EI-2128-1, a novel interleukin-1beta converting enzyme inhibitor produced by Penicillium sp. E-2128.
Koizumi, Fumito; Agatsuma, Tsutomu; Ando, Katsuhiko; Kondo, Hidemasa; Saitoh, Yutaka; Matsuda, Yuzuru; Nakanishi, Satoshi
2003-11-01
EI-2128-1, a novel interleukin-1beta converting enzyme (ICE) inhibitor, was isolated from the culture broths of Penicillium sp. E-2128. EI-2128-1 selectively inhibited human recombinant ICE activity with IC50 value of 0.59 microM, without inhibiting elastase and cathepsin B. EI-2128-1 also inhibited mature interleukin-1beta secretion from THP-1 cells induced by LPS with IC50 value of 0.28 microM.
Matos, Teresa J; Jaleco, Sara P; Gonçalo, Margarida; Duarte, Carlos B; Lopes, M Celeste
2005-08-14
We used a mouse fetal skin dendritic cell line (FSDC) to study the effect of the strong allergen 2,4-dinitrofluorobenzene (DNFB) on interleukin (IL)-1beta release and IL-1beta receptor immunoreactivity. Stimulation with DNFB (30 minutes) increased IL-1 release without changing the mRNA levels of the protein. Furthermore, DNFB increased transiently the interleukin-1beta-converting enzyme (ICE) activity, as measured with its fluorogenic substrate Z-Tyr-Val-Ala-Asp-AFC. The ICE inhibitor Z-YVAD-FMK prevented the release of IL-1beta evoked by DNFB. Incubation of the cells with DNFB (30 minutes) strongly increased IL-1beta receptor immunoreactivity. The rapid effect of DNFB on the release of mature IL-1beta, without inducing an increase of IL-1beta mRNA in FSDC, suggests a posttranslational modification of pro-IL-1beta by ICE activity.
Matos, Teresa J.; Jaleco, Sara P.; Gonçalo, Margarida; Duarte, Carlos B.; Lopes, M. Celeste
2005-01-01
We used a mouse fetal skin dendritic cell line (FSDC) to study the effect of the strong allergen 2,4-dinitrofluorobenzene (DNFB) on interleukin (IL)-1β release and IL-1β receptor immunoreactivity. Stimulation with DNFB (30 minutes) increased IL-1β release without changing the mRNA levels of the protein. Furthermore, DNFB increased transiently the interleukin-1β-converting enzyme (ICE) activity, as measured with its fluorogenic substrate Z-Tyr-Val-Ala-Asp-AFC. The ICE inhibitor Z-YVAD-FMK prevented the release of IL-1β evoked by DNFB. Incubation of the cells with DNFB (30 minutes) strongly increased IL-1β receptor immunoreactivity. The rapid effect of DNFB on the release of mature IL-1β, without inducing an increase of IL-1β mRNA in FSDC, suggests a posttranslational modification of pro-IL-1β by ICE activity. PMID:16106098
Slee, E A; Zhu, H; Chow, S C; MacFarlane, M; Nicholson, D W; Cohen, G M
1996-01-01
Interleukin-1 beta converting enzyme (ICE)-like proteases, which are synthesized as inactive precursors, play a key role in the induction of apoptosis. We now demonstrate that benzyloxycarbonyl-Val-Ala-Asp (OMe) fluoromethylketone (Z-VAD.FMK), an ICE-like protease inhibitor, inhibits apoptosis by preventing the processing of CPP32 to its active form. These results suggest that novel inhibitors of apoptosis can be developed which prevent processing of proforms of ICE-like proteases. PMID:8670109
Cheneval, D; Ramage, P; Kastelic, T; Szelestenyi, T; Niggli, H; Hemmig, R; Bachmann, M; MacKenzie, A
1998-07-10
Perregaux and Gabel (Perregaux, D., and Gabel, C. A. (1994) J. Biol. Chem. 269, 15195-15203) reported that potassium depletion of lipopolysaccharide-stimulated mouse macrophages induced by the potassium ionophore, nigericin, leads to the rapid release of mature interleukin-1beta (IL-1beta). We have now shown a similar phenomenon in lipopolysaccharide-stimulated human monocytic leukemia THP-1 cells. Rapid secretion of mature, 17-kDa IL-1beta occurred, in the presence of nigericin (4-16 microM). No effects on the release of tumor necrosis factor-alpha, IL-6, or proIL-1beta were seen. Addition of the irreversible interleukin-1beta-converting enzyme (ICE) inhibitor, Z-Val-Ala-Asp-dichlorobenzoate, or a radicicol analog, inhibited nigericin-induced mature IL-1beta release and activation of p45 ICE precursor. The radicicol analog itself did not inhibit ICE, but markedly, and very rapidly depleted intracellular levels of 31-kDa proIL-1beta. By contrast, dexamethasone, cycloheximide, and the Na+/H+ antiporter inhibitor, 5-(N-ethyl-N-isopropyl)amiloride, had no effect on nigericin-induced release of IL-1beta. We have therefore shown conclusively, for the first time, that nigericin-induced release of IL-1beta is dependent upon activation of p45 ICE processing. So far, the mechanism by which reduced intracellular potassium ion concentration triggers p45 ICE processing is not known, but further investigation in this area could lead to the discovery of novel molecular targets whereby control of IL-1beta production might be effected.
Zeglen, Sławomir; Zakliczyński, Michał; Nozyński, Jerzy; Rogala, Barbara; Zembala, Marian
2006-11-01
sCD30 and ICE/caspase-1 as apoptosis-regulating factors are suspected to be involved in the survival rate of immunocompetent cells during immunosuppression after allotransplantation. Serum CD30 and ICE/caspase-1 concentrations were estimated and associated with unspecific serum apoptosis marker--anti-Annexin V antibodies and myocardial biopsies results. 28 clinically stabile patients--heart transplant recipients at least 3 months after cardiac transplantation performed due to heart failure caused by ischaemic and/or congestive cardiomyopathy or/and primary valvular heart disease (26 men and 2 women, mean age=36.8 years, S.D.=7.6) with normal heart function assessed by use of ultrasound scan--were involved in the trial. The patients were divided and analyzed in two ways: first according to the results of elective endomyocardial biopsies and second to main immunosuppressive agent used. The enzyme immunoassay (CD30, Dako; interleukin-1beta-converting enzyme (ICE)/Caspase-1 ELISA and anti-Annexin V BENDER MedSystem) for soluble CD30, caspase-1 and anti-Annexin V autoantibodies serum levels was used. sCD30 and caspase-1 concentrations were non-significantly up-regulated in all analysed groups--with or without rejection signs or immunosuppressed with cyclosporine or especially tacrolimus. In contrast anti-Annexin V autoantibodies concentration was non-significantly down-regulated also in all studied groups. Moreover in the group with signs of transplant rejection, strong negative correlation between anti-Annexin antibodies and rejection grade was observed (-0.65, p<0.05). Biopsy results were comparable in groups treated with tacrolimus and cyclosporine A. The increasing tendency of sCD30 and caspase-1 as well as the decrease in anti-Annexin V autoantibodies concentrations in heart recipients could be the result of post-transplant apoptosis disturbances. This tendency seems to be inhibited in a greater degree by tacrolimus than by cyclosporine. Anti-Annexin V autoantibodies might be considered as negative rejection markers due to their strong negative correlation with the rejection grade.
Wu, Ching-Fang; Lee, Ching-Tai; Kuo, Yao-Hung; Chen, Tzu-Haw; Chang, Chi-Yang; Chang, I-Wei; Wang, Wen-Lun
2017-09-01
Patients with esophageal squamous cell carcinoma have poor survival and high recurrence rate, thus an effective prognostic biomarker is needed. Endothelin-converting enzyme-1 is responsible for biosynthesis of endothelin-1, which promotes growth and invasion of human cancers. The role of endothelin-converting enzyme-1 in esophageal squamous cell carcinoma is still unknown. Therefore, this study investigated the significance of endothelin-converting enzyme-1 expression in esophageal squamous cell carcinoma clinically. We enrolled patients with esophageal squamous cell carcinoma who provided pretreated tumor tissues. Tumor endothelin-converting enzyme-1 expression was evaluated by immunohistochemistry and was defined as either low or high expression. Then we evaluated whether tumor endothelin-converting enzyme-1 expression had any association with clinicopathological findings or predicted survival of patients with esophageal squamous cell carcinoma. Overall, 54 of 99 patients with esophageal squamous cell carcinoma had high tumor endothelin-converting enzyme-1 expression, which was significantly associated with lymph node metastasis ( p = 0.04). In addition, tumor endothelin-converting enzyme-1 expression independently predicted survival of patients with esophageal squamous cell carcinoma, and the 5-year survival was poorer in patients with high tumor endothelin-converting enzyme-1 expression ( p = 0.016). Among patients with locally advanced and potentially resectable esophageal squamous cell carcinoma (stage II and III), 5-year survival was poorer with high tumor endothelin-converting enzyme-1 expression ( p = 0.003). High tumor endothelin-converting enzyme-1 expression also significantly predicted poorer survival of patients in this population. In patients with esophageal squamous cell carcinoma, high tumor endothelin-converting enzyme-1 expression might indicate high tumor invasive property. Therefore, tumor endothelin-converting enzyme-1 expression could be a good biomarker to identify patients with worse survival and higher risks of recurrence, who might benefit from the treatment by endothelin-converting enzyme-1 inhibitor.
Dipeptidyl peptidase IV in angiotensin-converting enzyme inhibitor associated angioedema.
Byrd, James Brian; Touzin, Karine; Sile, Saba; Gainer, James V; Yu, Chang; Nadeau, John; Adam, Albert; Brown, Nancy J
2008-01-01
Angioedema is a potentially life-threatening adverse effect of angiotensin-converting enzyme inhibitors. Bradykinin and substance P, substrates of angiotensin-converting enzyme, increase vascular permeability and cause tissue edema in animals. Studies indicate that amino-terminal degradation of these peptides, by aminopeptidase P and dipeptidyl peptidase IV, may be impaired in individuals with angiotensin-converting enzyme inhibitor-associated angioedema. This case-control study tested the hypothesis that dipeptidyl peptidase IV activity and antigen are decreased in sera of patients with a history of angiotensin-converting enzyme inhibitor-associated angioedema. Fifty subjects with a history of angiotensin-converting enzyme inhibitor-associated angioedema and 176 angiotensin-converting enzyme inhibitor-exposed control subjects were ascertained. Sera were assayed for angiotensin-converting enzyme activity, aminopeptidase P activity, aminopeptidase N activity, dipeptidyl peptidase IV activity, and antigen and the ex vivo degradation half-lives of bradykinin, des-Arg(9)-bradykinin, and substance P in a subset. The prevalence of smoking was increased and of diabetes decreased in case versus control subjects. Overall, dipeptidyl peptidase IV activity (26.6+/-7.8 versus 29.6+/-7.3 nmol/mL per minute; P=0.026) and antigen (465.8+/-260.8 versus 563.1+/-208.6 ng/mL; P=0.017) were decreased in sera from individuals with angiotensin-converting enzyme inhibitor-associated angioedema compared with angiotensin-converting enzyme inhibitor-exposed control subjects without angioedema. Dipeptidyl peptidase IV activity (21.5+/-4.9 versus 29.8+/-6.7 nmol/mL per minute; P=0.001) and antigen (354.4+/-124.7 versus 559.8+/-163.2 ng/mL; P=0.003) were decreased in sera from cases collected during angiotensin-converting enzyme inhibition but not in the absence of angiotensin-converting enzyme inhibition. The degradation half-life of substance P correlated inversely with dipeptidyl peptidase IV antigen during angiotensin-converting enzyme inhibition. Environmental or genetic factors that reduce dipeptidyl peptidase IV activity may predispose individuals to angioedema.
Dipeptidyl Peptidase IV in Angiotensin-Converting Enzyme Inhibitor–Associated Angioedema
Byrd, James Brian; Touzin, Karine; Sile, Saba; Gainer, James V.; Yu, Chang; Nadeau, John; Adam, Albert; Brown, Nancy J.
2009-01-01
Angioedema is a potentially life-threatening adverse effect of angiotensin-converting enzyme inhibitors. Bradykinin and substance P, substrates of angiotensin-converting enzyme, increase vascular permeability and cause tissue edema in animals. Studies indicate that amino-terminal degradation of these peptides, by aminopeptidase P and dipeptidyl peptidase IV, may be impaired in individuals with angiotensin-converting enzyme inhibitor–associated angioedema. This case-control study tested the hypothesis that dipeptidyl peptidase IV activity and antigen are decreased in sera of patients with a history of angiotensin-converting enzyme inhibitor–associated angioedema. Fifty subjects with a history of angiotensin-converting enzyme inhibitor–associated angioedema and 176 angiotensin-converting enzyme inhibitor–exposed control subjects were ascertained. Sera were assayed for angiotensin-converting enzyme activity, aminopeptidase P activity, aminopeptidase N activity, dipeptidyl peptidase IV activity, and antigen and the ex vivo degradation half-lives of bradykinin, des-Arg9-bradykinin, and substance P in a subset. The prevalence of smoking was increased and of diabetes decreased in case versus control subjects. Overall, dipeptidyl peptidase IV activity (26.6±7.8 versus 29.6±7.3 nmol/mL per minute; P=0.026) and antigen (465.8±260.8 versus 563.1±208.6 ng/mL; P=0.017) were decreased in sera from individuals with angiotensin-converting enzyme inhibitor–associated angioedema compared with angiotensin-converting enzyme inhibitor–exposed control subjects without angioedema. Dipeptidyl peptidase IV activity (21.5±4.9 versus 29.8±6.7 nmol/mL per minute; P=0.001) and antigen (354.4±124.7 versus 559.8±163.2 ng/mL; P=0.003) were decreased in sera from cases collected during angiotensin-converting enzyme inhibition but not in the absence of angiotensin-converting enzyme inhibition. The degradation half-life of substance P correlated inversely with dipeptidyl peptidase IV antigen during angiotensin-converting enzyme inhibition. Environmental or genetic factors that reduce dipeptidyl peptidase IV activity may predispose individuals to angioedema. PMID:18025295
Angiotensin-I-converting enzyme and gallium scan in noninvasive evaluation of sarcoidosis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nosal, A.; Schleissner, L.A.; Mishkin, F.S.
1979-03-01
Angiotensin-converting enzyme assays and gallium-scan results were obtained from 27 patients with biopsy-proven, clinically active sarcoidosis. Twenty-three of these patients had elevated converting enzyme levels, and 22 had positive gallium-scan results. Three of four patients with normal or borderline-elevated levels of angiotensin-converting enzyme also had positive gallium-scan results. Of 156 nonsarcoid patients (pulmonary and other diseases), 27 were found to have elevated serum converting enzyme levels, and 25 of these had negative gallium-scan results. These results indicate that the combination of an assay of angiotensin-converting enzyme and gallium scan increases diagnostic specificity from 83% to 99% without sacrificing sensitivity. Itmore » was concluded that the concurrent use of angiotensin-converting enzyme assay and gallium scan is of value in the diagnosis of sarcoidosis.« less
21 CFR 862.1090 - Angiotensin converting enzyme (A.C.E.) test system.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Angiotensin converting enzyme (A.C.E.) test system... Test Systems § 862.1090 Angiotensin converting enzyme (A.C.E.) test system. (a) Identification. An angiotensin converting enzyme (A.C.E.) test system is a device intended to measure the activity of angiotensin...
Németh, K; Patthy, M; Fauszt, I; Széll, E; Székely, J I; Bajusz, S
1995-12-01
Tripeptide and pentapeptide aldehydes as substrate-base inhibitors of cysteine proteases were designed in our laboratory for the inhibition of interleukin-1 beta converting enzyme (ICE), a recently described cysteine protease responsible for the processing of IL-1 beta. The biological effectivity of the peptide aldehydes was studied in THP-1 cells and human whole blood. The released and cell-associated IL-1 alpha and IL-1 beta levels were determined by ELISA from the supernatants and cell lysates, respectively. The total IL-1 like bioactivity was assayed by the D10 G4.1 cell proliferation method. The tripeptide aldehyde (Z-Val-His-Asp-H) and pentapeptide aldehyde (Eoc-Ala-Tyr-Val-Ala-Asp-H) significantly reduced IL-1 beta levels in the supernatants in relatively high concentrations (10-100 microM), but the IL-1 alpha release was unaffected by these peptides. However, a considerable decrease in the cell-associated IL-1 beta and IL-1 alpha levels was observed. N-terminal extension of the tripeptide aldehyde yielded even more potent inhibitors. Amino acid substitution at the P2 position did not cause considerable changes in the inhibitory activity. The peptide aldehydes suppressed the IL-1 beta production in a reversible manner, whereas dexamethasone, a glucocorticoid, had a prolonged inhibitory effect. The inhibitory effect of these peptides and that of dexamethasone appeared to be additive. These findings indicate that these peptide aldehydes might be used as IL-beta inhibitory agents in experimental models in which IL-1 beta is a key mediator or ICE is implicated.
Charbonneau, Hélène; Buléon, Marie; Minville, Vincent; Faguer, Stanislas; Girolami, Jean-Pierre; Bascands, Jean-Loup; Tack, Ivan; Mayeur, Nicolas
2016-09-01
Angiotensin-converting enzyme inhibitors are associated with deleterious hypotension during anesthesia and shock. Because the pharmacologic effects of angiotensin-converting enzyme inhibitors are partly mediated by increased bradykinin B2 receptor activation, this study aimed to determine the impact of acute B2 receptor blockade during hemorrhagic shock in angiotensin-converting enzyme inhibitor-treated mice. In vivo study. University research unit. C57/Bl6 mice. The hemodynamic effect of B2 receptor blockade using icatibant (B2 receptor antagonist) was studied using a pressure-targeted hemorrhagic shock and a volume-targeted hemorrhagic shock. Animals were anesthetized with ketamine and xylazine (250 mg/kg and 10 mg/kg, respectively), intubated using intratracheal cannula, and ventilated (9 mL/kg, 150 min). Five groups were studied: 1) sham-operated animals, 2) control shocked mice, 3) shocked mice treated with ramipril for 7 days (angiotensin-converting enzyme inhibitors) before hemorrhagic shock, 4) shocked mice treated with angiotensin-converting enzyme inhibitors and a single bolus of icatibant (HOE-140) immediately before anesthesia (angiotensin-converting enzyme inhibitors + icatibant), and 5) shocked mice treated with a single bolus of icatibant. One hour after volume-targeted hemorrhagic shock, blood lactate was measured to evaluate organ failure. During pressure-targeted hemorrhagic shock, the mean blood volume withdrawn was significantly lower in the angiotensin-converting enzyme inhibitor group than in the other groups (p < 0.001). During volume-targeted hemorrhagic shock, icatibant prevented blood pressure lowering in the angiotensin-converting enzyme inhibitor group (p < 0.001). Blood lactate was significantly higher in the angiotensin-converting enzyme inhibitor group than in the other groups, particularly the HOE groups. During hemorrhagic shock, acute B2 receptor blockade significantly attenuates the deleterious hemodynamic effect of angiotensin-converting enzyme inhibitor treatment in mice. This beneficial effect of B2 receptor blockade is rapidly reached and sustained with a single bolus of icatibant. This benefit could be of interest in angiotensin-converting enzyme inhibitor-treated patients during both emergency anesthesia and resuscitation.
Resistance of Actin to Cleavage during Apoptosis
NASA Astrophysics Data System (ADS)
Song, Qizhong; Wei, Tie; Lees-Miller, Susan; Alnemri, Emad; Watters, Dianne; Lavin, Martin F.
1997-01-01
A small number of cellular proteins present in the nucleus, cytosol, and membrane fraction are specifically cleaved by the interleukin-1β -converting enzyme (ICE)-like family of proteases during apoptosis. Previous results have demonstrated that one of these, the cytoskeletal protein actin, is degraded in rat PC12 pheochromocytoma cells upon serum withdrawal. Extracts from etoposide-treated U937 cells are also capable of cleaving actin. It was assumed that cleavage of actin represented a general phenomenon, and a mechanism coordinating proteolytic, endonucleolytic, and morphological aspects of apoptosis was proposed. We demonstrate here that actin is resistant to degradation in several different human cells induced to undergo apoptosis in response to a variety of stimuli, including Fas ligation, serum withdrawal, cytotoxic T-cell killing, and DNA damage. On the other hand, cell-free extracts from these cells and the ICE-like protease CPP32 were capable of cleaving actin in vitro. We conclude that while actin contains cleavage sites for ICE-like proteases, it is not degraded in vivo in human cells either because of lack of access of these proteases to actin or due to the presence of other factors that prevent degradation.
Slashcheva, G A; Rykov, V A; Lobanov, A V; Murashev, A N; Kim, Yu A; Arutyunyan, T V; Korystova, A F; Kublik, L N; Levitman, M Kh; Shaposhnikona, V V; Korystov, Yu N
2016-09-01
We analyzed changes in angiotensin-converting enzyme activity in the aorta of hypertensive SHR rats against the background of age-related BP increase (from week 7 to 14) and the effect of dihydroquercetin on BP rise and angiotensin-converting enzyme activity. Normotensive WKY rats of the same age were used as the control. BP and activity of angiotensin-converting enzyme in the aorta of SHR rats increased with age. Dihydroquercetin in doses of 100 and 300 μg/kg per day had no effect on the increase of these parameters; dihydroquercetin administered to 14-week-old WKY rats in a dose of 300 μg/kg reduced activity of the angiotensin-converting enzyme. Thus, the early (7-14 weeks) increase in BP and angiotensin-converting enzyme activity in the aorta of SHR rats was not modified by flavonoids (dihydroquercetin) in contrast to other rat strains and humans, which is indicative of specificity of hypertension mechanism in SHR rats.
Hosoya, S; Matsushima, K
1997-01-01
IL-1 beta is synthesized as an inactive precursor, which is subsequently processed by IL-1 beta converting enzyme (ICE) and found extracellularly as a mature biologically active polypeptide. Also, IL-1 beta has been detected in necrotic and inflamed dental pulp. We examined the IL-1 beta production in human dental pulp (HDP) cells treated with lipopolysaccharide (LPS) from Porphyromonas endodontalis (P. e.) isolated from root canals and radicular cyst fluids. We demonstrated that P. e. LPS stimulated IL-1 beta release from HDP cells in a time- and dose-dependent manner. However, ICE activity was not increased by P. e. LPS. Northern blot hybridization analysis revealed that the IL-1 beta mRNA level in HDP cells was increased by P. e. LPS. These results suggest that stimulation of IL-1 beta release from HDP cells by P. e. LPS may have an important role in the progression of inflammation in pulpal and periapical disease.
Roshanov, Pavel S; Rochwerg, Bram; Patel, Ameen; Salehian, Omid; Duceppe, Emmanuelle; Belley-Côté, Emilie P; Guyatt, Gordon H; Sessler, Daniel I; Le Manach, Yannick; Borges, Flavia K; Tandon, Vikas; Worster, Andrew; Thompson, Alexandra; Koshy, Mithin; Devereaux, Breagh; Spencer, Frederick A; Sanders, Robert D; Sloan, Erin N; Morley, Erin E; Paul, James; Raymer, Karen E; Punthakee, Zubin; Devereaux, P J
2017-01-01
The effect on cardiovascular outcomes of withholding angiotensin-converting enzyme inhibitors or angiotensin II receptor blockers in chronic users before noncardiac surgery is unknown. In this international prospective cohort study, the authors analyzed data from 14,687 patients (including 4,802 angiotensin-converting enzyme inhibitor/angiotensin II receptor blocker users) at least 45 yr old who had in-patient noncardiac surgery from 2007 to 2011. Using multivariable regression models, the authors studied the relationship between withholding angiotensin-converting enzyme inhibitors/angiotensin II receptor blockers and a primary composite outcome of all-cause death, stroke, or myocardial injury after noncardiac surgery at 30 days, with intraoperative and postoperative clinically important hypotension as secondary outcomes. Compared to patients who continued their angiotensin-converting enzyme inhibitors/angiotensin II receptor blockers, the 1,245 (26%) angiotensin-converting enzyme inhibitor/angiotensin II receptor blocker users who withheld their angiotensin-converting enzyme inhibitors/angiotensin II receptor blockers in the 24 h before surgery were less likely to suffer the primary composite outcome of all-cause death, stroke, or myocardial injury (150/1,245 [12.0%] vs. 459/3,557 [12.9%]; adjusted relative risk, 0.82; 95% CI, 0.70 to 0.96; P = 0.01) and intraoperative hypotension (adjusted relative risk, 0.80; 95% CI, 0.72 to 0.93; P < 0.001). The risk of postoperative hypotension was similar between the two groups (adjusted relative risk, 0.92; 95% CI, 0.77 to 1.10; P = 0.36). Results were consistent across the range of preoperative blood pressures. The practice of withholding angiotensin-converting enzyme inhibitors/angiotensin II receptor blockers was only modestly correlated with patient characteristics and the type and timing of surgery. Withholding angiotensin-converting enzyme inhibitors/angiotensin II receptor blockers before major noncardiac surgery was associated with a lower risk of death and postoperative vascular events. A large randomized trial is needed to confirm this finding. In the interim, clinicians should consider recommending that patients withhold angiotensin-converting enzyme inhibitors/angiotensin II receptor blockers 24 h before surgery.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Velletri, P.A.; Aquilano, D.R.; Bruckwick, E.
Hypophysectomy of prepubescent (3-week-old) rats prevented the pubertal development of testicular, but not pulmonary, angiotensin-converting enzyme (EC 3.4.15.1). Additionally, hypophysectomy resulted in a loss of testicular converting enzyme activity in 10-week-old rats that had achieved puberty and had developed enzyme activity. Hormone regimens consisting of FSH/LH (7.5 U/rat X day), hCG (10 U/rat X day), or testosterone (1 mg/rat X day) were employed to ascertain their ability to maintain activity in hypophysectomized rats. All three of the above hormone regimens, if initiated on the first day after hypophysectomy of 10-week-old rats, were capable of maintaining testicular converting enzyme activity. Centrifugalmore » elutriation of dispersed testicular cells indicated that the majority of enzyme activity in mature rats was associated with the germinal cells, a result consistent with the data accumulated from the hormonal studies. Lastly, (/sup 3/H)captopril bound specifically to cellular fractions enriched in germinal cells. The above studies suggest that the pituitary gland is required for the development and maintenance of testicular angiotensin-converting enzyme in the rat by stimulating steroidogenesis in the testes. Furthermore, the sensitivity of converting enzyme activity to androgen coupled with the centrifugal elutriation and (/sup 3/H) captopril binding studies strongly support the notion that testicular converting enzyme is associated with germinal cells.« less
O’Callaghan, David J. P.; O’Dea, Kieran P.; Scott, Alasdair J.; Takata, Masao
2015-01-01
Objectives: To determine the effect of severe sepsis on monocyte tumor necrosis factor-α–converting enzyme baseline and inducible activity profiles. Design: Observational clinical study. Setting: Mixed surgical/medical teaching hospital ICU. Patients: Sixteen patients with severe sepsis, 15 healthy volunteers, and eight critically ill patients with noninfectious systemic inflammatory response syndrome. Interventions: None. Measurements and Main Results: Monocyte expression of human leukocyte antigen-D-related peptide, sol-tumor necrosis factor production, tumor necrosis factor-α–converting enzyme expression and catalytic activity, tumor necrosis factor receptor 1 and 2 expression, and shedding at 48-hour intervals from day 0 to day 4, as well as p38-mitogen activated protein kinase expression. Compared with healthy volunteers, both sepsis and systemic inflammatory response syndrome patients’ monocytes expressed reduced levels of human leukocyte antigen-D-related peptide and released less sol-tumor necrosis factor on in vitro lipopolysaccharide stimulation, consistent with the term monocyte deactivation. However, patients with sepsis had substantially elevated levels of basal tumor necrosis factor-α–converting enzyme activity that were refractory to lipopolysaccharide stimulation and this was accompanied by similar changes in p38-mitogen activated protein kinase signaling. In patients with systemic inflammatory response syndrome, monocyte basal tumor necrosis factor-α–converting enzyme, and its induction by lipopolysaccharide, appeared similar to healthy controls. Changes in basal tumor necrosis factor-α–converting enzyme activity at day 0 for sepsis patients correlated with Acute Physiology and Chronic Health Evaluation II score and the attenuated tumor necrosis factor-α–converting enzyme response to lipopolysaccharide was associated with increased mortality. Similar changes in monocyte tumor necrosis factor-α–converting enzyme activity could be induced in healthy volunteer monocytes using an in vitro two-hit inflammation model. Patients with sepsis also displayed reduced shedding of monocyte tumor necrosis factor receptors upon stimulation with lipopolysaccharide. Conclusions: Monocyte tumor necrosis factor-α–converting enzyme catalytic activity appeared altered by sepsis and may result in reduced shedding of tumor necrosis factor receptors. Changes seemed specific to sepsis and correlated with illness severity. A better understanding of how tumor necrosis factor-α–converting enzyme function is altered during sepsis will enhance our understanding of sepsis pathophysiology, which will help in the assessment of patient inflammatory status and ultimately may provide new strategies to treat sepsis. PMID:25867908
27 CFR 24.246 - Materials authorized for the treatment of wine and juice.
Code of Federal Regulations, 2013 CFR
2013-04-01
... (alpha-Amylase): To convert starches to fermentable carbohydrates The amylase enzyme activity shall be... 184.1027. Carbohydrase (beta-Amylase): To convert starches to fermentable carbohydrates The amylase... (Glucoamylase, Amylogluco-sidase): To convert starches to fermentable carbohydrates The amylase enzyme activity...
27 CFR 24.246 - Materials authorized for the treatment of wine and juice.
Code of Federal Regulations, 2011 CFR
2011-04-01
... (alpha-Amylase): To convert starches to fermentable carbohydrates The amylase enzyme activity shall be... 184.1027. Carbohydrase (beta-Amylase): To convert starches to fermentable carbohydrates The amylase... (Glucoamylase, Amylogluco-sidase): To convert starches to fermentable carbohydrates The amylase enzyme activity...
27 CFR 24.246 - Materials authorized for the treatment of wine and juice.
Code of Federal Regulations, 2014 CFR
2014-04-01
... (alpha-Amylase): To convert starches to fermentable carbohydrates The amylase enzyme activity shall be... 184.1027. Carbohydrase (beta-Amylase): To convert starches to fermentable carbohydrates The amylase... (Glucoamylase, Amylogluco-sidase): To convert starches to fermentable carbohydrates The amylase enzyme activity...
27 CFR 24.246 - Materials authorized for the treatment of wine and juice.
Code of Federal Regulations, 2012 CFR
2012-04-01
... (alpha-Amylase): To convert starches to fermentable carbohydrates The amylase enzyme activity shall be... 184.1027. Carbohydrase (beta-Amylase): To convert starches to fermentable carbohydrates The amylase... (Glucoamylase, Amylogluco-sidase): To convert starches to fermentable carbohydrates The amylase enzyme activity...
Lee, Dong Soo; Chung, June-Key; Cho, Bo Youn; Koh, Chang-Soon; Lee, Munho
1986-01-01
Serum angiotensin-converting enzyme activity was measured spectrophotometrically, and serum thyrotropin-binding-inhibitory immunoglobulin (TBII) activity was measured by radioreceptor assay in normal subjects and in patients with Graves’ disease serially before and during treatment, and these activities were compared with each other and with thyroid hormone levels in various thyroid functional status. Correlation between serum angiotensin-converting enzyme activity and serum thyroid hormone level was pursued with relation to the changes of thyroid functional status in patients with Graves’ disease during treatment. Serum angiotensin-converting enzyme activity was significantly elevated in patients with hyperthyroid Graves’ disease before the start of treatment (35 ± 13 nmol/min/ml, n=50), and not in patients with Graves’ disease, euthyroid state during treatment with antithyroid drugs or radioactive iodine (23 ± 9 nmol/min/ml, n=12), but decreased significantly in patients with Graves’ disease, hypothyroid state transiently during treatment (15 ± 4 nmol/min/ml, n=12), respectively in comparison with normal control subjects. Serum angiotensin-converting enzyme activity was positively correlated with the log value of serum T3 concentration (r=0.62, p<0.001, n=95), and with the log value of free thyroxine index (r=0.66, p<0.001, n=91) but not statistically significantly with serum TBII activity. Serum angiotensin-converting enzyme activity was followed in 11 patients with initially increased activity and the activity decreased in proportion to serum thyroid hormone level during treatment, irrespective of treatment modality. It is suggested that thyroid hormones play a role in the increase and decrease of serum angiotensin-converting enzyme activity directly or indirectly influencing the peripheral tissues (probably reticuloendothelial cells or peripheral endothelial cells) in patients with Graves’ disease. PMID:15759385
... in a class of medications called angiotensin-converting enzyme (ACE) inhibitors. It makes blood flow more smoothly ... if you are allergic to perindopril, angiotensin-converting enzyme (ACE) inhibitors such as benazepril (Lotensin, in Lotrel), ...
The role of interleukin-1 in the pathogenesis of human Intervertebral disc degeneration
Le Maitre, Christine Lyn; Freemont, Anthony J; Hoyland, Judith Alison
2005-01-01
In this study, we investigated the hypotheses that in human intervertebral disc (IVD) degeneration there is local production of the cytokine IL-1, and that this locally produced cytokine can induce the cellular and matrix changes of IVD degeneration. Immunohistochemistry was used to localize five members of the IL-1 family (IL-1α, IL-1β, IL-1Ra (IL-1 receptor antagonist), IL-1RI (IL-1 receptor, type I), and ICE (IL-1β-converting enzyme)) in non-degenerate and degenerate human IVDs. In addition, cells derived from non-degenerate and degenerate human IVDs were challenged with IL-1 agonists and the response was investigated using real-time PCR for a number of matrix-degrading enzymes, matrix proteins, and members of the IL-1 family. This study has shown that native disc cells from non-degenerate and degenerate discs produced the IL-1 agonists, antagonist, the active receptor, and IL-1β-converting enzyme. In addition, immunopositivity for these proteins, with the exception of IL-1Ra, increased with severity of degeneration. We have also shown that IL-1 treatment of human IVD cells resulted in increased gene expression for the matrix-degrading enzymes (MMP 3 (matrix metalloproteinase 3), MMP 13 (matrix metalloproteinase 13), and ADAMTS-4 (a disintegrin and metalloproteinase with thrombospondin motifs)) and a decrease in the gene expression for matrix genes (aggrecan, collagen II, collagen I, and SOX6). In conclusion we have shown that IL-1 is produced in the degenerate IVD. It is synthesized by native disc cells, and treatment of human disc cells with IL-1 induces an imbalance between catabolic and anabolic events, responses that represent the changes seen during disc degeneration. Therefore, inhibiting IL-1 could be an important therapeutic target for preventing and reversing disc degeneration. PMID:15987475
Benazepril and Hydrochlorothiazide
... in a class of medications called angiotensin-converting enzyme (ACE) inhibitors. It works by decreasing certain chemicals ... benazepril (Lotensin); hydrochlorothiazide (HCTZ, Microzide, Oretic); angiotensin-converting enzyme (ACE) inhibitors such as captopril (Capoten), enalapril (Vasotec, ...
Lisinopril and Hydrochlorothiazide
... in a class of medications called angiotensin-converting enzyme (ACE) inhibitors. It works by decreasing certain chemicals ... to lisinopril; hydrochlorothiazide (HCTZ, Microzide, Oretic); angiotensin-converting enzyme (ACE) inhibitors such as benazepril (Lotensin), captopril (Capoten), ...
Enalapril and Hydrochlorothiazide
... in a class of medications called angiotensin-converting enzyme (ACE) inhibitors. It works by decreasing certain chemicals ... in Vaseretic); hydrochlorothiazide (HCTZ, Microzide, Oretic); angiotensin-converting enzyme (ACE) inhibitors such as benazepril (Lotensin, in Lotrel), ...
Rubio, María C; Lewin, Pablo G; De la Cruz, Griselda; Sarudiansky, Andrea N; Nieto, Mauricio; Costa, Osvaldo R; Nicolosi, Liliana N
2016-04-01
There is a relation between vascular endothelial function, atherosclerotic disease, and inflammation. Deterioration of endothelial function has been observed twenty-four hours after intensive periodontal treatment. This effect may be counteracted by the action of angiotensin-converting enzyme inhibitors, which improve endothelial function. The aim of the present study was to evaluate vascular endothelial function after intensive periodontal treatment, in hypertensive patients treated with angiotensinconverting enzyme inhibitors. A prospective, longitudinal, comparative study involving repeated measurements was conducted. Fifty-two consecutive patients with severe periodontal disease were divided into two groups, one comprising hypertensive patients treated with converting enzyme inhibitors and the other comprising patients with no clinical signs of pathology and not receiving angiotensin-converting enzyme inhibitors. Endothelial function was assessed by measuring postischemic dilation of the humeral artery (baseline echocardiography Doppler), and intensive periodontal treatment was performed 24h later. Endothelial function was re-assessed 24h and 15 days after periodontal treatment. Results were analyzed using the SPSS 20 statistical software package. Student's t test and MANOVA were calculated and linear regression analysis with 95% confidence intervals and α<0.05 was performed. Arterial dilation at 24 hours was lower compared to baseline in both groups; values corresponding to the groups receiving angiotensin-converting enzyme inhibitors were 11.89 ± 4.87 vs. 7.30 ± 2.90% (p<0.01) and those corresponding to the group not receiving ACE inhibitors were 12.72 ± 4.62 vs. 3.56 ± 2.39 (p<0.001). The differences between groups were statistically significant (p<0.001). The increase in endothelial dysfunction after intensive periodontal treatment was significantly lower in hypertensive patients treated with angiotensin-converting enzyme inhibitors. Endothelial function improved 15 days after periodontal treatment, reaching baseline values. These results support the protective effect of angiotensin converting enzyme inhibitors on the endothelial function after intensive periodontal treatment. Sociedad Argentina de Investigación Odontológica.
Rosa, Mónica; Tiago, João M; Singh, Satish K; Geraldes, Vítor; Rodrigues, Miguel A
2016-10-01
The quality of lyophilized products is dependent of the ice structure formed during the freezing step. Herein, we evaluate the importance of the air gap at the bottom of lyophilization vials for consistent nucleation, ice structure, and cake appearance. The bottom of lyophilization vials was modified by attaching a rectified aluminum disc with an adhesive material. Freezing was studied for normal and converted vials, with different volumes of solution, varying initial solution temperature (from 5°C to 20°C) and shelf temperature (from -20°C to -40°C). The impact of the air gap on the overall heat transfer was interpreted with the assistance of a computational fluid dynamics model. Converted vials caused nucleation at the bottom and decreased the nucleation time up to one order of magnitude. The formation of ice crystals unidirectionally structured from bottom to top lead to a honeycomb-structured cake after lyophilization of a solution with 4% mannitol. The primary drying time was reduced by approximately 35%. Converted vials that were frozen radially instead of bottom-up showed similar improvements compared with normal vials but very poor cake quality. Overall, the curvature of the bottom of glass vials presents a considerable threat to consistency by delaying nucleation and causing radial ice growth. Rectifying the vials bottom with an adhesive material revealed to be a relatively simple alternative to overcome this inconsistency.
Angiotensin-converting enzyme genetic polymorphism: its impact on cardiac remodeling
de Albuquerque, Felipe Neves; Brandão, Andréa Araujo; da Silva, Dayse Aparecida; Mourilhe-Rocha, Ricardo; Duque, Gustavo Salgado; Gondar, Alyne Freitas Pereira; Neves, Luiza Maceira de Almeida; Bittencourt, Marcelo Imbroinise; Pozzan, Roberto; de Albuquerque, Denilson Campos
2014-01-01
Background The role of angiotensin-converting enzyme genetic polymorphisms as a predictor of echocardiographic outcomes on heart failure is yet to be established. The local profile should be identified so that the impact of those genotypes on the Brazilian population could be identified. This is the first study on exclusively non-ischemic heart failure over a follow-up longer than 5 years. Objective To determine the distribution of angiotensin-converting enzyme genetic polymorphism variants and their relation with echocardiographic outcome of patients with non-ischemic heart failure. Methods Secondary analysis of the medical records of 111 patients and identification of the angiotensin-converting enzyme genetic polymorphism variants, classified as DD (Deletion/Deletion), DI (Deletion/Insertion) or II (Insertion/Insertion). Results The cohort means were as follows: follow-up, 64.9 months; age, 59.5 years; male sex, 60.4%; white skin color, 51.4%; use of beta-blockers, 98.2%; and use of angiotensin-converting-enzyme inhibitors or angiotensin receptor blocker, 89.2%. The angiotensin-converting enzyme genetic polymorphism distribution was as follows: DD, 51.4%; DI, 44.1%; and II, 4.5%. No difference regarding the clinical characteristics or treatment was observed between the groups. The final left ventricular systolic diameter was the only isolated echocardiographic variable that significantly differed between the angiotensin-converting enzyme genetic polymorphisms: 59.2 ± 1.8 for DD versus 52.3 ± 1.9 for DI versus 59.2 ± 5.2 for II (p = 0.029). Considering the evolutionary behavior, all echocardiographic variables (difference between the left ventricular ejection fraction at the last and first consultation; difference between the left ventricular systolic diameter at the last and first consultation; and difference between the left ventricular diastolic diameter at the last and first consultation) differed between the genotypes (p = 0.024; p = 0.002; and p = 0.021, respectively). Conclusion The distribution of the angiotensin-converting enzyme genetic polymorphisms differed from that of other studies with a very small number of II. The DD genotype was independently associated with worse echocardiographic outcome, while the DI genotype, with the best echocardiographic profile (increased left ventricular ejection fraction and decreased left ventricular diameters). PMID:24270863
Angiotensin-converting enzyme genetic polymorphism: its impact on cardiac remodeling.
Albuquerque, Felipe Neves de; Brandão, Andréa Araujo; Silva, Dayse Aparecida da; Mourilhe-Rocha, Ricardo; Duque, Gustavo Salgado; Gondar, Alyne Freitas Pereira; Neves, Luiza Maceira de Almeida; Bittencourt, Marcelo Imbroinise; Pozzan, Roberto; Albuquerque, Denilson Campos de
2014-01-01
The role of angiotensin-converting enzyme genetic polymorphisms as a predictor of echocardiographic outcomes on heart failure is yet to be established. The local profile should be identified so that the impact of those genotypes on the Brazilian population could be identified. This is the first study on exclusively non-ischemic heart failure over a follow-up longer than 5 years. To determine the distribution of angiotensin-converting enzyme genetic polymorphism variants and their relation with echocardiographic outcome of patients with non-ischemic heart failure. Secondary analysis of the medical records of 111 patients and identification of the angiotensin-converting enzyme genetic polymorphism variants, classified as DD (Deletion/Deletion), DI (Deletion/Insertion) or II (Insertion/Insertion). The cohort means were as follows: follow-up, 64.9 months; age, 59.5 years; male sex, 60.4%; white skin color, 51.4%; use of beta-blockers, 98.2%; and use of angiotensin-converting-enzyme inhibitors or angiotensin receptor blocker, 89.2%. The angiotensin-converting enzyme genetic polymorphism distribution was as follows: DD, 51.4%; DI, 44.1%; and II, 4.5%. No difference regarding the clinical characteristics or treatment was observed between the groups. The final left ventricular systolic diameter was the only isolated echocardiographic variable that significantly differed between the angiotensin-converting enzyme genetic polymorphisms: 59.2 ± 1.8 for DD versus 52.3 ± 1.9 for DI versus 59.2 ± 5.2 for II (p = 0.029). Considering the evolutionary behavior, all echocardiographic variables (difference between the left ventricular ejection fraction at the last and first consultation; difference between the left ventricular systolic diameter at the last and first consultation; and difference between the left ventricular diastolic diameter at the last and first consultation) differed between the genotypes (p = 0.024; p = 0.002; and p = 0.021, respectively). The distribution of the angiotensin-converting enzyme genetic polymorphisms differed from that of other studies with a very small number of II. The DD genotype was independently associated with worse echocardiographic outcome, while the DI genotype, with the best echocardiographic profile (increased left ventricular ejection fraction and decreased left ventricular diameters).
Danesh, Erfan; Goudarzi, Mostafa; Jooyandeh, Hossein
2017-07-01
The effects of whey protein addition and transglutaminase treatment, alone and in combination, on the physical and sensory properties of reduced-fat ice cream were investigated. Adding whey protein with or without enzyme treatment decreased melting rate, overrun, and hardness of the reduced-fat ice cream; however, the enzyme-treated sample had a higher melting rate and overrun and softer texture. Whey protein-fortified samples showed higher melting resistance, but lower overrun and firmer texture compared with the enzyme-treated sample without added whey protein. Whey protein addition with or without transglutaminase treatment caused an increase in apparent viscosity and a decrease in flow index of the reduced-fat ice cream; nevertheless, the flow behavior of full-fat sample was most similar to the enzyme-treated reduced-fat sample with no added whey protein. Descriptive sensory analyses showed that neither whey protein addition nor transglutaminase treatment significantly influenced the flavor and odor of reduced-fat ice cream, but they both noticeably improved the color and texture of the final product. The results of this study suggest that whey protein addition with transglutaminase treatment improves the physical and sensory properties of reduced-fat ice cream more favorably than does whey protein addition or transglutaminase treatment alone. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Sica, Domenic A
2010-04-01
The renin-angiotensin system has been a target in the treatment of hypertension for close to three decades. Several medication classes that block specific aspects of this system have emerged as useful therapies, including angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, and, most recently, direct renin inhibitors. There has been a natural history to the development of each of these three drug classes, starting with their use as antihypertensive agents; thereafter, in each case they have been employed as end-organ protective agents. To date, there has been scant evidence to favor angiotensin receptor blockers or direct renin inhibitors over angiotensin-converting enzyme inhibitors in treating hypertension or in affording end-organ protection; thus, angiotensin-converting enzyme inhibitors remain the standard of care when renin-angiotensin system blockade is warranted.
Devin, Jessica K.; Pretorius, Mias; Nian, Hui; Yu, Chang; Billings, Frederic T.; Brown, Nancy J.
2014-01-01
Dipeptidyl peptidase-4 inhibitors prevent the degradation of incretin hormones and reduce post-prandial hyperglycemia in patients with type 2 diabetes mellitus. Dipeptidyl peptidase-4 degrades other peptides with a penultimate proline or alanine, including bradykinin and substance P, which are also substrates of angiotensin-converting enzyme. During angiotensin-converting enzyme inhibition, substance P is inactivated primarily by dipeptidyl peptidase-4, while bradykinin is first inactivated by aminopeptidase P. This study tested the hypothesis that dipeptidyl peptidase-4 inhibition potentiates vasodilator and fibrinolytic responses to substance P when angiotensin-converting enzyme is inhibited. Twelve healthy subjects participated in this randomized, double-blinded, placebo-controlled crossover study. On each study day, subjects received sitagliptin 200 mg p.o. or placebo. Substance P and bradykinin were infused via brachial artery before and during intra-arterial enalaprilat. Sitagliptin and enalaprilat each reduced forearm vascular resistance and increased forearm blood flow without affecting mean arterial pressure, but there was no interactive effect of the inhibitors. Enalaprilat increased bradykinin-stimulated vasodilation and tissue plasminogen activator release; sitagliptin did not affect these responses to bradykinin. The vasodilator response to substance P was unaffected by sitagliptin and enalaprilat, however, substance P increased heart rate and vascular release of norepinephrine during combined angiotensin-converting enzyme and dipeptidyl peptidase-4 inhibition. In women, sitagliptin diminished tissue plasminogen activator release in response to substance P both alone and during enalaprilat. Substance P increases sympathetic activity during combined angiotensin-converting enzyme and dipeptidyl peptidase-4 inhibition. PMID:24516103
Allen, A M; Chai, S Y; Clevers, J; McKinley, M J; Paxinos, G; Mendelsohn, F A
1988-03-08
Angiotensin II receptor and angiotensin converting enzyme distributions in the human medulla oblongata were localised by quantitative in vitro autoradiography. Angiotensin II receptors were labelled with the antagonist analogue 125I-[Sar1, Ile8] AII while angiotensin converting enzyme was labelled with 125I-351A, a derivative of the specific converting enzyme inhibitor, lisinopril. Angiotensin II receptor binding and angiotensin converting enzyme are present in high concentrations in the nucleus of the solitary tract, the dorsal motor nucleus of vagus, the rostral and caudal ventrolateral reticular nucleus, and in a band connecting the dorsal and ventral regions. In the rostral and caudal ventrolateral reticular nucleus, angiotensin II receptors are distributed in a punctate pattern that registers with neuronal cell bodies. The distribution and density of these cell bodies closely resemble those of catecholamine-containing neurones mapped by others. In view of the known interactions of angiotensin II with both central and peripheral catecholamine-containing neurons of laboratory animals, the current anatomical findings suggest similar interactions between these neuroactive compounds in the human central nervous system. The presence of angiotensin II receptors and angiotensin converting enzyme in the nucleus of the solitary tract, dorsal motor nucleus of vagus, and rostral and caudal ventrolateral reticular nucleus demonstrates sites for central angiotensin II to exert its known actions on vasopressin release and autonomic functions including blood pressure control. These data also suggest a possible interaction between angiotensin II and central catecholeminergic systems.
Expression and regulation of estrogen-converting enzymes in ectopic human endometrial tissue.
Fechner, Sabine; Husen, Bettina; Thole, Hubert; Schmidt, Markus; Gashaw, Isabella; Kimmig, Rainer; Winterhager, Elke; Grümmer, Ruth
2007-10-01
To investigate the regulation of estrogen-converting enzymes in human ectopic endometrial tissue. Animal study. Academic medical center. Sixty female nude mice with implanted human endometrial tissue. Twenty-two premenopausal women undergoing endometrial biopsy or hysterectomy. Human endometrial tissue was implanted into the peritoneal cavity of nude mice, and the effect of therapeutic drugs on transcription of steroid receptors and estrogen-converting enzymes was analyzed. Transcript levels of steroid hormone receptors, 17beta-hydroxysteroid dehydrogenase type 1 and 2, aromatase, and steroid sulfatase as well as proliferation rate were analyzed in the human ectopic endometrial tissue. Steroid receptors and estrogen-converting enzymes were expressed in the ectopic human endometrial fragments. Application of medroxyprogesterone acetate, dydrogesterone, danazol, and the aromatase inhibitor finrozole significantly inhibited aromatase transcription. In addition, danazol caused a significant decrease in transcription of steroid sulfatase, and finrozole, of 17beta-hydroxysteroid dehydrogenase type 1 in parallel to a decrease in proliferation rate in the ectopic human endometrial tissue. Pharmacological regulation of transcription of estrogen-converting enzymes in human endometrium cultured in nude mice may help to develop new therapeutic concepts based on local regulation of estrogen metabolism in endometriosis.
Marginal Ice Zone: Biogeochemical Sampling with Gliders
2015-09-30
chlorophyll primary productivity model to estimate and compare phytoplankton productivity under full ice cover, in the MIZ, and in open ice-free water...observing array (Fig. 1). The glider sensor suite included temperature, temperature microstructure, salinity, oxygen, chlorophyll fluorescence, optical...operating in continental shelf waters off Alaska’s north slope allowed us to construct proxy libraries for converting chlorophyll fluorescence to
Mauborgne, A; Bourgoin, S; Benoliel, J J; Hamon, M; Cesselin, F
1991-02-25
Studies on the effects of peptidase inhibitors on substance P-like immunoreactive material (SPLI) released by K(+)-induced depolarization from slices of the rat spinal cord showed that bacitracin was the most potent agent to protect SPLI from degradation. Captopril and thiorphan which inhibit, respectively, angiotensin I converting enzyme and endopeptidase-24.11 also protected SPLI from degradation. However other inhibitors of these two enzymes, kelatorphan for endopeptidase-24.11 and enalaprilat for angiotensin I converting enzyme were essentially inactive, indicating that both enzymes are probably not involved in the degradation of endogenous substance P. Instead, the non-additive protecting effect of bacitracin, captopril and thiorphan might be due to the blockade of some 'bacitracin-sensitive enzyme' playing a key role in the catabolism of SP within the rat spinal cord.
Bahia, Malkeet S; Silakari, Om
2010-05-01
Tumor necrosis factor alpha is one of the most common pro-inflammatory cytokines responsible for various inflammatory disorders. It plays an important role in the origin and progression of rheumatoid arthritis and also in other autoimmune disease conditions. Some anti-tumor necrosis factor alpha antibodies like Enbrel, Humira and Remicade have been successfully used in these disease conditions as antagonists of tumor necrosis factor alpha. Inhibition of generation of active form of tumor necrosis factor alpha is a promising therapy for various inflammatory disorders. Therefore, the inhibition of an enzyme (tumor necrosis factor alpha converting enzyme), which is responsible for processing inactive form of tumor necrosis factor alpha into its active soluble form, is an encouraging target. Many tumor necrosis factor alpha converting enzyme inhibitors have been the candidates of clinical trials but none of them have reached in to the market because of their broad spectrum inhibitory activity for other matrix metalloproteases. Selectivity of tumor necrosis factor alpha converting enzyme inhibition over matrix metalloproteases is of utmost importance. If selectivity is achieved successfully, side-effects can be over-ruled and this approach may become a novel therapy for treatment of rheumatoid arthritis and other inflammatory disorders. This cytokine not only plays a pivotal role in inflammatory conditions but also in some cancerous conditions. Thus, successful targeting of tumor necrosis factor alpha converting enzyme may result in multifunctional therapy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nally, J.V. Jr.; Clarke, H.S. Jr.; Grecos, G.P.
In an effort to improve on the noninvasive detection of renal artery stenosis, we investigated the effect of angiotensin converting enzyme inhibition on computer-assisted /sup 99m/Tc-diethylenetriaminepentaacetic acid (DTPA) renal flow studies in a canine model of two-kidney, one clip hypertension and compared these findings with clearances of inulin and p-aminohippuric acid in the stenotic and contralateral kidney before and after converting enzyme inhibition. The /sup 99m/Tc-DTPA renal flow study with the converting enzyme inhibitor captopril (1.5 mg/kg bolus with 1.5 mg/min infusion) showed an increased sensitivity in the detection of unilateral renal artery stenosis over the use of the /supmore » 99m/Tc-DTPA study alone. Captopril induced striking alterations that were most evident in the 15-minute /sup 99m/Tc-DTPA renal flow study, in which all nine curves exhibited severely blunted uptake and excretion of the radionuclide. These changes were reversed during a recovery study without converting enzyme inhibition and were not seen when blood pressure was lowered with nitroprusside to a level similar to that observed during converting enzyme inhibition. The changes shown by the /sup 99m/Tc-DTPA study during converting enzyme inhibition correlated with a decrease in the glomerular filtration rate of the stenotic kidney. Captopril infusion significantly decreased the glomerular filtration rate of the stenotic kidney (16.0 +/- 3.1 vs 11.0 +/- 2.5 mg/min, p less than 0.03) but not of the contralateral kidney (32.4 +/- 2.6 vs 28.4 +/- 2.8 mg/min).« less
Assay for Angiotensin-Converting Enzyme.
ERIC Educational Resources Information Center
Russo, Salvatore F.
1983-01-01
Describes a three-hour experiment designed to introduce students to chemistry of the angiotensis-converting enzyme, illustrate design of a quenched fluorescence substrate, and examine considerations necessary in designing a clinical assay. Includes background information on the biochemistry of hypertension, reagents/materials needed, procedures…
Kuuskeri, Jaana; Mäkelä, Miia R; Isotalo, Jarkko; Oksanen, Ilona; Lundell, Taina
2015-10-19
The fungal genus Phlebia consists of a number of species that are significant in wood decay. Biotechnological potential of a few species for enzyme production and degradation of lignin and pollutants has been previously studied, when most of the species of this genus are unknown. Therefore, we carried out a wider study on biochemistry and systematics of Phlebia species. Isolates belonging to the genus Phlebia were subjected to four-gene sequence analysis in order to clarify their phylogenetic placement at species level and evolutionary relationships of the genus among phlebioid Polyporales. rRNA-encoding (5.8S, partial LSU) and two protein-encoding gene (gapdh, rpb2) sequences were adopted for the evolutionary analysis, and ITS sequences (ITS1+5.8S+ITS2) were aligned for in-depth species-level phylogeny. The 49 fungal isolates were cultivated on semi-solid milled spruce wood medium for 21 days in order to follow their production of extracellular lignocellulose-converting oxidoreductases and carbohydrate active enzymes. Four-gene phylogenetic analysis confirmed the polyphyletic nature of the genus Phlebia. Ten species-level subgroups were formed, and their lignocellulose-converting enzyme activity profiles coincided with the phylogenetic grouping. The highest enzyme activities for lignin modification (manganese peroxidase activity) were obtained for Phlebia radiata group, which supports our previous studies on the enzymology and gene expression of this species on lignocellulosic substrates. Our study implies that there is a species-level connection of molecular systematics (genotype) to the efficiency in production of both lignocellulose-converting carbohydrate active enzymes and oxidoreductases (enzyme phenotype) on spruce wood. Thus, we may propose a similar phylogrouping approach for prediction of lignocellulose-converting enzyme phenotypes in new fungal species or genetically and biochemically less-studied isolates of the wood-decay Polyporales.
Angiotensin-converting enzyme: I. New strategies for assay
Ryan, James W.; Chung, Alfred; Ryan, Una S.
1980-01-01
The disposition of converting enzyme (kininase II) on the luminal surface of pulmonary endothelial cells is well established. Further, it is known that there is a net conversion of angiotensin I into angiotensin II as blood passes through the lungs. However, little is known about modulations of converting enzyme activity that may arise through, e.g., changes in the quality of inhalants, blood flow, or blood oxygenation. There are few data on the effects of lung disease. A major barrier to studies to examine for pathophysiologic modulations of converting enzyme is that of assay. The enzyme can be measured in terms of the rate of formation of angiotensin II from a known quantity of angiotensin I. However, both peptides are biologically active, and lungs contain other enzymes capable of degrading them. We have developed a series of radiolabeled, acylated tripeptides to improve our ability to examine for changes in the net converting enzyme of intact lungs. The enzyme, a dipeptidyl carboxypeptidase, is capable of removing C-terminal dipeptides from a variety of oligopeptides. We have prepared benzoyl-Gly-Gly-Gly (I), benzoyl-Pro-Phe-Arg (II), benzoyl-Gly-His-Leu (III), benzoyl-Phe-Ala-Pro (IV), and benzoyl-Phe-His-Leu (V), each containing a 3H-atom in the para position of the benzoyl moiety. Substrates I and III have been used previously in photometric assays of low sensitivity. II is the acylated C-terminal tripeptide of bradykinin, IV is an acylated tripeptide analog of BPP5a (
Somilleda-Ventura, Selma Alin; García-Rubio, Yatzul Zuhaila; Razo Blanco-Hernández, Dulce Milagros; Lima-Gómez, Virgilio
2016-01-01
Angiotensin converting enzyme inhibitors are effective in delaying the progression of diabetic retinopathy. It is unknown if their use is associated with a better visual outcome in patients with diabetic macular oedema. A non-experimental, comparative, longitudinal and retrospective study was performed on patients with diabetic macular oedema treated by focal photocoagulation, and with systemic arterial hypertension treated with angiotensin converting enzyme inhibitors (Group 1), and without hypertension (Group 2). The dependent variable was the proportion with visual improvement, operatively defined as the gain of one or more lines of vision three weeks after photocoagulation. The independent variable was the use of angiotensin converting enzyme inhibitors. The proportion of eyes with visual improvement after treatment was compared between groups using the Chi squared (χ(2)) test. A total of 33 eyes (51.6%) were assigned to group 1, and 31 (48.2%), to group 2. The mean of visual acuity improved after three weeks, compared with baseline (p=0.002). The proportion of eyes with visual improvement did not differ between patients treated with angiotensin converting enzyme inhibitors (45.5%) and those that did not use them (51.6%, p=0.4). There was no statistical difference in the proportion of eyes with visual improvement between patients treated with angiotensin converting enzyme inhibitors and in those where they were not used. There is no support for the inhibition of angiotensin II in addition to photocoagulation for improving the outcome in patients with diabetic macular oedema. Copyright © 2015 Academia Mexicana de Cirugía A.C. Published by Masson Doyma México S.A. All rights reserved.
Doi, Shiori; Hashimoto, Yoshiteru; Tomita, Chiaki; Kumano, Takuto; Kobayashi, Michihiko
2016-01-01
Piperonal-catabolizing microorganisms were isolated from soil, the one (strain CT39-3) exhibiting the highest activity being identified as Burkholderia sp. The piperonal-converting enzyme involved in the initial step of piperonal metabolism was purified from strain CT39-3. Gene cloning of the enzyme and a homology search revealed that the enzyme belongs to the xanthine oxidase family, which comprises molybdoenzymes containing a molybdopterin cytosine dinucleotide cofactor. We found that the piperonal-converting enzyme acts on piperonal in the presence of O2, leading to formation of piperonylic acid and H2O2. The growth of strain CT39-3 was inhibited by higher concentrations of piperonal in the culture medium. Together with this finding, the broad substrate specificity of this enzyme for various aldehydes suggests that it would play an important role in the defense mechanism against antimicrobial compounds derived from plant species. PMID:27905507
Light Aircraft Piston Engine Carburetor Ice Detector/Warning Device Sensitivity/Effectiveness.
1982-06-01
10kHz max), converting raw data into engineering units as established by operator, displaying eight different parameters on cathode ray tube (CRT) and...TN No. 1790, February 1949. f. icing - Protection Requirements for Reciprocating Engine Induction Systems, NCA Technical Report No. 982, June 1949. q
Identification of interleukin-8 converting enzyme as cathepsin L.
Ohashi, Kensaku; Naruto, Masanobu; Nakaki, Toshio; Sano, Emiko
2003-06-26
IL-8 is produced by various cells, and the NH(2)-terminal amino acid sequence of IL-8 displays heterogeneity among cell types. The mature form of IL-8 has 72 amino acids (72IL-8), while a precursor form (77IL-8) of IL-8 has five additional amino acids to the 72IL-8 NH(2)-terminal. However, it has been unclear how IL-8 is processed to yield the mature form. In this study, converting enzyme was purified as a single 31-kDa band on silver-stained polyacrylamide gel from 160 l of cultured fibroblast supernatant by sequential chromatography. NH(2)-terminal amino acid sequence analysis revealed a sequence, EAPRSVDWRE, which was identified as a partial sequence of cathepsin L. Polyclonal antibodies raised against cathepsin L recognized the purified converting enzyme on Western blot. Moreover, human hepatic cathepsin L cleaved 77IL-8 between Arg(5) and Ser(6), which is the same cleavage site as the putative converting enzyme, resulting in 72IL-8 formation. These data indicate that the converting enzyme of the partially purified fraction of the human fibroblast culture supernatant was cathepsin L. Furthermore, 72IL-8 was sevenfold more potent than 77IL-8 in a neutrophil chemotaxis assay. These results show that cathepsin L is secreted from human fibroblasts in response to external stimuli and plays an important role in IL-8 processing in inflammatory sites.
NASA Technical Reports Server (NTRS)
Behar, Alberto; Carsey, Frank; Lane, Arthur; Engelhardt, Herman
2006-01-01
An instrumentation system has been developed for studying interactions between a glacier or ice sheet and the underlying rock and/or soil. Prior borehole imaging systems have been used in well-drilling and mineral-exploration applications and for studying relatively thin valley glaciers, but have not been used for studying thick ice sheets like those of Antarctica. The system includes a cylindrical imaging probe that is lowered into a hole that has been bored through the ice to the ice/bedrock interface by use of an established hot-water-jet technique. The images acquired by the cameras yield information on the movement of the ice relative to the bedrock and on visible features of the lower structure of the ice sheet, including ice layers formed at different times, bubbles, and mineralogical inclusions. At the time of reporting the information for this article, the system was just deployed in two boreholes on the Amery ice shelf in East Antarctica and after successful 2000 2001 deployments in 4 boreholes at Ice Stream C, West Antarctica, and in 2002 at Black Rapids Glacier, Alaska. The probe is designed to operate at temperatures from 40 to +40 C and to withstand the cold, wet, high-pressure [130-atm (13.20-MPa)] environment at the bottom of a water-filled borehole in ice as deep as 1.6 km. A current version is being outfitted to service 2.4-km-deep boreholes at the Rutford Ice Stream in West Antarctica. The probe (see figure) contains a sidelooking charge-coupled-device (CCD) camera that generates both a real-time analog video signal and a sequence of still-image data, and contains a digital videotape recorder. The probe also contains a downward-looking CCD analog video camera, plus halogen lamps to illuminate the fields of view of both cameras. The analog video outputs of the cameras are converted to optical signals that are transmitted to a surface station via optical fibers in a cable. Electric power is supplied to the probe through wires in the cable at a potential of 170 VDC. A DC-to-DC converter steps the supply down to 12 VDC for the lights, cameras, and image-data-transmission circuitry. Heat generated by dissipation of electric power in the probe is removed simply by conduction through the probe housing to the visible features of the lower structure of the ice sheet, including ice layers formed at different times, bubbles, and mineralogical inclusions. At the time of reporting the information for this article, the system was just deployed in two boreholes on the Amery ice shelf in East Antarctica and after successful 2000 2001 deployments in 4 boreholes at Ice Stream C, West Antarctica, and in 2002 at Black Rapids Glacier, Alaska. The probe is designed to operate at temperatures from 40 to +40 C and to withstand the cold, wet, high-pressure [130-atm (13.20-MPa)] environment at the bottom of a water-filled borehole in ice as deep as 1.6 km. A current version is being outfitted to service 2.4-km-deep boreholes at the Rutford Ice Stream in West Antarctica. The probe (see figure) contains a sidelooking charge-coupled-device (CCD) camera that generates both a real-time analog video signal and a sequence of still-image data, and contains a digital videotape recorder. The probe also contains a downward-looking CCD analog video camera, plus halogen lamps to illuminate the fields of view of both cameras. The analog video outputs of the cameras are converted to optical signals that are transmitted to a surface station via optical fibers in a cable. Electric power is supplied to the probe through wires in the cable at a potential of 170 VDC. A DC-to-DC converter steps the supply down to 12 VDC for the lights, cameras, and image-datatransmission circuitry. Heat generated by dissipation of electric power in the probe is removed simply by conduction through the probe housing to the visible features of the lower structure of the ice sheet, including ice layers formed at different times, bubbles, and mineralogical inclusions. At thime of reporting the information for this article, the system was just deployed in two boreholes on the Amery ice shelf in East Antarctica and after successful 2000 2001 deployments in 4 boreholes at Ice Stream C, West Antarctica, and in 2002 at Black Rapids Glacier, Alaska. The probe is designed to operate at temperatures from 40 to +40 C and to withstand the cold, wet, high-pressure [130-atm (13.20-MPa)] environment at the bottom of a water-filled borehole in ice as deep as 1.6 km. A current version is being outfitted to service 2.4-km-deep boreholes at the Rutford Ice Stream in West Antarctica. The probe (see figure) contains a sidelooking charge-coupled-device (CCD) camera that generates both a real-time analog video signal and a sequence of still-image data, and contains a digital videotape recorder. The probe also contains a downward-looking CCD analog video camera, plus halogen lamps to illuminate the fields of view of both cameras. The analog video outputs of the cameras are converted to optical signals that are transmitted to a surface station via optical fibers in a cable. Electric power is supplied to the probe through wires in the cable at a potential of 170 VDC. A DC-to-DC converter steps the supply down to 12 VDC for the lights, cameras, and image-datatransmission circuitry. Heat generated by dissipation of electric power in the probe is removed simply by conduction through the probe housing to the adjacent water and ice.
Mini review on role of β-galactosidase in lactose intolerance
NASA Astrophysics Data System (ADS)
A, Nivetha; V, Mohanasrinivasan
2017-11-01
This review mainly focuses on the role and properties of β-galactosidase in lactose intolerance and its industrial application. β-Galactosidase, hydrolyses the lactose into glucose and galactose and it is most commonly used in food based technology, particularly in the dairy manufacturing industry. This catalyst mainly focus for the improvement of new and novel products with hydrolyzed lactose, which can be appropriate for the lactose-intolerant persons, to improve the technological, texture and scientific properties of non-fermented dairy products. β-Galactosidase derived from the group of saccharides which is a converting enzymes in the family of hydrolases. They are broadly distributed in the several biological living systems. The enzymatic hydrolysis of lactose is also preferred in food based technology due to the low soluble range of lactose. The concentration lactose was found to be high in fermented dairy products such as ice cream, butter, cheese curd, yogurt, etc., can prompt extreme lactose crystallization bringing about items through a coarse, abrasive surface. Lactose hydrolysis in dairy products enhances adaptability also, richness altogether. These products are extra edible. Also for this purpose, the utilization of β-galactosidase enzyme prior to the condensing operation can reduce the lactose content to a point where lactose was no longer a problem industrial application of β-galactosidase. In Industries, due to the positive and constructive effect on intestinal bacterial microflora, different types of applications are possible in β-galactosidase enzyme.
Airborne Tomographic Swath Ice Sounding Processing System
NASA Technical Reports Server (NTRS)
Wu, Xiaoqing; Rodriquez, Ernesto; Freeman, Anthony; Jezek, Ken
2013-01-01
Glaciers and ice sheets modulate global sea level by storing water deposited as snow on the surface, and discharging water back into the ocean through melting. Their physical state can be characterized in terms of their mass balance and dynamics. To estimate the current ice mass balance, and to predict future changes in the motion of the Greenland and Antarctic ice sheets, it is necessary to know the ice sheet thickness and the physical conditions of the ice sheet surface and bed. This information is required at fine resolution and over extensive portions of the ice sheets. A tomographic algorithm has been developed to take raw data collected by a multiple-channel synthetic aperture sounding radar system over a polar ice sheet and convert those data into two-dimensional (2D) ice thickness measurements. Prior to this work, conventional processing techniques only provided one-dimensional ice thickness measurements along profiles.
Wells, Gary G.; Ledesma-Aguilar, Rodrigo; McHale, Glen; Sefiane, Khellil
2015-01-01
Heat engines are based on the physical realization of a thermodynamic cycle, most famously the liquid–vapour Rankine cycle used for steam engines. Here we present a sublimation heat engine, which can convert temperature differences into mechanical work via the Leidenfrost effect. Through controlled experiments, quantified by a hydrodynamic model, we show that levitating dry-ice blocks rotate on hot turbine-like surfaces at a rate controlled by the turbine geometry, temperature difference and solid material properties. The rotational motion of the dry-ice loads is converted into electric power by coupling to a magnetic coil system. We extend our concept to liquid loads, generalizing the realization of the new engine to both sublimation and the instantaneous vapourization of liquids. Our results support the feasibility of low-friction in situ energy harvesting from both liquids and ices. Our concept is potentially relevant in challenging situations such as deep drilling, outer space exploration or micro-mechanical manipulation. PMID:25731669
Wells, Gary G; Ledesma-Aguilar, Rodrigo; McHale, Glen; Sefiane, Khellil
2015-03-03
Heat engines are based on the physical realization of a thermodynamic cycle, most famously the liquid-vapour Rankine cycle used for steam engines. Here we present a sublimation heat engine, which can convert temperature differences into mechanical work via the Leidenfrost effect. Through controlled experiments, quantified by a hydrodynamic model, we show that levitating dry-ice blocks rotate on hot turbine-like surfaces at a rate controlled by the turbine geometry, temperature difference and solid material properties. The rotational motion of the dry-ice loads is converted into electric power by coupling to a magnetic coil system. We extend our concept to liquid loads, generalizing the realization of the new engine to both sublimation and the instantaneous vapourization of liquids. Our results support the feasibility of low-friction in situ energy harvesting from both liquids and ices. Our concept is potentially relevant in challenging situations such as deep drilling, outer space exploration or micro-mechanical manipulation.
Miksík, Ivan; Mikulíková, Katerina; Pácha, Jirí; Kucka, Marek; Deyl, Zdenek
2004-02-05
A high-performance liquid chromatography-atmospheric pressure ionization-electrospray ionization mass spectrometry (HPLC-API-ESI-MS) method was developed for the analysis of steroids in a study of steroid-converting enzymes. Separations ware done on a Zorbax Eclipse XDB-C18 column (eluted with a linear methanol-water-acetic acid gradient) and identification of the steroids involved was done by API-ESI-MS using positive ion mode and extracted ion analysis. The applicability of the present method for studying steroid metabolism was proven in assaying two steroid-converting enzymes (20beta-hydroxysteroid dehydrogenase and 11beta-hydroxysteroid dehydrogenase) in various biological samples (rat and chicken intestine, chicken oviduct).
21 CFR 862.1090 - Angiotensin converting enzyme (A.C.E.) test system.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Angiotensin converting enzyme (A.C.E.) test system. 862.1090 Section 862.1090 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry...
21 CFR 862.1090 - Angiotensin converting enzyme (A.C.E.) test system.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Angiotensin converting enzyme (A.C.E.) test system. 862.1090 Section 862.1090 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry...
21 CFR 862.1090 - Angiotensin converting enzyme (A.C.E.) test system.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Angiotensin converting enzyme (A.C.E.) test system. 862.1090 Section 862.1090 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry...
21 CFR 862.1090 - Angiotensin converting enzyme (A.C.E.) test system.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Angiotensin converting enzyme (A.C.E.) test system. 862.1090 Section 862.1090 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry...
Biological production of organic compounds
Yu, Jianping; Wang, Bo; Paddock, Troy; Carrieri, Damian; Maness, Pin-Ching; Seibert, Michael
2018-03-13
Methods of producing ethylene oxide and ethylene glycol are disclosed herein. Ethylene produced by cyanobacteria engineered to express ethylene-forming enzymes may be converted to ethylene oxide by bacteria engineered to express a monooxygenase enzyme. Ethylene oxide may be converted to ethylene glycol by exposure to an acidic solution. The methods may be performed in a bioreactor.
Possible identity of IL-8 converting enzyme in human fibroblasts as a cysteine protease.
Ohashi, Kensaku; Sano, Emiko; Nakaki, Toshio; Naruto, Masanobu
2003-04-01
A converting activity was characterized in human diploid fibroblasts, which secrete 72IL-8 and 77IL-8 in treatment with IFN-beta and poly I: poly C. 77IL-8 was significantly converted to 72IL-8 by a partially purified fraction of the culture supernatant of human diploid fibroblasts. The converting activity, which was temperature-dependent and optimal at pH 6, was completely inhibited by cysteine protease inhibitors, antipain dihydrochloride and E-64, but not by other types of protease inhibitors. These data clearly show that human diploid fibroblasts are capable of processing IL-8 to produce a mature IL-8 and that the putative converting enzyme appears to be a cysteine protease.
Ben Mahmoud, Lobna; Ghozzi, Hanene; Kammoun, Khawla; Hakim, Ahmed; Kharrat, Mahmoud; Ben Hmida, Mohamed; Jarraya, Faical; Sahnoun, Zouheir; Zeghal, Khaled; Hachicha, Jamil
2013-04-01
To study the incidence and risk factors of angiotensin converting enzyme inhibitors-induced hyperkalemia in hospitalized patients with hypertension and preexisting chronic renal failure. Two-months prospective observational study was used including all hospitalized patients older than 18 years with a history of hypertension, non-dialyzed chronic renal failure and who had angiotensin converting enzyme prescription at the time of the admission. Hyperkalemia greater than or equal to 5 mmol/L was detected in these patients. The studied variables were demographic, clinical, biological and therapeutic. Eight patients, among 27 included, had a hyperkalemia (2963%). They were 73±15 years old. Factors that predispose to hyperkalemia were present in all patients. Hyperkalemia was associated in six cases with decompensation of renal function. The age was associated with hyperkalaemia in patients treated with angiotensin converting enzyme inhibitors (RC=1.21; IC95 1,11-1,46; P=0,021). Diabetes is a possible risk factor (OR=59 021 et, 95 0.93 to 2410, P=0.053). Compared with patients who did not develop hyperkalemia, the occurrence of hyperkalemia in patients included was associated with a longer duration of hospitalization (OR=130, 95 112 to 160, P=0. 022). The prescription of angiotensin converting enzyme inhibitors in the elderly with chronic renal failure and diabetes requires careful monitoring of serum potassium. Copyright © 2012 Association Société de néphrologie. Published by Elsevier SAS. All rights reserved.
Miettinen, M K; Björkroth, K J; Korkeala, H J
1999-02-18
One dominating strain of serotype 1/2b was found when serotyping and pulsed-field gel electrophoresis (PFGE) patterns were used for the characterization of 41 Listeria monocytogenes isolates originating from an ice cream plant. Samples were taken from the production environment, equipment and ice cream during the years 1990-1997. Serotyping divided the isolates into two serovars, 1/2b and 4b. Three rare-cutting enzymes (ApaI, AscI and SmaI) were used in the creation of PFGE patterns. AscI resulted in the best restriction enzyme digestion patterns (REDPs) for visual comparison. Eight different AscI REDPs were obtained, whereas ApaI produced six and SmaI seven banding patterns. When one-band differences are taken into account, 12 different PFGE types were distinguished based on information obtained with all three enzymes. The dominant PFGE type was found to have persisted in the ice cream plant for seven years. Improved and precisely targeted cleaning and disinfection practices combined with structural changes making for easier cleaning of the packaging machine, resulted in eradication of L. monocytogenes from this plant.
Antihypertensive effect of Carica papaya via a reduction in ACE activity and improved baroreflex.
Brasil, Girlandia Alexandre; Ronchi, Silas Nascimento; do Nascimento, Andrews Marques; de Lima, Ewelyne Miranda; Romão, Wanderson; da Costa, Helber Barcellos; Scherer, Rodrigo; Ventura, José Aires; Lenz, Dominik; Bissoli, Nazaré Souza; Endringer, Denise Coutinho; de Andrade, Tadeu Uggere
2014-11-01
The aims of this study were to evaluate the antihypertensive effects of the standardised methanolic extract of Carica papaya, its angiotensin converting enzyme inhibitory effects in vivo, its effect on the baroreflex and serum angiotensin converting enzyme activity, and its chemical composition. The chemical composition of the methanolic extract of C. papaya was evaluated by liquid chromatography-mass/mass and mass/mass spectrometry. The angiotensin converting enzyme inhibitory effect was evaluated in vivo by Ang I administration. The antihypertensive assay was performed in spontaneously hypertensive rats and Wistar rats that were treated with enalapril (10 mg/kg), the methanolic extract of C. papaya (100 mg/kg; twice a day), or vehicle for 30 days. The baroreflex was evaluated through the use of sodium nitroprusside and phenylephrine. Angiotensin converting enzyme activity was measured by ELISA, and cardiac hypertrophy was evaluated by morphometric analysis. The methanolic extract of C. papaya was standardised in ferulic acid (203.41 ± 0.02 µg/g), caffeic acid (172.60 ± 0.02 µg/g), gallic acid (145.70 ± 0.02 µg/g), and quercetin (47.11 ± 0.03 µg/g). The flavonoids quercetin, rutin, nicotiflorin, clitorin, and manghaslin were identified in a fraction of the extract. The methanolic extract of C. papaya elicited angiotensin converting enzyme inhibitory activity. The antihypertensive effects elicited by the methanolic extract of C. papaya were similar to those of enalapril, and the baroreflex sensitivity was normalised in treated spontaneously hypertensive rats. Plasma angiotensin converting enzyme activity and cardiac hypertrophy were also reduced to levels comparable to the enalapril-treated group. These results may be associated with the chemical composition of the methanolic extract of C. papaya, and are the first step into the development of a new phytotherapic product which could be used in the treatment of hypertension. Georg Thieme Verlag KG Stuttgart · New York.
Danchin, Nicolas; Cucherat, Michel; Thuillez, Christian; Durand, Eric; Kadri, Zena; Steg, Philippe G
2006-04-10
Results of randomized trials of angiotensin-converting enzyme inhibitors in patients with coronary artery disease (CAD) and preserved left ventricular function are conflicting. We undertook this study to determine whether long-term prescription of angiotensin-converting enzyme inhibitors decreases major cardiovascular events and mortality in patients who have CAD and no evidence of left ventricular systolic dysfunction. We searched MEDLINE, EMBASE, and IPA databases, the Cochrane Controlled Trials Register (1990-2004), and reports from scientific meetings (2003-2004), and we reviewed secondary sources. Search terms included angiotensin-converting enzyme inhibitors, coronary artery disease, randomi(s)zed controlled trials, clinical trials, and myocardial infarction. Eligible studies included randomized controlled trials in patients who had CAD and no heart failure or left ventricular dysfunction, with follow-up omicronf 2 years or longer. Of 1146 publications screened, 7 met our selection criteria and included a total of 33 960 patients followed up for a mean of 4.4 years. Five trials included only patients with documented CAD. One trial included patients with documented CAD (80%) or patients who had diabetes mellitus and 1 or more additional risk factors, and another trial included patients who had CAD, a history of transient ischemic attack, or intermittent claudication. Treatment with angiotensin-converting enzyme inhibitors decreased overall mortality (odds ratio, 0.86; 95% confidence interval, 0.79-0.93), cardiovascular mortality (odds ratio, 0.81; 95% confidence interval, 0.73-0.90), myocardial infarction (odds ratio, 0.82; 95% confidence interval, 0.75-0.89), and stroke (odds ratio, 0.77; 95% confidence interval, 0.66-0.88). Other end points, including resuscitation after cardiac arrest, myocardial revascularization, and hospitalization because of heart failure, were also reduced. Angiotensin-converting enzyme inhibitors reduce total mortality and major cardiovascular end points in patients who have CAD and no left ventricular systolic dysfunction or heart failure.
Rapid conversion of angiotensin I to angiotensin II by neutrophil and mast cell proteinases.
Reilly, C F; Tewksbury, D A; Schechter, N M; Travis, J
1982-08-10
Human neutrophil cathepsin G and human skin mast cell chymase rapidly convert angiotensin I to angiotensin II with only minor cleavage elsewhere in the molecule. The rate of cleavage is consistent with a potential role for either or both of these enzymes in an alternate pathway for angiotensin II synthesis. Since neither enzyme in inhibited by captopril, an angiotensin converting enzyme inactivator, it is possible that leukocyte and mast cell enzymes may play a significant role in the development of abnormally high local concentrations of angiotensin II, associated with various inflammatory processes.
New transformations between crystalline and amorphous ice
NASA Technical Reports Server (NTRS)
Hemley, R. J.; Chen, L. C.; Mao, H. K.
1989-01-01
High-pressure optical and spectroscopic techniques were used to obtain directly the ice I(h) - hda-ice transformation in a diamond-anvil cell, and the stability of the amorphous form is examined as functions of pressure and temperature. It is demonstrated that hda-ice transforms abruptly at 4 GPa and 77 K to a crystalline phase close in structure to orientationally disordered ice-VII and to a more highly ordered, ice-VIII-like structure at higher temperatures. This is the first time that an amorphous solid is observed to convert to a crystalline solid at low temperatures by compression alone. Phase transitions of this type may be relevant on icy planetary satellites, and there may also be implications for the high-pressure behavior of silica.
Blute, Michael L; Rushmer, Timothy J; Shi, Fangfang; Fuller, Benjamin J; Abel, E Jason; Jarrard, David F; Downs, Tracy M
2015-11-01
Prior reports suggest that renin-angiotensin system inhibition may decrease nonmuscle invasive bladder cancer recurrence. We evaluated whether angiotensin converting enzyme inhibitor or angiotensin receptor blocker treatment at initial surgery was associated with decreased recurrence or progression in patients with nonmuscle invasive bladder cancer. Using an institutional bladder cancer database we identified 340 patients with data available on initial transurethral resection of bladder tumor. Progression was defined as an increase to stage T2. Cox proportional hazards models were used to evaluate associations with recurrence-free and progression-free survival. Median patient age was 69.6 years. During a median followup of 3 years (IQR 1.3-6.1) 200 patients (59%) had recurrence and 14 (4.1%) had stage progression. Of those patients 143 were receiving angiotensin converting enzyme inhibitor/angiotensin receptor blockers at the time of the first transurethral resection. On univariate analysis factors associated with improved recurrence-free survival included carcinoma in situ (p = 0.040), bacillus Calmette-Guérin therapy (p = 0.003) and angiotensin converting enzyme inhibitor/angiotensin receptor blocker therapy (p = 0.009). Multivariate analysis demonstrated that patients treated with bacillus Calmette-Guérin therapy (HR 0.68, 95% CI 0.47-0.87, p = 0.002) or angiotensin converting enzyme inhibitor/angiotensin receptor blocker therapy (HR 0.61, 95% CI 0.45-0.84, p = 0.005) were less likely to experience tumor recurrence. The 5-year recurrence-free survival rate was 45.6% for patients treated with angiotensin converting enzyme inhibitor/angiotensin receptor blockers and 28.1% in those not treated with angiotensin converting enzyme inhibitor/angiotensin receptor blockers (p = 0.009). Subgroup analysis was performed to evaluate nonmuscle invasive bladder cancer pathology (Ta, T1 and carcinoma in situ) in 85 patients on bacillus Calmette-Guérin therapy alone and in 52 in whom it was combined with angiotensin converting enzyme inhibitor/angiotensin receptor blocker. Multivariate analysis revealed that patients treated with bacillus Calmette-Guérin alone (HR 2.19, 95% CI 1.01-4.77, p = 0.04) showed worse recurrence-free survival compared to patients treated with bacillus Calmette-Guérin and angiotensin converting enzyme inhibitor/angiotensin receptor blocker (stage Ta HR 0.45, 95% CI 0.21-0.98, p = 0.04). Pharmacological inhibition of the renin-angiotensin system is associated with improved outcomes in patients with bladder cancer. Renin-angiotensin system inhibitor administration in nonmuscle invasive bladder cancer cases should be studied in a prospective randomized trial. Copyright © 2015 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Lastick, Stanley M.; Mohagheghi, Ali; Tucker, Melvin P.; Grohmann, Karel
1994-01-01
A process for producing ethanol from mixed sugar streams from pretreated biomass comprising xylose and cellulose using enzymes to convert these substrates to fermentable sugars; selecting and isolating a yeast Schizosaccharomyces pombe ATCC No. 2476, having the ability to ferment these sugars as they are being formed to produce ethanol; loading the substrates with the fermentation mix composed of yeast, enzymes and substrates; fermenting the loaded substrates and enzymes under anaerobic conditions at a pH range of between about 5.0 to about 6.0 and at a temperature range of between about 35.degree. C. to about 40.degree. C. until the fermentation is completed, the xylose being isomerized to xylulose, the cellulose being converted to glucose, and these sugars being concurrently converted to ethanol by yeast through means of the anaerobic fermentation; and recovering the ethanol.
Lastick, S.M.; Mohagheghi, A.; Tucker, M.P.; Grohmann, K.
1994-12-13
A process for producing ethanol from mixed sugar streams from pretreated biomass comprising xylose and cellulose using enzymes to convert these substrates to fermentable sugars; selecting and isolating a yeast Schizosaccharomyces pombe ATCC No. 2476, having the ability to ferment these sugars as they are being formed to produce ethanol; loading the substrates with the fermentation mix composed of yeast, enzymes and substrates; fermenting the loaded substrates and enzymes under anaerobic conditions at a pH range of between about 5.0 to about 6.0 and at a temperature range of between about 35 C to about 40 C until the fermentation is completed, the xylose being isomerized to xylulose, the cellulose being converted to glucose, and these sugars being concurrently converted to ethanol by yeast through means of the anaerobic fermentation; and recovering the ethanol. 2 figures.
Scott, Susanne Irene; Andersen, Michelle Fog; Aagaard, Lise; Buchwald, Christian Von; Rasmussen, Eva Rye
2017-02-14
Introduction Angioedema is a potentially fatal adverse drug reaction of some medications, as swellings of the upper airways can cause death by asphyxiation. Angiotensin converting enzyme-inhibitors are widely known to cause angioedema but less is known about the association between dipeptidyl peptidase-4 inhibitors (gliptins) and angioedema. Dipeptidyl peptidase-4 inhibitors are anti-diabetic drugs used to improve glycaemic control. They, as a class effect, inadvertently affect the degradation of the vasoactive kinins bradykinin and substance P, both of which can cause angioedema due to vasodilatation and increase in vascular permeability in the capillaries. Objective To assess the risk and pathomechanism of angioedema due to inhibition of dipeptidyl peptidase-4 inhibitors when used as monotherapy and in combination with angiotensin converting enzyme-inhibitors. Method PubMed, Embase, the Cochrane Library, PubMed Central, Web of Science, Google Scholar and clinicaltrials.gov were searched using different combinations of keywords "angioedema", "dipeptidyl peptidase 4", "dipeptidyl peptidase 4 inhibitors", "gliptins", "bradykinin", "substance P" and "angiotensin converting enzyme-inhibitors". Original research papers were preferably used as references and their bibliographies were used to further the search for original research results. Results Both angiotensin converting enzyme and dipeptidyl peptidase-4 are major enzymes in the degradation pathway of bradykinin and substance P, and when inhibited pharmacologically - especially at the same time - the theoretical risk of angioedema is increased due to accumulation of vasoactive kinins. Conclusion Treatment with dipeptidyl peptidase-4 inhibitors must be carefully considered and monitored especially during concurrent treatment with angiotensin converting enzyme-inhibitors or when treating patients with a known predisposition to angioedema. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Thyroid hormone (TH) homeostasis is dependent on multiple proteins for TH synthesis, transport, and peripheral metabolism and elimination. Deiodinase enzymes play an essential role in converting THs between active and inactive forms by converting the pro-hormone thyroxine (T4) to...
Angiotensin converting enzyme inhibitors and aortic arch obstructive malformations.
Maliheh, Kadivar; Abdorrazagh, Kiani; Armen, Kocharian; Reza, Shabanian
2006-10-01
We describe two newborn infants with aortic arch obstructive malformations who became anuric after initiation of captopril. Since angiotensin converting enzyme inhibitors can alter renal blood flow by reduction in angiotensin II and blocking autoregulation phenomenon, it is important to use them with great caution in neonates with aortic arch obstructive malformations, while monitoring their renal function closely.
STS-48 ESC Earth observation of ice pack, Antarctic Ice Shelf
NASA Technical Reports Server (NTRS)
1991-01-01
STS-48 Earth observation taken aboard Discovery, Orbiter Vehicle (OV) 103, is of the breakup of pack ice along the periphery of the Antarctic Ice Shelf. Strong offshore winds, probably associated with katabatic downdrafts from the interior of the continent, are seen peeling off the edges of the ice shelf into long filaments of sea ice, icebergs, bergy bits, and growlers to flow northward into the South Atlantic Ocean. These photos are used to study ocean wind, tide and current patterns. Similar views photographed during previous missions, when analyzed with these recent views may yield information about regional ice drift and breakup of ice packs. The image was captured using an electronic still camera (ESC), was stored on a removable hard disk or small optical disk, and was converted to a format suitable for downlink transmission. The ESC documentation was part of Development Test Objective (DTO) 648, Electronic Still Photography.
Mechanisms of the antihypertensive effects of Nigella sativa oil in L-NAME-induced hypertensive rats
Jaarin, Kamsiah; Foong, Wai Dic; Yeoh, Min Hui; Kamarul, Zaman Yusoff Nik; Qodriyah, Haji Mohd Saad; Azman, Abdullah; Zuhair, Japar Sidik Fadhlullah; Juliana, Abdul Hamid; Kamisah, Yusof
2015-01-01
OBJECTIVES This study was conducted to determine whether the blood pressure-lowering effect of Nigella sativa might be mediated by its effects on nitric oxide, angiotensin-converting enzyme, heme oxygenase and oxidative stress markers. METHODS: Twenty-four adult male Sprague-Dawley rats were divided equally into 4 groups. One group served as the control (group 1), whereas the other three groups (groups 2-4) were administered L-NAME (25 mg/kg, intraperitoneally). Groups 3 and 4 were given oral nicardipine daily at a dose of 3 mg/kg and Nigella sativa oil at a dose of 2.5 mg/kg for 8 weeks, respectively, concomitantly with L-NAME administration. RESULTS Nigella sativa oil prevented the increase in systolic blood pressure in the L-NAME-treated rats. The blood pressure reduction was associated with a reduction in cardiac lipid peroxidation product, NADPH oxidase, angiotensin-converting enzyme activity and plasma nitric oxide, as well as with an increase in heme oxygenase-1 activity in the heart. The effects of Nigella sativa on blood pressure, lipid peroxidation product, nicotinamide adenine dinucleotide phosphate oxidase and angiotensin-converting enzyme were similar to those of nicardipine. In contrast, L-NAME had opposite effects on lipid peroxidation, angiotensin-converting enzyme and NO. CONCLUSION: The antihypertensive effect of Nigella sativa oil appears to be mediated by a reduction in cardiac oxidative stress and angiotensin-converting enzyme activity, an increase in cardiac heme oxygenase-1 activity and a prevention of plasma nitric oxide loss. Thus, Nigella sativa oil might be beneficial for controlling hypertension. PMID:26602523
Volpe, Massimo; Danser, A H Jan; Menard, Joël; Waeber, Bernard; Mueller, Dominik N; Maggioni, Aldo P; Ruilope, Luis M
2012-04-01
Antagonism of renin-angiotensin-aldosterone system is exerted through angiotensin-converting enzyme inhibitors, angiotensin receptor antagonists, renin inhibitors and mineralocorticoid receptor antagonists. These drugs have been successfully tested in numerous trials and in different clinical settings. The original indications of renin-angiotensin-aldosterone system blockers have progressively expanded from the advanced stages to the earlier stages of cardiorenal continuum. To optimize the degree of blockade of renin-angiotensin-aldosterone system, dose uptitrations of angiotensin-converting enzyme inhibitors and angiotensin receptor antagonists or the use of a dual blockade, initially identified with the combination of angiotensin-converting enzyme inhibitors and angiotensin receptor antagonists, have been proposed. The data from the Ongoing Telmisartan Alone and in Combination with Ramipril Global Endpoint Trial (ONTARGET) study do not support this specific dual blockade approach. However, the dual blockade of angiotensin-converting enzyme inhibitors/angiotensin receptor antagonists with direct renin inhibitors is currently under investigation while that based on an aldosterone blocker with any of the previous three drugs requires more evidence beyond heart failure. In this review, we revisited potential advantages of dual blockade of renin-angiotensin-aldosterone system in arterial hypertension and diabetes.
NASA Technical Reports Server (NTRS)
Ryerson, Charles C.
2000-01-01
Remote-sensing systems that map aircraft icing conditions in the flight path from airports or aircraft would allow icing to be avoided and exited. Icing remote-sensing system development requires consideration of the operational environment, the meteorological environment, and the technology available. Operationally, pilots need unambiguous cockpit icing displays for risk management decision-making. Human factors, aircraft integration, integration of remotely sensed icing information into the weather system infrastructures, and avoid-and-exit issues need resolution. Cost, maintenance, power, weight, and space concern manufacturers, operators, and regulators. An icing remote-sensing system detects cloud and precipitation liquid water, drop size, and temperature. An algorithm is needed to convert these conditions into icing potential estimates for cockpit display. Specification development requires that magnitudes of cloud microphysical conditions and their spatial and temporal variability be understood at multiple scales. The core of an icing remote-sensing system is the technology that senses icing microphysical conditions. Radar and microwave radiometers penetrate clouds and can estimate liquid water and drop size. Retrieval development is needed; differential attenuation and neural network assessment of multiple-band radar returns are most promising to date. Airport-based radar or radiometers are the most viable near-term technologies. A radiometer that profiles cloud liquid water, and experimental techniques to use radiometers horizontally, are promising. The most critical operational research needs are to assess cockpit and aircraft system integration, develop avoid-and-exit protocols, assess human factors, and integrate remote-sensing information into weather and air traffic control infrastructures. Improved spatial characterization of cloud and precipitation liquid-water content, drop-size spectra, and temperature are needed, as well as an algorithm to convert sensed conditions into a measure of icing potential. Technology development also requires refinement of inversion techniques. These goals can be accomplished with collaboration among federal agencies including NASA, the FAA, the National Center for Atmospheric Research, NOAA, and the Department of Defense. This report reviews operational, meteorological, and technological considerations in developing the capability to remotely map in-flight icing conditions from the ground and from the air.
2001-07-26
antioxidant enzymes: SOD, catalase ( CAT ), and glutathione peroxidase (GPO).2 ° SOD converts superoxide radical into hydrogen peroxide, while CAT and GPO convert...in endometriosis and adenomyosis. Fertility and Sterility 1999; 1:129-134. 45. Muse KE, Oberley TD, Sempf JM, Oberley LW. Immunolocalization of antioxidant enzymes in adult hamster kidney. Histochem J 1994;9:734-753. 43
NASA Technical Reports Server (NTRS)
Bai, J. P.; Hu, M.; Subramanian, P.; Mosberg, H. I.; Amidon, G. L.
1992-01-01
The feasibility of targeting prolidase as a peptide prodrug-converting enzyme has been examined. The enzymatic hydrolysis by prolidase of substrates for the peptide transporter L-alpha-methyldopa-pro and several dipeptide analogues without an N-terminal alpha-amino group (phenylpropionylproline, phenylacetylproline, N-benzoylproline, and N-acetylproline) was investigated. The Michaelis-Menten parameters Km and Vmax for L-alpha-methyldopa-pro are 0.09 +/- 0.02 mM and 3.98 +/- 0.25 mumol/min/mg protein, respectively. However, no hydrolysis of the dipeptide analogues without an N-terminal alpha-amino group is observed, suggesting that an N-terminal alpha-amino group is required for prolidase activity. These results demonstrate that prolidase may serve as a prodrug-converting enzyme for the dipeptide-type prodrugs, utilizing the peptide carrier for transport of prodrugs into the mucosal cells and prolidase, a cytosolic enzyme, to release the drug. However, a free alpha-amino group appears to be necessary for prolidase hydrolysis.
Nomura, Taiji; Kuchida, Ryo; Kitaoka, Naoki; Kato, Yasuo
2018-02-23
6-Tuliposide B (PosB), a major secondary metabolite that accumulates in tulip (Tulipa gesneriana), is converted to the antibacterial lactone, tulipalin B (PaB), by PosB-converting enzyme (TCEB). TgTCEB1 and TgTCEB-R, which encode TCEB, are specifically expressed in tulip pollen and roots, respectively, but are hardly expressed in other tissues (e.g. leaves) despite the presence of substantial PosB-converting activity, suggesting the existence of another TCEB isozyme. Here, we describe the identification of TgTCEB-L ("L" for leaf), a paralog of TgTCEB1 and TgTCEB-R, from leaves via native enzyme purification. The enzymatic characters of TgTCEB-L, including catalytic activity and subcellular localization, were substantially the same as those of TgTCEB1 and TgTCEB-R. However, TgTCEB-L did not exhibit tissue-specific expression. Identification of TgTCEB-L explains the PosB-converting activity detected in tissues where TgTCEB1 and TgTCEB-R transcripts could not be detected, indicating that tulip subtilizes the three TgTCEB isozymes depending on the tissue.
The role of cooperative iceberg capsize during ice-shelf disintegration
NASA Astrophysics Data System (ADS)
Wilder, W. G.; Burton, J. C.; Amundson, J. M.; Cathles, L. M.; Zhang, W. W.
2011-12-01
The physical processes responsible for the sudden, rapid collapse of Antarctic ice-shelves (Larsen B, in 2002; Wilkins, in 2008) are poorly understood. Observations are limited to a handful of satellite images. Thus we have undertaken a series of laboratory-scale experiments using a water-filled tank and "ice" made from buoyant plastic blocks to investigate these processes. Previous experiments have quantified how gravitational potential energy of single-iceberg capsize is converted to other forms of energy [described in Burton et al., submitted], including hydrodynamic forms that may feed back on the ice shelf to cause additional calving. The new experiments reported here examine the energetics of hydrodynamically coupled icebergs that exhibit collective behaviors qualitatively similar to features observed in satellite imagery. Our results suggest that there is a critical proximity at which icebergs will capsize in the same direction an overwhelming majority of the time (cooperative capsize), and a significant part of the gravitational potential energy is converted into translational kinetic energy. We speculate that the residual translational energy observed in our experiments may explain the significant expansion rate (~1 meter/second) of collapsing Antarctic ice-shelves. Burton, J. C., J. M. Amundson, D. S. Abbot, A. Boghosian, L. M. Cathles, S. Correa-Legisos, K. N. Darnell, N. Guttenberg, D. M. Holland, and D. R. MacAyeal. submitted. Laboratory investigations of iceberg-capsize dynamics, energy dissipation and tsunamigenesis. J. Geophys. Res.
Angiotensin-converting enzyme 2 activation improves endothelial function.
Fraga-Silva, Rodrigo A; Costa-Fraga, Fabiana P; Murça, Tatiane M; Moraes, Patrícia L; Martins Lima, Augusto; Lautner, Roberto Q; Castro, Carlos H; Soares, Célia Maria A; Borges, Clayton L; Nadu, Ana Paula; Oliveira, Marilene L; Shenoy, Vinayak; Katovich, Michael J; Santos, Robson A S; Raizada, Mohan K; Ferreira, Anderson J
2013-06-01
Diminished release and function of endothelium-derived nitric oxide coupled with increases in reactive oxygen species production is critical in endothelial dysfunction. Recent evidences have shown that activation of the protective axis of the renin-angiotensin system composed by angiotensin-converting enzyme 2, angiotensin-(1-7), and Mas receptor promotes many beneficial vascular effects. This has led us to postulate that activation of intrinsic angiotensin-converting enzyme 2 would improve endothelial function by decreasing the reactive oxygen species production. In the present study, we tested 1-[[2-(dimetilamino)etil]amino]-4-(hidroximetil)-7-[[(4-metilfenil)sulfonil]oxi]-9H-xantona-9 (XNT), a small molecule angiotensin-converting enzyme 2 activator, on endothelial function to validate this hypothesis. In vivo treatment with XNT (1 mg/kg per day for 4 weeks) improved the endothelial function of spontaneously hypertensive rats and of streptozotocin-induced diabetic rats when evaluated through the vasorelaxant responses to acetylcholine/sodium nitroprusside. Acute in vitro incubation with XNT caused endothelial-dependent vasorelaxation in aortic rings of rats. This vasorelaxation effect was attenuated by the Mas antagonist D-pro7-Ang-(1-7), and it was reduced in Mas knockout mice. These effects were associated with reduction in reactive oxygen species production. In addition, Ang II-induced reactive oxygen species production in human aortic endothelial cells was attenuated by preincubation with XNT. These results showed that chronic XNT administration improves the endothelial function of hypertensive and diabetic rat vessels by attenuation of the oxidative stress. Moreover, XNT elicits an endothelial-dependent vasorelaxation response, which was mediated by Mas. Thus, this study indicated that angiotensin-converting enzyme 2 activation promotes beneficial effects on the endothelial function and it is a potential target for treating cardiovascular disease.
Ademosun, Ayokunle O.; Ademiluyi, Adedayo O.; Omojokun, Olasunkanmi S.; Nwanna, Esther E.; Longe, Kuburat O.
2014-01-01
Background. This study sought to investigate the antidiabetic and antihypertensive mechanisms of cocoa (Theobroma cacao) bean through inhibition of α-amylase, α-glucosidase, angiotensin-1 converting enzyme, and oxidative stress. Methodology. The total phenol and flavonoid contents of the water extractable phytochemicals from the powdered cocoa bean were determined and the effects of the extract on α-amylase, α-glucosidase, and angiotensin-1 converting enzyme activities were investigated in vitro. Furthermore, the radicals [1,1-diphenyl-2 picrylhydrazyl (DPPH), 2,2..-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS), hydroxyl (OH), and nitric oxide (NO)] scavenging ability and ferric reducing antioxidant property of the extract were assessed. Results. The results revealed that the extract inhibited α-amylase (1.81 ± 0.22 mg/mL), α-glucosidase (1.84 ± 0.17 mg/mL), and angiotensin-1 converting enzyme (0.674 ± 0.06 mg/mL [lungs], 1.006 ± 0.08 mg/mL [heart]) activities in a dose-dependent manner and also showed dose-dependent radicals [DPPH (16.94 ± 1.34 mg/mL), NO (6.98 ± 0.886 mg/mL), OH (3.72 ± 0.26 mg/mL), and ABTS (15.7 ± 1.06 mmol/TEAC·g] scavenging ability. Conclusion. The inhibition of α-amylase, α-glucosidase, and angiotensin-1 converting enzyme activities by the cocoa bean extract could be part of the possible mechanism by which the extract could manage and/or prevent type-2 diabetes and hypertension. PMID:25295218
Cesari, Matteo; Kritchevsky, Stephen B; Atkinson, Hal H; Penninx, Brenda W; Di Bari, Mauro; Tracy, Russell P; Pahor, Marco
2009-02-01
Beneficial effects of angiotensin-converting enzyme (ACE) inhibitors seem to be mediated by mechanisms that are partly independent of blood pressure lowering. The present study evaluates effects of an ACE inhibitor (ie, fosinopril) intervention on novel cardiovascular risk factors. Data are from the Trial of Angiotensin Converting Enzyme Inhibition and Novel Cardiovascular Risk Factors (TRAIN) study, a double-blind, crossover, randomized, placebo-controlled trial enrolling subjects > or =55 years old with high cardiovascular disease risk profile. Biomarkers of hemostasis (ie, plasminogen activator inhibitor 1, D-dimer), inflammation (ie, C-reactive protein, interleukin-6), and endothelial function (ie, endothelin 1, vascular cell adhesion molecule 1) were measured at the baseline, at the midterm, and at end of follow-up (after 1 year) clinic visits. Paired t test analyses (after Sidak's adjustment, P < .009) were performed to compare biomarkers modifications after fosinopril/placebo interventions. Mean age of the sample (n = 290, women 43.4%) was 66.0 years old. No significant differences were reported for C-reactive protein, interleukin 6, plasminogen activator inhibitor 1, vascular cell adhesion molecule 1, and endothelin 1 levels in the comparisons between fosinopril and placebo interventions. D-dimer was the only biomarker showing a significant difference between fosinopril intervention (median 0.32 microg/mL, interquartile range 0.22-0.52 microg/mL) and placebo (median 0.29 microg/mL, interquartile range 0.20-0.47 microg/mL, P = .007) when analyses were restricted to participants with higher compliance to treatment and receiving the maximum ACE inhibitor dosage. Angiotensin-converting enzyme inhibition does not significantly modify major biomarkers of inflammation, hemostasis, and endothelial function. Further studies should confirm the possible effect of ACE inhibitors on the fibrinolysis pathway.
Oboh, Ganiyu; Ademosun, Ayokunle O; Ademiluyi, Adedayo O; Omojokun, Olasunkanmi S; Nwanna, Esther E; Longe, Kuburat O
2014-01-01
Background. This study sought to investigate the antidiabetic and antihypertensive mechanisms of cocoa (Theobroma cacao) bean through inhibition of α-amylase, α-glucosidase, angiotensin-1 converting enzyme, and oxidative stress. Methodology. The total phenol and flavonoid contents of the water extractable phytochemicals from the powdered cocoa bean were determined and the effects of the extract on α-amylase, α-glucosidase, and angiotensin-1 converting enzyme activities were investigated in vitro. Furthermore, the radicals [1,1-diphenyl-2 picrylhydrazyl (DPPH), 2,2..-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS), hydroxyl (OH), and nitric oxide (NO)] scavenging ability and ferric reducing antioxidant property of the extract were assessed. Results. The results revealed that the extract inhibited α-amylase (1.81 ± 0.22 mg/mL), α-glucosidase (1.84 ± 0.17 mg/mL), and angiotensin-1 converting enzyme (0.674 ± 0.06 mg/mL [lungs], 1.006 ± 0.08 mg/mL [heart]) activities in a dose-dependent manner and also showed dose-dependent radicals [DPPH (16.94 ± 1.34 mg/mL), NO (6.98 ± 0.886 mg/mL), OH (3.72 ± 0.26 mg/mL), and ABTS (15.7 ± 1.06 mmol/TEAC·g] scavenging ability. Conclusion. The inhibition of α-amylase, α-glucosidase, and angiotensin-1 converting enzyme activities by the cocoa bean extract could be part of the possible mechanism by which the extract could manage and/or prevent type-2 diabetes and hypertension.
Soares, Abel Esteves; Maes, Michael; Godeny, Paula; Matsumoto, Andressa Keiko; Barbosa, Décio Sabbatini; da Silva, Taysa Antonia F; Souza, Flávio Henrique M O; Delfino, Vinicius Daher Alvares
2017-12-15
Vitamin D has anti-inflammatory, anti-fibrotic effect, and may block the intrarenal renin-angiotensin system. Adequate vitamin D levels in conjunction with the use of Angiotensin-converting Enzyme Inhibitors/Angiotensin Receptor Blockers may help to slow down chronic kidney disease progression. To study a possible beneficial effect of vitamin D supplementation in chronic kidney disease patients using angiotensin-converting enzyme inhibitors/angiotensin receptor blockers on chronic kidney disease progression we performed a clinical study involving vitamin D supplementation in patients with deficiency of this vitamin. This study was conducted in two chronic kidney disease clinics in the city of Londrina, Brazil, from October 2010 to December 2012. It was involved stage 3 and 4 chronic kidney disease (estimated glomerular filtration rate between 60 and 15mL/min/1.73m 2 ) patients with and without vitamin D deficiency. The patients ingested six-month cholecalciferol 50,000IU oral supplementation to chronic kidney disease patients with vitamin D deficiency. We hypothesize changes in estimated glomerular filtration rate over study period. Our data demonstrate reservation of estimated glomerular filtration with cholecalciferol supplementation to chronic kidney disease patients taking angiotensin-converting enzyme inhibitors/angiotensin receptor blockers. The combination treatment of angiotensin converting enzyme inhibitors/angiotensin receptor blockers with cholecalciferol prevents the decline in estimated glomerular filtration in patients with chronic kidney disease following treatment with angiotensin-converting enzyme inhibitors/angiotensin receptor blockers and may represent a valid approach to reduce renal disease progression in chronic kidney disease patients with vitamin D deficiency. This result needs confirmation in prospective controlled clinical trials. Copyright © 2017. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Rivkina, Elizaveta; Petrovskaya, Lada; Vishnivetskaya, Tatiana; Krivushin, Kirill; Shmakova, Lyubov; Tutukina, Maria; Meyers, Arthur; Kondrashov, Fyodor
2016-04-01
A comparative analysis of the metagenomes from two 30 000-year-old permafrost samples, one of lake-alluvial origin and the other from late Pleistocene Ice Complex sediments, revealed significant differences within microbial communities. The late Pleistocene Ice Complex sediments (which have been characterized by the absence of methane with lower values of redox potential and Fe2+ content) showed a low abundance of methanogenic archaea and enzymes from both the carbon and nitrogen cycles, but a higher abundance of enzymes associated with the sulfur cycle. The metagenomic and geochemical analyses described in the paper provide evidence that the formation of the sampled late Pleistocene Ice Complex sediments likely took place under much more aerobic conditions than lake-alluvial sediments.
Arslan, Seza; Eyi, Ayla; Küçüksarı, Rümeysa
2014-02-01
Bacillus spp. can be recovered from almost every environment. It is also found readily in foods, where it may cause food spoilage and/or food poisoning due to its toxigenic and pathogenic nature, and extracellular enzymes. In this study, 29 Bacillus cereus group strains from ice cream were examined for the presence of following virulence genes hblC, nheA, cytK and ces genes, and tested for a range of the extracellular enzymes, and antimicrobial susceptibility. The strains were found to produce extracellular enzymes: proteolytic and lipolytic activity, gelatin hydrolysis and lecithinase production (100%), DNase production (93.1%) and amylase activity (93.1%). Of 29 strains examined, 24 (82.8%) showed hemolytic activity on blood agar. Beta-lactamase enzyme was only produced by 20.7% of B. cereus group. Among 29 B. cereus group from ice cream, nheA was the most common virulence gene detected in 44.8% of the strains, followed by hblC gene with 17.2%. Four (13.8%) of the 29 strains were positive for both hblC gene and nheA gene. Contrarily, cytK and ces genes were not detected in any of the strains. Antimicrobial susceptibility of ice cream isolates was tested to 14 different antimicrobial agents using the disc diffusion method. We detected resistance to penicillin and ampicillin with the same rate of 89.7%. Thirty-one percent of the strains were multiresistant to three or more antibiotics. This study emphasizes that the presence of natural isolates of Bacillus spp. harboring one or more enterotoxin genes, producing extracellular enzymes which may cause spoilage and acquiring antibiotic resistance might hold crucial importance in the food safety and quality. Copyright © 2013 Elsevier Ltd. All rights reserved.
Nomura, Taiji; Ogita, Shinjiro; Kato, Yasuo
2012-06-01
Tuliposides, the glucose esters of 4-hydroxy-2-methylenebutanoate and 3,4-dihydroxy-2-methylenebutanoate, are major secondary metabolites in tulip (Tulipa gesneriana). Their lactonized aglycons, tulipalins, function as defensive chemicals due to their biological activities. We recently found that tuliposide-converting enzyme (TCE) purified from tulip bulbs catalyzed the conversion of tuliposides to tulipalins, but the possibility of the presence of several TCE isozymes was raised: TCE in tissues other than bulbs is different from bulb TCE. Here, to prove this hypothesis, TCE was purified from petals, which have the second highest TCE activity after bulbs. The purified enzyme, like the bulb enzyme, preferentially accepted tuliposides as substrates, with 6-tuliposide A the best substrate, which allowed naming the enzyme tuliposide A-converting enzyme (TCEA), but specific activity and molecular mass differed between the petal and bulb enzymes. After peptide sequencing, a novel cDNA (TgTCEA) encoding petal TCEA was isolated, and the functional characterization of the recombinant enzyme verified that TgTCEA catalyzes the conversion of 6-tuliposide A to tulipalin A. TgTCEA was transcribed in all tulip tissues but not in bulbs, indicating the presence of a bulb-specific TgTCEA, as suggested by the distinct enzymatic characters between the petal and bulb enzymes. Plastidial localization of TgTCEA enzyme was revealed, which allowed proposing a cytological mechanism of TgTCE-mediated tulipalin formation in the tulip defensive strategy. Site-directed mutagenesis of TgTCEA suggested that the oxyanion hole and catalytic triad characteristic of typical carboxylesterases are essential for the catalytic process of TgTCEA enzyme. To our knowledge, TgTCEA is the first identified member of the lactone-forming carboxylesterases, specifically catalyzing intramolecular transesterification.
Nomura, Taiji; Ogita, Shinjiro; Kato, Yasuo
2012-01-01
Tuliposides, the glucose esters of 4-hydroxy-2-methylenebutanoate and 3,4-dihydroxy-2-methylenebutanoate, are major secondary metabolites in tulip (Tulipa gesneriana). Their lactonized aglycons, tulipalins, function as defensive chemicals due to their biological activities. We recently found that tuliposide-converting enzyme (TCE) purified from tulip bulbs catalyzed the conversion of tuliposides to tulipalins, but the possibility of the presence of several TCE isozymes was raised: TCE in tissues other than bulbs is different from bulb TCE. Here, to prove this hypothesis, TCE was purified from petals, which have the second highest TCE activity after bulbs. The purified enzyme, like the bulb enzyme, preferentially accepted tuliposides as substrates, with 6-tuliposide A the best substrate, which allowed naming the enzyme tuliposide A-converting enzyme (TCEA), but specific activity and molecular mass differed between the petal and bulb enzymes. After peptide sequencing, a novel cDNA (TgTCEA) encoding petal TCEA was isolated, and the functional characterization of the recombinant enzyme verified that TgTCEA catalyzes the conversion of 6-tuliposide A to tulipalin A. TgTCEA was transcribed in all tulip tissues but not in bulbs, indicating the presence of a bulb-specific TgTCEA, as suggested by the distinct enzymatic characters between the petal and bulb enzymes. Plastidial localization of TgTCEA enzyme was revealed, which allowed proposing a cytological mechanism of TgTCE-mediated tulipalin formation in the tulip defensive strategy. Site-directed mutagenesis of TgTCEA suggested that the oxyanion hole and catalytic triad characteristic of typical carboxylesterases are essential for the catalytic process of TgTCEA enzyme. To our knowledge, TgTCEA is the first identified member of the lactone-forming carboxylesterases, specifically catalyzing intramolecular transesterification. PMID:22474185
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Fact sheet describing NREL's work with enzyme producers Novozymes and Genencor to engineer new cellulase enzymes to breakdown cellulosic ethanol into fermentable sugars that can be converted into biofuels.
Pharmacologic modulation of ACE2 expression.
Soler, María José; Barrios, Clara; Oliva, Raymond; Batlle, Daniel
2008-10-01
Angiotensin-converting enzyme 2 (ACE2) is an enzymatically active homologue of angiotensin-converting enzyme that degrades angiotensin I, angiotensin II, and other peptides. Recent studies have shown that under pathologic conditions, ACE2 expression in the kidney is altered. In this review, we briefly summarize recent studies dealing with pharmacologic interventions that modulate ACE2 expression. ACE2 amplification may have a potential therapeutic role for kidney disease and hypertension.
Rediscovering ACE: Novel insights into the many roles of the angiotensin-converting enzyme
Gonzalez-Villalobos, Romer A.; Shen, Xiao Z.; Bernstein, Ellen A.; Janjulia, Tea; Taylor, Brian; Giani, Jorge F.; Blackwell, Wendell-Lamar B.; Shah, Kandarp H.; Shi, Peng D.; Fuchs, Sebastien; Bernstein, Kenneth E.
2013-01-01
Angiotensin converting enzyme (ACE) is best known for the catalytic conversion of angiotensin I to angiotensin II. However, the use of gene-targeting techniques has led to mouse models highlighting many other biochemical properties and actions of this enzyme. This review discusses recent studies examining the functional significance of ACE tissue-specific expression and the presence in ACE of two independent catalytic sites with distinct substrates and biological effects. It is these features which explain why ACE makes important contributions to many different physiological processes including renal development, blood pressure control, inflammation and immunity. PMID:23686164
Harris, R B; Wilson, I B
1983-01-25
A set of chemical reactions was used to show that one glutamic acid residue at the active site of bovine lung angiotensin I-converting enzyme is esterified with the alkylating agent p-[N,N-bis(chloroethyl)amino] phenylbutyryl-L-Pro (chlorambucyl-L-Pro), an affinity label for this enzyme (Harris, R. B., and Wilson, I. B. (1982) J. Biol. Chem. 257, 811-815). The same procedure was used to confirm that a glutamic acid residue of carboxypeptidase A alpha is esterified by reaction with bromoacetyl-N-methyl-L-phenylalanine (Haas, G. M., and Neurath, H. (1971) Biochemistry 10, 3535-3546). In the procedure described in this paper, the esterified residue at the active site is converted to the hydroxamic acid by reaction with hydroxylamine and the hydroxamic acid is subject to the Lossen rearrangement. If a glutamic acid residue was esterified, 1 eq of 2,4-diaminobutyric acid will be formed. Aspartyl esters will give 2,3-diaminopropionic acid. The diamino acids can be quantitatively measured using the short column of an amino acid analyzer if the amount of lysine and histidine is largely decreased by modification with suitable side chain protecting groups. With carboxypeptidase A, the reactions were done on the whole undigested enzyme. With the converting enzyme, we first cleaved the esterified enzyme with cyanogen bromide. Twenty-nine cleavage peptides were separated on high performance liquid chromatography and one of these contained all of the bound radioactive inhibitor. This active site peptide was then subjected to the derivatization and Lossen procedures, and 1 eq of 2,4-diaminobutyric acid was obtained.
Bukhari, S N A; Butt, A M; Amjad, M W B; Ahmad, W; Shah, V H; Trivedi, A R
2013-11-01
Hypertension is a widespread and frequently progressive ailment that imparts a foremost threat for cardiovascular and renal disorders. Mammoth efforts are needed for the synthesis of innovative antihypertensive agents to combat this lethal disease. Chalcones have shown antihypertensive activity through inhibition of Angiotensin Converting Enzyme (ACE). Hence, a series of chalcone analogues is synthesized and used as precursor for the synthesis of novel series of pyrimidines. Precursor chalcones were prepared by reacting aldehydes and ketones in presence of sodium hydroxide followed by synthesis of corresponding pyrimidines by reaction with urea in presence of potassium hydroxide. Both groups were then evaluated for their effects on ACE. The results depicted that pyrimidines were more active than chalcones with methoxy (C5 and P5) substitution showing best results to inhibit ACE. Given that chalcone analogues and pyrimidines show a potential as the angiotensin converting enzyme inhibitors.
NASA Astrophysics Data System (ADS)
Singh, Jaideep; Her, Cheenou; Krishnan, V. V.
2018-02-01
The anomerization of carbohydrates is an essential process that determines the relative stabilization of stereoisomers in an aqueous solution. In a typical real-time enzyme kinetics experiment, the substrate (sucrose) is converted to glucose and fructose by the enzyme invertase. The product (α-D-glucose) starts to convert to β-D-glucose immediately by hydrolysis. Though the anomerization process is independent of the enzyme catalysis, the progress curve describing the production of β-D-glucose from α-D-glucose is directly affected by the kinetics of consecutive reactions. When α-D-glucose is continually converted to β-D-glucose, by the enzymatic action, the time course of both α- and β-D-glucose is influenced by the enzyme kinetics. Thus, a reversible first-order rate equation is not adequate to model the reaction mechanism, leading to erroneous results on the rates of formation of the glucose anomers. In this manuscript, we incorporate an approximate method to address consecutive general reactions involving enzyme kinetics and first-order reaction processes. The utility of the approach is demonstrated in the real-time NMR measurement of the anomerization process of α-D-glucose (enzymatically produced from sucrose) to β-D-glucose, as a function of invertase enzyme concentration. Variable temperature experiments were used to estimate the thermodynamic parameters of the anomerization process and are consistent with literature values.
Pathway for biodegradation of p-nitrophenol in a Moraxella sp
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spain, J.C.; Gibson, D.T.
1991-03-01
A Moraxella strain grew on p-nitrophenol with stoichiometric release of nitrite. During induction of the enzymes for growth on p-nitrophenol, traces of hydroquinone accumulated in the medium. In the presence of 2,2{prime}-dipyidyl, p-nitrophenol, was converted stoichiometrically to hydroquinone. Particulate enzymes catalyzed the conversion of p-nitrophenol to hydroquinone in the presence of NADPH and oxygen. Soluble enzymes catalyzed the conversion of hydroquinone to {gamma}-hydroxymuconic semialdehyde, which was identified by high-performance liquid chromatography (HPLC)-mass spectroscopy. Upon addition of catalytic amounts of NAD{sup +}, {gamma}-hydroxymuconic semialdehyde was converted to {beta}-ketoadipic acid. In the presence of pyruvate and lactic dehydrogenase, substrate amounts of NADmore » were required and {gamma}-hydroxymuconic semialdehyde was converted to maleylacetic acid, which was identified by HPLC-mass spectroscopy. Similar results were obtained when the reaction was carried out in the presence of potassium ferricyanide. Extracts prepared from p-nitrophenol-grown cells also contained an enzyme that catalyzed the oxidation of 1,2,4-benzenetriol to maleylacetic acid. The enzyme responsible for the oxidation of 1,2,4-benzenetriol was separated from the enzyme responsible for hydroquinone oxidation by DEAE-cellulose chromatography. The results indicate that the pathway for biodegradation of p-nitrophenol involves the initial removal of the nitro group as nitrite and formation of hydroquinone.« less
Gengo, F M; Gabos, C
1988-07-01
The most common mild side effects occurring with use of beta-blockers, thiazide diuretics, and angiotensin-converting enzyme inhibitors for blood pressure control are central nervous system symptoms, specifically lethargy, sedation, and fatigue. These symptoms affect 5% to 10% of patients taking these drugs. The mechanism by which beta-blockers may induce central nervous system effects is uncertain. Relative lipophilicity as a factor affecting penetrance of the blood-brain barrier has not proved to be a reliable predictor of whether the drug will cause such disturbances. Comparisons of atenolol (hydrophilic) and metoprolol (lipophilic) have shown no differences between these drugs with respect to side effects of the central nervous system. The incidence of central nervous system effects with angiotensin-converting enzyme inhibitors is similar to that for most beta-blockers. The precise role of the angiotensin-converting enzyme in the central nervous system is not well defined. Most thiazide diuretics are not associated with major complications of the central nervous system, although electrolyte imbalance may occasionally lead to complaints of neurologic symptoms. Because the incidence of central nervous system effects with these three classes of drugs is so low, concern for the side effects of the central nervous system is not a prime consideration in the choice of an initial antihypertensive agent.
Raml, A; Schmekal, B; Grafinger, P; Biesenbach, G
2001-11-23
The risk for hyperkalaemia during therapy with angiotensin-converting enzyme inhibitors is especially increased in the elderly diabetic because of a decrease in glomerular filtration rate (GFR), as well as the occurrence of hyporeninaemic hypoaldosteronism. We evaluated the risk for hyperkalaemia under long-term angiotensin-converting enyzme inhibition in 86 insulin-dependent type 2 diabetic patients in relation to their GFR. We compared the influence of a 3 to 6 months long treatment with angiotensin-converting enzyme inhibitors on the serum potassium levels, the creatinine clearance and the urinary albumin excretion in insulin-dependent type 2 diabetic patients with an initial creatinine clearance < 50 ml/min/1.73m(2) (n = 15, age 66 +/- 6 years) and >/= 50 ml/min/1.73m(2) respectively (n = 71, age 61 +/- 10 years). In addition, we also investigated the influence on the metabolic control and the blood pressure values in both groups of patients. In the patients with creatinine clearance >/= 50 ml/min/1,73m(2) the mean potassium level increased from 4.3 +/- 0.2 to 4.6 +/- 0.4 mmol/l (P < 0,01), while the incidence of a potassium level > 5 mmol/l was 17 %. In the group with a creatinine clearance < 50 ml/min/1.73m(2) the potassium level rose from 4.5 +/- 0.2 to 5.0 +/- 0.4 mmol/l (P < 0.01). The incidence of potassium levels > 5 mmol/l was 66 % (P < 0,01). In both patient groups the creatinine clearances did not change significantly during angiotensin-converting enzyme inhibition, and the urinary albumin excretion as well as the HbA(1c) values and blood pressure showed only a tendency towards a decrease. Long-term treatment with angiotensin-converting enzyme inhibitors in insulin-dependent type 2 diabetic patients leads to a significant increase in serum potassium. The incidence of hyperkalaemia with potassium levels > 5 mmol/l is significantly higher in the patients with initial creatinine clearance < 50 ml/min/1.73m(2). Severe hyperkalaemia with potassium levels > 6 mmol/l was not observed.
Catalytic crystallization of ices by small silicate smokes at temperatures less than 20K
NASA Technical Reports Server (NTRS)
Moore, M.; Ferrante, R.; Hudson, R.; Tanabe, T.; Nuth, J.
1993-01-01
Samples of methanol and water ices condensed from the vapor onto aluminum substrates at low temperatures (below approximately 80 K) form amorphous ices; annealing at temperatures in excess of 140-155 K is usually required to convert such amorphous samples to crystalline ices. However, we have found that when either methanol or water vapor is deposited on to aluminum substrates that have been coated with a thin (0.1-0.5 mm) layer of amorphous silicate smoke, the ices condense in crystalline form. We believe that crystalline ice forms as the result of energy liberated at the ice/silicate interface perhaps due to weak bonding of the ice at defect sites on the grains and the very high surface to volume ratio and defect density of these smokes. Annealing of amorphous water ice mixed with more volatile components such as methane, carbon monoxide, etc., has been suggested as an efficient way to produce clatherates in the outer solar nebula and thus explain the volatile content of comets and icy satellites of the outer planets. This hypothesis may need to be re-examined if amorphous ice does not form on cold silicate grains.
Evidence of unfrozen liquids and seismic anisotropy at the base of the polar ice sheets
NASA Astrophysics Data System (ADS)
Wittlinger, Gérard; Farra, Véronique
2015-03-01
We analyze seismic data from broadband stations located on the Antarctic and Greenland ice sheets to determine polar ice seismic velocities. P-to-S converted waves at the ice/rock interface and inside the ice sheets and their multiples (the P-receiver functions) are used to estimate in-situ P-wave velocity (Vp) and P-to-S velocity ratio (Vp/Vs) of polar ice. We find that the polar ice sheets have a two-layer structure; an upper layer of variable thickness (about 2/3 of the total thickness) with seismic velocities close to the standard ice values, and a lower layer of approximately constant thickness with standard Vp but ∼25% smaller Vs. The lower layer ceiling corresponds approximately to the -30 °C isotherm. Synthetic modeling of P-receiver functions shows that strong seismic anisotropy and low vertical S velocity are needed in the lower layer. The seismic anisotropy results from the preferred orientation of ice crystal c-axes toward the vertical. The low vertical S velocity may be due to the presence of unfrozen liquids resulting from premelting at grain joints and/or melting of chemical solutions buried in the ice. The strongly preferred ice crystal orientation fabric and the unfrozen fluids may facilitate polar ice sheet basal flow.
Nomura, Taiji; Murase, Tatsunori; Ogita, Shinjiro; Kato, Yasuo
2015-07-01
6-Tuliposides A (PosA) and B (PosB), which are the major secondary metabolites in tulip (Tulipa gesneriana), are enzymatically converted to the antimicrobial lactonized aglycons, tulipalins A (PaA) and B (PaB), respectively. We recently identified a PosA-converting enzyme (TCEA) as the first reported member of the lactone-forming carboxylesterases. Herein, we describe the identification of another lactone-forming carboxylesterase, PosB-converting enzyme (TCEB), which preferentially reacts with PosB to give PaB. This enzyme was isolated from tulip pollen, which showed high PosB-converting activity. Purified TCEB exhibited greater activity towards PosB than PosA, which was contrary to that of the TCEA. Novel cDNA (TgTCEB1) encoding the TCEB was isolated from tulip pollen. TgTCEB1 belonged to the carboxylesterase family and was approximately 50% identical to the TgTCEA polypeptides. Functional characterization of the recombinant enzyme verified that TgTCEB1 catalyzed the conversion of PosB to PaB with an activity comparable with the native TCEB. RT-qPCR analysis of each part of plant revealed that TgTCEB1 transcripts were limited almost exclusively to the pollen. Furthermore, the immunostaining of the anther cross-section using anti-TgTCEB1 polyclonal antibody verified that TgTCEB1 was specifically expressed in the pollen grains, but not in the anther cells. N-terminal transit peptide of TgTCEB1 was shown to function as plastid-targeted signal. Taken together, these results indicate that mature TgTCEB1 is specifically localized in plastids of pollen grains. Interestingly, PosB, the substrate of TgTCEB1, accumulated on the pollen surface, but not in the intracellular spaces of pollen grains. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.
Melting Frozen Droplets Using Photo-Thermal Traps
NASA Astrophysics Data System (ADS)
Dash, Susmita; de Ruiter, Jolet; Varanasi, Kripa
2017-11-01
Ice buildup is an operational and safety hazard in wind turbines, power lines, and airplanes. While traditional de-icing methods are energy-intensive or environmentally unfriendly, passive anti-icing approach using superhydrophobic surfaces fails under humid conditions, which necessitates development of passive deicing methods. Here, we investigate a passive technique for deicing using a multi-layer surface design that can efficiently absorb and convert the incident solar radiation to heat. The corresponding increase in substrate temperature allows for easy removal of frozen droplets from the surface. We demonstrate the deicing performance of the designed surface both at very low temperatures, and under frost and snow coverage.
21 CFR 184.1388 - Lactase enzyme preparation from Kluyveromyces lactis.
Code of Federal Regulations, 2014 CFR
2014-04-01
...) This enzyme preparation is derived from the nonpathogenic, nontoxicogenic yeast Kluyveromyces lactis... 683), which converts lactose to glucose and galactose. It is prepared from yeast that has been grown...
Passive microwave remote sensing for sea ice research
NASA Technical Reports Server (NTRS)
1984-01-01
Techniques for gathering data by remote sensors on satellites utilized for sea ice research are summarized. Measurement of brightness temperatures by a passive microwave imager converted to maps of total sea ice concentration and to the areal fractions covered by first year and multiyear ice are described. Several ancillary observations, especially by means of automatic data buoys and submarines equipped with upward looking sonars, are needed to improve the validation and interpretation of satellite data. The design and performance characteristics of the Navy's Special Sensor Microwave Imager, expected to be in orbit in late 1985, are described. It is recommended that data from that instrument be processed to a form suitable for research applications and archived in a readily accessible form. The sea ice data products required for research purposes are described and recommendations for their archival and distribution to the scientific community are presented.
NASA Sea Ice and Snow Validation Program for the DMSP SSM/I: NASA DC-8 flight report
NASA Technical Reports Server (NTRS)
Cavalieri, D. J.
1988-01-01
In June 1987 a new microwave sensor called the Special Sensor Microwave Imager (SSM/I) was launched as part of the Defense Meteorological Satellite Program (DMSP). In recognition of the importance of this sensor to the polar research community, NASA developed a program to acquire the data, to convert the data into sea ice parameters, and finally to validate and archive both the SSM/I radiances and the derived sea ice parameters. Central to NASA's sea ice validation program was a series of SSM/I aircraft underflights with the NASA DC-8 airborne Laboratory. The mission (the Arctic '88 Sea Ice Mission) was completed in March 1988. This report summarizes the mission and includes a summary of aircraft instrumentation, coordination with participating Navy aircraft, flight objectives, flight plans, data collected, SSM/I orbits for each day during the mission, and lists several piggyback experiments supported during this mission.
Enzymes: A Workshop for Secondary School Students.
ERIC Educational Resources Information Center
Bering, C. Larry
1994-01-01
Describes the weekend science workshop on enzymes and includes several projects that involve students directly, parts of which can be incorporated into a traditional chemistry, biology, or physical science course at the secondary level. Subjects include catalysts and catalytic converters in cars, enzymes as consumer products and in industrial…
On the nature of the sea ice albedo feedback in simple models.
Moon, W; Wettlaufer, J S
2014-08-01
We examine the nature of the ice-albedo feedback in a long-standing approach used in the dynamic-thermodynamic modeling of sea ice. The central issue examined is how the evolution of the ice area is treated when modeling a partial ice cover using a two-category-thickness scheme; thin sea ice and open water in one category and "thick" sea ice in the second. The problem with the scheme is that the area evolution is handled in a manner that violates the basic rules of calculus, which leads to a neglected area evolution term that is equivalent to neglecting a leading-order latent heat flux. We demonstrate the consequences by constructing energy balance models with a fractional ice cover and studying them under the influence of increased radiative forcing. It is shown that the neglected flux is particularly important in a decaying ice cover approaching the transitions to seasonal or ice-free conditions. Clearly, a mishandling of the evolution of the ice area has leading-order effects on the ice-albedo feedback. Accordingly, it may be of considerable importance to reexamine the relevant climate model schemes and to begin the process of converting them to fully resolve the sea ice thickness distribution in a manner such as remapping, which does not in principle suffer from the pathology we describe.
On the nature of the sea ice albedo feedback in simple models
Moon, W; Wettlaufer, J S
2014-01-01
We examine the nature of the ice-albedo feedback in a long-standing approach used in the dynamic-thermodynamic modeling of sea ice. The central issue examined is how the evolution of the ice area is treated when modeling a partial ice cover using a two-category-thickness scheme; thin sea ice and open water in one category and “thick” sea ice in the second. The problem with the scheme is that the area evolution is handled in a manner that violates the basic rules of calculus, which leads to a neglected area evolution term that is equivalent to neglecting a leading-order latent heat flux. We demonstrate the consequences by constructing energy balance models with a fractional ice cover and studying them under the influence of increased radiative forcing. It is shown that the neglected flux is particularly important in a decaying ice cover approaching the transitions to seasonal or ice-free conditions. Clearly, a mishandling of the evolution of the ice area has leading-order effects on the ice-albedo feedback. Accordingly, it may be of considerable importance to reexamine the relevant climate model schemes and to begin the process of converting them to fully resolve the sea ice thickness distribution in a manner such as remapping, which does not in principle suffer from the pathology we describe. PMID:26213674
Prebiotic chemistry in eutectic solutions at the water-ice matrix.
Menor-Salván, César; Marín-Yaseli, Margarita R
2012-08-21
A crystalline ice matrix at subzero temperatures can maintain a liquid phase where organic solutes and salts concentrate to form eutectic solutions. This concentration effect converts the confined reactant solutions in the ice matrix, sometimes making condensation and polymerisation reactions occur more favourably. These reactions occur at significantly high rates from a prebiotic chemistry standpoint, and the labile products can be protected from degradation. The experimental study of the synthesis of nitrogen heterocycles at the ice-water system showed the efficiency of this scenario and could explain the origin of nucleobases in the inner Solar System bodies, including meteorites and extra-terrestrial ices, and on the early Earth. The same conditions can also favour the condensation of monomers to form ribonucleic acid and peptides. Together with the synthesis of these monomers, the ice world (i.e., the chemical evolution in the range between the freezing point of water and the limit of stability of liquid brines, 273 to 210 K) is an under-explored experimental model in prebiotic chemistry.
More Nuts and Bolts of Michaelis-Menten Enzyme Kinetics
ERIC Educational Resources Information Center
Lechner, Joseph H.
2011-01-01
Several additions to a classroom activity are proposed in which an "enzyme" (the student) converts "substrates" (nut-bolt assemblies) into "products" (separated nuts and bolts) by unscrewing them. (Contains 1 table.)
Investigation into the Mechanism of Homo- and Heterodimerization of Angiotensin-Converting Enzyme.
Abrie, J Albert; Moolman, Wessel J A; Cozier, Gyles E; Schwager, Sylva L; Acharya, K Ravi; Sturrock, Edward D
2018-04-01
Angiotensin-converting enzyme (ACE) plays a central role in the renin-angiotensin system (RAS), which is primarily responsible for blood pressure homeostasis. Studies have shown that ACE inhibitors yield cardiovascular benefits that cannot be entirely attributed to the inhibition of ACE catalytic activity. It is possible that these benefits are due to interactions between ACE and RAS receptors that mediate the protective arm of the RAS, such as angiotensin II receptor type 2 (AT 2 R) and the receptor MAS. Therefore, in this study, we investigated the molecular interactions of ACE, including ACE homodimerization and heterodimerization with AT 2 R and MAS, respectively. Molecular interactions were assessed by fluorescence resonance energy transfer and bimolecular fluorescence complementation in human embryonic kidney 293 cells and Chinese hamster ovary-K1 cells transfected with vectors encoding fluorophore-tagged proteins. The specificity of dimerization was verified by competition experiments using untagged proteins. These techniques were used to study several potential requirements for the germinal isoform of angiotensin-converting enzyme expressed in the testes (tACE) dimerization as well as the effect of ACE inhibitors on both somatic isoforms of angiotensin-converting enzyme expressed in the testes (sACE) and tACE dimerization. We demonstrated constitutive homodimerization of sACE and of both of its domains separately, as well as heterodimerization of both sACE and tACE with AT 2 R, but not MAS. In addition, we investigated both soluble sACE and the sACE N domain using size-exclusion chromatography-coupled small-angle X-ray scattering and we observed dimers in solution for both forms of the enzyme. Our results suggest that ACE homo- and heterodimerization does occur under physiologic conditions. Copyright © 2018 by The American Society for Pharmacology and Experimental Therapeutics.
Gilbert, Cameron; Wald, Ron; Bell, Chaim; Perl, Jeff; Juurlink, David; Beyene, Joseph; Shah, Prakesh S
2012-01-01
Objective To examine the safety of using aliskiren combined with agents used to block the renin-angiotensin system. Design Systematic review and meta-analysis of randomised controlled trials. Data sources Medline, Embase, the Cochrane Library, and two trial registries, published up to 7 May 2011. Study selection Published and unpublished randomised controlled trials that compared combined treatment using aliskiren and angiotensin converting enzyme inhibitors or angiotensin receptor blockers with monotherapy using these agents for at least four weeks and that provided numerical data on the adverse event outcomes of hyperkalaemia and acute kidney injury. A random effects model was used to calculate pooled risk ratios and 95% confidence intervals for these outcomes. Results 10 randomised controlled studies (4814 participants) were included in the analysis. Combination therapy with aliskiren and angiotensin converting enzyme inhibitors or angiotensin receptor blockers significantly increased the risk of hyperkalaemia compared with monotherapy using angiotensin converting enzymes or angiotensin receptor blockers (relative risk 1.58, 95% confidence interval 1.24 to 2.02) or aliskiren alone (1.67, 1.01 to 2.79). The risk of acute kidney injury did not differ significantly between the combined therapy and monotherapy groups (1.14, 0.68 to 1.89). Conclusion Use of aliskerin in combination with angiotensin converting enzyme inhibitors or angiotensin receptor blockers is associated with an increased risk for hyperkalaemia. The combined use of these agents warrants careful monitoring of serum potassium levels. PMID:22232539
Thomas, Akshay S; Redd, Travis; Hwang, Thomas
2015-10-01
Recent studies have suggested that the use of systemic beta-blockers, angiotensin-converting enzyme inhibitors, and angiotensin receptor blockers can induce regression of choroidal neovascularization in rodent models. The purpose of this study is to evaluate if these agents have a protective effect against the development of choroidal neovascularization in patients with age-related macular degeneration. In this single-center retrospective case-control study, the charts of 250 patients with neovascular age-related macular degeneration were compared with those of 250 controls with dry age-related macular degeneration. Charts were reviewed for current and past use of beta-blockers, angiotensin-converting enzyme inhibitors, and angiotensin receptor blockers. Frequency tables were generated, and associations were examined using chi-square tests, t-tests, and multivariate logistic regression. There was no statistically significant difference between rates of beta-blocker use (P = 0.57), angiotensin-converting enzyme inhibitors use (P = 0.20), or angiotensin receptor blockers use (P = 0.61) between the 2 groups. Additionally, there was no statistically significant difference between rates of use of combinations of the above drugs between the two groups. Although there is growing evidence that beta-blockers, angiotensin-converting enzyme inhibitors, and angiotensin receptor blockers can induce regression of choroidal neovascularization in rodent models, these medications do not seem to confer a protective effect against the development of choroidal neovascularization in patients with age-related macular degeneration.
NASA Astrophysics Data System (ADS)
Brisbourne, A.; Smith, A.; Kendall, J. M.; Baird, A. F.; Martin, C.; Kingslake, J.
2017-12-01
The grounding history of ice rises (grounded area of independent flow regime within a floating ice shelf) can be used to constrain large scale ice sheet history: ice fabric, resulting from the preferred orientation of ice crystals due to the stress regime, can be used to infer this grounding history. With the aim of measuring the present day ice fabric at Korff Ice Rise, West Antarctica, a multi-azimuth wide-angle seismic experiment was undertaken. Three wide-angle common-midpoint gathers were acquired centred on the apex of the ice rise, at azimuths of 60 degrees to one another, to measure variation in seismic properties with offset and azimuth. Both vertical and horizontal receivers were used to record P and S arrivals including converted phases. Measurements of the variation with offset and azimuth of seismic traveltimes, seismic attenuation and shear wave splitting have been used to quantify seismic anisotropy in the ice column. The observations cannot be reproduced using an isotropic ice column model. Anisotropic ray tracing has been used to test likely models of ice fabric by comparison with the data. A model with a weak girdle fabric overlying a strong cluster fabric provides the best fit to the observations. Fabric of this nature is consistent with Korff Ice Rise having been stable for the order of 10,000 years without any ungrounding or significant change in the ice flow configuration across the ice rise for this period. This observation has significant implications for the ice sheet history of the Weddell Sea sector.
Checler, F; Vincent, J P; Kitabgi, P
1983-08-01
Neurotensin was inactivated by membrane-bound and soluble degrading activities present in purified preparations of rat brain synaptic membranes. Degradation products were identified by HPLC and amino acid analysis. The major points of cleavage of neurotensin were the Arg8-Arg9, Pro10-Tyr11, and Tyr11-Ile12 peptide bonds with the membrane-bound activity and the Arg8-Arg9 and Pro10-Tyr11 bonds with the soluble activity. Several lines of evidence indicated that the cleavage of the Arg8-Arg9 bond by the membrane-bound activity resulted mainly from the conversion of neurotensin1-10 to neurotensin1-8 by a dipeptidyl carboxypeptidase. In particular, captopril inhibited this cleavage with an IC50 (5.7 nM) close to its K1 (7 nM) for angiotensin-converting enzyme. Thiorphan inhibited the cleavage at the Tyr11-Ile12 bond by the membrane-bound activity with an IC50 (17 nM) similar to its K1 (4.7 nM) for enkephalinase. Both cleavages were inhibited by 1,10-phenanthroline. These and other data suggested that angiotensin-converting enzyme and a thermolysin-like metalloendopeptidase (enkephalinase) were the membrane-bound peptidases responsible for cleavages at the Arg8-Arg9 and Tyr11-Ile12 bonds, respectively. In contrast, captopril had no effect on the cleavage at the Arg8-Arg9 bond by the soluble activity, indicating that the enzyme responsible for this cleavage was different from angiotensin-converting enzyme. The cleavage at the Pro10-Tyr11 bond by both the membrane-bound and the soluble activities appeared to be catalyzed by an endopeptidase different from known brain proline endopeptidases. The possibility is discussed that the enzymes described here participate in physiological mechanisms of neurotensin inactivation at the synaptic level.
21 CFR 184.1387 - Lactase enzyme preparation from Candida pseudotropicalis.
Code of Federal Regulations, 2012 CFR
2012-04-01
..., nontoxicogenic yeast C. pseudotropicalis. It contains the enzyme lactase (β-D-galactoside galactohydrolase, EC 3.2.1.23), which converts lactose to glucose and galactose. It is prepared from yeast that has been...
21 CFR 184.1387 - Lactase enzyme preparation from Candida pseudotropicalis.
Code of Federal Regulations, 2013 CFR
2013-04-01
..., nontoxicogenic yeast C. pseudotropicalis. It contains the enzyme lactase (β-D-galactoside galactohydrolase, EC 3.2.1.23), which converts lactose to glucose and galactose. It is prepared from yeast that has been...
Genetics Home Reference: Crigler-Najjar syndrome
... from the body only after it undergoes a chemical reaction in the liver, which converts the toxic form ... the body. The bilirubin-UGT enzyme performs a chemical reaction called glucuronidation. During this reaction, the enzyme transfers ...
In silico prediction of potential chemical reactions mediated by human enzymes.
Yu, Myeong-Sang; Lee, Hyang-Mi; Park, Aaron; Park, Chungoo; Ceong, Hyithaek; Rhee, Ki-Hyeong; Na, Dokyun
2018-06-13
Administered drugs are often converted into an ineffective or activated form by enzymes in our body. Conventional in silico prediction approaches focused on therapeutically important enzymes such as CYP450. However, there are more than thousands of different cellular enzymes that potentially convert administered drug into other forms. We developed an in silico model to predict which of human enzymes including metabolic enzymes as well as CYP450 family can catalyze a given chemical compound. The prediction is based on the chemical and physical similarity between known enzyme substrates and a query chemical compound. Our in silico model was developed using multiple linear regression and the model showed high performance (AUC = 0.896) despite of the large number of enzymes. When evaluated on a test dataset, it also showed significantly high performance (AUC = 0.746). Interestingly, evaluation with literature data showed that our model can be used to predict not only enzymatic reactions but also drug conversion and enzyme inhibition. Our model was able to predict enzymatic reactions of a query molecule with a high accuracy. This may foster to discover new metabolic routes and to accelerate the computational development of drug candidates by enabling the prediction of the potential conversion of administered drugs into active or inactive forms.
Targeted enzyme prodrug therapies.
Schellmann, N; Deckert, P M; Bachran, D; Fuchs, H; Bachran, C
2010-09-01
The cure of cancer is still a formidable challenge in medical science. Long-known modalities including surgery, chemotherapy and radiotherapy are successful in a number of cases; however, invasive, metastasized and inaccessible tumors still pose an unresolved and ongoing problem. Targeted therapies designed to locate, detect and specifically kill tumor cells have been developed in the past three decades as an alternative to treat troublesome cancers. Most of these therapies are either based on antibody-dependent cellular cytotoxicity, targeted delivery of cytotoxic drugs or tumor site-specific activation of prodrugs. The latter is a two-step procedure. In the first step, a selected enzyme is accumulated in the tumor by guiding the enzyme or its gene to the neoplastic cells. In the second step, a harmless prodrug is applied and specifically converted by this enzyme into a cytotoxic drug only at the tumor site. A number of targeting systems, enzymes and prodrugs were investigated and improved since the concept was first envisioned in 1974. This review presents a concise overview on the history and latest developments in targeted therapies for cancer treatment. We cover the relevant technologies such as antibody-directed enzyme prodrug therapy (ADEPT), gene-directed enzyme prodrug therapy (GDEPT) as well as related therapies such as clostridial- (CDEPT) and polymer-directed enzyme prodrug therapy (PDEPT) with emphasis on prodrug-converting enzymes, prodrugs and drugs.
NASA Astrophysics Data System (ADS)
Gritzali, M.
1982-12-01
As conventional, nonrenewable energy sources are rapidly depleted and it was necessary to search for alternative sources of energy. It was increasingly apparent that biomass and waste are alternatives well worth exploring. The sources of biomass and wastes that considered for conversion to useful products are quite diverse, but the most abundant constituent of almost every type is cellulose. Cellulose is cleanly converted to soluble fermentable sugars enzymatically, and cellulose enzymes were isolated from a number of microbial sources. It is generally agreed that the most effective system of enzymes for the conversion of cellulose to glucose is produced by species of the imperfect fungus Trichoderma. The mutant organism Trichoderma reesei QM 9414 is among the best producers of high levels of enzymes; these are extracellular and have carbonhydrate covalently bound to the peptide. Trichoderma produces three types of enzymes which, in a sequential and cooperative manner, convert cellulose to soluble oligosaccharides and glucose.
Potential utility of natural products as regulators of breast cancer-assoicated aromatase promoters
USDA-ARS?s Scientific Manuscript database
Aromatase, the key enzyme in estrogen biosynthesis, converts androstenedione to estrone and testosterone to estradiol. The enzyme is expressed in various tissues such as ovary, placenta, bone, brain, skin, and adipose tissue. Aromatase enzyme is encoded by a single gene CYP 19A1 and its expression i...
The Nuts and Bolts of Michaelis-Menten Enzyme Kinetics: Suggestions and Clarifications
ERIC Educational Resources Information Center
Silverstein, Todd
2011-01-01
Matthew Junker's recent article describes a useful and effective enzyme kinetics application and analogy in which students simulate enzyme activity by unscrewing nut-bolt "substrate molecules", thus, converting them into separate nuts and bolts "products". A number of suggestions and corrections are presented that improve the clarity and accuracy…
Tajima, Takahisa; Tomita, Kousuke; Miyahara, Hiroyuki; Watanabe, Kenshi; Aki, Tsunehiro; Okamura, Yoshiko; Matsumura, Yukihiko; Nakashimada, Yutaka; Kato, Junichi
2018-02-01
Macroalgae are a promising biomass feedstock for energy and valuable chemicals. Mannitol and alginate are the major carbohydrates found in the microalga Laminaria japonica (Konbu). To convert mannitol to fructose for its utilization as a carbon source in mannitol non-assimilating bacteria, a psychrophile-based simple biocatalyst (PSCat) was constructed using a psychrophile as a host by expressing mesophilic enzymes, including mannitol 2-dehydrogenase for mannitol oxidation, and NADH oxidase and alkyl hydroxyperoxide reductase for NAD + regeneration. PSCat was treated at 40 °C to inactivate the psychrophilic enzymes responsible for byproduct formation and to increase the membrane permeability of the substrate. PSCat efficiently converted mannitol to fructose with high conversion yield without additional input of NAD + . Konbu extract containing mannitol was converted to fructose with hydroperoxide scavenging, inhibiting the mannitol dehydrogenase activity. Auranthiochytrium sp. could grow well in the presence of fructose converted by PSCat. Thus, PSCat is a potential carbohydrate converter for mannitol non-assimilating microorganism. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Primary Systemic Amyloidosis and High Levels of Angiotensin-Converting Enzyme: Two Case Reports
Praena-Segovia, J.; Sanchez-Gastaldo, A.; Bernabeu-Wittel, M.; Ocete-Pérez, R.; Ávila-Polo, R.; Martino, M. L.
2013-01-01
Infiltrative heart diseases are caused by a heterogeneous group of disorders; amyloidosis and sarcoidosis are two frequent causes of myocardial infiltration, which differ in clinical and biological outcome and treatment issues. The presence of high levels of angiotensin-converting enzyme (ACE) in a patient with infiltrative heart disease may increase suspicion of sarcoidosis. Nevertheless, no mention about increased ACE levels in extracerebral primary systemic amyloidosis is available. We present two cases of primary systemic amyloidosis, which are cardiac involvement and elevated ACE levels. PMID:24826302
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wallaert, B.; Ramon, P.; Fournier, E.
1982-11-01
Results of bronchoalveolar lavage (BAL), 67Ga scanning, and serum angiotensin-converting enzyme (SACE) assay are compared in the assessment of pulmonary involvement in ten cases of extrathoracic sarcoidosis. Standard clinical, radiologic, and pulmonary function tests detected no pulmonary changes in these patients, but BAL demonstrated an increased alveolar lymphocytosis in eight of ten cases. SACE levels were increased in two cases, and the thoracic gallium uptake was normal in all cases. BAL appears to be the best technique for diagnosing latent pulmonary involvement in extrathoracic sarcoidosis.
Improvement on sugar cane bagasse hydrolysis using enzymatic mixture designed cocktail.
Bussamra, Bianca Consorti; Freitas, Sindelia; Costa, Aline Carvalho da
2015-01-01
The aim of this work was to study cocktail supplementation for sugar cane bagasse hydrolysis, where the enzymes were provided from both commercial source and microorganism cultivation (Trichoderma reesei and genetically modified Escherichia coli), followed by purification. Experimental simplex lattice mixture design was performed to optimize the enzymatic proportion. The response was evaluated through hydrolysis microassays validated here. The optimized enzyme mixture, comprised of T. reesei fraction (80%), endoglucanase (10%) and β-glucosidase (10%), converted, theoretically, 72% of cellulose present in hydrothermally pretreated bagasse, whereas commercial Celluclast 1.5L converts 49.11%±0.49. Thus, a rational enzyme mixture designed by using synergism concept and statistical analysis was capable of improving biomass saccharification. Copyright © 2015 Elsevier Ltd. All rights reserved.
Investigating a Bio-Engineered Enzyme.
ERIC Educational Resources Information Center
Bullerwell, Lornie; And Others
1994-01-01
Describes science experiments with the enzyme lactose, which is available commercially as Lactaid and Dairy Ease. Experiments show how the rate of reaction of lactose converted to glucose and galactose is influenced by temperature, pH, and substrate concentration. (PR)
Katayama, K; Kobayashi, T; Oikawa, H; Honma, M; Ichihara, A
1998-05-19
In cell-free extracts of Alternaria solani, an enzymatic activity converting prosolanapyrone II to solanapyrones A and D via oxidation and subsequent Diels-Alder reaction has been found. Chromatography with DEAE-Sepharose provided two active fractions, pools 1 and 2. The former fraction converted prosolanapyrone II to solanapyrones A and D in a ratio of 2.2:1 with optical purities of 99% and 45% ee, respectively. The latter fraction did so in a ratio of 7.6:1 with 99% and nearly 0% ee, respectively. The enzyme partially purified from pool 2 native molecular weight of 40-62 kD and a pl of 4.25. The high reactivity of prosolanapyrone III in aqueous solution and the chromatographic behavior of the enzyme in pool 2 suggest that a single enzyme catalyzes both the oxidation and Diels-Alder reaction.
A re-evaluation of the final step of vanillin biosynthesis in the orchid Vanilla planifolia.
Yang, Hailian; Barros-Rios, Jaime; Kourteva, Galina; Rao, Xiaolan; Chen, Fang; Shen, Hui; Liu, Chenggang; Podstolski, Andrzej; Belanger, Faith; Havkin-Frenkel, Daphna; Dixon, Richard A
2017-07-01
A recent publication describes an enzyme from the vanilla orchid Vanilla planifolia with the ability to convert ferulic acid directly to vanillin. The authors propose that this represents the final step in the biosynthesis of vanillin, which is then converted to its storage form, glucovanillin, by glycosylation. The existence of such a "vanillin synthase" could enable biotechnological production of vanillin from ferulic acid using a "natural" vanilla enzyme. The proposed vanillin synthase exhibits high identity to cysteine proteases, and is identical at the protein sequence level to a protein identified in 2003 as being associated with the conversion of 4-coumaric acid to 4-hydroxybenzaldehyde. We here demonstrate that the recombinant cysteine protease-like protein, whether expressed in an in vitro transcription-translation system, E. coli, yeast, or plants, is unable to convert ferulic acid to vanillin. Rather, the protein is a component of an enzyme complex that preferentially converts 4-coumaric acid to 4-hydroxybenzaldehyde, as demonstrated by the purification of this complex and peptide sequencing. Furthermore, RNA sequencing provides evidence that this protein is expressed in many tissues of V. planifolia irrespective of whether or not they produce vanillin. On the basis of our results, V. planifolia does not appear to contain a cysteine protease-like "vanillin synthase" that can, by itself, directly convert ferulic acid to vanillin. The pathway to vanillin in V. planifolia is yet to be conclusively determined. Copyright © 2017 Elsevier Ltd. All rights reserved.
Akoh, Casimir C; Chang, Shu-Wei; Lee, Guan-Chiun; Shaw, Jei-Fu
2008-11-26
Many industrial products and functional foods can be obtained from cheap and renewable raw agricultural materials. For example, starch can be converted to bioethanol as biofuel to reduce the current demand for petroleum or fossil fuel energy. On the other hand, starch can also be converted to useful functional ingredients, such as high fructose and high maltose syrups, wine, glucose, and trehalose. The conversion process involves fermentation by microorganisms and use of biocatalysts such as hydrolases of the amylase superfamily. Amylases catalyze the process of liquefaction and saccharification of starch. It is possible to perform complete hydrolysis of starch by using the fusion product of both linear and debranching thermostable enzymes. This will result in saving energy otherwise needed for cooling before the next enzyme can act on the substrate, if a sequential process is utilized. Recombinant enzyme technology, protein engineering, and enzyme immobilization are powerful tools available to enhance the activity of enzymes, lower the cost of enzyme through large scale production in a heterologous host, increase their thermostability, improve pH stability, enhance their productivity, and hence making it competitive with the chemical processes involved in starch hydrolysis and conversions. This review emphasizes the potential of using biocatalysis for the production of useful industrial products and functional foods from cheap agricultural produce and transgenic plants. Rice was selected as a typical example to illustrate many applications of biocatalysis in converting low-value agricultural produce to high-value commercial food and industrial products. The greatest advantages of using enzymes for food processing and for industrial production of biobased products are their environmental friendliness and consumer acceptance as being a natural process.
A Decade of Arctic Sea Ice Thickness Change from Airborne and Satellite Altimetry (Invited)
NASA Astrophysics Data System (ADS)
Farrell, S. L.; Richter-Menge, J.; Kurtz, N. T.; McAdoo, D. C.; Newman, T.; Zwally, H.; Ruth, J.
2013-12-01
Altimeters on both airborne and satellite platforms provide direct measurements of sea ice freeboard from which sea ice thickness may be calculated. Satellite altimetry observations of Arctic sea ice from ICESat and CryoSat-2 indicate a significant decline in ice thickness, and volume, over the last decade. During this time the ice pack has experienced a rapid change in its composition, transitioning from predominantly thick, multi-year ice to thinner, increasingly seasonal ice. We will discuss the regional trends in ice thickness derived from ICESat and IceBridge altimetry between 2003 and 2013, contrasting observations of the multi-year ice pack with seasonal ice zones. ICESat ceased operation in 2009, and the final, reprocessed data set became available recently. We extend our analysis to April 2013 using data from the IceBridge airborne mission, which commenced operations in 2009. We describe our current efforts to more accurately convert from freeboard to ice thickness, with a modified methodology that corrects for range errors, instrument biases, and includes an enhanced treatment of snow depth, with respect to ice type. With the planned launch by NASA of ICESat-2 in 2016 we can expect continuity of the sea ice thickness time series through the end of this decade. Data from the ICESat-2 mission, together with ongoing observations from CryoSat-2, will allow us to understand both the decadal trends and inter-annual variability in the Arctic sea ice thickness record. We briefly present the status of planned ICESat-2 sea ice data products, and demonstrate the utility of micro-pulse, photon-counting laser altimetry over sea ice.
Prospecting Rovers for Lunar Exploration
NASA Technical Reports Server (NTRS)
Graham, Jerry B.; Vaughn, Jason A.; Farmer, Jeffery T.
2007-01-01
A study of lunar rover options for exploring the permanently shadowed regions of the lunar environment is presented. The potential for nearly continuous solar illumination coupled with the potential for water ice, focus exploration planner's attention on the polar regions of the moon. These regions feature craters that scientists have reason to believe may contain water ice. Water ice can be easily converted to fuel cell reactants, breathing oxygen, potable water, and rocket propellant. For these reasons, the NASA Robotic Lunar Exploration Program (RLEP) sponsored a study of potential prospecting rover concepts as one part of the RLEP-2 Pre-Phase A. Numerous vehicle configurations and power, thermal, and communication options are investigated. Rover options in the 400kg to 530kg class are developed which are capable of either confirming the presence of water ice at the poles, or conclusively demonstrating its absence.
Mel'nikov, I A; Korneeva, G A; zhitina, L S; Shanin, S S
2003-01-01
The distribution of salinity, silicon and phosphorus contents, and hydrolytic enzyme activities along a sea-coast transect was studied in melted ice cores and water samples taken from under the ice cover in the periods of active ice formation and melting in the Kandalaksha Bay, White Sea. The species list of identified algae was compiled, which included 170 species and varieties (90% of them belonged to diatoms). Strong correlations were revealed between the salinity of water samples and the content of silicon, protease activity, and the species composition of algae. Preliminary estimations of the rate of photosynthetic processes in individual cells of algae belonging to the mass species of the ice flora are discussed.
A human lung mast cell chymotrypsin-like enzyme. Identification and partial characterization.
Wintroub, B U; Kaempfer, C E; Schechter, N M; Proud, D
1986-01-01
We have used a high performance liquid chromatography assay, which detects chymotryptic cleavage of the phe8-his9 bond of angiotensin I to yield angiotensin II, in order to examine human lung mast cells for the presence of chymotryptic activity. Mast cells, purified from human lung by enzymatic dispersion, countercurrent elutriation, and Percoll gradient centrifugation, were lysed or challenged with goat anti-human IgE. In multiple experiments angiotensin II-converting activity was detected in lysates of 10-99% pure mast cell preparations. Regression analysis of net percent release values of histamine and the angiotensin I-converting activity from dose-response experiments demonstrated a correlation between the two parameters, indicating that the chymotrypsin-like enzyme is a constituent of the mast cell secretory granule. The chymotryptic activity was completely inhibited by 10(-3) M phenylmethylsulfonylfluoride but not by 10(-3) M Captopril, and the pH optimum of activity was 7.5-9.5. Gel filtration of released material separated the activity from tryptase and demonstrated an approximate molecular weight of 30-35,000. The mast cell enzyme, like a human skin chymotrypsin-like proteinase, can be distinguished from leukocyte cathepsin G by lack of susceptibility to inhibition by bovine pancreatic trypsin inhibitor. Thus, an enzyme with limited chymotryptic specificity is present in human lung mast cells. The Michaelis constant of the enzyme for angiotensin I of 6.0 X 10(-5) M is similar to that of endothelial cell angiotensin-converting enzyme and is consistent with a reaction of physiologic importance.
NASA Astrophysics Data System (ADS)
Slobbe, D. C.; Ditmar, P.; Lindenbergh, R. C.
2009-01-01
The focus of this paper is on the quantification of ongoing mass and volume changes over the Greenland ice sheet. For that purpose, we used elevation changes derived from the Ice, Cloud, and land Elevation Satellite (ICESat) laser altimetry mission and monthly variations of the Earth's gravity field as observed by the Gravity Recovery and Climate Experiment (GRACE) mission. Based on a stand alone processing scheme of ICESat data, the most probable estimate of the mass change rate from 2003 February to 2007 April equals -139 +/- 68 Gtonyr-1. Here, we used a density of 600+/-300 kgm-3 to convert the estimated elevation change rate in the region above 2000m into a mass change rate. For the region below 2000m, we used a density of 900+/-300 kgm-3. Based on GRACE gravity models from half 2002 to half 2007 as processed by CNES, CSR, DEOS and GFZ, the estimated mass change rate for the whole of Greenland ranges between -128 and -218Gtonyr-1. Most GRACE solutions show much stronger mass losses as obtained with ICESat, which might be related to a local undersampling of the mass loss by ICESat and uncertainties in the used snow/ice densities. To solve the problem of uncertainties in the snow and ice densities, two independent joint inversion concepts are proposed to profit from both GRACE and ICESat observations simultaneously. The first concept, developed to reduce the uncertainty of the mass change rate, estimates this rate in combination with an effective snow/ice density. However, it turns out that the uncertainties are not reduced, which is probably caused by the unrealistic assumption that the effective density is constant in space and time. The second concept is designed to convert GRACE and ICESat data into two totally new products: variations of ice volume and variations of snow volume separately. Such an approach is expected to lead to new insights in ongoing mass change processes over the Greenland ice sheet. Our results show for different GRACE solutions a snow volume change of -11 to 155km3yr-1 and an ice loss with a rate of -136 to -292km3yr-1.
USDA-ARS?s Scientific Manuscript database
We report on the cloning, sequencing, characterization, 3D modeling and docking of Aedes aegypti juvenile hormone acid methyl transferase (AeaJHAMT), the enzyme that converts juvenile hormone acid (JHA) into juvenile hormone (JH). Purified recombinant AeaJHAMT was extensively characterized for enzym...
Arginine production in the neonate
USDA-ARS?s Scientific Manuscript database
Endogenous arginine synthesis in adults is a complex multiorgan process, in which citrulline is synthesized in the gut, enters the general circulation, and is converted into arginine in the kidney, by what is known as the intestinal-renal axis. In neonates, the enzymes required to convert citrulline...
The effect of angiotensin-converting enzyme inhibition throughout a superovulation protocol in ewes.
Pereira, Alécio Matos; de Souza Júnior, Antônio; Machado, Fernanda Brandão; Gonçalves, Gleisy Kelly Neves; Feitosa, Lauro César Soares; Reis, Adelina Martha; Santos, Robson Augusto Souza; Honorato-Sampaio, Kinulpe; Costa, Amilton Raposo
2015-12-01
Many studies identified new components of the renin–angiotensin system (RAS), such as Angiotensin-(1-7) [Ang-(1–7)] and Angiotensin-converting enzyme type 2 (ACE2), in mammalian ovaries.We previously showed Angiotensin-Converting Enzyme (ACE) inhibition, which increases the level of Ang-(1–7), stimulated ovarian estradiol output in ewe after estrous synchronization. Considering that Ang-(1–7) stimulates ovarian function and elevated estradiol before ovulation is associated with increased chance of achieving pregnancy, the present study investigated whether ACE inhibition throughout a superovulation protocol in ewe might improve ovulation outcome. At first, immunohistochemistry in ovaries of nonpregnant ewes revealed localization of Angiotensin II (Ang II), Ang-(1–7) and ACE2 in theca cells of antral follicles and in corpus luteum. Ang II and Ang-(1–7)were also detected in follicular fluid (FF) by Radioimmunoassay (RIA). Enalapril treatment throughout the superovulation protocol decreased 17β-estradiol (E2) output and raised progesterone:estradiol (P4:E2) ratio without a direct influence on ovulation and quality of embryos.
Li, Hui-Jie; Zheng, Cheng-Rong; Chen, Guo-Zhu; Qin, Jun; Zhang, Ji-Hang; Yu, Jie; Zhang, En-Hao; Huang, Lan
2016-01-01
Inhaled budesonide is a novel approach to prevent acute mountain sickness (AMS). However, its mechanism is not completely understood. We aimed to investigate the effects of budesonide and dexamethasone on renin-angiotensin-aldosterone system in AMS prevention. Data were obtained from a randomised controlled trial including 138 participants. The participants were randomly assigned to receive budesonide, dexamethasone or placebo as prophylaxis before they travelled to 3450 m altitude from 400 m by car. Their plasma concentrations of renin, angiotensin-converting enzyme (ACE) and aldosterone were measured at both altitudes. All parameters were comparable among the three groups at 400 m. After high-altitude exposure of 3450, renin in all groups increased significantly; the ACE, aldosterone concentrations, as well as the aldosterone/renin ratio, rose markedly in the dexamethasone and placebo groups but not in the budesonide group. Moreover, the aldosterone/renin ratio correlated closely with ACE concentration. Upon acute high-altitude exposure, budesonide, but not dexamethasone, blunted the response of aldosterone to renin elevation by suppressing angiotensin converting enzyme. © The Author(s) 2016.
Sankaranarayanan, Mugesh; Seol, Eunhee; Kim, Yeonhee; Chauhan, Ashish Singh; Park, Sunghoon
2017-03-01
Glycerol dehydratase (GDHt), which converts glycerol to 3-hydroxypropionaldehyde, is essential to the production of 1,3-propanediol (1,3-PDO) or 3-hydroxypropionic acid (3-HP). A reliable GDHt activity assay in crude-cell extract was developed. In the assay, GDHt converted 1,2-propanediol (1,2-PDO) to propionaldehyde, which was further converted to 1-propionic acid by aldehyde dehydrogenase (KGSADH) or to 1-propanol by yeast-alcohol dehydrogenase (yADH), while the NADH concentration change was monitored spectrophotometrically. Cells should be disintegrated by Bead Beater/French Press, not by chemical methods (BugBuster ® /B-PER™), because the reagents significantly inactivated GDHt and coupling enzymes. Furthermore, in the assay mixture, a much higher activity of KGSADH (>200-fold) or yADH (>400-fold) than that of GDHt should have been maintained. Under optimal conditions, both KGSADH and yADH showed practically the same activity. The coupled-enzyme assay method established here should prove to be applicable to recombinant strains developed for the production of 3-HP and/or 1,3-PDO from glycerol.
Motawi, Tarek K; El-Maraghy, Shohda A; Senousy, Mahmoud A
2013-07-01
Angiotensin-converting enzyme (ACE) is upregulated in the diabetic kidney and contributes to renal injury. This study investigates the possible beneficial effects of the ACE inhibitor (ACEI), enalapril and the AT1 receptor blocker (ARB), valsartan, on renal ACE expression, renal structure, and function in streptozotocin (STZ)-induced diabetic rats. Male Wistar rats were allocated into four groups: control, STZ-diabetic rats, and STZ-diabetic rats treated with either enalapril (10 mg/kg/day) or valsartan (50 mg/kg/day) for 8 weeks. Enalapril and valsartan reduced renal ACE mRNA and protein expression, Na(+) /K(+) -ATPase activity, oxidative stress, and serum transforming growth factor-β1 levels compared to the diabetic group. Both treatments normalized renal nitrate/nitrite levels and ameliorated the observed histopathological changes. In conclusion, ACE downregulation by ACEI and ARB indicates that angiotensin II upregulates ACE through AT1 receptor. Prevention of diabetes-induced changes in ACE expression and Na(+) /K(+) -ATPase activity could be a new explanation of the renoprotective effects of ACEIs and ARBs. © 2013 Wiley Periodicals, Inc.
Tu, Maolin; Liu, Hanxiong; Zhang, Ruyi; Chen, Hui; Mao, Fengjiao; Cheng, Shuzhen; Lu, Weihong; Du, Ming
2018-04-25
Casein hydrolysates exert various biological activities, and the responsible functional peptides are being identified from them continuously. In this study, the tryptic casein hydrolysate was fractionated by an ultrafiltration membrane (3 kDa), and the peptides were identified by capillary electrophoresis-quadrupole-time-of-flight-tandem mass spectrometry. Meanwhile, in silico methods were used to analyze the toxicity, solubility, stability, and affinity between the peptides and angiotensin-I-converting enzyme (ACE). Finally, a new angiotensin-I-converting enzyme inhibitory (ACEI) peptide, EKVNELSK, derived from α s1 -casein (fragment 35-42) was screened. The half maximal inhibitory concentration value of the peptide is 5.998 mM, which was determined by a high-performance liquid chromatography method. The Lineweaver-Burk plot indicated that this peptide is a mixed-type inhibitor against ACE. Moreover, Discovery Studio 2017 R2 software was adopted to perform molecular docking to propose the potential mechanisms underlying the ACEI activity of the peptide. These results indicated that EKVNELSK is a new ACEI peptide identified from casein hydrolysate.
Ontogenetic role of angiontensin-converting enzyme in rats: thirst and sodium appetite evaluation.
Mecawi, André S; Araujo, Iracema G; Rocha, Fábio F; Coimbra, Terezila M; Antunes-Rodrigues, José; Reis, Luís C
2010-01-12
We investigated the influence of captopril (an angiotensin converting enzyme inhibitor) treatment during pregnancy and lactation period on hydromineral balance of the male adult offspring, particularly, concerning thirst and sodium appetite. We did not observe significant alterations in basal hydromineral (water intake, 0.3M NaCl intake, volume and sodium urinary concentration) or cardiovascular parameters in adult male rats perinatally treated with captopril compared to controls. However, male offspring rats that perinatally exposed to captopril showed a significant attenuation in water intake induced by osmotic stimulation, extracellular dehydration and beta-adrenergic stimulation. Moreover, captopril treatment during perinatal period decreased the salt appetite induced by sodium depletion. This treatment also attenuated thirst and sodium appetite aroused during inhibition of peripheral angiotensin II generation raised by low concentration of captopril in the adult offspring. Interestingly, perinatal exposure to captopril did not alter water or salt intake induced by i.c.v. administration of angiotensin I or angiotensin II. These results showed that chronic inhibition of angiotensin converting enzyme during pregnancy and lactation modifies the regulation of induced thirst and sodium appetite in adulthood.
Li, Hui-Jie; Zheng, Cheng-Rong; Chen, Guo-Zhu; Qin, Jun; Zhang, Ji-Hang; Yu, Jie; Zhang, En-Hao; Huang, Lan
2016-01-01
Introduction: Inhaled budesonide is a novel approach to prevent acute mountain sickness (AMS). However, its mechanism is not completely understood. We aimed to investigate the effects of budesonide and dexamethasone on renin–angiotensin–aldosterone system in AMS prevention. Materials and methods: Data were obtained from a randomised controlled trial including 138 participants. The participants were randomly assigned to receive budesonide, dexamethasone or placebo as prophylaxis before they travelled to 3450 m altitude from 400 m by car. Their plasma concentrations of renin, angiotensin-converting enzyme (ACE) and aldosterone were measured at both altitudes. Results: All parameters were comparable among the three groups at 400 m. After high-altitude exposure of 3450, renin in all groups increased significantly; the ACE, aldosterone concentrations, as well as the aldosterone/renin ratio, rose markedly in the dexamethasone and placebo groups but not in the budesonide group. Moreover, the aldosterone/renin ratio correlated closely with ACE concentration. Conclusions: Upon acute high-altitude exposure, budesonide, but not dexamethasone, blunted the response of aldosterone to renin elevation by suppressing angiotensin converting enzyme. PMID:27317302
Hiwada, K; Inoue, Y; Kokubu, T
1990-01-01
1. An in vitro experiment was carried out to compare the inhibitory effect of SQ29,852 on human renal angiotensin converting enzyme (ACE) with those of captopril, enalapril and enalaprilat. 2. SQ29,852 strongly inhibited human renal ACE; its IC50 value was 1.5 x 10(-8) M. In terms of the IC50, SQ29,852's efficacy was about 1/10 of that of captopril and 1/28 of that of enalaprilat, but it was about 14 times more potent than enalapril. 3. SQ29,852 showed no inhibitory effects on cathepsin D, urinary kallikrein, renal renin, pepsin, trypsin and chymotrypsin. Its ACE-specificity was higher than that of captopril. 4. ACE inhibition by SQ29,852 was shown to be competitive, as revealed by Lineweaver-Burk plots. The affinity of SQ29,852 to ACE was shown to be high by a Ki value of 1.2 x 10(-8) M.
NASA Technical Reports Server (NTRS)
Wadhams, P.; Tucker, W. B., III; Krabill, W. B.; Swift, R. N.; Comiso, J. C.; Davis, N. R.
1992-01-01
This study confirms the finding of Comiso et al. (1991) that the probability density function (pdf) of the ice freeboard in the Arctic Ocean can be converted to a pdf of ice draft by applying a simple coordinate factor. The coordinate factor, R, which is the ratio of mean draft to mean freeboard pdf is related to the mean material (ice plus snow) density, rho(m), and the near-surface water density rho(w) by the relationship R = rho(m)/(rho(w) - rho(m)). The measured value of R was applied to each of six 50-km sections north of Greenland of a joint airborne laser and submarine sonar profile obtained along nearly coincident tracks from the Arctic Basin north of Greenland and was found to be consistent over all sections tested, despite differences in the ice regime. This indicates that a single value of R might be used for measurements done in this season of the year. The mean value R from all six sections was found to be 7.89.
Soil Water Content Sensors as a Method of Measuring Ice Depth
NASA Astrophysics Data System (ADS)
Whitaker, E.; Reed, D. E.; Desai, A. R.
2015-12-01
Lake ice depth provides important information about local and regional climate change, weather patterns, and recreational safety, as well as impacting in situ ecology and carbon cycling. However, it is challenging to measure ice depth continuously from a remote location, as existing methods are too large, expensive, and/or time-intensive. Therefore, we present a novel application that reduces the size and cost issues by using soil water content reflectometer sensors. Analysis of sensors deployed in an environmental chamber using a scale model of a lake demonstrated their value as accurate measures of the change in ice depth over any time period, through measurement of the liquid-to-solid phase change. A robust correlation exists between volumetric water content in time as a function of environmental temperature. This relationship allows us to convert volumetric water content into ice depth. An array of these sensors will be placed in Lake Mendota, Madison, Wisconsin in winter 2015-2016, to create a temporally high-resolution ice depth record, which will be used for ecological or climatological studies while also being transmitted to the public to increase recreational safety.
Mauger, Florence; Kernaleguen, Magali; Lallemand, Céline; Kristensen, Vessela N; Deleuze, Jean-François; Tost, Jörg
2018-05-01
The detection of specific DNA methylation patterns bears great promise as biomarker for personalized management of cancer patients. Co-amplification at lower denaturation temperature-PCR (COLD-PCR) assays are sensitive methods, but have previously only been able to analyze loss of DNA methylation. Enhanced (E)-ice-COLD-PCR reactions starting from 2 ng of bisulfite-converted DNA were developed to analyze methylation patterns in two promoters with locked nucleic acid (LNA) probes blocking amplification of unmethylated CpGs. The enrichment of methylated molecules was compared to quantitative (q)PCR and quantified using serial dilutions. E-ice-COLD-PCR allowed the multiplexed enrichment and quantification of methylated DNA. Assays were validated in primary breast cancer specimens and circulating cell-free DNA from cancer patients. E-ice-COLD-PCR could prove a useful tool in the context of DNA methylation analysis for personalized medicine.
Genetics Home Reference: Bietti crystalline dystrophy
... broken down and converted into energy, but the enzyme's specific function is not well understood. CYP4V2 gene mutations that cause Bietti crystalline dystrophy impair or eliminate the function of this enzyme and are believed to affect lipid breakdown. However, ...
Facile Generation and Storage of Polycyclic Aromatic Hydrocarbon Ions in Astrophysical Ices
NASA Technical Reports Server (NTRS)
Gudipati, Murthy S.; Allamandola, Louis J.
2003-01-01
In situ ultraviolet-visible absorption and emission studies of vacuum ultraviolet (VUV) irradiated water-rich, cosmic ice analogs containing polycyclic aromatic hydrocarbons (PAHs) are described. W V irradiation of 12 K water ices containing the PAHs naphthalene (H2O/C10H8 = 200) and 4-methylpyrene (H2O/C17H12 > 500) readily converts the PAHs into their cation form (PAH(+)). Under these conditions, PAH photoionization is the predominant reaction. These ions are trapped and stored in the ices at temperatures between 10 and 50 K, a temperature domain common to ices throughout interstellar clouds and the solar system. Unlike the approx.15% ionization typical after W V irradiation of PAHs isolated in rare-gas matrices, in water ice, PAH photoionization and storage proceed efficiently and almost quantitatively with a greater than 70% ionization yield. As the temperature is increased from 50 to 150 K, the PAH ion bands slowly diminish as the PAH ions ultimately react to form more complex organic species involving the water host. The chemical, spectroscopic, and physical properties of these ion-rich ices can be important in icy objects such as molecular clouds, comets, and planets. Several astrophysical applications are presented.
McCarthy, Nicola J.; Whyte, Moira K.B.; Gilbert, Christopher S.; Evan, Gerard I.
1997-01-01
There is increasing evidence for a central role in mammalian apoptosis of the interleukin-1β– converting enzyme (ICE) family of cysteine proteases, homologues of the product of the nematode “death” gene, ced-3. Ced-3 is thought to act as an executor rather than a regulator of programmed cell death in the nematode. However, it is not known whether mammalian ICE-related proteases (IRPs) are involved in the execution or the regulation of mammalian apoptosis. Moreover, an absolute requirement for one or more IRPs for mammalian apoptosis has yet to be established. We have used two cell-permeable inhibitors of IRPs, Z-Val-Ala-Asp.fluoromethylketone (ZVAD.fmk) and t-butoxy carbonyl-Asp.fluoromethylketone (BD.fmk), to demonstrate a critical role for IRPs in mammalian apoptosis induced by several disparate mechanisms (deregulated oncogene expression, ectopic expression of the Bcl-2 relative Bak, and DNA damage–induced cell death). In all instances, ZVAD.fmk and BD.fmk treatment inhibits characteristic biochemical and morphological events associated with apoptosis, including cleavage of nuclear lamins and poly-(ADP-ribose) polymerase, chromatin condensation and nucleosome laddering, and external display of phosphatidylserine. However, neither ZVAD.fmk nor BD.fmk inhibits the onset of apoptosis, as characterized by the onset of surface blebbing; rather, both act to delay completion of the program once initiated. In complete contrast, IGF-I and Bcl-2 delay the onset of apoptosis but have no effect on the kinetics of the program once initiated. Our data indicate that IRPs constitute part of the execution machinery of mammalian apoptosis induced by deregulated oncogenes, DNA damage, or Bak but that they act after the point at which cells become committed to apoptosis or can be rescued by survival factors. Moreover, all such blocked cells have lost proliferative potential and all eventually die by a process involving cytoplasmic blebbing. PMID:9008715
Analysis of serum angiotensin-converting enzyme.
Muller, B R
2002-09-01
Serum angiotensin-converting enzyme (SACE) levels are influenced by genetic polymorphism. Interpretation of serum levels with the appropriate genotypic reference range improves the diagnostic sensitivity of the assay for sarcoidosis. SACE assays are performed by a large number of routine clinical laboratories. However, there is no external quality assessment (EQA) for SACE other than an informal regional scheme. This showed analytical performance of SACE assays to be poor, with a diversity of reference ranges, leading to widely disparate clinical classification of EQA samples. Genetic polymorphism combined with poor analytical performance suggest that perhaps SACE assays should revert to being the province of specialized laboratories.
NASA Astrophysics Data System (ADS)
Schoenberg Ferrier, Brad; Tao, Wei-Kuo; Simpson, Joanne
1995-04-01
Part I of this study described a detailed four-class bulk ice scheme (4ICE) developed to simulate the hydro-meteor profiles of convective and stratiform precipitation associated with mesoscale convective systems. In Part II, the 4ICE scheme is incorporated into the Goddard Cumulus Ensemble (GCE) model and applied without any `tuning' to two squall lines occurring in widely different environments, namely, one over the `Pica) ocean in the Global Atmospheric Research Program's (GARP) Atlantic Tropical Experiment (GATE) and the other over a midlatitude continent in the Cooperative Huntsville Meteorological Experiment (COHMEX). Comparisons were made both with earlier three-class ice formulations and with observations. In both cases, the 4ICE scheme interacted with the dynamics so as to resemble the observations much more closely than did the model runs with either of the three-class ice parameterizations. The following features were well simulated in the COHMEX case: a lack of stratiform rain at the surface ahead of the storm, reflectivity maxima near 60 dBZ in the vicinity of the melting level, and intense radar echoes up to near the tropopause. These features were in strong contrast with the GATE simulation, which showed extensive trailing stratiform precipitation containing a horizontally oriented radar bright band. Peak reflectivities were below the melting level, rarely exceeding 50 dBz, with a steady decrease in reflectivity with height above. With the other bulk formulations, the large stratiform rain areas were not reproduced in the GATE conditions.The microphysical structure of the model clouds in both environments were more realistic than that of earlier modeling efforts. Number concentrations of ice of O(100 L1) occurred above 6 km in the GATE model clouds as a result of ice enhancement and rime splintering in the 4ICE runs. These processes were more effective in the GATE simulation, because near the freezing level the weaker updrafts were comparable in magnitude to the fall speeds of newly frozen drops. Many of the ice crystals initiated at relatively warm temperatures (above 15°C) grew rapidly by deposition into sizes large enough to be converted to snow. In contrast, in the more intense COHMEX updrafts, very large numbers of small ice crystals were initiated at colder temperatures (below 15°C) by nucleation and stochastic freezing of droplets, such that relatively few ice crystals grew by deposition to sizes large enough to be converted to snow. In addition, the large number of frozen drops of O(5 L1) in the 4ICE run am consistent with airborne microphysical data in intense COHMEX updrafts.Numerous sensitivity experiments were made with the four-class and three-class ice schemes, varying fall speed relationships, particle characteristics, and ice collection efficiencies. These tests provide strong support to the conclusion that the 4ICE scheme gives improved resemblance to observations despite present uncertainties in a number of important microphysical parameters.
Personal glucose meters for detection and quantification of a broad range of analytes
Lu, Yi; Xiang, Yu
2015-02-03
A general methodology for the development of highly sensitive and selective sensors that can achieve portable, low-cost and quantitative detection of a broad range of targets using only a personal glucose meter (PGM) is disclosed. The method uses recognition molecules that are specific for a target agent, enzymes that can convert an enzyme substrate into glucose, and PGM. Also provided are sensors, which can include a solid support to which is attached a recognition molecule that permits detection of a target agent, wherein the recognition molecule specifically binds to the target agent in the presence of the target agent but not significantly to other agents as well as an enzyme that can catalyze the conversion of a substance into glucose, wherein the enzyme is attached directly or indirectly to the recognition molecule, and wherein in the presence of the target agent the enzyme can convert the substance into glucose. The disclosed sensors can be part of a lateral flow device. Methods of using such sensors for detecting target agents are also provided.
Pie waste - A component of food waste and a renewable substrate for producing ethanol.
Magyar, Margaret; da Costa Sousa, Leonardo; Jayanthi, Singaram; Balan, Venkatesh
2017-04-01
Sugar-rich food waste is a sustainable feedstock that can be converted into ethanol without an expensive thermochemical pretreatment that is commonly used in first and second generation processes. In this manuscript we have outlined the pie waste conversion to ethanol through a two-step process, namely, enzyme hydrolysis using commercial enzyme products mixtures and microbial fermentation using yeast. Optimized enzyme cocktail was found to be 45% alpha amylase, 45% gamma amylase, and 10% pectinase at 2.5mg enzyme protein/g glucan produced a hydrolysate with high glucose concentration. All three solid loadings (20%, 30%, and 40%) produced sugar-rich hydrolysates and ethanol with little to no enzyme or yeast inhibition. Enzymatic hydrolysis and fermentation process mass balance was carried out using pie waste on a 1000g dry weight basis that produced 329g ethanol at 20% solids loading. This process clearly demonstrate how food waste could be efficiently converted to ethanol that could be used for making biodiesel by reacting with waste cooking oil. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hargono, Kumoro, Andri Cahyo; Jos, Bakti
2015-12-01
Inconventional ethanol production process, starch is converted into dextrins via liquefaction using α-amylase enzyme at high temperature (90-120°C). Then, dextrins are saccharified by glucoamylase to obtain to monomeric sugars (glucose). Recently, a granular starch hydrolyzing enzymes (GSHE), Stargen 002, was developed to convert starch into dextrins at low temperature (< 32°C) and hydrolyzes dextrins into glucose. The subject of this research was to compare ethanol production using a granular starch hydrolyzing enzymes and conventional enzymatic liquefaction and saccharification in cassava starch processing. Starch slurry concentrations were 20% w/v, and dosage of enzymes 0.50, 1.0 and 2%, respectively, were studied. After 48 hr process the final ethanol concentration for the respective enzyme concentration for conventional process were 34.90, 36.16 and 42.10 g/L, whereas for the non-thermal treatment, final ethanol concentration were 46.4, 57.62 and 59.65 g/L, respectively. By implementation of this non thermal process, the use of energy can be saved by carrying out saccharification step at lower temperature (30°C) could be realized.
NASA Astrophysics Data System (ADS)
Löptien, U.; Dietze, H.
2014-12-01
The Baltic Sea is a seasonally ice-covered, marginal sea in central northern Europe. It is an essential waterway connecting highly industrialised countries. Because ship traffic is intermittently hindered by sea ice, the local weather services have been monitoring sea ice conditions for decades. In the present study we revisit a historical monitoring data set, covering the winters 1960/1961 to 1978/1979. This data set, dubbed Data Bank for Baltic Sea Ice and Sea Surface Temperatures (BASIS) ice, is based on hand-drawn maps that were collected and then digitised in 1981 in a joint project of the Finnish Institute of Marine Research (today the Finnish Meteorological Institute (FMI)) and the Swedish Meteorological and Hydrological Institute (SMHI). BASIS ice was designed for storage on punch cards and all ice information is encoded by five digits. This makes the data hard to access. Here we present a post-processed product based on the original five-digit code. Specifically, we convert to standard ice quantities (including information on ice types), which we distribute in the current and free Network Common Data Format (NetCDF). Our post-processed data set will help to assess numerical ice models and provide easy-to-access unique historical reference material for sea ice in the Baltic Sea. In addition we provide statistics showcasing the data quality. The website http://www.baltic-ocean.org hosts the post-processed data and the conversion code. The data are also archived at the Data Publisher for Earth & Environmental Science, PANGAEA (doi:10.1594/PANGAEA.832353).
Angiotensin II-producing enzyme III from acidified serum of nephrectomized dogs.
Haas, E; Lewis, L; Koshy, T J; Varde, A U; Renerts, L; Bagai, R C
1989-09-01
A highly active angiotensin-producing enzyme (enzyme III) was obtained from the serum of bilaterally nephrectomized dogs by acid treatment and ammonium sulfate fractionation. An inactive precursor (proenzyme III) was converted to enzyme III during prolonged storage (or by treatment with acid or with cathepsin G or by incubation at 38 degrees C as described in the following paper). Enzyme III reacted maximally at pH 7.7 and it produced up to 400 ng of angiotensin II/mL serum/h (i.e., amounts 4000 times higher than that generated by the endogenous renin present in serum after bilateral nephrectomy). Enzyme III produced angiotensin II at identical rates when either dog angiotensinogen or angiotensin I was used as substrate, but the rate was 710 times higher with synthetic tetradecapeptide renin substrate. Enzyme III is not identical to renin, cathepsin G, tonin, enzyme I, enzyme II, the calcium-dependent angiotensin I-converting enzyme, or the calcium-independent carboxy peptidase, which acts by sequential cleavage of angiotensin I. Enzyme III was inhibited by alpha-1-antitrypsin, diisopropyl fluorophosphate, and lima bean trypsin inhibitor (hence it is a serine proteinase). It was not inhibited by Captopril, Teprotide, or Enalapril. It had been reported previously that cathepsin G released from neutrophil granulocytes, by producing high local concentrations of angiotensin II, may provide a mobile means for modulating blood flow in tissue microvasculature during the inflammatory response. The present study offers a new, additional pathway, by enzyme III, for a similar rapid formation of angiotensin II from serum protein substrate or angiotensin I.
NASA Astrophysics Data System (ADS)
Petty, A.; Tsamados, M.; Kurtz, N. T.
2016-12-01
Here we present atmospheric form drag estimates over Arctic sea ice using high resolution, three-dimensional surface elevation data from NASA's Operation IceBridge Airborne Topographic Mapper (ATM), and surface roughness estimates from the Advanced Scatterometer (ASCAT). Surface features of the ice pack (e.g. pressure ridges) are detected using IceBridge ATM elevation data and a novel surface feature-picking algorithm. We use simple form drag parameterizations to convert the observed height and spacing of surface features into an effective atmospheric form drag coefficient. The results demonstrate strong regional variability in the atmospheric form drag coefficient, linked to variability in both the height and spacing of surface features. This includes form drag estimates around 2-3 times higher over the multiyear ice north of Greenland, compared to the first-year ice of the Beaufort/Chukchi seas. We compare results from both scanning and linear profiling to ensure our results are consistent with previous studies investigating form drag over Arctic sea ice. A strong correlation between ASCAT surface roughness estimates (using radar backscatter) and the IceBridge form drag results enable us to extrapolate the IceBridge data collected over the western-Arctic across the entire Arctic Ocean. While our focus is on spring, due to the timing of the primary IceBridge campaigns since 2009, we also take advantage of the autumn data collected by IceBridge in 2015 to investigate seasonality in Arctic ice topography and the resulting form drag coefficient. Our results offer the first large-scale assessment of atmospheric form drag over Arctic sea ice due to variable ice topography (i.e. within the Arctic pack ice). The analysis is being extended to the Antarctic IceBridge sea ice data, and the results are being used to calibrate a sophisticated form drag parameterization scheme included in the sea ice model CICE, to improve the representation of form drag over Arctic and Antarctic sea ice in global climate models.
Acute kidney injury post-major orthopaedic surgery: A single-Centre case-control study.
Ying, Tracey; Chan, Samantha; Lane, Stephen; Somerville, Christine
2018-02-01
To identify risk factors for acute kidney injury following major orthopaedic surgery. We included all patients undergoing major orthopaedic surgery at University Hospital Geelong between 2008 and 2014 in the study. Out of 2188 surgeries audited, we identified cases of acute kidney injury using the RIFLE criteria and matched those to controls 2:1 for age, sex, procedure and chronic kidney disease stage. We reviewed their records for risk factors of postoperative acute kidney injury, including medications such as gentamicin, diuretics, non-steroidal anti-inflammatory drugs and angiotensin-converting enzyme inhibitor or angiotensin receptor blocker use. We reviewed the patients' history of cardiovascular disease, chronic liver disease, hypertension and diabetes mellitus along with presence of sepsis and obesity. Associations of hypothetical risk factors were estimated using conditional logistic regression. We identified 164 cases of AKI in an elderly cohort (median age = 73 years). Controlling for baseline comorbidities, both diuretic and angiotensin-converting enzyme inhibitor or angiotensin receptor blocker use were found to be associated with a twofold risk of acute kidney injury (diuretic - OR 2.06 95% CI:1.30-3.26, P < 0.005, angiotensin-converting enzyme inhibitor or angiotensin receptor blocker use OR 2.09 95% CI:1.31-3.32, P < 0.005). A dose-effect model accounting for perioperative nonsteroidal anti-inflammatory drug administration demonstrated a linear relationship between the number of times these drugs were given and postoperative acute kidney injury risk (OR 1.35 95% CI:1.05-1.73, P = 0.02). We identified perioperative diuretics, non-steroidal anti-inflammatory drugs and angiotensin-converting enzyme inhibitor or angiotensin receptor blocker to be significantly associated with postoperative AKI. Further prospective studies are required to confirm this. © 2016 Asian Pacific Society of Nephrology.
Checler, F; Ahmad, S; Kostka, P; Barelli, H; Kitabgi, P; Fox, J A; Kwan, C Y; Daniel, E E; Vincent, J P
1987-07-15
We established the content in neuropeptide-metabolizing peptidases present in highly purified plasma membranes prepared from the circular and longitudinal muscles of dog ileum. Activities were measured by the use of fluorigenic substrates and the identities of enzymes were confirmed by the use of specific peptidase inhibitors. Endopeptidase 24.11, angiotensin-converting enzyme, post-proline dipeptidyl aminopeptidase and aminopeptidases were found in both membrane preparations. Proline endopeptidase was only detected in circular smooth muscle plasma membranes while pyroglutamyl-peptide hydrolase was not observed in either tissue. The relative contribution of these peptidases to the inactivation of neurotensin was assessed. The enzymes involved in the primary inactivating cleavages occurring on the neurotensin molecule were as follows. In both membrane preparations, endopeptidase 24.11 was responsible for the formation of neurotensin-(1-11) and contributed to the formation of neurotensin-(1-10); a recently purified neurotensin-degrading neutral metallopeptidase was also involved in the formation of neurotensin-(1-10). A carboxypeptidase-like activity hydrolysed neurotensin at the Ile12-Leu13 peptide bond, leading to the formation of neurotensin-(1-12). Proline endopeptidase and endopeptidase 24.15 only occurred in circular muscle plasma membranes, yielding neurotensin-(1-7) and neurotensin-(1-8), respectively. In addition, the secondary processing of neurotensin degradation products was catalyzed by the following peptidases. In circular and longitudinal muscle membranes, angiotensin-converting enzyme converted neurotensin-(1-10) into neurotensin-(1-8) and tyrosine resulted from the rapid hydrolysis of neurotensin-(11-13) by bestatin-sensitive aminopeptidases. A post-proline dipeptidyl aminopeptidase activity converted neurotensin-(9-13) into neurotensin-(11-13) in circular muscle plasma membranes. The mechanism of neurotensin inactivation occurring in these membranes will be compared to that previously established for membranes from central origin.
Purification and characterization of a tuliposide-converting enzyme from bulbs of Tulipa gesneriana.
Kato, Yasuo; Shoji, Kazuaki; Ubukata, Makoto; Shigetomi, Kengo; Sato, Yukio; Nakajima, Noriyuki; Ogita, Shinjiro
2009-08-01
An enzyme that catalyzes the stoichiometric conversion of 6-tuliposide into tulipalin was purified and characterized from bulbs of Tulipa gesneriana. The enzyme appeared to be a dimer, the relative molecular mass (Mr) of each subunit being 34,900; it had maximum activity and stability at neutral pH and moderate temperature. The enzyme preferentially acted on such glucose esters as 6-tuliposides, and to a lesser extent on p-nitrophenylacetate.
Genetics Home Reference: combined malonic and methylmalonic aciduria
... acids are building blocks used to make fats (lipids). The ACSF3 enzyme performs a chemical reaction that converts malonic acid to malonyl-CoA, which is the first step of fatty acid synthesis in cellular structures called mitochondria . Based on this activity, the enzyme ...
Wang, Wenya; Zhang, Chao; Sun, Xinxiao; Su, Sisi; Li, Qiang; Linhardt, Robert J
2017-06-01
Lignin is the second most abundant bio-resource in nature. It is increasingly important to convert lignin into high value-added chemicals to accelerate the development of the lignocellulose biorefinery. Over the past several decades, physical and chemical methods have been widely explored to degrade lignin and convert it into valuable chemicals. Unfortunately, these developments have lagged because of several difficulties, of which high energy consumption and non-specific cleavage of chemical bonds in lignin remain the greatest challenges. A large number of enzymes have been discovered for lignin degradation and these are classified as radical lignolytic enzymes and non-radical lignolytic enzymes. Radical lignolytic enzymes, including laccases, lignin peroxidases, manganese peroxidases and versatile peroxidases, are radical-based bio-catalysts, which degrade lignins through non-specific cleavage of chemical bonds but can also catalyze the radical-based re-polymerization of lignin fragments. In contrast, non-radical lignolytic enzymes selectively cleave chemical bonds in lignin and lignin model compounds and, thus, show promise for use in the preparation of high value-added chemicals. In this mini-review, recent developments on non-radical lignolytic enzymes are discussed. These include recently discovered non-radical lignolytic enzymes, their metabolic pathways for lignin conversion, their recent application in the lignin biorefinery, and the combination of bio-catalysts with physical/chemical methods for industrial development of the lignin refinery.
Masuyer, Geoffrey; Yates, Christopher J; Sturrock, Edward D; Acharya, K Ravi
2014-10-01
Somatic angiotensin-I converting enzyme (sACE) has an essential role in the regulation of blood pressure and electrolyte fluid homeostasis. It is a zinc protease that cleaves angiotensin-I (AngI), bradykinin, and a broad range of other signalling peptides. The enzyme activity is provided by two homologous domains (N- and C-), which display clear differences in substrate specificities and chloride activation. The presence of chloride ions in sACE and its unusual role in activity was identified early on in the characterisation of the enzyme. The molecular mechanisms of chloride activation have been investigated thoroughly through mutagenesis studies and shown to be substrate-dependent. Recent results from X-ray crystallography structural analysis have provided the basis for the intricate interactions between ACE, its substrate and chloride ions. Here we describe the role of chloride ions in human ACE and its physiological consequences. Insights into the chloride activation of the N- and C-domains could impact the design of improved domain-specific ACE inhibitors.
Nomura, Taiji; Ueno, Ayaka; Ogita, Shinjiro; Kato, Yasuo
2017-06-01
6-Tuliposide B (PosB) is a glucose ester accumulated in tulip (Tulipa gesneriana) as a major secondary metabolite. PosB serves as the precursor of the antimicrobial lactone tulipalin B (PaB), which is formed by PosB-converting enzyme (TCEB). The gene TgTCEB1, encoding a TCEB, is transcribed in tulip pollen but scarcely transcribed in other tissues (e.g. roots) even though those tissues show high TCEB activity. This led to the prediction of the presence of a TCEB isozyme with distinct tissue specificity. Herein, we describe the identification of the TgTCEB-R gene from roots via native enzyme purification; this gene is a paralog of TgTCEB1. Recombinant enzyme characterization verified that TgTCEB-R encodes a TCEB. Moreover, TgTCEB-R was localized in tulip plastids, as found for pollen TgTCEB1. TgTCEB-R is transcribed almost exclusively in roots, indicating a tissue preference for the transcription of TCEB isozyme genes.
Kim, Sujin; Bae, Sang-Jeong; Hahn, Ji-Sook
2016-04-07
Spatial organization of metabolic enzymes allows substrate channeling, which accelerates processing of intermediates. Here, we investigated the effect of substrate channeling on the flux partitioning at a metabolic branch point, focusing on pyruvate metabolism in Saccharomyces cerevisiae. As a platform strain for the channeling of pyruvate flux, PYK1-Coh-Myc strain was constructed in which PYK1 gene encoding pyruvate kinase is tagged with cohesin domain. By using high-affinity cohesin-dockerin interaction, the pyruvate-forming enzyme Pyk1 was tethered to heterologous pyruvate-converting enzymes, lactate dehydrogenase and α-acetolactate synthase, to produce lactic acid and 2,3-butanediol, respectively. Pyruvate flux was successfully redirected toward desired pathways, with a concomitant decrease in ethanol production even without genetic attenuation of the ethanol-producing pathway. This pyruvate channeling strategy led to an improvement of 2,3-butanediol production by 38%, while showing a limitation in improving lactic acid production due to a reduced activity of lactate dehydrogenase by dockerin tagging.
Angiotensin-converting enzyme in epithelial and neuroepithelial cells.
Defendini, R; Zimmerman, E A; Weare, J A; Alhenc-Gelas, F; Erdös, E G
1983-07-01
Angiotensin-converting enzyme (CE) occurs in three types of cell: endothelial, epithelial, and neuroepithelial. In all three, it appears to be bound to plasma membrane. With antisera to the human enzyme, CE is demonstrated in paraffin sections on the apical surface of epithelial cells in the proximal tubule of the kidney, the mucosa of the small intestine, the syncytial trophoblast of the placenta, and the choroid plexus. Epithelial CE is characteristically found on microvillous surfaces in contact with an effluent, well placed to act on substrate in flux. In the brain, CE occurs in nerve fibers and terminals, mainly mesiobasally and in basal ganglia. Mesiobasal CE coincides with other components of the renin-angiotensin system (RAS) in the choroid/ventricular fluid, the subfornical organ, and the magnocellular neurosecretory system of the hypothalamus. Extrapyramidal CE, however, may not be related to the RAS. In the substantia nigra and the globus pallidus, the enzyme has the same cellular distribution as two putative neuromodulators, substance P and enkephalin, the latter a known substrate of CE.
Solovyev, Mikhail; Gisbert, Enric
2016-10-01
In this study, we tested the effects of long-term storage (2 years) at -20 °C and short-term storage (several hours) in ice and freeze/thaw cycles on the activities of pancreatic, gastric and intestinal (brush border and cytosolic) digestive enzymes in a teleost fish species. The results revealed a significant lose in activity of pancreatic (trypsin, chymotrypsin, total alkaline proteases and α-amylase) and intestinal cytosolic (leucine-alanine peptidase) enzymes between 140 and 270 days of storage at -20 °C, whereas in contrast, the activity of all the assayed brush border enzymes remained constant during the first 2 years of storage at -20 °C. During short-term storage conditions, the most stable enzymes assayed were those of the enterocytes of the brush border, which did not show any change in activity after being held for 5 h in ice. Five freezing and thawing cycles did not affect the activity of the intestinal brush border enzymes and the cytosolic ones, whereas the activity of trypsin, α-amylase and bile-salt-activated lipase was significantly affected by the number of freezing and thawing cycles. No changes in pepsin activity were found in samples exposed to 1 and 2 freezing and thawing cycles.
You, Chun; Shi, Ting; Li, Yunjie; Han, Pingping; Zhou, Xigui; Zhang, Yi-Heng Percival
2017-08-01
Myo-Inositol (vitamin B8) is widely used in the drug, cosmetic, and food & feed industries. Here, we present an in vitro non-fermentative enzymatic pathway that converts starch to inositol in one vessel. This in vitro pathway is comprised of four enzymes that operate without ATP or NAD + supplementation. All enzyme BioBricks are carefully selected from hyperthermophilic microorganisms, that is, alpha-glucan phosphorylase from Thermotoga maritima, phosphoglucomutase from Thermococcus kodakarensis, inositol 1-phosphate synthase from Archaeoglobus fulgidus, and inositol monophosphatase from T. maritima. They were expressed efficiently in high-density fermentation of Escherichia coli BL21(DE3) and easily purified by heat treatment. The four-enzyme pathway supplemented with two other hyperthermophilic enzymes (i.e., 4-α-glucanotransferase from Thermococcus litoralis and isoamylase from Sulfolobus tokodaii) converts branched or linear starch to inositol, accomplishing a very high product yield of 98.9 ± 1.8% wt./wt. This in vitro (aeration-free) biomanufacturing has been successfully operated on 20,000-L reactors. Less costly inositol would be widely added in heath food, low-end soft drink, and animal feed, and may be converted to other value-added biochemicals (e.g., glucarate). This biochemical is the first product manufactured by the in vitro synthetic biology platform on an industrial scale. Biotechnol. Bioeng. 2017;114: 1855-1864. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Soler, María José; Lloveras, Josep; Batlle, Daniel
2008-07-12
The renin-angiotensin system (RAS) plays a key role in the regulation of cardiovascular and renal function. Thus, RAS blockade with an angiotensin-converting enzyme (ACE) and/or angiotensin receptor blocker decreases blood pressure, cardiovascular events, and delays the progression of kidney disease. The discovery of ACE2, a homologue of ACE, capable of degrading angiotensin II to angiotensin 1-7, may offer new insights into the RAS. In this review we discuss the possible protective role of ACE2 in different organs, namely heart, lungs and kidneys. The role of this enzyme is inferred from recent studies performed using genetically manipulated mice that lack the ACE2 gene and also mice treated with pharmacological ACE2 inhibitors. These results suggest that ACE2 might be a new therapeutic target within the RAS.
Zheng, Weijun; Jewitt, David; Kaiser, Ralf I
2009-10-22
The crystalline state of water ice in the Solar System depends on the temperature history of the ice and the influence of energetic particles to which it has been exposed. We measured the infrared absorption spectra of amorphous and crystalline water ice in the 10-50 K and 10-140 K temperature ranges, respectively, and conducted a systematic experimental study to investigate the amorphization of crystalline water ice via ionizing radiation irradiation at doses of up to 160 +/- 30 eV per molecule. We found that crystalline water ice can be converted only partially to amorphous ice by electron irradiation. The experiments showed that a fraction of the 1.65 microm band, which is characteristic for crystalline water ice, survived the irradiation, to a degree that strongly depends on the temperature. Quantitative kinetic fits of the temporal evolution of the 1.65 mum band clearly demonstrate that there is a balance between thermal recrystallization and irradiation-induced amorphization, with thermal recrystallizaton dominant at higher temperatures. Our experiments show the amorphization at 40 K was incomplete, in contradiction to Mastrapa and Brown's conclusion (Icarus 2006, 183, 207.). At 50 K, the recrystallization due to thermal effects is strong, and most of the crystalline ice survived. Temperatures of most icy objects in the Solar System, including Jovian satellites, Saturnian satellites (including Titan), and Kuiper Belt Objects, are equal to or above 50 K; this explains why water ice detected on those objects is mostly crystalline.
1992-01-01
T cell stimulation by the human immunodeficiency virus 1 gp160-derived peptide p18 presented by H-2Dd class I major histocompatibility complex molecules in a cell-free system was found to require proteolytic cleavage. This extracellular processing was mediated by peptidases present in fetal calf serum. In vitro processing of p18 resulted in a distinct reverse phase high performance liquid chromatography profile, from which a biologically active product was isolated and sequenced. This peptide processing can be specifically blocked by the angiotensin- 1 converting enzyme (ACE) inhibitor captopril, and can occur by exposing p18 to purified ACE. The ability of naturally occurring extracellular proteases to convert inactive peptides to T cell antigens has important implications for understanding cytotoxic T lymphocyte responses in vivo, and for rational peptide vaccine design. PMID:1316930
21 CFR 184.1388 - Lactase enzyme preparation from Kluyveromyces lactis.
Code of Federal Regulations, 2011 CFR
2011-04-01
...-galactoside galactohydrase (CAS Reg. No. CBS 683), which converts lactose to glucose and galactose. It is... in § 170.3(o)(9) of this chapter to convert lactose to glucose and galactose. (2) The ingredient is... practice is to use this ingredient in milk to produce lactase-treated milk, which contains less lactose...
21 CFR 184.1388 - Lactase enzyme preparation from Kluyveromyces lactis.
Code of Federal Regulations, 2010 CFR
2010-04-01
...-galactoside galactohydrase (CAS Reg. No. CBS 683), which converts lactose to glucose and galactose. It is... in § 170.3(o)(9) of this chapter to convert lactose to glucose and galactose. (2) The ingredient is... practice is to use this ingredient in milk to produce lactase-treated milk, which contains less lactose...
Mercier, Kelly; Smith, Holly; Biederman, Jason
2014-12-01
Angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) therapy in hypertensive diabetic patients with macroalbuminuria, microalbuminuria, or normoalbuminuria has been repeatedly shown to improve cardiovascular mortality and reduce the decline in glomerular filtration rate. Renin-angiotensin-aldosterone system (RAAS) blockade in normotensive diabetic patients with normoalbuminuria or microalbuminuria cannot be advocated at present. Dual RAAS inhibition with ACE inhibitors plus ARBs or ACE inhibitors plus direct renin inhibitors has failed to improve cardiovascular or renal outcomes but has predisposed patients to serious adverse events. Copyright © 2014 Elsevier Inc. All rights reserved.
Angiotensin converting enzyme over expression in myelocytes enhances the immune response
Bernstein, Kenneth E.; Gonzalez-Villalobos, Romer A.; Giani, Jorge F.; Shah, Kandarp; Bernstein, Ellen; Janjulia, Tea; Koronyo, Yosef; Shi, Peng D.; Koronyo-Hamaoui, Maya; Fuchs, Sebastien; Shen, Xiao Z.
2015-01-01
Angiotensin converting enzyme (ACE) plays an important role in blood pressure control. ACE also has effects on renal function, reproduction, hematopoiesis and several aspects of the immune response. ACE 10/10 mice over express ACE in monocytic cells; macrophages from ACE 10/10 mice demonstrate increased polarization towards a proinflammatory phenotype. As a result, ACE 10/10 mice have a highly effective immune response following challenge with either melanoma, bacterial infection or Alzheimer’s disease. The ACE 10/10 mice suggest that enhanced monocytic function greatly contributes to the ability of the immune response to defend against a wide variety of antigenic and non-antigenic challenges. PMID:24633750
Muñoz, Ana; Rey, Pablo; Guerra, Maria J; Mendez-Alvarez, Estefania; Soto-Otero, Ramon; Labandeira-Garcia, Jose L
2006-07-01
There is growing evidence indicating that oxidative stress is a key contributor to the pathogenesis and progression of Parkinson's disease. The brain, and particularly the basal ganglia, possesses a local rennin-angiotensin system. Angiotensin activates NAD(P)H-dependent oxidases, which are a major intracellular source of superoxide, and angiotensin converting enzyme inhibitors (ACEIs) have shown antioxidant properties. We treated mice with MPTP and the ACEI captopril to study the possible neuroprotective and antioxidant effects of the latter on the dopaminergic system. Pre-treatment with captopril induced a significant reduction in the MPTP-induced loss of dopaminergic neurons in the substantia nigra and a significant reduction in the loss of dopaminergic terminals in the striatum. Furthermore, captopril reduced the MPTP-induced increase in the levels of major oxidative stress indicators (i.e. lipid peroxidation and protein oxidation) in the ventral midbrain and the striatum. Captopril did not reduce striatal MPP(+) levels, MAO-B activity or dopamine transporter activity, which may reduce MPTP neurotoxicity. Our results suggest that angiotensin-converting enzyme inhibitors may be useful for treatment of Parkinson's disease, and that further investigation should focus on the neuroprotective capacity of these compounds.
Ghanbari, Raheleh; Zarei, Mohammad; Ebrahimpour, Afshin; Abdul-Hamid, Azizah; Ismail, Amin; Saari, Nazamid
2015-01-01
In recent years, food protein-derived hydrolysates have received considerable attention because of their numerous health benefits. Amongst the hydrolysates, those with anti-hypertensive and anti-oxidative activities are receiving special attention as both activities can play significant roles in preventing cardiovascular diseases. The present study investigated the angiotensin-I converting enzyme (ACE) inhibitory and anti-oxidative activities of Actinopyga lecanora (A. lecanora) hydrolysates, which had been prepared by alcalase, papain, bromelain, flavourzyme, pepsin, and trypsin under their optimum conditions. The alcalase hydrolysate showed the highest ACE inhibitory activity (69.8%) after 8 h of hydrolysis while the highest anti-oxidative activities measured by 2,2-diphenyl 1-1-picrylhydrazyl radical scavenging (DPPH) (56.00%) and ferrous ion-chelating (FIC) (59.00%) methods were exhibited after 24 h and 8 h of hydrolysis, respectively. The ACE-inhibitory and anti-oxidative activities displayed dose-dependent trends, and increased with increasing protein hydrolysate concentrations. Moreover, strong positive correlations between angiotensin-I converting enzyme (ACE) inhibitory and anti-oxidative activities were also observed. This study indicates that A. lecanora hydrolysate can be exploited as a source of functional food owing to its anti-oxidant as well as anti-hypertension functions. PMID:26690117
NASA Astrophysics Data System (ADS)
Liao, Fang-Tsu; Chang, Cheng-Yi; Su, Ming-Tsan; Kuo, Wen-Chuan
2014-01-01
Prior studies have established the necessity of an angiotensin-converting enzyme-related (ACER) gene for heart morphogenesis of Drosophila. Nevertheless, the physiology of ACER has yet to be comprehensively understood. Herein, we employed RNA interference to down-regulate the expression of ACER in Drosophila's heart and swept source optical coherence tomography to assess whether ACER is required for cardiac functions in living adult flies. Several contractile parameters of Drosophila heart, including the heart rate (HR), end-diastolic diameter (EDD), end-systolic diameter (ESD), percent fractional shortening (%FS), and stress-induced cardiac performance, are shown, which are age dependent. These age-dependent cardiac functions declined significantly when ACER was down-regulated. Moreover, the lifespans of ACER knock-down flies were significantly shorter than those of wild-type control flies. Thus, we posit that ACER, the Drosophila ortholog of mammalian angiotensin-converting enzyme 2 (ACE2), is essential for both heart physiology and longevity of animals. Since mammalian ACE2 controls many cardiovascular physiological features and is implicated in cardiomyopathies, our findings that ACER plays conserved roles in genetically tractable animals will pave the way for uncovering the genetic pathway that controls the renin-angiotensin system.
Rai, Amit Kumar; Sanjukta, Samurailatpam; Jeyaram, Kumaraswamy
2017-09-02
Fermented milk is a potential source of various biologically active peptides with specific health benefits. Angiotensin converting enzyme inhibitory (ACE-I) peptides are one of the most studied bioactive peptides produced during milk fermentation. The presence of these peptides is reported in various fermented milk products such as, yoghurt, cheese, sour milk, etc., which are also available as commercial products. Many of the ACE-I peptides formed during milk fermentation are resistant to gastrointestinal digestion and inhibit angiotensin converting enzyme (ACE) in the rennin angiotension system (RAS). There are various factors, which affect the formation ACE-I peptides and their ability to reach the target tissue in active form, which includes type of starters (lactic acid bacteria (LAB), yeast, etc.), substrate composition (casein type, whey protein, etc.), composition of ACE-I peptide, pre and post-fermentation treatments, and its stability during gastrointestinal digestion. The antihypertensive effect of fermented milk products has also been proved by various in vitro and in vivo (animal and human trials) experiments. This paper reviews the literature on fermented milk products as a source of ACE-I peptides and various factors affecting the production and activity of ACE-I peptides.
NASA Astrophysics Data System (ADS)
Löptien, U.; Dietze, H.
2014-06-01
The Baltic Sea is a seasonally ice-covered, marginal sea, situated in central northern Europe. It is an essential waterway connecting highly industrialised countries. Because ship traffic is intermittently hindered by sea ice, the local weather services have been monitoring sea ice conditions for decades. In the present study we revisit a historical monitoring data set, covering the winters 1960/1961. This data set, dubbed Data Bank for Baltic Sea Ice and Sea Surface Temperatures (BASIS) ice, is based on hand-drawn maps that were collected and then digitised 1981 in a joint project of the Finnish Institute of Marine Research (today Finish Meteorological Institute (FMI)) and the Swedish Meteorological and Hydrological Institute (SMHI). BASIS ice was designed for storage on punch cards and all ice information is encoded by five digits. This makes the data hard to access. Here we present a post-processed product based on the original five-digit code. Specifically, we convert to standard ice quantities (including information on ice types), which we distribute in the current and free Network Common Data Format (NetCDF). Our post-processed data set will help to assess numerical ice models and provide easy-to-access unique historical reference material for sea ice in the Baltic Sea. In addition we provide statistics showcasing the data quality. The website www.baltic-ocean.org hosts the post-prossed data and the conversion code. The data are also archived at the Data Publisher for Earth & Environmental Science PANGEA (doi:10.1594/PANGEA.832353).
NASA Technical Reports Server (NTRS)
Koehler, Birgit G.; Mcneill, Laurie S.; Middlebrook, Ann M.; Tolbert, Margaret A.
1993-01-01
Heterogeneous reactions involving hydrochloric acid adsorbed on the surfaces of polar stratospheric clouds (PSCs) are postulated to contribute to polar ozone loss. Using FTIR spectroscopy to probe the condensed phase, we have examined the interaction of HCl with ice and nitric acid trihydrate (NAT) films representative of types II and I PSCs, respectively. For HCl pressures in the range of 10 exp -7 to 10 exp -5 Torr, our FTIR studies show that a small amount of crystalline HCl-6H2O formed on or in ice at 155 K. However, for higher HCl pressures, we observed that the entire film of ice rapidly converted into an amorphous 4:1 H2O:HCl mixture. From HCl-uptake experiments with P(HCl) = 8 x 10 exp -7 Torr, we estimate roughly that the diffusion coefficient of HCl in ice is around 2 x 10 exp -12 sq cm/s at 158 K. For higher temperatures more closely approximating those found in the stratosphere, we were unable to detect bulk HCl uptake by ice. Indirect evidence suggests that HCl adsorption onto the surface of model PSC films inhibited the evaporation of both ice and NAT by 3-5 K.
NASA Astrophysics Data System (ADS)
Moussavi, M. S.; Scambos, T.; Haran, T. M.; Klinger, M. J.; Abdalati, W.
2015-12-01
We investigate the capability of Landsat 8's Operational Land Imager (OLI) instrument to quantify subtle ice sheet topography of Greenland and Antarctica. We use photoclinometry, or 'shape-from-shading', a method of deriving surface topography from local variations in image brightness due to varying surface slope. Photoclinomeetry is applicable over ice sheet areas with highly uniform albedo such as regions covered by recent snowfall. OLI imagery is available from both ascending and descending passes near the summer solstice period for both ice sheets. This provides two views of the surface features from two distinct solar azimuth illumination directions. Airborne laser altimetry data from the Airborne Topographic Mapper (ATM) instrument (flying on the Operation Ice Bridge program) are used to quantitatively convert the image brightness variations of surface undulations to surface slope. To validate the new DEM products, we use additional laser altimetry profiles collected over independent sites from Ice Bridge and ICESat, and high-resolution WorldView-2 DEMs. The photoclinometry-derived DEM products will be useful for studying surface elevation changes, enhancing bedrock elevation maps through inversion of surface topography, and inferring local variations in snow accumulation rates.
NASA Technical Reports Server (NTRS)
Li, Jun; Zwally, H. Jay
2011-01-01
Changes in ice-sheet surface elevation are caused by a combination of ice-dynamic imbalance, ablation, temporal variations in accumulation rate, firn compaction and underlying bedrock motion. Thus, deriving the rate of ice-sheet mass change from measured surface elevation change requires information on the rate of firn compaction and bedrock motion, which do not involve changes in mass, and requires an appropriate firn density to associate with elevation changes induced by recent accumulation rate variability. We use a 25 year record of surface temperature and a parameterization for accumulation change as a function of temperature to drive a firn compaction model. We apply this formulation to ICESat measurements of surface elevation change at three locations on the Greenland ice sheet in order to separate the accumulation-driven changes from the ice-dynamic/ablation-driven changes, and thus to derive the corresponding mass change. Our calculated densities for the accumulation-driven changes range from 410 to 610 kg/cu m, which along with 900 kg/cu m for the dynamic/ablation-driven changes gives average densities ranging from 680 to 790 kg/cu m. We show that using an average (or "effective") density to convert elevation change to mass change is not valid where the accumulation and the dynamic elevation changes are of opposite sign.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-05-01
A biological/chemical process for converting cyclohexane into caprolactam was investigated: microorganisms in a bioreactor would be used to convert cyclohexane into caprolactone followed by chemical synthesis of caprolactam using ammonia. Four microorganisms were isolated from natural soil and water, that can utilize cyclohexane as a sole source of C and energy for growth. They were shown to have the correct metabolic intermediates and enzymes to convert cyclohexane into cyclohexanol, cyclohexanone, and caprolactone. Genetic techniques to create and select for caprolactone hydrolase negative-mutants were developed; those are used to convert cyclohexane into caprolactone but, because of the block, are unable tomore » metabolize the caprolactone further. Because of a new nylon carpet reycle process and the long time frame for a totally new bioprocess, a limited study was done to evaluate whether a simplified bioprocess to convert cyclohexanol into cyclohexanone or caprolactone was feasible; growth rates and key enzyme levels were measured in a collection of microorganisms that metabolize cyclohexanol to determine if the bioactivity is high enough to support an economical cyclohexanol bioprocess. Although these microorganisms had sufficient bioactivity, they could tolerate only low levels (<1%) of cyclohexanol and thus are not suitable for developing a cost effective bioprocess because of the high cost of dilute product recovery.« less
Pacheco-Quinto, Javier; Eckman, Christopher B; Eckman, Elizabeth A
2016-12-01
Impaired clearance of amyloid-β peptide (Aβ) has been postulated to significantly contribute to the amyloid accumulation typical of Alzheimer's disease. Among the enzymes known to degrade Aβ in vivo are endothelin-converting enzyme (ECE)-1, ECE-2, and neprilysin (NEP), and evidence suggests that they regulate independent pools of Aβ that may be functionally significant. To better understand the differential regulation of Aβ concentration by its physiological degrading enzymes, we characterized the cell and region-specific expression pattern of ECE-1, ECE-2, and NEP by in situ hybridization and immunohistochemistry in brain areas relevant to Alzheimer's disease. In contrast to the broader distribution of ECE-1, ECE-2 and NEP were found enriched in GABAergic neurons. ECE-2 was majorly expressed by somatostatin-expressing interneurons and was active in isolated synaptosomes. NEP messenger RNA was found mainly in parvalbumin-expressing interneurons, with NEP protein localized to perisomatic parvalbuminergic synapses. The identification of somatostatinergic and parvalbuminergic synapses as hubs for Aβ degradation is consistent with the possibility that Aβ may have a physiological function related to the regulation of inhibitory signaling. Copyright © 2016 Elsevier Inc. All rights reserved.
Characterization of gossypol biosynthetic pathway
Tian, Xiu; Ruan, Ju-Xin; Huang, Jin-Quan; Fang, Xin; Chen, Zhi-Wen; Hong, Hui; Wang, Ling-Jian; Mao, Ying-Bo; Lu, Shan; Zhang, Tian-Zhen; Chen, Xiao-Ya
2018-01-01
Gossypol and related sesquiterpene aldehydes in cotton function as defense compounds but are antinutritional in cottonseed products. By transcriptome comparison and coexpression analyses, we identified 146 candidates linked to gossypol biosynthesis. Analysis of metabolites accumulated in plants subjected to virus-induced gene silencing (VIGS) led to the identification of four enzymes and their supposed substrates. In vitro enzymatic assay and reconstitution in tobacco leaves elucidated a series of oxidative reactions of the gossypol biosynthesis pathway. The four functionally characterized enzymes, together with (+)-δ-cadinene synthase and the P450 involved in 7-hydroxy-(+)-δ-cadinene formation, convert farnesyl diphosphate (FPP) to hemigossypol, with two gaps left that each involves aromatization. Of six intermediates identified from the VIGS-treated leaves, 8-hydroxy-7-keto-δ-cadinene exerted a deleterious effect in dampening plant disease resistance if accumulated. Notably, CYP71BE79, the enzyme responsible for converting this phytotoxic intermediate, exhibited the highest catalytic activity among the five enzymes of the pathway assayed. In addition, despite their dispersed distribution in the cotton genome, all of the enzyme genes identified show a tight correlation of expression. Our data suggest that the enzymatic steps in the gossypol pathway are highly coordinated to ensure efficient substrate conversion. PMID:29784821
Performance of a Battery Electric Vehicle in the Cold Climate and Hilly Terrain of Vermont
DOT National Transportation Integrated Search
2008-12-23
The goal of this research project was to determine the performance of a battery electric vehicle (BEV) in the cold climate and hilly terrain of Vermont. For this study, a 2005 Toyota Echo was converted from an internal combustion engine (ICE) vehicle...
Chen, Hui-Ling; Lünsdorf, Heinrich; Hecht, Hans-Jürgen; Tsai, Hsin
2010-08-01
The somatic angiotensin I-converting enzyme (sACE; peptidyl-dipeptidase A; EC 3.4.15.1) was isolated from pig lung and purified to homogeneity. The purified enzyme has a molecular mass of about 180 kDa. Upon proteolytic cleavage, two approximately 90 kDa fragments were obtained and identified by amino-terminal sequence analysis as the N- and C-domains of sACE. Both purified domains were shown to be catalytically active. A 2.3 nm resolution model of sACE was obtained by three-dimensional electron microscopic reconstruction of negatively stained sACE particles, based on atomic X-ray data fitting. Our model shows for the first time the relative orientation of the sACE catalytically active domains and their spatial distance. (c) 2010 Elsevier Ltd. All rights reserved.
An Enzyme-Catalyzed Multistep DNA Refolding Mechanism in Hairpin Telomere Formation
Shi, Ke; Huang, Wai Mun; Aihara, Hideki
2013-01-01
Hairpin telomeres of bacterial linear chromosomes are generated by a DNA cutting–rejoining enzyme protelomerase. Protelomerase resolves a concatenated dimer of chromosomes as the last step of chromosome replication, converting a palindromic DNA sequence at the junctions between chromosomes into covalently closed hairpins. The mechanism by which protelomerase transforms a duplex DNA substrate into the hairpin telomeres remains largely unknown. We report here a series of crystal structures of the protelomerase TelA bound to DNA that represent distinct stages along the reaction pathway. The structures suggest that TelA converts a linear duplex substrate into hairpin turns via a transient strand-refolding intermediate that involves DNA-base flipping and wobble base-pairs. The extremely compact di-nucleotide hairpin structure of the product is fully stabilized by TelA prior to strand ligation, which drives the reaction to completion. The enzyme-catalyzed, multistep strand refolding is a novel mechanism in DNA rearrangement reactions. PMID:23382649
Aβ degradation or cerebral perfusion? Divergent effects of multifunctional enzymes.
Miners, J Scott; Palmer, Jennifer C; Tayler, Hannah; Palmer, Laura E; Ashby, Emma; Kehoe, Patrick G; Love, Seth
2014-01-01
There is increasing evidence that deficient clearance of β-amyloid (Aβ) contributes to its accumulation in late-onset Alzheimer disease (AD). Several Aβ-degrading enzymes, including neprilysin (NEP), endothelin-converting enzyme (ECE), and angiotensin-converting enzyme (ACE) reduce Aβ levels and protect against cognitive impairment in mouse models of AD. In post-mortem human brain tissue we have found that the activity of these Aβ-degrading enzymes rise with age and increases still further in AD, perhaps as a physiological response that helps to minimize the build-up of Aβ. ECE-1/-2 and ACE are also rate-limiting enzymes in the production of endothelin-1 (ET-1) and angiotensin II (Ang II), two potent vasoconstrictors, increases in the levels of which are likely to contribute to reduced blood flow in AD. This review considers the possible interdependence between Aβ-degrading enzymes, ischemia and Aβ in AD: ischemia has been shown to increase Aβ production both in vitro and in vivo, whereas increased Aβ probably enhances ischemia by vasoconstriction, mediated at least in part by increased ECE and ACE activity. In contrast, NEP activity may help to maintain cerebral perfusion, by reducing the accumulation of Aβ in cerebral blood vessels and lessening its toxicity to vascular smooth muscle cells. In assessing the role of Aβ-degrading proteases in the pathogenesis of AD and, particularly, their potential as therapeutic agents, it is important to bear in mind the multifunctional nature of these enzymes and to consider their effects on other substrates and pathways.
21 CFR 184.1387 - Lactase enzyme preparation from Candida pseudotropicalis.
Code of Federal Regulations, 2010 CFR
2010-04-01
....2.1.23), which converts lactose to glucose and galactose. It is prepared from yeast that has been... defined in § 170.3(o)(9) of this chapter, to convert lactose to glucose and galactose. (2) The ingredient... manufacturing practice is limited to use of this ingredient to reduce the lactose content in milk and milk...
21 CFR 184.1387 - Lactase enzyme preparation from Candida pseudotropicalis.
Code of Federal Regulations, 2011 CFR
2011-04-01
....2.1.23), which converts lactose to glucose and galactose. It is prepared from yeast that has been... defined in § 170.3(o)(9) of this chapter, to convert lactose to glucose and galactose. (2) The ingredient... manufacturing practice is limited to use of this ingredient to reduce the lactose content in milk and milk...
NASA Astrophysics Data System (ADS)
Place, P., Jr.; Petrenko, V. V.; Vimont, I.
2017-12-01
Carbon Monoxide (CO) is an important atmospheric trace gas that affects the oxidative capacity of the atmosphere and contributes indirectly to anthropogenic radiative forcing. Carbon monoxide stable isotopes can also serve as a tracer for variations in biomass burning, particularly in the preindustrial atmosphere. A good understanding of the past variations in CO mole fractions and isotopic composition can help improve the skill of chemical transport models and constrain biomass burning changes. Ice cores may preserve a record of past atmospheric CO for analysis and interpretation. To this end, a new extraction system has been developed for analysis of stable isotopes (δ13CO and δC18O) of atmospheric carbon monoxide from ice core and atmospheric air samples. This system has been designed to measure relatively small sample sizes (80 cc STP of air) to accommodate the limited availability of ice core samples. Trapped air is extracted from ice core samples via melting in a glass vacuum chamber. This air is expanded into a glass expansion loop and then compressed into the sample loop of a Reducing Gas Detector (Peak Laboratories, Peak Performer 1 RCP) for the CO mole fraction measurement. The remaining sample gas will be expelled from the melt vessel into a larger expansion loop via headspace compression for isotopic analysis. The headspace compression will be accomplished by introduction of clean degassed water into the bottom of the melt vessel. Isotopic analysis of the sample gas is done utilizing the Schütze Reagent to convert the carbon monoxide to carbon dioxide (CO2) which is then measured using continuous-flow isotope ratio mass spectrometry (Elementar Americas, IsoPrime 100). A series of cryogenic traps are used to purify the sample air, capture the converted sample CO2, and cryofocus the sample CO2 prior to injection.
Rodgers, Jo E
2017-06-01
Sacubitril/valsartan combines a neprilysin inhibitor with an angiotensin receptor blocker. As an inhibitor of neprilysin, an enzyme that degrades biologically active natriuretic peptides, this first-in-class therapy increases levels of circulating natriuretic peptides, resulting in natriuretic, diuretic, and vasodilatory effects. In patients with chronic New York Heart Association class II-IV heart failure with reduced ejection fraction, the PARADIGM-HF trial demonstrated that sacubitril/valsartan significantly reduced the primary endpoint of cardiovascular mortality and heart failure hospitalization, compared with enalapril. The rate of all-cause mortality was also significantly reduced. Subsequently, the American College of Cardiology/American Heart Association/Heart Failure Society of America recently updated guideline recommendations for Stage C patients with heart failure with reduced ejection fraction to recommend angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, or sacubitril/valsartan in conjunction with other evidence-based therapies to reduce morbidity and mortality. Several analyses have suggested the cost-effectiveness of this new therapy. To ensure tolerability, initiating the lower dosage form of sacubitril/valsartan is warranted in patients with severe renal impairment, moderate hepatic impairment, and low blood pressure, and close monitoring is warranted in such patients. A 36-hour washout period is recommended when switching patients from an angiotensin-converting enzyme inhibitor to sacubitril/valsartan. Similarly, sacubitril/valsartan is contraindicated in patients receiving concomitant angiotensin-converting enzyme inhibitor or angiotensin receptor blocker and those with a history of angioedema. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhou, L.; Xu, S.; Liu, J.
2017-12-01
The retrieval of sea ice thickness mainly relies on satellite altimetry, and the freeboard measurements are converted to sea ice thickness (hi) under certain assumptions over snow loading. The uncertain in snow depth (hs) is a major source of uncertainty in the retrieved sea ice thickness and total volume for both radar and laser altimetry. In this study, novel algorithms for the simultaneous retrieval of hi and hs are proposed for the data synergy of L-band (1.4 GHz) passive remote sensing and both types of active altimetry: (1) L-band (1.4GHz) brightness temperature (TB) from Soil Moisture Ocean Salinity (SMOS) satellite and sea ice freeboard (FBice) from radar altimetry, (2) L-band TB data and snow freeboard (FBsnow) from laser altimetry. Two physical models serve as the forward models for the retrieval: L-band radiation model, and the hydrostatic equilibrium model. Verification with SMOS and Operational IceBridge (OIB) data is carried out, showing overall good retrieval accuracy for both sea ice parameters. Specifically, we show that the covariability between hs and FBsnow is crucial for the synergy between TB and FBsnow. Comparison with existing algorithms shows lower uncertainty in both sea ice parameters, and that the uncertainty in the retrieved sea ice thickness as caused by that of snow depth is spatially uncorrelated, with the potential reduction of the volume uncertainty through spatial sampling. The proposed algorithms can be applied to the retrieval of sea ice parameters at basin-scale, using concurrent active and passive remote sensing data based on satellites.
Gangoiti, Joana; van Leeuwen, Sander S; Meng, Xiangfeng; Duboux, Stéphane; Vafiadi, Christina; Pijning, Tjaard; Dijkhuizen, Lubbert
2017-08-30
The Glycoside hydrolase (GH) family 70 originally was established for glucansucrases of lactic acid bacteria (LAB) converting sucrose into α-glucan polymers. In recent years we have identified 3 subfamilies of GH70 enzymes (designated GtfB, GtfC and GtfD) as 4,6-α-glucanotransferases, cleaving (α1 → 4)-linkages in maltodextrins/starch and synthesizing new (α1 → 6)-linkages. In this work, 106 putative GtfBs were identified in the Nestlé Culture Collection genome database with ~2700 genomes, and the L. reuteri NCC 2613 one was selected for further characterization based on variations in its conserved motifs. Using amylose the L. reuteri NCC 2613 GtfB synthesizes a low-molecular-mass reuteran-like polymer consisting of linear (α1 → 4) sequences interspersed with (α1 → 6) linkages, and (α1 → 4,6) branching points. This product specificity is novel within the GtfB subfamily, mostly comprising 4,6-α-glucanotransferases synthesizing consecutive (α1 → 6)-linkages. Instead, its activity resembles that of the GtfD 4,6-α-glucanotransferases identified in non-LAB strains. This study demonstrates the potential of large-scale genome sequence data for the discovery of enzymes of interest for the food industry. The L. reuteri NCC 2613 GtfB is a valuable addition to the starch-converting GH70 enzyme toolbox. It represents a new evolutionary intermediate between families GH13 and GH70, and provides further insights into the structure-function relationships of the GtfB subfamily enzymes.
Honda, Kohsuke; Maya, Shohei; Omasa, Takeshi; Hirota, Ryuichi; Kuroda, Akio; Ohtake, Hisao
2010-08-02
Six thermophilic enzymes from Thermus thermophilus were used to construct an 'artificial bio-synthetic pathway' for the production of 2-deoxyribose 5-phosphate from fructose. By a simple operation using six recombinant Escherichia coli strains producing the thermophilic enzymes, respectively, fructose was converted to 2-deoxyribose 5-phosphate with a molar yield of 55%. Copyright 2010 Elsevier B.V. All rights reserved.
Synthetic activation of caspases: Artificial death switches
MacCorkle, Rebecca A.; Freeman, Kevin W.; Spencer, David M.
1998-01-01
The development of safe vectors for gene therapy requires fail-safe mechanisms to terminate therapy or remove genetically altered cells. The ideal “suicide switch” would be nonimmunogenic and nontoxic when uninduced and able to trigger cell death independent of tissue type or cell cycle stage. By using chemically induced dimerization, we have developed powerful death switches based on the cysteine proteases, caspase-1 ICE (interleukin-1β converting enzyme) and caspase-3 YAMA. In both cases, aggregation of the target protein is achieved by a nontoxic lipid-permeable dimeric FK506 analog that binds to the attached FK506-binding proteins, FKBPs. We find that intracellular cross-linking of caspase-1 or caspase-3 is sufficient to trigger rapid apoptosis in a Bcl-xL-independent manner, suggesting that these conditional proapoptotic molecules can bypass intracellular checkpoint genes, such as Bcl-xL, that limit apoptosis. Because these chimeric molecules are derived from autologous proteins, they should be nonimmunogenic and thus ideal for long-lived gene therapy vectors. These properties should also make chemically induced apoptosis useful for developmental studies, for treating hyperproliferative disorders, and for developing animal models to a wide variety of diseases. PMID:9520421
Cheng, Hai-Li; Zhao, Rui-Yu; Chen, Tian-Jiao; Yu, Wen-Bo; Wang, Fen; Cheng, Ke-Di; Zhu, Ping
2013-01-01
Paclitaxel, a natural antitumor compound, is produced by yew trees at very low concentrations, causing a worldwide shortage of this important anticancer medicine. These plants also produce significant amounts of 7-β-xylosyl-10-deacetyltaxol, which can be bio-converted into 10-deacetyltaxol for the semi-synthesis of paclitaxel. Some microorganisms can convert 7-β-xylosyl-10-deacetyltaxol into 10-deacetyltaxol, but the bioconversion yield needs to be drastically improved for industrial applications. In addition, the related β-xylosidases of these organisms have not yet been defined. We set out to discover an efficient enzyme for 10-deacetyltaxol production. By combining the de novo sequencing of β-xylosidase isolated from Lentinula edodes with RT-PCR and the rapid amplification of cDNA ends, we cloned two cDNA variants, Lxyl-p1–1 and Lxyl-p1–2, which were previously unknown at the gene and protein levels. Both variants encode a specific bifunctional β-d-xylosidase/β-d-glucosidase with an identical ORF length of 2412 bp (97% identity). The enzymes were characterized, and their 3.6-kb genomic DNAs (G-Lxyl-p1–1, G-Lxyl-p1–2), each harboring 18 introns, were also obtained. Putative substrate binding motifs, the catalytic nucleophile, the catalytic acid/base, and potential N-glycosylation sites of the enzymes were predicted. Kinetic analysis of both enzymes showed kcat/Km of up to 1.07 s−1mm−1 against 7-β-xylosyl-10-deacetyltaxol. Importantly, at substrate concentrations of up to 10 mg/ml (oversaturated), the engineered yeast could still robustly convert 7-β-xylosyl-10-deacetyltaxol into 10-deacetyltaxol with a conversion rate of over 85% and a highest yield of 8.42 mg/ml within 24 h, which is much higher than those reported previously. Therefore, our discovery might lead to significant progress in the development of new 7-β-xylosyl-10-deacetyltaxol-converting enzymes for more efficient use of 7-β-xylosyltaxanes to semi-synthesize paclitaxel and its analogues. This work also might lead to further studies on how these enzymes act on 7-β-xylosyltaxanes and contribute to the growing database of glycoside hydrolases. PMID:23665501
Thyroid hormone (TH) signaling and homeostasis is dependent upon coordination of multiple key events including thyroidal iodide uptake and hormone synthesis, and peripheral metabolism and elimination. Deiodinase enzymes play an essential role in converting the pro-hormone thyroxi...
Ushimaru, Richiro; Lin, Chia-I; Sasaki, Eita; Liu, Hung-Wen
2016-09-02
Lincosamides such as lincomycin A, celesticetin, and Bu-2545, constitute an important group of antibiotics. These natural products are characterized by a thiooctose linked to a l-proline residue, but they differ with regards to modifications of the thioacetal moiety, the pyrrolidine ring, and the octose core. Here we report that the pyridoxal 5'-phosphate-dependent enzyme CcbF (celesticetin biosynthetic pathway) is a decarboxylating deaminase that converts a cysteine S-conjugated intermediate into an aldehyde. In contrast, the homologous enzyme LmbF (lincomycin biosynthetic pathway) catalyzes C-S bond cleavage of the same intermediate to afford a thioglycoside. We show that Ccb4 and LmbG (downstream methyltransferases) convert the aldehyde and thiol intermediates into a variety of methylated lincosamide compounds including Bu-2545. The substrates used in these studies are the β-anomers of the natural substrates. The findings not only provide insight into how the biosynthetic pathway of lincosamide antibiotics can bifurcate to generate different lincosamides, but also reveal the promiscuity of the enzymes involved. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Xiong, Jian; Bhaskar, Ujjwal; Li, Guoyun; Fu, Li; Li, Lingyun; Zhang, Fuming; Dordick, Jonathan S; Linhardt, Robert J
2013-09-10
Heparin is a critically important anticoagulant drug that is prepared from pig intestine. In 2007-2008, there was a crisis in the heparin market when the raw material was adulterated with the toxic polysaccharide, oversulfated chondroitin sulfate, which was associated with 100 deaths in the U.S. alone. As the result of this crisis, our laboratory and others have been actively pursuing alternative sources for this critical drug, including synthetic heparins and bioengineered heparin. In assessing the bioengineering processing costs it has become clear that the use of both enzyme-catalyzed cofactor recycling and enzyme immobilization will be needed for commercialization. In the current study, we examine the use of immobilization of C₅-epimerase and 2-O-sulfotransferase involved in the first enzymatic step in the bioengineered heparin process, as well as arylsulfotransferase-IV involved in cofactor recycling in all three enzymatic steps. We report the successful immobilization of all three enzymes and their use in converting N-sulfo, N-acetyl heparosan into N-sulfo, N-acetyl 2-O-sulfo heparin. Copyright © 2013 Elsevier B.V. All rights reserved.
Lin, Kai; Zhang, Lanwei; Han, Xue; Meng, Zhaoxu; Zhang, Jianming; Wu, Yifan; Cheng, Dayou
2018-03-28
In this study, Qula casein derived from yak milk casein was hydrolyzed using a two-enzyme combination approach, and high angiotensin I-converting enzyme (ACE) inhibitory activity peptides were screened by quantitative structure-activity relationship (QSAR) modeling integrated with molecular docking analysis. Hydrolysates (<3 kDa) derived from combinations of thermolysin + alcalase and thermolysin + proteinase K demonstrated high ACE inhibitory activities. Peptide sequences in hydrolysates derived from these two combinations were identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS). On the basis of the QSAR modeling prediction, a total of 16 peptides were selected for molecular docking analysis. The docking study revealed that four of the peptides (KFPQY, MPFPKYP, MFPPQ, and QWQVL) bound the active site of ACE. These four novel peptides were chemically synthesized, and their IC 50 was determined. Among these peptides, KFPQY showed the highest ACE inhibitory activity (IC 50 = 12.37 ± 0.43 μM). Our study indicated that Qula casein presents an excellent source to produce ACE inhibitory peptides.
Murakami, Keiko; Yamanaka, Naoki; Ohnishi, Katsunori; Fukayama, Minoru; Yoshino, Masataka
2012-06-01
Angiotensin I converting enzyme (ACE) was inhibited by the culture medium of Bacillus subtilis subsp. natto, which ferments boiled soy beans to natto, a Japanese traditional food. Subtilisin NAT (nattokinase) produced by B. subtilis also inhibited ACE, and the inhibition was markedly stimulated by heat treatment of subtilisin at 120 °C for 15 min. Inhibition of ACE by subtilisin was of a mixed type: the decrease in V(max) and the increase in K(m) value. SDS-polyacrylamide gel electrophoresis showed that heat treatment of subtilisin caused inactivation with fragmentation of the enzyme protein into small peptides. The inhibitory action of subtilisin was not due to an enzymatic action of protease, but may be ascribed to the potent ACE-inhibitory peptides such as LY and FY, amino acid sequences in subtilisin. HPLC-MS analysis of heat-inactivated subtilisin confirmed that LY and FY were liberated by fragmentation of the enzyme. Inhibition of ACE by subtilisin and its degradation peptides such as LY and FY may participate in the suppression of blood pressure by ingestion of natto.
Vollmer, M D; Schlömann, M
1995-01-01
2-Chloro-cis,cis-muconate, the product of ortho-cleavage of 3-chlorocatechol, was converted by purified preparations of the pJP4- and pAC27-encoded chloromuconate cycloisomerases (EC 5.5.1.7) to trans-dienelactone (trans-4-carboxymethylenebut-2-en-4-olide). The same compound was also formed when (+)-2-chloro- and (+)-5-chloromuconolactone were substrates of these enzyme preparations. Thus, the pJP4- and pAC27-encoded chloromuconate cycloisomerases are able to catalyze chloride elimination from (+)-5-chloromuconolactone. The ability to convert (+)-2-chloromuconolactone differentiates these enzymes from other groups of cycloisomerases. PMID:7751312
Kharrat, Najla; Abdelmouleh, Wafa; Abdelhedi, Rania; Alfadhli, Suad; Rebai, Ahmed
2012-01-01
DNA variations within the Angiotensin-Converting Enzyme (ACE) gene have been shown to be involved in the aetiology of several common diseases and the therapeutic response. This study reports a comparison of haplotype analysis of five SNPs in the ACE gene region using a sample of 100 healthy subjects derived from five different populations (Tunisian, Iranian, Kuwaiti, Bahraini and Indian). Strong linkage disequilibrium was found among all SNPs studied for all populations. Two SNPs (rs1800764 and rs4340) were identified as key SNPs for all populations. These SNPs will be valuable for future effective association studies of the ACE gene polymorphisms in Arab and Asian populations.
Castro Braga, F; Wagner, H; Lombardi, J A; de Oliveira, A B
2000-06-01
The evaluation of several antihypertensive activity of Brazilian plant species was performed using in vitro inhibition of the angiotensin I-converting enzyme (ACE). Nineteen species belonging to 13 families were investigated. Plants were selected based on their use as diuretics and on a chemosystematic consideration. Extracts of the following species presented the highest ACE inhibition rate, at concentrations of 0.33 mg/ml: Ouratea semiserrata (Mart. & Nees) Engl. stems (68%), Cuphea cartagenesis (Jacq.) Macbride leaves (50%) and Mansoa hirsuta DC. leaves (54%). Some hypotheses about the nature of the compounds that may be responsible for the activity of these species are discussed in the paper.
Barbante, C; Veysseyre, A; Ferrari, C; van de Velde, K; Morel, C; Capodaglio, G; Cescon, P; Scarponi, G; Boutron, C
2001-03-01
Since 1976 in the United States, Canada, and Japan, and later in other countries, the exhaust system of gasoline powered cars has been equipped with catalytic converters containing Pt and/or Pd and/or Rh. This has resulted in a very significant decrease in urban air pollution for various chemical species such as NOx, CO, and hydrocarbons. There has however been concern that their ever increasing use might lead to Platinum Group Metals (PGMs) becoming widely dispersed in the environment. From the analysis of Pt, Pd, and Rh in central Greenland recent snow and ancient ice using the ultrasensitive inductively coupled plasma sector field mass spectrometry technique, we show here that the concentrations of these metals in snow dated from the mid 1990s are indeed approximately 40-120 times higher than in ice dated from 7000 years ago. The fact that such an increase is observed far away from populated areas at a high altitude location indicates there is now a large scale contamination of the troposphere of the Northern Hemisphere for PGMs. Pt/Rh mass ratio in the most recent snow samples is close to the same ratio documented for catalytic converter exhausts in a recent study, which suggests that a large fraction of the recent increase for Pt and Rh might originate from automobile catalytic converters.
LECITHINASE AND LYSOLECITHINASE ACTIVITY OF RAT INTESTINAL MUCOSA AFTER WHOLE-BODY X-IRRADIATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ottolenghi, A.; Bernheim, F.
1961-11-01
Twenty-four hours after whole-body x irradiation the lecithinase activity of rat intestinal mucosa has markedly decreased and the lysolecithinase activity has decreasecp to a lesser extent. Addition of normal mucosa or chyi'otrypsin to the irradiated mucosa restores the activity of both enzymes. This indicates that irradiation eithei produces an inhibitor or inactivates a mechanism necessarly to convert pro-enzymes into active enzymes. Since chymo trypsin can increase to some extent the activity of the enzymes in normal mucosa, the second possibility seems more probable. (auth)
Classical and quantum theories of proton disorder in hexagonal water ice
NASA Astrophysics Data System (ADS)
Benton, Owen; Sikora, Olga; Shannon, Nic
2016-03-01
It has been known since the pioneering work of Bernal, Fowler, and Pauling that common, hexagonal (Ih) water ice is the archetype of a frustrated material: a proton-bonded network in which protons satisfy strong local constraints (the "ice rules") but do not order. While this proton disorder is well established, there is now a growing body of evidence that quantum effects may also have a role to play in the physics of ice at low temperatures. In this paper, we use a combination of numerical and analytic techniques to explore the nature of proton correlations in both classical and quantum models of ice Ih. In the case of classical ice Ih, we find that the ice rules have two, distinct, consequences for scattering experiments: singular "pinch points," reflecting a zero-divergence condition on the uniform polarization of the crystal, and broad, asymmetric features, coming from its staggered polarization. In the case of the quantum model, we find that the collective quantum tunneling of groups of protons can convert states obeying the ice rules into a quantum liquid, whose excitations are birefringent, emergent photons. We make explicit predictions for scattering experiments on both classical and quantum ice Ih, and show how the quantum theory can explain the "wings" of incoherent inelastic scattering observed in recent neutron scattering experiments [Bove et al., Phys. Rev. Lett. 103, 165901 (2009), 10.1103/PhysRevLett.103.165901]. These results raise the intriguing possibility that the protons in ice Ih could form a quantum liquid at low temperatures, in which protons are not merely disordered, but continually fluctuate between different configurations obeying the ice rules.
Treatment of textile wastewaters using Eutectic Freeze Crystallization.
Randall, D G; Zinn, C; Lewis, A E
2014-01-01
A water treatment process needs to recover both water and other useful products if the process is to be viewed as being financially and environmentally sustainable. Eutectic Freeze Crystallization (EFC) is one such sustainable water treatment process that is able to produce both pure ice (water) and pure salt(s) by operating at a specific temperature. The use of EFC for the treatment of water is particularly useful in the textile industry because ice crystallization excludes all impurities from the recovered water, including dyes. Also, EFC can produce various salts with the intention of reusing these salts in the process. This study investigated the feasibility of EFC as a treatment method for textile industry wastewaters. The results showed that EFC can be used to convert 95% of the wastewater stream to pure ice (98% purity) and sodium sulfate.
Nwanna, E. E; Ibukun, E. O; Oboh, G.; Ademosun, A. O.; Boligon, A. A.; Athayde, M.
2014-01-01
AIM: Garden egg (Solanum aethiopium) is an edible fruits vegetable with different species.This study investigated characterisation and the effect of the phenolics extracts from S. aethiopium species with enzymes linked with type -2-diabetes (α-amylase and α-glucosidase) and hypertension [Angiotensin-1-converting enzyme (ACE)]. METHODS: Fresh samples of the 5 species of the garden egg namely, [Solanum gilo (PW), Solanum torvum (TWS), Solanum kumba (PGR), Solanum incanum (GSB), and Solanum indicum (WSB)] were oven-dried at 50°C and milled into flour. The aqueous extracts were prepared (1:50 w/v). The phenolic contents (total phenol and total flavonoid), vitamin C and 1,1-diphenyl–2-picrylhydrazyl (DPPH), the antioxidant activities of the extracts were evaluated. The ability of the extracts to inhibit diabetes enzymes in rat pancreas as well as the inhibition of angiotensin-1-converting (ACE) enzyme in lungs homogenates in vitro were investigated. Furthermore, the fruits polyphenols were identified and quantified using HPLC-DAD. RESULTS: The phenolic contents ranged from 2.70-3.76 mgGAE/g, while there were no significant (P>0.05) differences in their flavonoid content and ability to reduce Fe3+ to Fe2+. The vitamin C contents of the species ranged from 4.01-6.52 mg/ml. The extracts scavenged DPPH in a dose dependent manner with the IC50 values ranging from 3.23-4.20 mg/ml. Furthermore, the extracts showed strong inhibition of α-glucosidase, mild inhibition of α-amylase and strong inhibition of ACE activities. CONCLUSION: This study showed that the inhibition of the key enzymes relevant to type-2 diabetes and hypertension could be part of the mechanisms by which garden egg manage/prevent the degenerative conditions. PMID:25598760
Ong, Frank S.; Blackwell, Wendell-Lamar B.; Shah, Kandarp H.; Giani, Jorge F.; Gonzalez-Villalobos, Romer A.; Shen, Xiao Z.; Fuchs, Sebastien
2013-01-01
Angiotensin-converting enzyme (ACE) is a zinc-dependent peptidase responsible for converting angiotensin I into the vasoconstrictor angiotensin II. However, ACE is a relatively nonspecific peptidase that is capable of cleaving a wide range of substrates. Because of this, ACE and its peptide substrates and products affect many physiologic processes, including blood pressure control, hematopoiesis, reproduction, renal development, renal function, and the immune response. The defining feature of ACE is that it is composed of two homologous and independently catalytic domains, the result of an ancient gene duplication, and ACE-like genes are widely distributed in nature. The two ACE catalytic domains contribute to the wide substrate diversity of ACE and, by extension, the physiologic impact of the enzyme. Several studies suggest that the two catalytic domains have different biologic functions. Recently, the X-ray crystal structure of ACE has elucidated some of the structural differences between the two ACE domains. This is important now that ACE domain-specific inhibitors have been synthesized and characterized. Once widely available, these reagents will undoubtedly be powerful tools for probing the physiologic actions of each ACE domain. In turn, this knowledge should allow clinicians to envision new therapies for diseases not currently treated with ACE inhibitors. PMID:23257181
Sonsalla, Patricia K.; Coleman, Christal; Wong, Lai-Yoong; Harris, Suzan L.; Richardson, Jason R.; Gadad, Bharathi S.; Li, Wenhao; German, Dwight C.
2013-01-01
Parkinson’s disease (PD) is a progressive neurodegenerative disorder characterized by a prominent loss of nigrostriatal dopamine (DA) neurons with an accompanying neuroinflammation. The peptide angiotensin II (AngII) plays a role in oxidative-stress induced disorders and is thought to mediate its detrimental actions via activation of AngII AT1 receptors. The brain renin-angiotensin system is implicated in neurodegenerative disorders including PD. Blockade of the angiotensin converting enzyme or AT1 receptors provides protection in acute animal models of parkinsonism. We demonstrate here that treatment of mice with the angiotensin converting enzyme inhibitor captopril protects the striatum from acutely administered 1-methyl-4-phenyl-1,2,3,6-tetrahydropyrine (MPTP), and that chronic captopril protects the nigral DA cell bodies from degeneration in a progressive rat model of parkinsonism created by the chronic intracerebral infusion of 1-methyl-4-phenylpyridinium (MPP+). The accompanying activation of microglia in the substantia nigra of MPP+-treated rats was reduced by the chronic captopril treatment. These findings indicate that captopril is neuroprotective for nigrostriatal DA neurons in both acute and chronic rodent PD models. Targeting the brain AngII pathway may be a feasible approach to slowing neurodegeneration in PD. PMID:24184050
Ong, Shufen Angeline; Ng, Zhi Jian; Wu, Jin Chuan
2016-07-01
Thermophilic Bacillus coagulans WCP10-4 is found to be able to convert cellobiose to optically pure L-lactic acid. Its β-glucosidase activity is detected in whole cells (7.3 U/g dry cells) but not in culture medium, indicating the intracellular location of the enzyme. Its β-glucosidase activity is observed only when cultured using cellobiose as the sole carbon source, indicating that the expression of this enzyme is tightly regulated in cells. The enzyme is most active at 50 °C and pH 7.0. The supplement of external β-glucosidase during fermentation of cellobiose (106 g/l) by B. coagulans WCP10-4 increased the fermentation time from 21 to 23 h and decreased the lactic acid yield from 96.1 to 92.9 % compared to the control without β-glucosidase supplementation. B. coagulans WCP10-4 converted 200 g/l of cellobiose to 196.3 g/l of L-lactic acid at a yield of 97.8 % and a productivity of 7.01 g/l/h. This result shows that B. coagulans WCP10-4 is a highly efficient strain for converting cellobiose to L-lactic acid without the need of supplementing external β-glucosidases.
Pavkov-Keller, Tea; Strohmeier, Gernot A.; Diepold, Matthias; Peeters, Wilco; Smeets, Natascha; Schürmann, Martin; Gruber, Karl; Schwab, Helmut; Steiner, Kerstin
2016-01-01
Transaminases are useful biocatalysts for the production of amino acids and chiral amines as intermediates for a broad range of drugs and fine chemicals. Here, we describe the discovery and characterisation of new transaminases from microorganisms which were enriched in selective media containing (R)-amines as sole nitrogen source. While most of the candidate proteins were clearly assigned to known subgroups of the fold IV family of PLP-dependent enzymes by sequence analysis and characterisation of their substrate specificity, some of them did not fit to any of these groups. The structure of one of these enzymes from Curtobacterium pusillum, which can convert d-amino acids and various (R)-amines with high enantioselectivity, was solved at a resolution of 2.4 Å. It shows significant differences especially in the active site compared to other transaminases of the fold IV family and thus indicates the existence of a new subgroup within this family. Although the discovered transaminases were not able to convert ketones in a reasonable time frame, overall, the enrichment-based approach was successful, as we identified two amine transaminases, which convert (R)-amines with high enantioselectivity, and can be used for a kinetic resolution of 1-phenylethylamine and analogues to obtain the (S)-amines with e.e.s >99%. PMID:27905516
Zeyer, J; Kocher, H P
1988-01-01
A nitrophenol oxygenase which stoichiometrically converted ortho-nitrophenol (ONP) to catechol and nitrite was isolated from Pseudomonas putida B2 and purified. The substrate specificity of the enzyme was broad and included several halogen- and alkyl-substituted ONPs. The oxygenase consisted of a single polypeptide chain with a molecular weight of 58,000 (determined by gel filtration) or 65,000 (determined on a sodium dodecyl sulfate-polyacrylamide gel). The enzymatic reaction was NADPH dependent, and one molecule of oxygen was consumed per molecule of ONP converted. Enzymatic activity was stimulated by magnesium or manganese ions, whereas the addition of flavin adenine dinucleotide, flavin mononucleotide, or reducing agents had no effect. The apparent Kms for ONP and NADPH were 8 and 140 microM, respectively. 2,4-Dinitrophenol competitively (Ki = 0.5 microM) inhibited ONP turnover. The optimal pH for enzyme stability and activity was in the range of 7.5 to 8.0. At 40 degrees C, the enzyme was totally inactivated within 2 min; however, in the presence of 1 mM ONP, 40% of the activity was recovered, even after 10 min. Enzymatic activity was best preserved at -20 degrees C in the presence of 50% glycerol. Images PMID:3350791
Measurements of sea ice mass redistribution during ice deformation event in Arctic winter
NASA Astrophysics Data System (ADS)
Itkin, P.; Spreen, G.; King, J.; Rösel, A.; Skourup, H.; Munk Hvidegaard, S.; Wilkinson, J.; Oikkonen, A.; Granskog, M. A.; Gerland, S.
2016-12-01
Sea-ice growth during high winter is governed by ice dynamics. The highest growth rates are found in leads that open under divergent conditions, where exposure to the cold atmosphere promotes thermodynamic growth. Additionally ice thickens dynamically, where convergence causes rafting and ridging. We present a local study of sea-ice growth and mass redistribution between two consecutive airborne measurements, on 19 and 24 April 2015, during the N-ICE2015 expedition in the area north of Svalbard. Between the two overflights an ice deformation event was observed. Airborne laser scanner (ALS) measurements revisited the same sea-ice area of approximately 3x3 km. By identifying the sea surface within the ALS measurements as a reference the sea ice plus snow freeboard was obtained with a spatial resolution of 5 m. By assuming isostatic equilibrium of level floes, the freeboard heights can be converted to ice thickness. The snow depth is estimated from in-situ measurements. Sea ice thickness measurements were made in the same area as the ALS measurements by electromagnetic sounding from a helicopter (HEM), and with a ground-based device (EM31), which allows for cross-validation of the sea-ice thickness estimated from all 3 procedures. Comparison of the ALS snow freeboard distributions between the first and second overflight shows a decrease in the thin ice classes and an increase of the thick ice classes. While there was no observable snowfall and a very low sea-ice growth of older level ice during this period, an autonomous buoy array deployed in the surroundings of the area measured by the ALS shows first divergence followed by convergence associated with shear. To quantify and link the sea ice deformation with the associated sea-ice thickness change and mass redistribution we identify over 100 virtual buoys in the ALS data from both overflights. We triangulate the area between the buoys and calculate the strain rates and freeboard change for each individual triangle. From the freeboard change we calculate the sea ice volume change. Our results show exemplary sea-ice mass redistribution caused by sea ice dynamics during winter conditions in the Arctic, which can be used to estimate sea-ice growth due to deformation processes in a wider region, and ultimately to distinguish between thermodynamic and dynamic ice growth processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grasso, Lewis; Lindsey, Daniel T.; Lim, Kyo-Sun
Synthetic satellite imagery can be employed to evaluate simulated cloud fields. Past studies have revealed that the Weather Research and Forecasting (WRF) WRF Single-Moment 6-class (WSM6) microphysics in WRF-ARW produces less upper level ice clouds within synthetic images compared to observations. Synthetic Geostationary Operational Environmental Satellite (GOES)-13 imagery at 10.7 μm of simulated cloud fields from the 4 km National Severe Storms Laboratory (NSSL) WRF-ARW is compared to observed GOES-13 imagery. Histograms suggest that too few points contain upper level simulated ice clouds. In particular, side-by-side examples are shown of synthetic and observed convective anvils. Such images illustrate the lackmore » of anvil cloud associated with convection produced by the NSSL WRF-ARW. A vertical profile of simulated hydrometeors suggests that too much cloud water mass may be converted into graupel mass, effectively reducing the main source of ice mass in a simulated anvil. Further, excessive accretion of ice by snow removes ice from an anvil by precipitation settling. Idealized sensitivity tests reveal that a 50% reduction of the conversion of cloud water mass to graupel and a 50% reduction of the accretion rate of ice by snow results in a significant increase in anvil ice of a simulated storm. Such results provide guidance as to which conversions could be reformulated, in a more physical manner, to increase simulated ice mass in the upper troposphere.« less
The Arctic sea ice cover of 2016: a year of record-low highs and higher-than-expected lows
NASA Astrophysics Data System (ADS)
Petty, Alek A.; Stroeve, Julienne C.; Holland, Paul R.; Boisvert, Linette N.; Bliss, Angela C.; Kimura, Noriaki; Meier, Walter N.
2018-02-01
The Arctic sea ice cover of 2016 was highly noteworthy, as it featured record low monthly sea ice extents at the start of the year but a summer (September) extent that was higher than expected by most seasonal forecasts. Here we explore the 2016 Arctic sea ice state in terms of its monthly sea ice cover, placing this in the context of the sea ice conditions observed since 2000. We demonstrate the sensitivity of monthly Arctic sea ice extent and area estimates, in terms of their magnitude and annual rankings, to the ice concentration input data (using two widely used datasets) and to the averaging methodology used to convert concentration to extent (daily or monthly extent calculations). We use estimates of sea ice area over sea ice extent to analyse the relative "compactness" of the Arctic sea ice cover, highlighting anomalously low compactness in the summer of 2016 which contributed to the higher-than-expected September ice extent. Two cyclones that entered the Arctic Ocean during August appear to have driven this low-concentration/compactness ice cover but were not sufficient to cause more widespread melt-out and a new record-low September ice extent. We use concentration budgets to explore the regions and processes (thermodynamics/dynamics) contributing to the monthly 2016 extent/area estimates highlighting, amongst other things, rapid ice intensification across the central eastern Arctic through September. Two different products show significant early melt onset across the Arctic Ocean in 2016, including record-early melt onset in the North Atlantic sector of the Arctic. Our results also show record-late 2016 freeze-up in the central Arctic, North Atlantic and the Alaskan Arctic sector in particular, associated with strong sea surface temperature anomalies that appeared shortly after the 2016 minimum (October onwards). We explore the implications of this low summer ice compactness for seasonal forecasting, suggesting that sea ice area could be a more reliable metric to forecast in this more seasonal, "New Arctic", sea ice regime.
Brownstein, Daniel J; Salagre, Estela; Köhler, Cristiano; Stubbs, Brendon; Vian, João; Pereira, Ciria; Chavarria, Victor; Karmakar, Chandan; Turner, Alyna; Quevedo, João; Carvalho, André F; Berk, Michael; Fernandes, Brisa S
2018-01-01
It is unclear whether blockade of the angiotensin system has effects on mental health. Our objective was to determine the impact of angiotensin converting enzyme inhibitors and angiotensin II type 1 receptor (AT1R) blockers on mental health domain of quality of life. Meta-analysis of published literature. PubMed and clinicaltrials.gov databases. The last search was conducted in January 2017. Randomized controlled trials comparing any angiotensin converting enzyme inhibitor or AT1R blocker versus placebo or non-angiotensin converting enzyme inhibitor or non-AT1R blocker were selected. Study participants were adults without any major physical symptoms. We adhered to meta-analysis reporting methods as per PRISMA and the Cochrane Collaboration. Eleven studies were included in the analysis. When compared with placebo or other antihypertensive medications, AT1R blockers and angiotensin converting enzyme inhibitors were associated with improved overall quality of life (standard mean difference = 0.11, 95% confidence interval = [0.08, 0.14], p < 0.0001), positive wellbeing (standard mean difference = 0.11, 95% confidence interval = [0.05, 0.17], p < 0.0001), mental (standard mean difference = 0.15, 95% confidence interval = [0.06, 0.25], p < 0.0001), and anxiety (standard mean difference = 0.08, 95% confidence interval = [0.01, 0.16], p < 0.0001) domains of QoL. No significant difference was found for the depression domain (standard mean difference = 0.05, 95% confidence interval = [0.02, 0.12], p = 0.15). Use of angiotensin blockers and inhibitors for the treatment of hypertension in otherwise healthy adults is associated with improved mental health domains of quality of life. Mental health quality of life was a secondary outcome in the included studies. Research specifically designed to analyse the usefulness of drugs that block the angiotensin system is necessary to properly evaluate this novel psychiatric target.
Lely, A Titia; Heerspink, Hiddo J Lambers; Zuurman, Mike; Visser, Folkert W; Kocks, Menno J A; Boomsma, Frans; Navis, Gerjan
2010-12-01
Renin-angiotensin-aldosterone system blockade is a cornerstone in cardiovascular protection. Angiotensin-converting enzyme (ACE)-DD genotype has been associated with resistance to angiotensin-converting enzyme inhibition (ACEi), but data are conflicting. As sodium intake modifies the effect of ACEi as well as the genotype-phenotype relationship, we hypothesize gene-environment interaction between sodium-status, the response to ACEi, and ACE genotype. Thirty-five male volunteers (26 ± 9 years; II n = 6, ID n = 18, DD n = 11) were studied during placebo and ACEi (double blind, enalapril 20 mg/day) on low [7 days 50 mmol Na/day (low salt)] and high [7 days 200 mmol Na/day (high salt)] sodium, with a washout of 6 weeks in-between. After each period mean arterial pressure (MAP) was measured before and during graded infusion of angiotensin II (Ang II). During high salt, ACEi reduced MAP in II and ID, but not in DD [II: 88 (78-94) versus 76 (72-88); ID: 87 (84-91) versus 83 (79-87); both P < 0.05 and DD: 86 (82-96) versus 88 (80-90); ns, P < 0.05 between genotypes]. However, during low salt, ACEi reduced MAP in all genotype groups [II: 83 (78-89) versus 77 (72-83); ID: 88 (84-91) versus 82 (78-86); DD: 84 (80-91) versus 81 (75-85); all P < 0.05]. During high salt + ACEi, the Ang II response was blunted in DD, with an 18% rise in MAP during the highest dose versus 22 and 31% in ID and II (P < 0.05). Low salt annihilated these differences. In healthy participants, the MAP response to ACEi is selectively blunted in DD genotype during high salt, accompanied by blunted sensitivity to Ang II. Low salt corrects both abnormalities. Further analysis of this gene-environment interaction in patients may contribute to strategies for improvement of individual treatment efficacy.
Mancia, Giuseppe; Cannon, Christopher P; Tikkanen, Ilkka; Zeller, Cordula; Ley, Ludwin; Woerle, Hans J; Broedl, Uli C; Johansen, Odd Erik
2016-12-01
In the EMPA-REG BP trial, empagliflozin 10 mg and 25 mg once daily reduced glycohemoglobin, blood pressure (BP), and weight versus placebo in patients with type 2 diabetes mellitus and hypertension. Patients received placebo (n=271), empagliflozin 10 mg (n=276), or empagliflozin 25 mg (n=276) for 12 weeks (n=full analysis set). This present analysis investigated changes from baseline to week 12 in mean 24-hour systolic BP (SBP) and diastolic BP (DBP) in patients receiving 0, 1, or ≥2 antihypertensive medications and patients receiving/not receiving diuretics or angiotensin-converting enzyme inhibitors/angiotensin receptor blockers. Compared with placebo, empagliflozin 10 mg and 25 mg reduced mean 24-hour SBP/DBP in patients receiving 0 (10 mg: -3.89/-2.58 mm Hg; 25 mg: -3.77/-2.45 mm Hg), 1 (10 mg: -4.74/-1.97 mm Hg; 25 mg: -4.27/-1.81 mm Hg), or ≥2 (10 mg: -2.36/-0.68 mm Hg; 25 mg: -4.17/-1.54 mm Hg) antihypertensives. The effect of empagliflozin was not significantly different between subgroups by number of antihypertensives for changes in SBP (interaction P value 0.448) or DBP (interaction P value 0.498). Empagliflozin reduced 24-hour mean SBP/DBP irrespective of diuretic or angiotensin-converting enzyme inhibitor/angiotensin receptor blocker use, with no significant difference between subgroups by use/no use of diuretics (interaction P values 0.380 [systolic]; 0.240 [diastolic]) or angiotensin-converting enzyme inhibitors/angiotensin receptor blockers (interaction P values 0.900 [systolic]; 0.359 [diastolic]). In conclusion, in patients with type 2 diabetes mellitus and hypertension, empagliflozin for 12 weeks reduced SBP and DBP versus placebo, irrespective of the number of antihypertensives and use of diuretics or angiotensin-converting enzyme inhibitors/angiotensin receptor blockers. URL: https://clinicaltrials.gov. Unique identifier: NCT01370005. © 2016 American Heart Association, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mazzola Jr., Robert D.; Zhu, Zhaoning; Sinning, Lisa
2010-10-01
A series of cyclopropyl hydroxamic acids were prepared. Many of the compounds displayed picomolar affinity for the TACE enzyme while maintaining good to excellent selectivity profiles versus MMP-1, -2, -3, -7, -14, and ADAM-10. X-ray analysis of an inhibitor in the TACE active site indicated that the molecules bound to the enzyme in the S1{prime}-S3{prime} pocket.
Lopez-Sublet, Marilucy; di Lanzacco, Lorenzo Caratti; Jan Danser, A H; Lambert, Michel; Elourimi, Ghassan; Persu, Alexandre
2018-06-18
Angiotensin I-converting enzyme (ACE) is a well-known zinc-metallopeptidase that converts angiotensin I to the potent vasoconstrictor angiotensin II and degrades bradykinin, a powerful vasodilator, and as such plays a key role in the regulation of vascular tone and cardiac function. Increased circulating ACE (cACE) activity has been reported in multiple diseases, including but not limited to granulomatous disorders. Since 2001, genetic mutations leading to cACE elevation have also been described. This review takes advantage of the identification of a novel ACE mutation (25-IVS25 + 1G > A) in two Belgian pedigrees to summarize current knowledge about the differential diagnosis of cACE elevation, based on literature review and the experience of our centre. Furthermore, we propose a practical approach for the evaluation and management of patients with elevated cACE and discuss in which cases search for genetic mutations should be considered. Copyright © 2018. Published by Elsevier Inc.
Angiotensin converting enzyme immobilized on magnetic beads as a tool for ligand fishing.
de Almeida, Fernando G; Vanzolini, Kenia L; Cass, Quezia B
2017-01-05
Angiotensin converting enzyme (ACE) presents an important role in blood pressure regulation, since that converts angiotensin I to the vasoconstrictor angiotensin II. Some commercially available ACE inhibitors are captopril, lisinopril and enalapril; due to their side effects, naturally occurring inhibitors have been prospected. In order to endorse this research field we have developed a new tool for ACE ligand screening. To this end, ACE was extracted from bovine lung, purified and chemically immobilized in modified ferrite magnetic beads (ACE-MBs). The ACE-MBs have shown a Michaelian kinetic behavior towards hippuryl-histidyl-leucine. Moreover, as proof of concept, the ACE-MBs was inhibited by lisinopril with a half maximal inhibitory concentration (IC 50 ) of 10nM. At the fishing assay, ACE-MBs were able not only to fish out the reference inhibitor, but also one peptide from a pool of tryptic digested BSA. In conclusion, ACE-MBs emerge as new straightforward tool for ACE kinetics determination, inhibition and binder screening. Copyright © 2016 Elsevier B.V. All rights reserved.
Liu, Tingqiang; Yu, Hongshan; Liu, Chunying; Bao, Yongming; Hu, Xiangchun; Wang, Yuanhao; Liu, Bing; Fu, Yaoyao; Tang, Sihui; Jin, Fengxie
2013-05-01
Progenin III, one of the most active spirostanol saponins, is a potential candidate for anti-cancer therapy due to its strong antitumor activity and low hemolytic activity. However, the concentration of progenin III is extremely low in natural Dioscorea plants. In this paper, the progenin III production from total steroidal saponins of Dioscorea nipponica Makino was studied using the crude enzyme from Aspergillus oryzae DLFCC-38. The crude enzyme converting total steroidal saponins into progenin III was obtained from the A. oryzae DLFCC-38 culture. For enzyme production, the strain was cultured for 72 h at 30 °C with shaking at 150 rpm in 5 % (w/v) malt extract medium containing 2 % (v/v) extract of D. nipponica as the enzyme inducer. The crude enzyme converted total steroidal saponins into major progenin III with a high yield when the reaction was carried out for 9 h at 50 °C and pH 5.0 with the 20 mg/ml of substrate. In the preparation of progenin III, 117 g of crude progenin III was obtained from 160 g of substrate, and the crude product was purified with silica gel column to obtain 60.3 g progenin III of 93.4 % purity.
Sliding over the Blocks in Enzyme-Free RNA Copying – One-Pot Primer Extension in Ice
Löffler, Philipp M. G.; Groen, Joost; Dörr, Mark; Monnard, Pierre-Alain
2013-01-01
Template-directed polymerization of RNA in the absence of enzymes is the basis for an information transfer in the ‘RNA-world’ hypothesis and in novel nucleic acid based technology. Previous investigations established that only cytidine rich strands are efficient templates in bulk aqueous solutions while a few specific sequences completely block the extension of hybridized primers. We show that a eutectic water/ice system can support Pb2+/Mg2+-ion catalyzed extension of a primer across such sequences, i.e. AA, AU and AG, in a one-pot synthesis. Using mixtures of imidazole activated nucleotide 5′-monophosphates, the two first “blocking” residues could be passed during template-directed polymerization, i.e., formation of triply extended products containing a high fraction of faithful copies was demonstrated. Across the AG sequence, a mismatch sequence was formed in similar amounts to the correct product due to U·G wobble pairing. Thus, the template-directed extension occurs both across pyrimidine and purine rich sequences and insertions of pyrimidines did not inhibit the subsequent insertions. Products were mainly formed with 2′-5′-phosphodiester linkages, however, the abundance of 3′–5′-linkages was higher than previously reported for pyrimidine insertions. When enzyme-free, template-directed RNA polymerization is performed in a eutectic water ice environment, various intrinsic reaction limitations observed in bulk solution can then be overcome. PMID:24058695
Antarctic sea ice thickness data archival and recovery at the Australian Antarctic Data Centre
NASA Astrophysics Data System (ADS)
Worby, A. P.; Treverrow, A.; Raymond, B.; Jordan, M.
2007-12-01
A new effort is underway to establish a portal for Antarctic sea ice thickness data at the Australian Antarctic Data Centre (http://aadc-maps.aad.gov.au/aadc/sitd/). The intention is to provide a central online access point for a wide range of sea ice data sets, including sea ice and snow thickness data collected using a range of techniques, and sea ice core data. The recommendation to establish this facility came from the SCAR/CliC- sponsored International Workshop on Antarctic Sea Ice Thickness, held in Hobart in July 2006. It was recognised, in particular, that satellite altimetry retrievals of sea ice and snow cover thickness rely on large-scale assumptions of the sea ice and snow cover properties such as density, freeboard height, and snow stratigraphy. The synthesis of historical data is therefore particularly important for algorithm development. This will be closely coordinated with similar efforts in the Arctic. A small working group was formed to identify suitable data sets for inclusion in the archive. A series of standard proformas have been designed for converting old data, and to help standardize the collection of new data sets. These proformas are being trialled on two Antarctic sea ice research cruises in September - October 2007. The web-based portal allows data custodians to remotely upload and manage their data, and for all users to search the holdings and extract data relevant to their needs. This presentation will report on the establishment of the data portal, recent progress in identifying appropriate data sets and making them available online. maps.aad.gov.au/aadc/sitd/
Limits on a Muon Flux from Neutralino Annihilations in the Sun with the IceCube 22-String Detector
NASA Astrophysics Data System (ADS)
Abbasi, R.; Abdou, Y.; Ackermann, M.; Adams, J.; Ahlers, M.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Bay, R.; Bazo Alba, J. L.; Beattie, K.; Beatty, J. J.; Bechet, S.; Becker, J. K.; Becker, K.-H.; Benabderrahmane, M. L.; Berdermann, J.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Bissok, M.; Blaufuss, E.; Boersma, D. J.; Bohm, C.; Bolmont, J.; Böser, S.; Botner, O.; Bradley, L.; Braun, J.; Breder, D.; Burgess, T.; Castermans, T.; Chirkin, D.; Christy, B.; Clem, J.; Cohen, S.; Cowen, D. F.; D'Agostino, M. V.; Danninger, M.; Day, C. T.; de Clercq, C.; Demirörs, L.; Depaepe, O.; Descamps, F.; Desiati, P.; de Vries-Uiterweerd, G.; De Young, T.; Diaz-Velez, J. C.; Dreyer, J.; Dumm, J. P.; Duvoort, M. R.; Edwards, W. R.; Ehrlich, R.; Eisch, J.; Ellsworth, R. W.; Engdegård, O.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Feusels, T.; Filimonov, K.; Finley, C.; Foerster, M. M.; Fox, B. D.; Franckowiak, A.; Franke, R.; Gaisser, T. K.; Gallagher, J.; Ganugapati, R.; Gerhardt, L.; Gladstone, L.; Goldschmidt, A.; Goodman, J. A.; Gozzini, R.; Grant, D.; Griesel, T.; Groß, A.; Grullon, S.; Gunasingha, R. M.; Gurtner, M.; Ha, C.; Hallgren, A.; Halzen, F.; Han, K.; Hanson, K.; Hasegawa, Y.; Heise, J.; Helbing, K.; Herquet, P.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Hoshina, K.; Hubert, D.; Huelsnitz, W.; Hülß, J.-P.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Imlay, R. L.; Inaba, M.; Ishihara, A.; Jacobsen, J.; Japaridze, G. S.; Johansson, H.; Joseph, J. M.; Kampert, K.-H.; Kappes, A.; Karg, T.; Karle, A.; Kelley, J. L.; Kenny, P.; Kiryluk, J.; Kislat, F.; Klein, S. R.; Klepser, S.; Knops, S.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Kowalski, M.; Kowarik, T.; Krasberg, M.; Kuehn, K.; Kuwabara, T.; Labare, M.; Lafebre, S.; Laihem, K.; Landsman, H.; Lauer, R.; Leich, H.; Lennarz, D.; Lucke, A.; Lundberg, J.; Lünemann, J.; Madsen, J.; Majumdar, P.; Maruyama, R.; Mase, K.; Matis, H. S.; McParland, C. P.; Meagher, K.; Merck, M.; Mészáros, P.; Middell, E.; Milke, N.; Miyamoto, H.; Mohr, A.; Montaruli, T.; Morse, R.; Movit, S. M.; Münich, K.; Nahnhauer, R.; Nam, J. W.; Nießen, P.; Nygren, D. R.; Odrowski, S.; Olivas, A.; Olivo, M.; Ono, M.; Panknin, S.; Patton, S.; Pérez de Los Heros, C.; Petrovic, J.; Piegsa, A.; Pieloth, D.; Pohl, A. C.; Porrata, R.; Potthoff, N.; Price, P. B.; Prikockis, M.; Przybylski, G. T.; Rawlins, K.; Redl, P.; Resconi, E.; Rhode, W.; Ribordy, M.; Rizzo, A.; Rodrigues, J. P.; Roth, P.; Rothmaier, F.; Rott, C.; Roucelle, C.; Rutledge, D.; Ryckbosch, D.; Sander, H.-G.; Sarkar, S.; Satalecka, K.; Schlenstedt, S.; Schmidt, T.; Schneider, D.; Schukraft, A.; Schulz, O.; Schunck, M.; Seckel, D.; Semburg, B.; Seo, S. H.; Sestayo, Y.; Seunarine, S.; Silvestri, A.; Slipak, A.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stephens, G.; Stezelberger, T.; Stokstad, R. G.; Stoufer, M. C.; Stoyanov, S.; Strahler, E. A.; Straszheim, T.; Sulanke, K.-H.; Sullivan, G. W.; Swillens, Q.; Taboada, I.; Tarasova, O.; Tepe, A.; Ter-Antonyan, S.; Terranova, C.; Tilav, S.; Tluczykont, M.; Toale, P. A.; Tosi, D.; Turčan, D.; van Eijndhoven, N.; Vandenbroucke, J.; van Overloop, A.; Voigt, B.; Walck, C.; Waldenmaier, T.; Walter, M.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wiebusch, C. H.; Wiedemann, A.; Wikström, G.; Williams, D. R.; Wischnewski, R.; Wissing, H.; Woschnagg, K.; Xu, X. W.; Yodh, G.; Yoshida, S.
2009-05-01
A search for muon neutrinos from neutralino annihilations in the Sun has been performed with the IceCube 22-string neutrino detector using data collected in 104.3 days of live time in 2007. No excess over the expected atmospheric background has been observed. Upper limits have been obtained on the annihilation rate of captured neutralinos in the Sun and converted to limits on the weakly interacting massive particle (WIMP) proton cross sections for WIMP masses in the range 250-5000 GeV. These results are the most stringent limits to date on neutralino annihilation in the Sun.
Thyroid hormone (TH) homeostasis is dependent on multiple proteins for TH synthesis, transport, and peripheral metabolism and elimination. Deiodinase enzymes play an essential role in converting THs between active and inactive forms by deiodinating the pro-hormone thyroxine (T4) ...
21 CFR 184.1372 - Insoluble glucose isomerase enzyme preparations.
Code of Federal Regulations, 2013 CFR
2013-04-01
... high fructose corn syrup described in § 184.1866. They are derived from recognized species of precisely... ingredient is used as an enzyme, as defined in § 170.3(o)(9) of this chapter, to convert glucose to fructose. (2) The ingredient is used in high fructose corn syrup, at levels not to exceed current good...
21 CFR 184.1372 - Insoluble glucose isomerase enzyme preparations.
Code of Federal Regulations, 2014 CFR
2014-04-01
... isomerase enzyme preparations are used in the production of high fructose corn syrup described in § 184.1866... defined in § 170.3(o)(9) of this chapter, to convert glucose to fructose. (2) The ingredient is used in high fructose corn syrup, at levels not to exceed current good manufacturing practice. [48 FR 5720, Feb...
21 CFR 184.1372 - Insoluble glucose isomerase enzyme preparations.
Code of Federal Regulations, 2011 CFR
2011-04-01
... high fructose corn syrup described in § 184.1866. They are derived from recognized species of precisely... ingredient is used as an enzyme, as defined in § 170.3(o)(9) of this chapter, to convert glucose to fructose. (2) The ingredient is used in high fructose corn syrup, at levels not to exceed current good...
21 CFR 184.1372 - Insoluble glucose isomerase enzyme preparations.
Code of Federal Regulations, 2010 CFR
2010-04-01
... high fructose corn syrup described in § 184.1866. They are derived from recognized species of precisely... ingredient is used as an enzyme, as defined in § 170.3(o)(9) of this chapter, to convert glucose to fructose. (2) The ingredient is used in high fructose corn syrup, at levels not to exceed current good...
21 CFR 184.1372 - Insoluble glucose isomerase enzyme preparations.
Code of Federal Regulations, 2012 CFR
2012-04-01
... high fructose corn syrup described in § 184.1866. They are derived from recognized species of precisely... ingredient is used as an enzyme, as defined in § 170.3(o)(9) of this chapter, to convert glucose to fructose. (2) The ingredient is used in high fructose corn syrup, at levels not to exceed current good...
Competing Spin Liquids and Hidden Spin-Nematic Order in Spin Ice with Frustrated Transverse Exchange
NASA Astrophysics Data System (ADS)
Taillefumier, Mathieu; Benton, Owen; Yan, Han; Jaubert, L. D. C.; Shannon, Nic
2017-10-01
Frustration in magnetic interactions can give rise to disordered ground states with subtle and beautiful properties. The spin ices Ho2 Ti2 O7 and Dy2 Ti2 O7 exemplify this phenomenon, displaying a classical spin-liquid state, with fractionalized magnetic-monopole excitations. Recently, there has been great interest in closely related "quantum spin-ice" materials, following the realization that anisotropic exchange interactions could convert spin ice into a massively entangled, quantum spin liquid, where magnetic monopoles become the charges of an emergent quantum electrodynamics. Here we show that even the simplest model of a quantum spin ice, the XXZ model on the pyrochlore lattice, can realize a still-richer scenario. Using a combination of classical Monte Carlo simulation, semiclassical molecular-dynamics simulation, and analytic field theory, we explore the properties of this model for frustrated transverse exchange. We find not one, but three competing forms of spin liquid, as well as a phase with hidden, spin-nematic order. We explore the experimental signatures of each of these different states, making explicit predictions for inelastic neutron scattering. These results show an intriguing similarity to experiments on a range of pyrochlore oxides.
Antarctic Surface Temperatures Using Satellite Infrared Data from 1979 Through 1995
NASA Technical Reports Server (NTRS)
Comiso, Josefino C.; Stock, Larry
1997-01-01
The large scale spatial and temporal variations of surface ice temperature over the Antarctic region are studied using infrared data derived from the Nimbus-7 Temperature Humidity Infrared Radiometer (THIR) from 1979 through 1985 and from the NOAA Advanced Very High Resolution Radiometer (AVHRR) from 1984 through 1995. Enhanced techniques suitable for the polar regions for cloud masking and atmospheric correction were used before converting radiances to surface temperatures. The observed spatial distribution of surface temperature is highly correlated with surface ice sheet topography and agrees well with ice station temperatures with 2K to 4K standard deviations. The average surface ice temperature over the entire continent fluctuates by about 30K from summer to winter while that over the Antarctic Plateau varies by about 45K. Interannual fluctuations of the coldest interannual variations in surface temperature are highest at the Antarctic Plateau and the ice shelves (e.g., Ross and Ronne) with a periodic cycle of about 5 years and standard deviations of about 11K and 9K, respectively. Despite large temporal variability, however, especially in some regions, a regression analysis that includes removal of the seasonal cycle shows no apparent trend in temperature during the period 1979 through 1995.
Serine proteases as candidates for proteolytic processing of angiotensin-I converting enzyme.
Aragão, Danielle S; de Andrade, Maria Claudina C; Ebihara, Fabiana; Watanabe, Ingrid K M; Magalhães, Dayane C B P; Juliano, Maria Aparecida; Hirata, Izaura Yoshico; Casarini, Dulce Elena
2015-01-01
Somatic angiotensin-I converting enzyme (sACE) is a broadly distributed peptidase which plays a role in blood pressure and electrolyte homeostasis by the conversion of angiotensin I into angiotensin II. N-domain isoforms (nACE) with 65 and 90 kDa have been described in body fluids, tissues and mesangial cells (MC), and a 90 kDa nACE has been described only in spontaneously hypertensive rats. The aim of this study was to investigate the existence of proteolytic enzymes that may act in the hydrolysis of sACE generating nACEs in MC. After the confirmation of the presence of ACE sheddases in Immortalized MC (IMC), we purified and characterized these enzymes using fluorogenic substrates specifically designed for ACE sheddases. Purified enzyme identified as a serine protease by N-terminal sequence was able to generate nACE. In the present study, we described for the first time the presence of ACE sheddases in IMC, identified as serine proteases able to hydrolyze sACE in vitro. Further investigations are necessary to elucidate the mechanisms responsible for the expression and regulation of ACE sheddases in MC and their roles in the generation of nACEs, especially the 90 kDa form possibly related to hypertension. Copyright © 2014 Elsevier B.V. All rights reserved.
Rutherford, A William; Osyczka, Artur; Rappaport, Fabrice
2012-03-09
The energy-converting redox enzymes perform productive reactions efficiently despite the involvement of high energy intermediates in their catalytic cycles. This is achieved by kinetic control: with forward reactions being faster than competing, energy-wasteful reactions. This requires appropriate cofactor spacing, driving forces and reorganizational energies. These features evolved in ancestral enzymes in a low O(2) environment. When O(2) appeared, energy-converting enzymes had to deal with its troublesome chemistry. Various protective mechanisms duly evolved that are not directly related to the enzymes' principal redox roles. These protective mechanisms involve fine-tuning of reduction potentials, switching of pathways and the use of short circuits, back-reactions and side-paths, all of which compromise efficiency. This energetic loss is worth it since it minimises damage from reactive derivatives of O(2) and thus gives the organism a better chance of survival. We examine photosynthetic reaction centres, bc(1) and b(6)f complexes from this view point. In particular, the evolution of the heterodimeric PSI from its homodimeric ancestors is explained as providing a protective back-reaction pathway. This "sacrifice-of-efficiency-for-protection" concept should be generally applicable to bioenergetic enzymes in aerobic environments. Copyright © 2012 Federation of European Biochemical Societies. All rights reserved.
Morphine biosynthesis in opium poppy involves two cell types: sieve elements and laticifers.
Onoyovwe, Akpevwe; Hagel, Jillian M; Chen, Xue; Khan, Morgan F; Schriemer, David C; Facchini, Peter J
2013-10-01
Immunofluorescence labeling and shotgun proteomics were used to establish the cell type-specific localization of morphine biosynthesis in opium poppy (Papaver somniferum). Polyclonal antibodies for each of six enzymes involved in converting (R)-reticuline to morphine detected corresponding antigens in sieve elements of the phloem, as described previously for all upstream enzymes transforming (S)-norcoclaurine to (S)-reticuline. Validated shotgun proteomics performed on whole-stem and latex total protein extracts generated 2031 and 830 distinct protein families, respectively. Proteins corresponding to nine morphine biosynthetic enzymes were represented in the whole stem, whereas only four of the final five pathway enzymes were detected in the latex. Salutaridine synthase was detected in the whole stem, but not in the latex subproteome. The final three enzymes converting thebaine to morphine were among the most abundant active latex proteins despite a limited occurrence in laticifers suggested by immunofluorescence labeling. Multiple charge isoforms of two key O-demethylases in the latex were revealed by two-dimensional immunoblot analysis. Salutaridine biosynthesis appears to occur only in sieve elements, whereas conversion of thebaine to morphine is predominant in adjacent laticifers, which contain morphine-rich latex. Complementary use of immunofluorescence labeling and shotgun proteomics has substantially resolved the cellular localization of morphine biosynthesis in opium poppy.
NASA Astrophysics Data System (ADS)
King, Jennifer; Skourup, Henriette; Hvidegaard, Sine M.; Rösel, Anja; Gerland, Sebastian; Spreen, Gunnar; Polashenski, Chris; Helm, Veit; Liston, Glen E.
2018-02-01
We present freeboard measurements from airborne laser scanner (ALS), the Airborne Synthetic Aperture and Interferometric Radar Altimeter System (ASIRAS), and CryoSat-2 SIRAL radar altimeter; ice thickness measurements from both helicopter-borne and ground-based electromagnetic-sounding; and point measurements of ice properties. This case study was carried out in April 2015 during the N-ICE2015 expedition in the area of the Arctic Ocean north of Svalbard. The region is represented by deep snow up to 1.12 m and a widespread presence of negative freeboards. The main scattering surfaces from both CryoSat-2 and ASIRAS are shown to be closer to the snow freeboard obtained by ALS than to the ice freeboard measured in situ. This case study documents the complexity of freeboard retrievals from radar altimetry. We show that even under cold (below -15°C) conditions the radar freeboard can be close to the snow freeboard on a regional scale of tens of kilometers. We derived a modal sea-ice thickness for the study region from CryoSat-2 of 3.9 m compared to measured total thickness 1.7 m, resulting in an overestimation of sea-ice thickness on the order of a factor 2. Our results also highlight the importance of year-to-year regional scale information about the depth and density of the snowpack, as this influences the sea-ice freeboard, the radar penetration, and is a key component of the hydrostatic balance equations used to convert radar freeboard to sea-ice thickness.
Pluto: Fluidized Transport of Tholins by Heating of the Subsurface
NASA Technical Reports Server (NTRS)
Cruikshank, Dale P.; Spohrer, Steven; Grundy, William M.; Moore, Jeffrey M.; Umurhan, Orkan M.; White, Oliver L.; Beyer, Ross A.; Dalle Ore, Cristina M.; Stern, S. A.; Young, Leslie;
2017-01-01
New Horizons images of Pluto show evidence of the transport of the colored non-ice component across the surface, with substantial accumulations in some areas of low elevation. The non-ice component is presumed to be tholin produced in the atmosphere as a precipitating aerosol, in the surface ices by photolysis or radiolysis, or both. We model the surface layer of N2 ice with varying amounts of incorporated tholin particles to explore the heating within the ice that occurs by the solid-state greenhouse effect. We find that in plausible models of the contaminated N2 surface ice the triple point temperature (63.15K) is reached at a depth of approximately less than 1m. At that depth the confining pressure of the ice column is much less than the triple point pressure (12.52 kPa), so N2 should convert to the gas phase, exerting pressure on the overburden. When the gas pressure exceeds the strength of the confining ice, a breakout on the surface will occur, fluidizing fragments of ice and its contaminants that are then free to flow downhill, rafted on entrained gas, similar in some ways to the pyroclastic volcanic phenomenon known as nuée ardente. The digital elevation map of Pluto made from stereo images shows some surface regions that may have been stripped of the N2 layer, exposing H2O ice (presumed to be bedrock) below, with a corresponding accumulation of dark material that was that was the previously entrained particulate tholin. Accumulations of tholin are found associated with some of the fossae, and some cover preexisting topography to depths of up to a few hundred meters.
Lu, Zhonghui; Ott, Gregory R; Anand, Rajan; Liu, Rui-Qin; Covington, Maryanne B; Vaddi, Krishna; Qian, Mingxin; Newton, Robert C; Christ, David D; Trzaskos, James; Duan, James J-W
2008-03-15
Potent and selective inhibitors of tumor necrosis factor-alpha converting enzyme (TACE) were discovered with several new heterocyclic P1' groups in conjunction with cyclic beta-amino hydroxamic acid scaffolds. Among them, the pyrazolopyridine provided the best overall profile when combined with tetrahydropyran beta-amino hydroxamic acid scaffold. Specifically, inhibitor 49 showed IC(50) value of 1 nM against porcine TACE and 170 nM in the suppression of LPS-induced TNF-alpha of human whole blood. Compound 49 also displayed excellent selectivity over a wide panel of MMPs as well as excellent oral bioavailability (F%>90%) in rat n-in-1 PK studies.
Enzymes involved in branched-chain amino acid metabolism in humans.
Adeva-Andany, María M; López-Maside, Laura; Donapetry-García, Cristóbal; Fernández-Fernández, Carlos; Sixto-Leal, Cristina
2017-06-01
Branched-chain amino acids (leucine, isoleucine and valine) are structurally related to branched-chain fatty acids. Leucine is 2-amino-4-methyl-pentanoic acid, isoleucine is 2-amino-3-methyl-pentanoic acid, and valine is 2-amino-3-methyl-butanoic acid. Similar to fatty acid oxidation, leucine and isoleucine produce acetyl-coA. Additionally, leucine generates acetoacetate and isoleucine yields propionyl-coA. Valine oxidation produces propionyl-coA, which is converted into methylmalonyl-coA and succinyl-coA. Branched-chain aminotransferase catalyzes the first reaction in the catabolic pathway of branched-chain amino acids, a reversible transamination that converts branched-chain amino acids into branched-chain ketoacids. Simultaneously, glutamate is converted in 2-ketoglutarate. The branched-chain ketoacid dehydrogenase complex catalyzes the irreversible oxidative decarboxylation of branched-chain ketoacids to produce branched-chain acyl-coA intermediates, which then follow separate catabolic pathways. Human tissue distribution and function of most of the enzymes involved in branched-chain amino acid catabolism is unknown. Congenital deficiencies of the enzymes involved in branched-chain amino acid metabolism are generally rare disorders. Some of them are associated with reduced pyruvate dehydrogenase complex activity and respiratory chain dysfunction that may contribute to their clinical phenotype. The biochemical phenotype is characterized by accumulation of the substrate to the deficient enzyme and its carnitine and/or glycine derivatives. It was established at the beginning of the twentieth century that the plasma level of the branched-chain amino acids is increased in conditions associated with insulin resistance such as obesity and diabetes mellitus. However, the potential clinical relevance of this elevation is uncertain.
Fructose 1,6-diphosphatase in striated muscle
Krebs, H. A.; Woodford, Muriel
1965-01-01
1. The occurrence of fructose diphosphatase in muscle tissue was investigated with reference to the question whether lactate can be converted into glycogen in muscle, as postulated by Meyerhof (1930), fructose diphosphatase being one of the enzymes required for this conversion. 2. Fructose diphosphatase was found in skeletal muscle of man, dog, cat, rat, mouse, rabbit, guinea pig, cattle, sheep, pigeon, fowl and frog. Under the test conditions between 5 and 60 μmoles of substrate were split/g. fresh wt./hr. at 22°. 3. Like liver fructose diphosphatase, the muscle enzyme is inhibited by substrate concentrations above 0·1 mm, by AMP and by trace quantities of Zn2+, Fe2+ and Fe3+; it is `activated' by EDTA. Inhibitions by the above agents may account for the failure of previous authors to detect the enzyme. 4. Heart muscle of several vertebrate species and the smooth muscle of pigeon and fowl gizzard had no measurable activity. 5. The presence of fructose diphosphatase and the virtual absence of the enzyme systems converting pyruvate into phosphopyruvate means that lactate and pyruvate cannot be converted into glycogen in muscle, whereas the phosphorylated C3 compounds can. The reconversion into carbohydrate of lactate (which readily diffuses out of muscle) occurs in liver and kidney only. The reconversion of phosphorylated C3 intermediates (which cannot diffuse out of the tissue) can occur only within the muscle. 6. α-Glycerophosphate is probably the main intermediate requiring conversion into glycogen. The possible role of α-glycerophosphate formation in vertebrate muscle, already well established in insect muscle, is discussed. PMID:14346089
Acclimation of Antarctic Chlamydomonas to the sea-ice environment: a transcriptomic analysis.
Liu, Chenlin; Wang, Xiuliang; Wang, Xingna; Sun, Chengjun
2016-07-01
The Antarctic green alga Chlamydomonas sp. ICE-L was isolated from sea ice. As a psychrophilic microalga, it can tolerate the environmental stress in the sea-ice brine, such as freezing temperature and high salinity. We performed a transcriptome analysis to identify freezing stress responding genes and explore the extreme environmental acclimation-related strategies. Here, we show that many genes in ICE-L transcriptome that encoding PUFA synthesis enzymes, molecular chaperon proteins, and cell membrane transport proteins have high similarity to the gens from Antarctic bacteria. These ICE-L genes are supposed to be acquired through horizontal gene transfer from its symbiotic microbes in the sea-ice brine. The presence of these genes in both sea-ice microalgae and bacteria indicated the biological processes they involved in are possibly contributing to ICE-L success in sea ice. In addition, the biological pathways were compared between ICE-L and its closely related sister species, Chlamydomonas reinhardtii and Volvox carteri. In ICE-L transcripome, many sequences homologous to the plant or bacteria proteins in the post-transcriptional, post-translational modification, and signal-transduction KEGG pathways, are absent in the nonpsychrophilic green algae. These complex structural components might imply enhanced stress adaptation capacity. At last, differential gene expression analysis at the transcriptome level of ICE-L indicated that genes that associated with post-translational modification, lipid metabolism, and nitrogen metabolism are responding to the freezing treatment. In conclusion, the transcriptome of Chlamydomonas sp. ICE-L is very useful for exploring the mutualistic interaction between microalgae and bacteria in sea ice; and discovering the specific genes and metabolism pathways responding to the freezing acclimation in psychrophilic microalgae.
Topham, C M; Dalziel, K
1986-01-01
[2-18O]Ribulose 5-phosphate was prepared and shown to be converted enzymically by 6-phosphogluconate dehydrogenase from sheep liver into 6-phosphogluconate with complete retention of the heavy isotope. This finding unequivocally excludes the possibility of a Schiff-base mechanism for the enzyme. The involvement of metal ions has already been excluded, and other possible mechanisms are discussed. The enzyme was purified by an improved large-scale procedure, which is briefly described. PMID:3718491
Bayineni, Venkata Krishna; Venkatesh, Krishna; Sahu, Chandan Kumar; Kadeppagari, Ravi-Kumar
2016-04-01
Methotrexate degrading enzymes are required to overcome the toxicity of the methotrexate while treating the cancer. The enzyme from Variovorax paradoxus converts the methotrexate in to non toxic products. Methotrexate degrading enzyme from V. paradoxus is a dimeric protein with a molecular mass of 46 kDa and it acts on casein and gelatin. This enzyme is optimally active at pH 7.5 and 40°C and nanoparticles of this enzyme were prepared by desolvation-crosslinking method. Enzyme nanoparticles could degrade methotrexate faster than the native enzyme and they show lower Km compare to the native enzyme. Enzyme nanoparticles show better thermostability and they were stable for much longer time in the serum compare to the native enzyme. Enzyme nanoparticles show better functionality than the native enzyme while clearing the methotrexate added to the serum suggesting their advantage over the native enzyme for the therapeutic and biotechnological applications. Copyright © 2016 Elsevier Inc. All rights reserved.
Martinez, Jean
2017-10-01
Angiotensin converting enzyme (ACE) is a well-known enzyme, largely studied for its action on hypertension, as it produces angiotensin II from angiotensin I. This paper describes two original behaviours of ACE. We showed that ACE could hydrolyse gastrin, a neuropeptide from the gastrointestinal tract, releasing the C-terminal amidated dipeptide H-Asp-Phe-NH 2 . This dipeptide is believed to be involved in the gastrin-induced acid secretion in the stomach. This hypothetic mechanism of action of gastrin resulted in a strategy to rationally design gastrin receptor antagonists. Beyond, we showed that the brain renin angiotensin system (RAS) could be activated by a new characterized peptide named acein, resulting in stimulation of dopamine release within the striatum. This new and original 'receptor-like' activity for brain membrane-bound ACE is quite significant taking into account the role of dopamine in the brain, particularly in neurodegenerative diseases. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.
Ngo, Dai-Hung; Ryu, BoMi; Kim, Se-Kwon
2014-01-15
Skin gelatin of skate (Okamejei kenojei) was hydrolyzed using Alcalase, flavourzyme, Neutrase and protamex. It was found that the Alcalase hydrolysate exhibited the highest angiotensin-I converting enzyme (ACE) inhibitory activity. Then, Alcalase hydrolysate was further hydrolyzed with protease and separated by an ultrafiltration membrane system. Finally, two peptides responsible for ACE inhibitory activity were identified to be MVGSAPGVL (829Da) and LGPLGHQ (720Da), with IC50 values of 3.09 and 4.22μM, respectively. Moreover, the free radical-scavenging activity of the purified peptides was determined in human endothelial cells. In addition, the antioxidative mechanism of the purified peptides was evaluated by protein and gene expression levels of antioxidant enzymes. The current study demonstrated that the peptides derived from skate skin gelatin could be used in the food industry as functional ingredients with potent antihypertensive and antioxidant benefits. Copyright © 2013 Elsevier Ltd. All rights reserved.
A 3-hydroxypropionate/4-hydroxybutyrate autotrophic carbon dioxide assimilation pathway in Archaea.
Berg, Ivan A; Kockelkorn, Daniel; Buckel, Wolfgang; Fuchs, Georg
2007-12-14
The assimilation of carbon dioxide (CO2) into organic material is quantitatively the most important biosynthetic process. We discovered that an autotrophic member of the archaeal order Sulfolobales, Metallosphaera sedula, fixed CO2 with acetyl-coenzyme A (acetyl-CoA)/propionyl-CoA carboxylase as the key carboxylating enzyme. In this system, one acetyl-CoA and two bicarbonate molecules were reductively converted via 3-hydroxypropionate to succinyl-CoA. This intermediate was reduced to 4-hydroxybutyrate and converted into two acetyl-CoA molecules via 4-hydroxybutyryl-CoA dehydratase. The key genes of this pathway were found not only in Metallosphaera but also in Sulfolobus, Archaeoglobus, and Cenarchaeum species. Moreover, the Global Ocean Sampling database contains half as many 4-hydroxybutyryl-CoA dehydratase sequences as compared with those found for another key photosynthetic CO2-fixing enzyme, ribulose-1,5-bisphosphate carboxylase-oxygenase. This indicates the importance of this enzyme in global carbon cycling.
Farewell Year 12: Chemistry at Nagle College
ERIC Educational Resources Information Center
Awad, Maro; Azar, Stefanie; Vieiro, Bianca; van Rooy, Wilhelmina
2012-01-01
With one week to go, Year 12 chemistry made their final practical an event to be remembered. We decided to take that infamous Periodic Table to the next level, transforming it into an edible table! Armed with 114 biscuits, multiple tubs filled with coloured icing, plastic knives, and gloves and "Professional" piping bags, we converted the science…
Europe Report, Science and Technology.
1986-06-18
amylase, heat stable alpha-amylase and glucoamylase for processing starch as a substrate for 71 glucose and its isomerization to fructose using an...continuous column process under laboratory conditions. We have demonstrated that these preparations isomerize glucose syrups up to 42 percent, converting...food industry is the leading consumer of microbial enzymes devouring about 80 percent of the world production of enzymes -- glucose isomerase, alpha
Cholecystokinin-converting enzymes in brain.
Malesci, A; Straus, E; Yalow, R S
1980-01-01
Crude extracts of porcine cerebral cortical tissue convert cholecystokinin (CCK) to its COOH-terminal fragments, the dodecapeptide (CCK-12) and the octapeptide (CCK-8). The Sephadex G-75 void volume eluate of the crude extract cleaves the arginine-isoleucine bond and effects conversion only to CCK-12; the Sephadex G-50 void volume eluate of the same extract cleaves the arginine-aspartate bond as well, so that both CCK-12 and CCK-8 are end products. Thus, there are at least two enzymes; the one involved in the conversion to CCK-12 is of larger molecular radius than the other. The Km for the cleavage of CCK at the arginine-isoleucine bond by the Sephadex G-75 void volume eluate enzyme is 1.1 X 10(-6) M; the Km for trypsin cleavage of the same bond is 4.7 x 10(-6) M. The lower Vmax for the brain enzyme (1.5 x 10(-11) mol/min per g of extract) compared with trypsin (66 x 10(-11) mol/min per g of trypsin) simply reflects the lesser degree of purify of the brain extract than of the highly purified trypsin. Images PMID:6987659
Epilactose production by 2 cellobiose 2-epimerases in natural milk.
Krewinkel, Manuel; Gosch, Maria; Rentschler, Eva; Fischer, Lutz
2014-01-01
It was reported recently that cellobiose 2-epimerases (CE) from various aerobic microorganisms convert lactose to epilactose in defined buffer systems. In this study, we showed that CE from 2 mesophilic microorganisms, Flavobacterium johnsoniae and Pedobacter heparinus, were capable of converting lactose to prebiotic epilactose not only in buffer but also in a complex milk system. First, the 2 enzymes were separately cloned, recombinantly expressed in Escherichia coli, and purified by column chromatography. The production of F. johnsoniae CE was carried out in a stirred-tank reactor, indicating that future upscaling is possible. The bioconversions of milk lactose were carried out at an industrially relevant low temperature of 8°C to avoid undesired microbial contaminations or chemical side reactions. Both enzymes were reasonably active at this low temperature, because of their origin from mesophilic organisms. The enzymes showed different operational stabilities over a 24-h time-course. A conversion yield of about 30 to 33% epilactose was achieved with both enzymes. No side products were detected other than epilactose. Therefore, CE may introduce an added value for particular dairy products by in situ production of the prebiotic sugar epilactose. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Meteorological conditions influencing the formation of level ice within the Baltic Sea
NASA Astrophysics Data System (ADS)
Mazur, A. K.; Krezel, A.
2012-12-01
The Baltic Sea is covered by ice every winter and on average, the ice-covered area is 45% of the total area of the Baltic Sea. The beginning of ice season usually starts in the end of November, ice extent is the largest between mid-February and mid-March and sea ice disappears completely in May. The ice covered areas during a typical winter are the Gulf of Bothnia, the Gulf of Finland and the Gulf of Riga. The studies of sea ice in the Baltic Sea are related to two aspects: climate and marine transport. Depending on the local weather conditions during the winter different types of sea ice can be formed. From the point of winter shipping it is important to locate level and deformed ice areas (rafted ice, ridged ice, and hummocked ice). Because of cloud and daylight independency as well as good spatial resolution, SAR data seems to be the most suitable source of data for sea ice observation in the comparatively small area of the Baltic Sea. We used ASAR Wide Swath Mode data with spatial resolution 150 m. We analyzed data from the three winter seasons which were examples of severe, typical and mild winters. To remove the speckle effect the data were resampled to 250 m pixel size and filtred using Frost filter 5x5. To detect edges we used Sobel filter. The data were also converted into grayscale. Sea ice classification was based on Object-Based Image Analysis (OBIA). Object-based methods are not a common tool in sea ice studies but they seem to accurately separate level ice within the ice pack. The data were segmented and classified using eCognition Developer software. Level ice were classified based on texture features defined by Haralick (Grey Level Co-Occurrence Matrix homogeneity, GLCM contrast, GLCM entropy and GLCM correlation). The long-term changes of the Baltic Sea ice conditions have been already studied. They include date of freezing, date of break-up, sea ice extent and some of work also ice thickness. There is a little knowledge about the relationship of short term changes in sea ice cover and meteorological conditions. In following studies we analyzed the formation of level sea ice depending on some weather conditions (temperature, humidity, pressure at sea level, 10 meter wind). It can be clearly seen that the most important factors influencing formation of level ice are the temperature and wind.
Radiative transfer model of snow for bare ice regions
NASA Astrophysics Data System (ADS)
Tanikawa, T.; Aoki, T.; Niwano, M.; Hosaka, M.; Shimada, R.; Hori, M.; Yamaguchi, S.
2016-12-01
Modeling a radiative transfer (RT) for coupled atmosphere-snow-bare ice systems is of fundamental importance for remote sensing applications to monitor snow and bare ice regions in the Greenland ice sheet and for accurate climate change predictions by regional and global climate models. Recently, the RT model for atmosphere-snow system was implemented for our regional and global climate models. However, the bare ice region where recently it has been expanded on the Greenland ice sheet due to the global warming, has not been implemented for these models, implying that this region leads miscalculations in these climate models. Thus, the RT model of snow for bare ice regions is needed for accurate climate change predictions. We developed the RT model for coupled atmosphere-snow-bare ice systems, and conducted a sensitivity analysis of the RT model to know the effect of snow, bare ice and geometry parameters on the spectral radiant quantities. The RT model considers snow and bare-ice inherent optical properties (IOPs), including snow grain size, air bubble size and its concentration and bare ice thickness. The conventional light scattering theory, Mie theory, was used for IOP calculations. Monte Carlo method was used for the multiple scattering. The sensitivity analyses showed that spectral albedo for the bare ice increased with increasing the concentration of the air bubble in the bare ice for visible wavelengths because the air bubble is scatterer with no absorption. For near infrared wavelengths, spectral albedo has no dependence on the air bubble due to the strong light absorption by ice. When increasing solar zenith angle, the spectral albedo were increased for all wavelengths. This is the similar trend with spectral snow albedo. Cloud cover influenced the bare ice spectral albedo by covering direct radiation into diffuse radiation. The purely diffuse radiation has an effective solar zenith angle near 50°. Converting direct into diffuse radiation reduces the effective solar zenith angle, resulting in reducing the spectral albedo. This is also the similar trend with spectral snow albedo. Further work should focus on the validation of the RT model using in situ measurement data through field and laboratory experiments.
Paukert, M.; Hoose, C.; Simmel, M.
2017-02-21
In model studies of aerosol-dependent immersion freezing in clouds, a common assumption is that each ice nucleating aerosol particle corresponds to exactly one cloud droplet. Conversely, the immersion freezing of larger drops—“rain”—is usually represented by a liquid volume-dependent approach, making the parameterizations of rain freezing independent of specific aerosol types and concentrations. This may lead to inconsistencies when aerosol effects on clouds and precipitation shall be investigated, since raindrops consist of the cloud droplets—and corresponding aerosol particles—that have been involved in drop-drop-collisions. We introduce an extension to a two-moment microphysical scheme in order to account explicitly for particle accumulation inmore » raindrops by tracking the rates of selfcollection, autoconversion, and accretion. This also provides a direct link between ice nuclei and the primary formation of large precipitating ice particles. A new parameterization scheme of drop freezing is presented to consider multiple ice nuclei within one drop and effective drop cooling rates. In our test cases of deep convective clouds, we find that at altitudes which are most relevant for immersion freezing, the majority of potential ice nuclei have been converted from cloud droplets into raindrops. Compared to the standard treatment of freezing in our model, the less efficient mineral dust-based freezing results in higher rainwater contents in the convective core, affecting both rain and hail precipitation. The aerosol-dependent treatment of rain freezing can reverse the signs of simulated precipitation sensitivities to ice nuclei perturbations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paukert, M.; Hoose, C.; Simmel, M.
In model studies of aerosol-dependent immersion freezing in clouds, a common assumption is that each ice nucleating aerosol particle corresponds to exactly one cloud droplet. Conversely, the immersion freezing of larger drops—“rain”—is usually represented by a liquid volume-dependent approach, making the parameterizations of rain freezing independent of specific aerosol types and concentrations. This may lead to inconsistencies when aerosol effects on clouds and precipitation shall be investigated, since raindrops consist of the cloud droplets—and corresponding aerosol particles—that have been involved in drop-drop-collisions. We introduce an extension to a two-moment microphysical scheme in order to account explicitly for particle accumulation inmore » raindrops by tracking the rates of selfcollection, autoconversion, and accretion. This also provides a direct link between ice nuclei and the primary formation of large precipitating ice particles. A new parameterization scheme of drop freezing is presented to consider multiple ice nuclei within one drop and effective drop cooling rates. In our test cases of deep convective clouds, we find that at altitudes which are most relevant for immersion freezing, the majority of potential ice nuclei have been converted from cloud droplets into raindrops. Compared to the standard treatment of freezing in our model, the less efficient mineral dust-based freezing results in higher rainwater contents in the convective core, affecting both rain and hail precipitation. The aerosol-dependent treatment of rain freezing can reverse the signs of simulated precipitation sensitivities to ice nuclei perturbations.« less
Läufer, Albrecht
2017-03-07
Nature uses enzymes to build and convert biomass; mankind uses the same enzymes and produces them on a large scale to make optimum use of biomass in biorefineries. Bacterial α-amylases and fungal glucoamylases have been the workhorses of starch biorefineries for many decades. Pullulanases were introduced in the 1980s. Proteases, cellulases, hemicellulases, and phytases have been on the market for a few years as process aids, improving yields, performance, and costs. Detailed studies of the complex chemical structures of biomass and of the physicochemical limitations of industrial biorefineries have led enzyme developers to produce novel tailor-made solutions for improving yield and profitability in the industry. This chapter reviews the development of enzyme applications in the major starch biorefining processes.
NASA Astrophysics Data System (ADS)
Paukert, M.; Hoose, C.; Simmel, M.
2017-03-01
In model studies of aerosol-dependent immersion freezing in clouds, a common assumption is that each ice nucleating aerosol particle corresponds to exactly one cloud droplet. In contrast, the immersion freezing of larger drops—"rain"—is usually represented by a liquid volume-dependent approach, making the parameterizations of rain freezing independent of specific aerosol types and concentrations. This may lead to inconsistencies when aerosol effects on clouds and precipitation shall be investigated, since raindrops consist of the cloud droplets—and corresponding aerosol particles—that have been involved in drop-drop-collisions. Here we introduce an extension to a two-moment microphysical scheme in order to account explicitly for particle accumulation in raindrops by tracking the rates of selfcollection, autoconversion, and accretion. This provides a direct link between ice nuclei and the primary formation of large precipitating ice particles. A new parameterization scheme of drop freezing is presented to consider multiple ice nuclei within one drop and effective drop cooling rates. In our test cases of deep convective clouds, we find that at altitudes which are most relevant for immersion freezing, the majority of potential ice nuclei have been converted from cloud droplets into raindrops. Compared to the standard treatment of freezing in our model, the less efficient mineral dust-based freezing results in higher rainwater contents in the convective core, affecting both rain and hail precipitation. The aerosol-dependent treatment of rain freezing can reverse the signs of simulated precipitation sensitivities to ice nuclei perturbations.
Ademiluyi, Adedayo O; Oboh, Ganiyu
2013-03-01
This study sought to assess the inhibitory activities of phenolic-rich extracts from soybean on α-amylase, α-glucosidase and angiotensin I converting enzyme (ACE) activities in vitro. The free phenolic extract of the soybean was obtained by extraction with 80% acetone, while that of the bound phenolic extract was done by extracting the alkaline and acid hydrolyzed residue with ethyl acetate. The inhibitory action of these extracts on the enzymes activity as well as their antioxidant properties was assessed. Both phenolic-rich extracts inhibited α-amylase, α-glucosidase and ACE enzyme activities in a dose dependent pattern. However, the bound phenolic extract exhibited significantly (P < 0.05) higher α-amylase and ACE inhibition while the free phenolic extract had significantly (P < 0.05) higher α-glucosidase inhibitory activity. Nevertheless, the free phenolic extract had higher α-glucosidase inhibitory activity when compared to that of α-amylase; this property confer an advantage on soybean phenolic-rich extracts over commercial antidiabetic drugs with little or no side effect. And inhibition of ACE suggests the antihypertension potential of soybean phenolic-rich extracts. Furthermore, the enzyme inhibitory activities of the phenolic-rich extracts were not associated with their phenolic content. Therefore, phenolic-rich extracts of soybean could inhibit key-enzyme linked to type 2 diabetes (α-amylase and α-glucosidase) and hypertension (ACE) and thus could explain in part the mechanism by which soybean renders these health promoting effect. Copyright © 2011 Elsevier GmbH. All rights reserved.
NASA Astrophysics Data System (ADS)
Uglietti, C.; Gabrielli, P.; Lutton, A.; Olesik, J.; Thompson, L. G.
2012-12-01
Trace elements in micro-particles entrapped in ice cores are a valuable proxy of past climate and environmental variations. Inductively coupled plasma sector field mass spectrometry (ICP-SFMS) is generally recognized as a sensitive and accurate technique for the quantification of ultra-trace element concentrations in ice cores. Usually, ICP-SFMS analyses of ice core samples are performed by melting and acidifying aliquots. Acidification is important to transfer trace elements from particles into solution by partial and/or complete dissolution. Only elements in solution and in sufficiently small particles will be vaporized and converted to elemental ions in the plasma for detection by ICP-SFMS. However, experimental results indicate that differences in acidified sample storage time at room temperature may lead to the recovery of different trace element fractions. Moreover, different lithologies of the relatively abundant crustal material entrapped in the ice matrix could also influence the fraction of trace elements that are converted into elemental ions in the plasma. These factors might affect the determination of trace elements concentrations in ice core samples and hamper the comparison of results obtained from ice cores from different locations and/or epochs. In order to monitor the transfer of elements from particles into solution in acidified melted ice core samples during storage, a test was performed on sections from nine ice cores retrieved from low latitude drilling sites around the world. When compared to ice cores from polar regions, these samples are characterized by a relative high content of micro-particles that may leach trace elements into solution differently. Of the nine ice cores, five are from the Tibetan Plateau (Dasuopu, Guliya, Naimonanyi, Puruogangri and Dunde), two from the Andes (Quelccaya and Huascaran), one from Africa (Kilimanjaro) and one from the Eastern Alps (Ortles). These samples were decontaminated by triple rinsing, melted and stored in pre-cleaned low-density polyethylene bottles, and kept frozen until acidification (2% v/v ultra-pure HNO3). Determination of twenty trace elements (Ag, Al, As, Bi, Cd, Co, Cr, Cu, Fe, Mn, Mo, Pb, Rb, Sb, Sn, Ti, Tl, U, V, and Zn) was repeated at different times after acidification using the same aliquot. Analyses show a mean increase of 40-50% in trace element concentration in all the samples during the first 15 days of storage after acidification, except Al, Fe, V and Cr, which show a larger increase (90-100%). After 15 days the trace element concentrations reach generally stable values (with small increases within measurement uncertainty), except for the Naimonanyi and Kilimanjaro samples which continue to increase. In contrast, Ag concentration decreases after one week, likely due to its low stability in the acidified solution that may depend on the Cl- concentration. We froze the samples 43 days after the acidification. After two weeks the samples were melted and re-analyzed by ICP-SFMS in two different laboratories as an inter-calibration exercise. The results show a good correspondence between the measured concentrations determined by the two instruments and a consistent additional increase of 20-30% of measured trace element concentrations in almost all samples.
Marketing research on the angiotensin-converting enzyme inhibitors antihypertensive medicines.
Boboia, Anamaria; Grigorescu, Marius Rareş; Turcu-Ştiolică, Adina
2017-01-01
The research aimed at investigating sales trends of angiotensin-converting enzyme inhibitors antihypertensive medicines, both in terms of quantity and value, in ten community pharmacies, for a period of three years. The research on the antihypertensive medicines consumption is important for highlighting the ever increasing impact of hypertension among the population. The methods used in this research were the following: marketing research, method of sampling, descriptive methods, retrospective analysis, method of comparison. The results showed that the drugs containing the active substances of the angiotensin converting enzyme inhibitors class had had significant increases in quantitative and value sales, bringing substantial revenues to pharmacies. From the quantitative perspective, the best-selling products were those containing Enalaprilum, while in terms of value, the best-selling medicines were those containing Perindoprilum. We evidenced that spectacular sales were also achieved for products that have Lisinoprilum, respectively Captoprilum, as active substances. The largest quantities were marketed for the Captopril Terapia® product and the highest earnings were recorded for the Prestarium® medicine. This paper approaches an interesting and topical issue, which can be helpful to professionals (pharmacists, doctors) and other categories, such as economists, statisticians, representatives of companies manufacturing medicines, as well as to hypertensive patients, as it could be used to warn population regarding the incidence of cardiovascular diseases, and, at the same time, trace sales trends in order to accomplish profitable business plans.
So, Pamela Berilyn T; Rubio, Peter; Lirio, Stephen; Macabeo, Allan Patrick; Huang, Hsi-Ya; Corpuz, Mary Jho-Anne T; Villaflores, Oliver B
2016-09-01
The anti-angiotensin I converting enzyme activity of box jellyfish, Chiropsalmus quadrigatus Haeckel venom hydrolysate was studied. The venom extract was obtained by centrifugation and ultrasonication. Protein concentration of 12.99 μg/mL was determined using Bradford assay. The pepsin and papain hydrolysate was tested for its toxicity by Limit test following the OECD Guideline 425 using 5 female Sprague-Dawley rats. Results showed that the hydrolysate is nontoxic with an LD50 above 2000 mg/kg. In vitro angiotensin I converting enzyme (ACE) inhibitory activity was determined using ACE kit-WST. Isolation of ACE inhibitory peptides using column chromatography with SP-Sephadex G-25 yielded 8 pooled fractions with fraction 3 (86.5%) exhibiting the highest activity. This was followed by reverse phase - high performance liquid chromatography (RP-HPLC) with an octadecyl silica column (Inertsil ODS-3) using methanol:water 15:85 at a flow rate of 1.0 mL/min. Among the 13 fractions separated with the RP-HPLC, fraction 3.5 exhibited the highest ACE inhibitory activity (84.1%). The peptide sequence ACPGPNPGRP (IC50 2.03 μM) from fraction 3.5 was identified using Matrix-assisted laser desorption/ionization with time-of-flight tandem mass spectroscopy analysis (MALDI-TOF/MS). Copyright © 2016 Elsevier Ltd. All rights reserved.
Characterization of Two Late-Stage Enzymes Involved in Fosfomycin Biosynthesis in Pseudomonads.
Olivares, Philip; Ulrich, Emily C; Chekan, Jonathan R; van der Donk, Wilfred A; Nair, Satish K
2017-02-17
The broad-spectrum phosphonate antibiotic fosfomycin is currently in use for clinical treatment of infections caused by both Gram-positive and Gram-negative uropathogens. The antibiotic is biosynthesized by various streptomycetes, as well as by pseudomonads. Notably, the biosynthetic strategies used by the two genera share only two steps: the first step in which primary metabolite phosphoenolpyruvate (PEP) is converted to phosphonopyruvate (PnPy) and the terminal step in which 2-hydroxypropylphosphonate (2-HPP) is converted to fosfomycin. Otherwise, distinct enzymatic paths are employed. Here, we biochemically confirm the last two steps in the fosfomycin biosynthetic pathway of Pseudomonas syringae PB-5123, showing that Psf3 performs the reduction of 2-oxopropylphosphonate (2-OPP) to (S)-2-HPP, followed by the Psf4-catalyzed epoxidation of (S)-2-HPP to fosfomycin. Psf4 can also accept (R)-2-HPP as a substrate but instead performs an oxidation to make 2-OPP. We show that the combined activities of Psf3 and Psf4 can be used to convert racemic 2-HPP to fosfomycin in an enantioconvergent process. X-ray structures of each enzyme with bound substrates provide insights into the stereospecificity of each conversion. These studies shed light on the reaction mechanisms of the two terminal enzymes in a distinct pathway employed by pseudomonads for the production of a potent antimicrobial agent.
Diz, Debra I.; Garcia-Espinosa, Maria A.; Gegick, Stephen; Tommasi, Ellen N.; Ferrario, Carlos M.; Tallant, E. Ann; Chappell, Mark C.; Gallagher, Patricia E.
2009-01-01
Injections of the angiotensin(1–7) [Ang(1–7)] antagonist [d-Ala7]-Ang(1–7) into the nucleus of the solitary tract (NTS) of Sprague–Dawley rats reduce baroreceptor reflex sensitivity (BRS) for control of heart rate by ~40%, whereas injections of the angiotensin II (Ang II) type 1 receptor antagonist candesartan increase BRS by 40% when reflex bradycardia is assessed. The enzyme angiotensin-converting enzyme 2 (ACE2) is known to convert Ang II to Ang(1–7). We report that ACE2 activity, as well as ACE and neprilysin activities, are present in plasma membrane fractions of the dorsomedial medulla of Sprague–Dawley rats. Moreover, we show that BRS for reflex bradycardia is attenuated (1.16±0.29 ms mmHg−1 before versus 0.33±0.11 ms mmHg−1 after; P < 0.05; n = 8) 30–60 min following injection of the selective ACE2 inhibitor MLN4760 (12 pmol in 120 nl) into the NTS. These findings support the concept that within the NTS, local synthesis of Ang(1–7) from Ang II is required for normal sensitivity for the baroreflex control of heart rate in response to increases in arterial pressure. PMID:18356558
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsuura-Hachiya, Yuko; Arai, Koji Y.; Ozeki, Rieko
Highlights: •Angiotensin converting enzyme (ACE) increases in UVB-irradiated skin. •Administration of an ACE inhibitor improved UVB-induced skin wrinkle. •ACE inhibitor improved UVB-induced epidermal hypertrophy. •ACE inhibitor improved transepidermal water loss in the UVB-irradiated skin. -- Abstract: Angiotensin-converting enzyme (ACE) activity and angiotensin II signaling regulate cell proliferation, differentiation, and tissue remodeling, as well as blood pressure, while in skin, angiotensin II signaling is involved in wound healing, inflammation, and pathological scar formation. Therefore, we hypothesized that angiotensin II is also involved in photoaging of skin. In this study, we examined the effect of enalapril maleate, an ACE inhibitor, on recoverymore » of wrinkled skin of hairless mice exposed to long-term UVB irradiation. Immunohistochemical observation revealed that expression of ACE, angiotensin II, and angiotensin II type 1 (AT1) and type 2 (AT2) receptors in the skin was increased after UVB irradiation (3 times/week at increasing intensities for 8 weeks). Administration of enalapril maleate (5 times/week for 6 weeks, starting 1 week after 10-week irradiation) accelerated recovery from UVB-induced wrinkles, epidermal hyperplasia and epidermal barrier dysfunction, as compared with the vehicle control. Our results indicate that ACE and angiotensin II activity are involved in skin photoaging, and suggest that ACE inhibitor such as enalapril maleate may have potential for improvement of photoaged skin.« less
Effect of protease inhibitors on angiotensin-converting enzyme activity in human T-lymphocytes.
Petrov, V; Fagard, R; Lijnen, P
2000-05-01
The purpose of these investigations was to determine whether the aminopeptidase B and leucine aminopeptidase inhibitor bestatin, the chymase inhibitor chymostatin, the calpain inhibitor E-64, and the neutral serine protease inhibitor leupeptin affect the angiotensin converting enzyme (ACE) activity in T-lymphocytes. ACE activity in homogenates of T-lymphocytes or in intact T-lymphocytes in suspension was measured by determining fluorimetrically histidyl-leucine, formed from the conversion of hippuryl-histidyl-leucine, coupled with ophtaldialdehyde. The effect of various concentrations (10(-9) to 10(-3) mol/L) of the angiotensin-converting enzyme inhibitors lisinopril and captopril and of the various protease inhibitors on ACE activity was studied. Lisinopril and captopril reduced the ACE activity in homogenates of T-lymphocytes in a concentration-dependent manner. Lisinopril exhibited a more pronounced inhibition of ACE in T-lymphocytes than did captopril. Chymostatin and E-64 had no effect on the ACE activity in T-lymphocytes, whereas leupeptin inhibited its activity in a dose-dependent fashion. Bestatin, on the contrary, increased the ACE activity in homogenates of T-lymphocytes as well as in intact T-lymphocytes in proportion to the concentration. Our data showed that the ACE activity in T-lymphocytes was stimulated by bestatin and inhibited by leupeptin, whereas chymostatin and E-64 did not affect the ACE activity in T-lymphocytes.
Predictors of heart failure in patients with stable coronary artery disease: a PEACE study.
Lewis, Eldrin F; Solomon, Scott D; Jablonski, Kathleen A; Rice, Madeline Murguia; Clemenza, Francesco; Hsia, Judith; Maggioni, Aldo P; Zabalgoitia, Miguel; Huynh, Thao; Cuddy, Thomas E; Gersh, Bernard J; Rouleau, Jean; Braunwald, Eugene; Pfeffer, Marc A
2009-05-01
Heart failure (HF) is a disease commonly associated with coronary artery disease. Most risk models for HF development have focused on patients with acute myocardial infarction. The Prevention of Events with Angiotensin-Converting Enzyme Inhibition population enabled the development of a risk model to predict HF in patients with stable coronary artery disease and preserved ejection fraction. In the 8290, Prevention of Events with Angiotensin-Converting Enzyme Inhibition patients without preexisting HF, new-onset HF hospitalizations, and fatal HF were assessed over a median follow-up of 4.8 years. Covariates were evaluated and maintained in the Cox regression multivariable model using backward selection if P<0.05. A risk score was developed and converted to an integer-based scoring system. Among the Prevention of Events with Angiotensin-Converting Enzyme Inhibition population (age, 64+/-8; female, 18%; prior myocardial infarction, 55%), there were 268 cases of fatal and nonfatal HF. Twelve characteristics were associated with increased risk of HF along with several baseline medications, including older age, history of hypertension, and diabetes. Randomization to trandolapril independently reduced the risk of HF. There was no interaction between trandolapril treatment and other risk factors for HF. The risk score (range, 0 to 21) demonstrated excellent discriminatory power (c-statistic 0.80). Risk of HF ranged from 1.75% in patients with a risk score of 0% to 33% in patients with risk score >or=16. Among patients with stable coronary artery disease and preserved ejection fraction, traditional and newer factors were independently associated with increased risk of HF. Trandolopril decreased the risk of HF in these patients with preserved ejection fraction.
Dagher, Suzanne F.; Azcarate-Peril, M. Andrea
2013-01-01
Galacto-oligosaccharides (GOS) are indigestible dietary fibers that are able to reach the lower gastrointestinal tract to be selectively fermented by health-promoting bacteria. In this report, we describe the heterologous expression of an optimized synthetically produced version of the β-hexosyltransferase gene (Bht) from Sporobolomyces singularis. The Bht gene encodes a glycosyl hydrolase (EC 3.2.1.21) that acts as galactosyltransferase, able to catalyze a one-step conversion of lactose to GOS. Expression of the enzyme in Escherichia coli yielded an inactive insoluble protein, while the methylotrophic yeast Pichia pastoris GS115 produced a bioactive β-hexosyltransferase (rBHT). The enzyme exhibited faster kinetics at pHs between 3.5 and 6 and at temperatures between 40 and 50°C. Enzyme stability improved at temperatures lower than 40°C, and glucose was found to be a competitive inhibitor of enzymatic activity. P. pastoris secreted a fraction of the bioactive rBHT into the fermentation broth, while the majority of the enzyme remained associated with the outer membrane. Both the secreted and the membrane-associated forms were able to efficiently convert lactose to GOS. Additionally, resting cells with membrane-bound enzyme converted 90% of the initial lactose into GOS at 68% yield (g/g) (the maximum theoretical is 75%) with no secondary residual (glucose or galactose) products. This is the first report of a bioactive BHT from S. singularis that has been heterologously expressed. PMID:23241974
NASA Astrophysics Data System (ADS)
Abbasi, R.; Abdou, Y.; Abu-Zayyad, T.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Bay, R.; Bazo Alba, J. L.; Beattie, K.; Beatty, J. J.; Bechet, S.; Becker, J. K.; Becker, K.-H.; Benabderrahmane, M. L.; Berdermann, J.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Bissok, M.; Blaufuss, E.; Boersma, D. J.; Bohm, C.; Bolmont, J.; Botner, O.; Bradley, L.; Braun, J.; Breder, D.; Carson, M.; Castermans, T.; Chirkin, D.; Christy, B.; Clem, J.; Cohen, S.; Cowen, D. F.; D'Agostino, M. V.; Danninger, M.; Day, C. T.; de Clercq, C.; Demirörs, L.; Depaepe, O.; Descamps, F.; Desiati, P.; de Vries-Uiterweerd, G.; Deyoung, T.; Díaz-Vélez, J. C.; Dreyer, J.; Dumm, J. P.; Duvoort, M. R.; Edwards, W. R.; Ehrlich, R.; Eisch, J.; Ellsworth, R. W.; Engdegård, O.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Feusels, T.; Filimonov, K.; Finley, C.; Foerster, M. M.; Fox, B. D.; Franckowiak, A.; Franke, R.; Gaisser, T. K.; Gallagher, J.; Ganugapati, R.; Gerhardt, L.; Gladstone, L.; Goldschmidt, A.; Goodman, J. A.; Gozzini, R.; Grant, D.; Griesel, T.; Groß, A.; Grullon, S.; Gunasingha, R. M.; Gurtner, M.; Ha, C.; Hallgren, A.; Halzen, F.; Han, K.; Hanson, K.; Hasegawa, Y.; Helbing, K.; Herquet, P.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Homeier, A.; Hoshina, K.; Hubert, D.; Huelsnitz, W.; Hülß, J.-P.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Imlay, R. L.; Inaba, M.; Ishihara, A.; Jacobsen, J.; Japaridze, G. S.; Johansson, H.; Joseph, J. M.; Kampert, K.-H.; Kappes, A.; Karg, T.; Karle, A.; Kelley, J. L.; Kemming, N.; Kenny, P.; Kiryluk, J.; Kislat, F.; Klein, S. R.; Knops, S.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Koskinen, D. J.; Kowalski, M.; Kowarik, T.; Krasberg, M.; Krings, T.; Kroll, G.; Kuehn, K.; Kuwabara, T.; Labare, M.; Lafebre, S.; Laihem, K.; Landsman, H.; Lauer, R.; Lehmann, R.; Lennarz, D.; Lucke, A.; Lundberg, J.; Lünemann, J.; Madsen, J.; Majumdar, P.; Maruyama, R.; Mase, K.; Matis, H. S.; McParland, C. P.; Meagher, K.; Merck, M.; Mészáros, P.; Meures, T.; Middell, E.; Milke, N.; Miyamoto, H.; Montaruli, T.; Morse, R.; Movit, S. M.; Nahnhauer, R.; Nam, J. W.; Nießen, P.; Nygren, D. R.; Odrowski, S.; Olivas, A.; Olivo, M.; Ono, M.; Panknin, S.; Patton, S.; Paul, L.; Pérez de Los Heros, C.; Petrovic, J.; Piegsa, A.; Pieloth, D.; Pohl, A. C.; Porrata, R.; Potthoff, N.; Price, P. B.; Prikockis, M.; Przybylski, G. T.; Rawlins, K.; Redl, P.; Resconi, E.; Rhode, W.; Ribordy, M.; Rizzo, A.; Rodrigues, J. P.; Roth, P.; Rothmaier, F.; Rott, C.; Roucelle, C.; Rutledge, D.; Ruzybayev, B.; Ryckbosch, D.; Sander, H.-G.; Sarkar, S.; Schatto, K.; Schlenstedt, S.; Schmidt, T.; Schneider, D.; Schukraft, A.; Schulz, O.; Schunck, M.; Seckel, D.; Semburg, B.; Seo, S. H.; Sestayo, Y.; Seunarine, S.; Silvestri, A.; Slipak, A.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stephens, G.; Stezelberger, T.; Stokstad, R. G.; Stoufer, M. C.; Stoyanov, S.; Strahler, E. A.; Straszheim, T.; Sulanke, K.-H.; Sullivan, G. W.; Swillens, Q.; Taboada, I.; Tamburro, A.; Tarasova, O.; Tepe, A.; Ter-Antonyan, S.; Terranova, C.; Tilav, S.; Toale, P. A.; Tooker, J.; Tosi, D.; Turčan, D.; van Eijndhoven, N.; Vandenbroucke, J.; van Overloop, A.; van Santen, J.; Voigt, B.; Walck, C.; Waldenmaier, T.; Wallraff, M.; Walter, M.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wiebe, K.; Wiebusch, C. H.; Wiedemann, A.; Wikström, G.; Williams, D. R.; Wischnewski, R.; Wissing, H.; Woschnagg, K.; Xu, C.; Xu, X. W.; Yodh, G.; Yoshida, S.; IceCube Collaboration
2010-03-01
A search for muon neutrinos from Kaluza-Klein dark matter annihilations in the Sun has been performed with the 22-string configuration of the IceCube neutrino detector using data collected in 104.3 days of live time in 2007. No excess over the expected atmospheric background has been observed. Upper limits have been obtained on the annihilation rate of captured lightest Kaluza-Klein particle (LKP) WIMPs in the Sun and converted to limits on the LKP-proton cross sections for LKP masses in the range 250-3000 GeV. These results are the most stringent limits to date on LKP annihilation in the Sun.
NASA Technical Reports Server (NTRS)
Bindschadler, R.; Choi, H.; Wichlacz, A.; Bingham, R.; Bohlander, J.; Brunt, K.; Corr, H.; Drews, R.; Fricker, H.; Hall, M.;
2011-01-01
Two ice-dynamic transitions of the Antarctic ice sheet - the boundary of grounded ice features and the freely-floating boundary - are mapped at 15-m resolution by participants of the International Polar Year project ASAID using customized software combining Landsat-7 imagery and ICESat/GLAS laser altimetry. The grounded ice boundary is 53 610 km long; 74% abuts to floating ice shelves or outlet glaciers, 19% is adjacent to open or sea-ice covered ocean, and 7% of the boundary ice terminates on land. The freely-floating boundary, called here the hydrostatic line, is the most landward position on ice shelves that expresses the full amplitude of oscillating ocean tides. It extends 27 521 km and is discontinuous. Positional (one-sigma) accuracies of the grounded ice boundary vary an order of magnitude ranging from +/- 52m for the land and open-ocean terminating segments to +/- 502m for the outlet glaciers. The hydrostatic line is less well positioned with errors over 2 km. Elevations along each line are selected from 6 candidate digital elevation models based on their agreement with ICESat elevation values and surface shape inferred from the Landsat imagery. Elevations along the hydrostatic line are converted to ice thicknesses by applying a firn-correction factor and a flotation criterion. BEDMAP-compiled data and other airborne data are compared to the ASAID elevations and ice thicknesses to arrive at quantitative (one-sigma) uncertainties of surface elevations of +/-3.6, +/-9.6, +/-11.4, +/-30 and +/-100m for five ASAID-assigned confidence levels. Over one-half of the surface elevations along the grounded ice boundary and over one-third of the hydrostatic line elevations are ranked in the highest two confidence categories. A comparison between ASAID-calculated ice shelf thicknesses and BEDMAP-compiled data indicate a thin-ice bias of 41.2+/-71.3m for the ASAID ice thicknesses. The relationship between the seaward offset of the hydrostatic line from the grounded ice boundary only weakly matches a prediction based on beam theory. The mapped products along with the customized software to generate them and a variety of intermediate products are available from the National Snow and Ice Data Center.
Sun, Xiaoou; Wiesner, Burkhard; Lorenz, Dorothea; Papsdorf, Gisela; Pankow, Kristin; Wang, Po; Dietrich, Nils; Siems, Wolf-Eberhard; Maul, Björn
2008-12-01
Angiotensin-converting enzyme (ACE) demonstrates, besides its typical dipeptidyl-carboxypeptidase activity, several unusual functions. Here, we demonstrate with molecular, biochemical, and cellular techniques that the somatic wild-type murine ACE (mACE), stably transfected in Chinese Hamster Ovary (CHO) or Madin-Darby Canine Kidney (MDCK) cells, interacts with endogenous membranal co-localized carboxypeptidase M (CPM). CPM belongs to the group of glycosylphosphatidylinositol (GPI)-anchored proteins. Here we report that ACE, completely independent of its known dipeptidase activities, has GPI-targeted properties. Our results indicate that the spatial proximity between mACE and the endogenous CPM enables an ACE-evoked release of CPM. These results are discussed with respect to the recently proposed GPI-ase activity and function of sperm-bound ACE.
Angiotensin converting enzyme inhibition and the kidney
NASA Technical Reports Server (NTRS)
Hollenberg, N. K.
1988-01-01
Angiotensin II (Ang II) induces a marked reduction in renal blood flow at doses well below those required to induce a pressor response, and as blood flow falls there is a decline in glomerular filtration rate and sodium excretion. This striking sensitivity of the renal blood supply led many workers to consider the possibility that angiotensin functions as a local renal hormone. As angiotensin converting enzyme (ACE) was found in particular abundance in the lung, it seemed reasonable to suspect that most of the conversion occurred there, and that the function of Ang II would be primarily systemic, rather than intrarenal. In this review, I will explore the evidence that has accumulated on these two possibilities, since they have important implications for our current understanding of normal kidney function and derangements of kidney function in disease.
Angiotensin converting enzyme insertion/deletion polymorphism: association with ethnic origin.
Barley, J; Blackwood, A; Carter, N D; Crews, D E; Cruickshank, J K; Jeffery, S; Ogunlesi, A O; Sagnella, G A
1994-08-01
To determine the distribution of the insertion/deletion (I/D) polymorphism of the angiotensin converting enzyme (ACE) gene in several ethnic groups: Caucasian Europeans, Black Nigerians, Samoan Polynesians and Yanomami Indians. The ratio of the frequencies of the II, ID and DD genotypes were 1:2:1 in the Europeans, but there was a tendency towards a higher frequency of the D allele in the Nigerians. In contrast, the Samoans and the Yanomami Indians displayed a much higher frequency of the I allele than of the D allele. The relationship between ACE genotype and disease in these latter groups is still not known, but the present results clearly suggest that ethnic origin should be carefully considered in the increasing number of studies on the association between I/D ACE genotype and disease aetiology.
Kumbhare, Ravindra M; Kosurkar, Umesh B; Bagul, Pankaj K; Kanwal, Abhinav; Appalanaidu, K; Dadmal, Tulshiram L; Banerjee, Sanjay Kumar
2014-11-01
A series of novel diethyl 2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate embedded triazole and mannich bases were synthesized, and evaluated for their angiotensin converting enzyme (ACE) inhibitory activity. Screening of above synthesized compounds for ACE inhibition showed that triazoles functionalized compounds have better ACE inhibitory activity compared to that of mannich bases analogues. Among all triazoles we found 6 h, 6 i and 6 j to have good ACE inhibition activity with IC50 values 0.713 μM, 0.409 μM and 0.653 μM, respectively. Among mannich bases series compounds, only 7c resulted as most active ACE inhibitor with IC50 value of 0.928 μM. Copyright © 2014. Published by Elsevier Ltd.
Wu, Shanguang; Feng, Xuezhen; Lu, Yuan; Lu, Yuting; Liu, Saisai; Tian, Yuhong
2017-10-01
Casein proteins were hydrolyzed by papain to identify inhibitory peptides of angiotensin I-converting enzyme (ACE). The hydrolysate was fractionized by immobilized metal affinity chromatography (IMAC-Ni 2+ ). The fraction with high ACE inhibitory activity was enriched and further chromatographed on a reverse-phase column to yield four fractions. Among the fractions, the L4 fraction exhibited the highest ACE inhibitory activity and was identified by sequence analysis as Trp-Tyr-Leu-His-Tyr-Ala (WYLHYA), with IC 50 value of 16.22 ± 0.83 µM in vitro. This peptide was expected to be applied as an ingredient for preventing hypertension and IMAC-Ni 2+ may provide a simple method for purification of ACE inhibitory peptides.
Freas, Nicholas; Newton, Peter; Perozich, John
2016-01-01
UDP-glucose dehydrogenase (UDPGDH), UDP-N-acetyl-mannosamine dehydrogenase (UDPNAMDH) and GDP-mannose dehydrogenase (GDPMDH) belong to a family of NAD (+)-linked 4-electron-transfering oxidoreductases called nucleotide diphosphate sugar dehydrogenases (NDP-SDHs). UDPGDH is an enzyme responsible for converting UDP-d-glucose to UDP-d-glucuronic acid, a product that has different roles depending on the organism in which it is found. UDPNAMDH and GDPMDH convert UDP-N-acetyl-mannosamine to UDP-N-acetyl-mannosaminuronic acid and GDP-mannose to GDP-mannuronic acid, respectively, by a similar mechanism to UDPGDH. Their products are used as essential building blocks for the exopolysaccharides found in organisms like Pseudomonas aeruginosa and Staphylococcus aureus. Few studies have investigated the relationships between these enzymes. This study reveals the relationships between the three enzymes by analysing 229 amino acid sequences. Eighteen invariant and several other highly conserved residues were identified, each serving critical roles in maintaining enzyme structure, coenzyme binding or catalytic function. Also, 10 conserved motifs that included most of the conserved residues were identified and their roles proposed. A phylogenetic tree demonstrated relationships between each group and verified group assignment. Finally, group entropy analysis identified novel conservations unique to each NDP-SDH group, including residue positions critical to NDP-sugar substrate interaction, enzyme structure and intersubunit contact. These positions may serve as targets for future research. UDP-glucose dehydrogenase (UDPGDH, EC 1.1.1.22).
Abeta-degrading enzymes in Alzheimer's disease.
Miners, James Scott; Baig, Shabnam; Palmer, Jennifer; Palmer, Laura E; Kehoe, Patrick G; Love, Seth
2008-04-01
In Alzheimer's disease (AD) Abeta accumulates because of imbalance between the production of Abeta and its removal from the brain. There is increasing evidence that in most sporadic forms of AD, the accumulation of Abeta is partly, if not in some cases solely, because of defects in its removal--mediated through a combination of diffusion along perivascular extracellular matrix, transport across vessel walls into the blood stream and enzymatic degradation. Multiple enzymes within the central nervous system (CNS) are capable of degrading Abeta. Most are produced by neurons or glia, but some are expressed in the cerebral vasculature, where reduced Abeta-degrading activity may contribute to the development of cerebral amyloid angiopathy (CAA). Neprilysin and insulin-degrading enzyme (IDE), which have been most extensively studied, are expressed both neuronally and within the vasculature. The levels of both of these enzymes are reduced in AD although the correlation with enzyme activity is still not entirely clear. Other enzymes shown capable of degrading Abetain vitro or in animal studies include plasmin; endothelin-converting enzymes ECE-1 and -2; matrix metalloproteinases MMP-2, -3 and -9; and angiotensin-converting enzyme (ACE). The levels of plasmin and plasminogen activators (uPA and tPA) and ECE-2 are reported to be reduced in AD. Reductions in neprilysin, IDE and plasmin in AD have been associated with possession of APOEepsilon4. We found no change in the level or activity of MMP-2, -3 or -9 in AD. The level and activity of ACE are increased, the level being directly related to Abeta plaque load. Up-regulation of some Abeta-degrading enzymes may initially compensate for declining activity of others, but as age, genetic factors and diseases such as hypertension and diabetes diminish the effectiveness of other Abeta-clearance pathways, reductions in the activity of particular Abeta-degrading enzymes may become critical, leading to the development of AD and CAA.
Integrated Optic Chemical-Biological Sensors
1999-02-26
response. In this process, an enzyme ( urease ) acts as a catalyst, converting a specific substrate (urea) to a specific product (ammonia). Implementing...a sandwich assay, a urease labeled antibody is introduced to a surface bound antigen. This complex is exposed to urea, generating ammonia. Using a...containing suspected agents. After agent binding to the antibody-coated beads, an appropriate enzyme labeled antibody (an antibody with a urease label
Wang, L H; Ahmad, S; Benter, I F; Chow, A; Mizutani, S; Ward, P E
1991-01-01
In addition to plasma metabolism of substance P (SP) by angiotensin converting enzyme (ACE; EC 3.4.15.1) (less than 1.0 nmol/min/ml), the majority of SP hydrolysis by rat and human plasma was due to dipeptidyl(amino)peptidase IV (DAP IV; EC 3.4.14.5) (3.15-5.91 nmol/min/ml), which sequentially converted SP to SP(3-11) and SP(5-11). In turn, the SP(5-11) metabolite was rapidly hydrolyzed by rat and human plasma aminopeptidase M (AmM; EC 3.4.11.2) (24.2-25.5 nmol/min/ml). The Km values of SP for DAP IV and of SP(5-11) for AmM ranged from 32.7 to 123 microM. In contrast, neurokinin A (NKA) was resistant to both ACE and DAP IV but was subject to N-terminal hydrolysis by AmM (3.76-10.8 nmol/min/ml; Km = 90.7 microM). These data demonstrate differential processing of SP and NKA by specific peptidases in rat and human plasma.
Isaac, R E; Michaud, A; Keen, J N; Williams, T A; Coates, D; Wetsel, W C; Corvol, P
1999-06-01
Endoproteolytic cleavage of protein prohormones often generates intermediates extended at the C-terminus by Arg-Arg or Lys-Arg, the removal of which by a carboxypeptidase (CPE) is normally an important step in the maturation of many peptide hormones. Recent studies in mice that lack CP activity indicate the existence of alternative tissue or plasma enzymes capable of removing C-terminal basic residues from prohormone intermediates. Using inhibitors of angiotensin I-converting enzyme (ACE) and CP, we show that both these enzymes in mouse serum can remove the basic amino acids from the C-terminus of CCK5-GRR and LH-RH-GKR, but only CP is responsible for converting diarginyl insulin to insulin. ACE activity removes C-terminal dipeptides to generate the Gly-extended peptides, whereas CP hydrolysis gives rise to CCK5-GR and LH-RH-GK, both of which are susceptible to the dipeptidyl carboxypeptidase activity of ACE. Somatic ACE has two similar protein domains (the N-domain and the C-domain), each with an active site that can display different substrate specificities. CCK5-GRR is a high-affinity substrate for both the N-domain and C-domain active sites of human sACE (Km of 9.4 microm and 9.0 microm, respectively) with the N-domain showing greater efficiency (kcat : Km ratio of 2.6 in favour of the N-domain). We conclude that somatic forms of ACE should be considered as alternatives to CPs for the removal of basic residues from some Arg/Lys-extended peptides.
NASA Technical Reports Server (NTRS)
Cavalieri, Donald J. (Editor); Crawford, John P.; Drinkwater, Mark R.; Emery, William J.; Eppler, Duane T.; Farmer, L. Dennis; Fowler, Charles W.; Goodberlet, Mark; Jentz, Robert R.; Milman, Andrew
1992-01-01
The history of the program is described along with the SSM/I sensor, including its calibration and geolocation correction procedures used by NASA, SSM/I data flow, and the NASA program to distribute polar gridded SSM/I radiances and sea ice concentrations (SIC) on CD-ROMs. Following a discussion of the NASA algorithm used to convert SSM/I radiances to SICs, results of 95 SSM/I-MSS Landsat IC comparisons for regions in both the Arctic and the Antarctic are presented. The Landsat comparisons show that the overall algorithm accuracy under winter conditions is 7 pct. on average with 4 pct. negative bias. Next, high resolution active and passive microwave image mosaics from coordinated NASA and Navy aircraft underflights over regions of the Beaufort and Chukchi seas in March 1988 were used to show that the algorithm multiyear IC accuracy is 11 pct. on average with a positive bias of 12 pct. Ice edge crossings of the Bering Sea by the NASA DC-8 aircraft were used to show that the SSM/I 15 pct. ice concentration contour corresponds best to the location of the initial bands at the ice edge. Finally, a summary of results and recommendations for improving the SIC retrievals from spaceborne radiometers are provided.
The role of fluid temperature and form on endurance performance in the heat.
Tan, P M S; Lee, J K W
2015-06-01
Exercising in the heat often results in an excessive increase in body core temperature, which can be detrimental to health and endurance performance. Research in recent years has shifted toward the optimum temperature at which drinks should be ingested. The ingestion of cold drinks can reduce body core temperature before exercise but less so during exercise. Temperature of drinks does not seem to have an effect on the rate of gastric emptying and intestinal absorption. Manipulating the specific heat capacity of a solution can further induce a greater heat sink. Ingestion of ice slurry exploits the additional energy required to convert the solution from ice to water (enthalpy of fusion). Body core temperature is occasionally observed to be higher at the point of exhaustion with the ingestion of ice slurry. There is growing evidence to suggest that ingesting ice slurry is an effective and practical strategy to prevent excessive rise of body core temperature and improve endurance performance. This information is especially important when only a fixed amount of fluid is allowed to be carried, often seen in some ultra-endurance events and military operations. Future studies should evaluate the efficacy of ice slurry in various exercise and environmental conditions. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Clinch, Keith; Crump, Douglas R.; Evans, Gary B.; Hazleton, Keith Z.; Mason, Jennifer M.; Schramm, Vern L.
2013-01-01
The pathogenic protozoa responsible for malaria lack enzymes for the de novo synthesis of purines and rely on purine salvage from the host. In Plasmodium falciparum (Pf), hypoxanthine-guanine-xanthine phosphoribosyltransferase (HGXPRT) converts hypoxanthine to inosine monophosphate and is essential for purine salvage making the enzyme an anti-malarial drug target. We have synthesized a number of simple acyclic aza-C- nucleosides and shown that some are potent inhibitors of Pf HGXPRT while showing excellent selectivity for the Pf versus the human enzyme. PMID:23810424
Non-enzymic beta-decarboxylation of aspartic acid.
NASA Technical Reports Server (NTRS)
Doctor, V. M.; Oro, J.
1972-01-01
Study of the mechanism of nonenzymic beta-decarboxylation of aspartic acid in the presence of metal ions and pyridoxal. The results suggest that aspartic acid is first converted to oxalacetic acid by transamination with pyridoxal which in turn is converted to pyridoxamine. This is followed by decarboxylation of oxalacetic acid to form pyruvic acid which transaminates with pyridoxamine to form alanine. The possible significance of these results to prebiotic molecular evolution is briefly discussed.
NASA Astrophysics Data System (ADS)
O'Sullivan, Daniel; Murray, Benjamin J.; Ross, James; Webb, Michael E.
2016-04-01
The occurrence of ice-nucleating particles (INPs) in our atmosphere has a profound impact on the properties and lifetime of supercooled clouds. However, the identities, sources and abundances of airborne particles capable of efficiently nucleating ice at relatively low supercoolings (T > -15 °C) remain enigmatic. Recently, several studies have suggested that unidentified biogenic residues in soil dusts are likely to be an important source of these efficient atmospheric INPs. While it has been shown that cell-free proteins produced by common soil-borne fungi are exceptional INPs, whether these fungi are a source of ice-nucleating biogenic residues in soils has yet to be shown. In particular, it is unclear whether upon adsorption to soil mineral particles, the activity of fungal ice-nucleating proteins is retained or is reduced, as observed for other soil enzymes. Here we show that proteins from a common soil fungus (Fusarium avenaceum) do in fact preferentially bind to and impart their ice-nucleating properties to the common clay mineral kaolinite. The ice-nucleating activity of the proteinaceous INPs is found to be unaffected by adsorption to the clay, and once bound the proteins do not readily desorb, retaining much of their activity even after multiple washings with pure water. The atmospheric implications of the finding that nanoscale fungal INPs can effectively determine the nucleating abilities of lofted soil dusts are discussed.
Ceker, Zahit; Takmaz, Suna Akın; Baltaci, Bülent; Başar, Hülya
2015-01-01
The importance of minimizing the exaggerated sympatho-adrenergic responses and QT interval and QT interval dispersion changes that may develop due to laryngoscopy and tracheal intubation during anesthesia induction in the hypertensive patients is clear. Esmolol decreases the hemodynamic response to laryngoscopy and intubation. However, the effect of esmolol in decreasing the prolonged QT interval and QT interval dispersion as induced by laryngoscopy and intubation is controversial. We investigated the effect of esmolol on the hemodynamic, and corrected-QT interval and corrected-QT interval dispersion changes seen during anesthesia induction in hypertensive patients using angiotensin converting enzyme inhibitors. 60 ASA I-II patients, with essential hypertension using angiotensin converting enzyme inhibitors were included in the study. The esmolol group received esmolol at a bolus dose of 500mcg/kg followed by a 100mcg/kg/min infusion which continued until the 4th min after intubation. The control group received 0.9% saline similar to the esmolol group. The mean blood pressure, heart rate values and the electrocardiogram records were obtained as baseline values before the anesthesia, 5min after esmolol and saline administration, 3min after the induction and 30s, 2min and 4min after intubation. The corrected-QT interval was shorter in the esmolol group (p=0.012), the corrected-QT interval dispersion interval was longer in the control group (p=0.034) and the mean heart rate was higher in the control group (p=0.022) 30s after intubation. The risk of arrhythmia frequency was higher in the control group in the 4-min period following intubation (p=0.038). Endotracheal intubation was found to prolong corrected-QT interval and corrected-QT interval dispersion, and increase the heart rate during anesthesia induction with propofol in hypertensive patients using angiotensin converting enzyme inhibitors. These effects were prevented with esmolol (500mcg/kg bolus, followed by 100mcg/kg/min infusion). During induction, the blood pressure tends to decrease with esmolol where care is needed. Copyright © 2014 Sociedade Brasileira de Anestesiologia. Publicado por Elsevier Editora Ltda. All rights reserved.
Sea Ice Characteristics and the Open-Linked Data World
NASA Astrophysics Data System (ADS)
Khalsa, S. J. S.; McGuinness, D. L.; Duerr, R.; Pulsifer, P. L.; Fox, P. A.; Thompson, C.; Yan, R.
2014-12-01
The audience for sea ice data sets has broadened dramatically over the past several decades. Initially the National Snow and Ice Data Center (NSIDC) sea ice products were used primarily by sea ice specialists. However, now they are in demand by researchers in many different domains and some are used by the public. This growth in the number and type of users has presented challenges to content providers aimed particularly at supporting interdisciplinary and multidisciplinary data use. In our experience, it is generally insufficient to simply make the data available as originally formatted. New audiences typically need data in different forms; forms that meet their needs, that work with their specific tools. Moreover, simple data reformatting is rarely enough. The data needs to be aggregated, transformed or otherwise converted into forms that better serve the needs of the new audience. The Semantic Sea Ice Interoperability Initiative (SSIII) is an NSF-funded research project aimed at making sea ice data more useful to more people using semantic technologies. The team includes domain and science data experts as well as knowledge representation and linked data experts. Beginning with a series of workshops involving members of the operations, sea ice research and modeling communities, as well as members of local communities in Alaska, a suite of ontologies describing the physical characteristics of sea ice have been developed and used to provide one of NSIDC's data sets, the operational Arctic sea ice charts obtained from the Canadian Ice Center, as open-linked data. These data extend nearly a decade into the past and can now be queried either directly through a publicly available SPARQL end point (for those who are familiar with open-linked data) or through a simple Open Geospatial Consortium (OGC) standards map-based query tool. Questions like "What were the characteristics (i.e., sea ice concentration, form and stage of development) of the sea ice in the region surrounding my ship/polar bear on date X?" can now be answered. This service may be of interest within the broad polar community - especially those who already are familiar with either open-linked data or OGC services. We seek feedback, collaborators, and users.
Converting baker's waste into alcohol. Revised final progress report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halsey, R.; Wilson, P.B.
All types of baker's waste (including waste from candy manufacturers) can be converted into alcohol to be used as a fuel. All types of waste at any stage in process can be converted, such as: basic ingredients (including floor sweepings); dry mixes (including floor sweepings); dough at any stage; partially or fully cooked products; and day old returned products. The basic steps are the same, only the initial preparation will vary slightly. The variation will be: amount of water to be added and amount and type of nutrients (if any) to be added. The basic steps are: slurrying, liquefying tomore » put starch into liquid state, saccharifying to convert starch into fermentable sugars, fermentation to convert sugars into alcohol, and distillation to separate the alcohol from the mash. Each step is discussed in detail along with problems that may arise. Directions are given and materials (enzymes, yeast, etc.) and equipment are descibed briefly.« less
NASA Astrophysics Data System (ADS)
Huang, Xiaosan; Li, Kongqing; Jin, Cong; Zhang, Shaoling
2015-12-01
ICE1 transcription factor plays an important role in plant cold stress via regulating the expression of stress-responsive genes. In this study, a PuICE1 gene isolated from Pyrus ussuriensis was characterized for its function in cold tolerance. The expression levels of the PuICE1 were induced by cold, dehydration and salt, with the greatest induction under cold conditions. PuICE1 was localized in the nucleus and could bind specifically to the MYC element in the PuDREBa promoter. The PuICE1 fused to the GAL4 DNA-binding domain to have transcriptional activation activity. Ectopic expression of the PuICE1 in tomato conferred enhanced tolerance to cold stress at cold temperatures, less electrolyte leakage, less MDA content, higher chlorophyll content, higher survival rate, higher proline content, higher activities of enzymes. In additon, steady-state mRNA levels of six stress-responsive genes coding for either functional or regulatory genes were induced to higher levels in the transgenic lines by cold stress. Yeast two-hybrid, transient assay, split luciferase complementation and BiFC assays all revealed that PuHHP1 protein can physically interact with PuICE1. Taken together, these results demonstrated that PuICE1 plays a positive role in cold tolerance, which may be due to enhancement of PuDREBa transcriptional levels through interacting with the PuHHP1.
NASA Astrophysics Data System (ADS)
Perry, M. J.; Lee, C.; Rainville, L.; Cetinic, I.; Yang, E. J.; Kang, S. H.
2016-02-01
In late summer 2014 during the Marginal Ice Zone (MIZ) Experiment, an international project sponsored by ONR, four Seagliders transited open water, through the marginal ice zone, and under ice-covered regions in the Beaufort Sea, penetrating as far as 100 km into the ice pack. The gliders navigated either by GPS in open water or, when under the ice, by acoustics from sound sources embedded in the MIZ autonomous observing array. The glider sensor suite included temperature, temperature microstructure, salinity, oxygen, chlorophyll fluorescence, optical backscatter, and multi-spectral downwelling irradiance. Cruises on the IBRV Araon operating in the open Beaufort Sea and on the R/V Ukpik and Norseman operating in continental shelf waters off Alaska's north slope allowed us to construct proxy libraries for converting chlorophyll fluorescence to chlorophyll concentration and optical backscatter to particulate organic carbon concentration. Water samples were collected for chlorophyll and particulate organic carbon analysis on the cruises and aligned with optical profiles of fluorescence and backscatter using sensors that were factory calibrated at the same time as the glider sensors. Fields of chlorophyll, particulate organic carbon, light, and primary productivity are constructed from the glider data. Productivity is modeled as a function of chlorophyll and light, using photosynthesis-light (PE) models with available PE parameters from Arctic measurements. During August the region under the ice was characterized by a deep chlorophyll maximum layer with low rates of production in overlying waters. A phytoplankton bloom developed in open water at the end of September, preceding the rapid reformation of ice, despite shorter days and reduce irradiation.
Genetics Home Reference: fundus albipunctatus
... integral operation of the visual cycle is the recycling of a molecule called 11-cis retinal, which ... dehydrogenase 5, which performs one step in this recycling process. This enzyme converts a molecule called 11- ...
Mondal, Subhanjan; Hsiao, Kevin; Goueli, Said A
Adenosine monophosphate (AMP) is a key cellular metabolite regulating energy homeostasis and signal transduction. AMP is also a product of various enzymatic reactions, many of which are dysregulated during disease conditions. Thus, monitoring the activities of these enzymes is a primary goal for developing modulators for these enzymes. In this study, we demonstrate the versatility of an enzyme-coupled assay that quantifies the amount of AMP produced by any enzymatic reaction regardless of its substrates. We successfully implemented it to enzyme reactions that use adenosine triphosphate (ATP) as a substrate (aminoacyl tRNA synthetase and DNA ligase) by an elaborate strategy of removing residual ATP and converting AMP produced into ATP; so it can be detected using luciferase/luciferin and generating light. We also tested this assay to measure the activities of AMP-generating enzymes that do not require ATP as substrate, including phosphodiesterases (cyclic adenosine monophosphate) and Escherichia coli DNA ligases (nicotinamide adenine dinucleotide [NAD + ]). In a further elaboration of the AMP-Glo platform, we coupled it to E. coli DNA ligase, enabling measurement of NAD + and enzymes that use NAD + like monoadenosine and polyadenosine diphosphate-ribosyltransferases. Sulfotransferases use 3'-phosphoadenosine-5'-phosphosulfate as the universal sulfo-group donor and phosphoadenosine-5'-phosphate (PAP) is the universal product. PAP can be quantified by converting PAP to AMP by a Golgi-resident PAP-specific phosphatase, IMPAD1. By coupling IMPAD1 to the AMP-Glo system, we can measure the activities of sulfotransferases. Thus, by utilizing the combinations of biochemical enzymatic conversion of various cellular metabolites to AMP, we were able to demonstrate the versatility of the AMP-Glo assay.
IceTrendr: a linear time-series approach to monitoring glacier environments using Landsat
NASA Astrophysics Data System (ADS)
Nelson, P.; Kennedy, R. E.; Nolin, A. W.; Hughes, J. M.; Braaten, J.
2017-12-01
Arctic glaciers in Alaska and Canada have experienced some of the greatest ice mass loss of any region in recent decades. A challenge to understanding these changing ecosystems, however, is developing globally-consistent, multi-decadal monitoring of glacier ice. We present a toolset and approach that captures, labels, and maps glacier change for use in climate science, hydrology, and Earth science education using Landsat Time Series (LTS). The core step is "temporal segmentation," wherein a yearly LTS is cleaned using pre-processing steps, converted to a snow/ice index, and then simplified into the salient shape of the change trajectory ("temporal signature") using linear segmentation. Such signatures can be characterized as simple `stable' or `transition of glacier ice to rock' to more complex multi-year changes like `transition of glacier ice to debris-covered glacier ice to open water to bare rock to vegetation'. This pilot study demonstrates the potential for interactively mapping, visualizing, and labeling glacier changes. What is truly innovative is that IceTrendr not only maps the changes but also uses expert knowledge to label the changes and such labels can be applied to other glaciers exhibiting statistically similar temporal signatures. Our key findings are that the IceTrendr concept and software can provide important functionality for glaciologists and educators interested in studying glacier changes during the Landsat TM timeframe (1984-present). Issues of concern with using dense Landsat time-series approaches for glacier monitoring include many missing images during the period 1984-1995 and that automated cloud mask are challenged and require the user to manually identify cloud-free images. IceTrendr is much more than just a simple "then and now" approach to glacier mapping. This process is a means of integrating the power of computing, remote sensing, and expert knowledge to "tell the story" of glacier changes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dubin, F S; Halfon, A; Herzog, P
The ice-generating HP-ICES uses the heat of fusion of water as a heat source for the heat pump, thus converting the water into ice. The ice will be stored in a bin and used the following summer for cooling which, therefore, could be considered a by-product of heating. The annual overall Coefficient of Performance is expected to reach a value of 4.85 and related to source energy a value of 4.85 x 0.31 = 1.5. In a detailed case study on the Market Square project in Washington, D.C., it was found that for the HP-ICES the annual source energy inputmore » is about 60% and the life cycle annual average cost is 40% of the corresponding quantities for a conventional central system with equal heating and cooling capacity. The annual average operating and administration cost for the HP-ICES is less than 70% of the corresponding costs for the conventional system, while the first cost of the HP-ICES is about 70% larger than the first cost of the conventional system. With the values assumed for the discount rate, interest rate, etc., the return on investment was found to be about 15%, which gives a discounted payback period of about 6.7 years. For the Park Plaza in Boston, the annual source energy input for the HP-ICES is 35% and the energy cost is about 30% of the corresponding quantities for the conventional system. The annual average operating and administration cost for the HP-ICES is 4.5 times as great as the first cost for the conventional system. The return on investment is 13% and the payback is 8 years. These results show that the HP-ICES can be better both in energy usage and in life cycle cost than a conventional system of the same heating and cooling capacity, and holds great promise as an energy saving system.« less
NASA Astrophysics Data System (ADS)
Csatho, B. M.; Schenk, A. F.; Babonis, G. S.; van den Broeke, M. R.; Kuipers Munneke, P.; van der Veen, C. J.; Khan, S. A.; Porter, D. F.
2016-12-01
This study presents a new, comprehensive reconstruction of Greenland Ice Sheet elevation changes, generated using the Surface Elevation And Change detection (SERAC) approach. 35-year long elevation-change time series (1980-2015) were obtained at more than 150,000 locations from observations acquired by NASA's airborne and spaceborne laser altimeters (ATM, LVIS, ICESat), PROMICE laser altimetry data (2007-2011) and a DEM covering the ice sheet margin derived from stereo aerial photographs (1970s-80s). After removing the effect of Glacial Isostatic Adjustment (GIA) and the elastic crustal response to changes in ice loading, the time series were partitioned into changes due to surface processes and ice dynamics and then converted into mass change histories. Using gridded products, we examined ice sheet elevation, and mass change patterns, and compared them with other estimates at different scales from individual outlet glaciers through large drainage basins, on to the entire ice sheet. Both the SERAC time series and the grids derived from these time series revealed significant spatial and temporal variations of dynamic mass loss and widespread intermittent thinning, indicating the complexity of ice sheet response to climate forcing. To investigate the regional and local controls of ice dynamics, we examined thickness change time series near outlet glacier grounding lines. Changes on most outlet glaciers were consistent with one or more episodes of dynamic thinning that propagates upstream from the glacier terminus. The spatial pattern of the onset, duration, and termination of these dynamic thinning events suggest a regional control, such as warming ocean and air temperatures. However, the intricate spatiotemporal pattern of dynamic thickness change suggests that, regardless of the forcing responsible for initial glacier acceleration and thinning, the response of individual glaciers is modulated by local conditions. We use statistical methods, such as principal component analysis and multivariate regression to analyze the dynamic ice-thickness change time series derived by SERAC and to investigate the primary forcings and controls on outlet glacier changes.
Molecular diversity of tuliposide A-converting enzyme in the tulip.
Nomura, Taiji; Tsuchigami, Aya; Ogita, Shinjiro; Kato, Yasuo
2013-01-01
Tuliposide A-converting enzyme (TCEA) catalyzes the conversion of 6-tuliposide A to its lactonized aglycon, tulipalin A, in the tulip (Tulipa gesneriana). The TgTCEA gene, isolated previously from petals, was transcribed in all tulip tissues but not in the bulbs despite the presence of TCEA activity, which allowed prediction of the presence of a TgTCEA isozyme gene preferentially expressed in the bulbs. Here, the TgTCEA-b gene, the TgTCEA homolog, was identified in bulbs. TgTCEA-b polypeptides showed approximately 77% identity to the petal TgTCEA. Functional characterization of the recombinant enzyme verified that TgTCEA-b encoded the TCEA. Moreover, the TgTCEA-b was found to be localized to plastids, as found for the petal TgTCEA. Transcript analysis revealed that TgTCEA-b was functionally transcribed in the bulb scales, unlike the TgTCEA gene, whose transcripts were absent there. In contrast, TgTCEA-b transcripts were in the minority in other tissues where TgTCEA transcripts were dominant, indicating a tissue preference for the transcription of those isozyme genes.
Enzymes and Inhibitors in Neonicotinoid Insecticide Metabolism
Shi, Xueyan; Dick, Ryan A.; Ford, Kevin A.; Casida, John E.
2009-01-01
Neonicotinoid insecticide metabolism involves considerable substrate specificity and regioselectivity of the relevant CYP450, aldehyde oxidase, and phase II enzymes. Human CYP450 recombinant enzymes carry out the following conversions: CYP3A4, 2C19 and 2B6 for thiamethoxam (TMX) to clothianidin (CLO); 3A4, 2C19 and 2A6 for CLO to desmethyl-CLO; 2C19 for TMX to desmethyl-TMX. Human liver aldehyde oxidase reduces the nitro substituent of CLO to nitroso much more rapidly than that of TMX. Imidacloprid (IMI), CLO and several of their metabolites do not give detectable N-glucuronides but 5-hydroxy-IMI, 4,5-diol-IMI and 4-hydroxy-thiacloprid are converted to O-glucuronides in vitro with mouse liver microsomes and UDP-glucuronic acid or in vivo in mice. Mouse liver cytosol with S-adenosylmethionine converts desmethyl-CLO to CLO but not desmethyl-TMX to TMX. Two organophosphorus CYP450 inhibitors partially block IMI, thiacloprid and CLO metabolism in vivo in mice, elevating the brain and liver levels of the parent compounds while reducing amounts of the hydroxylated metabolites. PMID:19391582
Chemaly, Melody; McGilligan, Victoria; Gibson, Mark; Clauss, Matthias; Watterson, Steven; Alexander, H Denis; Bjourson, Anthony John; Peace, Aaron
2017-12-01
Tumour necrosis factor alpha converting enzyme (TACE/ADAM17) is a member of the A disintegrin and metalloproteinase (ADAM) family of ectodomain shedding proteinases. It regulates many inflammatory processes by cleaving several transmembrane proteins, including tumour necrosis factor alpha (TNFα) and its receptors tumour necrosis factor alpha receptor 1 and tumour necrosis factor alpha receptor 2. There is evidence that TACE is involved in several inflammatory diseases, such as ischaemia, heart failure, arthritis, atherosclerosis, diabetes and cancer as well as neurological and immune diseases. This review summarizes the latest discoveries regarding the mechanism of action and regulation of TACE. It also focuses on the role of TACE in atherosclerosis and coronary artery disease (CAD), highlighting clinical studies that have investigated its expression and protein activity. The multitude of substrates cleaved by TACE make this enzyme an attractive target for therapy and a candidate for biomarker research and development in CAD. Crown Copyright © 2017. Published by Elsevier Masson SAS. All rights reserved.
Park, Soo Yeon; Je, Jae-Young; Hwang, Joung-Youl; Ahn, Chang-Bum
2015-09-01
Abalone protein was hydrolyzed by enzymatic hydrolysis and the optimal enzyme/substrate (E/S) ratios were determined. Abalone protein hydrolysates (APH) produced by Protamex at E/S ratio of 1:100 showed angiotensin I converting enzyme inhibitory activity with IC50 of 0.46 mg/mL, and APH obtained by Flavourzyme at E/S ratio of 1:100 possessed the oxygen radical absorbance capacity value of 457.6 μM trolox equivalent/mg sample. Flavourzyme abalone protein hydrolysates (FAPH) also exhibited H2O2 scavenging activity with IC50 of 0.48 mg/mL and Fe(2+) chelating activity with IC50 of 2.26 mg/mL as well as high reducing power. FAPH significantly (P<0.05) protected H2O2-induced hepatic cell damage in cultured hepatocytes, and the cell viability was restored to 90.27% in the presence of FAPH. FAPH exhibited 46.20% intracellular ROS scavenging activity and 57.89% lipid peroxidation inhibition activity in cultured hepatocytes. Overall, APH may be useful as an ingredient for functional foods.
Park, Soo Yeon; Je, Jae-Young; Hwang, Joung-Youl; Ahn, Chang-Bum
2015-01-01
Abalone protein was hydrolyzed by enzymatic hydrolysis and the optimal enzyme/substrate (E/S) ratios were determined. Abalone protein hydrolysates (APH) produced by Protamex at E/S ratio of 1:100 showed angiotensin I converting enzyme inhibitory activity with IC50 of 0.46 mg/mL, and APH obtained by Flavourzyme at E/S ratio of 1:100 possessed the oxygen radical absorbance capacity value of 457.6 μM trolox equivalent/mg sample. Flavourzyme abalone protein hydrolysates (FAPH) also exhibited H2O2 scavenging activity with IC50 of 0.48 mg/mL and Fe2+ chelating activity with IC50 of 2.26 mg/mL as well as high reducing power. FAPH significantly (P<0.05) protected H2O2-induced hepatic cell damage in cultured hepatocytes, and the cell viability was restored to 90.27% in the presence of FAPH. FAPH exhibited 46.20% intracellular ROS scavenging activity and 57.89% lipid peroxidation inhibition activity in cultured hepatocytes. Overall, APH may be useful as an ingredient for functional foods. PMID:26451354
Pan, Huanglei; She, Xingxing; Wu, Hongli; Ma, Jun; Ren, Difeng; Lu, Jun
2015-09-09
This study investigated the long-term (8 weeks) anti-hypertensive effects of 10 mg/kg tripeptides isolated from Spirulina platensis, Ile-Gln-Pro (IQP) and Val-Glu-Pro (VEP), and S. platensis hydrolysates (SH) on spontaneously hypertensive rats. The treatment period was 6 weeks, and observation continued for another 2 weeks. After treatment, weighted systolic blood pressure, weighted diastolic blood pressure, left ventricular mass index, and right ventricular mass index of groups treated with IQP, VEP, and SH were significantly lower than those of the group treated with distilled water, even when the treatments had been withdrawn for 2 weeks. Quantitative real-time polymerase chain reaction, enzyme-linked immunosorbent assay, and Western blotting showed the mRNA expression levels and protein/peptide concentrations of the main components of the renin angiotensin system in myocardium were significantly affected by treatment: angiotensin converting enzyme, angiotensin II, and angiotensin type 1 receptor were down-regulated, whereas angiotensin type 2 receptor, angiotensin converting enzyme 2, angiotensin-(1-7), and Mas receptor were up-regulated.
Gard, Paul R
2010-01-01
This review considers the 250+ papers concerning the association of the angiotensin converting enzyme (ACE) gene insertion/deletion polymorphism (rs1799752) and various disease conditions published in 2009. The deletion allele occurs in approximately 55% of the population and is associated with increased activity of the ACE enzyme. It might be predicted that the D allele, therefore, might be associated with pathologies involving increased activity of the renin-angiotensin system. The D allele was seen to be associated with an increased risk of hypertension, pre-eclampsia, heart failure, cerebral infarct, diabetic nephropathy, encephalopathy, asthma, severe hypoglycaemia in diabetes, gastric cancer (in Caucasians) and poor prognosis following kidney transplant. On the positive side, the D allele appears to offer protection against schizophrenia and chronic periodontitis and confers greater up-per-body strength in old age. The I allele, meanwhile, offers improved endurance/athletic performance and aerobic capacity as determined by lung function tests, although it does increase the risk of oral squamous cell carcinoma and obstructive sleep apnoea in hypertensives. PMID:21537387
Muhammad Auwal, Shehu; Zarei, Mohammad; Abdul-Hamid, Azizah; Saari, Nazamid
2017-03-31
The stone fish is an under-utilized sea cucumber with many nutritional and ethno-medicinal values. This study aimed to establish the conditions for its optimum hydrolysis with bromelain to generate angiotensin I-converting enzyme (ACE)-inhibitory hydrolysates. Response surface methodology (RSM) based on a central composite design was used to model and optimize the degree of hydrolysis (DH) and ACE-inhibitory activity. Process conditions including pH (4-7), temperature (40-70 °C), enzyme/substrate (E/S) ratio (0.5%-2%) and time (30-360 min) were used. A pH of 7.0, temperature of 40 °C, E/S ratio of 2% and time of 240 min were determined using a response surface model as the optimum levels to obtain the maximum ACE-inhibitory activity of 84.26% at 44.59% degree of hydrolysis. Hence, RSM can serve as an effective approach in the design of experiments to improve the antihypertensive effect of stone fish hydrolysates, which can thus be used as a value-added ingredient for various applications in the functional foods industries.
Kaur, Charanpreet; Sharma, Shweta; Hasan, Mohammad Rokebul; Pareek, Ashwani; Singla-Pareek, Sneh L; Sopory, Sudhir K
2017-03-30
The glyoxalase system is the ubiquitous pathway for the detoxification of methylglyoxal (MG) in the biological systems. It comprises two enzymes, glyoxalase I (GLYI) and glyoxalase II (GLYII), which act sequentially to convert MG into d-lactate, thereby helping living systems get rid of this otherwise cytotoxic byproduct of metabolism. In addition, a glutathione-independent GLYIII enzyme activity also exists in the biological systems that can directly convert MG to d-lactate. Humans and Escherichia coli possess a single copy of GLYI (encoding either the Ni- or Zn-dependent form) and GLYII genes, which through MG detoxification provide protection against various pathological and disease conditions. By contrast, the plant genome possesses multiple GLYI and GLYII genes with a role in abiotic stress tolerance. Plants possess both Ni 2+ - and Zn 2+ -dependent forms of GLYI, and studies on plant glyoxalases reveal the various unique features of these enzymes distinguishing them from prokaryotic and other eukaryotic glyoxalases. Through this review, we provide an overview of the plant glyoxalase family along with a comparative analysis of glyoxalases across various species, highlighting similarities as well as differences in the biochemical, molecular, and physiological properties of these enzymes. We believe that the evolution of multiple glyoxalases isoforms in plants is an important component of their robust defense strategies.
Tahir, Hindia; Jackson, Leslie L; Warnock, David G
2007-09-01
This report describes an open-label, nonrandomized, prospective evaluation of the effects of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker therapy on patients who have Fabry disease and also received enzyme replacement therapy with agalsidase-beta, given at 1 mg/kg body wt every 2 wk. Previous placebo-controlled phase III and phase IV trials with agalsidase-beta demonstrated clearing of globotriaosylceramide from vascular endothelia but little effect on proteinuria or progressive loss of kidney function in patients with Fabry disease and severe chronic kidney disease marked by overt proteinuria and/or estimated GFR <60 ml/min per 1.73 m2. Angiotensin-converting enzyme inhibitor and/or angiotensin receptor blocker therapy is the standard of care for patients with proteinuric kidney diseases, but their use is challenging in patients with Fabry disease and low or low-normal baseline systemic BP. A group of patients with Fabry disease were treated with antiproteinuric therapy, in conjunction with agalsidase-beta; sustained reductions in proteinuria with stabilization of kidney function were achieved in a group of six patients who had severe Fabry nephropathy; the progression rate was -0.23 +/- 1.12 ml/min per 1.73 m2 per yr with 30 mo of follow-up.
Adenine formation from adenosine by mycoplasmas: adenosine phosphorylase activity.
Hatanaka, M; Del Giudice, R; Long, C
1975-01-01
Mammalian cells have enzymes to convert adenosine to inosine by deamination and inosine to hypoxanthine by phosphorolysis, but they do not possess the enzymes necessary to form the free base, adenine, from adenosine. Mycoplasmas grown in broth or in cell cultures can produce adenine from adenosine. This activity was detected in a variety of mycoplasmatales, and the enzyme was shown to be adenosine phosphorylase. Adenosine formation from adenine and ribose 1-phosphate, the reverse reaction of adenine formation from adenosine, was also observed with the mycoplasma enzyme. Adenosine phosphorylase is apparently common to the mycoplasmatales but it is not universal, and the organisms can be divided into three groups on the basis of their use of adenosine as substrate. Thirteen of 16 Mycoplasma, Acholeplasma, and Siroplasma species tested exhibit adenosine phosphorylase activity. M. lipophilium differed from the other mycoplasmas and shared with mammalian cells the ability to convert adenosine to inosine by deamination. M. pneumoniae and the unclassified M. sp. 70-159 showed no reaction with adenosine. Adenosine phosphorylase activity offers an additional method for the detection of mycoplasma contamination of cells. The patterns of nucleoside metabolism will provide additional characteristics for identification of mycoplasmas and also may provide new insight into the classification of mycoplasmas. PMID:236559
NASA Astrophysics Data System (ADS)
Ransom, Callista; Balan, Venkatesh; Biswas, Gadab; Dale, Bruce; Crockett, Elaine; Sticklen, Mariam
Commercial conversion of lignocellulosic biomass to fermentable sugars requires inexpensive bulk production of biologically active cellulase enzymes, which might be achieved through direct production of these enzymes within the biomass crops. Transgenic corn plants containing the catalytic domain of Acidothermus cellulolyticus E1 endo-1,4-β glucanase and the bar bialaphos resistance coding sequences were generated after Biolistic® (BioRad Hercules, CA) bombardment of immature embryo-derived cells. E1 sequences were regulated under the control of the cauliflower mosaic virus 35S promoter and tobacco mosaic virus translational enhancer, and E1 protein was targeted to the apoplast using the signal peptide of tobacco pathogenesis-related protein to achieve accumulation of this enzyme. The integration, expression, and segregation of E1 and bar transgenes were demonstrated, respectively, through Southern and Western blotting, and progeny analyses. Accumulation of up to 1.13% of transgenic plant total soluble proteins was detected as biologically active E1 by enzymatic activity assay. The corn-produced, heterologous E1 could successfully convert ammonia fiber explosion-pretreated corn stover polysaccharides into glucose as a fermentable sugar for ethanol production, confirming that the E1 enzyme is produced in its active from.
Scaffoldless engineered enzyme assembly for enhanced methanol utilization
Price, J. Vincent; Chen, Long; Whitaker, W. Brian; ...
2016-10-24
Methanol is an important feedstock derived from natural gas and can be chemically converted into commodity and specialty chemicals at high pressure and temperature. Although biological conversion of methanol can proceed at ambient conditions, there is a dearth of engineered microorganisms that use methanol to produce metabolites. In nature, methanol dehydrogenase (Mdh), which converts methanol to formaldehyde, highly favors the reverse reaction. Thus, efficient coupling with the irreversible sequestration of formaldehyde by 3-hexulose-6-phosphate synthase (Hps) and 6-phospho-3-hexuloseisomerase (Phi) serves as the key driving force to pull the pathway equilibrium toward central metabolism. An emerging strategy to promote efficient substrate channelingmore » is to spatially organize pathway enzymes in an engineered assembly to provide kinetic driving forces that promote carbon flux in a desirable direction. Here, we report a scaffoldless, self-assembly strategy to organize Mdh, Hps, and Phi into an engineered supramolecular enzyme complex using an SH3–ligand interaction pair, which enhances methanol conversion to fructose-6-phosphate (F6P). To increase methanol consumption, an “NADH Sink” was created using Escherichia coli lactate dehydrogenase as an NADH scavenger, thereby preventing reversible formaldehyde reduction. Combination of the two strategies improved in vitro F6P production by 97-fold compared with unassembled enzymes. The beneficial effect of supramolecular enzyme assembly was also realized in vivo as the engineered enzyme assembly improved whole-cell methanol consumption rate by ninefold. This approach will ultimately allow direct coupling of enhanced F6P synthesis with other metabolic engineering strategies for the production of many desired metabolites from methanol.« less
Scaffoldless engineered enzyme assembly for enhanced methanol utilization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Price, J. Vincent; Chen, Long; Whitaker, W. Brian
Methanol is an important feedstock derived from natural gas and can be chemically converted into commodity and specialty chemicals at high pressure and temperature. Although biological conversion of methanol can proceed at ambient conditions, there is a dearth of engineered microorganisms that use methanol to produce metabolites. In nature, methanol dehydrogenase (Mdh), which converts methanol to formaldehyde, highly favors the reverse reaction. Thus, efficient coupling with the irreversible sequestration of formaldehyde by 3-hexulose-6-phosphate synthase (Hps) and 6-phospho-3-hexuloseisomerase (Phi) serves as the key driving force to pull the pathway equilibrium toward central metabolism. An emerging strategy to promote efficient substrate channelingmore » is to spatially organize pathway enzymes in an engineered assembly to provide kinetic driving forces that promote carbon flux in a desirable direction. Here, we report a scaffoldless, self-assembly strategy to organize Mdh, Hps, and Phi into an engineered supramolecular enzyme complex using an SH3–ligand interaction pair, which enhances methanol conversion to fructose-6-phosphate (F6P). To increase methanol consumption, an “NADH Sink” was created using Escherichia coli lactate dehydrogenase as an NADH scavenger, thereby preventing reversible formaldehyde reduction. Combination of the two strategies improved in vitro F6P production by 97-fold compared with unassembled enzymes. The beneficial effect of supramolecular enzyme assembly was also realized in vivo as the engineered enzyme assembly improved whole-cell methanol consumption rate by ninefold. This approach will ultimately allow direct coupling of enhanced F6P synthesis with other metabolic engineering strategies for the production of many desired metabolites from methanol.« less
Scaffoldless engineered enzyme assembly for enhanced methanol utilization
Price, J. Vincent; Chen, Long; Whitaker, W. Brian; Papoutsakis, Eleftherios; Chen, Wilfred
2016-01-01
Methanol is an important feedstock derived from natural gas and can be chemically converted into commodity and specialty chemicals at high pressure and temperature. Although biological conversion of methanol can proceed at ambient conditions, there is a dearth of engineered microorganisms that use methanol to produce metabolites. In nature, methanol dehydrogenase (Mdh), which converts methanol to formaldehyde, highly favors the reverse reaction. Thus, efficient coupling with the irreversible sequestration of formaldehyde by 3-hexulose-6-phosphate synthase (Hps) and 6-phospho-3-hexuloseisomerase (Phi) serves as the key driving force to pull the pathway equilibrium toward central metabolism. An emerging strategy to promote efficient substrate channeling is to spatially organize pathway enzymes in an engineered assembly to provide kinetic driving forces that promote carbon flux in a desirable direction. Here, we report a scaffoldless, self-assembly strategy to organize Mdh, Hps, and Phi into an engineered supramolecular enzyme complex using an SH3–ligand interaction pair, which enhances methanol conversion to fructose-6-phosphate (F6P). To increase methanol consumption, an “NADH Sink” was created using Escherichia coli lactate dehydrogenase as an NADH scavenger, thereby preventing reversible formaldehyde reduction. Combination of the two strategies improved in vitro F6P production by 97-fold compared with unassembled enzymes. The beneficial effect of supramolecular enzyme assembly was also realized in vivo as the engineered enzyme assembly improved whole-cell methanol consumption rate by ninefold. This approach will ultimately allow direct coupling of enhanced F6P synthesis with other metabolic engineering strategies for the production of many desired metabolites from methanol. PMID:27791059
Purification and properties of nitroalkane-oxidizing enzyme from Hansenula mrakii.
Kido, T; Yamamoto, T; Soda, K
1976-01-01
A nitroalkane-oxidizing enzyme was purified about 1,300-fold from a cell extract of Hansenula mrakii grown in a medium containing nitroethane as the sole nitrogen source by ammonium sulfate fractionation, diethylaminoethyl-cellulose column chromatography, hydroxyapatite column chromatography, and Bio-Gel P-150 column chromatography. The enzyme was shown to be homogeneous upon acrylamide gel electrophoresis and ultracentrifugation. The enzyme exhibits absorption maxima at 274, 370, 415, and 440 nm and a shoulder at 470 nm. Balance studies showed that 2 mol of 2-nitropropane is converted into an equimolar amount of acetone and nitrite with the consumption of 1 mol of oxygen. Hydrogen peroxide is not formed in the enzyme reaction. In addition to 2-nitropropane, 1-nitropropane and nitroethane are oxidatively dentrified by the enzyme, but nitromethane is inert to the enzyme. The nitroalkanes are not oxidized under anaerobic conditions. Images PMID:947888
NASA Astrophysics Data System (ADS)
Sun, Xueping; Wang, Man; Liu, Buming; Sun, Zhenliang
2017-10-01
Three angiotensin I converting enzyme (ACE) inhibition peptides were isolated from sandworm Sipunculus nudus protein hydrolysate prepared using protamex. Consecutive purification methods, including size exclusion chromatography and reverse-phase high performance liquid chromatography (RP-HPLC), were used to isolate the ACE inhibition peptides. The amino acid sequences of the peptides were identified as Ile-Asn-Asp, Val-Glu-Pro-Gly and Leu-Ala-Asp-Glu-Phe. The IC50 values of the purified peptides for ACE inhibition activity were 34.72 μmol L-1, 20.55 μmol L-1 and 22.77 μmol L-1, respectively. These results suggested that S. nudus proteins contain specific peptides that can be released by enzymatic hydrolysis. This study may provide an experimental basis for further systematic research, rational development and clinical utilization of sandworm resources.
The carboxypeptidase angiotensin converting enzyme (ACE) shapes the MHC class I peptide repertoire
Shen, Xiao Z.; Billet, Sandrine; Lin, Chentao; Okwan-Duodu, Derick; Chen, Xu; Lukacher, Aron E.; Bernstein, Kenneth E.
2011-01-01
The surface presentation of peptides by major histocompatibility complex (MHC) class I molecules is critical to CD8+ T cell mediated adaptive immune responses. Aminopeptidases are implicated in the editing of peptides for MHC class I loading, but C-terminal editing is thought due to proteasome cleavage. By comparing genetically deficient, wild-type and over-expressing mice, we now identify the dipeptidase angiotensin-converting enzyme (ACE) as playing a physiologic role in peptide processing for MHC class I. ACE edits the C-termini of proteasome-produced class I peptides. The lack of ACE exposes novel antigens but also abrogates some self-antigens. ACE has major effects on surface MHC class I expression in a haplotype-dependent manner. We propose a revised model of MHC class I peptide processing by introducing carboxypeptidase activity. PMID:21964607
NASA Astrophysics Data System (ADS)
Ghann, William E.; Aras, Omer; Fleiter, Thorsten; Daniel, Marie-Christine
2011-05-01
For patients with a history of heart attack or stroke, the prevention of another cardiovascular or cerebrovascular event is crucial. The development of cardiac and pulmonary fibrosis has been associated with overexpression of tissue angiotensin-converting enzyme (ACE). Recently, gold nanoparticles (GNPs) have shown great potential as X-ray computed tomography (CT) contrast agents. Since lisinopril is an ACE inhibitor, it has been used as coating on GNPs for targeted imaging of tissue ACE in prevention of fibrosis. Herein, lisinopril-capped gold nanoparticles (LIS-GNPs) were synthesized up to a concentration of 55 mgAu/mL. Their contrast was measured using CT and the results were compared to Omnipaque, a commonly used iodine-based contrast agent. The targeting ability of these LIS-GNPs was also assessed.
Li, Guan-Hong; Wan, Ju-Zhen; Le, Guo-Wei; Shi, Yong-Hui
2006-08-01
Mung bean protein isolates were hydrolyzed for 2 h by Alcalase. The generated hydrolysate showed angiotensin I-converting enzyme (ACE) inhibitory activity with the IC(50) value of 0.64 mg protein/ml. Three kinds of novel ACE inhibitory peptides were isolated from the hydrolysate by Sephadex G-15 and reverse-phase high performance liquid chromatography (RP-HPLC). These peptides were identified by amino acid composition analysis and matrix assisted-laser desorption/ionization time-of-flight tandem mass spectrometry (MALDI-TOF MS/MS), as Lys-Asp-Tyr-Arg-Leu, Val-Thr-Pro-Ala-Leu-Arg and Lys-Leu-Pro-Ala-Gly-Thr-Leu-Phe with the IC(50) values of 26.5 microM, 82.4 microM and 13.4 microM, respectively. Copyright (c) 2006 European Peptide Society and John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Banchelli, Martina; Guardiani, Carlo; Sandberg, Robert B.; Menichetti, Stefano; Procacci, Piero; Caminati, Gabriella
2015-07-01
Small-molecule inhibitors of Tumor Necrosis Factor α Converting Enzyme (TACE) are a promising therapeutic tool for Rheumatoid Arthritis, Multiple Sclerosis and other autoimmune diseases. Here we report on an extensive chemical-physical analysis of the media effects in modulating the conformational landscape of MBET306, the common scaffold and a synthetic precursor of a family of recently discovered tartrate-based TACE inhibitors. The structural features of this molecule with potential pharmaceutical applications have been disclosed by interpreting extensive photophysical measurements in various solvents with the aid of enhanced sampling molecular dynamics simulations and time dependent density functional calculations. Using a combination of experimental and computational techniques, the paper provides a general protocol for studying the structure in solution of molecular systems characterized by the existence of conformational metastable states.
Ultrasensitivity by Molecular Titration in Spatially Propagating Enzymatic Reactions
Semenov, Sergey N.; Markvoort, Albert J.; Gevers, Wouter B.L.; Piruska, Aigars; de Greef, Tom F.A.; Huck, Wilhelm T.S.
2013-01-01
Delineating design principles of biological systems by reconstitution of purified components offers a platform to gauge the influence of critical physicochemical parameters on minimal biological systems of reduced complexity. Here we unravel the effect of strong reversible inhibitors on the spatiotemporal propagation of enzymatic reactions in a confined environment in vitro. We use micropatterned, enzyme-laden agarose gels which are stamped on polyacrylamide films containing immobilized substrates and reversible inhibitors. Quantitative fluorescence imaging combined with detailed numerical simulations of the reaction-diffusion process reveal that a shallow gradient of enzyme is converted into a steep product gradient by addition of strong inhibitors, consistent with a mathematical model of molecular titration. The results confirm that ultrasensitive and threshold effects at the molecular level can convert a graded input signal to a steep spatial response at macroscopic length scales. PMID:23972857
Isolation and structural analysis of antihypertensive peptides that exist naturally in Gouda cheese.
Saito, T; Nakamura, T; Kitazawa, H; Kawai, Y; Itoh, T
2000-07-01
Seven kinds of ripened cheeses (8-mo-aged and 24-mo-aged Gouda, Emmental, Blue, Camembert, Edam, and Havarti) were homogenized with distilled water, and water-soluble peptides were prepared by C-18 hydrophobic chromatography. The inhibitory activity to angiotensin I-converting enzyme and decrease in the systolic blood pressure in spontaneously hypertensive rats were measured before and after oral administration of each peptide sample. The strongest depressive effect in the systolic blood pressure (-24.7 mm Hg) and intensive inhibitory activity to angiotensin I-converting enzyme (75.7%) were detected in the peptides from 8-mo-aged Gouda cheese. Four peptides were isolated by HPLC with reverse-phase and gel filtration modes. Their chemical structures and origins, clarified by combination analyses of protein sequencing, amino acid composition, and mass spectrometry, were as follows: peptide A, Arg-Pro-Lys-His-Pro-Ile-Lys-His-Gln [alpha(s1)-casein (CN), B-8P; f 1-9]; peptide B, Arg-Pro-Lys-His-Pro-Ile-Lys-His-Gln-Gly-Leu-Pro-Gln (alpha(s1)-CN, B-8P; f 1-13); peptide F, Tyr-Pro-Phe-Pro-Gly-Pro-Ile-Pro-Asn (beta-CN, A2-5P; f 60-68); and peptide G, Met-Pro-Phe-Pro-Lys-Tyr-Pro-Val-Gln-Pro-Phe (beta-CN, A2-5P; f 109-119). Peptides A and F, which were chemically synthesized, showed potent angiotensin I-converting enzyme inhibitory activity with little antihypertensive effects.
Costa, A s; Junior, A S; Viana, G E N; Muratori, M C S; Reis, A M; Costa, A P R
2014-10-01
This study aimed at evaluating the effects of angiotensin-converting enzyme inhibitor (enalapril) and angiotensin II antagonist (valsartan) on the oestradiol and progesterone production in ewes submitted to oestrous synchronization protocol. The animals were weighed and randomly divided into three groups (n = 7). A pre-experiment conducted to verify the effectiveness and toxicity of enalapril (0.5 mg/kg LW) and valsartan (2.2 mg/kg LW) showed that, in the doses used, these drugs were effective in reducing blood pressure without producing toxic effects. In the experiment, all animals were subjected to oestrous synchronization protocol during 12 days. On D10, D11 and D12, animals received saline, enalapril or valsartan (same doses of the pre-experiment), according to the group randomly divided. The hormonal analysis showed an increase in oestradiol on the last day of the protocol (D12) in animals that received enalapril (p < 0.05), but not in other groups, without changing the concentration of progesterone in any of the treatments. It is concluded that valsartan and enalapril are safe and effective subcutaneously for use in sheep and that the angiotensin-converting enzyme (ACE) inhibition with enalapril leads to an increase in oestradiol production near ovulation without changing the concentration of progesterone. This shows that ACE inhibition may be a useful tool in reproductive biotechnologies involving induction and synchronization of oestrus and ovulation in sheep. © 2014 Blackwell Verlag GmbH.
Cho, Soo Hyun; Park, Young W; Song, Gyu Yong
2017-01-01
This study was conducted to isolate and characterize Paenibacillus sp. MBT213 possessing β-glucosidase activity from raw milk, and examine the enzymatic capacity on the hydrolysis of a major ginsenoside (Rb1). Strain MBT213 was found to have a high hydrolytic ability on ginsenoside Rb1 by Esculin Iron Agar test. 16S rDNA analysis revealed that MBT213 was Paenibacillu sp. Crude enzyme of MBT213 strain exhibited high conversion capacity on ginsenoside Rb1 into ginsenoside Rd proven by TLC and HPLC analyses. The API ZYM kit confirmed that Paenibacillu sp. MBT213 exerted higher β-glucosidase and β-galactosidase activity than other strains. Optimum pH and temperature for crude enzyme were found at 7.0 and 35°C in hydrolysis of ginsenoside Rb1. After 10 d of optimal reaction conditions for the crude enzyme, ginsenoside Rb1 fully converted to ginsenoside Rd. Ginseng roots (20%) were fermented for 14 d, and analyzed by HPLC showed that amount of ginsenoside Rb1 significantly decreased, while that of ginsenoside Rd was significantly increased. The study confirmed that the β-glucosidase produced by Paenibacillus sp. MBT213 can hydrolyze the major ginsenoside Rb1 and convert to Rd during fermentation of the ginseng. The β-glucosidase activity of this novel Paenibacillus sp. MBT213 strain may be utilized in development of variety of health foods, dairy foods and pharmaceutical products. PMID:29147097
Marketing research on the angiotensin-converting enzyme inhibitors antihypertensive medicines
BOBOIA, ANAMARIA; GRIGORESCU, MARIUS RAREŞ; TURCU - ŞTIOLICĂ, ADINA
2017-01-01
Background and aims The research aimed at investigating sales trends of angiotensin-converting enzyme inhibitors antihypertensive medicines, both in terms of quantity and value, in ten community pharmacies, for a period of three years. The research on the antihypertensive medicines consumption is important for highlighting the ever increasing impact of hypertension among the population. Methods The methods used in this research were the following: marketing research, method of sampling, descriptive methods, retrospective analysis, method of comparison. Results The results showed that the drugs containing the active substances of the angiotensin converting enzyme inhibitors class had had significant increases in quantitative and value sales, bringing substantial revenues to pharmacies. From the quantitative perspective, the best-selling products were those containing Enalaprilum, while in terms of value, the best-selling medicines were those containing Perindoprilum. We evidenced that spectacular sales were also achieved for products that have Lisinoprilum, respectively Captoprilum, as active substances. The largest quantities were marketed for the Captopril Terapia® product and the highest earnings were recorded for the Prestarium® medicine. Conclusion This paper approaches an interesting and topical issue, which can be helpful to professionals (pharmacists, doctors) and other categories, such as economists, statisticians, representatives of companies manufacturing medicines, as well as to hypertensive patients, as it could be used to warn population regarding the incidence of cardiovascular diseases, and, at the same time, trace sales trends in order to accomplish profitable business plans. PMID:28246502
The role of aldosterone antagonism agents in diabetic kidney disease.
Wombwell, Eric; Naglich, Andrew
2015-03-01
Diabetic kidney disease is a common consequence of the development of diabetes. In the United Kingdom 18-30% of chronic kidney disease cases and 44% of end-stage renal disease cases in the United States have been attributed to complications of diabetic kidney disease. Angiotensin blockade using angiotensin converting enzyme inhibitors or angiotensin receptor blockers is the standard for slowing the progression of diabetic kidney disease. Evidence suggests that aldosterone antagonism added to standard therapy may be beneficial. This paper aims to explore the pathophysiological contribution of aldosterone in diabetic kidney disease and review available literature for aldosterone antagonism through mineralocorticoid receptor blockade. A comprehensive literature search was conducted. Results were analysed and summarised. Nine trials evaluating a total of 535 patients with diabetic kidney disease were identified that evaluated the use of aldosterone antagonists for reducing the signs of diabetic kidney disease. All trials demonstrated a marked decrease in urinary protein excretion when compared to, or added to angiotensin converting enzyme inhibition or angiotensin receptor blockade. The most commonly reported side effect in all of the trials was hyperkalaemia, which occurred in 6.1% of all patients evaluated. Aldosterone antagonists were generally well tolerated in the evaluated patient populations. Aldosterone antagonism may represent a safe and effective complimentary therapy to the use of angiotensin converting enzyme inhibition, or angiotensin receptor blockade, for slowing the progression of diabetic kidney disease. © 2014 European Dialysis and Transplant Nurses Association/European Renal Care Association.
Toda, Hiroshi; Itoh, Nobuya
2012-01-01
Styrene metabolism genes were isolated from styrene-assimilating bacteria Rhodococcus sp. ST-5 and ST-10. Strain ST-5 had a gene cluster containing four open reading frames which encoded styrene degradation enzymes. The genes showed high similarity to styABCD of Pseudomonas sp. Y2. On the other hand, strain ST-10 had only two genes which encoded styrene monooxygenase and flavin oxidoreductase (styAB). Escherichia coli transformants possessing the sty genes of strains ST-5 and ST-10 produced (S)-styrene oxide from styrene, indicating that these genes function as styrene degradation enzymes. Metabolite analysis by resting-cell reaction with gas chromatography-mass spectrometry revealed that strain ST-5 converts styrene to phenylacetaldehyde via styrene oxide by styrene oxide isomerase (styC) reaction. On the other hand, strain ST-10 lacked this enzyme, and thus accumulated styrene oxide as an intermediate. HPLC analysis showed that styrene oxide was spontaneously isomerized to phenylacetaldehyde by chemical reaction. The produced phenylacetaldehyde was converted to phenylacetic acid (PAA) in strain ST-10 as well as in strain ST-5. Furthermore, phenylacetic acid was converted to phenylacetyl-CoA by the catalysis of phenylacetate-CoA ligase in strains ST-5 and ST-10. This study proposes possible styrene metabolism pathways in Rhodococcus sp. strains ST-5 and ST-10. Copyright © 2011 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Omar, Ali Zainal; Maulood, Ismail M.
2017-09-01
The renin-angiotensin system (RAS), one of the most important hormonal systems, controls the kidney functions by regulating fluid volume, and electrolyte balance. The current study included the effects of kinin-kallikrein system (KKS) and its interaction with both angiotensin converting enzyme (ACE) and endothelin converting enzyme (ECE) on some of kidney function test parameters. In the present experiment, rats were divided into six groups, the first group was infused with normal saline, the second group was L-NG-Nitroarginine methyl ester (L-NAME) treated rats, third group was bradykinin (BK), forth group was captopril (ACEi), fifth group was phosphoramidon (ECEi), sixth group was a combination of BK with phosphoramidon. L-NAME was intravenously infused for one hour to develop systematic hypertension in male rats. After one hour of infusion, the results showed that L-NAME significantly increased serum creatinine. While, it decreased glomerular filtration rate (GFR), and K+ excretion rate. Moreover, BK increased packed cell volume PCV%, serum creatinine and K+ ion concentration. While, it reduced GFR, serum Ca+2 ion concentration, K+ and Na+ excretion rates. On the other hand, captopril infusion showed its effect by reduction in GFR, serum Ca+2 ion and electrolyte excretion rates. Phosphoramidon an ECEi dramatically reduced serum Ca+2 ion, but it increased pH, GFR and Ca+2 excretion rate. The results suggested that BK and Captopril each alone severely reduces GFR value. Interestingly, inhibition of ET-1 production via phosphoramidon could markedly elevate GFR values.
Ames, Marisa K; Atkins, Clarke E; Lantis, Andrea C; zum Brunnen, James
2016-01-01
The objective of this study was to evaluate subacute changes in renin-angiotensin-aldosterone system (RAAS) activity during angiotensin-converting enzyme inhibitor (ACEI) therapy in dogs with experimental RAAS activation. Analysis of data (urine aldosterone:creatinine ratio (UAldo:C) and serum angiotensin-converting enzyme activity), in 31 healthy dogs with furosemide or amlodipine-activated RAAS that received an ACEI. When furosemide or amlodipine activation of RAAS preceded ACEI administration, incomplete RAAS blockade (IRB) was defined as a UAldo:C greater than (a) the dog's 'activated' baseline value or (b) a population-derived cut-off value (mean + 2 SD (>1.0 μg/g) of pretreatment UAldo:C from our population of research dogs). In studies where RAAS activation occurred concurrently with ACEIs, IRB was defined as (a) a UAldo:C greater than either twofold the dog's prestimulation baseline value or (b) 1.0 µg/g. Dogs were followed for 7-17 days. Serum angiotensin-converting enzyme activity was measured in 19 dogs and was significantly reduced (P<0.0001) after ACEI administration. The overall incidence of IRB, when RAAS activation preceded ACEI administration, was 33% and 8% for definitions (a) and (b), respectively. The overall incidence of IRB, when ACEIs were concurrent with RAAS activation, was 65% and 61% for definitions (a) and (b), respectively. Increases in UAldo:C, despite ACEI administration, is evidence of IRB in this subacute model of experimental RAAS activation and suppression. © The Author(s) 2016.
Singh, Purnima; Tsuji, Masaharu; Singh, Shiv Mohan; Roy, Utpal; Hoshino, Tamotsu
2013-04-01
Ten strains of cryophilic yeast were studied from glacier ice cores of Svalbard, Arctic. The ice melt samples contained about 3×10(3) - 1×10(4) colony forming unit (CFUs) per ml. Sequence analysis of the isolates, using D1/D2 domain identified five species of yeasts: Cryptococcus adeliensis (MLB-18 JX192655), Cryptococcus albidosimilis (MLB-19 JX192656), Cryptococcus saitoi (MLB-22 JX192659), Rhodosporidium lusitaniae (MLB-20 JX192657), and Rhodotorula mucilaginosa (MLB-27 JX192664). Effect of temperature on growth of these isolates was studied. The strains are able to grow at temperatures ranging between 1 and 20°C. Screening of the cultures for amylase, cellulase, protease, lipase, urease and catalase activity were carried out indicating varying amounts of enzyme production at different temperatures. Characterization of lipase in strain Cryptococcus sp. MLB-24 was performed. Fatty acid methyl ester (FAME) analysis of the cultures grown at four different temperatures (1, 4, 15, and 20°C) was also done. Decrease in temperature was reported to cause increase in concentration of unsaturated fatty acids. High amount of oleic acid accumulated with increase in temperature. These fatty acids possibly help the strains to survive in glacial ice core cold environment. The extracellular and intracellular filtrate of the cultures showed negative antifreeze protein (AFP) activity. The observations indicate that probably the isolates in the present undertaking adapt to low temperatures, by enzyme and PUFA secretion rather than by antifreeze protein secretion. Copyright © 2013 Elsevier Inc. All rights reserved.
Longwave radiative effects of Saharan dust during the ICE-D campaign
NASA Astrophysics Data System (ADS)
Brooke, Jennifer; Havemann, Stephan; Ryder, Claire; O'Sullivan, Debbie
2017-04-01
The Havemann-Taylor Fast Radiative Transfer Code (HT-FRTC) is a fast radiative transfer model based on Principal Components. Scattering has been incorporated into HT-FRTC which allows simulations of aerosol as well as clear-sky atmospheres. This work evaluates the scattering scheme in HT-FRTC and investigates dust-affected brightness temperatures using in-situ observations from Ice in Clouds Experiment - Dust (ICE-D) campaign. The ICE-D campaign occurred during August 2015 and was based from Cape Verde. The ICE-D campaign is a multidisciplinary project which achieved measurements of in-situ mineral dust properties of the dust advected from the Sahara, and on the aerosol-cloud interactions using the FAAM BAe-146 research aircraft. ICE-D encountered a range of low (0.3), intermediate (0.8) and high (1.3) aerosol optical depths, AODs, and therefore provides a range of atmospheric dust loadings in the assessment of dust scattering in HT-FRTC. Spectral radiances in the thermal infrared window region (800 - 1200 cm-1) are sensitive to the presence of mineral dust; mineral dust acts to reduce the upwelling infrared radiation caused by the absorption and re-emission of radiation by the dust layer. ARIES (Airborne Research Interferometer Evaluation System) is a nadir-facing interferometer, measuring infrared radiances between 550 and 3000 cm-1. The ARIES spectral radiances are converted to brightness temperatures by inversion of the Planck function. The mineral dust size distribution is important for radiative transfer applications as it provides a measure of aerosol scattering. The longwave spectral mineral dust optical properties including the mass extinction coefficients, single scattering albedos and the asymmetry parameter have been derived from the mean ICE-D size distribution. HT-FRTC scattering simulations are initialised with vertical mass fractions which can be derived from extinction profiles from the lidar along with the specific extinction coefficient, kext (m2/g) at 355 nm. In general the comparison between the lidar retrieval of aerosol extinction coefficients and in-situ measurements show a good agreement. The root mean square of the brightness temperature residuals in the window region for observations (ARIES) minus model simulations for i) clear-sky, ii) HT-FRTC 'line-by-line' scattering and, iii) HT-FRTC fast scattering are calculated. For the ICE-D case studies mineral dust impacts on the brightness temperature of the background on the order of 1 - 1.5 K.
Formation of model polar stratospheric cloud films
NASA Technical Reports Server (NTRS)
Middlebrook, Ann M.; Koehler, Birgit G.; Mcneill, Laurie S.; Tolbert, Margaret A.
1992-01-01
Fourier transform infrared spectroscopy was used to examine the competitive growth of films representative of polar stratospheric clouds. These experiments show that either crystalline nitric acid trihydrate (beta-NAT) or amorphous films with H2O:HNO3 ratios close to 3:1 formed at temperatures 3-7 K warmer than the ice frost point under stratospheric pressure conditions. In addition, with higher HNO3 pressure, we observed nitric acid dihydrate (NAD) formation at temperatures warmer than ice formation. However, our experiments also show that NAD surfaces converted to beta-NAT upon exposure to stratospheric water pressures. Finally, we determined that the net uptake coefficient for HNO3 on beta-NAT is close to unity, whereas the net uptake coefficient for H2O is much less.
Discovery of water ice nearly everywhere in the solar system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zuppero, A.
1995-10-01
During the last decade we have discovered sources of accessible water in some form nearly everywhere in the solar system. Water ice has been found on the planet Mercury; probably on the Earth`s Moon; on Mars; on near Earth objects; on comets whose orbits frequently come close to that of Earth`s orbit; probably on Ceres, the largest inner asteroid; and on comets previously and incorrectly considered to be out of practical reach. The comets also provide massive quantities of hydrocarbons, similar to oil shale. The masses of either water or hydrocarbons are measured in units of cubic kilometers. The watermore » is key to space transportation because it can be used as a rocket propellant directly, and because thermal process alone can be used to convert it and hydrocarbons into hydrogen, the highest performing rocket propellant. This presentation outlines what is currently known about the locations of the water ice, and sketches the requirements and environments of missions to prospect for and assay the water sources.« less
Numerical model of ice melange expansion during abrupt ice-shelf collapse
NASA Astrophysics Data System (ADS)
Guttenberg, N.; Abbot, D. S.; Amundson, J. M.; Burton, J. C.; Cathles, L. M.; Macayeal, D. R.; Zhang, W.
2010-12-01
Satellite imagery of the February 2008 Wilkins Ice-Shelf Collapse event reveals that a large percentage of the involved ice shelf was converted to capsized icebergs and broken fragments of icebergs over a relatively short period of time, possibly less than 24 hours. The extreme violence and short time scale of the event, and the considerable reduction of gravitational potential energy between upright and capsized icebergs, suggests that iceberg capsize might be an important driving mechanism controlling both the rate and spatial extent of ice shelf collapse. To investigate this suggestion, we have constructed an idealized, 2-dimensional model of a disintegrating ice shelf composed of a large number (N~100 to >1000) of initially well-packed icebergs of rectangular cross section. The model geometry consists of a longitudinal cross section of the idealized ice shelf from grounding line (or the upstream extent of ice-shelf fragmentation) to seaward ice front, and includes the region beyond the initial ice front to cover the open, ice-free water into which the collapsing ice shelf expands. The seawater in which the icebergs float is treated as a hydrostatic fluid in the computation of iceberg orientation (e.g., the evaluation of buoyancy forces and torques), thereby eliminating the complexities of free-surface waves, but net horizontal drift of the icebergs is resisted by a linear drag law designed to energy dissipation by viscous forces and surface-gravity-wave radiation. Icebergs interact via both elastic and inelastic contacts (typically a corner of one iceberg will scrape along the face of its neighbor). Ice-shelf collapse in the model is embodied by the mass capsize of a large proportion of the initially packed icebergs and the consequent advancement of the ice front (leading edge). Model simulations are conducted to examine (a) the threshold of stability (e.g., what density of initially capsizable icebergs is needed to allow a small perturbation to the system evolve into full-blown collapse of the ice shelf? What proportion of uncapsizable icebergs prevent a collapse?), (b) the rates of mobilization and their dependence on iceberg geometry (e.g., what determines the speed at which the expanding ice melange moves into the open, ice-free water?), and (c) the factors that promote the arrest of the system (e.g., are there circumstances where only partial collapses can occur?). Results of simulations are compared with observational parameters derived from satellite imagery, seismic analysis and laboratory experiment to determine what aspects of the numerical model's physical formulation may have most relevance to the disappearance of ice shelves.
Genetics Home Reference: hereditary paraganglioma-pheochromocytoma
... two important cellular pathways called the citric acid cycle (or Krebs cycle) and oxidative phosphorylation. These pathways are critical in ... can use. As part of the citric acid cycle, the SDH enzyme converts a compound called succinate ...
Lieu, David
2009-04-01
Fine-needle aspiration (FNA) of breast masses in the United States has been on the decline for the last decade and has been largely replaced by ultrasound-guided core-needle biopsy (UG-CNB). Some studies show core-needle biopsy (CNB) is superior to FNA in terms of absolute sensitivity, specificity, and inadequate rate. However, the importance of a skilled aspirator, experienced cytopathologist, and immediate cytological evaluation (ICE) in FNA is often not considered. CNB is more expensive, invasive, risky, and painful than FNA. This prospective study examines the value of cytopathologist-performed ultrasound-guided FNA (UG-FNA) with ICE as a screening test for cytopathologist-performed UG-CNB on nonpalpable or difficult-to-palpate solid breast masses visible on ultrasound. One hundred twenty consecutive nonpalpable or difficult-to-palpate presumably solid breast masses in 109 female patients from January2, 2008 to June 30, 2008 underwent cytopathologist-performed UG-FNA with ICE. Twenty cases were converted to cytopathologist-performed UG-CNB because ICE was inadequate, hypocellular, atypical, suspicious, or malignant. Patients with clearly benign cytology did not undergo UG-CNB. UG-FNA with ICE reduced the percentage of patients undergoing UG-CNB by 87%. A new role for cytopathologist-performed UG-FNA of nonpalpable breast masses has been identified.
Oosterkamp, Margreet J; Boeren, Sjef; Atashgahi, Siavash; Plugge, Caroline M; Schaap, Peter J; Stams, Alfons J M
2015-06-01
Alicycliphilus denitrificans strain BC grows anaerobically on acetone with nitrate as electron acceptor. Comparative proteomics of cultures of A. denitrificans strain BC grown on either acetone or acetate with nitrate was performed to study the enzymes involved in the acetone degradation pathway. In the proposed acetone degradation pathway, an acetone carboxylase converts acetone to acetoacetate, an AMP-dependent synthetase/ligase converts acetoacetate to acetoacetyl-CoA, and an acetyl-CoA acetyltransferase cleaves acetoacetyl-CoA to two acetyl-CoA. We also found a putative aldehyde dehydrogenase associated with acetone degradation. This enzyme functioned as a β-hydroxybutyrate dehydrogenase catalyzing the conversion of surplus acetoacetate to β-hydroxybutyrate that may be converted to the energy and carbon storage compound, poly-β-hydroxybutyrate. Accordingly, we confirmed the formation of poly-β-hydroxybutyrate in acetone-grown cells of strain BC. Our findings provide insight in nitrate-dependent acetone degradation that is activated by carboxylation of acetone. This will aid studies of similar pathways found in other microorganisms degrading acetone with nitrate or sulfate as electron acceptor. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Hong, Yang-Hee; Jung, Eun Young; Noh, Dong Ouk; Suh, Hyung Joo
2014-03-01
Green tea contains numerous polyphenols, which have health-promoting effects. The purpose of this study was to evaluate the effect of tannase-converted green tea extract (TGE) formulation on the physical stability and activities of skin-related enzymes. Physical stability was evaluated by measuring the pH, precipitation, and colors at 25 ± 2 °C/ambient humidity and at 40 ± 2 °C/70% ± 5% relative humidity for 4 months. Activities of collagenase, elastase, and tyrosinase as skin-related enzymes were assessed on TGE formulation. The concentrations of epigallocatechin-3-gallate and epicatechin-3-gallate in green tea extract were greatly decreased to the extent of negligible level when treated with tannase. The formulation containing 5% tannase-converted green tea extract showed relatively stable pH, precipitation, and color features for 16 weeks. When TGE was added to the formulation, there was a significant increase in the inhibition of elastase and tyrosinase activities ( p < 0.05) compared with the formulation containing 5% normal green tea extract. The TGE could be used in cosmetics as skin antiwrinkling or depigmenting agent.
Arnal, J F; Castano, C; Maupas, E; Mugniot, A; Darblade, B; Gourdy, P; Michel, J B; Bayard, F
2001-04-01
Angiotensin-converting enzyme (ACE) is mainly responsible for converting angiotensin I (AI) to angiotensin II (AII), and ACE inhibitors prevent atherosclerosis in animal models. Neutral endopeptidase 24.11 (NEP) degrades substance P, kinins and atrial natriuretic peptide (ANP), and aortic wall NEP activity was found to be increased in atherosclerosis. In the present study, we have evaluated the effect of candoxatril, a NEP inhibitor, and of omapatrilat, a dual ACE and NEP inhibitor, on the development of fatty streak in apolipoprotein E (apoE)-deficient mice. Groups of ten male apoE-deficient mice were given either placebo, candoxatril 50 mg/kg per day, or omapatrilat 10, or 100 mg/kg per day for 4 months. None of the treatments influenced body weight, serum total or HDL-cholesterol. Compared with the placebo, candoxatril did not protect the mice from fatty streak deposit. In contrast, omapatrilat dose dependently inhibited the constitution of fatty streak in apoE-deficient mice. The precise advantages of the dual ACE and NEP inhibition versus the inhibition of only ACE should now be considered in the prevention of atherosclerosis as well as in the occurrence of its complications.
Sanz, J M; Lopez, R; Garcia, J L
1988-05-23
Tertiary amines appear to be the minimal structure needed to convert in vitro the inactive form (E-form) of pneumococcal amidase to the catalytic active form (C-form). Diethylethanolamine was one of the compounds that converted the E-form, a finding that has been used successfully to develop an affinity chromatography system in DEAE-cellulose for the rapid and efficient purification of lytic enzymes of pneumococcus and its bacteriophages.
Ice thickness measurements and volume estimates for glaciers in Norway
NASA Astrophysics Data System (ADS)
Andreassen, Liss M.; Huss, Matthias; Melvold, Kjetil; Elvehøy, Hallgeir; Winsvold, Solveig H.
2014-05-01
Whereas glacier areas in many mountain regions around the world now are well surveyed using optical satellite sensors and available in digital inventories, measurements of ice thickness are sparse in comparison and a global dataset does not exist. Since the 1980s ice thickness measurements have been carried out by ground penetrating radar on many glaciers in Norway, often as part of contract work for hydropower companies with the aim to calculate hydrological divides of ice caps. Measurements have been conducted on numerous glaciers, covering the largest ice caps as well as a few smaller mountain glaciers. However, so far no ice volume estimate for Norway has been derived from these measurements. Here, we give an overview of ice thickness measurements in Norway, and use a distributed model to interpolate and extrapolate the data to provide an ice volume estimate of all glaciers in Norway. We also compare the results to various volume-area/thickness-scaling approaches using values from the literature as well as scaling constants we obtained from ice thickness measurements in Norway. Glacier outlines from a Landsat-derived inventory from 1999-2006 together with a national digital elevation model were used as input data for the ice volume calculations. The inventory covers all glaciers in mainland Norway and consists of 2534 glaciers (3143 glacier units) covering an area of 2692 km2 ± 81 km2. To calculate the ice thickness distribution of glaciers in Norway we used a distributed model which estimates surface mass balance distribution, calculates the volumetric balance flux and converts it into thickness using the flow law for ice. We calibrated this model with ice thickness data for Norway, mainly by adjusting the mass balance gradient. Model results generally agree well with the measured values, however, larger deviations were found for some glaciers. The total ice volume of Norway was estimated to be 275 km3 ± 30 km3. From the ice thickness data set we selected glacier units or entire ice caps with sufficient data to interpolate mean ice thickness. Scaling constants c and γ were fitted by least square regression for totally 86 glacier units and 8 ice caps. The ice volume results from scaling were sensitive to how the glaciers are divided and scaling applied to glaciers divided into glacier units gave best results. Scaling laws for ice caps did not work well, as the mean thickness of the ice caps varies less than their areas and the sample of ice caps with sufficient measurement coverage was small. Calculated ice volumes range from 280 to 305 km3, much higher than values obtained from the literature (134-184 km3). As measurements are biased towards outlets from the largest and thickest ice caps, more measurements are needed for a better estimate of the present ice volume of the smaller glaciers.
Variation in levels of some leaf enzymes.
Downton, J; Slatyer, R O
1971-03-01
Several procedures were compared for efficiency in the extraction of certain leaf enzymes (phosphoenolpyruvate carboxylase, ribulose 1,5-diphosphate carboxylase and malate dehydrogenase) in Atriplex hastata (a "C3" species exhibiting conventional photosynthetic metabolism), and in A. spongiosa (a "C4" species in which the initial photosynthetic products are C4 dicarboxylic acids). Glycolate oxidase was also assayed in some cases, and Atriplex nummularia and Sorghum bicolor were also used as test material. A simple procedure, involving a mortar and pestle grind with carborundum added to the grinding mixture, was found to be as effective as glass bead grind procedures. In addition, it was more rapid and showed less variability with different operations.Using the carborundum grind procedure, sources of variability in enzyme activity in apparently uniform leaves were compared, as were effects of time of day, leaf age and storage procedure. In general, if apparently uniform leaves could be selected, variability in levels of enzyme activity appeared to be relatively small, not exceeding about 12%. Time of day also appeared to be relatively unimportant for the enzymes examined. However, the ontogentic status of the plant was found to be an important source of variability. Leaf age was also a major source of variability where the activity was expressed on a fresh weight basis, but specific activity (i.e. activity expressed on a protein basis) was relatively constant, at least with the range of species and leaf ages examined here.Storage of fresh samples in liquid nitrogen for 24 h, prior to extraction and assay, led to only a small reduction in activity, but substantial changes occurred if storage was in dry ice or in ice and also where extracts were stored in a deep freeze.
Taghi Gharibzahedi, Seyed Mohammad; Koubaa, Mohamed; Barba, Francisco J; Greiner, Ralf; George, Saji; Roohinejad, Shahin
2018-02-01
Microbial transglutaminase (MTGase) has been currently utilized to form new food structures and matrices with high physicochemical stability. Incorporation of this multi-functional enzyme into structural composition of milk protein-based products, such as cheese and ice cream, can not only be a successful strategy to improve their nutritional and technological characteristics through intramolecular cross-linking, but also to reduce the production cost by decreasing fat and stabilizer contents. The recent research developments and promising results of MTGase application in producing functional formulations of cheese and ice cream with higher quality characteristics are reviewed. New interesting insights and future perspectives are also presented. The addition of MTGase to cheese led to significant improvements in moisture, yield, texture, rheology and sensory properties, without changes in the chemical composition. Furthermore, pH value of ice cream is not affected by the MTGase treatment. Compared to untreated ice creams, application of MTGase significantly promotes consistency, fat destabilization, overrun and organoleptic acceptance, while a substantial reduction in firmness and melting rate of samples was observed. The addition of MTGase to cheese and ice cream-milk provides reinforcement to the protein matrix and can be considered as a novel additive for improving the physicochemical and organoleptic properties of final products. Copyright © 2017 Elsevier B.V. All rights reserved.
Ices on Mercury: Chemistry of volatiles in permanently cold areas of Mercury's north polar region
NASA Astrophysics Data System (ADS)
Delitsky, M. L.; Paige, D. A.; Siegler, M. A.; Harju, E. R.; Schriver, D.; Johnson, R. E.; Travnicek, P.
2017-01-01
Observations by the MESSENGER spacecraft during its flyby and orbital observations of Mercury in 2008-2015 indicated the presence of cold icy materials hiding in permanently-shadowed craters in Mercury's north polar region. These icy condensed volatiles are thought to be composed of water ice and frozen organics that can persist over long geologic timescales and evolve under the influence of the Mercury space environment. Polar ices never see solar photons because at such high latitudes, sunlight cannot reach over the crater rims. The craters maintain a permanently cold environment for the ices to persist. However, the magnetosphere will supply a beam of ions and electrons that can reach the frozen volatiles and induce ice chemistry. Mercury's magnetic field contains magnetic cusps, areas of focused field lines containing trapped magnetospheric charged particles that will be funneled onto the Mercury surface at very high latitudes. This magnetic highway will act to direct energetic protons, ions and electrons directly onto the polar ices. The radiation processing of the ices could convert them into higher-order organics and dark refractory materials whose spectral characteristics are consistent with low-albedo materials observed by MESSENGER Laser Altimeter (MLA) and RADAR instruments. Galactic cosmic rays (GCR), scattered UV light and solar energetic particles (SEP) also supply energy for ice processing. Cometary impacts will deposit H2O, CH4, CO2 and NH3 raw materials onto Mercury's surface which will migrate to the poles and be converted to more complex Csbnd Hsbnd Nsbnd Osbnd S-containing molecules such as aldehydes, amines, alcohols, cyanates, ketones, hydroxides, carbon oxides and suboxides, organic acids and others. Based on lab experiments in the literature, possible specific compounds produced may be: H2CO, HCOOH, CH3OH, HCO, H2CO3, CH3C(O)CH3, C2O, CxO, C3O2, CxOy, CH3CHO, CH3OCH2CH2OCH3, C2H6, CxHy, NO2, HNO2, HNO3, NH2OH, HNO, N2H2, N3, HCN, Na2O, NaOH, CH3NH2, SO, SO2, SO3, OCS, H2S, CH3SH, even BxHy. Three types of radiation processing mechanisms may be at work in the ices: (1) Impact/dissociation, (2) Ion implantation and (3) Nuclear recoil (hot atom chemistry). Magnetospheric energy sources dominate the radiation effects. Total energy fluxes of photons, SEPs and GCRs are all around two or more orders of magnitude less than the fluxes from magnetospheric energy sources (in the focused cusp particles). However, SEPs and GCRs cause chemical processing at greater depths than other particles leading to thicker organic layers. Processing of polar volatiles on Mercury would be somewhat different from that on the Moon because Mercury has a magnetic field while the Moon does not. The channeled flux of charged particles through these magnetospheric cusps is a chemical processing mechanism unique to Mercury as compared to other airless bodies.
Gao, Hongwei; Li, Subo; Tan, Yingxia; Ji, Shouping; Wang, Yingli; Bao, Guoqiang; Xu, Lijuan; Gong, Feng
2013-02-01
Enzymatical conversion of A or B RBCs into group O RBCs (ECORBCs) was achieved by using α-N-acetylgalactosaminidase and α-galactosidase, respectively. Now, we initiated AB to O-RBC conversion by using these two enzymes together. But α-N-acetylgalactosaminidase and α-galactosidase's preserving and their reaction buffer were quite different. The aim of this study is to confirm an available system for converting AB to O RBCs, especially to study the maximal permission amount of PCS which was brought to the system-accompanied enzyme addition. Enzyme activity was detected by using GalNAc-pNp or Gal-pNp as substrates. The efficiency of the conversion of A or B antigen was evaluated by routine method and measured by fluorescence-activated cell sorting analysis. The optimal buffer component and the doses of α-N-acetylgalactosaminidase and α-galactosidase were confirmed according to A and B antigen epitope removal efficiency. The activity of α-N-acetylgalactosaminidase and α-galactosidase was not decreased drastically when they were kept in PCS Buffer in 4°C. The optimal reaction buffer composed of glycine 250 mM and NaCl 3 mM, pH 6.8 and PCS less than 10%(v/v). For converting A(1)B to O RBCs completely, the doses of α-N-acetylgalactosaminidase and α-galactosidase were confirmed as 0.015 mg/ml packed RBCs(pRBCs) for A(1) antigen epitopes and 0.005 mg/ml pRBCs for B epitopes. Approximately 0.004 mg α-N-acetylgalactosaminidase and 0.005 mg α-galactosidase were required to convert 1 ml pRBCs. Our studies indicated that α-N-acetylgalactosaminidase and α-galactosidase were stable in PCS buffer and a modified protocol which was propitious to converting AB to O RBCs was provided.
Pedersen, Kim Brint; Chodavarapu, Harshita
2017-01-01
Angiotensin-converting enzyme 2 (ACE2) has protective effects on a wide range of morbidities associated with elevated angiotensin-II signaling. Most tissues, including pancreatic islets, express ACE2 mainly from the proximal promoter region. We previously found that hepatocyte nuclear factors 1α and 1β stimulate ACE2 expression from three highly conserved hepatocyte nuclear factor 1 binding motifs in the proximal promoter region. We hypothesized that other highly conserved motifs would also affect ACE2 expression. By systematic mutation of conserved elements, we identified five regions affecting ACE2 expression, of which two regions bound transcriptional activators. One of these is a functional FOXA binding motif. We further identified the main protein binding the FOXA motif in 832/13 insulinoma cells as well as in mouse pancreatic islets as FOXA2. PMID:29082356
Muslih, A I
2012-06-30
The angiotensin converting enzyme inhibitors (ACEIs) are a group of pharmaceuticals that are used primarily in treatment of hypertension and congestive heart failure, in some cases as the drugs of first choice. The renin-angiotensin system is activated in response to hypotension, decreased sodium concentration in the distal tubule, decreased blood volume and in renal sympathetic nerve stimulation. This study examines the effects of angiotensin converting enzyme inhibitor (Lisinopril) on blood pressure (BP) 131 ± 2.4 and proteinuria 0.198 ± 0.005 in Kurd hypertensive patients, mean arterial blood pressure and proteinuria excretion were measured weekly along the period of 12 weeks. Lisinopril significantly reduced mean arterial blood pressure, and attenuated proteinuria level in patients subjected to this study in lisinopril 10mg dose dependent manner (p<0.05, n=24). In conclusion, lisinopril is of beneficial of renoprotection and in lowering BP.
Enzymology of the Wood–Ljungdahl Pathway of Acetogenesis
Ragsdale, Stephen W.
2011-01-01
The biochemistry of acetogenesis is reviewed. The microbes that catalyze the reactions that are central to acetogenesis are described and the focus is on the enzymology of the process. These microbes play a key role in the global carbon cycle, producing over 10 trillion kilograms of acetic acid annually. Acetogens have the ability to anaerobically convert carbon dioxide and CO into acetyl-CoA by the Wood–Ljungdahl pathway, which is linked to energy conservation. They also can convert the six carbons of glucose stoichiometrically into 3 mol of acetate using this pathway. Acetogens and other anaerobic microbes (e.g., sulfate reducers and methanogens) use the Wood–Ljungdahl pathway for cell carbon synthesis. Important enzymes in this pathway that are covered in this review are pyruvate ferredoxin oxidoreductase, CO dehydrogenase/acetyl-CoA synthase, a corrinoid iron-sulfur protein, a methyltransferase, and the enzymes involved in the conversion of carbon dioxide to methyl-tetrahydrofolate. PMID:18378591
Paitz, Ryan T; Duffield, Kristin R; Bowden, Rachel M
2017-12-15
All vertebrate embryos are exposed to maternally derived steroids during development. In placental vertebrates, metabolism of maternal steroids by the placenta modulates embryonic exposure, but how exposure is regulated in oviparous vertebrates is less clear. Recent work in oviparous vertebrates has demonstrated that steroids are not static molecules, as they can be converted to more polar steroid sulfates by sulfotransferase enzymes. Importantly, these steroid sulfates can be converted back to the parent compound by the enzyme steroid sulfatase (STS). We investigated when and where STS was present during embryonic development in the red-eared slider turtle, Trachemys scripta We report that STS is present during all stages of development and in all tissues we examined. We conclude that STS activity may be particularly important for regulating maternal steroid exposure in oviparous vertebrates. © 2017. Published by The Company of Biologists Ltd.
Screening of Zulu medicinal plants for angiotensin converting enzyme (ACE) inhibitors.
Duncan, A C; Jäger, A K; van Staden, J
1999-12-15
Twenty plants used by traditional healers in South Africa for the treatment of high blood pressure were investigated for their anti-hypertensive properties, utilizing the angiotensin converting enzyme assay. A hit rate of 65% was achieved, with the highest inhibition (97%) obtained by Adenopodia spicata leaves. A further seven plants exhibited an inhibition greater than 70% and five more over 50%. The leaves of the plants showed the greatest levels of inhibition. There was little difference in the overall hit rate between ethanolic and aqueous extracts, although in most cases there was a marked difference in activity between aqueous and ethanolic extracts from the same species. Plants exhibiting inhibition levels greater than 50% were further tested for the presence of tannins in order to eliminate possible false positives. Active plants that did not contain tannins were Agapanthus africanus, Agave americana, Clausena anisata, Dietes iridioides, Mesembruanthemum spp., Stangeria eriopus and Tulbaghia violacea.
Bacterial species involved in the conversion of dietary flavonoids in the human gut.
Braune, Annett; Blaut, Michael
2016-05-03
The gut microbiota plays a crucial role in the conversion of dietary flavonoids and thereby affects their health-promoting effects in the human host. The identification of the bacteria involved in intestinal flavonoid conversion has gained increasing interest. This review summarizes available information on the so far identified human intestinal flavonoid-converting bacterial species and strains as well as their enzymes catalyzing the underlying reactions. The majority of described species involved in flavonoid transformation are capable of carrying out the O-deglycosylation of flavonoids. Other bacteria cleave the less common flavonoid-C-glucosides and/or further degrade the aglycones of flavonols, flavanonols, flavones, flavanones, dihydrochalcones, isoflavones and monomeric flavan-3-ols. To increase the currently limited knowledge in this field, identification of flavonoid-converting bacteria should be continued using culture-dependent screening or isolation procedures and molecular approaches based on sequence information of the involved enzymes.
Rupert, J L; Devine, D V; Monsalve, M V; Hochachka, P W
1999-01-01
Recently it was reported that an allelic variant of the gene encoding angiotensin-converting enzyme (ACE) was significantly over-represented in a cohort of elite British mountaineers. It was proposed that this may be evidence for a specific genetic factor influencing the human capacity for physical performance. The implication that this allele could enhance performance at high altitude prompted us to determine its frequency in Quechua speaking natives living at altitudes greater than 3000m on the Andean Altiplano in South America. We found that the frequency of the putative performance allele in the Quechuas, although significantly higher than in Caucasians, was not different from lowland Native American populations. This observation suggests that, although the higher frequency of the 'performance allele' may have facilitated the migration of the ancestral Quechua to the highlands, the ACE insertion allele has not been subsequently selected for in this high altitude population.
Gao, Xue; Jiang, Wei; Jiménez-Osés, Gonzalo; Choi, Moon Seok; Houk, Kendall N.; Tang, Yi; Walsh, Christopher T.
2013-01-01
The bimodular 276 kDa nonribosomal peptide synthetase AspA from Aspergillus alliaceus, heterologously expressed in Saccharomyces cerevisiae, converts tryptophan and two molecules of the aromatic β-amino acid anthranilate (Ant) into a pair of tetracyclic peptidyl alkaloids asperlicin C and D in a ratio of 10:1. The first module of AspA activates and processes two molecules of Ant iteratively to generate a tethered Ant-Ant-Trp-S-enzyme intermediate on module two. Release is postulated to involve tandem cyclizations, in which the first step is the macrocyclization of the linear tripeptidyl-S-enzyme, by the terminal condensation (CT) domain to generate the regioisomeric tetracyclic asperlicin scaffolds. Computational analysis of the transannular cyclization of the 11-membered macrocyclic intermediate shows that asperlicin C is the kinetically favored product due to the high stability of a conformation resembling the transition state for cyclization, while asperlicin D is thermodynamically more stable. PMID:23890005
Angiotensin-I-Converting Enzyme (ACE)-Inhibitory Peptides from Plants
Daskaya-Dikmen, Ceren; Yucetepe, Aysun; Karbancioglu-Guler, Funda; Daskaya, Hayrettin; Ozcelik, Beraat
2017-01-01
Hypertension is an important factor in cardiovascular diseases. Angiotensin-I-converting enzyme (ACE) inhibitors like synthetic drugs are widely used to control hypertension. ACE-inhibitory peptides from food origins could be a good alternative to synthetic drugs. A number of plant-based peptides have been investigated for their potential ACE inhibitor activities by using in vitro and in vivo assays. These plant-based peptides can be obtained by solvent extraction, enzymatic hydrolysis with or without novel food processing methods, and fermentation. ACE-inhibitory activities of peptides can be affected by their structural characteristics such as chain length, composition and sequence. ACE-inhibitory peptides should have gastrointestinal stability and reach the cardiovascular system to show their bioactivity. This paper reviews the current literature on plant-derived ACE-inhibitory peptides including their sources, production and structure, as well as their activity by in vitro and in vivo studies and their bioavailability. PMID:28333109
Gravity Field Changes due to Long-Term Sea Level Changes
NASA Astrophysics Data System (ADS)
Makarynskyy, O.; Kuhn, M.; Featherstone, W. E.
2004-12-01
Long-term sea level changes caused by climatic changes (e.g. global warming) will alter the system Earth. This includes the redistribution of ocean water masses due to the migration of cold fresh water from formerly ice-covered regions to the open oceans mainly caused by the deglaciation of polar ice caps. Consequently also a change in global ocean circulation patterns will occur. Over a longer timescale, such mass redistributions will be followed by isostatic rebound/depression due to the changed surface un/loading, resulting in variable sea level change around the world. These, in turn, will affect the gravity field, location of the geocentre, and the Earth's rotation vector. This presentation focuses mainly on gravity field changes induced by long-term (hundredths to many thousand years) sea level changes using an Earth System Climate Model (ESCM) of intermediate complexity. In this study, the coupled University of Victoria (Victoria, Canada) Earth System Climate Model (Uvic ESCM) was used, which embraces the primary thermodynamic and hydrological components of the climate system including sea and land-ice information. The model was implemented to estimate changes in global precipitation, ocean mass redistribution, seawater temperature and salinity on timescales from hundreds to thousands years under different greenhouse warming scenarios. The sea level change output of the model has been converted into real mass changes by removing the steric effect, computed from seawater temperature and salinity information at different layers also provided by Uvic ESCM. Finally the obtained mass changes have been converted into changes of the gravitational potential and subsequently of the geoid height using a spherical harmonic representation of the different data. Preliminary numerical results are provided for sea level change as well as change in geoid height.
NASA Technical Reports Server (NTRS)
Yasunari, Teppei J.; Koster, Randal D.; Kau, K. M.; Aoki, Teruo; Sud, Yogesh C.; Yamazaki, Takeshi; Motoyoshi, Hiroki; Kokdama, Yuji
2012-01-01
The website information describing the forcing meteorological data used for the land surface model (LSM) simulation, which were observed at an Automated Meteorological Station CAWS) at the Sapporo District Meteorological Observatory maintained by the Japan Meteorological Agency (JMA), was missing from the text. The 1-hourly data were obtained from the website of Kisyoutoukeijouhou (Information for available JMA-observed meteorological data in the past) on the website of JMA (in Japanese) (available at: http://www.jma.go.jpijmaimenulreport.html). The measurement height information of 59.5 m for the anemometer at the Sapporo Observatory was also obtained from the website of JMA (in Japanese) (available at: http://www.jma.go.jp/jma/menu/report.html). In addition, the converted 10-m wind speed, based on the AWS/JMA data, was further converted to a 2-m wind speed prior to its use with the land model as a usual treatment of off-line Catchment simulation. Please ignore the ice absorption data on the website mentioned in paragraph [15] which was not used for our calculations (but the data on the website was mostly the same as the estimated ice absorption coefficients by the following method because they partially used the same data by Warren [1984]). We calculated the ice absorption coefficients with the method mentioned in the same paragraph, for which some of the refractive index data by Warren [1984] were used and then interpolated between wavelengths, and also mentioned in paragraph [20] for the visible (VIS) and near-infrared (NIR) ranges. The optical data we used were interpolated between wavelengths as necessary.
Senthil-Nathan, Sengottayan
2013-01-01
This review described the physiological and biochemical effects of various secondary metabolites from Meliaceae against major Lepidopteran insect pest including, Noctuidae and Pyralidae. The biochemical effect of major Meliaceae secondary metabolites were discussed more in this review. Several enzymes based on food materials have critical roles in nutritional indices (food utilization) of the insect pest population. Several research work has been referred and the effect of Meliaceae secondary metabolites on feeding parameters of insects by demonstrating food consumption, approximate digestibility of consumed food, efficiency of converting the ingested food to body substance, efficiency of converting digested food to body substance and consumption index was reviewed in detail. Further how the digestive enzymes including a-Amylases, α and β-glucosidases (EC 3.2.1.1), lipases (EC 3.1.1) Proteases, serine, cysteine, and aspartic proteinases affected by the Meliaceae secondary metabolites was reviewed. Further effect of Meliaceae secondary metabolites on detoxifying enzymes have been found to react against botanical insecticides including general esterases (EST), glutathione S-transferase (GST) and phosphatases was reviewed. Alkaline phosphatase (ALP, E.C.3.1.3.1) and acid phosphatase (ACP, E.C.3.1.3.2) are hydrolytic enzymes, which hydrolyze phosphomonoesters under alkaline or acid conditions, respectively. These enzymes were affected by the secondary metabolites treatment. The detailed mechanism of action was further explained in this review. Acethylcholine esterase (AChE) is a key enzyme that terminates nerve impulses by catalyzing the hydrolysis of neurotransmitter, acetylcholine, in the nervous system of various organisms. How the AChE activity was altered by the Meliaceae secondary metabolites reviewed in detail. PMID:24391591
Metabolism of β-valine via a CoA-dependent ammonia lyase pathway.
Otzen, Marleen; Crismaru, Ciprian G; Postema, Christiaan P; Wijma, Hein J; Heberling, Matthew M; Szymanski, Wiktor; de Wildeman, Stefaan; Janssen, Dick B
2015-11-01
Pseudomonas species strain SBV1 can rapidly grow on medium containing β-valine as a sole nitrogen source. The tertiary amine feature of β-valine prevents direct deamination reactions catalyzed by aminotransferases, amino acid dehydrogenases, and amino acid oxidases. However, lyase- or aminomutase-mediated conversions would be possible. To identify enzymes involved in the degradation of β-valine, a PsSBV1 gene library was prepared and used to complement the β-valine growth deficiency of a closely related Pseudomonas strain. This resulted in the identification of a gene encoding β-valinyl-coenzyme A ligase (BvaA) and two genes encoding β-valinyl-CoA ammonia lyases (BvaB1 and BvaB2). The BvaA protein demonstrated high sequence identity to several known phenylacetate CoA ligases. Purified BvaA enzyme did not convert phenyl acetic acid but was able to activate β-valine in an adenosine triphosphate (ATP)- and CoA-dependent manner. The substrate range of the enzyme appears to be narrow, converting only β-valine and to a lesser extent, 3-aminobutyrate and β-alanine. Characterization of BvaB1 and BvaB2 revealed that both enzymes were able to deaminate β-valinyl-CoA to produce 3-methylcrotonyl-CoA, a common intermediate in the leucine degradation pathway. Interestingly, BvaB1 and BvaB2 demonstrated no significant sequence identity to known CoA-dependent ammonia lyases, suggesting they belong to a new family of enzymes. BLAST searches revealed that BvaB1 and BvaB2 show high sequence identity to each other and to several enoyl-CoA hydratases, a class of enzymes that catalyze a similar reaction with water instead of amine as the leaving group.
Qu, Changfeng; He, Yingying; Zheng, Zhou; An, Meiling; Li, Lulu; Wang, Xixi; He, Xiaodong; Wang, Yibin; Liu, Fangming; Miao, Jinlai
2018-01-01
The α-carbonic anhydrase (α-CA) is a zinc ion-containing enzyme that catalyzes the hydration of carbon dioxide. In this paper, a full-length α-CA gene was cloned from Chlamydomonas sp. ICE-L using RT-PCR and RACE-PCR for bioinformatic analysis. The α-CA open reading frame obtained by PCR was cloned into a vector and transformed into Escherichia coli to generate α-CA-producing bacteria. The α-CA was highly expressed upon induction with isopropyl-β-d-thiogalactoside (IPTG) at a final concentration of 0.8 mM. A single band with a molecular weight of approximate 40 kDa expressed in the recombinant E. coli strain harboring the α-CA vector was observed in SDS-PAGE analysis. The carbon dioxide hydration activity and esterase activity of α-CA expressed by the recombinant strain were 0.404 U/mg and 0.319 U, respectively. In addition, three conditions, temperature, salinity and UVB radiation exposure, were selected to analyze α-CA transcription levels by qRT-PCR. The results suggested UVB exposure increased the expression of relative mRNA; meanwhile, the α-CA mRNA expression was rapidly induced by temperature and salinity stress, indicating that Chlamydomonas sp. ICE-L might modulate the α-CA mRNA expression to adapt to the extreme environments.
Kaur, Charanpreet; Sharma, Shweta; Hasan, Mohammad Rokebul; Pareek, Ashwani; Singla-Pareek, Sneh L.; Sopory, Sudhir K.
2017-01-01
The glyoxalase system is the ubiquitous pathway for the detoxification of methylglyoxal (MG) in the biological systems. It comprises two enzymes, glyoxalase I (GLYI) and glyoxalase II (GLYII), which act sequentially to convert MG into d-lactate, thereby helping living systems get rid of this otherwise cytotoxic byproduct of metabolism. In addition, a glutathione-independent GLYIII enzyme activity also exists in the biological systems that can directly convert MG to d-lactate. Humans and Escherichia coli possess a single copy of GLYI (encoding either the Ni- or Zn-dependent form) and GLYII genes, which through MG detoxification provide protection against various pathological and disease conditions. By contrast, the plant genome possesses multiple GLYI and GLYII genes with a role in abiotic stress tolerance. Plants possess both Ni2+- and Zn2+-dependent forms of GLYI, and studies on plant glyoxalases reveal the various unique features of these enzymes distinguishing them from prokaryotic and other eukaryotic glyoxalases. Through this review, we provide an overview of the plant glyoxalase family along with a comparative analysis of glyoxalases across various species, highlighting similarities as well as differences in the biochemical, molecular, and physiological properties of these enzymes. We believe that the evolution of multiple glyoxalases isoforms in plants is an important component of their robust defense strategies. PMID:28358304
Perna, Annamaria; Simonetti, Amalia; Gambacorta, Emilio
2016-09-01
The aim of this work was to investigate the effect of casein haplotype (αS1, β, and κ) on antioxidative and angiotensin-converting enzyme (ACE) inhibitory capacities of milk casein from Italian Holstein cows before and following in vitro digestion with gastrointestinal enzymes. The antioxidant capacity was measured using 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid and ferric-reducing antioxidant power assays, whereas ACE inhibition was determined by ACE-inhibitory assay. The ACE-inhibitory and antioxidant capacities of milk casein increased during in vitro gastrointestinal digestion. Casein haplotype significantly influenced the antioxidative and ACE-inhibitory capacities of digested casein. In particular, BB-A(2)A(1)-AA casein and BB-A(1)A(1)-AA casein showed the highest ACE-inhibitory capacity, BB-A(2)A(2)-AA casein showed the highest antioxidant capacity, whereas BB-A(2)A(2)-BB casein showed the lowest biological capacity. To date, few studies have been done on the effect of casein haplotype on biological capacity of milk casein, thus the present study sets the basis for a new knowledge that could lead to the production of milk with better nutraceutical properties. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Gluschankof, P; Morel, A; Gomez, S; Nicolas, P; Fahy, C; Cohen, P
1984-01-01
The post-translational proteolytic conversion of somatostatin-14 precursors was studied to characterize the enzyme system responsible for the production of the tetradecapeptide either from its 15-kDa precursor protein or from its COOH-terminal fragment, somatostatin-28. A synthetic undecapeptide Pro-Arg-Glu-Arg-Lys-Ala-Gly-Ala-Lys-Asn-Tyr(NH2), homologous to the amino acid sequence of the octacosapeptide at the putative Arg-Lys cleavage locus, was used as substrate, after 125I labeling on the COOH-terminal tyrosine residue. A 90-kDa proteolytic activity was detected in rat brain cortex extracts after molecular sieve fractionation followed by ion exchange chromatography. The protease released the peptide 125I-Ala-Gly-Ala-Lys-Asn-Tyr(NH2) from the synthetic undecapeptide substrate and converted somatostatin-28 into somatostatin-14 under similar conditions (pH 7.0). Under these experimental conditions, the product tetradecapeptide was not further degraded by the enzyme. In contrast, the purified 15-kDa hypothalamic precursor remained unaffected when exposed to the proteolytic enzyme under identical conditions. It is concluded that this Arg-Lys esteropeptidase from the brain cortex may be involved in the in vivo processing of the somatostatin-28 fragment of prosomatostatin into somatostatin-14, the former species being an obligatory intermediate in a two-step proteolytic mechanism leading to somatostatin-14. PMID:6149550
Fazal, Yumna; Fatima, Syeda Nuzhat; Shahid, Syed Muhammad; Mahboob, Tabassum
2015-12-01
This study aimed to evaluate the protective effects of curcumin on angiotensin-converting enzyme (ACE) gene expression, oxidative stress and anti-oxidant status in thioacetamide (TAA)-induced hepatotoxicity in rats. Total 32 albino Wistar rats (male, 200-250 g) were divided into six groups (n=8). Group 1: untreated controls; Group 2: received TAA (200 mg/kg body weight (b.w.); i.p.) for 12 weeks; Group 3: received curcumin (75 mg/kg b.w.) for 24 weeks; Group 4: received TAA (200 mg/kg b.w.; i.p.) for 12 weeks+curcumin (75 mg/kg b.w.) for 12 weeks. A significantly higher ACE gene expression was observed in TAA-induced groups as compared with control, indicating more synthesis of ACE proteins. Treatment with curcumin suppressed ACE expression in TAA liver and reversed the toxicity produced. TAA treatment results in higher lipid peroxidation and lower GSH, SOD and CAT than the normal, and this produces oxidative stress in the liver. Cirrhotic conditions were confirmed by serum enzymes (ALT, AST and ALP) as well as histopathological observations. Curcumin treatment reduced oxidative stress in animals by scavenging reactive oxygen species, protecting the anti-oxidant enzymes from being denatured and reducing the oxidative stress marker lipid peroxidation. Curcumin treatment restores hepatocytes, damaged by TAA, and protects liver tissue approaching cirrhosis. © The Author(s) 2014.
Manoharan, Sivananthan; Shuib, Adawiyah Suriza; Abdullah, Noorlidah
2017-01-01
Background: The commercially available synthetic angiotensin-I-converting enzyme (ACE) inhibitors are known to exert negative side effects which have driven many research groups globally to discover the novel ACE inhibitors. Method: Literature search was performed within the PubMed, ScienceDirect.com and Google Scholar. Results: The presence of proline at the C-terminal tripeptide of ACE inhibitor can competitively inhibit the ACE activity. The effects of other amino acids are less studied leading to difficulties in predicting potent peptide sequences. The broad specificity of the enzyme may be due to the dual active sites observed on the somatic ACE. The inhibitors may not necessarily competitively inhibit the enzyme which explains why some reported inhibitors do not have the common ACE inhibitor characteristics. Finally, the in vivo assay has to be carried out before the peptides as the antihypertensive agents can be claimed. The peptides must be absorbed into circulation without being degraded, which will affect their bioavailability and potency. Thus, peptides with strong in vitro IC50 values do not necessarily have the same effect in vivo and vice versa. Conclusion: The relationship between peptide amino acid sequence and inhibitory activity, in vivo studies of the active peptides and bioavailability must be studied before the peptides as antihypertensive agents can be claimed. PMID:28573254
Murumkar, Prashant R; Giridhar, Rajani; Yadav, Mange Ram
2008-04-01
A set of 29 benzothiadiazepine hydroxamates having selective tumor necrosis factor-alpha converting enzyme inhibitory activity were used to compare the quality and predictive power of 3D-quantitative structure-activity relationship, comparative molecular field analysis, and comparative molecular similarity indices models for the atom-based, centroid/atom-based, data-based, and docked conformer-based alignment. Removal of two outliers from the initial training set of molecules improved the predictivity of models. Among the 3D-quantitative structure-activity relationship models developed using the above four alignments, the database alignment provided the optimal predictive comparative molecular field analysis model for the training set with cross-validated r(2) (q(2)) = 0.510, non-cross-validated r(2) = 0.972, standard error of estimates (s) = 0.098, and F = 215.44 and the optimal comparative molecular similarity indices model with cross-validated r(2) (q(2)) = 0.556, non-cross-validated r(2) = 0.946, standard error of estimates (s) = 0.163, and F = 99.785. These models also showed the best test set prediction for six compounds with predictive r(2) values of 0.460 and 0.535, respectively. The contour maps obtained from 3D-quantitative structure-activity relationship studies were appraised for activity trends for the molecules analyzed. The comparative molecular similarity indices models exhibited good external predictivity as compared with that of comparative molecular field analysis models. The data generated from the present study helped us to further design and report some novel and potent tumor necrosis factor-alpha converting enzyme inhibitors.
Ames, Marisa K; Atkins, Clarke E; Lantis, Andrea C; zum Brunnen, James
2016-01-01
Objective: The objective of this study was to evaluate subacute changes in renin–angiotensin–aldosterone system (RAAS) activity during angiotensin-converting enzyme inhibitor (ACEI) therapy in dogs with experimental RAAS activation. Methods: Analysis of data (urine aldosterone:creatinine ratio (UAldo:C) and serum angiotensin-converting enzyme activity), in 31 healthy dogs with furosemide or amlodipine-activated RAAS that received an ACEI. When furosemide or amlodipine activation of RAAS preceded ACEI administration, incomplete RAAS blockade (IRB) was defined as a UAldo:C greater than (a) the dog’s ‘activated’ baseline value or (b) a population-derived cut-off value (mean + 2 SD (>1.0 μg/g) of pretreatment UAldo:C from our population of research dogs). In studies where RAAS activation occurred concurrently with ACEIs, IRB was defined as (a) a UAldo:C greater than either twofold the dog’s prestimulation baseline value or (b) 1.0 µg/g. Dogs were followed for 7–17 days. Results: Serum angiotensin-converting enzyme activity was measured in 19 dogs and was significantly reduced (P<0.0001) after ACEI administration. The overall incidence of IRB, when RAAS activation preceded ACEI administration, was 33% and 8% for definitions (a) and (b), respectively. The overall incidence of IRB, when ACEIs were concurrent with RAAS activation, was 65% and 61% for definitions (a) and (b), respectively. Conclusion: Increases in UAldo:C, despite ACEI administration, is evidence of IRB in this subacute model of experimental RAAS activation and suppression. PMID:27009288
Bae, Eun Hui; Fang, Fei; Williams, Vanessa R; Konvalinka, Ana; Zhou, Xiaohua; Patel, Vaibhav B; Song, Xuewen; John, Rohan; Oudit, Gavin Y; Pei, York; Scholey, James W
2017-06-01
Angiotensin-converting enzyme 2 (ACE2) is a monocarboxypeptidase in the renin-angiotensin system that catalyzes the breakdown of angiotensin II to angiotensin 1-7. We have reported that ACE2 expression in the kidney is reduced in experimental Alport syndrome but the impact of this finding on disease progression has not been studied. Accordingly, we evaluated effects of murine recombinant ACE2 treatment in Col4a3 knockout mice, a model of Alport syndrome characterized by proteinuria and progressive renal injury. Murine recombinant ACE2 (0.5 mg/kg/day) was administered from four to seven weeks of age via osmotic mini-pump. Pathological changes were attenuated by murine recombinant ACE2 treatment which ameliorated kidney fibrosis as shown by decreased expression of COL1α1 mRNA, less accumulation of extracellular matrix proteins, and inhibition of transforming growth factor-β signaling. Further, increases in proinflammatory cytokine expression, macrophage infiltration, inflammatory signaling pathway activation, and heme oxygenase-1 levels in Col4a3 knockout mice were also reduced by murine recombinant ACE2 treatment. Lastly, murine recombinant ACE2 influenced the turnover of renal ACE2, as it suppressed the expression of tumor necrosis factor-α converting enzyme, a negative regulator of ACE2. Thus, treatment with exogenous ACE2 alters angiotensin peptide metabolism in the kidneys of Col4a3 knockout mice and attenuates the progression of Alport syndrome nephropathy. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.
In vitro autoradiographic localization of angiotensin-converting enzyme in sarcoid lymph nodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allen, R.K.; Chai, S.Y.; Dunbar, M.S.
1986-09-01
Angiotensin-converting enzyme (ACE) was localized in sarcoid lymph nodes by an in vitro autoradiographic technique using a synthetic ACE inhibitor of high affinity, /sup 125/I-labelled 351A. The lymph nodes were from seven patients with active sarcoidosis who underwent mediastinoscopy and from six control subjects who had nodes resected at either mediastinoscopy or laparotomy. Angiotensin-converting enzyme was localized in the epithelioid cells of sarcoid granulomata in markedly increased amounts compared with control nodes, where it was restricted to vessels and some histiocytes. In sarcoid lymph nodes, there was little ACE present in lymphocytes or fibrous tissue. Sarcoid nodes with considerable fibrosismore » had much less intense ACE activity than the nonfibrotic nodes. The specific activity of ACE measured by an enzymatic assay in both the control and sarcoid lymph nodes closely reflected the ACE activity demonstrated by autoradiography. Sarcoid lymph nodes with fibrosis had an ACE specific activity of half that of nonfibrotic nodes (p less than 0.05). There was a 15-fold increase in specific ACE activity in sarcoid nodes (p less than 0.05) compared to normal. Serum ACE was significantly higher in those sarcoid patients whose lymph nodes were not fibrosed compared with those with fibrosis (p less than 0.01). This technique offers many advantages over the use of polyclonal antibodies. The 351A is a highly specific ACE inhibitor, chemically defined and in limitless supply. This method enables the quantitation of results, and autoradiographs may be stored indefinitely for later comparison.« less
Ning, Jian-Wen; Zhang, Yan; Yu, Mo-Sang; Gu, Meng-Li; Xu, Jia; Usman, Ali; Ji, Feng
2017-08-15
Emodin, a traditional Chinese medicine, has a therapeutic effect on severe acute pancreatitis (SAP), whereas the underlying mechanism is still unclear. Studies showed that the intestinal mucosa impairment, and subsequent release of endotoxin and proinflammatory cytokines such as IL-1β, which further leads to the dysfunction of multiple organs, is the potentially lethal mechanism of SAP. Caspase-1, an IL-1β-converting enzyme, plays an important role in this cytokine cascade process. Investigation of the effect of emodin on regulating the caspase-1 expression and the release proinflammatory cytokines will help to reveal mechanism of emodin in treating SAP. Eighty Sprague-Dawley rats were randomly divided into four groups (n=20 each group): SAP, sham-operated (SO), emodin-treated (EM) and caspase-1 inhibitor-treated (ICE-I) groups. SAP was induced by retrograde infusion of 3.5% sodium taurocholate into the pancreatic duct. Emodin and caspase-1 inhibitor were given 30 minutes before and 12 hours after SAP induction. Serum levels of IL-1β, IL-18 and endotoxin, histopathological alteration of pancreas tissues, intestinal mucosa, and the intestinal caspase-1 mRNA and protein expressions were assessed 24 hours after SAP induction. Rats in the SAP group had higher serum levels of IL-1β and IL-18 (P<0.05), pancreatic and gut pathological scores (P<0.05), and caspase-1 mRNA and protein expressions (P<0.05) compared with the SO group. Compared with the SAP group, rats in the EM and ICE-I groups had lower IL-1β and IL-18 levels (P<0.05), lower pancreatic and gut pathological scores (P<0.05), and decreased expression of intestine caspase-1 mRNA (P<0.05). Ultrastructural analysis by transmission electron microscopy found that rats in the SAP group had vaguer epithelial junctions, more disappeared intercellular joints, and more damaged intracellular organelles compared with those in the SO group or the EM and ICE-I groups. Emodin alleviated pancreatic and intestinal mucosa injury in experimental SAP. Its mechanism may partly be mediated by the inhibition of caspase-1 and its downstream inflammatory cytokines, including IL-1β and IL-18. Our animal data may be applicable in clinical practice. Copyright © 2017 The Editorial Board of Hepatobiliary & Pancreatic Diseases International. Published by Elsevier B.V. All rights reserved.
Suhayda, C G; Omura, M; Hasegawa, S
1995-09-01
Bitter limonoids in citrus juice lower the quality and value of commercial juices. Limonoate dehydrogenase converts the precursor of bitter limonin, limonoate A-ring lactone, to nonbitter 17-dehydrolimonoate A-ring lactone. This enzyme was isolated from Arthrobacter globiformis cells by a combination of ammonium sulfate fractionation, Cibacron Blue affinity chromatography and DEAE ion exchange HPLC. Using this protocol a 428-fold purification of the enzyme was obtained. Gel filtration HPLC indicated a M(r) of 118,000 for the native enzyme. SDS-PAGE indicated an individual subunit M(r) of 31,000. N-Terminal sequencing of the protein provided a sequence of the first 16 amino acid residues. Since LDH activity in citrus is very low, cloning the gene for this bacterial enzyme into citrus trees should enhance the natural debittering mechanism in citrus fruit.
Greenland GPS network: Measurements and Models of 3D Elastic deformation
NASA Astrophysics Data System (ADS)
Khan, S. A.; van Dam, T. M.; Bevis, M. G.; Sasgen, I.; Bamber, J. L.; Helm, V.; Bjork, A. A.; Liu, L.; Kjaer, K. H.; Knudsen, P.; Kjeldsen, K. K.
2017-12-01
The Greenland GPS Network (GNET) uses the Global Positioning System (GPS) to measure the displacement of bedrock exposed near the margins of the Greenland ice sheet. The entire network is uplifting in response to past and present-day changes in ice mass. Here, we focus on present-day changes and compare measurements with models. To retrieve 3D elastic displacements from GPS time series, we correct our observations for glacial-isostatic adjustment and tectonic plate motion, and study the effect of the underlying mantle viscosity, ice load history and Euler parameters. To model 3D elastic displacements, we first estimate mass loss using 1995-2014 NASA's Airborne Topographic Mapper (ATM) flights derived altimetry, supplemented with laser altimetry observations from the Ice, Cloud, and Land Elevation Satellite (ICESat) during 2003-2009; the airborne Land, Vegetation, and Ice Sensor (LVIS) instrument during 2007-2013; radar altimetry from the CryoSat-2 satellite during 2010-2017; and European Remote-Sensing Satellite-1 (ERS-1) and ERS-2 data during 1995-2003. We converted the volume loss rate into a mass loss rate accounting for firn compaction as described by Kuipers Munneke et al. (2015). We predict the elastic displacements by convolving mass loss estimates with Green's functions for vertical and horizontal displacements. We use a variety of elastic Green's functions and mass change grid resolutions, respectively, to study the sensitivity of 3D elastic deformation on Earth model parameters different from the Preliminary Reference Earth Reference Model (PREM; Dziewonski & Anderson 1981) and the forcing ice load.
USDA-ARS?s Scientific Manuscript database
Vitamin K, a fat-soluble vitamin, is an enzyme cofactor for post-translation modification of specific glutamate residues that are converted into '-carboxyglutamic acid (Gla) residues by a vitamin K-dependent (VKD) carboxylase. Seven VKD coagulation proteins are synthesized in the liver. The extra-he...
Serum angiotensin-converting enzyme (SACE) in sarcoidosis and other granulomatous disorders.
Studdy, P; Bird, R; James, D G
Serum angiotensin-converting enzyme (SACE) activity was significantly higher in 90 patients with sarcoidosis (55 +/- [S.D.] 23 nmol min-1 ml-1) than in 80 healthy controls (34 +/- 9 nmol min-1 ml-1). Steroid therapy modified SACE activity; 60 sarcoidosis patients who were not being treated with steroids had significantly higher enzyme activities (58 +/- 24 nmol min-1 ml-1) than 30 steroid-treated sarcoidosis patients (40 +/- 19 nmol min-1 ml-1). In 50% of the non-steroid treated sarcoidosis patients SACE activity was more than 2 S.D. above the mean value for the controls. SACE activity was measured in 22 tuberculous patients (38 +/- 14 nmol min-1 ml-1), 20 leprosy patients (34 +/- 9 nmol min-1 ml-1), 31 with primary biliary cirrhosis (44 +/- 20 nmol min-1 ml-1), 26 with inflammatory bowel disease (31 +/- 9 nmol min-1 ml-1), 8 with hepatic granulomatous disease, 5 with Hodgkin's disease, and 2 with schistosomiasis. The combined false-positive rate for these non-sarcoidosis patients was 10%. Serial SACE assays provide useful information on the course of sarcoidosis and response to steroid treatment.
Serum angiotensin--converting enzyme (SACE) in sarcoidosis and other granulomatous disorders.
Studdy, P; Bird; James, D G; Sherlock, S
Serum angiotensin-converting enzyme (SACE) activity was significantly higher in 90 patients with sarcoidosis (55 +/- [S.D.] 23 nmol min-1 ml-1) than in 80 healthy controls (34 +/- 9 nmol min-1 ml-1). Steroid therapy modified SACE activity; 60 sarcoidosis patients who were not being treated with steroids had significantly higher enzyme activities (58 +/- 24 nmol min-1 ml-1) than 30 steroid-treated sarcoidosis patients (40 +/- 19 nmol min-1 ml-1). In 50% of the non-steroid treated sarcoidosis patients SACE activity was more than than 2 S.D. above the mean value for the controls. SACE activity was measured in 22 tuberculous patients (38 +/- 14 nmol min-1 ml-1), 20 leprosy patients (34 +/- 9 nmol min-1 ml-1), 31 with primary biliary cirrhosis (44 +/- 20 nmol min-1 ml-1), 26 with inflammatory bowel disease (31 +/- 9 nmol min-1 ml-1), eight with hepatic granulomatous disease, five with Hodgkin's disease, and two with schistosomiasis. The combined false-positive rate for these non-sarcoidosis patients was 10%. Serial SACE assays provide useful information on the course of sarcoidosis and response to steroid treatment.
Auwal, Shehu Muhammad; Zarei, Mohammad; Abdul-Hamid, Azizah; Saari, Nazamid
2017-01-01
The stone fish is an under-utilized sea cucumber with many nutritional and ethno-medicinal values. This study aimed to establish the conditions for its optimum hydrolysis with bromelain to generate angiotensin I-converting enzyme (ACE)-inhibitory hydrolysates. Response surface methodology (RSM) based on a central composite design was used to model and optimize the degree of hydrolysis (DH) and ACE-inhibitory activity. Process conditions including pH (4–7), temperature (40–70 °C), enzyme/substrate (E/S) ratio (0.5%–2%) and time (30–360 min) were used. A pH of 7.0, temperature of 40 °C, E/S ratio of 2% and time of 240 min were determined using a response surface model as the optimum levels to obtain the maximum ACE-inhibitory activity of 84.26% at 44.59% degree of hydrolysis. Hence, RSM can serve as an effective approach in the design of experiments to improve the antihypertensive effect of stone fish hydrolysates, which can thus be used as a value-added ingredient for various applications in the functional foods industries. PMID:28362352
Mirdhayati, Irdha; Hermanianto, Joko; Wijaya, Christofora H; Sajuthi, Dondin; Arihara, Keizo
2016-08-01
The meat of Kacang goat has potential for production of a protein hydrolysate. Functional ingredients from protein hydrolysate of Kacang goat meat were determined by the consistency of angiotensin-converting enzyme (ACE) inhibitory activity and antihypertensive effect. This study examined the potency of Kacang goat protein hydrolysate in ACE inhibition and antihypertensive activity. Protein hydrolysates of Kacang goat meat were prepared using sequential digestion of endo-proteinase and protease complex at several concentrations and hydrolysis times. The highest ACE inhibitory activity resulted from a hydrolysate that was digested for 4 h with 5 g kg(-1) of both enzymes. An ACE inhibitory peptide was purified and a novel peptide found with a sequence of Phe-Gln-Pro-Ser (IC50 value of 27.0 µmol L(-1) ). Both protein hydrolysates and a synthesised peptide (Phe-Gln-Pro-Ser) demonstrated potent antihypertensive activities in spontaneously hypertensive rats. Protein hydrolysate of Kacang goat meat produced by sequential digestion with endo-proteinase and protease complex has great potential as a functional ingredient, particularly as an antihypertensive agent. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.
Nishibori, Naoyoshi; Kishibuchi, Reina; Morita, Kyoji
2017-05-04
Soy pulp, called "okara" in Japanese, is known as a by-product of the production of bean curd (tofu), and expected to contain a variety of biologically active substances derived from soybean. However, the biological activities of okara ingredients have not yet been fully understood, and the effectiveness of okara as a functional food seems necessary to be further evaluated. Then the effect of okara extract on angiotensin I-converting enzyme (ACE) activity was examined in vitro, and the extract was shown to cause the inhibition of ACE activity in a manner depending on its concentration. Kinetic analysis indicated that this enzyme inhibition was accompanied by an increase in the Km value without any change in Vmax. Further studies suggested that putative inhibitory substances contained in the extract might be heat stable and dialyzable, and recovered mostly in the peptide fraction obtained by a spin-column separation and a high performance liquid chromatography (HPLC) fractionation. Therefore, the extract was speculated to contain small-size peptides responsible for the inhibitory effect of okara extract on ACE activity, and could be expected to improve the hypertensive conditions by reducing the production of hypertensive peptide.
Konrad, Babij; Anna, Dąbrowska; Marek, Szołtysik; Marta, Pokora; Aleksandra, Zambrowicz; Józefa, Chrzanowska
2014-01-01
In the present study, whey protein concentrate (WPC-80) and β-lactoglobulin were hydrolyzed with a noncommercial serine protease isolated from Asian pumpkin ( Cucurbita ficifolia ). Hydrolysates were further fractionated by ultrafiltration using membranes with cut-offs equal 3 and 10 kDa. Peptide fractions of molecular weight lower than 3 and 3-10 kDa were further subjected to the RP-HPLC. Separated preparations were investigated for their potential as the natural inhibitors of dipeptidyl peptidase (DPP-IV), α-glucosidase and angiotensin converting enzyme (ACE). WPC-80 hydrolysate showed higher inhibitory activities against the three tested enzymes than β-lactoglobulin hydrolysate. Especially high biological activities were exhibited by peptide fractions of molecular weight lower than 3 kDa, with ACE IC50 <0.64 mg/mL and DPP-IV IC50 <0.55 mg/mL. This study suggests that peptides generated from whey proteins may support postprandial glycemia regulation and blood pressure maintenance, and could be used as functional food ingredients in the diet of patients with type 2 diabetes.
Lee, Bao-Hong; Lai, Yi-Syuan; Wu, She-Ching
2015-12-01
Because of the high incidence of cardiovascular diseases in Asian countries, traditional fermented foods from Asia have been increasingly investigated for antiatherosclerotic effects. This study investigated the production of nattokinase, a serine fibrinolytic enzyme, in pigeon pea by Bacillus subtilis fermentation. B. subtilis 14714, B. subtilis 14715, B. subtilis 14716, and B. subtilis 14718 were employed to produce nattokinase. The highest nattokinase activity in pigeon pea was obtained using B. subtilis 14715 fermentation for 32 hours. In addition, the levels of antioxidants (phenolics and flavonoids) and angiotensin converting enzyme inhibitory activity were increased in B. subtilis 14715-fermented pigeon pea, compared with those in nonfermented pigeon pea. In an animal model, we found that both water extracts of pigeon pea (100 mg/kg body weight) and water extracts of B. subtilis-fermented pigeon pea (100 mg/kg body weight) significantly improved systolic blood pressure (21 mmHg) and diastolic blood pressure (30 mmHg) in spontaneously hypertensive rats. These results suggest that Bacillus-fermented pigeon pea has benefits for cardiovascular health and can be developed as a new dietary supplement or functional food that prevents hypertension. Copyright © 2015. Published by Elsevier B.V.
Morden, Andrew; Horwood, Jeremy; Whiting, Penny; Savovic, Jelena; Tomlinson, Laurie; Blakeman, Thomas; Tomson, Charles; Richards, Alison; Stone, Tracey; Caskey, Fergus
2015-10-24
Acute kidney injury (AKI) is common and often leads to significant morbidity and/or death. The development of AKI, or complications associated with it, may be due to use of certain medications in at-risk patients experiencing an intercurrent illness. Implicated drugs include diuretics, angiotensin-converting enzyme inhibitors/angiotensin receptor blockers/direct renin inhibitors, non-steroidal anti-inflammatory drugs (NSAIDs), metformin and sulfonylureas. Expert consensus opinion (and clinical guidelines) recommend considering discontinuation of diuretics, angiotensin-converting enzyme inhibitors/angiotensin receptor blockers/direct renin inhibitors, NSAIDs, metformin and sulfonylureas in the event of an intercurrent illness to prevent AKI onset or reduce severity or complications. However, the evidence base for these recommendations is very limited. This systematic review aims to address the available evidence for the temporary discontinuation of diuretics, ACE inhibitors, angiotensin receptor blockers, direct renin inhibitors, non-steroidal anti-inflammatories and metformin and sulfonylureas for those at risk of AKI or with newly diagnosed AKI. Randomised controlled trials; non-randomised trials; cohort studies; case-control studies; interrupted time series studies; and before-and-after studies featuring adults aged 18 and over in any setting currently taking diuretics, angiotensin-converting enzyme inhibitors/angiotensin receptor blockers/direct renin inhibitors, NSAIDs and metformin; experiencing an intercurrent illness; or undergoing a radiological/surgical procedure (planned or unplanned) will be searched for. Relevant trial registers and systematic review databases will be searched. Systematic reviews will be assessed for methodological quality using the ROBIS tool, trials will be assessed using the Cochrane risk of bias tool, and observational studies will be assessed using the ACROBAT-NRS tool. If sufficient studies assessing similar populations, study type, settings and outcomes are found, then a formal meta-analysis will be performed to estimate summary measures of effect. If not, a narrative synthesis will be adopted. This review will synthesise evidence for the efficacy of discontinuing diuretics, angiotensin-converting enzyme inhibitors/angiotensin receptor blockers/direct renin inhibitors, NSAIDs, metformin or sulfonylureas to prevent or delay onset of AKI or associated complications. Results will provide guidance on efficacy and safety of this strategy and potentially help to develop an intervention to test the best mechanism of guiding medication discontinuation in at-risk populations. PROSPERO CRD42015023210.
Enzyme Catalysis To Power Micro/Nanomachines
2016-01-01
Enzymes play a crucial role in many biological processes which require harnessing and converting free chemical energy into kinetic forces in order to accomplish tasks. Enzymes are considered to be molecular machines, not only because of their capability of energy conversion in biological systems but also because enzymatic catalysis can result in enhanced diffusion of enzymes at a molecular level. Enlightened by nature’s design of biological machinery, researchers have investigated various types of synthetic micro/nanomachines by using enzymatic reactions to achieve self-propulsion of micro/nanoarchitectures. Yet, the mechanism of motion is still under debate in current literature. Versatile proof-of-concept applications of these enzyme-powered micro/nanodevices have been recently demonstrated. In this review, we focus on discussing enzymes not only as stochastic swimmers but also as nanoengines to power self-propelled synthetic motors. We present an overview on different enzyme-powered micro/nanomachines, the current debate on their motion mechanism, methods to provide motion and speed control, and an outlook of the future potentials of this multidisciplinary field. PMID:27666121
Enzyme Catalysis To Power Micro/Nanomachines.
Ma, Xing; Hortelão, Ana C; Patiño, Tania; Sánchez, Samuel
2016-10-25
Enzymes play a crucial role in many biological processes which require harnessing and converting free chemical energy into kinetic forces in order to accomplish tasks. Enzymes are considered to be molecular machines, not only because of their capability of energy conversion in biological systems but also because enzymatic catalysis can result in enhanced diffusion of enzymes at a molecular level. Enlightened by nature's design of biological machinery, researchers have investigated various types of synthetic micro/nanomachines by using enzymatic reactions to achieve self-propulsion of micro/nanoarchitectures. Yet, the mechanism of motion is still under debate in current literature. Versatile proof-of-concept applications of these enzyme-powered micro/nanodevices have been recently demonstrated. In this review, we focus on discussing enzymes not only as stochastic swimmers but also as nanoengines to power self-propelled synthetic motors. We present an overview on different enzyme-powered micro/nanomachines, the current debate on their motion mechanism, methods to provide motion and speed control, and an outlook of the future potentials of this multidisciplinary field.
Potential and utilization of thermophiles and thermostable enzymes in biorefining
Turner, Pernilla; Mamo, Gashaw; Karlsson, Eva Nordberg
2007-01-01
In today's world, there is an increasing trend towards the use of renewable, cheap and readily available biomass in the production of a wide variety of fine and bulk chemicals in different biorefineries. Biorefineries utilize the activities of microbial cells and their enzymes to convert biomass into target products. Many of these processes require enzymes which are operationally stable at high temperature thus allowing e.g. easy mixing, better substrate solubility, high mass transfer rate, and lowered risk of contamination. Thermophiles have often been proposed as sources of industrially relevant thermostable enzymes. Here we discuss existing and potential applications of thermophiles and thermostable enzymes with focus on conversion of carbohydrate containing raw materials. Their importance in biorefineries is explained using examples of lignocellulose and starch conversions to desired products. Strategies that enhance thermostablity of enzymes both in vivo and in vitro are also assessed. Moreover, this review deals with efforts made on developing vectors for expressing recombinant enzymes in thermophilic hosts. PMID:17359551
NASA Technical Reports Server (NTRS)
Zwally, H. Jay
2004-01-01
NASA's Ice, Cloud and Land Elevation Satellite (ICESat) has been measuring elevations of the Antarctic ice sheet and sea-ice freeboard elevations with unprecedented accuracy. Since February 20,2003, data has been acquired during three periods of laser operation varying from 36 to 54 days, which is less than the continuous operation of 3 to 5 years planned for the mission. The primary purpose of ICESat is to measure time-series of ice-sheet elevation changes for determination of the present-day mass balance of the ice sheets, study of associations between observed ice changes and polar climate, and estimation of the present and future contributions of the ice sheets to global sea level rise. ICESat data will continue to be acquired for approximately 33 days periods at 3 to 6 month intervals with the second of ICESat's three lasers, and eventually with the third laser. The laser footprints are about 70 m on the surface and are spaced at 172 m along-track. The on-board GPS receiver enables radial orbit determinations to an accuracy better than 5 cm. The orbital altitude is around 600 km at an inclination of 94 degrees with a 8-day repeat pattern for the calibration and validation period, followed by a 91 -day repeat period for the rest of the mission. The expected range precision of single footprint measurements was 10 cm, but the actual range precision of the data has been shown to be much better at 2 to 3 cm. The star-tracking attitude-determination system should enable footprints to be located to 6 m horizontally when attitude calibrations are completed. With the present attitude calibration, the elevation accuracy over the ice sheets ranges from about 30 cm over the low-slope areas to about 80 cm over areas with slopes of 1 to 2 degrees, which is much better than radar altimetry. After the first period of data collection, the spacecraft attitude was controlled to point the laser beam to within 50 m of reference surface tracks over the ice sheets. Detection of ice elevation changes over select areas of the ice sheet is demonstrated with using both crossover analysis and precise-repeat track analysis. Sea ice freeboard-height distributions over the Antarctic sea pack are derived over distances of 50 km and converted into maps of average freeboard thickness and sea-ice thickness.
Ring-opening polymerization of DD-lactide catalyzed by Novozyme 435.
Hans, Marc; Keul, Helmut; Moeller, Martin
2009-03-10
In contrast to LLA, DLA is converted in toluene solution under mild reaction conditions (50-70 degrees C) using Novozyme 435 (immobilized CALB) to form the corresponding polymer. The influence of several parameters, such as enzyme concentration, temperature and monomer concentration, on the polymerization rate and the monomer conversion was studied. In contrast to the Novozyme 435 catalyzed polymerization of epsilon-caprolactone, enzyme deactivation occurs. It is attributed to the deprivation of water from the enzyme. This work points out that by careful selection of the reaction conditions, it is possible to obtain poly(D-lactide) in reasonable molecular weights and in high yields using Novozyme 435 catalysis.
The lifecycle and climate-impact of contrail cirrus
NASA Astrophysics Data System (ADS)
Schumann, Ulrich
2016-04-01
The lifecycle of contrail cirrus has to be understood as a prerequisite to compute its weather and climate impact for given airtraffic and meteorology. As a new concept, this study distinguishes between: 1) Externally limited contrail cirrus, where contrails form in moderately ice-supersaturated air, but ice particles stay small and contrails end by sublimation because of drying of the ambient air, e.g., when the ambient air subsides; 2) Internally limited contrail cirrus, where contrails form at high humidity with strong supersaturation or form in rising air masses, so that the ice particles grow until their fall speed gets large, and the ice particles finally fall to lower levels (e.g. in fall streaks). For both kinds of contrail cirrus, scaling laws are set up which show how the "Surface Forcing" (SF), i.e. the time-integral of optical depth times width (integral of ice particle number per flight distance times ice particle cross-section area times extinction efficiency) depends on the lifetime, on the number of ice particles per unit length, ambient humidity, uplift velocity, wind shear, turbulent mixing, and temperature. SF can be converted into an energy forcing (EF), from which the global radiative forcing can be evaluated, for given radiative Earth-atmosphere properties and traffic density. The scaling laws are tested by comparison to global contrail simulations with the most recent version of CoCiP (as in Schumann, 2012; and some changes), using ECMWF data and a global traffic data bases (ACCRI). The model assumes that contrail ice particles form initially mainly on soot, that the ice particles consume the ice supersaturation in the contrail plume, that the ice particle number decreases slightly with lifetime, and that interactions of contrails with ambient cirrus are weak. The scaling laws and the model allow estimating the climate impact of contrails as a function of a given aircraft and weather parameters. The results are compared to available results from airborne observation campaigns, like CONCERT and MLCIRRUS, from remote sensing, from large eddy simulations and global model studies. For externally limited contrails, the climate impact of contrails increases with about the square of the externally controlled lifetime and the third root of the number contrail ice particles per flight distance. For internally limited contrails, SF grows about linearly with this number.
The Metastable Persistence of Vapor-Deposited Amorphous Ice at Anomalously High Temperatures
NASA Technical Reports Server (NTRS)
Blake, David F.; Jenniskens, Peter; DeVincenzi, Donald L. (Technical Monitor)
1995-01-01
Studies of the gas release, vaporization behavior and infrared (IR) spectral properties of amorphous and crystalline water ice have direct application to cometary and planetary outgassing phenomena and contribute to an understanding of the physical properties of astrophysical ices. Several investigators report anomalous phenomena related to the warming of vapor-deposited astrophysical ice analogs. However gas release, ice volatilization and IR spectral features are secondary or tertiary manifestations of ice structure or morphology. These observations are useful in mimicking the bulk physical and chemical phenomena taking place in cometary and other extraterrestrial ices but do not directly reveal the structural changes which are their root cause. The phenomenological interpretation of spectral and gas release data is probably the cause of somewhat contradictory explanations invoked to account for differences in water ice behavior in similar temperature regimes. It is the microstructure, micromorphology and microchemical heterogeneity of astrophysical ices which must be characterized if the mechanisms underlying the observed phenomena are to be understood. We have been using a modified Transmission Electron Microscope to characterize the structure of vapor-deposited astrophysical ice analogs as a function of their deposition, temperature history and composition. For the present experiments, pure water vapor is deposited at high vacuum onto a 15 K amorphous carbon film inside an Hitachi H-500H TEM. The resulting ice film (approx. 0.05 micrometers thick) is warmed at the rate of 1 K per minute and diffraction patterns are collected at 1 K intervals. These patterns are converted into radial intensity distributions which are calibrated using patterns of crystalline gold deposited on a small part of the carbon substrate. The small intensity contributed by the amorphous substrate is removed by background subtraction. The proportions of amorphous and crystalline material in each pattern are determined by subtracting a percentage of crystalline component relative to amorphous and pure crystalline endmembers. Vapor-deposited water ice undergoes two amorphous to amorphous structural transformations in the temperature range 15-130 K with important astrophysical implications. The onset of cubic crystallization occurs at 142-160 K (at 1K per minute heating rates) during which the 220 and 311 diffraction maxima appear and 0.1 micrometer crystallites can be seen in bright field images. This transition is time dependent.
2007 Pacific Operational Science and Technology Conference
2007-04-04
Hawaiian Village Mid-Pacific Conference Center Coral Ballroom Monday, April 2, 2007 5:00 PM – 6:30 PM Registration and Ice Breaker Reception ...information OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY T2 T3 T120 Data Control Agent Data Agents Movie Producer Agent T1 8 Agents per...disturbing echo reception •Radar heterodyning technique converts continuous echo to narrowband signal with frequency proportional to rangeHow does it work
Advances in fuel cell vehicle design
NASA Astrophysics Data System (ADS)
Bauman, Jennifer
Factors such as global warming, dwindling fossil fuel reserves, and energy security concerns combine to indicate that a replacement for the internal combustion engine (ICE) vehicle is needed. Fuel cell vehicles have the potential to address the problems surrounding the ICE vehicle without imposing any significant restrictions on vehicle performance, driving range, or refuelling time. Though there are currently some obstacles to overcome before attaining the widespread commercialization of fuel cell vehicles, such as improvements in fuel cell and battery durability, development of a hydrogen infrastructure, and reduction of high costs, the fundamental concept of the fuel cell vehicle is strong: it is efficient, emits zero harmful emissions, and the hydrogen fuel can be produced from various renewable sources. Therefore, research on fuel cell vehicle design is imperative in order to improve vehicle performance and durability, increase efficiency, and reduce costs. This thesis makes a number of key contributions to the advancement of fuel cell vehicle design within two main research areas: powertrain design and DC/DC converters. With regards to powertrain design, this research first analyzes various powertrain topologies and energy storage system types. Then, a novel fuel cell-battery-ultracapacitor topology is presented which shows reduced mass and cost, and increased efficiency, over other promising topologies found in the literature. A detailed vehicle simulator is created in MATLAB/Simulink in order to simulate and compare the novel topology with other fuel cell vehicle powertrain options. A parametric study is performed to optimize each powertrain and general conclusions for optimal topologies, as well as component types and sizes, for fuel cell vehicles are presented. Next, an analytical method to optimize the novel battery-ultracapacitor energy storage system based on maximizing efficiency, and minimizing cost and mass, is developed. This method can be applied to any system utilizing the novel battery-ultracapacitor energy storage system and is not limited in application to only fuel cell vehicles. With regards to DC/DC converters, it is important to design efficient and light-weight converters for use in fuel cell and other electric vehicles to improve overall vehicle fuel economy. Thus, this research presents a novel soft-switching method, the capacitor-switched regenerative snubber, for the high-power DC/DC boost converters commonly used in fuel cell vehicles. This circuit is shown to increase the efficiency and reduce the overall mass of the DC/DC boost converter.
Topographic effects on denitrification in drained agricultural fields
USDA-ARS?s Scientific Manuscript database
Denitrification is affected by soil moisture, while soil moisture can be affected by topography. Therefore, denitrification can be spatially correlated to topographic gradients. Three prior converted fields on the Delmarva Peninsula were sampled spatially for denitrification enzyme activity. The up...
ADVERSE PREGNANCY OUTCOMES ASSOCIATED WITH MATERNAL ENALAPRIL ANTIHYPERTENSIVE TREATMENT
Enalapril, one of several antihypertensive drugs that act as angiotensin-converting enzyme (ACE) inhibitors, is often used for treatment of hypertension in women of reproductive age. Adverse birth outcomes following the use of ACE inhibitors, including enalapril, during pregnanc...
... glycogen, which is converted by the GAA into glucose, a sugar that fuels muscles. In Pompe disease, mutations in the GAA gene reduce or completely eliminate this essential enzyme. Excessive amounts of lysosomal glycogen accumulate everywhere in the body, but the cells of the heart and skeletal ...
Bioequivalence of azathioprine products.
Baker, Daniel E
2003-01-01
All azathioprine oral tablets are considered bioequivalent by the Food and Drug Administration based on traditional testing. However, since these tests were conducted, it has been determined that some patients have a deficiency of the enzyme most responsible for the metabolism of 6-mercaptopurine-thiopurine methyltransferase (TPMT). Azathioprine is rapidly converted to 6-mercaptopurine, its active metabolite. So it is possible that differences in TPMT activity may influence the bioequivalence of azathioprine products among individuals, especially those patients deficient in TPMT enzyme activity. However, this possibility has not been evaluated.
Multiple cytokines are involved in the early events leading to the Alzheimer’s disease pathology
Wilberding, Akiko; Morimoto, Kaori; Satoh, Haruhisa; Harano, Keiko; Harano, Teruo; Arita, Seizaburo; Tooyama, Ikuo; Konishi, Yoshihiro
2009-01-01
It is likely that neuroinflammation begins well before detectable cognitive impairment in Alzheimer’s disease (AD) occurs. Clarifying the alterations occurring prior to the clinical manifestation of overt AD dementia may provide valuable insight into the early diagnosis and management of AD. Herein, to address the issue that neuroinflammation precedes development of AD pathology, we analyzed cytokine expression profiles of the brain, with focus on non-demented control patients with increasing AD pathology, referred to as high pathology control (HPC) cases, who provide an intermediate subset between AD and normal control cases referred to as low pathology control (LPC) cases. With a semi-quantitative analysis of cytokine mRNA, among 15 cytokines and their related molecules tested, we found the involvement of eight: interleukin-1(IL-1) receptor antagonist (IL-1ra), IL-1 converting enzyme (ICE), IL-2, IL-6, IL-8, tumor necrosis factor (TNF) α, macrophage-colony stimulating factor (M-CSF) and transforming growth factor (TGF) β1 during the development from LPC to HPC, while decreases in IL-1ra, IL-8, MCP-1 and TNFα, and an increase in TACE were implicated in the later development from HPC to AD. These findings indicate that neuroinflammation precedes the clinical manifestation of overt dementia, rather than being involved at the later stages of AD. PMID:22586434
Polyamorphism in tetrahedral substances: Similarities between silicon and ice
NASA Astrophysics Data System (ADS)
Garcez, K. M. S.; Antonelli, A.
2015-07-01
Tetrahedral substances, such as silicon, water, germanium, and silica, share various unusual phase behaviors. Among them, the so-called polyamorphism, i.e., the existence of more than one amorphous form, has been intensively investigated in the last three decades. In this work, we study the metastable relations between amorphous states of silicon in a wide range of pressures, using Monte Carlo simulations. Our results indicate that the two amorphous forms of silicon at high pressures, the high density amorphous (HDA) and the very high density amorphous (VHDA), can be decompressed from high pressure (˜20 GPa) down to the tensile regime, where both convert into the same low density amorphous. Such behavior is also observed in ice. While at high pressure (˜20 GPa), HDA is less stable than VHDA, at the pressure of 10 GPa both forms exhibit similar stability. On the other hand, at much lower pressure (˜5 GPa), HDA and VHDA are no longer the most stable forms, and, upon isobaric annealing, an even less dense form of amorphous silicon emerges, the expanded high density amorphous, again in close similarity to what occurs in ice.
Three dimensional modeling of cirrus during the 1991 FIRE IFO 2: Detailed process study
NASA Technical Reports Server (NTRS)
Jensen, Eric J.; Toon, Owen B.; Westphal, Douglas L.
1993-01-01
A three-dimensional model of cirrus cloud formation and evolution, including microphysical, dynamical, and radiative processes, was used to simulate cirrus observed in the FIRE Phase 2 Cirrus field program (13 Nov. - 7 Dec. 1991). Sulfate aerosols, solution drops, ice crystals, and water vapor are all treated as interactive elements in the model. Ice crystal size distributions are fully resolved based on calculations of homogeneous freezing of solution drops, growth by water vapor deposition, evaporation, aggregation, and vertical transport. Visible and infrared radiative fluxes, and radiative heating rates are calculated using the two-stream algorithm described by Toon et al. Wind velocities, diffusion coefficients, and temperatures were taken from the MAPS analyses and the MM4 mesoscale model simulations. Within the model, moisture is transported and converted to liquid or vapor by the microphysical processes. The simulated cloud bulk and microphysical properties are shown in detail for the Nov. 26 and Dec. 5 case studies. Comparisons with lidar, radar, and in situ data are used to determine how well the simulations reproduced the observed cirrus. The roles played by various processes in the model are described in detail. The potential modes of nucleation are evaluated, and the importance of small-scale variations in temperature and humidity are discussed. The importance of competing ice crystal growth mechanisms (water vapor deposition and aggregation) are evaluated based on model simulations. Finally, the importance of ice crystal shape for crystal growth and vertical transport of ice are discussed.
Mountain glaciers vs Ice sheet in Greenland - learning from a new monitoring site in West Greenland
NASA Astrophysics Data System (ADS)
Abermann, Jakob; van As, Dirk; Wacker, Stefan; Langley, Kirsty
2017-04-01
Only 5 out of the 20.000 peripheral glaciers and ice caps surrounding Greenland are currently monitored due to logistical challenges and despite their significance for sea level rise. Large spatial coast-to-icesheet mass and energy balance gradients limit simple upscaling methods from ice-sheet observations, which builds the motivation for this study. We present results from a new mass and energy balance time series at Qasigiannguit glacier (64°09'N; 51°21'W) in Southwest Greenland. Inter-annual variability is discussed and the surface energy balance over two summers is quantified and a ranking of the main drivers performed. We find that short-wave net radiation is by far the most dominant energy source during summer, followed by similar amounts of net longwave radiation and sensible heat, respectively. We then relate these observations to synchronous measurements at similar latitude on an outlet glacier of the ice sheet a mere 100 km away. We find very pronounced horizontal surface mass balance gradients, with generally more positive values closer to the coast. We conclude that despite minor differences of atmospheric parameters (i.e. humidity, radiation, and temperature) the main reason for the strongly different signal is a pronounced winter precipitation gradient that translates in a different duration of ice exposure and through that an albedo gradient. Modelled energy balance gradients converted into mass changes show good agreement to measured surface mass balance gradients and we explore a latitudinal signal of these findings.
Computational multiscale modeling in protein--ligand docking.
Taufer, Michela; Armen, Roger; Chen, Jianhan; Teller, Patricia; Brooks, Charles
2009-01-01
In biological systems, the binding of small molecule ligands to proteins is a crucial process for almost every aspect of biochemistry and molecular biology. Enzymes are proteins that function by catalyzing specific biochemical reactions that convert reactants into products. Complex organisms are typically composed of cells in which thousands of enzymes participate in complex and interconnected biochemical pathways. Some enzymes serve as sequential steps in specific pathways (such as energy metabolism), while others function to regulate entire pathways and cellular functions [1]. Small molecule ligands can be designed to bind to a specific enzyme and inhibit the biochemical reaction. Inhibiting the activity of key enzymes may result in the entire biochemical pathways being turned on or off [2], [3]. Many small molecule drugs marketed today function in this generic way as enzyme inhibitors. If research identifies a specific enzyme as being crucial to the progress of disease, then this enzyme may be targeted with an inhibitor, which may slow down or reverse the progress of disease. In this way, enzymes are targeted from specific pathogens (e.g., virus, bacteria, fungi) for infectious diseases [4], [5], and human enzymes are targeted for noninfectious diseases such as cardiovascular disease, cancer, diabetes, and neurodegenerative diseases [6].
Markgraf, Daniel F; Klemm, Robin W; Junker, Mirco; Hannibal-Bach, Hans K; Ejsing, Christer S; Rapoport, Tom A
2014-01-16
Eukaryotic cells store neutral lipids such as triacylglycerol (TAG) in lipid droplets (LDs). Here, we have addressed how LDs are functionally linked to the endoplasmic reticulum (ER). We show that, in S. cerevisiae, LD growth is sustained by LD-localized enzymes. When LDs grow in early stationary phase, the diacylglycerol acyl-transferase Dga1p moves from the ER to LDs and is responsible for all TAG synthesis from diacylglycerol (DAG). During LD breakdown in early exponential phase, an ER membrane protein (Ice2p) facilitates TAG utilization for membrane-lipid synthesis. Ice2p has a cytosolic domain with affinity for LDs and is required for the efficient utilization of LD-derived DAG in the ER. Ice2p breaks a futile cycle on LDs between TAG degradation and synthesis, promoting the rapid relocalization of Dga1p to the ER. Our results show that Ice2p functionally links LDs with the ER and explain how cells switch neutral lipid metabolism from storage to consumption. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Two-fold Bioorthogonal Derivatization by Different Formylglycine-Generating Enzymes.
Krüger, Tobias; Weiland, Stefanie; Falck, Georg; Gerlach, Marcus; Boschanski, Mareile; Alam, Sarfaraz; Müller, Kristian M; Dierks, Thomas; Sewald, Norbert
2018-03-26
Formylglycine-generating enzymes are of increasing interest in the field of bioconjugation chemistry. They catalyze the site-specific oxidation of a cysteine residue to the aldehyde-containing amino acid C α -formylglycine (FGly). This non-canonical residue can be generated within any desired target protein and can subsequently be used for bioorthogonal conjugation reactions. The prototypic formylglycine-generating enzyme (FGE) and the iron-sulfur protein AtsB display slight variations in their recognition sequences. We designed specific tags in peptides and proteins that were selectively converted by the different enzymes. Combination of the different tag motifs within a single peptide or recombinant protein enabled the independent and consecutive introduction of two formylglycine residues and the generation of heterobifunctionalized protein conjugates. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wei, Liujing; Yang, Xuepeng; Gao, Keliang; Lin, Jinping; Yang, Shengli; Hua, Qiang; Wei, Dongzhi
2010-09-01
Although Gluconobacter oxydans can convert 1,2-propanediol to D: -(-)-lactic acid, the enzyme(s) responsible for the conversion has remain unknown. In this study, the membrane-bound alcohol dehydrogenase (ADH) of Gluconobacter oxydans DSM 2003 was purified and confirmed to be essential for the process of D: -(-)-lactic acid production by gene knockout and complementation studies. A 25 percent decrease in D: -(-)-lactic acid production was found for the aldehyde dehydrogenase (ALDH) deficient strain of G. oxydans DSM 2003, indicating that this enzyme is involved in the reaction but not necessary. It is the first report that reveals the function of ADH and ALDH in the biooxidation of 1,2-propanediol to D: -(-)-lactic acid by G. oxydans DSM 2003.
Printable enzyme-embedded materials for methane to methanol conversion
Blanchette, Craig D.; Knipe, Jennifer M.; Stolaroff, Joshuah K.; ...
2016-06-15
An industrial process for the selective activation of methane under mild conditions would be highly valuable for controlling emissions to the environment and for utilizing vast new sources of natural gas. The only selective catalysts for methane activation and conversion to methanol under mild conditions are methane monooxygenases (MMOs) found in methanotrophic bacteria; however, these enzymes are not amenable to standard enzyme immobilization approaches. Using particulate methane monooxygenase (pMMO), we create a biocatalytic polymer material that converts methane to methanol. We demonstrate embedding the material within a silicone lattice to create mechanically robust, gas-permeable membranes, and direct printing of micron-scalemore » structures with controlled geometry. Remarkably, the enzymes retain up to 100% activity in the polymer construct. The printed enzyme-embedded polymer motif is highly flexible for future development and should be useful in a wide range of applications, especially those involving gas–liquid reactions.« less
Gao, Shujuan; von Schumann, Gerald; Stöckigt, Joachim
2002-10-01
A new enzyme, 1,2-dihydrovomilenine reductase (E.C. 1.3.1), has been detected in Rauvolfia cell suspension cultures. The enzyme specifically converts 2beta( R)-1,2-dihydrovomilenine through an NADPH-dependent reaction into 17-O-acetylnorajmaline, a close biosynthetic precursor of the antiarrhythmic alkaloid ajmaline from Rauvolfia. A five-step purification procedure using SOURCE 30Q chromatography, hydroxyapatite chromatography, 2',5'-ADP Sepharose 4B affinity chromatography and ion exchange chromatography on DEAE Sepharose and Mono Q delivered an approximately 200-fold enriched enzyme in a yield of approximately 6%. SDS-PAGE showed an M r for the enzyme of approximately 48 kDa. Optimum pH and optimum temperature of the reductase were at pH 6.0 and 37 degrees C. The enzyme shows a limited distribution in cell cultures expressing ajmaline biosynthesis, and is obviously highly specific for the ajmaline pathway.
Printable enzyme-embedded materials for methane to methanol conversion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blanchette, Craig D.; Knipe, Jennifer M.; Stolaroff, Joshuah K.
An industrial process for the selective activation of methane under mild conditions would be highly valuable for controlling emissions to the environment and for utilizing vast new sources of natural gas. The only selective catalysts for methane activation and conversion to methanol under mild conditions are methane monooxygenases (MMOs) found in methanotrophic bacteria; however, these enzymes are not amenable to standard enzyme immobilization approaches. Using particulate methane monooxygenase (pMMO), we create a biocatalytic polymer material that converts methane to methanol. We demonstrate embedding the material within a silicone lattice to create mechanically robust, gas-permeable membranes, and direct printing of micron-scalemore » structures with controlled geometry. Remarkably, the enzymes retain up to 100% activity in the polymer construct. The printed enzyme-embedded polymer motif is highly flexible for future development and should be useful in a wide range of applications, especially those involving gas–liquid reactions.« less
Genetically Engineered Materials for Biofuels Production
NASA Astrophysics Data System (ADS)
Raab, Michael
2012-02-01
Agrivida, Inc., is an agricultural biotechnology company developing industrial crop feedstocks for the fuel and chemical industries. Agrivida's crops have improved processing traits that enable efficient, low cost conversion of the crops' cellulosic components into fermentable sugars. Currently, pretreatment and enzymatic conversion of the major cell wall components, cellulose and hemicellulose, into fermentable sugars is the most expensive processing step that prevents widespread adoption of biomass in biofuels processes. To lower production costs we are consolidating pretreatment and enzyme production within the crop. In this strategy, transgenic plants express engineered cell wall degrading enzymes in an inactive form, which can be reactivated after harvest. We have engineered protein elements that disrupt enzyme activity during normal plant growth. Upon exposure to specific processing conditions, the engineered enzymes are converted into their active forms. This mechanism significantly lowers pretreatment costs and enzyme loadings (>75% reduction) below those currently available to the industry.
Printable enzyme-embedded materials for methane to methanol conversion
Blanchette, Craig D.; Knipe, Jennifer M.; Stolaroff, Joshuah K.; DeOtte, Joshua R.; Oakdale, James S.; Maiti, Amitesh; Lenhardt, Jeremy M.; Sirajuddin, Sarah; Rosenzweig, Amy C.; Baker, Sarah E.
2016-01-01
An industrial process for the selective activation of methane under mild conditions would be highly valuable for controlling emissions to the environment and for utilizing vast new sources of natural gas. The only selective catalysts for methane activation and conversion to methanol under mild conditions are methane monooxygenases (MMOs) found in methanotrophic bacteria; however, these enzymes are not amenable to standard enzyme immobilization approaches. Using particulate methane monooxygenase (pMMO), we create a biocatalytic polymer material that converts methane to methanol. We demonstrate embedding the material within a silicone lattice to create mechanically robust, gas-permeable membranes, and direct printing of micron-scale structures with controlled geometry. Remarkably, the enzymes retain up to 100% activity in the polymer construct. The printed enzyme-embedded polymer motif is highly flexible for future development and should be useful in a wide range of applications, especially those involving gas–liquid reactions. PMID:27301270
Michalowski, Christine B.; Olson, Steven W.; Piepenbrock, Mechtild; Schmitt, Jürgen M.; Bohnert, Hans J.
1989-01-01
In the facultative halophyte Mesembryanthemum crystallinum (common ice plant), irrigation with solutions containing NaCl induces an alternate mode of carbon dioxide fixation, Crassulacean acid metabolism (CAM). The salt stress protocol which we have established facilitates the study of CAM induction and the correlation of changes in metabolism and gene expression. We have studied the time course of mRNA induction for phosphoenolpyruvate carboxylase (PEPCase) (gene: ppc) and several other enzymes of carbon metabolism during stress. While CAM is not fully established for at least 10 days after the start of stress, mRNA amounts for PEPCase and for other CAM enzymes, such as Pyruvate orthophosphate dikinase, increase between day 2 and 3 after stress induction. Increases continue for at least 5 days. Concomitant with the increase of CAM transcripts, fluctuations in the mRNA amounts for genes rbcS and cab were observed. Transcript levels for these proteins decreased several-fold during a 3 to 4 day period. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:16666626
Bioactive compounds in dairy products and their relation to neurodegenerative disease
USDA-ARS?s Scientific Manuscript database
Enhancement of nervous system function and cognitive ability may be aided by bioactive compounds found in dairy products, including calcium-binding phosphopeptides and peptides derived from casein and beta-lactoglobulin. These peptides inhibit angiotensin converting enzyme I, scavenge radicals, red...
ENALAPRIL: PHARMACOKINETIC/DYNAMIC INFERENCES FOR COMPARATIVE DEVELOPMENTAL TOXICITY
Enalapril is an antihypertensive drug of the class of angiotensin-converting enzyme inhibitors (ACEI) used in pregnancy for treatment of pre-existing or pregnancy-induced hypertension. The use of ACE inhibitors (drugs that act directly on the renin-angiotensin system) during the ...
The application of ultrasound in the enzymatic hydrolysis of switchgrass
USDA-ARS?s Scientific Manuscript database
In a series of experiments, untreated and ammonium hydroxide pretreated Klenow lowland variety switchgrasses are converted to reducing sugars using low frequency (20 kHz) ultrasound and commercially-available cellulase enzyme. Results from experiments using untreated and pretreated switchgrasses wit...
Characterization and Bioactivity of Hydrolysates produced from Aflatoxin Contaminated Peanut Meal
USDA-ARS?s Scientific Manuscript database
Justification: Interest in protein hydrolysates is increasing because of their improved functionality and health benefits, particularly angiotensin-converting enzyme (ACE) inhibition, compared to their parent proteins. Large-scale production of hydrolysates is expensive, and one way to minimize co...
Stein, Anna; Goldmeier, Silvia; Voltolini, Sarah; Setogutti, Enio; Feldman, Carlos; Figueiredo, Eduardo; Eick, Renato; Irigoyen, Maria; Rigatto, Katya
2012-07-01
The association between renal hypoxia and the development of renal injury is well established. However, no adequate method currently exists to non-invasively measure functional changes in renal oxygenation in normal and injured patients. R2* quantification was performed using renal blood oxygen level-dependent properties. Five healthy normotensive women (50 ± 5.3 years) underwent magnetic resonance imaging in a 1.5T Signa Excite HDx scanner (GE Healthcare, Waukesha, WI). A multiple fast gradient-echo sequence was used to acquire R2*/T2* images (sixteen echoes from 2.1 ms/slice to 49.6 ms/slice in a single breath hold per location). The images were post-processed to generate R2* maps for quantification. Data were recorded before and at 30 minutes after the oral administration of an angiotensin II-converting enzyme inhibitor (captopril, 25 mg). The results were compared using an ANOVA for repeated measurements (mean + standard deviation) followed by the Tukey test. ClinicalTrials.gov: NCT01545479. A significant difference (p<0.001) in renal oxygenation (R2*) was observed in the cortex and medulla before and after captopril administration: right kidney, cortex = 11.08 ± 0.56 ms, medulla = 17.21 ± 1.47 ms and cortex = 10.30 ± 0.44 ms, medulla = 16.06 ± 1.74 ms, respectively; and left kidney, cortex= 11.79 ± 1.85 ms, medulla = 17.03 ± 0.88 ms and cortex = 10.89 ± 0.91 ms, medulla = 16.43 ± 1.49 ms, respectively. This result suggests that the technique efficiently measured alterations in renal blood oxygenation after angiotensin II-converting enzyme inhibition and that it may provide a new strategy for identifying the early stages of renal disease and perhaps new therapeutic targets.
Lai, Zon W; Hanchapola, Iresha; Steer, David L; Smith, A Ian
2011-06-14
ADAM17, also known as tumor necrosis factor α-converting enzyme, is involved in the ectodomain shedding of many integral membrane proteins. We have previously reported that ADAM17 is able to mediate the cleavage secretion of the ectodomain of human angiotensin-converting enzyme 2 (ACE2), a functional receptor for the severe acute respiratory syndrome coronavirus. In this study, we demonstrate that purified recombinant human ADAM17 is able to cleave a 20-amino acid peptide mimetic corresponding to the extracellular juxtamembrane region of human ACE2 between Arg(708) and Ser(709). A series of peptide analogues were also synthesized, showing that glutamate subtitution at Arg(708) and/or Arg(710) attenuated the cleavage process, while alanine substitution at Arg(708) and/or Ser(709) did not inhibit peptide cleavage by recombinant ADAM17. Analysis of CD spectra showed a minimal difference in the secondary structure of the peptide analogues in the buffer system used for the ADAM17 cleavage assay. The observation of the shedding profiles of ACE2 mutants expressing CHO-K1 and CHO-P cells indicates that the Arg(708) → Glu(708) mutation and the Arg(708)Arg(710) → Glu(708)Glu(710) double mutation produced increases in the amount of ACE2 shed when stimulated by phorbol ester PMA. In summary, we have demonstrated that ADAM17 is able to cleave ACE2 peptide sequence analogues between Arg(708) and Ser(709). These findings also indicate that Arg(708) and Arg(710) play a role in site recognition in the regulation of ACE2 ectodomain shedding mediated by ADAM17.
ANGIOTENSIN CONVERTING ENZYME INHIBITION AND NOVEL CARDIOVASCULAR RISK BIOMARKERS
Cesari, Matteo; Kritchevsky, Stephen B.; Atkinson, Hal H.; Penninx, Brenda W.; Di Bari, Mauro; Tracy, Russell P.; Pahor, Marco
2015-01-01
Background Beneficial effects of angiotensin converting enzyme (ACE) inhibitors seem to be mediated by mechanisms that are partly independent of blood pressure lowering. The present study evaluates effects of an ACE-inhibitor (i.e. fosinopril) intervention on novel cardiovascular risk factors. Methods Data are from the Trial of Angiotensin Converting Enzyme Inhibition and Novel Cardiovascular Risk Factors (TRAIN), a double-blind, crossover, randomized, placebo-controlled trial enrolling subjects aged ≥55 years and older with high cardiovascular disease risk profile. Biomarkers of hemostasis (i.e. plasminogen activator inhibitor-1 [PAI-1], D-dimer), inflammation (i.e. C-reactive protein [CRP], interleukin-6 [IL-6]), and endothelial function (i.e. endothelin-1, vascular cell adhesion molecule-1 [VCAM-1]) were measured at the baseline, at the mid-term, and at end of follow-up (after one year) clinic visits. Paired t-test analyses (after Sidak’s adjustment, p value<0.009) were performed to compare biomarkers modifications after fosinopril/placebo interventions. Results Mean age of the sample (n=290, women 43.4%) was 66.0 years old. No significant differences were reported for CRP, IL-6, PAI-1, VCAM-1, and endothelin-1 levels in the comparisons between fosinopril and placebo interventions. D-Dimer was the only biomarker showing a significant difference between fosinopril intervention (median 0.32 [interquartile range, IQR 0.22–0.52] µg/mL) and placebo (median 0.29 [IQR 0.20–0.47] µg/mL, p=0.007) when analyses were restricted to participants with higher compliance to treatment and receiving the maximum ACE-inhibitor dosage. Conclusions ACE-inhibition does not significantly modify major biomarkers of inflammation, hemostasis, and endothelial function. Further studies should confirm the possible effect of ACE-inhibitors on the fibrinolysis pathway. PMID:19185642
Meurs, Kathryn M; Olsen, Lisbeth H; Reimann, Maria J; Keene, Bruce W; Atkins, Clarke E; Adin, Darcy; Aona, Brent; Condit, Julia; DeFrancesco, Teresa; Reina-Doreste, Yamir; Stern, Joshua A; Tou, Sandra; Ward, Jessica; Woodruff, Kathleen
2018-02-01
Myxomatous mitral valve disease (MMVD) is the most common heart disease in the dog. It is particularly common in the Cavalier King Charles Spaniel (CKCS) breed and affected dogs are frequently managed with angiotensin-converting enzyme inhibitors (ACE-I). We have previously identified a canine ACE gene polymorphism associated with a decrease in angiotensin-converting enzyme (ACE) activity. The aim of this study was to evaluate for the prevalence of the ACE polymorphism in CKCS with mitral valve disease and to determine whether the presence of the polymorphism is associated with alterations in ACE activity at different stages of cardiac disease. Seventy-three dogs with a diagnosis of mitral valve disease were evaluated and a blood sample was drawn for ACE polymorphism genotyping and ACE activity measurement. Forty-three dogs were homozygous for the ACE polymorphism; five were heterozygous and 25 were homozygous wild type. The mean age and the median severity of disease were not different for dogs with the polymorphism and dogs with the wild-type sequence. The median baseline ACE activity was significantly lower for the ACE polymorphism (27.0 U/l) than the wild-type sequence dogs (31.0 U/l) (P=0.02). Dogs with more severe disease and the ACE polymorphism had significantly lower levels of ACE activity than dogs with the wild-type sequence (P=0.03). The CKCS appears to have a high prevalence of the ACE variant. Dogs with the ACE variant had lower levels of ACE activity even in more advanced mitral valve disease than dogs without the variant. The clinical significance of this finding and its impact on the need for ACE-I in dogs with the polymorphism and heart disease deserves further study.
Ramanathan, Gnanasambandan; Ghosh, Santu; Elumalai, Ramprasad; Periyasamy, Soundararajan; Lakkakula, Bhaskar V K S
2016-06-01
Autosomal dominant polycystic kidney disease (ADPKD) is an inherited systemic disorder, characterized by the fluid filled cysts in the kidneys leading to end stage renal failure in later years of life. Hypertension is one of the major factors independently contributing to the chronic kidney disease (CKD) progression. The renin-angiotensin aldosterone system (RAAS) genes have been extensively studied as hypertension candidate genes. The aim of the present study was to investigate the role of angiotensin converting enzyme tagging - single nucleotide polymorphisms (ACE tag-SNPs) in progression of CKD in patients with ADPKD. m0 ethods: In the present study six ACE tagSNPs (angiotensin converting enzyme tag single nucleotide polymorphisms) and insertion/deletion (I/D) in 102 ADPKD patients and 106 control subjects were investigated. The tagSNPs were genotyped using FRET-based KASPar method and ACE ID by polymerase chain reaction (PCR) and electrophoresis. Genotypes and haplotypes were compared between ADPKD patients and controls. Univariate and multivariate logistic regression analyses were performed to assess the effect of genotypes and hypertension on CKD advancement. Mantel-Haenszel (M-H) stratified analysis was performed to study the relationship between different CKD stages and hypertension and their interaction. All loci were polymorphic and except rs4293 SNP the remaining loci followed Hardy-Weinberg equilibrium. Distribution of ACE genotypes and haplotypes in controls and ADPKD patients was not significant. A significant linkage disequilibrium (LD) was observed between SNPs forming two LD blocks. The univariate analysis revealed that the age, hypertension, family history of diabetes and ACE rs4362 contributed to the advancement of CKD. The results suggest that the ACE genotypes are effect modifiers of the relationship between hypertension and CKD advancement among the ADPKD patients.
Characterization of PgPepO, a bacterial homologue of endothelin-converting enzyme-1.
Carson, Julie A; Ansai, Toshihiro; Awano, Shuji; Yu, Weixian; Takehara, Tadamichi; Turner, Anthony J
2002-08-01
PgPepO is a homologue of endothelin-converting enzyme-1 (ECE-1), with which it shares 31% identity. PgPepO was isolated from the periodontal pathogen Porphyromonas gingivalis. Recent studies have suggested a link between periodontal and cardiovascular disease, and several groups have suggested that bacterial and viral infections may contribute to the latter. P. gingivalis possesses the ability to invade, and multiply within, aortic endothelial cells and has been localized to atherosclerotic plaques. PgPepO was expressed and purified to homogeneity and we have begun detailed functional analysis, in terms of substrate preference and inhibitor specificity, in order to provide active-site comparisons with other members of the neprilysin (NEP)/ECE family. PgPepO possesses similar substrate specificity to ECE-1 and has been shown to cleave big endothelin-1 (big ET-1), big ET-2 and big ET-3, converting the substrates into their respective mature endothelin peptides. Substance P, angiotensin I, angiotensin II and neurotensin are all cleaved at multiple sites by PgPepO and the kinetics of these reactions have been compared. The potent vasoconstrictor urotensin II is not hydrolysed by PgPepO. Cleavage of bradykinin by PgPepO occurs at the Pro(7)-Phe(8) bond and is inhibited by the NEP and ECE-1 inhibitor phosphoramidon in a pH-dependent fashion (IC(50) =10 microM at pH 7.0) but not by thiorphan, an NEP-specific inhibitor. PgPepO activity is completely inhibited by EDTA. Characterization of this enzyme is important in elucidating possible links between periodontal pathogens and cardiovascular disorders such as atherosclerosis, and provides an opportunity to gain structural information on a bacterial protein with striking similarity to human ECE-1.
Elajami, Tarec K; Alfaddagh, Abdulhamied; Lakshminarayan, Dharshan; Soliman, Michael; Chandnani, Madhuri; Welty, Francine K
2017-07-14
Albuminuria is a marker of inflammation and an independent predictor of cardiovascular morbidity and mortality. The current study evaluated whether eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) supplementation attenuates progression of albuminuria in subjects with coronary artery disease. Two-hundred sixty-two subjects with stable coronary artery disease were randomized to either Lovaza (1.86 g of EPA and 1.5 g of DHA daily) or no Lovaza (control) for 1 year. Percent change in urine albumin-to-creatinine ratio (ACR) was compared. Mean (SD) age was 63.3 (7.6) years; 17% were women and 30% had type 2 diabetes mellitus. In nondiabetic subjects, no change in urine ACR occurred in either the Lovaza or control groups. In contrast, ACR increased 72.3% ( P <0.001) in diabetic subjects not receiving Lovaza, whereas those receiving Lovaza had no change. In diabetic subjects on an angiotensin-converting enzyme-inhibitor or angiotensin-receptor blocker, those receiving Lovaza had no change in urine ACR, whereas those not receiving Lovaza had a 64.2% increase ( P <0.001). Change in ACR was directly correlated with change in systolic blood pressure ( r =0.394, P =0.01). EPA and DHA supplementation attenuated progression of albuminuria in subjects with type 2 diabetes mellitus and coronary artery disease, most of whom were on an angiotensin-converting enzyme-inhibitor or angiotensin-receptor blocker. Thus, EPA and DHA supplementation should be considered as additional therapy to an angiotensin-converting enzyme-inhibitor or angiotensin-receptor blocker in subjects with type 2 diabetes mellitus and coronary artery disease. URL: http://www.clinicaltrials.gov. Unique identifier: NCT01624727. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.
Endothelin-converting enzyme-1 degrades internalized somatostatin-14.
Roosterman, Dirk; Kempkes, Cordula; Cottrell, Graeme S; Padilla, Benjamin E; Bunnett, Nigel W; Turck, Christoph W; Steinhoff, Martin
2008-05-01
Agonist-induced internalization of somatostatin receptors (ssts) determines subsequent cellular responsiveness to peptide agonists and influences sst receptor scintigraphy. To investigate sst2A trafficking, rat sst2A tagged with epitope was expressed in human embryonic kidney cells and tracked by antibody labeling. Confocal microscopical analysis revealed that stimulation with sst and octreotide induced internalization of sst2A. Internalized sst2A remained sequestrated within early endosomes, and 60 min after stimulation, internalized sst2A still colocalized with beta-arrestin1-enhanced green fluorescence protein (EGFP), endothelin-converting enzyme-1 (ECE-1), and rab5a. Internalized (125)I-Tyr(11)-SST-14 was rapidly hydrolyzed by endosomal endopeptidases, with radioactive metabolites being released from the cell. Internalized (125)I-Tyr(1)-octreotide accumulated as an intact peptide and was released from the cell as an intact peptide ligand. We have identified ECE-1 as one of the endopeptidases responsible for inactivation of internalized SST-14. ECE-1-mediated cleavage of SST-14 was inhibited by the specific ECE-1 inhibitor, SM-19712, and by preventing acidification of endosomes using bafilomycin A(1). ECE-1 cleaved SST-14 but not octreotide in an acidic environment. The metallopeptidases angiotensin-1 converting enzyme and ECE-2 did not hydrolyze SST-14 or octreotide. Our results show for the first time that stimulation with SST-14 and octreotide induced sequestration of sst2A into early endosomes and that endocytosed SST-14 is degraded by endopeptidases located in early endosomes. Furthermore, octreotide was not degraded by endosomal peptidases and was released as an intact peptide. This mechanism may explain functional differences between octreotide and SST-14 after sst2A stimulation. Moreover, further investigation of endopeptidase-regulated trafficking of neuropeptides may result in novel concepts of neuropeptide receptor inactivation in cancer diagnosis.
Shaltout, Hossam A.; Figueroa, Jorge P.; Rose, James C.; Diz, Debra I.; Chappell, Mark C.
2009-01-01
Antenatal betamethasone treatment is a widely accepted therapy to accelerate lung development and improve survival in preterm infants. However, there are reports that infants who receive antenatal glucocorticoids exhibit higher systolic blood pressure in their early adolescent years. We have developed an experimental model of programming whereby the offspring of pregnant sheep administered clinically relevant doses of betamethasone exhibit elevated blood pressure. We tested the hypothesis as to whether alterations in angiotensin-converting enzyme (ACE), ACE2, and neprilysin in serum, urine, and proximal tubules are associated with this increase in mean arterial pressure. Male sheep were administered betamethasone (2 doses of 0.17 mg/kg, 24 hours apart) or vehicle at the 80th day of gestation and delivered at term. Sheep were instrumented at adulthood (1.8 years) for direct conscious recording of mean arterial pressure. Serum and urine were collected and proximal tubules isolated from the renal cortex. Betamethasone-treated animals had elevated mean arterial pressure (97±3 versus 83±2 mm Hg; P<0.05) and a 25% increase in serum ACE activity (48.4±7.0 versus 36.0±2.7 fmol/mL per minute) but a 40% reduction in serum ACE2 activity (18.8±1.2 versus 31.4±4.4 fmol/mL per minute). In isolated proximal tubules, ACE2 activity and expression were 50% lower in the treated sheep with no significant change in ACE or neprilysin activities. We conclude that antenatal steroid treatment results in the chronic alteration of ACE and ACE2 in the circulatory and tubular compartments, which may contribute to the higher blood pressure in this model of fetal programming-induced hypertension. PMID:19047579
Ara, Satoshi; Yamazaki, Harutake; Takaku, Hiroaki
2018-04-01
2-Deoxy-scyllo-inosose (DOI) is the first intermediate in the 2-deoxystreptamine-containing aminoglycoside antibiotic biosynthesis pathway and has a six-membered carbocycle structure. DOI is a valuable material because it is easily converted to aromatic compounds and carbasugar derivatives. In this study, we isolated yeast strains capable of assimilating DOI as a carbon source. One of the strains, Cryptococcus podzolicus ND1, mainly converted DOI to scyllo-quercitol and (-)-vibo-quercitol, which is a valuable compound used as an antihypoglycemia agent and as a heat storage material. An NADH-dependent DOI reductase coding gene, DOIR, from C. podzolicus ND1 was cloned and successfully overexpressed in Escherichia coli. The purified protein catalyzed the irreversible reduction of DOI with NADH and converted DOI into (-)-vibo-quercitol. The enzyme had an optimal pH of 8.5 and optimal temperature of 35°C, respectively. The k cat of this enzyme was 9.98 s -1 , and the K m values for DOI and NADH were 4.38 and 0.24 mM, respectively. The enzyme showed a strong preference for NADH and showed no activity with NADPH. Multiple-alignment analysis of DOI reductase revealed that it belongs to the GFO_IDH_MocA protein family and is an inositol dehydrogenase homolog in other fungi, such as Cryptococcus gattii, and bacteria, such as Bacillus subtilis. This is the first identification of a DOI-assimilating yeast and a gene involved in DOI metabolism in fungi. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Chong, E; Wang, H; King-Shier, K M; Quan, H; Rabi, D M; Khan, N A
2014-12-01
To determine the prescribing of and adherence to oral hypoglycaemic agents, insulin, angiotensin-converting enzyme inhibitors, angiotensin receptor blockers and statin therapy among South-Asian, Chinese and white people with newly diagnosed diabetes. The present study was a population-based cohort study using administrative and pharmacy databases to include all South-Asian, Chinese and white people aged ≥ 35 years with diabetes living in British Columbia, Canada (1997-2006). Adherence to each class of medication was measured using proportion of days covered over 1 year with optimum adherence defined as ≥ 80%. The study population included 9529 South-Asian, 14 084 Chinese and 143 630 white people with diabetes. The proportion of people who were prescribed angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, statin or oral hypoglycaemic agents was ≤ 50% for all groups. South-Asian and Chinese people had significantly lower adherence for all medications than white people, with the lowest adherence to angiotensin-converting enzyme inhibitor treatment (South-Asian people: adjusted odds ratio 0.37, 95% CI 0.34-0.39; P<0.0001; Chinese people: adjusted odds ratio 0.50, 95% CI 0.47-0.54; P<0.0001) and statin therapy (South-Asian people: adjusted odds ratio 0.47, 95% CI 0.41 - 0.53, P < 0.0001; Chinese people: adjusted odds ratio 0.72, 95% CI 0.67 - 0.77; P<0.0001) compared with white people. Adherence to evidence-based pharmacotherapy was substantially worse among the South-Asian and Chinese populations. Care providers need to be alerted to the high levels of non-adherence in these groups and the underlying causes need to be investigated. © 2014 The Authors. Diabetic Medicine © 2014 Diabetes UK.
Function and application of a non-ester-hydrolyzing carboxylesterase discovered in tulip.
Nomura, Taiji
2017-01-01
Plants have evolved secondary metabolite biosynthetic pathways of immense rich diversity. The genes encoding enzymes for secondary metabolite biosynthesis have evolved through gene duplication followed by neofunctionalization, thereby generating functional diversity. Emerging evidence demonstrates that some of those enzymes catalyze reactions entirely different from those usually catalyzed by other members of the same family; e.g. transacylation catalyzed by an enzyme similar to a hydrolytic enzyme. Tuliposide-converting enzyme (TCE), which we recently discovered from tulip, catalyzes the conversion of major defensive secondary metabolites, tuliposides, to antimicrobial tulipalins. The TCEs belong to the carboxylesterase family in the α/β-hydrolase fold superfamily, and specifically catalyze intramolecular transesterification, but not hydrolysis. This non-ester-hydrolyzing carboxylesterase is an example of an enzyme showing catalytic properties that are unpredictable from its primary structure. This review describes the biochemical and physiological aspects of tulipalin biogenesis, and the diverse functions of plant carboxylesterases in the α/β-hydrolase fold superfamily.
Improved methodologies for continuous-flow analysis of stable water isotopes in ice cores
NASA Astrophysics Data System (ADS)
Jones, Tyler R.; White, James W. C.; Steig, Eric J.; Vaughn, Bruce H.; Morris, Valerie; Gkinis, Vasileios; Markle, Bradley R.; Schoenemann, Spruce W.
2017-02-01
Water isotopes in ice cores are used as a climate proxy for local temperature and regional atmospheric circulation as well as evaporative conditions in moisture source regions. Traditional measurements of water isotopes have been achieved using magnetic sector isotope ratio mass spectrometry (IRMS). However, a number of recent studies have shown that laser absorption spectrometry (LAS) performs as well or better than IRMS. The new LAS technology has been combined with continuous-flow analysis (CFA) to improve data density and sample throughput in numerous prior ice coring projects. Here, we present a comparable semi-automated LAS-CFA system for measuring high-resolution water isotopes of ice cores. We outline new methods for partitioning both system precision and mixing length into liquid and vapor components - useful measures for defining and improving the overall performance of the system. Critically, these methods take into account the uncertainty of depth registration that is not present in IRMS nor fully accounted for in other CFA studies. These analyses are achieved using samples from a South Pole firn core, a Greenland ice core, and the West Antarctic Ice Sheet (WAIS) Divide ice core. The measurement system utilizes a 16-position carousel contained in a freezer to consecutively deliver ˜ 1 m × 1.3 cm2 ice sticks to a temperature-controlled melt head, where the ice is converted to a continuous liquid stream and eventually vaporized using a concentric nebulizer for isotopic analysis. An integrated delivery system for water isotope standards is used for calibration to the Vienna Standard Mean Ocean Water (VSMOW) scale, and depth registration is achieved using a precise overhead laser distance device with an uncertainty of ±0.2 mm. As an added check on the system, we perform inter-lab LAS comparisons using WAIS Divide ice samples, a corroboratory step not taken in prior CFA studies. The overall results are important for substantiating data obtained from LAS-CFA systems, including optimizing liquid and vapor mixing lengths, determining melt rates for ice cores with different accumulation and thinning histories, and removing system-wide mixing effects that are convolved with the natural diffusional signal that results primarily from water molecule diffusion in the firn column.
NASA Astrophysics Data System (ADS)
Wobrock, Wolfram; Flossmann, Andrea I.; Monier, Marie; Pichon, Jean-Marc; Cortez, Laurent; Fournol, Jean-François; Schwarzenböck, Alfons; Mertes, Stephan; Heintzenberg, Jost; Laj, Paolo; Orsi, Giordano; Ricci, Loretta; Fuzzi, Sandro; Brink, Harry Ten; Jongejan, Piet; Otjes, René
The second field campaign of the Cloud Ice Mountain Experiment (CIME) project took place in February 1998 on the mountain Puy de Dôme in the centre of France. The content of residual aerosol particles, of H 2O 2 and NH 3 in cloud droplets was evaluated by evaporating the drops larger than 5 μm in a Counterflow Virtual Impactor (CVI) and by measuring the residual particle concentration and the released gas content. The same trace species were studied behind a round jet impactor for the complementary interstitial aerosol particles smaller than 5 μm diameter. In a second step of experiments, the ambient supercooled cloud was converted to a mixed phase cloud by seeding the cloud with ice particles by the gas release from pressurised gas bottles. A comparison between the physical and chemical characteristics of liquid drops and ice particles allows a study of the fate of the trace constituents during the presence of ice crystals in the cloud. In the present paper, an overview is given of the CIME 98 experiment and the instrumentation deployed. The meteorological situation during the experiment was analysed with the help of a cloud scale model. The microphysics processes and the behaviour of the scavenged aerosol particles before and during seeding are analysed with the detailed microphysical model ExMix. The simulation results agreed well with the observations and confirmed the assumption that the Bergeron-Findeisen process was dominating during seeding and was influencing the partitioning of aerosol particles between drops and ice crystals. The results of the CIME 98 experiment give an insight on microphysical changes, redistribution of aerosol particles and cloud chemistry during the Bergeron-Findeisen process when acting also in natural clouds.
Improved climate model evaluation using a new, 750-year Antarctic-wide snow accumulation product
NASA Astrophysics Data System (ADS)
Medley, B.; Thomas, E. R.
2017-12-01
Snow that accumulates over the cold, dry grounded ice of Antarctica is an important component of its mass balance, mitigating the ice sheet's contribution to sea level. Secular trends in accumulation not only result trends in the mass balance of the Antarctic Ice Sheet, but also directly and indirectly impact surface height changes. Long-term and spatiotemporally complete records of snow accumulation are needed to understand part and present Antarctic-wide mass balance, to convert from altimetry derived volume change to mass change, and to evaluate the ability of climate models to reproduce the observed climate change. We need measurements in both time and space, yet they typically sample one dimension at the expense of the other. Here, we develop a spatially complete, annually resolved snow accumulation product for the Antarctic Ice Sheet over the past 750 years by combining a newly compiled database of ice core accumulation records with climate model output. We mainly focus on climate model evaluation. Because the product spans several centuries, we can evaluate model ability in representing the preindustrial as well as present day accumulation change. Significant long-term trends in snow accumulation are found over the Ross and Bellingshausen Sea sectors of West Antarctica, the Antarctic Peninsula, and several sectors in East Antarctica. These results suggest that change is more complex over the Antarctic Ice Sheet than a simple uniform change (i.e., more snowfall in a warming world), which highlights the importance of atmospheric circulation as a major driver of change. By evaluating several climate models' ability to reproduce the observed trends, we can deduce whether their projections are reasonable or potentially biased where the latter would result in a misrepresentation of the Antarctic contribution to sea level.
Caranto, Jonathan D; Vilbert, Avery C; Lancaster, Kyle M
2016-12-20
Ammonia oxidizing bacteria (AOB) are major contributors to the emission of nitrous oxide (N 2 O). It has been proposed that N 2 O is produced by reduction of NO. Here, we report that the enzyme cytochrome (cyt) P460 from the AOB Nitrosomonas europaea converts hydroxylamine (NH 2 OH) quantitatively to N 2 O under anaerobic conditions. Previous literature reported that this enzyme oxidizes NH 2 OH to nitrite ([Formula: see text]) under aerobic conditions. Although we observe [Formula: see text] formation under aerobic conditions, its concentration is not stoichiometric with the NH 2 OH concentration. By contrast, under anaerobic conditions, the enzyme uses 4 oxidizing equivalents (eq) to convert 2 eq of NH 2 OH to N 2 O. Enzyme kinetics coupled to UV/visible absorption and electron paramagnetic resonance (EPR) spectroscopies support a mechanism in which an Fe III -NH 2 OH adduct of cyt P460 is oxidized to an {FeNO} 6 unit. This species subsequently undergoes nucleophilic attack by a second equivalent of NH 2 OH, forming the N-N bond of N 2 O during a bimolecular, rate-determining step. We propose that [Formula: see text] results when nitric oxide (NO) dissociates from the {FeNO} 6 intermediate and reacts with dioxygen. Thus, [Formula: see text] is not a direct product of cyt P460 activity. We hypothesize that the cyt P460 oxidation of NH 2 OH contributes to NO and N 2 O emissions from nitrifying microorganisms.
Solomon, Ariel; Akabayov, Barak; Frenkel, Anatoly; Milla, Marcos E.; Sagi, Irit
2007-01-01
Despite their key roles in many normal and pathological processes, the molecular details by which zinc-dependent proteases hydrolyze their physiological substrates remain elusive. Advanced theoretical analyses have suggested reaction models for which there is limited and controversial experimental evidence. Here we report the structure, chemistry and lifetime of transient metal–protein reaction intermediates evolving during the substrate turnover reaction of a metalloproteinase, the tumor necrosis factor-α converting enzyme (TACE). TACE controls multiple signal transduction pathways through the proteolytic release of the extracellular domain of a host of membrane-bound factors and receptors. Using stopped-flow x-ray spectroscopy methods together with transient kinetic analyses, we demonstrate that TACE's catalytic zinc ion undergoes dynamic charge transitions before substrate binding to the metal ion. This indicates previously undescribed communication pathways taking place between distal protein sites and the enzyme catalytic core. The observed charge transitions are synchronized with distinct phases in the reaction kinetics and changes in metal coordination chemistry mediated by the binding of the peptide substrate to the catalytic metal ion and product release. Here we report key local charge transitions critical for proteolysis as well as long sought evidence for the proposed reaction model of peptide hydrolysis. This study provides a general approach for gaining critical insights into the molecular basis of substrate recognition and turnover by zinc metalloproteinases that may be used for drug design. PMID:17360351
Nade, V. S.; Kawale, L. A.; Valte, K. D.; Shendye, N. V.
2015-01-01
Objective: The present study was designed to investigate cognitive enhancing property of angiotensin-converting enzymes inhibitors (ACEI) and angiotensin receptor blockers (ARBs) in rats. Materials and Methods: The elevated plus maze (EPM), passive avoidance test (PAT), and water maze test (WMT) were used to assess cognitive enhancing activity in young and aged rats. Ramipril (10 mg/kg, p.o.), perindopril (10 mg/kg, i.p), losartan (20 mg/kg, i.p), and valsartan (20 mg/kg, p.o) were administered to assess their effect on learning and memory. Scopolamine (1 mg/kg, i.p) was used to impair cognitive function. Piracetam (200 mg/kg, i.p) was used as reference drug. Results: All the treatments significantly attenuated amnesia induced by aging and scopolamine. In EPM, aged and scopolamine-treated rats showed an increase in transfer latency (TL) whereas, ACEI and ARBs showed a significant decrease in TL. Treatment with ACEI and ARBs significantly increased step down latencies and decreased latency to reach the platform in target quadrant in young, aged and scopolamine-treated animals in PAT and WMT, respectively. The treatments inhibited acetylcholinesterase (AChE) enzyme in the brain. Similarly, all the treatments attenuated scopolamine-induced lipid peroxidation and normalize antioxidant enzymes. Conclusion: The results suggest that the cognitive enhancing effect of ACEI and ARBs may be due to inhibition of AChE or by regulation of antioxidant system or increase in formation of angiotensin IV. PMID:26069362
Suen, W C; Haigler, B E; Spain, J C
1996-01-01
2,4-Dinitrotoluene (DNT) dioxygenase from Burkholderia sp. strain DNT catalyzes the initial oxidation of DNT to form 4-methyl-5-nitrocatechol (MNC) and nitrite. The displacement of the aromatic nitro group by dioxygenases has only recently been described, and nothing is known about the evolutionary origin of the enzyme systems that catalyze these reactions. We have shown previously that the gene encoding DNT dioxygenase is localized on a degradative plasmid within a 6.8-kb NsiI DNA fragment (W.-C. Suen and J. C. Spain, J. Bacteriol. 175:1831-1837, 1993). We describe here the sequence analysis and the substrate range of the enzyme system encoded by this fragment. Five open reading frames were identified, four of which have a high degree of similarity (59 to 78% identity) to the components of naphthalene dioxygenase (NDO) from Pseudomonas strains. The conserved amino acid residues within NDO that are involved in cofactor binding were also identified in the gene encoding DNT dioxygenase. An Escherichia coli clone that expressed DNT dioxygenase converted DNT to MNC and also converted naphthalene to (+)-cis-(1R,2S)-dihydroxy-1,2-dihydronaphthalene. In contrast, the E. coli clone that expressed NDO did not oxidize DNT. Furthermore, the enzyme systems exhibit similar broad substrate specificities and can oxidize such compounds as indole, indan, indene, phenetole, and acenaphthene. These results suggest that DNT dioxygenase and the NDO enzyme system share a common ancestor. PMID:8759857
Angiotensin-I-converting enzyme and its relatives
Riordan, James F
2003-01-01
Angiotensin-I-converting enzyme (ACE) is a monomeric, membrane-bound, zinc- and chloride-dependent peptidyl dipeptidase that catalyzes the conversion of the decapeptide angiotensin I to the octapeptide angiotensin II, by removing a carboxy-terminal dipeptide. ACE has long been known to be a key part of the renin angiotensin system that regulates blood pressure, and ACE inhibitors are important for the treatment of hypertension. There are two forms of the enzyme in humans, the ubiquitous somatic ACE and the sperm-specific germinal ACE, both encoded by the same gene through transcription from alternative promoters. Somatic ACE has two tandem active sites with distinct catalytic properties, whereas germinal ACE, the function of which is largely unknown, has just a single active site. Recently, an ACE homolog, ACE2, has been identified in humans that differs from ACE in being a carboxypeptidase that preferentially removes carboxy-terminal hydrophobic or basic amino acids; it appears to be important in cardiac function. ACE homologs (also known as members of the M2 gluzincin family) have been found in a wide variety of species, even in those that neither have a cardiovascular system nor synthesize angiotensin. X-ray structures of a truncated, deglycosylated form of germinal ACE and a related enzyme from Drosophila have been reported, and these show that the active site is deep within a central cavity. Structure-based drug design targeting the individual active sites of somatic ACE may lead to a new generation of ACE inhibitors, with fewer side-effects than currently available inhibitors. PMID:12914653
Tavares, Tânia; Contreras, Maria Del Mar; Amorim, Manuela; Pintado, Manuela; Recio, Isidra; Malcata, F Xavier
2011-05-01
Whey protein concentrate (WPC) was subjected to enzymatic hydrolysis by proteases from the flowers of Cynara cardunculus, and the resulting angiotensin-converting enzyme (ACE)-inhibitory effect was monitored. The whole WPC hydrolysate exhibited an IC(50) value of 52.9 ± 2.9 μg/mL, whereas the associated peptide fraction with molecular weight below 3 kDa scored 23.6 ± 1.1 μg/mL. The latter fraction was submitted to RP-HPLC, and 6 fractions were resolved that exhibited ACE-inhibitory effects. Among the various peptides found, a total of 14 were identified via sequencing with an ion-trap mass spectrometer. Eleven of these peptides were synthesized de novo--to validate their ACE-inhibitory effect, and also to ascertain their stability when exposed to simulated gastrointestinal digestion. Among them, three novel, highly potent peptides were found, corresponding to α-lactalbumin f(16-26)--with the sequence KGYGGVSLPEW, α-lactalbumin f(97-104) with DKVGINYW, and β-lactoglobulin f(33-42) with DAQSAPLRVY; their IC(50) values were as low as 0.80 ± 0.1, 25.2 ± 1.0 and 13.0 ± 1.0 μg/mL, respectively. None of them remained stable in the presence of gastrointestinal enzymes: they were partially, or even totally hydrolyzed to smaller peptides--yet the observed ACE-inhibitory effects were not severely affected for two of those peptides. Copyright © 2011 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Van Der Wal, W.; Barnhoorn, A.; Stocchi, P.; Drury, M. R.; Wu, P. P.; Vermeersen, B. L.
2011-12-01
Ice melting in Greenland and Antarctica can be estimated from GRACE satellite measurements. The largest source of error in these estimates is uncertainty in models for Glacial Isostatic Adjustment (GIA). GIA models that are used to correct the GRACE data have several shortcomings, including (i) mantle viscosity is only varied with depth, and (ii) stress-dependence of viscosity is ignored. Here we attempt to improve on these two issues with the ultimate goal of providing more realistic GIA predictions in areas that are currently ice covered. The improved model is first tested against observations in Fennoscandia, where there is good coverage with GIA observations, before applying it to Greenland. Deformation laws for diffusion and dislocation creep in olivine are taken from a compilation of laboratory experiments. Temperature is obtained from two different sources: surface heatflow maps as input for the heat transfer equation, and seismic velocity anomalies converted to upper mantle temperatures. Grain size and olivine water content are kept as free parameters. Surface loading is provided by an ice loading history that is constructed from constraints on past ice margins and input from climatology. The finite element model includes self-gravitation but not compressibility and background stresses. It is found that the viscosity in Fennoscandia changes in time by two orders of magnitude for a wet rheology with large grain size. The wet rheology provides the best fit to historic sea level data. However, present-day uplift and gravity rates are too low for such a rheology. We apply a wet rheology on Greenland, and simulate a Little Ice Age (LIA) increase in thickness on top of the ICE-5G ice loading history. Preliminary results show a negative geoid rate of magnitude more than 0.5 mm/year due to the LIA increase in ice thickness in combination with the non-linear upper mantle rheology. More tests are necessary to determine the influence of mantle rheology on GIA model predictions in areas of current ice sheet melting.
Ice-Penetrating Robot for Scientific Exploration
NASA Technical Reports Server (NTRS)
Zimmerman, Wayne; Carsey, Frank; French, Lloyd
2007-01-01
The cryo-hydro integrated robotic penetrator system (CHIRPS) is a partially developed instrumentation system that includes a probe designed to deeply penetrate the European ice sheet in a search for signs of life. The CHIRPS could also be used on Earth for similar exploration of the polar ice caps especially at Lake Vostok in Antarctica. The CHIRPS probe advances downward by a combination of simple melting of ice (typically for upper, non-compacted layers of an ice sheet) or by a combination of melting of ice and pumping of meltwater (typically, for deeper, compacted layers). The heat and electric power for melting, pumping, and operating all of the onboard instrumentation and electronic circuitry are supplied by radioisotope power sources (RPSs) and thermoelectric converters energized by the RPSs. The instrumentation and electronic circuitry includes miniature guidance and control sensors and an advanced autonomous control system that has fault-management capabilities. The CHIRPS probe is about 1 m long and 15 cm in diameter. The RPSs generate a total thermal power of 1.8 kW. Initially, as this power melts the surrounding ice, a meltwater jacket about 1 mm thick forms around the probe. The center of gravity of the probe is well forward (down), so that the probe is vertically stabilized like a pendulum. Heat is circulated to the nose by means of miniature pumps and heat pipes. The probe melts ice to advance in a step-wise manner: Heat is applied to the nose to open up a melt void, then heat is applied to the side to allow the probe to slip down into the melt void. The melt void behind the probe is allowed to re-freeze. Four quadrant heaters on the nose and another four quadrant heaters on the rear (upper) surface of the probe are individually controllable for steering: Turning on two adjacent nose heaters on the nose and two adjacent heaters on the opposite side at the rear causes melt voids to form on opposing sides, such that the probe descends at an angle from vertical. This steering capability can be used to avoid debris trapped in the ice or to maneuver closer to a trapped object of scientific interest.
Shi, Yonglei; Wang, Quanfu; Hou, Yanhua; Hong, Yanyan; Han, Xiao; Yi, Jiali; Qu, Junjie; Lu, Yi
2014-01-01
A glutathione S-transferase (GST) gene from Antarctic sea-ice bacteria Pseudoalteromonas sp. ANT506 (namely PsGST), was cloned and expressed in Escherichia coli. The open reading frame of PsGST comprised 654 bp encoding a protein of 217 amino acids with a calculated molecular size of 24.3 kDa. The rPsGST possesses the conserved amino acid defining the binding sites of glutathione (G-site) and substrate binding pocket (H-site) in GST N_3 family. PsGST was expressed in E. coli and the recombinant PsGST (rPsGST) was purified by Ni-affinity chromatography with a high specific activity of 74.21 U/mg. The purified rPsGST showed maximum activity at 40 °C and exhibited 14.2% activity at 0 °C. It was completely inactivated at 50 °C for 40 min. These results indicated that rPsGST was a typical cold active GST with low thermostability. The enzyme was little affected by H2O2 and Triton X-100, and 50.2% of the remaining activity was detected in the presence of high salt concentrations (2M NaCl). The enzymatic Km values for CDNB and GSH was 0.22 mM and 1.01 mM, respectively. These specific enzyme properties may be related to the survival environment of Antarctic sea ice bacteria. Copyright © 2013 Elsevier GmbH. All rights reserved.
Spätzle-Processing Enzyme-independent Activation of the Toll Pathway in Drosophila Innate Immunity.
Yamamoto-Hino, Miki; Goto, Satoshi
2016-05-07
The Toll pathway regulates innate immunity in insects and vertebrates. The Drosophila Toll receptor is activated by a processed form of a ligand, Spätzle. Spätzle-processing enzyme (SPE) is the only enzyme identified to date that functions in converting Spätzle to an active form during the immune response. In the present study, Toll activation induced by immune challenge was almost suppressed in spätzle mutant larvae and adults, whereas it was present in SPE mutant larvae challenged with Micrococcus luteus and adults challenged with Bacillus subtilis. Our data suggest that an unidentified protease besides SPE processes Spätzle under conditions of microbial challenge.
Fernández-Méndez, Mar; Turk-Kubo, Kendra A; Buttigieg, Pier L; Rapp, Josephine Z; Krumpen, Thomas; Zehr, Jonathan P; Boetius, Antje
2016-01-01
The Eurasian basin of the Central Arctic Ocean is nitrogen limited, but little is known about the presence and role of nitrogen-fixing bacteria. Recent studies have indicated the occurrence of diazotrophs in Arctic coastal waters potentially of riverine origin. Here, we investigated the presence of diazotrophs in ice and surface waters of the Central Arctic Ocean in the summer of 2012. We identified diverse communities of putative diazotrophs through targeted analysis of the nifH gene, which encodes the iron protein of the nitrogenase enzyme. We amplified 529 nifH sequences from 26 samples of Arctic melt ponds, sea ice and surface waters. These sequences resolved into 43 clusters at 92% amino acid sequence identity, most of which were non-cyanobacterial phylotypes from sea ice and water samples. One cyanobacterial phylotype related to Nodularia sp. was retrieved from sea ice, suggesting that this important functional group is rare in the Central Arctic Ocean. The diazotrophic community in sea-ice environments appear distinct from other cold-adapted diazotrophic communities, such as those present in the coastal Canadian Arctic, the Arctic tundra and glacial Antarctic lakes. Molecular fingerprinting of nifH and the intergenic spacer region of the rRNA operon revealed differences between the communities from river-influenced Laptev Sea waters and those from ice-related environments pointing toward a marine origin for sea-ice diazotrophs. Our results provide the first record of diazotrophs in the Central Arctic and suggest that microbial nitrogen fixation may occur north of 77°N. To assess the significance of nitrogen fixation for the nitrogen budget of the Arctic Ocean and to identify the active nitrogen fixers, further biogeochemical and molecular biological studies are needed.
Fernández-Méndez, Mar; Turk-Kubo, Kendra A.; Buttigieg, Pier L.; Rapp, Josephine Z.; Krumpen, Thomas; Zehr, Jonathan P.; Boetius, Antje
2016-01-01
The Eurasian basin of the Central Arctic Ocean is nitrogen limited, but little is known about the presence and role of nitrogen-fixing bacteria. Recent studies have indicated the occurrence of diazotrophs in Arctic coastal waters potentially of riverine origin. Here, we investigated the presence of diazotrophs in ice and surface waters of the Central Arctic Ocean in the summer of 2012. We identified diverse communities of putative diazotrophs through targeted analysis of the nifH gene, which encodes the iron protein of the nitrogenase enzyme. We amplified 529 nifH sequences from 26 samples of Arctic melt ponds, sea ice and surface waters. These sequences resolved into 43 clusters at 92% amino acid sequence identity, most of which were non-cyanobacterial phylotypes from sea ice and water samples. One cyanobacterial phylotype related to Nodularia sp. was retrieved from sea ice, suggesting that this important functional group is rare in the Central Arctic Ocean. The diazotrophic community in sea-ice environments appear distinct from other cold-adapted diazotrophic communities, such as those present in the coastal Canadian Arctic, the Arctic tundra and glacial Antarctic lakes. Molecular fingerprinting of nifH and the intergenic spacer region of the rRNA operon revealed differences between the communities from river-influenced Laptev Sea waters and those from ice-related environments pointing toward a marine origin for sea-ice diazotrophs. Our results provide the first record of diazotrophs in the Central Arctic and suggest that microbial nitrogen fixation may occur north of 77°N. To assess the significance of nitrogen fixation for the nitrogen budget of the Arctic Ocean and to identify the active nitrogen fixers, further biogeochemical and molecular biological studies are needed. PMID:27933047
Ringel, Michael T; Dräger, Gerald; Brüser, Thomas
2017-11-10
The periplasmic conversion of ferribactin to pyoverdine is essential for siderophore biogenesis in fluorescent pseudomonads, such as pathogenic Pseudomonas aeruginosa or plant growth-promoting Pseudomonas fluorescens The non-ribosomal peptide ferribactin undergoes cyclizations and oxidations that result in the fluorophore, and a strictly conserved fluorophore-bound glutamic acid residue is converted to a range of variants, including succinamide, succinic acid, and α-ketoglutaric acid residues. We recently discovered that the pyridoxal phosphate-containing enzyme PvdN is responsible for the generation of the succinamide, which can be hydrolyzed to succinic acid. Based on this, a distinct unknown enzyme was postulated to be responsible for the conversion of the glutamic acid to α-ketoglutaric acid. Here we report the identification and characterization of this enzyme in P. fluorescens strain A506. In silico analyses indicated a periplasmic transaminase in fluorescent pseudomonads and other proteobacteria that we termed PtaA for " p eriplasmic t ransaminase A " An in-frame-deleted ptaA mutant selectively lacked the α-ketoglutaric acid form of pyoverdine, and recombinant PtaA complemented this phenotype. The ptaA / pvdN double mutant produced exclusively the glutamic acid form of pyoverdine. PtaA is homodimeric and contains a pyridoxal phosphate cofactor. Mutation of the active-site lysine abolished PtaA activity and affected folding as well as Tat-dependent transport of the enzyme. In pseudomonads, the occurrence of ptaA correlates with the occurrence of α-ketoglutaric acid forms of pyoverdines. As this enzyme is not restricted to pyoverdine-producing bacteria, its catalysis of periplasmic transaminations is most likely a general tool for specific biosynthetic pathways. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
During embryogenesis, incubation temperature and the hormonal environment influence gonadal differentiation of some reptiles, including all crocodilians. Current evidence suggests that aromatase, the enzyme that converts androgens to estrogens, has a role in sexual differentiatio...
Reassembling biological machinery in vitro.
Hess, Henry
2009-09-25
Inspired by the specialized glycolytic system of flagella of mammalian sperm, Mukai et al. (2009) describe the controlled immobilization of two enzymes constituting the first steps in the glycolytic pathway. Extension of this work may provide "power converters" for bionanodevices, which transduce chemical energy from glucose to ATP.
Masuyer, Geoffrey; Schwager, Sylva L. U.; Sturrock, Edward D.; Isaac, R. Elwyn; Acharya, K. Ravi
2012-01-01
Angiotensin-I converting enzyme (ACE), a two-domain dipeptidylcarboxypeptidase, is a key regulator of blood pressure as a result of its critical role in the renin-angiotensin-aldosterone and kallikrein-kinin systems. Hence it is an important drug target in the treatment of cardiovascular diseases. ACE is primarily known for its ability to cleave angiotensin I (Ang I) to the vasoactive octapeptide angiotensin II (Ang II), but is also able to cleave a number of other substrates including the vasodilator bradykinin and N-acetyl-Ser-Asp-Lys-Pro (Ac-SDKP), a physiological modulator of hematopoiesis. For the first time we provide a detailed biochemical and structural basis for the domain selectivity of the natural peptide inhibitors of ACE, bradykinin potentiating peptide b and Ang II. Moreover, Ang II showed selective competitive inhibition of the carboxy-terminal domain of human somatic ACE providing evidence for a regulatory role in the human renin-angiotensin system (RAS). PMID:23056909
Engineering the biological conversion of methanol to specialty chemicals in Escherichia coli
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whitaker, W. Brian; Jones, J. Andrew; Bennett, R. Kyle
Methanol is an attractive substrate for biological production of chemicals and fuels. Engineering methylotrophic Escherichia coli as a platform organism for converting methanol to metabolites is desirable. Prior efforts to engineer methylotrophic E. coli were limited by methanol dehydrogenases (Mdhs) with unfavorable enzyme kinetics. We engineered E. coli to utilize methanol using a superior NAD-dependent Mdh from Bacillus stearothermophilus and ribulose monophosphate (RuMP) pathway enzymes from B. methanolicus. Using 13C-labeling, we demonstrate this E. coli strain converts methanol into biomass components. For example, the key TCA cycle intermediates, succinate and malate, exhibit labeling up to 39%, while the lower glycolyticmore » intermediate, 3-phosphoglycerate, up to 53%. Multiple carbons are labeled for each compound, demonstrating a cycling RuMP pathway for methanol assimilation to support growth. In conclusion, by incorporating the pathway to synthesize the flavanone naringenin, we demonstrate the first example of in vivo conversion of methanol into a specialty chemical in E. coli.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thompson, David N.; Apel, William A.; Thompson, Vicki S.
A genetically modified organism comprising: at least one nucleic acid sequence and/or at least one recombinant nucleic acid isolated from Alicyclobacillus acidocaldarius and encoding a polypeptide involved in at least partially degrading, cleaving, transporting, metabolizing, or removing polysaccharides, cellulose, lignocellulose, hemicellulose, lignin, starch, sugars, sugar oligomers, carbohydrates, complex carbohydrates, chitin, heteroxylans, glycosides, xylan-, glucan-, galactan-, or mannan-decorating groups; and at least one nucleic acid sequence and/or at least one recombinant nucleic acid encoding a polypeptide involved in fermenting sugar molecules to a product. Additionally, enzymatic and/or proteinaceous extracts may be isolated from one or more genetically modified organisms. The extractsmore » are utilized to convert biomass into a product. Further provided are methods of converting biomass into products comprising: placing the genetically modified organism and/or enzymatic extracts thereof in fluid contact with polysaccharides, cellulose, lignocellulose, hemicellulose, lignin, starch, sugars, sugar oligomers, carbohydrates, complex carbohydrates, chitin, heteroxylans, glycosides, and/or xylan-, glucan-, galactan-, or mannan-decorating groups.« less
García, M C; González-García, E; Vásquez-Villanueva, R; Marina, M L
2016-11-09
Stones from olives and Prunus genus fruits are cheap and sustainable sources of proteins and could be potential sources of bioactive peptides. The main limitation to the use of these seeds is the presence of amygdalin. This work proposes to determine amygdalin in olive and Prunus seeds and in protein isolates obtained from them. Moreover, antioxidant, angiotensin I converting enzyme (ACE) inhibitor, and hypocholesterolemic properties will be evaluated in hydrolysates obtained from these seeds. Despite some seeds contained amygdalin, all protein isolates were free of this substance. Two different procedures to obtain bioactive peptides from protein isolates were examined: gastrointestinal digestion and processing with Alcalase, Flavourzyme or Thermolysin. Higher antioxidant, ACE inhibitor and hypocholesterolemic activities were observed when proteins were processed with Alcalase, Flavourzyme or Thermolysin. The highest antioxidant and ACE inhibitor capacities were observed for the Prunus genus seed hydrolysates while the highest capacity to reduce micellar cholesterol solubility was observed for the apricot and olive seed hydrolysates.
Zhong, Chan; Sun, Le-Chang; Yan, Long-Jie; Lin, Yi-Chen; Liu, Guang-Ming; Cao, Min-Jie
2018-01-24
In this study, production of bioactive peptides with angiotensin converting enzyme (ACE) inhibitory activity from sea cucumber (Stichopus japonicus) gonad using commercial protamex was optimised by response surface methodology (RSM). As a result, the optimal condition to achieve the highest ACE inhibitory activity in sea cucumber gonad hydrolysate (SCGH) was hydrolysis for 1.95 h and E/S of 0.75%. For further characterisation, three individual peptides (EIYR, LF and NAPHMR) were purified and identified. The peptide NAPHMR showed the highest ACE inhibitory activity with IC 50 of 260.22 ± 3.71 μM. NAPHMR was stable against simulated gastrointestinal digestion and revealed no significant cytotoxicity toward Caco-2 cells. Molecular docking study suggested that Arg, His and Asn residues in NAPHMR interact with the S2 pocket or Zn 2+ binding motifs of ACE via hydrogen or π-bonds, potentially contributing to ACE inhibitory effect. Sea cucumber gonad is thus a potential resource to produce ACE inhibitory peptides for preparation of functional foods.
Hong, S H; Kang, B Y; Park, W H; Kim, J Q; Lee, C C
1997-01-01
In view of the clinical importance of angiotensin-converting enzyme (ACE) as a major marker for cardiovascular diseases, we investigated insertion/deletion (I/D) polymorphism of the ACE gene in Koreans. Genotype frequencies were examined by polymerase chain reaction in 171 patients with coronary artery disease (CAD) and 120 healthy subjects. Allele frequencies of ACE polymorphism in Koreans were not significantly different between patient and control groups. In addition, association between ACE genotypes and the number of stenosed coronary arteries was not detected. ACE genotypes in the CAD group were not associated with body mass index and plasma lipid levels. Thus, our results suggest that, at least in Koreans, I/D polymorphism of the gene is unlikely to be a useful marker for CAD subjects. However, the I allele frequency of Koreans (0.58) was higher than that of Caucasian populations (0.47) but lower than that of Samoan (0.91) and Yanomami (0.85) populations. Here, we discuss the clinical and ethnic importance of ACE polymorphism.
Hemming, Matthew L.; Selkoe, Dennis J.; Farris, Wesley
2008-01-01
Genetic and pathologic studies have associated angiotensin-converting enzyme (ACE) with Alzheimer disease. Previously, we and others have reported that ACE degrades in vitro the amyloid β-protein (Aβ), a putative upstream initiator of Alzheimer disease. These studies support the hypothesis that deficiency in ACE-mediated Aβ proteolysis could increase Alzheimer disease risk, and raise the question of whether ACE inhibitors, a commonly prescribed class of anti-hypertensive medications, can elevate Aβ levels in vivo. To test this hypothesis, we administered the ACE inhibitor captopril to two lines of APP transgenic mice harboring either low levels of Aβ or high levels of Aβ with associated plaque deposition. In both models, we show that captopril does not affect cerebral Aβ levels in either soluble or insoluble pools. Further, we find no change in plaque deposition or in peripheral Aβ levels. Data from these Alzheimer models suggest that captopril and similar ACE inhibitors do not cause Aβ accumulation in vivo. PMID:17321748
Engineering the biological conversion of methanol to specialty chemicals in Escherichia coli
Whitaker, W. Brian; Jones, J. Andrew; Bennett, R. Kyle; ...
2016-11-01
Methanol is an attractive substrate for biological production of chemicals and fuels. Engineering methylotrophic Escherichia coli as a platform organism for converting methanol to metabolites is desirable. Prior efforts to engineer methylotrophic E. coli were limited by methanol dehydrogenases (Mdhs) with unfavorable enzyme kinetics. We engineered E. coli to utilize methanol using a superior NAD-dependent Mdh from Bacillus stearothermophilus and ribulose monophosphate (RuMP) pathway enzymes from B. methanolicus. Using 13C-labeling, we demonstrate this E. coli strain converts methanol into biomass components. For example, the key TCA cycle intermediates, succinate and malate, exhibit labeling up to 39%, while the lower glycolyticmore » intermediate, 3-phosphoglycerate, up to 53%. Multiple carbons are labeled for each compound, demonstrating a cycling RuMP pathway for methanol assimilation to support growth. In conclusion, by incorporating the pathway to synthesize the flavanone naringenin, we demonstrate the first example of in vivo conversion of methanol into a specialty chemical in E. coli.« less
NEMETH, BALAZS; KISS, ISTVAN; JENCSIK, TIMEA; PETER, IVAN; KRESKA, ZITA; KOSZEGI, TAMAS; MISETA, ATTILA; KUSTAN, PETER; BONCZ, IMRE; LACZO, ANDREA; AJTAY, ZENO
2017-01-01
Aim: To study the effect of carbon dioxide (CO2) therapy on the nitric oxide (NO) pathway by monitoring plasma asymmetric dimethylarginine (ADMA) concentrations. Patients and Methods: Forty-seven hypertensive patients who underwent transcutaneous CO2 therapy were enrolled. Thirty healthy individuals were recruited for the control group. Blood samples were taken one hour before, as well as one hour, 24 hours and 3 weeks after the first CO2 treatment. Controls did not undergo CO2 treatment. Plasma ADMA levels were measured by ELISA. Results: ADMA levels decreased significantly one hour after the first CO2 treatment compared to the baseline concentrations (p=0.003). Significantly greater reduction was found among patients in whom angiotensin converting enzyme inhibitors (ACEIs) were administered (p=0.019). Conclusion: The short- and long-term decrease of ADMA levels suggests that CO2 is not only a vasodilator, but also has a beneficial effect on the NO pathway. ACE inhibition seems to enhance the effect of CO2 treatment. PMID:28438873
Sun, Lixia; Wu, Shanguang; Zhou, Liqin; Wang, Feng; Lan, Xiongdiao; Sun, Jianhua; Tong, Zhangfa; Liao, Dankui
2017-02-15
Lizard fish protein hydrolysates (LFPH) were prepared from Lizard fish ( Saurida elongata ) proteins possessing powerful angiotensin I converting enzyme (ACE) inhibitory activity and the fraction (LFPH-I) with high ACE inhibitory activity was obtained through ultrafiltration. The active Fraction (F2) was isolated from LFPH-I using immobilized metal affinity chromatography (IMAC - Ni 2+ ). Analysis of amino acid levels revealed that F2 eluted from IMAC was enriched in Met, His, Tyr, Pro, Ile, and Leu compared to the crude peptide LFPH-I. F2 with the high ACE inhibitory activity (IC 50 of 0.116 mg·mL -1 ) was further separated by a reverse-phase column to yield a novel ACE inhibitory peptide with IC 50 value of 52 μM. The ACE inhibitory peptide was identified as Arg-Tyr-Arg-Pro, RYRP. The present study demonstrated that IMAC may be a useful tool for the separation of ACE inhibitory peptides from protein hydrolysate.
Liu, Xin; Zhang, Miansong; Zhang, Chao; Liu, Changheng
2012-10-15
Angiotensin-converting enzyme (ACE) inhibitory, antihypertensive and antihyperlipidaemic activities of protein hydrolysates (RPH) from the jellyfish Rhopilema esculentum were investigated. R. esculentum was hydrolysed sequentially with pepsin and papain, and then the hydrolysate was ultrafiltered with a 2000 Da cut-off membrane. It was found that RPH contained high levels of Gly, Glu, Pro, Asp and Ala, having potential ACE inhibitory activity in vitro with an IC(50) of 1.28 mg/ml. It was also found that systolic blood pressure was reduced markedly in spontaneously hypertensive rats after single and chronic oral administration of RPH, indicating that RPH had an antihypertensive effect. In addition, oral administration of RPH decreased total serum cholesterol and triglyceride, and increased high-density lipoprotein cholesterol in rats fed with high-fat diet. These results indicate that RPH may prove to be a promising functional food for the prevention and treatment of hypertension and hyperlipidaemia. Copyright © 2012 Elsevier Ltd. All rights reserved.
Li, Jun; Li, Qian; Li, Jingyun; Zhou, Bei
2014-09-02
Jellyfish (Rhopilema esculentum) was hydrolyzed using alcalase, and two peptides with angiotensin-I-converting enzyme (ACE) inhibitory and antioxidant activities were purified by ultrafiltration and consecutive chromatographic methods. The amino acid sequences of the two peptides were identified as VKP (342 Da) and VKCFR (651 Da) by electrospray ionization tandem mass spectrometry. The IC50 values of ACE inhibitory activities of the two peptides were 1.3 μM and 34.5 μM, respectively. Molecular docking results suggested that VKP and VKCFR bind to ACE through coordinating with the active site Zn(II) atom. Free radical scavenging activity and protection against hydrogen peroxide (H2O2)-induced rat cerebral microvascular endothelial cell (RCMEC) injury were used to evaluate the antioxidant activities of the two peptides. As the results clearly showed that the peptides increased the superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-px) activities in RCMEC cells), it is proposed that the R. esculentum peptides exert significant antioxidant effects.
NASA Astrophysics Data System (ADS)
Li, Yuan; Baeta, Cesar; Aras, Omer; Daniel, Marie-Christine
2009-05-01
Overexpression of angiotensin-converting enzyme (ACE) has been associated with the pathophysiology of cardiac and pulmonary fibrosis. Moreover, the prescription of ACE inhibitors, such as lisinopril, has shown a favorable effect on patient outcome for patients with heart failure or systemic hypertension. Thus targeted imaging of the ACE would be of crucial importance for monitoring tissue ACE activity as well as the treatment efficacy in heart failure. In this respect, lisinopril-coated gold nanoparticles were prepared to provide a new type of probe for targeted molecular imaging of ACE by tuned K-edge computed tomography (CT) imaging. The preparation involved non-modified lisinopril, using its primary amine group as the anchoring function on the gold nanoparticles surface. The stable lisinopril-coated gold nanoparticles obtained were characterized by UV-vis spectroscopy, dynamic light scattering (DLS), transmission electron microscopy (TEM). Their zeta potential was also measured in order to assess the charge density on the modified gold nanoparticles (GNPs).
Harnessing the natural inhibitory domain to control TNFα Converting Enzyme (TACE) activity in vivo.
Wong, Eitan; Cohen, Tal; Romi, Erez; Levin, Maxim; Peleg, Yoav; Arad, Uri; Yaron, Avraham; Milla, Marcos E; Sagi, Irit
2016-12-16
Dysregulated activity of A Disintegrin And Metalloproteinase 17 (ADAM17)/TNFα Converting Enzyme (TACE) is associated with inflammatory disorders and cancer progression by releasing regulatory membrane-tethered proteins like TNFα, IL6R and EGFR ligands. Although specific inhibition of TACE is thought to be a viable strategy for inflammatory disorders and for malignancies treatment, the generation of effective inhibitors in vivo has been proven to be challenging. Here we report on the development of a protein inhibitor that leverages the endogenous modulator of TACE. We have generated a stable form of the auto-inhibitory TACE prodomain (TPD), which specifically inhibits in vitro and cell-surface TACE, but not the related ADAM10, and effectively modulated TNFα secretion in cells. TPD significantly attenuated TACE-mediated disease models of sepsis, rheumatoid arthritis (RA) and inflammatory bowel disease (IBD), and reduced TNFα in synovial fluids from RA patients. Our results demonstrate that intervening with endogenous ADAM sheddase modulatory mechanisms holds potential as a general strategy for the design of ADAM inhibitors.
Ngo, Dai-Hung; Kang, Kyong-Hwa; Ryu, BoMi; Vo, Thanh-Sang; Jung, Won-Kyo; Byun, Hee-Guk; Kim, Se-Kwon
2015-05-01
The aim of this study was to investigate antihypertensive effect of bioactive peptides from skate (Okamejei kenojei) skin gelatin. The Alcalase/protease gelatin hydrolysate below 1 kDa (SAP) exhibited the highest angiotensin-I converting enzyme (ACE) inhibition compared to other hydrolysates. SAP can decrease systolic blood pressure significantly in spontaneously hypertensive rats. SAP inhibited vasoconstriction via PPAR-γ expression, activation and phosphorylation of eNOS in lungs. Moreover, the expression levels of endothelin-1, RhoA, α-smooth muscle actin, cleaved caspase 3 and MAPK were decreased by SAP in lungs. Vascularity, muscularization and cellular proliferation in lungs were detected by immunohistochemical staining. Finally, two purified peptides (LGPLGHQ, 720Da and MVGSAPGVL, 829Da) showed potent ACE inhibition with IC50 values of 4.22 and 3.09 μM, respectively. These results indicate that bioactive peptides isolated from skate skin gelatin may serve as candidates against hypertension and could be used as functional food ingredients. Copyright © 2014 Elsevier Ltd. All rights reserved.
Thompson, David N.; Apel, William A.; Thompson, Vicki S.; Ward, Thomas E.
2016-03-22
A genetically modified organism comprising: at least one nucleic acid sequence and/or at least one recombinant nucleic acid isolated from Alicyclobacillus acidocaldarius and encoding a polypeptide involved in at least partially degrading, cleaving, transporting, metabolizing, or removing polysaccharides, cellulose, lignocellulose, hemicellulose, lignin, starch, sugars, sugar oligomers, carbohydrates, complex carbohydrates, chitin, heteroxylans, glycosides, xylan-, glucan-, galactan-, or mannan-decorating groups; and at least one nucleic acid sequence and/or at least one recombinant nucleic acid encoding a polypeptide involved in fermenting sugar molecules to a product. Additionally, enzymatic and/or proteinaceous extracts may be isolated from one or more genetically modified organisms. The extracts are utilized to convert biomass into a product. Further provided are methods of converting biomass into products comprising: placing the genetically modified organism and/or enzymatic extracts thereof in fluid contact with polysaccharides, cellulose, lignocellulose, hemicellulose, lignin, starch, sugars, sugar oligomers, carbohydrates, complex carbohydrates, chitin, heteroxylans, glycosides, and/or xylan-, glucan-, galactan-, or mannan-decorating groups.
Thompson, David N; Apel, William A; Thompson, Vicki S; Ward, Thomas E
2013-07-23
A genetically modified organism comprising: at least one nucleic acid sequence and/or at least one recombinant nucleic acid isolated from Alicyclobacillus acidocaldarius and encoding a polypeptide involved in at least partially degrading, cleaving, transporting, metabolizing, or removing polysaccharides, cellulose, lignocellulose, hemicellulose, lignin, starch, sugars, sugar oligomers, carbohydrates, complex carbohydrates, chitin, heteroxylans, glycosides, xylan-, glucan-, galactan-, or mannan-decorating groups; and at least one nucleic acid sequence and/or at least one recombinant nucleic acid encoding a polypeptide involved in fermenting sugar molecules to a product. Additionally, enzymatic and/or proteinaceous extracts may be isolated from one or more genetically modified organisms. The extracts are utilized to convert biomass into a product. Further provided are methods of converting biomass into products comprising: placing the genetically modified organism and/or enzymatic extracts thereof in fluid contact with polysaccharides, cellulose, lignocellulose, hemicellulose, lignin, starch, sugars, sugar oligomers, carbohydrates, complex carbohydrates, chitin, heteroxylans, glycosides, and/or xylan-, glucan-, galactan-, or mannan-decorating groups.
Thompson, David N; Apel, William A; Thompson, Vicki S; Ward, Thomas E
2014-04-08
A genetically modified organism comprising: at least one nucleic acid sequence and/or at least one recombinant nucleic acid isolated from Alicyclobacillus acidocaldarius and encoding a polypeptide involved in at least partially degrading, cleaving, transporting, metabolizing, or removing polysaccharides, cellulose, lignocellulose, hemicellulose, lignin, starch, sugars, sugar oligomers, carbohydrates, complex carbohydrates, chitin, heteroxylans, glycosides, xylan-, glucan-, galactan-, or mannan-decorating groups; and at least one nucleic acid sequence and/or at least one recombinant nucleic acid encoding a polypeptide involved in fermenting sugar molecules to a product. Additionally, enzymatic and/or proteinaceous extracts may be isolated from one or more genetically modified organisms. The extracts are utilized to convert biomass into a product. Further provided are methods of converting biomass into products comprising: placing the genetically modified organism and/or enzymatic extracts thereof in fluid contact with polysaccharides, cellulose, lignocellulose, hemicellulose, lignin, starch, sugars, sugar oligomers, carbohydrates, complex carbohydrates, chitin, heteroxylans, glycosides, and/or xylan-, glucan-, galactan-, or mannan-decorating groups.
Engineering the biological conversion of methanol to specialty chemicals in Escherichia coli.
Whitaker, W Brian; Jones, J Andrew; Bennett, R Kyle; Gonzalez, Jacqueline E; Vernacchio, Victoria R; Collins, Shannon M; Palmer, Michael A; Schmidt, Samuel; Antoniewicz, Maciek R; Koffas, Mattheos A; Papoutsakis, Eleftherios T
2017-01-01
Methanol is an attractive substrate for biological production of chemicals and fuels. Engineering methylotrophic Escherichia coli as a platform organism for converting methanol to metabolites is desirable. Prior efforts to engineer methylotrophic E. coli were limited by methanol dehydrogenases (Mdhs) with unfavorable enzyme kinetics. We engineered E. coli to utilize methanol using a superior NAD-dependent Mdh from Bacillus stearothermophilus and ribulose monophosphate (RuMP) pathway enzymes from B. methanolicus. Using 13 C-labeling, we demonstrate this E. coli strain converts methanol into biomass components. For example, the key TCA cycle intermediates, succinate and malate, exhibit labeling up to 39%, while the lower glycolytic intermediate, 3-phosphoglycerate, up to 53%. Multiple carbons are labeled for each compound, demonstrating a cycling RuMP pathway for methanol assimilation to support growth. By incorporating the pathway to synthesize the flavanone naringenin, we demonstrate the first example of in vivo conversion of methanol into a specialty chemical in E. coli. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.
Weng, P K; Wang, H W; Lin, J K; Su, W Y
1997-06-01
Angioedema is a rare but potentially lethal adverse effect when associated with upper airway obstruction. Sporadic cases of angioedema secondary to angiotensin converting enzyme inhibitors (ACEI) have been reported in the literature. The overall incidence is around 0.1% to 0.2%, and the time of onset is usually during the first week of ACEI therapy. Late-onset angioedema secondary to treatment with ACEIs is much more frequent than appreciated, and is largely unrecognized because of the absence of temporal correlation between ACEI therapy and the development of angioedema. Since angioedema may progress to upper airway obstruction, otolaryngologists must be aware of this association. Most importantly, late-onset angioedema should alert the clinician to discontinue the ACEI immediately to prevent further morbidity. This report presents an example of late-onset angioedema which was precipitated by taking a double dose of captopril incidentally. The case is discussed, and the literature, pathophysiology and treatment of angioedema are reviewed.
NASA Astrophysics Data System (ADS)
Few, A. A.
2010-12-01
It is widely recognized that lightning activity in thunderstorm clouds is associated with ice in the clouds. In volcanic plumes the lower electrical discharges near the vent are clearly not associated with ice; however, the electrical discharges from the upper volcanic clouds very likely are associated with ice. There is ample water in volcanic plumes and clouds. The explosive volcanic eruption is produced by volatile components in the rising magma. Researchers estimate that the water content of the volatiles is up to 99% by mole; other gases are mainly sulfur and chlorine species. These volatiles carry with them a wide range of hot magma melts and solids, importantly silicate particles and tephra. The more massive components fall out near the vent carrying with them much of the heat from the plume; these large components are not in thermodynamic equilibrium with the gases, ash, and lapilli; thus the heat removed does not lower the temperature of the materials carried aloft in the plume. Upward motion is initially provided by the thrust from the volcanic eruption, then by buoyancy of the hot plume. The rising plume is cooled by entrainment of environmental air, which contains water, and by adiabatic expansion; the plume transitions into a volcanic cloud. Further lifting and cooling produces supercooled water droplets (T ~ -5 C) in a limited zone (z ~ 9 km) before the fast updraft (~ 60 m/s) rapidly transforms them into ice. Computer models of volcanic clouds that include water and ice microphysics indicate that the latent heat of condensation is not significant in cloud dynamics because it occurs in a region where buoyancy is provided by the original hot plume material. The latent heat of ice formation occurs at higher and colder levels and seems to contribute to the final lifting of the cloud top by ~1.5km. Laboratory results indicate that the fine silicate ash particles, which are abundant, are good ice nuclei, IN. Because of the abundance of the silicate ash, modelers conclude that there are many small ice particles in a volcanic clouds compared to thunderstorm clouds where the scarcity of IN produce fewer but larger ice particles. Another microphysical difference is that in the water phase (drops or ice surface) adsorption of sulfur and chlorine gases is enhanced and the freezing temperature lowered. During diffusion growth of ice particles sulfur dioxide can be incorporated in the ice. The sulfur dioxide sequestered by the ice can be converted to sulfate and transported into the stratosphere and released when the ice sublimates. Do these microphysical differences significantly alter the electrical charging mechanisms that exist in thunderstorm clouds? Observations of the lightning discharges associated with the upper regions of volcanic clouds seem to indicate that the charging mechanisms are essentially the same.
1986-01-01
We have purified and characterized the major N-benzoyl-L-arginine ethyl ester hydrolase from the venom of Heloderma horridum horridum. The enzyme belongs to the serine proteinase family, and its activity vs. peptide amide substrates and human high-molecular-weight kininogen suggests a similarity to the family of kallikreins. This interpretation is corroborated by its reactivity with the natural inhibitors soybean trypsin inhibitor and Kunitz-type bovine pancreatic trypsin inhibitor (aprotinin). Injection of the enzyme (2-16 micrograms/kg) into anesthetized rabbits leads to a rapid dose-dependent transient decrease of the arterial blood pressure. Like glandular kallikrein it specifically converts single-chain tissue type plasminogen activator into its double chain form. In contrast to other kallikrein-like enzymes from snake venoms it shows no thrombin-like or plasminogen activator activity. The enzyme is a single-chain glycoprotein (Mr 63,000). The N-terminal sequence revealed significant homology to pig pancreatic kallikrein and to kallikrein like enzymes from Crotalus atrox and Crotalus adamanteus venom. This enzyme, which we name Helodermatine, is the first purified from Sauria with kallikrein-like properties. PMID:3537191
Production of Glucaric Acid from Hemicellulose Substrate by Rosettasome Enzyme Assemblies.
Lee, Charles C; Kibblewhite, Rena E; Paavola, Chad D; Orts, William J; Wagschal, Kurt
2016-07-01
Hemicellulose biomass is a complex polymer with many different chemical constituents that can be utilized as industrial feedstocks. These molecules can be released from the polymer and transformed into value-added chemicals through multistep enzymatic pathways. Some bacteria produce cellulosomes which are assemblies composed of lignocellulolytic enzymes tethered to a large protein scaffold. Rosettasomes are artificial engineered ring scaffolds designed to mimic the bacterial cellulosome. Both cellulosomes and rosettasomes have been shown to facilitate much higher rates of biomass hydrolysis compared to the same enzymes free in solution. We investigated whether tethering enzymes involved in both biomass hydrolysis and oxidative transformation to glucaric acid onto a rosettasome scaffold would result in an analogous production enhancement in a combined hydrolysis and bioconversion metabolic pathway. Three different enzymes were used to hydrolyze birchwood hemicellulose and convert the substituents to glucaric acid, a top-12 DOE value added chemical feedstock derived from biomass. It was demonstrated that colocalizing the three different enzymes to the synthetic scaffold resulted in up to 40 % higher levels of product compared to uncomplexed enzymes.
Enzyme-based logic gates and circuits-analytical applications and interfacing with electronics.
Katz, Evgeny; Poghossian, Arshak; Schöning, Michael J
2017-01-01
The paper is an overview of enzyme-based logic gates and their short circuits, with specific examples of Boolean AND and OR gates, and concatenated logic gates composed of multi-step enzyme-biocatalyzed reactions. Noise formation in the biocatalytic reactions and its decrease by adding a "filter" system, converting convex to sigmoid response function, are discussed. Despite the fact that the enzyme-based logic gates are primarily considered as components of future biomolecular computing systems, their biosensing applications are promising for immediate practical use. Analytical use of the enzyme logic systems in biomedical and forensic applications is discussed and exemplified with the logic analysis of biomarkers of various injuries, e.g., liver injury, and with analysis of biomarkers characteristic of different ethnicity found in blood samples on a crime scene. Interfacing of enzyme logic systems with modified electrodes and semiconductor devices is discussed, giving particular attention to the interfaces functionalized with signal-responsive materials. Future perspectives in the design of the biomolecular logic systems and their applications are discussed in the conclusion. Graphical Abstract Various applications and signal-transduction methods are reviewed for enzyme-based logic systems.
Immobilization of xanthine oxidase on a polyaniline silicone support.
Nadruz, W; Marques, E T; Azevedo, W M; Lima-Filho, J L; Carvalho, L B
1996-03-01
A polyaniline silicone support to immobilize xanthine oxidase is proposed as a reactor coil to monitor the action of xanthine oxidase on hypoxanthine, xanthine and 6-mercaptopurine. A purified xanthine oxidase immobilized on this support lost 80% of the initial activity after 12 min of use. Co-immobilization of superoxide dismutase and catalase increased the stability of immobilized xanthine oxidase so that the derivative maintained 79% of its initial activity after 4.6 h of continuous use in which 1.5 mumol purine bases were converted by the immobilized enzyme system. There is no evidence of either polyaniline or protein leaching from the coil during 3 h of continuous use. When solutions (10 ml) of hypoxanthine, xanthine and 6-mercaptopurine were circulated individually through the xanthine oxidase-superoxide dismutase-catalase-polyaniline coil (1 mm internal diameter and 3 m in length, 3 ml internal volume) activities of 8.12, 11.17 and 1.09 nmol min-1 coil-1, respectively, were obtained. The advantages of the reactor configuration and the redox properties of the polymer, particularly with respect to immobilized oxidoreductases, make this methodology attractive for similar enzyme systems. This immobilized enzyme system using polyaniline-silicone as support converted 6-mercaptopurine to 6-thiouric acid with equal efficiency as resins based on polyacrylamide and polyamide 11.
Role of serum angiotensin converting enzyme in sarcoidosis.
Khan, A H; Ghani, F; Khan, A; Khan, M A; Khurshid, M
1998-05-01
This study was conducted to determine the role of Serum Angiotensin Converting Enzyme (SACE) as a marker in the differential diagnosis of pulmonary diseases and prognosis of sarcoidosis. A retrospective analysis of 113 medical records of patients at The Aga Khan University Hospital, with laboratory investigation for SACE was performed. Among 113 patients, 51 cases were found to have sarcoidosis, 44 of them had SACE levels greater than 52 IU/L (mean ACE 104.44). SACE levels were also found elevated in other clinical conditions like tuberculosis (mean 58.64 IU/L), but the enzyme level were less (p 0.04) than those found in sarcoidosis (mean (92.97 IU/L). SACE activity was found to be considerably lower in other chronic lung diseases such as, fibrosing alveolitis (mean 43.98 IU/L), interstitial lung disease (mean 42.11 IU/L) and chronic obstructive lung disease (mean 40.85 IU/L). Twenty patients of sarcoidosis, who received steroid treatment subsequently showed a decline in the SACE levels. SACE is a useful marker in differential diagnosis as 37.2% cases of sarcoidosis compared to only 9.09% of tuberculosis had SACE levels greater than 100 IU/L. In addition, our data also suggest that serum ACE is useful for the diagnosis as well as monitoring prognosis in sarcoidosis.
NASA Astrophysics Data System (ADS)
Shi, Lei; Wu, Tizhi; Sheng, Naijuan; Yang, Li; Wang, Qian; Liu, Rui; Wu, Hao
2017-06-01
The complexity and diversity of peptide mixture from protein hydrolysates make their characterization difficult. In this study, a method combining nano LC-MS/MS with molecular docking was applied to identifying and characterizing a peptide with angiotensin-I converting enzyme (ACE-I) inhibiting activity from Venerupis philippinarum hydrolysate. Firstly, ethanol supernatant of V. philippinarum hydrolysate was separated into active fractions with chromatographic methods such as ion-exchange chromatography and high performance liquid chromatography in combination. Then seven peptides from active fraction were identified according to the searching result of the MS/MS spectra against protein databases. Peptides were synthesized and subjected to ACE-I-inhibition assay. The peptide NTLTLIDTGIGMTK showed the highest potency with an IC50 of 5.75 μmol L-1. The molecular docking analysis showed that the ACE-I inhibiting peptide NTLTLIDTGIGMTK bond with residues Glu123, Glu403, Arg522, Glu376, Gln281 and Asn285 of ACE-I. Therefore, active peptides could be identified with the present method rather than the traditional purification and identification strategies. It may also be feasible to identify other food-derived peptides which target other enzymes and receptors with the method developed in this study.
Piddington, C S; Kovacevich, B R; Rambosek, J
1995-01-01
Dibenzothiophene (DBT), a model compound for sulfur-containing organic molecules found in fossil fuels, can be desulfurized to 2-hydroxybiphenyl (2-HBP) by Rhodococcus sp. strain IGTS8. Complementation of a desulfurization (dsz) mutant provided the genes from Rhodococcus sp. strain IGTS8 responsible for desulfurization. A 6.7-kb TaqI fragment cloned in Escherichia coli-Rhodococcus shuttle vector pRR-6 was found to both complement this mutation and confer desulfurization to Rhodococcus fascians, which normally is not able to desulfurize DBT. Expression of this fragment in E. coli also conferred the ability to desulfurize DBT. A molecular analysis of the cloned fragment revealed a single operon containing three open reading frames involved in the conversion of DBT to 2-HBP. The three genes were designated dszA, dszB, and dszC. Neither the nucleotide sequences nor the deduced amino acid sequences of the enzymes exhibited significant similarity to sequences obtained from the GenBank, EMBL, and Swiss-Prot databases, indicating that these enzymes are novel enzymes. Subclone analyses revealed that the gene product of dszC converts DBT directly to DBT-sulfone and that the gene products of dszA and dszB act in concert to convert DBT-sulfone to 2-HBP. PMID:7574582
Arise, Abimbola K; Alashi, Adeola M; Nwachukwu, Ifeanyi D; Malomo, Sunday A; Aluko, Rotimi E; Amonsou, Eric O
2017-07-01
An increased rate of high blood pressure has led to critical human hypertensive conditions in most nations. In the present study, bambara protein hydrolysates (BPHs) obtained using three different proteases (alcalase, trypsin and pepsin) and their peptide fractions (molecular weight: 10, 5, 3 and 1 kDa) were investigated for antihypertensive and antioxidant activities. Alcalase hydrolysate contained the highest amount of low molecular weight (LMW) peptides compared to pepsin and trypsin hydrolysates. LMW peptides fractions (<1 kDa) exhibited the highest inhibitory activity against angiotensin-converting enzyme (ACE) for all the enzymes hydrolysates. For renin inhibition, alcalase hydrolysate showed the highest inhibition at 59% compared to other hydrolysates and their corresponding membrane fractions. The antioxidant power of bambara protein hydrolysates and peptide fractions was evaluated through the inhibition of linoleic acid peroxidation and ABTS scavenging activity. Among the hydrolysates, alcalase exhibited the highest inhibition of linoleic acid oxidation. Furthermore, all BPHs were able to scavenge ABTS •+ to a three-fold greater extent compared to the isolate. BPH and LMW peptide fractions could potentially serve as useful ingredients in the formulation of functional foods and nutraceuticals against high blood pressure and oxidative stress. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Cajado-Carvalho, Daniela; Kuniyoshi, Alexandre Kazuo; Duzzi, Bruno; Iwai, Leo Kei; Oliveira, Úrsula Castro de; Junqueira de Azevedo, Inácio de Loiola Meirelles; Kodama, Roberto Tadashi; Portaro, Fernanda Vieira
2016-11-24
The number of cases of envenomation by scorpions has grown significantly in Brazil since 2007, with the most severe cases being caused by the Tityus serrulatus scorpion. Although envenomed patients mostly suffer neurotoxic manifestations, other symptoms, such as hypertension, cannot be exclusively attributed to neurotoxins. Omics analyses have detected plentiful amounts of metalloproteases in T. serrulatus venom. However, the roles played by these enzymes in envenomation are still unclear. Endeavoring to investigate the functions of scorpion venom proteases, we describe here for the first time an Angiotensin I-Converting Enzyme-like peptidase (ACE-like) purified from T. serrulatus venom. The crude venom cleaved natural and fluorescent substrates and these activities were inhibited by captopril. Regarding the serum neutralization, the scorpion antivenom was more effective at blocking the ACE-like activity than arachnid antivenom, although neither completely inhibited the venom cleavage action, even at higher doses. ACE-like was purified from the venom after three chromatographic steps and its identity was confirmed by mass spectrometric and transcriptomic analyses. Bioinformatics analysis showed homology between the ACE-like transcript sequences from Tityus spp. and human testis ACE. These findings advance our understanding of T. serrulatus venom components and may improve treatment of envenomation victims, as ACE-like may contribute to envenomation symptoms, especially the resulting hypertension.
Styrene Oxide Isomerase of Rhodococcus opacus 1CP, a Highly Stable and Considerably Active Enzyme
Gröning, Janosch A. D.; Tischler, Dirk; Kaschabek, Stefan R.; Schlömann, Michael
2012-01-01
Styrene oxide isomerase (SOI) is involved in peripheral styrene catabolism of bacteria and converts styrene oxide to phenylacetaldehyde. Here, we report on the identification, enrichment, and biochemical characterization of a novel representative from the actinobacterium Rhodococcus opacus 1CP. The enzyme, which is strongly induced during growth on styrene, was shown to be membrane integrated, and a convenient procedure was developed to highly enrich the protein in active form from the wild-type host. A specific activity of about 370 U mg−1 represents the highest activity reported for this enzyme class so far. This, in combination with a wide pH and temperature tolerance, the independence from cofactors, and the ability to convert a spectrum of substituted styrene oxides, makes a biocatalytic application imaginable. First, semipreparative conversions were performed from which up to 760 μmol of the pure phenylacetaldehyde could be obtained from 130 U of enriched SOI. Product concentrations of up to 76 mM were achieved. However, due to the high chemical reactivity of the aldehyde function, SOI was shown to be the subject of an irreversible product inhibition. A half-life of 15 min was determined at a phenylacetaldehyde concentration of about 55 mM, indicating substantial limitations of applicability and the need to modify the process. PMID:22504818
Iwabuchi, Kikuo; Arakawa, Maki; Kiyota, Ryutaro; Hoshino, Keita; Ando, Tetsu
2014-10-01
Males of the cerambycid beetle Xylotrechus pyrrhoderus release a mixture of (S)-2-hydroxy-3-octanone [(S)-1] and (2S,3S)-2,3-octanediol [(2S,3S)-2] as a sex pheromone that attracts conspecific females. The chemical structures of these pheromone components include a common motif and are assumed to be biosynthetically related. Here, we show that deuterated (S)-1, applied on the cuticle of a pronotal pheromone gland, was converted into (2S,3S)-2, that included deuterium atoms, but a reverse conversion did not take place. These results reveal a carbonyl reductase to be active in the pheromone gland, and that the ketol is a biosynthetic precursor of the diol. Males did not produce (R)-1; however, deuterated (R)-1 was converted into (2R,3R)-2, indicating an attack of the enzyme from the opposite side of the hydroxyl group at the 2-position. Furthermore, to understand the substrate specificity of the enzyme, racemates of 2-hydroxy-3-hexanone and 2-hydroxy-3-decanone were synthesized and applied to the gland. Their conversion into the corresponding diols suggests that the enzyme reduces the carbonyl group at the 3-position, regardless of the chain length.
Characteristics of basal ice and subglacial water at Dome Fuji, Antarctica ice sheet
NASA Astrophysics Data System (ADS)
Motoyama, H.; Uemura, R.; Hirabayashi, M.; Miyake, T.; Kuramoto, T.; Tanaka, Y.; Dome Fuji Ice Core Project, M.
2008-12-01
(Introduction): The second deep ice coring project at Dome Fuji, Antarctica reached a depth of 3035.22 m during the austral summer season in 2006/2007. The recovered ice cores contain records of global environmental changes going back about 720,000 years. (Estimation of basal ice melt): The borehole measurement was carried out on January 2nd in 2007 when the temperature disturbance in the borehole calmed down by the rest of drilling for 2 days. Temperature measurement was performed after 0 C thermometer test was done in the ground. The temperature sensor of pt100 installed in the skate-like anti-torque was used. We did not have the enough time until the temperature of thermometer was matched with the temperature of ice sheet. Some error was included in ice temperature data. The resistance of pt100 sensor was converted to temperature in the borehole measurement machine. But we used only two electrical lines for pt100 sensor. Rate of heat flow in the ice sheet was calculated using the vertical temperature gradient of the ice sheet and rate of heat conductivity of ice. The deepest part of heat flux using temperatures at 3000m and 3030m was about 45mW/m2. We assumed that this value was the heat flux from the bedrock in the ice sheet. Heat flux to the bedrock surface in the ground was assumed 54.6mW/m2 adopted by ice sheet model (P. Huybrechts, 2006). Then the heat flux for basal ice melt was about 10mW/m2. This value was equaled to melting of 1.1mm of ice thickness per year. On the other hand, the annual layer thickness under 2500m was not changed so much and its average was 1.3mm of ice thickness. So the annual layer thickness and melting rate of basal ice was the same in ordering way. Or ice equivalent in annual layer is melting every year. The age of the deepest part of ice core is guessed at 720,000 years old and the ice older than basal ice has melted away. (The state of basal ice): When the ice core drilling depth passed 3031.44m, amount of ice chip more abundant than the cutting chips has been collected. When the drilling passed 3033.46m, the amount of ice chip was decreased. But the amount of ice chip collected increase again from 3034.59m and many large ices have taken the upper part of ice core. The temperature of ice sheet near the bedrock is the pressure melting point. So the liquid water can exist easy there. The water like groundwater infiltrated into the borehole and froze in drilling liquid from 3031.44m to 3033.46m. Under 3034.59m, the subglacial water infiltrated into the borehole and froze in drilling liquid. The existence of water channel in the ice core was found. We think that the liquid water has been flowing through the boundary of ice crystal. (Characteristics of chemical constituents): The melted ice was analyzed every 10cm per 50cm from 2400m to 3028m and continuously every 10cm from 3028m to 3034m. The analytical items were water isotopes (d18O and dD), micro particles (dust) and major ion components. The variations of water isotope and dust in ice near the bedrock have no conspicuous change. But, the concentrations of Cl- and Na+ ions had interesting behavior. The concentration of Cl- ion increased and Na+ ion was decreased deeper than 3020m. Further the concentrations of all ions were decreased suddenly deeper than 3034m. The concentration of ions will be decrease in turn according to the solubility of the ion. home/
Jung, Jihye; Czabany, Tibor; Wilding, Birgit; Klempier, Norbert; Nidetzky, Bernd
2016-01-01
The enzyme QueF catalyzes a four-electron reduction of a nitrile group into an amine, the only reaction of this kind known in biology. In nature, QueF converts 7-cyano-7-deazaguanine (preQ0) into 7-aminomethyl-7-deazaguanine (preQ1) for the biosynthesis of the tRNA-inserted nucleoside queuosine. The proposed QueF mechanism involves a covalent thioimide adduct between preQ0 and a cysteine nucleophile in the enzyme, and this adduct is subsequently converted into preQ1 in two NADPH-dependent reduction steps. Here, we show that the Escherichia coli QueF binds preQ0 in a strongly exothermic process (ΔH = −80.3 kJ/mol; −TΔS = 37.9 kJ/mol, Kd = 39 nm) whereby the thioimide adduct is formed with half-of-the-sites reactivity in the homodimeric enzyme. Both steps of preQ0 reduction involve transfer of the 4-pro-R-hydrogen from NADPH. They proceed about 4–7-fold more slowly than trapping of the enzyme-bound preQ0 as covalent thioimide (1.63 s−1) and are thus mainly rate-limiting for the enzyme's kcat (=0.12 s−1). Kinetic studies combined with simulation reveal a large primary deuterium kinetic isotope effect of 3.3 on the covalent thioimide reduction and a smaller kinetic isotope effect of 1.8 on the imine reduction to preQ1. 7-Formyl-7-deazaguanine, a carbonyl analogue of the imine intermediate, was synthesized chemically and is shown to be recognized by QueF as weak ligand for binding (ΔH = −2.3 kJ/mol; −TΔS = −19.5 kJ/mol) but not as substrate for reduction or oxidation. A model of QueF substrate recognition and a catalytic pathway for the enzyme are proposed based on these data. PMID:27754868
Mechanism-based Categorization of Aromatase Inhibitors: A Potential Discovery and Screening Tool
Cytochrome P450 aromatase is a key steroidogenic enzyme that converts androgens to estrogens in vertebrates. There is much interest in aromatase inhibitors (AIs) because a number of environmental contaminants can act as AIs, thereby disrupting endocrine function in humans and wil...
USDA-ARS?s Scientific Manuscript database
Enzyme catalysts will be vital in the development of synthetic biology approaches for converting pectinic monosaccharides from citrus and beet processing waste streams to value-added materials. We describe here the biophysical and mechanistic characterization of uronate dehydrogenases from a wide va...
Enhanced attrition bioreactor for enzyme hydrolysis of cellulosic materials
Scott, Timothy C.; Scott, Charles D.; Faison, Brendlyn D.; Davison, Brian H.; Woodward, Jonathan
1997-01-01
A process for converting cellulosic materials, such as waste paper, into fuels and chemicals, such as sugars and ethanol, utilizing enzymatic hydrolysis of the major carbohydrate of paper: cellulose. A waste paper slurry is contacted by cellulase in an agitated hydrolyzer. An attritor and a cellobiase reactor are coupled to the agitated hydrolyzer to improve reaction efficiency. Additionally, microfiltration, ultrafiltration and reverse osmosis steps are included to further increase reaction efficiency. The resulting sugars are converted to a dilute product in a fluidized-bed bioreactor utilizing a biocatalyst, such as microorganisms. The dilute product is then concentrated and purified.
Enhanced attrition bioreactor for enzyme hydrolysis or cellulosic materials
Scott, Timothy C.; Scott, Charles D.; Faison, Brendlyn D.; Davison, Brian H.; Woodward, Jonathan
1996-01-01
A process for converting cellulosic materials, such as waste paper, into fuels and chemicals, such as sugars and ethanol, utilizing enzymatic hydrolysis of the major carbohydrate of paper: cellulose. A waste paper slurry is contacted by cellulase in an agitated hydrolyzer. An attritor and a cellobiase reactor are coupled to the agitated hydrolyzer to improve reaction efficiency. Additionally, microfiltration, ultrafiltration and reverse osmosis steps are included to further increase reaction efficiency. The resulting sugars are converted to a dilute product in a fluidized-bed bioreactor utilizing a biocatalyst, such as microorganisms. The dilute product is then concentrated and purified.
Inducible hydroxylation and demethylation of the herbicide isoproturon by Cunninghamella elegans.
Hangler, Martin; Jensen, Bo; Rønhede, Stig; Sørensen, Sebastian R
2007-03-01
A screening of 27 fungal strains for degradation of the phenylurea herbicide isoproturon was performed and yielded 15 strains capable of converting the herbicide to polar metabolites. The zygomycete fungus Cunninghamella elegans strain JS/2 isolated from an agricultural soil converted isoproturon to several known hydroxylated metabolites. In addition, unknown metabolites were produced in minor amounts. Inducible degradation was indicated by comparing resting cells pregrown with or without isoproturon. This shows that strain JS/2 is capable of partially degrading isoproturon and that one or more of the enzymes involved are inducible upon isoproturon exposure.
Wako, K; Kawasaki, T; Yamana, K; Suzuki, K; Jiang, S; Umezu, H; Nishiyama, T; Takahashi, K; Hamakubo, T; Kodama, T; Naito, M
2008-04-01
The association between the expression of androgen receptor (AR) or androgen-converting enzymes and malignant potential in prostate cancer (PCa) was examined. PCa specimens from 44 cases of stage II, 10 cases of stage III, four cases of stage IV and two recurrent cases were semi-quantitatively studied with immunohistochemistry for AR and androgen-converting enzymes. The expression scores for AR, 5alpha-reductase type 1 (SRD5A1), 5alpha-reductase type 2 (SRD5A2), and aldo-keto reductase family 1 member C3 (AKR1C3) in the metastatic lesion of stage IV or recurrent cancer (n = 6) were 284.2 (30.1), 300 (0.0), 279.2 (51) and 254.2 (74.9), respectively; these scores were significantly higher than the respective scores of 121.8 (82.1), 135.1 (59.7), 167.0 (66.4) and 150.5 (62.8) for stage II and III cancer (n = 54) (p<0.001, p<0.001, p = 0.002 and p = 0.018, respectively). The expression scores for AR and SRD5A1 in stage II and III cancer with Gleason score 7 (n = 19) were 128.7 (72.3) and 150.5 (52.9); these were significantly higher than the scores of 78.8 (67.2) and 100.0 (39.6), respectively, for cancers with a Gleason score of < or =6 (n = 20) (p = 0.032 and p = 0.002, respectively). The expression scores for AR, SRD5A1 and AKR1C3 in stage II and III cancer with primary Gleason pattern > or =4 (n = 21) were 158.1 (84.3), 158.3 (61.1) and 173.8 (64.8); these were significantly higher than the scores of 98.6 (72.8), 120.3 (54.7) and 135.6 (57.6), respectively, for cancers with primary Gleason pattern < or =3 (n = 33) (p = 0.011, p = 0.026 and p = 0.034, respectively). Within Gleason score 9 cancer, the expression scores for AR and SRD5A1 in the primary lesion of stage IV (n = 3) were 276.7 (5.8) and 283.3 (28.9); these scores were significantly higher than the scores of 182.1 (86.0) and 140.0 (56.6), respectively, for stage II and III cancer (n = 7) (p = 0.027 and p = 0.001, respectively). Both AR and androgen-converting enzymes were upregulated in high-grade or advanced PCa.
NASA Astrophysics Data System (ADS)
Ham, S. H.; Kato, S.; Rose, F. G.
2016-12-01
In the retrieval of ice clouds from Radar and Lidar Measurements, mass-Dimension (m-D) and Area-Dimension (A-D) relationships are often used to describe nonspherical ice particle shapes. This study analytically investigates how the assumption of m-D and A-D relationships affects retrieval of ice effective radius. We use gamma and lognormal particle distributions and integrate optical parameters over the size distribution. The effective radius is expressed as a function of radar reflectivity factor, visible extinction coefficient, and parameters describing m-D and A-D relationships. The analytic expressions are used for converting effective radius retrieved from one set of m-D and A-D relationships into that with another set of m-D and A-D, including plates, solid columns, bullets, and mixture of different habits. The conversion method can be used for consistent radiative transfer simulation with cloud retrieval algorithms. In addition, when we want to merge cloud effective radii retrieved from different m-D and A-D, the conversion method can be efficiently used to remove undesired biases caused by m-D and A-D assumptions. Furthermore, the sensitivity of the effective radius to m-D and A-D relationships can be quantified by taking the first derivative of the effective radius with respect to parameters expressing the m-D and A-D relationships.
Tracing the atomic nitrogen abundance in star-forming regions with ammonia deuteration
NASA Astrophysics Data System (ADS)
Furuya, Kenji; Persson, Magnus V.
2018-06-01
Partitioning of elemental nitrogen in star-forming regions is not well constrained. Most nitrogen is expected to be partitioned among atomic nitrogen (N I), molecular nitrogen (N_2), and icy N-bearing molecules, such as NH_3 and N_2. N I is not directly observable in the cold gas. In this paper, we propose an indirect way to constrain the amount of N I in the cold gas of star-forming clouds, via deuteration in ammonia ice, the [ND2H/NH2D]/[NH2D/NH3] ratio. Using gas-ice astrochemical simulations, we show that if atomic nitrogen remains as the primary reservoir of nitrogen during cold ice formation stages, the [ND2H/NH2D]/[NH2D/NH3] ratio is close to the statistical value of 1/3 and lower than unity, whereas if atomic nitrogen is largely converted into N-bearing molecules, the ratio should be larger than unity. Observability of ammonia isotopologues in the inner hot regions around low-mass protostars, where ammonia ice has sublimated, is also discussed. We conclude that the [ND2H/NH2D]/[NH2D/NH3] ratio can be quantified using a combination of Very Large Array and Atacama Large Millimeter/submillimeter Array observations with reasonable integration times, at least towards IRAS 16293-2422, where high molecular column densities are expected.
NASA Astrophysics Data System (ADS)
Storelvmo, Trude; Sagoo, Navjit; Tan, Ivy
2016-04-01
Despite the growing effort in improving the cloud microphysical schemes in GCMs, most of this effort has not focused on improving the ability of GCMs to accurately simulate phase partitioning in mixed-phase clouds. Getting the relative proportion of liquid droplets and ice crystals in clouds right in GCMs is critical for the representation of cloud radiative forcings and cloud-climate feedbacks. Here, we first present satellite observations of cloud phase obtained by NASA's CALIOP instrument, and report on robust statistical relationships between cloud phase and several aerosols species that have been demonstrated to act as ice nuclei (IN) in laboratory studies. We then report on results from model intercomparison projects that reveal that GCMs generally underestimate the amount of supercooled liquid in clouds. For a selected GCM (NCAR 's CAM5), we thereafter show that the underestimate can be attributed to two main factors: i) the presence of IN in the mixed-phase temperature range, and ii) the Wegener-Bergeron-Findeisen process, which converts liquid to ice once ice crystals have formed. Finally, we show that adjusting these two processes such that the GCM's cloud phase is in agreement with the observed has a substantial impact on the simulated radiative forcing due to IN perturbations, as well as on the cloud-climate feedbacks and ultimately climate sensitivity simulated by the GCM.
Laboratory spectroscopic analyses of electron irradiated alkanes and alkenes in solar system ices
NASA Astrophysics Data System (ADS)
Hand, K. P.; Carlson, R. W.
2012-03-01
We report results from laboratory experiments of 10 keV electron irradiation of thin ice films of water and short-chain hydrocarbons at ˜10-8 Torr and temperatures ranging from 70-100 K. Hydrocarbon mixtures include water with C3H8, C3H6, C4H10 (butane and isobutane), and C4H8, (1-butene and cis/trans-2-butene). The double bonds of the alkenes in our initial mixtures were rapidly destroyed or converted to single carbon bonds, covalent bonds with hydrogen, bonds with -OH (hydroxyl), bonds with oxygen (C-O), or double bonds with oxygen (carbonyl). Spectra resulting from irradiation of alkane and alkene ices are largely indistinguishable; the initial differences in film composition are destroyed and the resulting mixture includes long-chain, branched aliphatics, aldehydes, ketones, esters, and alcohols. Methane was observed as a product during radiolysis but CO was largely absent. We find that while some of the carbon is oxidized and lost to CO2 formation, some carbon is sequestered into highly refractory, long-chain aliphatic compounds that remain as a thin residue even after the ice film has been raised to standard temperature and pressure. We conclude that the high availability of hydrogen in our experiments leads to the formation of the formyl radical which then serves as the precursor for formaldehyde and polymerization of longer hydrocarbon chains.
Aβ-degrading enzymes: potential for treatment of Alzheimer disease.
Miners, James Scott; Barua, Neil; Kehoe, Patrick Gavin; Gill, Steven; Love, Seth
2011-11-01
There is increasing evidence that deficient clearance of β-amyloid (Aβ) contributes to its accumulation in late-onset Alzheimer disease (AD). Several Aβ-degrading enzymes, including neprilysin (NEP), insulin-degrading enzyme, and endothelin-converting enzyme reduce Aβ levels and protect against cognitive impairment in mouse models of AD. The activity of several Aβ-degrading enzymes rises with age and increases still further in AD, perhaps as a physiological response to minimize the buildup of Aβ. The age- and disease-related changes in expression of more recently recognized Aβ-degrading enzymes (e.g. NEP-2 and cathepsin B) remain to be investigated, and there is strong evidence that reduced NEP activity contributes to the development of cerebral amyloid angiopathy. Regardless of the role of Aβ-degrading enzymes in the development of AD, experimental data indicate that increasing the activity of these enzymes (NEP in particular) has therapeutic potential in AD, although targeting their delivery to the brain remains a major challenge. The most promising current approaches include the peripheral administration of agents that enhance the activity of Aβ-degrading enzymes and the direct intracerebral delivery of NEP by convection-enhanced delivery. In the longer term, genetic approaches to increasing the intracerebral expression of NEP or other Aβ-degrading enzymes may offer advantages.
NASA Astrophysics Data System (ADS)
Wadhams, P.; Tucker, W. B.; Krabill, W. B.; Swift, R. N.; Comiso, J. C.; Davis, N. R.
1992-12-01
We have confirmed our earlier finding that the probability density function (pdf) of ice freeboard in the Arctic Ocean can be converted to a pdf of ice draft by applying a simple coordinate transformation based on the measured mean draft and mean elevation. This applies in each of six 50-km sections (north of Greenland) of joint airborne laser and submarine sonar profile obtained along nearly coincident tracks from the Arctic Basin north of Greenland and tested for this study. Detailed differences in the shape of the pdf can be explained on the basis of snow load and can, in principle, be compensated by the use of a more sophisticated freeboard-dependent transformation. The measured "density ratio" R (actually mean draft/mean elevation ratio) for each section was found to be consistent over all sections tested, despite differences in the ice regime, indicating that a single value of R might be used for measurements done in this season of the year. The mean value
NASA Astrophysics Data System (ADS)
Storelvmo, T.
2015-12-01
Substantial improvements have been made to the cloud microphysical schemes used in the latest generation of global climate models (GCMs), however, an outstanding weakness of these schemes lies in the arbitrariness of their tuning parameters. Despite the growing effort in improving the cloud microphysical schemes in GCMs, most of this effort has not focused on improving the ability of GCMs to accurately simulate phase partitioning in mixed-phase clouds. Getting the relative proportion of liquid droplets and ice crystals in clouds right in GCMs is critical for the representation of cloud radiative forcings and cloud-climate feedbacks. Here, we first present satellite observations of cloud phase obtained by NASA's CALIOP instrument, and report on robust statistical relationships between cloud phase and several aerosols species that have been demonstrated to act as ice nuclei (IN) in laboratory studies. We then report on results from model intercomparison projects that reveal that GCMs generally underestimate the amount of supercooled liquid in clouds. For a selected GCM (NCAR 's CAM5), we thereafter show that the underestimate can be attributed to two main factors: i) the presence of IN in the mixed-phase temperature range, and ii) the Wegener-Bergeron-Findeisen process, which converts liquid to ice once ice crystals have formed. Finally, we show that adjusting these two processes such that the GCM's cloud phase is in agreement with the observed has a substantial impact on the simulated radiative forcing due to IN perturbations, as well as on the cloud-climate feedbacks and ultimately climate sensitivity simulated by the GCM.
Remote enzyme activation using gold coated magnetite as antennae for radio frequency fields
NASA Astrophysics Data System (ADS)
Collins, Christian B.; Ackerson, Christopher J.
2018-02-01
The emerging field of remote enzyme activation, or the ability to remotely turn thermophilic increase enzyme activity, could be a valuable tool for understanding cellular processes. Through exploitation of the temperature dependence of enzymatic processes and high thermal stability of thermophilic enzymes these experiments utilize nanoparticles as `antennae' that convert radiofrequency (RF) radiation into local heat, increasing activity of the enzymes without increasing the temperature of the surrounding bulk solution. To investigate this possible tool, thermolysin, a metalloprotease was covalently conjugated to 4nm gold coated magnetite particles via peptide bond formation with the protecting ligand shell. RF stimulated protease activity at 17.76 MHz in a solenoid shaped antenna, utilizing both electric and magnetic field interactions was investigated. On average 40 percent higher protease activity was observed in the radio frequency fields then when bulk heating the sample to the same temperature. This is attributed to electrophoretic motion of the nanoparticle enzyme conjugates and local regions of heat generated by the relaxation of the magnetite cores with the oscillating field. Radio frequency local heating of nanoparticles conjugated to enzymes as demonstrated could be useful in the activation of specific enzymes in complex cellular environments.
van Munster, Jolanda M; Thomas, Baptiste; Riese, Michel; Davis, Adrienne L; Gray, Christopher J; Archer, David B; Flitsch, Sabine L
2017-02-21
Renewables-based biotechnology depends on enzymes to degrade plant lignocellulose to simple sugars that are converted to fuels or high-value products. Identification and characterization of such lignocellulose degradative enzymes could be fast-tracked by availability of an enzyme activity measurement method that is fast, label-free, uses minimal resources and allows direct identification of generated products. We developed such a method by applying carbohydrate arrays coupled with MALDI-ToF mass spectrometry to identify reaction products of carbohydrate active enzymes (CAZymes) of the filamentous fungus Aspergillus niger. We describe the production and characterization of plant polysaccharide-derived oligosaccharides and their attachment to hydrophobic self-assembling monolayers on a gold target. We verify effectiveness of this array for detecting exo- and endo-acting glycoside hydrolase activity using commercial enzymes, and demonstrate how this platform is suitable for detection of enzyme activity in relevant biological samples, the culture filtrate of A. niger grown on wheat straw. In conclusion, this versatile method is broadly applicable in screening and characterisation of activity of CAZymes, such as fungal enzymes for plant lignocellulose degradation with relevance to biotechnological applications as biofuel production, the food and animal feed industry.
NASA Astrophysics Data System (ADS)
Hoover, Richard B.; Pikuta, Elena V.; Marsic, Damien; Ng, Joseph D.
2002-02-01
Microorganisms preserved within the permafrost, glaciers, and polar ice sheets of planet Earth provide analogs for microbial life forms that may be encountered in ice or permafrost of Mars, Europa, Callisto, Ganymede, asteroids, comets or other frozen worlds in the Cosmos. The psychrophilic and psychrotolerant microbes of the terrestrial cryosphere help establish the thermal and temporal limitations of life on Earth and provide clues to where and how we should search for evidence of life elsewhere in the Universe. For this reason, the cold-loving microorganisms are directly relevant to Astrobiology. Cryopreserved microorganisms can remain viable (in deep anabiosis) in permafrost and ice for millions of years. Permafrost, ice wedges, pingos, glaciers, and polar ice sheets may contain intact ancient DNA, lipids, enzymes, proteins, genes, and even frozen and yet viable ancient microbiota. Some microorganisms carry out metabolic processes in water films and brine, acidic, or alkaline channels in permafrost or ice at temperatures far below 0 degree(s)C. Complex microbial communities live in snow, ice-bubbles, cryoconite holes on glaciers and ancient microbial ecosystems are cryopreserved within the permafrost, glaciers, and polar caps. In the Astrobiology group of the NASA Marshall Space Flight Center and the University of Alabama at Huntsville, we have employed advanced techniques for the isolation, culture, and phylogenetic analysis of many types of microbial extremophiles. We have also used the Environmental Scanning Electron Microscope to study the morphology, ultra-microstructure and chemical composition of microorganisms in ancient permafrost and ice. We discuss several interesting and novel anaerobic microorganisms that we have isolated and cultured from the Pleistocene ice of the Fox Tunnel of Alaska, guano of the Magellanic Penguin, deep-sea sediments from the vicinity of the Rainbow Hydrothermal Vent and enrichment cultures from ice of the Patriot Hills of Antarctica. The microbial extremophiles recovered from permafrost, ice, cold pools and deep-sea sediments may provide information relevant to the question of how and where we should search for evidence of extant or extinct microbial life elsewhere in the Cosmos.
NASA Technical Reports Server (NTRS)
Hoover, Richard B.; Pikuta, Elena V.; Marsic, Damien; Ng, Joseph
2002-01-01
Microorganisms preserved within the permafrost, glaciers, and polar ice sheets of planet Earth provide analogs for microbial life forms that may be encountered in ice or permafrost of Mars, Europa, Callisto, Ganymede, asteroids, comets or other frozen worlds in the Cosmos. The psychrophilic and psychrotolerant microbes of the terrestrial cryosphere help establish the thermal and temporal limitations of life on Earth and provide clues to where and how we should search for evidence of life elsewhere in the Universe. For this reason, the cold-loving microorganisms are directly relevant to Astrobiology. Cryopreserved microorganisms can remain viable (in deep anabiosis) in permafrost and ice for millions of years. Permafrost, ice wedges, pingos, glaciers, and polar ice sheets may contain intact ancient DNA, lipids, enzymes, proteins, genes, and even frozen and yet viable ancient microbiota. Some microorganisms carry out metabolic processes in water films and brine, acidic, or alkaline channels in permafrost or ice at temperatures far below 0 C. Complex microbial communities live in snow, ice-bubbles, cryoconite holes on glaciers and ancient microbial ecosystems are cryopreserved within the permafrost, glaciers, and polar caps. In the Astrobiology group of the NASA Marshall Space Flight Center and the University of Alabama at Huntsville, we have employed advanced techniques for the isolation, culture, and phylogenetic analysis of many types of microbial extremophiles. We have also used the Environmental Scanning Electron Microscope to study the morphology, ultra-microstructure and chemical composition of microorganisms in ancient permafrost and ice. We discuss several interesting and novel anaerobic microorganisms that we have isolated and cultured from the Pleistocene ice of the Fox Tunnel of Alaska, guano of the Magellanic Penguin, deep-sea sediments from the vicinity of the Rainbow Hydrothermal Vent and enrichment cultures from ice of the Patriot Hills of Antarctica. The microbial extremophiles recovered from permafrost, ice, cold pools and deep-sea sediments may provide information relevant to the question of how and where we should search for evidence of extant or extinct microbial life elsewhere in the Cosmos.
NASA Technical Reports Server (NTRS)
Hoover, Richard B.; Pikuta, Elena V.; Marsic, Damien; Ng, Joseph; Six, N. Frank (Technical Monitor)
2001-01-01
Microorganisms preserved within the permafrost, glaciers, and polar ice sheets of planet Earth provide analogs for microbial life forms that may be encountered in ice or permafrost of Mars, Europa, Callisto, Ganymede, asteroids, comets or other frozen worlds in the Cosmos. The psychrophilic and psychrotolerant microbes of the terrestrial cryosphere help establish the thermal and temporal limitations of life on Earth and provide clues to where and how we should search for evidence of life elsewhere in the Universe. For this reason, the cold-loving microorganisms are directly relevant to Astrobiology. Cryo-preserved microorganisms can remain viable (in deep anabiosis) in permafrost and ice for millions of years. Permafrost, ice wedges, pingos, glaciers, and polar ice sheets may contain intact ancient DNA, lipids, enzymes, proteins, genes, and even frozen and yet viable ancient microbiota. Some microorganisms carry out metabolic processes in water films and brine, acidic, or alkaline channels in permafrost or ice at temperatures far below 0 T. Complex microbial communities live in snow, ice-bubbles, cryoconite holes on glaciers and ancient microbial ecosystems are cryopreserved within the permafrost, glaciers, and polar caps. In the Astrobiology group of the NASA Marshall Space Flight Center and the University of Alabama at Huntsville, we have employed advanced techniques for the isolation, culture, and phylogenetic analysis of many types of microbial extremophiles. We have also used the Environmental Scanning Electron Microscope to study the morphology, ultra-microstructure and chemical composition of microorganisms in ancient permafrost and ice. We discuss several interesting and novel anaerobic microorganisms that we have isolated and cultured from the Pleistocene ice of the Fox Tunnel of Alaska, guano of the Magellanic Penguin, deep sea sediments from the vicinity of the Rainbow Hydrothermal Vent and enrichment cultures from ice of the Patriot Hills of Antarctica. The microbial extremophiles recovered from permafrost, ice, cold pools and deep sea sediments may provide information relevant to the question of how and where we should search for evidence of extant or extinct microbial life elsewhere in the Cosmos.
Ice-associated norovirus outbreak predominantly caused by GII.17 in Taiwan, 2015.
Cheng, Hao-Yuan; Hung, Min-Nan; Chen, Wan-Chin; Lo, Yi-Chun; Su, Ying-Shih; Wei, Hsin-Yi; Chen, Meng-Yu; Tuan, Yen-Chang; Lin, Hui-Chen; Lin, Hsu-Yang; Liu, Tsung-Yen; Wang, Yu-Ying; Wu, Fang-Tzy
2017-11-07
On 5 March 2015, Taiwan Centers for Disease Control was notified of more than 200 students with gastroenteritis at a senior high school during excursion to Kenting. We conducted an outbreak investigation to identify the causative agent and possible vehicle of the pathogen. We conducted a retrospective cohort study by using a structured questionnaire to interview all students for consumed food items during their stay at the resort. Students were defined as a gastroenteritis case while having vomiting or diarrhea after the breakfast on 4 March. We inspected the environment to identify possible contamination route. We collected stool or vomitus samples from ill students, food handlers and environmental specimens for bacterial culture for common enteropathogens, reverse transcription polymerase chain reaction (RT-PCR) for norovirus and enzyme-linked immunosorbent assay (ELISA) for rotavirus. Norovirus PCR-positive products were then sequenced and genotyped. Of 267 students enrolled, 144 (54%) met our case definition. Regression analysis revealed elevated risk associated with iced tea, which was made from tea powder mixed with hot water and self-made ice (risk ratio 1.54, 95% confidence interval 1.22-1.98). Ice used for beverages, water before and after water filter of the ice machine and 16 stool and vomitus samples from ill students were tested positive for norovirus; Multiple genotypes were identified including GI.2, GI.4 and GII.17. GII.17 was the predominant genotype and phylogenetic analyses showed that noroviruses identified in ice, water and human samples were clustered into the same genotypes. Environmental investigation revealed the ice was made by inadequate-filtered and un-boiled water. We identified the ice made by norovirus-contaminated un-boiled water caused the outbreak and the predominant genotype was GII.17. Adequately filtered or boiled water should be strongly recommended for making ice to avoid possible contamination.
NASA Astrophysics Data System (ADS)
Simanjuntak, J. P.; Lisyanto; Daryanto, E.; Tambunan, B. H.
2018-03-01
downdraft biomass gasification reactors, coupled with reciprocating internal combustion engines (ICE) are a viable technology for small scale heat and power generation. The direct use of producer gas as fuel subtitution in an ICE could be of great interest since Indonesia has significant land area in different forest types that could be used to produce bioenergy and convert forest materials to bioenergy for use in energy production and the versatility of this engine. This paper will look into the aspect of biomass energie as a contributor to energy mix in Indonesia. This work also contains information gathered from numerous previews study on the downdraft gasifier based on experimental or simulation study on the ability of producer gas as fuels for internal combustion engines aplication. All data will be used to complement the preliminary work on biomass gasification using downdraft to produce producer gas and its application to engines.
Investigation of thermal management technique in blue LED airport taxiway fixtures
NASA Astrophysics Data System (ADS)
Gu, Yimin; Baker, Alex; Narendran, Nadarajah
2007-09-01
On airport runways, blue light fixtures denote taxiways between the runway and the airport terminal. Blue optics transmit mostly short-wavelength radiation, which makes traditional incandescent lamps a poor choice of light source; the resulting fixture efficiency could be less than one percent. LEDs are replacing incandescent lamps in this application. But unlike incandescent sources, LEDs do not radiate enough heat to melt ice and snow from the fixture optics. To meet Federal Aviation Administration (FAA) regulations for weatherability, some LED-based fixtures incorporate electric heaters that, when switched on, nearly negate the energy-savings benefit of converting to LED sources. In this study, we explored methods for conduction and convection of LED junction heat to taxiway fixture optics for the purpose of minimizing snow and ice buildup. A more efficient LED-based system compared to incandescent that would require no additional heaters was demonstrated.