of AT. Here, we succeeded in directly comparing the activities between the high-mannose and complex types. Interestingly, although there were no substantial differences in thrombin inhibitory activity, the high-mannose type showed higher heparin-binding affinity. The anticoagulant activities were increased by heparin and correlated with the heparin-binding affinity, resulting in the strongest anticoagulant activity being displayed in the β-form with the high-mannose type. In pharmacokinetic profiling, the high-mannose type showed a much shorter plasma half-life than the complex type. The β-form was found to have a prolonged plasma half-life compared with the α-form for the high-mannose type; conversely, the α-form showed a longer half-life than the β-form for the complex-type. The present study highlights that AT physiological activities are strictly controlled not only by a core fucose at the reducing end but also by the high-mannose-type structures at the nonreducing end. The β-form with the immature high-mannose type appears to function as a more potent anticoagulant than the AT typically found in human plasma, once it emerges in the blood. © The Author 2016. Published by Oxford University Press.

  19. Simultaneous multiple wavelength upconversion in a core-shell nanoparticle for enhanced near infrared light harvesting in a dye-sensitized solar cell.

    PubMed

    Yuan, Chunze; Chen, Guanying; Li, Lin; Damasco, Jossana A; Ning, Zhijun; Xing, Hui; Zhang, Tianmu; Sun, Licheng; Zeng, Hao; Cartwright, Alexander N; Prasad, Paras N; Ågren, Hans

    2014-10-22

    The efficiency of most photovoltaic devices is severely limited by near-infrared (NIR) transmission losses. To alleviate this limitation, a new type of colloidal upconversion nanoparticles (UCNPs), hexagonal core-shell-structured β-NaYbF4:Er(3+)(2%)/NaYF4:Nd(3+)(30%), is developed and explored in this work as an NIR energy relay material for dye-sensitized solar cells (DSSCs). These UCNPs are able to harvest light energy in multiple NIR regions, and subsequently convert the absorbed energy into visible light where the DSSCs strongly absorb. The NIR-insensitive DSSCs show compelling photocurrent increases through binary upconversion under NIR light illumination either at 785 or 980 nm, substantiating efficient energy relay by these UCNPs. The overall conversion efficiency of the DSSCs was improved with the introduction of UCNPs under simulated AM 1.5 solar irradiation.

  20. Optimize out-of-core thermionic energy conversion for nuclear electric propulsion

    NASA Technical Reports Server (NTRS)

    Morris, J. F.

    1978-01-01

    Thermionic energy conversion (TEC) potentialities for nuclear electric propulsion (NEP) are examined. Considering current designs, their limitations, and risks raises critical questions about the use of TEC for NEP. Apparently a reactor cooled by hotter-than-1675 K heat pipes has good potentialities. TEC with higher temperatures and greater power densities than the currently proposed 1650 K, 5-to-6 W/sq cm version offers substantial gains. Other approaches to high-temperature electric isolation appear also promising. A high-power-density, high-temperature TEC for NEP appears, therefore, attainable. It is recommended to optimize out-of-core thermionic energy conversion for nuclear electric propulsion. Although current TEC designs for NEP seem unnecessary compared with Brayton versions, large gains are apparently possible with increased temperatures and greater power densities.

  1. Neutron dose rate analysis on HTGR-10 reactor using Monte Carlo code

    NASA Astrophysics Data System (ADS)

    Suwoto; Adrial, H.; Hamzah, A.; Zuhair; Bakhri, S.; Sunaryo, G. R.

    2018-02-01

    The HTGR-10 reactor is cylinder-shaped core fuelled with kernel TRISO coated fuel particles in the spherical pebble with helium cooling system. The outlet helium gas coolant temperature outputted from the reactor core is designed to 700 °C. One advantage HTGR type reactor is capable of co-generation, as an addition to generating electricity, the reactor was designed to produce heat at high temperature can be used for other processes. The spherical fuel pebble contains 8335 TRISO UO2 kernel coated particles with enrichment of 10% and 17% are dispersed in a graphite matrix. The main purpose of this study was to analysis the distribution of neutron dose rates generated from HTGR-10 reactors. The calculation and analysis result of neutron dose rate in the HTGR-10 reactor core was performed using Monte Carlo MCNP5v1.6 code. The problems of double heterogeneity in kernel fuel coated particles TRISO and spherical fuel pebble in the HTGR-10 core are modelled well with MCNP5v1.6 code. The neutron flux to dose conversion factors taken from the International Commission on Radiological Protection (ICRP-74) was used to determine the dose rate that passes through the active core, reflectors, core barrel, reactor pressure vessel (RPV) and a biological shield. The calculated results of neutron dose rate with MCNP5v1.6 code using a conversion factor of ICRP-74 (2009) for radiation workers in the radial direction on the outside of the RPV (radial position = 220 cm from the center of the patio HTGR-10) provides the respective value of 9.22E-4 μSv/h and 9.58E-4 μSv/h for enrichment 10% and 17%, respectively. The calculated values of neutron dose rates are compliant with BAPETEN Chairman’s Regulation Number 4 Year 2013 on Radiation Protection and Safety in Nuclear Energy Utilization which sets the limit value for the average effective dose for radiation workers 20 mSv/year or 10μSv/h. Thus the protection and safety for radiation workers to be safe from the radiation source has been fulfilled. From the result analysis, it can be concluded that the model of calculation result of neutron dose rate for HTGR-10 core has met the required radiation safety standards.

  2. Megawatt Class Nuclear Space Power Systems (MCNSPS) conceptual design and evaluation report. Volume 3, technologies 2: Power conversion

    NASA Technical Reports Server (NTRS)

    Wetch, J. R.

    1988-01-01

    The major power conversion concepts considered for the Megawatt Class Nuclear Space Power System (MCNSPS) are discussed. These concepts include: (1) Rankine alkali-metal-vapor turbine alternators; (2) in-core thermionic conversion; (3) Brayton gas turbine alternators; and (4) free piston Stirling engine linear alternators. Considerations important to the coupling of these four conversion alternatives to an appropriate nuclear reactor heat source are examined along with the comparative performance characteristics of the combined systems meeting MCNSPS requirements.

  3. Neutronics Analyses of the Minimum Original HEU TREAT Core

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kontogeorgakos, D.; Connaway, H.; Yesilyurt, G.

    2014-04-01

    This work was performed to support the feasibility study on the potential conversion of the Transient Reactor Test Facility (TREAT) at Idaho National Laboratory from the use of high-enriched uranium (HEU) fuel to the use of low-enriched uranium (LEU) fuel. The analyses were performed by the GTRI Reactor Conversion staff at the Argonne National Laboratory (ANL). The objective of this study was to validate the MCNP model of the TREAT reactor with the well-documented measurements which were taken during the start-up and early operation of TREAT. Furthermore, the effect of carbon graphitization was also addressed. The graphitization level was assumedmore » to be 100% (ANL/GTRI/TM-13/4). For this purpose, a set of experiments was chosen to validate the TREAT MCNP model, involving the approach to criticality procedure, in-core neutron flux measurements with foils, and isothermal temperature coefficient and temperature distribution measurements. The results of this study extended the knowledge base for the TREAT MCNP calculations and established the credibility of the MCNP model to be used in the core conversion feasibility analysis.« less

  4. Semisynthesis of Intact Complex-Type Triantennary Oligosaccharides from a Biantennary Oligosaccharide Isolated from a Natural Source by Selective Chemical and Enzymatic Glycosylation.

    PubMed

    Maki, Yuta; Okamoto, Ryo; Izumi, Masayuki; Murase, Takefumi; Kajihara, Yasuhiro

    2016-03-16

    Attachment of oligosaccharides to proteins is a major post-translational modification. Chemical syntheses of oligosaccharides have contributed to clarifying the functions of these oligosaccharides. However, syntheses of oligosaccharide-linked proteins are still challenging because of their inherent complicated structures, including diverse di- to tetra-antennary forms. We report a highly efficient strategy to access the representative two types of triantennary oligosaccharides through only 9- or 10-step chemical conversions from a biantennary oligosaccharide, which can be isolated in exceptionally homogeneous form from egg yolk. Four benzylidene acetals were successfully introduced to the terminal two galactosides and two core mannosides of the biantennary asialononasaccharide bearing 24 hydroxy groups, followed by protection of the remaining hydroxy groups with acetyl groups. Selective removal of one of the benzylidene acetals gave two types of suitably protected glycosyl acceptors. Glycosylation toward the individual acceptors with protected Gal-β-1,4-GlcN thioglycoside and subsequent deprotection steps successfully yielded two types of complex-type triantennary oligosaccharides.

  5. Learning Not to Think Like an Economist

    ERIC Educational Resources Information Center

    Ross, David R.

    2007-01-01

    This essay describes my progress bringing the core ideas of economics into conversations with noneconomists about important public policy issues within my faith community, through local politics, and through interdisciplinary conversations in academia. Thinking like an economist is essential to conducting research and performing careful analysis…

  6. Widespread Gene Conversion in Centromere Cores

    PubMed Central

    Shi, Jinghua; Wolf, Sarah E.; Burke, John M.; Presting, Gernot G.; Ross-Ibarra, Jeffrey; Dawe, R. Kelly

    2010-01-01

    Centromeres are the most dynamic regions of the genome, yet they are typified by little or no crossing over, making it difficult to explain the origin of this diversity. To address this question, we developed a novel CENH3 ChIP display method that maps kinetochore footprints over transposon-rich areas of centromere cores. A high level of polymorphism made it possible to map a total of 238 within-centromere markers using maize recombinant inbred lines. Over half of the markers were shown to interact directly with kinetochores (CENH3) by chromatin immunoprecipitation. Although classical crossing over is fully suppressed across CENH3 domains, two gene conversion events (i.e., non-crossover marker exchanges) were identified in a mapping population. A population genetic analysis of 53 diverse inbreds suggests that historical gene conversion is widespread in maize centromeres, occurring at a rate >1×10−5/marker/generation. We conclude that gene conversion accelerates centromere evolution by facilitating sequence exchange among chromosomes. PMID:20231874

  7. Reversed Cherenkov emission of terahertz waves from an ultrashort laser pulse in a sandwich structure with nonlinear core and left-handed cladding.

    PubMed

    Bakunov, M I; Mikhaylovskiy, R V; Bodrov, S B; Luk'yanchuk, B S

    2010-01-18

    We propose a scheme for an experimental verification of the reversed Cherenkov effect in left-handed media. The scheme uses optical-to-terahertz conversion in a planar sandwichlike structure that consists of a nonlinear core cladded with a material that exhibits left-handedness at terahertz frequencies. The focused into a line femtosecond laser pulse propagates in the core and emits Cherenkov wedge of terahertz waves in the cladding. We developed a theory that describes terahertz generation in such a structure and calculated spatial distribution of the generated terahertz field, its energy spectrum, and optical-to-terahertz conversion efficiency. The proposed structure can be a useful tool for characterization of the electromagnetic properties of metamaterials in the terahertz frequency range.

  8. Performance analysis of nanodisk and core/shell/shell-nanowire type III-Nitride heterojunction solar cell for efficient energy harvesting

    NASA Astrophysics Data System (ADS)

    Routray, S. R.; Lenka, T. R.

    2017-11-01

    Now-a-days III-Nitride nanowires with axial (nanodisk) and radial (core/shell/shell-nanowire) junctions are two unique and potential methods for solar energy harvesting adopted by worldwide researchers. In this paper, polarization behavior of GaN/InGaN/GaN junction and its effect on carrier dynamics of nanodisk and CSS-nanowire type solar cells are intensively studied and compared with its planar counterpart by numerical simulations using commercially available Victory TCAD. It is observed that CSS-NW with hexagonal geometrical shapes are robust to detrimental impact of polarization charges and could be good enough to accelerate carrier collection efficiency as compared to nanodisk and planar solar cells. This numerical study provides an innovative aspect of fundamental device physics with respect to polarization charges in CSS-NW and nanodisk type junction towards photovoltaic applications. The internal quantum efficiencies (IQE) are also discussed to evaluate carrier collection mechanisms and recombination losses in each type of junctions of solar cell. Finally, it is interesting to observe a maximum conversion efficiency of 6.46% with 91.6% fill factor from n-GaN/i-In0.1Ga0.9N/p-GaN CSS-nanowire solar cell with an optimized thickness of 180 nm InGaN layer under one Sun AM1.5 illumination.

  9. Testing of an Integrated Reactor Core Simulator and Power Conversion System with Simulated Reactivity Feedback

    NASA Technical Reports Server (NTRS)

    Bragg-Sitton, Shannon M.; Hervol, David S.; Godfroy, Thomas J.

    2009-01-01

    A Direct Drive Gas-Cooled (DDG) reactor core simulator has been coupled to a Brayton Power Conversion Unit (BPCU) for integrated system testing at NASA Glenn Research Center (GRC) in Cleveland, OH. This is a closed-cycle system that incorporates an electrically heated reactor core module, turbo alternator, recuperator, and gas cooler. Nuclear fuel elements in the gas-cooled reactor design are replaced with electric resistance heaters to simulate the heat from nuclear fuel in the corresponding fast spectrum nuclear reactor. The thermodynamic transient behavior of the integrated system was the focus of this test series. In order to better mimic the integrated response of the nuclear-fueled system, a simulated reactivity feedback control loop was implemented. Core power was controlled by a point kinetics model in which the reactivity feedback was based on core temperature measurements; the neutron generation time and the temperature feedback coefficient are provided as model inputs. These dynamic system response tests demonstrate the overall capability of a non-nuclear test facility in assessing system integration issues and characterizing integrated system response times and response characteristics.

  10. Testing of an Integrated Reactor Core Simulator and Power Conversion System with Simulated Reactivity Feedback

    NASA Technical Reports Server (NTRS)

    Bragg-Sitton, Shannon M.; Hervol, David S.; Godfroy, Thomas J.

    2010-01-01

    A Direct Drive Gas-Cooled (DDG) reactor core simulator has been coupled to a Brayton Power Conversion Unit (BPCU) for integrated system testing at NASA Glenn Research Center (GRC) in Cleveland, Ohio. This is a closed-cycle system that incorporates an electrically heated reactor core module, turboalternator, recuperator, and gas cooler. Nuclear fuel elements in the gas-cooled reactor design are replaced with electric resistance heaters to simulate the heat from nuclear fuel in the corresponding fast spectrum nuclear reactor. The thermodynamic transient behavior of the integrated system was the focus of this test series. In order to better mimic the integrated response of the nuclear-fueled system, a simulated reactivity feedback control loop was implemented. Core power was controlled by a point kinetics model in which the reactivity feedback was based on core temperature measurements; the neutron generation time and the temperature feedback coefficient are provided as model inputs. These dynamic system response tests demonstrate the overall capability of a non-nuclear test facility in assessing system integration issues and characterizing integrated system response times and response characteristics.

  11. Spacecraft transformer and inductor design

    NASA Technical Reports Server (NTRS)

    Mclyman, W. T.

    1977-01-01

    The conversion process in spacecraft power electronics requires the use of magnetic components which frequently are the heaviest and bulkiest items in the conversion circuit. This handbook pertains to magnetic material selection, transformer and inductor design tradeoffs, transformer design, iron core dc inductor design, toroidal power core inductor design, window utilization factors, regulation, and temperature rise. Relationships are given which simplify and standardize the design of transformers and the analysis of the circuits in which they are used. The interactions of the various design parameters are also presented in simplified form so that tradeoffs and optimizations may easily be made.

  12. Catalyst-free fabrication of novel ZnO/CuO core-Shell nanowires heterojunction: Controlled growth, structural and optoelectronic properties

    NASA Astrophysics Data System (ADS)

    Khan, Muhammad Arif; Wahab, Yussof; Muhammad, Rosnita; Tahir, Muhammad; Sakrani, Samsudi

    2018-03-01

    Development of controlled growth and vertically aligned ZnO/CuO core-shell heterojunction nanowires (NWs) with large area by a catalyst free vapor deposition and oxidation approach has been investigated. Structural characterization reveals successful fabrication of a core ZnO nanowire having single crystalline hexagonal wurtzite structure along [002] direction and CuO nanostructure shell with thickness (8-10 nm) having polycrystalline monoclinic structure. The optical property analysis suggests that the reflectance spectrum of ZnO/CuO heterostructure nanowires is decreased by 18% in the visible range, which correspondingly shows high absorption in this region as compared to pristine ZnO nanowires. The current-voltage (I-V) characteristics of core-shell heterojunction nanowires measured by conductive atomic force microscopy (C-AFM) shows excellent rectifying behavior, which indicates the characteristics of a good p-n junction. The high-resolution transmission electron microscopy (HRTEM) has confirmed the sharp junction interface between the core-shell heterojunction nanowire arrays. The valence band offset and conduction band offset at ZnO/CuO heterointerfaces are measured to be 2.4 ± 0.05 and 0.23 ± 0.005 eV respectively, using X-ray photoelectron spectroscopy (XPS) and a type-II band alignment structure is found. The results of this study contribute to the development of new advanced device heterostructures for solar energy conversion and optoelectronics applications.

  13. Hollow TiO2@Co9S8 Core-Branch Arrays as Bifunctional Electrocatalysts for Efficient Oxygen/Hydrogen Production.

    PubMed

    Deng, Shengjue; Zhong, Yu; Zeng, Yinxiang; Wang, Yadong; Wang, Xiuli; Lu, Xihong; Xia, Xinhui; Tu, Jiangping

    2018-03-01

    Designing ever more efficient and cost-effective bifunctional electrocatalysts for oxygen/hydrogen evolution reactions (OER/HER) is greatly vital and challenging. Here, a new type of binder-free hollow TiO 2 @Co 9 S 8 core-branch arrays is developed as highly active OER and HER electrocatalysts for stable overall water splitting. Hollow core-branch arrays of TiO 2 @Co 9 S 8 are readily realized by the rational combination of crosslinked Co 9 S 8 nanoflakes on TiO 2 core via a facile and powerful sulfurization strategy. Arising from larger active surface area, richer/shorter transfer channels for ions/electrons, and reinforced structural stability, the as-obtained TiO 2 @Co 9 S 8 core-branch arrays show noticeable exceptional electrocatalytic performance, with low overpotentials of 240 and 139 mV at 10 mA cm -2 as well as low Tafel slopes of 55 and 65 mV Dec -1 for OER and HER in alkaline medium, respectively. Impressively, the electrolysis cell based on the TiO 2 @Co 9 S 8 arrays as both cathode and anode exhibits a remarkably low water splitting voltage of 1.56 V at 10 mA cm -2 and long-term durability with no decay after 10 d. The versatile fabrication protocol and smart branch-core design provide a new way to construct other advanced metal sulfides for energy conversion and storage.

  14. Structure-Property Relationships for Tailoring Phenoxazines as Reducing Photoredox Catalysts.

    PubMed

    McCarthy, Blaine G; Pearson, Ryan M; Lim, Chern-Hooi; Sartor, Steven M; Damrauer, Niels H; Miyake, Garret M

    2018-04-18

    Through the study of structure-property relationships using a combination of experimental and computational analyses, a number of phenoxazine derivatives have been developed as visible light absorbing, organic photoredox catalysts (PCs) with excited state reduction potentials rivaling those of highly reducing transition metal PCs. Time-dependent density functional theory (TD-DFT) computational modeling of the photoexcitation of N-aryl and core modified phenoxazines guided the design of PCs with absorption profiles in the visible regime. In accordance with our previous work with N, N-diaryl dihydrophenazines, characterization of noncore modified N-aryl phenoxazines in the excited state demonstrated that the nature of the N-aryl substituent dictates the ability of the PC to access a charge transfer excited state. However, our current analysis of core modified phenoxazines revealed that these molecules can access a different type of CT excited state which we posit involves a core substituent as the electron acceptor. Modification of the core of phenoxazine derivatives with electron-donating and electron-withdrawing substituents was used to alter triplet energies, excited state reduction potentials, and oxidation potentials of the phenoxazine derivatives. The catalytic activity of these molecules was explored using organocatalyzed atom transfer radical polymerization (O-ATRP) for the synthesis of poly(methyl methacrylate) (PMMA) using white light irradiation. All of the derivatives were determined to be suitable PCs for O-ATRP as indicated by a linear growth of polymer molecular weight as a function of monomer conversion and the ability to synthesize PMMA with moderate to low dispersity (dispersity less than or equal to 1.5) and initiator efficiencies typically greater than 70% at high conversions. However, only PCs that exhibit strong absorption of visible light and strong triplet excited state reduction potentials maintain control over the polymerization during the entire course of the reaction. The structure-property relationships established here will enable the application of these organic PCs for O-ATRP and other photoredox-catalyzed small molecule and polymer syntheses.

  15. Osmium Stable Isotope Composition of Chondrites and Iron Meteorites: Implications for Planetary Core Formation

    NASA Astrophysics Data System (ADS)

    Nanne, J. A. M.; Millet, M. A.; Burton, K. W.; Dale, C. W.; Nowell, G. M.; Williams, H. M.

    2016-12-01

    Mass-dependent Os stable isotope fractionation is expected to occur during metal-silicate segregation as well as during crystallization of metal alloys due to the different bonding environment between silicate and metals. As such, Os stable isotopes have the potential to resolve questions pertaining to planetary accretion and differentiation. Here, we present stable Os isotope data for a set of chondrites and iron meteorites to examine the processes associated with core solidification. Carbonaceous, ordinary, and enstatite chondrites show no detectable stable isotope variation with a δ190Os weighted average of +0.12±0.04 (n=37). The uniform composition observed for chondrites implies Os stable isotope homogeneity of the bulk solar nebula. Contrary to chondrites, iron meteorites display a large range in Os stable isotope compositions from δ190Os of +0.05 up to +0.49‰. Variation is only observed in the IIAB and IIIAB irons. Type IVB irons display values similar to chondrites (+0.107±0.047 [n=3]) and IVA compositions are slightly different +0.187±0.004 (n=2). The type IIAB and IIIAB groups show values both within the chondritic range and up to heavier values extending up to +0.49‰. Since core formation in small planetary bodies is expected to quantitatively sequester Os in metal phases, bulk planetary cores are expected to display chondritic δ190Os values. Conversely, samples of the IIAB and IIIAB group display significant variation, possibly indicating that stable isotope fractionation occurred during solidification of the parent-body core. However, no covariation is observed between δ190Os and either Os abundance or radiogenic Os isotope ratios. Instead, liquid immiscibility during core crystallization, where the liquid metal splits into separate S- and P-rich liquids, may be a source of Os stable isotope fractionation.

  16. Preelectroplating Treatment Of Titanium Honeycomb Core

    NASA Technical Reports Server (NTRS)

    Kelly, Michael L.; Harvey, James S.

    1992-01-01

    New technique used to treat titanium honeycomb core electrochemically by applying conversion coat to keep honeycomb active and receptive to electroplating with solution of sodium bichromate and hydrofluoric acid. Maskant permits electroplating of controlled amount of filler metal on edge of honeycomb. Eliminates excess copper filler.

  17. ATR LEU Fuel and Burnable Absorber Neutronics Performance Optimization by Fuel Meat Thickness Variation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    G. S. Chang

    2007-09-01

    The Advanced Test Reactor (ATR) is a high power density and high neutron flux research reactor operating in the United States. Powered with highly enriched uranium (HEU), the ATR has a maximum thermal power rating of 250 MWth. Because of the large test volumes located in high flux areas, the ATR is an ideal candidate for assessing the feasibility of converting an HEU driven reactor to a low-enriched core. The present work investigates the necessary modifications and evaluates the subsequent operating effects of this conversion. A detailed plate-by-plate MCNP ATR 1/8th core model was developed and validated for a fuelmore » cycle burnup comparison analysis. Using the current HEU U 235 enrichment of 93.0 % as a baseline, an analysis can be performed to determine the low-enriched uranium (LEU) density and U-235 enrichment required in the fuel meat to yield an equivalent K-eff between the HEU core and the LEU core versus effective full power days (EFPD). The MCNP ATR 1/8th core model will be used to optimize the U-235 loading in the LEU core, such that the differences in K-eff and heat flux profile between the HEU and LEU core can be minimized. The depletion methodology MCWO was used to calculate K-eff versus EFPDs in this paper. The MCWO-calculated results for the LEU cases with foil (U-10Mo) types demonstrated adequate excess reactivity such that the K-eff versus EFPDs plot is similar to the reference ATR HEU case. Each HEU fuel element contains 19 fuel plates with a fuel meat thickness of 0.508 mm. In this work, the proposed LEU (U-10Mo) core conversion case with a nominal fuel meat thickness of 0.508 mm and the same U-235 enrichment (15.5 wt%) can be used to optimize the radial heat flux profile by varying the fuel plate thickness from 0.254 to 0.457 mm at the inner 4 fuel plates (1-4) and outer 4 fuel plates (16-19). In addition, a 0.7g of burnable absorber Boron-10 was added in the inner and outer plates to reduce the initial excess reactivity, and the inner/outer heat flux more effectively. The optimized LEU relative radial fission heat flux profile is bounded by the reference ATR HEU case. However, to demonstrate that the LEU core fuel cycle performance can meet the Updated Final Safety Analysis Report (UFSAR) safety requirements, additional studies will be necessary to evaluate and compare safety parameters such as void reactivity and Doppler coefficients, control components worth (outer shim control cylinders, safety rods and regulating rod), and shutdown margins between the HEU and LEU cores.« less

  18. Fuel Breeding and Core Behavior Analyses on In Core Fuel Management of Water Cooled Thorium Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Permana, Sidik; Department of Physics, Bandung Institute of Technology, Gedung Fisika, Jl. Ganesha 10, Bandung 40132; Sekimoto, Hiroshi

    2010-12-23

    Thorium fuel cycle with recycled U-233 has been widely recognized having some contributions to improve the water-cooled breeder reactor program which has been shown by a feasible area of breeding and negative void reactivity which confirms that fissile of 233U contributes to better fuel breeding and effective for obtaining negative void reactivity coefficient as the main fissile material. The present study has the objective to estimate the effect of whole core configuration as well as burnup effects to the reactor core profile by adopting two dimensional model of fuel core management. About more than 40 months of cycle period hasmore » been employed for one cycle fuel irradiation of three batches fuel system for large water cooled thorium reactors. All position of fuel arrangement contributes to the total core conversion ratio which gives conversion ratio less than unity of at the BOC and it contributes to higher than unity (1.01) at the EOC after some irradiation process. Inner part and central part give the important part of breeding contribution with increasing burnup process, while criticality is reduced with increasing the irradiation time. Feasibility of breeding capability of water-cooled thorium reactors for whole core fuel arrangement has confirmed from the obtained conversion ratio which shows higher than unity. Whole core analysis on evaluating reactivity change which is caused by the change of voided condition has been employed for conservative assumption that 100% coolant and moderator are voided. It obtained always a negative void reactivity coefficient during reactor operation which shows relatively more negative void coefficient at BOC (fresh fuel composition), and it becomes less negative void coefficient with increasing the operation time. Negative value of void reactivity coefficient shows the reactor has good safety properties in relation to the reactivity profile which is the main parameter in term of criticality safety analysis. Therefore, this evaluation has confirmed that breeding condition and negative coefficient can be obtained simultaneously for water-cooled thorium reactor obtains based on the whole core fuel arrangement.« less

  19. Tuning the synthesis of platinum-copper nanoparticles with a hollow core and porous shell for the selective hydrogenation of furfural to furfuryl alcohol

    NASA Astrophysics Data System (ADS)

    Huang, Shuangshuang; Yang, Nating; Wang, Shibin; Sun, Yuhan; Zhu, Yan

    2016-07-01

    Pt-Cu nanoparticles constructed with a hollow core and porous shell have been synthesized in which Pt-Cu cages with multiporous outermost shells are formed at the initial stage and then the Pt and Cu atoms in solution continuously fed these hollow-core of cages by passing through the porous tunnels of the outermost shells, finally leading to the formation of hollow structures with different sizes. Furthermore, these hollow-core Pt-Cu nanoparticles are more effective than the solid-core Pt-Cu nanoparticles for the catalytic hydrogenation of furfural toward furfuryl alcohol. The former can achieve almost 100% conversion of furfural with 100% selectivity toward the alcohol.Pt-Cu nanoparticles constructed with a hollow core and porous shell have been synthesized in which Pt-Cu cages with multiporous outermost shells are formed at the initial stage and then the Pt and Cu atoms in solution continuously fed these hollow-core of cages by passing through the porous tunnels of the outermost shells, finally leading to the formation of hollow structures with different sizes. Furthermore, these hollow-core Pt-Cu nanoparticles are more effective than the solid-core Pt-Cu nanoparticles for the catalytic hydrogenation of furfural toward furfuryl alcohol. The former can achieve almost 100% conversion of furfural with 100% selectivity toward the alcohol. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr03894h

  20. Active-sterile neutrino conversion: consequences for the r-process and supernova neutrino detection

    NASA Astrophysics Data System (ADS)

    Fetter, J.; McLaughlin, G. C.; Balantekin, A. B.; Fuller, G. M.

    2003-02-01

    We examine active-sterile neutrino conversion in the late time post-core-bounce supernova environment. By including the effect of feedback on the Mikheyev-Smirnov-Wolfenstein (MSW) conversion potential, we obtain a large range of neutrino mixing parameters which produce a favorable environment for the r-process. We look at the signature of this effect in the current generation of neutrino detectors now coming on line. We also investigate the impact of the neutrino-neutrino forward-scattering-induced potential on the MSW conversion.

  1. Development of As-Se tapered suspended-core fibers for ultra-broadband mid-IR wavelength conversion

    NASA Astrophysics Data System (ADS)

    Anashkina, E. A.; Shiryaev, V. S.; Koptev, M. Y.; Stepanov, B. S.; Muravyev, S. V.

    2018-01-01

    We designed and developed tapered suspended-core fibers of high-purity As39Se61 glass for supercontinuum generation in the mid-IR with a standard fiber laser pump source at 2 ${\\mu}$m. It was shown that microstructuring allows shifting a zero dispersion wavelength to the range shorter than 2 ${\\mu}$m in the fiber waist with a core diameter of about 1 ${\\mu}$m. In this case, supercontinuum generation in the 1-10 ${\\mu}$m range was obtained numerically with 150-fs 100-pJ pump pulses at 2 ${\\mu}$m. We also performed experiments on wavelength conversion of ultrashort optical pulses at 1.57 ${\\mu}$m from Er: fiber laser system in the manufactured As-Se tapered fibers. The measured broadening spectra were in a good agreement with the ones simulated numerically.

  2. Ultrahigh temperature vapor core reactor-MHD system for space nuclear electric power

    NASA Technical Reports Server (NTRS)

    Maya, Isaac; Anghaie, Samim; Diaz, Nils J.; Dugan, Edward T.

    1991-01-01

    The conceptual design of a nuclear space power system based on the ultrahigh temperature vapor core reactor with MHD energy conversion is presented. This UF4 fueled gas core cavity reactor operates at 4000 K maximum core temperature and 40 atm. Materials experiments, conducted with UF4 up to 2200 K, demonstrate acceptable compatibility with tungsten-molybdenum-, and carbon-based materials. The supporting nuclear, heat transfer, fluid flow and MHD analysis, and fissioning plasma physics experiments are also discussed.

  3. Impact of HFIR LEU Conversion on Beryllium Reflector Degradation Factors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ilas, Dan

    2013-10-01

    An assessment of the impact of low enriched uranium (LEU) conversion on the factors that may cause the degradation of the beryllium reflector is performed for the High Flux Isotope Reactor (HFIR). The computational methods, models, and tools, comparisons with previous work, along with the results obtained are documented and discussed in this report. The report documents the results for the gas and neutronic poison production, and the heating in the beryllium reflector for both the highly enriched uranium (HEU) and LEU HFIR configurations, and discusses the impact that the conversion to LEU may have on these quantities. A time-averagingmore » procedure was developed to calculate the isotopic (gas and poisons) production in reflector. The sensitivity of this approach to different approximations is gauged and documented. The results show that the gas is produced in the beryllium reflector at a total rate of 0.304 g/cycle for the HEU configuration; this rate increases by ~12% for the LEU case. The total tritium production rate in reflector is 0.098 g/cycle for the HEU core and approximately 11% higher for the LEU core. A significant increase (up to ~25%) in the neutronic poisons production in the reflector during the operation cycles is observed for the LEU core, compared to the HEU case, for regions close to the core s horizontal midplane. The poisoning level of the reflector may increase by more than two orders of magnitude during long periods of downtime. The heating rate in the reflector is estimated to be approximately 20% lower for the LEU core than for the HEU core. The decrease is due to a significantly lower contribution of the heating produced by the gamma radiation for the LEU core. Both the isotopic (gas and neutronic poisons) production and the heating rates are spatially non-uniform throughout the beryllium reflector volume. The maximum values typically occur in the removable reflector and close to the midplane.« less

  4. The Intergradation, Genetic Interchangeability and Interpretation of Gene Conversion Spectrum Types

    PubMed Central

    Lamb, Bernard C.; Ghikas, Aglaia

    1979-01-01

    In the Pasadena strains of Ascobolus immersus, the gene conversion propperties of 29 induced (nine UV, nine NG, and 11 ICR-170) and nine spontaneous white-ascospore mutations have been studied. Each mutant was crossed to three types of derived wild-type strains; single mutants often gave very different conversion results in the three types of crosses, with any or all of the following changes in: percentage with post-meiotic segregation among aberrant-ratio asci; percentage with conversion to wild type among aberrant-ratio asci; and in total conversion frequency. — These results are compared with those of Leblon (1972 a, b) from Ascobolus immersus and Yu-Sun, Wickramaratne and Whitehouse (1977) from Sordaria brevicollis. It is shown that conversion spectrum types are not necessarily distinct, but can completely intergrade, on the criteria of both post-meiotic segregation frequency and direction of correction. Genetic differences between strains in the present work resulted in much interchangeability of spectrum types for the same mutation in different crosses; e.g., from type C in one cross to type B/D type in another cross, although the mutation is presumably of the same molecular type (addition or deletion frame shift, or base substitution) in each cross. These changes of conversion properties for a given mutation in different crosses mean that previous interpretations of spectrum types in terms of specific conversion properties for various molecular types of mutation are inapplicable, or inadequate on their own, to explain the present data. Other factors, such as heterozygous cryptic mutations or conversion control genes, are probably involved. Because of asymmetric hybrid DNA formation, correction properties may differ from observed conversion properties. PMID:17248926

  5. Investigation of the Performance of D 2O-Cooled High-Conversion Reactors for Fuel Cycle Calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hiruta, Hikaru; Youinou, Gilles

    2013-09-01

    This report presents FY13 activities for the analysis of D 2O cooled tight-pitch High-Conversion PWRs (HCPWRs) with U-Pu and Th-U fueled cores aiming at break-even or near breeder conditions while retaining the negative void reactivity. The analyses are carried out from several aspects which could not be covered in FY12 activities. SCALE 6.1 code system is utilized, and a series of simple 3D fuel pin-cell models are developed in order to perform Monte Carlo based criticality and burnup calculations. The performance of U-Pu fueled cores with axial and internal blankets is analyzed in terms of their impact on the relativemore » fissile Pu mass balance, initial Pu enrichment, and void coefficient. In FY12, Pu conversion performances of D 2O-cooled HCPWRs fueled with MOX were evaluated with small sized axial/internal DU blankets (approximately 4cm of axial length) in order to ensure the negative void reactivity, which evidently limits the conversion performance of HCPWRs. In this fiscal year report, the axial sizes of DU blankets are extended up to 30 cm in order to evaluate the amount of DU necessary to reach break-even and/or breeding conditions. Several attempts are made in order to attain the milestone of the HCPWR designs (i.e., break-even condition and negative void reactivity) by modeling of HCPWRs under different conditions such as boiling of D 2O coolant, MOX with different 235U enrichment, and different target burnups. A similar set of analyses are performed for Th-U fueled cores. Several promising characteristics of 233U over other fissile like 239Pu and 235U, most notably its higher fission neutrons per absorption in thermal and epithermal ranges combined with lower ___ in the fast range than 239Pu allows Th-U cores to be taller than MOX ones. Such an advantage results in 4% higher relative fissile mass balance than that of U-Pu fueled cores while retaining the negative void reactivity until the target burnup of 51 GWd/t. Several other distinctions between U-Pu and Th-U fueled cores are identified by evaluating the sensitivity coefficients of keff, mass balance, and void coefficient. The effect of advanced iron alloy cladding (i.e., FeCrAl) on the performance of Pu conversion in MOX fueled cores is studied instead of using standard stainless-steel cladding. Variations in clad thickness and coolant-to-fuel volume ratio are also exercised. The use of FeCrAl instead of SS as a cladding alloy reduces the required Pu enrichment and improves the Pu conversion rate primarily due to the absence of nickel in the cladding alloy that results in the reduction of the neutron absorption. Also the difference in void coefficients between SS and FeCrAl alloys is nearly 500 pcm over the entire burnup range. The report also shows sensitivity and uncertainty analyses in order to characterize D 2O cooled HCPWRs from different aspects. The uncertainties of integral parameters (keff and void coefficient) for selected reactor cores are evaluated at different burnup points in order to find similarities and trends respect to D 2O-HCPWR.« less

  6. Xylopiana A, a Dimeric Guaiane with a Case-Shaped Core from Xylopia vielana: Structural Elucidation and Biomimetic Conversion.

    PubMed

    Zhang, Ya-Long; Zhou, Xu-Wei; Wang, Xiao-Bing; Wu, Lin; Yang, Ming-Hua; Luo, Jun; Yin, Yong; Luo, Jian-Guang; Kong, Ling-Yi

    2017-06-02

    Xylopiana A (1), a dimeric guaiane with an unprecedented pentacyclo[5.2.1.0 1,2 .0 4,5' .0 5,4' ]decane-3,2'-dione core, and three biosynthetically related intermediates, compounds 2-4, were isolated from the leaves of Xylopia vielana. Their structures and absolute configurations were determined by a combination of spectroscopic data, X-ray crystallography, electronic circular dichroism calculations, and chemical conversion. The structure of known vielanin A was revised to be compound 3. Compound 4 exerted a 3.7-fold potentiation effect on doxorubicin susceptibility at the tested concentration of 10 μM.

  7. Monodisperse core/shell Ni/FePt nanoparticles and their con-version to Ni/Pt to catalyze oxygen reduction

    DOE PAGES

    Zhang, Sen; Hao, Yizhou; Su, Dong; ...

    2014-10-28

    We report a size-controllable synthesis of monodisperse core/shell Ni/FePt nanoparticles (NPs) via a seed-mediated growth and their subsequent conversion to Ni/Pt NPs. Preventing surface oxidation of the Ni seeds is essential for the growth of uniform FePt shells. These Ni/FePt NPs have a thin (≈ 1 nm) FePt shell, and can be converted to Ni/Pt by acetic acid wash to yield active catalysts for oxygen reduction reaction (ORR). Tuning the core size allow for optimization of their electrocatalytic activity. The specific activity and mass activity of 4.2 nm/0.8 nm core/shell Ni/FePt reach 1.95 mA/cm² and 490 mA/mg Pt at 0.9more » V ( vs. reversible hydrogen electrode, RHE), which are much higher than those of benchmark commercial Pt catalyst (0.34 mA/cm² and 92 mA/mg Pt at 0.9 V). Our studies provide a robust approach to monodisperse core/shell NPs with non-precious metal core, making it possible to develop advanced NP catalysts with ultralow Pt content for ORR and many other heterogeneous reactions.« less

  8. Conceptual Core Analysis of Long Life PWR Utilizing Thorium-Uranium Fuel Cycle

    NASA Astrophysics Data System (ADS)

    Rouf; Su'ud, Zaki

    2016-08-01

    Conceptual core analysis of long life PWR utilizing thorium-uranium based fuel has conducted. The purpose of this study is to evaluate neutronic behavior of reactor core using combined thorium and enriched uranium fuel. Based on this fuel composition, reactor core have higher conversion ratio rather than conventional fuel which could give longer operation length. This simulation performed using SRAC Code System based on library SRACLIB-JDL32. The calculation carried out for (Th-U)O2 and (Th-U)C fuel with uranium composition 30 - 40% and gadolinium (Gd2O3) as burnable poison 0,0125%. The fuel composition adjusted to obtain burn up length 10 - 15 years under thermal power 600 - 1000 MWt. The key properties such as uranium enrichment, fuel volume fraction, percentage of uranium are evaluated. Core calculation on this study adopted R-Z geometry divided by 3 region, each region have different uranium enrichment. The result show multiplication factor every burn up step for 15 years operation length, power distribution behavior, power peaking factor, and conversion ratio. The optimum core design achieved when thermal power 600 MWt, percentage of uranium 35%, U-235 enrichment 11 - 13%, with 14 years operation length, axial and radial power peaking factor about 1.5 and 1.2 respectively.

  9. Dark matter sterile neutrinos in stellar collapse: Alteration of energy/lepton number transport, and a mechanism for supernova explosion enhancement

    NASA Astrophysics Data System (ADS)

    Hidaka, Jun; Fuller, George M.

    2006-12-01

    We investigate matter-enhanced Mikheyev-Smirnov-Wolfenstein (MSW) active-sterile neutrino conversion in the νe⇌νs channel in the collapse of the iron core of a presupernova star. For values of sterile neutrino rest mass ms and vacuum mixing angle θ (specifically, 0.5keV5×10-12) which include those required for viable sterile neutrino dark matter, our one-zone in-fall phase collapse calculations show a significant reduction in core lepton fraction. This would result in a smaller homologous core and therefore a smaller initial shock energy, disfavoring successful shock reheating and the prospects for an explosion. However, these calculations also suggest that the MSW resonance energy can exhibit a minimum located between the center and surface of the core. In turn, this suggests a post-core-bounce mechanism to enhance neutrino transport and neutrino luminosities at the core surface and thereby augment shock reheating: (1) scattering-induced or coherent MSW νe→νs conversion occurs deep in the core, at the first MSW resonance, where νe energies are large (˜150MeV); (2) the high energy νs stream outward at near light speed; (3) they deposit their energy when they encounter the second MSW resonance νs→νe just below the proto-neutron star surface.

  10. Review of the TREAT Conversion Conceptual Design and Fuel Qualification Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diamond, David

    The U.S. Department of Energy (DOE) is preparing to re establish the capability to conduct transient testing of nuclear fuels at the Idaho National Laboratory (INL) Transient Reactor Test (TREAT) facility. The original TREAT core went critical in February 1959 and operated for more than 6,000 reactor startups before plant operations were suspended in 1994. DOE is now planning to restart the reactor using the plant's original high-enriched uranium (HEU) fuel. At the same time, the National Nuclear Security Administration (NNSA) Office of Material Management and Minimization Reactor Conversion Program is supporting analyses and fuel fabrication studies that will allowmore » for reactor conversion to low-enriched uranium (LEU) fuel (i.e., fuel with less than 20% by weight 235U content) after plant restart. The TREAT Conversion Program's objectives are to perform the design work necessary to generate an LEU replacement core, to restore the capability to fabricate TREAT fuel element assemblies, and to implement the physical and operational changes required to convert the TREAT facility to use LEU fuel.« less

  11. Auger Up-Conversion of Low-Intensity Infrared Light in Engineered Quantum Dots

    DOE PAGES

    Makarov, Nikolay S.; Lin, Qianglu; Pietryga, Jeffrey M.; ...

    2016-11-29

    One source of efficiency losses in photovoltaic cells is their transparency toward solar photons with energies below the band gap of the absorbing layer. This loss can be reduced using a process of up-conversion whereby two or more sub-band-gap photons generate a single above-gap exciton. Traditional approaches to up-conversion, such as nonlinear two-photon absorption (2PA) or triplet fusion, suffer from low efficiency at solar light intensities, a narrow absorption bandwidth, nonoptimal absorption energies, and difficulties for implementing in practical devices. We show that these deficiencies can be alleviated using the effect of Auger up-conversion in thick-shell PbSe/CdSe quantum dots. Thismore » process relies on Auger recombination whereby two low-energy, core-based excitons are converted into a single higher-energy, shell-based exciton. When compared to their monocomponent counterparts, the tailored PbSe/CdSe heterostructures feature enhanced absorption cross-sections, a higher efficiency of the “productive” Auger pathway involving re-excitation of a hole, and longer lifetimes of both core- and shell-localized excitons. These features lead to effective up-conversion cross-sections that are more than 6 orders of magnitude higher than for standard nonlinear 2PA, which allows for efficient up-conversion of continuous wave infrared light at intensities as low as a few watts per square centimeter.« less

  12. 7 CFR 3560.506 - Conversion of single family type REO property to MFH use.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false Conversion of single family type REO property to MFH... and Disposition of Real Estate Owned (REO) Properties § 3560.506 Conversion of single family type REO property to MFH use. Single family type REO property may be sold for conversion to MFH program use under...

  13. 7 CFR 3560.506 - Conversion of single family type REO property to MFH use.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 15 2012-01-01 2012-01-01 false Conversion of single family type REO property to MFH... and Disposition of Real Estate Owned (REO) Properties § 3560.506 Conversion of single family type REO property to MFH use. Single family type REO property may be sold for conversion to MFH program use under...

  14. 7 CFR 3560.506 - Conversion of single family type REO property to MFH use.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 15 2013-01-01 2013-01-01 false Conversion of single family type REO property to MFH... and Disposition of Real Estate Owned (REO) Properties § 3560.506 Conversion of single family type REO property to MFH use. Single family type REO property may be sold for conversion to MFH program use under...

  15. 7 CFR 3560.506 - Conversion of single family type REO property to MFH use.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 15 2011-01-01 2011-01-01 false Conversion of single family type REO property to MFH... and Disposition of Real Estate Owned (REO) Properties § 3560.506 Conversion of single family type REO property to MFH use. Single family type REO property may be sold for conversion to MFH program use under...

  16. 7 CFR 3560.506 - Conversion of single family type REO property to MFH use.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Conversion of single family type REO property to MFH... and Disposition of Real Estate Owned (REO) Properties § 3560.506 Conversion of single family type REO property to MFH use. Single family type REO property may be sold for conversion to MFH program use under...

  17. LP01 to LP11 mode convertor based on side-polished small-core single-mode fiber

    NASA Astrophysics Data System (ADS)

    Liu, Yan; Li, Yang; Li, Wei-dong

    2018-03-01

    An all-fiber LP01-LP11 mode convertor based on side-polished small-core single-mode fibers (SMFs) is numerically demonstrated. The linearly polarized incident beam in one arm experiences π shift through a fiber half waveplate, and the side-polished parts merge into an equivalent twin-core fiber (TCF) which spatially shapes the incident LP01 modes to the LP11 mode supported by the step-index few-mode fiber (FMF). Optimum conditions for the highest conversion efficiency are investigated using the beam propagation method (BPM) with an approximate efficiency as high as 96.7%. The proposed scheme can operate within a wide wavelength range from 1.3 μm to1.7 μm with overall conversion efficiency greater than 95%. The effective mode area and coupling loss are also characterized in detail by finite element method (FEM).

  18. 5 CFR 317.304 - Conversion of career and career-type appointees.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 5 Administrative Personnel 1 2011-01-01 2011-01-01 false Conversion of career and career-type... REGULATIONS EMPLOYMENT IN THE SENIOR EXECUTIVE SERVICE Conversion to the Senior Executive Service § 317.304 Conversion of career and career-type appointees. (a) Coverage. This section covers employees serving under...

  19. Initial Coupling of the RELAP-7 and PRONGHORN Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. Ortensi; D. Andrs; A.A. Bingham

    2012-10-01

    Modern nuclear reactor safety codes require the ability to solve detailed coupled neutronic- thermal fluids problems. For larger cores, this implies fully coupled higher dimensionality spatial dynamics with appropriate feedback models that can provide enough resolution to accurately compute core heat generation and removal during steady and unsteady conditions. The reactor analysis code PRONGHORN is being coupled to RELAP-7 as a first step to extend RELAP’s current capabilities. This report details the mathematical models, the type of coupling, and the testing results from the integrated system. RELAP-7 is a MOOSE-based application that solves the continuity, momentum, and energy equations inmore » 1-D for a compressible fluid. The pipe and joint capabilities enable it to model parts of the power conversion unit. The PRONGHORN application, also developed on the MOOSE infrastructure, solves the coupled equations that define the neutron diffusion, fluid flow, and heat transfer in a full core model. The two systems are loosely coupled to simplify the transition towards a more complex infrastructure. The integration is tested on a simplified version of the OECD/NEA MHTGR-350 Coupled Neutronics-Thermal Fluids benchmark model.« less

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makarov, Nikolay S.; Lin, Qianglu; Pietryga, Jeffrey M.

    One source of efficiency losses in photovoltaic cells is their transparency toward solar photons with energies below the band gap of the absorbing layer. This loss can be reduced using a process of up-conversion whereby two or more sub-band-gap photons generate a single above-gap exciton. Traditional approaches to up-conversion, such as nonlinear two-photon absorption (2PA) or triplet fusion, suffer from low efficiency at solar light intensities, a narrow absorption bandwidth, nonoptimal absorption energies, and difficulties for implementing in practical devices. We show that these deficiencies can be alleviated using the effect of Auger up-conversion in thick-shell PbSe/CdSe quantum dots. Thismore » process relies on Auger recombination whereby two low-energy, core-based excitons are converted into a single higher-energy, shell-based exciton. When compared to their monocomponent counterparts, the tailored PbSe/CdSe heterostructures feature enhanced absorption cross-sections, a higher efficiency of the “productive” Auger pathway involving re-excitation of a hole, and longer lifetimes of both core- and shell-localized excitons. These features lead to effective up-conversion cross-sections that are more than 6 orders of magnitude higher than for standard nonlinear 2PA, which allows for efficient up-conversion of continuous wave infrared light at intensities as low as a few watts per square centimeter.« less

  1. LaF3 core/shell nanoparticles for subcutaneous heating and thermal sensing in the second biological-window

    NASA Astrophysics Data System (ADS)

    Ximendes, Erving Clayton; Rocha, Uéslen; Kumar, Kagola Upendra; Jacinto, Carlos; Jaque, Daniel

    2016-06-01

    We report on Ytterbium and Neodymium codoped LaF3 core/shell nanoparticles capable of simultaneous heating and thermal sensing under single beam infrared laser excitation. Efficient light-to-heat conversion is produced at the Neodymium highly doped shell due to non-radiative de-excitations. Thermal sensing is provided by the temperature dependent Nd3+ → Yb3+ energy transfer processes taking place at the core/shell interface. The potential application of these core/shell multifunctional nanoparticles for controlled photothermal subcutaneous treatments is also demonstrated.

  2. Stimulated Raman scattering in AsSe2-As2S5 microstructured optical fiber

    NASA Astrophysics Data System (ADS)

    Gao, Weiqing; Ni, Chenquan; Xu, Qiang; Li, Xue; Chen, Xiangcai; Chen, Li; Wen, Zhenqiang; Cheng, Tonglei; Xue, Xiaojie; Suzuki, Takenobu; Ohishi, Yasutake

    2017-02-01

    We demonstrate the effects of stimulated Raman scattering (SRS) in the all-solid-core chalcogenide microstructured optical fibers (MOFs) with AsSe2 core and As2S5 cladding, which are fabricated by the rod-in-tube drawing technique. The core diameters of the MOFs are 6.3 (Fiber I), 3.0 (Fiber II), 2.6 (Fiber III) and 2.2 (Fiber IV) μm, respectively. The chromatic dispersion of the fundamental mode in Fibers I-IV is simulated by the full-vectorial mode solver technique. The first-order Stokes wave is investigated in the fibers with different core diameters pumped by the picosecond pulses at 1958 nm. In Fiber I, no obvious Raman peak is observed with the pump power increasing, because the effective nonlinearity is not high. In Fiber II, a Raman Stokes peak at 2065 nm begins to emerge at the pump power of 110 mW. The conversion efficiency is as weak as -36.6 dB at 150 mW pumping. In Fiber III, the first-order Raman peak at 2060 nm begins to emerge at 40 mW pumping. The conversion efficiency is -15.0 dB, which is 21.6 dB higher than that in Fiber II. In Fiber IV, the Stokes peak at 2070 nm begins to appear at 56 mW pumping. The maximum conversion efficiency of the first-order Stokes wave is obtained in the MOF with the core diameter of 2.6 μm. The evolution of the first-order Stokes wave with pump power and fiber length is investigated. This is the first demonstration of Raman effects in the AsSe2-As2S5 MOF, to the best of our knowledge.

  3. Identifying Core Vocabulary for Urdu Language Speakers Using Augmentative Alternative Communication

    ERIC Educational Resources Information Center

    Mukati, Abdul Samad

    2013-01-01

    The purpose of this research is to identify a core set of vocabulary used by native Urdu language (UL) speakers during dyadic conversation for social interaction and relationship building. This study was conducted in Karachi, Pakistan at an institution of higher education. This research seeks to distinguish between general (nonspecific…

  4. Social Media Is the New Player in the Politics of Education

    ERIC Educational Resources Information Center

    Supovitz, Jonathan

    2017-01-01

    Political debate about the Common Core State Standards (the first major education policy initiative in the social media age) ramped up quickly on social media, particularly on Twitter. However, while the increased and intense conversation influenced many states to disavow Common Core in name, those states ended up adopting standards that were…

  5. Learning Gains for Core Concepts in a Serious Game on Scientific Reasoning

    ERIC Educational Resources Information Center

    Forsyth, Carol; Pavlik, Philip, Jr.; Graesser, Arthur C.; Cai, Zhiqiang; Germany, Mae-lynn; Millis, Keith; Dolan, Robert P.; Butler, Heather; Halpern, Diane

    2012-01-01

    "OperationARIES!" is an Intelligent Tutoring System that teaches scientific inquiry skills in a game-like atmosphere. Students complete three different training modules, each with natural language conversations, in order to acquire deep-level knowledge of 21 core concepts of research methodology (e.g., correlation does not mean…

  6. Fe 2O 3–TiO 2 core–shell nanorod arrays for visible light photocatalytic applications

    DOE PAGES

    Yao, Kun; Basnet, Pradip; Sessions, Henry; ...

    2015-11-11

    By using the glancing angle deposition technique and post-deposition annealing, Fe 2O 3–TiO 2 core-shell nanorod arrays with specific crystalline states can be designed and fabricated. The Fe 2O 3–TiO 2 core-shell samples annealed at temperatures greater than 450°C formed α-Fe 2O 3 and anatase TiO 2, and showed higher catalytic efficiency for the degradation of methylene blue (MB) under visible light illumination when compared with pure anatase TiO 2 or α-Fe 2O 3 nanorod arrays. Solar conversion of carbon dioxide and water vapor in the presence of Fe 2O 3–TiO 2 core-shell nanorod arrays was also investigated. Carbon monoxide,more » hydrogen, methane, and methanol along with other hydrocarbons were produced after only several hours’ exposure under ambient sunlight. It was determined that the core-shell structure showed greater efficiency for solar CO 2 conversion than the pure TiO 2 nanorod arrays.« less

  7. Radiation Characterization Summary: ACRR Polyethylene-Lead-Graphite (PLG) Bucket Located in the Central Cavity on the 32-Inch Pedestal at the Core Centerline (ACRR-PLG-CC-32-cl).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parma, Edward J.,; Vehar, David W.; Lippert, Lance L.

    2015-06-01

    This document presents the facility-recommended characterization of the neutron, prompt gamma-ray, and delayed gamma-ray radiation fields in the Annular Core Research Reactor (ACRR) for the polyethylene-lead-graphite (PLG) bucket in the central cavity on the 32-inch pedestal at the core centerline. The designation for this environment is ACRR-PLG-CC-32-cl. The neutron, prompt gamma-ray, and delayed gamma-ray energy spectra, uncertainties, and covariance matrices are presented as well as radial and axial neutron and gamma-ray fluence profiles within the experiment area of the bucket. Recommended constants are given to facilitate the conversion of various dosimetry readings into radiation metrics desired by experimenters. Representative pulsemore » operations are presented with conversion examples. Acknowledgements The authors wish to thank the Annular Core Research Reactor staff and the Radiation Metrology Laboratory staff for their support of this work. Also thanks to David Ames for his assistance in running MCNP on the Sandia parallel machines.« less

  8. Radiation Characterization Summary: ACRR Central Cavity Free-Field Environment with the 32-Inch Pedestal at the Core Centerline (ACRR-FF-CC-32-cl).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vega, Richard Manuel; Parma, Edward J.; Naranjo, Gerald E.

    2015-08-01

    This document presents the facilit y - recommended characteri zation o f the neutron, prompt gamma - ray, and delayed gamma - ray radiation fields in the Annular Core Research Reactor ( ACRR ) for the cen tral cavity free - field environment with the 32 - inch pedestal at the core centerline. The designation for this environmen t is ACRR - FF - CC - 32 - cl. The neutron, prompt gamma - ray , and delayed gamma - ray energy spectra , uncertainties, and covariance matrices are presented as well as radial and axial neutron and gamma -more » ray fluence profiles within the experiment area of the cavity . Recommended constants are given to facilitate the conversion of various dosimetry readings into radiation metrics desired by experimenters. Representative pulse operations are presented with conversion examples . Acknowledgements The authors wish to th ank the Annular Core Research Reactor staff and the Radiation Metrology Laboratory staff for their support of this work . Also thanks to David Ames for his assistance in running MCNP on the Sandia parallel machines.« less

  9. Topic Negotiation in Peer Group Oral Assessment Situations: A Conversation Analytic Approach

    ERIC Educational Resources Information Center

    Gan, Zhengdong; Davison, Chris; Hamp-Lyons, Liz

    2009-01-01

    This study examines the production of topical talk in peer collaborative negotiation in an interactive assessment innovation context. The ability to stay on topic, to move from topic to topic and to introduce new topics appropriately is at the core of communicative competence. Applying conversation analysis (CA), we describe and analyze how one…

  10. Resonant spin-flavor conversion of supernova neutrinos: Dependence on presupernova models and future prospects

    NASA Astrophysics Data System (ADS)

    Ando, Shin'ichiro; Sato, Katsuhiko

    2003-07-01

    We study the resonant spin-flavor (RSF) conversion of supernova neutrinos, which is induced by the interaction between the nonzero neutrino magnetic moment and the supernova magnetic fields, and its dependence on presupernova models. As the presupernova models, we adopt the latest ones by Woosley, Heger, and Weaver, and, further, models with both solar and zero metallicity are investigated. Since the (1-2Ye) profile of the new presupernova models, which is responsible for the RSF conversion, suddenly drops at the resonance region, the completely adiabatic RSF conversion is not realized, even if μνB0=(10-12μB)(1010 G), where B0 is the strength of the magnetic field at the surface of the iron core. In particular for the model with zero metallicity, the conversion is highly nonadiabatic in the high energy region, reflecting the (1-2Ye) profile of the model. In calculating the flavor conversion, we find that the shock wave propagation, which changes density profiles drastically, is a much more severe problem than it is for the pure Mikheyev-Smirnov-Wolfenstein (MSW) conversion case. This is because the RSF effect occurs at a far deeper region than the MSW effect. To avoid the uncertainty concerning the shock propagation, we restrict our discussion to 0.5 s after the core bounce (and for more conservative discussion, 0.25 s), during which the shock wave is not expected to affect the RSF region. We also evaluate the energy spectrum at the Super-Kamiokande detector for various models using the calculated conversion probabilities, and find that it is very difficult to obtain useful information on the supernova metallicities and magnetic fields or on the neutrino magnetic moment from the supernova neutrino observation. Future prospects are also discussed.

  11. [Effects of hot-NaOH pretreatment on Jerusalem artichoke stalk composition and subsequent enzymatic hydrolysis].

    PubMed

    Wang, Qing; Qiu, Jingwen; Li, Yang; Shen, Fei

    2015-10-01

    In order to explore the possibility of Jerusalem artichoke stalk for bioenergy conversion, we analyzed the main composition of whole stalk, pitch, and core of the stalk. Meanwhile, these parts were pretreated with different NaOH concentrations at 121 degrees C. Afterwards, enzymatic hydrolysis was performed to evaluate the pretreatment efficiency. Jerusalem artichoke stalk was characterized by relatively high lignin content (32.0%) compared with traditional crop stalks. The total carbohydrate content was close to that of crop stalks, but with higher cellulose content (40.5%) and lower hemicellulose (19.6%) than those of traditional crop stalks. After pretreatment, the lignin content in the whole stalk, pitch, and core decreased by 13.1%-13.4%, 8.3%-13.5%, and 19.9%-27.2%, respectively, compared with the unpretreated substrates. The hemicellulose content in the whole stalk, pitch, and core decreased 87.8%-96.9%, 87.6%-95.0%, and 74.0%-90.2%, respectively. Correspondingly, the cellulose content in the pretreated whole stalk, pitch, and core increased by 56.5%-60.2%, 52.2%-55.4%, and 62.7%-73.2%, respectively. Moreover, increase of NaOH concentration for pretreatment could improve the enzymatic hydrolysis of the whole stalk and pitch by 2.3-2.6 folds and 10.3-18.5 folds, respectively. The hydrolysis of pretreated stalk core decreased significantly as 2.0 mol/L NaOH was employed, although the increased NaOH concentration can also improve its hydrolysis performance. Based on these results, hot-NaOH can be regarded as an option for Jerusalem artichoke stalk pretreatment. Increasing NaOH concentration was beneficial to hemicellulose and lignin removal, and consequently improved sugar conversion. However, the potential decrease of sugar conversion of the pretreated core by higher NaOH concentration suggested further optimization on the pretreatment conditions should be performed.

  12. ATR LEU fuel and burnable absorber neutronics performance optimization by fuel meat thickness variation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, G.S.

    2008-07-15

    The Advanced Test Reactor (ATR) is a high power density and high neutron flux research reactor operating in the United States. Powered with highly enriched uranium (HEU), the ATR has a maximum thermal power rating of 250 MWth. Because of the large test volumes located in high flux areas, the ATR is an ideal candidate for assessing the feasibility of converting an HEU driven reactor to a low-enriched core. The present work investigates the necessary modifications and evaluates the subsequent operating effects of this conversion. A detailed plate-by-plate MCNP ATR 1/8th core model was developed and validated for a fuelmore » cycle burnup comparison analysis. Using the current HEU U-235 enrichment of 93.0 % as a baseline, an analysis can be performed to determine the low-enriched uranium (LEU) density and U-235 enrichment required in the fuel meat to yield an equivalent K-eff between the HEU core th and the LEU core versus effective full power days (EFPD). The MCNP ATR 1/8th core model will be used to optimize the U-235 loading in the LEU core, such that the differences in K-eff and heat flux profile between the HEU and LEU core can be minimized. The depletion methodology MCWO was used to calculate K-eff versus EFPDs in this paper. The MCWO-calculated results for the LEU cases with foil (U-10Mo) types demonstrated adequate excess reactivity such that the K-eff versus EFPDs plot is similar to the reference ATR HEU case. Each HEU fuel element contains 19 fuel plates with a fuel meat thickness of 0.508 mm. In this work, the proposed LEU (U-10Mo) core conversion case with a nominal fuel meat thickness of 0.381 mm and the same U-235 enrichment (19.7 wt%) can be used to optimize the radial heat flux profile by varying the fuel meat thickness from 0.191 mm (7.5 mil) to 0.343 mm (13.5 mil) at the inner 4 fuel plates (1-4) and outer 4 fuel plates (16-19). In addition, 0.8g of a burnable absorber, Boron-10, was added in the inner and outer plates to reduce the initial excess reactivity, and the inner/outer heat flux more effectively. The optimized LEU relative radial fission heat flux profile is bounded by the reference ATR HEU case. However, to demonstrate that the LEU core fuel cycle performance can meet the Updated Final Safety Analysis Report (UFSAR) safety requirements, additional studies will be necessary to evaluate and compare safety parameters such as void reactivity and Doppler coefficients, control components worth (outer shim control cylinders, safety rods and regulating rod), and shutdown margins between the HEU and LEU cores. (author)« less

  13. The pre-conceptual design of the nuclear island of ASTRID

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saez, M.; Menou, S.; Uzu, B.

    The CEA is involved in a substantial effort on the ASTRID (Advanced Sodium Technological Reactor for Industrial Demonstration) pre-conceptual design in cooperation with EDF, as experienced Sodium-cooled Fast Reactor (SFR) operator, AREVA, as experienced SFR Nuclear Island engineering company and components designer, ALSTOM POWER as energy conversion system designer and COMEX NUCLEAIRE as mechanical systems designer. The CEA is looking for other partnerships, in France and abroad. The ASTRID preliminary design is based on a sodium-cooled pool reactor of 1500 MWth generating about 600 MWe, which is required to guarantee the representativeness of the reactor core and the main componentsmore » with regard to future commercial reactors. ASTRID lifetime target is 60 years. Two Energy Conversion Systems are studied in parallel until the end of 2012: Rankine steam cycle or Brayton gas based energy conversion cycle. ASTRID design is guided by the following major objectives: improved safety, simplification of structures, improved In Service Inspection and Repair (ISIR), improved manufacturing conditions for cost reduction and increased quality, reduction of risks related to sodium fires and water/sodium reaction, and improved robustness against external hazards. The core is supported by a diagrid, which lay on a strong back to transfer the weight to the main vessel. AREVA is involved in a substantial effort in order to improve the core support structure in particular regarding the ISIR and the connection to primary pump. In the preliminary design, the primary system is formed by the main vessel and the upper closure comprising the reactor roof, two rotating plugs - used for fuel handling - and the components plugs located in the roof penetrations. The Above Core Structure deflects the sodium flow in the hot pool and provides support to core instrumentation and guidance of the control rod drive mechanisms. The number of the major components in the main vessel, primary pumps, Intermediate Heat Exchangers, and Decay Heat Exchangers are now under consideration. Under normal conditions, power release is achieved using the steam/water plant (in case of Rankine steam cycle) or the gas plant (in case of Brayton gas cycle). The diverse design and operating modes of Decay Heat Removal systems provide protection against common cause failures. A Decay Heat Removal system through the reactor vault is in particular studied with the objective to complement Direct Reactor Cooling systems. At this stage of the studies, the secondary system comprises four independent sodium loops (two and three sodium loops configurations are also investigated). Each loop includes one mechanical pump (or a large capacity Annular Linear Induction Electromagnetic Pump), and three modular Steam Generator Units characterized by once through straight tube units with a ferritic tube bundle; nevertheless, helical coil steam generator with tubes made of Alloy 800, and inverted type steam generator with a ferritic tube bundle are also investigated. The limited power of each modular Steam Generator Unit allows the whole secondary loop to withstand a large water/sodium reaction consecutive to the postulated simultaneous rupture of all the heat exchange tubes of one module. The arrangement of the components is based on the 'Regain' concept, in which the secondary pump is situated at a low level in the circuit; conventional arrangement, as SUPERPHENIX type, is a back-up option. Alternative arrangements based on gas cycles are also studied together with Na-gas heat exchanger design. This paper presents a status of the ASTRID pre-conceptual design. The most promising options are highlighted as well as less risky and back-up options. (authors)« less

  14. Preliminary Assessment of the Impact on Reactor Vessel dpa Rates Due to Installation of a Proposed Low Enriched Uranium (LEU) Core in the High Flux Isotope Reactor (HFIR)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daily, Charles R.

    2015-10-01

    An assessment of the impact on the High Flux Isotope Reactor (HFIR) reactor vessel (RV) displacements-per-atom (dpa) rates due to operations with the proposed low enriched uranium (LEU) core described by Ilas and Primm has been performed and is presented herein. The analyses documented herein support the conclusion that conversion of HFIR to low-enriched uranium (LEU) core operations using the LEU core design of Ilas and Primm will have no negative impact on HFIR RV dpa rates. Since its inception, HFIR has been operated with highly enriched uranium (HEU) cores. As part of an effort sponsored by the National Nuclearmore » Security Administration (NNSA), conversion to LEU cores is being considered for future HFIR operations. The HFIR LEU configurations analyzed are consistent with the LEU core models used by Ilas and Primm and the HEU balance-of-plant models used by Risner and Blakeman in the latest analyses performed to support the HFIR materials surveillance program. The Risner and Blakeman analyses, as well as the studies documented herein, are the first to apply the hybrid transport methods available in the Automated Variance reduction Generator (ADVANTG) code to HFIR RV dpa rate calculations. These calculations have been performed on the Oak Ridge National Laboratory (ORNL) Institutional Cluster (OIC) with version 1.60 of the Monte Carlo N-Particle 5 (MCNP5) computer code.« less

  15. Constraining axion-like-particles with hard X-ray emission from magnetars

    NASA Astrophysics Data System (ADS)

    Fortin, Jean-François; Sinha, Kuver

    2018-06-01

    Axion-like particles (ALPs) produced in the core of a magnetar will convert to photons in the magnetosphere, leading to possible signatures in the hard X-ray band. We perform a detailed calculation of the ALP-to-photon conversion probability in the magnetosphere, recasting the coupled differential equations that describe ALP-photon propagation into a form that is efficient for large scale numerical scans. We show the dependence of the conversion probability on the ALP energy, mass, ALP-photon coupling, magnetar radius, surface magnetic field, and the angle between the magnetic field and direction of propagation. Along the way, we develop an analytic formalism to perform similar calculations in more general n-state oscillation systems. Assuming ALP emission rates from the core that are just subdominant to neutrino emission, we calculate the resulting constraints on the ALP mass versus ALP-photon coupling space, taking SGR 1806-20 as an example. In particular, we take benchmark values for the magnetar radius and core temperature, and constrain the ALP parameter space by the requirement that the luminosity from ALP-to-photon conversion should not exceed the total observed luminosity from the magnetar. The resulting constraints are competitive with constraints from helioscope experiments in the relevant part of ALP parameter space.

  16. Postglacial Fringing-Reef to Barrier-Reef conversion on Tahiti links Darwin's reef types

    NASA Astrophysics Data System (ADS)

    Blanchon, Paul; Granados-Corea, Marian; Abbey, Elizabeth; Braga, Juan C.; Braithwaite, Colin; Kennedy, David M.; Spencer, Tom; Webster, Jody M.; Woodroffe, Colin D.

    2014-05-01

    In 1842 Charles Darwin claimed that vertical growth on a subsiding foundation caused fringing reefs to transform into barrier reefs then atolls. Yet historically no transition between reef types has been discovered and they are widely considered to develop independently from antecedent foundations during glacio-eustatic sea-level rise. Here we reconstruct reef development from cores recovered by IODP Expedition 310 to Tahiti, and show that a fringing reef retreated upslope during postglacial sea-level rise and transformed into a barrier reef when it encountered a Pleistocene reef-flat platform. The reef became stranded on the platform edge, creating a lagoon that isolated it from coastal sediment and facilitated a switch to a faster-growing coral assemblage dominated by acroporids. The switch increased the reef's accretion rate, allowing it to keep pace with rising sea level, and transform into a barrier reef. This retreat mechanism not only links Darwin's reef types, but explains the re-occupation of reefs during Pleistocene glacio-eustacy.

  17. Principal Prep for Common Core Gaining Traction

    ERIC Educational Resources Information Center

    Gewertz, Catherine

    2012-01-01

    A year ago, top officials in the school leadership world were worried. It seemed to them that principals were being overlooked in national conversations about how to get educators ready for the Common Core State Standards. But that is changing. The past six months have seen a surge of activity to acquaint principals with the new standards and…

  18. Common Core Preparation in Special Education Teacher Education Programs: Beginning the Conversation

    ERIC Educational Resources Information Center

    Murphy, Michelle R.; Marshall, Kathleen J.

    2015-01-01

    The Common Core State Standards (CCSS) were developed to encourage a common focus of instruction and evaluation in the areas of mathematics, reading/language arts, writing, speaking, and listening. As of 2011, all but five states have adopted CCSS for math and English Language Arts (ELA), with another adopting only the standards for ELA. With…

  19. Novel, Integrated Reactor/Power Conversion System (LMR-AMTEC)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dmitry V. Paramonov, Lead Collaborator

    2001-07-31

    The overall objective of NERI Project Number 99-0198 is to assess the technical and economic feasibility, develop engineering solutions and determine a range of potential applications for ''Novel Integrated Reactor/Energy conversion Systems''. The near term goal is the design of a power supply for developing countries in remote locations in a proliferation resistant, reliable and economical way. The heart of the concept is the use of a single loop liquid metal fast reactor (LMR) with conversion of the heat directly into electricity in a Alkali Metal Thermal to Electric Converter (AMTEC). The first year of the project focused on themore » feasibility issues with a long life, high temperature liquid metal-cooled core; selection of the working fluid, core-to-AMTEC coupling scheme and interface parameters; and, energy conversion systems design and performance. Report Number STD-ES-01-0028, Revision 0, dated July 31, 2001, summarizes the work performed by Westinghouse personnel in Year One and report number UNM-ISNPS-3-2000, dated October 2000, summarizes the work performed by the Institute for Space and Nuclear Power Studies at the University of New Mexico in Year One.« less

  20. Spatially resolved measurements of ion heating during impulsive reconnection in the Madison Symmetric Torus.

    PubMed

    Gangadhara, S; Craig, D; Ennis, D A; Hartog, D J Den; Fiksel, G; Prager, S C

    2007-02-16

    The impurity ion temperature evolution has been measured during three types of impulsive reconnection events in the Madison Symmetric Torus reversed field pinch. During an edge reconnection event, the drop in stored magnetic energy is small and ion heating is observed to be limited to the outer half of the plasma. Conversely, during a global reconnection event the drop in stored magnetic energy is large, and significant heating is observed at all radii. For both kinds of events, the drop in magnetic energy is sufficient to explain the increase in ion thermal energy. However, not all types of reconnection lead to ion heating. During a core reconnection event, both the stored magnetic energy and impurity ion temperature remain constant. The results suggest that a drop in magnetic energy is required for ions to be heated during reconnection, and that when this occurs heating is localized near the reconnection layer.

  1. CHANG-ES - XI. Circular polarization in the cores of nearby galaxies

    NASA Astrophysics Data System (ADS)

    Irwin, Judith A.; Henriksen, Richard N.; WeŻgowiec, Marek; Damas-Segovia, Ancor; Wang, Q. Daniel; Krause, Marita; Heald, George; Dettmar, Ralf-Jürgen; Li, Jiang-Tao; Wiegert, Theresa; Stein, Yelena; Braun, Timothy T.; Im, Jisung; Schmidt, Philip; Macdonald, Scott; Miskolczi, Arpad; Merritt, Alison; Mora-Partiarroyo, S. C.; Saikia, D. J.; Sotomayor, Carlos; Yang, Yang

    2018-06-01

    We detect five galaxies in the Continuum Halos in Nearby Galaxies - an EVLA Survey (CHANG-ES) sample that show circular polarization (CP) at L band in our high-resolution data sets. Two of the galaxies (NGC 4388 and NGC 4845) show strong Stokes V/I ≡ mC ˜ 2 per cent, two (NGC 660 and NGC 3628) have values of mC ˜ 0.3 per cent, and NGC 3079 is a marginal detection at mC ˜ 0.2 per cent. The two strongest mC galaxies also have the most luminous X-ray cores and the strongest internal absorption in X-rays. We have expanded on our previous Faraday conversion interpretation and analysis and provide analytical expressions for the expected V signal for a general case in which the cosmic ray (CR) electron energy spectral index can take on any value. We provide examples as to how such expressions could be used to estimate magnetic field strengths and the lower energy cut-off for CR electrons. Four of our detections are resolved, showing unique structures, including a jet in NGC 4388 and a CP `conversion disc' in NGC 4845. The conversion disc is inclined to the galactic disc but is perpendicular to a possible outflow direction. Such CP structures have never before been seen in any galaxy to our knowledge. None of the galaxy cores show linear polarization at L band. Thus radio CP may provide a unique probe of the physical conditions in the cores of active galactic nuclei.

  2. Three-generation study of neutrino spin-flavor conversion in supernovae and implication for the neutrino magnetic moment

    NASA Astrophysics Data System (ADS)

    Ando, Shin'ichiro; Sato, Katsuhiko

    2003-01-01

    We investigate resonant spin-flavor (RSF) conversions of supernova neutrinos which are induced by the interaction of neutrino magnetic moment and supernova magnetic fields. From the formulation which includes all three-flavor neutrinos and antineutrinos, we give a new crossing diagram that includes not only ordinary Mikheyev-Smirnov-Wolfenstein (MSW) resonance but also a magnetically induced RSF effect. With the diagram, it is found that four conversions occur in supernovae: two are induced by the RSF effect and two by the pure MSW effect. We also numerically calculate neutrino conversions in supernova matter, using neutrino mixing parameters inferred from recent experimental results and a realistic supernova progenitor model. The results indicate that until 0.5 sec after the core bounce, the RSF-induced ν¯e↔ντ transition occurs efficiently (adiabatic resonance), when μν≳10- 12μB(B0/5×109 G)-1, where B0 is the strength of the magnetic field at the surface of iron core. We also evaluate the energy spectrum as a function of μνB0 at the super-Kamiokande detector and the Sudbury Neutrino Observatory using the calculated conversion probabilities, and find that the spectral deformation might have the possibility to provide useful information on the neutrino magnetic moment as well as the magnetic field strength in supernovae.

  3. Integrity of Helix 2-Helix 3 Domain of the PrP Protein Is Not Mandatory for Prion Replication*

    PubMed Central

    Salamat, Khalid; Moudjou, Mohammed; Chapuis, Jérôme; Herzog, Laetitia; Jaumain, Emilie; Béringue, Vincent; Rezaei, Human; Pastore, Annalisa; Laude, Hubert; Dron, Michel

    2012-01-01

    The process of prion conversion is not yet well understood at the molecular level. The regions critical for the conformational change of PrP remain mostly debated and the extent of sequence change acceptable for prion conversion is poorly documented. To achieve progress on these issues, we applied a reverse genetic approach using the Rov cell system. This allowed us to test the susceptibility of a number of insertion mutants to conversion into prion in the absence of wild-type PrP molecules. We were able to propagate several prions with 8 to 16 extra amino acids, including a polyglycine stretch and His or FLAG tags, inserted in the middle of the protease-resistant fragment. These results demonstrate the possibility to increase the length of the loop between helices H2 and H3 up to 4-fold, without preventing prion replication. They also indicate that this loop probably remains unstructured in PrPSc. We also showed that bona fide prions can be produced following insertion of octapeptides in the two C-terminal turns of H2. These insertions do not interfere with the overall fold of the H2-H3 domain indicating that the highly conserved sequence of the terminal part of H2 is not critical for the conversion. Altogether these data showed that the amplitude of modifications acceptable for prion conversion in the core of the globular domain of PrP is much greater than one might have assumed. These observations should help to refine structural models of PrPSc and elucidate the conformational changes underlying prions generation. PMID:22511770

  4. Integrity of helix 2-helix 3 domain of the PrP protein is not mandatory for prion replication.

    PubMed

    Salamat, Khalid; Moudjou, Mohammed; Chapuis, Jérôme; Herzog, Laetitia; Jaumain, Emilie; Béringue, Vincent; Rezaei, Human; Pastore, Annalisa; Laude, Hubert; Dron, Michel

    2012-06-01

    The process of prion conversion is not yet well understood at the molecular level. The regions critical for the conformational change of PrP remain mostly debated and the extent of sequence change acceptable for prion conversion is poorly documented. To achieve progress on these issues, we applied a reverse genetic approach using the Rov cell system. This allowed us to test the susceptibility of a number of insertion mutants to conversion into prion in the absence of wild-type PrP molecules. We were able to propagate several prions with 8 to 16 extra amino acids, including a polyglycine stretch and His or FLAG tags, inserted in the middle of the protease-resistant fragment. These results demonstrate the possibility to increase the length of the loop between helices H2 and H3 up to 4-fold, without preventing prion replication. They also indicate that this loop probably remains unstructured in PrP(Sc). We also showed that bona fide prions can be produced following insertion of octapeptides in the two C-terminal turns of H2. These insertions do not interfere with the overall fold of the H2-H3 domain indicating that the highly conserved sequence of the terminal part of H2 is not critical for the conversion. Altogether these data showed that the amplitude of modifications acceptable for prion conversion in the core of the globular domain of PrP is much greater than one might have assumed. These observations should help to refine structural models of PrP(Sc) and elucidate the conformational changes underlying prions generation.

  5. A pantropical analysis of the impacts of forest degradation and conversion on local temperature.

    PubMed

    Senior, Rebecca A; Hill, Jane K; González Del Pliego, Pamela; Goode, Laurel K; Edwards, David P

    2017-10-01

    Temperature is a core component of a species' fundamental niche. At the fine scale over which most organisms experience climate (mm to ha), temperature depends upon the amount of radiation reaching the Earth's surface, which is principally governed by vegetation. Tropical regions have undergone widespread and extreme changes to vegetation, particularly through the degradation and conversion of rainforests. As most terrestrial biodiversity is in the tropics, and many of these species possess narrow thermal limits, it is important to identify local thermal impacts of rainforest degradation and conversion. We collected pantropical, site-level (<1 ha) temperature data from the literature to quantify impacts of land-use change on local temperatures, and to examine whether this relationship differed aboveground relative to belowground and between wet and dry seasons. We found that local temperature in our sample sites was higher than primary forest in all human-impacted land-use types (N = 113,894 daytime temperature measurements from 25 studies). Warming was pronounced following conversion of forest to agricultural land (minimum +1.6°C, maximum +13.6°C), but minimal and nonsignificant when compared to forest degradation (e.g., by selective logging; minimum +1°C, maximum +1.1°C). The effect was buffered belowground (minimum buffering 0°C, maximum buffering 11.4°C), whereas seasonality had minimal impact (maximum buffering 1.9°C). We conclude that forest-dependent species that persist following conversion of rainforest have experienced substantial local warming. Deforestation pushes these species closer to their thermal limits, making it more likely that compounding effects of future perturbations, such as severe droughts and global warming, will exceed species' tolerances. By contrast, degraded forests and belowground habitats may provide important refugia for thermally restricted species in landscapes dominated by agricultural land.

  6. Monodisperse Metal-Organic Framework Nanospheres with Encapsulated Core-Shell Nanoparticles Pt/Au@Pd@{Co2(oba)4(3-bpdh)2}4H2O for the Highly Selective Conversion of CO2 to CO.

    PubMed

    Zhao, Xi; Xu, Haitao; Wang, XiaoXiao; Zheng, Zhizhong; Xu, Zhenliang; Ge, Jianping

    2018-05-02

    A new microporous metal-organic framework (MOF) with formula {Co 2 (oba) 4 (3-bpdh) 2 }4H 2 O [oba = 4,4'-oxybis(benzoic acid); 3-bpdh = N, N'-bis-(1-pyridine-3-yl-ethylidene)-hydrazine] was assembled, and its morphology was found to undergo a microrod-to-nanosphere transformation with temperature variation. Core-shell Au@Pd functional nanoparticles (NPs) were successfully encapsulated in the center of the monodisperse nanospheres, and Pt NPs were well-dispersed and fully immobilized on the surface of Au@Pd@1Co to build the Pt/Au@Pd@1Co composites, which exhibited NPs catalytic activity for the reverse water gas shift reaction. The core-shell Au@Pd NPs in MOF significantly enchanced the CO selectivity of the catalyst, and the Pt NP loading on the surface of the nanosphere afforded a desirable CO 2 conversion.

  7. Neutronics and Transient Calculations for the Conversion of the Transient Reactor Rest Facility (TREAT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kontogeorgakos, Dimitrios C.; Connaway, Heather M.; Papadias, Dionissios D.

    2015-01-01

    The Transient Reactor Test Facility (TREAT) is a graphite-reflected, graphitemoderated, and air-cooled reactor fueled with 93.1% enriched UO2 particles dispersed in graphite, with a carbon-to-235U ratio of ~10000:1. TREAT was used to simulate accident conditions by subjecting fuel test samples placed at the center of the core to high energy transient pulses. The transient pulse production is based on the core’s selflimiting nature due to the negative reactivity feedback provided by the fuel graphite as the core temperature rises. The analysis of the conversion of TREAT to low enriched uranium (LEU) is currently underway. This paper presents the analytical methodsmore » used to calculate the transient performance of TREAT in terms of power pulse production and resulting peak core temperatures. The validation of the HEU neutronics TREAT model, the calculation of the temperature distribution and the temperature reactivity feedback as well as the number of fissions generated inside fuel test samples are discussed.« less

  8. Ultrafast exciton dynamics and light-driven H2 evolution in colloidal semiconductor nanorods and Pt-tipped nanorods.

    PubMed

    Wu, Kaifeng; Zhu, Haiming; Lian, Tianquan

    2015-03-17

    Colloidal quantum confined one-dimensional (1D) semiconductor nanorods (NRs) and related semiconductor-metal heterostructures are promising new materials for efficient solar-to-fuel conversion because of their unique physical and chemical properties. NRs can simultaneously exhibit quantum confinement effects in the radial direction and bulk like carrier transport in the axial direction. The former implies that concepts well-established in zero-dimensional quantum dots, such as size-tunable energetics and wave function engineering through band alignment in heterostructures, can also be applied to NRs; while the latter endows NRs with fast carrier transport to achieve long distance charge separation. Selective growth of catalytic metallic nanoparticles, such as Pt, at the tips of NRs provides convenient routes to multicomponent heterostructures with photocatalytic capabilities and controllable charge separation distances. The design and optimization of such materials for efficient solar-to-fuel conversion require the understanding of exciton and charge carrier dynamics. In this Account, we summarize our recent studies of ultrafast charge separation and recombination kinetics and their effects on steady-state photocatalytic efficiencies of colloidal CdS and CdSe/CdS NRs and related NR-Pt heterostructures. After a brief introduction of their electronic structure, we discuss exciton dynamics of CdS NRs. By transient absorption and time-resolved photoluminescence decay, it is shown that although the conduction band electrons are long-lived, photogenerated holes in CdS NRs are trapped on an ultrafast time scale (∼0.7 ps), which forms localized excitons due to strong Coulomb interaction in 1D NRs. In quasi-type II CdSe/CdS dot-in-rod NRs, a large valence band offset drives the ultrafast localization of holes to the CdSe core, and the competition between this process and ultrafast hole trapping on a CdS rod leads to three types of exciton species with distinct spatial distributions. The effect of the exciton dynamics on photoreduction reactions is illustrated using methyl viologen (MV(2+)) as a model electron acceptor. The steady-state MV(2+) photoreduction quantum yield of CdSe/CdS dot-in-rod NRs approaches unity under rod excitation, much larger than CdSe QDs and CdSe/CdS core/shell QDs. Detailed time-resolved studies show that in quasi-type II CdSe/CdS NRs and type II ZnSe/CdS NRs strong quantum confinement in the radial direction facilitates fast electron transfer and hole removal, whereas the fast carrier mobility along the axial direction enables long distance charge separation and slow charge recombination, which is essential for efficient MV(2+) photoreduction. The NR/MV(2+) relay system can be coupled to Pt nanoparticles in solution for light-driven H2 generation. Alternatively, Pt-tipped CdS and CdSe/CdS NRs provide fully integrated all inorganic systems for light-driven H2 generation. In CdS-Pt and CdSe/CdS-Pt hetero-NRs, ultrafast hole trapping on the CdS rod surface or in CdSe core enables efficient electron transfer from NRs to Pt tips by suppressing hole and energy transfer. It is shown that the quantum yields of photodriven H2 generation using these heterostructures correlate well with measured hole transfer rates from NRs to sacrificial donors, revealing that hole removal is the key efficiency-limiting step. These findings provide important insights for designing more efficient quantum confined NR and NR-Pt based systems for solar-to-fuel conversion.

  9. Forging Ahead! Teachers Reflect on the Early Adopter Program to Implement the Common Core State Standards

    ERIC Educational Resources Information Center

    Koning, Erin; Houghtby, Beth; Izard, Patrice; Schuler, Jennifer

    2014-01-01

    This "water cooler" column features e-mail conversations between Erin Koning and three teachers--Beth, Jenna, and Patrice--and is a reflection of their participation in a Chicago Public School (CPS), professional development series designed to support the implementation of the Common Core State Standards (CCSS) in grades K-12. At the…

  10. Integration of the Common Core State Standards into CTE: Challenges and Strategies of Career and Technical Teachers

    ERIC Educational Resources Information Center

    Asunda, Paul A.; Finnell, Alicia M.; Berry, Nicholas R.

    2015-01-01

    In recent years, conversations about the importance of education standards in our school systems have intensified. Common Core State Standards (CCSS) are being implemented across most of the country. The standards require a major shift in instruction and the needed supports really are not there. This study investigated the common barriers,…

  11. Radiation Characterization Summary: ACRR Cadmium-Polyethylene (CdPoly) Bucket Located in the Central Cavity on the 32-Inch Pedestal at the Core Centerline

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parma, Edward J.; Naranjo, Gerald E.; Kaiser, Krista Irene

    This document presents the facility-recommended characterization of the neutron, prompt gamma-ray, and delayed gamma-ray radiation fields in the Annular Core Research Reactor (ACRR) for the cadmium-polyethylene (CdPoly) bucket in the central cavity on the 32-inch pedestal at the core centerline. The designation for this environment is ACRR-CdPoly-CC-32-cl. The neutron, prompt gamma-ray, and delayed gamma-ray energy spectra, uncertainties, and covariance matrices are presented as well as radial and axial neutron and gamma-ray fluence profiles within the experiment area of the bucket. Recommended constants are given to facilitate the conversion of various dosimetry readings into radiation metrics desired by experimenters. Representative pulsemore » operations are presented with conversion examples. Acknowledgements The authors wish to thank the Annular Core Research Reactor staff and the Radiation Metrology Laboratory staff for their support of this work. Also thanks to Drew Tonigan for helping field the activation experiments in ACRR, David Samuel for helping to finalize the drawings and get the parts fabricated, and Elliot Pelfrey for preparing the active dosimetry plots.« less

  12. A polyphase filter for many-core architectures

    NASA Astrophysics Data System (ADS)

    Adámek, K.; Novotný, J.; Armour, W.

    2016-07-01

    In this article we discuss our implementation of a polyphase filter for real-time data processing in radio astronomy. The polyphase filter is a standard tool in digital signal processing and as such a well established algorithm. We describe in detail our implementation of the polyphase filter algorithm and its behaviour on three generations of NVIDIA GPU cards (Fermi, Kepler, Maxwell), on the Intel Xeon CPU and Xeon Phi (Knights Corner) platforms. All of our implementations aim to exploit the potential for data reuse that the algorithm offers. Our GPU implementations explore two different methods for achieving this, the first makes use of L1/Texture cache, the second uses shared memory. We discuss the usability of each of our implementations along with their behaviours. We measure performance in execution time, which is a critical factor for real-time systems, we also present results in terms of bandwidth (GB/s), compute (GFLOP/s/s) and type conversions (GTc/s). We include a presentation of our results in terms of the sample rate which can be processed in real-time by a chosen platform, which more intuitively describes the expected performance in a signal processing setting. Our findings show that, for the GPUs considered, the performance of our polyphase filter when using lower precision input data is limited by type conversions rather than device bandwidth. We compare these results to an implementation on the Xeon Phi. We show that our Xeon Phi implementation has a performance that is 1.5 × to 1.92 × greater than our CPU implementation, however is not insufficient to compete with the performance of GPUs. We conclude with a comparison of our best performing code to two other implementations of the polyphase filter, showing that our implementation is faster in nearly all cases. This work forms part of the Astro-Accelerate project, a many-core accelerated real-time data processing library for digital signal processing of time-domain radio astronomy data.

  13. TREAT Transient Analysis Benchmarking for the HEU Core

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kontogeorgakos, D. C.; Connaway, H. M.; Wright, A. E.

    2014-05-01

    This work was performed to support the feasibility study on the potential conversion of the Transient Reactor Test Facility (TREAT) at Idaho National Laboratory from the use of high enriched uranium (HEU) fuel to the use of low enriched uranium (LEU) fuel. The analyses were performed by the GTRI Reactor Conversion staff at the Argonne National Laboratory (ANL). The objective of this study was to benchmark the transient calculations against temperature-limited transients performed in the final operating HEU TREAT core configuration. The MCNP code was used to evaluate steady-state neutronics behavior, and the point kinetics code TREKIN was used tomore » determine core power and energy during transients. The first part of the benchmarking process was to calculate with MCNP all the neutronic parameters required by TREKIN to simulate the transients: the transient rod-bank worth, the prompt neutron generation lifetime, the temperature reactivity feedback as a function of total core energy, and the core-average temperature and peak temperature as a functions of total core energy. The results of these calculations were compared against measurements or against reported values as documented in the available TREAT reports. The heating of the fuel was simulated as an adiabatic process. The reported values were extracted from ANL reports, intra-laboratory memos and experiment logsheets and in some cases it was not clear if the values were based on measurements, on calculations or a combination of both. Therefore, it was decided to use the term “reported” values when referring to such data. The methods and results from the HEU core transient analyses will be used for the potential LEU core configurations to predict the converted (LEU) core’s performance.« less

  14. A flexible motif search technique based on generalized profiles.

    PubMed

    Bucher, P; Karplus, K; Moeri, N; Hofmann, K

    1996-03-01

    A flexible motif search technique is presented which has two major components: (1) a generalized profile syntax serving as a motif definition language; and (2) a motif search method specifically adapted to the problem of finding multiple instances of a motif in the same sequence. The new profile structure, which is the core of the generalized profile syntax, combines the functions of a variety of motif descriptors implemented in other methods, including regular expression-like patterns, weight matrices, previously used profiles, and certain types of hidden Markov models (HMMs). The relationship between generalized profiles and other biomolecular motif descriptors is analyzed in detail, with special attention to HMMs. Generalized profiles are shown to be equivalent to a particular class of HMMs, and conversion procedures in both directions are given. The conversion procedures provide an interpretation for local alignment in the framework of stochastic models, allowing for clear, simple significance tests. A mathematical statement of the motif search problem defines the new method exactly without linking it to a specific algorithmic solution. Part of the definition includes a new definition of disjointness of alignments.

  15. PRMT5: A novel regulator of Hepatitis B virus replication and an arginine methylase of HBV core

    PubMed Central

    Lubyova, Barbora; Hodek, Jan; Zabransky, Ales; Prouzova, Hana; Hubalek, Martin; Hirsch, Ivan

    2017-01-01

    In mammals, protein arginine methyltransferase 5, PRMT5, is the main type II enzyme responsible for the majority of symmetric dimethylarginine formation in polypeptides. Recent study reported that PRMT5 restricts Hepatitis B virus (HBV) replication through epigenetic repression of HBV DNA transcription and interference with encapsidation of pregenomic RNA. Here we demonstrate that PRMT5 interacts with the HBV core (HBc) protein and dimethylates arginine residues within the arginine-rich domain (ARD) of the carboxyl-terminus. ARD consists of four arginine rich subdomains, ARDI, ARDII, ARDIII and ARDIV. Mutation analysis of ARDs revealed that arginine methylation of HBc required the wild-type status of both ARDI and ARDII. Mass spectrometry analysis of HBc identified multiple potential ubiquitination, methylation and phosphorylation sites, out of which lysine K7 and arginines R150 (within ARDI) and R156 (outside ARDs) were shown to be modified by ubiquitination and methylation, respectively. The HBc symmetric dimethylation appeared to be linked to serine phosphorylation and nuclear import of HBc protein. Conversely, the monomethylated HBc retained in the cytoplasm. Thus, overexpression of PRMT5 led to increased nuclear accumulation of HBc, and vice versa, down-regulation of PRMT5 resulted in reduced levels of HBc in nuclei of transfected cells. In summary, we identified PRMT5 as a potent controller of HBc cell trafficking and function and described two novel types of HBc post-translational modifications (PTMs), arginine methylation and ubiquitination. PMID:29065155

  16. Thermophotovoltaic energy conversion system having a heavily doped n-type region

    DOEpatents

    DePoy, David M.; Charache, Greg W.; Baldasaro, Paul F.

    2000-01-01

    A thermophotovoltaic (TPV) energy conversion semiconductor device is provided which incorporates a heavily doped n-type region and which, as a consequence, has improved TPV conversion efficiency. The thermophotovoltaic energy conversion device includes an emitter layer having first and second opposed sides and a base layer in contact with the first side of the emitter layer. A highly doped n-type cap layer is formed on the second side of the emitter layer or, in another embodiment, a heavily doped n-type emitter layer takes the place of the cap layer.

  17. A Burst Mode, Ultrahigh Temperature UF4 Vapor Core Reactor Rankine Cycle Space Power System Concept

    NASA Technical Reports Server (NTRS)

    Dugan, E. T.; Kahook, S. D.; Diaz, N. J.

    1996-01-01

    Static and dynamic neutronic analyses have been performed on an innovative burst mode (100's of MW output for a few thousand seconds) Ulvahigh Temperature Vapor Core Reactor (UTVR) space nuclear power system. The NVTR employs multiple, neutronically-coupled fissioning cores and operates on a direct, closed Rankine cycle using a disk Magnetohydrodynamic (MHD) generater for energy conversion. The UTVR includes two types of fissioning core regions: (1) the central Ultrahigh Temperature Vapor Core (UTVC) which contains a vapor mixture of highly enriched UF4 fuel and a metal fluoride working fluid and (2) the UF4 boiler column cores located in the BeO moderator/reflector region. The gaseous nature of the fuel the fact that the fuel is circulating, the multiple coupled fissioning cores, and the use of a two phase fissioning fuel lead to unique static and dynamic neutronic characteristics. Static neutronic analysis was conducted using two-dimensional S sub n, transport theory calculations and three-dimensional Monte Carlo transport theory calculations. Circulating-fuel, coupled-core point reactor kinetics equations were used for analyzing the dynamic behavior of the UTVR. In addition to including reactivity feedback phenomena associated with the individual fissioning cores, the effects of core-to-core neutronic and mass flow coupling between the UTVC and the surrounding boiler cores were also included in the dynamic model The dynamic analysis of the UTVR reveals the existence of some very effectlve inherent reactivity feedback effects that are capable of quickly stabilizing this system, within a few seconds, even when large positive reactivity insertions are imposed. If the UTVC vapor fuel density feedback is suppressed, the UTVR is still inherently stable because of the boiler core liquid-fuel volume feedback; in contrast, suppression of the vapor fuel density feedback in 'conventional" gas core cavity reactors causes them to become inherently unstable. Due to the strength of the negative reactivity feedback in the UTVR, it is found that external reactivity insertions alone are inadequate for bringing about significant power level changes during normal reactor operations. Additional methods of reactivity control such as variations in the gaseous fuel mass flow rate, are needed to achieve the desired power level oontrol.

  18. The rates of charge separation and energy destructive charge recombination processes within an organic dyad in presence of metal-semiconductor core shell nanocomposites.

    PubMed

    Mandal, Gopa; Bhattacharya, Sudeshna; Das, Subrata; Ganguly, Tapan

    2012-01-01

    Steady state and time resolved spectroscopic measurements were made at the ambient temperature on an organic dyad, 1-(4-Chloro-phenyl)-3-(4-methoxy-naphthalen-1-yl)-propenone (MNCA), where the donor 1-methoxynaphthalene (1 MNT) is connected with the acceptor p-chloroacetophenone (PCA) by an unsaturated olefinic bond, in presence of Ag@TiO2 nanoparticles. Time resolved fluorescence and absorption measurements reveal that the rate parameters associated with charge separation, k(CS), within the dyad increases whereas charge recombination rate k(CR) reduces significantly when the surrounding medium is changed from only chloroform to mixture of chloroform and Ag@TiO2 (noble metal-semiconductor) nanocomposites. The observed results indicate that the dyad being combined with core-shell nanocomposites may form organic-inorganic nanocomposite system useful for developing light energy conversion devices. Use of metal-semiconductor nanoparticles may provide thus new ways to modulate charge recombination processes in light energy conversion devices. From comparison with the results obtained in our earlier investigations with only TiO2 nanoparticles, it is inferred that much improved version of light energy conversion device, where charge-separated species could be protected for longer period of time of the order of millisecond, could be designed by using metal-semiconductor core-shell nanocomposites rather than semiconductor nanoparticles only.

  19. Three-dimensional electrodes for dye-sensitized solar cells: synthesis of indium-tin-oxide nanowire arrays and ITO/TiO2 core-shell nanowire arrays by electrophoretic deposition

    NASA Astrophysics Data System (ADS)

    Wang, Hong-Wen; Ting, Chi-Feng; Hung, Miao-Ken; Chiou, Chwei-Huann; Liu, Ying-Ling; Liu, Zongwen; Ratinac, Kyle R.; Ringer, Simon P.

    2009-02-01

    Dye-sensitized solar cells (DSSCs) show promise as a cheaper alternative to silicon-based photovoltaics for specialized applications, provided conversion efficiency can be maximized and production costs minimized. This study demonstrates that arrays of nanowires can be formed by wet-chemical methods for use as three-dimensional (3D) electrodes in DSSCs, thereby improving photoelectric conversion efficiency. Two approaches were employed to create the arrays of ITO (indium-tin-oxide) nanowires or arrays of ITO/TiO2 core-shell nanowires; both methods were based on electrophoretic deposition (EPD) within a polycarbonate template. The 3D electrodes for solar cells were constructed by using a doctor-blade for coating TiO2 layers onto the ITO or ITO/TiO2 nanowire arrays. A photoelectric conversion efficiency as high as 4.3% was achieved in the DSSCs made from ITO nanowires; this performance was better than that of ITO/TiO2 core-shell nanowires or pristine TiO2 films. Cyclic voltammetry confirmed that the reaction current was significantly enhanced when a 3D ITO-nanowire electrode was used. Better separation of charge carriers and improved charge transport, due to the enlarged interfacial area, are thought to be the major advantages of using 3D nanowire electrodes for the optimization of DSSCs.

  20. Highly efficient photocatalytic conversion of solar energy to hydrogen by WO3/BiVO4 core-shell heterojunction nanorods

    NASA Astrophysics Data System (ADS)

    Kosar, Sonya; Pihosh, Yuriy; Bekarevich, Raman; Mitsuishi, Kazutaka; Mawatari, Kazuma; Kazoe, Yutaka; Kitamori, Takehiko; Tosa, Masahiro; Tarasov, Alexey B.; Goodilin, Eugene A.; Struk, Yaroslav M.; Kondo, Michio; Turkevych, Ivan

    2018-04-01

    Photocatalytic splitting of water under solar light has proved itself to be a promising approach toward the utilization of solar energy and the generation of environmentally friendly fuel in a form of hydrogen. In this work, we demonstrate highly efficient solar-to-hydrogen conversion efficiency of 7.7% by photovoltaic-photoelectrochemical (PV-PEC) device based on hybrid MAPbI3 perovskite PV cell and WO3/BiVO4 core-shell nanorods PEC cell tandem that utilizes spectral splitting approach. Although BiVO4 is characterized by intrinsically high recombination rate of photogenerated carriers, this is not an issue for WO3/BiVO4 core-shell nanorods, where highly conductive WO3 cores are combined with extremely thin absorber BiVO4 shell layer. Since the BiVO4 layer is thinner than the characteristic carrier diffusion length, the photogenerated charge carriers are separated at the WO3/BiVO4 heterojunction before their recombination. Also, such architecture provides sufficient optical thickness even for extremely thin BiVO4 layer due to efficient light trapping in the core-shell WO3/BiVO4 nanorods with high aspect ratio. We also demonstrate that the concept of fill factor can be used to compare I-V characteristics of different photoanodes regarding their optimization for PV/PEC tandem devices.

  1. Experimental detailed power distribution in a fast spectrum thermionic reactor fuel element at the core/BeO reflector interface region

    NASA Technical Reports Server (NTRS)

    Klann, P. G.; Lantz, E.

    1973-01-01

    A zero-power critical assembly was designed, constructed, and operated for the prupose of conducting a series of benchmark experiments dealing with the physics characteristics of a UN-fueled, Li-7-cooled, Mo-reflected, drum-controlled compact fast reactor for use with a space-power conversion system. The critical assembly was modified to simulate a fast spectrum advanced thermionics reactor by: (1) using BeO as a reflector in place of some of the existing molybdenum, (2) substituting Nb-1Zr tubing for some of the existing Ta tubing, and (3) inserting four full-scale mockups of thermionic type fuel elements near the core and BeO reflector boundary. These mockups were surrounded with a buffer zone having the equivalent thermionic core composition. In addition to measuring the critical mass of this thermionic configuration, a detailed power distribution in one of the thermionic element stages in the mixed spectrum region was measured. A power peak to average ratio of two was observed for this fuel stage at the midplane of the core and adjacent to the reflector. Also, the power on the outer surface adjacent to the BeO was slightly more than a factor of two larger than the power on the inside surface of a 5.08 cm (2.0 in.) high annular fuel segment with a 2.52 cm (0.993 in. ) o.d. and a 1.86 cm (0.731 in.) i.d.

  2. Metal Ion-Catalyzed Alcoholysis as a Strategy for the High Loading Destruction of Chemical Warfare Organophosphorus Agents

    DTIC Science & Technology

    2013-11-01

    products was developed. At the core of the strategy was the use of the thionyl chloride reaction (shown above) for the synthesis of the G agent simulant...The synthesis diverges at the chloridate stage, where instead of conversion to the fluoride derivative, conversion to the mixed ester is accomplished...12 6.2 Synthesis of Product Standards ........................................................................14 6.3

  3. Au@TiO2 yolk-shell nanostructures for enhanced performance in both photoelectric and photocatalytic solar conversion

    NASA Astrophysics Data System (ADS)

    He, Qinrong; Sun, Hang; Shang, Yinxing; Tang, Yanan; She, Ping; Zeng, Shan; Xu, Kongliang; Lu, Guolong; Liang, Song; Yin, Shengyan; Liu, Zhenning

    2018-05-01

    Solar energy conversion is an important field gaining increasing interest. Herein, bio-inspired Au@TiO2 yolk-shell nanoparticles (NPs) have been prepared via a facial one-pot hydrothermal approach. The Au@TiO2 yolk-shell NPs can self-assemble into 3D-structure to form photoelectrode for photoelectric conversion. The obtained photoelectrode demonstrates a swift and stable photocurrent of 3.5 μA/cm2, which is 4.2 and 1.6 times higher than those of the photocurrents generated by the counterparts of commercial TiO2 and Au@TiO2 core-shell NPs, respectively. Moreover, compared to the commercial TiO2 and Au@TiO2 core-shell NPs, the Au@TiO2 yolk-shell NPs also exhibit superior photocatalytic activity, delivering a H2 evolution rate of 4.92 mmol/g h. The performance improvement observed for the Au@TiO2 yolk-shell NPs is likely contributed by two synergistic factors, i.e. the incorporation of AuNPs and the unique hollow structure, which benefit the activity by simultaneously enhancing light utilization, charge separation and reaction site accessibility. The rational design and fabrication of Au@TiO2 yolk-shell NPs hold great promise for future application in efficient solar energy conversion.

  4. Electrically Conductive and Optically Active Porous Silicon Nanowires

    PubMed Central

    Qu, Yongquan; Liao, Lei; Li, Yujing; Zhang, Hua; Huang, Yu; Duan, Xiangfeng

    2009-01-01

    We report the synthesis of vertical silicon nanowire array through a two-step metal-assisted chemical etching of highly doped n-type silicon (100) wafers in a solution of hydrofluoric acid and hydrogen peroxide. The morphology of the as-grown silicon nanowires is tunable from solid nonporous nanowires, nonporous/nanoporous core/shell nanowires, and entirely nanoporous nanowires by controlling the hydrogen peroxide concentration in the etching solution. The porous silicon nanowires retain the single crystalline structure and crystallographic orientation of the starting silicon wafer, and are electrically conductive and optically active with visible photoluminescence. The combination of electronic and optical properties in the porous silicon nanowires may provide a platform for the novel optoelectronic devices for energy harvesting, conversion and biosensing. PMID:19807130

  5. Experimental physics characteristics of a heavy-metal-reflected fast-spectrum critical assembly

    NASA Technical Reports Server (NTRS)

    Heneveld, W. H.; Paschall, R. K.; Springer, T. H.; Swanson, V. A.; Thiele, A. W.; Tuttle, R. J.

    1971-01-01

    A zero-power critical assembly was designed, constructed, and operated for the purpose of conducting a series of benchmark experiments dealing with the physics characteristics of a UN-fueled, Li-7 cooled, Mo-reflected, drum-controlled compact fast reactor for use with a space-power electric conversion system. The experimental program consisted basically of measuring the differential neutron spectra and the changes in critical mass that accompanied the stepwise addition of (Li-7)3N, Hf, Ta, and W to a basic core fueled with U metal in a pin-type Ta honeycomb structure. In addition, experimental results were obtained on power distributions, control characteristics, neutron lifetime, and reactivity worths of numerous absorber, structural, and scattering materials.

  6. Tuning the synthesis of platinum-copper nanoparticles with a hollow core and porous shell for the selective hydrogenation of furfural to furfuryl alcohol.

    PubMed

    Huang, Shuangshuang; Yang, Nating; Wang, Shibin; Sun, Yuhan; Zhu, Yan

    2016-08-07

    Pt-Cu nanoparticles constructed with a hollow core and porous shell have been synthesized in which Pt-Cu cages with multiporous outermost shells are formed at the initial stage and then the Pt and Cu atoms in solution continuously fed these hollow-core of cages by passing through the porous tunnels of the outermost shells, finally leading to the formation of hollow structures with different sizes. Furthermore, these hollow-core Pt-Cu nanoparticles are more effective than the solid-core Pt-Cu nanoparticles for the catalytic hydrogenation of furfural toward furfuryl alcohol. The former can achieve almost 100% conversion of furfural with 100% selectivity toward the alcohol.

  7. Analysis of the TREAT LEU Conceptual Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Connaway, H. M.; Kontogeorgakos, D. C.; Papadias, D. D.

    2016-03-01

    Analyses were performed to evaluate the performance of the low enriched uranium (LEU) conceptual design fuel for the conversion of the Transient Reactor Test Facility (TREAT) from its current highly enriched uranium (HEU) fuel. TREAT is an experimental nuclear reactor designed to produce high neutron flux transients for the testing of reactor fuels and other materials. TREAT is currently in non-operational standby, but is being restarted under the U.S. Department of Energy’s Resumption of Transient Testing Program. The conversion of TREAT is being pursued in keeping with the mission of the Department of Energy National Nuclear Security Administration’s Material Managementmore » and Minimization (M3) Reactor Conversion Program. The focus of this study was to demonstrate that the converted LEU core is capable of maintaining the performance of the existing HEU core, while continuing to operate safely. Neutronic and thermal hydraulic simulations have been performed to evaluate the performance of the LEU conceptual-design core under both steady-state and transient conditions, for both normal operation and reactivity insertion accident scenarios. In addition, ancillary safety analyses which were performed for previous LEU design concepts have been reviewed and updated as-needed, in order to evaluate if the converted LEU core will function safely with all existing facility systems. Simulations were also performed to evaluate the detailed behavior of the UO 2-graphite fuel, to support future fuel manufacturing decisions regarding particle size specifications. The results of these analyses will be used in conjunction with work being performed at Idaho National Laboratory and Los Alamos National Laboratory, in order to develop the Conceptual Design Report project deliverable.« less

  8. Effective D-A-D type chromophore of fumaronitrile-core and terminal alkylated bithiophene for solution-processed small molecule organic solar cells.

    PubMed

    Nazim, M; Ameen, Sadia; Seo, Hyung-Kee; Shin, Hyung Shik

    2015-06-12

    A new and novel organic π-conjugated chromophore (named as RCNR) based on fumaronitrile-core acceptor and terminal alkylated bithiophene was designed, synthesized and utilized as an electron-donor material for the solution-processed fabrication of bulk-heterojunction (BHJ) small molecule organic solar cells (SMOSCs). The synthesized organic chromophore exhibited a broad absorption peak near green region and strong emission peak due to the presence of strong electron-withdrawing nature of two nitrile (-CN) groups of fumaronitrile acceptor. The highest occupied molecular orbital (HOMO) energy level of -5.82 eV and the lowest unoccupied molecular orbital (LUMO) energy level of -3.54 eV were estimated for RCNR due to the strong electron-accepting tendency of -CN groups. The fabricated SMOSC devices with RCNR:PC60BM (1:3, w/w) active layer exhibited the reasonable power conversion efficiency (PCE) of ~2.69% with high short-circuit current density (JSC) of ~9.68 mA/cm(2) and open circuit voltage (VOC) of ~0.79 V.

  9. Effective D-A-D type chromophore of fumaronitrile-core and terminal alkylated bithiophene for solution-processed small molecule organic solar cells

    PubMed Central

    Nazim, M.; Ameen, Sadia; Seo, Hyung-Kee; Shin, Hyung Shik

    2015-01-01

    A new and novel organic π-conjugated chromophore (named as RCNR) based on fumaronitrile-core acceptor and terminal alkylated bithiophene was designed, synthesized and utilized as an electron-donor material for the solution-processed fabrication of bulk-heterojunction (BHJ) small molecule organic solar cells (SMOSCs). The synthesized organic chromophore exhibited a broad absorption peak near green region and strong emission peak due to the presence of strong electron-withdrawing nature of two nitrile (–CN) groups of fumaronitrile acceptor. The highest occupied molecular orbital (HOMO) energy level of –5.82 eV and the lowest unoccupied molecular orbital (LUMO) energy level of –3.54 eV were estimated for RCNR due to the strong electron-accepting tendency of –CN groups. The fabricated SMOSC devices with RCNR:PC60BM (1:3, w/w) active layer exhibited the reasonable power conversion efficiency (PCE) of ~2.69% with high short-circuit current density (JSC) of ~9.68 mA/cm2 and open circuit voltage (VOC) of ~0.79 V. PMID:26066557

  10. Preliminary study on new configuration with LEU fuel assemblies for the Dalat nuclear research reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Lam Pham; Vinh Vinh Le; Ton Nghiem Huynh

    2008-07-15

    The fuel conversion of the Dalat Nuclear Research Reactor (DNRR) is being realized. The DNRR is a pool type research reactor which was reconstructed from the 250 kW TRIGA- MARK II reactor. The reconstructed reactor attained its nominal power of 500 kW in February 1984. According to the results of design and safety analyses performed by the joint study between RERTR Program at Argonne National Laboratory (ANL) and Vietnam Atomic Energy Commission (VAEC) the mixed core of irradiated HEU and new LEU WWR-M2 fuel assemblies will be created soon. This paper presents the results of preliminary study on new configurationmore » with only LEU fuel assemblies for the DNRR. The codes MCNP, REBUS and VARI3D are used to calculate neutron flux performance in irradiation positions and kinetics parameters. The idea of change of Beryllium rod reloading enables to get working configuration assured shutdown margin, thermal-hydraulic safety and increase in thermal neutron flux in neutron trap at the center of DNRR active core. (author)« less

  11. Product layer development during sulfation and sulfidation of uncalcined limestone particles at elevated pressures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zevenhoven, C.A.P.; Yrjas, K.P.; Hupa, M.M.

    1998-07-01

    Fluidized bed combustion or gasification allows for in-bed sulfur capture with a calcium-based sorbent such as limestone or dolomite. Sorbent particle size, porosity, internal surface, and their variation during conversion have great influence on the conversion of the sorbent. The uptake of SO{sub 2} and H{sub 2}S by five physically different limestones is discussed, for typical pressurized fluidized bed combustor or gasifier conditions: 850/950 C, 15/20 bar. Tests were done in a pressurized thermogravimetric apparatus (P-TGA), the size of the limestone particles was 250--300 {micro}m. It is stressed that the limestones remain uncalcined. A changing internal structure (CIS) model ismore » presented in which reaction kinetics and product layer diffusion are related to the intraparticle surface of reaction, instead of the outer particle surface as in unreacted shrinking core (USC)-type models. The random pore model was used for describing the changing internal pore and reaction surfaces. Rate parameters were extracted for all five limestones using the CIS model and a USC model with variable effective diffusivity. Differences in the sulfur capture performance of the limestones were evaluated. Plots of the CaSO{sub 4} or CaS product layer thickness as a function of conversion are given, and the relative importance of limestone porosity and internal surface is discussed.« less

  12. Magnetic Material Assessment of a Novel Ultra-High Step-Up Converter with Single Semiconductor Switch and Galvanic Isolation for Fuel-Cell Power System.

    PubMed

    Shen, Chih-Lung; Liou, Heng

    2017-11-15

    In this paper, a novel step-up converter is proposed, which has the particular features of single semiconductor switch, ultra-high conversion ratio, galvanic isolation, and easy control. Therefore, the proposed converter is suitable for the applications of fuel-cell power system. Coupled inductors and switched capacitors are incorporated in the converter to obtain an ultra-high voltage ratio that is much higher than that of a conventional high step-up converter. Even if the turns ratio of coupled inductor and duty ratio are only to be 1 and 0.5, respectively, the converter can readily achieve a voltage gain of up to 18. Owing to this outstanding performance, it can also be applied to any other low voltage source for voltage boosting. In the power stage, only one active switch is used to handle the converter operation. In addition, the leakage energy of the two couple inductors can be totally recycled without any snubber, which simplifies the control mechanism and improves the conversion efficiency. Magnetic material dominates the conversion performance of the converter. Different types of iron cores are discussed for the possibility to serve as a coupled inductor. A 200 W prototype with 400 V output voltage is built to validate the proposed converter. In measurement, it indicates that the highest efficiency can be up to 94%.

  13. Magnetic Material Assessment of a Novel Ultra-High Step-Up Converter with Single Semiconductor Switch and Galvanic Isolation for Fuel-Cell Power System

    PubMed Central

    Shen, Chih-Lung; Liou, Heng

    2017-01-01

    In this paper, a novel step-up converter is proposed, which has the particular features of single semiconductor switch, ultra-high conversion ratio, galvanic isolation, and easy control. Therefore, the proposed converter is suitable for the applications of fuel-cell power system. Coupled inductors and switched capacitors are incorporated in the converter to obtain an ultra-high voltage ratio that is much higher than that of a conventional high step-up converter. Even if the turns ratio of coupled inductor and duty ratio are only to be 1 and 0.5, respectively, the converter can readily achieve a voltage gain of up to 18. Owing to this outstanding performance, it can also be applied to any other low voltage source for voltage boosting. In the power stage, only one active switch is used to handle the converter operation. In addition, the leakage energy of the two couple inductors can be totally recycled without any snubber, which simplifies the control mechanism and improves the conversion efficiency. Magnetic material dominates the conversion performance of the converter. Different types of iron cores are discussed for the possibility to serve as a coupled inductor. A 200 W prototype with 400 V output voltage is built to validate the proposed converter. In measurement, it indicates that the highest efficiency can be up to 94%. PMID:29140282

  14. Neutronics and Thermal Hydraulics Study for Using a Low-Enriched Uranium Core in the Advanced Test Reactor -- 2008 Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    G. S. Chang; M. A. Lillo; R. G. Ambrosek

    2008-06-01

    The Advanced Test Reactor (ATR) is a high power density and high neutron flux research reactor operating in the United States. Powered with highly enriched uranium (HEU), the ATR has a maximum thermal power rating of 250 MWth. Because of the large test volumes located in high flux areas, the ATR is an ideal candidate for assessing the feasibility of converting an HEU driven reactor to a low-enriched core. The present work investigates the necessary modifications and evaluates the subsequent operating effects of this conversion. A detailed plate-by-plate MCNP ATR 1/8th core model was developed and validated for a fuelmore » cycle burnup comparison analysis. Using the current HEU U 235 enrichment of 93.0 % as a baseline, an analysis was performed to determine the low-enriched uranium (LEU) density and U-235 enrichment required in the fuel meat to yield an equivalent K-eff versus effective full power days (EFPDs) between the HEU and the LEU cores. The MCNP ATR 1/8th core model was used to optimize the U 235 loading in the LEU core, such that the differences in K-eff and heat flux profiles between the HEU and LEU cores were minimized. The depletion methodology MCWO was used to calculate K-eff versus EFPDs in this paper. The MCWO-calculated results for the LEU demonstrated adequate excess reactivity such that the K-eff versus EFPDs plot is similar to the ATR reference HEU case study. Each HEU fuel element contains 19 fuel plates with a fuel meat thickness of 0.508 mm (20 mil). In this work, the proposed LEU (U-10Mo) core conversion case with nominal fuel meat thickness of 0.330 mm (13 mil) and U-235 enrichment of 19.7 wt% is used to optimize the radial heat flux profile by varying the fuel meat thickness from 0.191 mm (7.0 mil) to 0.330 mm (13.0 mil) at the inner 4 fuel plates (1-4) and outer 4 fuel plates (16-19). A 0.8g of Boron-10, a burnable absorber, was added in the inner and outer plates to reduce the initial excess reactivity, and the peak to average ratio of the inner/outer heat flux more effectively. Because the B-10 (n,a) reaction will produce Helium-4 (He-4), which might degrade the LEU foil type fuel performance, an alternative absorber option is proposed. The proposed LEU case study will have 6.918 g of Cadmium (Cd) mixed with the LEU at the inner 4 fuel plates (1-4) and outer 4 fuel plates (16-19) as a burnable absorber to achieve peak to average ratios similar to those for the ATR reference HEU case study.« less

  15. Effect of Different Types of Small-Group Activities on Students' Conversations

    ERIC Educational Resources Information Center

    Young, Krista K.; Talanquer, Vicente

    2013-01-01

    Teaching reform efforts in chemistry education often involve engaging students in small-group activities of different types. This study focused on the analysis of how activity type affected the nature of group conversations. In particular, we analyzed the small-group conversations of students enrolled in a chemistry course for nonscience majors.…

  16. Controllable all-fiber generation/conversion of circularly polarized orbital angular momentum beams using long period fiber gratings

    NASA Astrophysics Data System (ADS)

    Han, Ya; Liu, Yan-Ge; Wang, Zhi; Huang, Wei; Chen, Lei; Zhang, Hong-Wei; Yang, Kang

    2018-01-01

    Mode-division multiplexing (MDM) is a promising technology for increasing the data-carrying capacity of a single few-mode optical fiber. The flexible mode manipulation would be highly desired in a robust MDM network. Recently, orbital angular momentum (OAM) modes have received wide attention as a new spatial mode basis. In this paper, we firstly proposed a long period fiber grating (LPFG) system to realize mode conversions between the higher order LP core modes in four-mode fiber. Based on the proposed system, we, for the first time, demonstrate the controllable all-fiber generation and conversion of the higher order LP core modes to the first and second order circularly polarized OAM beams with all the combinations of spin and OAM. Therefore, the proposed LPFG system can be potentially used as a controllable higher order OAM beam switch and a physical layer of the translating protocol from the conventional LP modes communication to the OAM modes communication in the future mode carrier telecommunication system and light calculation protocols.

  17. Molecular approaches to solar energy conversion: the energetic cost of charge separation from molecular-excited states.

    PubMed

    Durrant, James R

    2013-08-13

    This review starts with a brief overview of the technological potential of molecular-based solar cell technologies. It then goes on to focus on the core scientific challenge associated with using molecular light-absorbing materials for solar energy conversion, namely the separation of short-lived, molecular-excited states into sufficiently long-lived, energetic, separated charges capable of generating an external photocurrent. Comparisons are made between different molecular-based solar cell technologies, with particular focus on the function of dye-sensitized photoelectrochemical solar cells as well as parallels with the function of photosynthetic reaction centres. The core theme of this review is that generating charge carriers with sufficient lifetime and a high quantum yield from molecular-excited states comes at a significant energetic cost-such that the energy stored in these charge-separated states is typically substantially less than the energy of the initially generated excited state. The role of this energetic loss in limiting the efficiency of solar energy conversion by such devices is emphasized, and strategies to minimize this energy loss are compared and contrasted.

  18. Effect of Tree-to-Shrub Type Conversion in Lower Montane Forests of the Sierra Nevada (USA) on Streamflow

    PubMed Central

    Tague, Christina L.; Moritz, Max A.

    2016-01-01

    Higher global temperatures and increased levels of disturbance are contributing to greater tree mortality in many forest ecosystems. These same drivers can also limit forest regeneration, leading to vegetation type conversion. For the Sierra Nevada of California, little is known about how type conversion may affect streamflow, a critical source of water supply for urban, agriculture and environmental purposes. In this paper, we examined the effects of tree-to-shrub type conversion, in combination with climate change, on streamflow in two lower montane forest watersheds in the Sierra Nevada. A spatially distributed ecohydrologic model was used to simulate changes in streamflow, evaporation, and transpiration following type conversion, with an explicit focus on the role of vegetation size and aspect. Model results indicated that streamflow may show negligible change or small decreases following type conversion when the difference between tree and shrub leaf areas is small, partly due to the higher stomatal conductivity and the deep rooting depth of shrubs. In contrast, streamflow may increase when post-conversion shrubs have a small leaf area relative to trees. Model estimates also suggested that vegetation change could have a greater impact on streamflow magnitude than the direct hydrologic impacts of increased temperatures. Temperature increases, however, may have a greater impact on streamflow timing. Tree-to-shrub type conversion increased streamflow only marginally during dry years (annual precipitation < 800 mm), with most streamflow change observed during wetter years. These modeling results underscore the importance of accounting for changes in vegetation communities to accurately characterize future hydrologic regimes for the Sierra Nevada. PMID:27575592

  19. Effect of Tree-to-Shrub Type Conversion in Lower Montane Forests of the Sierra Nevada (USA) on Streamflow.

    PubMed

    Bart, Ryan R; Tague, Christina L; Moritz, Max A

    2016-01-01

    Higher global temperatures and increased levels of disturbance are contributing to greater tree mortality in many forest ecosystems. These same drivers can also limit forest regeneration, leading to vegetation type conversion. For the Sierra Nevada of California, little is known about how type conversion may affect streamflow, a critical source of water supply for urban, agriculture and environmental purposes. In this paper, we examined the effects of tree-to-shrub type conversion, in combination with climate change, on streamflow in two lower montane forest watersheds in the Sierra Nevada. A spatially distributed ecohydrologic model was used to simulate changes in streamflow, evaporation, and transpiration following type conversion, with an explicit focus on the role of vegetation size and aspect. Model results indicated that streamflow may show negligible change or small decreases following type conversion when the difference between tree and shrub leaf areas is small, partly due to the higher stomatal conductivity and the deep rooting depth of shrubs. In contrast, streamflow may increase when post-conversion shrubs have a small leaf area relative to trees. Model estimates also suggested that vegetation change could have a greater impact on streamflow magnitude than the direct hydrologic impacts of increased temperatures. Temperature increases, however, may have a greater impact on streamflow timing. Tree-to-shrub type conversion increased streamflow only marginally during dry years (annual precipitation < 800 mm), with most streamflow change observed during wetter years. These modeling results underscore the importance of accounting for changes in vegetation communities to accurately characterize future hydrologic regimes for the Sierra Nevada.

  20. In Situ Generation of Pd-Pt Core-Shell Nanoparticles on Reduced Graphene Oxide (Pd@Pt/rGO) Using Microwaves: Applications in Dehalogenation Reactions and Reduction of Olefins.

    PubMed

    Goswami, Anandarup; Rathi, Anuj K; Aparicio, Claudia; Tomanec, Ondrej; Petr, Martin; Pocklanova, Radka; Gawande, Manoj B; Varma, Rajender S; Zboril, Radek

    2017-01-25

    Core-shell nanocatalysts are a distinctive class of nanomaterials with varied potential applications in view of their unique structure, composition-dependent physicochemical properties, and promising synergism among the individual components. A one-pot microwave (MW)-assisted approach is described to prepare the reduced graphene oxide (rGO)-supported Pd-Pt core-shell nanoparticles, (Pd@Pt/rGO); spherical core-shell nanomaterials (∼95 nm) with Pd core (∼80 nm) and 15 nm Pt shell were nicely distributed on the rGO matrix in view of the choice of reductant and reaction conditions. The well-characterized composite nanomaterials, endowed with synergism among its components and rGO support, served as catalysts in aromatic dehalogenation reactions and for the reduction of olefins with high yield (>98%), excellent selectivity (>98%) and recyclability (up to 5 times); both Pt/rGO and Pd/rGO and even their physical mixtures showed considerably lower conversions (20 and 57%) in dehalogenation of 3-bromoaniline. Similarly, in the reduction of styrene to ethylbenzene, Pd@Pt core-shell nanoparticles (without rGO support) possess considerably lower conversion (60%) compared to Pd@Pt/rGO. The mechanism of dehalogenation reactions with Pd@Pt/rGO catalyst is discussed with the explicit premise that rGO matrix facilitates the adsorption of the reducing agent, thus enhancing its local concentration and expediting the hydrazine decomposition rate. The versatility of the catalyst has been validated via diverse substrate scope for both reduction and dehalogenation reactions.

  1. Projected impact of the ICD-10-CM/PCS conversion on longitudinal data and the Joint Commission Core Measures.

    PubMed

    Fenton, Susan H; Benigni, Mary Sue

    2014-01-01

    The transition from ICD-9-CM to ICD-10-CM/PCS is expected to result in longitudinal data discontinuities, as occurred with cause-of-death in 1999. The General Equivalence Maps (GEMs), while useful for suggesting potential maps do not provide guidance regarding the frequency of any matches. Longitudinal data comparisons can only be reliable if they use comparability ratios or factors which have been calculated using records coded in both classification systems. This study utilized 3,969 de-identified dually coded records to examine raw comparability ratios, as well as the comparability ratios between the Joint Commission Core Measures. The raw comparability factor results range from 16.216 for Nicotine dependence, unspecified, uncomplicated to 118.009 for Chronic obstructive pulmonary disease, unspecified. The Joint Commission Core Measure comparability factor results range from 27.15 for Acute Respiratory Failure to 130.16 for Acute Myocardial Infarction. These results indicate significant differences in comparability between ICD-9-CM and ICD-10-CM code assignment, including when the codes are used for external reporting such as the Joint Commission Core Measures. To prevent errors in decision-making and reporting, all stakeholders relying on longitudinal data for measure reporting and other purposes should investigate the impact of the conversion on their data.

  2. Core-shell heterojunction of silicon nanowire arrays and carbon quantum dots for photovoltaic devices and self-driven photodetectors.

    PubMed

    Xie, Chao; Nie, Biao; Zeng, Longhui; Liang, Feng-Xia; Wang, Ming-Zheng; Luo, Linbao; Feng, Mei; Yu, Yongqiang; Wu, Chun-Yan; Wu, Yucheng; Yu, Shu-Hong

    2014-04-22

    Silicon nanostructure-based solar cells have lately intrigued intensive interest because of their promising potential in next-generation solar energy conversion devices. Herein, we report a silicon nanowire (SiNW) array/carbon quantum dot (CQD) core-shell heterojunction photovoltaic device by directly coating Ag-assisted chemical-etched SiNW arrays with CQDs. The heterojunction with a barrier height of 0.75 eV exhibited excellent rectifying behavior with a rectification ratio of 10(3) at ±0.8 V in the dark and power conversion efficiency (PCE) as high as 9.10% under AM 1.5G irradiation. It is believed that such a high PCE comes from the improved optical absorption as well as the optimized carrier transfer and collection capability. Furthermore, the heterojunction could function as a high-performance self-driven visible light photodetector operating in a wide switching wavelength with good stability, high sensitivity, and fast response speed. It is expected that the present SiNW array/CQD core-shell heterojunction device could find potential applications in future high-performance optoelectronic devices.

  3. Automated assembly of VECSEL components

    NASA Astrophysics Data System (ADS)

    Brecher, C.; Pyschny, N.; Haag, S.; Mueller, T.

    2013-02-01

    Due to the architectural advantage of an external cavity architecture that enables the integration of additional elements into the cavity (e.g. for mode control, frequency conversion, wavelength tuning or passive mode-locking) VECSELs are a rapidly developing laser technology. Nevertheless they often have to compete with direct (edge) emitting laser diodes which can have significant cost advantages thanks to their rather simple structure and production processes. One way to compensate the economical disadvantages of VECSELs is to optimize each component in terms of quality and costs and to apply more efficient (batch) production processes. In this context, the paper presents recent process developments for the automated assembly of VECSELs using a new type of desktop assembly station with an ultra-precise micromanipulator. The core concept is to create a dedicated process development environment from which implemented processes can be transferred fluently to production equipment. By now two types of processes have been put into operation on the desktop assembly station: 1.) passive alignment of the pump optics implementing a camera-based alignment process, where the pump spot geometry and position on the semiconductor chip is analyzed and evaluated; 2.) active alignment of the end mirror based on output power measurements and optimization algorithms. In addition to the core concept and corresponding hardware and software developments, detailed results of both processes are presented explaining measurement setups as well as alignment strategies and results.

  4. Impact of the High Flux Isotope Reactor HEU to LEU Fuel Conversion on Cold Source Nuclear Heat Generation Rates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chandler, David

    2014-03-01

    Under the sponsorship of the US Department of Energy National Nuclear Security Administration, staff members at the Oak Ridge National Laboratory have been conducting studies to determine whether the High Flux Isotope Reactor (HFIR) can be converted from high enriched uranium (HEU) fuel to low enriched uranium (LEU) fuel. As part of these ongoing studies, an assessment of the impact that the HEU to LEU fuel conversion has on the nuclear heat generation rates in regions of the HFIR cold source system and its moderator vessel was performed and is documented in this report. Silicon production rates in the coldmore » source aluminum regions and few-group neutron fluxes in the cold source moderator were also estimated. Neutronics calculations were performed with the Monte Carlo N-Particle code to determine the nuclear heat generation rates in regions of the HFIR cold source and its vessel for the HEU core operating at a full reactor power (FP) of 85 MW(t) and the reference LEU core operating at an FP of 100 MW(t). Calculations were performed with beginning-of-cycle (BOC) and end-of-cycle (EOC) conditions to bound typical irradiation conditions. Average specific BOC heat generation rates of 12.76 and 12.92 W/g, respectively, were calculated for the hemispherical region of the cold source liquid hydrogen (LH2) for the HEU and LEU cores, and EOC heat generation rates of 13.25 and 12.86 W/g, respectively, were calculated for the HEU and LEU cores. Thus, the greatest heat generation rates were calculated for the EOC HEU core, and it is concluded that the conversion from HEU to LEU fuel and the resulting increase of FP from 85 MW to 100 MW will not impact the ability of the heat removal equipment to remove the heat deposited in the cold source system. Silicon production rates in the cold source aluminum regions are estimated to be about 12.0% greater at BOC and 2.7% greater at EOC for the LEU core in comparison to the HEU core. Silicon is aluminum s major transmutation product and affects mechanical properties of aluminum including density, neutron irradiation hardening, swelling, and loss of ductility. Because slightly greater quantities of silicon will be produced in the cold source moderator vessel for the LEU core, these effects will be slightly greater for the LEU core than for the HEU core. Three-group (thermal, epithermal, and fast) neutron flux results tallied in the cold source LH2 hemisphere show greater values for the LEU core under both BOC and EOC conditions. The thermal neutron flux in the LH2 hemisphere for the LEU core is about 12.4% greater at BOC and 2.7% greater at EOC than for the HEU core. Therefore, cold neutron scattering will not be adversely affected and the 4 12 neutrons conveyed to the cold neutron guide hall for research applications will be enhanced.« less

  5. Aptamer-Mediated Up-conversion Core/MOF Shell Nanocomposites for Targeted Drug Delivery and Cell Imaging

    PubMed Central

    Deng, Kerong; Hou, Zhiyao; Li, Xuejiao; Li, Chunxia; Zhang, Yuanxin; Deng, Xiaoran; Cheng, Ziyong; Lin, Jun

    2015-01-01

    Multifunctional nanocarriers for targeted bioimaging and drug delivery have attracted much attention in early diagnosis and therapy of cancer. In this work, we develop a novel aptamer-guided nanocarrier based on the mesoporous metal-organic framework (MOF) shell and up-conversion luminescent NaYF4:Yb3+/Er3+ nanoparticles (UCNPs) core for the first time to achieve these goals. These UCNPs, chosen as optical labels in biological assays and medical imaging, could emit strong green emission under 980 nm laser. The MOF structure based on iron (III) carboxylate materials [MIL-100 (Fe)] possesses high porosity and non-toxicity, which is of great value as nanocarriers for drug storage/delivery. As a unique nanoplatform, the hybrid inorganic-organic drug delivery vehicles show great promising for simultaneous targeted labeling and therapy of cancer cells. PMID:25597762

  6. Analytical methods in the high conversion reactor core design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeggel, W.; Oldekop, W.; Axmann, J.K.

    High conversion reactor (HCR) design methods have been used at the Technical University of Braunschweig (TUBS) with the technological support of Kraftwerk Union (KWU). The present state and objectives of this cooperation between KWU and TUBS in the field of HCRs have been described using existing design models and current activities aimed at further development and validation of the codes. The hard physical and thermal-hydraulic boundary conditions of pressurized water reactor (PWR) cores with a high degree of fuel utilization result from the tight packing of the HCR fuel rods and the high fissionable plutonium content of the fuel. Inmore » terms of design, the problem will be solved with rod bundles whose fuel rods are adjusted by helical spacers to the proposed small rod pitches. These HCR properties require novel computational models for neutron physics, thermal hydraulics, and fuel rod design. By means of a survey of the codes, the analytical procedure for present-day HCR core design is presented. The design programs are currently under intensive development, as design tools with a solid, scientific foundation and with essential parameters that are widely valid and are required for a promising optimization of the HCR core. Design results and a survey of future HCR development are given. In this connection, the reoptimization of the PWR core in the direction of an HCR is considered a fascinating scientific task, with respect to both economic and safety aspects.« less

  7. CMV-promoter driven codon-optimized expression alters the assembly type and morphology of a reconstituted HERV-K(HML-2).

    PubMed

    Hohn, Oliver; Hanke, Kirsten; Lausch, Veronika; Zimmermann, Anja; Mostafa, Saeed; Bannert, Norbert

    2014-11-11

    The HERV-K(HML-2) family contains the most recently integrated and best preserved endogenized proviral sequences in the human genome. All known elements have nevertheless been subjected to mutations or deletions that render expressed particles non-infectious. Moreover, these post-insertional mutations hamper the analysis of the general biological properties of this ancient virus family. The expression of consensus sequences and sequences of elements with reverted post-insertional mutations has therefore been very instrumental in overcoming this limitation. We investigated the particle morphology of a recently reconstituted HERV-K113 element termed oriHERV-K113 using thin-section electron microscopy (EM) and could demonstrate that strong overexpression by substitution of the 5'LTR for a CMV promoter and partial codon optimization altered the virus assembly type and morphology. This included a conversion from the regular C-type to an A-type morphology with a mass of cytoplasmic immature cores tethered to the cell membrane and the membranes of vesicles. Overexpression permitted the release and maturation of virions but reduced the envelope content. A weaker boost of virus expression by Staufen-1 was not sufficient to induce these morphological alterations.

  8. CMV-Promoter Driven Codon-Optimized Expression Alters the Assembly Type and Morphology of a Reconstituted HERV-K(HML-2)

    PubMed Central

    Hohn, Oliver; Hanke, Kirsten; Lausch, Veronika; Zimmermann, Anja; Mostafa, Saeed; Bannert, Norbert

    2014-01-01

    The HERV-K(HML-2) family contains the most recently integrated and best preserved endogenized proviral sequences in the human genome. All known elements have nevertheless been subjected to mutations or deletions that render expressed particles non-infectious. Moreover, these post-insertional mutations hamper the analysis of the general biological properties of this ancient virus family. The expression of consensus sequences and sequences of elements with reverted post-insertional mutations has therefore been very instrumental in overcoming this limitation. We investigated the particle morphology of a recently reconstituted HERV-K113 element termed oriHERV-K113 using thin-section electron microscopy (EM) and could demonstrate that strong overexpression by substitution of the 5'LTR for a CMV promoter and partial codon optimization altered the virus assembly type and morphology. This included a conversion from the regular C-type to an A-type morphology with a mass of cytoplasmic immature cores tethered to the cell membrane and the membranes of vesicles. Overexpression permitted the release and maturation of virions but reduced the envelope content. A weaker boost of virus expression by Staufen-1 was not sufficient to induce these morphological alterations. PMID:25393897

  9. Resonant Spin-Flavor Conversion of Supernova Neutrinos

    NASA Astrophysics Data System (ADS)

    Ando, Shin'ichiro; Sato, K.

    2003-07-01

    We investigate resonant spin-flavor (RSF) conversions of supernova neutrinos which are induced by the interaction of neutrino magnetic moment and supernova magnetic fields. With a new diagram we propose, it is found that four conversions occur in supernovae, two are induced by the RSF effect and two by the pure Mikheyev-Smirnov-Wolfenstein (MSW) effect. The realistic numerical calculation of neutrino conversions indicates that the RSF-induced νe ↔ ντ tran¯ -12 9 -1 sition occurs efficiently, when µν > 10 µB (B0 /5 × 10 G) , where B0 is the strength of the magnetic field at the surface of iron core. We also evaluate the energy spectrum as a function of µν B0 at the super-Kamiokande detector using the calculated conversion probabilities, and find that the spectral deformation might have possibility to provide useful information on the neutrino magnetic moment as well as the magnetic field strength in supernovae.

  10. Soil Biogeochemical and Biophysical Footprint of Forest to Pasture Conversion in the Western Pyrenees Mountains, France

    NASA Astrophysics Data System (ADS)

    Leigh, D.; Gragson, T. L.

    2017-12-01

    Summits of the humid-temperate western Pyrenees were converted from mixed forests to managed grasslands thousands of years ago, including use of fire. We hypothesize differences in soil chemical and physical traits evolved because of this transformation. Paired forest versus grassland soils were sampled at four separate hillslope sites having a clear boundary between the two vegetation types. Factors of climate, topography, parent material, and time of soil formation were essentially identical in the forests and pastures of each site, but the time of soil under grassland vegetation may have varied. Each paired hillslope site included five core samples from the upper 7.6 cm of the mineral soil within each vegetation type and the A horizon thickness was recorded at each core hole. In addition, one complete soil profile was sampled in each vegetation type at each site, making a total of 20 core samples and 4 complete profiles from each respective vegetation type. Analyses included bulk density, pH, plant-available nutrients, organic matter, fulvic versus humic acids, total carbon and nitrogen, amorphous silica, and charcoal content. Results indicate pastured A horizons are about three times as thick as forested soils, contain more organic matter, and have lower bulk densities. These traits favor much greater infiltration and water holding capacities of the pastured soils, which we validated with saturated hydraulic conductivity tests. Melanization has been more pronounced in the managed pastures, which contain significantly more humic acids than forests. Significantly more charcoal (black carbon) is present in the pastured soils from long-term use of fire, and having implications for sequestration of carbon. Pastures register significantly higher soil magnetic susceptibility than forests, also related to past use of fire as a management tool. Pastures contain greater contents of amorphous silica due to more rapid phytolith production from grasses as opposed to trees. Anthropic manipulation of the biotic factor of pedogenesis has created new soil materials, processes, and functions. Our results indicate better soil quality in pastured soils, counter to stereotypical concepts of soil degradation due to grazing, and having important implications for soil sustainability

  11. 15 CFR 995.25 - Quality management system.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... management system are those defined in this part. The quality management system must ensure that the... type approved conversion software is maintained by a third party, CEVAD shall ensure that no changes made to the conversion software render the type approval of the conversion software invalid, and shall...

  12. 15 CFR 995.25 - Quality management system.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... management system are those defined in this part. The quality management system must ensure that the... type approved conversion software is maintained by a third party, CEVAD shall ensure that no changes made to the conversion software render the type approval of the conversion software invalid, and shall...

  13. 15 CFR 995.25 - Quality management system.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... management system are those defined in this part. The quality management system must ensure that the... type approved conversion software is maintained by a third party, CEVAD shall ensure that no changes made to the conversion software render the type approval of the conversion software invalid, and shall...

  14. 15 CFR 995.25 - Quality management system.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... management system are those defined in this part. The quality management system must ensure that the... type approved conversion software is maintained by a third party, CEVAD shall ensure that no changes made to the conversion software render the type approval of the conversion software invalid, and shall...

  15. Augmentation of Solar Thermal Propulsion Systems Via Phase Change Thermal Energy Storage and Thermal Electric Conversion

    DTIC Science & Technology

    2012-04-01

    vapor infiltration on erosion and thermal properties of porous carbon/carbon composite on thermal insulation . Carbon, (38):441– 449, 2000. [14] J. Mueller...Thermal Energy Storage and Thermal Electric Conversion 5a. CONTRACT NUMBER In-House 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S...with thermo-acoustic instabilities. Results will be reported on the flame structure, liquid core length and spreading rate, and comparison with data

  16. Comparative proteomic analysis of off-type and normal phenotype somatic plantlets derived from somatic embryos of Feijoa (Acca sellowiana (O. Berg) Burret).

    PubMed

    Fraga, Hugo Pacheco de Freitas; Agapito-Tenfen, Sarah Zanon; Caprestano, Clarissa Alves; Nodari, Rubens Onofre; Guerra, Miguel Pedro

    2013-09-01

    Morphological disorders in a relevant portion of emerged somatic embryos have been a limiting factor in the true-to-type plantlet formation in Acca sellowiana. In this sense, the present study undertook a comparison between normal phenotype and off-type somatic plantlets protein profiles by means of the 2-D DIGE proteomics approach. Off-type and normal phenotype somatic plantlets obtained at 10 and 20 days conversion were evaluated. Results indicated 12 exclusive spots between normal and off-type plantlets at 10 days conversion, and 17 exclusive spots at 20 days conversion. Also at 20 days conversion, 4 spots were differentially expressed, up- or down-regulated. Two proteins related to carbohydrate metabolism were only expressed in off-types at 10 days conversion, suggesting a more active respiratory pathway. A vicilin-like storage protein was only found in off-types at 20 days conversion, indicating that plantlets may present an abnormality in the mobilization of storage compounds, causing reduced vigor in the development of derived plantlets. The presence of heat shock proteins were only observed during formation of normal phenotype somatic plantlets, indicating that these proteins may be involved in normal morphogenesis of plantlets formed. These new findings shed light on possible genetic or epigenetic mechanisms governing A. sellowiana morphogenesis. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  17. The Type 1 Homodimeric Reaction Center in Heliobacterium modesticaldum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Golbeck, John

    In this funding period, we (i) found that strong illumination of Heliobacterium modesticaldum cells results in saturation of the electron acceptor pool, leading to reduction of the acceptor side and the creation of a back-reacting state that gives rise to delayed fluorescence; (ii) noted that when the FX cluster is reduced in purified reaction centers, no electron transfer occurs beyond A0, even though a quinone is present; (iii) observed by photochemically induced dynamic nuclear polarization (photo-CIDNP) studies of whole cells of Heliobacterium mobilis that primary charge separation is retained even after conversion of the majority of BChl g to Chlmore » aF. ; and (iv) purified a homogeneous preparation of reaction center cores, which led to promising crystallization trials to obtain a three-dimensional structure.« less

  18. Compact and portable multiline UV and visible Raman lasers in hydrogen-filled HC-PCF.

    PubMed

    Wang, Y Y; Couny, F; Light, P S; Mangan, B J; Benabid, F

    2010-04-15

    We report on the realization of compact UV visible multiline Raman lasers based on two types of hydrogen-filled hollow-core photonic crystal fiber. The first, with a large pitch Kagome lattice structure, offers a broad spectral coverage from near IR through to the much sought after yellow, deep-blue and UV, whereas the other, based on photonic bandgap guidance, presents a pump conversion concentrated in the visible region. The high Raman efficiency achieved through these fibers allows for compact, portable diode-pumped solid-state lasers to be used as pumps. Each discrete component of this laser system exhibits a spectral density several orders of magnitude larger than what is achieved with supercontinuum sources and a narrow linewidth, making it an ideal candidate for forensics and biomedical applications.

  19. Evaluation and Optimization of a Supercritical Carbon Dioxide Power Conversion Cycle for Nuclear Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edwin A. Harvego; Michael G. McKellar

    2011-05-01

    There have been a number of studies involving the use of gases operating in the supercritical mode for power production and process heat applications. Supercritical carbon dioxide (CO2) is particularly attractive because it is capable of achieving relatively high power conversion cycle efficiencies in the temperature range between 550°C and 750°C. Therefore, it has the potential for use with any type of high-temperature nuclear reactor concept, assuming reactor core outlet temperatures of at least 550°C. The particular power cycle investigated in this paper is a supercritical CO2 Recompression Brayton Cycle. The CO2 Recompression Brayton Cycle can be used as eithermore » a direct or indirect power conversion cycle, depending on the reactor type and reactor outlet temperature. The advantage of this cycle when compared to the helium Brayton Cycle is the lower required operating temperature; 550°C versus 850°C. However, the supercritical CO2 Recompression Brayton Cycle requires an operating pressure in the range of 20 MPa, which is considerably higher than the required helium Brayton cycle operating pressure of 8 MPa. This paper presents results of analyses performed using the UniSim process analyses software to evaluate the performance of the supercritical CO2 Brayton Recompression Cycle for different reactor outlet temperatures. The UniSim model assumed a 600 MWt reactor power source, which provides heat to the power cycle at a maximum temperature of between 550°C and 750°C. The UniSim model used realistic component parameters and operating conditions to model the complete power conversion system. CO2 properties were evaluated, and the operating range for the cycle was adjusted to take advantage of the rapidly changing conditions near the critical point. The UniSim model was then optimized to maximize the power cycle thermal efficiency at the different maximum power cycle operating temperatures. The results of the analyses showed that power cycle thermal efficiencies in the range of 40 to 50% can be achieved.« less

  20. Pyrosequencing reveals changes in soil bacterial communities after conversion of Yungas forests to agriculture.

    PubMed

    Montecchia, Marcela S; Tosi, Micaela; Soria, Marcelo A; Vogrig, Jimena A; Sydorenko, Oksana; Correa, Olga S

    2015-01-01

    The Southern Andean Yungas in Northwest Argentina constitute one of the main biodiversity hotspots in the world. Considerable changes in land use have taken place in this ecoregion, predominantly related to forest conversion to croplands, inducing losses in above-ground biodiversity and with potential impact on soil microbial communities. In this study, we used high-throughput pyrosequencing of the 16S ribosomal RNA gene to assess whether land-use change and time under agriculture affect the composition and diversity of soil bacterial communities. We selected two areas dedicated to sugarcane and soybean production, comprising both short- and long-term agricultural sites, and used the adjacent native forest soils as a reference. Land-use change altered the composition of bacterial communities, with differences between productive areas despite the similarities between both forests. At the phylum level, only Verrucomicrobia and Firmicutes changed in abundance after deforestation for sugarcane and soybean cropping, respectively. In cultivated soils, Verrucomicrobia decreased sharply (~80%), while Firmicutes were more abundant. Despite the fact that local diversity was increased in sugarcane systems and was not altered by soybean cropping, phylogenetic beta diversity declined along both chronosequences, evidencing a homogenization of soil bacterial communities over time. In spite of the detected alteration in composition and diversity, we found a core microbiome resistant to the disturbances caused by the conversion of forests to cultivated lands and few or none exclusive OTUs for each land-use type. The overall changes in the relative abundance of copiotrophic and oligotrophic taxa may have an impact in soil ecosystem functionality. However, communities with many taxa in common may also share many functional attributes, allowing to maintain at least some soil ecosystem services after forest conversion to croplands.

  1. Pyrosequencing Reveals Changes in Soil Bacterial Communities after Conversion of Yungas Forests to Agriculture

    PubMed Central

    Montecchia, Marcela S.; Tosi, Micaela; Soria, Marcelo A.; Vogrig, Jimena A.; Sydorenko, Oksana; Correa, Olga S.

    2015-01-01

    The Southern Andean Yungas in Northwest Argentina constitute one of the main biodiversity hotspots in the world. Considerable changes in land use have taken place in this ecoregion, predominantly related to forest conversion to croplands, inducing losses in above-ground biodiversity and with potential impact on soil microbial communities. In this study, we used high-throughput pyrosequencing of the 16S ribosomal RNA gene to assess whether land-use change and time under agriculture affect the composition and diversity of soil bacterial communities. We selected two areas dedicated to sugarcane and soybean production, comprising both short- and long-term agricultural sites, and used the adjacent native forest soils as a reference. Land-use change altered the composition of bacterial communities, with differences between productive areas despite the similarities between both forests. At the phylum level, only Verrucomicrobia and Firmicutes changed in abundance after deforestation for sugarcane and soybean cropping, respectively. In cultivated soils, Verrucomicrobia decreased sharply (~80%), while Firmicutes were more abundant. Despite the fact that local diversity was increased in sugarcane systems and was not altered by soybean cropping, phylogenetic beta diversity declined along both chronosequences, evidencing a homogenization of soil bacterial communities over time. In spite of the detected alteration in composition and diversity, we found a core microbiome resistant to the disturbances caused by the conversion of forests to cultivated lands and few or none exclusive OTUs for each land-use type. The overall changes in the relative abundance of copiotrophic and oligotrophic taxa may have an impact in soil ecosystem functionality. However, communities with many taxa in common may also share many functional attributes, allowing to maintain at least some soil ecosystem services after forest conversion to croplands. PMID:25793893

  2. Characterization of subunit-specific interactions in a double-stranded RNA virus: Raman difference spectroscopy of the phi6 procapsid.

    PubMed

    Benevides, James M; Juuti, Jarmo T; Tuma, Roman; Bamford, Dennis H; Thomas, George J

    2002-10-08

    The icosahedral core of a double-stranded (ds) RNA virus hosts RNA-dependent polymerase activity and provides the molecular machinery for RNA packaging. The stringent requirements of dsRNA metabolism may explain the similarities observed in core architecture among a broad spectrum of dsRNA viruses, from the mammalian rotaviruses to the Pseudomonas bacteriophage phi6. Although the structure of the assembled core has been described in atomic detail for Reoviridae (blue tongue virus and reovirus), the molecular mechanism of assembly has not been characterized in terms of conformational changes and key interactions of protein constituents. In the present study, we address such questions through the application of Raman spectroscopy to an in vitro core assembly system--the procapsid of phi6. The phi6 procapsid, which comprises multiple copies of viral proteins P1 (copy number 120), P2 (12), P4 (72), and P7 (60), represents a precursor of the core that is devoid of RNA. Raman signatures of the procapsid, its purified recombinant core protein components, and purified sub-assemblies lacking either one or two of the protein components have been obtained and interpreted. The major procapsid protein (P1), which forms the skeletal frame of the core, is an elongated and monomeric molecule of high alpha-helical content. The fold of the core RNA polymerase (P2) is also mostly alpha-helical. On the other hand, the folds of both the procapsid accessory protein (P7) and RNA-packaging ATPase (P4) are of the alpha/beta type. Raman difference spectra show that conformational changes occur upon interaction of P1 with either P4 or P7 in the procapsid. These changes involve substantial ordering of the polypeptide backbone. Conversely, conformations of procapsid subunits are not significantly affected by interactions with P2. An assembly model is proposed in which P1 induces alpha-helix in P4 during formation of the nucleation complex. Subsequently, the partially disordered P7 subunit is folded within the context of the procapsid shell.

  3. Spatially-controlled NiCo2O4@MnO2 core-shell nanoarray with hollow NiCo2O4 cores and MnO2 flake shells: an efficient catalyst for oxygen evolution reaction.

    PubMed

    Xue, Hairong; Yu, Hongjie; Li, Yinghao; Deng, Kai; Xu, You; Li, Xiaonian; Wang, Hongjing; Wang, Liang

    2018-07-13

    Control of structures and components of the nanoarray catalysts is very important for electrochemical energy conversion. Herein, unique NiCo 2 O 4 @MnO 2 core-shell nanoarray with hollow NiCo 2 O 4 Cores and MnO 2 flake shells is in situ fabricated on carbon textile via a two-step hydrothermal treatment followed by a subsequent annealing. The as-made nanoarray is highly active and durable catalyst for oxygen evolution reaction in alkaline media attribute to the synergetic effect derived from spatially separated nanoarray with favorable NiCo 2 O 4 and MnO 2 compositions.

  4. SPERT Destructive Test - I on Aluminum, Highly Enriched Plate Type Core

    ScienceCinema

    None

    2018-01-16

    SPERT - Special Power Excursion Reactor Tests Destructive Test number 1 On Aluminum, Highly Enriched Plate Type Core. A test studying the behavior of the reactor under destructive conditions on a light water moderated pool-type reactor with a plate-type core.

  5. Neutronics, steady-state, and transient analyses for the Poland MARIA reactor for irradiation testing of LEU lead test fuel assemblies from CERCA : ANL independent verification results.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garner, P. L.; Hanan, N. A.

    The MARIA reactor at the Institute of Atomic Energy (IAE) in Swierk (30 km SE of Warsaw) in the Republic of Poland is considering conversion from high-enriched uranium (HEU) to low-enriched uranium (LEU) fuel assemblies (FA). The FA design in MARIA is rather unique; a suitable LEU FA has never been designed or tested. IAE has contracted with CERCA (the fuel supply portion of AREVA in France) to supply 2 lead test assemblies (LTA). The LTAs will be irradiated in MARIA to burnup level of at least 40% for both LTAs and to 60% for one LTA. IAE may decidemore » to purchase additional LEU FAs for a full core conversion after the test irradiation. The Reactor Safety Committee within IAE and the National Atomic Energy Agency in Poland (PAA) must approve the LTA irradiation process. The approval will be based, in part, on IAE submitting revisions to portions of the Safety Analysis Report (SAR) which are affected by the insertion of the LTAs. (A similar process will be required for the full core conversion to LEU fuel.) The analysis required was established during working meetings between Argonne National Laboratory (ANL) and IAE staff during August 2006, subsequent email correspondence, and subsequent staff visits. The analysis needs to consider the current high-enriched uranium (HEU) core and 4 core configurations containing 1 and 2 LEU LTAs in various core positions. Calculations have been performed at ANL in support of the LTA irradiation. These calculations are summarized in this report and include criticality, burn-up, neutronics parameters, steady-state thermal hydraulics, and postulated transients. These calculations have been performed at the request of the IAE staff, who are performing similar calculations to be used in their SAR amendment submittal to the PAA. The ANL analysis has been performed independently from that being performed by IAE and should only be used as one step in the verification process.« less

  6. Piezo-Phototronic Effect Enhanced Flexible Solar Cells Based on n-ZnO/p-SnS Core-Shell Nanowire Array.

    PubMed

    Zhu, Laipan; Wang, Longfei; Xue, Fei; Chen, Libo; Fu, Jianqiang; Feng, Xiaolong; Li, Tianfeng; Wang, Zhong Lin

    2017-01-01

    The piezo-phototronic effect is about the enhanced separation, transport, and recombination of the photogenerated carriers using the piezoelectric polarization charges present in piezoelectric-semiconductor materials. Here, it is presented that the piezo-phototronic effect can be effectively applied to improve the relative conversion efficiency of a flexible solar cell based on n-ZnO/p-SnS core-shell nanowire array for 37.3% under a moderate vertical pressure. The performance of the solar cell can be effectively enhanced by a gentle bending of the device, showing its potential for application in curly geometries. This study not only adds further understanding about the concept of increasing solar energy conversion efficiency via piezo-phototronic effect, but also demonstrates the great potential of piezo-phototronic effect in the application of large-scale, flexible, and lightweight nanowire array solar cells.

  7. Tuning quadratic nonlinear photonic crystal fibers for zero group-velocity mismatch.

    PubMed

    Bache, Morten; Nielsen, Hanne; Laegsgaard, Jesper; Bang, Ole

    2006-06-01

    We consider an index-guiding silica photonic crystal fiber with a triangular hole pattern and a periodically poled quadratic nonlinearity. By tuning the pitch and the relative hole size, second-harmonic generation with zero group-velocity mismatch is found for any fundamental wavelength above 780 nm. The nonlinear strength is optimized when the fundamental has maximum confinement in the core. The conversion bandwidth allows for femtosecond-pulse conversion, and 4%-180%W(-1)cm(-2) relative efficiencies were found.

  8. Order and Disorder in Conversation: Encounters with Dementia of the Alzheimer's Type

    ERIC Educational Resources Information Center

    Muller, Nicole; Guendouzi, Jacqueline A.

    2005-01-01

    After a brief introduction to Dementia of the Alzheimer's Type (DAT), its behavioral diagnostic symptom complex and a summary of communicative implications, we present data from two conversations involving participants with and without DAT. We discuss the concept of "order" in conversation, and the central importance of interactional monitoring.…

  9. Metal Nanoshells for Plasmonically Enhanced Solar-to-Fuel Photocatalytic Conversion

    DTIC Science & Technology

    2014-05-09

    Final 3. DATES COVERED (From - To) 04/16/2013 – 04/15/2014 4. TITLE AND SUBTITLE Metal Nanoshells for Plasmonically Enhanced Solar -to...following experiments, the core-shell of nanoshell@SiO2, as well as the nanostructure of photocatalyst, were further investigated. Solar energy in the...nanoshells as the core can absorb the solar energy in the IR and visible-light region ranging from 500 nm to 900 nm. Our data showed that the plasmonic

  10. Preparation of hollow mesoporous carbon spheres and their performances for electrochemical applications

    NASA Astrophysics Data System (ADS)

    Ariyanto, T.; Zhang, G. R.; Kern, A.; Etzold, B. J. M.

    2018-03-01

    Hollow carbon materials have received intensive attention for energy storage/conversion applications due to their attractive properties of high conductivity, high surface area, large void and short diffusion pathway. In this work, a novel hollow mesoporous material based on carbide-derived carbon (CDC) is presented. CDC is a new class of carbon material synthesized by the selective extraction of metals from metal carbides. With a two-stage extraction procedure of carbides with chlorine, firstly hybrid core-shell carbon particles were synthesized, i.e. mesoporous/graphitic carbon shells covering microporous/amorphous carbon cores. The amorphous cores were then selectively removed from particles by a careful oxidative treatment utilizing its low thermal characters while the more stable carbon shells remained, thus resulting hollow particles. The characterization methods (e.g. N2 sorption, Raman spectroscopy, temperature-programmed oxidation and SEM) proved the successful synthesis of the aspired material. In electric double-layer capacitor (EDLC) testing, this novel hollow core material showed a remarkable enhancement of EDLC’s rate handling ability (75% at a high scan rate) with respect to an entirely solid-mesoporous material. Furthermore, as a fuel cell catalyst support the material showed higher Pt mass activity (a factor of 1.8) compared to a conventional carbon support for methanol oxidation without noticeably decreasing activity in a long-term testing. Therefore, this carbon nanostructure shows great promises as efficient electrode materials for energy storage and conversion systems.

  11. Engineering Localized Surface Plasmon Interactions in Gold by Silicon Nanowire for Enhanced Heating and Photocatalysis.

    PubMed

    Agarwal, Daksh; Aspetti, Carlos O; Cargnello, Matteo; Ren, MingLiang; Yoo, Jinkyoung; Murray, Christopher B; Agarwal, Ritesh

    2017-03-08

    The field of plasmonics has attracted considerable attention in recent years because of potential applications in various fields such as nanophotonics, photovoltaics, energy conversion, catalysis, and therapeutics. It is becoming increasing clear that intrinsic high losses associated with plasmons can be utilized to create new device concepts to harvest the generated heat. It is therefore important to design cavities, which can harvest optical excitations efficiently to generate heat. We report a highly engineered nanowire cavity, which utilizes a high dielectric silicon core with a thin plasmonic film (Au) to create an effective metallic cavity to strongly confine light, which when coupled with localized surface plasmons in the nanoparticles of the thin metal film produces exceptionally high temperatures upon laser irradiation. Raman spectroscopy of the silicon core enables precise measurements of the cavity temperature, which can reach values as high as 1000 K. The same Si-Au cavity with enhanced plasmonic activity when coupled with TiO 2 nanorods increases the hydrogen production rate by ∼40% compared to similar Au-TiO 2 system without Si core, in ethanol photoreforming reactions. These highly engineered thermoplasmonic devices, which integrate three different cavity concepts (high refractive index core, metallo-dielectric cavity, and localized surface plasmons) along with the ease of fabrication demonstrate a possible pathway for designing optimized plasmonic devices with applications in energy conversion and catalysis.

  12. Universal Principles in the Repair of Communication Problems

    PubMed Central

    Dingemanse, Mark; Roberts, Seán G.; Baranova, Julija; Blythe, Joe; Drew, Paul; Floyd, Simeon; Gisladottir, Rosa S.; Kendrick, Kobin H.; Levinson, Stephen C.; Manrique, Elizabeth; Rossi, Giovanni; Enfield, N. J.

    2015-01-01

    There would be little adaptive value in a complex communication system like human language if there were no ways to detect and correct problems. A systematic comparison of conversation in a broad sample of the world’s languages reveals a universal system for the real-time resolution of frequent breakdowns in communication. In a sample of 12 languages of 8 language families of varied typological profiles we find a system of ‘other-initiated repair’, where the recipient of an unclear message can signal trouble and the sender can repair the original message. We find that this system is frequently used (on average about once per 1.4 minutes in any language), and that it has detailed common properties, contrary to assumptions of radical cultural variation. Unrelated languages share the same three functionally distinct types of repair initiator for signalling problems and use them in the same kinds of contexts. People prefer to choose the type that is the most specific possible, a principle that minimizes cost both for the sender being asked to fix the problem and for the dyad as a social unit. Disruption to the conversation is kept to a minimum, with the two-utterance repair sequence being on average no longer that the single utterance which is being fixed. The findings, controlled for historical relationships, situation types and other dependencies, reveal the fundamentally cooperative nature of human communication and offer support for the pragmatic universals hypothesis: while languages may vary in the organization of grammar and meaning, key systems of language use may be largely similar across cultural groups. They also provide a fresh perspective on controversies about the core properties of language, by revealing a common infrastructure for social interaction which may be the universal bedrock upon which linguistic diversity rests. PMID:26375483

  13. 2007 international meeting on Reduced Enrichment for Research and Test Reactors (RERTR). Abstracts and available papers presented at the meeting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2008-07-15

    The Meeting papers discuss research and test reactor fuel performance, manufacturing and testing. Some of the main topics are: conversion from HEU to LEU in different reactors and corresponding problems and activities; flux performance and core lifetime analysis with HEU and LEU fuels; physics and safety characteristics; measurement of gamma field parameters in core with LEU fuel; nondestructive analysis of RERTR fuel; thermal hydraulic analysis; fuel interactions; transient analyses and thermal hydraulics for HEU and LEU cores; microstructure research reactor fuels; post irradiation analysis and performance; computer codes and other related problems.

  14. Influence of SiO2 shell thickness on power conversion efficiency in plasmonic polymer solar cells with Au nanorod@SiO2 core-shell structures

    PubMed Central

    Zhang, Ran; Zhou, Yongfang; Peng, Ling; Li, Xue; Chen, Shufen; Feng, Xiaomiao; Guan, Yuqiao; Huang, Wei

    2016-01-01

    Locating core-shell metal nanoparticles into a photoactive layer or at the interface of photoactive layer/hole extraction layer is beneficial for fully employing surface plasmon energy, thus enhancing power conversion efficiency (PCE) in plasmonic organic photovoltaic devices (OPVs). Herein, we first investigated the influence of silica shell thickness in Au nanorods (NRs)@SiO2 core-shell structures on OPV performances by inserting them into poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) and thieno[3,4-b]thiophene/benzodithiophene (PTB7) interface, and amazedly found that a 2–3 nm silica shell onto Au NRs induces a highest short-circuit current density of 21.2 mA cm−2 and PCE of 9.55%. This is primarily due to an extremely strong local field and a much slower attenuation of localized surface plasmon resonance around ultrathin silica-coated Au NRs, with which the field intensity remains a high value in the active layer, thus sufficiently improves the absorption of PTB7. Our work provides a clear design concept on precise control of the shell of metal nanoparticles to realize high performances in plasmonic OPVs. PMID:27125309

  15. Influence of SiO2 shell thickness on power conversion efficiency in plasmonic polymer solar cells with Au nanorod@SiO2 core-shell structures.

    PubMed

    Zhang, Ran; Zhou, Yongfang; Peng, Ling; Li, Xue; Chen, Shufen; Feng, Xiaomiao; Guan, Yuqiao; Huang, Wei

    2016-04-29

    Locating core-shell metal nanoparticles into a photoactive layer or at the interface of photoactive layer/hole extraction layer is beneficial for fully employing surface plasmon energy, thus enhancing power conversion efficiency (PCE) in plasmonic organic photovoltaic devices (OPVs). Herein, we first investigated the influence of silica shell thickness in Au nanorods (NRs)@SiO2 core-shell structures on OPV performances by inserting them into poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) and thieno[3,4-b]thiophene/benzodithiophene (PTB7) interface, and amazedly found that a 2-3 nm silica shell onto Au NRs induces a highest short-circuit current density of 21.2 mA cm(-2) and PCE of 9.55%. This is primarily due to an extremely strong local field and a much slower attenuation of localized surface plasmon resonance around ultrathin silica-coated Au NRs, with which the field intensity remains a high value in the active layer, thus sufficiently improves the absorption of PTB7. Our work provides a clear design concept on precise control of the shell of metal nanoparticles to realize high performances in plasmonic OPVs.

  16. What is agenda setting in the clinical encounter? Consensus from literature review and expert consultation.

    PubMed

    Gobat, Nina; Kinnersley, Paul; Gregory, John W; Robling, Michael

    2015-07-01

    To establish consensus on the core domains of agenda setting in consultations. We reviewed the healthcare literature and, using a modified Delphi technique to embrace both patient and clinician perspectives, conducted an iterative online survey, with 30 experts in health communication. Participants described agenda setting and rated the importance of proposed domains. Consensus was determined where the group median was ≥5 on a 7-point Likert-like response scale, and the interquartile range fell to within one point on this scale. Relevant publications were identified in three overlapping bodies of healthcare literature. Survey respondents considered that agenda setting involved a process whereby patients and clinicians establish a joint focus for both their conversation and their working relationship. Consensus was obtained on six core domains: identifying patient talk topics, identifying clinician talk topics, agreement of shared priorities, establishing conversational focus, collaboration and engagement. New terminology--agenda mapping and agenda navigation--is proposed. We identified core agenda setting domains that embraced patient and clinician perspectives. An integrated conceptualization of agenda setting may now be used by researchers and educators in both clinician and patient focused interventions. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  17. On the association between core-collapse supernovae and H ii regions

    NASA Astrophysics Data System (ADS)

    Crowther, Paul A.

    2013-01-01

    Previous studies of the location of core-collapse supernovae (ccSNe) in their host galaxies have variously claimed an association with H ii regions; no association or an association only with hydrogen-deficient ccSNe. Here, we examine the immediate environments of 39 ccSNe whose positions are well known in nearby (≤15 Mpc), low-inclination (≤65°) hosts using mostly archival, continuum-subtracted Hα ground-based imaging. We find that 11 out of 29 hydrogen-rich ccSNe are spatially associated with H ii regions (38 ± 11 per cent), versus 7 out of 10 hydrogen-poor ccSNe (70 ± 26 per cent). Similar results from Anderson et al. led to an interpretation that the progenitors of Type Ib/c ccSNe are more massive than those of Type II ccSNe. Here, we quantify the luminosities of H ii region either coincident with or nearby to the ccSNe. Characteristic nebulae are long-lived (˜20 Myr) giant H ii regions rather than short-lived (˜4 Myr) isolated, compact H ii regions. Therefore, the absence of an H ii region from most Type II ccSNe merely reflects the longer lifetime of stars with ⪉12 M⊙ than giant H ii regions. Conversely, the association of an H ii region with most Type Ib/c ccSNe is due to the shorter lifetime of stars with >12 M⊙ stars than the duty cycle of giant H ii regions. Therefore, we conclude that the observed association between certain ccSNe and H ii provides only weak constraints upon their progenitor masses. Nevertheless, we do favour lower mass progenitors for two Type Ib/c ccSNe that lack associated nebular emission, a host cluster or a nearby giant H ii region. Finally, we also reconsider the association between long gamma-ray bursts and the peak continuum light from their (mostly) dwarf hosts, and conclude that this is suggestive of very high mass progenitors, in common with previous studies.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brunett, A. J.; Fei, T.; Strons, P. S.

    The Transient Reactor Test Facility (TREAT), located at Idaho National Laboratory (INL), is a test facility designed to evaluate the performance of reactor fuels and materials under transient accident conditions. The facility, an air-cooled, graphite-moderated reactor designed to utilize fuel containing high-enriched uranium (HEU), has been in non-operational standby status since 1994. Currently, in support of the missions of the Department of Energy (DOE) National Nuclear Security Administration (NNSA) Material Management and Minimization (M3) Reactor Conversion Program, a new core design is being developed for TREAT that will utilize low-enriched uranium (LEU). The primary objective of this conversion effort ismore » to design an LEU core that is capable of meeting the performance characteristics of the existing HEU core. Minimal, if any, changes are anticipated for the supporting systems (e.g. reactor trip system, filtration/cooling system, etc.); therefore, the LEU core must also be able to function with the existing supporting systems, and must also satisfy acceptable safety limits. In support of the LEU conversion effort, a range of ancillary safety analyses are required to evaluate the LEU core operation relative to that of the existing facility. These analyses cover neutronics, shielding, and thermal hydraulic topics that have been identified as having the potential to have reduced safety margins due to conversion to LEU fuel, or are required to support the required safety analyses documentation. The majority of these ancillary tasks have been identified in [1] and [2]. The purpose of this report is to document the ancillary safety analyses that have been performed at Argonne National Laboratory during the early stages of the LEU design effort, and to describe ongoing and anticipated analyses. For all analyses presented in this report, methodologies are utilized that are consistent with, or improved from, those used in analyses for the HEU Final Safety Analysis Report (FSAR) [3]. Depending on the availability of historical data derived from HEU TREAT operation, results calculated for the LEU core are compared to measurements obtained from HEU TREAT operation. While all analyses in this report are largely considered complete and have been reviewed for technical content, it is important to note that all topics will be revisited once the LEU design approaches its final stages of maturity. For most safety significant issues, it is expected that the analyses presented here will be bounding, but additional calculations will be performed as necessary to support safety analyses and safety documentation. It should also be noted that these analyses were completed as the LEU design evolved, and therefore utilized different LEU reference designs. Preliminary shielding, neutronic, and thermal hydraulic analyses have been completed and have generally demonstrated that the various LEU core designs will satisfy existing safety limits and standards also satisfied by the existing HEU core. These analyses include the assessment of the dose rate in the hodoscope room, near a loaded fuel transfer cask, above the fuel storage area, and near the HEPA filters. The potential change in the concentration of tramp uranium and change in neutron flux reaching instrumentation has also been assessed. Safety-significant thermal hydraulic items addressed in this report include thermally-induced mechanical distortion of the grid plate, and heating in the radial reflector.« less

  19. G5G2.5 core-shell tecto-dendrimer specifically targets reactive glia in brain ischemia.

    PubMed

    Murta, Veronica; Schilrreff, Priscila; Rosciszewski, Gerardo; Morilla, Maria Jose; Ramos, Alberto Javier

    2018-03-01

    Secondary neuronal death is a serious stroke complication. This process is facilitated by the conversion of glial cells to the reactive pro-inflammatory phenotype that induces neurodegeneration. Therefore, regulation of glial activation is a compelling strategy to reduce brain damage after stroke. However, drugs have difficulties to access the CNS, and to specifically target glial cells. In the present work, we explored the use core-shell polyamidoamine tecto-dendrimer (G5G2.5 PAMAM) and studied its ability to target distinct populations of stroke-activated glial cells. We found that G5G2.5 tecto-dendrimer is actively engulfed by primary glial cells in a time- and dose-dependent manner showing high cellular selectivity and lysosomal localization. In addition, oxygen-glucose deprivation or lipopolysaccharides exposure in vitro and brain ischemia in vivo increase glial G5G2.5 uptake; not being incorporated by neurons or other cell types. We conclude that G5G2.5 tecto-dendrimer is a highly suitable carrier for targeted drug delivery to reactive glial cells in vitro and in vivo after brain ischemia. © 2017 International Society for Neurochemistry.

  20. Theoretical Estimate of Maximum Possible Nuclear Explosion

    DOE R&D Accomplishments Database

    Bethe, H. A.

    1950-01-31

    The maximum nuclear accident which could occur in a Na-cooled, Be moderated, Pu and power producing reactor is estimated theoretically. (T.R.H.) 2O82 Results of nuclear calculations for a variety of compositions of fast, heterogeneous, sodium-cooled, U-235-fueled, plutonium- and power-producing reactors are reported. Core compositions typical of plate-, pin-, or wire-type fuel elements and with uranium as metal, alloy, and oxide were considered. These compositions included atom ratios in the following range: U-23B to U-235 from 2 to 8; sodium to U-235 from 1.5 to 12; iron to U-235 from 5 to 18; and vanadium to U-235 from 11 to 33. Calculations were performed to determine the effect of lead and iron reflectors between the core and blanket. Both natural and depleted uranium were evaluated as the blanket fertile material. Reactors were compared on a basis of conversion ratio, specific power, and the product of both. The calculated results are in general agreement with the experimental results from fast reactor assemblies. An analysis of the effect of new cross-section values as they became available is included. (auth)

  1. Method Of Bonding A Metal Connection To An Electrode Including A Core Having A Fiber Or Foam Type Structure For An Electrochemical Cell, An

    DOEpatents

    Loustau, Marie-Therese; Verhoog, Roelof; Precigout, Claude

    1996-09-24

    A method of bonding a metal connection to an electrode including a core having a fiber or foam-type structure for an electrochemical cell, in which method at least one metal strip is pressed against one edge of the core and is welded thereto under compression, wherein, at least in line with the region in which said strip is welded to the core, which is referred to as the "main core", a retaining core of a type analogous to that of the main core is disposed prior to the welding.

  2. An Exploration of Geometric and Electronic Effects in Metal Nanoparticle Catalysts

    NASA Astrophysics Data System (ADS)

    Childers, David

    The goal of this thesis is to investigate the influence geometric and electronic effects on metal nanoparticle catalysis. There are three main methods which alter a catalyst's properties: changing support material, changing nanoparticle size and alloying a second metal. This work will focus on the latter two methods using Pt-group metals and alloys. Platinum and palladium were chosen as the active metals due to a large amount of industry significance and prior literature to draw upon. Neopentane conversion and propane dehydrogenation were the two probe reactions used to evaluate these catalysts mainly due to their relative simplicity and ease of operation on a laboratory scale. The effect of particle size was studied with Pt and Pd monometallic catalysts using neopentane hydrogenolysis/isomerization as the probe reaction. Particle size studies have been done previously using this reaction so there is literature data to compare this study's results. This data will also be used as comparison for the bimetallic studies conducted later so that particle size effects can be accounted for when attempting to determine the effect of alloying a second metal. Bimetallic catalysts have several different possible structures depending on a number of factors from the identity of the two metals to the synthesis procedure. Homogeneous, core-shell and intermetallic alloys are the three structures evaluated in this work. Determining the surface composition of a homogeneous alloy can be difficult especially if both metals adsorb CO. PtPd homogeneous alloys were used to evaluate the ability of EXAFS to give information about surface composition using CO adsorption. These catalysts were also tested using neopentane conversion to evaluate changes in catalytic performance. Core-shell catalysts can also exhibit unique properties although it is not clear whether the identity of the core metal is relevant or if surface changes are most important to changing catalytic behavior. PdAu catalysts were synthesized with varying Pd loadings to determine if the Au-rich core would continue to influence neopentane conversion performance with increasing Pd layers on the surface of the nanoparticle. Finally, intermetallic alloys have produced some very interesting literature results and can drastically alter catalyst surface structure. PdZn showed the potential to improve neopentane isomerization selectivity past that of Pt based on calculated electronic properties. Two PdZn catalysts with different loadings were synthesized to evaluate the electronic and geometric effects using both neopentane conversion and propane dehydrogenation.

  3. Ni@Ru and NiCo@Ru Core-Shell Hexagonal Nanosandwiches with a Compositionally Tunable Core and a Regioselectively Grown Shell.

    PubMed

    Hwang, Hyeyoun; Kwon, Taehyun; Kim, Ho Young; Park, Jongsik; Oh, Aram; Kim, Byeongyoon; Baik, Hionsuck; Joo, Sang Hoon; Lee, Kwangyeol

    2018-01-01

    The development of highly active electrocatalysts is crucial for the advancement of renewable energy conversion devices. The design of core-shell nanoparticle catalysts represents a promising approach to boost catalytic activity as well as save the use of expensive precious metals. Here, a simple, one-step synthetic route is reported to prepare hexagonal nanosandwich-shaped Ni@Ru core-shell nanoparticles (Ni@Ru HNS), in which Ru shell layers are overgrown in a regioselective manner on the top and bottom, and around the center section of a hexagonal Ni nanoplate core. Notably, the synthesis can be extended to NiCo@Ru core-shell nanoparticles with tunable core compositions (Ni 3 Co x @Ru HNS). Core-shell HNS structures show superior electrocatalytic activity for the oxygen evolution reaction (OER) to a commercial RuO 2 black catalyst, with their OER activity being dependent on their core compositions. The observed trend in OER activity is correlated to the population of Ru oxide (Ru 4+ ) species, which can be modulated by the core compositions. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Conversion between parallel and antiparallel β -sheets in wild-type and Iowa mutant Aβ40 fibrils

    NASA Astrophysics Data System (ADS)

    Xi, Wenhui; Hansmann, Ulrich H. E.

    2018-01-01

    Using a variant of Hamilton-replica-exchange, we study for wild type and Iowa mutant Aβ40 the conversion between fibrils with antiparallel β-sheets and such with parallel β-sheets. We show that wild type and mutant form distinct salt bridges that in turn stabilize different fibril organizations. The conversion between the two fibril forms leads to the release of small aggregates that in the Iowa mutant may shift the equilibrium from fibrils to more toxic oligomers.

  5. Graphene-based copper oxide thin film nanostructures as high-efficiency photocathode for p-type dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Kilic, Bayram; Turkdogan, Sunay; Astam, Aykut; Baran, Sümeyra Seniha; Asgin, Mansur; Cebeci, Hulya; Urk, Deniz

    2017-10-01

    Graphene-based p-type dye-sensitized solar cells (p-DSSCs) have been proposed and fabricated using copper oxide urchin-like nanostructures (COUN) as photocathode with an FeS2 counter electrode (CE). COUN composed of Cu2O core sphere and CuO shell nanorods with overall diameters of 2 to 4 μm were grown by a simple hydrothermal method with self-assemble nucleation. It was figured out that the formation of copper oxide core/shell structures could be adjusted by an ammonia additive leading to pH change of the precursor solution. In addition to a photocathode, we also demonstrated FeS2 thin films as an efficient CE material alternative to the conventional Pt CEs in DSSCs. FeS2 nanostructures, with diameters of 50 to 80 nm, were synthesized by a similar hydrothermal approach. FeS2 nanostructures are demonstrated to be an outstanding CE material in p-DSSCs. We report graphene/COUN as photocathode and Pt/FeS2 as CE in p-DSSCs, and results show that the synergetic combination of electrodes in each side (increased interconnectivity between COUN and graphene layer, high surface area, and high catalytic activity of FeS2) increased the power conversion efficiency from 1.56% to 3.14%. The excellent performances of COUN and FeS2 thin film in working and CEs, respectively, make them unique choices among the various photocathode and CE materials studied.

  6. System Design for a Nuclear Electric Spacecraft Utilizing Out-of-core Thermionic Conversion

    NASA Technical Reports Server (NTRS)

    Estabrook, W. C.; Phillips, W. M.; Hsieh, T.

    1976-01-01

    Basic guidelines are presented for a nuclear space power system which utilizes heat pipes to transport thermal power from a fast nuclear reactor to an out of core thermionic converter array. Design parameters are discussed for the nuclear reactor, heat pipes, thermionic converters, shields (neutron and gamma), waste heat rejection systems, and the electrical bus bar-cable system required to transport the high current/low voltage power to the processing equipment. Dimensions are compatible with shuttle payload bay constraints.

  7. Implementing New Non-Chromate Coatings Systems (Briefing Charts)

    DTIC Science & Technology

    2011-02-09

    Initiate Cr6+ authorization process for continued Cr6+ use using the form, Authorization to Use Hexavalent Chromium. YES NO • Approval of...Aluminum and magnesium anodizing • Hard Chrome Plating • Type II conversion coating on aluminum alloys under chromated primer • Type II conversion coating...Elimination of Hexavalent Chromium 80% 5% 14% 1% Type II Type III Type IC Type IC Fatigue Critical 50% 50% Type II Type IC FRC-SE (JAX) Fully Integrated FRC

  8. Effect of the Molecular Nature of Mutation on the Efficiency of Intrachromosomal Gene Conversion in Mouse Cells

    PubMed Central

    Letsou, Anthea; Liskay, R. Michael

    1987-01-01

    With the intent of further exploring the nature of gene conversion in mammalian cells, we systematically addressed the effects of the molecular nature of mutation on the efficiency of intrachromosomal gene conversion in cultured mouse cells. Comparison of conversion rates revealed that all mutations studied were suitable substrates for gene conversion; however, we observed that the rates at which different mutations converted to wild-type could differ by two orders of magnitude. Differences in conversion rates were correlated with the molecular nature of the mutations. In general, rates of conversion decreased with increasing size of the molecular lesions. In comparisons of conversion rates for single base pair insertions and deletions we detected a genotype-directed path for conversion, by which an insertion was converted to wild-type three to four times more efficiently than was a deletion which maps to the same site. The data are discussed in relation to current theories of gene conversion, and are consistent with the idea that gene conversion in mammalian cells can result from repair of heteroduplex DNA (hDNA) intermediates. PMID:2828159

  9. Core French: A Selected Annotated Resource List.

    ERIC Educational Resources Information Center

    Boyd, J. A.; Mollica, Anthony

    1985-01-01

    This is an annotated bibliography of: readers, workbooks, conversation books, cultural sources and readings, flash cards, duplicating or line masters, and media kits submitted by publishers as applicable to French second language instruction from kindergarten through senior high school levels. (MSE)

  10. Interfaith Dialogue as a Means for Transformational Conversations

    ERIC Educational Resources Information Center

    Krebs, Stephanie Russell

    2015-01-01

    This article reports findings, inspired by the researcher's personal, transformational experience, on students' responses to an interfaith dialogue at an Interfaith Youth Core Interfaith Leadership Institute. Results demonstrated that several factors characterize interfaith dialogue: the environment, individual relationships fostered through…

  11. Identifying a New Mechanism of HIV Core Formation | Center for Cancer Research

    Cancer.gov

    During the maturation of human immunodeficiency virus 1 (HIV-1), viral particles transition from a noninfectious form to an infectious one, and this conversion requires the cleavage of the HIV-1 Gag polyprotein. Gag is made up of three structural proteins—matrix (MA), capsid (CA), and nucleocapsid (NC)—connected by linkers. MA anchors Gag in the membrane, CA surrounds the HIV-1 core, and NC packages the viral RNA within the core. Current models of the development of HIV-1 suggest that when CA is cleaved from Gag it dissociates from the membrane and moves into the virus interior before nucleating, in a concentration-dependent manner, into the core, which is the last step in virus maturation. The core is thought to grow from its narrow end stopping only when it reaches the opposite side of the virus membrane. Since blocking the formation of infectious viral particles is an important therapeutic strategy, it is critical to understand the detailed mechanism of core maturation.

  12. Fiber type conversion alters inactivation of voltage-dependent sodium currents in murine C2C12 skeletal muscle cells.

    PubMed

    Zebedin, Eva; Sandtner, Walter; Galler, Stefan; Szendroedi, Julia; Just, Herwig; Todt, Hannes; Hilber, Karlheinz

    2004-08-01

    Each skeletal muscle of the body contains a unique composition of "fast" and "slow" muscle fibers, each of which is specialized for certain challenges. This composition is not static, and the muscle fibers are capable of adapting their molecular composition by altered gene expression (i.e., fiber type conversion). Whereas changes in the expression of contractile proteins and metabolic enzymes in the course of fiber type conversion are well described, little is known about possible adaptations in the electrophysiological properties of skeletal muscle cells. Such adaptations may involve changes in the expression and/or function of ion channels. In this study, we investigated the effects of fast-to-slow fiber type conversion on currents via voltage-gated Na+ channels in the C(2)C(12) murine skeletal muscle cell line. Prolonged treatment of cells with 25 nM of the Ca2+ ionophore A-23187 caused a significant shift in myosin heavy chain isoform expression from the fast toward the slow isoform, indicating fast-to-slow fiber type conversion. Moreover, Na+ current inactivation was significantly altered. Slow inactivation less strongly inhibited the Na+ currents of fast-to-slow fiber type-converted cells. Compared with control cells, the Na+ currents of converted cells were more resistant to block by tetrodotoxin, suggesting enhanced relative expression of the cardiac Na+ channel isoform Na(v)1.5 compared with the skeletal muscle isoform Na(v)1.4. These results imply that fast-to-slow fiber type conversion of skeletal muscle cells involves functional adaptation of their electrophysiological properties.

  13. Identification of both copy number variation-type and constant-type core elements in a large segmental duplication region of the mouse genome

    PubMed Central

    2013-01-01

    Background Copy number variation (CNV), an important source of diversity in genomic structure, is frequently found in clusters called CNV regions (CNVRs). CNVRs are strongly associated with segmental duplications (SDs), but the composition of these complex repetitive structures remains unclear. Results We conducted self-comparative-plot analysis of all mouse chromosomes using the high-speed and large-scale-homology search algorithm SHEAP. For eight chromosomes, we identified various types of large SD as tartan-checked patterns within the self-comparative plots. A complex arrangement of diagonal split lines in the self-comparative-plots indicated the presence of large homologous repetitive sequences. We focused on one SD on chromosome 13 (SD13M), and developed SHEPHERD, a stepwise ab initio method, to extract longer repetitive elements and to characterize repetitive structures in this region. Analysis using SHEPHERD showed the existence of 60 core elements, which were expected to be the basic units that form SDs within the repetitive structure of SD13M. The demonstration that sequences homologous to the core elements (>70% homology) covered approximately 90% of the SD13M region indicated that our method can characterize the repetitive structure of SD13M effectively. Core elements were composed largely of fragmented repeats of a previously identified type, such as long interspersed nuclear elements (LINEs), together with partial genic regions. Comparative genome hybridization array analysis showed that whereas 42 core elements were components of CNVR that varied among mouse strains, 8 did not vary among strains (constant type), and the status of the others could not be determined. The CNV-type core elements contained significantly larger proportions of long terminal repeat (LTR) types of retrotransposon than the constant-type core elements, which had no CNV. The higher divergence rates observed in the CNV-type core elements than in the constant type indicate that the CNV-type core elements have a longer evolutionary history than constant-type core elements in SD13M. Conclusions Our methodology for the identification of repetitive core sequences simplifies characterization of the structures of large SDs and detailed analysis of CNV. The results of detailed structural and quantitative analyses in this study might help to elucidate the biological role of one of the SDs on chromosome 13. PMID:23834397

  14. Steady-State Thermal-Hydraulics Analyses for the Conversion of the BR2 Reactor to LEU

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Licht, J. R.; Bergeron, A.; Dionne, B.

    2015-12-01

    BR2 is a research reactor used for radioisotope production and materials testing. It’s a tank-in-pool type reactor cooled by light water and moderated by beryllium and light water (Figure 1). The reactor core consists of a beryllium moderator forming a matrix of 79 hexagonal prisms in a hyperboloid configuration; each having a central bore that can contain a variety of different components such as a fuel assembly, a control or regulating rod, an experimental device, or a beryllium or aluminum plug. Based on a series of tests, the BR2 operation is currently limited to a maximum allowable heat flux ofmore » 470 W/cm2 to ensure fuel plate integrity during steady-state operation and after a loss-of-flow/loss-of-pressure accident.« less

  15. Metal-core/semiconductor-shell nanocones for broadband solar absorption enhancement.

    PubMed

    Zhou, Lin; Yu, Xiaoqiang; Zhu, Jia

    2014-02-12

    Nanostructure-based photovoltaic devices have exhibited several advantages, such as reduced reflection, extraordinary light trapping, and so forth. In particular, semiconductor nanostructures provide optical modes that have strong dependence on the size and geometry. Metallic nanostructures also attract a lot of attention because of the appealing plasmonic effect on the near-field enhancement. In this study, we propose a novel design, the metal-core/semiconductor-shell nanocones with the core radius varying in a linearly gradient style. With a thin layer of semiconductor absorber coated on a metallic cone, such a design can lead to significant and broadband absorption enhancement across the entire visible and near-infrared solar spectrum. As an example of demonstration, a layer of 16 nm thick crystalline silicon (c-Si) coated on a silver nanocone can absorb 27% of standard solar radiation across a broad spectral range of 300-1100 nm, which is equivalent to a 700 nm thick flat c-Si film. Therefore, the absorption enhancement factor approaching the Yablonovitch limit is achieved with this design. The significant absorption enhancement can be ascribed to three types of optical modes, that is, Fabry-Perot modes, plasmonic modes, and hybrid modes that combine the features of the previous two. In addition, the unique nanocone geometry enables the linearly gradient radius of the semiconductor shell, which can support multiple optical resonances, critical for the broadband absorption. Our design may find general usage as elements for the low cost, high efficiency solar conversion and water-splitting devices.

  16. Realization and optimization of a 1 ns pulsewidth multi-stage 250 kW peak power monolithic Yb doped fiber amplifier at 1064 nm

    NASA Astrophysics Data System (ADS)

    Morasse, Bertrand; Plourde, Estéban

    2017-02-01

    We present a simple way to achieve and optimize hundreds of kW peak power pulsed output using a monolithic amplifier chain based on solid core double cladding fiber tightly packaged. A fiber pigtailed current driven diode is used to produce nanosecond pulses at 1064 nm. We present how to optimize the use of Fabry-Perot versus DFB type diode along with the proper wavelength locking using a fiber Bragg grating. The optimization of the two pre-amplifiers with respect to the pump wavelength and Yb inversions is presented. We explain how to manage ASE using core and cladding pumping and by using single pass and double pass amplifier. ASE rejection within the Yb fiber itself and with the use of bandpass filter is discussed. Maximizing the amplifier conversion efficiency with regards to the fiber parameters, glass matrix and signal wavelength is described in details. We present how to achieve high peak power at the power amplifier stage using large core/cladding diameter ratio highly doped Yb fibers pumped at 975 nm. The effect of pump bleaching on the effective Yb fiber length is analyzed carefully. We demonstrate that counter-pumping brings little advantage in very short length amplifier. Dealing with the self-pulsation limit of stimulated Brillouin scattering is presented with the adjustment of the seed pulsewidth and linewidth. Future prospects for doubling the output peak power are discussed.

  17. Proteomics and comparative genomics of Nitrososphaera viennensis reveal the core genome and adaptations of archaeal ammonia oxidizers

    PubMed Central

    Kerou, Melina; Offre, Pierre; Valledor, Luis; Abby, Sophie S.; Melcher, Michael; Nagler, Matthias; Weckwerth, Wolfram; Schleper, Christa

    2016-01-01

    Ammonia-oxidizing archaea (AOA) are among the most abundant microorganisms and key players in the global nitrogen and carbon cycles. They share a common energy metabolism but represent a heterogeneous group with respect to their environmental distribution and adaptions, growth requirements, and genome contents. We report here the genome and proteome of Nitrososphaera viennensis EN76, the type species of the archaeal class Nitrososphaeria of the phylum Thaumarchaeota encompassing all known AOA. N. viennensis is a soil organism with a 2.52-Mb genome and 3,123 predicted protein-coding genes. Proteomic analysis revealed that nearly 50% of the predicted genes were translated under standard laboratory growth conditions. Comparison with genomes of closely related species of the predominantly terrestrial Nitrososphaerales as well as the more streamlined marine Nitrosopumilales [Candidatus (Ca.) order] and the acidophile “Ca. Nitrosotalea devanaterra” revealed a core genome of AOA comprising 860 genes, which allowed for the reconstruction of central metabolic pathways common to all known AOA and expressed in the N. viennensis and “Ca. Nitrosopelagicus brevis” proteomes. Concomitantly, we were able to identify candidate proteins for as yet unidentified crucial steps in central metabolisms. In addition to unraveling aspects of core AOA metabolism, we identified specific metabolic innovations associated with the Nitrososphaerales mediating growth and survival in the soil milieu, including the capacity for biofilm formation, cell surface modifications and cell adhesion, and carbohydrate conversions as well as detoxification of aromatic compounds and drugs. PMID:27864514

  18. Skeletal muscle fiber type conversion during the repair of mouse soleus: potential implications for muscle healing after injury.

    PubMed

    Matsuura, Tetsuya; Li, Yong; Giacobino, Jean-Paul; Fu, Freddie H; Huard, Johnny

    2007-11-01

    We used a mouse model of cardiotoxin injury to examine fiber type conversion during muscle repair. We evaluated the soleus muscles of 37 wild-type mice at 2, 4, 8, and 12 weeks after injury. We also used antibodies (fMHC and sMHC) against fast and slow myosin heavy chain to classify the myofibers into three categories: fast-, slow-, and mixed (hybrid)-type myofibers (myofibers expressing both fMHC and sMHC). Our results revealed an increase in the percentage of slow-type myofibers and a decrease in the percentage of fast-type myofibers during the repair process. The percentage of hybrid-type myofibers increased 2 weeks after injury, then gradually decreased over the following 6 weeks. Similarly, our analysis of centronucleated myofibers showed an increase in the percentage of slow-type myofibers and decreases in the percentages of fast- and hybrid-type myofibers. We also investigated the relationship between myofiber type conversion and peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha). The expression of both PGC-1alpha protein, which is expressed in both the nucleus and the cytoplasm of regenerating myofibers, and sMHC protein increased with time after cardiotoxin injection, but we observed no significant differential expression of fMHC protein in regenerating muscle fibers during muscle repair. PGC-1alpha-positive myofibers underwent fast to slow myofiber type conversion during the repair process. These results suggest that PGC-1alpha contributes to myofiber type conversion after muscle injury and that this phenomenon could influence the recovery of the injured muscle. (c) 2007 Orthopaedic Research Society.

  19. High efficiency thermionic converter studies

    NASA Technical Reports Server (NTRS)

    Huffman, F. N.; Sommer, A. H.; Balestra, C. L.; Briere, T. R.; Lieb, D.; Oettinger, P. E.; Goodale, D. B.

    1977-01-01

    Research in thermionic energy conversion technology is reported. The objectives were to produce converters suitable for use in out of core space reactors, radioisotope generators, and solar satellites. The development of emitter electrodes that operate at low cesium pressure, stable low work function collector electrodes, and more efficient means of space charge neutralization were investigated to improve thermionic converter performance. Potential improvements in collector properties were noted with evaporated thin film barium oxide coatings. Experiments with cesium carbonate suggest this substance may provide optimum combinations of cesium and oxygen for thermionic conversion.

  20. Oh Darn! I'd Love to Come, but I Already Have Plans: Television Invitations as Conversational Models.

    ERIC Educational Resources Information Center

    Salzman, Ann

    1989-01-01

    The degree to which television conversations follow the rules of naturally occurring conversation is investigated. The occurrences of 1 type of pragmatic behavior (the dispreferred behavior of refusing social invitations) in 25 television conversations are compared with a theoretical description of such conversational strategies. (seven…

  1. Designing of an artificial light energy converter in the form of short-chain dyad when combined with core-shell gold/silver nanocomposites.

    PubMed

    Dutta Pal, Gopa; Paul, Somnath; Bardhan, Munmun; De, Asish; Ganguly, Tapan

    2017-06-05

    UV-vis absorption, steady state and time resolved fluorescence and absorption spectroscopic investigations demonstrate that the short chain dyad MNTMA when combined with gold-silver core-shell (Au@Ag) nanocomposite , forms elongated conformers in the excited state whereas for the dyad - Ag (spherical) system the majority of dyads remains in a folded conformation. In the dyad-core-shell nanocomposite system, energy wasting charge recombination rate slows down primarily due to elongated conformation and thus it may be anticipated that this hybrid nanocomposite system may serve as a better light energy conversion device. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Engineering Localized Surface Plasmon Interactions in Gold by Silicon Nanowire for Enhanced Heating and Photocatalysis

    DOE PAGES

    Agarwal, Daksh; Aspetti, Carlos O.; Cargnello, Matteo; ...

    2017-02-06

    The field of plasmonics has attracted considerable attention in recent years because of potential applications in various fields such as nanophotonics, photovoltaics, energy conversion, catalysis, and therapeutics. It is becoming increasing clear that intrinsic high losses associated with plasmons can be utilized to create new device concepts to harvest the generated heat. It is therefore important to design cavities, which can harvest optical excitations efficiently to generate heat. In this paper, we report a highly engineered nanowire cavity, which utilizes a high dielectric silicon core with a thin plasmonic film (Au) to create an effective metallic cavity to strongly confinemore » light, which when coupled with localized surface plasmons in the nanoparticles of the thin metal film produces exceptionally high temperatures upon laser irradiation. Raman spectroscopy of the silicon core enables precise measurements of the cavity temperature, which can reach values as high as 1000 K. The same Si–Au cavity with enhanced plasmonic activity when coupled with TiO 2 nanorods increases the hydrogen production rate by ~40% compared to similar Au–TiO 2 system without Si core, in ethanol photoreforming reactions. Finally, these highly engineered thermoplasmonic devices, which integrate three different cavity concepts (high refractive index core, metallo-dielectric cavity, and localized surface plasmons) along with the ease of fabrication demonstrate a possible pathway for designing optimized plasmonic devices with applications in energy conversion and catalysis.« less

  3. Engineering Localized Surface Plasmon Interactions in Gold by Silicon Nanowire for Enhanced Heating and Photocatalysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agarwal, Daksh; Aspetti, Carlos O.; Cargnello, Matteo

    The field of plasmonics has attracted considerable attention in recent years because of potential applications in various fields such as nanophotonics, photovoltaics, energy conversion, catalysis, and therapeutics. It is becoming increasing clear that intrinsic high losses associated with plasmons can be utilized to create new device concepts to harvest the generated heat. It is therefore important to design cavities, which can harvest optical excitations efficiently to generate heat. In this paper, we report a highly engineered nanowire cavity, which utilizes a high dielectric silicon core with a thin plasmonic film (Au) to create an effective metallic cavity to strongly confinemore » light, which when coupled with localized surface plasmons in the nanoparticles of the thin metal film produces exceptionally high temperatures upon laser irradiation. Raman spectroscopy of the silicon core enables precise measurements of the cavity temperature, which can reach values as high as 1000 K. The same Si–Au cavity with enhanced plasmonic activity when coupled with TiO 2 nanorods increases the hydrogen production rate by ~40% compared to similar Au–TiO 2 system without Si core, in ethanol photoreforming reactions. Finally, these highly engineered thermoplasmonic devices, which integrate three different cavity concepts (high refractive index core, metallo-dielectric cavity, and localized surface plasmons) along with the ease of fabrication demonstrate a possible pathway for designing optimized plasmonic devices with applications in energy conversion and catalysis.« less

  4. Tunable plasmon-enhanced broadband light harvesting for perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Que, Meidan; Zhu, Liangliang; Yang, Yawei; Liu, Jie; Chen, Peng; Chen, Wei; Yin, Xingtian; Que, Wenxiu

    2018-04-01

    In this work, we report a reliable method for synthesizing (Au, Au/Ag core)/(TiO2 shell) nanostructures with their plasmonic wavelengths covering the visible light region for perovskite solar cells. The mono- and bi-metallic core-shell nanoparticles exhibit tunable localized surface plasmon resonance wavelength and function as "light tentacle" to improve the photo-electricity conversion efficiency. Plasmonic nanoparticles with different sizes and shapes, different thicknesses of TiO2 shell and Ag interlayer are found to have a strong influence on the localized surface plasmon resonance enhancement effect. The experimental photovoltaic performance of perovskite solar cells is significantly enhanced when the plasmonic nanoparticles are embedded inmesoporous TiO2 scaffolds. A champion photo-electricity conversion efficiency of 17.85% is achieved with nanoparticles (Au/Ag, λLSPR = 650 nm), giving a 18.7% enhancement over that of the pristine device (15.04%). Finite-difference time-domain simulations show that nanorod Au in mesoporus TiO2 scaffold induces the most intense electromagnetic coupling, and provides a novel emitter for photon flux in mesoporous perovskite solar cells. These theoretical results are consistent with the corresponding experimental those. Thus, enhancing the incident light intensities around 650 nm will be most favorable to the improvement of the photo-electricity conversion efficiency of perovskite solar cells.

  5. Is self disturbance the core of borderline personality disorder? An outcome study of borderline personality factors.

    PubMed

    Meares, Russell; Gerull, Friederike; Stevenson, Janine; Korner, Anthony

    2011-03-01

    To determine which constellation of clinical features constitutes the core of borderline personality disorder (BPD). The criterion of endurance was used to identify the constellation of features which are most basic, or core, in borderline personality disorder. Two sets of constellations of DSM-III features were tested, each consisting of three groupings. The first set of constellations was constructed according to Clarkin's factor analysis; the second was theoretically derived. Broadly speaking, the three groupings concerned 'self', 'emotional regulation', and 'impulse'. Changes of these constellations were charted over one year in a comparison of the effect of treatment by the Conversational Model (n = 29) with treatment as usual (n = 31). In addition, measures of typical depression (Zung) were scored before and after the treatment period. The changes in the constellations were considered in relation to authoritative opinion. The changes in the two sets of constellations were similar. In the treatment as usual (TAU) group, 'self' endured unchanged, while 'emotional regulation' and 'impulse' improved. In the Conversational Model cohort, 'self' improved, 'emotional regulation' improved more greatly than the TAU group, while 'impulse' improved but not more than the treatment as usual group. Depression scores were not particularly associated with any grouping. A group of features including self/identity disturbance, emptiness and fear of abandonment may be at the core of BPD. Correlations between the three groupings and Zung scores favoured the view that the core affect is not typical depression. Rather, the central state may be 'painful incoherence'. It is suggested that the findings have implications for the refinement and elaboration of treatment methods in borderline personality disorder.

  6. Gold decorated NaYF4:Yb,Er/NaYF4/silica (core/shell/shell) upconversion nanoparticles for photothermal destruction of BE(2)-C neuroblastoma cells

    NASA Astrophysics Data System (ADS)

    Qian, Li Peng; Zhou, Li Han; Too, Heng-Phon; Chow, Gan-Moog

    2011-02-01

    Gold decorated NaYF4:Yb,Er/NaYF4/silica (core/shell/shell) upconversion (UC) nanoparticles ( 70-80 nm) were synthesized using tetraethyl orthosilicate and chloroauric acid in a one-step reverse microemulsion method. Gold nanoparticles ( 6 nm) were deposited on the surface of silica shell of these core/shell/shell nanoparticles. The total upconversion emission intensity (green, red, and blue) of the core/shell/shell nanoparticles decreased by 31% after Au was deposited on the surface of silica shell. The upconverted green light was coupled with the surface plasmon of Au leading to rapid heat conversion. These UC/silica/Au nanoparticles were very efficient to destroy BE(2)-C cancer cells and showed strong potential in photothermal therapy.

  7. 76 FR 13504 - Conversions of Insured Credit Unions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-14

    ... Conversions of Insured Credit Unions AGENCY: National Credit Union Administration (NCUA). ACTION: Final rule... phrase ``Regional Director'' in NCUA's rule on credit union to mutual savings bank conversions. For... for the review and approval of certain types of credit union conversions from the Regional Directors...

  8. Highly Flexible Dye-sensitized Solar Cells Produced by Sewing Textile Electrodes on Cloth

    PubMed Central

    Yun, Min Ju; Cha, Seung I.; Seo, Seon Hee; Lee, Dong Y.

    2014-01-01

    Textile forms of solar cells possess special advantages over other types of solar cells, including their light weight, high flexibility, and mechanical robustness. Recent demand for wearable devices has promoted interest in the development of high-efficiency textile-based solar cells for energy suppliers. However, the weaving process occurs under high-friction, high-tension conditions that are not conducive to coated solar-cell active layers or electrodes deposited on the wire or strings. Therefore, a new approach is needed for the development of textile-based solar cells suitable for woven fabrics for wide-range application. In this report, we present a highly flexible, efficient DSSC, fabricated by sewing textile-structured electrodes onto casual fabrics such as cotton, silk, and felt, or paper, thereby forming core integrated DSSC structures with high energy-conversion efficiency (~5.8%). The fabricated textile-based DSSC devices showed high flexibility and high performance under 4-mm radius of curvature over thousands of deformation cycles. Considering the vast number of textile types, our textile-based DSSC devices offer a huge range of applications, including transparent, stretchable, wearable devices. PMID:24957920

  9. Highly flexible dye-sensitized solar cells produced by sewing textile electrodes on cloth.

    PubMed

    Yun, Min Ju; Cha, Seung I; Seo, Seon Hee; Lee, Dong Y

    2014-06-24

    Textile forms of solar cells possess special advantages over other types of solar cells, including their light weight, high flexibility, and mechanical robustness. Recent demand for wearable devices has promoted interest in the development of high-efficiency textile-based solar cells for energy suppliers. However, the weaving process occurs under high-friction, high-tension conditions that are not conducive to coated solar-cell active layers or electrodes deposited on the wire or strings. Therefore, a new approach is needed for the development of textile-based solar cells suitable for woven fabrics for wide-range application. In this report, we present a highly flexible, efficient DSSC, fabricated by sewing textile-structured electrodes onto casual fabrics such as cotton, silk, and felt, or paper, thereby forming core integrated DSSC structures with high energy-conversion efficiency (~5.8%). The fabricated textile-based DSSC devices showed high flexibility and high performance under 4-mm radius of curvature over thousands of deformation cycles. Considering the vast number of textile types, our textile-based DSSC devices offer a huge range of applications, including transparent, stretchable, wearable devices.

  10. Family and infant characteristics associated with timing of core and non-core food introduction in early childhood.

    PubMed

    Schrempft, S; van Jaarsveld, C H M; Fisher, A; Wardle, J

    2013-06-01

    To identify family and infant characteristics associated with timing of introduction of two food types: core foods (nutrient-dense) and non-core foods (nutrient-poor) in a population-based sample of mothers and infants. Participants were 1861 mothers and infants from the Gemini twin birth cohort (one child per family). Family and infant characteristics were assessed when the infants were around 8 months old. Timing of introducing core and non-core foods was assessed at 8 and 15 months. As the distributions of timing were skewed, three similar-sized groups were created for each food type: earlier (core: 1-4 months; non-core: 3-8 months), average (core: 5 months; non-core: 9-10 months) and later introduction (core: 6-12 months; non-core: 11-18 months). Ordinal logistic regression was used to examine predictors of core and non-core food introduction, with bootstrapping to test for differences between the core and non-core models. Younger maternal age, lower education level and higher maternal body mass index were associated with earlier core and non-core food introduction. Not breastfeeding for at least 3 months and higher birth weight were specifically associated with earlier introduction of core foods. Having older children was specifically associated with earlier introduction of non-core foods. There are similarities and differences in the characteristics associated with earlier introduction of core and non-core foods. Successful interventions may require a combination of approaches to target both food types.

  11. Capabilities and Testing of the Fission Surface Power Primary Test Circuit (FSP-PTC)

    NASA Technical Reports Server (NTRS)

    Garber, Anne E.

    2007-01-01

    An actively pumped alkali metal flow circuit, designed and fabricated at the NASA Marshall Space Flight Center, is currently undergoing testing in the Early Flight Fission Test Facility (EFF-TF). Sodium potassium (NaK), which was used in the SNAP-10A fission reactor, was selected as the primary coolant. Basic circuit components include: simulated reactor core, NaK to gas heat exchanger, electromagnetic (EM) liquid metal pump, liquid metal flowmeter, load/drain reservoir, expansion reservoir, test section, and instrumentation. Operation of the circuit is based around a 37-pin partial-array core (pin and flow path dimensions are the same as those in a full core), designed to operate at 33 kWt. NaK flow rates of greater than 1 kg/sec may be achieved, depending upon the power applied to the EM pump. The heat exchanger provides for the removal of thermal energy from the circuit, simulating the presence of an energy conversion system. The presence of the test section increases the versatility of the circuit. A second liquid metal pump, an energy conversion system, and highly instrumented thermal simulators are all being considered for inclusion within the test section. This paper summarizes the capabilities and ongoing testing of the Fission Surface Power Primary Test Circuit (FSP-PTC).

  12. Performance and Fabrication Status of TREAT LEU Conversion Conceptual Design Concepts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    IJ van Rooyen; SR Morrell; AE Wright

    2014-10-01

    Resumption of transient testing at the TREAT facility was approved in February 2014 to meet U.S. Department of Energy (DOE) objectives. The National Nuclear Security Administration’s Global Threat Reduction Initiative Convert Program is evaluating conversion of TREAT from its existing highly enriched uranium (HEU) core to a new core containing low enriched uranium (LEU). This paper describes briefly the initial pre-conceptual designs screening decisions with more detailed discussions on current feasibility, qualification and fabrication approaches. Feasible fabrication will be shown for a LEU fuel element assembly that can meet TREAT design, performance, and safety requirements. The statement of feasibility recognizesmore » that further development, analysis, and testing must be completed to refine the conceptual design. Engineering challenges such as cladding oxidation, high temperature material properties, and fuel block fabrication along with neutronics performance, will be highlighted. Preliminary engineering and supply chain evaluation provided confidence that the conceptual designs can be achieved.« less

  13. End-to-End Demonstrator of the Safe Affordable Fission Engine (SAFE) 30: Power Conversion and Ion Engine Operation

    NASA Technical Reports Server (NTRS)

    Hrbud, Ivana; VanDyke, Melissa; Houts, Mike; Goodfellow, Keith; Schafer, Charles (Technical Monitor)

    2001-01-01

    The Safe Affordable Fission Engine (SAFE) test series addresses Phase 1 Space Fission Systems issues in particular non-nuclear testing and system integration issues leading to the testing and non-nuclear demonstration of a 400-kW fully integrated flight unit. The first part of the SAFE 30 test series demonstrated operation of the simulated nuclear core and heat pipe system. Experimental data acquired in a number of different test scenarios will validate existing computational models, demonstrated system flexibility (fast start-ups, multiple start-ups/shut downs), simulate predictable failure modes and operating environments. The objective of the second part is to demonstrate an integrated propulsion system consisting of a core, conversion system and a thruster where the system converts thermal heat into jet power. This end-to-end system demonstration sets a precedent for ground testing of nuclear electric propulsion systems. The paper describes the SAFE 30 end-to-end system demonstration and its subsystems.

  14. Evaluation of a uranium zirconium hydride fuel rod option for conversion of the MIT research reactor (MITR) from highly-enriched uranium to low-enriched uranium

    DOE PAGES

    Dunn, F. E.; Wilson, E. H.; Feldman, E. E.; ...

    2017-03-23

    The conversion of the Massachusetts Institute of Technology Reactor (MITR) from the use of highly-enriched uranium (HEU) fuel-plate assemblies to low-enriched uranium (LEU) by replacing the HEU fuel plates with specially designed General Atomics (GA) uranium zirconium hydride (UZrH) LEU fuel rods is evaluated in this paper. The margin to critical heat flux (CHF) in the core, which is cooled by light water at low pressure, is evaluated analytically for steady-state operation. A form of the Groeneveld CHF lookup table method is used and described in detail. A CHF ratio of 1.41 was found in the present analysis at 10more » MW with engineering hot channel factors included. Therefore, the nominal reactor core power, and neutron flux performance, would need to be reduced by at least 25% in order to meet the regulatory requirement of a minimum CHF ratio of 2.0.« less

  15. Evaluation of a uranium zirconium hydride fuel rod option for conversion of the MIT research reactor (MITR) from highly-enriched uranium to low-enriched uranium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dunn, F. E.; Wilson, E. H.; Feldman, E. E.

    The conversion of the Massachusetts Institute of Technology Reactor (MITR) from the use of highly-enriched uranium (HEU) fuel-plate assemblies to low-enriched uranium (LEU) by replacing the HEU fuel plates with specially designed General Atomics (GA) uranium zirconium hydride (UZrH) LEU fuel rods is evaluated in this paper. The margin to critical heat flux (CHF) in the core, which is cooled by light water at low pressure, is evaluated analytically for steady-state operation. A form of the Groeneveld CHF lookup table method is used and described in detail. A CHF ratio of 1.41 was found in the present analysis at 10more » MW with engineering hot channel factors included. Therefore, the nominal reactor core power, and neutron flux performance, would need to be reduced by at least 25% in order to meet the regulatory requirement of a minimum CHF ratio of 2.0.« less

  16. Photo-thermal characteristics of water-based Fe3O4@SiO2 nanofluid for solar-thermal applications

    NASA Astrophysics Data System (ADS)

    Khashan, Saud; Dagher, Sawsan; Omari, Salahaddin Al; Tit, Nacir; Elnajjar, Emad; Mathew, Bobby; Hilal-Alnaqbi, Ali

    2017-05-01

    This work proposes and demonstrates the novel idea of using Fe3O4@SiO2 core/shell structure nanoparticles (NPs) to improve the solar thermal conversion efficiency. Magnetite (Fe3O4) NPs are synthesized by controlled co-precipitation method. Fe3O4@SiO2 NPs are prepared based on sol-gel approach, then characterized. Water-based Fe3O4@SiO2 nanofluid is prepared and usedto illustrate the photo-thermal conversion characteristics of a solar collector under solar simulator. The temperature rise characteristics of the nanofluids are investigated at different heights of the solar collector, for duration of 300 min, under a solar intensity of 1000 W m-2. The experimental results show that Fe3O4@SiO2 NPs have a core/shell structure with spherical morphology and size of about 400 nm. Fe3O4@SiO2/H2O nanofluid enhances the photo-thermal conversion efficiency compared with base fluid and Fe3O4/H2O nanofluid, since the silica coating improves both the thermodynamic stability of the nanofluid and the light absorption effectiveness of the NPs. At a concentration of 1 mg/1 ml of Fe3O4@SiO2/H2O, and with the utilization of kerosene into the solar collector, and exposure for radiation for 5 min, the photo-thermal conversion efficiency has shown an enhancement at the bottom of the collector of about 32.9% compared to the base fluid.

  17. Supplemental Thermal-Hydraulic Transient Analyses of BR2 in Support of Conversion to LEU Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Licht, J.; Dionne, B.; Sikik, E.

    2016-01-01

    Belgian Reactor 2 (BR2) is a research and test reactor located in Mol, Belgium and is primarily used for radioisotope production and materials testing. The Materials Management and Minimization (M3) Reactor Conversion Program of the National Nuclear Security Administration (NNSA) is supporting the conversion of the BR2 reactor from Highly Enriched Uranium (HEU) fuel to Low Enriched Uranium (LEU) fuel. The RELAP5/Mod 3.3 code has been used to perform transient thermal-hydraulic safety analyses of the BR2 reactor to support reactor conversion. A RELAP5 model of BR2 has been validated against select transient BR2 reactor experiments performed in 1963 by showingmore » agreement with measured cladding temperatures. Following the validation, the RELAP5 model was then updated to represent the current use of the reactor; taking into account core configuration, neutronic parameters, trip settings, component changes, etc. Simulations of the 1963 experiments were repeated with this updated model to re-evaluate the boiling risks associated with the currently allowed maximum heat flux limit of 470 W/cm 2 and temporary heat flux limit of 600 W/cm 2. This document provides analysis of additional transient simulations that are required as part of a modern BR2 safety analysis report (SAR). The additional simulations included in this report are effect of pool temperature, reduced steady-state flow rate, in-pool loss of coolant accidents, and loss of external cooling. The simulations described in this document have been performed for both an HEU- and LEU-fueled core.« less

  18. One-pot facile synthesis of reusable tremella-like M1@M2@M1(OH)2 (M1 = Co, Ni, M2 = Pt/Pd, Pt, Pd and Au) three layers core-shell nanostructures as highly efficient catalysts

    NASA Astrophysics Data System (ADS)

    Liu, Yadong; Fang, Zhen; Kuai, Long; Geng, Baoyou

    2014-07-01

    In this work, a general, facile, successive and eco-friendly method for multilayer nanostructures has been established for the first time. We take full advantage of the structural and compositional character of M1@M2 (M1 = Co, Ni, M2 = Pt/Pd, Pt, Pd and Au) core-shell nanostructures to prepare a series of reusable tremella-like M1@M2@M1(OH)2 three layer core-shell or yolk-shell nanocomposites with a magnetic core, a porous noble metal shell, and an ultrathin cobalt or nickel hydroxide shell. We evaluated their catalytic performance using a model reaction based on the reduction of 4-nitrophenol. These novel M1@M2@M1(OH)2 nanomaterials with a unique internal micro environment promoted the efficiency of the catalytic reaction, prolonged the service life of the catalyst and enhanced the overall activity of the catalyst in the catalytic process. The novel three layer core-shell nanocomposites can be extended to other applications such as biomedical detection, energy conversion and storage systems.In this work, a general, facile, successive and eco-friendly method for multilayer nanostructures has been established for the first time. We take full advantage of the structural and compositional character of M1@M2 (M1 = Co, Ni, M2 = Pt/Pd, Pt, Pd and Au) core-shell nanostructures to prepare a series of reusable tremella-like M1@M2@M1(OH)2 three layer core-shell or yolk-shell nanocomposites with a magnetic core, a porous noble metal shell, and an ultrathin cobalt or nickel hydroxide shell. We evaluated their catalytic performance using a model reaction based on the reduction of 4-nitrophenol. These novel M1@M2@M1(OH)2 nanomaterials with a unique internal micro environment promoted the efficiency of the catalytic reaction, prolonged the service life of the catalyst and enhanced the overall activity of the catalyst in the catalytic process. The novel three layer core-shell nanocomposites can be extended to other applications such as biomedical detection, energy conversion and storage systems. Electronic supplementary information (ESI) available: Fig. S1-S6. See DOI: 10.1039/c4nr01470g

  19. Parameter study of dual-mode space nuclear fission solid core power and propulsion systems, NUROC3A. AMS report No. 1239c

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, W.W.; Layton, J.P.

    1976-09-13

    The three-volume report describes a dual-mode nuclear space power and propulsion system concept that employs an advanced solid-core nuclear fission reactor coupled via heat pipes to one of several electric power conversion systems. The NUROC3A systems analysis code was designed to provide the user with performance characteristics of the dual-mode system. Volume 3 describes utilization of the NUROC3A code to produce a detailed parameter study of the system.

  20. Individual and family environment correlates differ for consumption of core and non-core foods in children.

    PubMed

    Johnson, Laura; van Jaarsveld, Cornelia H M; Wardle, Jane

    2011-03-01

    Children's diets contain too few fruits and vegetables and too many foods high in saturated fat. Food intake is affected by multiple individual and family factors, which may differ for core foods (that are important to a healthy diet) and non-core foods (that are eaten more for pleasure than health). Data came from a sample of twins aged 11 years (n 342) and their parents from the Twins Early Development Study. Foods were categorised into two types: core (e.g. cereals, vegetables and dairy) and non-core (e.g. fats, crisps and biscuits). Parents' and children's intake was assessed by an FFQ. Mothers' and children's preference ratings and home availability were assessed for each food type. Parental feeding practices were assessed with the child feeding questionnaire and child television (TV) watching was maternally reported. Physical activity was measured using accelerometers. Correlates of the child's consumption of each food type were examined using a complex samples general linear model adjusted for potential confounders. Children's non-core food intake was associated with more TV watching, higher availability and greater maternal intake of non-core foods. Children's core food intake was associated with higher preferences for core foods and greater maternal intake of core foods. These results suggest that maternal intake influences both food types, while preferences affect intake of core foods but not of non-core foods, and availability and TV exposure were only important for non-core food intake. Cross-sectional studies cannot determine causality, but the present results suggest that different approaches may be needed to change the balance of core and non-core foods in children's diets.

  1. Kinetics of Scheelite Conversion in Sulfuric Acid

    NASA Astrophysics Data System (ADS)

    Shen, Leiting; Li, Xiaobin; Zhou, Qiusheng; Peng, Zhihong; Liu, Guihua; Qi, Tiangui; Taskinen, Pekka

    2018-02-01

    Complete conversion of scheelite in H2SO4 solution plays a key role in exploration of cleaner technology for producing ammonium paratungstate. In this work, the factors influencing scheelite conversion were investigated experimentally to model its kinetics. The results indicated that the conversion rate increases with increasing temperature and reducing particle size, but is almost independent of stirring speed. Moreover, although the conversion rate increases with increasing initial H2SO4 concentration (≤ 1.25 mol/L), it decreases rapidly at 1.5 mol/L H2SO4 after 10 min due to formation of a H2WO4 layer. The experimental data agree quite well with the shrinking core model under chemical reaction control in ≤ 1.25 mol/L H2SO4 solution, and the kinetic equation was established as: 1- ( 1- α )^{ 1 / 3} = 2 2 2 5 4 6. 6\\cdot C_{{{H}_{ 2} {SO}_{ 4} }}^{ 1. 2 2 6} \\cdot r_{ 0}^{ - 1} \\cdot e^{{ - 3 9 2 6 0/RT}} \\cdot t (t, min). This work could contribute to better understanding of scheelite conversion in H2SO4 solution and development of a new route for ammonium paratungstate production.

  2. Conversion of rat muscle fiber types. A time course study.

    PubMed

    Oakley, C R; Gollnick, P D

    1985-01-01

    Rats were used in this study to determine the time course of conversion of muscle fiber types. The right or left gastrocnemius muscle was removed thereby causing an overload on the ipsilateral soleus and plantaris muscles. The contralateral limb served as a control. The type II to type I fiber conversion was followed histochemically in the soleus and plantaris muscles for one to six weeks following surgery. Muscle sections were stained for myofibrillar actomyosin ATPase and NADH tetrazolium reductase. The type I population in the soleus muscle was 99.3% six weeks after synergist removal. The plantaris muscle underwent a two fold increase in the percentage of type I fibers after six weeks. Transitional fibers were prominent in the plantaris muscle and reached their peak at 4% (P less than 0.05) of the total population, four weeks after surgery.

  3. Highly efficient near-infrared light-emitting diodes by using type-II CdTe/CdSe core/shell quantum dots as a phosphor

    NASA Astrophysics Data System (ADS)

    Shen, Huaibin; Zheng, Ying; Wang, Hongzhe; Xu, Weiwei; Qian, Lei; Yang, Yixing; Titov, Alexandre; Hyvonen, Jake; Li, Lin Song

    2013-11-01

    In this paper, we present an innovative method for the synthesis of CdTe/CdSe type-II core/shell structure quantum dots (QDs) using ‘greener’ chemicals. The PL of CdTe/CdSe type-II core/shell structure QDs ranges from 600 to 820 nm, and the as-synthesized core/shell structures show narrow size distributions and stable and high quantum yields (50-75%). Highly efficient near-infrared light-emitting diodes (LEDs) have been demonstrated by employing the CdTe/CdSe type-II core/shell QDs as emitters. The devices fabricated based on these type-II core/shell QDs show color-saturated near-infrared emission from the QD layers, a low turn-on voltage of 1.55 V, an external quantum efficiency (EQE) of 1.59%, and a current density and maximum radiant emittance of 2.1 × 103 mA cm-2 and 17.7 mW cm-2 at 8 V it is the first report to use type-II core/shell QDs as near-infrared emitters and these results may offer a practicable platform for the realization of near-infrared QD-based light-emitting diodes, night-vision-readable displays, and friend/foe identification system.

  4. Highly flexible transparent self-healing composite based on electrospun core-shell nanofibers produced by coaxial electrospinning for anti-corrosion and electrical insulation

    NASA Astrophysics Data System (ADS)

    An, Seongpil; Liou, Minho; Song, Kyo Yong; Jo, Hong Seok; Lee, Min Wook; Al-Deyab, Salem S.; Yarin, Alexander L.; Yoon, Sam S.

    2015-10-01

    Coaxial electrospinning was used to fabricate two types of core-shell fibers: the first type with liquid resin monomer in the core and polyacrylonitrile in the shell, and the second type with liquid curing agent in the core and polyacrylonitrile in the shell. These two types of core-shell fibers were mutually entangled and embedded into two flexible transparent matrices thus forming transparent flexible self-healing composite materials. Such materials could be formed before only using emulsion electrospinning, rather than coaxial electrospinning. The self-healing properties of such materials are associated with release of healing agents (resin monomer and cure) from nanofiber cores in damaged locations with the subsequent polymerization reaction filing the micro-crack with polydimethylsiloxane. Transparency of these materials is measured and the anti-corrosive protection provided by them is demonstrated in electrochemical experiments.

  5. 47 CFR 80.761 - Conversion graphs.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Conversion graphs. 80.761 Section 80.761... MARITIME SERVICES Standards for Computing Public Coast Station VHF Coverage § 80.761 Conversion graphs. The following graphs must be employed where conversion from one to the other of the indicated types of units is...

  6. 47 CFR 80.761 - Conversion graphs.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Conversion graphs. 80.761 Section 80.761... MARITIME SERVICES Standards for Computing Public Coast Station VHF Coverage § 80.761 Conversion graphs. The following graphs must be employed where conversion from one to the other of the indicated types of units is...

  7. Design of batch audio/video conversion platform based on JavaEE

    NASA Astrophysics Data System (ADS)

    Cui, Yansong; Jiang, Lianpin

    2018-03-01

    With the rapid development of digital publishing industry, the direction of audio / video publishing shows the diversity of coding standards for audio and video files, massive data and other significant features. Faced with massive and diverse data, how to quickly and efficiently convert to a unified code format has brought great difficulties to the digital publishing organization. In view of this demand and present situation in this paper, basing on the development architecture of Sptring+SpringMVC+Mybatis, and combined with the open source FFMPEG format conversion tool, a distributed online audio and video format conversion platform with a B/S structure is proposed. Based on the Java language, the key technologies and strategies designed in the design of platform architecture are analyzed emphatically in this paper, designing and developing a efficient audio and video format conversion system, which is composed of “Front display system”, "core scheduling server " and " conversion server ". The test results show that, compared with the ordinary audio and video conversion scheme, the use of batch audio and video format conversion platform can effectively improve the conversion efficiency of audio and video files, and reduce the complexity of the work. Practice has proved that the key technology discussed in this paper can be applied in the field of large batch file processing, and has certain practical application value.

  8. 47 CFR 54.5 - Terms and definitions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., address translation, protocol conversion, billing management, introductory information content, and... 1990s and identifiable from the most recent Metropolitan Statistical Area (MSA) list released by OMB, or... support mechanism, a “rural area” is an area that is entirely outside of a Core Based Statistical Area; is...

  9. Family and infant characteristics associated with timing of core and non-core food introduction in early childhood

    PubMed Central

    Schrempft, Stephanie; van Jaarsveld, Cornelia H.M.; Fisher, Abigail; Wardle, Jane

    2013-01-01

    Objective To identify family and infant characteristics associated with timing of introduction of two food types: core foods (nutrient-dense) and non-core foods (nutrient-poor) in a population-based sample of mothers and infants. Method Participants were 1861 mothers and infants from the Gemini twin birth cohort (one child per family). Family and infant characteristics were assessed when the infants were around 8 months old. Timing of introducing core and non-core foods was assessed at 8 and 15 months. As the distributions of timing were skewed, three similar-sized groups were created for each food type: earlier (core: 1–4 months; non-core: 3–8 months), average (core: 5 months; non-core: 9–10 months), and later introduction (core: 6–12 months; non-core: 11–18 months). Ordinal logistic regression was used to examine predictors of core and non-core food introduction, with bootstrapping to test for differences between the core and non-core models. Results Younger maternal age, lower education level, and higher maternal BMI were associated with earlier core and non-core food introduction. Not breastfeeding for at least 3 months and higher birth weight were specifically associated with earlier introduction of core foods. Having older children was specifically associated with earlier introduction of non-core foods. Conclusion There are similarities and differences in the characteristics associated with earlier introduction of core and non-core foods. Successful interventions may require a combination of approaches to target both food types. PMID:23486509

  10. X-ray and Neutron Scattering Study of the Formation of Core–Shell-Type Polyoxometalates

    DOE PAGES

    Yin, Panchao; Wu, Bin; Mamontov, Eugene; ...

    2016-02-05

    A typical type of core-shell polyoxometalates can be obtained through the Keggin-type polyoxometalate-templated growth of a layer of spherical shell structure of {Mo 72Fe 30}. Small angle X-ray scattering is used to study the structural features and stability of the core-shell structures in aqueous solutions. Time-resolved small angle X-ray scattering is applied to monitor the synthetic reactions and a three-stage formation mechanism is proposed to describe the synthesis of the core-shell polyoxometalates based on the monitoring results. Quasi-elastic and inelastic neutron scattering are used to probe the dynamics of water molecules in the core-shell structures and two different types ofmore » water molecules, the confined and structured water, are observed. These water molecules play an important role in bridging core and shell structures and stabilizing the cluster structures. A typical type of core shell polyoxometalates can be obtained through the Keggin-type polyoxometalate-templated growth of a layer of spherical shell structure of {Mo 72Fe 30}. Small-angle X-ray scattering is used to study the structural features and stability of the core shell structures in aqueous solutions. Time-resolved small-angle X-ray scattering is applied to monitor the synthetic reactions, and a three-stage formation mechanism is proposed to describe the synthesis of the core shell polyoxometalates based on the monitoring results. New protocols have been developed by fitting the X-ray data with custom physical models, which provide more convincing, objective, and completed data interpretation. Quasi-elastic and inelastic neutron scattering are used to probe the dynamics of water molecules in the core shell structures, and two different types of water molecules, the confined and structured water, are observed. These water molecules play an important role in bridging core and shell structures and stabilizing the cluster structures.« less

  11. Impact of two different types of grassland-to-cropland-conversion on dynamics of soil organic matter mineralization and N2O emission

    NASA Astrophysics Data System (ADS)

    Roth, G.; Flessa, H.; Helfrich, M.; Well, R.

    2012-04-01

    Conversion of grassland to arable land often causes a decrease of soil organic matter stocks and it increases nitrate leaching and the emission of the greenhouse gases CO2 and N2O. Conversion methods which minimize the mechanical impact on the surface soil may reduce mineralization rates and greenhouse gas emissions. We determined the effect of two different types of grassland to maize conversion (a) plowing of the sward followed by seeding of maize and (b) chemical killing of the sward by glyphosate followed by direct seed of maize) on the mineralization of grassland derived organic matter, the release of nitrate and the emission of N2O. The field experiment was carried out at the research station Kleve which is located in North Rhine-Westphalia, Germany. A four times replicated plot experiment with the following treatments was set up in April 2010: (i) mechanical conversion of grassland to maize (ii) chemical conversion grassland to maize and (iii) continuous grassland as reference. Nitrogen fertilization was 137 kg N ha-1 for maize and 250 kg N ha-1 for grassland. Soil respiration and emission of N2O were measured weekly for one year using manual closed chambers and gas chromatography. Emission of CO2 from mineralization of grassland-derived organic matter was determined from the δ13C signature of soil respiration. Soil respiration was mainly fueled by mineralization of grassland-derived organic carbon. There was no effect of the type of grassland conversion on total mineralization of organic matter originating from grassland. Both grassland to maize conversion treatments exhibited very high soil nitrate concentrations one year after grassland conversion (about 250 kg NO3-N in 0 - 90 cm). Total N2O emission decreased in the order chemical conversion of grassland (25.5) > mechanical conversion of grassland (20.1) > permanent grassland (10.8). Emissions were highest after harvest of maize when soil moisture increased. The results show that both types of grassland-to-maize conversion resulted in a large surplus of soil nitrate which promotes nitrate leaching to the groundwater and indirect N2O emissions. In addition, it caused high direct N2O emissions. We found no evidence that grassland conversion without mechanical plowing is an option to reduce groundwater contamination and greenhouse gas emission to the atmosphere.

  12. Magnetic interaction reversal in watermelon nanostructured Cr-doped Fe nanoclusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaur, Maninder; Qiang, You, E-mail: youqiang@uidaho.edu; Dai, Qilin

    2013-11-11

    Cr-doped core-shell Fe/Fe-oxide nanoclusters (NCs) were synthesized at varied atomic percentages of Cr from 0 at. % to 8 at. %. The low concentrations of Cr (<10 at. %) were selected in order to inhibit the complete conversion of the Fe-oxide shell to Cr{sub 2}O{sub 3} and the Fe core to FeCr alloy. The magnetic interaction in Fe/Fe-oxide NCs (∼25 nm) can be controlled by antiferromagnetic Cr-dopant. We report the origin of σ-FeCr phase at very low Cr concentration (2 at. %) unlike in previous studies, and the interaction reversal from dipolar to exchange interaction in watermelon-like Cr-doped core-shell NCs.

  13. Enantioselective Total Syntheses of (−)-Palau’amine, (−)- Axinellamines, and (−)-Massadines

    PubMed Central

    Seiple, Ian B.; Su, Shun; Young, Ian S.; Nakamura, Akifumi; Yamaguchi, Junichiro; Jørgensen, Lars; Rodriguez, Rodrigo A.; O’Malley, Daniel P.; Gaich, Tanja; Köck, Matthias; Baran, Phil S.

    2011-01-01

    Dimeric pyrrole-imidazole alkaloids represent a rich and topologically unique class of marine natural products. This full account will follow the progression of efforts that culminated in the enantioselective total syntheses of the most structurally ornate members of this family: the axinellamines, the massadines, and palau’amine. A bio-inspired approach capitalizing on the pseudo-symmetry of the members of this class is recounted, delivering a deschloro derivative of the natural product core. Next, the enantioselective synthesis of the chlorocyclopentane core featuring a scalable, catalytic, enantioselective Diels–Alder reaction of a 1-siloxydiene is outlined in detail. Finally, the successful divergent conversion of this core to each of the aforementioned natural products, and the ensuing methodological developments are described. PMID:21861522

  14. The role of technical assistance in the replication of effective HIV interventions.

    PubMed

    O'Donnell, L; Scattergood, P; Adler, M; Doval, A S; Barker, M; Kelly, J A; Kegeles, S M; Rebchook, G M; Adams, J; Terry, M A; Neumann, M S

    2000-01-01

    This article examines the role of technical assistance (TA) in supporting the replication of proven HIV interventions. A case study of the replication of the VOICES/VOCES intervention elucidates the level and types of TA provided to support new users through the adoption process. TA included help in garnering administrative support, identifying target audiences, recruiting groups for sessions, maintaining fidelity to the intervention's core elements, tailoring the intervention to meet clients' needs, strengthening staff members' facilitation skills, troubleshooting challenges, and devising strategies to sustain the intervention. Two to four hours per month of TA were provided to each agency adopting the intervention, at an estimated monthly cost of $206 to $412. Findings illustrate how TA supports replication by establishing a conversation between the researcher TA providers experienced with the intervention and new users. This communication helps preserve key program elements and contributes to ongoing refinement of the intervention.

  15. Exploratory analysis of real personal emergency response call conversations: considerations for personal emergency response spoken dialogue systems.

    PubMed

    Young, Victoria; Rochon, Elizabeth; Mihailidis, Alex

    2016-11-14

    The purpose of this study was to derive data from real, recorded, personal emergency response call conversations to help improve the artificial intelligence and decision making capability of a spoken dialogue system in a smart personal emergency response system. The main study objectives were to: develop a model of personal emergency response; determine categories for the model's features; identify and calculate measures from call conversations (verbal ability, conversational structure, timing); and examine conversational patterns and relationships between measures and model features applicable for improving the system's ability to automatically identify call model categories and predict a target response. This study was exploratory and used mixed methods. Personal emergency response calls were pre-classified according to call model categories identified qualitatively from response call transcripts. The relationships between six verbal ability measures, three conversational structure measures, two timing measures and three independent factors: caller type, risk level, and speaker type, were examined statistically. Emergency medical response services were the preferred response for the majority of medium and high risk calls for both caller types. Older adult callers mainly requested non-emergency medical service responders during medium risk situations. By measuring the number of spoken words-per-minute and turn-length-in-words for the first spoken utterance of a call, older adult and care provider callers could be identified with moderate accuracy. Average call taker response time was calculated using the number-of-speaker-turns and time-in-seconds measures. Care providers and older adults used different conversational strategies when responding to call takers. The words 'ambulance' and 'paramedic' may hold different latent connotations for different callers. The data derived from the real personal emergency response recordings may help a spoken dialogue system classify incoming calls by caller type with moderate probability shortly after the initial caller utterance. Knowing the caller type, the target response for the call may be predicted with some degree of probability and the output dialogue could be tailored to this caller type. The average call taker response time measured from real calls may be used to limit the conversation length in a spoken dialogue system before defaulting to a live call taker.

  16. Soil respiration and carbon loss relationship with temperature and land use conversion in freeze-thaw agricultural area.

    PubMed

    Ouyang, Wei; Lai, Xuehui; Li, Xia; Liu, Heying; Lin, Chunye; Hao, Fanghua

    2015-11-15

    Soil respiration (Rs) was hypothesized to have a special response pattern to soil temperature and land use conversion in the freeze-thaw area. The Rs differences of eight types of land use conversions during agricultural development were observed and the impacts of Rs on soil organic carbon (SOC) loss were assessed. The land use conversions during last three decades were categorized into eight types, and the 141 SOC sampling sites were grouped by conversion type. The typical soil sampling sites were subsequently selected for monitoring of soil temperature and Rs of each land use conversion types. The Rs correlations with temperature at difference depths and different conversion types were identified with statistical analysis. The empirical mean error model and the biophysical theoretical model with Arrhenius equation about the Rs sensitivity to temperature were both analyzed and shared the similar patterns. The temperature dependence of soil respiration (Q10) analysis further demonstrated that the averaged value of eight types of land use in this freeze-thaw agricultural area ranged from 1.15 to 1.73, which was lower than the other cold areas. The temperature dependence analysis demonstrated that the Rs in the top layer of natural land covers was more sensitive to temperature and experienced a large vertical difference. The natural land covers exhibited smaller Rs and the farmlands had the bigger value due to tillage practices. The positive relationships between SOC loss and Rs were identified, which demonstrated that Rs was the key chain for SOC loss during land use conversion. The spatial-vertical distributions of SOC concentration with the 1.5-km grid sampling showed that the more SOC loss in the farmland, which was coincided with the higher Rs in farmlands. The analysis of Rs dynamics provided an innovative explanation for SOC loss in the freeze-thaw agricultural area. The analysis of Rs dynamics provided an innovative explanation for SOC loss in the freeze-thaw agricultural area. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Final Test Report: Hexavalent Chrome Free Coatings for Electronics Electromagnetic Interference (EMI) Shielding Effectiveness (SE)

    NASA Technical Reports Server (NTRS)

    Kessel, Kurt R.

    2016-01-01

    The test results for Salt Spray Resistance, Static Heat and Humidity and Marine Environment can be found in Sections 3.1.3.3, 3.1.4.3 and 3.1.5.3 respectively. In summary, both the Metalast TCP and SurTec 650 Type 2 conversion coatings perform very similar to the incumbent Type 1 conversion coating against both 6061 and 5052 aluminum under all three test conditions. Significant prior work was performed to select the aluminum and conversion coating included within this test cycle; Reference - NASA GSDO Program Hexavalent Chrome Alternatives Final Pretreatments Test Report Task Order: NNH12AA45D September 01, 2013. As illustrated in the data, the 6061 aluminum panels SLIGHTLY out-performed the 5052 aluminum panels. Individual shielding effectiveness graphs for each panel are included within Appendix C and D. One other notable effect found during review of the data is that the Test Panels exposed to B117 Salt Fog reduced in shielding effectiveness significantly more than the Marine Environment Test Panels. The shielding effectiveness of the Marine Test Panels was approximately 20dB higher than the Test Panels that underwent B117 Salt Fog Exposure. The intent of this evaluation was not to maximize shielding effectiveness values. The same Parker Chomerics Cho-Seal 6503 gasket material was used for all panels with aluminum and conversion coating variants. A typical EMI gasket design for corrosive environments would be done quite differently. The intent was to execute a test that would provide the best possible evaluation of different aluminum materials and conversion coatings in corrosive environments. The test program achieved this intent. The fact that the two aluminums and two Type II conversion coatings performed similar to the incumbent Type 1 conversion coating is a positive outcome. It was desired to have an outcome that further differentiation the performance of two aluminum types and two conversion coating types but this could not be extracted by the test results. Further analysis of the test plates may be done by X-Ray Photoelectron Spectroscopy (XPS) or Electrochemical Impedance Spectroscopy (EIS). Feasibility of this is under review.

  18. Advanced characterization study of commercial conversion and electrocoating structures on magnesium alloys AZ31B and ZE10A

    DOE PAGES

    Brady, Michael P.; Leonard, Donovan N.; Meyer, III, Harry M.; ...

    2016-03-31

    The local metal-coating interface microstructure and chemistry formed on commercial magnesium alloys Mg–3Al–1Zn (AZ31B) and Mg–1Zn–0.25Zr–<0.5Nd (ZE10A, ZEK100 type) were analyzed as-chemical conversion coated with a commercial hexafluoro-titanate/zirconate type + organic polymer based treatment (Bonderite® 5200) and a commercial hexafluoro-zirconate type + trivalent chromium Cr3 + type treatment (Surtec® 650), and after the same conversion coatings followed by electrocoating with an epoxy based coating, Cathoguard® 525. Characterization techniques included scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and cross-section scanning transmission electron microscopy (STEM). Corrosion behavior was assessed in room temperature saturated aqueous Mg(OH)2 solution with 1 wt.% NaCl. Themore » goal of the effort was to assess the degree to which substrate alloy additions become enriched in the conversion coating, and how the conversion coating was impacted by subsequent electrocoating. Key findings included the enrichment of Al from AZ31B and Zr from ZE10A, respectively, into the conversion coating, with moderate corrosion resistance benefits for AZ31B when Al was incorporated. Varying degrees of increased porosity and modification of the initial conversion coating chemistry at the metal-coating interface were observed after electrocoating. These changes were postulated to result in degraded electrocoating protectiveness. As a result, these observations highlight the challenges of coating Mg, and the need to tailor electrocoating in light of potential degradation of the initial as-conversion coated Mg alloy surface.« less

  19. Morphology-Controlled Synthesis of Au/Cu₂FeSnS₄ Core-Shell Nanostructures for Plasmon-Enhanced Photocatalytic Hydrogen Generation.

    PubMed

    Ha, Enna; Lee, Lawrence Yoon Suk; Man, Ho-Wing; Tsang, Shik Chi Edman; Wong, Kwok-Yin

    2015-05-06

    Copper-based chalcogenides of earth-abundant elements have recently arisen as an alternate material for solar energy conversion. Cu2FeSnS4 (CITS), a quaternary chalcogenide that has received relatively little attention, has the potential to be developed into a low-cost and environmentlly friendly material for photovoltaics and photocatalysis. Herein, we report, for the first time, the synthesis, characterization, and growth mechanism of novel Au/CITS core-shell nanostructures with controllable morphology. Precise manipulations in the core-shell dimensions are demonstrated to yield two distinct heterostructures with spherical and multipod gold nanoparticle (NP) cores (Au(sp)/CITS and Au(mp)/CITS). In photocatalytic hydrogen generation with as-synthesized Au/CITS NPs, the presence of Au cores inside the CITS shell resulted in higher hydrogen generation rates, which can be attributed to the surface plasmon resonance (SPR) effect. The Au(sp)/CITS and Au(mp)/CITS core-shell NPs enhanced the photocatalytic hydrogen generation by about 125% and 240%, respectively, compared to bare CITS NPs.

  20. NO gas loss from biologically crusted soils in Canyonlands National Park, Utah

    USGS Publications Warehouse

    Barger, N.N.; Belnap, J.; Ojima, D.S.; Mosier, A.

    2005-01-01

    In this study, we examined N gas loss as nitric oxide (NO) from N-fixing biologically crusted soils in Canyonlands National Park, Utah. We hypothesized that NO gas loss would increase with increasing N fixation potential of the biologically crusted soil. NO fluxes were measured from biologically crusted soils with three levels of N fixation potential (Scytonema-Nostoc-Collema spp. (dark)>Scytonema-Nostoc-Microcoleus spp. (medium)>Microcoleus spp. (light)) from soil cores and field chambers. In both cores and field chambers there was a significant effect of crust type on NO fluxes, but this was highly dependent on season. NO fluxes from field chambers increased with increasing N fixation potential of the biologically crusted soils (dark>medium>light) in the summer months, with no differences in the spring and autumn. Soil chlorophyllasis Type a content (an index of N fixation potential), percent N, and temperature explained 40% of the variability in NO fluxes from our field sites. Estimates of annual NO loss from dark and light crusts was 0.04-0.16 and 0.02-0.11-N/ha/year. Overall, NO gas loss accounts for approximately 3-7% of the N inputs via N fixation in dark and light biologically crusted soils. Land use practices have drastically altered biological soil crusts communities over the past century. Livestock grazing and intensive recreational use of public lands has resulted in a large scale conversion of dark cyanolichen crusts to light cyanobacterial crusts. As a result, changes in biologically crusted soils in arid and semi-arid regions of the western US may subsequently impact regional NO loss. ?? Springer 2005.

  1. Soil Nitrogen-Cycling Responses to Conversion of Lowland Forests to Oil Palm and Rubber Plantations in Sumatra, Indonesia

    PubMed Central

    Tjoa, Aiyen; Veldkamp, Edzo

    2015-01-01

    Rapid deforestation in Sumatra, Indonesia is presently occurring due to the expansion of palm oil and rubber production, fueled by an increasing global demand. Our study aimed to assess changes in soil-N cycling rates with conversion of forest to oil palm (Elaeis guineensis) and rubber (Hevea brasiliensis) plantations. In Jambi Province, Sumatra, Indonesia, we selected two soil landscapes – loam and clay Acrisol soils – each with four land-use types: lowland forest and forest with regenerating rubber (hereafter, “jungle rubber”) as reference land uses, and rubber and oil palm as converted land uses. Gross soil-N cycling rates were measured using the 15N pool dilution technique with in-situ incubation of soil cores. In the loam Acrisol soil, where fertility was low, microbial biomass, gross N mineralization and NH4 + immobilization were also low and no significant changes were detected with land-use conversion. The clay Acrisol soil which had higher initial fertility based on the reference land uses (i.e. higher pH, organic C, total N, effective cation exchange capacity (ECEC) and base saturation) (P≤0.05–0.09) had larger microbial biomass and NH4 + transformation rates (P≤0.05) compared to the loam Acrisol soil. Conversion of forest and jungle rubber to rubber and oil palm in the clay Acrisol soil decreased soil fertility which, in turn, reduced microbial biomass and consequently decreased NH4 + transformation rates (P≤0.05–0.09). This was further attested by the correlation of gross N mineralization and microbial biomass N with ECEC, organic C, total N (R=0.51–0. 76; P≤0.05) and C:N ratio (R=-0.71 – -0.75, P≤0.05). Our findings suggest that the larger the initial soil fertility and N availability, the larger the reductions upon land-use conversion. Because soil N availability was dependent on microbial biomass, management practices in converted oil palm and rubber plantations should focus on enriching microbial biomass. PMID:26222690

  2. Near-infrared-absorbing gold nanopopcorns with iron oxide cluster core for magnetically amplified photothermal and photodynamic cancer therapy.

    PubMed

    Bhana, Saheel; Lin, Gan; Wang, Lijia; Starring, Hunter; Mishra, Sanjay R; Liu, Gang; Huang, Xiaohua

    2015-06-03

    We present the synthesis and application of a new type of dual magnetic and plasmonic nanostructures for magnetic-field-guided drug delivery and combined photothermal and photodynamic cancer therapy. Near-infrared-absorbing gold nanopopcorns containing a self-assembled iron oxide cluster core were prepared via a seed-mediated growth method. The hybrid nanostructures are superparamagnetic and show great photothermal conversion efficiency (η=61%) under near-infrared irradiation. Compact and stable nanocomplexes for photothermal-photodynamic therapy were formed by coating the nanoparticles with near-infrared-absorbing photosensitizer silicon 2,3-naphthalocyannie dihydroxide and stabilization with poly(ethylene glycol) linked with 11-mercaptoundecanoic acid. The nanocomplex showed enhanced release and cellular uptake of the photosensitizer with the use of a gradient magnetic field. In vitro studies using two different cell lines showed that the dual mode photothermal and photodynamic therapy with the assistance of magnetic-field-guided drug delivery dramatically improved the therapeutic efficacy of cancer cells as compared to the combination treatment without using a magnetic field and the two treatments alone. The "three-in-one" nanocomplex has the potential to carry therapeutic agents deep into a tumor through magnetic manipulation and to completely eradicate tumors by subsequent photothermal and photodynamic therapies without systemic toxicity.

  3. High harmonic generation in a gas-filled hollow-core photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Heckl, O. H.; Baer, C. R. E.; Kränkel, C.; Marchese, S. V.; Schapper, F.; Holler, M.; Südmeyer, T.; Robinson, J. S.; Tisch, J. W. G.; Couny, F.; Light, P.; Benabid, F.; Keller, U.

    2009-10-01

    High harmonic generation (HHG) of intense infrared laser radiation (Ferray et al., J. Phys. B: At. Mol. Opt. Phys. 21:L31, 1988; McPherson et al., J. Opt. Soc. Am. B 4:595, 1987) enables coherent vacuum-UV (VUV) to soft-X-ray sources. In the usual setup, energetic femtosecond laser pulses are strongly focused into a gas jet, restricting the interaction length to the Rayleigh range of the focus. The average photon flux is limited by the low conversion efficiency and the low average power of the complex laser amplifier systems (Keller, Nature 424:831, 2003; Südmeyer et al., Nat. Photonics 2:599, 2008; Röser et al., Opt. Lett. 30:2754, 2005; Eidam et al., IEEE J. Sel. Top. Quantum Electron. 15:187, 2009) which typically operate at kilohertz repetition rates. This represents a severe limitation for many experiments using the harmonic radiation in fields such as metrology or high-resolution imaging. Driving HHG with novel high-power diode-pumped multi-megahertz laser systems has the potential to significantly increase the average photon flux. However, the higher average power comes at the expense of lower pulse energies because the repetition rate is increased by more than a thousand times, and efficient HHG is not possible in the usual geometry. So far, two promising techniques for HHG at lower pulse energies were developed: external build-up cavities (Gohle et al., Nature 436:234, 2005; Jones et al., Phys. Rev. Lett. 94:193, 2005) and resonant field enhancement in nanostructured targets (Kim et al., Nature 453:757, 2008). Here we present a third technique, which has advantages in terms of ease of HHG light extraction, transverse beam quality, and the possibility to substantially increase conversion efficiency by phase-matching (Paul et al., Nature 421:51, 2003; Ren et al., Opt. Express 16:17052, 2008; Serebryannikov et al., Phys. Rev. E (Stat. Nonlinear Soft Matter Phys.) 70:66611, 2004; Serebryannikov et al., Opt. Lett. 33:977, 2008; Zhang et al., Nat. Phys. 3:270, 2007). The interaction between the laser pulses and the gas occurs in a Kagome-type Hollow-Core Photonic Crystal Fiber (HC-PCF) (Benabid et al., Science 298:399, 2002), which reduces the detection threshold for HHG to only 200 nJ. This novel type of fiber guides nearly all of the light in the hollow core (Couny et al., Science 318:1118, 2007), preventing damage even at intensities required for HHG. Our fiber guided 30-fs pulses with a pulse energy of more than 10 μJ, which is more than five times higher than for any other photonic crystal fiber (Hensley et al., Conference on Lasers and Electro-Optics (CLEO), IEEE Press, New York, 2008).

  4. Structural control of InP/ZnS core/shell quantum dots enables high-quality white LEDs.

    PubMed

    Kumar, Baskaran Ganesh; Sadeghi, Sadra; Melikov, Rustamzhon; Aria, Mohammad Mohammadi; Jalali, Houman Bahmani; Ow-Yang, Cleva W; Nizamoglu, Sedat

    2018-08-24

    Herein, we demonstrate that the structural and optical control of InP-based quantum dots (QDs) can lead to high-performance light-emitting diodes (LEDs). Zinc sulphide (ZnS) shells passivate the InP QD core and increase the quantum yield in green-emitting QDs by 13-fold and red-emitting QDs by 8-fold. The optimised QDs are integrated in the liquid state to eliminate aggregation-induced emission quenching and we fabricated white LEDs with a warm, neutral and cool-white appearance by the down-conversion mechanism. The QD-functionalized white LEDs achieve luminous efficiency (LE) up to 14.7 lm W -1 and colour-rendering index up to 80. The structural and optical control of InP/ZnS core/shell QDs enable 23-fold enhancement in LE of white LEDs compared to ones containing only QDs of InP core.

  5. Heating efficiency evaluation with mimicking plasma conditions of integrated fast-ignition experiment.

    PubMed

    Fujioka, Shinsuke; Johzaki, Tomoyuki; Arikawa, Yasunobu; Zhang, Zhe; Morace, Alessio; Ikenouchi, Takahito; Ozaki, Tetsuo; Nagai, Takahiro; Abe, Yuki; Kojima, Sadaoki; Sakata, Shohei; Inoue, Hiroaki; Utsugi, Masaru; Hattori, Shoji; Hosoda, Tatsuya; Lee, Seung Ho; Shigemori, Keisuke; Hironaka, Youichiro; Sunahara, Atsushi; Sakagami, Hitoshi; Mima, Kunioki; Fujimoto, Yasushi; Yamanoi, Kohei; Norimatsu, Takayoshi; Tokita, Shigeki; Nakata, Yoshiki; Kawanaka, Junji; Jitsuno, Takahisa; Miyanaga, Noriaki; Nakai, Mitsuo; Nishimura, Hiroaki; Shiraga, Hiroyuki; Nagatomo, Hideo; Azechi, Hiroshi

    2015-06-01

    A series of experiments were carried out to evaluate the energy-coupling efficiency from heating laser to a fuel core in the fast-ignition scheme of laser-driven inertial confinement fusion. Although the efficiency is determined by a wide variety of complex physics, from intense laser plasma interactions to the properties of high-energy density plasmas and the transport of relativistic electron beams (REB), here we simplify the physics by breaking down the efficiency into three measurable parameters: (i) energy conversion ratio from laser to REB, (ii) probability of collision between the REB and the fusion fuel core, and (iii) fraction of energy deposited in the fuel core from the REB. These three parameters were measured with the newly developed experimental platform designed for mimicking the plasma conditions of a realistic integrated fast-ignition experiment. The experimental results indicate that the high-energy tail of REB must be suppressed to heat the fuel core efficiently.

  6. New core-pyrene π structure organophotocatalysts usable as highly efficient photoinitiators

    PubMed Central

    Telitel, Sofia; Dumur, Frédéric; Faury, Thomas; Graff, Bernadette; Tehfe, Mohamad-Ali; Fouassier, Jean-Pierre

    2013-01-01

    Summary Eleven di- and trifunctional compounds based on a core-pyrene π structure (Co_Py) were synthesized and investigated for the formation of free radicals. The application of two- and three-component photoinitiating systems (different Co_Pys with the addition of iodonium or sulfonium salts, alkyl halide or amine) was investigated in detail for cationic and radical photopolymerization reactions under near-UV–vis light. The proposed compounds can behave as new photocatalysts. Successful results in terms of rates of polymerization and final conversions were obtained. The strong MO coupling between the six different cores and the pyrene moiety was studied by DFT calculations. The different chemical intermediates are characterized by ESR and laser flash photolysis experiments. The mechanisms involved in the initiation step are discussed, and relationships between the core structure, the Co_Py absorption property, and the polymerization ability are tentatively proposed. PMID:23766803

  7. Side-chain Engineering of Benzo[1,2-b:4,5-b’]dithiophene Core-structured Small Molecules for High-Performance Organic Solar Cells

    PubMed Central

    Yin, Xinxing; An, Qiaoshi; Yu, Jiangsheng; Guo, Fengning; Geng, Yongliang; Bian, Linyi; Xu, Zhongsheng; Zhou, Baojing; Xie, Linghai; Zhang, Fujun; Tang, Weihua

    2016-01-01

    Three novel small molecules have been developed by side-chain engineering on benzo[1,2-b:4,5-b’]dithiophene (BDT) core. The typical acceptor-donor-acceptor (A-D-A) structure is adopted with 4,8-functionalized BDT moieties as core, dioctylterthiophene as π bridge and 3-ethylrhodanine as electron-withdrawing end group. Side-chain engineering on BDT core exhibits small but measurable effect on the optoelectronic properties of small molecules. Theoretical simulation and X-ray diffraction study reveal the subtle tuning of interchain distance between conjugated backbones has large effect on the charge transport and thus the photovoltaic performance of these molecules. Bulk-heterojunction solar cells fabricated with a configuration of ITO/PEDOT:PSS/SM:PC71BM/PFN/Al exhibit a highest power conversion efficiency (PCE) of 6.99% after solvent vapor annealing. PMID:27140224

  8. Side-chain Engineering of Benzo[1,2-b:4,5-b']dithiophene Core-structured Small Molecules for High-Performance Organic Solar Cells.

    PubMed

    Yin, Xinxing; An, Qiaoshi; Yu, Jiangsheng; Guo, Fengning; Geng, Yongliang; Bian, Linyi; Xu, Zhongsheng; Zhou, Baojing; Xie, Linghai; Zhang, Fujun; Tang, Weihua

    2016-05-03

    Three novel small molecules have been developed by side-chain engineering on benzo[1,2-b:4,5-b']dithiophene (BDT) core. The typical acceptor-donor-acceptor (A-D-A) structure is adopted with 4,8-functionalized BDT moieties as core, dioctylterthiophene as π bridge and 3-ethylrhodanine as electron-withdrawing end group. Side-chain engineering on BDT core exhibits small but measurable effect on the optoelectronic properties of small molecules. Theoretical simulation and X-ray diffraction study reveal the subtle tuning of interchain distance between conjugated backbones has large effect on the charge transport and thus the photovoltaic performance of these molecules. Bulk-heterojunction solar cells fabricated with a configuration of ITO/PEDOT:PSS/SM:PC71BM/PFN/Al exhibit a highest power conversion efficiency (PCE) of 6.99% after solvent vapor annealing.

  9. Anthropic changes to the biotic factor of soil formation from forests to managed grasslands along summits of the western Pyrenees Mountains, France

    NASA Astrophysics Data System (ADS)

    Leigh, David; Gragson, Theodore

    2017-04-01

    Mounting evidence indicates that highland pastures of the humid-temperate western Pyrenees were converted from mixed forests to managed grasslands thousands of years ago, as early as during the late Neolithic and Bronze age by human actions including use of fire. We observe pronounced differences between soil profiles of ancient pastures and old-growth forests in otherwise similar landscape positions. In order to test physical and chemical differences, we collected paired samples of forest versus grassland soils at four separate hillslope sites where there was a clear boundary between the two vegetation types. Animal trails were excluded from sampling. Factors of climate, topography, parent material, and time of soil formation were essentially identical in the forests and pastures of each site, but the time of soil under grassland vegetation may have varied. Each paired hillslope site included five core samples (7.6 cm diameter) from the upper 7.6 cm of the mineral soil within each vegetation type, and the A horizon thickness was recorded at each core hole site. In addition, one complete soil profile was sampled in each vegetation type at each site, making a total of 20 core samples and 4 complete profiles from each respective vegetation type. In addition, we measured the magnetic susceptibility of the mineral soil surface on two transects crossing the vegetation boundary. Core samples have been measured for bulk density, pH, plant-available nutrients, and organic matter; and tests for total carbon and nitrogen, amorphous silica, charcoal, and other forms of black carbon are ongoing. Preliminary results indicate pastured A horizons are about three times as thick as forested soils, contain more organic matter, have lower soil bulk densities, have much finer and stronger structural development of soil aggregates. These traits favor much greater infiltration and water holding capacities of the pastured soils, which we have validated with saturated hydraulic conductivity tests. Pedogenically, the pastured soils indicate that melanization processes have been much more pronounced than in the forested soils. Distinct changes in soil materials result from conversion to pasture. Significantly more black carbon (including macro-charcoal) appears to be present in the pastured soils, indicating that it plays an important role in melanization, in addition to long-term sequestration of carbon. Pastured soils contain greater contents of amorphous silica due to more rapid phytolith production from grasses as opposed to trees. Pastures register significantly higher soil magnetic susceptibility than forests, presumably from past use of fire. In essence, anthropic manipulation of the biotic factor of pedogenesis has created new soil materials, processes, and functions. Our current research involves radiocarbon and chronostratigraphy to establish rates of this anthropisation of the biotic factor.

  10. Unraveling energy conversion modeling in the intrinsic persistent upconverted luminescence of solids: a study of native point defects in antiferromagnetic Er2O3.

    PubMed

    Huang, Bolong

    2016-05-11

    We investigated the mechanism of the intrinsic persistent luminescence of Er2O3 in the A-type lattice based on first-principles calculations. We found that the native point defects were engaged in mutual subtle interactions in the form of chemical reactions between different charge states. The release of energy related to lattice distortion facilitates the conversion of energy for electrons to be transported between the valence band and the trap levels or even between the deep trap levels so as to generate persistent luminescence. The defect transitions that take place along the zero-phonon line release energy to enable optical transitions, with the exact amount of negative effective correlation energy determined by the lattice distortions. Our calculations on the thermodynamic transition levels confirm that both the visible and NIR experimentally observed intrinsic persistent luminescence (phosphor or afterglow) are related to the thermodynamic transition levels of oxygen-related defects, and the thermodynamic transition levels within different charge states for these defects are independent of the chemical potentials of the given species. Lattice distortion defects such as anion Frenkel (a-Fr) pair defects play an important role in transporting O-related defects between different lattice sites. To obtain red persistent luminescence that matches the biological therapeutic window, it is suggested to increase the electron transition levels between high-coordinated O vacancies and related metastable a-Fr defects; a close-packed core-shell structure is required to quench low-coordinated O-related defects so as to reduce the green band luminescence. We further established a conversed chain reaction (CCR) model to interpret the energy conversion process of persistent luminescence in terms of the inter-reactions of native point defects between different charge states. It is advantageous to use the study of defect levels combined with formation energies to suggest limits to doping energy and explain photostimulated luminescence in terms of native point defects.

  11. The Psychology of Curriculum Theorizing: A Conversation.

    ERIC Educational Resources Information Center

    Wankowski, Janek; Reid, William

    1982-01-01

    A conversation about the "psychology of curriculum theorizing" is presented. Janek Wankowski and William Reid discuss four types of curriculum theorists: systemic, radical, existential, and deliberative. Works representative of these types, by Mauritz Johnson, Michael Apple, William Pinar, and Joseph Schwab, are also discussed. (CJ)

  12. Influence of Nonfused Cores on the Photovoltaic Performance of Linear Triphenylamine-Based Hole-Transporting Materials for Perovskite Solar Cells.

    PubMed

    Wu, Yungen; Wang, Zhihui; Liang, Mao; Cheng, Hua; Li, Mengyuan; Liu, Liyuan; Wang, Baiyue; Wu, Jinhua; Prasad Ghimire, Raju; Wang, Xuda; Sun, Zhe; Xue, Song; Qiao, Qiquan

    2018-05-30

    The core plays a crucial role in achieving high performance of linear hole transport materials (HTMs) toward the perovskite solar cells (PSCs). Most studies focused on the development of fused heterocycles as cores for HTMs. Nevertheless, nonfused heterocycles deserve to be studied since they can be easily synthesized. In this work, we reported a series of low-cost triphenylamine HTMs (M101-M106) with different nonfused cores. Results concluded that the introduced core has a significant influence on conductivity, hole mobility, energy level, and solubility of linear HTMs. M103 and M104 with nonfused oligothiophene cores are superior to other HTMs in terms of conductivity, hole mobility, and surface morphology. PSCs based on M104 exhibited the highest power conversion efficiency of 16.50% under AM 1.5 sun, which is comparable to that of spiro-OMeTAD (16.67%) under the same conditions. Importantly, the employment of M104 is highly economical in terms of the cost of synthesis as compared to that of spiro-OMeTAD. This work demonstrated that nonfused heterocycles, such as oligothiophene, are promising cores for high performance of linear HTMs toward PSCs.

  13. Phonetic Variation and Interactional Contingencies in Simultaneous Responses

    ERIC Educational Resources Information Center

    Walker, Gareth

    2016-01-01

    An auspicious but unexplored environment for studying phonetic variation in naturalistic interaction is where two or more participants say the same thing at the same time. Working with a core dataset built from the multimodal Augmented Multi-party Interaction corpus, the principles of conversation analysis were followed to analyze the sequential…

  14. A Necessary Evil: The Experiences of Managers Implementing Downsizing Programmes

    ERIC Educational Resources Information Center

    Noronha, Ernesto; D'Cruz, Premilla

    2006-01-01

    This paper presents the findings of a phenomenological study, which describes the experiences of human resource (HR) managers implementing a downsizing program in a steel manufacturing organization in India. Data were collected through conversational interviews. Following van Manens sententious analytic approach, the core theme of a necessary…

  15. INDEPENDENT POWER PLANT USING WOOD WASTE

    EPA Science Inventory

    A 1 MWe power plant using waste wood is to be installed at a U.S. Marine Corps base, which will supply all the wood for the plant from a landfill site. The core energy conversion technology is a down-draft gasifier supplying approximately 150 Btu/scf gas to both spark ignition an...

  16. Testing on Trial

    ERIC Educational Resources Information Center

    Carroll, Kathleen

    2015-01-01

    Standardized tests are under a microscope as states prepare to administer new PARCC and Smarter Balanced tests aligned to the Common Core State Standards. This brief takes on five concerns about testing and is designed to help funders reframe the larger conversation to preserve a critical source of information about school, teacher and student…

  17. Core Conversations with Educative Dragging

    ERIC Educational Resources Information Center

    Wanko, Jeffrey J.; Edwards, Michael Todd; Phelps, Steve

    2012-01-01

    The Sliding along a Side task was presented at a National Council of Teachers of Mathematics (NCTM) conference session for high school teachers. According to the authors, while exploring this task with this group of experienced mathematics educators and classroom teachers, they shared a "gasp!" moment. With the aid of the dynamic mathematics…

  18. Selective epitaxial growth of zinc blende-derivative on wurtzite-derivative: the case of polytypic Cu2CdSn(S1-xSex)4 nanocrystals

    NASA Astrophysics Data System (ADS)

    Wu, Liang; Fan, Feng-Jia; Gong, Ming; Ge, Jin; Yu, Shu-Hong

    2014-02-01

    Polytypic nanocrystals with zinc blende (ZB) cores and wurtzite (WZ) arms, such as tetrapod and octopod nanocrystals, have been widely reported. However, polytypic nanocrystals with WZ cores and ZB arms or ends have been rarely reported. Here, we report a facile, solution-based approach to the synthesis of polytypic Cu2CdSn(S1-xSex)4 (CCTSSe) nanocrystals with ZB-derivative selectively engineered on (000+/-2)WZ facets of WZ-derived cores. Accordingly, two typical morphologies, i.e., bullet-like nanocrystals with a WZ-derivative core and one ZB-derivative end, and rugby ball-like nanocrystals with a WZ-derivative core and two ZB-derivative ends, can be selectively prepared. The epitaxial growth mechanism is confirmed by the time-dependent experiments. The ratio of rugby ball-like and bullet-like polytypic CCTSSe nanocrystals can be tuned through changing the amount of Cd precursor to adjust the reactivity difference between (0002)WZ and (000-2)WZ facets. These unique polytypic CCTSSe nanocrystals may find applications in energetic semiconducting materials for energy conversion in the future.Polytypic nanocrystals with zinc blende (ZB) cores and wurtzite (WZ) arms, such as tetrapod and octopod nanocrystals, have been widely reported. However, polytypic nanocrystals with WZ cores and ZB arms or ends have been rarely reported. Here, we report a facile, solution-based approach to the synthesis of polytypic Cu2CdSn(S1-xSex)4 (CCTSSe) nanocrystals with ZB-derivative selectively engineered on (000+/-2)WZ facets of WZ-derived cores. Accordingly, two typical morphologies, i.e., bullet-like nanocrystals with a WZ-derivative core and one ZB-derivative end, and rugby ball-like nanocrystals with a WZ-derivative core and two ZB-derivative ends, can be selectively prepared. The epitaxial growth mechanism is confirmed by the time-dependent experiments. The ratio of rugby ball-like and bullet-like polytypic CCTSSe nanocrystals can be tuned through changing the amount of Cd precursor to adjust the reactivity difference between (0002)WZ and (000-2)WZ facets. These unique polytypic CCTSSe nanocrystals may find applications in energetic semiconducting materials for energy conversion in the future. Electronic supplementary information (ESI) available: Detailed information about the polytypic CCTSSe nanocrystals syntheses, measurement and characterization, additional TEM and HRTEM images, PXRD analysis, EDS spectra and UV-vis-NIR spectra. See DOI: 10.1039/c3nr04948e.

  19. The rapidly emerging ESBL-producing Escherichia coli O25-ST131 clone carries LPS core synthesis genes of the K-12 type.

    PubMed

    Szijártó, Valéria; Pal, Tibor; Nagy, Gabor; Nagy, Eszter; Ghazawi, Akela; al-Haj, Mohammed; El Kurdi, Sylvia; Sonnevend, Agnes

    2012-07-01

    The clone Escherichia coli O25 ST131, typically producing extended-spectrum beta-lactamases (ESBLs), has spread globally and became the dominant type among extraintestinal isolates at many parts of the world. However, the reasons behind the emergence and success of this clone are only partially understood. We compared the core type genes by PCR of ESBL-producing and ESBL-nonproducing strains isolated from urinary tract infections in the United Arab Emirates and found a surprisingly high frequency of the K-12 core type (44.6%) among members of the former group, while in the latter one, it was as low (3.7%), as reported earlier. The high figure was almost entirely attributable to the presence of members of the clone O25 ST131 among ESBL producers. Strains from the same clone isolated in Europe also carried the K-12 core type genes. Sequencing the entire core operon of an O25 ST131 isolate revealed a high level of similarity to known K-12 core gene sequences and an almost complete identity with a recently sequenced non-O25 ST131 fecal isolate. The exact chemical structure and whether and how this unusual core type contributed to the sudden emergence of ST131 require further investigations. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  20. Heat-Electric Power Conversion Without Temperature Difference Using Only n-Type Ba8Au x Si46-x Clathrate with Au Compositional Gradient

    NASA Astrophysics Data System (ADS)

    Osakabe, Yuki; Tatsumi, Shota; Kotsubo, Yuichi; Iwanaga, Junpei; Yamasoto, Keita; Munetoh, Shinji; Furukimi, Osamu; Nakashima, Kunihiko

    2018-02-01

    Thermoelectric power generation is typically based on the Seebeck effect under a temperature gradient. However, the heat flux generated by the temperature difference results in low conversion efficiency. Recently, we developed a heat-electric power conversion mechanism using a material consisting of a wide-bandgap n-type semiconductor, a narrow-bandgap intrinsic semiconductor, and a wide-bandgap p-type semiconductor. In this paper, we propose a heat-electric power conversion mechanism in the absence of a temperature difference using only n-type Ba8Au x Si46-x clathrate. Single-crystal Ba8Au x Si46-x clathrate with a Au compositional gradient was synthesized by Czochralski method. Based on the results of wavelength-dispersive x-ray spectroscopy and Seebeck coefficient measurements, the presence of a Au compositional gradient in the sample was confirmed. It also observed that the electrical properties changed gradually from wide-bandgap n-type to narrow-bandgap n-type. When the sample was heated in the absence of a temperature difference, the voltage generated was approximately 0.28 mV at 500°C. These results suggest that only an n-type semiconductor with a controlled bandgap can generate electric power in the absence of a temperature difference.

  1. A comparative study on liquid core formulation on the diameter on the alginate capsules

    NASA Astrophysics Data System (ADS)

    Ong, Hui-Yen; Lee, Boon-Beng; Radzi, AkmalHadi Ma'; Zakaria, Zarina; Chan, Eng-Seng

    2015-08-01

    Liquid core capsule has vast application in biotechnology related industries such as pharmaceutical, medical, agriculture and food. Formulation of different types of capsule was important to determine the performance of the capsule. Generally, the liquid core capsule with different formulations generated different size of capsule.Therefore, the aim of this project is to investigate the effect of different liquid core solution formulations on the diameter of capsule. The capsule produced by extruding liquid core solutions into sodium alginate solution. Three types of liquid core solutions (chitosan, xanthan gum, polyethylene glycol (PEG)) were investigated. The results showed that there is significant change in capsule diameter despite in different types of liquid core solution were used and a series of capsule range in diameter of 3.1 mm to 4.5 mm were produced. Alginate capsule with chitosan formulation appeared to be the largest capsule among all.

  2. Remote sensing analysis of vegetation recovery following short-interval fires in Southern California shrublands.

    PubMed

    Meng, Ran; Dennison, Philip E; D'Antonio, Carla M; Moritz, Max A

    2014-01-01

    Increased fire frequency has been shown to promote alien plant invasions in the western United States, resulting in persistent vegetation type change. Short interval fires are widely considered to be detrimental to reestablishment of shrub species in southern California chaparral, facilitating the invasion of exotic annuals and producing "type conversion". However, supporting evidence for type conversion has largely been at local, site scales and over short post-fire time scales. Type conversion has not been shown to be persistent or widespread in chaparral, and past range improvement studies present evidence that chaparral type conversion may be difficult and a relatively rare phenomenon across the landscape. With the aid of remote sensing data covering coastal southern California and a historical wildfire dataset, the effects of short interval fires (<8 years) on chaparral recovery were evaluated by comparing areas that burned twice to adjacent areas burned only once. Twelve pairs of once- and twice-burned areas were compared using normalized burn ratio (NBR) distributions. Correlations between measures of recovery and explanatory factors (fire history, climate and elevation) were analyzed by linear regression. Reduced vegetation cover was found in some lower elevation areas that were burned twice in short interval fires, where non-sprouting species are more common. However, extensive type conversion of chaparral to grassland was not evident in this study. Most variables, with the exception of elevation, were moderately or poorly correlated with differences in vegetation recovery.

  3. Suppression of the multi-azimuthal-angle instability in dense neutrino gas during supernova accretion phase

    NASA Astrophysics Data System (ADS)

    Chakraborty, Sovan; Mirizzi, Alessandro; Saviano, Ninetta; Seixas, David de Sousa

    2014-05-01

    It has been recently pointed out that by removing the axial symmetry in the "multi-angle effects" associated with the neutrino-neutrino interactions for supernova (SN) neutrinos a new multi-azimuthal-angle (MAA) instability would arise. In particular, for a flux ordering Fνe>Fν ¯e>Fνx, as expected during the SN accretion phase, this instability occurs in the normal neutrino mass hierarchy. However, during this phase, the ordinary matter density can be larger than the neutrino one, suppressing the self-induced conversions. In this regard, we investigate the matter suppression of the MAA effects, performing a linearized stability analysis of the neutrino equations of motion, in the presence of realistic SN density profiles. We compare these results with the numerical solution of the SN neutrino nonlinear evolution equations. Assuming axially symmetric distributions of neutrino momenta, we find that the large matter term strongly inhibits the MAA effects. In particular, the hindrance becomes stronger including realistic forward-peaked neutrino angular distributions. As a result, in our model for a 10.8 M⊙ iron-core SNe, MAA instability does not trigger any flavor conversion during the accretion phase. Instead, for a 8.8 M⊙ O-Ne-Mg core SN model, with lower matter density profile and less forward-peaked angular distributions, flavor conversions are possible also at early times.

  4. Boosting the down-shifting luminescence of rare-earth nanocrystals for biological imaging beyond 1500 nm.

    PubMed

    Zhong, Yeteng; Ma, Zhuoran; Zhu, Shoujun; Yue, Jingying; Zhang, Mingxi; Antaris, Alexander L; Yuan, Jie; Cui, Ran; Wan, Hao; Zhou, Ying; Wang, Weizhi; Huang, Ngan F; Luo, Jian; Hu, Zhiyuan; Dai, Hongjie

    2017-09-29

    In vivo fluorescence imaging in the near-infrared region between 1500-1700 nm (NIR-IIb window) affords high spatial resolution, deep-tissue penetration, and diminished auto-fluorescence due to the suppressed scattering of long-wavelength photons and large fluorophore Stokes shifts. However, very few NIR-IIb fluorescent probes exist currently. Here, we report the synthesis of a down-conversion luminescent rare-earth nanocrystal with cerium doping (Er/Ce co-doped NaYbF 4 nanocrystal core with an inert NaYF 4 shell). Ce doping is found to suppress the up-conversion pathway while boosting down-conversion by ~9-fold to produce bright 1550 nm luminescence under 980 nm excitation. Optimization of the inert shell coating surrounding the core and hydrophilic surface functionalization minimize the luminescence quenching effect by water. The resulting biocompatible, bright 1550 nm emitting nanoparticles enable fast in vivo imaging of blood vasculature in the mouse brain and hindlimb in the NIR-IIb window with short exposure time of 20 ms for rare-earth based probes.Fluorescence imaging in the near-infrared window between 1500-1700 nm (NIR-IIb window) offers superior spatial resolution and tissue penetration depth, but few NIR-IIb probes exist. Here, the authors synthesize rare earth down-converting nanocrystals as promising fluorescent probes for in vivo imaging in this spectral region.

  5. Moon base reactor system

    NASA Technical Reports Server (NTRS)

    Chavez, H.; Flores, J.; Nguyen, M.; Carsen, K.

    1989-01-01

    The objective of our reactor design is to supply a lunar-based research facility with 20 MW(e). The fundamental layout of this lunar-based system includes the reactor, power conversion devices, and a radiator. The additional aim of this reactor is a longevity of 12 to 15 years. The reactor is a liquid metal fast breeder that has a breeding ratio very close to 1.0. The geometry of the core is cylindrical. The metallic fuel rods are of beryllium oxide enriched with varying degrees of uranium, with a beryllium core reflector. The liquid metal coolant chosen was natural lithium. After the liquid metal coolant leaves the reactor, it goes directly into the power conversion devices. The power conversion devices are Stirling engines. The heated coolant acts as a hot reservoir to the device. It then enters the radiator to be cooled and reenters the Stirling engine acting as a cold reservoir. The engines' operating fluid is helium, a highly conductive gas. These Stirling engines are hermetically sealed. Although natural lithium produces a lower breeding ratio, it does have a larger temperature range than sodium. It is also corrosive to steel. This is why the container material must be carefully chosen. One option is to use an expensive alloy of cerbium and zirconium. The radiator must be made of a highly conductive material whose melting point temperature is not exceeded in the reactor and whose structural strength can withstand meteor showers.

  6. PRELIMINARY DRILLING IN THE POWDER RIVER BASIN, CONVERSE, CAMPBELL, AND JOHNSON COUNTRIES, WYOMING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geslin, H.E.; Bromley, C.P.

    1957-06-01

    On July 16, 1953, a diamond core-drilling program was begun in the pumpkin Buttes area to secure geologic information. Drilling was terminated March 11, 1964, after 12 holes had been completed for a total of 5,813 feet. An investigational rotary noncore-drilling project was conducted from June l4, to September 17, 1954, in the southern part of the Powder River Basin, Campbell, Johnson, and Converse Counties, Wyoming. Drilling was done in the Pumpkin Buttes area and the Converse County area. A total of 52,267 feet was drilled and the average depth of hole was 75.3 feet. Forty-one anomalous areas in themore » Powder River Basin were drilled; of these, three in Converse County were found to contain possible commercial ore bodies. All of the drilling was done in the Wasatch formation of Eocene age except one locality, which was in the Fort Union formation of Paleocene age. (auth)« less

  7. Negative optical absorption and up-energy conversion in dendrites of nanostructured silver grafted with α/β-poly(vinylidene fluoride) in small hierarchical structures

    NASA Astrophysics Data System (ADS)

    Phule, A. D.; Ram, S.; Shinde, S. K.; Choi, J. H.; Tyagi, A. K.

    2018-04-01

    We report that a negative optical absorption arises in a sharp band at 325 nm (energy hν2) in a nanostructured silver (n-Ag) doped poly(vinylidene fluoride) (PVF2) in a hybrid nanocomposite of films (∼100 μm thickness). Two polymorphs α- and β-PVF2 are co-stretched through the n-Ag crystallites in dendrites of hierarchical structures. A critical 0.5 wt% n-Ag dosage promotes this band of extinction coefficient to be enhanced by as much as 2.009 × 103, i.e. a 30% value in the Ag-surface plasmon band 350-650 nm (hν1). An electron donor Ag (4d105s1) bonds to an electron accepter moiety CF2 of PVF2, it tunes a dielectric field and sets up an up-energy conversion of the plasmon band. The FESEM and HRTEM images reveal fcc-Ag dendrites entangled with in-built PVF2 surface layers (2-3 nm thickness). The IR phonon bands show how a α → β-PVF2 transformation propagates onto a nascent n-Ag surface and how it is raised-up in small steps of 0.1 wt% and up to 5.0 wt%. In a model scheme, we illustrate how a rigid core-shell of a capsule conducts a new transfer mechanism of the energy to a cold surface plasmon (core) in a coherent collision, so as to balance a net value hν2 = h(ν3 - ν1). It absorbs light in a weak band at 210 nm (hν3) in a π → π* electron transition in the Cdbnd C bonds of the PVF2 (shell), and results in a negative absorption in a coherent excitation of the energy-carriers. A light-emitter on absorption over a wide range of wavelengths (200-650 nm) offers a unique type of energy-converter.

  8. Magnetohydrodynamic Convection in the Outer Core and its Geodynamic Consequences

    NASA Technical Reports Server (NTRS)

    Kuang, Weijia; Chao, Benjamin F.; Fang, Ming

    2004-01-01

    The Earth's fluid outer core is in vigorous convection through much of the Earth's history. In addition to generating and maintaining Earth s time-varying magnetic field (geodynamo), the core convection also generates mass redistribution in the core and a dynamical pressure field on the core-mantle boundary (CMB). All these shall result in various core-mantle interactions, and contribute to surface geodynamic observables. For example, electromagnetic core-mantle coupling arises from finite electrically conducting lower mantle; gravitational interaction occurs between the cores and the heterogeneous mantle; mechanical coupling may also occur when the CMB topography is aspherical. Besides changing the mantle rotation via the coupling torques, the mass-redistribution in the core shall produce a spatial-temporal gravity anomaly. Numerical modeling of the core dynamical processes contributes in several geophysical disciplines. It helps explain the physical causes of surface geodynamic observables via space geodetic techniques and other means, e.g. Earth's rotation variation on decadal time scales, and secular time-variable gravity. Conversely, identification of the sources of the observables can provide additional insights on the dynamics of the fluid core, leading to better constraints on the physics in the numerical modeling. In the past few years, our core dynamics modeling efforts, with respect to our MoSST model, have made significant progress in understanding individual geophysical consequences. However, integrated studies are desirable, not only because of more mature numerical core dynamics models, but also because of inter-correlation among the geophysical phenomena, e.g. mass redistribution in the outer core produces not only time-variable gravity, but also gravitational core-mantle coupling and thus the Earth's rotation variation. They are expected to further facilitate multidisciplinary studies of core dynamics and interactions of the core with other components of the Earth.

  9. Towards better light harvesting capability for DSSC (dye sensitized solar cells) through addition of Au@SiO2 core-shell nanoparticles

    NASA Astrophysics Data System (ADS)

    Fadhilah, Nur; Alhadi, Emha Riyadhul Jinan; Risanti, Doty Dewi

    2018-04-01

    The Au nanoparticles as core can increase the light harvesting due to the strong near-field effect LSPR (Localized Surface Plasmon Resonance), effectively minimized the electron recombination process and also can improve the optical absorption of the dye sensitized. Au@SiO2 core-shell nanoparticles were prepared using SiO2 extracted from Sidoarjo mud volcano. In this work investigated the influence of pH solution and silica shell volume fraction in Au@SiO2 nanoparticles core-shell structure on DSSC loaded with Ru-based dye. From XRD characterization it was found that core-shell contains SiO2, Au, γAl2O3 and traces NaCl. UV-Vis absorption spectra of core-shell showed the position of the surface plasmon AuNP band in the range of 500-600 nm. The Au@SiO2 core-shell with volume fraction of 30ml silica has the highest peak absorbance. The enhanced light absorption is primarily attributed to the LSPR effect of the Au core. Our results on incident photon-to-current conversion efficiency indicates that the presence of SiO2 depending on its volume fraction tends to shift to longer wavelength.

  10. Coaching Conversations: The Nature of Talk between a Literacy Coach and Three Teachers

    ERIC Educational Resources Information Center

    Belcastro, Elizabeth G.

    2009-01-01

    This descriptive case study examined the nature of talk a literacy coach used during coaching conversations to guide collaborative inquiry to support teachers' needs. The study provided a rich description of the type of talk used in the coach's conversations with three kindergarten classroom teachers by analyzing the content of conversation,…

  11. Effective Charge Carrier Utilization in Photocatalytic Conversions.

    PubMed

    Zhang, Peng; Wang, Tuo; Chang, Xiaoxia; Gong, Jinlong

    2016-05-17

    Continuous efforts have been devoted to searching for sustainable energy resources to alleviate the upcoming energy crises. Among various types of new energy resources, solar energy has been considered as one of the most promising choices, since it is clean, sustainable, and safe. Moreover, solar energy is the most abundant renewable energy, with a total power of 173 000 terawatts striking Earth continuously. Conversion of solar energy into chemical energy, which could potentially provide continuous and flexible energy supplies, has been investigated extensively. However, the conversion efficiency is still relatively low since complicated physical, electrical, and chemical processes are involved. Therefore, carefully designed photocatalysts with a wide absorption range of solar illumination, a high conductivity for charge carriers, a small number of recombination centers, and fast surface reaction kinetics are required to achieve a high activity. This Account describes our recent efforts to enhance the utilization of charge carriers for semiconductor photocatalysts toward efficient solar-to-chemical energy conversion. During photocatalytic reactions, photogenerated electrons and holes are involved in complex processes to convert solar energy into chemical energy. The initial step is the generation of charge carriers in semiconductor photocatalysts, which could be enhanced by extending the light absorption range. Integration of plasmonic materials and introduction of self-dopants have been proved to be effective methods to improve the light absorption ability of photocatalysts to produce larger amounts of photogenerated charge carriers. Subsequently, the photogenerated electrons and holes migrate to the surface. Therefore, acceleration of the transport process can result in enhanced solar energy conversion efficiency. Different strategies such as morphology control and conductivity improvement have been demonstrated to achieve this goal. Fine-tuning of the morphology of nanostructured photocatalysts can reduce the migration distance of charge carriers. Improving the conductivity of photocatalysts by using graphitic materials can also improve the transport of charge carriers. Upon charge carrier migration, electrons and holes also tend to recombine. The suppression of recombination can be achieved by constructing heterojunctions that enhance charge separation in the photocatalysts. Surface states acting as recombination centers should also be removed to improve the photocatalytic efficiency. Moreover, surface reactions, which are the core chemical processes during the solar energy conversion, can be enhanced by applying cocatalysts as well as suppressing side reactions. All of these strategies have been proved to be essential for enhancing the activities of semiconductor photocatalysts. It is hoped that delicate manipulation of photogenerated charge carriers in semiconductor photocatalysts will hold the key to effective solar-to-chemical energy conversion.

  12. Mediterranean dryland Mosaic: The effect of scale on core area metrics

    NASA Astrophysics Data System (ADS)

    Alhamad, Mohammad Noor; Alrababah, Mohammad

    2014-05-01

    Quantifying landscape spatial pattern is essential to understanding the relationship between landscape structure and ecological functions and process. Many landscape metrics have been developed to quantify spatial heterogeneity. Landscape metrics have been employed to measure the impact of humans on landscapes. We examined the response of four core areas metrics to a large range of grain sizes in Mediterranean dryland landscapes. The investigated metrics were (1) mean core area (CORE-MN), (2) area weighted mean core area (CORE-AM) , (3) total core area (TCA) and (4) core area percentage of landscape (CPLAND) within six land use types (urban, agriculture, olive orchids, forestry, shrubland and rangeland). Agriculture areas showed the highest value for minimum TCA (2779.4 ha) within the tested grain sizes, followed by rangeland (1778.3 ha) and Forest (1488.5 ha). On the other hand, shrubland showed the lowest TCA (8.0 ha). The minimum CPLAND values were ranged from 0.002 for shrubland to 0.682 for agriculture land use. The maximum CORE-MN among the tested land use type at all levels of grain sizes was exhibited by agriculture land use type (519.759 ha). The core area metrics showed three types of behavior in response to changing grain size in all landuse types. CORE-MN showed predictable relationship, best explained by non-linear responses to changing grain size (R2=0.99). Both TCA and CPLAND exhibited domain of scale effect in response to changing grain size. The threshold behavior for TCA and CPLAND was at the 4 x 4 grain size (about 1.3 ha). However, CORE-AM exhibited erratic behavior. The unique domain of scale-like behavior may be attributed to the unique characteristics of dryland Mediterranean landscapes; where both natural processes and ancient human activities play a great role in shaping the apparent pattern of the landscape

  13. High-Resolution Mapping of Two Types of Spontaneous Mitotic Gene Conversion Events in Saccharomyces cerevisiae

    PubMed Central

    Yim, Eunice; O’Connell, Karen E.; St. Charles, Jordan; Petes, Thomas D.

    2014-01-01

    Gene conversions and crossovers are related products of the repair of double-stranded DNA breaks by homologous recombination. Most previous studies of mitotic gene conversion events have been restricted to measuring conversion tracts that are <5 kb. Using a genetic assay in which the lengths of very long gene conversion tracts can be measured, we detected two types of conversions: those with a median size of ∼6 kb and those with a median size of >50 kb. The unusually long tracts are initiated at a naturally occurring recombination hotspot formed by two inverted Ty elements. We suggest that these long gene conversion events may be generated by a mechanism (break-induced replication or repair of a double-stranded DNA gap) different from the short conversion tracts that likely reflect heteroduplex formation followed by DNA mismatch repair. Both the short and long mitotic conversion tracts are considerably longer than those observed in meiosis. Since mitotic crossovers in a diploid can result in a heterozygous recessive deleterious mutation becoming homozygous, it has been suggested that the repair of DNA breaks by mitotic recombination involves gene conversion events that are unassociated with crossing over. In contrast to this prediction, we found that ∼40% of the conversion tracts are associated with crossovers. Spontaneous mitotic crossover events in yeast are frequent enough to be an important factor in genome evolution. PMID:24990991

  14. Sub-Ocean Drilling

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The National Science Foundation (NSF) initialized a new phase of exploration last year, a 10 year effort jointly funded by NSF and several major oil companies, known as the Ocean Margin Drilling Program (OMDP). The OMDP requires a ship with capabilities beyond existing drill ships; it must drill in 13,000 feet of water to a depth 20,000 feet below the ocean floor. To meet requirements, NSF is considering the conversion of the government-owned mining ship Glomar Explorer to a deep ocean drilling and coring vessel. Feasibility study performed by Donhaiser Marine, Inc. analyzed the ship's characteristics for suitability and evaluated conversion requirement. DMI utilized COSMIC's Ship Motion and Sea Load Computer program to perform analysis which could not be accomplished by other means. If approved for conversion, Glomar Explorer is expected to begin operations as a drillship in 1984.

  15. Fissioning uranium plasmas and nuclear-pumped lasers

    NASA Technical Reports Server (NTRS)

    Schneider, R. T.; Thom, K.

    1975-01-01

    Current research into uranium plasmas, gaseous-core (cavity) reactors, and nuclear-pumped lasers is discussed. Basic properties of fissioning uranium plasmas are summarized together with potential space and terrestrial applications of gaseous-core reactors and nuclear-pumped lasers. Conditions for criticality of a uranium plasma are outlined, and it is shown that the nonequilibrium state and the optical thinness of a fissioning plasma can be exploited for the direct conversion of fission fragment energy into coherent light (i.e., for nuclear-pumped lasers). Successful demonstrations of nuclear-pumped lasers are described together with gaseous-fuel reactor experiments using uranium hexafluoride.

  16. Design of a wearable device for ECG continuous monitoring using wireless technology.

    PubMed

    Led, Santiago; Fernández, Jorge; Serrano, Luis

    2004-01-01

    This project focuses on the design and implementation of an intelligent wearable device for ECG continuous acquisition and transmission to some remote gateway using Bluetooth technology. The acquisition device has been designed for having very low power consumption and reduced size. The Analog Devices' ADuC831 Micro-Converter for achieving the analog to digital conversion and the CSR's BlueCore2 chip for the Bluetooth transmission are the core of the device. The designed device is an important component of a complete prototype for remote ECG continuous monitoring of patients with diverse cardiac diseases.

  17. Tailor-made polyfluoroacrylate and its block copolymer by RAFT polymerization in miniemulsion; improved hydrophobicity in the core-shell block copolymer.

    PubMed

    Chakrabarty, Arindam; Singha, Nikhil K

    2013-10-15

    Controlled/living radical polymerization (CRP) of a fluoroacrylate was successfully carried out in miniemulsion by Reversible Addition Fragmentation chain Transfer (RAFT) process. In this case, 2,2,3,3,4,4,4-heptafluorobutyl acrylate (HFBA) was polymerized using 2-cyanopropyl dodecyl trithiocarbonate (CPDTC) as RAFT agent, Triton X-405 and sodium dodecyl sulfonate (SDS) as surfactant, and potassium persulphate (KPS) or 2,2'-azobis isobutyronitrile (AIBN) as initiator. Being compatible with hydrophobic fluoroacrylate, this RAFT agent offered very high conversion and good control over the molecular weight of the polymer. The miniemulsion was stable without any costabilizer. The long chain dodecyl group (-C12H25) (Z-group in the RAFT agent) had beneficial effect in stabilizing the miniemulsion. When 2-cyano 2-propyl benzodithioate (CPBD) (Z=-C6H5) was used as RAFT agent, the conversion was less and particle size distribution was very broad. Block copolymerization with butyl acrylate (BA) using PHFBA as macro-RAFT agent showed core-shell morphology with the aggregation of PHFBA segment in the shell. GPC as well as DSC analysis confirmed the formation of block copolymer. The core-shell morphology was confirmed by TEM analysis. The block copolymers (PHFBA-b-PBA) showed significantly higher water contact angle (WCA) showing much better hydrophobicity compared to PHFBA alone. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. TAF(II)250: a transcription toolbox.

    PubMed

    Wassarman, D A; Sauer, F

    2001-08-01

    Activation of RNA-polymerase-II-dependent transcription involves conversion of signals provided by gene-specific activator proteins into the synthesis of messenger RNA. This conversion requires dynamic structural changes in chromatin and assembly of general transcription factors (GTFs) and RNA polymerase II at core promoter sequence elements surrounding the transcription start site of genes. One hallmark of transcriptional activation is the interaction of DNA-bound activators with coactivators such as the TATA-box binding protein (TBP)-associated factors (TAF(II)s) within the GTF TFIID. TAF(II)250 possesses a variety of activities that are likely to contribute to the initial steps of RNA polymerase II transcription. TAF(II)250 is a scaffold for assembly of other TAF(II)s and TBP into TFIID, TAF(II)250 binds activators to recruit TFIID to particular promoters, TAF(II)250 regulates binding of TBP to DNA, TAF(II)250 binds core promoter initiator elements, TAF(II)250 binds acetylated lysine residues in core histones, and TAF(II)250 possesses protein kinase, ubiquitin-activating/conjugating and acetylase activities that modify histones and GTFs. We speculate that these activities achieve two goals--(1) they aid in positioning and stabilizing TFIID at particular promoters, and (2) they alter chromatin structure at the promoter to allow assembly of GTFs--and we propose a model for how TAF(II)250 converts activation signals into active transcription.

  19. [The relationship between contractile characteristics and fiber type conversion in hind-limb unloading mice soleus].

    PubMed

    Li, Li; Liu, Hong-Ju; Yang, Ming-Hao; Li, Jing-Long; Wang, Lu; Chen, Xiao-Ping; Fan, Ming

    2012-03-01

    To explore the relationship between contractile characteristics and fiber type conversion in hind-limb unloading mice soleus. After 28-day hind-limb unloading and muscle atrophy, we used the method of isolated muscle perfusion with different stimulated protocols to determine the changes in contractile characteristics including the isometric twitch force and tetanus force and fatigue index of slow twitch muscle in mice. The muscle myofibrillar composition and fiber type conversion were detected by immunofluorescence staining and real-time PCR. The isometric twitch force and the tetanus force and fatigue index were decreased progressively in 28-day unloaded mice soleus, with the increase in fast twitch fiber subtype and the decrease in slow twitch fiber subtype. The alteration of contractile characteristics is relevant to the slow-to-fast fiber conversion in mice soleus after 28-day hind-limb unloading.

  20. DynMo: Dynamic Simulation Model for Space Reactor Power Systems

    NASA Astrophysics Data System (ADS)

    El-Genk, Mohamed; Tournier, Jean-Michel

    2005-02-01

    A Dynamic simulation Model (DynMo) for space reactor power systems is developed using the SIMULINK® platform. DynMo is modular and could be applied to power systems with different types of reactors, energy conversion, and heat pipe radiators. This paper presents a general description of DynMo-TE for a space power system powered by a Sectored Compact Reactor (SCoRe) and that employs off-the-shelf SiGe thermoelectric converters. SCoRe is liquid metal cooled and designed for avoidance of a single point failure. The reactor core is divided into six equal sectors that are neutronically, but not thermal-hydraulically, coupled. To avoid a single point failure in the power system, each reactor sector has its own primary and secondary loops, and each loop is equipped with an electromagnetic (EM) pump. A Power Conversion assembly (PCA) and a Thermoelectric Conversion Assembly (TCA) of the primary and secondary EM pumps thermally couple each pair of a primary and a secondary loop. The secondary loop transports the heat rejected by the PCA and the pumps TCA to a rubidium heat pipes radiator panel. The primary loops transport the thermal power from the reactor sector to the PCAs for supplying a total of 145-152 kWe to the load at 441-452 VDC, depending on the selections of the primary and secondary liquid metal coolants. The primary and secondary coolant combinations investigated are lithium (Li)/Li, Li/sodium (Na), Na-Na, Li/NaK-78 and Na/NaK-78, for which the reactor exit temperature is kept below 1250 K. The results of a startup transient of the system from an initial temperature of 500 K are compared and discussed.

  1. Efficient 1.5-μm Raman generation in ethane-filled hollow-core fiber

    NASA Astrophysics Data System (ADS)

    Chen, Yubin; Gu, Bo; Wang, Zefeng; Lu, Qisheng

    2016-11-01

    We demonstrated for the first time a novel and effective method for obtaining both high peak-power and narrow linewidth 1.5 μm fiber sources through gas Raman effect in hollow core fibers. An Ethane-filled ice-cream antiresonance hollow-core fiber is pumped with a high peak-power pulse 1064 nm microchip laser, generating 1552.7 nm Stokes wave by pure vibrational stimulated Raman scattering of ethane molecules. A maximum peak-power of about 400 kW is achieved with 6 meter fiber length at 2 bar pressure, and the linewidth is about 6.3 GHz. The maximum Raman conversion efficiency of 1064 nm to 1552.7 nm is about 38%, and the corresponding laser slope efficiency is about 61.5%.

  2. Effect of varying core thicknesses and artificial aging on the color difference of different all-ceramic materials.

    PubMed

    Dikicier, Sibel; Ayyildiz, Simel; Ozen, Julide; Sipahi, Cumhur

    2014-11-01

    Clinicians should reserve all-ceramics with high translucency for clinical applications in which high-level esthetics are required. Furthermore, it is unclear whether a correlation exists between core thickness and color change. The aim of this study was to examine the effects of different core thicknesses and artificial aging on the color stability of three all-ceramic systems. Ninety disc-shaped cores with different thicknesses (0.5 mm, 0.8 mm and 1.0 mm) were prepared from three all-ceramic systems, In-Ceram Alumina (IC), IPS e.max Press (EM) and Katana (K). The colors of the samples were measured with a spectrophotometer and the color parameters (L*, a*, b*, ΔE) were calculated according to the CIE L*a*b* (Commission Internationale de L'Eclairage) color system before and after aging. The effects of aging on color parameters were statistically significant (p < 0.001), regardless of core thickness. For all systems, the CIE a* values increased as the thickness of the core increased. Conversely, such increases in core porcelain thickness were correlated with decreasing CIE L* and b* values. Core thickness had a statistically significant effect on color change among the groups. Different core thicknesses (from 1.0-0.5 mm) and artificial aging affected color stability of the all-ceramic materials tested.

  3. Revealing Land Cover Change in California With Satellite Data

    NASA Astrophysics Data System (ADS)

    Potter, Christopher; Genovese, Vanessa; Gross, Peggy; Boriah, Shyam; Steinbach, Michael; Kumar, Vipin

    2007-06-01

    The conversion of natural land cover into human-dominated cover types continues to be a change of global proportions with many unknown environmental consequences. Noteworthy conversions of this type include tree stand harvests in forested regions, urbanization, and agricultural intensification in former woodland and natural grassland areas. Determining where, when, and why natural ecosystem conversions occur is a crucial scientific concern [Foley et al., 2005]. Characteristics of the land cover can have important impacts on local climate, radiation balance, biogeochemistry, hydrology and the diversity and abundance of terrestrial species [Randerson et al., 2006]. Consequently, understanding trends in land cover conversion at local scales is a requirement for making useful numerical predictions about other regional and global changes. It is urgent that accurate, timely, and economical tools be made available to document these conversions and aid in the management of their impacts.

  4. Leading with Intent: Cultivating Community Conversation to Create Shared Understanding

    ERIC Educational Resources Information Center

    Marsh, Scott; Waniganayake, Manjula; De Nobile, John J.

    2016-01-01

    School improvement is a central focus for school leaders. Whilst measures such as high-stakes testing and other government accountability agendas have at times marred the discourse of school improvement, how schools develop their capacity to ultimately improve the core business of student learning remains important. As an extensive area of…

  5. Why Do We Need Future Ready Librarians? That Kid.

    ERIC Educational Resources Information Center

    Ray, Mark

    2018-01-01

    In this article, the author examines the need of the Future Ready Librarians (FRL) initiative. The FRL Framework helps define how librarians might lead, teach, and support schools based on the core research-based components defined by Future Ready. The framework and initiative are intended to be ways to change the conversation about school…

  6. Curing Provincialism: Why We Educate the Way We Do. A Conversation with Jacques Barzun.

    ERIC Educational Resources Information Center

    American Educator, 2002

    2002-01-01

    This interview with author and cultural historian Jacques Barzun discusses the origins of history, science, art, literature, and math, calling them the core of intellectual inheritance. Notes how the frameworks they provide enable people to extend their understanding of the world and reach beyond natural, human parochialism. Discusses the…

  7. Teaching and Learning in a Post-DAP World

    ERIC Educational Resources Information Center

    Graue, Elizabeth

    2008-01-01

    Recently a school district colleague recounted a conversation with a young kindergarten teacher that had shaken her to her core. The kindergarten teacher (let's call her Ms. Post) said that nobody talks about developmentally appropriate practice (DAP) anymore--everyone is way past that. The author and her colleague, two mature early childhood…

  8. Why Historical Fiction Writing? Helping Students Think Rigorously and Creatively

    ERIC Educational Resources Information Center

    Hughes, Ryan

    2013-01-01

    The Common Core State Standards (CCSS) lays out "a vision of what it means to be a literate person in the twenty-first century." Among educators, conversations about reading and writing have shifted to reflect the CCSS emphasis on informational, technical, opinion, and other non-narrative forms. Yet, these standards also demand that…

  9. Trainer Interventions as Instructional Strategies in Air Traffic Control Training

    ERIC Educational Resources Information Center

    Koskela, Inka; Palukka, Hannele

    2011-01-01

    Purpose: This paper aims to identify methods of guidance and supervision used in air traffic control training. It also aims to show how these methods facilitate trainee participation in core work activities. Design/methodology/approach: The paper applies the tools of conversation analysis and ethnomethodology to explore the ways in which trainers…

  10. Teachers' Invisible Presence in Net-Based Distance Education

    ERIC Educational Resources Information Center

    Hult, Agneta; Dahlgren, Ethel; Hamilton, David; Soderstrom, Tor

    2005-01-01

    Conferencing--or dialogue--has always been a core activity in liberal adult education. More recently, attempts have been made to transfer such conversations online in the form of computer-mediated conferencing. This transfer has raised a range of pedagogical questions, most notably Can established practices be continued? Or must new forms of…

  11. Improving Student Outcomes of Community-Based Programs through Peer-to-Peer Conversation

    ERIC Educational Resources Information Center

    Mitchell, Joshua J.; Gillon, Kathleen E.; Reason, Robert D.; Ryder, Andrew J.

    2016-01-01

    The authors used the Personal and Social Responsibility Inventory (PSRI), a nationally available campus climate assessment, for this study. The PSRI, which assesses individual students' behavior and perceptions of campus climate related to civic learning in higher education, was developed in 2006 as part of the Core Commitments Initiative of the…

  12. Evidence for somatic gene conversion and deletion in bipolar disorder, Crohn's disease, coronary artery disease, hypertension, rheumatoid arthritis, type-1 diabetes, and type-2 diabetes

    PubMed Central

    2011-01-01

    Background During gene conversion, genetic information is transferred unidirectionally between highly homologous but non-allelic regions of DNA. While germ-line gene conversion has been implicated in the pathogenesis of some diseases, somatic gene conversion has remained technically difficult to investigate on a large scale. Methods A novel analysis technique is proposed for detecting the signature of somatic gene conversion from SNP microarray data. The Wellcome Trust Case Control Consortium has gathered SNP microarray data for two control populations and cohorts for bipolar disorder (BD), cardiovascular disease (CAD), Crohn's disease (CD), hypertension (HT), rheumatoid arthritis (RA), type-1 diabetes (T1D) and type-2 diabetes (T2D). Using the new analysis technique, the seven disease cohorts are analyzed to identify cohort-specific SNPs at which conversion is predicted. The quality of the predictions is assessed by identifying known disease associations for genes in the homologous duplicons, and comparing the frequency of such associations with background rates. Results Of 28 disease/locus pairs meeting stringent conditions, 22 show various degrees of disease association, compared with only 8 of 70 in a mock study designed to measure the background association rate (P < 10-9). Additional candidate genes are identified using less stringent filtering conditions. In some cases, somatic deletions appear likely. RA has a distinctive pattern of events relative to other diseases. Similarities in patterns are apparent between BD and HT. Conclusions The associations derived represent the first evidence that somatic gene conversion could be a significant causative factor in each of the seven diseases. The specific genes provide potential insights about disease mechanisms, and are strong candidates for further study. Please see Commentary: http://www.biomedcentral.com/1741-7015/9/13/abstract. PMID:21291537

  13. Evidence for somatic gene conversion and deletion in bipolar disorder, Crohn's disease, coronary artery disease, hypertension, rheumatoid arthritis, type-1 diabetes, and type-2 diabetes.

    PubMed

    Ross, Kenneth Andrew

    2011-02-03

    During gene conversion, genetic information is transferred unidirectionally between highly homologous but non-allelic regions of DNA. While germ-line gene conversion has been implicated in the pathogenesis of some diseases, somatic gene conversion has remained technically difficult to investigate on a large scale. A novel analysis technique is proposed for detecting the signature of somatic gene conversion from SNP microarray data. The Wellcome Trust Case Control Consortium has gathered SNP microarray data for two control populations and cohorts for bipolar disorder (BD), cardiovascular disease (CAD), Crohn's disease (CD), hypertension (HT), rheumatoid arthritis (RA), type-1 diabetes (T1D) and type-2 diabetes (T2D). Using the new analysis technique, the seven disease cohorts are analyzed to identify cohort-specific SNPs at which conversion is predicted. The quality of the predictions is assessed by identifying known disease associations for genes in the homologous duplicons, and comparing the frequency of such associations with background rates. Of 28 disease/locus pairs meeting stringent conditions, 22 show various degrees of disease association, compared with only 8 of 70 in a mock study designed to measure the background association rate (P < 10-9). Additional candidate genes are identified using less stringent filtering conditions. In some cases, somatic deletions appear likely. RA has a distinctive pattern of events relative to other diseases. Similarities in patterns are apparent between BD and HT. The associations derived represent the first evidence that somatic gene conversion could be a significant causative factor in each of the seven diseases. The specific genes provide potential insights about disease mechanisms, and are strong candidates for further study.

  14. Intelligent FPGA Data Acquisition Framework

    NASA Astrophysics Data System (ADS)

    Bai, Yunpeng; Gaisbauer, Dominic; Huber, Stefan; Konorov, Igor; Levit, Dmytro; Steffen, Dominik; Paul, Stephan

    2017-06-01

    In this paper, we present the field programmable gate arrays (FPGA)-based framework intelligent FPGA data acquisition (IFDAQ), which is used for the development of DAQ systems for detectors in high-energy physics. The framework supports Xilinx FPGA and provides a collection of IP cores written in very high speed integrated circuit hardware description language, which use the common interconnect interface. The IP core library offers functionality required for the development of the full DAQ chain. The library consists of Serializer/Deserializer (SERDES)-based time-to-digital conversion channels, an interface to a multichannel 80-MS/s 10-b analog-digital conversion, data transmission, and synchronization protocol between FPGAs, event builder, and slow control. The functionality is distributed among FPGA modules built in the AMC form factor: front end and data concentrator. This modular design also helps to scale and adapt the DAQ system to the needs of the particular experiment. The first application of the IFDAQ framework is the upgrade of the read-out electronics for the drift chambers and the electromagnetic calorimeters (ECALs) of the COMPASS experiment at CERN. The framework will be presented and discussed in the context of this paper.

  15. Conversion of Deletions during Recombination in Pneumococcal Transformation

    PubMed Central

    Lefevre, J. C.; Mostachfi, P.; Gasc, A. M.; Guillot, E.; Pasta, F.; Sicard, M.

    1989-01-01

    Genetic analysis of 16 deletions obtained in the amiA locus of pneumococcus is described. When present on donor DNA, all deletions increased drastically the frequency of wild-type recombinants in two-point crosses. This effect was maximal for deletions longer than 200 bases. It was reduced for heterologies shorter than 76 bases and did not exist for very short deletions. In three-point crosses in which the deletion was localized between two point mutations, we demonstrated that this excess of wild-type recombinants was the result of a genetic conversion. This conversion extended over several scores of bases outside the deletion. Conversion takes place during the heteroduplex stage of recombination. Therefore, in pneumococcal transformation, long heterologies participated in this heteroduplex configuration. As this conversion did not require an active DNA polymerase A gene it is proposed that the mechanism of conversion is not a DNA repair synthesis but involves breakage and ligation between DNA molecules. Conversion of deletions did not require the Hex system of correction of mismatched bases. It differs also from localized conversion. It appears that it is a process that evolved to correct errors of replication which lead to long heterologies and which are not eliminated by other systems. PMID:2599365

  16. Silicon trench photodiodes on a wafer for efficient X-ray-to-current signal conversion using side-X-ray-irradiation mode

    NASA Astrophysics Data System (ADS)

    Ariyoshi, Tetsuya; Takane, Yuta; Iwasa, Jumpei; Sakamoto, Kenji; Baba, Akiyoshi; Arima, Yutaka

    2018-04-01

    In this paper, we report a direct-conversion-type X-ray sensor composed of trench-structured silicon photodiodes, which achieves a high X-ray-to-current conversion efficiency under side X-ray irradiation. The silicon X-ray sensor with a length of 22.6 mm and a trench depth of 300 µm was fabricated using a single-poly single-metal 0.35 µm process. X-rays with a tube voltage of 80 kV were irradiated along the trench photodiode from the side of the test chip. The theoretical limit of X-ray-to-current conversion efficiency of 83.8% was achieved at a low reverse bias voltage of 25 V. The X-ray-to-electrical signal conversion efficiency of conventional indirect-conversion-type X-ray sensors is about 10%. Therefore, the developed sensor has a conversion efficiency that is about eight times higher than that of conventional sensors. It is expected that the developed X-ray sensor will be able to markedly lower the radiation dose required for X-ray diagnoses.

  17. Format conversion between CAD data and GIS data based on ArcGIS

    NASA Astrophysics Data System (ADS)

    Xie, Qingqing; Wei, Bo; Zhang, Kailin; Wang, Zhichao

    2015-12-01

    To make full use of the data resources and realize a sharing for the different types of data in different industries, a method of format conversion between CAD data and GIS data based on ArcGIS was proposed. To keep the integrity of the converted data, some key steps to process CAD data before conversion were made in AutoCAD. For examples, deleting unnecessary elements such as title, border and legend avoided the appearance of unnecessary elements after conversion, as layering data again by a national standard avoided the different types of elements to appear in a same layer after conversion. In ArcGIS, converting CAD data to GIS data was executed by the correspondence of graphic element classification between AutoCAD and ArcGIS. In addition, an empty geographic database and feature set was required to create in ArcGIS for storing the text data of CAD data. The experimental results show that the proposed method avoids a large amount of editing work in data conversion and maintains the integrity of spatial data and attribute data between before and after conversion.

  18. Remote p-type Doping in GaSb/InAs Core-shell Nanowires

    PubMed Central

    Ning, Feng; Tang, Li-Ming; Zhang, Yong; Chen, Ke-Qiu

    2015-01-01

    By performing first-principles calculation, we investigated the electronic properties of remotely p-type doping GaSb nanowire by a Zn-doped InAs shell. The results show that for bare zinc-blende (ZB) [111] GaSb/InAs core-shell nanowire the Zn p-type doped InAs shell donates free holes to the non-doped GaSb core nanowire without activation energy, significantly increasing the hole density and mobility of nanowire. For Zn doping in bare ZB [110] GaSb/InAs core-shell nanowire the hole states are compensated by surface states. We also studied the behaviors of remote p-type doing in two-dimensional (2D) GaSb/InAs heterogeneous slabs, and confirmed that the orientation of nanowire side facet is a key factor for achieving high efficient remote p-type doping. PMID:26028535

  19. Identifying mechanisms of change in a conversation therapy for aphasia using behaviour change theory and qualitative methods

    PubMed Central

    Best, Wendy; Beckley, Firle Christina; Maxim, Jane; Beeke, Suzanne

    2016-01-01

    Abstract Background Conversation therapy for aphasia is a complex intervention comprising multiple components and targeting multiple outcomes. UK Medical Research Council (MRC) guidelines published in 2008 recommend that in addition to measuring the outcomes of complex interventions, evaluation should seek to clarify how such outcomes are produced, including identifying the hypothesized mechanisms of change. Aims To identify mechanisms of change within a conversation therapy for people with aphasia and their partners. Using qualitative methods, the study draws on behaviour change theory to understand how and why participants make changes in conversation during and after therapy. Methods & Procedures Data were derived from 16 participants (eight people with aphasia; eight conversation partners) who were recruited to the Better Conversations with Aphasia research project and took part in an eight session conversation therapy programme. The dataset consists of in‐therapy discussions and post‐therapy interviews, which are analysed using Framework Analysis. Outcomes & Results Seven mechanisms of conversational behaviour change are identified and linked to theory. These show how therapy can activate changes to speakers’ skills and motivation for using specific behaviours, and to the conversational opportunities available for strategy use. Conclusions & Implications These clinically relevant findings offer guidance about the processes involved in producing behavioural change via conversation therapy. A distinction is made between the process involved in motivating change and that involved in embedding change. Differences are also noted between the process engaged in reducing unhelpful behaviour and that supporting new uses of compensatory strategies. Findings are expected to have benefits for those seeking to replicate therapy's core processes both in clinical practice and in future research. PMID:27882642

  20. Identifying mechanisms of change in a conversation therapy for aphasia using behaviour change theory and qualitative methods.

    PubMed

    Johnson, Fiona M; Best, Wendy; Beckley, Firle Christina; Maxim, Jane; Beeke, Suzanne

    2017-05-01

    Conversation therapy for aphasia is a complex intervention comprising multiple components and targeting multiple outcomes. UK Medical Research Council (MRC) guidelines published in 2008 recommend that in addition to measuring the outcomes of complex interventions, evaluation should seek to clarify how such outcomes are produced, including identifying the hypothesized mechanisms of change. To identify mechanisms of change within a conversation therapy for people with aphasia and their partners. Using qualitative methods, the study draws on behaviour change theory to understand how and why participants make changes in conversation during and after therapy. Data were derived from 16 participants (eight people with aphasia; eight conversation partners) who were recruited to the Better Conversations with Aphasia research project and took part in an eight session conversation therapy programme. The dataset consists of in-therapy discussions and post-therapy interviews, which are analysed using Framework Analysis. Seven mechanisms of conversational behaviour change are identified and linked to theory. These show how therapy can activate changes to speakers' skills and motivation for using specific behaviours, and to the conversational opportunities available for strategy use. These clinically relevant findings offer guidance about the processes involved in producing behavioural change via conversation therapy. A distinction is made between the process involved in motivating change and that involved in embedding change. Differences are also noted between the process engaged in reducing unhelpful behaviour and that supporting new uses of compensatory strategies. Findings are expected to have benefits for those seeking to replicate therapy's core processes both in clinical practice and in future research. © 2016 Royal College of Speech and Language Therapists.

  1. Glide of threading edge dislocations after basal plane dislocation conversion during 4H-SiC epitaxial growth

    NASA Astrophysics Data System (ADS)

    Abadier, Mina; Song, Haizheng; Sudarshan, Tangali S.; Picard, Yoosuf N.; Skowronski, Marek

    2015-05-01

    Transmission electron microscopy (TEM) and KOH etching were used to analyze the motion of dislocations after the conversion of basal plane dislocations (BPDs) to threading edge dislocations (TEDs) during 4H-SiC epitaxy. The locations of TED etch pits on the epilayer surface were shifted compared to the original locations of BPD etch pits on the substrate surface. The shift of the TED etch pits was mostly along the BPD line directions towards the up-step direction. For converted screw type BPDs, the conversion points were located below the substrate/epilayer interface. The shift distances in the step-flow direction were proportional to the depths of the BPD-TED conversion points below the substrate/epilayer interface. For converted mixed type BPDs, the conversion points were exactly at the interface. Through TEM analysis, it was concluded that the dislocation shift is caused by a combined effect of H2 etching prior to growth and glide of the threading segments during high temperature epitaxy. The TED glide is only possible for converted pure screw type BPDs and could present a viable means for eliminating BPDs from the epilayer during growth by moving the conversion point below the substrate/epilayer interface.

  2. The free and cued selective reminding test for predicting progression to Alzheimer's disease in patients with mild cognitive impairment: A prospective longitudinal study.

    PubMed

    Lemos, Raquel; Marôco, João; Simões, Mário R; Santiago, Beatriz; Tomás, José; Santana, Isabel

    2017-03-01

    Amnestic mild cognitive impairment (aMCI) patients carry a greater risk of conversion to Alzheimer's disease (AD). Therefore, the International Working Group (IWG) on AD aims to consider some cases of aMCI as symptomatic prodromal AD. The core diagnostic marker of AD is a significant and progressive memory deficit, and the Free and Cued Selective Reminding Test (FCSRT) was recommended by the IWG to test memory in cases of possible prodromal AD. This study aims to investigate whether the performance on the FCSRT would enhance the ability to predict conversion to AD in an aMCI group. A longitudinal study was conducted on 88 aMCI patients, and neuropsychological tests were analysed on the relative risk of conversion to AD. During follow-up (23.82 months), 33% of the aMCI population converted to AD. An impaired FCSRT TR was significantly associated with the risk of conversion to dementia, with a mean time to conversion of 25 months. The FCSRT demonstrates utility for detecting AD at its prodromal stage, thus supporting its use as a valid clinical marker. © 2015 The British Psychological Society.

  3. An Investigation on Low Velocity Impact Response of Multilayer Sandwich Composite Structures

    PubMed Central

    Jedari Salami, S.; Sadighi, M.; Shakeri, M.; Moeinfar, M.

    2013-01-01

    The effects of adding an extra layer within a sandwich panel and two different core types in top and bottom cores on low velocity impact loadings are studied experimentally in this paper. The panel includes polymer composite laminated sheets for faces and the internal laminated sheet called extra layer sheet, and two types of crushable foams are selected as the core material. Low velocity impact tests were carried out by drop hammer testing machine to the clamped multilayer sandwich panels with expanded polypropylene (EPP) and polyurethane rigid (PUR) in the top and bottom cores. Local displacement of the top core, contact force and deflection of the sandwich panel were obtained for different locations of the internal sheet; meanwhile the EPP and PUR were used in the top and bottom cores alternatively. It was found that the core material type has made significant role in improving the sandwich panel's behavior compared with the effect of extra layer location. PMID:24453804

  4. Switching Plasmons: Gold Nanorod-Copper Chalcogenide Core-Shell Nanoparticle Clusters with Selectable Metal/Semiconductor NIR Plasmon Resonances.

    PubMed

    Muhammed, Madathumpady Abubaker Habeeb; Döblinger, Markus; Rodríguez-Fernández, Jessica

    2015-09-16

    Exerting control over the near-infrared (NIR) plasmonic response of nanosized metals and semiconductors can facilitate access to unexplored phenomena and applications. Here we combine electrostatic self-assembly and Cd(2+)/Cu(+) cation exchange to obtain an anisotropic core-shell nanoparticle cluster (NPC) whose optical properties stem from two dissimilar plasmonic materials: a gold nanorod (AuNR) core and a copper selenide (Cu(2-x)Se, x ≥ 0) supraparticle shell. The spectral response of the AuNR@Cu2Se NPCs is governed by the transverse and longitudinal plasmon bands (LPB) of the anisotropic metallic core, since the Cu2Se shell is nonplasmonic. Under aerobic conditions the shell undergoes vacancy doping (x > 0), leading to the plasmon-rich NIR spectrum of the AuNR@Cu(2-x)Se NPCs. For low vacancy doping levels the NIR optical properties of the dually plasmonic NPCs are determined by the LPBs of the semiconductor shell (along its major longitudinal axis) and of the metal core. Conversely, for high vacancy doping levels their NIR optical response is dominated by the two most intense plasmon modes from the shell: the transverse (along the shortest transversal axis) and longitudinal (along the major longitudinal axis) modes. The optical properties of the NPCs can be reversibly switched back to a purely metallic plasmonic character upon reversible conversion of AuNR@Cu(2-x)Se into AuNR@Cu2Se. Such well-defined nanosized colloidal assemblies feature the unique ability of holding an all-metallic, a metallic/semiconductor, or an all-semiconductor plasmonic response in the NIR. Therefore, they can serve as an ideal platform to evaluate the crosstalk between plasmonic metals and plasmonic semiconductors at the nanoscale. Furthermore, their versatility to display plasmon modes in the first, second, or both NIR windows is particularly advantageous for bioapplications, especially considering their strong absorbing and near-field enhancing properties.

  5. The NASA thermionic-conversion (TEC-ART) program

    NASA Technical Reports Server (NTRS)

    Morris, J. F.

    1977-01-01

    The current emphasis is on out-of-core thermionic conversion (TEC). The additional degrees of freedom offer new potentialities, but high-temperature material effects determine the level and lifetime of TEC performance: New electrodes not only raise power outputs but also maintain them regardless of emitter-vapor deposition on collectors. In addition, effective electrodes serve compatibly with hot-shell alloys. Space TEC withstands external and internal high-temperature vaporization problems, and terrestrial TEC tolerates hot corrosive atmospheres outside and near-vacuum inside. Finally, reduction of losses between converter electrodes is essential even though rather demanding geometries appear to be required for some modes of enhanced operation.

  6. Conversion of ultrashort laser pulses to wavelengths above 3 mm in tapered germanate fibres

    NASA Astrophysics Data System (ADS)

    Anashkina, E. A.; Andrianov, A. V.; Kim, A. V.

    2015-05-01

    Tapered germanate fibres are proposed for effective adiabatic conversion of Raman soliton pulses to the mid-IR region. A theoretical analysis demonstrates that, in fibres with anomalous group velocity dispersion decreasing along their length, wavelengths of up to 3.5 μm can be reached, which are unattainable in fibres with a constant core diameter at the same parameters of a 2-μm input signal. The analysis relies on a one-way wave equation that takes into account the combined effect of dispersion, Kerr and Raman nonlinearities, nonlinear dispersion and optical losses and the frequency dependence of the effective fundamental transverse mode size.

  7. Shaping biomedical objects across history and philosophy:a conversation with Hans-Jörg Rheinberger.

    PubMed

    García-Sancho, Miguel; González-Silva, Matiana; Jesús Santesmases, María; Rheinberger, Hans-Jörg

    2014-01-01

    Historical epistemology, according to the historian of science Hans-Jörg Rheinberger, is a space through which "to take experimental laboratory work into the realm of philosophy". This key concept, together with the crucial events and challenges of his career, were discussed in a public conversation which took place on the occasion of Rheinberger's retirement. By making sense of natural phenomena in the laboratory, the act of experimenting shapes the object; it is this shaping which became the core of Rheinberger's own research across biology and philosophy into history. For his intellectual agenda, a history of the life sciences so constructed became "epistemologically demanding".

  8. Cooling Performance Analysis of ThePrimary Cooling System ReactorTRIGA-2000Bandung

    NASA Astrophysics Data System (ADS)

    Irianto, I. D.; Dibyo, S.; Bakhri, S.; Sunaryo, G. R.

    2018-02-01

    The conversion of reactor fuel type will affect the heat transfer process resulting from the reactor core to the cooling system. This conversion resulted in changes to the cooling system performance and parameters of operation and design of key components of the reactor coolant system, especially the primary cooling system. The calculation of the operating parameters of the primary cooling system of the reactor TRIGA 2000 Bandung is done using ChemCad Package 6.1.4. The calculation of the operating parameters of the cooling system is based on mass and energy balance in each coolant flow path and unit components. Output calculation is the temperature, pressure and flow rate of the coolant used in the cooling process. The results of a simulation of the performance of the primary cooling system indicate that if the primary cooling system operates with a single pump or coolant mass flow rate of 60 kg/s, it will obtain the reactor inlet and outlet temperature respectively 32.2 °C and 40.2 °C. But if it operates with two pumps with a capacity of 75% or coolant mass flow rate of 90 kg/s, the obtained reactor inlet, and outlet temperature respectively 32.9 °C and 38.2 °C. Both models are qualified as a primary coolant for the primary coolant temperature is still below the permitted limit is 49.0 °C.

  9. Types of Informal Learning in Cross-Organizational Collegial Conversations

    ERIC Educational Resources Information Center

    Wilson, Daniel Gray; Hartung, Kyle

    2015-01-01

    Purpose: This paper aims to gather empirical evidence for what colleagues from different organizations reported they learned from informal professional learning conversations. Informal learning conversations with colleagues is a powerful yet understudied source of self-directed, professional development. Design/methodology/approach: This study of…

  10. Single-mode annular chirally-coupled core fibers for fiber lasers

    NASA Astrophysics Data System (ADS)

    Zhang, Haitao; Hao, He; He, Linlu; Gong, Mali

    2018-03-01

    Chirally-coupled core (CCC) fiber can transmit single fundamental mode and effectively suppresses higher-order mode (HOM) propagation, thus improve the beam quality. However, the manufacture of CCC fiber is complicated due to its small side core. To decrease the manufacture difficulty in China, a novel fiber structure is presented, defined as annular chirally-coupled core (ACCC) fiber, replacing the small side core by a larger side annulus. In this paper, we designed the fiber parameters of this new structure, and demonstrated that the new structure has a similar property of single mode with traditional CCC fiber. Helical coordinate system was introduced into the finite element method (FEM) to analyze the mode field in the fiber, and the beam propagation method (BPM) was employed to analyze the influence of the fiber parameters on the mode loss. Based on the result above, the fiber structure was optimized for efficient single-mode transmission, in which the core diameter is 35 μm with beam quality M2 value of 1.04 and an optical to optical conversion efficiency of 84%. In this fiber, fundamental mode propagates in an acceptable loss, while the HOMs decay rapidly.

  11. Template-Free Hydrothermal Synthesis, Mechanism, and Photocatalytic Properties of Core-Shell CeO2 Nanospheres

    NASA Astrophysics Data System (ADS)

    Li, Huijie; Meng, Fanming; Gong, Jinfeng; Fan, Zhenghua; Qin, Rui

    2018-03-01

    CeO2 nanospheres with the core-shell nanostructure have been successfully synthesized by a template-free hydrothermal method. The structures, morphologies and optical properties of core-shell CeO2 nanospheres were analyzed by X-ray diffraction (XRD), TG, Fourier transform infrared spectroscopy, XRD, EDS, SAED, scanning electron microscopy and transmission electron microscopy, UV-Vis diffuse reflectance spectra, Raman analyses. The degradation efficiencies of core-shell CeO2 nanospheres for methyl orange were as high as 93.49, 95.67 and 98.28% within 160 min, and the rates of photo degradation of methyl orange by core-shell CeO2 nanospheres under UV-light were 0.01693, 0.01782 and 0.02375 min-1. Methyl orange was degraded in photocatalytic oxidation processes, which mainly gave the credit to a large number of reactive species including h+, surface superoxide species ·O2 -, and ·OH radicals. The core-shell structure, small crystallite size and the conversion between Ce3+ and Ce4+ of CeO2 nanospheres were of importance for its catalytic activity. These results demonstrated the possibility of improving the efficient catalysts of the earth abundant CeO2 catalysts.

  12. Navigating Ethics in the Digital Age: Introducing Connected and Open Research Ethics (CORE), a Tool for Researchers and Institutional Review Boards

    PubMed Central

    Torous, John

    2017-01-01

    Research studies that leverage emerging technologies, such as passive sensing devices and mobile apps, have demonstrated encouraging potential with respect to favorably influencing the human condition. As a result, the nascent fields of mHealth and digital medicine have gained traction over the past decade as demonstrated in the United States by increased federal funding for research that cuts across a broad spectrum of health conditions. The existence of mHealth and digital medicine also introduced new ethical and regulatory challenges that both institutional review boards (IRBs) and researchers are struggling to navigate. In response, the Connected and Open Research Ethics (CORE) initiative was launched. The CORE initiative has employed a participatory research approach, whereby researchers and IRB affiliates are involved in identifying the priorities and functionality of a shared resource. The overarching goal of CORE is to develop dynamic and relevant ethical practices to guide mHealth and digital medicine research. In this Viewpoint paper, we describe the CORE initiative and call for readers to join the CORE Network and contribute to the bigger conversation on ethics in the digital age. PMID:28179216

  13. Bulk single crystal ternary substrates for a thermophotovoltaic energy conversion system

    DOEpatents

    Charache, Greg W.; Baldasaro, Paul F.; Nichols, Greg J.

    1998-01-01

    A thermophotovoltaic energy conversion device and a method for making the device. The device includes a substrate formed from a bulk single crystal material having a bandgap (E.sub.g) of 0.4 eV

  14. Bulk single crystal ternary substrates for a thermophotovoltaic energy conversion system

    DOEpatents

    Charache, G.W.; Baldasaro, P.F.; Nichols, G.J.

    1998-06-23

    A thermophotovoltaic energy conversion device and a method for making the device are disclosed. The device includes a substrate formed from a bulk single crystal material having a bandgap (E{sub g}) of 0.4 eV < E{sub g} < 0.7 eV and an emitter fabricated on the substrate formed from one of a p-type or an n-type material. Another thermophotovoltaic energy conversion device includes a host substrate formed from a bulk single crystal material and lattice-matched ternary or quaternary III-V semiconductor active layers. 12 figs.

  15. Redox-inactive metal ions promoted the catalytic reactivity of non-heme manganese complexes towards oxygen atom transfer.

    PubMed

    Choe, Cholho; Yang, Ling; Lv, Zhanao; Mo, Wanling; Chen, Zhuqi; Li, Guangxin; Yin, Guochuan

    2015-05-21

    Redox-inactive metal ions can modulate the reactivity of redox-active metal ions in a variety of biological and chemical oxidations. Many synthetic models have been developed to help address the elusive roles of these redox-inactive metal ions. Using a non-heme manganese(II) complex as the model, the influence of redox-inactive metal ions as a Lewis acid on its catalytic efficiency in oxygen atom transfer was investigated. In the absence of redox-inactive metal ions, the manganese(II) catalyst is very sluggish, for example, in cyclooctene epoxidation, providing only 9.9% conversion with 4.1% yield of epoxide. However, addition of 2 equiv. of Al(3+) to the manganese(II) catalyst sharply improves the epoxidation, providing up to 97.8% conversion with 91.4% yield of epoxide. EPR studies of the manganese(II) catalyst in the presence of an oxidant reveal a 16-line hyperfine structure centered at g = 2.0, clearly indicating the formation of a mixed valent di-μ-oxo-bridged diamond core, Mn(III)-(μ-O)2-Mn(IV). The presence of a Lewis acid like Al(3+) causes the dissociation of this diamond Mn(III)-(μ-O)2-Mn(IV) core to form monomeric manganese(iv) species which is responsible for improved epoxidation efficiency. This promotional effect has also been observed in other manganese complexes bearing various non-heme ligands. The findings presented here have provided a promising strategy to explore the catalytic reactivity of some di-μ-oxo-bridged complexes by adding non-redox metal ions to in situ dissociate those dimeric cores and may also provide clues to understand the mechanism of methane monooxygenase which has a similar diiron diamond core as the intermediate.

  16. Realization of optical multimode TSV waveguides for Si-Interposer in 3D-chip-stacks

    NASA Astrophysics Data System (ADS)

    Killge, S.; Charania, S.; Richter, K.; Neumann, N.; Al-Husseini, Z.; Plettemeier, D.; Bartha, J. W.

    2017-05-01

    Optical connectivity has the potential to outperform copper-based TSVs in terms of bandwidth at the cost of more complexity due to the required electro-optical and opto-electrical conversion. The continuously increasing demand for higher bandwidth pushes the breakeven point for a profitable operation to shorter distances. To integrate an optical communication network in a 3D-chip-stack optical through-silicon vertical VIAs (TSV) are required. While the necessary effort for the electrical/optical and vice versa conversion makes it hard to envision an on-chip optical interconnect, a chip-to-chip optical link appears practicable. In general, the interposer offers the potential advantage to realize electro-optical transceivers on affordable expense by specific, but not necessarily CMOS technology. We investigated the realization and characterization of optical interconnects as a polymer based waveguide in high aspect ratio (HAR) TSVs proved on waferlevel. To guide the optical field inside a TSV as optical-waveguide or fiber, its core has to have a higher refractive index than the surrounding material. Comparing different material / technology options it turned out that thermal grown silicon dioxide (SiO2) is a perfect candidate for the cladding (nSiO2 = 1.4525 at 850 nm). In combination with SiO2 as the adjacent polymer layer, the negative resist SU-8 is very well suited as waveguide material (nSU-8 = 1.56) for the core. Here, we present the fabrication of an optical polymer based multimode waveguide in TSVs proved on waferlevel using SU-8 as core and SiO2 as cladding. The process resulted in a defect-free filling of waveguide TSVs with SU-8 core and SiO2 cladding up to aspect ratio (AR) 20:1 and losses less than 3 dB.

  17. Improvement of energy conversion efficiency and power generation in direct borohydride-hydrogen peroxide fuel cell: The effect of Ni-M core-shell nanoparticles (M = Pt, Pd, Ru)/Multiwalled Carbon Nanotubes on the cell performance

    NASA Astrophysics Data System (ADS)

    Hosseini, M. G.; Mahmoodi, R.

    2017-12-01

    In this study, core@shell nanoparticles with Ni as a core material and Pt, Pd and Ru as shell materials are synthesized on multiwalled carbon nanotube (MWCNT) as catalyst support using the sequence reduction method. The influence of Ni@Pt, Ni@Pd and Ni@Ru core@shell nanoparticles on MWCNT toward borohydride oxidation in alkaline solution is investigated by various three-electrode electrochemical techniques. Also, the impact of these anodic electrocatalysts on the performance of direct borohydride-hydrogen peroxide fuel cell (DBHPFC) is evaluated. The structural and morphological properties of electrocatalysts are studied by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HR-TEM) and X-ray photoelectron spectroscopy (XPS). The results of three electrode investigations show that Ni@Pd/MWCNT has excellent catalytic activity since borohydride oxidation current density on Ni@Pd/MWCNT (34773.27 A g-1) is 1.37 and 9.19 times higher than those of Ni@Pt/MWCNT (25347.27 A g-1) and Ni@Ru/MWCNT (3782.83 A g-1), respectively. Also, the energy conversion efficiency and power density of DBHPFC with Ni@Pd/MWCNT (246.82 mW cm-2) increase to 34.27% and 51.53% respect to Ni@Pt/MWCNT (162.24 mW cm-2) and Ni@Ru/MWCNT (119.62 mW cm-2), respectively. This study reveals that Ni@Pd/MWCNT has highest activity toward borohydride oxidation and stability in fuel cell.

  18. High skin temperature and hypohydration impair aerobic performance.

    PubMed

    Sawka, Michael N; Cheuvront, Samuel N; Kenefick, Robert W

    2012-03-01

    This paper reviews the roles of hot skin (>35°C) and body water deficits (>2% body mass; hypohydration) in impairing submaximal aerobic performance. Hot skin is associated with high skin blood flow requirements and hypohydration is associated with reduced cardiac filling, both of which act to reduce aerobic reserve. In euhydrated subjects, hot skin alone (with a modest core temperature elevation) impairs submaximal aerobic performance. Conversely, aerobic performance is sustained with core temperatures >40°C if skin temperatures are cool-warm when euhydrated. No study has demonstrated that high core temperature (∼40°C) alone, without coexisting hot skin, will impair aerobic performance. In hypohydrated subjects, aerobic performance begins to be impaired when skin temperatures exceed 27°C, and even warmer skin exacerbates the aerobic performance impairment (-1.5% for each 1°C skin temperature). We conclude that hot skin (high skin blood flow requirements from narrow skin temperature to core temperature gradients), not high core temperature, is the 'primary' factor impairing aerobic exercise performance when euhydrated and that hypohydration exacerbates this effect.

  19. 76 FR 2756 - Agency Information Collection (Application for Conversion) (Government Life Insurance) Activity...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-14

    ... DEPARTMENT OF VETERANS AFFAIRS [OMB Control No. 2900-0149] Agency Information Collection (Application for Conversion) (Government Life Insurance) Activity Under OMB Review AGENCY: Veterans Benefits... Conversion (Government Life Insurance), VA Form 29-0152. OMB Control Number: 2900-0149. Type of Review...

  20. Reducing costs of managing and accessing navigation and ancillary data by relying on the extensive capabilities of NASA's spice system

    NASA Technical Reports Server (NTRS)

    Semenov, Boris V.; Acton, Charles H., Jr.; Bachman, Nathaniel J.; Elson, Lee S.; Wright, Edward D.

    2005-01-01

    The SPICE system of navigation and ancillary data possesses a number of traits that make its use in modern space missions of all types highly cost efficient. The core of the system is a software library providing API interfaces for storing and retrieving such data as trajectories, orientations, time conversions, and instrument geometry parameters. Applications used at any stage of a mission life cycle can call SPICE APIs to access this data and compute geometric quantities required for observation planning, engineering assessment and science data analysis. SPICE is implemented in three different languages, supported on 20+ computer environments, and distributed with complete source code and documentation. It includes capabilities that are extensively tested by everyday use in many active projects and are applicable to all types of space missions - flyby, orbiters, observatories, landers and rovers. While a customer's initial SPICE adaptation for the first mission or experiment requires a modest effort, this initial effort pays off because adaptation for subsequent missions/experiments is just a small fraction of the initial investment, with the majority of tools based on SPICE requiring no or very minor changes.

  1. Ictal high frequency oscillations distinguish two types of seizure territories in humans

    PubMed Central

    Weiss, Shennan A.; Banks, Garrett P.; McKhann, Guy M.; Goodman, Robert R.; Emerson, Ronald G.; Trevelyan, Andrew J.

    2013-01-01

    High frequency oscillations have been proposed as a clinically useful biomarker of seizure generating sites. We used a unique set of human microelectrode array recordings (four patients, 10 seizures), in which propagating seizure wavefronts could be readily identified, to investigate the basis of ictal high frequency activity at the cortical (subdural) surface. Sustained, repetitive transient increases in high gamma (80–150 Hz) amplitude, phase-locked to the low-frequency (1–25 Hz) ictal rhythm, correlated with strong multi-unit firing bursts synchronized across the core territory of the seizure. These repetitive high frequency oscillations were seen in recordings from subdural electrodes adjacent to the microelectrode array several seconds after seizure onset, following ictal wavefront passage. Conversely, microelectrode recordings demonstrating only low-level, heterogeneous neural firing correlated with a lack of high frequency oscillations in adjacent subdural recording sites, despite the presence of a strong low-frequency signature. Previously, we reported that this pattern indicates a failure of the seizure to invade the area, because of a feedforward inhibitory veto mechanism. Because multi-unit firing rate and high gamma amplitude are closely related, high frequency oscillations can be used as a surrogate marker to distinguish the core seizure territory from the surrounding penumbra. We developed an efficient measure to detect delayed-onset, sustained ictal high frequency oscillations based on cross-frequency coupling between high gamma amplitude and the low-frequency (1–25 Hz) ictal rhythm. When applied to the broader subdural recording, this measure consistently predicted the timing or failure of ictal invasion, and revealed a surprisingly small and slowly spreading seizure core surrounded by a far larger penumbral territory. Our findings thus establish an underlying neural mechanism for delayed-onset, sustained ictal high frequency oscillations, and provide a practical, efficient method for using them to identify the small ictal core regions. Our observations suggest that it may be possible to reduce substantially the extent of cortical resections in epilepsy surgery procedures without compromising seizure control. PMID:24176977

  2. Nuclear modules for space electric propulsion

    NASA Technical Reports Server (NTRS)

    Difilippo, F. C.

    1998-01-01

    Analysis of interplanetary cargo and piloted missions requires calculations of the performances and masses of subsystems to be integrated in a final design. In a preliminary and scoping stage the designer needs to evaluate options iteratively by using fast computer simulations. The Oak Ridge National Laboratory (ORNL) has been involved in the development of models and calculational procedures for the analysis (neutronic and thermal hydraulic) of power sources for nuclear electric propulsion. The nuclear modules will be integrated into the whole simulation of the nuclear electric propulsion system. The vehicles use either a Brayton direct-conversion cycle, using the heated helium from a NERVA-type reactor, or a potassium Rankine cycle, with the working fluid heated on the secondary side of a heat exchanger and lithium on the primary side coming from a fast reactor. Given a set of input conditions, the codes calculate composition. dimensions, volumes, and masses of the core, reflector, control system, pressure vessel, neutron and gamma shields, as well as the thermal hydraulic conditions of the coolant, clad and fuel. Input conditions are power, core life, pressure and temperature of the coolant at the inlet of the core, either the temperature of the coolant at the outlet of the core or the coolant mass flow and the fluences and integrated doses at the cargo area. Using state-of-the-art neutron cross sections and transport codes, a database was created for the neutronic performance of both reactor designs. The free parameters of the models are the moderator/fuel mass ratio for the NERVA reactor and the enrichment and the pitch of the lattice for the fast reactor. Reactivity and energy balance equations are simultaneously solved to find the reactor design. Thermalhydraulic conditions are calculated by solving the one-dimensional versions of the equations of conservation of mass, energy, and momentum with compressible flow.

  3. Characterization of the Sr(2+)- and Cd(2+)-Substituted Oxygen-Evolving Complex of Photosystem II by Quantum Mechanics/Molecular Mechanics Calculations.

    PubMed

    Pitari, Fabio; Bovi, Daniele; Narzi, Daniele; Guidoni, Leonardo

    2015-09-29

    The Mn4CaO5 cluster in the oxygen-evolving complex is the catalytic core of the Photosystem II (PSII) enzyme, responsible for the water splitting reaction in oxygenic photosynthesis. The role of the redox-inactive ion in the cluster has not yet been fully clarified, although several experimental data are available on Ca2+-depleted and Ca2+-substituted PSII complexes, indicating Sr2+-substituted PSII as the only modification that preserves oxygen evolution. In this work, we investigated the structural and electronic properties of the PSII catalytic core with Ca2+ replaced with Sr2+ and Cd2+ in the S2 state of the Kok−Joliot cycle by means of density functional theory and ab initio molecular dynamics based on a quantum mechanics/ molecular mechanics approach. Our calculations do not reveal significant differences between the substituted and wild-type systems in terms of geometries, thermodynamics, and kinetics of two previously identified intermediate states along the S2 to S3 transition, namely, the open cubane S2 A and closed cubane S2 B conformers. Conversely, our calculations show different pKa values for the water molecule bound to the three investigated heterocations. Specifically, for Cd-substituted PSII, the pKa value is 5.3 units smaller than the respective value in wild type Ca-PSII. On the basis of our results, we conclude that, assuming all the cations sharing the same binding site, the induced difference in the acidity of the binding pocket might influence the hydrogen bonding network and the redox levels to prevent the further evolution of the cycle toward the S3 state.

  4. Possible explanation of the solar-neutrino puzzle

    NASA Technical Reports Server (NTRS)

    Bethe, H. A.

    1986-01-01

    A new derivation of the Mikheyev and Smirnov (1985) mechanism for the conversion of electron neutrinos into mu neutrinos when traversing the sun is presented, and various hypotheses set forth. It is assumed that this process is responsible for the detection of fewer solar neutrinos than expected, with neutrinos below a minimum energy, E(m), being undetectable. E(m) is found to be about 6 MeV, and the difference of the squares of the respective neutrino masses is calculated to be 6 X 10 to the - 5th sq eV. A restriction on the neutrino mixing angle is assumed such that the change of density near the crossing point is adiabatic. It is predicted that no resonance conversion of neutrinos will occur in the dense core of supernovae, but conversion of electron neutrinos to mu neutrinos will occur as they escape outward through a density region around 100.

  5. The histochemical profile of the rat extensor digitorum longus muscle differentiates after birth and dedifferentiates in senescence.

    PubMed

    Lehnert, M; Laurer, H; Maier, B; Frank, J; Marzi, I; Steudel, W-I; Mautes, A

    2007-01-01

    Age dependent motor unit dedifferentiation is a key component of impaired muscle function in advanced age. Here, we tested the hypothesis that rat muscle histochemical profile during the lifespan of an individual has an age-specific pattern since comprehensive longitudinal studies of muscle differentiation after birth and dedifferentiation in advanced age are scarce. Our results show that extensor digitorum longus muscle (EDL) is comprised only of two fiber types after birth, type slow-oxidative (SO) and type SDH-intermediate (SDH-INT), the latter being indicative for the presence of polyneuronal innervation. In contrast to the constantly growing cross-sectional area of the muscle fibers, a dramatic decrease in SDH-INT proportion occurs between day 14 and 21 after birth resulting in a complete loss of fiber type SDH-INT at the age of 90 days (p<0.05). At the age of 270 days, the fiber type composition of rat EDL dedifferentiates as shown by the reappearance of the SDH-INT type with a further increase at the age of 540 days (p<0.05). These changes in histochemical fiber type spectra are brought about by fiber type conversion within the fast twich fibers. The findings of the present study provide further evidence that fiber type conversion is a basic mechanism leading to motor unit differentiation and dedifferentiation during ontogenesis. Fiber type conversion shows a distinct time specific pattern and is also characteristic for motor unit regeneration after peripheral nerve repair. Factors that influence fiber type conversion and thereby motor unit organization may provide a future therapeutic option to enhance the regenerative capacity of motor units.

  6. Equation of state and phase diagram of Fe-16Si alloy as a candidate component of Earth's core

    NASA Astrophysics Data System (ADS)

    Fischer, Rebecca A.; Campbell, Andrew J.; Caracas, Razvan; Reaman, Daniel M.; Dera, Przymyslaw; Prakapenka, Vitali B.

    2012-12-01

    The outer core of the Earth contains several weight percent of one or more unknown light elements, which may include silicon. Therefore it is critical to understand the high pressure-temperature properties and behavior of an iron-silicon alloy with a geophysically relevant composition (16 wt% silicon). We experimentally determined the melting curve, subsolidus phase diagram, and equations of state of all phases of Fe-16 wt%Si to 140 GPa, finding a conversion from the D03 crystal structure to a B2+hcp mixture at high pressures. The melting curve implies that 3520 K is a minimum temperature for the Earth's outer core, if it consists solely of Fe-Si alloy, and that the eutectic composition in the Fe-Si system is less than 16 wt% silicon at core-mantle boundary conditions. Comparing our new equation of state to that of iron and the density of the core, we find that for an Fe-Ni-Si outer core, 11.3±1.5 wt% silicon would be required to match the core's observed density at the core-mantle boundary. We have also performed first-principles calculations of the equations of state of Fe3Si with the D03 structure, hcp iron, and FeSi with the B2 structure using density-functional theory.

  7. Special involuntary conversion situations involving timberland

    Treesearch

    William C. Siegal

    2001-01-01

    If standing timber is destroyed or stolen, or if forest land is condemned for public use, the owner may be entitled to take a deduction on his or her income tax return. These types of losses are called involuntary conversions. In previous National Woodlands articles I've discussed in detail casualty losses, which represent the major type of timber involuntary...

  8. Efficient electrocatalytic conversion of CO.sub.2 to CO using ligand-protected Au.sub.25 clusters

    DOEpatents

    Kauffman, Douglas; Matranga, Christopher; Qian, Huifeng; Jin, Rongchao; Alfonso, Dominic R.

    2015-09-22

    An apparatus and method for CO.sub.2 reduction using an Au.sub.25 electrode. The Au.sub.25 electrode is comprised of ligand-protected Au.sub.25 having a structure comprising an icosahedral core of 13 atoms surrounded by a shell of six semi-ring structures bonded to the core of 13 atoms, where each semi-ring structure is typically --SR--Au--SR--Au--SR or --SeR--Au--SeR--Au--SeR. The 12 semi-ring gold atoms within the six semi-ring structures are stellated on 12 of the 20 faces of the icosahedron of the Au.sub.13 core, and organic ligand --SR or --SeR groups are bonded to the Au.sub.13 core with sulfur or selenium atoms. The Au.sub.25 electrode and a counter-electrode are in contact with an electrolyte comprising CO.sub.2 and H+, and a potential of at least -0.1 volts is applied from the Au.sub.25 electrode to the counter-electrode.

  9. Brünnich's guillemots (Uria lomvia) maintain high temperature in the body core during dives.

    PubMed

    Niizuma, Yasuaki; Gabrielsen, Geir W; Sato, Katsufumi; Watanuki, Yutaka; Naito, Yasuhiko

    2007-06-01

    A major challenge for diving birds, reptiles, and mammals is regulating body temperature while conserving oxygen through a reduction in metabolic processes. To gain insight into how these needs are met, we measured dive depth and body temperatures at the core or periphery between the skin and abdominal muscles simultaneously in freely diving Brünnich's guillemots (Uria lomvia), an arctic seabird, using an implantable data logger (16-mm diameter, 50-mm length, 14-g mass, Little Leonardo Ltd., Tokyo). Guillemots exhibited increased body core temperatures, but decreased peripheral temperatures, during diving. Heat conservation within the body core appeared to result from the combined effect of peripheral vasoconstriction and a high wing beat frequency that generates heat. Conversely, the observed tissue hypothermia in the periphery should reduce metabolic processes as well as heat loss to the water. These physiological effects are likely one of the key physiological adaptations that makes guillemots to perform as an efficient predator in arctic waters.

  10. Internal structure of vortices in a dipolar spinor Bose-Einstein condensate

    NASA Astrophysics Data System (ADS)

    Borgh, Magnus O.; Lovegrove, Justin; Ruostekoski, Janne

    2017-04-01

    We demonstrate how dipolar interactions (DI) can have pronounced effects on the structure of vortices in atomic spinor Bose-Einstein condensates and illustrate generic physical principles that apply across dipolar spinor systems. We then find and analyze the cores of singular non-Abelian vortices in a spin-3 52Cr condensate. Using a simpler spin-1 model system, we analyze the underlying dipolar physics and show how a dipolar healing length interacts with the hierarchy of healing lengths of the contact interaction and leads to simple criteria for the core structure: vortex core size is restricted to the shorter spin-dependent healing length when the interactions both favor the ground-state spin condition, but can conversely be enlarged by DI when interactions compete. We further demonstrate manifestations of spin-ordering induced by the DI anisotropy, including DI-dependent angular momentum of nonsingular vortices, as a result of competition with adaptation to rotation, and potentially observable internal vortex-core spin textures. We acknowledge financial support from the EPSRC.

  11. Solid-phase microextraction may catalize hydrogenation when using hydrogen as carrier in gas chromatography.

    PubMed

    Fiorini, D; Boarelli, M C

    2016-07-01

    When hydrogen is used as carrier gas, carbon-carbon double bonds may be hydrogenated in the hot gas chromatograph (GC) injector if introduced by solid-phase microextraction (SPME). SPME fibers coated with polydimethylsiloxane (PDMS)/carboxen/divinylbenzene (DVB), PDMS/carboxen, polyacrylate, PDMS/DVB and PDMS on fused silica, stableflex or metal alloy core have been tested with fatty acid methyl esters (FAMEs) from olive oil. Using coatings containing DVB, hydrogenation took place with high conversion rates (82.0-92.9%) independently of the core material. With all fibers having a metal core, hydrogenation was observed to a certain extent (27.4-85.3%). PDMS, PDMS/carboxen and polyacrylate coated fibers with a fused silica or stableflex core resulted in negligible hydrogenation (0.2-2.5%). The occurrence of hydrogenation was confirmed also with other substances containing carbon-carbon double bonds (n-alkenes, alkenoic acids, mono- and polyunsaturated fatty acid methyl and ethyl esters). Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Conversational Coherency. Technical Report No. 95.

    ERIC Educational Resources Information Center

    Reichman, Rachel

    To analyze the process involved in maintaining conversational coherency, the study described in this paper used a construct called a "context space" that grouped utterances referring to a single issue or episode. The paper defines the types of context spaces, parses individual conversations to identify the underlying model or structure,…

  13. Magnetically Recoverable Pd/Fe 3O 4 Core-Shell Nanowire Clusters with Increased Hydrogenation Activity

    DOE PAGES

    Watt, John; Kotula, Paul G.; Huber, Dale L.

    2017-02-06

    Core-shell nanostructures are promising candidates for the next generation of catalysts due to synergistic effects which can arise from having two active species in close contact, leading to increased activity. Likewise, catalysts displaying added functionality, such as a magnetic response, can increase their scientific and industrial potential. Here, we synthesize Pd/Fe 3O 4 core-shell nanowire clusters and apply them as hydrogenation catalysts for an industrially important hydrogenation reaction; the conversion of acetophenone to 1-phenylethanol. During synthesis, the palladium nanowires self-assemble into clusters which act as a high surface area framework for the growth of a magnetic iron oxide shell. Wemore » demonstrate excellent catalytic activity due to the presence of palladium while the strong magnetic properties provided by the iron oxide shell enable facile catalyst recovery.« less

  14. Heat pipe nuclear reactor for space power

    NASA Technical Reports Server (NTRS)

    Koening, D. R.

    1976-01-01

    A heat-pipe-cooled nuclear reactor has been designed to provide 3.2 MWth to an out-of-core thermionic conversion system. The reactor is a fast reactor designed to operate at a nominal heat-pipe temperature of 1675 K. Each reactor fuel element consists of a hexagonal molybdenum block which is bonded along its axis to one end of a molybdenum/lithium-vapor heat pipe. The block is perforated with an array of longitudinal holes which are loaded with UO2 pellets. The heat pipe transfers heat directly to a string of six thermionic converters which are bonded along the other end of the heat pipe. An assembly of 90 such fuel elements forms a hexagonal core. The core is surrounded by a thermal radiation shield, a thin thermal neutron absorber, and a BeO reflector containing boron-loaded control drums.

  15. Rare-Earth-Free Permanent Magnets for Electrical Vehicle Motors and Wind Turbine Generators: Hexagonal Symmetry Based Materials Systems Mn-Bi and M-type Hexaferrite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Yang-Ki; Haskew, Timothy; Myryasov, Oleg

    2014-06-05

    The research we conducted focuses on the rare-earth (RE)-free permanent magnet by modeling, simulating, and synthesizing exchange coupled two-phase (hard/soft) RE-free core-shell nano-structured magnet. The RE-free magnets are made of magnetically hard core materials (high anisotropy materials including Mn-Bi-X and M-type hexaferrite) coated by soft shell materials (high magnetization materials including Fe-Co or Co). Therefore, our research helps understand the exchange coupling conditions of the core/shell magnets, interface exchange behavior between core and shell materials, formation mechanism of core/shell structures, stability conditions of core and shell materials, etc.

  16. Two-Photon Entanglement and EPR Experiments Using Type-2 Spontaneous Parametric Down Conversion

    NASA Technical Reports Server (NTRS)

    Sergienko, A. V.; Shih, Y. H.; Pittman, T. B.; Rubin, M. H.

    1996-01-01

    Simultaneous entanglement in spin and space-time of a two-photon quantum state generated in type-2 spontaneous parametric down-conversion is demonstrated by the observation of quantum interference with 98% visibility in a simple beam-splitter (Hanburry Brown-Twiss) anticorrelation experiment. The nonlocal cancellation of two-photon probability amplitudes as a result of this double entanglement allows us to demonstrate two different types of Bell's inequality violations in one experimental setup.

  17. Setting a New Standard with a Common Career Technical Core

    ERIC Educational Resources Information Center

    Folkers, Dean R.

    2011-01-01

    The pursuit of common educational expectations, or standards, among the states has long been a conversation met with strong opinions--for and against. However, it seems clear that high standards and consistency are both critical characteristics to have in educational programs. The task to achieve such is certainly not expected to be easy. Using…

  18. A Notion, a Reality: Sustaining the Most Important Conversation

    ERIC Educational Resources Information Center

    St. Lifer, Evan

    2005-01-01

    School Library Journal hosted its first Leadership Summit March 18 and 19. The best and brightest were invited, and many of them came to New York City to discuss the most pressing issues facing K-12 education: literacy, student achievement, and the integration of 21st century learning skills. These core topics became the categories around which…

  19. A Conversation of Care: Unpacking and Engaging Pre-Service Teacher Ideologies

    ERIC Educational Resources Information Center

    Eisenbach, Brooke Boback

    2016-01-01

    Caring relationships are a core component in effective classrooms, and safe learning environments. As such, it is important for pre-service teachers to reflect on their own perceptions and experience regarding care and care within the classroom if they are to build upon that knowledge and grow as caring educators. In addition, teacher educators…

  20. Dealing with Difficult Conversations: Anti-Racism in Youth & Community Work Training

    ERIC Educational Resources Information Center

    Watt, Diana

    2017-01-01

    This paper represents a critical reflection on youth and community work students' response to a module on race equality and diversity. An awareness of issues in relation to power and oppression are amongst the core elements of youth and community work training. Throughout their study, youth and community work students are engaged in conversations…

  1. Impacts of land use conversion on bankfull discharge and mass wasting

    Treesearch

    Mark S. Riedel; Elon S. Verry; Kenneth N. Brooks

    2005-01-01

    Mass wasting and channel incision are widespread in the Nemadji River watershed of eastern Minnesota and northwestern Wisconsin. While much of this is a natural response to glacial rebound, sediment coring and tree ring data suggest that land use has also influenced these erosional processes. We characterized land use, inventoried mass wasting, surveyed stream channels...

  2. MHD compressor---expander conversion system integrated with GCR inside a deployable reflector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tuninetti, G.; Botta, E.; Criscuolo, C.

    1989-04-20

    This work originates from the proposal MHD Compressor-Expander Conversion System Integrated with a GCR Inside a Deployable Reflector''. The proposal concerned an innovative concept of nuclear, closed-cycle MHD converter for power generation on space-based systems in the multi-megawatt range. The basic element of this converter is the Power Conversion Unit (PCU) consisting of a gas core reactor directly coupled to an MHD expansion channel. Integrated with the PCU, a deployable reflector provides reactivity control. The working fluid could be either uranium hexafluoride or a mixture of uranium hexafluoride and helium, added to enhance the heat transfer properties. The original Statementmore » of Work, which concerned the whole conversion system, was subsequently redirected and focused on the basic mechanisms of neutronics, reactivity control, ionization and electrical conductivity in the PCU. Furthermore, the study was required to be inherently generic such that the study was required to be inherently generic such that the analysis an results can be applied to various nuclear reactor and/or MHD channel designs''.« less

  3. Collective three-flavor oscillations of supernova neutrinos

    NASA Astrophysics Data System (ADS)

    Dasgupta, Basudeb; Dighe, Amol

    2008-06-01

    Neutrinos and antineutrinos emitted from a core collapse supernova interact among themselves, giving rise to collective flavor conversion effects that are significant near the neutrinosphere. We develop a formalism to analyze these collective effects in the complete three-flavor framework. It naturally generalizes the spin-precession analogy to three flavors and is capable of analytically describing phenomena like vacuum/Mikheyev-Smirnov-Wolfenstein (MSW) oscillations, synchronized oscillations, bipolar oscillations, and spectral split. Using the formalism, we demonstrate that the flavor conversions may be “factorized” into two-flavor oscillations with hierarchical frequencies. We explicitly show how the three-flavor solution may be constructed by combining two-flavor solutions. For a typical supernova density profile, we identify an approximate separation of regions where distinctly different flavor conversion mechanisms operate, and demonstrate the interplay between collective and MSW effects. We pictorialize our results in terms of the “e3-e8 triangle” diagram, which is a tool that can be used to visualize three-neutrino flavor conversions in general, and offers insights into the analysis of the collective effects in particular.

  4. Kilopower: Small and Affordable Fission Power Systems for Space

    NASA Technical Reports Server (NTRS)

    Mason, Lee; Palac, Don; Gibson, Marc

    2017-01-01

    The Nuclear Systems Kilopower Project was initiated by NASA's Space Technology Mission Directorate Game Changing Development Program in fiscal year 2015 to demonstrate subsystem-level technology readiness of small space fission power in a relevant environment (Technology Readiness Level 5) for space science and human exploration power needs. The Nuclear Systems Kilopower Project centerpiece is the Kilopower Reactor Using Stirling Technology (KRUSTY) test, which consists of the development and testing of a fission ground technology demonstrator of a 1 kWe-class fission power system. The technologies to be developed and validated by KRUSTY are extensible to space fission power systems from 1 to 10 kWe, which can enable higher power future potential deep space science missions, as well as modular surface fission power systems for exploration. The Kilopower Project is cofounded by NASA and the Department of Energy National Nuclear Security Administration (NNSA).KRUSTY include the reactor core, heat pipes to transfer the heat from the core to the power conversion system, and the power conversion system. Los Alamos National Laboratory leads the design of the reactor, and the Y-12 National Security Complex is fabricating it. NASA Glenn Research Center (GRC) has designed, built, and demonstrated the balance of plant heat transfer and power conversion portions of the KRUSTY experiment. NASA MSFC developed an electrical reactor simulator for non-nuclear testing, and the design of the reflector and shielding for nuclear testing. In 2016, an electrically heated non-fissionable Depleted Uranium (DU) core was tested at GRC in a configuration identical to the planned nuclear test. Once the reactor core has been fabricated and shipped to the Device Assembly Facility at the NNSAs Nevada National Security Site, the KRUSTY nuclear experiment will be assembled and tested. Completion of the KRUSTY experiment will validate the readiness of 1 to 10 kWe space fission technology for NASAs future requirements for sunlight-independent space power. An early opportunity for demonstration of In-Situ Resource Utilization (ISRU) capability on the surface of Mars is currently being considered for 2026 launch. Since a space fission system is the leading option for power generation for the first Mars human outpost, a smaller version of a planetary surface fission power system could be built to power the ISRU demonstration and ensure its end-to-end validity. Planning is underway to start the hardware development of this subscale flight demonstrator in 2018.

  5. Pure-iron/iron-based-alloy hybrid soft magnetic powder cores compacted at ultra-high pressure

    NASA Astrophysics Data System (ADS)

    Saito, Tatsuya; Tsuruta, Hijiri; Watanabe, Asako; Ishimine, Tomoyuki; Ueno, Tomoyuki

    2018-04-01

    We developed Fe/FeSiAl soft magnetic powder cores (SMCs) for realizing the miniaturization and high efficiency of an electromagnetic conversion coil in the high-frequency range (˜20 kHz). We found that Fe/FeSiAl SMCs can be formed with a higher density under higher compaction pressure than pure-iron SMCs. These SMCs delivered a saturation magnetic flux density of 1.7 T and iron loss (W1/20k) of 158 kW/m3. The proposed SMCs exhibited similar excellent characteristics even in block shapes, which are closer to the product shapes.

  6. Ultralow-power four-wave mixing with Rb in a hollow-core photonic band-gap fiber.

    PubMed

    Londero, Pablo; Venkataraman, Vivek; Bhagwat, Amar R; Slepkov, Aaron D; Gaeta, Alexander L

    2009-07-24

    We demonstrate extremely efficient four-wave mixing with gains greater than 100 at microwatt pump powers and signal-to-idler conversion of 50% in Rb vapor confined to a hollow-core photonic band-gap fiber. We present a theoretical model that demonstrates such efficiency is consistent with the dimensions of the fiber and the optical depths attained. This is, to our knowledge, the largest four-wave mixing gain observed at such low total pump powers and the first demonstrated example of four-wave mixing in an alkali-metal vapor system with a large (approximately 30 MHz) ground state decoherence rate.

  7. Thermal evolution and core formation of planetesimals

    NASA Astrophysics Data System (ADS)

    Suwa, Taichi; Nagahara, Hiroko

    2017-04-01

    Planetesimals did not get an adequate thermal energy by accretion to form large scale magma ocean because of smaller radii, masses, gravity and accretion energy, however, there are various evidences for the presence of core in planetesimals: 4-Vesta has a core and non-magmatic iron meteorites were segregated metal in bodies that did not experience silicate melting. It has been pointed out that accretion time of planetesimals controls melting and differentiation, because short lived nuclides are plausible heat source. Other factors such as radiative cooling from the surface and thermal conductivity, would also affect thermal evolution of planetesimals. Furthermore, percolation of Fe-S melt through silicate matrix is controlled by the porosity and grain size of silicates and dihedral angle between the melt and silicates. Therefore, the interior structure of planetesimals should be considered by taking the accretion, growth, and thermal evolution of the interior simultaneously. We make a numerical simulation with a spherical 1D model on the basis of the model by Neuman, which is a non-stationary heat conduction equation. We specifically pay attention to the process at temperatures between eutectic temperature Fe-FeS (1213K) and silicate solidus (1425K) and the surface tension of the melt that governs percolation. The model contains three free parameters, formation time, accretion duration, and final size of the planetesimals. The results show that the interior structure can be divided to four types: Type A is undifferentiated, Type B is differentiated to core and mantle of which core was formed by Fe-S melt percolation, Type C is partially differentiated to FeS core and mantle, where mantle retains residual Fe metal, and Type D is differentiated to core and mantle by metal separation in silicate magma. Type A would correspond to the parent bodies of chondrites, and Type B (and Type C?) core would be the source of non-magmatic iron meteorites. Type D would be parent bodies for 4 Vesta and angrites. The conditions for the four types of planetesimals are throuly investigated as a function of the three parameters, accretion time, accreting duration, and palnetesimal size. We found that the planetesimal interior is strongly controlled by the formation time: planetesimals formed after 3 Ma after CAIs would be undifferentiated (Type A) regardless of the planetary size, whereas most of them formed within 1 Ma are Type D (differentiated bodies with magmatically formed core). Types B and C bodies are preferentially formed between 1 and 3 Ma after CAIs. Longer accretion duration tends to be resulted in formation of Types A, B and C. The present work predicts the planetesimal interior structure if we know the formation age with the isotopic measurements of samples and the size of the body, which would be a very powerful tool for future explorations of small bodies except for very small (< 20 km) bodies.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, B.; Renaut, R.W.

    Skeletal crystals are hollow crystals that develop because their outer walls grow before their cores. The presence of skeletal crystals of calcite (three types--trigonal prisms, hexagonal prisms, and plates) and trona in hot (> 90 C) spring deposits in New Zealand (Waikite Springs and Ohaaki Pool) and Kenya (Lorusio hot springs) shows that they can form in natural sedimentary regimes. Analysis of samples from these deposits shows that this crystal morphology develops under disequilibrium conditions that are unrelated to a specific environmental or diagenetic setting. Skeletal crystals transform into solid crystals when subsequent precipitation fills their hollow cores. In somemore » cases, this may involve precipitation of crystalline material that has a sieve-like texture. In other examples, the skeletal crystal provides a framework upon which other materials can be precipitated. Walls in the skeletal trigonal calcite prisms from Waikite Springs are formed of subcrystals that mimic the shape of the parent crystal. Similarly, plate-like skeletal crystals from Lorusio are formed of densely packed subcrystals that are < 0.5 {micro}m long. Conversely, the walls of the skeletal hexagonal calcite crystals from Ohaaki Pool and the skeletal trona crystals from Lorusio are not formed of subcrystals. Recognition of skeletal crystals is important because they represent growth that follows the reverse pattern of normal growth. Failure to recognize that crystal growth followed the skeletal motif may lead to false interpretations concerning the growth of a crystal.« less

  9. The Influence of Roads and Buffer Depth on Habitat Core Areas and Connectivity in the NE USA

    NASA Astrophysics Data System (ADS)

    Jantz, P.; Goetz, S.

    2006-12-01

    Land development pressures that threaten habitat core areas and connectivity are intensifying across the nation and extending beyond urbanized areas in the form of rural residential development. This is particularly true in the temperate forests of the northeastern U.S. If current trends continue, increased conversion and fragmentation of many roadless areas by exurban development is likely, exacerbating the likelihood of local species extinctions and complicating efforts to preserve intact functional ecosystems. We used a suite of nationally available data sets to identify roadless areas of the northeastern USA including impervious cover (urbanized and developed areas), road networks (and derived density), and forest cover (canopy density). We analyzed the influence of different types of unimproved roads and amount of forest cover on identification of the extent and configuration of roadless areas, and then assessed these areas in terms of land ownership (public, private) and management (parks, refuges, multi-use, etc.). We also derived patch connectivity metrics using a graph theory approach, making use of cost surfaces that accounted for the above variables and associated landscape metrics. Our results suggest a starting point for the construction of a more comprehensive and ecologically functional reserve network for the region. Because the data sets we used are available nationally, similar analyses could be conducted to assess the extent and status of roadless areas nationally or for other specific regions.

  10. Fiber transport of spatially entangled photons

    NASA Astrophysics Data System (ADS)

    Löffler, W.; Eliel, E. R.; Woerdman, J. P.; Euser, T. G.; Scharrer, M.; Russell, P.

    2012-03-01

    High-dimensional entangled photons pairs are interesting for quantum information and cryptography: Compared to the well-known 2D polarization case, the stronger non-local quantum correlations could improve noise resistance or security, and the larger amount of information per photon increases the available bandwidth. One implementation is to use entanglement in the spatial degree of freedom of twin photons created by spontaneous parametric down-conversion, which is equivalent to orbital angular momentum entanglement, this has been proven to be an excellent model system. The use of optical fiber technology for distribution of such photons has only very recently been practically demonstrated and is of fundamental and applied interest. It poses a big challenge compared to the established time and frequency domain methods: For spatially entangled photons, fiber transport requires the use of multimode fibers, and mode coupling and intermodal dispersion therein must be minimized not to destroy the spatial quantum correlations. We demonstrate that these shortcomings of conventional multimode fibers can be overcome by using a hollow-core photonic crystal fiber, which follows the paradigm to mimic free-space transport as good as possible, and are able to confirm entanglement of the fiber-transported photons. Fiber transport of spatially entangled photons is largely unexplored yet, therefore we discuss the main complications, the interplay of intermodal dispersion and mode mixing, the influence of external stress and core deformations, and consider the pros and cons of various fiber types.

  11. Study of the effect of varying core diameter, shell thickness and strain velocity on the tensile properties of single crystals of Cu-Ag core-shell nanowire using molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Sarkar, Jit; Das, D. K.

    2018-01-01

    Core-shell type nanostructures show exceptional properties due to their unique structure having a central solid core of one type and an outer thin shell of another type which draw immense attention among researchers. In this study, molecular dynamics simulations are carried out on single crystals of copper-silver core-shell nanowires having wire diameter ranging from 9 to 30 nm with varying core diameter, shell thickness, and strain velocity. The tensile properties like yield strength, ultimate tensile strength, and Young's modulus are studied and correlated by varying one parameter at a time and keeping the other two parameters constant. The results obtained for a fixed wire size and different strain velocities were extrapolated to calculate the tensile properties like yield strength and Young's modulus at standard strain rate of 1 mm/min. The results show ultra-high tensile properties of copper-silver core-shell nanowires, several times than that of bulk copper and silver. These copper-silver core-shell nanowires can be used as a reinforcing agent in bulk metal matrix for developing ultra-high strength nanocomposites.

  12. [Influence of different types of posts and cores on color of IPS-Empress 2 crown].

    PubMed

    Li, Dong-fang; Yang, Jing-yuan; Yang, Xing-mei; Yang, Liu; Xu, Qiang; Guan, Hong-yu; Wan, Qian-bing

    2007-10-01

    To evaluate the influence of different types of posts and cores on the final color of the IPS-Emperss 2 crown. Five types of posts and cores (Cerapost with Empress cosmo, Cerapost with composite resin, gilded Ni-Cr alloy, gold alloy and Ni-Cr alloy) were made. The shifts in color of three points of IPS-Empress 2 crown surface (cervical, middle and incisal) with different posts and cores was measured with a spectroradiometer (PR-650). The L* a* b* values of zirconium oxide and gilded Ni-Cr alloy posts and cores with ceramic crown were the highest. The L* a* values of zirconium oxide posts composite cores were higher while the b* values were lower. The L* a* b* values of Ni-Cr alloy were lower than that of gold alloy and were the lowest. In combination with IPS-Empress 2 crown, zirconium oxide posts are suitable for routine use in the anterior dentition, and gilded Ni-Cr alloy and gold alloy posts and cores can be recommended for clinical practice. Ni-Cr alloy posts and cores can not be recommended for clinical practice.

  13. Estimate of radiation release from MIT reactor with un-finned LEU core during Maximum Hypothetical Accident

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Kaichao; Hu, Lin-wen; Newton, Thomas

    2017-05-01

    The Massachusetts Institute of Technology Reactor (MITR-II) is a research reactor in Cambridge, Massachusetts designed primarily for experiments using neutron beam and in-core irradiation facilities. At 6 MW, it delivers neutron flux and energy spectrum comparable to light water reactor (LWR) power reactors in a compact core using highly enriched uranium (HEU) fuel. In the framework of nonproliferation policy, the international community aims to minimize the use of HEU in civilian facilities. Within this context, research and test reactors have started a program to convert HEU fuel to low enriched uranium (LEU) fuel. A new type of LEU fuel basedmore » on a high density alloy of uranium and molybdenum (U-10Mo) is expected to allow the conversion of U.S. domestic high performance reactors like MITR. The current study focuses on the impacts of MITR Maximum Hypothetical Accident (MHA), which is also the Design Basis Accident (DBA), with LEU fuel. The MHA for the MITR is postulated to be a coolant flow blockage in the fuel element that contains the hottest fuel plate. It is assumed that the entire active portion of five fuel plates melts. The analysis shows that, within a 2-h period and by considering all the possible radiation sources and dose pathways, the overall off-site dose is 302.1 mrem (1 rem ¼ 0.01 Sv) Total Effective Dose Equivalent (TEDE) at 8 m exclusion area boundary (EAB) and a higher dose of 392.8 mrem TEDE is found at 21 m EAB. In all cases the dose remains below the 500 mrem total TEDE limit goal based on NUREG-1537 guidelines.« less

  14. Sex Steroid Metabolism in Benign and Malignant Intact Prostate Biopsies: Individual Profiling of Prostate Intracrinology

    PubMed Central

    Gianfrilli, Daniele; Pierotti, Silvia; Leonardo, Costantino; Ciccariello, Mauro

    2014-01-01

    In vitro studies reveal that androgens, oestrogens, and their metabolites play a crucial role in prostate homeostasis. Most of the studies evaluated intraprostatic hormone metabolism using cell lines or preprocessed specimens. Using an ex vivo model of intact tissue cultures with preserved architecture, we characterized the enzymatic profile of biopsies from patients with benign prostatic hyperplasia (BPH) or cancer (PC), focusing on 17β-hydroxy-steroid-dehydrogenases (17β-HSDs) and aromatase activities. Samples from 26 men who underwent prostate needle core biopsies (BPH n = 14; PC n = 12) were incubated with radiolabeled 3H-testosterone or 3H-androstenedione. Conversion was evaluated by TLC separation and beta-scanning of extracted supernatants. We identified three major patterns of conversion. The majority of BPHs revealed no active testosterone/oestradiol conversion as opposed to prostate cancer. Conversion correlated with histology and PSA, but not circulating hormones. Highest Gleason scores had a higher androstenedion-to-testosterone conversion and expression of 17β-HSD-isoenzymes-3/5. Conclusions. We developed an easy tool to profile individual intraprostatic enzymatic activity by characterizing conversion pathways in an intact tissue environment. In fresh biopsies we found that 17β-HSD-isoenzymes and aromatase activities correlate with biological behaviour allowing for morphofunctional phenotyping of pathology specimens and clinical monitoring of novel enzyme-targeting drugs. PMID:25184140

  15. Temperature dependent electron delocalization in CdSe/CdS type-I core-shell systems: An insight from scanning tunneling spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kundu, Biswajit; Chakrabarti, Sudipto; Pal, Amlan J., E-mail: sspajp@iacs.res.in

    2016-03-14

    Core-shell nanocrystals having a type-I band-alignment confine charge carriers to the core. In this work, we choose CdSe/CdS core-shell nano-heterostructures that evidence confinement of holes only. Such a selective confinement occurs in the core-shell nanocrystals due to a low energy-offset of conduction band (CB) edges resulting in delocalization of electrons and thus a decrease in the conduction band-edge. Since the delocalization occurs through a thermal assistance, we study temperature dependence of selective delocalization process through scanning tunneling spectroscopy. From the density of states (DOS), we observe that the electrons are confined to the core at low temperatures. Above a certainmore » temperature, they become delocalized up to the shell leading to a decrease in the CB of the core-shell system due to widening of quantum confinement effect. With holes remaining confined to the core due to a large offset in the valence band (VB), we record the topography of the core-shell nanocrystals by probing their CB and VB edges separately. The topographies recorded at different temperatures representing wave-functions of electrons and holes corresponded to the results obtained from the DOS spectra. The results evidence temperature-dependent wave-function delocalization of one-type of carriers up to the shell layer in core-shell nano-heterostructures.« less

  16. Conversion of Arylboronic Acids to Tetrazoles Catalyzed by ONO Pincer-Type Palladium Complex.

    PubMed

    Vignesh, Arumugam; Bhuvanesh, Nattamai S P; Dharmaraj, Nallasamy

    2017-01-20

    A convenient synthesis of a library of tetrazoles through a novel and operationally simple protocol effecting the direct conversion of arylboronic acids catalyzed by a new ONO pincer-type Pd(II) complex under mild reaction conditions using the readily available reagents is reported. The palladium complex was reused up to four cycles in an open-flask condition.

  17. Outcomes of Treatment Targeting Syntax Production in People with Broca's-Type Aphasia: Evidence from Psycholinguistic Assessment Tasks and Everyday Conversation

    ERIC Educational Resources Information Center

    Carragher, Marcella; Sage, Karen; Conroy, Paul

    2015-01-01

    Background: Capturing evidence of the effects of therapy within everyday communication is the holy grail of aphasia treatment design and evaluation. Whilst impaired sentence production is a predominant symptom of Broca's-type aphasia, the effects of sentence production therapy on everyday conversation have not been investigated. Given the…

  18. Studies in Dialogue and Discourse: An Exponential Law of Successive Questioning

    ERIC Educational Resources Information Center

    Mishler, Elliot G.

    1975-01-01

    The structure of natural conversations in first-grade classrooms is the focus of this inquiry. Analyses of a particular type of discourse, namely, connected conversations initiated and sustained by questioning, suggest that the probability that a conversation will be continued may be expressed as a simple exponential function. (Author/RM)

  19. Intimacy and Distancing: Young Men's Conversations about Romantic Relationships

    ERIC Educational Resources Information Center

    Korobov, Neill; Thorne, Avril

    2006-01-01

    This study examined how 32 pairs of 19-to 22-year-old Euro-American male friends constructed intimacy when telling romantic-relationship stories in casual conversations. Analyses centered on the emergence of two types of conversational positions: intimate positions and distancing positions. Intimate positions constructed young men as warm, caring,…

  20. Band engineering in core/shell ZnTe/CdSe for photovoltage and efficiency enhancement in exciplex quantum dot sensitized solar cells.

    PubMed

    Jiao, Shuang; Shen, Qing; Mora-Seró, Iván; Wang, Jin; Pan, Zhenxiao; Zhao, Ke; Kuga, Yuki; Zhong, Xinhua; Bisquert, Juan

    2015-01-27

    Even though previously reported CdTe/CdSe type-II core/shell QD sensitizers possess intrinsic superior optoelectronic properties (such as wide absorption range, fast charge separation, and slow charge recombination) in serving as light absorbers, the efficiency of the resultant solar cell is still limited by the relatively low photovoltage. To further enhance photovoltage and cell efficiency accordingly, ZnTe/CdSe type-II core/shell QDs with much larger conduction band (CB) offset in comparison with that of CdTe/CdSe (1.22 eV vs 0.27 eV) are adopted as sensitizers in the construction of quantum dot sensitized solar cells (QDSCs). The augment of band offset produces an increase of the charge accumulation across the QD/TiO2 interface under illumination and induces stronger dipole effects, therefore bringing forward an upward shift of the TiO2 CB edge after sensitization and resulting in enhancement of the photovoltage of the resultant cell devices. The variation of relative chemical capacitance, Cμ, between ZnTe/CdSe and reference CdTe/CdSe cells extracted from impedance spectroscopy (IS) characterization under dark and illumination conditions clearly demonstrates that, under light irradiation conditions, the sensitization of ZnTe/CdSe QDs upshifts the CB edge of TiO2 by the level of ∼ 50 mV related to that in the reference cell and results in the enhancement of V(oc) of the corresponding cell devices. In addition, charge extraction measurements have also confirmed the photovoltage enhancement in the ZnTe/CdSe cell related to reference CdTe/CdSe cell. Furthermore, transient grating (TG) measurements have revealed a faster electron injection rate for the ZnTe/CdSe-based QDSCs in comparison with the CdSe cells. The resultant ZnTe/CdSe QD-based QDSCs exhibit a champion power conversion efficiency of 7.17% and a certified efficiency of 6.82% under AM 1.5 G full one sun illumination, which is, as far as we know, one of the highest efficiencies for liquid-junction QDSCs.

  1. Magnetic interaction reversal in watermelon nanostructured Cr-doped Fe nanoclusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaur, Maninder; Dai, Qilin; Bowden, Mark

    2013-01-01

    Cr-doped core-shell Fe/Fe-oxide nanoclusters (NCs) were synthesized at varied atomic percentages of Cr from 0 at. % to 8 at. %. The low concentrations of Cr (<10 at. %) were selected in order to inhibit the complete conversion of the Fe-oxide shell to Cr2O3 and the Fe core to FeCr alloy. The magnetic interaction in Fe/Fe-oxide NCs (rv25 nm) can be controlled by antiferromagnetic Cr-dopant. We report the origin of r-FeCr phase at very low Cr concentration (2 at. %) unlike in previous studies, and the interaction reversal from dipolar to exchange interaction in watermelon-like Cr-doped core-shell NCs. The giantmore » magnetoresistance (GMR) effect,1,2 where an antiferromagnetic (AFM) exchange coupling exists between two ferromagnetic (FM) layers separated by a certain type of magnetic or non-magnetic spacer,3 has significant potential for application in the magnetic recording industry. Soon after the discovery of the GMR, the magnetic properties of multilayer systems (FeCr) became a subject of intensive study. The application of bulk iron-chromium (Fe-Cr) alloys has been of great interest, as these alloys exhibit favorable prop- erties including corrosion resistance, high strength, hardness, low oxidation rate, and strength retention at elevated temper- ature. However, the structural and magnetic properties of Cr-doped Fe nanoclusters (NCs) have not been investigated in-depth. Of all NCs, Fe-based clusters have unique magnetic properties as well as favorable catalytic characteristics in reactivity, selectivity, and durability.4 The incorporation of dopant of varied type and concentration in Fe can modify its chemical ordering, thereby optimizing its electrical, optical, and magnetic properties and opening up many new applications. The substitution of an Fe atom (1.24 A°) by a Cr atom (1.25 A° ) can easily modify the magnetic properties, since (i) the curie temperature (Tc ) of Fe is 1043 K, while Cr is an itinerant AFM with a bulk Neel temperature TN =311 K, and (ii) Fe and Cr share the same crystal structure (bcc) with only 0.5% difference between their lattice constants.« less

  2. Erythrocyte membrane cholesterol and lipid core growth in a rabbit model of atherosclerosis: modulatory effects of rosuvastatin.

    PubMed

    Tziakas, Dimitrios; Chalikias, Georgios; Kapelouzou, Alkistis; Tentes, Ioannis; Schäfer, Katrin; Karayannakos, Panagiotis; Kostakis, Alkiviadis; Boudoulas, Harissios; Konstantinides, Stavros

    2013-12-10

    Lipid core expansion is partly responsible for the conversion of a stable atherosclerotic lesion to a rupture-prone plaque. Intraplaque hemorrhage contributes to the accumulation of cholesterol within unstable plaques. In the present study, we investigated, using a rabbit model of atherosclerosis, the extent to which diet-induced increases in cholesterol content of erythrocyte membranes (CEM) contribute to lipid core expansion and the modulatory effect of rosuvastatin use. Rabbits fed with atherogenic diet (0.75% cholesterol) for 5 months exhibited advanced atherosclerotic lesions (mean plaque area, 0.39 ± 0.03 mm(2)), and lipid core size was associated with the concentration-time integral (CTI) of CEM levels (r=0.567, P=0.004) independent of other established predictors of lipid core size. Further experiments were performed by feeding rabbits atherogenic diet (1% cholesterol) for 3 months, followed by either normal diet or normal diet plus rosuvastatin for the next 3 months. Although no differences were observed in total plaque area between both groups, administration of rosuvastatin was associated with significantly smaller lipid cores, fewer macrophages within the lipid core, less microvessels as well as with lower CTI of CEM levels compared to normal diet alone. Moreover, intraplaque erythrocyte membranes covered a smaller lipid core area in rabbits under rosuvastatin plus normal diet as opposed to rabbits under diet alone. Increased CEM levels, induced by high-cholesterol diet, are associated with lipid core growth. Ingestion of a potent HMG-CoA reductase inhibitor (rosuvastatin) may decrease CEM levels, and this effect may contribute to regression of the lipid core. © 2013.

  3. Core stability training: applications to sports conditioning programs.

    PubMed

    Willardson, Jeffrey M

    2007-08-01

    In recent years, fitness practitioners have increasingly recommended core stability exercises in sports conditioning programs. Greater core stability may benefit sports performance by providing a foundation for greater force production in the upper and lower extremities. Traditional resistance exercises have been modified to emphasize core stability. Such modifications have included performing exercises on unstable rather than stable surfaces, performing exercises while standing rather than seated, performing exercises with free weights rather than machines, and performing exercises unilaterally rather than bilaterally. Despite the popularity of core stability training, relatively little scientific research has been conducted to demonstrate the benefits for healthy athletes. Therefore, the purpose of this review was to critically examine core stability training and other issues related to this topic to determine useful applications for sports conditioning programs. Based on the current literature, prescription of core stability exercises should vary based on the phase of training and the health status of the athlete. During preseason and in-season mesocycles, free weight exercises performed while standing on a stable surface are recommended for increases in core strength and power. Free weight exercises performed in this manner are specific to the core stability requirements of sports-related skills due to moderate levels of instability and high levels of force production. Conversely, during postseason and off-season mesocycles, Swiss ball exercises involving isometric muscle actions, small loads, and long tension times are recommended for increases in core endurance. Furthermore, balance board and stability disc exercises, performed in conjunction with plyometric exercises, are recommended to improve proprioceptive and reactive capabilities, which may reduce the likelihood of lower extremity injuries.

  4. Solar thermal conversion

    NASA Technical Reports Server (NTRS)

    Selcuk, M. K.

    1978-01-01

    A brief review of the fundamentals of the conversion of solar energy into mechanical work (or electricity via generators) is given. Both past and present work on several conversion concepts are discussed. Solar collectors, storage systems, energy transport, and various types of engines are examined. Ongoing work on novel concepts of collectors, energy storage and thermal energy conversion are outlined and projections for the future are described. Energy costs for various options are predicted and margins and limitations are discussed.

  5. The evolutionary origin of bilaterian smooth and striated myocytes

    PubMed Central

    Brunet, Thibaut; Fischer, Antje HL; Steinmetz, Patrick RH; Lauri, Antonella; Bertucci, Paola; Arendt, Detlev

    2016-01-01

    The dichotomy between smooth and striated myocytes is fundamental for bilaterian musculature, but its evolutionary origin is unsolved. In particular, interrelationships of visceral smooth muscles remain unclear. Absent in fly and nematode, they have not yet been characterized molecularly outside vertebrates. Here, we characterize expression profile, ultrastructure, contractility and innervation of the musculature in the marine annelid Platynereis dumerilii and identify smooth muscles around the midgut, hindgut and heart that resemble their vertebrate counterparts in molecular fingerprint, contraction speed and nervous control. Our data suggest that both visceral smooth and somatic striated myocytes were present in the protostome-deuterostome ancestor and that smooth myocytes later co-opted the striated contractile module repeatedly – for example, in vertebrate heart evolution. During these smooth-to-striated myocyte conversions, the core regulatory complex of transcription factors conveying myocyte identity remained unchanged, reflecting a general principle in cell type evolution. DOI: http://dx.doi.org/10.7554/eLife.19607.001 PMID:27906129

  6. Synergistic plasmonic and photonic crystal light-trapping: architectures for optical up-conversion in thin-film solar cells.

    PubMed

    Le, Khai Q; John, Sajeev

    2014-01-13

    We demonstrate, numerically, that with a 60 nanometer layer of optical up-conversion material, embedded with plasmonic core-shell nano-rings and placed below a sub-micron silicon conical-pore photonic crystal it is possible to absorb sunlight well above the Lambertian limit in the 300-1100 nm range. With as little as 500 nm, equivalent bulk thickness of silicon, the maximum achievable photo-current density (MAPD) is about 36 mA/cm2, using above-bandgap sunlight. This MAPD increases to about 38 mA/cm2 for one micron of silicon. Our architecture also provides solar intensity enhancement by a factor of at least 1400 at the sub-bandgap wavelength of 1500 nm, due to plasmonic and photonic crystal resonances, enabling a further boost of photo-current density from up-conversion of sub-bandgap sunlight. With an external solar concentrator, providing 100 suns, light intensities sufficient for significant nonlinear up-conversion can be realized. Two-photon absorption of sub-bandgap sunlight is further enhanced by the large electromagnetic density of states in the photonic crystal at the re-emission wavelength near 750 nm. It is suggested that this synergy of plasmonic and photonic crystal resonances can lead to unprecedented power conversion efficiency in ultra-thin-film silicon solar cells.

  7. Phosphine-free synthesis and characterization of type-II ZnSe/CdS core-shell quantum dots

    NASA Astrophysics Data System (ADS)

    Ghasemzadeh, Roghayyeh; Armanmehr, Mohammad Hasan; Abedi, Mohammad; Fateh, Davood Sadeghi; Bahreini, Zaker

    2018-01-01

    A phosphine-free route for synthesis of type-II ZnSe/CdS core-shell quantum dots, using green, low cost and environmentally friendly reagents and phosphine-free solvents such as 1-octadecene (ODE) and liquid paraffin has been reported. Hot-injection technique has been used for the synthesis of ZnSe core quantum dots. The CdS shell quantum dots prepared by reaction of CdO precursor and S powder in 1-octadecene (ODE). The ZnSe/CdS core-shell quantum dots were synthesized via successive ion layer adsorption and reaction (SILAR) technique. The characterization of produced quantum dots were performed by absorption and fluorescence spectroscopy, X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDX) and transmission electron microscopy (TEM). The results showed the formation of type-II ZnSe/CdS core-shell quantum dots with FWHM 32 nm and uniform size distribution.

  8. Clinical features and ryanodine receptor type 1 gene mutation analysis in a Chinese family with central core disease.

    PubMed

    Chang, Xingzhi; Jin, Yiwen; Zhao, Haijuan; Huang, Qionghui; Wang, Jingmin; Yuan, Yun; Han, Ying; Qin, Jiong

    2013-03-01

    Central core disease is a rare inherited neuromuscular disorder caused by mutations in ryanodine receptor type 1 gene. The clinical phenotype of the disease is highly variable. We report a Chinese pedigree with central core disease confirmed by the gene sequencing. All 3 patients in the family presented with mild proximal limb weakness. The serum level of creatine kinase was normal, and electromyography suggested myogenic changes. The histologic analysis of muscle biopsy showed identical central core lesions in almost all of the muscle fibers in the index case. Exon 90-106 in the C-terminal domain of the ryanodine receptor type 1 gene was amplified using polymerase chain reaction. One heterozygous missense mutation G14678A (Arg4893Gln) in exon 102 was identified in all 3 patients. This is the first report of a familial case of central core disease confirmed by molecular study in mainland China.

  9. Star cell type core configuration for structural sandwich materials

    DOEpatents

    Christensen, Richard M.

    1995-01-01

    A new pattern for cellular core material used in sandwich type structural materials. The new pattern involves star shaped cells intermixed with hexagonal shaped cells. The new patterned cellular core material includes star shaped cells interconnected at points thereof and having hexagonal shape cells positioned adjacent the star points. The new pattern allows more flexibility and can conform more easily to curved shapes.

  10. Air-stable n-type semiconductor: core-perfluoroalkylated perylene bisimides.

    PubMed

    Li, Yan; Tan, Lin; Wang, Zhaohui; Qian, Hualei; Shi, Yubai; Hu, Wenping

    2008-02-21

    A series of core-perfluoroalkylated perylene bisimides (PBIs) have been efficiently synthesized by copper-mediated perfluoroalkylation of dibrominated PBIs. Their aromatic cores are highly twisted due to the steric encumbrance in the bay regions as revealed by single-crystal X-ray analysis. The organic field-effect transistors (OFETs) incorporating these new n-type semiconductors show remarkable air-stability and good field effect mobility.

  11. MATCH: An Atom- Typing Toolset for Molecular Mechanics Force Fields

    PubMed Central

    Yesselman, Joseph D.; Price, Daniel J.; Knight, Jennifer L.; Brooks, Charles L.

    2011-01-01

    We introduce a toolset of program libraries collectively titled MATCH (Multipurpose Atom-Typer for CHARMM) for the automated assignment of atom types and force field parameters for molecular mechanics simulation of organic molecules. The toolset includes utilities for the conversion from multiple chemical structure file formats into a molecular graph. A general chemical pattern-matching engine using this graph has been implemented whereby assignment of molecular mechanics atom types, charges and force field parameters is achieved by comparison against a customizable list of chemical fragments. While initially designed to complement the CHARMM simulation package and force fields by generating the necessary input topology and atom-type data files, MATCH can be expanded to any force field and program, and has core functionality that makes it extendable to other applications such as fragment-based property prediction. In the present work, we demonstrate the accurate construction of atomic parameters of molecules within each force field included in CHARMM36 through exhaustive cross validation studies illustrating that bond increment rules derived from one force field can be transferred to another. In addition, using leave-one-out substitution it is shown that it is also possible to substitute missing intra and intermolecular parameters with ones included in a force field to complete the parameterization of novel molecules. Finally, to demonstrate the robustness of MATCH and the coverage of chemical space offered by the recent CHARMM CGENFF force field (Vanommeslaeghe, et al., JCC., 2010, 31, 671–690), one million molecules from the PubChem database of small molecules are typed, parameterized and minimized. PMID:22042689

  12. High performance of PbSe/PbS core/shell quantum dot heterojunction solar cells: short circuit current enhancement without the loss of open circuit voltage by shell thickness control.

    PubMed

    Choi, Hyekyoung; Song, Jung Hoon; Jang, Jihoon; Mai, Xuan Dung; Kim, Sungwoo; Jeong, Sohee

    2015-11-07

    We fabricated heterojunction solar cells with PbSe/PbS core shell quantum dots and studied the precisely controlled PbS shell thickness dependency in terms of optical properties, electronic structure, and solar cell performances. When the PbS shell thickness increases, the short circuit current density (JSC) increases from 6.4 to 11.8 mA cm(-2) and the fill factor (FF) enhances from 30 to 49% while the open circuit voltage (VOC) remains unchanged at 0.46 V even with the decreased effective band gap. We found that the Fermi level and the valence band maximum level remain unchanged in both the PbSe core and PbSe/PbS core/shell with a less than 1 nm thick PbS shell as probed via ultraviolet photoelectron spectroscopy (UPS). The PbS shell reduces their surface trap density as confirmed by relative quantum yield measurements. Consequently, PbS shell formation on the PbSe core mitigates the trade-off relationship between the open circuit voltage and the short circuit current density. Finally, under the optimized conditions, the PbSe core with a 0.9 nm thick shell yielded a power conversion efficiency of 6.5% under AM 1.5.

  13. A single amino-acid substitution in the Ets domain alters core DNA binding specificity of Ets1 to that of the related transcription factors Elf1 and E74.

    PubMed

    Bosselut, R; Levin, J; Adjadj, E; Ghysdael, J

    1993-11-11

    Ets proteins form a family of sequence specific DNA binding proteins which bind DNA through a 85 aminoacids conserved domain, the Ets domain, whose sequence is unrelated to any other characterized DNA binding domain. Unlike all other known Ets proteins, which bind specific DNA sequences centered over either GGAA or GGAT core motifs, E74 and Elf1 selectively bind to GGAA corecontaining sites. Elf1 and E74 differ from other Ets proteins in three residues located in an otherwise highly conserved region of the Ets domain, referred to as conserved region III (CRIII). We show that a restricted selectivity for GGAA core-containing sites could be conferred to Ets1 upon changing a single lysine residue within CRIII to the threonine found in Elf1 and E74 at this position. Conversely, the reciprocal mutation in Elf1 confers to this protein the ability to bind to GGAT core containing EBS. This, together with the fact that mutation of two invariant arginine residues in CRIII abolishes DNA binding, indicates that CRIII plays a key role in Ets domain recognition of the GGAA/T core motif and lead us to discuss a model of Ets proteins--core motif interaction.

  14. Navigating Ethics in the Digital Age: Introducing Connected and Open Research Ethics (CORE), a Tool for Researchers and Institutional Review Boards.

    PubMed

    Torous, John; Nebeker, Camille

    2017-02-08

    Research studies that leverage emerging technologies, such as passive sensing devices and mobile apps, have demonstrated encouraging potential with respect to favorably influencing the human condition. As a result, the nascent fields of mHealth and digital medicine have gained traction over the past decade as demonstrated in the United States by increased federal funding for research that cuts across a broad spectrum of health conditions. The existence of mHealth and digital medicine also introduced new ethical and regulatory challenges that both institutional review boards (IRBs) and researchers are struggling to navigate. In response, the Connected and Open Research Ethics (CORE) initiative was launched. The CORE initiative has employed a participatory research approach, whereby researchers and IRB affiliates are involved in identifying the priorities and functionality of a shared resource. The overarching goal of CORE is to develop dynamic and relevant ethical practices to guide mHealth and digital medicine research. In this Viewpoint paper, we describe the CORE initiative and call for readers to join the CORE Network and contribute to the bigger conversation on ethics in the digital age. ©John Torous, Camille Nebeker. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 08.02.2017.

  15. Segregation of chlorine in n-type tin monosulfide ceramics: Actual chlorine concentration for carrier-type conversion

    NASA Astrophysics Data System (ADS)

    Iguchi, Yuki; Sugiyama, Taiki; Inoue, Kazutoshi; Yanagi, Hiroshi

    2018-05-01

    Tin monosulfide (SnS) is an attractive material for photovoltaic cells because of its suitable band-gap energy, high absorption coefficient, and non-toxic and abundant constituent elements. The primary drawback of this material is the lack of n-type SnS. We recently demonstrated n-type SnS by doping with Cl. However, the Cl-doped n-type SnS bulk ceramics exhibited an odd behavior in which carrier-type conversion but not electron carrier concentration depended on the Cl concentration. In this study, the electron probe microanalysis (EPMA) elemental mapping of Cl-doped SnS revealed continuous homogeneous regions with a relatively low Cl concentration along with the islands of high Cl concentration in which Sn/S is far from unity. The difference between the Cl concentration in the homogeneous region (determined by EPMA) and the bulk Cl concentration (determined by wavelength-dispersive X-ray fluorescence spectroscopy) increased with the increasing Cl doping amount. The carrier concentration and the Hall coefficient clearly depended on the Cl concentration in the homogeneous region. Carrier-type conversion was observed at the Cl concentration of 0.26 at. % (in the homogeneous region).

  16. Core-Shell Photonic Nanoparticles for Enhanced Solar-to-Fuel Photocatalytic Conversion

    DTIC Science & Technology

    2017-10-11

    photocatalytic activity of semiconducting materials. They synthesized and functionalized titanium dioxide nanoparticles with a partial shell of gold...Their research also characterized the photocatalytic activity . The second area was the tuning the dielectric environment of the nanoparticles with think...successful investigation of bimetallic nanoshells that enhance the photocatalytic activity of semiconducting materials. Our earlier work focused on the

  17. Inferring Learning from Big Data: The Importance of a Transdisciplinary and Multidimensional Approach

    ERIC Educational Resources Information Center

    Lodge, Jason M.; Alhadad, Sakinah S. J.; Lewis, Melinda J.; Gaševic, Dragan

    2017-01-01

    The use of big data in higher education has evolved rapidly with a focus on the practical application of new tools and methods for supporting learning. In this paper, we depart from the core emphasis on application and delve into a mostly neglected aspect of the big data conversation in higher education. Drawing on developments in cognate…

  18. Diameter Growth in Even- and Uneven-Aged Northern Hardwoods in New Hampshire Under Partial Cutting

    Treesearch

    William B. Leak

    2004-01-01

    One important concern in the conversion of even-aged stands to an uneven aged condition through individual-tree or small-group cutting is the growth response throughout the diameter-class distribution, especially of the understoty trees Increment-core sampling of an older, uneven-aged northern hardwood stand in New Hampshire under management for about 50 years...

  19. Indicators of Higher Education Equity in the United States: 45 Year Trend Report

    ERIC Educational Resources Information Center

    Cahalan, Margaret; Perna, Laura

    2015-01-01

    The U.S. has a core constitutional and founding commitment to equality of opportunity for all citizens. Whether viewed as an end in itself or a means to fostering increased national achievement and competitiveness, the 21st century United States conversation about equity reflects a national consensus about the many benefits of and necessity for…

  20. Magnetic field insensitive photoluminescence decay of ZnSe/CdS core/shell type-II colloidal quantum dots

    NASA Astrophysics Data System (ADS)

    Lee, Woojin; Park, Seongho; Murayama, Akihiro; Lee, Jong-soo; Kyhm, Kwangseuk

    2018-06-01

    We have synthesized ZnSe/CdS core/shell type-II colloidal quantum dots, where an electron and a hole are separated in the CdS shell and the ZnSe core, respectively. Our theoretical model has revealed that absorbance spectrum of bare ZnSe quantum dots in 2 nm radius becomes broadened with a large redshift (∼1.15 eV) when the electron in ZnSe core is separated by 3.2 nm CdS shell. Also, we found that our type-II QDs are insensitive to an external magnetic field up to 5 T in terms of central emission energy, degree of polarization, and photoluminescence decay time. This can be attributed to the electron–hole charge separation in a type-II structure, whereby the suppressed exchange interaction gives rise to a magnetic insensitivity with a small energy difference between the bright and dark exciton states.

  1. Native structure of a type IV secretion system core complex essential for Legionella pathogenesis.

    PubMed

    Kubori, Tomoko; Koike, Masafumi; Bui, Xuan Thanh; Higaki, Saori; Aizawa, Shin-Ichi; Nagai, Hiroki

    2014-08-12

    Bacterial type IV secretion systems are evolutionarily related to conjugation systems and play a pivotal role in infection by delivering numerous virulence factors into host cells. Using transmission electron microscopy, we report the native molecular structure of the core complex of the Dot/Icm type IV secretion system encoded by Legionella pneumophila, an intracellular human pathogen. The biochemically isolated core complex, composed of at least five proteins--DotC, DotD, DotF, DotG, and DotH--has a ring-shaped structure. Intriguingly, morphologically distinct premature complexes are formed in the absence of DotG or DotF. Our data suggest that DotG forms a central channel spanning inner and outer membranes. DotF, a component dispensable for type IV secretion, plays a role in efficient embedment of DotG into the functional core complex. These results highlight a common scheme for the biogenesis of transport machinery.

  2. Controlled formation of intense hot spots in Pd@Ag core-shell nanooctapods for efficient photothermal conversion

    NASA Astrophysics Data System (ADS)

    Liu, Maochang; Yang, Yang; Li, Naixu; Du, Yuanchang; Song, Dongxing; Ma, Lijing; Wang, Yi; Zheng, Yiqun; Jing, Dengwei

    2017-08-01

    Plasmonic Ag nanostructures have been of great interest for such applications in cancer therapy and catalysis, etc. However, the relatively week Ag-Ag interaction and spontaneous atom diffusion make it very difficult to generate concaved or branched structures in Ag nanocrystals with sizes less than 100 nm, which has been considered very favorable for plasmonic effects. Herein, by employing a cubic Pd seed and a specific reducing agent to restrict the surface diffusion of Ag atoms, Pd@Ag core-shell nanooctapod structures where Ag atoms can be selectively deposited onto the corner sites of the Pd cubes were obtained. Such selective decoration enables us to precisely control the locations for the hot spot formation during light irradiation. We find that the branched nanooctapod structure shows strong absorption in the visible-light region and generates intense hot spots around the octapod arms of Ag. As such, the photothermal conversion efficiency could be significantly improved by more than 50% with a colloid solution containing only ppm-level nanooctapods compared with pure water. The reported nanostructure is expected to find extensive applications due to its controlled formation of light-induced hot spots at certain points on the crystal surface.

  3. Transplant Ethics: Let's Begin the Conversation Anew : A Critical Look at One Institute's Experience with Transplant Related Ethical Issues.

    PubMed

    Shafran, David; Smith, Martin L; Daly, Barbara J; Goldfarb, David

    2016-06-01

    Standardizing consultation processes is increasingly important as clinical ethics consultation (CEC) becomes more utilized in and vital to medical practice. Solid organ transplant represents a relatively nascent field replete with complex ethical issues that, while explored, have not been systematically classified. In this paper, we offer a proposed taxonomy that divides issues of resource allocation from viable solutions to the issue of organ shortage in transplant and then further distinguishes between policy and bedside level issues. We then identify all transplant related ethics consults performed at the Cleveland Clinic (CC) between 2008 and 2013 in order to identify how consultants conceptually framed their consultations by the domains they ascribe to the case. We code the CC domains to those in the Core Competencies for Healthcare Consultation Ethics in order to initiate a broader conversation regarding best practices in these highly complex cases. A discussion of the ethical issues underlying living donor and recipient related consults ensues. Finally, we suggest that the ethical domains prescribed in the Core Competencies provide a strong starting ground for a common intra-disciplinary language in the realm of formal CEC.

  4. Energy storage management system with distributed wireless sensors

    DOEpatents

    Farmer, Joseph C.; Bandhauer, Todd M.

    2015-12-08

    An energy storage system having a multiple different types of energy storage and conversion devices. Each device is equipped with one or more sensors and RFID tags to communicate sensor information wirelessly to a central electronic management system, which is used to control the operation of each device. Each device can have multiple RFID tags and sensor types. Several energy storage and conversion devices can be combined.

  5. Conversion of HSPF Legacy Model to a Platform-Independent, Open-Source Language

    NASA Astrophysics Data System (ADS)

    Heaphy, R. T.; Burke, M. P.; Love, J. T.

    2015-12-01

    Since its initial development over 30 years ago, the Hydrologic Simulation Program - FORTAN (HSPF) model has been used worldwide to support water quality planning and management. In the United States, HSPF receives widespread endorsement as a regulatory tool at all levels of government and is a core component of the EPA's Better Assessment Science Integrating Point and Nonpoint Sources (BASINS) system, which was developed to support nationwide Total Maximum Daily Load (TMDL) analysis. However, the model's legacy code and data management systems have limitations in their ability to integrate with modern software, hardware, and leverage parallel computing, which have left voids in optimization, pre-, and post-processing tools. Advances in technology and our scientific understanding of environmental processes that have occurred over the last 30 years mandate that upgrades be made to HSPF to allow it to evolve and continue to be a premiere tool for water resource planners. This work aims to mitigate the challenges currently facing HSPF through two primary tasks: (1) convert code to a modern widely accepted, open-source, high-performance computing (hpc) code; and (2) convert model input and output files to modern widely accepted, open-source, data model, library, and binary file format. Python was chosen as the new language for the code conversion. It is an interpreted, object-oriented, hpc code with dynamic semantics that has become one of the most popular open-source languages. While python code execution can be slow compared to compiled, statically typed programming languages, such as C and FORTRAN, the integration of Numba (a just-in-time specializing compiler) has allowed this challenge to be overcome. For the legacy model data management conversion, HDF5 was chosen to store the model input and output. The code conversion for HSPF's hydrologic and hydraulic modules has been completed. The converted code has been tested against HSPF's suite of "test" runs and shown good agreement and similar execution times while using the Numba compiler. Continued verification of the accuracy of the converted code against more complex legacy applications and improvement upon execution times by incorporating an intelligent network change detection tool is currently underway, and preliminary results will be presented.

  6. Comparing Linguistic Complexity and Efficiency in Conversations from Stimulation and Conversation Therapy in Aphasia

    ERIC Educational Resources Information Center

    Savage, Meghan C.; Donovan, Neila J.

    2017-01-01

    Background: Efficacy studies have demonstrated the benefit of group conversation therapy for a person with aphasia (PWA). However, a PWA typically participates in individual therapy prior to group therapy. Stimulation therapy (ST) is the most common type of individual aphasia therapy. Ultimately, the outcome of therapy is to enable the PWA to…

  7. The Growth of Instructional Coaching Partner Conversations in a PreK-3rd Grade Teacher Professional Development Experience

    ERIC Educational Resources Information Center

    Thomas, Earl E.; Bell, David L.; Spelman, Maureen; Briody, Jennifer

    2015-01-01

    Instructional coaching that supports teachers' with revising teaching practices is not understood. This study sought to understand the impact of the instructional coaching experience by recording coaching conversations/interactions with teachers. The purpose was to determine if the type of coaching conversations changed overtime during three…

  8. Remote Sensing Analysis of Vegetation Recovery following Short-Interval Fires in Southern California Shrublands

    PubMed Central

    Meng, Ran; Dennison, Philip E.; D’Antonio, Carla M.; Moritz, Max A.

    2014-01-01

    Increased fire frequency has been shown to promote alien plant invasions in the western United States, resulting in persistent vegetation type change. Short interval fires are widely considered to be detrimental to reestablishment of shrub species in southern California chaparral, facilitating the invasion of exotic annuals and producing “type conversion”. However, supporting evidence for type conversion has largely been at local, site scales and over short post-fire time scales. Type conversion has not been shown to be persistent or widespread in chaparral, and past range improvement studies present evidence that chaparral type conversion may be difficult and a relatively rare phenomenon across the landscape. With the aid of remote sensing data covering coastal southern California and a historical wildfire dataset, the effects of short interval fires (<8 years) on chaparral recovery were evaluated by comparing areas that burned twice to adjacent areas burned only once. Twelve pairs of once- and twice-burned areas were compared using normalized burn ratio (NBR) distributions. Correlations between measures of recovery and explanatory factors (fire history, climate and elevation) were analyzed by linear regression. Reduced vegetation cover was found in some lower elevation areas that were burned twice in short interval fires, where non-sprouting species are more common. However, extensive type conversion of chaparral to grassland was not evident in this study. Most variables, with the exception of elevation, were moderately or poorly correlated with differences in vegetation recovery. PMID:25337785

  9. Correlation of Wissler Human Thermal Model Blood Flow and Shiver Algorithms

    NASA Technical Reports Server (NTRS)

    Bue, Grant; Makinen, Janice; Cognata, Thomas

    2010-01-01

    The Wissler Human Thermal Model (WHTM) is a thermal math model of the human body that has been widely used to predict the human thermoregulatory response to a variety of cold and hot environments. The model has been shown to predict core temperature and skin temperatures higher and lower, respectively, than in tests of subjects in crew escape suit working in a controlled hot environments. Conversely the model predicts core temperature and skin temperatures lower and higher, respectively, than in tests of lightly clad subjects immersed in cold water conditions. The blood flow algorithms of the model has been investigated to allow for more and less flow, respectively, for the cold and hot case. These changes in the model have yielded better correlation of skin and core temperatures in the cold and hot cases. The algorithm for onset of shiver did not need to be modified to achieve good agreement in cold immersion simulations

  10. Characteristics of 1.9 μm laser emission from hydrogen-filled hollow-core fiber by stimulated Raman scattering

    NASA Astrophysics Data System (ADS)

    Gu, Bo; Chen, Yubin; Wang, Zefeng

    2016-11-01

    We report here the detailed characteristics of 1.9 μm laser emission from hydrogen-filled hollow-core fiber by stimulated Raman scattering. A 6.5 m hydrogen-filled Ice-cream negative curvature hollow-core fiber is pumped with a high peak power, narrow linewidth, liner polarized subnanosecond pulsed 1064 nm microchip laser, generating pulsed 1908.5 nm vibrational Stokes wave. The linewidth of the pump laser and the vibrational Stokes wave is about 1 GHz and 2 GHz respectively. And the maximum Raman conversion quantum efficiency is about 48%. We also studied the pulse shapes of the pump laser and the vibrational Stokes wave. The polarization dependence of the vibrational and the rotational stimulated Raman scattering is also investigated. In addition, the beam profile of vibrational Stokes wave shows good quality, which may be taken advantage of in many applications.

  11. Experimental physics characteristics of a heavy-metal-reflected fast-spectrum critical assembly

    NASA Technical Reports Server (NTRS)

    Heneveld, W. H.; Paschall, R. K.; Springer, T. H.; Swanson, V. A.; Thiele, A. W.; Tuttle, R. J.

    1972-01-01

    A zero-power critical assembly was designed, constructed, and operated for the purpose of conducting a series of benchmark experiments dealing with the physics characteristics of a UN-fueled, Li-cooled, Mo-reflected, drum-controlled compact fast reactor for use with a space-power electric conversion system. The range of the previous experimental investigations has been expanded to include the reactivity effects of:(1) surrounding the reactor with 15.24 cm (6 in.) of polyethylene, (2) reducing the heights of a portion of the upper and lower axial reflectors by factors of 2 and 4, (3) adding 45 kg of W to the core uniformly in two steps, (4) adding 9.54 kg of Ta to the core uniformly, and (5) inserting 2.3 kg of polyethylene into the core proper and determining the effect of a Ta addition on the polyethylene worth.

  12. Sodium Based Heat Pipe Modules for Space Reactor Concepts: Stainless Steel SAFE-100 Core

    NASA Technical Reports Server (NTRS)

    Martin, James J.; Reid, Robert S.

    2004-01-01

    A heat pipe cooled reactor is one of several candidate reactor cores being considered for advanced space power and propulsion systems to support future space exploration applications. Long life heat pipe modules, with designs verified through a combination of theoretical analysis and experimental lifetime evaluations, would be necessary to establish the viability of any of these candidates, including the heat pipe reactor option. A hardware-based program was initiated to establish the infrastructure necessary to build heat pipe modules. This effort, initiated by Los Alamos National Laboratory and referred to as the Safe Affordable Fission Engine (SAFE) project, set out to fabricate and perform non-nuclear testing on a modular heat pipe reactor prototype that can provide 100 kilowatt from the core to an energy conversion system at 700 C. Prototypic heat pipe hardware was designed, fabricated, filled, closed-out and acceptance tested.

  13. Crystal structure of plant photosystem I

    NASA Astrophysics Data System (ADS)

    Ben-Shem, Adam; Frolow, Felix; Nelson, Nathan

    2003-12-01

    Oxygenic photosynthesis is the principal producer of both oxygen and organic matter on Earth. The conversion of sunlight into chemical energy is driven by two multisubunit membrane protein complexes named photosystem I and II. We determined the crystal structure of the complete photosystem I (PSI) from a higher plant (Pisum sativum var. alaska) to 4.4Å resolution. Its intricate structure shows 12 core subunits, 4 different light-harvesting membrane proteins (LHCI) assembled in a half-moon shape on one side of the core, 45 transmembrane helices, 167 chlorophylls, 3 Fe-S clusters and 2 phylloquinones. About 20 chlorophylls are positioned in strategic locations in the cleft between LHCI and the core. This structure provides a framework for exploration not only of energy and electron transfer but also of the evolutionary forces that shaped the photosynthetic apparatus of terrestrial plants after the divergence of chloroplasts from marine cyanobacteria one billion years ago.

  14. The role of ion exchange in the passivation of In(Zn)P nanocrystals with ZnS

    PubMed Central

    Cho, Deok-Yong; Xi, Lifei; Boothroyd, Chris; Kardynal, Beata; Lam, Yeng Ming

    2016-01-01

    We have investigated the chemical state of In(Zn)P/ZnS core/shell nanocrystals (NCs) for color conversion applications using hard X-ray absorption spectroscopy (XAS) and photoluminescence excitation (PLE). Analyses of the edge energies as well as the X-ray absorption fine structure (XAFS) reveal that the Zn2+ ions from ZnS remain in the shell while the S2− ions penetrate into the core at an early stage of the ZnS deposition. It is further demonstrated that for short growth times, the ZnS shell coverage on the core was incomplete, whereas the coverage improved gradually as the shell deposition time increased. Together with evidence from PLE spectra, where there is a strong indication of the presence of P vacancies, this suggests that the core-shell interface in the In(Zn)P/ZnS NCs are subject to substantial atomic exchanges and detailed models for the shell structure beyond simple layer coverage are needed. This substantial atomic exchange is very likely to be the reason for the improved photoluminescence behavior of the core-shell particles compare to In(Zn)P-only NCs as S can passivate the NCs surfaces. PMID:26972936

  15. Conversion of the Aerodynamic Preliminary Analysis System (APAS) to an IBM PC Compatible Format

    NASA Technical Reports Server (NTRS)

    Kruep, John M.

    1995-01-01

    The conversion of the Aerodynamic Preliminary Analysis System (APAS) software from a Silicon Graphics UNIX-based platform to a DOS-based IBM PC compatible is discussed. Relevant background information is given, followed by a discussion of the steps taken to accomplish the conversion and a discussion of the type of problems encountered during the conversion. A brief comparison of aerodynamic data obtained using APAS with data from another source is also made.

  16. Gliding Arc Plasmatron: Providing an Alternative Method for Carbon Dioxide Conversion.

    PubMed

    Ramakers, Marleen; Trenchev, Georgi; Heijkers, Stijn; Wang, Weizong; Bogaerts, Annemie

    2017-06-22

    Low-temperature plasmas are gaining a lot of interest for environmental and energy applications. A large research field in these applications is the conversion of CO 2 into chemicals and fuels. Since CO 2 is a very stable molecule, a key performance indicator for the research on plasma-based CO 2 conversion is the energy efficiency. Until now, the energy efficiency in atmospheric plasma reactors is quite low, and therefore we employ here a novel type of plasma reactor, the gliding arc plasmatron (GAP). This paper provides a detailed experimental and computational study of the CO 2 conversion, as well as the energy cost and efficiency in a GAP. A comparison with thermal conversion, other plasma types and other novel CO 2 conversion technologies is made to find out whether this novel plasma reactor can provide a significant contribution to the much-needed efficient conversion of CO 2 . From these comparisons it becomes evident that our results are less than a factor of two away from being cost competitive and already outperform several other new technologies. Furthermore, we indicate how the performance of the GAP can still be improved by further exploiting its non-equilibrium character. Hence, it is clear that the GAP is very promising for CO 2 conversion. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Tunable luminescent emission characterization of type-I and type-II systems in CdS-ZnSe core-shell nanoparticles: Raman and photoluminescence study.

    PubMed

    Ca, Nguyen Xuan; Lien, V T K; Nghia, N X; Chi, T T K; Phan, The-Long

    2015-11-06

    We used wet chemical methods to synthesize core-shell nanocrystalline samples CdS(d)/ZnSe N , where d = 3-6 nm and N = 1-5 are the size of CdS cores and the number of monolayers grown on the cores, respectively. By annealing typical CdS(d)/ZnSe N samples (with d = 3 and 6 nm and N = 2) at 300 °C for various times t an = 10-600 min, we created an intermediate layer composed of Zn1-x Cd x Se and Cd1-x Zn x S alloys with various thicknesses. The formation of core-shell structures and intermediate layers was monitored by Raman scattering and UV-vis absorption spectrometers. Careful photoluminescence studies revealed that the as-prepared CdS(d)/ZnSe N samples with d = 5 nm and N = 2-4, and the annealed samples CdS(3 nm)/ZnSe2 with t an ≤ 60 min and CdS(6 nm)/ZnSe2 with t an ≤ 180 min, show the emission characteristics of type-II systems. Meanwhile, the other samples show the emission characteristics of type-I systems. These results prove that the partial separation of photoexcited carriers between the core and shell is dependent strongly on the engineered core-shell nanostructures, meaning the sizes of the core, shell, and intermediate layers. With the tunable luminescence properties, CdS-ZnSe-based core-shell materials are considered as promising candidates for multiple-exciton generation and single-photon sources.

  18. The estimation of uniaxial compressive strength conversion factor of trona and interbeds from point load tests and numerical modeling

    NASA Astrophysics Data System (ADS)

    Ozturk, H.; Altinpinar, M.

    2017-07-01

    The point load (PL) test is generally used for estimation of uniaxial compressive strength (UCS) of rocks because of its economic advantages and simplicity in testing. If the PL index of a specimen is known, the UCS can be estimated using conversion factors. Several conversion factors have been proposed by various researchers and they are dependent upon the rock type. In the literature, conversion factors on different sedimentary, igneous and metamorphic rocks can be found, but no study exists on trona. In this study, laboratory UCS and field PL tests were carried out on trona and interbeds of volcano-sedimentary rocks. Based on these tests, PL to UCS conversion factors of trona and interbeds are proposed. The tests were modeled numerically using a distinct element method (DEM) software, particle flow code (PFC), in an attempt to guide researchers having various types of modeling problems (excavation, cavern design, hydraulic fracturing, etc.) of the abovementioned rock types. Average PFC parallel bond contact model micro properties for the trona and interbeds were determined within this study so that future researchers can use them to avoid the rigorous PFC calibration procedure. It was observed that PFC overestimates the tensile strength of the rocks by a factor that ranges from 22 to 106.

  19. Quantitative Analysis of Defects in Silicon. [to predict energy conversion efficiency of silicon samples for solar cells

    NASA Technical Reports Server (NTRS)

    Natesh, R.; Smith, J. M.; Qidwai, H. A.; Bruce, T.

    1979-01-01

    The evaluation and prediction of the conversion efficiency for a variety of silicon samples with differences in structural defects, such as grain boundaries, twin boundaries, precipitate particles, dislocations, etc. are discussed. Quantitative characterization of these structural defects, which were revealed by etching the surface of silicon samples, is performed by using an image analyzer. Due to different crystal growth and fabrication techniques the various types of silicon contain a variety of trace impurity elements and structural defects. The two most important criteria in evaluating the various silicon types for solar cell applications are cost and conversion efficiency.

  20. Considerations in pharmaceutical conversion: focus on antihistamines.

    PubMed

    Garbus, S B; Moulton, B W; Meltzer, E O; Reich, P R; Weinreb, L F; Friedman, J A; Orland, B I

    1997-04-01

    The practice of pharmaceutical conversion, which encompasses three types of drug interchange (generic, brand, and therapeutic substitution), is increasing in managed care settings. Pharmaceutical conversion has numerous implications for managed care organizations, their healthcare providers, and their customers. Although drug cost may be a driving consideration in pharmaceutical conversion, a number of other considerations are of equal or greater importance in the decision-making process may affect the overall cost of patient care. Among these considerations are clinical, psychosocial, and safety issues; patient adherence; patient satisfaction; and legal implications of pharmaceutical conversion. Patient-centered care must always remain central to decisions about pharmaceutical conversion. This article discusses the issues related to, and implications of, pharmaceutical conversion utilizing the antihistamines class of drugs as the case situation.

  1. Web-based Toolkit for Dynamic Generation of Data Processors

    NASA Astrophysics Data System (ADS)

    Patel, J.; Dascalu, S.; Harris, F. C.; Benedict, K. K.; Gollberg, G.; Sheneman, L.

    2011-12-01

    All computation-intensive scientific research uses structured datasets, including hydrology and all other types of climate-related research. When it comes to testing their hypotheses, researchers might use the same dataset differently, and modify, transform, or convert it to meet their research needs. Currently, many researchers spend a good amount of time performing data processing and building tools to speed up this process. They might routinely repeat the same process activities for new research projects, spending precious time that otherwise could be dedicated to analyzing and interpreting the data. Numerous tools are available to run tests on prepared datasets and many of them work with datasets in different formats. However, there is still a significant need for applications that can comprehensively handle data transformation and conversion activities and help prepare the various processed datasets required by the researchers. We propose a web-based application (a software toolkit) that dynamically generates data processors capable of performing data conversions, transformations, and customizations based on user-defined mappings and selections. As a first step, the proposed solution allows the users to define various data structures and, in the next step, can select various file formats and data conversions for their datasets of interest. In a simple scenario, the core of the proposed web-based toolkit allows the users to define direct mappings between input and output data structures. The toolkit will also support defining complex mappings involving the use of pre-defined sets of mathematical, statistical, date/time, and text manipulation functions. Furthermore, the users will be allowed to define logical cases for input data filtering and sampling. At the end of the process, the toolkit is designed to generate reusable source code and executable binary files for download and use by the scientists. The application is also designed to store all data structures and mappings defined by a user (an author), and allow the original author to modify them using standard authoring techniques. The users can change or define new mappings to create new data processors for download and use. In essence, when executed, the generated data processor binary file can take an input data file in a given format and output this data, possibly transformed, in a different file format. If they so desire, the users will be able modify directly the source code in order to define more complex mappings and transformations that are not currently supported by the toolkit. Initially aimed at supporting research in hydrology, the toolkit's functions and features can be either directly used or easily extended to other areas of climate-related research. The proposed web-based data processing toolkit will be able to generate various custom software processors for data conversion and transformation in a matter of seconds or minutes, saving a significant amount of researchers' time and allowing them to focus on core research issues.

  2. Star cell type core configuration for structural sandwich materials

    DOEpatents

    Christensen, R.M.

    1995-08-01

    A new pattern for cellular core material used in sandwich type structural materials is disclosed. The new pattern involves star shaped cells intermixed with hexagonal shaped cells. The new patterned cellular core material includes star shaped cells interconnected at points thereof and having hexagonal shape cells positioned adjacent the star points. The new pattern allows more flexibility and can conform more easily to curved shapes. 3 figs.

  3. Special Purpose Nuclear Reactor (5 MW) for Reliable Power at Remote Sites Assessment Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sterbentz, James William; Werner, James Elmer; McKellar, Michael George

    The Phenomena Identification and Ranking Table (PIRT) technique was conducted on the Special Purpose Reactor nuclear plant design. The PIRT is a structured process to identify safety-relevant/safety-significant phenomena and assess the importance and knowledge base by ranking the phenomena. The Special Purpose Reactor is currently in the conceptual design stage. The candidate reactor has a solid monolithic stainless steel core with an array of heat pipes and fuel pellets embedded in the monolith. The heat pipes are used to remove heat from the core using simple, reliable, and well-characterized physics (capillarity, boiling, and condensation). In the initial design, one heatmore » exchanger is used for the working fluid that produces energy, and a second heat exchanger is used to remove decay heat in emergency or shutdown conditions. In addition, a power conversion cycle such as an open-air Brayton system is available as an option for power conversion and process heat. This report summarizes and documents the process and scope of the four PIRT reviews, noting the major activities and conclusions. The identified phenomena, analyses, rationales, and associated ratings are presented along with a summary of the findings from the four individual PIRTs, namely (1) Reactor Accident and Normal Operations, (2) Heat Pipes, (3) Materials, and (4) Power Conversion. The PIRT reports for these four major system areas evaluated are attached as appendixes to this report and provide considerably more detail about each assessment as well as a more complete listing of the phenomena that were evaluated.« less

  4. Dissociation of MgSiO3 in the cores of gas giants and terrestrial exoplanets.

    PubMed

    Umemoto, Koichiro; Wentzcovitch, Renata M; Allen, Philip B

    2006-02-17

    CaIrO3-type MgSiO3 is the planet-forming silicate stable at pressures and temperatures beyond those of Earth's core-mantle boundary. First-principles quasiharmonic free-energy computations show that this mineral should dissociate into CsCl-type MgO cotunnite-type SiO2 at pressures and temperatures expected to occur in the cores of the gas giants + and in terrestrial exoplanets. At approximately 10 megabars and approximately 10,000 kelvin, cotunnite-type SiO2 should have thermally activated electron carriers and thus electrical conductivity close to metallic values. Electrons will give a large contribution to thermal conductivity, and electronic damping will suppress radiative heat transport.

  5. Review and role of plyometrics and core rehabilitation in competitive sport.

    PubMed

    Hill, John; Leiszler, Matthew

    2011-01-01

    Core stability and plyometric training have become common elements of training programs in competitive athletes. Core stability allows stabilization of the spine and trunk of the body in order to allow maximal translation of force to the extremities. Plyometric training is more dynamic and involves explosive-strength training. Integration of these exercises theoretically begins with core stabilization using more static exercises, allowing safe and effective transition to plyometric exercises. Both core strengthening and plyometric training have demonstrated mixed but generally positive results on injury prevention rehabilitation of certain types of injuries. Improvement in performance compared to other types of exercise is unclear at this time. This article discusses the theory and strategy behind core stability and plyometric training; reviews the literature on injury prevention, rehabilitation of injury, and performance enhancement with these modalities; and discusses the evaluation and rehabilitation of core stability.

  6. Multiple visible emissions by means of up-conversion process in a microstructured tellurite glass optical fiber.

    PubMed

    Boetti, Nadia G; Lousteau, Joris; Negro, Davide; Mura, Emanuele; Scarpignato, Gerardo; Abrate, Silvio; Milanese, Daniel

    2012-02-27

    We present a microstructured fiber whose 9 µm diameter core consists in three concentric rings made of three active glasses having different rare earth oxide dopants, Yb3+/Er3+, Yb3+/Tm3+ and Yb3+/Pr3+, respectively. Morphological and optical characterization of the optical fiber are presented. The photoluminescence spectrum is investigated for different pumping conditions using a commercial 980 nm laser diode. Tuning of the RGB (or white light) emission is demonstrated not only by adjusting the pump power but also by using an optical iris as spatial filter which, thanks to the microstructured core, also acts as a spectral filter.

  7. Experimental investigations of a uranium plasma pertinent to a self-sustaining plasma source

    NASA Technical Reports Server (NTRS)

    Schneider, R. T.

    1971-01-01

    The research is pertinent to the realization of a self-sustained fissioning plasma for applications such as nuclear propulsion, closed cycle MHD power generation using a plasma core reactor, and heat engines such as the nuclear piston engine, as well as the direct conversion of fission energy into optical radiation (nuclear pumped lasers). Diagnostic measurement methods and experimental devices simulating plasma core reactor conditions are discussed. Studies on the following topics are considered: (1) ballistic piston compressor (U-235); (2) high pressure uranium plasma (natural uranium); (3) sliding spark discharge (natural uranium); (4) fission fragment interaction (He-3 and U-235); and (5) nuclear pumped lasers (He-3 and U-235).

  8. Analysis of fixed bed data for the extraction of a rate mechanism for the reaction of hematite with methane

    DOE PAGES

    Breault, Ronald W.; Monazam, Esmail R.

    2015-04-01

    In this study, chemical looping combustion is a promising technology for the capture of CO 2 involving redox materials as oxygen carriers. The effects of reduction conditions, namely, temperature and fuel partial pressure on the conversion products are investigated. The experiments were conducted in a laboratory fixed-bed reactor that was operated cyclically with alternating reduction and oxidation periods. Reactions are assumed to occur in the shell surrounding the particle grains with diffusion of oxygen to the surface from the grain core. Activation energies for the shell and core reactions range from 9 to 209 kJ/mol depending on the reaction step.

  9. An inverse problem for Gibbs fields with hard core potential

    NASA Astrophysics Data System (ADS)

    Koralov, Leonid

    2007-05-01

    It is well known that for a regular stable potential of pair interaction and a small value of activity one can define the corresponding Gibbs field (a measure on the space of configurations of points in Rd). In this paper we consider a converse problem. Namely, we show that for a sufficiently small constant ρ¯1 and a sufficiently small function ρ¯2(x), x ∈Rd, that is equal to zero in a neighborhood of the origin, there exist a hard core pair potential and a value of activity such that ρ¯1 is the density and ρ¯2 is the pair correlation function of the corresponding Gibbs field.

  10. Mapping and converting essential Federal Geographic Data Committee (FGDC) metadata into MARC21 and Dublin Core: towards an alternative to the FGDC Clearinghouse

    USGS Publications Warehouse

    Chandler, A.; Foley, D.; Hafez, A.M.

    2000-01-01

    The purpose of this article is to raise and address a number of issues related to the conversion of Federal Geographic Data Committee metadata into MARC21 and Dublin Core. We present an analysis of 466 FGDC metadata records housed in the National Biological Information Infrastructure (NBII) node of the FGDC Clearinghouse, with special emphasis on the length of fields and the total length of records in this set. One of our contributions is a 34 element crosswalk, a proposal that takes into consideration the constraints of the MARC21 standard as implemented in OCLC's World Cat and the realities of user behavior.

  11. Effects of brefeldin A on oligosaccharide processing. Evidence for decreased branching of complex-type glycans and increased formation of hybrid-type glycans.

    PubMed

    Chawla, D; Hughes, R C

    1991-10-01

    Brefeldin A (BFA), a drug that induces redistribution of Golgi-apparatus proteins into the endoplasmic reticulum, was used to determine the role of subcellular compartmentalization in the processing of asparagine-linked oligosaccharides. Baby-hamster kidney cells were pulse-labelled with [3H]mannose for 30-60 min and chased for up to several hours in the presence or in the absence of BFA or labelled continuously for several hours with and without the drug. Cellular glycoproteins were digested to glycopeptides with Pronase and either fractionated into glycan classes by lectin affinity chromatography or digested further by endoglycosidase H and endoglycosidase D. Released oligosaccharides obtained in the latter procedure were then separated from each other and from endoglycosidase-resistant glycopeptides by paper chromatography. The results show that BFA induces a very fast processing of protein-linked Glc3Man9GlcNAc2 oligosaccharide down to man5GlcNAc2 and conversion into complex-type and hybrid-type glycans. The major difference between untreated and BFA-treated cells is a large increase in bi-antennary and hybrid-type glycans in the latter cells. These results indicate that galactosylation of a mono-antennary GlcNAcMan5GlcNAc2 hybrid blocks subsequent action by mannosidase II and N-acetylglucosaminyl transferase II, producing galactosylated hybrid-type glycans. Similarly, galactosylation of the product of N-acetylglucosaminyltransferases I and II, i.e. a Man3GlcNAc2 core substituted with GlcNAc beta 1----2 on both alpha 1----3- and alpha 1----6-linked mannose residues, blocks branching N-acetylglucosaminyltransferases IV and V, thereby causing an increase in bi-antennary glycans and a decrease in tri- and tetra-antennary glycans.

  12. Use of bovine recombinant prion protein and real-time quaking-induced conversion to detect transmissible mink encephalopathy prions and discriminate classical and atypical L- and H-type bovine spongiform encephalopathy

    USDA-ARS?s Scientific Manuscript database

    Prions are amyloid-forming proteins that cause transmissible spongiform encephalopathies through a process involving conversion from normal cellular prion protein to pathogenic misfolded conformation. This conversion has been used for in vitro assays including serial protein misfolding amplification...

  13. Talking about Animals: Studies of Young Children Visiting Zoos, a Museum and a Farm.

    ERIC Educational Resources Information Center

    Tunnicliffe, Susan Dale

    The purpose of this study was to identify the content and form of the conversations and recognize the variables that are acting during visits to animal exhibits, and the influence on conversational content of both different types of locations and animal exhibits and visit rationales. Conversations of children between the ages of 3 and 12 years and…

  14. Conversational behaviour of children with Asperger syndrome and conduct disorder.

    PubMed

    Adams, Catherine; Green, Jonathan; Gilchrist, Anne; Cox, Anthony

    2002-07-01

    Social communication problems in individuals who have Asperger syndrome constitute one of the most significant problems in the syndrome. This study makes a systematic analysis of the difficulties demonstrated with the use of language (pragmatics) in adolescents who have Asperger syndrome. Recent advances in discourse analysis were applied to conversational samples from a group of children with Asperger syndrome and a matched control group of children with severe conduct disorder. Two types of conversation were sampled from each group, differing in emotional content. The results showed that in these contexts children with Asperger syndrome were no more verbose as a group than controls, though they showed a tendency to talk more in more emotion-based conversations. Children with Asperger syndrome, as a group, performed similarly to control subjects in ability to respond to questions and comments. However, they were more likely to show responses which were problematic in both types of conversation. In addition, individuals with Asperger syndrome showed more problems in general conversation than during more emotionally and socially loaded topics. The group with Asperger syndrome was found to contain a small number of individuals with extreme verbosity but this was not a reliable characteristic of the group as a whole.

  15. Hello, Who is Calling?: Can Words Reveal the Social Nature of Conversations?

    PubMed

    Stark, Anthony; Shafran, Izhak; Kaye, Jeffrey

    2012-01-01

    This study aims to infer the social nature of conversations from their content automatically. To place this work in context, our motivation stems from the need to understand how social disengagement affects cognitive decline or depression among older adults. For this purpose, we collected a comprehensive and naturalistic corpus comprising of all the incoming and outgoing telephone calls from 10 subjects over the duration of a year. As a first step, we learned a binary classifier to filter out business related conversation, achieving an accuracy of about 85%. This classification task provides a convenient tool to probe the nature of telephone conversations. We evaluated the utility of openings and closing in differentiating personal calls, and find that empirical results on a large corpus do not support the hypotheses by Schegloff and Sacks that personal conversations are marked by unique closing structures. For classifying different types of social relationships such as family vs other, we investigated features related to language use (entropy), hand-crafted dictionary (LIWC) and topics learned using unsupervised latent Dirichlet models (LDA). Our results show that the posteriors over topics from LDA provide consistently higher accuracy (60-81%) compared to LIWC or language use features in distinguishing different types of conversations.

  16. Conversion from cropland to short rotation coppice willow and poplar: Accumulation of soil organic carbon

    NASA Astrophysics Data System (ADS)

    Georgiadis, Petros; Stupak, Inge; Vesterdal, Lars; Raulund-Rasmussen, Karsten

    2015-04-01

    Increased demand for bioenergy has intensified the production of Short Rotation Coppice (SRC) willow and poplar in temperate zones. We used a combined chronosequence and paired plot approach to study the potential of SRC willow and poplar stands to increase the soil carbon stock compared to stocks of the previous arable land-use. The study focused on well-drained soils. We sampled soil from 30 SRC stands in Denmark and southern Sweden including soils from their adjacent arable fields. The 18 willow and 12 poplar stands formed a chronosequence ranging between 4 and 29 years after conversion. The soil was sampled both with soil cores taken by fixed depths of 0-5, 5-10, 10-15, 15-25, and 25-40 cm and by genetic horizons from soil pits to 1m depth. The aim of the study was to estimate the difference and the ratio between soil carbon contents of the SRC and annual crop land and analyze the results as a chronosequence to examine the effect of age after conversion on the difference. Covariates such as soil type, fertilization type and harvest frequency were also taken into account. Preliminary results suggest an overall increase in carbon stocks over time with average accumulation rates ranging from 0.25 to 0.4 Mg ha-1 yr-1 in willow and poplar stands. Poplar stands had higher rates of C gain, probably due to less frequent harvesting. The differences in carbon between the SRC and the paired cropland were initially negative but changed to positive over time, implying loss of carbon after conversion and a later gain in soil carbon with stand age. Pairwise differences ranged from -25 Mg C ha-1 to 37 Mg C ha-1 for the top 40 cm. The carbon stock ratio of the SRC stand to the arable land was estimated to minimize the effect of site-related factors. The results of this analysis suggested that the ratio increased significantly with age after conversion for the top 10 cm of the soil, both for poplar and willow. A slight increase with age was also noticed at the deeper depths, but it was not significant. The increasing soil carbon stocks in SRC stands on former cropland can be attributed to the increased leaf and litter input from the perennial SRC plantations as well as less stimulation of organic matter decomposition after cessation of annual. Initial losses of soil carbon after the land use change have also been reported by other studies, but the soil carbon accumulation high rates suggest that SRC can act as sinks at least for some decades. Our results indicate that a steady state has not yet been reached after 29 years. Key words: Bioenergy,Land Use Change, poplar, Short Rotation Coppice, Soil Organic Carbon, willow,

  17. Enzyme immobilization in novel alginate-chitosan core-shell microcapsules.

    PubMed

    Taqieddin, Ehab; Amiji, Mansoor

    2004-05-01

    Alginate-chitosan core-shell microcapsules were prepared in order to develop a biocompatible matrix for enzyme immobilization, where the protein is retained either in a liquid or solid core and the shell allows permeability control over substrates and products. The permeability coefficients of different molecular weight compounds (vitamin B2, vitamin B12, and myoglobin) were determined through sodium tripolyphosphate (Na-TPP)-crosslinked chitosan membrane. The microcapsule core was formed by crosslinking sodium alginate with either calcium or barium ions. The crosslinked alginate core was uniformly coated with a chitosan layer and crosslinked with Na-TPP. In the case of calcium alginate, the phosphate ions of Na-TPP were able to extract the calcium ions from alginate and liquefy the core. A model enzyme, beta-galactosidase, was immobilized in the alginate core and the catalytic activity was measured with o-nitrophenyl-beta-D-galactopyranoside (ONPG). Change in the activity of free and immobilized enzyme was determined at three different temperatures. Na-TPP crosslinked chitosan membranes were found to be permeable to solutes of up to 17,000Da molecular weight. The enzyme loading efficiency was higher in the barium alginate core (100%) as compared to the calcium alginate core (60%). The rate of ONPG conversion to o-nitrophenol was faster in the case of calcium alginate-chitosan microcapsules as compared to barium alginate-chitosan microcapsules. Barium alginate-chitosan microcapsules, however, did improve the stability of the enzyme at 37 degrees C relative to calcium alginate-chitosan microcapsules or free enzyme. This study illustrates a new method of enzyme immobilization for biotechnology applications using liquid or solid core and shell microcapsule technology.

  18. Comparative Evaluation of Fracture Strength of Different Types of Composite Core Build-up Materials: An in vitro Study.

    PubMed

    Gowda, Srinivasa; Quadras, Dilip D; Sesappa, Shetty R; Maiya, G R Ramakrishna; Kumar, Lalit; Kulkarni, Dinraj; Mishra, Nitu

    2018-05-01

    The aim of the study was to evaluate the fracture strength of three types of composite core build-up materials. The objectives were to study and evaluate the fracture strength and type of fracture in composite core build-up in restoration of endodonti-cally treated teeth with or without a prefabricated metallic post. A total of 60 freshly extracted mandibular premolars free of caries, cracks, or fractures were end-odontically treated and restored with composite core build-up with prefabricated metallic posts cemented with resin luting cement (group I) and without a post (group II). This was followed by a core build-up of 10 teeth each with three different types of composite materials: Hybrid composite, nanocomposite, and ormocer respectively. The samples were mounted on polyvinyl chloride block and then loaded in the universal load frame at 90° to the long axis of tooth. The fracture strength of the samples was directly obtained from the load indicator attached to the universal load frame. Analysis of variance (ANOVA) test revealed that teeth restored with post exhibited highest fracture strength (1552.32 N) and teeth restored without post exhibited lowest fracture strength (232.20 N). Bonferroni's test revealed that values for hybrid composite (Z-100, 3M ESPE) with post, nanocomposite (Z-350, 3M ESPE) with post, ormocer composite (Admira-VOCO) with post, and nanocomposite (Z-350, 3M ESPE) without post were not significantly different from each other. Teeth restored with post and core using hybrid composite yielded the highest values for fracture strength. Teeth restored with ormocer core without post exhibited the lowest values. Teeth restored with nanocomposite core without post exhibited strength that was comparable with hybrid composite core but higher than that of ormocer. Mutilated endodontically treated teeth can be prosthetically rehabilitated successfully by using adhesive composite core build-up along with post to meet anatomical, functional, and esthetic demands.

  19. Core/coil assembly for use in superconducting magnets and method for assembling the same

    DOEpatents

    Kassner, David A.

    1979-01-01

    A core/coil assembly for use in a superconducting magnet of the focusing or bending type used in syncronous particle accelerators comprising a coil assembly contained within an axial bore of the stacked, washer type, carbon steel laminations which comprise the magnet core assembly, and forming an interference fit with said laminations at the operating temperature of said magnet. Also a method for making such core/coil assemblies comprising the steps of cooling the coil assembly to cryogenic temperatures and drawing it rapidly upwards into the bore of said stacked laminations.

  20. JPRS Report, Science & Technology, China: Energy

    DTIC Science & Technology

    1988-06-29

    capacity. There are currently two types of HTGR reactor designs: the particle-bed core , which uses spherical fuel elements, and the rod type core , in...and trial operating experience with the HTGR reactor. Its main design features are as follows. 1. A particle-bed core , continuous fueling and...Favorable for Development of Small-Scale HTGR (Xu Jiming; HE DONGLI GONGCHENG, Feb 88) 47 ERRATUM: In JPRS-CEN-88-003 of 25 April 1988 in article

  1. Precursor engineering and controlled conversion for the synthesis of monodisperse thiolate-protected metal nanoclusters

    NASA Astrophysics Data System (ADS)

    Yu, Yong; Yao, Qiaofeng; Luo, Zhentao; Yuan, Xun; Lee, Jim Yang; Xie, Jianping

    2013-05-01

    In very recent years, thiolate-protected metal nanoclusters (or thiolated MNCs) with core sizes smaller than 2 nm have emerged as a new direction in nanoparticle research due to their discrete and size dependent electronic structures and molecular-like properties, such as HOMO-LUMO transitions in optical absorptions, quantized charging, and strong luminescence. Synthesis of monodisperse thiolated MNCs in sufficiently large quantities (up to several hundred micrograms) is necessary for establishing reliable size-property relationships and exploring potential applications. This Feature Article reviews recent progress in the development of synthetic strategies for the production of monodisperse thiolated MNCs. The preparation of monodisperse thiolated MNCs is viewed as an engineerable process where both the precursors (input) and their conversion chemistry (processing) may be rationally designed to achieve the desired outcome - monodisperse thiolated MNCs (output). Several strategies for tailoring the precursor and the conversion process are analyzed to arrive at a unifying understanding of the processes involved.

  2. Isotopically enriched ammonium shows high nitrogen transformation in the pile top zone of dairy manure compost

    NASA Astrophysics Data System (ADS)

    Maeda, Koki; Toyoda, Sakae; Yano, Midori; Hattori, Shohei; Fukasawa, Makoto; Nakajima, Keiichi; Yoshida, Naohiro

    2016-03-01

    Nitrogen isotope ratios (δ15N) of NH4+ in dairy manure compost piles with and without bulking agent (10 % w/w) were compared to understand the effects of the use of bulking agent on nitrogen conversion during manure composting. The δ15N-NH4+ values in each of three pile zones (top, side and core) were also compared. At the end of the process, piles with bulking agent showed significantly higher δ15N values (17.7 ± 1.3 ‰) than piles without bulking agent (11.8 ± 0.9 ‰), reflecting the significantly higher nitrogen conversion and NH3 loss in the former. The samples from the top zone, especially in the piles with bulking agent, showed very high NH4+ concentrations with significantly high 15N (δ15N: 12.7-29.8 ‰) values, indicating that extremely high nitrogen conversion, nitrification-denitrification activity of the microbes and NH3 volatilization occurred in this zone.

  3. A Small Fission Power System with Stirling Power Conversion for NASA Science Missions

    NASA Technical Reports Server (NTRS)

    Mason, Lee; Carmichael, Chad

    2011-01-01

    In early 2010, a joint National Aeronautics and Space Administration (NASA) and Department of Energy (DOE) study team developed a concept for a 1 kWe Fission Power System with a 15-year design life that could be available for a 2020 launch to support future NASA science missions. The baseline concept included a solid block uranium-molybdenum reactor core with embedded heat pipes and distributed thermoelectric converters directly coupled to aluminum radiator fins. A short follow-on study was conducted at NASA Glenn Research Center (GRC) to evaluate an alternative power conversion approach. The GRC study considered the use of free-piston Stirling power conversion as a substitution to the thermoelectric converters. The resulting concept enables a power increase to 3 kWe with the same reactor design and scalability to 10 kW without changing the reactor technology. This paper presents the configuration layout, system performance, mass summary, and heat transfer analysis resulting from the study.

  4. Land-Use Conversion Changes the Multifractal Features of Particle-Size Distribution on the Loess Plateau of China

    PubMed Central

    Sun, Caili; Liu, Guobin; Xue, Sha

    2016-01-01

    Analyzing the dynamics of soil particle-size distributions (PSDs), soil nutrients, and erodibility are very important for understanding the changes of soil structure and quality after long-term land-use conversion. We applied multifractal Rényi spectra (Dq) and singularity spectra (f(α)) to characterize PSDs 35 years after conversions from cropland to shrubland with Caragana microphylla (shrubland I), shrubland with Hippophae rhamnoides (shrubland II), forested land, and grassland on the Loess Plateau of China. Multifractal parameters (capacity dimension (D0), entropy dimension (D1), D1/D0, correlation dimension (D2), and Hölder exponent of order zero (α0)) were used to analyze the changes of PSDs. Dq and f(α) characterized the PSDs well and sensitively represented the changes in PSDs after conversion. All types of land-use conversion significantly improved the properties of the topsoil (0–10 cm), but the effect of shrubland I and even forested land decreased with depth. All types of land-use conversion significantly increased D1 and D2 in the topsoil, and D1 and D2 in the 10–50 cm layers of shrubland II, forested land, and grassland and D1 in the 50–100 cm layers of shrubland II were significantly higher relative to the control. Both D1 and D2 were positively correlated with the contents of soil nutrients and fine particles and were negatively correlated with soil erosion, indicating that D1 and D2 were potential indices for quantifying changes in soil properties and erosion. In conclusion, all types of land-use conversion significantly improved the conditions of the topsoil, but conversion from cropland to shrubland II, forested land, and grassland, especially shrubland II and grassland, were more effective for improving soil conditions in deeper layers. PMID:27527201

  5. NIR-to-NIR Deep Penetrating Nanoplatforms Y2O3:Nd3+/Yb3+@SiO2@Cu2S toward Highly Efficient Photothermal Ablation.

    PubMed

    Zhang, Zhiyu; Suo, Hao; Zhao, Xiaoqi; Sun, Dan; Fan, Li; Guo, Chongfeng

    2018-05-02

    A difunctional nano-photothermal therapy (PTT) platform with near-infrared excitation to near-infrared emission (NIR-to-NIR) was constructed through core-shell structures Y 2 O 3 :Nd 3+ /Yb 3+ @SiO 2 @Cu 2 S (YRSC), in which the core Y 2 O 3 :Nd 3+ /Yb 3+ and shell Cu 2 S play the role of bioimaging and photothermal conversion function, respectively. The structure and composition of the present PTT agents (PTAs) were characterized by powder X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, and X-ray photoelectron spectra. The NIR emissions of samples in the biological window area were measured by photoluminescence spectra under the excitation of 808 nm laser; further, the penetration depth of NIR emission at different wavelengths in biological tissue was also demonstrated by comparing with visible (vis) emission from Y 2 O 3 :Yb 3+ /Er 3+ @SiO 2 @Cu 2 S and NIR emission from YRSC through different injection depths in pork muscle tissues. The photo-thermal conversion effects were achieved through the outer ultrasmall Cu 2 S nanoparticles simultaneously absorb NIR light emission from the core Y 2 O 3 :Nd 3+/ Yb 3+ and the 808 nm excitation source to generate heat. Further, the heating effect of YRSC nanoparticles was confirmed by thermal imaging and ablation of YRSC to Escherichia coli and human hepatoma (HepG-2) cells. Results indicate that the YRSC has potential applications in PTT and NIR imaging in biological tissue.

  6. Accident Analysis for the NIST Research Reactor Before and After Fuel Conversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baek J.; Diamond D.; Cuadra, A.

    Postulated accidents have been analyzed for the 20 MW D2O-moderated research reactor (NBSR) at the National Institute of Standards and Technology (NIST). The analysis has been carried out for the present core, which contains high enriched uranium (HEU) fuel and for a proposed equilibrium core with low enriched uranium (LEU) fuel. The analyses employ state-of-the-art calculational methods. Three-dimensional Monte Carlo neutron transport calculations were performed with the MCNPX code to determine homogenized fuel compositions in the lower and upper halves of each fuel element and to determine the resulting neutronic properties of the core. The accident analysis employed a modelmore » of the primary loop with the RELAP5 code. The model includes the primary pumps, shutdown pumps outlet valves, heat exchanger, fuel elements, and flow channels for both the six inner and twenty-four outer fuel elements. Evaluations were performed for the following accidents: (1) control rod withdrawal startup accident, (2) maximum reactivity insertion accident, (3) loss-of-flow accident resulting from loss of electrical power with an assumption of failure of shutdown cooling pumps, (4) loss-of-flow accident resulting from a primary pump seizure, and (5) loss-of-flow accident resulting from inadvertent throttling of a flow control valve. In addition, natural circulation cooling at low power operation was analyzed. The analysis shows that the conversion will not lead to significant changes in the safety analysis and the calculated minimum critical heat flux ratio and maximum clad temperature assure that there is adequate margin to fuel failure.« less

  7. Characteristic Examination of New Synchronous Motor that Composes Craw Teeth of Soft Magnetic Composite

    NASA Astrophysics Data System (ADS)

    Enomoto, Yuji; Ito, Motoya; Masaki, Ryozo; Asaka, Kazuo

    We examined the claw type teeth motor as one application of the soft magnetic composite to a motor core. In order to understand quantitatively the characteristics of the claw type teeth motor, we used the 3-dimensional electromagnetic field analysis to predict its characteristics in advance and manufactured a trial motor to estimate it. And we examined the advantages of the claw type teeth motor comparing with a conventional slot type motor. The results are: 1. By using the 3-dimensional electromagnetic field analysis, it is able to estimate with high accuracy the characteristics of the 3-phase permanent magnet synchronous claw type teeth motor having a core composed of the soft magnetic composite. 2. The claw type teeth motor is able to achieve about 20% higher output than a conventional slot type motor having an electromagnetic steel core, while both volumes are equal. 3. The motor efficiency of the claw type teeth motor is about 3.5% higher than the conventional motor.

  8. The Wildcat Corpus of Native- and Foreign-Accented English: Communicative Efficiency across Conversational Dyads with Varying Language Alignment Profiles

    ERIC Educational Resources Information Center

    Van Engen, Kristin J.; Baese-Berk, Melissa; Baker, Rachel E.; Choi, Arim; Kim, Midam; Bradlow, Ann R.

    2010-01-01

    This paper describes the development of the Wildcat Corpus of native- and foreign-accented English, a corpus containing scripted and spontaneous speech recordings from 24 native speakers of American English and 52 non-native speakers of English. The core element of this corpus is a set of spontaneous speech recordings, for which a new method of…

  9. Bridging the Gap 10 Years Later: A Tool and Technique to Analyze and Evaluate Advanced Academic Curricular Units

    ERIC Educational Resources Information Center

    Beasley, Jennifer G.; Briggs, Christine; Pennington, Leighann

    2017-01-01

    The need for a shared vision concerning exemplary curricula for academically advanced learners must be a priority in the field of education. With the advent of the Common Core State Standards adoption in many states, a new conversation has been ignited over meeting the needs of students with gifts and talents for whom the "standard"…

  10. New organic-inorganic hybrid molecular systems and highly organized materials in catalysis

    NASA Astrophysics Data System (ADS)

    Kustov, L. M.

    2015-11-01

    Definitions of hybrid materials are suggested, and applications of these materials are considered. Particular attention is focused on the application of hybrid materials in hydrogenation, partial oxidation, plant biomass conversion, and natural gas reforming, primarily on the use of core-shell nanoparticles and decorated metal nanoparticles in these reactions. Application prospects of various hybrid materials, particularly those of metal-organic frameworks, are discussed.

  11. The Wounded Leader: How Real Leadership Emerges in Times of Crisis. The Jossey-Bass Education Series.

    ERIC Educational Resources Information Center

    Ackerman, Richard H.; Maslin-Ostrowski, Pat

    This book seeks to understand how school leaders cope with and respond to significant dilemmas in their practice and what the experience means to them. It is based on stories from conversations with self-described wounded leaders. By their accounts, these experiences are the kind that wound to the core (what some leaders call their integrity or…

  12. Identifying a New Mechanism of HIV Core Formation | Center for Cancer Research

    Cancer.gov

    During the maturation of human immunodeficiency virus 1 (HIV-1), viral particles transition from a noninfectious form to an infectious one, and this conversion requires the cleavage of the HIV-1 Gag polyprotein. Gag is made up of three structural proteins—matrix (MA), capsid (CA), and nucleocapsid (NC)—connected by linkers. MA anchors Gag in the membrane, CA surrounds the

  13. Synthetic enzyme mixtures for biomass deconstruction: production and optimization of a core set.

    PubMed

    Banerjee, Goutami; Car, Suzana; Scott-Craig, John S; Borrusch, Melissa S; Aslam, Nighat; Walton, Jonathan D

    2010-08-01

    The high cost of enzymes is a major bottleneck preventing the development of an economically viable lignocellulosic ethanol industry. Commercial enzyme cocktails for the conversion of plant biomass to fermentable sugars are complex mixtures containing more than 80 proteins of suboptimal activities and relative proportions. As a step toward the development of a more efficient enzyme cocktail for biomass conversion, we have developed a platform, called GENPLAT, that uses robotic liquid handling and statistically valid experimental design to analyze synthetic enzyme mixtures. Commercial enzymes (Accellerase 1000 +/- Multifect Xylanase, and Spezyme CP +/- Novozyme 188) were used to test the system and serve as comparative benchmarks. Using ammonia-fiber expansion (AFEX) pretreated corn stover ground to 0.5 mm and a glucan loading of 0.2%, an enzyme loading of 15 mg protein/g glucan, and 48 h digestion at 50 degrees C, commercial enzymes released 53% and 41% of the available glucose and xylose, respectively. Mixtures of three, five, and six pure enzymes of Trichoderma species, expressed in Pichia pastoris, were systematically optimized. Statistical models were developed for the optimization of glucose alone, xylose alone, and the average of glucose + xylose for two digestion durations, 24 and 48 h. The resulting models were statistically significant (P < 0.0001) and indicated an optimum composition for glucose release (values for optimized xylose release are in parentheses) of 29% (5%) cellobiohydrolase 1, 5% (14%) cellobiohydrolase 2, 25% (25%) endo-beta1,4-glucanase 1, 14% (5%) beta-glucosidase, 22% (34%) endo-beta1,4-xylanase 3, and 5% (17%) beta-xylosidase in 48 h at a protein loading of 15 mg/g glucan. Comparison of two AFEX-treated corn stover preparations ground to different particle sizes indicated that particle size (100 vs. 500 microm) makes a large difference in total digestibility. The assay platform and the optimized "core" set together provide a starting point for the rapid testing and optimization of alternate core enzymes from other microbial and recombinant sources as well as for the testing of "accessory" proteins for development of superior enzyme mixtures for biomass conversion. (c) 2010 Wiley Periodicals, Inc.

  14. Catalytic conversion of methanol/ethanol to isobutanol--a highly selective route to an advanced biofuel.

    PubMed

    Wingad, Richard L; Bergström, Emilie J E; Everett, Matthew; Pellow, Katy J; Wass, Duncan F

    2016-04-14

    Catalysts based on ruthenium diphosphine complexes convert methanol/ethanol mixtures to the advanced biofuel isobutanol, with extremely high selectivity (>99%) at good (>75%) conversion via a Guerbet-type mechanism.

  15. Fully Convolutional Networks for Ground Classification from LIDAR Point Clouds

    NASA Astrophysics Data System (ADS)

    Rizaldy, A.; Persello, C.; Gevaert, C. M.; Oude Elberink, S. J.

    2018-05-01

    Deep Learning has been massively used for image classification in recent years. The use of deep learning for ground classification from LIDAR point clouds has also been recently studied. However, point clouds need to be converted into an image in order to use Convolutional Neural Networks (CNNs). In state-of-the-art techniques, this conversion is slow because each point is converted into a separate image. This approach leads to highly redundant computation during conversion and classification. The goal of this study is to design a more efficient data conversion and ground classification. This goal is achieved by first converting the whole point cloud into a single image. The classification is then performed by a Fully Convolutional Network (FCN), a modified version of CNN designed for pixel-wise image classification. The proposed method is significantly faster than state-of-the-art techniques. On the ISPRS Filter Test dataset, it is 78 times faster for conversion and 16 times faster for classification. Our experimental analysis on the same dataset shows that the proposed method results in 5.22 % of total error, 4.10 % of type I error, and 15.07 % of type II error. Compared to the previous CNN-based technique and LAStools software, the proposed method reduces the total error and type I error (while type II error is slightly higher). The method was also tested on a very high point density LIDAR point clouds resulting in 4.02 % of total error, 2.15 % of type I error and 6.14 % of type II error.

  16. Tuning of major signaling networks (TGF-β, Wnt, Notch and Hedgehog) by miRNAs in human stem cells commitment to different lineages: Possible clinical application.

    PubMed

    Aval, Sedigheh Fekri; Lotfi, Hajie; Sheervalilou, Roghayeh; Zarghami, Nosratollah

    2017-07-01

    Two distinguishing characteristics of stem cells, their continuous division in the undifferentiated state and growth into any cell types, are orchestrated by a number of cell signaling pathways. These pathways act as a niche factor in controlling variety of stem cells. The core stem cell signaling pathways include Wingless-type (Wnt), Hedgehog (HH), and Notch. Additionally, they critically regulate the self-renewal and survival of cancer stem cells. Conversely, stem cells' main properties, lineage commitment and stemness, are tightly controlled by epigenetic mechanisms such as DNA methylation, histone modifications and non-coding RNA-mediated regulatory events. MicroRNAs (miRNAs) are cellular switches that modulate stem cells outcomes in response to diverse extracellular signals. Numerous scientific evidences implicating miRNAs in major signal transduction pathways highlight new crosstalks of cellular processes. Aberrant signaling pathways and miRNAs levels result in developmental defects and diverse human pathologies. This review discusses the crosstalk between the components of main signaling networks and the miRNA machinery, which plays a role in the context of stem cells development and provides a set of examples to illustrate the extensive relevance of potential novel therapeutic targets. Copyright © 2017. Published by Elsevier Masson SAS.

  17. Acquisition and dissemination of cephalosporin-resistant E. coli in migratory birds sampled at an Alaska landfill as inferred through genomic analysis.

    PubMed

    Ahlstrom, Christina A; Bonnedahl, Jonas; Woksepp, Hanna; Hernandez, Jorge; Olsen, Björn; Ramey, Andrew M

    2018-05-09

    Antimicrobial resistance (AMR) in bacterial pathogens threatens global health, though the spread of AMR bacteria and AMR genes between humans, animals, and the environment is still largely unknown. Here, we investigated the role of wild birds in the epidemiology of AMR Escherichia coli. Using next-generation sequencing, we characterized cephalosporin-resistant E. coli cultured from sympatric gulls and bald eagles inhabiting a landfill habitat in Alaska to identify genetic determinants conferring AMR, explore potential transmission pathways of AMR bacteria and genes at this site, and investigate how their genetic diversity compares to isolates reported in other taxa. We found genetically diverse E. coli isolates with sequence types previously associated with human infections and resistance genes of clinical importance, including bla CTX-M and bla CMY . Identical resistance profiles were observed in genetically unrelated E. coli isolates from both gulls and bald eagles. Conversely, isolates with indistinguishable core-genomes were found to have different resistance profiles. Our findings support complex epidemiological interactions including bacterial strain sharing between gulls and bald eagles and horizontal gene transfer among E. coli harboured by birds. Results suggest that landfills may serve as a source for AMR acquisition and/or maintenance, including bacterial sequence types and AMR genes relevant to human health.

  18. Improvement of plastic optical fiber microphone based on moisture pattern sensing in devoiced breath

    NASA Astrophysics Data System (ADS)

    Taki, Tomohito; Honma, Satoshi; Morisawa, Masayuki; Muto, Shinzo

    2008-03-01

    Conversation is the most practical and common form in communication. However, people with a verbal handicap feel a difficulty to produce words due to variations in vocal chords. This research leads to develop a new devoiced microphone system based on distinguishes between the moisture patterns for each devoiced breaths, using a plastic optical fiber (POF) moisture sensor. In the experiment, five POF-type moisture sensors with fast response were fabricated by coating swell polymer with a slightly larger refractive index than that of fiber core and were set in front of mouth. When these sensors are exposed into humid air produced by devoiced breath, refractive index in cladding layer decreases by swelling and then the POF sensor heads change to guided type. Based on the above operation principle, the output light intensities from the five sensors set in front of mouth change each other. Using above mentioned output light intensity patterns, discernment of devoiced vowels in Japanese (a,i,u,e,o) was tried by means of DynamicProgramming-Matching (DP-matching) method. As the result, distinction rate over 90% was obtained to Japanese devoiced vowels. Therefore, using this system and a voice synthesizer, development of new microphone for the person with a functional disorder in the vocal chords seems to be possible.

  19. Childhood trauma and dissociation in women with pseudoseizure-type conversion disorder.

    PubMed

    Ozcetin, Adnan; Belli, Hasan; Ertem, Umit; Bahcebasi, Talat; Ataoglu, Ahmet; Canan, Fatih

    2009-11-01

    Conversion disorder is thought to be associated with psychological factors because of the presence of conflict and other stressors prior to the condition. The aim of this study is to compare adult patients with pseudoseizure-type conversion disorder with healthy control group in terms of childhood trauma, dissociative disorder and family history of psychiatric disorders. 56 female patients were admitted to the general psychiatry hospital outpatient clinic between January and July 2005. All patients had a negative experience about their families just before having the conversion. Diagnosis was made according to the DSM-IV criteria. A control group consisting of similar patient demographics of the disease group has been selected. Socio-demographic information forms, the Childhood Trauma Questionnaire (CTQ) and Dissociation Questionnaire (DIS-Q), were completed on the patients. CTQ total (t=12.12, P<0.001) and subscales, emotional abuse and emotional neglect (EA-EN) (t=12.74, P<0.001), physical abuse (PA) (t=10.05, P<0.001), and sexual abuse (SA) (t=7.69, P<0.001) were significantly high in the conversion group. DIS-Q mean points were statistically higher in the conversion group (t=11.05, P<0.001). The findings suggest that pseudoseizures (conversion disorder) should be included within dissociative disorders in DSM system as in ICD. It is usually uncommon for the patient to tell about childhood trauma without being specially questioned about this issue. Thus, it would be helpful to uncover these experiences by using related scales in conversion disorder patients.

  20. ALMA Reveals Molecular Cloud N55 in the Large Magellanic Cloud as a Site of Massive Star Formation

    NASA Astrophysics Data System (ADS)

    Naslim, N.; Tokuda, K.; Onishi, T.; Kemper, F.; Wong, T.; Morata, O.; Takada, S.; Harada, R.; Kawamura, A.; Saigo, K.; Indebetouw, R.; Madden, S. C.; Hony, S.; Meixner, M.

    2018-02-01

    We present the molecular cloud properties of N55 in the Large Magellanic Cloud using 12CO(1–0) and 13CO(1–0) observations obtained with Atacama Large Millimeter Array. We have done a detailed study of molecular gas properties, to understand how the cloud properties of N55 differ from Galactic clouds. Most CO emission appears clumpy in N55, and molecular cores that have young stellar objects (YSOs) show larger linewidths and masses. The massive clumps are associated with high and intermediate mass YSOs. The clump masses are determined by local thermodynamic equilibrium and virial analysis of the 12CO and 13CO emissions. These mass estimates lead to the conclusion that (a) the clumps are in self-gravitational virial equilibrium, and (b) the 12CO(1–0)-to-H2 conversion factor, {X}{CO}, is 6.5 × 1020 cm‑2 (K km s‑1)‑1. This CO-to-H2 conversion factor for N55 clumps is measured at a spatial scale of ∼0.67 pc, which is about two times higher than the {X}{CO} value of the Orion cloud at a similar spatial scale. The core mass function of N55 clearly show a turnover below 200 {M}ȯ , separating the low-mass end from the high-mass end. The low-mass end of the 12CO mass spectrum is fitted with a power law of index 0.5 ± 0.1, while for 13CO it is fitted with a power law index 0.6 ± 0.2. In the high-mass end, the core mass spectrum is fitted with a power index of 2.0 ± 0.3 for 12CO, and with 2.5 ± 0.4 for 13CO. This power law behavior of the core mass function in N55 is consistent with many Galactic clouds.

  1. Performance evaluation of a direct-conversion flat-panel detector system in imaging and quality assurance for a high-dose-rate 192Ir source

    NASA Astrophysics Data System (ADS)

    Miyahara, Yoshinori; Hara, Yuki; Nakashima, Hiroto; Nishimura, Tomonori; Itakura, Kanae; Inomata, Taisuke; Kitagaki, Hajime

    2018-03-01

    In high-dose-rate (HDR) brachytherapy, a direct-conversion flat-panel detector (d-FPD) clearly depicts a 192Ir source without image halation, even under the emission of high-energy gamma rays. However, it was unknown why iridium is visible when using a d-FPD. The purpose of this study was to clarify the reasons for visibility of the source core based on physical imaging characteristics, including the modulation transfer functions (MTF), noise power spectral (NPS), contrast transfer functions, and linearity of d-FPD to high-energy gamma rays. The acquired data included: x-rays, [X]; gamma rays, [γ] dual rays (X  +  γ), [D], and subtracted data for depicting the source ([D]  -  [γ]). In the quality assurance (QA) test for the positional accuracy of a source core, the coordinates of each dwelling point were compared between the planned and actual source core positions using a CT/MR-compatible ovoid applicator and a Fletcher-Williamson applicator. The profile curves of [X] and ([D]  -  [γ]) matched well on MTF and NPS. The contrast resolutions of [D] and [X] were equivalent. A strongly positive linear correlation was found between the output data of [γ] and source strength (r 2  >  0.99). With regard to the accuracy of the source core position, the largest coordinate difference (3D distance) was noted at the maximum curvature of the CT/MR-compatible ovoid and Fletcher-Williamson applicators, showing 1.74  ±  0.02 mm and 1.01  ±  0.01 mm, respectively. A d-FPD system provides high-quality images of a source, even when high-energy gamma rays are emitted to the detector, and positional accuracy tests with clinical applicators are useful in identifying source positions (source movements) within the applicator for QA.

  2. Resistance of Bacillus subtilis Spore DNA to Lethal Ionizing Radiation Damage Relies Primarily on Spore Core Components and DNA Repair, with Minor Effects of Oxygen Radical Detoxification

    PubMed Central

    Raguse, Marina; Reitz, Günther; Okayasu, Ryuichi; Li, Zuofeng; Klein, Stuart; Setlow, Peter; Nicholson, Wayne L.

    2014-01-01

    The roles of various core components, including α/β/γ-type small acid-soluble spore proteins (SASP), dipicolinic acid (DPA), core water content, and DNA repair by apurinic/apyrimidinic (AP) endonucleases or nonhomologous end joining (NHEJ), in Bacillus subtilis spore resistance to different types of ionizing radiation including X rays, protons, and high-energy charged iron ions have been studied. Spores deficient in DNA repair by NHEJ or AP endonucleases, the oxidative stress response, or protection by major α/β-type SASP, DPA, and decreased core water content were significantly more sensitive to ionizing radiation than wild-type spores, with highest sensitivity to high-energy-charged iron ions. DNA repair via NHEJ and AP endonucleases appears to be the most important mechanism for spore resistance to ionizing radiation, whereas oxygen radical detoxification via the MrgA-mediated oxidative stress response or KatX catalase activity plays only a very minor role. Synergistic radioprotective effects of α/β-type but not γ-type SASP were also identified, indicating that α/β-type SASP's binding to spore DNA is important in preventing DNA damage due to reactive oxygen species generated by ionizing radiation. PMID:24123749

  3. Translucency of zirconia-based pressable ceramics with different core and veneer thicknesses.

    PubMed

    Jeong, Il-Do; Bae, So-Yeon; Kim, Dong-Yeon; Kim, Ji-Hwan; Kim, Woong-Chul

    2016-06-01

    Little information is available on the translucency of zirconia-based pressable ceramic restorations with a pressed ceramic veneer and zirconia core in various thickness combinations. The purpose of this in vitro study was to assess the translucency of 3 types of zirconia-based pressable ceramics for different core-veneer thickness combinations. A bilayered ceramic specimen was prepared with a pressable ceramic (IPS e.max Zirpress, Initial IQ, Rosetta UltraPress) veneer over a zirconia core (Zenostar Zr). Three groups of specimens (n=7) were formed with the following core+veneer thicknesses: 1 +0.5 mm, 0.7 +0.8 mm, and 0.5 +1 mm. To obtain consistent thickness and high translucency, all specimens were subjected to surface grinding with a grinding machine. To eliminate the effect of differences in roughness on the translucency, the surface roughness of the ground specimens was measured with a scanning profiler, and the consistency of these measured values was verified through statistical analysis. The luminous transmittance of the specimens was measured with a spectrophotometer. The effects of the pressable ceramic type and core-veneer thickness combination on transmittance were assessed using a 2-way ANOVA (α=.05). The consistency of the surface roughness among the tested specimens was confirmed using a 1-way ANOVA and the Tukey HSD post hoc test (P<.05). The luminous transmittance exhibited a statistically significant dependence on both the type of pressable ceramic and the core-veneer thickness combination (P<.05). The type of pressable ceramic and core-veneer thickness combination affected the translucency of the restoration. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  4. Preparation and biological activities of anti-HER2 monoclonal antibodies with fully core-fucosylated homogeneous bi-antennary complex-type glycans.

    PubMed

    Tsukimura, Wataru; Kurogochi, Masaki; Mori, Masako; Osumi, Kenji; Matsuda, Akio; Takegawa, Kaoru; Furukawa, Kiyoshi; Shirai, Takashi

    2017-12-01

    Recently, the absence of a core-fucose residue in the N-glycan has been implicated to be important for enhancing antibody-dependent cellular cytotoxicity (ADCC) activity of immunoglobulin G monoclonal antibodies (mAbs). Here, we first prepared anti-HER2 mAbs having two core-fucosylated N-glycan chains with the single G2F, G1aF, G1bF, or G0F structure, together with those having two N-glycan chains with a single non-core-fucosylated corresponding structure for comparison, and determined their biological activities. Dissociation constants of mAbs with core-fucosylated N-glycans bound to recombinant Fcγ-receptor type IIIa variant were 10 times higher than those with the non-core-fucosylated N-glycans, regardless of core glycan structures. mAbs with the core-fucosylated N-glycans had markedly reduced ADCC activities, while those with the non-core-fucosylated N-glycans had high activities. These results indicate that the presence of a core-fucose residue in the N-glycan suppresses the binding to the Fc-receptor and the induction of ADCC of anti-HER2 mAbs.

  5. Imidazolium salt-modified porous hypercrosslinked polymers for synergistic CO2 capture and conversion.

    PubMed

    Wang, Jinquan; Sng, Waihong; Yi, Guangshun; Zhang, Yugen

    2015-08-04

    A new type of imidazolium salt-modified porous hypercrosslinked polymer (BET surface area up to 926 m(2) g(-1)) was reported. These porous materials exhibited good CO2 capture capacities (14.5 wt%) and catalytic activities for the conversion of CO2 into various cyclic carbonates under metal-free conditions. The synergistic effect of CO2 capture and conversion was observed.

  6. Initiation of explosive conversions in energy-saturated nanoporous silicon-based compounds with fast semiconductor switches and energy-releasing elements

    NASA Astrophysics Data System (ADS)

    Savenkov, G. G.; Kardo-Sysoev, A. F.; Zegrya, A. G.; Os'kin, I. A.; Bragin, V. A.; Zegrya, G. G.

    2017-10-01

    The first findings concerning the initiation of explosive conversions in energy-saturated nanoporous silicon-based compounds via the electrical explosion of a semiconductor bridge are presented. The obtained results indicate that the energy parameters of an explosive conversion depend on the mass of a combustible agent—namely, nanoporous silicon—and the silicon-doping type.

  7. Thermophotovoltaic Energy Conversion for Personal Power Sources

    DTIC Science & Technology

    2012-02-01

    FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) February 2012 2. REPORT TYPE Final 3. DATES COVERED (From - To) November 2010 to September...accepted power source to date . 3 2. Thermophotovoltaic Energy Conversion 2.1 Thermophotovoltaic Overview Figure 1 describes the primary...photovoltaic material systems for thermophotovoltaic conversion to date are gallium antimonide (GaSb)-related materials (homogeneous: 0.72 eV

  8. Land use change and its driving forces toward mutual conversion in Zhangjiakou City, a farming-pastoral ecotone in Northern China.

    PubMed

    Liu, Chao; Xu, Yueqing; Sun, Piling; Huang, An; Zheng, Weiran

    2017-09-14

    Land use/cover change (LUCC), a local environmental issue of global importance, and its driving forces have been crucial issues in geography and environmental research. Previous studies primarily focused on major driving factors in various land use types, with few explorations of differences between driving forces of mutual land use type conversions, especially in fragile eco-environments. In this study, Zhangjiakou City, in a farming-pastoral ecotone in Northern China, was taken as an example to analyze land use change between 1989 and 2015, and explore the driving forces of mutual land use type conversions using canonical correlation analysis. Satellite images and government statistics, including social-economic and natural data, were used as sources. Arable land, forestland, and grassland formed the main land use structure. From 1989 to 2015 forestland, orchard land, and construction land significantly increased, while arable land, grassland, unused land, and water areas decreased. Conversions from grassland to forestland; from arable land to orchard land, forestland and construction land; and from unused land to grassland and forestland were the primary land use changes. Among these, the conversion from grassland to forestland had the highest ranking. Average annual precipitation and per capita net income of rural residents positively affected the conversion of arable land to forestland and unused land to grassland. GDP, total population, and urbanization rate contributed most significantly to converting arable land to construction land; total retail sales of social consumer goods, average annual temperature, and GDP had important positive influences in converting arable land to orchard land.

  9. Does engagement predict research use? An analysis of The Conversation Annual Survey 2016.

    PubMed

    Zardo, Pauline; Barnett, Adrian G; Suzor, Nicolas; Cahill, Tim

    2018-01-01

    The impact of research on the world beyond academia has increasingly become an area of focus in research performance assessments internationally. Impact assessment is expected to incentivise researchers to increase engagement with industry, government and the public more broadly. Increased engagement is in turn expected to increase translation of research so decision-makers can use research to inform development of policies, programs, practices, processes, products, and other mechanisms, through which impact can be realised. However, research has shown that various factors affect research use, and evidence on 'what works' to increase decision-makers' use of research is limited. The Conversation is an open access research communication platform, published under Creative Commons licence, which translates research into news articles to engage a general audience, aiming to improve understanding of current issues and complex social problems. To identify factors that predict use of academic research and expertise reported in The Conversation, regression analyses were performed using The Conversation Australia 2016 Annual Survey data. A broad range of factors predicted use, with engagement actions being the most common. Interestingly, different types of engagement actions predicted different types of use. This suggests that to achieve impact through increased engagement, a deeper understanding of how and why different engagement actions elicit different types of use is needed. Findings also indicate The Conversation is overcoming some of the most commonly identified barriers to the use of research: access, relevance, actionable outcomes, and timeliness. As such, The Conversation offers an effective model for providing access to and communicating research in a way that enables use, a necessary precursor to achieving research impact.

  10. Analysis of pan-genome to identify the core genes and essential genes of Brucella spp.

    PubMed

    Yang, Xiaowen; Li, Yajie; Zang, Juan; Li, Yexia; Bie, Pengfei; Lu, Yanli; Wu, Qingmin

    2016-04-01

    Brucella spp. are facultative intracellular pathogens, that cause a contagious zoonotic disease, that can result in such outcomes as abortion or sterility in susceptible animal hosts and grave, debilitating illness in humans. For deciphering the survival mechanism of Brucella spp. in vivo, 42 Brucella complete genomes from NCBI were analyzed for the pan-genome and core genome by identification of their composition and function of Brucella genomes. The results showed that the total 132,143 protein-coding genes in these genomes were divided into 5369 clusters. Among these, 1710 clusters were associated with the core genome, 1182 clusters with strain-specific genes and 2477 clusters with dispensable genomes. COG analysis indicated that 44 % of the core genes were devoted to metabolism, which were mainly responsible for energy production and conversion (COG category C), and amino acid transport and metabolism (COG category E). Meanwhile, approximately 35 % of the core genes were in positive selection. In addition, 1252 potential essential genes were predicted in the core genome by comparison with a prokaryote database of essential genes. The results suggested that the core genes in Brucella genomes are relatively conservation, and the energy and amino acid metabolism play a more important role in the process of growth and reproduction in Brucella spp. This study might help us to better understand the mechanisms of Brucella persistent infection and provide some clues for further exploring the gene modules of the intracellular survival in Brucella spp.

  11. Universals and cultural variation in turn-taking in conversation

    PubMed Central

    Stivers, Tanya; Enfield, N. J.; Brown, Penelope; Englert, Christina; Hayashi, Makoto; Heinemann, Trine; Hoymann, Gertie; Rossano, Federico; de Ruiter, Jan Peter; Yoon, Kyung-Eun; Levinson, Stephen C.

    2009-01-01

    Informal verbal interaction is the core matrix for human social life. A mechanism for coordinating this basic mode of interaction is a system of turn-taking that regulates who is to speak and when. Yet relatively little is known about how this system varies across cultures. The anthropological literature reports significant cultural differences in the timing of turn-taking in ordinary conversation. We test these claims and show that in fact there are striking universals in the underlying pattern of response latency in conversation. Using a worldwide sample of 10 languages drawn from traditional indigenous communities to major world languages, we show that all of the languages tested provide clear evidence for a general avoidance of overlapping talk and a minimization of silence between conversational turns. In addition, all of the languages show the same factors explaining within-language variation in speed of response. We do, however, find differences across the languages in the average gap between turns, within a range of 250 ms from the cross-language mean. We believe that a natural sensitivity to these tempo differences leads to a subjective perception of dramatic or even fundamental differences as offered in ethnographic reports of conversational style. Our empirical evidence suggests robust human universals in this domain, where local variations are quantitative only, pointing to a single shared infrastructure for language use with likely ethological foundations. PMID:19553212

  12. Fast conversion of scFv to Fab antibodies using type IIs restriction enzymes.

    PubMed

    Sanmark, Hanna; Huovinen, Tuomas; Matikka, Tero; Pettersson, Tiina; Lahti, Maria; Lamminmäki, Urpo

    2015-11-01

    Single chain variable fragment (scFv) antibody libraries are widely used for developing novel bioaffinity reagents, although Fab or IgG molecules are the preferred antibody formats in many final applications. Therefore, rapid conversion methods for combining multiple DNA fragments are needed to attach constant domains to the scFv derived variable domains. In this study we describe a fast and easy cloning method for the conversion of single framework scFv fragments to Fab fragments using type IIS restriction enzymes. All cloning steps excluding plating of the Fab transformants can be done in 96 well plates and the procedure can be completed in one working day. The concept was tested by converting 69 scFv clones into Fab format on 96 well plates, which resulted in 93% success rate. The method is particularly useful as a high-throughput tool for the conversion of the chosen scFv clones into Fab molecules in order to analyze them as early as possible, as the conversion can significantly affect the binding properties of the chosen clones. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Functional conversion between A-type and delayed rectifier K+ channels by membrane lipids.

    PubMed

    Oliver, Dominik; Lien, Cheng-Chang; Soom, Malle; Baukrowitz, Thomas; Jonas, Peter; Fakler, Bernd

    2004-04-09

    Voltage-gated potassium (Kv) channels control action potential repolarization, interspike membrane potential, and action potential frequency in excitable cells. It is thought that the combinatorial association between distinct alpha and beta subunits determines whether Kv channels function as non-inactivating delayed rectifiers or as rapidly inactivating A-type channels. We show that membrane lipids can convert A-type channels into delayed rectifiers and vice versa. Phosphoinositides remove N-type inactivation from A-type channels by immobilizing the inactivation domains. Conversely, arachidonic acid and its amide anandamide endow delayed rectifiers with rapid voltage-dependent inactivation. The bidirectional control of Kv channel gating by lipids may provide a mechanism for the dynamic regulation of electrical signaling in the nervous system.

  14. Differing types of cellular phone conversations and dangerous driving.

    PubMed

    Dula, Chris S; Martin, Benjamin A; Fox, Russell T; Leonard, Robin L

    2011-01-01

    This study sought to investigate the relationship between cell phone conversation type and dangerous driving behaviors. It was hypothesized that more emotional phone conversations engaged in while driving would produce greater frequencies of dangerous driving behaviors in a simulated environment than more mundane conversation or no phone conversation at all. Participants were semi-randomly assigned to one of three conditions: (1) no call, (2) mundane call, and, (3) emotional call. While driving in a simulated environment, participants in the experimental groups received a phone call from a research confederate who either engaged them in innocuous conversation (mundane call) or arguing the opposite position of a deeply held belief of the participant (emotional call). Participants in the no call and mundane call groups differed significantly only on percent time spent speeding and center line crossings, though the mundane call group consistently engaged in more of all dangerous driving behaviors than did the no call participants. Participants in the emotional call group engaged in significantly more dangerous driving behaviors than participants in both the no call and mundane call groups, with the exception of traffic light infractions, where there were no significant group differences. Though there is need for replication, the authors concluded that whereas talking on a cell phone while driving is risky to begin with, having emotionally intense conversations is considerably more dangerous. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. Quaternary Cu2ZnSnS4 quantum dot-sensitized solar cells: Synthesis, passivation and ligand exchange

    NASA Astrophysics Data System (ADS)

    Bai, Bing; Kou, Dongxing; Zhou, Wenhui; Zhou, Zhengji; Tian, Qingwen; Meng, Yuena; Wu, Sixin

    2016-06-01

    The quaternary Cu2ZnSnS4 (CZTS) QDs had been successfully introduced into quantum dot-sensitized solar cells (QDSC) via hydrolysis approach in our previous work [Green Chem. 2015, vol. 17, p. 4377], but the obtained cell efficiency was still limited by low open-circuit voltage and fill factor. Herein, we use 1-dodecanethiol (DDT) as capping ligand for fairly small-sized CZTS QDs synthesis to improve their intrinsic properties. Since this strong bonded capping ligand can not be replaced by 3-mercaptopropionic acid (MPA) directly, the nature cation (Cu, Zn or Sn)-DDT units of QDs are first exchanged by the preconjugated Cd-oleate via successive ionic layer adsorption and reaction (SILAR) procedure accompanied with the formation of a core/shell structure. The weak bonded oleic acid (OA) can be finally replaced by MPA and the constructed water soluble CZTS/CdSe QDSC achieves an impressive conversion efficiency of 4.70%. The electron transport and recombination dynamic processes are confirmed by intensity-modulated photocurrent spectroscopy (IMPS)/intensity-modulated photovoltage spectroscopy (IMVS) measurements. It is found that the removal of long alkyl chain is conducive to improve the electron transport process and the type-II core/shell structure is beneficial to accelerate electron transport and retard charge recombination. This effective ligand removal strategy is proved to be more convenient for the applying of quaternary QDs in QDSC and would boost a more powerful efficiency in the future work.

  16. Hollow TiO2@Co9S8 Core–Branch Arrays as Bifunctional Electrocatalysts for Efficient Oxygen/Hydrogen Production

    PubMed Central

    Deng, Shengjue; Zhong, Yu; Zeng, Yinxiang; Wang, Yadong; Wang, Xiuli; Tu, Jiangping

    2017-01-01

    Abstract Designing ever more efficient and cost‐effective bifunctional electrocatalysts for oxygen/hydrogen evolution reactions (OER/HER) is greatly vital and challenging. Here, a new type of binder‐free hollow TiO2@Co9S8 core–branch arrays is developed as highly active OER and HER electrocatalysts for stable overall water splitting. Hollow core–branch arrays of TiO2@Co9S8 are readily realized by the rational combination of crosslinked Co9S8 nanoflakes on TiO2 core via a facile and powerful sulfurization strategy. Arising from larger active surface area, richer/shorter transfer channels for ions/electrons, and reinforced structural stability, the as‐obtained TiO2@Co9S8 core–branch arrays show noticeable exceptional electrocatalytic performance, with low overpotentials of 240 and 139 mV at 10 mA cm−2 as well as low Tafel slopes of 55 and 65 mV Dec−1 for OER and HER in alkaline medium, respectively. Impressively, the electrolysis cell based on the TiO2@Co9S8 arrays as both cathode and anode exhibits a remarkably low water splitting voltage of 1.56 V at 10 mA cm−2 and long‐term durability with no decay after 10 d. The versatile fabrication protocol and smart branch‐core design provide a new way to construct other advanced metal sulfides for energy conversion and storage. PMID:29593976

  17. Growth Factor-Activated Stem Cell Circuits and Stromal Signals Cooperatively Accelerate Non-Integrated iPSC Reprogramming of Human Myeloid Progenitors

    PubMed Central

    Park, Tea Soon; Huo, Jeffrey S.; Peters, Ann; Talbot, C. Conover; Verma, Karan; Zimmerlin, Ludovic; Kaplan, Ian M.; Zambidis, Elias T.

    2012-01-01

    Nonviral conversion of skin or blood cells into clinically useful human induced pluripotent stem cells (hiPSC) occurs in only rare fractions (∼0.001%–0.5%) of donor cells transfected with non-integrating reprogramming factors. Pluripotency induction of developmentally immature stem-progenitors is generally more efficient than differentiated somatic cell targets. However, the nature of augmented progenitor reprogramming remains obscure, and its potential has not been fully explored for improving the extremely slow pace of non-integrated reprogramming. Here, we report highly optimized four-factor reprogramming of lineage-committed cord blood (CB) myeloid progenitors with bulk efficiencies of ∼50% in purified episome-expressing cells. Lineage-committed CD33+CD45+CD34− myeloid cells and not primitive hematopoietic stem-progenitors were the main targets of a rapid and nearly complete non-integrated reprogramming. The efficient conversion of mature myeloid populations into NANOG+TRA-1-81+ hiPSC was mediated by synergies between hematopoietic growth factor (GF), stromal activation signals, and episomal Yamanaka factor expression. Using a modular bioinformatics approach, we demonstrated that efficient myeloid reprogramming correlated not to increased proliferation or endogenous Core factor expressions, but to poised expression of GF-activated transcriptional circuits that commonly regulate plasticity in both hematopoietic progenitors and embryonic stem cells (ESC). Factor-driven conversion of myeloid progenitors to a high-fidelity pluripotent state was further accelerated by soluble and contact-dependent stromal signals that included an implied and unexpected role for Toll receptor-NFκB signaling. These data provide a paradigm for understanding the augmented reprogramming capacity of somatic progenitors, and reveal that efficient induced pluripotency in other cell types may also require extrinsic activation of a molecular framework that commonly regulates self-renewal and differentiation in both hematopoietic progenitors and ESC. PMID:22905176

  18. Engaging Terminally Ill Patients in End of Life Talk: How Experienced Palliative Medicine Doctors Navigate the Dilemma of Promoting Discussions about Dying.

    PubMed

    Pino, Marco; Parry, Ruth; Land, Victoria; Faull, Christina; Feathers, Luke; Seymour, Jane

    2016-01-01

    To examine how palliative medicine doctors engage patients in end-of-life (hereon, EoL) talk. To examine whether the practice of "eliciting and responding to cues", which has been widely advocated in the EoL care literature, promotes EoL talk. Conversation analysis of video- and audio-recorded consultations. Unselected terminally ill patients and their companions in consultation with experienced palliative medicine doctors. Outpatient clinic, day therapy clinic, and inpatient unit of a single English hospice. Doctors most commonly promoted EoL talk through open elaboration solicitations; these created opportunities for patients to introduce-then later further articulate-EoL considerations in such a way that doctors did not overtly ask about EoL matters. Importantly, the wording of elaboration solicitations avoided assuming that patients had EoL concerns. If a patient responded to open elaboration solicitations without introducing EoL considerations, doctors sometimes pursued EoL talk by switching to a less participatory and more presumptive type of solicitation, which suggested the patient might have EoL concerns. These more overt solicitations were used only later in consultations, which indicates that doctors give precedence to patients volunteering EoL considerations, and offer them opportunities to take the lead in initiating EoL talk. There is evidence that doctors treat elaboration of patients' talk as a resource for engaging them in EoL conversations. However, there are limitations associated with labelling that talk as "cues" as is common in EoL communication contexts. We examine these limitations and propose "possible EoL considerations" as a descriptively more accurate term. Through communicating-via open elaboration solicitations-in ways that create opportunities for patients to volunteer EoL considerations, doctors navigate a core dilemma in promoting EoL talk: giving patients opportunities to choose whether to engage in conversations about EoL whilst being sensitive to their communication needs, preferences and state of readiness for such dialogue.

  19. Optical absorption of carbon-gold core-shell nanoparticles

    NASA Astrophysics Data System (ADS)

    Wang, Zhaolong; Quan, Xiaojun; Zhang, Zhuomin; Cheng, Ping

    2018-01-01

    In order to enhance the solar thermal energy conversion efficiency, we propose to use carbon-gold core-shell nanoparticles dispersed in liquid water. This work demonstrates theoretically that an absorbing carbon (C) core enclosed in a plasmonic gold (Au) nanoshell can enhance the absorption peak while broadening the absorption band; giving rise to a much higher solar absorption than most previously studied core-shell combinations. The exact Mie solution is used to evaluate the absorption efficiency factor of spherical nanoparticles in the wavelength region from 300 nm to 1100 nm as well as the electric field and power dissipation profiles inside the nanoparticles at specified wavelengths (mostly at the localized surface plasmon resonance wavelength). The field enhancement by the localized plasmons at the gold surfaces boosts the absorption of the carbon particle, resulting in a redshift of the absorption peak with increased peak height and bandwidth. In addition to spherical nanoparticles, we use the finite-difference time-domain method to calculate the absorption of cubic core-shell nanoparticles. Even stronger enhancement can be achieved with cubic C-Au core-shell structures due to the localized plasmonic resonances at the sharp edges of the Au shell. The solar absorption efficiency factor can exceed 1.5 in the spherical case and reach 2.3 in the cubic case with a shell thickness of 10 nm. Such broadband absorption enhancement is in great demand for solar thermal applications including steam generation.

  20. Equation of state and phase diagram of Fe-16Si alloy as a candidate component of Earth's core

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischer, Rebecca A; Campbell, Andrew J; Caracas, Razvan

    2016-07-29

    The outer core of the Earth contains several weight percent of one or more unknown light elements, which may include silicon. Therefore it is critical to understand the high pressure–temperature properties and behavior of an iron–silicon alloy with a geophysically relevant composition (16 wt% silicon). We experimentally determined the melting curve, subsolidus phase diagram, and equations of state of all phases of Fe–16 wt%Si to 140 GPa, finding a conversion from the D0 3 crystal structure to a B2+hcp mixture at high pressures. The melting curve implies that 3520 K is a minimum temperature for the Earth's outer core, ifmore » it consists solely of Fe–Si alloy, and that the eutectic composition in the Fe–Si system is less than 16 wt% silicon at core–mantle boundary conditions. Comparing our new equation of state to that of iron and the density of the core, we find that for an Fe–Ni–Si outer core, 11.3±1.5 wt% silicon would be required to match the core's observed density at the core–mantle boundary. We have also performed first-principles calculations of the equations of state of Fe 3Si with the D0 3 structure, hcp iron, and FeSi with the B2 structure using density-functional theory.« less

Top