Doi, Shiori; Hashimoto, Yoshiteru; Tomita, Chiaki; Kumano, Takuto; Kobayashi, Michihiko
2016-01-01
Piperonal-catabolizing microorganisms were isolated from soil, the one (strain CT39-3) exhibiting the highest activity being identified as Burkholderia sp. The piperonal-converting enzyme involved in the initial step of piperonal metabolism was purified from strain CT39-3. Gene cloning of the enzyme and a homology search revealed that the enzyme belongs to the xanthine oxidase family, which comprises molybdoenzymes containing a molybdopterin cytosine dinucleotide cofactor. We found that the piperonal-converting enzyme acts on piperonal in the presence of O2, leading to formation of piperonylic acid and H2O2. The growth of strain CT39-3 was inhibited by higher concentrations of piperonal in the culture medium. Together with this finding, the broad substrate specificity of this enzyme for various aldehydes suggests that it would play an important role in the defense mechanism against antimicrobial compounds derived from plant species. PMID:27905507
Mauborgne, A; Bourgoin, S; Benoliel, J J; Hamon, M; Cesselin, F
1991-02-25
Studies on the effects of peptidase inhibitors on substance P-like immunoreactive material (SPLI) released by K(+)-induced depolarization from slices of the rat spinal cord showed that bacitracin was the most potent agent to protect SPLI from degradation. Captopril and thiorphan which inhibit, respectively, angiotensin I converting enzyme and endopeptidase-24.11 also protected SPLI from degradation. However other inhibitors of these two enzymes, kelatorphan for endopeptidase-24.11 and enalaprilat for angiotensin I converting enzyme were essentially inactive, indicating that both enzymes are probably not involved in the degradation of endogenous substance P. Instead, the non-additive protecting effect of bacitracin, captopril and thiorphan might be due to the blockade of some 'bacitracin-sensitive enzyme' playing a key role in the catabolism of SP within the rat spinal cord.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wallaert, B.; Ramon, P.; Fournier, E.
1982-11-01
Results of bronchoalveolar lavage (BAL), 67Ga scanning, and serum angiotensin-converting enzyme (SACE) assay are compared in the assessment of pulmonary involvement in ten cases of extrathoracic sarcoidosis. Standard clinical, radiologic, and pulmonary function tests detected no pulmonary changes in these patients, but BAL demonstrated an increased alveolar lymphocytosis in eight of ten cases. SACE levels were increased in two cases, and the thoracic gallium uptake was normal in all cases. BAL appears to be the best technique for diagnosing latent pulmonary involvement in extrathoracic sarcoidosis.
Miksík, Ivan; Mikulíková, Katerina; Pácha, Jirí; Kucka, Marek; Deyl, Zdenek
2004-02-05
A high-performance liquid chromatography-atmospheric pressure ionization-electrospray ionization mass spectrometry (HPLC-API-ESI-MS) method was developed for the analysis of steroids in a study of steroid-converting enzymes. Separations ware done on a Zorbax Eclipse XDB-C18 column (eluted with a linear methanol-water-acetic acid gradient) and identification of the steroids involved was done by API-ESI-MS using positive ion mode and extracted ion analysis. The applicability of the present method for studying steroid metabolism was proven in assaying two steroid-converting enzymes (20beta-hydroxysteroid dehydrogenase and 11beta-hydroxysteroid dehydrogenase) in various biological samples (rat and chicken intestine, chicken oviduct).
Enzymes: A Workshop for Secondary School Students.
ERIC Educational Resources Information Center
Bering, C. Larry
1994-01-01
Describes the weekend science workshop on enzymes and includes several projects that involve students directly, parts of which can be incorporated into a traditional chemistry, biology, or physical science course at the secondary level. Subjects include catalysts and catalytic converters in cars, enzymes as consumer products and in industrial…
Soares, Abel Esteves; Maes, Michael; Godeny, Paula; Matsumoto, Andressa Keiko; Barbosa, Décio Sabbatini; da Silva, Taysa Antonia F; Souza, Flávio Henrique M O; Delfino, Vinicius Daher Alvares
2017-12-15
Vitamin D has anti-inflammatory, anti-fibrotic effect, and may block the intrarenal renin-angiotensin system. Adequate vitamin D levels in conjunction with the use of Angiotensin-converting Enzyme Inhibitors/Angiotensin Receptor Blockers may help to slow down chronic kidney disease progression. To study a possible beneficial effect of vitamin D supplementation in chronic kidney disease patients using angiotensin-converting enzyme inhibitors/angiotensin receptor blockers on chronic kidney disease progression we performed a clinical study involving vitamin D supplementation in patients with deficiency of this vitamin. This study was conducted in two chronic kidney disease clinics in the city of Londrina, Brazil, from October 2010 to December 2012. It was involved stage 3 and 4 chronic kidney disease (estimated glomerular filtration rate between 60 and 15mL/min/1.73m 2 ) patients with and without vitamin D deficiency. The patients ingested six-month cholecalciferol 50,000IU oral supplementation to chronic kidney disease patients with vitamin D deficiency. We hypothesize changes in estimated glomerular filtration rate over study period. Our data demonstrate reservation of estimated glomerular filtration with cholecalciferol supplementation to chronic kidney disease patients taking angiotensin-converting enzyme inhibitors/angiotensin receptor blockers. The combination treatment of angiotensin converting enzyme inhibitors/angiotensin receptor blockers with cholecalciferol prevents the decline in estimated glomerular filtration in patients with chronic kidney disease following treatment with angiotensin-converting enzyme inhibitors/angiotensin receptor blockers and may represent a valid approach to reduce renal disease progression in chronic kidney disease patients with vitamin D deficiency. This result needs confirmation in prospective controlled clinical trials. Copyright © 2017. Published by Elsevier Inc.
Rubio, María C; Lewin, Pablo G; De la Cruz, Griselda; Sarudiansky, Andrea N; Nieto, Mauricio; Costa, Osvaldo R; Nicolosi, Liliana N
2016-04-01
There is a relation between vascular endothelial function, atherosclerotic disease, and inflammation. Deterioration of endothelial function has been observed twenty-four hours after intensive periodontal treatment. This effect may be counteracted by the action of angiotensin-converting enzyme inhibitors, which improve endothelial function. The aim of the present study was to evaluate vascular endothelial function after intensive periodontal treatment, in hypertensive patients treated with angiotensinconverting enzyme inhibitors. A prospective, longitudinal, comparative study involving repeated measurements was conducted. Fifty-two consecutive patients with severe periodontal disease were divided into two groups, one comprising hypertensive patients treated with converting enzyme inhibitors and the other comprising patients with no clinical signs of pathology and not receiving angiotensin-converting enzyme inhibitors. Endothelial function was assessed by measuring postischemic dilation of the humeral artery (baseline echocardiography Doppler), and intensive periodontal treatment was performed 24h later. Endothelial function was re-assessed 24h and 15 days after periodontal treatment. Results were analyzed using the SPSS 20 statistical software package. Student's t test and MANOVA were calculated and linear regression analysis with 95% confidence intervals and α<0.05 was performed. Arterial dilation at 24 hours was lower compared to baseline in both groups; values corresponding to the groups receiving angiotensin-converting enzyme inhibitors were 11.89 ± 4.87 vs. 7.30 ± 2.90% (p<0.01) and those corresponding to the group not receiving ACE inhibitors were 12.72 ± 4.62 vs. 3.56 ± 2.39 (p<0.001). The differences between groups were statistically significant (p<0.001). The increase in endothelial dysfunction after intensive periodontal treatment was significantly lower in hypertensive patients treated with angiotensin-converting enzyme inhibitors. Endothelial function improved 15 days after periodontal treatment, reaching baseline values. These results support the protective effect of angiotensin converting enzyme inhibitors on the endothelial function after intensive periodontal treatment. Sociedad Argentina de Investigación Odontológica.
Topham, C M; Dalziel, K
1986-01-01
[2-18O]Ribulose 5-phosphate was prepared and shown to be converted enzymically by 6-phosphogluconate dehydrogenase from sheep liver into 6-phosphogluconate with complete retention of the heavy isotope. This finding unequivocally excludes the possibility of a Schiff-base mechanism for the enzyme. The involvement of metal ions has already been excluded, and other possible mechanisms are discussed. The enzyme was purified by an improved large-scale procedure, which is briefly described. PMID:3718491
Bacterial species involved in the conversion of dietary flavonoids in the human gut.
Braune, Annett; Blaut, Michael
2016-05-03
The gut microbiota plays a crucial role in the conversion of dietary flavonoids and thereby affects their health-promoting effects in the human host. The identification of the bacteria involved in intestinal flavonoid conversion has gained increasing interest. This review summarizes available information on the so far identified human intestinal flavonoid-converting bacterial species and strains as well as their enzymes catalyzing the underlying reactions. The majority of described species involved in flavonoid transformation are capable of carrying out the O-deglycosylation of flavonoids. Other bacteria cleave the less common flavonoid-C-glucosides and/or further degrade the aglycones of flavonols, flavanonols, flavones, flavanones, dihydrochalcones, isoflavones and monomeric flavan-3-ols. To increase the currently limited knowledge in this field, identification of flavonoid-converting bacteria should be continued using culture-dependent screening or isolation procedures and molecular approaches based on sequence information of the involved enzymes.
Primary Systemic Amyloidosis and High Levels of Angiotensin-Converting Enzyme: Two Case Reports
Praena-Segovia, J.; Sanchez-Gastaldo, A.; Bernabeu-Wittel, M.; Ocete-Pérez, R.; Ávila-Polo, R.; Martino, M. L.
2013-01-01
Infiltrative heart diseases are caused by a heterogeneous group of disorders; amyloidosis and sarcoidosis are two frequent causes of myocardial infiltration, which differ in clinical and biological outcome and treatment issues. The presence of high levels of angiotensin-converting enzyme (ACE) in a patient with infiltrative heart disease may increase suspicion of sarcoidosis. Nevertheless, no mention about increased ACE levels in extracerebral primary systemic amyloidosis is available. We present two cases of primary systemic amyloidosis, which are cardiac involvement and elevated ACE levels. PMID:24826302
Akoh, Casimir C; Chang, Shu-Wei; Lee, Guan-Chiun; Shaw, Jei-Fu
2008-11-26
Many industrial products and functional foods can be obtained from cheap and renewable raw agricultural materials. For example, starch can be converted to bioethanol as biofuel to reduce the current demand for petroleum or fossil fuel energy. On the other hand, starch can also be converted to useful functional ingredients, such as high fructose and high maltose syrups, wine, glucose, and trehalose. The conversion process involves fermentation by microorganisms and use of biocatalysts such as hydrolases of the amylase superfamily. Amylases catalyze the process of liquefaction and saccharification of starch. It is possible to perform complete hydrolysis of starch by using the fusion product of both linear and debranching thermostable enzymes. This will result in saving energy otherwise needed for cooling before the next enzyme can act on the substrate, if a sequential process is utilized. Recombinant enzyme technology, protein engineering, and enzyme immobilization are powerful tools available to enhance the activity of enzymes, lower the cost of enzyme through large scale production in a heterologous host, increase their thermostability, improve pH stability, enhance their productivity, and hence making it competitive with the chemical processes involved in starch hydrolysis and conversions. This review emphasizes the potential of using biocatalysis for the production of useful industrial products and functional foods from cheap agricultural produce and transgenic plants. Rice was selected as a typical example to illustrate many applications of biocatalysis in converting low-value agricultural produce to high-value commercial food and industrial products. The greatest advantages of using enzymes for food processing and for industrial production of biobased products are their environmental friendliness and consumer acceptance as being a natural process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsuura-Hachiya, Yuko; Arai, Koji Y.; Ozeki, Rieko
Highlights: •Angiotensin converting enzyme (ACE) increases in UVB-irradiated skin. •Administration of an ACE inhibitor improved UVB-induced skin wrinkle. •ACE inhibitor improved UVB-induced epidermal hypertrophy. •ACE inhibitor improved transepidermal water loss in the UVB-irradiated skin. -- Abstract: Angiotensin-converting enzyme (ACE) activity and angiotensin II signaling regulate cell proliferation, differentiation, and tissue remodeling, as well as blood pressure, while in skin, angiotensin II signaling is involved in wound healing, inflammation, and pathological scar formation. Therefore, we hypothesized that angiotensin II is also involved in photoaging of skin. In this study, we examined the effect of enalapril maleate, an ACE inhibitor, on recoverymore » of wrinkled skin of hairless mice exposed to long-term UVB irradiation. Immunohistochemical observation revealed that expression of ACE, angiotensin II, and angiotensin II type 1 (AT1) and type 2 (AT2) receptors in the skin was increased after UVB irradiation (3 times/week at increasing intensities for 8 weeks). Administration of enalapril maleate (5 times/week for 6 weeks, starting 1 week after 10-week irradiation) accelerated recovery from UVB-induced wrinkles, epidermal hyperplasia and epidermal barrier dysfunction, as compared with the vehicle control. Our results indicate that ACE and angiotensin II activity are involved in skin photoaging, and suggest that ACE inhibitor such as enalapril maleate may have potential for improvement of photoaged skin.« less
Characterization of gossypol biosynthetic pathway
Tian, Xiu; Ruan, Ju-Xin; Huang, Jin-Quan; Fang, Xin; Chen, Zhi-Wen; Hong, Hui; Wang, Ling-Jian; Mao, Ying-Bo; Lu, Shan; Zhang, Tian-Zhen; Chen, Xiao-Ya
2018-01-01
Gossypol and related sesquiterpene aldehydes in cotton function as defense compounds but are antinutritional in cottonseed products. By transcriptome comparison and coexpression analyses, we identified 146 candidates linked to gossypol biosynthesis. Analysis of metabolites accumulated in plants subjected to virus-induced gene silencing (VIGS) led to the identification of four enzymes and their supposed substrates. In vitro enzymatic assay and reconstitution in tobacco leaves elucidated a series of oxidative reactions of the gossypol biosynthesis pathway. The four functionally characterized enzymes, together with (+)-δ-cadinene synthase and the P450 involved in 7-hydroxy-(+)-δ-cadinene formation, convert farnesyl diphosphate (FPP) to hemigossypol, with two gaps left that each involves aromatization. Of six intermediates identified from the VIGS-treated leaves, 8-hydroxy-7-keto-δ-cadinene exerted a deleterious effect in dampening plant disease resistance if accumulated. Notably, CYP71BE79, the enzyme responsible for converting this phytotoxic intermediate, exhibited the highest catalytic activity among the five enzymes of the pathway assayed. In addition, despite their dispersed distribution in the cotton genome, all of the enzyme genes identified show a tight correlation of expression. Our data suggest that the enzymatic steps in the gossypol pathway are highly coordinated to ensure efficient substrate conversion. PMID:29784821
Xiong, Jian; Bhaskar, Ujjwal; Li, Guoyun; Fu, Li; Li, Lingyun; Zhang, Fuming; Dordick, Jonathan S; Linhardt, Robert J
2013-09-10
Heparin is a critically important anticoagulant drug that is prepared from pig intestine. In 2007-2008, there was a crisis in the heparin market when the raw material was adulterated with the toxic polysaccharide, oversulfated chondroitin sulfate, which was associated with 100 deaths in the U.S. alone. As the result of this crisis, our laboratory and others have been actively pursuing alternative sources for this critical drug, including synthetic heparins and bioengineered heparin. In assessing the bioengineering processing costs it has become clear that the use of both enzyme-catalyzed cofactor recycling and enzyme immobilization will be needed for commercialization. In the current study, we examine the use of immobilization of C₅-epimerase and 2-O-sulfotransferase involved in the first enzymatic step in the bioengineered heparin process, as well as arylsulfotransferase-IV involved in cofactor recycling in all three enzymatic steps. We report the successful immobilization of all three enzymes and their use in converting N-sulfo, N-acetyl heparosan into N-sulfo, N-acetyl 2-O-sulfo heparin. Copyright © 2013 Elsevier B.V. All rights reserved.
Enzymes involved in branched-chain amino acid metabolism in humans.
Adeva-Andany, María M; López-Maside, Laura; Donapetry-García, Cristóbal; Fernández-Fernández, Carlos; Sixto-Leal, Cristina
2017-06-01
Branched-chain amino acids (leucine, isoleucine and valine) are structurally related to branched-chain fatty acids. Leucine is 2-amino-4-methyl-pentanoic acid, isoleucine is 2-amino-3-methyl-pentanoic acid, and valine is 2-amino-3-methyl-butanoic acid. Similar to fatty acid oxidation, leucine and isoleucine produce acetyl-coA. Additionally, leucine generates acetoacetate and isoleucine yields propionyl-coA. Valine oxidation produces propionyl-coA, which is converted into methylmalonyl-coA and succinyl-coA. Branched-chain aminotransferase catalyzes the first reaction in the catabolic pathway of branched-chain amino acids, a reversible transamination that converts branched-chain amino acids into branched-chain ketoacids. Simultaneously, glutamate is converted in 2-ketoglutarate. The branched-chain ketoacid dehydrogenase complex catalyzes the irreversible oxidative decarboxylation of branched-chain ketoacids to produce branched-chain acyl-coA intermediates, which then follow separate catabolic pathways. Human tissue distribution and function of most of the enzymes involved in branched-chain amino acid catabolism is unknown. Congenital deficiencies of the enzymes involved in branched-chain amino acid metabolism are generally rare disorders. Some of them are associated with reduced pyruvate dehydrogenase complex activity and respiratory chain dysfunction that may contribute to their clinical phenotype. The biochemical phenotype is characterized by accumulation of the substrate to the deficient enzyme and its carnitine and/or glycine derivatives. It was established at the beginning of the twentieth century that the plasma level of the branched-chain amino acids is increased in conditions associated with insulin resistance such as obesity and diabetes mellitus. However, the potential clinical relevance of this elevation is uncertain.
Wu, Ching-Fang; Lee, Ching-Tai; Kuo, Yao-Hung; Chen, Tzu-Haw; Chang, Chi-Yang; Chang, I-Wei; Wang, Wen-Lun
2017-09-01
Patients with esophageal squamous cell carcinoma have poor survival and high recurrence rate, thus an effective prognostic biomarker is needed. Endothelin-converting enzyme-1 is responsible for biosynthesis of endothelin-1, which promotes growth and invasion of human cancers. The role of endothelin-converting enzyme-1 in esophageal squamous cell carcinoma is still unknown. Therefore, this study investigated the significance of endothelin-converting enzyme-1 expression in esophageal squamous cell carcinoma clinically. We enrolled patients with esophageal squamous cell carcinoma who provided pretreated tumor tissues. Tumor endothelin-converting enzyme-1 expression was evaluated by immunohistochemistry and was defined as either low or high expression. Then we evaluated whether tumor endothelin-converting enzyme-1 expression had any association with clinicopathological findings or predicted survival of patients with esophageal squamous cell carcinoma. Overall, 54 of 99 patients with esophageal squamous cell carcinoma had high tumor endothelin-converting enzyme-1 expression, which was significantly associated with lymph node metastasis ( p = 0.04). In addition, tumor endothelin-converting enzyme-1 expression independently predicted survival of patients with esophageal squamous cell carcinoma, and the 5-year survival was poorer in patients with high tumor endothelin-converting enzyme-1 expression ( p = 0.016). Among patients with locally advanced and potentially resectable esophageal squamous cell carcinoma (stage II and III), 5-year survival was poorer with high tumor endothelin-converting enzyme-1 expression ( p = 0.003). High tumor endothelin-converting enzyme-1 expression also significantly predicted poorer survival of patients in this population. In patients with esophageal squamous cell carcinoma, high tumor endothelin-converting enzyme-1 expression might indicate high tumor invasive property. Therefore, tumor endothelin-converting enzyme-1 expression could be a good biomarker to identify patients with worse survival and higher risks of recurrence, who might benefit from the treatment by endothelin-converting enzyme-1 inhibitor.
Checler, F; Ahmad, S; Kostka, P; Barelli, H; Kitabgi, P; Fox, J A; Kwan, C Y; Daniel, E E; Vincent, J P
1987-07-15
We established the content in neuropeptide-metabolizing peptidases present in highly purified plasma membranes prepared from the circular and longitudinal muscles of dog ileum. Activities were measured by the use of fluorigenic substrates and the identities of enzymes were confirmed by the use of specific peptidase inhibitors. Endopeptidase 24.11, angiotensin-converting enzyme, post-proline dipeptidyl aminopeptidase and aminopeptidases were found in both membrane preparations. Proline endopeptidase was only detected in circular smooth muscle plasma membranes while pyroglutamyl-peptide hydrolase was not observed in either tissue. The relative contribution of these peptidases to the inactivation of neurotensin was assessed. The enzymes involved in the primary inactivating cleavages occurring on the neurotensin molecule were as follows. In both membrane preparations, endopeptidase 24.11 was responsible for the formation of neurotensin-(1-11) and contributed to the formation of neurotensin-(1-10); a recently purified neurotensin-degrading neutral metallopeptidase was also involved in the formation of neurotensin-(1-10). A carboxypeptidase-like activity hydrolysed neurotensin at the Ile12-Leu13 peptide bond, leading to the formation of neurotensin-(1-12). Proline endopeptidase and endopeptidase 24.15 only occurred in circular muscle plasma membranes, yielding neurotensin-(1-7) and neurotensin-(1-8), respectively. In addition, the secondary processing of neurotensin degradation products was catalyzed by the following peptidases. In circular and longitudinal muscle membranes, angiotensin-converting enzyme converted neurotensin-(1-10) into neurotensin-(1-8) and tyrosine resulted from the rapid hydrolysis of neurotensin-(11-13) by bestatin-sensitive aminopeptidases. A post-proline dipeptidyl aminopeptidase activity converted neurotensin-(9-13) into neurotensin-(11-13) in circular muscle plasma membranes. The mechanism of neurotensin inactivation occurring in these membranes will be compared to that previously established for membranes from central origin.
Dipeptidyl peptidase IV in angiotensin-converting enzyme inhibitor associated angioedema.
Byrd, James Brian; Touzin, Karine; Sile, Saba; Gainer, James V; Yu, Chang; Nadeau, John; Adam, Albert; Brown, Nancy J
2008-01-01
Angioedema is a potentially life-threatening adverse effect of angiotensin-converting enzyme inhibitors. Bradykinin and substance P, substrates of angiotensin-converting enzyme, increase vascular permeability and cause tissue edema in animals. Studies indicate that amino-terminal degradation of these peptides, by aminopeptidase P and dipeptidyl peptidase IV, may be impaired in individuals with angiotensin-converting enzyme inhibitor-associated angioedema. This case-control study tested the hypothesis that dipeptidyl peptidase IV activity and antigen are decreased in sera of patients with a history of angiotensin-converting enzyme inhibitor-associated angioedema. Fifty subjects with a history of angiotensin-converting enzyme inhibitor-associated angioedema and 176 angiotensin-converting enzyme inhibitor-exposed control subjects were ascertained. Sera were assayed for angiotensin-converting enzyme activity, aminopeptidase P activity, aminopeptidase N activity, dipeptidyl peptidase IV activity, and antigen and the ex vivo degradation half-lives of bradykinin, des-Arg(9)-bradykinin, and substance P in a subset. The prevalence of smoking was increased and of diabetes decreased in case versus control subjects. Overall, dipeptidyl peptidase IV activity (26.6+/-7.8 versus 29.6+/-7.3 nmol/mL per minute; P=0.026) and antigen (465.8+/-260.8 versus 563.1+/-208.6 ng/mL; P=0.017) were decreased in sera from individuals with angiotensin-converting enzyme inhibitor-associated angioedema compared with angiotensin-converting enzyme inhibitor-exposed control subjects without angioedema. Dipeptidyl peptidase IV activity (21.5+/-4.9 versus 29.8+/-6.7 nmol/mL per minute; P=0.001) and antigen (354.4+/-124.7 versus 559.8+/-163.2 ng/mL; P=0.003) were decreased in sera from cases collected during angiotensin-converting enzyme inhibition but not in the absence of angiotensin-converting enzyme inhibition. The degradation half-life of substance P correlated inversely with dipeptidyl peptidase IV antigen during angiotensin-converting enzyme inhibition. Environmental or genetic factors that reduce dipeptidyl peptidase IV activity may predispose individuals to angioedema.
Dipeptidyl Peptidase IV in Angiotensin-Converting Enzyme Inhibitor–Associated Angioedema
Byrd, James Brian; Touzin, Karine; Sile, Saba; Gainer, James V.; Yu, Chang; Nadeau, John; Adam, Albert; Brown, Nancy J.
2009-01-01
Angioedema is a potentially life-threatening adverse effect of angiotensin-converting enzyme inhibitors. Bradykinin and substance P, substrates of angiotensin-converting enzyme, increase vascular permeability and cause tissue edema in animals. Studies indicate that amino-terminal degradation of these peptides, by aminopeptidase P and dipeptidyl peptidase IV, may be impaired in individuals with angiotensin-converting enzyme inhibitor–associated angioedema. This case-control study tested the hypothesis that dipeptidyl peptidase IV activity and antigen are decreased in sera of patients with a history of angiotensin-converting enzyme inhibitor–associated angioedema. Fifty subjects with a history of angiotensin-converting enzyme inhibitor–associated angioedema and 176 angiotensin-converting enzyme inhibitor–exposed control subjects were ascertained. Sera were assayed for angiotensin-converting enzyme activity, aminopeptidase P activity, aminopeptidase N activity, dipeptidyl peptidase IV activity, and antigen and the ex vivo degradation half-lives of bradykinin, des-Arg9-bradykinin, and substance P in a subset. The prevalence of smoking was increased and of diabetes decreased in case versus control subjects. Overall, dipeptidyl peptidase IV activity (26.6±7.8 versus 29.6±7.3 nmol/mL per minute; P=0.026) and antigen (465.8±260.8 versus 563.1±208.6 ng/mL; P=0.017) were decreased in sera from individuals with angiotensin-converting enzyme inhibitor–associated angioedema compared with angiotensin-converting enzyme inhibitor–exposed control subjects without angioedema. Dipeptidyl peptidase IV activity (21.5±4.9 versus 29.8±6.7 nmol/mL per minute; P=0.001) and antigen (354.4±124.7 versus 559.8±163.2 ng/mL; P=0.003) were decreased in sera from cases collected during angiotensin-converting enzyme inhibition but not in the absence of angiotensin-converting enzyme inhibition. The degradation half-life of substance P correlated inversely with dipeptidyl peptidase IV antigen during angiotensin-converting enzyme inhibition. Environmental or genetic factors that reduce dipeptidyl peptidase IV activity may predispose individuals to angioedema. PMID:18025295
Angiotensin-I-converting enzyme and gallium scan in noninvasive evaluation of sarcoidosis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nosal, A.; Schleissner, L.A.; Mishkin, F.S.
1979-03-01
Angiotensin-converting enzyme assays and gallium-scan results were obtained from 27 patients with biopsy-proven, clinically active sarcoidosis. Twenty-three of these patients had elevated converting enzyme levels, and 22 had positive gallium-scan results. Three of four patients with normal or borderline-elevated levels of angiotensin-converting enzyme also had positive gallium-scan results. Of 156 nonsarcoid patients (pulmonary and other diseases), 27 were found to have elevated serum converting enzyme levels, and 25 of these had negative gallium-scan results. These results indicate that the combination of an assay of angiotensin-converting enzyme and gallium scan increases diagnostic specificity from 83% to 99% without sacrificing sensitivity. Itmore » was concluded that the concurrent use of angiotensin-converting enzyme assay and gallium scan is of value in the diagnosis of sarcoidosis.« less
Rutherford, A William; Osyczka, Artur; Rappaport, Fabrice
2012-03-09
The energy-converting redox enzymes perform productive reactions efficiently despite the involvement of high energy intermediates in their catalytic cycles. This is achieved by kinetic control: with forward reactions being faster than competing, energy-wasteful reactions. This requires appropriate cofactor spacing, driving forces and reorganizational energies. These features evolved in ancestral enzymes in a low O(2) environment. When O(2) appeared, energy-converting enzymes had to deal with its troublesome chemistry. Various protective mechanisms duly evolved that are not directly related to the enzymes' principal redox roles. These protective mechanisms involve fine-tuning of reduction potentials, switching of pathways and the use of short circuits, back-reactions and side-paths, all of which compromise efficiency. This energetic loss is worth it since it minimises damage from reactive derivatives of O(2) and thus gives the organism a better chance of survival. We examine photosynthetic reaction centres, bc(1) and b(6)f complexes from this view point. In particular, the evolution of the heterodimeric PSI from its homodimeric ancestors is explained as providing a protective back-reaction pathway. This "sacrifice-of-efficiency-for-protection" concept should be generally applicable to bioenergetic enzymes in aerobic environments. Copyright © 2012 Federation of European Biochemical Societies. All rights reserved.
Morphine biosynthesis in opium poppy involves two cell types: sieve elements and laticifers.
Onoyovwe, Akpevwe; Hagel, Jillian M; Chen, Xue; Khan, Morgan F; Schriemer, David C; Facchini, Peter J
2013-10-01
Immunofluorescence labeling and shotgun proteomics were used to establish the cell type-specific localization of morphine biosynthesis in opium poppy (Papaver somniferum). Polyclonal antibodies for each of six enzymes involved in converting (R)-reticuline to morphine detected corresponding antigens in sieve elements of the phloem, as described previously for all upstream enzymes transforming (S)-norcoclaurine to (S)-reticuline. Validated shotgun proteomics performed on whole-stem and latex total protein extracts generated 2031 and 830 distinct protein families, respectively. Proteins corresponding to nine morphine biosynthetic enzymes were represented in the whole stem, whereas only four of the final five pathway enzymes were detected in the latex. Salutaridine synthase was detected in the whole stem, but not in the latex subproteome. The final three enzymes converting thebaine to morphine were among the most abundant active latex proteins despite a limited occurrence in laticifers suggested by immunofluorescence labeling. Multiple charge isoforms of two key O-demethylases in the latex were revealed by two-dimensional immunoblot analysis. Salutaridine biosynthesis appears to occur only in sieve elements, whereas conversion of thebaine to morphine is predominant in adjacent laticifers, which contain morphine-rich latex. Complementary use of immunofluorescence labeling and shotgun proteomics has substantially resolved the cellular localization of morphine biosynthesis in opium poppy.
NASA Astrophysics Data System (ADS)
Singh, Jaideep; Her, Cheenou; Krishnan, V. V.
2018-02-01
The anomerization of carbohydrates is an essential process that determines the relative stabilization of stereoisomers in an aqueous solution. In a typical real-time enzyme kinetics experiment, the substrate (sucrose) is converted to glucose and fructose by the enzyme invertase. The product (α-D-glucose) starts to convert to β-D-glucose immediately by hydrolysis. Though the anomerization process is independent of the enzyme catalysis, the progress curve describing the production of β-D-glucose from α-D-glucose is directly affected by the kinetics of consecutive reactions. When α-D-glucose is continually converted to β-D-glucose, by the enzymatic action, the time course of both α- and β-D-glucose is influenced by the enzyme kinetics. Thus, a reversible first-order rate equation is not adequate to model the reaction mechanism, leading to erroneous results on the rates of formation of the glucose anomers. In this manuscript, we incorporate an approximate method to address consecutive general reactions involving enzyme kinetics and first-order reaction processes. The utility of the approach is demonstrated in the real-time NMR measurement of the anomerization process of α-D-glucose (enzymatically produced from sucrose) to β-D-glucose, as a function of invertase enzyme concentration. Variable temperature experiments were used to estimate the thermodynamic parameters of the anomerization process and are consistent with literature values.
Pathway for biodegradation of p-nitrophenol in a Moraxella sp
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spain, J.C.; Gibson, D.T.
1991-03-01
A Moraxella strain grew on p-nitrophenol with stoichiometric release of nitrite. During induction of the enzymes for growth on p-nitrophenol, traces of hydroquinone accumulated in the medium. In the presence of 2,2{prime}-dipyidyl, p-nitrophenol, was converted stoichiometrically to hydroquinone. Particulate enzymes catalyzed the conversion of p-nitrophenol to hydroquinone in the presence of NADPH and oxygen. Soluble enzymes catalyzed the conversion of hydroquinone to {gamma}-hydroxymuconic semialdehyde, which was identified by high-performance liquid chromatography (HPLC)-mass spectroscopy. Upon addition of catalytic amounts of NAD{sup +}, {gamma}-hydroxymuconic semialdehyde was converted to {beta}-ketoadipic acid. In the presence of pyruvate and lactic dehydrogenase, substrate amounts of NADmore » were required and {gamma}-hydroxymuconic semialdehyde was converted to maleylacetic acid, which was identified by HPLC-mass spectroscopy. Similar results were obtained when the reaction was carried out in the presence of potassium ferricyanide. Extracts prepared from p-nitrophenol-grown cells also contained an enzyme that catalyzed the oxidation of 1,2,4-benzenetriol to maleylacetic acid. The enzyme responsible for the oxidation of 1,2,4-benzenetriol was separated from the enzyme responsible for hydroquinone oxidation by DEAE-cellulose chromatography. The results indicate that the pathway for biodegradation of p-nitrophenol involves the initial removal of the nitro group as nitrite and formation of hydroquinone.« less
21 CFR 862.1090 - Angiotensin converting enzyme (A.C.E.) test system.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Angiotensin converting enzyme (A.C.E.) test system... Test Systems § 862.1090 Angiotensin converting enzyme (A.C.E.) test system. (a) Identification. An angiotensin converting enzyme (A.C.E.) test system is a device intended to measure the activity of angiotensin...
Kharrat, Najla; Abdelmouleh, Wafa; Abdelhedi, Rania; Alfadhli, Suad; Rebai, Ahmed
2012-01-01
DNA variations within the Angiotensin-Converting Enzyme (ACE) gene have been shown to be involved in the aetiology of several common diseases and the therapeutic response. This study reports a comparison of haplotype analysis of five SNPs in the ACE gene region using a sample of 100 healthy subjects derived from five different populations (Tunisian, Iranian, Kuwaiti, Bahraini and Indian). Strong linkage disequilibrium was found among all SNPs studied for all populations. Two SNPs (rs1800764 and rs4340) were identified as key SNPs for all populations. These SNPs will be valuable for future effective association studies of the ACE gene polymorphisms in Arab and Asian populations.
Charbonneau, Hélène; Buléon, Marie; Minville, Vincent; Faguer, Stanislas; Girolami, Jean-Pierre; Bascands, Jean-Loup; Tack, Ivan; Mayeur, Nicolas
2016-09-01
Angiotensin-converting enzyme inhibitors are associated with deleterious hypotension during anesthesia and shock. Because the pharmacologic effects of angiotensin-converting enzyme inhibitors are partly mediated by increased bradykinin B2 receptor activation, this study aimed to determine the impact of acute B2 receptor blockade during hemorrhagic shock in angiotensin-converting enzyme inhibitor-treated mice. In vivo study. University research unit. C57/Bl6 mice. The hemodynamic effect of B2 receptor blockade using icatibant (B2 receptor antagonist) was studied using a pressure-targeted hemorrhagic shock and a volume-targeted hemorrhagic shock. Animals were anesthetized with ketamine and xylazine (250 mg/kg and 10 mg/kg, respectively), intubated using intratracheal cannula, and ventilated (9 mL/kg, 150 min). Five groups were studied: 1) sham-operated animals, 2) control shocked mice, 3) shocked mice treated with ramipril for 7 days (angiotensin-converting enzyme inhibitors) before hemorrhagic shock, 4) shocked mice treated with angiotensin-converting enzyme inhibitors and a single bolus of icatibant (HOE-140) immediately before anesthesia (angiotensin-converting enzyme inhibitors + icatibant), and 5) shocked mice treated with a single bolus of icatibant. One hour after volume-targeted hemorrhagic shock, blood lactate was measured to evaluate organ failure. During pressure-targeted hemorrhagic shock, the mean blood volume withdrawn was significantly lower in the angiotensin-converting enzyme inhibitor group than in the other groups (p < 0.001). During volume-targeted hemorrhagic shock, icatibant prevented blood pressure lowering in the angiotensin-converting enzyme inhibitor group (p < 0.001). Blood lactate was significantly higher in the angiotensin-converting enzyme inhibitor group than in the other groups, particularly the HOE groups. During hemorrhagic shock, acute B2 receptor blockade significantly attenuates the deleterious hemodynamic effect of angiotensin-converting enzyme inhibitor treatment in mice. This beneficial effect of B2 receptor blockade is rapidly reached and sustained with a single bolus of icatibant. This benefit could be of interest in angiotensin-converting enzyme inhibitor-treated patients during both emergency anesthesia and resuscitation.
An Enzyme-Catalyzed Multistep DNA Refolding Mechanism in Hairpin Telomere Formation
Shi, Ke; Huang, Wai Mun; Aihara, Hideki
2013-01-01
Hairpin telomeres of bacterial linear chromosomes are generated by a DNA cutting–rejoining enzyme protelomerase. Protelomerase resolves a concatenated dimer of chromosomes as the last step of chromosome replication, converting a palindromic DNA sequence at the junctions between chromosomes into covalently closed hairpins. The mechanism by which protelomerase transforms a duplex DNA substrate into the hairpin telomeres remains largely unknown. We report here a series of crystal structures of the protelomerase TelA bound to DNA that represent distinct stages along the reaction pathway. The structures suggest that TelA converts a linear duplex substrate into hairpin turns via a transient strand-refolding intermediate that involves DNA-base flipping and wobble base-pairs. The extremely compact di-nucleotide hairpin structure of the product is fully stabilized by TelA prior to strand ligation, which drives the reaction to completion. The enzyme-catalyzed, multistep strand refolding is a novel mechanism in DNA rearrangement reactions. PMID:23382649
Slashcheva, G A; Rykov, V A; Lobanov, A V; Murashev, A N; Kim, Yu A; Arutyunyan, T V; Korystova, A F; Kublik, L N; Levitman, M Kh; Shaposhnikona, V V; Korystov, Yu N
2016-09-01
We analyzed changes in angiotensin-converting enzyme activity in the aorta of hypertensive SHR rats against the background of age-related BP increase (from week 7 to 14) and the effect of dihydroquercetin on BP rise and angiotensin-converting enzyme activity. Normotensive WKY rats of the same age were used as the control. BP and activity of angiotensin-converting enzyme in the aorta of SHR rats increased with age. Dihydroquercetin in doses of 100 and 300 μg/kg per day had no effect on the increase of these parameters; dihydroquercetin administered to 14-week-old WKY rats in a dose of 300 μg/kg reduced activity of the angiotensin-converting enzyme. Thus, the early (7-14 weeks) increase in BP and angiotensin-converting enzyme activity in the aorta of SHR rats was not modified by flavonoids (dihydroquercetin) in contrast to other rat strains and humans, which is indicative of specificity of hypertension mechanism in SHR rats.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thompson, David N.; Apel, William A.; Thompson, Vicki S.
A genetically modified organism comprising: at least one nucleic acid sequence and/or at least one recombinant nucleic acid isolated from Alicyclobacillus acidocaldarius and encoding a polypeptide involved in at least partially degrading, cleaving, transporting, metabolizing, or removing polysaccharides, cellulose, lignocellulose, hemicellulose, lignin, starch, sugars, sugar oligomers, carbohydrates, complex carbohydrates, chitin, heteroxylans, glycosides, xylan-, glucan-, galactan-, or mannan-decorating groups; and at least one nucleic acid sequence and/or at least one recombinant nucleic acid encoding a polypeptide involved in fermenting sugar molecules to a product. Additionally, enzymatic and/or proteinaceous extracts may be isolated from one or more genetically modified organisms. The extractsmore » are utilized to convert biomass into a product. Further provided are methods of converting biomass into products comprising: placing the genetically modified organism and/or enzymatic extracts thereof in fluid contact with polysaccharides, cellulose, lignocellulose, hemicellulose, lignin, starch, sugars, sugar oligomers, carbohydrates, complex carbohydrates, chitin, heteroxylans, glycosides, and/or xylan-, glucan-, galactan-, or mannan-decorating groups.« less
Thompson, David N.; Apel, William A.; Thompson, Vicki S.; Ward, Thomas E.
2016-03-22
A genetically modified organism comprising: at least one nucleic acid sequence and/or at least one recombinant nucleic acid isolated from Alicyclobacillus acidocaldarius and encoding a polypeptide involved in at least partially degrading, cleaving, transporting, metabolizing, or removing polysaccharides, cellulose, lignocellulose, hemicellulose, lignin, starch, sugars, sugar oligomers, carbohydrates, complex carbohydrates, chitin, heteroxylans, glycosides, xylan-, glucan-, galactan-, or mannan-decorating groups; and at least one nucleic acid sequence and/or at least one recombinant nucleic acid encoding a polypeptide involved in fermenting sugar molecules to a product. Additionally, enzymatic and/or proteinaceous extracts may be isolated from one or more genetically modified organisms. The extracts are utilized to convert biomass into a product. Further provided are methods of converting biomass into products comprising: placing the genetically modified organism and/or enzymatic extracts thereof in fluid contact with polysaccharides, cellulose, lignocellulose, hemicellulose, lignin, starch, sugars, sugar oligomers, carbohydrates, complex carbohydrates, chitin, heteroxylans, glycosides, and/or xylan-, glucan-, galactan-, or mannan-decorating groups.
Thompson, David N; Apel, William A; Thompson, Vicki S; Ward, Thomas E
2013-07-23
A genetically modified organism comprising: at least one nucleic acid sequence and/or at least one recombinant nucleic acid isolated from Alicyclobacillus acidocaldarius and encoding a polypeptide involved in at least partially degrading, cleaving, transporting, metabolizing, or removing polysaccharides, cellulose, lignocellulose, hemicellulose, lignin, starch, sugars, sugar oligomers, carbohydrates, complex carbohydrates, chitin, heteroxylans, glycosides, xylan-, glucan-, galactan-, or mannan-decorating groups; and at least one nucleic acid sequence and/or at least one recombinant nucleic acid encoding a polypeptide involved in fermenting sugar molecules to a product. Additionally, enzymatic and/or proteinaceous extracts may be isolated from one or more genetically modified organisms. The extracts are utilized to convert biomass into a product. Further provided are methods of converting biomass into products comprising: placing the genetically modified organism and/or enzymatic extracts thereof in fluid contact with polysaccharides, cellulose, lignocellulose, hemicellulose, lignin, starch, sugars, sugar oligomers, carbohydrates, complex carbohydrates, chitin, heteroxylans, glycosides, and/or xylan-, glucan-, galactan-, or mannan-decorating groups.
Thompson, David N; Apel, William A; Thompson, Vicki S; Ward, Thomas E
2014-04-08
A genetically modified organism comprising: at least one nucleic acid sequence and/or at least one recombinant nucleic acid isolated from Alicyclobacillus acidocaldarius and encoding a polypeptide involved in at least partially degrading, cleaving, transporting, metabolizing, or removing polysaccharides, cellulose, lignocellulose, hemicellulose, lignin, starch, sugars, sugar oligomers, carbohydrates, complex carbohydrates, chitin, heteroxylans, glycosides, xylan-, glucan-, galactan-, or mannan-decorating groups; and at least one nucleic acid sequence and/or at least one recombinant nucleic acid encoding a polypeptide involved in fermenting sugar molecules to a product. Additionally, enzymatic and/or proteinaceous extracts may be isolated from one or more genetically modified organisms. The extracts are utilized to convert biomass into a product. Further provided are methods of converting biomass into products comprising: placing the genetically modified organism and/or enzymatic extracts thereof in fluid contact with polysaccharides, cellulose, lignocellulose, hemicellulose, lignin, starch, sugars, sugar oligomers, carbohydrates, complex carbohydrates, chitin, heteroxylans, glycosides, and/or xylan-, glucan-, galactan-, or mannan-decorating groups.
Checler, F; Vincent, J P; Kitabgi, P
1983-08-01
Neurotensin was inactivated by membrane-bound and soluble degrading activities present in purified preparations of rat brain synaptic membranes. Degradation products were identified by HPLC and amino acid analysis. The major points of cleavage of neurotensin were the Arg8-Arg9, Pro10-Tyr11, and Tyr11-Ile12 peptide bonds with the membrane-bound activity and the Arg8-Arg9 and Pro10-Tyr11 bonds with the soluble activity. Several lines of evidence indicated that the cleavage of the Arg8-Arg9 bond by the membrane-bound activity resulted mainly from the conversion of neurotensin1-10 to neurotensin1-8 by a dipeptidyl carboxypeptidase. In particular, captopril inhibited this cleavage with an IC50 (5.7 nM) close to its K1 (7 nM) for angiotensin-converting enzyme. Thiorphan inhibited the cleavage at the Tyr11-Ile12 bond by the membrane-bound activity with an IC50 (17 nM) similar to its K1 (4.7 nM) for enkephalinase. Both cleavages were inhibited by 1,10-phenanthroline. These and other data suggested that angiotensin-converting enzyme and a thermolysin-like metalloendopeptidase (enkephalinase) were the membrane-bound peptidases responsible for cleavages at the Arg8-Arg9 and Tyr11-Ile12 bonds, respectively. In contrast, captopril had no effect on the cleavage at the Arg8-Arg9 bond by the soluble activity, indicating that the enzyme responsible for this cleavage was different from angiotensin-converting enzyme. The cleavage at the Pro10-Tyr11 bond by both the membrane-bound and the soluble activities appeared to be catalyzed by an endopeptidase different from known brain proline endopeptidases. The possibility is discussed that the enzymes described here participate in physiological mechanisms of neurotensin inactivation at the synaptic level.
Ushimaru, Richiro; Lin, Chia-I; Sasaki, Eita; Liu, Hung-Wen
2016-09-02
Lincosamides such as lincomycin A, celesticetin, and Bu-2545, constitute an important group of antibiotics. These natural products are characterized by a thiooctose linked to a l-proline residue, but they differ with regards to modifications of the thioacetal moiety, the pyrrolidine ring, and the octose core. Here we report that the pyridoxal 5'-phosphate-dependent enzyme CcbF (celesticetin biosynthetic pathway) is a decarboxylating deaminase that converts a cysteine S-conjugated intermediate into an aldehyde. In contrast, the homologous enzyme LmbF (lincomycin biosynthetic pathway) catalyzes C-S bond cleavage of the same intermediate to afford a thioglycoside. We show that Ccb4 and LmbG (downstream methyltransferases) convert the aldehyde and thiol intermediates into a variety of methylated lincosamide compounds including Bu-2545. The substrates used in these studies are the β-anomers of the natural substrates. The findings not only provide insight into how the biosynthetic pathway of lincosamide antibiotics can bifurcate to generate different lincosamides, but also reveal the promiscuity of the enzymes involved. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Roshanov, Pavel S; Rochwerg, Bram; Patel, Ameen; Salehian, Omid; Duceppe, Emmanuelle; Belley-Côté, Emilie P; Guyatt, Gordon H; Sessler, Daniel I; Le Manach, Yannick; Borges, Flavia K; Tandon, Vikas; Worster, Andrew; Thompson, Alexandra; Koshy, Mithin; Devereaux, Breagh; Spencer, Frederick A; Sanders, Robert D; Sloan, Erin N; Morley, Erin E; Paul, James; Raymer, Karen E; Punthakee, Zubin; Devereaux, P J
2017-01-01
The effect on cardiovascular outcomes of withholding angiotensin-converting enzyme inhibitors or angiotensin II receptor blockers in chronic users before noncardiac surgery is unknown. In this international prospective cohort study, the authors analyzed data from 14,687 patients (including 4,802 angiotensin-converting enzyme inhibitor/angiotensin II receptor blocker users) at least 45 yr old who had in-patient noncardiac surgery from 2007 to 2011. Using multivariable regression models, the authors studied the relationship between withholding angiotensin-converting enzyme inhibitors/angiotensin II receptor blockers and a primary composite outcome of all-cause death, stroke, or myocardial injury after noncardiac surgery at 30 days, with intraoperative and postoperative clinically important hypotension as secondary outcomes. Compared to patients who continued their angiotensin-converting enzyme inhibitors/angiotensin II receptor blockers, the 1,245 (26%) angiotensin-converting enzyme inhibitor/angiotensin II receptor blocker users who withheld their angiotensin-converting enzyme inhibitors/angiotensin II receptor blockers in the 24 h before surgery were less likely to suffer the primary composite outcome of all-cause death, stroke, or myocardial injury (150/1,245 [12.0%] vs. 459/3,557 [12.9%]; adjusted relative risk, 0.82; 95% CI, 0.70 to 0.96; P = 0.01) and intraoperative hypotension (adjusted relative risk, 0.80; 95% CI, 0.72 to 0.93; P < 0.001). The risk of postoperative hypotension was similar between the two groups (adjusted relative risk, 0.92; 95% CI, 0.77 to 1.10; P = 0.36). Results were consistent across the range of preoperative blood pressures. The practice of withholding angiotensin-converting enzyme inhibitors/angiotensin II receptor blockers was only modestly correlated with patient characteristics and the type and timing of surgery. Withholding angiotensin-converting enzyme inhibitors/angiotensin II receptor blockers before major noncardiac surgery was associated with a lower risk of death and postoperative vascular events. A large randomized trial is needed to confirm this finding. In the interim, clinicians should consider recommending that patients withhold angiotensin-converting enzyme inhibitors/angiotensin II receptor blockers 24 h before surgery.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Velletri, P.A.; Aquilano, D.R.; Bruckwick, E.
Hypophysectomy of prepubescent (3-week-old) rats prevented the pubertal development of testicular, but not pulmonary, angiotensin-converting enzyme (EC 3.4.15.1). Additionally, hypophysectomy resulted in a loss of testicular converting enzyme activity in 10-week-old rats that had achieved puberty and had developed enzyme activity. Hormone regimens consisting of FSH/LH (7.5 U/rat X day), hCG (10 U/rat X day), or testosterone (1 mg/rat X day) were employed to ascertain their ability to maintain activity in hypophysectomized rats. All three of the above hormone regimens, if initiated on the first day after hypophysectomy of 10-week-old rats, were capable of maintaining testicular converting enzyme activity. Centrifugalmore » elutriation of dispersed testicular cells indicated that the majority of enzyme activity in mature rats was associated with the germinal cells, a result consistent with the data accumulated from the hormonal studies. Lastly, (/sup 3/H)captopril bound specifically to cellular fractions enriched in germinal cells. The above studies suggest that the pituitary gland is required for the development and maintenance of testicular angiotensin-converting enzyme in the rat by stimulating steroidogenesis in the testes. Furthermore, the sensitivity of converting enzyme activity to androgen coupled with the centrifugal elutriation and (/sup 3/H) captopril binding studies strongly support the notion that testicular converting enzyme is associated with germinal cells.« less
Martinez, Jean
2017-10-01
Angiotensin converting enzyme (ACE) is a well-known enzyme, largely studied for its action on hypertension, as it produces angiotensin II from angiotensin I. This paper describes two original behaviours of ACE. We showed that ACE could hydrolyse gastrin, a neuropeptide from the gastrointestinal tract, releasing the C-terminal amidated dipeptide H-Asp-Phe-NH 2 . This dipeptide is believed to be involved in the gastrin-induced acid secretion in the stomach. This hypothetic mechanism of action of gastrin resulted in a strategy to rationally design gastrin receptor antagonists. Beyond, we showed that the brain renin angiotensin system (RAS) could be activated by a new characterized peptide named acein, resulting in stimulation of dopamine release within the striatum. This new and original 'receptor-like' activity for brain membrane-bound ACE is quite significant taking into account the role of dopamine in the brain, particularly in neurodegenerative diseases. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.
Matsuura-Hachiya, Yuko; Arai, Koji Y; Ozeki, Rieko; Kikuta, Ayako; Nishiyama, Toshio
2013-12-06
Angiotensin-converting enzyme (ACE) activity and angiotensin II signaling regulate cell proliferation, differentiation, and tissue remodeling, as well as blood pressure, while in skin, angiotensin II signaling is involved in wound healing, inflammation, and pathological scar formation. Therefore, we hypothesized that angiotensin II is also involved in photoaging of skin. In this study, we examined the effect of enalapril maleate, an ACE inhibitor, on recovery of wrinkled skin of hairless mice exposed to long-term UVB irradiation. Immunohistochemical observation revealed that expression of ACE, angiotensin II, and angiotensin II type 1 (AT1) and type 2 (AT2) receptors in the skin was increased after UVB irradiation (3 times/week at increasing intensities for 8 weeks). Administration of enalapril maleate (5 times/week for 6 weeks, starting 1 week after 10-week irradiation) accelerated recovery from UVB-induced wrinkles, epidermal hyperplasia and epidermal barrier dysfunction, as compared with the vehicle control. Our results indicate that ACE and angiotensin II activity are involved in skin photoaging, and suggest that ACE inhibitor such as enalapril maleate may have potential for improvement of photoaged skin. Copyright © 2013 Elsevier Inc. All rights reserved.
Cholecystokinin-converting enzymes in brain.
Malesci, A; Straus, E; Yalow, R S
1980-01-01
Crude extracts of porcine cerebral cortical tissue convert cholecystokinin (CCK) to its COOH-terminal fragments, the dodecapeptide (CCK-12) and the octapeptide (CCK-8). The Sephadex G-75 void volume eluate of the crude extract cleaves the arginine-isoleucine bond and effects conversion only to CCK-12; the Sephadex G-50 void volume eluate of the same extract cleaves the arginine-aspartate bond as well, so that both CCK-12 and CCK-8 are end products. Thus, there are at least two enzymes; the one involved in the conversion to CCK-12 is of larger molecular radius than the other. The Km for the cleavage of CCK at the arginine-isoleucine bond by the Sephadex G-75 void volume eluate enzyme is 1.1 X 10(-6) M; the Km for trypsin cleavage of the same bond is 4.7 x 10(-6) M. The lower Vmax for the brain enzyme (1.5 x 10(-11) mol/min per g of extract) compared with trypsin (66 x 10(-11) mol/min per g of trypsin) simply reflects the lesser degree of purify of the brain extract than of the highly purified trypsin. Images PMID:6987659
Angiotensin-converting Enzyme as a Predictor of Extrathoracic Involvement of Sarcoidosis.
Yasar, Zehra; Özgül, Mehmet Akif; Cetinkaya, Erdoğan; Kargi, Aysel; Gül, Şule; Talay, Fahrettin; Tanriverdi, Elif; Dincer, H Erhan
2016-01-18
Sarcoidosis is a multisystem disease, with extrathoracic involvement occurring in 25-50% of patients. Multi-organ involvement is often associated with a more chronic and severe course. The value of 18F-fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT) in diagnosing extrathoracic involvement in sarcoidosis has been demonstrated; however, because of the radiation dose and high cost, indications for its use must be well defined. Angiotensin-converting enzyme (ACE) is produced by active granuloma cells; thus, serum ACE (sACE) levels may reflect the total granuloma load. In this retrospective study, we evaluated the diagnostic value of sACE in the detection of extrathoracic involvement in sarcoidosis. 43 patients with biopsy-proven sarcoidosis underwent FDG-PET/CT during the initial workup. Positive findings were classified as thoracic and/or extrathoracic. The diagnostic value of sACE was estimated using sensitivity, specificity, and area under the receiver operating characteristic curves (AUCs). Of the 43 patients studied, 17 (39.7%) had extrathoracic involvement. In this group, sACE values were higher than in patients without extrathoracic involvement (331 vs. 150, p=0.002) and correlated positively with extrathoracic involvement (R:0.532 p=0.02). Receiver operator characteristic curve analysis revealed an AUC of 0.816 [95% confidence interval: 0.669-0.963, p=0.002], 70.6% sensitivity and 80% specificity at the sACE cut-off value. In sarcoidosis, extrathoracic involvement may be life threatening or indicative of poor outcome. sACE levels are easily determined and may predict extrathoracic involvement. In patients with sarcoidosis, sACE levels can be used to better define those who would benefit from FDG-PET/CT examination to detect extrathoracic involvement.
O’Callaghan, David J. P.; O’Dea, Kieran P.; Scott, Alasdair J.; Takata, Masao
2015-01-01
Objectives: To determine the effect of severe sepsis on monocyte tumor necrosis factor-α–converting enzyme baseline and inducible activity profiles. Design: Observational clinical study. Setting: Mixed surgical/medical teaching hospital ICU. Patients: Sixteen patients with severe sepsis, 15 healthy volunteers, and eight critically ill patients with noninfectious systemic inflammatory response syndrome. Interventions: None. Measurements and Main Results: Monocyte expression of human leukocyte antigen-D-related peptide, sol-tumor necrosis factor production, tumor necrosis factor-α–converting enzyme expression and catalytic activity, tumor necrosis factor receptor 1 and 2 expression, and shedding at 48-hour intervals from day 0 to day 4, as well as p38-mitogen activated protein kinase expression. Compared with healthy volunteers, both sepsis and systemic inflammatory response syndrome patients’ monocytes expressed reduced levels of human leukocyte antigen-D-related peptide and released less sol-tumor necrosis factor on in vitro lipopolysaccharide stimulation, consistent with the term monocyte deactivation. However, patients with sepsis had substantially elevated levels of basal tumor necrosis factor-α–converting enzyme activity that were refractory to lipopolysaccharide stimulation and this was accompanied by similar changes in p38-mitogen activated protein kinase signaling. In patients with systemic inflammatory response syndrome, monocyte basal tumor necrosis factor-α–converting enzyme, and its induction by lipopolysaccharide, appeared similar to healthy controls. Changes in basal tumor necrosis factor-α–converting enzyme activity at day 0 for sepsis patients correlated with Acute Physiology and Chronic Health Evaluation II score and the attenuated tumor necrosis factor-α–converting enzyme response to lipopolysaccharide was associated with increased mortality. Similar changes in monocyte tumor necrosis factor-α–converting enzyme activity could be induced in healthy volunteer monocytes using an in vitro two-hit inflammation model. Patients with sepsis also displayed reduced shedding of monocyte tumor necrosis factor receptors upon stimulation with lipopolysaccharide. Conclusions: Monocyte tumor necrosis factor-α–converting enzyme catalytic activity appeared altered by sepsis and may result in reduced shedding of tumor necrosis factor receptors. Changes seemed specific to sepsis and correlated with illness severity. A better understanding of how tumor necrosis factor-α–converting enzyme function is altered during sepsis will enhance our understanding of sepsis pathophysiology, which will help in the assessment of patient inflammatory status and ultimately may provide new strategies to treat sepsis. PMID:25867908
27 CFR 24.246 - Materials authorized for the treatment of wine and juice.
Code of Federal Regulations, 2013 CFR
2013-04-01
... (alpha-Amylase): To convert starches to fermentable carbohydrates The amylase enzyme activity shall be... 184.1027. Carbohydrase (beta-Amylase): To convert starches to fermentable carbohydrates The amylase... (Glucoamylase, Amylogluco-sidase): To convert starches to fermentable carbohydrates The amylase enzyme activity...
27 CFR 24.246 - Materials authorized for the treatment of wine and juice.
Code of Federal Regulations, 2011 CFR
2011-04-01
... (alpha-Amylase): To convert starches to fermentable carbohydrates The amylase enzyme activity shall be... 184.1027. Carbohydrase (beta-Amylase): To convert starches to fermentable carbohydrates The amylase... (Glucoamylase, Amylogluco-sidase): To convert starches to fermentable carbohydrates The amylase enzyme activity...
27 CFR 24.246 - Materials authorized for the treatment of wine and juice.
Code of Federal Regulations, 2014 CFR
2014-04-01
... (alpha-Amylase): To convert starches to fermentable carbohydrates The amylase enzyme activity shall be... 184.1027. Carbohydrase (beta-Amylase): To convert starches to fermentable carbohydrates The amylase... (Glucoamylase, Amylogluco-sidase): To convert starches to fermentable carbohydrates The amylase enzyme activity...
27 CFR 24.246 - Materials authorized for the treatment of wine and juice.
Code of Federal Regulations, 2012 CFR
2012-04-01
... (alpha-Amylase): To convert starches to fermentable carbohydrates The amylase enzyme activity shall be... 184.1027. Carbohydrase (beta-Amylase): To convert starches to fermentable carbohydrates The amylase... (Glucoamylase, Amylogluco-sidase): To convert starches to fermentable carbohydrates The amylase enzyme activity...
USDA-ARS?s Scientific Manuscript database
Oxylipins are oxygenated derivatives of fatty acids and pivotal signaling molecules in plants and animals. Allene oxide synthase (AOS) is a key cytochrome P450 CYP74 enzyme involved in the biosynthesis of plant oxylipin jasmonates to convert 13(S)-hydroperoxide to allene oxide. Guayule (Parthenium a...
Enzymology of the Wood–Ljungdahl Pathway of Acetogenesis
Ragsdale, Stephen W.
2011-01-01
The biochemistry of acetogenesis is reviewed. The microbes that catalyze the reactions that are central to acetogenesis are described and the focus is on the enzymology of the process. These microbes play a key role in the global carbon cycle, producing over 10 trillion kilograms of acetic acid annually. Acetogens have the ability to anaerobically convert carbon dioxide and CO into acetyl-CoA by the Wood–Ljungdahl pathway, which is linked to energy conservation. They also can convert the six carbons of glucose stoichiometrically into 3 mol of acetate using this pathway. Acetogens and other anaerobic microbes (e.g., sulfate reducers and methanogens) use the Wood–Ljungdahl pathway for cell carbon synthesis. Important enzymes in this pathway that are covered in this review are pyruvate ferredoxin oxidoreductase, CO dehydrogenase/acetyl-CoA synthase, a corrinoid iron-sulfur protein, a methyltransferase, and the enzymes involved in the conversion of carbon dioxide to methyl-tetrahydrofolate. PMID:18378591
Gao, Xue; Jiang, Wei; Jiménez-Osés, Gonzalo; Choi, Moon Seok; Houk, Kendall N.; Tang, Yi; Walsh, Christopher T.
2013-01-01
The bimodular 276 kDa nonribosomal peptide synthetase AspA from Aspergillus alliaceus, heterologously expressed in Saccharomyces cerevisiae, converts tryptophan and two molecules of the aromatic β-amino acid anthranilate (Ant) into a pair of tetracyclic peptidyl alkaloids asperlicin C and D in a ratio of 10:1. The first module of AspA activates and processes two molecules of Ant iteratively to generate a tethered Ant-Ant-Trp-S-enzyme intermediate on module two. Release is postulated to involve tandem cyclizations, in which the first step is the macrocyclization of the linear tripeptidyl-S-enzyme, by the terminal condensation (CT) domain to generate the regioisomeric tetracyclic asperlicin scaffolds. Computational analysis of the transannular cyclization of the 11-membered macrocyclic intermediate shows that asperlicin C is the kinetically favored product due to the high stability of a conformation resembling the transition state for cyclization, while asperlicin D is thermodynamically more stable. PMID:23890005
Enzymes and Inhibitors in Neonicotinoid Insecticide Metabolism
Shi, Xueyan; Dick, Ryan A.; Ford, Kevin A.; Casida, John E.
2009-01-01
Neonicotinoid insecticide metabolism involves considerable substrate specificity and regioselectivity of the relevant CYP450, aldehyde oxidase, and phase II enzymes. Human CYP450 recombinant enzymes carry out the following conversions: CYP3A4, 2C19 and 2B6 for thiamethoxam (TMX) to clothianidin (CLO); 3A4, 2C19 and 2A6 for CLO to desmethyl-CLO; 2C19 for TMX to desmethyl-TMX. Human liver aldehyde oxidase reduces the nitro substituent of CLO to nitroso much more rapidly than that of TMX. Imidacloprid (IMI), CLO and several of their metabolites do not give detectable N-glucuronides but 5-hydroxy-IMI, 4,5-diol-IMI and 4-hydroxy-thiacloprid are converted to O-glucuronides in vitro with mouse liver microsomes and UDP-glucuronic acid or in vivo in mice. Mouse liver cytosol with S-adenosylmethionine converts desmethyl-CLO to CLO but not desmethyl-TMX to TMX. Two organophosphorus CYP450 inhibitors partially block IMI, thiacloprid and CLO metabolism in vivo in mice, elevating the brain and liver levels of the parent compounds while reducing amounts of the hydroxylated metabolites. PMID:19391582
Chemaly, Melody; McGilligan, Victoria; Gibson, Mark; Clauss, Matthias; Watterson, Steven; Alexander, H Denis; Bjourson, Anthony John; Peace, Aaron
2017-12-01
Tumour necrosis factor alpha converting enzyme (TACE/ADAM17) is a member of the A disintegrin and metalloproteinase (ADAM) family of ectodomain shedding proteinases. It regulates many inflammatory processes by cleaving several transmembrane proteins, including tumour necrosis factor alpha (TNFα) and its receptors tumour necrosis factor alpha receptor 1 and tumour necrosis factor alpha receptor 2. There is evidence that TACE is involved in several inflammatory diseases, such as ischaemia, heart failure, arthritis, atherosclerosis, diabetes and cancer as well as neurological and immune diseases. This review summarizes the latest discoveries regarding the mechanism of action and regulation of TACE. It also focuses on the role of TACE in atherosclerosis and coronary artery disease (CAD), highlighting clinical studies that have investigated its expression and protein activity. The multitude of substrates cleaved by TACE make this enzyme an attractive target for therapy and a candidate for biomarker research and development in CAD. Crown Copyright © 2017. Published by Elsevier Masson SAS. All rights reserved.
Gard, Paul R
2010-01-01
This review considers the 250+ papers concerning the association of the angiotensin converting enzyme (ACE) gene insertion/deletion polymorphism (rs1799752) and various disease conditions published in 2009. The deletion allele occurs in approximately 55% of the population and is associated with increased activity of the ACE enzyme. It might be predicted that the D allele, therefore, might be associated with pathologies involving increased activity of the renin-angiotensin system. The D allele was seen to be associated with an increased risk of hypertension, pre-eclampsia, heart failure, cerebral infarct, diabetic nephropathy, encephalopathy, asthma, severe hypoglycaemia in diabetes, gastric cancer (in Caucasians) and poor prognosis following kidney transplant. On the positive side, the D allele appears to offer protection against schizophrenia and chronic periodontitis and confers greater up-per-body strength in old age. The I allele, meanwhile, offers improved endurance/athletic performance and aerobic capacity as determined by lung function tests, although it does increase the risk of oral squamous cell carcinoma and obstructive sleep apnoea in hypertensives. PMID:21537387
Inducible hydroxylation and demethylation of the herbicide isoproturon by Cunninghamella elegans.
Hangler, Martin; Jensen, Bo; Rønhede, Stig; Sørensen, Sebastian R
2007-03-01
A screening of 27 fungal strains for degradation of the phenylurea herbicide isoproturon was performed and yielded 15 strains capable of converting the herbicide to polar metabolites. The zygomycete fungus Cunninghamella elegans strain JS/2 isolated from an agricultural soil converted isoproturon to several known hydroxylated metabolites. In addition, unknown metabolites were produced in minor amounts. Inducible degradation was indicated by comparing resting cells pregrown with or without isoproturon. This shows that strain JS/2 is capable of partially degrading isoproturon and that one or more of the enzymes involved are inducible upon isoproturon exposure.
Lee, Dong Soo; Chung, June-Key; Cho, Bo Youn; Koh, Chang-Soon; Lee, Munho
1986-01-01
Serum angiotensin-converting enzyme activity was measured spectrophotometrically, and serum thyrotropin-binding-inhibitory immunoglobulin (TBII) activity was measured by radioreceptor assay in normal subjects and in patients with Graves’ disease serially before and during treatment, and these activities were compared with each other and with thyroid hormone levels in various thyroid functional status. Correlation between serum angiotensin-converting enzyme activity and serum thyroid hormone level was pursued with relation to the changes of thyroid functional status in patients with Graves’ disease during treatment. Serum angiotensin-converting enzyme activity was significantly elevated in patients with hyperthyroid Graves’ disease before the start of treatment (35 ± 13 nmol/min/ml, n=50), and not in patients with Graves’ disease, euthyroid state during treatment with antithyroid drugs or radioactive iodine (23 ± 9 nmol/min/ml, n=12), but decreased significantly in patients with Graves’ disease, hypothyroid state transiently during treatment (15 ± 4 nmol/min/ml, n=12), respectively in comparison with normal control subjects. Serum angiotensin-converting enzyme activity was positively correlated with the log value of serum T3 concentration (r=0.62, p<0.001, n=95), and with the log value of free thyroxine index (r=0.66, p<0.001, n=91) but not statistically significantly with serum TBII activity. Serum angiotensin-converting enzyme activity was followed in 11 patients with initially increased activity and the activity decreased in proportion to serum thyroid hormone level during treatment, irrespective of treatment modality. It is suggested that thyroid hormones play a role in the increase and decrease of serum angiotensin-converting enzyme activity directly or indirectly influencing the peripheral tissues (probably reticuloendothelial cells or peripheral endothelial cells) in patients with Graves’ disease. PMID:15759385
... in a class of medications called angiotensin-converting enzyme (ACE) inhibitors. It makes blood flow more smoothly ... if you are allergic to perindopril, angiotensin-converting enzyme (ACE) inhibitors such as benazepril (Lotensin, in Lotrel), ...
Characterization of Two Late-Stage Enzymes Involved in Fosfomycin Biosynthesis in Pseudomonads.
Olivares, Philip; Ulrich, Emily C; Chekan, Jonathan R; van der Donk, Wilfred A; Nair, Satish K
2017-02-17
The broad-spectrum phosphonate antibiotic fosfomycin is currently in use for clinical treatment of infections caused by both Gram-positive and Gram-negative uropathogens. The antibiotic is biosynthesized by various streptomycetes, as well as by pseudomonads. Notably, the biosynthetic strategies used by the two genera share only two steps: the first step in which primary metabolite phosphoenolpyruvate (PEP) is converted to phosphonopyruvate (PnPy) and the terminal step in which 2-hydroxypropylphosphonate (2-HPP) is converted to fosfomycin. Otherwise, distinct enzymatic paths are employed. Here, we biochemically confirm the last two steps in the fosfomycin biosynthetic pathway of Pseudomonas syringae PB-5123, showing that Psf3 performs the reduction of 2-oxopropylphosphonate (2-OPP) to (S)-2-HPP, followed by the Psf4-catalyzed epoxidation of (S)-2-HPP to fosfomycin. Psf4 can also accept (R)-2-HPP as a substrate but instead performs an oxidation to make 2-OPP. We show that the combined activities of Psf3 and Psf4 can be used to convert racemic 2-HPP to fosfomycin in an enantioconvergent process. X-ray structures of each enzyme with bound substrates provide insights into the stereospecificity of each conversion. These studies shed light on the reaction mechanisms of the two terminal enzymes in a distinct pathway employed by pseudomonads for the production of a potent antimicrobial agent.
Wei, Liujing; Yang, Xuepeng; Gao, Keliang; Lin, Jinping; Yang, Shengli; Hua, Qiang; Wei, Dongzhi
2010-09-01
Although Gluconobacter oxydans can convert 1,2-propanediol to D: -(-)-lactic acid, the enzyme(s) responsible for the conversion has remain unknown. In this study, the membrane-bound alcohol dehydrogenase (ADH) of Gluconobacter oxydans DSM 2003 was purified and confirmed to be essential for the process of D: -(-)-lactic acid production by gene knockout and complementation studies. A 25 percent decrease in D: -(-)-lactic acid production was found for the aldehyde dehydrogenase (ALDH) deficient strain of G. oxydans DSM 2003, indicating that this enzyme is involved in the reaction but not necessary. It is the first report that reveals the function of ADH and ALDH in the biooxidation of 1,2-propanediol to D: -(-)-lactic acid by G. oxydans DSM 2003.
Management of Cardiac Involvement in NeuroMuscular Diseases: Review
Bouhouch, Rachida; Elhouari, Tarik; Oukerraj, Latifa; Fellat, Ibtissam; Zarzur, Jamila; Bennani, Rajaa; Arharbi, Mhamed
2008-01-01
Neuromuscular Diseases are a heterogeneous molecular, clinical and prognosis group. Progress has been achieved in the understanding and classification of these diseases. Cardiac involvement in neuromuscular diseases namely conduction disorders, ventricular dilatation and dilated cardiomyopathy with its impact on prognosis, is often dissociated from the peripheral myopathy. Therefore, close surveillance is mandatory in the affected patients. In this context, preventive therapy (beta-blockers and angiotensin converting enzyme inhibitors) has been recently recommended in the most common Neuromuscular Diseases, Duchenne Muscular Dystrophy and Myotonic Dystrophy. PMID:19337361
Benazepril and Hydrochlorothiazide
... in a class of medications called angiotensin-converting enzyme (ACE) inhibitors. It works by decreasing certain chemicals ... benazepril (Lotensin); hydrochlorothiazide (HCTZ, Microzide, Oretic); angiotensin-converting enzyme (ACE) inhibitors such as captopril (Capoten), enalapril (Vasotec, ...
Lisinopril and Hydrochlorothiazide
... in a class of medications called angiotensin-converting enzyme (ACE) inhibitors. It works by decreasing certain chemicals ... to lisinopril; hydrochlorothiazide (HCTZ, Microzide, Oretic); angiotensin-converting enzyme (ACE) inhibitors such as benazepril (Lotensin), captopril (Capoten), ...
Enalapril and Hydrochlorothiazide
... in a class of medications called angiotensin-converting enzyme (ACE) inhibitors. It works by decreasing certain chemicals ... in Vaseretic); hydrochlorothiazide (HCTZ, Microzide, Oretic); angiotensin-converting enzyme (ACE) inhibitors such as benazepril (Lotensin, in Lotrel), ...
Identification of enzymes involved in oxidation of phenylbutyrate.
Palir, Neža; Ruiter, Jos P N; Wanders, Ronald J A; Houtkooper, Riekelt H
2017-05-01
In recent years the short-chain fatty acid, 4-phenylbutyrate (PB), has emerged as a promising drug for various clinical conditions. In fact, PB has been Food and Drug Administration-approved for urea cycle disorders since 1996. PB is more potent and less toxic than its metabolite, phenylacetate (PA), and is not just a pro-drug for PA, as was initially assumed. The metabolic pathway of PB, however, has remained unclear. Therefore, we set out to identify the enzymes involved in the β-oxidation of PB. We used cells deficient in specific steps of fatty acid β-oxidation and ultra-HPLC to measure which enzymes were able to convert PB or its downstream products. We show that the first step in PB oxidation is catalyzed solely by the enzyme, medium-chain acyl-CoA dehydrogenase. The second (hydration) step can be catalyzed by all three mitochondrial enoyl-CoA hydratase enzymes, i.e., short-chain enoyl-CoA hydratase, long-chain enoyl-CoA hydratase, and 3-methylglutaconyl-CoA hydratase. Enzymes involved in the third step include both short- and long-chain 3-hydroxyacyl-CoA dehydrogenase. The oxidation of PB is completed by only one enzyme, i.e., long-chain 3-ketoacyl-CoA thiolase. Taken together, the enzymatic characteristics of the PB degradative pathway may lead to better dose finding and limiting the toxicity of this drug. Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.
Angiotensin-converting enzyme genetic polymorphism: its impact on cardiac remodeling
de Albuquerque, Felipe Neves; Brandão, Andréa Araujo; da Silva, Dayse Aparecida; Mourilhe-Rocha, Ricardo; Duque, Gustavo Salgado; Gondar, Alyne Freitas Pereira; Neves, Luiza Maceira de Almeida; Bittencourt, Marcelo Imbroinise; Pozzan, Roberto; de Albuquerque, Denilson Campos
2014-01-01
Background The role of angiotensin-converting enzyme genetic polymorphisms as a predictor of echocardiographic outcomes on heart failure is yet to be established. The local profile should be identified so that the impact of those genotypes on the Brazilian population could be identified. This is the first study on exclusively non-ischemic heart failure over a follow-up longer than 5 years. Objective To determine the distribution of angiotensin-converting enzyme genetic polymorphism variants and their relation with echocardiographic outcome of patients with non-ischemic heart failure. Methods Secondary analysis of the medical records of 111 patients and identification of the angiotensin-converting enzyme genetic polymorphism variants, classified as DD (Deletion/Deletion), DI (Deletion/Insertion) or II (Insertion/Insertion). Results The cohort means were as follows: follow-up, 64.9 months; age, 59.5 years; male sex, 60.4%; white skin color, 51.4%; use of beta-blockers, 98.2%; and use of angiotensin-converting-enzyme inhibitors or angiotensin receptor blocker, 89.2%. The angiotensin-converting enzyme genetic polymorphism distribution was as follows: DD, 51.4%; DI, 44.1%; and II, 4.5%. No difference regarding the clinical characteristics or treatment was observed between the groups. The final left ventricular systolic diameter was the only isolated echocardiographic variable that significantly differed between the angiotensin-converting enzyme genetic polymorphisms: 59.2 ± 1.8 for DD versus 52.3 ± 1.9 for DI versus 59.2 ± 5.2 for II (p = 0.029). Considering the evolutionary behavior, all echocardiographic variables (difference between the left ventricular ejection fraction at the last and first consultation; difference between the left ventricular systolic diameter at the last and first consultation; and difference between the left ventricular diastolic diameter at the last and first consultation) differed between the genotypes (p = 0.024; p = 0.002; and p = 0.021, respectively). Conclusion The distribution of the angiotensin-converting enzyme genetic polymorphisms differed from that of other studies with a very small number of II. The DD genotype was independently associated with worse echocardiographic outcome, while the DI genotype, with the best echocardiographic profile (increased left ventricular ejection fraction and decreased left ventricular diameters). PMID:24270863
Angiotensin-converting enzyme genetic polymorphism: its impact on cardiac remodeling.
Albuquerque, Felipe Neves de; Brandão, Andréa Araujo; Silva, Dayse Aparecida da; Mourilhe-Rocha, Ricardo; Duque, Gustavo Salgado; Gondar, Alyne Freitas Pereira; Neves, Luiza Maceira de Almeida; Bittencourt, Marcelo Imbroinise; Pozzan, Roberto; Albuquerque, Denilson Campos de
2014-01-01
The role of angiotensin-converting enzyme genetic polymorphisms as a predictor of echocardiographic outcomes on heart failure is yet to be established. The local profile should be identified so that the impact of those genotypes on the Brazilian population could be identified. This is the first study on exclusively non-ischemic heart failure over a follow-up longer than 5 years. To determine the distribution of angiotensin-converting enzyme genetic polymorphism variants and their relation with echocardiographic outcome of patients with non-ischemic heart failure. Secondary analysis of the medical records of 111 patients and identification of the angiotensin-converting enzyme genetic polymorphism variants, classified as DD (Deletion/Deletion), DI (Deletion/Insertion) or II (Insertion/Insertion). The cohort means were as follows: follow-up, 64.9 months; age, 59.5 years; male sex, 60.4%; white skin color, 51.4%; use of beta-blockers, 98.2%; and use of angiotensin-converting-enzyme inhibitors or angiotensin receptor blocker, 89.2%. The angiotensin-converting enzyme genetic polymorphism distribution was as follows: DD, 51.4%; DI, 44.1%; and II, 4.5%. No difference regarding the clinical characteristics or treatment was observed between the groups. The final left ventricular systolic diameter was the only isolated echocardiographic variable that significantly differed between the angiotensin-converting enzyme genetic polymorphisms: 59.2 ± 1.8 for DD versus 52.3 ± 1.9 for DI versus 59.2 ± 5.2 for II (p = 0.029). Considering the evolutionary behavior, all echocardiographic variables (difference between the left ventricular ejection fraction at the last and first consultation; difference between the left ventricular systolic diameter at the last and first consultation; and difference between the left ventricular diastolic diameter at the last and first consultation) differed between the genotypes (p = 0.024; p = 0.002; and p = 0.021, respectively). The distribution of the angiotensin-converting enzyme genetic polymorphisms differed from that of other studies with a very small number of II. The DD genotype was independently associated with worse echocardiographic outcome, while the DI genotype, with the best echocardiographic profile (increased left ventricular ejection fraction and decreased left ventricular diameters).
Olgun, Abdullah
2009-08-01
Mitochondrial DNA defects are involved supposedly via free radicals in many pathologies including aging and cancer. But, interestingly, free radical production was not found increased in prematurely aging mice having higher mutation rate in mtDNA. Therefore, some other mechanisms like the increase of mitochondrial NADH/NAD(+) and ubiquinol/ubiquinone ratios, can be in action in respiratory chain defects. NADH/NAD(+) ratio can be normalized by the activation or overexpression of nicotinamide nucleotide transhydrogenase (NNT), a mitochondrial enzyme catalyzing the following very important reaction: NADH + NADP(+ )<--> NADPH + NAD(+). The products NAD(+) and NADPH are required in many critical biological processes, e.g., NAD(+) is used by histone deacetylase Sir2 which regulates longevity in different species. NADPH is used in a number of biosynthesis reactions (e.g., reduced glutathione synthesis), and processes like apoptosis. Increased ubiquinol/ubiquinone ratio interferes the function of dihydroorotate dehydrogenase, the only mitochondrial enzyme involved in ubiquinone mediated de novo pyrimidine synthesis. Uridine and its prodrug triacetyluridine are used to compensate pyrimidine deficiency but their bioavailability is limited. Therefore, the normalization of the ubiquinol/ubiquinone ratio can be accomplished by allotopic expression of alternative oxidase, a mitochondrial ubiquinol oxidase which converts ubiquinol to ubiquinone.
Jung, Jihye; Czabany, Tibor; Wilding, Birgit; Klempier, Norbert; Nidetzky, Bernd
2016-01-01
The enzyme QueF catalyzes a four-electron reduction of a nitrile group into an amine, the only reaction of this kind known in biology. In nature, QueF converts 7-cyano-7-deazaguanine (preQ0) into 7-aminomethyl-7-deazaguanine (preQ1) for the biosynthesis of the tRNA-inserted nucleoside queuosine. The proposed QueF mechanism involves a covalent thioimide adduct between preQ0 and a cysteine nucleophile in the enzyme, and this adduct is subsequently converted into preQ1 in two NADPH-dependent reduction steps. Here, we show that the Escherichia coli QueF binds preQ0 in a strongly exothermic process (ΔH = −80.3 kJ/mol; −TΔS = 37.9 kJ/mol, Kd = 39 nm) whereby the thioimide adduct is formed with half-of-the-sites reactivity in the homodimeric enzyme. Both steps of preQ0 reduction involve transfer of the 4-pro-R-hydrogen from NADPH. They proceed about 4–7-fold more slowly than trapping of the enzyme-bound preQ0 as covalent thioimide (1.63 s−1) and are thus mainly rate-limiting for the enzyme's kcat (=0.12 s−1). Kinetic studies combined with simulation reveal a large primary deuterium kinetic isotope effect of 3.3 on the covalent thioimide reduction and a smaller kinetic isotope effect of 1.8 on the imine reduction to preQ1. 7-Formyl-7-deazaguanine, a carbonyl analogue of the imine intermediate, was synthesized chemically and is shown to be recognized by QueF as weak ligand for binding (ΔH = −2.3 kJ/mol; −TΔS = −19.5 kJ/mol) but not as substrate for reduction or oxidation. A model of QueF substrate recognition and a catalytic pathway for the enzyme are proposed based on these data. PMID:27754868
Printable enzyme-embedded materials for methane to methanol conversion
Blanchette, Craig D.; Knipe, Jennifer M.; Stolaroff, Joshuah K.; ...
2016-06-15
An industrial process for the selective activation of methane under mild conditions would be highly valuable for controlling emissions to the environment and for utilizing vast new sources of natural gas. The only selective catalysts for methane activation and conversion to methanol under mild conditions are methane monooxygenases (MMOs) found in methanotrophic bacteria; however, these enzymes are not amenable to standard enzyme immobilization approaches. Using particulate methane monooxygenase (pMMO), we create a biocatalytic polymer material that converts methane to methanol. We demonstrate embedding the material within a silicone lattice to create mechanically robust, gas-permeable membranes, and direct printing of micron-scalemore » structures with controlled geometry. Remarkably, the enzymes retain up to 100% activity in the polymer construct. The printed enzyme-embedded polymer motif is highly flexible for future development and should be useful in a wide range of applications, especially those involving gas–liquid reactions.« less
Printable enzyme-embedded materials for methane to methanol conversion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blanchette, Craig D.; Knipe, Jennifer M.; Stolaroff, Joshuah K.
An industrial process for the selective activation of methane under mild conditions would be highly valuable for controlling emissions to the environment and for utilizing vast new sources of natural gas. The only selective catalysts for methane activation and conversion to methanol under mild conditions are methane monooxygenases (MMOs) found in methanotrophic bacteria; however, these enzymes are not amenable to standard enzyme immobilization approaches. Using particulate methane monooxygenase (pMMO), we create a biocatalytic polymer material that converts methane to methanol. We demonstrate embedding the material within a silicone lattice to create mechanically robust, gas-permeable membranes, and direct printing of micron-scalemore » structures with controlled geometry. Remarkably, the enzymes retain up to 100% activity in the polymer construct. The printed enzyme-embedded polymer motif is highly flexible for future development and should be useful in a wide range of applications, especially those involving gas–liquid reactions.« less
Printable enzyme-embedded materials for methane to methanol conversion
Blanchette, Craig D.; Knipe, Jennifer M.; Stolaroff, Joshuah K.; DeOtte, Joshua R.; Oakdale, James S.; Maiti, Amitesh; Lenhardt, Jeremy M.; Sirajuddin, Sarah; Rosenzweig, Amy C.; Baker, Sarah E.
2016-01-01
An industrial process for the selective activation of methane under mild conditions would be highly valuable for controlling emissions to the environment and for utilizing vast new sources of natural gas. The only selective catalysts for methane activation and conversion to methanol under mild conditions are methane monooxygenases (MMOs) found in methanotrophic bacteria; however, these enzymes are not amenable to standard enzyme immobilization approaches. Using particulate methane monooxygenase (pMMO), we create a biocatalytic polymer material that converts methane to methanol. We demonstrate embedding the material within a silicone lattice to create mechanically robust, gas-permeable membranes, and direct printing of micron-scale structures with controlled geometry. Remarkably, the enzymes retain up to 100% activity in the polymer construct. The printed enzyme-embedded polymer motif is highly flexible for future development and should be useful in a wide range of applications, especially those involving gas–liquid reactions. PMID:27301270
Sica, Domenic A
2010-04-01
The renin-angiotensin system has been a target in the treatment of hypertension for close to three decades. Several medication classes that block specific aspects of this system have emerged as useful therapies, including angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, and, most recently, direct renin inhibitors. There has been a natural history to the development of each of these three drug classes, starting with their use as antihypertensive agents; thereafter, in each case they have been employed as end-organ protective agents. To date, there has been scant evidence to favor angiotensin receptor blockers or direct renin inhibitors over angiotensin-converting enzyme inhibitors in treating hypertension or in affording end-organ protection; thus, angiotensin-converting enzyme inhibitors remain the standard of care when renin-angiotensin system blockade is warranted.
Devin, Jessica K.; Pretorius, Mias; Nian, Hui; Yu, Chang; Billings, Frederic T.; Brown, Nancy J.
2014-01-01
Dipeptidyl peptidase-4 inhibitors prevent the degradation of incretin hormones and reduce post-prandial hyperglycemia in patients with type 2 diabetes mellitus. Dipeptidyl peptidase-4 degrades other peptides with a penultimate proline or alanine, including bradykinin and substance P, which are also substrates of angiotensin-converting enzyme. During angiotensin-converting enzyme inhibition, substance P is inactivated primarily by dipeptidyl peptidase-4, while bradykinin is first inactivated by aminopeptidase P. This study tested the hypothesis that dipeptidyl peptidase-4 inhibition potentiates vasodilator and fibrinolytic responses to substance P when angiotensin-converting enzyme is inhibited. Twelve healthy subjects participated in this randomized, double-blinded, placebo-controlled crossover study. On each study day, subjects received sitagliptin 200 mg p.o. or placebo. Substance P and bradykinin were infused via brachial artery before and during intra-arterial enalaprilat. Sitagliptin and enalaprilat each reduced forearm vascular resistance and increased forearm blood flow without affecting mean arterial pressure, but there was no interactive effect of the inhibitors. Enalaprilat increased bradykinin-stimulated vasodilation and tissue plasminogen activator release; sitagliptin did not affect these responses to bradykinin. The vasodilator response to substance P was unaffected by sitagliptin and enalaprilat, however, substance P increased heart rate and vascular release of norepinephrine during combined angiotensin-converting enzyme and dipeptidyl peptidase-4 inhibition. In women, sitagliptin diminished tissue plasminogen activator release in response to substance P both alone and during enalaprilat. Substance P increases sympathetic activity during combined angiotensin-converting enzyme and dipeptidyl peptidase-4 inhibition. PMID:24516103
Allen, A M; Chai, S Y; Clevers, J; McKinley, M J; Paxinos, G; Mendelsohn, F A
1988-03-08
Angiotensin II receptor and angiotensin converting enzyme distributions in the human medulla oblongata were localised by quantitative in vitro autoradiography. Angiotensin II receptors were labelled with the antagonist analogue 125I-[Sar1, Ile8] AII while angiotensin converting enzyme was labelled with 125I-351A, a derivative of the specific converting enzyme inhibitor, lisinopril. Angiotensin II receptor binding and angiotensin converting enzyme are present in high concentrations in the nucleus of the solitary tract, the dorsal motor nucleus of vagus, the rostral and caudal ventrolateral reticular nucleus, and in a band connecting the dorsal and ventral regions. In the rostral and caudal ventrolateral reticular nucleus, angiotensin II receptors are distributed in a punctate pattern that registers with neuronal cell bodies. The distribution and density of these cell bodies closely resemble those of catecholamine-containing neurones mapped by others. In view of the known interactions of angiotensin II with both central and peripheral catecholamine-containing neurons of laboratory animals, the current anatomical findings suggest similar interactions between these neuroactive compounds in the human central nervous system. The presence of angiotensin II receptors and angiotensin converting enzyme in the nucleus of the solitary tract, dorsal motor nucleus of vagus, and rostral and caudal ventrolateral reticular nucleus demonstrates sites for central angiotensin II to exert its known actions on vasopressin release and autonomic functions including blood pressure control. These data also suggest a possible interaction between angiotensin II and central catecholeminergic systems.
Oosterkamp, Margreet J; Boeren, Sjef; Atashgahi, Siavash; Plugge, Caroline M; Schaap, Peter J; Stams, Alfons J M
2015-06-01
Alicycliphilus denitrificans strain BC grows anaerobically on acetone with nitrate as electron acceptor. Comparative proteomics of cultures of A. denitrificans strain BC grown on either acetone or acetate with nitrate was performed to study the enzymes involved in the acetone degradation pathway. In the proposed acetone degradation pathway, an acetone carboxylase converts acetone to acetoacetate, an AMP-dependent synthetase/ligase converts acetoacetate to acetoacetyl-CoA, and an acetyl-CoA acetyltransferase cleaves acetoacetyl-CoA to two acetyl-CoA. We also found a putative aldehyde dehydrogenase associated with acetone degradation. This enzyme functioned as a β-hydroxybutyrate dehydrogenase catalyzing the conversion of surplus acetoacetate to β-hydroxybutyrate that may be converted to the energy and carbon storage compound, poly-β-hydroxybutyrate. Accordingly, we confirmed the formation of poly-β-hydroxybutyrate in acetone-grown cells of strain BC. Our findings provide insight in nitrate-dependent acetone degradation that is activated by carboxylation of acetone. This will aid studies of similar pathways found in other microorganisms degrading acetone with nitrate or sulfate as electron acceptor. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Expression and regulation of estrogen-converting enzymes in ectopic human endometrial tissue.
Fechner, Sabine; Husen, Bettina; Thole, Hubert; Schmidt, Markus; Gashaw, Isabella; Kimmig, Rainer; Winterhager, Elke; Grümmer, Ruth
2007-10-01
To investigate the regulation of estrogen-converting enzymes in human ectopic endometrial tissue. Animal study. Academic medical center. Sixty female nude mice with implanted human endometrial tissue. Twenty-two premenopausal women undergoing endometrial biopsy or hysterectomy. Human endometrial tissue was implanted into the peritoneal cavity of nude mice, and the effect of therapeutic drugs on transcription of steroid receptors and estrogen-converting enzymes was analyzed. Transcript levels of steroid hormone receptors, 17beta-hydroxysteroid dehydrogenase type 1 and 2, aromatase, and steroid sulfatase as well as proliferation rate were analyzed in the human ectopic endometrial tissue. Steroid receptors and estrogen-converting enzymes were expressed in the ectopic human endometrial fragments. Application of medroxyprogesterone acetate, dydrogesterone, danazol, and the aromatase inhibitor finrozole significantly inhibited aromatase transcription. In addition, danazol caused a significant decrease in transcription of steroid sulfatase, and finrozole, of 17beta-hydroxysteroid dehydrogenase type 1 in parallel to a decrease in proliferation rate in the ectopic human endometrial tissue. Pharmacological regulation of transcription of estrogen-converting enzymes in human endometrium cultured in nude mice may help to develop new therapeutic concepts based on local regulation of estrogen metabolism in endometriosis.
Preparation of 20-HETE using multifunctional enzyme type 2-negative Starmerella bombicola[S
Van Bogaert, Inge; Zhang, Guodong; Yang, Jun; Liu, Jun-Yan; Ye, Yonghao; Soetaert, Wim; Hammock, Bruce D.
2013-01-01
The metabolism of arachidonic acid (ARA) by cytochrome P450 ω/ω-1-hydroxylases leads to the formation of 20-hydroxyeicosatetraenoic acid (20-HETE), which is an important lipid-signaling molecule involved in regulation of vascular tone, angiogenesis, and inflammation. Development of a simple method to prepare 20-HETE would greatly facilitate the investigation of its biological activities. The nonpathogenic yeast Starmerella bombicola has been shown to convert exogenously added arachidonic acid to 20-HETE via the biosynthetic pathway of sophorolipids; however, the yield was low. Here we demonstrate that genetic knockout of multifunctional enzyme type 2 (MFE-2), which is involved in the β-oxidation of fatty acids, significantly increases the yield of ARA conversion to 20-HETE and allows practical preparation of 20-HETE. PMID:23966667
Brusco, Indiara; Silva, Cássia Regina; Trevisan, Gabriela; de Campos Velho Gewehr, Camila; Rigo, Flávia Karine; La Rocca Tamiozzo, Lidia; Rossato, Mateus Fortes; Tonello, Raquel; Dalmolin, Gerusa Duarte; de Almeida Cabrini, Daniela; Gomez, Marcus Vinícius; Ferreira, Juliano; Oliveira, Sara Marchesan
2017-12-01
Paclitaxel is a chemotherapeutic agent used to treat solid tumours. However, it causes an acute and neuropathic pain syndrome that limits its use. Among the mechanisms involved in neuropathic pain caused by paclitaxel is activation of kinin receptors. Angiotensin converting enzyme (ACE) inhibitors can enhance kinin receptor signalling. The goal of this study was to evaluate the role of kinins on paclitaxel-associated acute pain syndromes (P-APS) and the effect of ACE inhibition on P-APS and paclitaxel-associated chronic peripheral neuropathy (P-CPN) in mice. Herein, we show that paclitaxel caused mechanical allodynia and spontaneous nociceptive behaviour that was reduced by antagonists of kinin receptors B 1 (DALBk and SSR240612) and B 2 (Hoe140 and FR173657). Moreover, enalapril (an ACE inhibitor) enhanced the mechanical allodynia induced by a low dose of paclitaxel. Likewise, paclitaxel injection inhibited ACE activity and increased the expressions of B 1 and B 2 receptors and bradykinin-related peptides levels in peripheral tissue. Together, our data support the involvement of kinin receptors in the P-APS and suggest kinin receptor antagonists to treat this syndrome. Because hypertension is the most frequent comorbidity affecting cancer patients, treatment of hypertension with ACE inhibitors in patients undergoing paclitaxel chemotherapy should be reviewed, since this could enhance the P-APS and P-CPN.
Ranadive, S A; Chen, A X; Serajuddin, A T
1992-11-01
Lipophilicities of seven structurally diverse angiotensin-converting enzyme (ACE) inhibitors, viz., captopril, zofenoprilat, enalaprilat, ramiprilat, lisinopril, fosinoprilat, and ceronapril (SQ29852), were compared by determining their octanol-water distribution coefficients (D) under physiological pH conditions. The distribution co-efficients of zofenopril, enalapril, ramipril and fosinopril, which are the prodrug forms of zofenoprilat, enalaprilat, ramiprilat, and fosinoprilat, respectively, were also determined. Attempts were made to correlate lipophilicities with the reported data for oral absorption, protein binding, ACE inhibitory activity, propensity for biliary excretion, and penetration across the blood-brain barrier for these therapeutic entities. Better absorption of prodrugs compared to their respective active forms is in agreement with their greater lipophilicities. Captopril, lisinopril, and ceronapril are orally well absorbed despite their low lipophilicities, suggesting involvement of other factors such as a carrier-mediated transport process. Of all the compounds studied, the two most lipophilic ACE inhibitors, fosinoprilat and zofenoprilat, exhibit a rank-order correlation with respect to biliary excretion. This may explain the dual routes of elimination (renal and hepatic) observed with fosinoprilat in humans. The more lipophilic compounds also exhibit higher protein binding. Both the lipophilicity and a carrier-mediated process may be involved in penetration of some of these drugs into brain. For structurally similar compounds, in vitro ACE inhibitory activity increased with the increase in lipophilicity. However, no clear correlation between lipophilicity and ACE inhibitory activity emerged when different types of inhibitors are compared, possibly because their interactions with enzymes are primarily ionic in nature.
Yoshiji, Hitoshi; Noguchi, Ryuichi; Kaji, Kosuke; Ikenaka, Yasuhide; Shirai, Yusaku; Namisaki, Tadashi; Kitade, Mitsuteru; Tsujimoto, Tatsuhiro; Kawaratani, Hideto; Fukui, Hiroshi
2010-04-01
Insulin resistance (IR) is reportedly involved in the progression of hepatocellular carcinoma (HCC). Because neovascularization plays an important role in HCC, including hepatocarcinogenesis, an angiostatic therapy would be a promising approach for chemoprevention against HCC. The aim of the present study was to examine the combined effect of clinically used branched-chain amino acids (BCAAs) and an angiotensin-converting enzyme inhibitor (ACE-I), in conjunction with neovascularization, on hepatocarcinogenesis under the condition of IR. The combined effect of the treatment on the development of liver enzyme-altered preneoplastic lesions, angiogenesis, and several indices was elucidated in obese diabetic rats. We also performed several sets of in vitro experiments to examine the mechanisms involved. When used individually, both BCAAs and ACE-I at clinically comparable low doses significantly attenuated the development of preneoplastic lesions, along with the suppression of both angiogenesis and vascular endothelial growth factor (VEGF) expression. The combination treatment with both agents exerted a more potent inhibitory effect than that of either single agent. Our in vitro study showed a similar combined effect on endothelial cell tubule formation. This combination regimen showed a marked chemopreventive effect against hepatocarcinogenesis, along with suppression of neovascularization and VEGF expression, in obese diabetic rats. Because both BCAAs and ACE-Is are widely used in clinical practice, this combination therapy may represent a potential new strategy for chemoprevention against IR-based HCC in the future.
Molecular imprinting of enzymes with water-insoluble ligands for nonaqueous biocatalysis.
Rich, Joseph O; Mozhaev, Vadim V; Dordick, Jonathan S; Clark, Douglas S; Khmelnitsky, Yuri L
2002-05-15
Attaining higher levels of catalytic activity of enzymes in organic solvents is one of the major challenges in nonaqueous enzymology. One of the most successful strategies for enhancing enzyme activity in organic solvents involves tuning the enzyme active site by molecular imprinting with substrates or their analogues. Unfortunately, numerous imprinters of potential importance are poorly soluble in water, which significantly limits the utility of this method. In the present study, we have developed strategies that overcome this limitation of the molecular-imprinting technique and that thus expand its applicability beyond water-soluble ligands. The solubility problem can be addressed either by converting the ligands into a water-soluble form or by adding relatively high concentrations of organic cosolvents, such as tert-butyl alcohol and 1,4-dioxane, to increase their solubility in the lyophilization medium. We have succeeded in applying both of these strategies to produce imprinted thermolysin, subtilisin, and lipase TL possessing up to 26-fold higher catalytic activity in the acylation of paclitaxel and 17beta-estradiol compared to nonimprinted enzymes. Furthermore, we have demonstrated for the first time that molecular imprinting and salt activation, applied in combination, produce a strong additive activation effect (up to 110-fold), suggesting different mechanisms of action involved in these enzyme activation techniques.
Xu, Rong-Yan; Nan, Peng; Yang, Yixin; Pan, Haiyun; Zhou, Tongshui; Chen, Jiakuan
2011-07-01
Isoflavonoids are a group of phenolic secondary metabolites found almost exclusively in leguminous plants. Formononetin, calycosin and calycosin-7-O-β-d-glucoside (CG) are isoflavonoid products in the CG pathway. Accumulation of the three isoflavonoids plus daidzein and expression of six genes of enzymes involved in the CG pathway were studied in Astragalus membranaceus Bge. var. mongholicus (Bge.) Hsiao with ultraviolet (UV) irradiation. Our results showed that (1) main isoflavonoids in roots, stems and leaves were CG, daidzein and calycosin, respectively; they accumulated significantly under the induction of UV irradiation during 8 days but their content declined later; (2) expression of six genes of enzymes involved in the CG pathway was inhibited slightly at early stage but the expression was increased greatly afterward; (3) chalcone synthase, chalcone reductase and chalcone isomerase were expressed to their individual maximum level within shorter hours than were cinnamate 4-hydroxylase, isoflavone synthase (IFS) and isoflavone 3'-hydroxylase and (4) more calycosin but less daidzein accumulated in leaves. IFS was highly expressed in leaves, which might lead to high accumulation of the common precursor of daidzein and 2,7-dihydroxy-4'-O-methoxy-isoflavanone, the latter of which would be converted to formononetin, calycosin and CG via a series of reactions. Little daidzein accumulated in leaves, which suggested that rather than be converted to daidzein, the 2,7,4'-trihydroxyisoflavanone was probably more easily caught by 2-hydroxyisoflavanone 4'-O-methyltransferase and hence provided more precursors for formononetin. The findings were discussed in terms of the influence of UV irradiation in the accumulation of isoflavonoids. Copyright © Physiologia Plantarum 2011.
Bahia, Malkeet S; Silakari, Om
2010-05-01
Tumor necrosis factor alpha is one of the most common pro-inflammatory cytokines responsible for various inflammatory disorders. It plays an important role in the origin and progression of rheumatoid arthritis and also in other autoimmune disease conditions. Some anti-tumor necrosis factor alpha antibodies like Enbrel, Humira and Remicade have been successfully used in these disease conditions as antagonists of tumor necrosis factor alpha. Inhibition of generation of active form of tumor necrosis factor alpha is a promising therapy for various inflammatory disorders. Therefore, the inhibition of an enzyme (tumor necrosis factor alpha converting enzyme), which is responsible for processing inactive form of tumor necrosis factor alpha into its active soluble form, is an encouraging target. Many tumor necrosis factor alpha converting enzyme inhibitors have been the candidates of clinical trials but none of them have reached in to the market because of their broad spectrum inhibitory activity for other matrix metalloproteases. Selectivity of tumor necrosis factor alpha converting enzyme inhibition over matrix metalloproteases is of utmost importance. If selectivity is achieved successfully, side-effects can be over-ruled and this approach may become a novel therapy for treatment of rheumatoid arthritis and other inflammatory disorders. This cytokine not only plays a pivotal role in inflammatory conditions but also in some cancerous conditions. Thus, successful targeting of tumor necrosis factor alpha converting enzyme may result in multifunctional therapy.
Costa, A s; Junior, A S; Viana, G E N; Muratori, M C S; Reis, A M; Costa, A P R
2014-10-01
This study aimed at evaluating the effects of angiotensin-converting enzyme inhibitor (enalapril) and angiotensin II antagonist (valsartan) on the oestradiol and progesterone production in ewes submitted to oestrous synchronization protocol. The animals were weighed and randomly divided into three groups (n = 7). A pre-experiment conducted to verify the effectiveness and toxicity of enalapril (0.5 mg/kg LW) and valsartan (2.2 mg/kg LW) showed that, in the doses used, these drugs were effective in reducing blood pressure without producing toxic effects. In the experiment, all animals were subjected to oestrous synchronization protocol during 12 days. On D10, D11 and D12, animals received saline, enalapril or valsartan (same doses of the pre-experiment), according to the group randomly divided. The hormonal analysis showed an increase in oestradiol on the last day of the protocol (D12) in animals that received enalapril (p < 0.05), but not in other groups, without changing the concentration of progesterone in any of the treatments. It is concluded that valsartan and enalapril are safe and effective subcutaneously for use in sheep and that the angiotensin-converting enzyme (ACE) inhibition with enalapril leads to an increase in oestradiol production near ovulation without changing the concentration of progesterone. This shows that ACE inhibition may be a useful tool in reproductive biotechnologies involving induction and synchronization of oestrus and ovulation in sheep. © 2014 Blackwell Verlag GmbH.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nally, J.V. Jr.; Clarke, H.S. Jr.; Grecos, G.P.
In an effort to improve on the noninvasive detection of renal artery stenosis, we investigated the effect of angiotensin converting enzyme inhibition on computer-assisted /sup 99m/Tc-diethylenetriaminepentaacetic acid (DTPA) renal flow studies in a canine model of two-kidney, one clip hypertension and compared these findings with clearances of inulin and p-aminohippuric acid in the stenotic and contralateral kidney before and after converting enzyme inhibition. The /sup 99m/Tc-DTPA renal flow study with the converting enzyme inhibitor captopril (1.5 mg/kg bolus with 1.5 mg/min infusion) showed an increased sensitivity in the detection of unilateral renal artery stenosis over the use of the /supmore » 99m/Tc-DTPA study alone. Captopril induced striking alterations that were most evident in the 15-minute /sup 99m/Tc-DTPA renal flow study, in which all nine curves exhibited severely blunted uptake and excretion of the radionuclide. These changes were reversed during a recovery study without converting enzyme inhibition and were not seen when blood pressure was lowered with nitroprusside to a level similar to that observed during converting enzyme inhibition. The changes shown by the /sup 99m/Tc-DTPA study during converting enzyme inhibition correlated with a decrease in the glomerular filtration rate of the stenotic kidney. Captopril infusion significantly decreased the glomerular filtration rate of the stenotic kidney (16.0 +/- 3.1 vs 11.0 +/- 2.5 mg/min, p less than 0.03) but not of the contralateral kidney (32.4 +/- 2.6 vs 28.4 +/- 2.8 mg/min).« less
NASA Astrophysics Data System (ADS)
Li, Yuan; Baeta, Cesar; Aras, Omer; Daniel, Marie-Christine
2009-05-01
Overexpression of angiotensin-converting enzyme (ACE) has been associated with the pathophysiology of cardiac and pulmonary fibrosis. Moreover, the prescription of ACE inhibitors, such as lisinopril, has shown a favorable effect on patient outcome for patients with heart failure or systemic hypertension. Thus targeted imaging of the ACE would be of crucial importance for monitoring tissue ACE activity as well as the treatment efficacy in heart failure. In this respect, lisinopril-coated gold nanoparticles were prepared to provide a new type of probe for targeted molecular imaging of ACE by tuned K-edge computed tomography (CT) imaging. The preparation involved non-modified lisinopril, using its primary amine group as the anchoring function on the gold nanoparticles surface. The stable lisinopril-coated gold nanoparticles obtained were characterized by UV-vis spectroscopy, dynamic light scattering (DLS), transmission electron microscopy (TEM). Their zeta potential was also measured in order to assess the charge density on the modified gold nanoparticles (GNPs).
Assay for Angiotensin-Converting Enzyme.
ERIC Educational Resources Information Center
Russo, Salvatore F.
1983-01-01
Describes a three-hour experiment designed to introduce students to chemistry of the angiotensis-converting enzyme, illustrate design of a quenched fluorescence substrate, and examine considerations necessary in designing a clinical assay. Includes background information on the biochemistry of hypertension, reagents/materials needed, procedures…
Kuuskeri, Jaana; Mäkelä, Miia R; Isotalo, Jarkko; Oksanen, Ilona; Lundell, Taina
2015-10-19
The fungal genus Phlebia consists of a number of species that are significant in wood decay. Biotechnological potential of a few species for enzyme production and degradation of lignin and pollutants has been previously studied, when most of the species of this genus are unknown. Therefore, we carried out a wider study on biochemistry and systematics of Phlebia species. Isolates belonging to the genus Phlebia were subjected to four-gene sequence analysis in order to clarify their phylogenetic placement at species level and evolutionary relationships of the genus among phlebioid Polyporales. rRNA-encoding (5.8S, partial LSU) and two protein-encoding gene (gapdh, rpb2) sequences were adopted for the evolutionary analysis, and ITS sequences (ITS1+5.8S+ITS2) were aligned for in-depth species-level phylogeny. The 49 fungal isolates were cultivated on semi-solid milled spruce wood medium for 21 days in order to follow their production of extracellular lignocellulose-converting oxidoreductases and carbohydrate active enzymes. Four-gene phylogenetic analysis confirmed the polyphyletic nature of the genus Phlebia. Ten species-level subgroups were formed, and their lignocellulose-converting enzyme activity profiles coincided with the phylogenetic grouping. The highest enzyme activities for lignin modification (manganese peroxidase activity) were obtained for Phlebia radiata group, which supports our previous studies on the enzymology and gene expression of this species on lignocellulosic substrates. Our study implies that there is a species-level connection of molecular systematics (genotype) to the efficiency in production of both lignocellulose-converting carbohydrate active enzymes and oxidoreductases (enzyme phenotype) on spruce wood. Thus, we may propose a similar phylogrouping approach for prediction of lignocellulose-converting enzyme phenotypes in new fungal species or genetically and biochemically less-studied isolates of the wood-decay Polyporales.
Watanabe, Seiya; Kodaki, Tsutomu; Kodak, Tsutomu; Makino, Keisuke
2006-02-03
Azospirillum brasiliense converts L-arabinose to alpha-ketoglutarate via five hypothetical enzymatic steps. We purified and characterized L-arabinose 1-dehydrogenase (EC 1.1.1.46), catalyzing the conversion of L-arabinose to L-arabino-gamma-lactone as an enzyme responsible for the first step of this alternative pathway of L-arabinose metabolism. The purified enzyme preferred NADP+ to NAD+ as a coenzyme. Kinetic analysis revealed that the enzyme had high catalytic efficiency for both L-arabinose and D-galactose. The gene encoding L-arabinose 1-dehydrogenase was cloned using a partial peptide sequence of the purified enzyme and was overexpressed in Escherichia coli as a fully active enzyme. The enzyme consists of 308 amino acids and has a calculated molecular mass of 33,663.92 Da. The deduced amino acid sequence had some similarity to glucose-fructose oxidoreductase, D-xylose 1-dehydrogenase, and D-galactose 1-dehydrogenase. Site-directed mutagenesis revealed that the enzyme possesses unique catalytic amino acid residues. Northern blot analysis showed that this gene was induced by L-arabinose but not by D-galactose. Furthermore, a disruptant of the L-arabinose 1-dehydrogenase gene did not grow on L-arabinose but grew on D-galactose at the same growth rate as the wild-type strain. There was a partial gene for L-arabinose transport in the flanking region of the L-arabinose 1-dehydrogenase gene. These results indicated that the enzyme is involved in the metabolism of L-arabinose but not D-galactose. This is the first identification of a gene involved in an alternative pathway of L-arabinose metabolism in bacterium.
Angiotensin-converting enzyme: I. New strategies for assay
Ryan, James W.; Chung, Alfred; Ryan, Una S.
1980-01-01
The disposition of converting enzyme (kininase II) on the luminal surface of pulmonary endothelial cells is well established. Further, it is known that there is a net conversion of angiotensin I into angiotensin II as blood passes through the lungs. However, little is known about modulations of converting enzyme activity that may arise through, e.g., changes in the quality of inhalants, blood flow, or blood oxygenation. There are few data on the effects of lung disease. A major barrier to studies to examine for pathophysiologic modulations of converting enzyme is that of assay. The enzyme can be measured in terms of the rate of formation of angiotensin II from a known quantity of angiotensin I. However, both peptides are biologically active, and lungs contain other enzymes capable of degrading them. We have developed a series of radiolabeled, acylated tripeptides to improve our ability to examine for changes in the net converting enzyme of intact lungs. The enzyme, a dipeptidyl carboxypeptidase, is capable of removing C-terminal dipeptides from a variety of oligopeptides. We have prepared benzoyl-Gly-Gly-Gly (I), benzoyl-Pro-Phe-Arg (II), benzoyl-Gly-His-Leu (III), benzoyl-Phe-Ala-Pro (IV), and benzoyl-Phe-His-Leu (V), each containing a 3H-atom in the para position of the benzoyl moiety. Substrates I and III have been used previously in photometric assays of low sensitivity. II is the acylated C-terminal tripeptide of bradykinin, IV is an acylated tripeptide analog of BPP5a (
Gluschankof, P; Morel, A; Gomez, S; Nicolas, P; Fahy, C; Cohen, P
1984-01-01
The post-translational proteolytic conversion of somatostatin-14 precursors was studied to characterize the enzyme system responsible for the production of the tetradecapeptide either from its 15-kDa precursor protein or from its COOH-terminal fragment, somatostatin-28. A synthetic undecapeptide Pro-Arg-Glu-Arg-Lys-Ala-Gly-Ala-Lys-Asn-Tyr(NH2), homologous to the amino acid sequence of the octacosapeptide at the putative Arg-Lys cleavage locus, was used as substrate, after 125I labeling on the COOH-terminal tyrosine residue. A 90-kDa proteolytic activity was detected in rat brain cortex extracts after molecular sieve fractionation followed by ion exchange chromatography. The protease released the peptide 125I-Ala-Gly-Ala-Lys-Asn-Tyr(NH2) from the synthetic undecapeptide substrate and converted somatostatin-28 into somatostatin-14 under similar conditions (pH 7.0). Under these experimental conditions, the product tetradecapeptide was not further degraded by the enzyme. In contrast, the purified 15-kDa hypothalamic precursor remained unaffected when exposed to the proteolytic enzyme under identical conditions. It is concluded that this Arg-Lys esteropeptidase from the brain cortex may be involved in the in vivo processing of the somatostatin-28 fragment of prosomatostatin into somatostatin-14, the former species being an obligatory intermediate in a two-step proteolytic mechanism leading to somatostatin-14. PMID:6149550
Sillers, William Ryan; Van Dijken, Hans; Licht, Steve; Shaw, IV, Arthur J.; Gilbert, Alan Benjamin; Argyros, Aaron; Froehlich, Allan C.; McBride, John E.; Xu, Haowen; Hogsett, David A.; Rajgarhia, Vineet B.
2017-03-28
One aspect of the invention relates to a genetically modified thermophilic or mesophilic microorganism, wherein a first native gene is partially, substantially, or completely deleted, silenced, inactivated, or down-regulated, which first native gene encodes a first native enzyme involved in the metabolic production of an organic acid or a salt thereof, thereby increasing the native ability of said thermophilic or mesophilic microorganism to produce lactate or acetate as a fermentation product. In certain embodiments, the aforementioned microorganism further comprises a first non-native gene, which first non-native gene encodes a first non-native enzyme involved in the metabolic production of lactate or acetate. Another aspect of the invention relates to a process for converting lignocellulosic biomass to lactate or acetate, comprising contacting lignocellulosic biomass with a genetically modified thermophilic or mesophilic microorganism.
Somilleda-Ventura, Selma Alin; García-Rubio, Yatzul Zuhaila; Razo Blanco-Hernández, Dulce Milagros; Lima-Gómez, Virgilio
2016-01-01
Angiotensin converting enzyme inhibitors are effective in delaying the progression of diabetic retinopathy. It is unknown if their use is associated with a better visual outcome in patients with diabetic macular oedema. A non-experimental, comparative, longitudinal and retrospective study was performed on patients with diabetic macular oedema treated by focal photocoagulation, and with systemic arterial hypertension treated with angiotensin converting enzyme inhibitors (Group 1), and without hypertension (Group 2). The dependent variable was the proportion with visual improvement, operatively defined as the gain of one or more lines of vision three weeks after photocoagulation. The independent variable was the use of angiotensin converting enzyme inhibitors. The proportion of eyes with visual improvement after treatment was compared between groups using the Chi squared (χ(2)) test. A total of 33 eyes (51.6%) were assigned to group 1, and 31 (48.2%), to group 2. The mean of visual acuity improved after three weeks, compared with baseline (p=0.002). The proportion of eyes with visual improvement did not differ between patients treated with angiotensin converting enzyme inhibitors (45.5%) and those that did not use them (51.6%, p=0.4). There was no statistical difference in the proportion of eyes with visual improvement between patients treated with angiotensin converting enzyme inhibitors and in those where they were not used. There is no support for the inhibition of angiotensin II in addition to photocoagulation for improving the outcome in patients with diabetic macular oedema. Copyright © 2015 Academia Mexicana de Cirugía A.C. Published by Masson Doyma México S.A. All rights reserved.
Childhood Sarcoidosis Presenting as Recurrent Facial Palsy.
Passi, Gouri Rao; Arora, Kriti; Gokhale, Narendra
2018-04-15
Recurrent facial palsy in a patient merits investigation for underlying etiology. 8-year-old boy with erythematous itchy skin lesion and recurrent facial palsy. He had a past history of aseptic meningitis and nephrocalcinosis. Raised angiotensin converting enzyme levels, interstitial lung disease on CT chest, and non caseating granulomas on skin biopsy clinched the diagnosis of sarcoidosis. Multisystem involvement and recurrent lower motor facial nerve palsy is a clinical clue for sarcoidosis.
Ohta, Yukari; Nishi, Shinro; Hasegawa, Ryoichi; Hatada, Yuji
2015-01-01
Lignin, an aromatic polymer of phenylpropane units joined predominantly by β-O-4 linkages, is the second most abundant biomass component on Earth. Despite the continuous discharge of terrestrially produced lignin into marine environments, few studies have examined lignin degradation by marine microorganisms. Here, we screened marine isolates for β-O-4 cleavage activity and determined the genes responsible for this enzymatic activity in one positive isolate. Novosphingobium sp. strain MBES04 converted all four stereoisomers of guaiacylglycerol-β-guaiacyl ether (GGGE), a structural mimic of lignin, to guaiacylhydroxypropanone as an end metabolite in three steps involving six enzymes, including a newly identified Nu-class glutathione-S-transferase (GST). In silico searches of the strain MBES04 genome revealed that four GGGE-metabolizing GST genes were arranged in a cluster. Transcriptome analysis demonstrated that the lignin model compounds GGGE and (2-methoxyphenoxy)hydroxypropiovanillone (MPHPV) enhanced the expression of genes in involved in energy metabolism, including aromatic-monomer assimilation, and evoked defense responses typically expressed upon exposure to toxic compounds. The findings from this study provide insight into previously unidentified bacterial enzymatic systems and the physiological acclimation of microbes associated with the biological transformation of lignin-containing materials in marine environments. PMID:26477321
Production of Glucaric Acid from Hemicellulose Substrate by Rosettasome Enzyme Assemblies.
Lee, Charles C; Kibblewhite, Rena E; Paavola, Chad D; Orts, William J; Wagschal, Kurt
2016-07-01
Hemicellulose biomass is a complex polymer with many different chemical constituents that can be utilized as industrial feedstocks. These molecules can be released from the polymer and transformed into value-added chemicals through multistep enzymatic pathways. Some bacteria produce cellulosomes which are assemblies composed of lignocellulolytic enzymes tethered to a large protein scaffold. Rosettasomes are artificial engineered ring scaffolds designed to mimic the bacterial cellulosome. Both cellulosomes and rosettasomes have been shown to facilitate much higher rates of biomass hydrolysis compared to the same enzymes free in solution. We investigated whether tethering enzymes involved in both biomass hydrolysis and oxidative transformation to glucaric acid onto a rosettasome scaffold would result in an analogous production enhancement in a combined hydrolysis and bioconversion metabolic pathway. Three different enzymes were used to hydrolyze birchwood hemicellulose and convert the substituents to glucaric acid, a top-12 DOE value added chemical feedstock derived from biomass. It was demonstrated that colocalizing the three different enzymes to the synthetic scaffold resulted in up to 40 % higher levels of product compared to uncomplexed enzymes.
Pickl, Andreas; Johnsen, Ulrike
2012-01-01
The halophilic archaeon Haloferax volcanii utilizes fructose as a sole carbon and energy source. Genes and enzymes involved in fructose uptake and degradation were identified by transcriptional analyses, deletion mutant experiments, and enzyme characterization. During growth on fructose, the gene cluster HVO_1495 to HVO_1499, encoding homologs of the five bacterial phosphotransferase system (PTS) components enzyme IIB (EIIB), enzyme I (EI), histidine protein (HPr), EIIA, and EIIC, was highly upregulated as a cotranscript. The in-frame deletion of HVO_1499, designated ptfC (ptf stands for phosphotransferase system for fructose) and encoding the putative fructose-specific membrane component EIIC, resulted in a loss of growth on fructose, which could be recovered by complementation in trans. Transcripts of HVO_1500 (pfkB) and HVO_1494 (fba), encoding putative fructose-1-phosphate kinase (1-PFK) and fructose-1,6-bisphosphate aldolase (FBA), respectively, as well as 1-PFK and FBA activities were specifically upregulated in fructose-grown cells. pfkB and fba knockout mutants did not grow on fructose, whereas growth on glucose was not inhibited, indicating the functional involvement of both enzymes in fructose catabolism. Recombinant 1-PFK and FBA obtained after homologous overexpression were characterized as having kinetic properties indicative of functional 1-PFK and a class II type FBA. From these data, we conclude that fructose uptake in H. volcanii involves a fructose-specific PTS generating fructose-1-phosphate, which is further converted via fructose-1,6-bisphosphate to triose phosphates by 1-PFK and FBA. This is the first report of the functional involvement of a bacterial-like PTS and of class II FBA in the sugar metabolism of archaea. PMID:22493022
Polypyrrole membranes as scaffolds for biomolecule immobilization
NASA Astrophysics Data System (ADS)
Hery, Travis M.; Satagopan, Sriram; Northcutt, Robert G.; Tabita, F. Robert; Sundaresan, Vishnu-Baba
2016-12-01
Enzymes have evolved over hundreds of years through changes in ecosystems (climate, atmosphere, hydrology, etc). The evolutionary changes driven by the need to survive has led to enzymes with diverse functionality such as reduction of carbon dioxide and methane to other forms of carbon, fixation of nitrogen, and high temperature biochemical processes. While these enzymes have useful properties, engineering a scalable cell-free system with these enzymes will be useful for stable production of desired products without involving the vagaries of cellular metabolism. This article presents various approaches to incorporate ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) in a conducting polymer (polypyrrole (PPy)) doped with a bulky anion (dodecylbenzenesulfonate (DBS)) in an effort to create functional devices for the conversion of carbon dioxide into precursors for high-value chemicals. We demonstrate that the tailored device creates an environment where the enzyme can retain its function while being protected from denaturing conditions. It is envisioned that the 3-PGA produced by RuBisCO will be converted into value-added products.
Mukai, Chinatsu; Gao, Lizeng; Nelson, Jacquelyn L; Lata, James P; Cohen, Roy; Wu, Lauren; Hinchman, Meleana M; Bergkvist, Magnus; Sherwood, Robert W; Zhang, Sheng; Travis, Alexander J
2017-01-02
For nanobiotechnology to achieve its potential, complex organic-inorganic systems must grow to utilize the sequential functions of multiple biological components. Critical challenges exist: immobilizing enzymes can block substrate-binding sites or prohibit conformational changes, substrate composition can interfere with activity, and multistep reactions risk diffusion of intermediates. As a result, the most complex tethered reaction reported involves only 3 enzymes. Inspired by the oriented immobilization of glycolytic enzymes on the fibrous sheath of mammalian sperm, here we show a complex reaction of 10 enzymes tethered to nanoparticles. Although individual enzyme efficiency was higher in solution, the efficacy of the 10-step pathway measured by conversion of glucose to lactate was significantly higher when tethered. To our knowledge, this is the most complex organic-inorganic system described, and it shows that tethered, multi-step biological pathways can be reconstituted in hybrid systems to carry out functions such as energy production or delivery of molecular cargo. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mukai, Chinatsu; Gao, Lizeng; Nelson, Jacquelyn L.; Lata, James P.; Cohen, Roy; Wu, Lauren; Hinchman, Meleana M.; Bergkvist, Magnus; Sherwood, Robert W.; Zhang, Sheng; Travis, Alexander J.
2016-01-01
For nanobiotechnology to achieve its potential, complex organic-inorganic systems must grow to utilize the sequential functions of multiple biological components. Critical challenges exist: immobilizing enzymes can block substrate-binding sites or prohibit conformational changes, substrate composition can interfere with activity, and multistep reactions risk diffusion of intermediates. As a result, the most complex tethered reaction reported involves only 3 enzymes. Inspired by the oriented immobilization of glycolytic enzymes on the fibrous sheath of mammalian sperm, here we show a complex reaction of 10 enzymes tethered to nanoparticles. Although individual enzyme efficiency was higher in solution, the efficacy of the 10-step pathway measured by conversion of glucose to lactate was significantly higher when tethered. To our knowledge, this is the most complex organic-inorganic system described, and it shows that tethered, multi-step biological pathways can be reconstituted in hybrid systems to carry out functions such as energy production or delivery of molecular cargo. PMID:27901298
Identification of interleukin-8 converting enzyme as cathepsin L.
Ohashi, Kensaku; Naruto, Masanobu; Nakaki, Toshio; Sano, Emiko
2003-06-26
IL-8 is produced by various cells, and the NH(2)-terminal amino acid sequence of IL-8 displays heterogeneity among cell types. The mature form of IL-8 has 72 amino acids (72IL-8), while a precursor form (77IL-8) of IL-8 has five additional amino acids to the 72IL-8 NH(2)-terminal. However, it has been unclear how IL-8 is processed to yield the mature form. In this study, converting enzyme was purified as a single 31-kDa band on silver-stained polyacrylamide gel from 160 l of cultured fibroblast supernatant by sequential chromatography. NH(2)-terminal amino acid sequence analysis revealed a sequence, EAPRSVDWRE, which was identified as a partial sequence of cathepsin L. Polyclonal antibodies raised against cathepsin L recognized the purified converting enzyme on Western blot. Moreover, human hepatic cathepsin L cleaved 77IL-8 between Arg(5) and Ser(6), which is the same cleavage site as the putative converting enzyme, resulting in 72IL-8 formation. These data indicate that the converting enzyme of the partially purified fraction of the human fibroblast culture supernatant was cathepsin L. Furthermore, 72IL-8 was sevenfold more potent than 77IL-8 in a neutrophil chemotaxis assay. These results show that cathepsin L is secreted from human fibroblasts in response to external stimuli and plays an important role in IL-8 processing in inflammatory sites.
Characterization of two Streptomyces enzymes that convert ferulic acid to vanillin.
Yang, Wenwen; Tang, Hongzhi; Ni, Jun; Wu, Qiulin; Hua, Dongliang; Tao, Fei; Xu, Ping
2013-01-01
Production of flavors from natural substrates by microbial transformation has become a growing and expanding field of study over the past decades. Vanillin, a major component of vanilla flavor, is a principal flavoring compound used worldwide. Streptomyces sp. strain V-1 is known to be one of the most promising microbial producers of natural vanillin from ferulic acid. Although identification of the microbial genes involved in the biotransformation of ferulic acid to vanillin has been previously reported, purification and detailed characterization of the corresponding enzymes with important functions have rarely been studied. In this study, we isolated and identified 2 critical genes, fcs and ech, encoding feruloyl-CoA synthetase and enoyl-CoA hydratase/aldolase, respectively, which are involved in the vanillin production from ferulic acid. Both genes were heterologously expressed in Escherichia coli, and the resting cell reactions for converting ferulic acid to vanillin were performed. The corresponding crucial enzymes, Fcs and Ech, were purified for the first time and the enzymatic activity of each purified protein was studied. Furthermore, Fcs was comprehensively characterized, at an optimal pH of 7.0 and temperature of 30°C. Kinetic constants for Fcs revealed the apparent Km, kcat, and Vmax values to be 0.35 mM, 67.7 s(-1), and 78.2 U mg(-1), respectively. The catalytic efficiency (kcat/Km) value of Fcs was 193.4 mM(-1) s(-1) for ferulic acid. The characterization of Fcs and Ech may be helpful for further research in the field of enzymatic engineering and metabolic regulation.
Characterization of Two Streptomyces Enzymes That Convert Ferulic Acid to Vanillin
Yang, Wenwen; Tang, Hongzhi; Ni, Jun; Wu, Qiulin; Hua, Dongliang; Tao, Fei; Xu, Ping
2013-01-01
Production of flavors from natural substrates by microbial transformation has become a growing and expanding field of study over the past decades. Vanillin, a major component of vanilla flavor, is a principal flavoring compound used worldwide. Streptomyces sp. strain V-1 is known to be one of the most promising microbial producers of natural vanillin from ferulic acid. Although identification of the microbial genes involved in the biotransformation of ferulic acid to vanillin has been previously reported, purification and detailed characterization of the corresponding enzymes with important functions have rarely been studied. In this study, we isolated and identified 2 critical genes, fcs and ech, encoding feruloyl-CoA synthetase and enoyl-CoA hydratase/aldolase, respectively, which are involved in the vanillin production from ferulic acid. Both genes were heterologously expressed in Escherichia coli, and the resting cell reactions for converting ferulic acid to vanillin were performed. The corresponding crucial enzymes, Fcs and Ech, were purified for the first time and the enzymatic activity of each purified protein was studied. Furthermore, Fcs was comprehensively characterized, at an optimal pH of 7.0 and temperature of 30°C. Kinetic constants for Fcs revealed the apparent K m, k cat, and V max values to be 0.35 mM, 67.7 s−1, and 78.2 U mg−1, respectively. The catalytic efficiency (k cat/K m) value of Fcs was 193.4 mM−1 s−1 for ferulic acid. The characterization of Fcs and Ech may be helpful for further research in the field of enzymatic engineering and metabolic regulation. PMID:23840666
Metabolism of β-valine via a CoA-dependent ammonia lyase pathway.
Otzen, Marleen; Crismaru, Ciprian G; Postema, Christiaan P; Wijma, Hein J; Heberling, Matthew M; Szymanski, Wiktor; de Wildeman, Stefaan; Janssen, Dick B
2015-11-01
Pseudomonas species strain SBV1 can rapidly grow on medium containing β-valine as a sole nitrogen source. The tertiary amine feature of β-valine prevents direct deamination reactions catalyzed by aminotransferases, amino acid dehydrogenases, and amino acid oxidases. However, lyase- or aminomutase-mediated conversions would be possible. To identify enzymes involved in the degradation of β-valine, a PsSBV1 gene library was prepared and used to complement the β-valine growth deficiency of a closely related Pseudomonas strain. This resulted in the identification of a gene encoding β-valinyl-coenzyme A ligase (BvaA) and two genes encoding β-valinyl-CoA ammonia lyases (BvaB1 and BvaB2). The BvaA protein demonstrated high sequence identity to several known phenylacetate CoA ligases. Purified BvaA enzyme did not convert phenyl acetic acid but was able to activate β-valine in an adenosine triphosphate (ATP)- and CoA-dependent manner. The substrate range of the enzyme appears to be narrow, converting only β-valine and to a lesser extent, 3-aminobutyrate and β-alanine. Characterization of BvaB1 and BvaB2 revealed that both enzymes were able to deaminate β-valinyl-CoA to produce 3-methylcrotonyl-CoA, a common intermediate in the leucine degradation pathway. Interestingly, BvaB1 and BvaB2 demonstrated no significant sequence identity to known CoA-dependent ammonia lyases, suggesting they belong to a new family of enzymes. BLAST searches revealed that BvaB1 and BvaB2 show high sequence identity to each other and to several enoyl-CoA hydratases, a class of enzymes that catalyze a similar reaction with water instead of amine as the leaving group.
Biomimetic syntheses of phenols from polyketones.
Evans, G E; Garson, M J; Griffin, D A; Leeper, F J; Stauton, J
1978-01-01
As a result of speculation that many enzymes control polyketone cyclization in vivo by converting a key carbonyl group to a cis-enol ether derivative, we describe two novel biomimetic cyclizations. The first involves condensation of two C6 units derived from triacetic lactone to form an arylpyrone related to aloenin. In the second a naphthapyrone of the rubrofusarin type is formed by condensation of an orsellinic acid derivative with the ether of triacetic lactone.
Piddington, C S; Kovacevich, B R; Rambosek, J
1995-01-01
Dibenzothiophene (DBT), a model compound for sulfur-containing organic molecules found in fossil fuels, can be desulfurized to 2-hydroxybiphenyl (2-HBP) by Rhodococcus sp. strain IGTS8. Complementation of a desulfurization (dsz) mutant provided the genes from Rhodococcus sp. strain IGTS8 responsible for desulfurization. A 6.7-kb TaqI fragment cloned in Escherichia coli-Rhodococcus shuttle vector pRR-6 was found to both complement this mutation and confer desulfurization to Rhodococcus fascians, which normally is not able to desulfurize DBT. Expression of this fragment in E. coli also conferred the ability to desulfurize DBT. A molecular analysis of the cloned fragment revealed a single operon containing three open reading frames involved in the conversion of DBT to 2-HBP. The three genes were designated dszA, dszB, and dszC. Neither the nucleotide sequences nor the deduced amino acid sequences of the enzymes exhibited significant similarity to sequences obtained from the GenBank, EMBL, and Swiss-Prot databases, indicating that these enzymes are novel enzymes. Subclone analyses revealed that the gene product of dszC converts DBT directly to DBT-sulfone and that the gene products of dszA and dszB act in concert to convert DBT-sulfone to 2-HBP. PMID:7574582
Styrene Oxide Isomerase of Rhodococcus opacus 1CP, a Highly Stable and Considerably Active Enzyme
Gröning, Janosch A. D.; Tischler, Dirk; Kaschabek, Stefan R.; Schlömann, Michael
2012-01-01
Styrene oxide isomerase (SOI) is involved in peripheral styrene catabolism of bacteria and converts styrene oxide to phenylacetaldehyde. Here, we report on the identification, enrichment, and biochemical characterization of a novel representative from the actinobacterium Rhodococcus opacus 1CP. The enzyme, which is strongly induced during growth on styrene, was shown to be membrane integrated, and a convenient procedure was developed to highly enrich the protein in active form from the wild-type host. A specific activity of about 370 U mg−1 represents the highest activity reported for this enzyme class so far. This, in combination with a wide pH and temperature tolerance, the independence from cofactors, and the ability to convert a spectrum of substituted styrene oxides, makes a biocatalytic application imaginable. First, semipreparative conversions were performed from which up to 760 μmol of the pure phenylacetaldehyde could be obtained from 130 U of enriched SOI. Product concentrations of up to 76 mM were achieved. However, due to the high chemical reactivity of the aldehyde function, SOI was shown to be the subject of an irreversible product inhibition. A half-life of 15 min was determined at a phenylacetaldehyde concentration of about 55 mM, indicating substantial limitations of applicability and the need to modify the process. PMID:22504818
Biological removal of phenol from wastewaters: a mini review
NASA Astrophysics Data System (ADS)
Pradeep, N. V.; Anupama, S.; Navya, K.; Shalini, H. N.; Idris, M.; Hampannavar, U. S.
2015-06-01
Phenol and its derivatives are common water pollutants and include wide variety of organic chemicals. Phenol poisoning can occur by skin absorption, inhalation, ingestion and various other methods which can result in health effects. High exposures to phenol may be fatal to human beings. Accumulation of phenol creates toxicity both for flora and fauna. Therefore, removal of phenol is crucial to perpetuate the environment and individual. Among various treatment methods available for removal of phenols, biodegradation is environmental friendly. Biological methods are gaining importance as they convert the wastes into harmless end products. The present work focuses on assessment of biological removal (biodegradation) of phenol. Various factors influence the efficiency of biodegradation of phenol such as ability of the microorganism, enzymes involved, the mechanism of degradation and influencing factors. This study describes about the sources of phenol, adverse effects on the environment, microorganisms involved in the biodegradation (aerobic and anaerobic) and enzymes that polymerize phenol.
Mechanistic Insight on the Activity and Substrate Selectivity of Nonheme Iron Dioxygenases.
de Visser, Sam P
2018-06-07
Nonheme iron dioxygenases catalyze vital reactions for human health particularly related to aging processes. They are involved in the biosynthesis of amino acids, but also the biodegradation of toxic compounds. Typically they react with their substrate(s) through oxygen atom transfer, although often with the assistance of a co-substrate like α-ketoglutarate that is converted to succinate and CO 2 . Many reaction processes catalyzed by the nonheme iron dioxygenases are stereoselective or regiospecific and hence understanding the mechanism and protein involvement in the selectivity is important for the design of biotechnological applications of these enzymes. To this end, I will review recent work of our group on nonheme iron dioxygenases and include background information on their general structure and catalytic cycle. Examples of stereoselective and regiospecific reaction mechanisms we elucidated are for the AlkB repair enzyme, prolyl-4-hydroxylase and the ergothioneine biosynthesis enzyme. Finally, I cover an example where we bioengineered S-p-hydroxymandelate synthase into the R-p-hydroxymandelate synthase. © 2018 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Durán-Barragán, S; McGwin, G; Vilá, L M; Reveille, J D; Alarcón, G S
2008-07-01
To examine if angiotensin-converting enzyme (ACE) inhibitor use delays the occurrence of renal involvement and decreases the risk of disease activity in SLE patients. SLE patients (Hispanics, African Americans and Caucasians) from the lupus in minorities: nature vs nurture (LUMINA) cohort were studied. Renal involvement was defined as ACR criterion and/or biopsy-proven lupus nephritis. Time-to-renal involvement was examined by univariable and multivariable Cox proportional hazards regression analyses. Disease activity was examined with a case-crossover design and a conditional logistic regression model; in the case intervals, a decrease in the SLAM-R score >or=4 points occurred but not in the control intervals. Eighty of 378 patients (21%) were ACE inhibitor users; 298 (79%) were not. The probability of renal involvement free-survival at 10 yrs was 88.1% for users and 75.4% for non-users (P = 0.0099, log rank test). Users developed persistent proteinuria and/or biopsy-proven lupus nephritis (7.1%) less frequently than non-users (22.9%), P = 0.016. By multivariable Cox proportional hazards regression analyses, ACE inhibitors use [hazard ratio (HR) 0.27; 95% CI 0.09, 0.78] was associated with a longer time-to-renal involvement occurrence whereas African American ethnicity (HR 3.31; 95% CI 1.44, 7.61) was with a shorter time. ACE inhibitor use (54/288 case and 254/1148 control intervals) was also associated with a decreased risk of disease activity (HR 0.56; 95% CI 0.34, 0.94). ACE inhibitor use delays the development of renal involvement and associates with a decreased risk of disease activity in SLE; corroboration of these findings in other lupus cohorts is desirable before practice recommendations are formulated.
21 CFR 862.1090 - Angiotensin converting enzyme (A.C.E.) test system.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Angiotensin converting enzyme (A.C.E.) test system. 862.1090 Section 862.1090 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry...
21 CFR 862.1090 - Angiotensin converting enzyme (A.C.E.) test system.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Angiotensin converting enzyme (A.C.E.) test system. 862.1090 Section 862.1090 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry...
21 CFR 862.1090 - Angiotensin converting enzyme (A.C.E.) test system.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Angiotensin converting enzyme (A.C.E.) test system. 862.1090 Section 862.1090 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry...
21 CFR 862.1090 - Angiotensin converting enzyme (A.C.E.) test system.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Angiotensin converting enzyme (A.C.E.) test system. 862.1090 Section 862.1090 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry...
Biological production of organic compounds
Yu, Jianping; Wang, Bo; Paddock, Troy; Carrieri, Damian; Maness, Pin-Ching; Seibert, Michael
2018-03-13
Methods of producing ethylene oxide and ethylene glycol are disclosed herein. Ethylene produced by cyanobacteria engineered to express ethylene-forming enzymes may be converted to ethylene oxide by bacteria engineered to express a monooxygenase enzyme. Ethylene oxide may be converted to ethylene glycol by exposure to an acidic solution. The methods may be performed in a bioreactor.
Karnawat, Vishakha; Mehrotra, Sonali; Balaram, Hemalatha; Puranik, Mrinalini
2016-05-03
In enzymes that conduct complex reactions involving several substrates and chemical transformations, the active site must reorganize at each step to complement the transition state of that chemical step. Adenylosuccinate synthetase (ADSS) utilizes a molecule each of guanosine 5'-monophosphate (GTP) and aspartate to convert inosine 5'-monophosphate (IMP) into succinyl adenosine 5'-monophosphate (sAMP) through several kinetic intermediates. Here we followed catalysis by ADSS through high-resolution vibrational spectral fingerprints of each substrate and intermediate involved in the forward reaction. Vibrational spectra show differential ligand distortion at each step of catalysis, and band positions of substrates are influenced by binding of cosubstrates. We found that the bound IMP is distorted toward its N1-deprotonated form even in the absence of any other ligands. Several specific interactions between GTP and active-site amino acid residues result in large Raman shifts and contribute substantially to intrinsic binding energy. When both IMP and GTP are simultaneously bound to ADSS, IMP is converted into an intermediate 6-phosphoryl inosine 5'-monophosphate (6-pIMP). The 6-pIMP·ADSS complex was found to be stable upon binding of the third ligand, hadacidin (HDA), an analogue of l-aspartate. We find that in the absence of HDA, 6-pIMP is quickly released from ADSS, is unstable in solution, and converts back into IMP. HDA allosterically stabilizes ADSS through local conformational rearrangements. We captured this complex and determined the spectra and structure of 6-pIMP in its enzyme-bound state. These results provide important insights into the exquisite tuning of active-site interactions with changing substrate at each kinetic step of catalysis.
Possible identity of IL-8 converting enzyme in human fibroblasts as a cysteine protease.
Ohashi, Kensaku; Sano, Emiko; Nakaki, Toshio; Naruto, Masanobu
2003-04-01
A converting activity was characterized in human diploid fibroblasts, which secrete 72IL-8 and 77IL-8 in treatment with IFN-beta and poly I: poly C. 77IL-8 was significantly converted to 72IL-8 by a partially purified fraction of the culture supernatant of human diploid fibroblasts. The converting activity, which was temperature-dependent and optimal at pH 6, was completely inhibited by cysteine protease inhibitors, antipain dihydrochloride and E-64, but not by other types of protease inhibitors. These data clearly show that human diploid fibroblasts are capable of processing IL-8 to produce a mature IL-8 and that the putative converting enzyme appears to be a cysteine protease.
Ben Mahmoud, Lobna; Ghozzi, Hanene; Kammoun, Khawla; Hakim, Ahmed; Kharrat, Mahmoud; Ben Hmida, Mohamed; Jarraya, Faical; Sahnoun, Zouheir; Zeghal, Khaled; Hachicha, Jamil
2013-04-01
To study the incidence and risk factors of angiotensin converting enzyme inhibitors-induced hyperkalemia in hospitalized patients with hypertension and preexisting chronic renal failure. Two-months prospective observational study was used including all hospitalized patients older than 18 years with a history of hypertension, non-dialyzed chronic renal failure and who had angiotensin converting enzyme prescription at the time of the admission. Hyperkalemia greater than or equal to 5 mmol/L was detected in these patients. The studied variables were demographic, clinical, biological and therapeutic. Eight patients, among 27 included, had a hyperkalemia (2963%). They were 73±15 years old. Factors that predispose to hyperkalemia were present in all patients. Hyperkalemia was associated in six cases with decompensation of renal function. The age was associated with hyperkalaemia in patients treated with angiotensin converting enzyme inhibitors (RC=1.21; IC95 1,11-1,46; P=0,021). Diabetes is a possible risk factor (OR=59 021 et, 95 0.93 to 2410, P=0.053). Compared with patients who did not develop hyperkalemia, the occurrence of hyperkalemia in patients included was associated with a longer duration of hospitalization (OR=130, 95 112 to 160, P=0. 022). The prescription of angiotensin converting enzyme inhibitors in the elderly with chronic renal failure and diabetes requires careful monitoring of serum potassium. Copyright © 2012 Association Société de néphrologie. Published by Elsevier SAS. All rights reserved.
Solomon, Ariel; Akabayov, Barak; Frenkel, Anatoly; Milla, Marcos E.; Sagi, Irit
2007-01-01
Despite their key roles in many normal and pathological processes, the molecular details by which zinc-dependent proteases hydrolyze their physiological substrates remain elusive. Advanced theoretical analyses have suggested reaction models for which there is limited and controversial experimental evidence. Here we report the structure, chemistry and lifetime of transient metal–protein reaction intermediates evolving during the substrate turnover reaction of a metalloproteinase, the tumor necrosis factor-α converting enzyme (TACE). TACE controls multiple signal transduction pathways through the proteolytic release of the extracellular domain of a host of membrane-bound factors and receptors. Using stopped-flow x-ray spectroscopy methods together with transient kinetic analyses, we demonstrate that TACE's catalytic zinc ion undergoes dynamic charge transitions before substrate binding to the metal ion. This indicates previously undescribed communication pathways taking place between distal protein sites and the enzyme catalytic core. The observed charge transitions are synchronized with distinct phases in the reaction kinetics and changes in metal coordination chemistry mediated by the binding of the peptide substrate to the catalytic metal ion and product release. Here we report key local charge transitions critical for proteolysis as well as long sought evidence for the proposed reaction model of peptide hydrolysis. This study provides a general approach for gaining critical insights into the molecular basis of substrate recognition and turnover by zinc metalloproteinases that may be used for drug design. PMID:17360351
Suen, W C; Haigler, B E; Spain, J C
1996-01-01
2,4-Dinitrotoluene (DNT) dioxygenase from Burkholderia sp. strain DNT catalyzes the initial oxidation of DNT to form 4-methyl-5-nitrocatechol (MNC) and nitrite. The displacement of the aromatic nitro group by dioxygenases has only recently been described, and nothing is known about the evolutionary origin of the enzyme systems that catalyze these reactions. We have shown previously that the gene encoding DNT dioxygenase is localized on a degradative plasmid within a 6.8-kb NsiI DNA fragment (W.-C. Suen and J. C. Spain, J. Bacteriol. 175:1831-1837, 1993). We describe here the sequence analysis and the substrate range of the enzyme system encoded by this fragment. Five open reading frames were identified, four of which have a high degree of similarity (59 to 78% identity) to the components of naphthalene dioxygenase (NDO) from Pseudomonas strains. The conserved amino acid residues within NDO that are involved in cofactor binding were also identified in the gene encoding DNT dioxygenase. An Escherichia coli clone that expressed DNT dioxygenase converted DNT to MNC and also converted naphthalene to (+)-cis-(1R,2S)-dihydroxy-1,2-dihydronaphthalene. In contrast, the E. coli clone that expressed NDO did not oxidize DNT. Furthermore, the enzyme systems exhibit similar broad substrate specificities and can oxidize such compounds as indole, indan, indene, phenetole, and acenaphthene. These results suggest that DNT dioxygenase and the NDO enzyme system share a common ancestor. PMID:8759857
Fontes, Marco Antônio Peliky; Martins Lima, Augusto; Santos, Robson Augusto Souza dos
2016-04-01
Emotional stress is now considered a risk factor for several diseases including cardiac arrhythmias and hypertension. It is well known that the activation of neuroendocrine and autonomic mechanisms features the response to emotional stress. However, its link to cardiovascular diseases and the regulatory mechanisms involved remain to be further comprehended. The renin-angiotensin system (RAS) plays an important role in homeostasis on all body systems. Specifically in the brain, the RAS regulates a number of physiological aspects. Recent data indicate that the activation of angiotensin-converting enzyme/angiotensin II/AT1 receptor axis facilitates the emotional stress responses. On the other hand, growing evidence indicates that its counterregulatory axis, the angiotensin-converting enzyme 2 (ACE2)/(Ang)iotensin-(1-7)/Mas axis, reduces anxiety and attenuates the physiological responses to emotional stress. The present review focuses on angiotensin-(1-7)/Mas axis as a promising target to attenuate the physiological response to emotional stress reducing the risk of cardiovascular diseases. Copyright © 2015 Elsevier Ltd. All rights reserved.
2012-01-01
Lactobacillus plantarum is involved in a multitude of food related industrial fermentation processes including the malolactic fermentation (MLF) of wine. This work is the first report on a recombinant L. plantarum strain successfully conducting MLF. The malolactic enzyme (MLE) from Oenococcus oeni was cloned into the lactobacillal expression vector pSIP409 which is based on the sakacin P operon of Lactobacillus sakei and expressed in the host strain L. plantarum WCFS1. Both recombinant and wild-type L. plantarum strains were tested for MLF using a buffered malic acid solution in absence of glucose. Under the conditions with L-malic acid as the only energy source and in presence of Mn2+ and NAD+, the recombinant L. plantarum and the wild-type strain converted 85% (2.5 g/l) and 51% (1.5 g/l), respectively, of L-malic acid in 3.5 days. Furthermore, the recombinant L. plantarum cells converted in a modified wine 15% (0.4 g/l) of initial L-malic acid concentration in 2 days. In conclusion, recombinant L. plantarum cells expressing MLE accelerate the malolactic fermentation. PMID:22452826
Bednarska-Makaruk, Małgorzata; Rodo, Maria; Markuszewski, Cezary; Rozenfeld, Anna; Swiderska, Malgorzata; Habrat, Bogusław; Wehr, Hanna
2005-01-01
To investigate the influence of apolipoprotein E (APOE) and angiotensin-converting enzyme (ACE) gene polymorphisms on carotid artery atherosclerosis in alcoholism. Polymorphism of both genes was identified by DNA analysis in 130 male alcohol-dependent patients. Intima-media thickness (IMT) was measured ultrasonographically. Multivariate regression analysis showed that of all the known risk factors the greatest impact on carotid atherosclerosis in alcoholics was exerted by age, hypertension, LDL cholesterol and fasting plasma glucose levels. Subjects carrying the APO E epsilon4 allele were more liable to develop atherosclerotic changes in carotid arteries compared with subjects with the epsilon3/3 genotype, which showed statistical significance in patients under 50 years of age. No association was shown between ACE I/D polymorphism and carotid atherosclerosis. APO E polymorphism can increase the risk of carotid atherosclerosis development in an alcoholic subject. The association of the APO E epsilon4 allele with carotid atherosclerosis was significant in younger patients. Since the elevated carotid IMT is considered to be a good marker of increased risk of generalized atherosclerosis the consequences could involve both cardiac and cerebrovascular events.
Fienberg, Stephen; Cozier, Gyles E; Acharya, K Ravi; Chibale, Kelly; Sturrock, Edward D
2018-01-11
Angiotensin-I converting enzyme (ACE) is a zinc metalloprotease consisting of two catalytic domains (N- and C-). Most clinical ACE inhibitor(s) (ACEi) have been shown to inhibit both domains nonselectively, resulting in adverse effects such as cough and angioedema. Selectively inhibiting the individual domains is likely to reduce these effects and potentially treat fibrosis in addition to hypertension. ACEi from the GVK Biosciences database were inspected for possible N-domain selective binding patterns. From this set, a diprolyl chemical series was modeled using docking simulations. The series was expanded based on key target interactions involving residues known to impart N-domain selectivity. In total, seven diprolyl compounds were synthesized and tested for N-domain selective ACE inhibition. One compound with an aspartic acid in the P 2 position (compound 16) displayed potent inhibition (K i = 11.45 nM) and was 84-fold more selective toward the N-domain. A high-resolution crystal structure of compound 16 in complex with the N-domain revealed the molecular basis for the observed selectivity.
Antihypertensive effect of Carica papaya via a reduction in ACE activity and improved baroreflex.
Brasil, Girlandia Alexandre; Ronchi, Silas Nascimento; do Nascimento, Andrews Marques; de Lima, Ewelyne Miranda; Romão, Wanderson; da Costa, Helber Barcellos; Scherer, Rodrigo; Ventura, José Aires; Lenz, Dominik; Bissoli, Nazaré Souza; Endringer, Denise Coutinho; de Andrade, Tadeu Uggere
2014-11-01
The aims of this study were to evaluate the antihypertensive effects of the standardised methanolic extract of Carica papaya, its angiotensin converting enzyme inhibitory effects in vivo, its effect on the baroreflex and serum angiotensin converting enzyme activity, and its chemical composition. The chemical composition of the methanolic extract of C. papaya was evaluated by liquid chromatography-mass/mass and mass/mass spectrometry. The angiotensin converting enzyme inhibitory effect was evaluated in vivo by Ang I administration. The antihypertensive assay was performed in spontaneously hypertensive rats and Wistar rats that were treated with enalapril (10 mg/kg), the methanolic extract of C. papaya (100 mg/kg; twice a day), or vehicle for 30 days. The baroreflex was evaluated through the use of sodium nitroprusside and phenylephrine. Angiotensin converting enzyme activity was measured by ELISA, and cardiac hypertrophy was evaluated by morphometric analysis. The methanolic extract of C. papaya was standardised in ferulic acid (203.41 ± 0.02 µg/g), caffeic acid (172.60 ± 0.02 µg/g), gallic acid (145.70 ± 0.02 µg/g), and quercetin (47.11 ± 0.03 µg/g). The flavonoids quercetin, rutin, nicotiflorin, clitorin, and manghaslin were identified in a fraction of the extract. The methanolic extract of C. papaya elicited angiotensin converting enzyme inhibitory activity. The antihypertensive effects elicited by the methanolic extract of C. papaya were similar to those of enalapril, and the baroreflex sensitivity was normalised in treated spontaneously hypertensive rats. Plasma angiotensin converting enzyme activity and cardiac hypertrophy were also reduced to levels comparable to the enalapril-treated group. These results may be associated with the chemical composition of the methanolic extract of C. papaya, and are the first step into the development of a new phytotherapic product which could be used in the treatment of hypertension. Georg Thieme Verlag KG Stuttgart · New York.
Danchin, Nicolas; Cucherat, Michel; Thuillez, Christian; Durand, Eric; Kadri, Zena; Steg, Philippe G
2006-04-10
Results of randomized trials of angiotensin-converting enzyme inhibitors in patients with coronary artery disease (CAD) and preserved left ventricular function are conflicting. We undertook this study to determine whether long-term prescription of angiotensin-converting enzyme inhibitors decreases major cardiovascular events and mortality in patients who have CAD and no evidence of left ventricular systolic dysfunction. We searched MEDLINE, EMBASE, and IPA databases, the Cochrane Controlled Trials Register (1990-2004), and reports from scientific meetings (2003-2004), and we reviewed secondary sources. Search terms included angiotensin-converting enzyme inhibitors, coronary artery disease, randomi(s)zed controlled trials, clinical trials, and myocardial infarction. Eligible studies included randomized controlled trials in patients who had CAD and no heart failure or left ventricular dysfunction, with follow-up omicronf 2 years or longer. Of 1146 publications screened, 7 met our selection criteria and included a total of 33 960 patients followed up for a mean of 4.4 years. Five trials included only patients with documented CAD. One trial included patients with documented CAD (80%) or patients who had diabetes mellitus and 1 or more additional risk factors, and another trial included patients who had CAD, a history of transient ischemic attack, or intermittent claudication. Treatment with angiotensin-converting enzyme inhibitors decreased overall mortality (odds ratio, 0.86; 95% confidence interval, 0.79-0.93), cardiovascular mortality (odds ratio, 0.81; 95% confidence interval, 0.73-0.90), myocardial infarction (odds ratio, 0.82; 95% confidence interval, 0.75-0.89), and stroke (odds ratio, 0.77; 95% confidence interval, 0.66-0.88). Other end points, including resuscitation after cardiac arrest, myocardial revascularization, and hospitalization because of heart failure, were also reduced. Angiotensin-converting enzyme inhibitors reduce total mortality and major cardiovascular end points in patients who have CAD and no left ventricular systolic dysfunction or heart failure.
Rapid conversion of angiotensin I to angiotensin II by neutrophil and mast cell proteinases.
Reilly, C F; Tewksbury, D A; Schechter, N M; Travis, J
1982-08-10
Human neutrophil cathepsin G and human skin mast cell chymase rapidly convert angiotensin I to angiotensin II with only minor cleavage elsewhere in the molecule. The rate of cleavage is consistent with a potential role for either or both of these enzymes in an alternate pathway for angiotensin II synthesis. Since neither enzyme in inhibited by captopril, an angiotensin converting enzyme inactivator, it is possible that leukocyte and mast cell enzymes may play a significant role in the development of abnormally high local concentrations of angiotensin II, associated with various inflammatory processes.
Blute, Michael L; Rushmer, Timothy J; Shi, Fangfang; Fuller, Benjamin J; Abel, E Jason; Jarrard, David F; Downs, Tracy M
2015-11-01
Prior reports suggest that renin-angiotensin system inhibition may decrease nonmuscle invasive bladder cancer recurrence. We evaluated whether angiotensin converting enzyme inhibitor or angiotensin receptor blocker treatment at initial surgery was associated with decreased recurrence or progression in patients with nonmuscle invasive bladder cancer. Using an institutional bladder cancer database we identified 340 patients with data available on initial transurethral resection of bladder tumor. Progression was defined as an increase to stage T2. Cox proportional hazards models were used to evaluate associations with recurrence-free and progression-free survival. Median patient age was 69.6 years. During a median followup of 3 years (IQR 1.3-6.1) 200 patients (59%) had recurrence and 14 (4.1%) had stage progression. Of those patients 143 were receiving angiotensin converting enzyme inhibitor/angiotensin receptor blockers at the time of the first transurethral resection. On univariate analysis factors associated with improved recurrence-free survival included carcinoma in situ (p = 0.040), bacillus Calmette-Guérin therapy (p = 0.003) and angiotensin converting enzyme inhibitor/angiotensin receptor blocker therapy (p = 0.009). Multivariate analysis demonstrated that patients treated with bacillus Calmette-Guérin therapy (HR 0.68, 95% CI 0.47-0.87, p = 0.002) or angiotensin converting enzyme inhibitor/angiotensin receptor blocker therapy (HR 0.61, 95% CI 0.45-0.84, p = 0.005) were less likely to experience tumor recurrence. The 5-year recurrence-free survival rate was 45.6% for patients treated with angiotensin converting enzyme inhibitor/angiotensin receptor blockers and 28.1% in those not treated with angiotensin converting enzyme inhibitor/angiotensin receptor blockers (p = 0.009). Subgroup analysis was performed to evaluate nonmuscle invasive bladder cancer pathology (Ta, T1 and carcinoma in situ) in 85 patients on bacillus Calmette-Guérin therapy alone and in 52 in whom it was combined with angiotensin converting enzyme inhibitor/angiotensin receptor blocker. Multivariate analysis revealed that patients treated with bacillus Calmette-Guérin alone (HR 2.19, 95% CI 1.01-4.77, p = 0.04) showed worse recurrence-free survival compared to patients treated with bacillus Calmette-Guérin and angiotensin converting enzyme inhibitor/angiotensin receptor blocker (stage Ta HR 0.45, 95% CI 0.21-0.98, p = 0.04). Pharmacological inhibition of the renin-angiotensin system is associated with improved outcomes in patients with bladder cancer. Renin-angiotensin system inhibitor administration in nonmuscle invasive bladder cancer cases should be studied in a prospective randomized trial. Copyright © 2015 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Thi Hong Nguyen, Chuyen; Kambe, Naotomo; Kishimoto, Izumi; Ueda-Hayakawa, Ikuko; Okamoto, Hiroyuki
2017-07-01
Skin lesions in sarcoidosis are often the initial symptoms that enable the dermatologist to be the first to diagnose this granulomatosis. However, diagnosis is sometimes very problematic. In 2015, the diagnostic criteria for sarcoidosis were updated in Japan, with elevated serum soluble interleukin-2 receptor (sIL-2R) replacing negative tuberculin reaction. Therefore, we assessed the clinical utility of sIL-2R compared with two other common markers, angiotensin-converting enzyme (ACE) and lysozyme, in patients who visited the dermatology clinic. Data from 72 patients showed that sIL-2R was more sensitive than both ACE and lysozyme in supporting a diagnosis of sarcoidosis (52.8%) compared with ACE (29%) and lysozyme (26.4%). Additionally, the sIL-2R level was significantly higher in patients with multiple organ involvement and parenchymal infiltration. Patients with elevated sIL-2R levels had higher serum ACE and lysozyme levels, a higher incidence of pulmonary involvement, more severe chest radiographic stage and a high incidence of expression-specific signs by imaging analysis. Receiver-operator curve analysis showed that sIL-2R was a better marker at the threshold cut-off point compared with ACE and lysozyme for identifying patients with multiple organ involvement, detecting patients with pulmonary disease and parenchymal infiltration as well as predicting the presence of specific signs in the diagnosis of sarcoidosis. Moreover, the kinetics of sIL-2R levels correlated closely with clinical manifestations, in contrast to the modest changes of ACE and lysozyme levels during the follow-up period. In conclusion, sIL-2R may be considered a good marker for diagnosis and a potential indicator of disease activity. © 2017 Japanese Dermatological Association.
Respiratory clearance of 99mTc-DTPA and pulmonary involvement in sarcoidosis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dusser, D.J.; Collignon, M.A.; Stanislas-Leguern, G.
1986-09-01
To investigate the relationships between the respiratory epithelial clearance of micronic aerosolized /sup 99m/Tc-DTPA (RC-DTPA) and pulmonary function, serum angiotensin-converting enzyme (SACE), and lymphocytic alveolitis in patients with sarcoidosis, RC-DTPA was measured in 49 nonsmokers with pulmonary sarcoidosis and 38 normal nonsmokers. Pulmonary involvement was evaluated on chest roentgenograms (type O = normal, type I = hilar adenopathies, type II = hilar adenopathies associated with parenchymal shadows, type III = parenchymal shadows without adenopathy) and by pulmonary function tests. Serum angiotensin-converting enzyme was determined, and a bronchoalveolar lavage was performed for alveolar lymphocyte differential counting (Ly%). RC-DTPA was increased (greatermore » than or equal to 1.96%/min) in 12 of 31 patients with type II or III involvement but was normal in all 18 patients with type O or I involvement (p = 0.002). Patients with increased RC-DTPA had low FVC, TLC, FEV1, and resting Pao2 (p less than 0.05); resting and exercise AaPo2 were increased (p less than 0.05), but RC-DTPA correlated negatively with FEV1 (p less than 0.01), Pao2 at rest (p less than 0.005), and DLCO (p less than 0.05) and positively with resting and exercise AaPO2 (p less than 0.01). In patients with increased RC-DTPA (42 +/- 17%), Ly% did not differ from Ly% in patients with normal RC-DTPA (34 +/- 16%). SACE was increased in patients with increased RC-DTPA (56 +/- 26 U/ml versus 38 +/- 16 U/ml; p = 0.007) and correlated positively with RC-DTPA (p less than 0.001).(ABSTRACT TRUNCATED AT 250 WORDS)« less
Lastick, Stanley M.; Mohagheghi, Ali; Tucker, Melvin P.; Grohmann, Karel
1994-01-01
A process for producing ethanol from mixed sugar streams from pretreated biomass comprising xylose and cellulose using enzymes to convert these substrates to fermentable sugars; selecting and isolating a yeast Schizosaccharomyces pombe ATCC No. 2476, having the ability to ferment these sugars as they are being formed to produce ethanol; loading the substrates with the fermentation mix composed of yeast, enzymes and substrates; fermenting the loaded substrates and enzymes under anaerobic conditions at a pH range of between about 5.0 to about 6.0 and at a temperature range of between about 35.degree. C. to about 40.degree. C. until the fermentation is completed, the xylose being isomerized to xylulose, the cellulose being converted to glucose, and these sugars being concurrently converted to ethanol by yeast through means of the anaerobic fermentation; and recovering the ethanol.
Lastick, S.M.; Mohagheghi, A.; Tucker, M.P.; Grohmann, K.
1994-12-13
A process for producing ethanol from mixed sugar streams from pretreated biomass comprising xylose and cellulose using enzymes to convert these substrates to fermentable sugars; selecting and isolating a yeast Schizosaccharomyces pombe ATCC No. 2476, having the ability to ferment these sugars as they are being formed to produce ethanol; loading the substrates with the fermentation mix composed of yeast, enzymes and substrates; fermenting the loaded substrates and enzymes under anaerobic conditions at a pH range of between about 5.0 to about 6.0 and at a temperature range of between about 35 C to about 40 C until the fermentation is completed, the xylose being isomerized to xylulose, the cellulose being converted to glucose, and these sugars being concurrently converted to ethanol by yeast through means of the anaerobic fermentation; and recovering the ethanol. 2 figures.
Scott, Susanne Irene; Andersen, Michelle Fog; Aagaard, Lise; Buchwald, Christian Von; Rasmussen, Eva Rye
2017-02-14
Introduction Angioedema is a potentially fatal adverse drug reaction of some medications, as swellings of the upper airways can cause death by asphyxiation. Angiotensin converting enzyme-inhibitors are widely known to cause angioedema but less is known about the association between dipeptidyl peptidase-4 inhibitors (gliptins) and angioedema. Dipeptidyl peptidase-4 inhibitors are anti-diabetic drugs used to improve glycaemic control. They, as a class effect, inadvertently affect the degradation of the vasoactive kinins bradykinin and substance P, both of which can cause angioedema due to vasodilatation and increase in vascular permeability in the capillaries. Objective To assess the risk and pathomechanism of angioedema due to inhibition of dipeptidyl peptidase-4 inhibitors when used as monotherapy and in combination with angiotensin converting enzyme-inhibitors. Method PubMed, Embase, the Cochrane Library, PubMed Central, Web of Science, Google Scholar and clinicaltrials.gov were searched using different combinations of keywords "angioedema", "dipeptidyl peptidase 4", "dipeptidyl peptidase 4 inhibitors", "gliptins", "bradykinin", "substance P" and "angiotensin converting enzyme-inhibitors". Original research papers were preferably used as references and their bibliographies were used to further the search for original research results. Results Both angiotensin converting enzyme and dipeptidyl peptidase-4 are major enzymes in the degradation pathway of bradykinin and substance P, and when inhibited pharmacologically - especially at the same time - the theoretical risk of angioedema is increased due to accumulation of vasoactive kinins. Conclusion Treatment with dipeptidyl peptidase-4 inhibitors must be carefully considered and monitored especially during concurrent treatment with angiotensin converting enzyme-inhibitors or when treating patients with a known predisposition to angioedema. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Sejdic, A; Graudal, N; Baslund, B
2018-06-22
The presentation of sarcoidosis can involve symptoms from all organs and the diagnosis is therefore often difficult. A raised serum level of serum angiotensin-converting enzyme (sACE) can be detected in 41-58% of patients. However, whether the sACE level per se reflects the severity of the sarcoid inflammation at the onset of the disease is not well described. The purpose of this study was to investigate the clinical and laboratory significance of high versus normal sACE levels in sarcoidosis. Journal data were retrospectively extracted from 101 patients from our clinic. Clinical and biochemical data were compared between patients with high sACE levels (> 115 U/L) on at least one occasion and normal sACE levels (< 115 U/L). In total, 48% (n = 48) of the patients had high ACE and 52% (n = 53) had normal ACE. The most common extrapulmonary manifestation for both groups was arthritis, followed by skin and eye involvement, but none of these differed between the two groups. Serum ionized calcium was significantly higher in the high sACE group, with a correlation coefficient of 0.112 (p = 0.460). Our study demonstrates that serum ionized calcium is significantly higher in the high sACE group but there was no statistical correlation to sACE. No other clinical or biochemical differences were observed.
Shahid, Syed Muhammad; Fatima, Syeda Nuzhat; Mahboob, Tabassum
2013-09-01
Angiotensin converting enzyme (ACE) is a key player of Renin Angiotensin System (RAS), involved in conversion of active product, angiotensin-II. Alterations in RAS have been implicated in the pathophysiology of various diseases involving heart, kidney, lung and liver. This study is designed to investigate the association of ACE gene expression in induction of liver cirrhosis in rats. Total 12 male albino Wistar rats were selected and divided in two groups. Control group received 0.9% NaCl, where as Test group received thioacidamide (TAA), dissolved in 0.9%NaCl, injected intraperitoneally at a dosage of 200mg/Kg of body weight, twice a week for 12 weeks. The rats were decapitated and blood sample was collected at the end of experimental period and used for liver functions, enzyme activity, antioxidant enzymes and lipid peroxidation estimations. Genomic DNA was isolated from excised tissue determine the ACE genotypes using specific primers. The ACE gene expression in liver tissue was assessed using the quantitative RT-PCR method. The activity of ALT, total and direct bilirubin, SOD and CAT levels were significantly high (p<0.05) and level of MDA was significantly low (p<0.05) in TAA treated rats as compared to control rats. The ACE gene expression after 12 weeks TAA treatment in cirrhotic rats was significantly increased (p<0.05) in comparison to controls. This study describes the importance of RAS in the development of hepatic fibrosis and the benefits of modulation of this system ACE gene expression. The finding of major up-regulation of ACE in the experimental rat liver provides further insight into the complexities of the RAS and its regulation in liver injury. The development of specific modulators of ACE activity and function, in future, will help determine the role of ACE and its genetic variants in the pathophysiology of liver disease.
Vitamin C. Biosynthesis, recycling and degradation in mammals.
Linster, Carole L; Van Schaftingen, Emile
2007-01-01
Vitamin C, a reducing agent and antioxidant, is a cofactor in reactions catalyzed by Cu(+)-dependent monooxygenases and Fe(2+)-dependent dioxygenases. It is synthesized, in vertebrates having this capacity, from d-glucuronate. The latter is formed through direct hydrolysis of uridine diphosphate (UDP)-glucuronate by enzyme(s) bound to the endoplasmic reticulum membrane, sharing many properties with, and most likely identical to, UDP-glucuronosyltransferases. Non-glucuronidable xenobiotics (aminopyrine, metyrapone, chloretone and others) stimulate the enzymatic hydrolysis of UDP-glucuronate, accounting for their effect to increase vitamin C formation in vivo. Glucuronate is converted to l-gulonate by aldehyde reductase, an enzyme of the aldo-keto reductase superfamily. l-Gulonate is converted to l-gulonolactone by a lactonase identified as SMP30 or regucalcin, whose absence in mice leads to vitamin C deficiency. The last step in the pathway of vitamin C synthesis is the oxidation of l-gulonolactone to l-ascorbic acid by l-gulonolactone oxidase, an enzyme associated with the endoplasmic reticulum membrane and deficient in man, guinea pig and other species due to mutations in its gene. Another fate of glucuronate is its conversion to d-xylulose in a five-step pathway, the pentose pathway, involving identified oxidoreductases and an unknown decarboxylase. Semidehydroascorbate, a major oxidation product of vitamin C, is reconverted to ascorbate in the cytosol by cytochrome b(5) reductase and thioredoxin reductase in reactions involving NADH and NADPH, respectively. Transmembrane electron transfer systems using ascorbate or NADH as electron donors serve to reduce semidehydroascorbate present in neuroendocrine secretory vesicles and in the extracellular medium. Dehydroascorbate, the fully oxidized form of vitamin C, is reduced spontaneously by glutathione, as well as enzymatically in reactions using glutathione or NADPH. The degradation of vitamin C in mammals is initiated by the hydrolysis of dehydroascorbate to 2,3-diketo-l-gulonate, which is spontaneously degraded to oxalate, CO(2) and l-erythrulose. This is at variance with bacteria such as Escherichia coli, which have enzymatic degradation pathways for ascorbate and probably also dehydroascorbate.
Thyroid hormone (TH) homeostasis is dependent on multiple proteins for TH synthesis, transport, and peripheral metabolism and elimination. Deiodinase enzymes play an essential role in converting THs between active and inactive forms by converting the pro-hormone thyroxine (T4) to...
Angiotensin converting enzyme inhibitors and aortic arch obstructive malformations.
Maliheh, Kadivar; Abdorrazagh, Kiani; Armen, Kocharian; Reza, Shabanian
2006-10-01
We describe two newborn infants with aortic arch obstructive malformations who became anuric after initiation of captopril. Since angiotensin converting enzyme inhibitors can alter renal blood flow by reduction in angiotensin II and blocking autoregulation phenomenon, it is important to use them with great caution in neonates with aortic arch obstructive malformations, while monitoring their renal function closely.
The prokaryotic FAD synthetase family: a potential drug target.
Serrano, Ana; Ferreira, Patricia; Martínez-Júlvez, Marta; Medina, Milagros
2013-01-01
Disruption of cellular production of the flavin cofactors, flavin adenine mononucleotide (FMN) and flavin adenine dinucleotide(FAD) will prevent the assembly of a large number of flavoproteins and flavoenzymes involved in key metabolic processes in all types of organisms. The enzymes responsible for FMN and FAD production in prokaryotes and eukaryotes exhibit various structural characteristics to catalyze the same chemistry, a fact that converts the prokaryotic FAD synthetase (FADS) in a potential drug target for the development of inhibitors endowed with anti-pathogenic activity. The first step before searching for selective inhibitors of FADS is to understand the structural and functional mechanisms for the riboflavin kinase and FMN adenylyltransferase activities of the prokaryotic enzyme, and particularly to identify their differential functional characteristics with regard to the enzymes performing similar functions in other organisms, particularly humans. In this paper, an overview of the current knowledge of the structure-function relationships in prokaryotic FADS has been presented, as well as of the state of the art in the use of these enzymes as drug targets.
Chen, Hsi-Chuan; Li, Quanzi; Shuford, Christopher M.; Liu, Jie; Muddiman, David C.; Sederoff, Ronald R.; Chiang, Vincent L.
2011-01-01
The hydroxylation of 4- and 3-ring carbons of cinnamic acid derivatives during monolignol biosynthesis are key steps that determine the structure and properties of lignin. Individual enzymes have been thought to catalyze these reactions. In stem differentiating xylem (SDX) of Populus trichocarpa, two cinnamic acid 4-hydroxylases (PtrC4H1 and PtrC4H2) and a p-coumaroyl ester 3-hydroxylase (PtrC3H3) are the enzymes involved in these reactions. Here we present evidence that these hydroxylases interact, forming heterodimeric (PtrC4H1/C4H2, PtrC4H1/C3H3, and PtrC4H2/C3H3) and heterotrimeric (PtrC4H1/C4H2/C3H3) membrane protein complexes. Enzyme kinetics using yeast recombinant proteins demonstrated that the enzymatic efficiency (Vmax/km) for any of the complexes is 70–6,500 times greater than that of the individual proteins. The highest increase in efficiency was found for the PtrC4H1/C4H2/C3H3-mediated p-coumaroyl ester 3-hydroxylation. Affinity purification-quantitative mass spectrometry, bimolecular fluorescence complementation, chemical cross-linking, and reciprocal coimmunoprecipitation provide further evidence for these multiprotein complexes. The activities of the recombinant and SDX plant proteins demonstrate two protein-complex–mediated 3-hydroxylation paths in monolignol biosynthesis in P. trichocarpa SDX; one converts p-coumaric acid to caffeic acid and the other converts p-coumaroyl shikimic acid to caffeoyl shikimic acid. Cinnamic acid 4-hydroxylation is also mediated by the same protein complexes. These results provide direct evidence for functional involvement of membrane protein complexes in monolignol biosynthesis. PMID:22160716
Lai, Zon W; Hanchapola, Iresha; Steer, David L; Smith, A Ian
2011-06-14
ADAM17, also known as tumor necrosis factor α-converting enzyme, is involved in the ectodomain shedding of many integral membrane proteins. We have previously reported that ADAM17 is able to mediate the cleavage secretion of the ectodomain of human angiotensin-converting enzyme 2 (ACE2), a functional receptor for the severe acute respiratory syndrome coronavirus. In this study, we demonstrate that purified recombinant human ADAM17 is able to cleave a 20-amino acid peptide mimetic corresponding to the extracellular juxtamembrane region of human ACE2 between Arg(708) and Ser(709). A series of peptide analogues were also synthesized, showing that glutamate subtitution at Arg(708) and/or Arg(710) attenuated the cleavage process, while alanine substitution at Arg(708) and/or Ser(709) did not inhibit peptide cleavage by recombinant ADAM17. Analysis of CD spectra showed a minimal difference in the secondary structure of the peptide analogues in the buffer system used for the ADAM17 cleavage assay. The observation of the shedding profiles of ACE2 mutants expressing CHO-K1 and CHO-P cells indicates that the Arg(708) → Glu(708) mutation and the Arg(708)Arg(710) → Glu(708)Glu(710) double mutation produced increases in the amount of ACE2 shed when stimulated by phorbol ester PMA. In summary, we have demonstrated that ADAM17 is able to cleave ACE2 peptide sequence analogues between Arg(708) and Ser(709). These findings also indicate that Arg(708) and Arg(710) play a role in site recognition in the regulation of ACE2 ectodomain shedding mediated by ADAM17.
Ara, Satoshi; Yamazaki, Harutake; Takaku, Hiroaki
2018-04-01
2-Deoxy-scyllo-inosose (DOI) is the first intermediate in the 2-deoxystreptamine-containing aminoglycoside antibiotic biosynthesis pathway and has a six-membered carbocycle structure. DOI is a valuable material because it is easily converted to aromatic compounds and carbasugar derivatives. In this study, we isolated yeast strains capable of assimilating DOI as a carbon source. One of the strains, Cryptococcus podzolicus ND1, mainly converted DOI to scyllo-quercitol and (-)-vibo-quercitol, which is a valuable compound used as an antihypoglycemia agent and as a heat storage material. An NADH-dependent DOI reductase coding gene, DOIR, from C. podzolicus ND1 was cloned and successfully overexpressed in Escherichia coli. The purified protein catalyzed the irreversible reduction of DOI with NADH and converted DOI into (-)-vibo-quercitol. The enzyme had an optimal pH of 8.5 and optimal temperature of 35°C, respectively. The k cat of this enzyme was 9.98 s -1 , and the K m values for DOI and NADH were 4.38 and 0.24 mM, respectively. The enzyme showed a strong preference for NADH and showed no activity with NADPH. Multiple-alignment analysis of DOI reductase revealed that it belongs to the GFO_IDH_MocA protein family and is an inositol dehydrogenase homolog in other fungi, such as Cryptococcus gattii, and bacteria, such as Bacillus subtilis. This is the first identification of a DOI-assimilating yeast and a gene involved in DOI metabolism in fungi. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Muthuswamy, P P; Lopez-Majano, V; Ranginwala, M; Trainor, W D
1987-09-01
The relationship between the level of serum angiotensin converting enzyme (SACE) and the total body granuloma load in patients with sarcoidosis was studied in two groups using SACE levels and total body gallium67 scans. The study group consisted of 22 patients with SACE levels greater than or equal to 100 U/ml (EH-SACE group) and the control group consisted of 24 patients consecutively diagnosed to have sarcoidosis in a one year period with SACE level of less than 80 U/ml. The average number of organs involved in the EH-SACE group was 3.9 +/- 1 compared to 2.3 +/- 1 in the control group (p less than 0.0001). The incidence of extra pulmonary organ involvement in the EH-SACE group was 2.2 +/- 1 organs compared to 1.0 + 0.8 in the control group (p less than 0.0002). The SACE level was correlated with the number of organs involved for all patients with sarcoidosis (r = .55; p less than .0001). Following corticosteroid therapy for 39 +/- 41 weeks the SACE dropped to 64 +/- 45 units in the EH-SACE group. But it took only 13 +/- 10 weeks to normalize the SACE level to 27 +/- 9 units in the control group. The EH-SACE group patients were followed for 114 +/- 64 weeks and 73% of them still have active sarcoidosis requiring repeated cycles of corticosteroid therapy, while after 42 +/- 23 weeks of follow up only 10% of patients from the control group were still on therapy.(ABSTRACT TRUNCATED AT 250 WORDS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thompson, Vicki S.; Thompson, David N.; Reed, David W.
A genetically modified organism comprising at least one nucleic acid sequence and/or at least one recombinant nucleic acid isolated from Alicyclobacillus acidocaldarius and encoding a polypeptide involved in at least partially degrading, cleaving, transporting, metabolizing, or removing polysaccharide, lignocellulose, hemicellulose, lignin, chitin, heteroxylan, and/or xylan-decorating group; and at least one nucleic acid sequence and/or at least one recombinant nucleic acid encoding a polypeptide involved in fermenting sugar molecules to a product. Additionally, enzymatic and/or proteinaceous extracts may be isolated from one or more genetically modified organisms. The extracts are utilized to convert biomass into a product. Further provided are methodsmore » of converting biomass into products comprising: placing the genetically modified organism and/or enzymatic extracts thereof in fluid contact with polysaccharides, cellulose, lignocellulose, hemicellulose, lignin, starch, sugars, sugar oligomers, carbohydrates, complex carbohydrates, chitin, heteroxylans, glycosides, and/or xylan-, glucan-, galactan-, or mannan-decorating groups.« less
Mashhadi, Zahra; Newcomer, Marcia E; Brash, Alan R
2016-11-03
This review focuses on a group of heme peroxidases that retain the catalase fold in structure, yet show little or no reaction with hydrogen peroxide. Instead of having a role in oxidative defense, these enzymes are involved in secondary metabolite biosynthesis. The prototypical enzyme is catalase-related allene oxide synthase, an enzyme that converts a specific fatty acid hydroperoxide to the corresponding allene oxide (epoxide). Other catalase-related enzymes form allylic epoxides, aldehydes, or a bicyclobutane fatty acid. In all catalases (including these relatives), a His residue on the distal face of the heme is absolutely required for activity. Its immediate neighbor in sequence as well as in 3 D space is conserved as Val in true catalases and Thr in the fatty acid hydroperoxide-metabolizing enzymes. Thr-His on the distal face of the heme is critical in switching the substrate specificity from H 2 O 2 to fatty acid hydroperoxide. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mechanisms of the antihypertensive effects of Nigella sativa oil in L-NAME-induced hypertensive rats
Jaarin, Kamsiah; Foong, Wai Dic; Yeoh, Min Hui; Kamarul, Zaman Yusoff Nik; Qodriyah, Haji Mohd Saad; Azman, Abdullah; Zuhair, Japar Sidik Fadhlullah; Juliana, Abdul Hamid; Kamisah, Yusof
2015-01-01
OBJECTIVES This study was conducted to determine whether the blood pressure-lowering effect of Nigella sativa might be mediated by its effects on nitric oxide, angiotensin-converting enzyme, heme oxygenase and oxidative stress markers. METHODS: Twenty-four adult male Sprague-Dawley rats were divided equally into 4 groups. One group served as the control (group 1), whereas the other three groups (groups 2-4) were administered L-NAME (25 mg/kg, intraperitoneally). Groups 3 and 4 were given oral nicardipine daily at a dose of 3 mg/kg and Nigella sativa oil at a dose of 2.5 mg/kg for 8 weeks, respectively, concomitantly with L-NAME administration. RESULTS Nigella sativa oil prevented the increase in systolic blood pressure in the L-NAME-treated rats. The blood pressure reduction was associated with a reduction in cardiac lipid peroxidation product, NADPH oxidase, angiotensin-converting enzyme activity and plasma nitric oxide, as well as with an increase in heme oxygenase-1 activity in the heart. The effects of Nigella sativa on blood pressure, lipid peroxidation product, nicotinamide adenine dinucleotide phosphate oxidase and angiotensin-converting enzyme were similar to those of nicardipine. In contrast, L-NAME had opposite effects on lipid peroxidation, angiotensin-converting enzyme and NO. CONCLUSION: The antihypertensive effect of Nigella sativa oil appears to be mediated by a reduction in cardiac oxidative stress and angiotensin-converting enzyme activity, an increase in cardiac heme oxygenase-1 activity and a prevention of plasma nitric oxide loss. Thus, Nigella sativa oil might be beneficial for controlling hypertension. PMID:26602523
Volpe, Massimo; Danser, A H Jan; Menard, Joël; Waeber, Bernard; Mueller, Dominik N; Maggioni, Aldo P; Ruilope, Luis M
2012-04-01
Antagonism of renin-angiotensin-aldosterone system is exerted through angiotensin-converting enzyme inhibitors, angiotensin receptor antagonists, renin inhibitors and mineralocorticoid receptor antagonists. These drugs have been successfully tested in numerous trials and in different clinical settings. The original indications of renin-angiotensin-aldosterone system blockers have progressively expanded from the advanced stages to the earlier stages of cardiorenal continuum. To optimize the degree of blockade of renin-angiotensin-aldosterone system, dose uptitrations of angiotensin-converting enzyme inhibitors and angiotensin receptor antagonists or the use of a dual blockade, initially identified with the combination of angiotensin-converting enzyme inhibitors and angiotensin receptor antagonists, have been proposed. The data from the Ongoing Telmisartan Alone and in Combination with Ramipril Global Endpoint Trial (ONTARGET) study do not support this specific dual blockade approach. However, the dual blockade of angiotensin-converting enzyme inhibitors/angiotensin receptor antagonists with direct renin inhibitors is currently under investigation while that based on an aldosterone blocker with any of the previous three drugs requires more evidence beyond heart failure. In this review, we revisited potential advantages of dual blockade of renin-angiotensin-aldosterone system in arterial hypertension and diabetes.
Sarcoidosis Presenting Addison's Disease.
Takahashi, Kentaro; Kagami, Shin-Ichiro; Kawashima, Hirotoshi; Kashiwakuma, Daisuke; Suzuki, Yoshio; Iwamoto, Itsuo
2016-01-01
We herein describe a second Japanese case of sarcoidosis presenting Addison's disease. A 52-year-old man was diagnosed with sarcoidosis based on clinical and laboratory findings, including bilateral hilar lymphadenopathy and elevated levels of serum angiotensin-converting enzyme and lysozyme, as well as the presence of noncaseating epithelioid granulomas. The patient also exhibited general fatigue, pigmentation, weight loss, hypotension and hyponatremia, suggestive of chronic adrenocortical insufficiency. An endocrine examination confirmed primary adrenocortical insufficiency. This case suggests the direct involvement of sarcoid granuloma in the adrenal glands.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanga, Madhu; Younis, Islam R.; Tirumalai, Padma S.
2006-03-01
Pyrolytic products of smoked methamphetamine hydrochloride are well established. Among the various degradation products formed, trans-phenylpropene (trans-{beta}-methylstyrene) is structurally similar to styrene analogues known to be bioactivated by CYP enzymes. In human liver microsomes, trans-phenylpropene was converted to the epoxide trans-phenylpropylene oxide (trans-2-methyl-3-phenyloxirane) and cinnamyl alcohol. Incubation of trans-phenylpropene with microsomes in the presence of enzyme-specific P450 enzyme inhibitors indicated the involvement of CYP2E1, CYP1A2, and CYP3A4 enzymes. Both (R,R)-phenylpropylene oxide and (S,S)-phenylpropylene oxide were formed in human liver microsomal preparations. Enantiomers of trans-phenylpropylene oxide were stereoselectively and regioselectively conjugated in a Phase II drug metabolism reaction catalyzed by humanmore » liver cytosolic enzymes consisting of conjugation with glutathione. The structure of the phenylpropylene oxide-glutathione adduct is consistent with nucleophilic ring-opening by attack at the benzylic carbon. Exposure of cultured C6 glial cells to (S,S)-phenylpropylene oxide produced a cytotoxic response in a concentration-dependent manner based on cell degeneration and death.« less
2001-07-26
antioxidant enzymes: SOD, catalase ( CAT ), and glutathione peroxidase (GPO).2 ° SOD converts superoxide radical into hydrogen peroxide, while CAT and GPO convert...in endometriosis and adenomyosis. Fertility and Sterility 1999; 1:129-134. 45. Muse KE, Oberley TD, Sempf JM, Oberley LW. Immunolocalization of antioxidant enzymes in adult hamster kidney. Histochem J 1994;9:734-753. 43
NASA Technical Reports Server (NTRS)
Bai, J. P.; Hu, M.; Subramanian, P.; Mosberg, H. I.; Amidon, G. L.
1992-01-01
The feasibility of targeting prolidase as a peptide prodrug-converting enzyme has been examined. The enzymatic hydrolysis by prolidase of substrates for the peptide transporter L-alpha-methyldopa-pro and several dipeptide analogues without an N-terminal alpha-amino group (phenylpropionylproline, phenylacetylproline, N-benzoylproline, and N-acetylproline) was investigated. The Michaelis-Menten parameters Km and Vmax for L-alpha-methyldopa-pro are 0.09 +/- 0.02 mM and 3.98 +/- 0.25 mumol/min/mg protein, respectively. However, no hydrolysis of the dipeptide analogues without an N-terminal alpha-amino group is observed, suggesting that an N-terminal alpha-amino group is required for prolidase activity. These results demonstrate that prolidase may serve as a prodrug-converting enzyme for the dipeptide-type prodrugs, utilizing the peptide carrier for transport of prodrugs into the mucosal cells and prolidase, a cytosolic enzyme, to release the drug. However, a free alpha-amino group appears to be necessary for prolidase hydrolysis.
Nomura, Taiji; Kuchida, Ryo; Kitaoka, Naoki; Kato, Yasuo
2018-02-23
6-Tuliposide B (PosB), a major secondary metabolite that accumulates in tulip (Tulipa gesneriana), is converted to the antibacterial lactone, tulipalin B (PaB), by PosB-converting enzyme (TCEB). TgTCEB1 and TgTCEB-R, which encode TCEB, are specifically expressed in tulip pollen and roots, respectively, but are hardly expressed in other tissues (e.g. leaves) despite the presence of substantial PosB-converting activity, suggesting the existence of another TCEB isozyme. Here, we describe the identification of TgTCEB-L ("L" for leaf), a paralog of TgTCEB1 and TgTCEB-R, from leaves via native enzyme purification. The enzymatic characters of TgTCEB-L, including catalytic activity and subcellular localization, were substantially the same as those of TgTCEB1 and TgTCEB-R. However, TgTCEB-L did not exhibit tissue-specific expression. Identification of TgTCEB-L explains the PosB-converting activity detected in tissues where TgTCEB1 and TgTCEB-R transcripts could not be detected, indicating that tulip subtilizes the three TgTCEB isozymes depending on the tissue.
Angiotensin-converting enzyme 2 activation improves endothelial function.
Fraga-Silva, Rodrigo A; Costa-Fraga, Fabiana P; Murça, Tatiane M; Moraes, Patrícia L; Martins Lima, Augusto; Lautner, Roberto Q; Castro, Carlos H; Soares, Célia Maria A; Borges, Clayton L; Nadu, Ana Paula; Oliveira, Marilene L; Shenoy, Vinayak; Katovich, Michael J; Santos, Robson A S; Raizada, Mohan K; Ferreira, Anderson J
2013-06-01
Diminished release and function of endothelium-derived nitric oxide coupled with increases in reactive oxygen species production is critical in endothelial dysfunction. Recent evidences have shown that activation of the protective axis of the renin-angiotensin system composed by angiotensin-converting enzyme 2, angiotensin-(1-7), and Mas receptor promotes many beneficial vascular effects. This has led us to postulate that activation of intrinsic angiotensin-converting enzyme 2 would improve endothelial function by decreasing the reactive oxygen species production. In the present study, we tested 1-[[2-(dimetilamino)etil]amino]-4-(hidroximetil)-7-[[(4-metilfenil)sulfonil]oxi]-9H-xantona-9 (XNT), a small molecule angiotensin-converting enzyme 2 activator, on endothelial function to validate this hypothesis. In vivo treatment with XNT (1 mg/kg per day for 4 weeks) improved the endothelial function of spontaneously hypertensive rats and of streptozotocin-induced diabetic rats when evaluated through the vasorelaxant responses to acetylcholine/sodium nitroprusside. Acute in vitro incubation with XNT caused endothelial-dependent vasorelaxation in aortic rings of rats. This vasorelaxation effect was attenuated by the Mas antagonist D-pro7-Ang-(1-7), and it was reduced in Mas knockout mice. These effects were associated with reduction in reactive oxygen species production. In addition, Ang II-induced reactive oxygen species production in human aortic endothelial cells was attenuated by preincubation with XNT. These results showed that chronic XNT administration improves the endothelial function of hypertensive and diabetic rat vessels by attenuation of the oxidative stress. Moreover, XNT elicits an endothelial-dependent vasorelaxation response, which was mediated by Mas. Thus, this study indicated that angiotensin-converting enzyme 2 activation promotes beneficial effects on the endothelial function and it is a potential target for treating cardiovascular disease.
Ademosun, Ayokunle O.; Ademiluyi, Adedayo O.; Omojokun, Olasunkanmi S.; Nwanna, Esther E.; Longe, Kuburat O.
2014-01-01
Background. This study sought to investigate the antidiabetic and antihypertensive mechanisms of cocoa (Theobroma cacao) bean through inhibition of α-amylase, α-glucosidase, angiotensin-1 converting enzyme, and oxidative stress. Methodology. The total phenol and flavonoid contents of the water extractable phytochemicals from the powdered cocoa bean were determined and the effects of the extract on α-amylase, α-glucosidase, and angiotensin-1 converting enzyme activities were investigated in vitro. Furthermore, the radicals [1,1-diphenyl-2 picrylhydrazyl (DPPH), 2,2..-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS), hydroxyl (OH), and nitric oxide (NO)] scavenging ability and ferric reducing antioxidant property of the extract were assessed. Results. The results revealed that the extract inhibited α-amylase (1.81 ± 0.22 mg/mL), α-glucosidase (1.84 ± 0.17 mg/mL), and angiotensin-1 converting enzyme (0.674 ± 0.06 mg/mL [lungs], 1.006 ± 0.08 mg/mL [heart]) activities in a dose-dependent manner and also showed dose-dependent radicals [DPPH (16.94 ± 1.34 mg/mL), NO (6.98 ± 0.886 mg/mL), OH (3.72 ± 0.26 mg/mL), and ABTS (15.7 ± 1.06 mmol/TEAC·g] scavenging ability. Conclusion. The inhibition of α-amylase, α-glucosidase, and angiotensin-1 converting enzyme activities by the cocoa bean extract could be part of the possible mechanism by which the extract could manage and/or prevent type-2 diabetes and hypertension. PMID:25295218
Cesari, Matteo; Kritchevsky, Stephen B; Atkinson, Hal H; Penninx, Brenda W; Di Bari, Mauro; Tracy, Russell P; Pahor, Marco
2009-02-01
Beneficial effects of angiotensin-converting enzyme (ACE) inhibitors seem to be mediated by mechanisms that are partly independent of blood pressure lowering. The present study evaluates effects of an ACE inhibitor (ie, fosinopril) intervention on novel cardiovascular risk factors. Data are from the Trial of Angiotensin Converting Enzyme Inhibition and Novel Cardiovascular Risk Factors (TRAIN) study, a double-blind, crossover, randomized, placebo-controlled trial enrolling subjects > or =55 years old with high cardiovascular disease risk profile. Biomarkers of hemostasis (ie, plasminogen activator inhibitor 1, D-dimer), inflammation (ie, C-reactive protein, interleukin-6), and endothelial function (ie, endothelin 1, vascular cell adhesion molecule 1) were measured at the baseline, at the midterm, and at end of follow-up (after 1 year) clinic visits. Paired t test analyses (after Sidak's adjustment, P < .009) were performed to compare biomarkers modifications after fosinopril/placebo interventions. Mean age of the sample (n = 290, women 43.4%) was 66.0 years old. No significant differences were reported for C-reactive protein, interleukin 6, plasminogen activator inhibitor 1, vascular cell adhesion molecule 1, and endothelin 1 levels in the comparisons between fosinopril and placebo interventions. D-dimer was the only biomarker showing a significant difference between fosinopril intervention (median 0.32 microg/mL, interquartile range 0.22-0.52 microg/mL) and placebo (median 0.29 microg/mL, interquartile range 0.20-0.47 microg/mL, P = .007) when analyses were restricted to participants with higher compliance to treatment and receiving the maximum ACE inhibitor dosage. Angiotensin-converting enzyme inhibition does not significantly modify major biomarkers of inflammation, hemostasis, and endothelial function. Further studies should confirm the possible effect of ACE inhibitors on the fibrinolysis pathway.
Oboh, Ganiyu; Ademosun, Ayokunle O; Ademiluyi, Adedayo O; Omojokun, Olasunkanmi S; Nwanna, Esther E; Longe, Kuburat O
2014-01-01
Background. This study sought to investigate the antidiabetic and antihypertensive mechanisms of cocoa (Theobroma cacao) bean through inhibition of α-amylase, α-glucosidase, angiotensin-1 converting enzyme, and oxidative stress. Methodology. The total phenol and flavonoid contents of the water extractable phytochemicals from the powdered cocoa bean were determined and the effects of the extract on α-amylase, α-glucosidase, and angiotensin-1 converting enzyme activities were investigated in vitro. Furthermore, the radicals [1,1-diphenyl-2 picrylhydrazyl (DPPH), 2,2..-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS), hydroxyl (OH), and nitric oxide (NO)] scavenging ability and ferric reducing antioxidant property of the extract were assessed. Results. The results revealed that the extract inhibited α-amylase (1.81 ± 0.22 mg/mL), α-glucosidase (1.84 ± 0.17 mg/mL), and angiotensin-1 converting enzyme (0.674 ± 0.06 mg/mL [lungs], 1.006 ± 0.08 mg/mL [heart]) activities in a dose-dependent manner and also showed dose-dependent radicals [DPPH (16.94 ± 1.34 mg/mL), NO (6.98 ± 0.886 mg/mL), OH (3.72 ± 0.26 mg/mL), and ABTS (15.7 ± 1.06 mmol/TEAC·g] scavenging ability. Conclusion. The inhibition of α-amylase, α-glucosidase, and angiotensin-1 converting enzyme activities by the cocoa bean extract could be part of the possible mechanism by which the extract could manage and/or prevent type-2 diabetes and hypertension.
Zhang, Xiaolei; Wang, Chen; Dai, Huaping; Lin, Yingxiang; Zhang, Jun
2008-09-01
Recent studies have shown that polymorphisms of the angiotensin-converting enzyme (ACE) gene are closely associated with pulmonary disorders. The ACE gene is involved in the regulation of inflammatory reactions to lung injury, respiratory drive, erythropoiesis and tissue oxygenation. The hypothesis for this study was that the ACE gene may be associated with the ventilatory response to exercise and the aerobic work efficiency of skeletal muscle in patients with COPD. Sixty-one Chinese Han COPD patients and 57 healthy control subjects performed incremental cardiopulmonary exercise testing on a cycle ergometer. ACE genotypes were determined using PCR amplification. Resting lung function and blood gas index were not significantly different among the three ACE genotype COPD groups. Similarly, there were no significant differences in AT, maximal O(2) uptake, maximal O(2) pulse, maximal dyspnoea index, ventilatory response (DeltaVE/DeltaVCO(2)), O(2) cost of ventilation (VO(2)/W/VE), end-tidal partial pressure of carbon dioxide at maximal exercise and maximal SaO(2) among the three ACE genotype COPD patients. Maximal work load and aerobic work efficiency were higher in the COPD group with the II genotype than in those with the ID or DD genotype. There were no significant differences in resting lung function and cardiopulmonary exercise testing parameters among the three ACE genotype control groups. The ACE gene may be involved in the regulation of skeletal muscle aerobic work efficiency, but is not associated with the ventilatory responses to exercise in COPD patients.
Genetic Variants of Angiotensin-Converting Enzyme Are Linked to Autism: A Case-Control Study.
Firouzabadi, Negar; Ghazanfari, Nima; Alavi Shoushtari, Ali; Erfani, Nasrallah; Fathi, Farshid; Bazrafkan, Mozhdeh; Bahramali, Ehsan
2016-01-01
Autism is a disease of complex nature with a significant genetic component. The importance of renin-angiotensin system (RAS) elements in cognition and behavior besides the interaction of angiotensin II (Ang II), the main product of angiotensin-converting enzyme (ACE), with neurotransmitters in CNS, especially dopamine, proposes the involvement of RAS in autism. Since the genetic architecture of autism has remained elusive, here we postulated that genetic variations in RAS are associated with autism. Considering the relation between the three polymorphisms of ACE (I/D, rs4343 and rs4291) with the level of ACE activity, we have investigated this association with autism, in a case-control study. Genotype and allele frequencies of polymorphisms were determined in DNAs extracted from venous blood of 120 autistic patients and their age and sex-matched healthy controls, using polymerase chain reaction (PCR) and PCR-restriction fragment length polymorphism (PCR-RFLP) methods. There were strong associations between both DD genotype of ACE I/D and the D allele, with autism (P = 0.006, OR = 2.9, 95% CI = 1.64-5.13 and P = 0.006, OR = 2.18, 95% CI = 1.37-3.48 respectively). Furthermore, a significant association between the G allele of rs4343 and autism was observed (P = 0.006, OR = 1.84, 95%CI = 1.26-2.67). Moreover, haplotype analysis revealed an association between DTG haplotype and autism (P = 0.008). Our data suggests the involvement of RAS genetic diversity in increasing the risk of autism.
Mihailovic-Vucinic, Violeta; Popevic, Ljubica; Popevic, Spasoje; Stjepanovic, Mihailo; Aleksic, Andjelka; Stanojevic-Paovic, Anka
2017-10-01
Many studies include elevated activity of angiotensin-converting enzyme (ACE) in serum in sarcoidosis and in ocular sarcoidosis as well, but there are only a few analyzing ACE activities in aqueous humor. The aim of this study is to illuminate the diagnostic value of ACE in aqueous humor in patients with ocular sarcoidosis. We analyzed twenty patients with ocular sarcoidosis and 18 patients with nonocular involvement. All patients have biopsy-positive sarcoidosis of the lungs and/or mediastinal lymph nodes. Blood samples for ACE serum levels were obtained from all patients. Aqueous humor samples were taken by paracentesis with a 25-gauge needle in local anesthesia. With appropriate statistical tests, we compared ACE activity in serum and aqueous humor in patients with and without ocular sarcoidosis. The majority of our patients with ocular sarcoidosis were female (12/20), also in the group with systemic sarcoidosis and without ocular involvement (12/6). Mean age of the whole analyzed group of sarcoidosis patients was 45 ± 6 years. There is no statistically significant difference in ACE activity in serum between two groups of patients (with and without ocular sarcoidosis). There is statistically significant difference in ACE activity in aqueous humor among patients with ocular and nonocular sarcoidosis. ACE activity in aqueous humor is significantly higher in patients with ocular sarcoidosis. Increased ACE activity in aqueous humor can point to a diagnosis of ocular sarcoidosis, without the need for ocular biopsy.
Nomura, Taiji; Ogita, Shinjiro; Kato, Yasuo
2012-06-01
Tuliposides, the glucose esters of 4-hydroxy-2-methylenebutanoate and 3,4-dihydroxy-2-methylenebutanoate, are major secondary metabolites in tulip (Tulipa gesneriana). Their lactonized aglycons, tulipalins, function as defensive chemicals due to their biological activities. We recently found that tuliposide-converting enzyme (TCE) purified from tulip bulbs catalyzed the conversion of tuliposides to tulipalins, but the possibility of the presence of several TCE isozymes was raised: TCE in tissues other than bulbs is different from bulb TCE. Here, to prove this hypothesis, TCE was purified from petals, which have the second highest TCE activity after bulbs. The purified enzyme, like the bulb enzyme, preferentially accepted tuliposides as substrates, with 6-tuliposide A the best substrate, which allowed naming the enzyme tuliposide A-converting enzyme (TCEA), but specific activity and molecular mass differed between the petal and bulb enzymes. After peptide sequencing, a novel cDNA (TgTCEA) encoding petal TCEA was isolated, and the functional characterization of the recombinant enzyme verified that TgTCEA catalyzes the conversion of 6-tuliposide A to tulipalin A. TgTCEA was transcribed in all tulip tissues but not in bulbs, indicating the presence of a bulb-specific TgTCEA, as suggested by the distinct enzymatic characters between the petal and bulb enzymes. Plastidial localization of TgTCEA enzyme was revealed, which allowed proposing a cytological mechanism of TgTCE-mediated tulipalin formation in the tulip defensive strategy. Site-directed mutagenesis of TgTCEA suggested that the oxyanion hole and catalytic triad characteristic of typical carboxylesterases are essential for the catalytic process of TgTCEA enzyme. To our knowledge, TgTCEA is the first identified member of the lactone-forming carboxylesterases, specifically catalyzing intramolecular transesterification.
Nomura, Taiji; Ogita, Shinjiro; Kato, Yasuo
2012-01-01
Tuliposides, the glucose esters of 4-hydroxy-2-methylenebutanoate and 3,4-dihydroxy-2-methylenebutanoate, are major secondary metabolites in tulip (Tulipa gesneriana). Their lactonized aglycons, tulipalins, function as defensive chemicals due to their biological activities. We recently found that tuliposide-converting enzyme (TCE) purified from tulip bulbs catalyzed the conversion of tuliposides to tulipalins, but the possibility of the presence of several TCE isozymes was raised: TCE in tissues other than bulbs is different from bulb TCE. Here, to prove this hypothesis, TCE was purified from petals, which have the second highest TCE activity after bulbs. The purified enzyme, like the bulb enzyme, preferentially accepted tuliposides as substrates, with 6-tuliposide A the best substrate, which allowed naming the enzyme tuliposide A-converting enzyme (TCEA), but specific activity and molecular mass differed between the petal and bulb enzymes. After peptide sequencing, a novel cDNA (TgTCEA) encoding petal TCEA was isolated, and the functional characterization of the recombinant enzyme verified that TgTCEA catalyzes the conversion of 6-tuliposide A to tulipalin A. TgTCEA was transcribed in all tulip tissues but not in bulbs, indicating the presence of a bulb-specific TgTCEA, as suggested by the distinct enzymatic characters between the petal and bulb enzymes. Plastidial localization of TgTCEA enzyme was revealed, which allowed proposing a cytological mechanism of TgTCE-mediated tulipalin formation in the tulip defensive strategy. Site-directed mutagenesis of TgTCEA suggested that the oxyanion hole and catalytic triad characteristic of typical carboxylesterases are essential for the catalytic process of TgTCEA enzyme. To our knowledge, TgTCEA is the first identified member of the lactone-forming carboxylesterases, specifically catalyzing intramolecular transesterification. PMID:22474185
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Fact sheet describing NREL's work with enzyme producers Novozymes and Genencor to engineer new cellulase enzymes to breakdown cellulosic ethanol into fermentable sugars that can be converted into biofuels.
Pharmacologic modulation of ACE2 expression.
Soler, María José; Barrios, Clara; Oliva, Raymond; Batlle, Daniel
2008-10-01
Angiotensin-converting enzyme 2 (ACE2) is an enzymatically active homologue of angiotensin-converting enzyme that degrades angiotensin I, angiotensin II, and other peptides. Recent studies have shown that under pathologic conditions, ACE2 expression in the kidney is altered. In this review, we briefly summarize recent studies dealing with pharmacologic interventions that modulate ACE2 expression. ACE2 amplification may have a potential therapeutic role for kidney disease and hypertension.
Rediscovering ACE: Novel insights into the many roles of the angiotensin-converting enzyme
Gonzalez-Villalobos, Romer A.; Shen, Xiao Z.; Bernstein, Ellen A.; Janjulia, Tea; Taylor, Brian; Giani, Jorge F.; Blackwell, Wendell-Lamar B.; Shah, Kandarp H.; Shi, Peng D.; Fuchs, Sebastien; Bernstein, Kenneth E.
2013-01-01
Angiotensin converting enzyme (ACE) is best known for the catalytic conversion of angiotensin I to angiotensin II. However, the use of gene-targeting techniques has led to mouse models highlighting many other biochemical properties and actions of this enzyme. This review discusses recent studies examining the functional significance of ACE tissue-specific expression and the presence in ACE of two independent catalytic sites with distinct substrates and biological effects. It is these features which explain why ACE makes important contributions to many different physiological processes including renal development, blood pressure control, inflammation and immunity. PMID:23686164
Pyne, Prosenjit; Alam, Masrure; Rameez, Moidu Jameela; Mandal, Subhrangshu; Sar, Abhijit; Mondal, Nibendu; Debnath, Utsab; Mathew, Boby; Misra, Anup Kumar; Mandal, Amit Kumar; Ghosh, Wriddhiman
2018-04-18
The SoxXAYZB(CD) 2 -mediated pathway of bacterial sulfur-chemolithotrophy explains the oxidation of thiosulfate, sulfide, sulfur and sulfite, but not tetrathionate. Advenella kashmirensis, which oxidizes tetrathionate to sulfate, besides forming it as an intermediate during thiosulfate-oxidation, possesses a soxCDYZAXOB operon. Knock-out-mutations proved that only SoxBCD is involved in A. kashmirensis tetrathionate-oxidation, whereas thiosulfate-to-tetrathionate-conversion is Sox-independent. Expression of two glutathione-metabolism-related proteins increased under chemolithotrophic conditions, as compared to the chemoorganotrophic one. Substrate-dependent oxygen-consumption pattern of whole-cells, and sulfur-oxidizing enzyme activities of cell-free-extracts, measured in the presence/absence of thiol-inhibitors/glutathione, corroborated glutathione-involvement in tetrathionate-oxidation. Furthermore, proteome analyses detected a sulfite:acceptor oxidoreductase (SorAB) exclusively under chemolithotrophic conditions, while expression of a methanol dehydrogenase (XoxF) homolog, subsequently named thiol dehydrotransferase (ThdT), was found to increase three- and ten-fold during thiosulfate-to-tetrathionate-conversion and tetrathionate-oxidation, respectively. A thdT-knocked-out mutant did not oxidize tetrathionate, but converted half of the supplied 40-mM-S thiosulfate to tetrathionate. Knock-out of another thiosulfate dehydrogenase (tsdA) gene proved that both ThdT and TsdA individually converted ∼20-mM-S thiosulfate to tetrathionate. The overexpressed and isolated ThdT protein exhibited PQQ-dependent thiosulfate dehydrogenation, whereas its PQQ-independent thiol-transfer activity involving tetrathionate and glutathione potentially produced a glutathione:sulfodisulfane adduct and sulfite. SoxBCD and SorAB were hypothesized to oxidize the aforesaid adduct and sulfite, respectively. This article is protected by copyright. All rights reserved. © 2018 John Wiley & Sons Ltd.
Protein engineering in designing tailored enzymes and microorganisms for biofuels production
Wen, Fei; Nair, Nikhil U; Zhao, Huimin
2009-01-01
Summary Lignocellulosic biofuels represent a sustainable, renewable, and the only foreseeable alternative energy source to transportation fossil fuels. However, the recalcitrant nature of lignocellulose poses technical hurdles to an economically viable biorefinery. Low enzymatic hydrolysis efficiency and low productivity, yield, and titer of biofuels are among the top cost contributors. Protein engineering has been used to improve the performances of lignocellulose-degrading enzymes, as well as proteins involved in biofuel synthesis pathways. Unlike its great success seen in other industrial applications, protein engineering has achieved only modest results in improving the lignocellulose-to-biofuels efficiency. This review will discuss the unique challenges that protein engineering faces in the process of converting lignocellulose to biofuels and how they are addressed by recent advances in this field. PMID:19660930
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Brien, D.A.
1992-11-01
A putative transcription factor in Rhodobactor capsulatus which binds upstream of the crt and bch pigment biosynthesis operons and appears to play a role in the adaptation of the organism from the aerobic to the anaerobic-photosynthetic growth mode was characterized. Chapter 2 describes the identification of this factor through an in vitro mobility shift assay, as well as the determination of its binding properties and sequence specificity. Chapter 3 focuses on the isolation of this factor. Biochemistry of later carotenoid biosynthesis enzymes derived from the non-photosynthetic bacterium, Erwinia herbicola. Chapter 4 describes the separate overexpression and in vitro analysis ofmore » two enzymes involved in the main sequence of the carotenoid biosynthesis pathway, lycopene cyclase and 5-carotene hydroxylase. Chapter 5 examines the overexpression and enzymology of functionally active zeaxanthin glucosyltransferase, an enzyme which carries out a more unusual transformation, converting a carotenoid into its more hydrophilic mono- and diglucoside derivatives. In addition, amino acid homology with other glucosyltransferases suggests a putative binding site for the UDP-activated glucose substrate.« less
Zheng, Zhaojuan; Ma, Cuiqing; Gao, Chao; Li, Fengsong; Qin, Jiayang; Zhang, Haiwei; Wang, Kai; Xu, Ping
2011-04-20
Phenyllactic acid (PLA), a novel antimicrobial compound with broad and effective antimicrobial activity against both bacteria and fungi, can be produced by many microorganisms, especially lactic acid bacteria. However, the concentration and productivity of PLA have been low in previous studies. The enzymes responsible for conversion of phenylpyruvic acid (PPA) into PLA are equivocal. A novel thermophilic strain, Bacillus coagulans SDM, was isolated for production of PLA. When the solubility and dissolution rate of PPA were enhanced at a high temperature, whole cells of B. coagulans SDM could effectively convert PPA into PLA at a high concentration (37.3 g l(-1)) and high productivity (2.3 g l(-1) h(-1)) under optimal conditions. Enzyme activity staining and kinetic studies identified NAD-dependent lactate dehydrogenases as the key enzymes that reduced PPA to PLA. Taking advantage of the thermophilic character of B. coagulans SDM, a high yield and productivity of PLA were obtained. The enzymes involved in PLA production were identified and characterized, which makes possible the rational design and construction of microorganisms suitable for PLA production with metabolic engineering.
Designing industrial yeasts for the consolidated bioprocessing of starchy biomass to ethanol
Favaro, Lorenzo; Jooste, Tania; Basaglia, Marina; Rose, Shaunita H.; Saayman, Maryna; Görgens, Johann F.; Casella, Sergio; van Zyl, Willem H.
2013-01-01
Consolidated bioprocessing (CBP), which integrates enzyme production, saccharification and fermentation into a one step process, is a promising strategy for the effective ethanol production from cheap lignocellulosic and starchy materials. CBP requires a highly engineered microbial strain able to both hydrolyze biomass with enzymes produced on its own and convert the resulting simple sugars into high-titer ethanol. Recently, heterologous production of cellulose and starch-degrading enzymes has been achieved in yeast hosts, which has realized direct processing of biomass to ethanol. However, essentially all efforts aimed at the efficient heterologous expression of saccharolytic enzymes in yeast have involved laboratory strains and much of this work has to be transferred to industrial yeasts that provide the fermentation capacity and robustness desired for large scale bioethanol production. Specifically, the development of an industrial CBP amylolytic yeast would allow the one-step processing of low-cost starchy substrates into ethanol. This article gives insight in the current knowledge and achievements on bioethanol production from starchy materials with industrial engineered S. cerevisiae strains. PMID:22989992
APP processing and the APP-KPI domain involvement in the amyloid cascade.
Menéndez-González, M; Pérez-Pinera, P; Martínez-Rivera, M; Calatayud, M T; Blázquez Menes, B
2005-01-01
Alternative APP mRNA splicing can generate isoforms of APP containing a Kunitz protease inhibitor (KPI) domain. KPI is one of the main serine protease inhibitors. Protein and mRNA KPI(+)APP levels are elevated in Alzheimer's disease (AD) brain and are associated with increased amyloid beta deposition. In the last years increasing evidence on multiple points in the amyloid cascade where KPI(+)APP is involved has been accumulated, admitting an outstanding position in the pathogenesis of AD to the KPI domain. This review focuses on the APP processing, the molecular activity of KPI and its physiological and pathological roles and the KPI involvement in the amyloid cascade through the nerve growth factor, the lipoprotein receptor-related protein, the tumor necrosis factor-alpha converting enzyme and the Notch1 protein.
Harris, R B; Wilson, I B
1983-01-25
A set of chemical reactions was used to show that one glutamic acid residue at the active site of bovine lung angiotensin I-converting enzyme is esterified with the alkylating agent p-[N,N-bis(chloroethyl)amino] phenylbutyryl-L-Pro (chlorambucyl-L-Pro), an affinity label for this enzyme (Harris, R. B., and Wilson, I. B. (1982) J. Biol. Chem. 257, 811-815). The same procedure was used to confirm that a glutamic acid residue of carboxypeptidase A alpha is esterified by reaction with bromoacetyl-N-methyl-L-phenylalanine (Haas, G. M., and Neurath, H. (1971) Biochemistry 10, 3535-3546). In the procedure described in this paper, the esterified residue at the active site is converted to the hydroxamic acid by reaction with hydroxylamine and the hydroxamic acid is subject to the Lossen rearrangement. If a glutamic acid residue was esterified, 1 eq of 2,4-diaminobutyric acid will be formed. Aspartyl esters will give 2,3-diaminopropionic acid. The diamino acids can be quantitatively measured using the short column of an amino acid analyzer if the amount of lysine and histidine is largely decreased by modification with suitable side chain protecting groups. With carboxypeptidase A, the reactions were done on the whole undigested enzyme. With the converting enzyme, we first cleaved the esterified enzyme with cyanogen bromide. Twenty-nine cleavage peptides were separated on high performance liquid chromatography and one of these contained all of the bound radioactive inhibitor. This active site peptide was then subjected to the derivatization and Lossen procedures, and 1 eq of 2,4-diaminobutyric acid was obtained.
Bukhari, S N A; Butt, A M; Amjad, M W B; Ahmad, W; Shah, V H; Trivedi, A R
2013-11-01
Hypertension is a widespread and frequently progressive ailment that imparts a foremost threat for cardiovascular and renal disorders. Mammoth efforts are needed for the synthesis of innovative antihypertensive agents to combat this lethal disease. Chalcones have shown antihypertensive activity through inhibition of Angiotensin Converting Enzyme (ACE). Hence, a series of chalcone analogues is synthesized and used as precursor for the synthesis of novel series of pyrimidines. Precursor chalcones were prepared by reacting aldehydes and ketones in presence of sodium hydroxide followed by synthesis of corresponding pyrimidines by reaction with urea in presence of potassium hydroxide. Both groups were then evaluated for their effects on ACE. The results depicted that pyrimidines were more active than chalcones with methoxy (C5 and P5) substitution showing best results to inhibit ACE. Given that chalcone analogues and pyrimidines show a potential as the angiotensin converting enzyme inhibitors.
Sutter, Jan-Moritz; Tästensen, Julia-Beate; Johnsen, Ulrike; Soppa, Jörg; Schönheit, Peter
2016-08-15
The halophilic archaeon Haloferax volcanii has been proposed to degrade glucose via the semiphosphorylative Entner-Doudoroff (spED) pathway. So far, the key enzymes of this pathway, glucose dehydrogenase (GDH), gluconate dehydratase (GAD), and 2-keto-3-deoxy-6-phosphogluconate (KDPG) aldolase (KDPGA), have not been characterized, and their functional involvement in glucose degradation has not been demonstrated. Here we report that the genes HVO_1083 and HVO_0950 encode GDH and KDPGA, respectively. The recombinant enzymes show high specificity for glucose and KDPG and did not convert the corresponding C4 epimers galactose and 2-keto-3-deoxy-6-phosphogalactonate at significant rates. Growth studies of knockout mutants indicate the functional involvement of both GDH and KDPGA in glucose degradation. GAD was purified from H. volcanii, and the encoding gene, gad, was identified as HVO_1488. GAD catalyzed the specific dehydration of gluconate and did not utilize galactonate at significant rates. A knockout mutant of GAD lost the ability to grow on glucose, indicating the essential involvement of GAD in glucose degradation. However, following a prolonged incubation period, growth of the Δgad mutant on glucose was recovered. Evidence is presented that under these conditions, GAD was functionally replaced by xylonate dehydratase (XAD), which uses both xylonate and gluconate as substrates. Together, the characterization of key enzymes and analyses of the respective knockout mutants present conclusive evidence for the in vivo operation of the spED pathway for glucose degradation in H. volcanii The work presented here describes the identification and characterization of the key enzymes glucose dehydrogenase, gluconate dehydratase, and 2-keto-3-deoxy-6-phosphogluconate aldolase and their encoding genes of the proposed semiphosphorylative Entner-Doudoroff pathway in the haloarchaeon Haloferax volcanii The functional involvement of the three enzymes was proven by analyses of the corresponding knockout mutants. These results provide evidence for the in vivo operation of the semiphosphorylative Entner-Doudoroff pathway in haloarchaea and thus expand our understanding of the unusual sugar degradation pathways in the domain Archaea. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Pasqualini, Jorge R; Chetrite, Gérard S
2012-04-01
The bioformation and transformation of estrogens and other hormones in the breast tissue as a result of the activity of the various enzymes involved attract particular attention for the role they play in the development and pathogenesis of hormone-dependent breast cancer. The enzymatic process concerns the aromatase, which transforms androgens into estrogens; the sulfatase, which hydrolyzes the biologically inactive sulfates to the active hormone; the 17β-hydroxysteroid dehydrogenases, which are involved in the interconversion estradiol/estrone or testosterone/androstenedione; hydroxylases, which transform estrogens into mitotic and antimitotic derivatives; and sulfotransferases and glucuronidases, which, respectively convert into the biologically inactive sulfates and glucuronides. These enzymatic activities are more intense in the carcinoma than in the normal tissue. Concerning aromatase, the application of antiaromatase agents has been largely developed in the treatment of breast cancer patients, with very positive results. Various studies have shown that the activity levels of these enzymes and their mRNA can be involved as interesting prognostic factors for breast cancer. In conclusion, the application of new antienzymatic molecules can open attractive perspectives in the treatment of hormone-dependent breast cancer.
Gengo, F M; Gabos, C
1988-07-01
The most common mild side effects occurring with use of beta-blockers, thiazide diuretics, and angiotensin-converting enzyme inhibitors for blood pressure control are central nervous system symptoms, specifically lethargy, sedation, and fatigue. These symptoms affect 5% to 10% of patients taking these drugs. The mechanism by which beta-blockers may induce central nervous system effects is uncertain. Relative lipophilicity as a factor affecting penetrance of the blood-brain barrier has not proved to be a reliable predictor of whether the drug will cause such disturbances. Comparisons of atenolol (hydrophilic) and metoprolol (lipophilic) have shown no differences between these drugs with respect to side effects of the central nervous system. The incidence of central nervous system effects with angiotensin-converting enzyme inhibitors is similar to that for most beta-blockers. The precise role of the angiotensin-converting enzyme in the central nervous system is not well defined. Most thiazide diuretics are not associated with major complications of the central nervous system, although electrolyte imbalance may occasionally lead to complaints of neurologic symptoms. Because the incidence of central nervous system effects with these three classes of drugs is so low, concern for the side effects of the central nervous system is not a prime consideration in the choice of an initial antihypertensive agent.
Raml, A; Schmekal, B; Grafinger, P; Biesenbach, G
2001-11-23
The risk for hyperkalaemia during therapy with angiotensin-converting enzyme inhibitors is especially increased in the elderly diabetic because of a decrease in glomerular filtration rate (GFR), as well as the occurrence of hyporeninaemic hypoaldosteronism. We evaluated the risk for hyperkalaemia under long-term angiotensin-converting enyzme inhibition in 86 insulin-dependent type 2 diabetic patients in relation to their GFR. We compared the influence of a 3 to 6 months long treatment with angiotensin-converting enzyme inhibitors on the serum potassium levels, the creatinine clearance and the urinary albumin excretion in insulin-dependent type 2 diabetic patients with an initial creatinine clearance < 50 ml/min/1.73m(2) (n = 15, age 66 +/- 6 years) and >/= 50 ml/min/1.73m(2) respectively (n = 71, age 61 +/- 10 years). In addition, we also investigated the influence on the metabolic control and the blood pressure values in both groups of patients. In the patients with creatinine clearance >/= 50 ml/min/1,73m(2) the mean potassium level increased from 4.3 +/- 0.2 to 4.6 +/- 0.4 mmol/l (P < 0,01), while the incidence of a potassium level > 5 mmol/l was 17 %. In the group with a creatinine clearance < 50 ml/min/1.73m(2) the potassium level rose from 4.5 +/- 0.2 to 5.0 +/- 0.4 mmol/l (P < 0.01). The incidence of potassium levels > 5 mmol/l was 66 % (P < 0,01). In both patient groups the creatinine clearances did not change significantly during angiotensin-converting enzyme inhibition, and the urinary albumin excretion as well as the HbA(1c) values and blood pressure showed only a tendency towards a decrease. Long-term treatment with angiotensin-converting enzyme inhibitors in insulin-dependent type 2 diabetic patients leads to a significant increase in serum potassium. The incidence of hyperkalaemia with potassium levels > 5 mmol/l is significantly higher in the patients with initial creatinine clearance < 50 ml/min/1.73m(2). Severe hyperkalaemia with potassium levels > 6 mmol/l was not observed.
Kimata-Ariga, Yoko; Hase, Toshiharu
2014-01-01
Assimilation of nitrogen is an essential biological process for plant growth and productivity. Here we show that three chloroplast enzymes involved in nitrogen assimilation, glutamate synthase (GOGAT), nitrite reductase (NiR) and glutamine synthetase (GS), separately assemble into distinct protein complexes in spinach chloroplasts, as analyzed by western blots under blue native electrophoresis (BN-PAGE). GOGAT and NiR were present not only as monomers, but also as novel complexes with a discrete size (730 kDa) and multiple sizes (>120 kDa), respectively, in the stromal fraction of chloroplasts. These complexes showed the same mobility as each monomer on two-dimensional (2D) SDS-PAGE after BN-PAGE. The 730 kDa complex containing GOGAT dissociated into monomers, and multiple complexes of NiR reversibly converted into monomers, in response to the changes in the pH of the stromal solvent. On the other hand, the bands detected by anti-GS antibody were present not only in stroma as a conventional decameric holoenzyme complex of 420 kDa, but also in thylakoids as a novel complex of 560 kDa. The polypeptide in the 560 kDa complex showed slower mobility than that of the 420 kDa complex on the 2D SDS-PAGE, implying the assembly of distinct GS isoforms or a post-translational modification of the same GS protein. The function of these multiple complexes was evaluated by in-gel GS activity under native conditions and by the binding ability of NiR and GOGAT with their physiological electron donor, ferredoxin. The results indicate that these multiplicities in size and localization of the three nitrogen assimilatory enzymes may be involved in the physiological regulation of their enzyme function, in a similar way as recently described cases of carbon assimilatory enzymes.
Kashibe, Masayoshi; Matsumoto, Kengo; Hori, Yuichiro
2017-01-01
Controlled release is one of the key technologies for medical innovation, and many stimulus-responsive nanocarriers have been developed to utilize this technology. Enzyme activity is one of the most useful stimuli, because many enzymes are specifically activated in diseased tissues. However, controlled release stimulated by enzyme activity has not been frequently reported. One of the reasons for this is the lack of versatility of carriers. Most of the reported stimulus-responsive systems involve a sophisticated design and a complicated process for the synthesis of stimulus-responsive nanocarrier components. The purpose of this study was to develop versatile controlled release systems triggered by various stimuli, including enzyme activity, without modifying the nanocarrier components. We developed two controlled release systems, both of which comprised a liposome as the nanocarrier and a membrane-damaging peptide, temporin L (TL), and its derivatives as the release-controllers. One system utilized branched peptides for proteases, and the other utilized phosphopeptides for phosphatases. In our systems, the target enzymes converted the non-membrane-damaging TL derivatives into membrane-damaging peptides and released the liposome inclusion. We demonstrated the use of our antimicrobial peptide-based controlled release systems for different enzymes and showed the promise of this technology as a novel theranostic tool. PMID:28451373
Lincomycin Biosynthesis Involves a Tyrosine Hydroxylating Heme Protein of an Unusual Enzyme Family
Novotna, Jitka; Olsovska, Jana; Novak, Petr; Mojzes, Peter; Chaloupkova, Radka; Kamenik, Zdenek; Spizek, Jaroslav; Kutejova, Eva; Mareckova, Marketa; Tichy, Pavel; Damborsky, Jiri; Janata, Jiri
2013-01-01
The gene lmbB2 of the lincomycin biosynthetic gene cluster of Streptomyces lincolnensis ATCC 25466 was shown to code for an unusual tyrosine hydroxylating enzyme involved in the biosynthetic pathway of this clinically important antibiotic. LmbB2 was expressed in Escherichia coli, purified near to homogeneity and shown to convert tyrosine to 3,4-dihydroxyphenylalanine (DOPA). In contrast to the well-known tyrosine hydroxylases (EC 1.14.16.2) and tyrosinases (EC 1.14.18.1), LmbB2 was identified as a heme protein. Mass spectrometry and Soret band-excited Raman spectroscopy of LmbB2 showed that LmbB2 contains heme b as prosthetic group. The CO-reduced differential absorption spectra of LmbB2 showed that the coordination of Fe was different from that of cytochrome P450 enzymes. LmbB2 exhibits sequence similarity to Orf13 of the anthramycin biosynthetic gene cluster, which has recently been classified as a heme peroxidase. Tyrosine hydroxylating activity of LmbB2 yielding DOPA in the presence of (6R)-5,6,7,8-tetrahydro-L-biopterin (BH4) was also observed. Reaction mechanism of this unique heme peroxidases family is discussed. Also, tyrosine hydroxylation was confirmed as the first step of the amino acid branch of the lincomycin biosynthesis. PMID:24324587
Structural Insights Into the Evolutionary Paths of Oxylipin Biosynthetic Enzymes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, D.-S.; Nioche, P.; Hamberg, M.
2009-05-20
The oxylipin pathway generates not only prostaglandin-like jasmonates but also green leaf volatiles (GLVs), which confer characteristic aromas to fruits and vegetables. Although allene oxide synthase (AOS) and hydroperoxide lyase are atypical cytochrome P450 family members involved in the synthesis of jasmonates and GLVs, respectively, it is unknown how these enzymes rearrange their hydroperoxide substrates into different products. Here we present the crystal structures of Arabidopsis thaliana AOS, free and in complex with substrate or intermediate analogues. The structures reveal an unusual active site poised to control the reactivity of an epoxyallylic radical and its cation by means of interactionsmore » with an aromatic {pi}-system. Replacing the amino acid involved in these steps by a non-polar residue markedly reduces AOS activity and, unexpectedly, is both necessary and sufficient for converting AOS into a GLV biosynthetic enzyme. Furthermore, by combining our structural data with bioinformatic and biochemical analyses, we have discovered previously unknown hydroperoxide lyase in plant growth-promoting rhizobacteria, AOS in coral, and epoxyalcohol synthase in amphioxus. These results indicate that oxylipin biosynthetic genes were present in the last common ancestor of plants and animals, but were subsequently lost in all metazoan lineages except Placozoa, Cnidaria and Cephalochordata.« less
Nomura, Taiji; Murase, Tatsunori; Ogita, Shinjiro; Kato, Yasuo
2015-07-01
6-Tuliposides A (PosA) and B (PosB), which are the major secondary metabolites in tulip (Tulipa gesneriana), are enzymatically converted to the antimicrobial lactonized aglycons, tulipalins A (PaA) and B (PaB), respectively. We recently identified a PosA-converting enzyme (TCEA) as the first reported member of the lactone-forming carboxylesterases. Herein, we describe the identification of another lactone-forming carboxylesterase, PosB-converting enzyme (TCEB), which preferentially reacts with PosB to give PaB. This enzyme was isolated from tulip pollen, which showed high PosB-converting activity. Purified TCEB exhibited greater activity towards PosB than PosA, which was contrary to that of the TCEA. Novel cDNA (TgTCEB1) encoding the TCEB was isolated from tulip pollen. TgTCEB1 belonged to the carboxylesterase family and was approximately 50% identical to the TgTCEA polypeptides. Functional characterization of the recombinant enzyme verified that TgTCEB1 catalyzed the conversion of PosB to PaB with an activity comparable with the native TCEB. RT-qPCR analysis of each part of plant revealed that TgTCEB1 transcripts were limited almost exclusively to the pollen. Furthermore, the immunostaining of the anther cross-section using anti-TgTCEB1 polyclonal antibody verified that TgTCEB1 was specifically expressed in the pollen grains, but not in the anther cells. N-terminal transit peptide of TgTCEB1 was shown to function as plastid-targeted signal. Taken together, these results indicate that mature TgTCEB1 is specifically localized in plastids of pollen grains. Interestingly, PosB, the substrate of TgTCEB1, accumulated on the pollen surface, but not in the intracellular spaces of pollen grains. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.
Attar, Mayssa; Dong, Dahai; Ling, Kah-Hiing John; Tang-Liu, Diane D-S
2003-04-01
Upon oral administration, tazarotene is rapidly converted to tazarotenic acid by esterases. The main circulating agent, tazarotenic acid is subsequently oxidized to the inactive sulfoxide metabolite. Therefore, alterations in the metabolic clearance of tazarotenic acid may have significant effects on its systemic exposure. The objective of this study was to identify the human liver microsomal enzymes responsible for the in vitro metabolism of tazarotenic acid. Tazarotenic acid was incubated with 1 mg/ml pooled human liver microsomes, in 100 mM potassium phosphate buffer (pH 7.4), at 37 degrees C, over a period of 30 min. The microsomal enzymes that may be involved in tazarotenic acid metabolism were identified through incubation with microsomes containing cDNA-expressed human microsomal isozymes. Chemical inhibition studies were then conducted to confirm the identity of the enzymes potentially involved in tazarotenic acid metabolism. Reversed-phase high performance liquid chromatography was used to quantify the sulfoxide metabolite, the major metabolite of tazarotenic acid. Upon incubation of tazarotenic acid with microsomes expressing CYP2C8, flavin-containing monooxygenase 1 (FMO1), or FMO3, marked formation of the sulfoxide metabolite was observed. The involvement of these isozymes in tazarotenic acid metabolism was further confirmed by inhibition of metabolite formation in pooled human liver microsomes by specific inhibitors of CYP2C8 or FMO. In conclusion, the in vitro metabolism of tazarotenic acid to its sulfoxide metabolite in human liver microsomes is mediated by CYP2C8 and FMO.
Serum levels of angiotensin converting enzyme as a biomarker of liver fibrosis
Miranda, Aline Silva; Simões e Silva, Ana Cristina
2017-01-01
The renin angiotensin system (RAS) is classically conceived as a circulating hormonal system involved in blood pressure control and hydroelectrolyte balance. The discovery that RAS components are locally expressed in a wide range of organs and tissues, including the liver, pointed to a role for this system in the pathogenesis of several conditions including hepatic fibrosis and cirrhosis. It has been widely reported that the classical RAS axis composed by the angiotensin converting enzyme (ACE)-angiotensin (Ang) II-Ang type 1 (AT1) receptor mediates pro-inflammatory, pro-thrombotic, and pro-fibrotic processes. On the other hand, the alternative axis comprising ACE2-Ang-(1-7)-Mas receptor seems to play a protective role by frequently opposing Ang II action. Chronic hepatitis B (CHB) is one of the leading causes of liver fibrosis, accounting for the death of nearly one million people worldwide. Liver fibrosis is a key factor to determine therapeutic interventions for patients with CHB. However, the establishment of non-invasive and accurate methods to detect reversible stages of liver fibrosis is still a challenge. In an elegant study published in the 36th issue of the World Journal of Gastroenterology, Noguchi et al showed the predictive value of serum ACE levels in detecting not only advanced stages of liver fibrosis but also initial and intermediate fibrotic stages. The serum levels of ACE might represent an accurate, non-invasive, widely available, and easy method to evaluate fibrosis related to CHB. Moreover, therapies involving the inhibition of the classical RAS axis components might be promising in the control of CHB-related liver fibrosis. PMID:29358853
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, A.N.I.; Ashley, G.W.; Stubbe, J.
1987-11-03
The redox-active thiols of Escherichia coli ribonucleoside diphosphate reductase and of Lactobacillus leichmannii ribonucleoside triphosphate reductase have been located by a procedure involving (1) prereduction of enzyme with dithiothreitol, (2) specific oxidation of the redox-active thiols by treatment with substrate in the absence of exogenous reductant, (3) alkylation of other thiols with iodoacetamide, and (4) reduction of the disulfides with dithiothreitol and alkylation with (1-/sup 14/C)iodoacetamide. The dithiothreitol-reduce E. coli B1 subunit is able to convert 3 equiv of CDP to dCDP and is labeled with 5.4 equiv of /sup 14/C. Sequencing of tryptic peptides shows that 2.8 equiv ofmore » /sup 14/C is on cysteines-752 and -757 at the C-terminus of B1, while 1.0-1.5 equiv of /sup 14/C is on cysteines-222 and -227. It thus appears that two sets of redox-active dithiols are involved in substrate reduction. The L. leichmannii reductase is able to convert 1.1 equiv of CTP to dCTP and is labeled with 2.1 equiv of /sup 14/C. Sequencing of tryptic peptides shows that 1.4 equiv of /sup 14/C is located on the two cysteines of C-E-G-G-A-C-P-I-K. This peptide shows remarkable and unexpected similarity to the thiol-containing region of the C-terminal peptide of E. coli B1, C-E-S-G-A-C-K-I.« less
Serum levels of angiotensin converting enzyme as a biomarker of liver fibrosis.
Miranda, Aline Silva; Simões E Silva, Ana Cristina
2017-12-28
The renin angiotensin system (RAS) is classically conceived as a circulating hormonal system involved in blood pressure control and hydroelectrolyte balance. The discovery that RAS components are locally expressed in a wide range of organs and tissues, including the liver, pointed to a role for this system in the pathogenesis of several conditions including hepatic fibrosis and cirrhosis. It has been widely reported that the classical RAS axis composed by the angiotensin converting enzyme (ACE)-angiotensin (Ang) II-Ang type 1 (AT1) receptor mediates pro-inflammatory, pro-thrombotic, and pro-fibrotic processes. On the other hand, the alternative axis comprising ACE2-Ang-(1-7)-Mas receptor seems to play a protective role by frequently opposing Ang II action. Chronic hepatitis B (CHB) is one of the leading causes of liver fibrosis, accounting for the death of nearly one million people worldwide. Liver fibrosis is a key factor to determine therapeutic interventions for patients with CHB. However, the establishment of non-invasive and accurate methods to detect reversible stages of liver fibrosis is still a challenge. In an elegant study published in the 36 th issue of the World Journal of Gastroenterology , Noguchi et al showed the predictive value of serum ACE levels in detecting not only advanced stages of liver fibrosis but also initial and intermediate fibrotic stages. The serum levels of ACE might represent an accurate, non-invasive, widely available, and easy method to evaluate fibrosis related to CHB. Moreover, therapies involving the inhibition of the classical RAS axis components might be promising in the control of CHB-related liver fibrosis.
l-Glucitol Catabolism in Stenotrophomonas maltophilia Ac
Brechtel, Elke; Huwig, Alexander; Giffhorn, Friedrich
2002-01-01
The carbohydrate catabolism of the bacterium Stenotrophomonas maltophilia Ac (previously named Pseudomonas sp. strain Ac), which is known to convert the unnatural polyol l-glucitol to d-sorbose during growth on the former as the sole source of carbon and energy, was studied in detail. All enzymes operating in a pathway that channels l-glucitol via d-sorbose into compounds of the intermediary metabolism were demonstrated, and for some prominent reactions the products of conversion were identified. d-Sorbose was converted by C-3 epimerization to d-tagatose, which, in turn, was isomerized to d-galactose. d-Galactose was the initial substrate of the De Ley-Doudoroff pathway, involving reactions of NAD-dependent oxidation of d-galactose to d-galactonate, its dehydration to 2-keto-3-deoxy-d-galactonate, and its phosphorylation to 2-keto-3-deoxy-d-galactonate 6-phosphate. Finally, aldol cleavage yielded pyruvate and d-glycerate 3-phosphate as the central metabolic intermediates. PMID:11823194
EI-2128-1, a novel interleukin-1beta converting enzyme inhibitor produced by Penicillium sp. E-2128.
Koizumi, Fumito; Agatsuma, Tsutomu; Ando, Katsuhiko; Kondo, Hidemasa; Saitoh, Yutaka; Matsuda, Yuzuru; Nakanishi, Satoshi
2003-11-01
EI-2128-1, a novel interleukin-1beta converting enzyme (ICE) inhibitor, was isolated from the culture broths of Penicillium sp. E-2128. EI-2128-1 selectively inhibited human recombinant ICE activity with IC50 value of 0.59 microM, without inhibiting elastase and cathepsin B. EI-2128-1 also inhibited mature interleukin-1beta secretion from THP-1 cells induced by LPS with IC50 value of 0.28 microM.
Ma, Xiaohui; Guo, Juan; Ma, Ying; Jin, Baolong; Zhan, Zhilai; Yuan, Yuan; Huang, Luqi
2016-07-01
To identify a terpene synthase that catalyzes the conversion of geranyl pyrophosphate (GPP) to α-pinene and is involved in the biosynthesis of paeoniflorin. Two new terpene synthase genes were isolated from the transcriptome data of Peaonia lactiflora. Phylogenetic analysis and sequence characterization revealed that one gene, named PlPIN, encoded a monoterpene synthase that might be involved in the biosynthesis of paeoniflorin. In vitro enzyme assay showed that, in contrast to most monoterpene synthases, PlPIN encoded an α-pinene synthase which converted GPP into α-pinene as a single product. This newly identified α-pinene synthase could be used for improving paeoniflorin accumulation by metabolic engineering or for producing α-pinene via synthetic biology.
Nadeau, Lloyd J.; He, Zhongqi; Spain, Jim C.
2003-01-01
Hydroxylamino aromatic compounds are converted to either the corresponding aminophenols or protocatechuate during the bacterial degradation of nitroaromatic compounds. The origin of the hydroxyl group of the products could be the substrate itself (intramolecular transfer mechanism) or the solvent water (intermolecular transfer mechanism). The conversion of hydroxylaminobenzene to 2-aminophenol catalyzed by a mutase from Pseudomonas pseudoalcaligenes JS45 proceeds by an intramolecular hydroxyl transfer. The conversions of hydroxylaminobenzene to 2- and 4-aminophenol by a mutase from Ralstonia eutropha JMP134 and to 4-hydroxylaminobenzoate to protocatechuate by a lyase from Comamonas acidovorans NBA-10 and Pseudomonas sp. strain 4NT were proposed, but not experimentally proved, to proceed by the intermolecular transfer mechanism. GC-MS analysis of the reaction products formed in H218O did not indicate any 18O-label incorporation during the conversion of hydroxylaminobenzene to 2- and 4-aminophenols catalyzed by the mutase from R. eutropha JMP134. During the conversion of 4-hydroxylaminobenzoate catalyzed by the hydroxylaminolyase from Pseudomonas sp. strain 4NT, only one of the two hydroxyl groups in the product, protocatechuate, was 18O labeled. The other hydroxyl group in the product must have come from the substrate. The mutase in strain JS45 converted 4-hydroxylaminobenzoate to 4-amino-3-hydroxybenzoate, and the lyase in Pseudomonas strain 4NT converted hydroxylaminobenzene to aniline and 2-aminophenol but not to catechol. The results indicate that all three types of enzyme-catalyzed rearrangements of hydroxylamino aromatic compounds proceed via intramolecular transfer of hydroxyl groups. PMID:12732549
Angiotensin Converting Enzyme Regulates Cell Proliferation and Migration
Carvalho, Clarissa Coelho; Florentino, Rodrigo Machado; França, Andressa; Matias, Eveline; Guimarães, Paola Bianchi; Batista, Carolina; Freire, Valder; Carmona, Adriana Karaoglanovic; Pesquero, João Bosco; de Paula, Ana Maria; Foureaux, Giselle; Leite, Maria de Fatima
2016-01-01
Background The angiotensin-I converting enzyme (ACE) plays a central role in the renin-angiotensin system, acting by converting the hormone angiotensin-I to the active peptide angiotensin-II (Ang-II). More recently, ACE was shown to act as a receptor for Ang-II, and its expression level was demonstrated to be higher in melanoma cells compared to their normal counterparts. However, the function that ACE plays as an Ang-II receptor in melanoma cells has not been defined yet. Aim Therefore, our aim was to examine the role of ACE in tumor cell proliferation and migration. Results We found that upon binding to ACE, Ang-II internalizes with a faster onset compared to the binding of Ang-II to its classical AT1 receptor. We also found that the complex Ang-II/ACE translocates to the nucleus, through a clathrin-mediated process, triggering a transient nuclear Ca2+ signal. In silico studies revealed a possible interaction site between ACE and phospholipase C (PLC), and experimental results in CHO cells, demonstrated that the β3 isoform of PLC is the one involved in the Ca2+ signals induced by Ang-II/ACE interaction. Further studies in melanoma cells (TM-5) showed that Ang-II induced cell proliferation through ACE activation, an event that could be inhibited either by ACE inhibitor (Lisinopril) or by the silencing of ACE. In addition, we found that stimulation of ACE by Ang-II caused the melanoma cells to migrate, at least in part due to decreased vinculin expression, a focal adhesion structural protein. Conclusion ACE activation regulates melanoma cell proliferation and migration. PMID:27992423
Zeaxanthin epoxidation - an in vitro approach.
Kuczyńska, Paulina; Latowski, Dariusz; Niczyporuk, Sylvia; Olchawa-Pajor, Monika; Jahns, Peter; Gruszecki, Wiesław I; Strzałka, Kazimierz
2012-01-01
Zeaxanthin epoxidase (ZE) is an enzyme operating in the violaxanthin cycle, which is involved in photoprotective mechanisms. In this work model systems to study zeaxanthin (Zx) epoxidation were developed. Two assay systems are presented in which epoxidation of Zx was observed. In these assays two mutants of Arabidopsis thaliana which have active only one of the two xanthophyll cycle enzymes were used. The npq1 mutant possesses an active ZE and is thus able to convert Zx to violaxanthin (Vx) but the violaxanthin de-epoxidase (VDE) is inactive, so that Vx cannot be converted to Zx. The other mutant, npq2, possesses an active VDE and can convert exogenous Vx to Zx under strong light conditions but reverse reaction is not possible. The first assay containing thylakoids from npq1 and npq2 mutants of A. thaliana gave positive results and high efficiency of epoxidation reaction was observed. The amount of Zx was reduced by 25%. To optimize high efficiency of epoxidation reaction additional factors facilitating both fusion of the two types of thylakoids and incorporation of Zx to their membranes were also studied. The second kind of assay contained npq1 mutant thylakoids of A. thaliana supplemented with exogenous Zx and monogalactosyldiacylglycerol (MGDG). Experiments with different proportions of Zx and MGDG showed that their optimal ratio is 1:60. In such system, due to epoxidation, the amount of Zx was reduced by 38% of its initial level. The in vitro systems of Zx epoxidation described in this paper enable analysis some properties of the ZE without necessity of its isolation.
21 CFR 184.1388 - Lactase enzyme preparation from Kluyveromyces lactis.
Code of Federal Regulations, 2014 CFR
2014-04-01
...) This enzyme preparation is derived from the nonpathogenic, nontoxicogenic yeast Kluyveromyces lactis... 683), which converts lactose to glucose and galactose. It is prepared from yeast that has been grown...
Cheng, Lailiang
2012-01-01
Both sorbitol and sucrose are imported into apple fruit from leaves. The metabolism of sorbitol and sucrose fuels fruit growth and development, and accumulation of sugars in fruit is central to the edible quality of apple. However, our understanding of the mechanisms controlling sugar metabolism and accumulation in apple remains quite limited. We identified members of various gene families encoding key enzymes or transporters involved in sugar metabolism and accumulation in apple fruit using homology searches and comparison of their expression patterns in different tissues, and analyzed the relationship of their transcripts with enzyme activities and sugar accumulation during fruit development. At the early stage of fruit development, the transcript levels of sorbitol dehydrogenase, cell wall invertase, neutral invertase, sucrose synthase, fructokinase and hexokinase are high, and the resulting high enzyme activities are responsible for the rapid utilization of the imported sorbitol and sucrose for fruit growth, with low levels of sugar accumulation. As the fruit continues to grow due to cell expansion, the transcript levels and activities of these enzymes are down-regulated, with concomitant accumulation of fructose and elevated transcript levels of tonoplast monosaccharide transporters (TMTs), MdTMT1 and MdTMT2; the excess carbon is converted into starch. At the late stage of fruit development, sucrose accumulation is enhanced, consistent with the elevated expression of sucrose-phosphate synthase (SPS), MdSPS5 and MdSPS6, and an increase in its total activity. Our data indicate that sugar metabolism and accumulation in apple fruit is developmentally regulated. This represents a comprehensive analysis of the genes involved in sugar metabolism and accumulation in apple, which will serve as a platform for further studies on the functions of these genes and subsequent manipulation of sugar metabolism and fruit quality traits related to carbohydrates. PMID:22412983
de Kraker, Jan-Willem; Franssen, Maurice C.R.; Joerink, Maaike; de Groot, Aede; Bouwmeester, Harro J.
2002-01-01
Chicory (Cichorium intybus) is known to contain guaianolides, eudesmanolides, and germacranolides. These sesquiterpene lactones are postulated to originate from a common germacranolide, namely (+)-costunolide. Whereas a pathway for the formation of germacra-1(10),4,11(13)-trien-12-oic acid from farnesyl diphosphate had previously been established, we now report the isolation of an enzyme activity from chicory roots that converts the germacrene acid into (+)-costunolide. This (+)-costunolide synthase catalyzes the last step in the formation of the lactone ring present in sesquiterpene lactones and is dependent on NADPH and molecular oxygen. Incubation of the germacrene acid in the presence of 18O2 resulted in the incorporation of one atom of 18O into (+)-costunolide. The label was situated at the ring oxygen atom. Hence, formation of the lactone ring most likely occurs via C6-hydroxylation of the germacrene acid and subsequent attack of this hydroxyl group at the C12-atom of the carboxyl group. Blue light-reversible CO inhibition and experiments with cytochrome P450 inhibitors demonstrated that the (+)-costunolide synthase is a cytochrome P450 enzyme. In addition, enzymatic conversion of (+)-costunolide into 11(S),13-dihydrocostunolide and leucodin, a guaianolide, was detected. The first-mentioned reaction involves an enoate reductase, whereas the formation of leucodin from (+)-costunolide probably involves more than one enzyme, including a cytochrome P450 enzyme. PMID:12011356
Kim, Kyoung-Rok; Oh, Hye-Jin; Park, Chul-Soon; Hong, Seung-Hye; Park, Ji-Young; Oh, Deok-Kun
2015-11-01
The aim of this study is the first time demonstration of cis-12 regio-selective linoleate double-bond hydratase. Hydroxylation of fatty acids, abundant feedstock in nature, is an emerging alternative route for many petroleum replaceable products thorough hydroxy fatty acids, carboxylic acids, and lactones. However, chemical route for selective hydroxylation is still quite challenging owing to low selectivity and many environmental concerns. Hydroxylation of fatty acids by hydroxy fatty acid forming enzymes is an important route for selective biocatalytic oxyfunctionalization of fatty acids. Therefore, novel fatty acid hydroxylation enzymes should be discovered. The two hydratase genes of Lactobacillus acidophilus were identified by genomic analysis, and the expressed two recombinant hydratases were identified as cis-9 and cis-12 double-bond selective linoleate hydratases by in vitro functional validation, including the identification of products and the determination of regio-selectivity, substrate specificity, and kinetic parameters. The two different linoleate hydratases were the involved enzymes in the 10,13-dihydroxyoctadecanoic acid biosynthesis. Linoleate 13-hydratase (LHT-13) selectively converted 10 mM linoleic acid to 13S-hydroxy-9(Z)-octadecenoic acid with high titer (8.1 mM) and yield (81%). Our study will expand knowledge for microbial fatty acid-hydroxylation enzymes and facilitate the designed production of the regio-selective hydroxy fatty acids for useful chemicals from polyunsaturated fatty acid feedstocks. © 2015 Wiley Periodicals, Inc.
de Kraker, Jan-Willem; Franssen, Maurice C R; Joerink, Maaike; de Groot, Aede; Bouwmeester, Harro J
2002-05-01
Chicory (Cichorium intybus) is known to contain guaianolides, eudesmanolides, and germacranolides. These sesquiterpene lactones are postulated to originate from a common germacranolide, namely (+)-costunolide. Whereas a pathway for the formation of germacra-1(10),4,11(13)-trien-12-oic acid from farnesyl diphosphate had previously been established, we now report the isolation of an enzyme activity from chicory roots that converts the germacrene acid into (+)-costunolide. This (+)-costunolide synthase catalyzes the last step in the formation of the lactone ring present in sesquiterpene lactones and is dependent on NADPH and molecular oxygen. Incubation of the germacrene acid in the presence of 18O2 resulted in the incorporation of one atom of 18O into (+)-costunolide. The label was situated at the ring oxygen atom. Hence, formation of the lactone ring most likely occurs via C6-hydroxylation of the germacrene acid and subsequent attack of this hydroxyl group at the C12-atom of the carboxyl group. Blue light-reversible CO inhibition and experiments with cytochrome P450 inhibitors demonstrated that the (+)-costunolide synthase is a cytochrome P450 enzyme. In addition, enzymatic conversion of (+)-costunolide into 11(S),13-dihydrocostunolide and leucodin, a guaianolide, was detected. The first-mentioned reaction involves an enoate reductase, whereas the formation of leucodin from (+)-costunolide probably involves more than one enzyme, including a cytochrome P450 enzyme.
More Nuts and Bolts of Michaelis-Menten Enzyme Kinetics
ERIC Educational Resources Information Center
Lechner, Joseph H.
2011-01-01
Several additions to a classroom activity are proposed in which an "enzyme" (the student) converts "substrates" (nut-bolt assemblies) into "products" (separated nuts and bolts) by unscrewing them. (Contains 1 table.)
Investigation into the Mechanism of Homo- and Heterodimerization of Angiotensin-Converting Enzyme.
Abrie, J Albert; Moolman, Wessel J A; Cozier, Gyles E; Schwager, Sylva L; Acharya, K Ravi; Sturrock, Edward D
2018-04-01
Angiotensin-converting enzyme (ACE) plays a central role in the renin-angiotensin system (RAS), which is primarily responsible for blood pressure homeostasis. Studies have shown that ACE inhibitors yield cardiovascular benefits that cannot be entirely attributed to the inhibition of ACE catalytic activity. It is possible that these benefits are due to interactions between ACE and RAS receptors that mediate the protective arm of the RAS, such as angiotensin II receptor type 2 (AT 2 R) and the receptor MAS. Therefore, in this study, we investigated the molecular interactions of ACE, including ACE homodimerization and heterodimerization with AT 2 R and MAS, respectively. Molecular interactions were assessed by fluorescence resonance energy transfer and bimolecular fluorescence complementation in human embryonic kidney 293 cells and Chinese hamster ovary-K1 cells transfected with vectors encoding fluorophore-tagged proteins. The specificity of dimerization was verified by competition experiments using untagged proteins. These techniques were used to study several potential requirements for the germinal isoform of angiotensin-converting enzyme expressed in the testes (tACE) dimerization as well as the effect of ACE inhibitors on both somatic isoforms of angiotensin-converting enzyme expressed in the testes (sACE) and tACE dimerization. We demonstrated constitutive homodimerization of sACE and of both of its domains separately, as well as heterodimerization of both sACE and tACE with AT 2 R, but not MAS. In addition, we investigated both soluble sACE and the sACE N domain using size-exclusion chromatography-coupled small-angle X-ray scattering and we observed dimers in solution for both forms of the enzyme. Our results suggest that ACE homo- and heterodimerization does occur under physiologic conditions. Copyright © 2018 by The American Society for Pharmacology and Experimental Therapeutics.
Gilbert, Cameron; Wald, Ron; Bell, Chaim; Perl, Jeff; Juurlink, David; Beyene, Joseph; Shah, Prakesh S
2012-01-01
Objective To examine the safety of using aliskiren combined with agents used to block the renin-angiotensin system. Design Systematic review and meta-analysis of randomised controlled trials. Data sources Medline, Embase, the Cochrane Library, and two trial registries, published up to 7 May 2011. Study selection Published and unpublished randomised controlled trials that compared combined treatment using aliskiren and angiotensin converting enzyme inhibitors or angiotensin receptor blockers with monotherapy using these agents for at least four weeks and that provided numerical data on the adverse event outcomes of hyperkalaemia and acute kidney injury. A random effects model was used to calculate pooled risk ratios and 95% confidence intervals for these outcomes. Results 10 randomised controlled studies (4814 participants) were included in the analysis. Combination therapy with aliskiren and angiotensin converting enzyme inhibitors or angiotensin receptor blockers significantly increased the risk of hyperkalaemia compared with monotherapy using angiotensin converting enzymes or angiotensin receptor blockers (relative risk 1.58, 95% confidence interval 1.24 to 2.02) or aliskiren alone (1.67, 1.01 to 2.79). The risk of acute kidney injury did not differ significantly between the combined therapy and monotherapy groups (1.14, 0.68 to 1.89). Conclusion Use of aliskerin in combination with angiotensin converting enzyme inhibitors or angiotensin receptor blockers is associated with an increased risk for hyperkalaemia. The combined use of these agents warrants careful monitoring of serum potassium levels. PMID:22232539
Thomas, Akshay S; Redd, Travis; Hwang, Thomas
2015-10-01
Recent studies have suggested that the use of systemic beta-blockers, angiotensin-converting enzyme inhibitors, and angiotensin receptor blockers can induce regression of choroidal neovascularization in rodent models. The purpose of this study is to evaluate if these agents have a protective effect against the development of choroidal neovascularization in patients with age-related macular degeneration. In this single-center retrospective case-control study, the charts of 250 patients with neovascular age-related macular degeneration were compared with those of 250 controls with dry age-related macular degeneration. Charts were reviewed for current and past use of beta-blockers, angiotensin-converting enzyme inhibitors, and angiotensin receptor blockers. Frequency tables were generated, and associations were examined using chi-square tests, t-tests, and multivariate logistic regression. There was no statistically significant difference between rates of beta-blocker use (P = 0.57), angiotensin-converting enzyme inhibitors use (P = 0.20), or angiotensin receptor blockers use (P = 0.61) between the 2 groups. Additionally, there was no statistically significant difference between rates of use of combinations of the above drugs between the two groups. Although there is growing evidence that beta-blockers, angiotensin-converting enzyme inhibitors, and angiotensin receptor blockers can induce regression of choroidal neovascularization in rodent models, these medications do not seem to confer a protective effect against the development of choroidal neovascularization in patients with age-related macular degeneration.
Gao, Xueyan; Wang, Congyan; Dai, Wei; Ren, Shenrong; Tao, Fang; He, Xingbing; Han, Guomin; Wang, Wei
2017-06-20
A recent algicidal mode indicates that fungal mycelia can wrap and eliminate almost all co-cultivated algal cells within a short time span. However, the underlying molecular mechanism is rarely understood. We applied proteomic analysis to investigate the algicidal process of Trametes versicolor F21a and identified 3,754 fungal proteins. Of these, 30 fungal enzymes with endo- or exoglycosidase activities such as β-1,3-glucanase, α-galactosidase, α-glucosidase, alginate lyase and chondroitin lyase were significantly up-regulated. These proteins belong to Glycoside Hydrolases, Auxiliary Activities, Carbohydrate Esterases and Polysaccharide Lyases, suggesting that these enzymes may degrade lipopolysaccharides, peptidoglycans and alginic acid of algal cells. Additionally, peptidase, exonuclease, manganese peroxidase and cytochrome c peroxidase, which decompose proteins and DNA or convert other small molecules of algal cells, could be other major decomposition enzymes. Gene Ontology and KEGG pathway enrichment analysis demonstrated that pyruvate metabolism and tricarboxylic acid cycle pathways play a critical role in response to adverse environment via increasing energy production to synthesize lytic enzymes or uptake molecules. Carbon metabolism, selenocompound metabolism, sulfur assimilation and metabolism, as well as several amino acid biosynthesis pathways could play vital roles in the synthesis of nutrients required by fungal mycelia.
Theranostic Imaging of Cancer Gene Therapy.
Sekar, Thillai V; Paulmurugan, Ramasamy
2016-01-01
Gene-directed enzyme prodrug therapy (GDEPT) is a promising therapeutic approach for treating cancers of various phenotypes. This strategy is independent of various other chemotherapeutic drugs used for treating cancers where the drugs are mainly designed to target endogenous cellular mechanisms, which are different in various cancer subtypes. In GDEPT an external enzyme, which is different from the cellular proteins, is expressed to convert the injected prodrug in to a toxic metabolite, that normally kill cancer cells express this protein. Theranostic imaging is an approach used to directly monitor the expression of these gene therapy enzymes while evaluating therapeutic effect. We recently developed a dual-GDEPT system where we combined mutant human herpes simplex thymidine kinase (HSV1sr39TK) and E. coli nitroreductase (NTR) enzyme, to improve therapeutic efficiency of cancer gene therapy by simultaneously injecting two prodrugs at a lower dose. In this approach we use two different prodrugs such as ganciclovir (GCV) and CB1954 to target two different cellular mechanisms to kill cancer cells. The developed dual GDEPT system was highly efficacious than that of either of the system used independently. In this chapter, we describe the complete protocol involved for in vitro and in vivo imaging of therapeutic cancer gene therapy evaluation.
Zheng, Zhaojuan; Ma, Cuiqing; Gao, Chao; Li, Fengsong; Qin, Jiayang; Zhang, Haiwei; Wang, Kai; Xu, Ping
2011-01-01
Background Phenyllactic acid (PLA), a novel antimicrobial compound with broad and effective antimicrobial activity against both bacteria and fungi, can be produced by many microorganisms, especially lactic acid bacteria. However, the concentration and productivity of PLA have been low in previous studies. The enzymes responsible for conversion of phenylpyruvic acid (PPA) into PLA are equivocal. Methodology/Principal Findings A novel thermophilic strain, Bacillus coagulans SDM, was isolated for production of PLA. When the solubility and dissolution rate of PPA were enhanced at a high temperature, whole cells of B. coagulans SDM could effectively convert PPA into PLA at a high concentration (37.3 g l−1) and high productivity (2.3 g l−1 h−1) under optimal conditions. Enzyme activity staining and kinetic studies identified NAD-dependent lactate dehydrogenases as the key enzymes that reduced PPA to PLA. Conclusions/Significance Taking advantage of the thermophilic character of B. coagulans SDM, a high yield and productivity of PLA were obtained. The enzymes involved in PLA production were identified and characterized, which makes possible the rational design and construction of microorganisms suitable for PLA production with metabolic engineering. PMID:21533054
Miyata, Naoyuki; Tani, Yukinori; Maruo, Kanako; Tsuno, Hiroshi; Sakata, Masahiro; Iwahori, Keisuke
2006-01-01
Ascomycetes that can deposit Mn(III, IV) oxides are widespread in aquatic and soil environments, yet the mechanism(s) involved in Mn oxide deposition remains unclear. A Mn(II)-oxidizing ascomycete, Acremonium sp. strain KR21-2, produced a Mn oxide phase with filamentous nanostructures. X-ray absorption near-edge structure (XANES) spectroscopy showed that the Mn phase was primarily Mn(IV). We purified to homogeneity a laccase-like enzyme with Mn(II) oxidase activity from cultures of strain KR21-2. The purified enzyme oxidized Mn(II) to yield suspended Mn particles; XANES spectra indicated that Mn(II) had been converted to Mn(IV). The pH optimum for Mn(II) oxidation was 7.0, and the apparent half-saturation constant was 0.20 mM. The enzyme oxidized ABTS [2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid)] (pH optimum, 5.5; Km, 1.2 mM) and contained two copper atoms per molecule. Moreover, the N-terminal amino acid sequence (residues 3 to 25) was 61% identical with the corresponding sequence of an Acremonium polyphenol oxidase and 57% identical with that of a Myrothecium bilirubin oxidase. These results provide the first evidence that a fungal multicopper oxidase can convert Mn(II) to Mn(IV) oxide. The present study reinforces the notion of the contribution of multicopper oxidase to microbially mediated precipitation of Mn oxides and suggests that Acremonium sp. strain KR21-2 is a good model for understanding the oxidation of Mn in diverse ascomycetes. PMID:17021194
2010-01-01
Background Poor control of blood pressure leads to hypertension which is a major risk factor for development of cardiovascular disease. The present study aimed to explore possible mechanisms of elevation in blood pressure following consumption of heated vegetable oil. Methods Forty-two male Sprague-Dawley rats were equally divided into six groups: Group I (control) - normal rat chow, Group II - fresh soy oil, Group III - soy oil heated once, Group IV - soy oil heated twice, Group V - soy oil heated five times, Group VI - soy oil heated ten times. Blood pressure was measured at the baseline level and at a monthly interval for six months. Plasma nitric oxide, heme oxygenase and angiotensin-converting enzyme levels were measured prior to treatment, at month-three and month-six later. At the end of treatment, the rats were sacrificed and thoracic aortas were taken for measurement of vascular reactivity. Results Blood pressure increased significantly (p < 0.01) in the repeatedly heated oil groups compared to the control and fresh soy oil groups. Consumption of diet containing repeatedly heated oil resulted higher plasma angiotensin-converting enzyme level and lower nitric oxide content and heme oxygenase concentration. Reheated soy oil groups exhibited attenuated relaxation in response to acetylcholine or sodium nitroprusside, and greater contraction to phenylephrine. Conclusion As a result of consumption of repeatedly heated soy oil, an elevation in blood pressure was observed which may be due to the quantitative changes in endothelium dependent and independent factors including enzymes directly involved in the regulation of blood pressure. PMID:20573259
Introduction to the Glutamate-Glutamine Cycle.
Sonnewald, Ursula; Schousboe, Arne
2016-01-01
The term 'glutamate-glutamine cycle' was coined several decades ago based on the observation that using certain 14 C-labeled precursors for studies of brain metabolism the specific radioactivity of glutamine generated from glutamate was higher than that of glutamate, its immediate precursor. This is metabolically impossible unless it is assumed that at least two distinct pools of these amino acids exist. This combined with the finding that the enzyme synthesizing glutamine from glutamate was expressed in astrocytes but not in neurons formed the basis of the notion that a cycle must exist in which glutamate released from neurons is transported into astrocytes, converted to glutamine which is subsequently returned to neurons and converted to glutamate by an enzyme the activity of which is much higher in neurons than in astrocytes. Originally this cycle was supposed to function in a stoichiometric fashion but more recent research has seriously questioned this.This volume of Advances in Neurobiology is intended to provide a detailed discussion of recent developments in research aimed at delineating the functional roles of the cycle taking into account that in order for this system to work there must be a tight coupling between metabolism of glutamate in astrocytes, transfer of glutamine to neurons and de novo synthesis of glutamine in astrocytes. To understand this, knowledge about the activity and regulation of the enzymes and transporters involved in these processes is required and as can be seen from the table of contents these issues will be dealt with in detail in the individual chapters of the book.
21 CFR 184.1387 - Lactase enzyme preparation from Candida pseudotropicalis.
Code of Federal Regulations, 2012 CFR
2012-04-01
..., nontoxicogenic yeast C. pseudotropicalis. It contains the enzyme lactase (β-D-galactoside galactohydrolase, EC 3.2.1.23), which converts lactose to glucose and galactose. It is prepared from yeast that has been...
21 CFR 184.1387 - Lactase enzyme preparation from Candida pseudotropicalis.
Code of Federal Regulations, 2013 CFR
2013-04-01
..., nontoxicogenic yeast C. pseudotropicalis. It contains the enzyme lactase (β-D-galactoside galactohydrolase, EC 3.2.1.23), which converts lactose to glucose and galactose. It is prepared from yeast that has been...
Genetics Home Reference: Crigler-Najjar syndrome
... from the body only after it undergoes a chemical reaction in the liver, which converts the toxic form ... the body. The bilirubin-UGT enzyme performs a chemical reaction called glucuronidation. During this reaction, the enzyme transfers ...
In silico prediction of potential chemical reactions mediated by human enzymes.
Yu, Myeong-Sang; Lee, Hyang-Mi; Park, Aaron; Park, Chungoo; Ceong, Hyithaek; Rhee, Ki-Hyeong; Na, Dokyun
2018-06-13
Administered drugs are often converted into an ineffective or activated form by enzymes in our body. Conventional in silico prediction approaches focused on therapeutically important enzymes such as CYP450. However, there are more than thousands of different cellular enzymes that potentially convert administered drug into other forms. We developed an in silico model to predict which of human enzymes including metabolic enzymes as well as CYP450 family can catalyze a given chemical compound. The prediction is based on the chemical and physical similarity between known enzyme substrates and a query chemical compound. Our in silico model was developed using multiple linear regression and the model showed high performance (AUC = 0.896) despite of the large number of enzymes. When evaluated on a test dataset, it also showed significantly high performance (AUC = 0.746). Interestingly, evaluation with literature data showed that our model can be used to predict not only enzymatic reactions but also drug conversion and enzyme inhibition. Our model was able to predict enzymatic reactions of a query molecule with a high accuracy. This may foster to discover new metabolic routes and to accelerate the computational development of drug candidates by enabling the prediction of the potential conversion of administered drugs into active or inactive forms.
Targeted enzyme prodrug therapies.
Schellmann, N; Deckert, P M; Bachran, D; Fuchs, H; Bachran, C
2010-09-01
The cure of cancer is still a formidable challenge in medical science. Long-known modalities including surgery, chemotherapy and radiotherapy are successful in a number of cases; however, invasive, metastasized and inaccessible tumors still pose an unresolved and ongoing problem. Targeted therapies designed to locate, detect and specifically kill tumor cells have been developed in the past three decades as an alternative to treat troublesome cancers. Most of these therapies are either based on antibody-dependent cellular cytotoxicity, targeted delivery of cytotoxic drugs or tumor site-specific activation of prodrugs. The latter is a two-step procedure. In the first step, a selected enzyme is accumulated in the tumor by guiding the enzyme or its gene to the neoplastic cells. In the second step, a harmless prodrug is applied and specifically converted by this enzyme into a cytotoxic drug only at the tumor site. A number of targeting systems, enzymes and prodrugs were investigated and improved since the concept was first envisioned in 1974. This review presents a concise overview on the history and latest developments in targeted therapies for cancer treatment. We cover the relevant technologies such as antibody-directed enzyme prodrug therapy (ADEPT), gene-directed enzyme prodrug therapy (GDEPT) as well as related therapies such as clostridial- (CDEPT) and polymer-directed enzyme prodrug therapy (PDEPT) with emphasis on prodrug-converting enzymes, prodrugs and drugs.
NASA Astrophysics Data System (ADS)
Gritzali, M.
1982-12-01
As conventional, nonrenewable energy sources are rapidly depleted and it was necessary to search for alternative sources of energy. It was increasingly apparent that biomass and waste are alternatives well worth exploring. The sources of biomass and wastes that considered for conversion to useful products are quite diverse, but the most abundant constituent of almost every type is cellulose. Cellulose is cleanly converted to soluble fermentable sugars enzymatically, and cellulose enzymes were isolated from a number of microbial sources. It is generally agreed that the most effective system of enzymes for the conversion of cellulose to glucose is produced by species of the imperfect fungus Trichoderma. The mutant organism Trichoderma reesei QM 9414 is among the best producers of high levels of enzymes; these are extracellular and have carbonhydrate covalently bound to the peptide. Trichoderma produces three types of enzymes which, in a sequential and cooperative manner, convert cellulose to soluble oligosaccharides and glucose.
Potential utility of natural products as regulators of breast cancer-assoicated aromatase promoters
USDA-ARS?s Scientific Manuscript database
Aromatase, the key enzyme in estrogen biosynthesis, converts androstenedione to estrone and testosterone to estradiol. The enzyme is expressed in various tissues such as ovary, placenta, bone, brain, skin, and adipose tissue. Aromatase enzyme is encoded by a single gene CYP 19A1 and its expression i...
The Nuts and Bolts of Michaelis-Menten Enzyme Kinetics: Suggestions and Clarifications
ERIC Educational Resources Information Center
Silverstein, Todd
2011-01-01
Matthew Junker's recent article describes a useful and effective enzyme kinetics application and analogy in which students simulate enzyme activity by unscrewing nut-bolt "substrate molecules", thus, converting them into separate nuts and bolts "products". A number of suggestions and corrections are presented that improve the clarity and accuracy…
Tajima, Takahisa; Tomita, Kousuke; Miyahara, Hiroyuki; Watanabe, Kenshi; Aki, Tsunehiro; Okamura, Yoshiko; Matsumura, Yukihiko; Nakashimada, Yutaka; Kato, Junichi
2018-02-01
Macroalgae are a promising biomass feedstock for energy and valuable chemicals. Mannitol and alginate are the major carbohydrates found in the microalga Laminaria japonica (Konbu). To convert mannitol to fructose for its utilization as a carbon source in mannitol non-assimilating bacteria, a psychrophile-based simple biocatalyst (PSCat) was constructed using a psychrophile as a host by expressing mesophilic enzymes, including mannitol 2-dehydrogenase for mannitol oxidation, and NADH oxidase and alkyl hydroxyperoxide reductase for NAD + regeneration. PSCat was treated at 40 °C to inactivate the psychrophilic enzymes responsible for byproduct formation and to increase the membrane permeability of the substrate. PSCat efficiently converted mannitol to fructose with high conversion yield without additional input of NAD + . Konbu extract containing mannitol was converted to fructose with hydroperoxide scavenging, inhibiting the mannitol dehydrogenase activity. Auranthiochytrium sp. could grow well in the presence of fructose converted by PSCat. Thus, PSCat is a potential carbohydrate converter for mannitol non-assimilating microorganism. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Improvement on sugar cane bagasse hydrolysis using enzymatic mixture designed cocktail.
Bussamra, Bianca Consorti; Freitas, Sindelia; Costa, Aline Carvalho da
2015-01-01
The aim of this work was to study cocktail supplementation for sugar cane bagasse hydrolysis, where the enzymes were provided from both commercial source and microorganism cultivation (Trichoderma reesei and genetically modified Escherichia coli), followed by purification. Experimental simplex lattice mixture design was performed to optimize the enzymatic proportion. The response was evaluated through hydrolysis microassays validated here. The optimized enzyme mixture, comprised of T. reesei fraction (80%), endoglucanase (10%) and β-glucosidase (10%), converted, theoretically, 72% of cellulose present in hydrothermally pretreated bagasse, whereas commercial Celluclast 1.5L converts 49.11%±0.49. Thus, a rational enzyme mixture designed by using synergism concept and statistical analysis was capable of improving biomass saccharification. Copyright © 2015 Elsevier Ltd. All rights reserved.
Investigating a Bio-Engineered Enzyme.
ERIC Educational Resources Information Center
Bullerwell, Lornie; And Others
1994-01-01
Describes science experiments with the enzyme lactose, which is available commercially as Lactaid and Dairy Ease. Experiments show how the rate of reaction of lactose converted to glucose and galactose is influenced by temperature, pH, and substrate concentration. (PR)
Katayama, K; Kobayashi, T; Oikawa, H; Honma, M; Ichihara, A
1998-05-19
In cell-free extracts of Alternaria solani, an enzymatic activity converting prosolanapyrone II to solanapyrones A and D via oxidation and subsequent Diels-Alder reaction has been found. Chromatography with DEAE-Sepharose provided two active fractions, pools 1 and 2. The former fraction converted prosolanapyrone II to solanapyrones A and D in a ratio of 2.2:1 with optical purities of 99% and 45% ee, respectively. The latter fraction did so in a ratio of 7.6:1 with 99% and nearly 0% ee, respectively. The enzyme partially purified from pool 2 native molecular weight of 40-62 kD and a pl of 4.25. The high reactivity of prosolanapyrone III in aqueous solution and the chromatographic behavior of the enzyme in pool 2 suggest that a single enzyme catalyzes both the oxidation and Diels-Alder reaction.
A re-evaluation of the final step of vanillin biosynthesis in the orchid Vanilla planifolia.
Yang, Hailian; Barros-Rios, Jaime; Kourteva, Galina; Rao, Xiaolan; Chen, Fang; Shen, Hui; Liu, Chenggang; Podstolski, Andrzej; Belanger, Faith; Havkin-Frenkel, Daphna; Dixon, Richard A
2017-07-01
A recent publication describes an enzyme from the vanilla orchid Vanilla planifolia with the ability to convert ferulic acid directly to vanillin. The authors propose that this represents the final step in the biosynthesis of vanillin, which is then converted to its storage form, glucovanillin, by glycosylation. The existence of such a "vanillin synthase" could enable biotechnological production of vanillin from ferulic acid using a "natural" vanilla enzyme. The proposed vanillin synthase exhibits high identity to cysteine proteases, and is identical at the protein sequence level to a protein identified in 2003 as being associated with the conversion of 4-coumaric acid to 4-hydroxybenzaldehyde. We here demonstrate that the recombinant cysteine protease-like protein, whether expressed in an in vitro transcription-translation system, E. coli, yeast, or plants, is unable to convert ferulic acid to vanillin. Rather, the protein is a component of an enzyme complex that preferentially converts 4-coumaric acid to 4-hydroxybenzaldehyde, as demonstrated by the purification of this complex and peptide sequencing. Furthermore, RNA sequencing provides evidence that this protein is expressed in many tissues of V. planifolia irrespective of whether or not they produce vanillin. On the basis of our results, V. planifolia does not appear to contain a cysteine protease-like "vanillin synthase" that can, by itself, directly convert ferulic acid to vanillin. The pathway to vanillin in V. planifolia is yet to be conclusively determined. Copyright © 2017 Elsevier Ltd. All rights reserved.
Salazar, J C; Zúñiga, R; Raczniak, G; Becker, H; Söll, D; Orellana, O
2001-07-06
The gatC, gatA and gatB genes encoding the three subunits of glutamyl-tRNA(Gln) amidotransferase from Acidithiobacillus ferrooxidans, an acidophilic bacterium used in bioleaching of minerals, have been cloned and expressed in Escherichia coli. As in Bacillus subtilis the three gat genes are organized in an operon-like structure in A. ferrooxidans. The heterologously overexpressed enzyme converts Glu-tRNA(Gln) to Gln-tRNA(Gln) and Asp-tRNA(Asn) to Asn-tRNA(Asn). Biochemical analysis revealed that neither glutaminyl-tRNA synthetase nor asparaginyl-tRNA synthetase is present in A. ferrooxidans, but that glutamyl-tRNA synthetase and aspartyl-tRNA synthetase enzymes are present in the organism. These data suggest that the transamidation pathway is responsible for the formation of Gln-tRNA and Asn-tRNA in A. ferrooxidans.
Biodegradation of p-nitrophenol via 1,2,4-benzenetriol by an Arthrobacter sp.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jain, R.K.; Spain, J.C.; Dreisbach, J.H.
1994-08-01
The degradation of p-nitrophenol (PNP) by Moraxella and Pseudomonas spp. involves an initial monooxygenase-catalyzed removal of the nitro group. The resultant hydroquinone is subject to ring fission catalyzed by a dioxygenase enzyme. A strain of an Arthrobacter sp. JS443, capable of degrading PNP with stoichiometric release of nitrite has been isolated. During induction of the enzymes required for growth on PNP, 1,2,4-benzenetriol was identified as an intermediate by gas chromatography-mass spectroscopy and radiotracer studies. 1,2,4-Benzenetriol was converted to maleylacetic acid, which was further degraded by the beta-ketoadipate pathway. Conversion of PNP to 1,2,4-benzenetriol is catalyzed by a monooxygenase system inmore » strain JS443 through the formation of 4-nitrocatechol, 4-nitroresorcinol, or both. Results clearly indicate the existence of an alternative pathway for the biodegradation of PNP. 15 refs, 2 figs., 2 tabs.« less
Strigolactones, a novel carotenoid-derived plant hormone.
Al-Babili, Salim; Bouwmeester, Harro J
2015-01-01
Strigolactones (SLs) are carotenoid-derived plant hormones and signaling molecules. When released into the soil, SLs indicate the presence of a host to symbiotic fungi and root parasitic plants. In planta, they regulate several developmental processes that adapt plant architecture to nutrient availability. Highly branched/tillered mutants in Arabidopsis, pea, and rice have enabled the identification of four SL biosynthetic enzymes: a cis/trans-carotene isomerase, two carotenoid cleavage dioxygenases, and a cytochrome P450 (MAX1). In vitro and in vivo enzyme assays and analysis of mutants have shown that the pathway involves a combination of new reactions leading to carlactone, which is converted by a rice MAX1 homolog into an SL parent molecule with a tricyclic lactone moiety. In this review, we focus on SL biosynthesis, describe the hormonal and environmental factors that determine this process, and discuss SL transport and downstream signaling as well as the role of SLs in regulating plant development.
Increased prolyl endopeptidase activity in human neoplasia.
Larrinaga, Gorka; Perez, Itxaro; Blanco, Lorena; López, José I; Andrés, Leire; Etxezarraga, Carmen; Santaolalla, Francisco; Zabala, Aitor; Varona, Adolfo; Irazusta, Jon
2010-08-09
Prolyl endopeptidase (EC 3.4.21.26) (PEP) is a serine peptidase that converts several biologically active peptides. This enzyme has been linked to several neurological, digestive, cardiovascular and infectous disorders. However, little is known about its involvement in neoplastic processes. This study analyzes fluorimetrically cytosolic and membrane-bound PEP activity in a large series (n=122) of normal and neoplastic tissues from the kidney, colon, oral cavity, larynx, thyroid gland and testis. Cytosolic PEP activity significantly increased in clear cell renal cell carcinoma, urothelial carcinoma of the renal pelvis and head and neck squamous cell carcinoma. Both cytosolic and membrane-bound PEP activity were also increased in colorectal adenomatous polyps. These data suggest the involvement of PEP in some mechanisms that underlie neoplastic processes. Copyright (c) 2010 Elsevier B.V. All rights reserved.
A human lung mast cell chymotrypsin-like enzyme. Identification and partial characterization.
Wintroub, B U; Kaempfer, C E; Schechter, N M; Proud, D
1986-01-01
We have used a high performance liquid chromatography assay, which detects chymotryptic cleavage of the phe8-his9 bond of angiotensin I to yield angiotensin II, in order to examine human lung mast cells for the presence of chymotryptic activity. Mast cells, purified from human lung by enzymatic dispersion, countercurrent elutriation, and Percoll gradient centrifugation, were lysed or challenged with goat anti-human IgE. In multiple experiments angiotensin II-converting activity was detected in lysates of 10-99% pure mast cell preparations. Regression analysis of net percent release values of histamine and the angiotensin I-converting activity from dose-response experiments demonstrated a correlation between the two parameters, indicating that the chymotrypsin-like enzyme is a constituent of the mast cell secretory granule. The chymotryptic activity was completely inhibited by 10(-3) M phenylmethylsulfonylfluoride but not by 10(-3) M Captopril, and the pH optimum of activity was 7.5-9.5. Gel filtration of released material separated the activity from tryptase and demonstrated an approximate molecular weight of 30-35,000. The mast cell enzyme, like a human skin chymotrypsin-like proteinase, can be distinguished from leukocyte cathepsin G by lack of susceptibility to inhibition by bovine pancreatic trypsin inhibitor. Thus, an enzyme with limited chymotryptic specificity is present in human lung mast cells. The Michaelis constant of the enzyme for angiotensin I of 6.0 X 10(-5) M is similar to that of endothelial cell angiotensin-converting enzyme and is consistent with a reaction of physiologic importance.
Ji, Xinjian; Li, Yongzhen; Ding, Wei; Zhang, Qi
2015-07-27
NosL is a radical S-adenosyl-L-methionine (SAM) enzyme that converts L-Trp to 3-methyl-2-indolic acid, a key intermediate in the biosynthesis of a thiopeptide antibiotic nosiheptide. In this work we investigated NosL catalysis by using a series of Trp analogues as the molecular probes. Using a benzofuran substrate 2-amino-3-(benzofuran-3-yl)propanoic acid (ABPA), we clearly demonstrated that the 5'-deoxyadenosyl (dAdo) radical-mediated hydrogen abstraction in NosL catalysis is not from the indole nitrogen but likely from the amino group of L-Trp. Unexpectedly, the major product of ABPA is a decarboxylated compound, indicating that NosL was transformed to a novel decarboxylase by an unnatural substrate. Furthermore, we showed that, for the first time to our knowledge, the dAdo radical-mediated hydrogen abstraction can occur from an alcohol hydroxy group. Our study demonstrates the intriguing promiscuity of NosL catalysis and highlights the potential of engineering radical SAM enzymes for novel activities. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Poli, Anna; Di Pietro, Antonio; Zigon, Dusan; Lenasi, Helena
2009-02-01
Fungi present the ability to hydroxylate steroids. In some filamentous fungi, progesterone induces an enzyme system which converts the compound into a less toxic hydroxylated product. We investigated the progesterone response in the vascular wilt pathogen Fusarium oxysporum, using mass spectrometry and high performance liquid chromatography (HPLC). Progesterone was mainly transformed into 15alpha-hydroxyprogesterone, which was found predominantly in the extracellular medium. The role of two conserved fungal signaling cascades in the induction of the progesterone-transforming enzyme system was studied, using knockout mutants lacking the mitogen-activated protein kinase Fmk1 or the heterotrimeric G-protein beta subunit Fgb1 functioning upstream of the cyclic adenosine monophosphate (cAMP) pathway. No steroid hydroxylation was induced in the Deltafgb1 strain, suggesting a role for the G-protein beta subunit in progesterone signaling. Exogenous cAMP restored the induction of progesterone-transforming activity in the Deltafgb1 strain, suggesting that steroid signaling in F. oxysporum is mediated by the cAMP-PKA pathway.
Worrell, V E; Nagle, D P
1990-01-01
The enzymes involved in the purine interconversion pathway of wild-type and purine analog-resistant strains of Methanobacterium thermoautotrophicum Marburg were assayed by radiometric and spectrophotometric methods. Wild-type cells incorporated labeled adenine, guanine, and hypoxanthine, whereas mutant strains varied in their ability to incorporate these bases. Adenine, guanine, hypoxanthine, and xanthine were activated by phosphoribosyltransferase activities present in wild-type cell extracts. Some mutant strains simultaneously lost the ability to convert both guanine and hypoxanthine to the respective nucleotide, suggesting that the same enzyme activates both bases. Adenosine, guanosine, and inosine phosphorylase activities were detected for the conversion of base to nucleoside. Adenine deaminase activity was detected at low levels. Guanine deaminase activity was not detected. Nucleoside kinase activities for the conversion of adenosine, guanosine, and inosine to the respective nucleotides were detected by a new assay. The nucleotide-interconverting enzymes AMP deaminase, succinyl-AMP synthetase, succinyl-AMP lyase, IMP dehydrogenase, and GMP synthetase were present in extracts; GMP reductase was not detected. The results indicate that this autotrophic methanogen has a complex system for the utilization of exogenous purines. PMID:2345148
Enzymes Required for Maltodextrin Catabolism in Enterococcus faecalis Exhibit Novel Activities
Joyet, Philippe; Mokhtari, Abdelhamid; Riboulet-Bisson, Eliette; Blancato, Víctor S.; Espariz, Martin; Magni, Christian; Sauvageot, Nicolas
2017-01-01
ABSTRACT Maltose and maltodextrins are formed during the degradation of starch or glycogen. Maltodextrins are composed of a mixture of maltooligosaccharides formed by α-1,4- but also some α-1,6-linked glucosyl residues. The α-1,6-linked glucosyl residues are derived from branching points in the polysaccharides. In Enterococcus faecalis, maltotriose is mainly transported and phosphorylated by a phosphoenolpyruvate:carbohydrate phosphotransferase system. The formed maltotriose-6″-phosphate is intracellularly dephosphorylated by a specific phosphatase, MapP. In contrast, maltotetraose and longer maltooligosaccharides up to maltoheptaose are taken up without phosphorylation via the ATP binding cassette transporter MdxEFG-MsmX. We show that the maltose-producing maltodextrin hydrolase MmdH (GenBank accession no. EFT41964) in strain JH2-2 catalyzes the first catabolic step of α-1,4-linked maltooligosaccharides. The purified enzyme converts even-numbered α-1,4-linked maltooligosaccharides (maltotetraose, etc.) into maltose and odd-numbered (maltotriose, etc.) into maltose and glucose. Inactivation of mmdH therefore prevents the growth of E. faecalis on maltooligosaccharides ranging from maltotriose to maltoheptaose. Surprisingly, MmdH also functions as a maltogenic α-1,6-glucosidase, because it converts the maltotriose isomer isopanose into maltose and glucose. In addition, E. faecalis contains a glucose-producing α-1,6-specific maltodextrin hydrolase (GenBank accession no. EFT41963, renamed GmdH). This enzyme converts panose, another maltotriose isomer, into glucose and maltose. A gmdH mutant had therefore lost the capacity to grow on panose. The genes mmdH and gmdH are organized in an operon together with GenBank accession no. EFT41962 (renamed mmgT). Purified MmgT transfers glucosyl residues from one α-1,4-linked maltooligosaccharide molecule to another. For example, it catalyzes the disproportionation of maltotriose by transferring a glucosyl residue to another maltotriose molecule, thereby forming maltotetraose and maltose together with a small amount of maltopentaose. IMPORTANCE The utilization of maltodextrins by Enterococcus faecalis has been shown to increase the virulence of this nosocomial pathogen. However, little is known about how this organism catabolizes maltodextrins. We identified two enzymes involved in the metabolism of various α-1,4- and α-1,6-linked maltooligosaccharides. We found that one of them functions as a maltose-producing α-glucosidase with relaxed linkage specificity (α-1,4 and α-1,6) and exo- and endoglucosidase activities. A third enzyme, which resembles amylomaltase, exclusively transfers glucosyl residues from one maltooligosaccharide molecule to another. Similar enzymes are present in numerous other Firmicutes, such as streptococci and lactobacilli, suggesting that these organisms follow the same maltose degradation pathway as E. faecalis. PMID:28455338
Degradation of nitrobenzene by a Pseudomonas pseudoalcaligenes.
Nishino, S F; Spain, J C
1993-01-01
A Pseudomonas pseudoalcaligenes able to use nitrobenzene as the sole source of carbon, nitrogen, and energy was isolated from soil and groundwater contaminated with nitrobenzene. The range of aromatic substrates able to support growth was limited to nitrobenzene, hydroxylaminobenzene, and 2-aminophenol. Washed suspensions of nitrobenzene-grown cells removed nitrobenzene from culture fluids with the concomitant release of ammonia. Nitrobenzene, nitrosobenzene, hydroxylaminobenzene, and 2-aminophenol stimulated oxygen uptake in resting cells and in extracts of nitrobenzene-grown cells. Under aerobic and anaerobic conditions, crude extracts converted nitrobenzene to 2-aminophenol with oxidation of 2 mol of NADPH. Ring cleavage, which required ferrous iron, produced a transient yellow product with a maximum A380. In the presence of NAD, the product disappeared and NADH was produced. In the absence of NAD, the ring fission product was spontaneously converted to picolinic acid, which was not further metabolized. These results indicate that the catabolic pathway involves the reduction of nitrobenzene to nitrosobenzene and then to hydroxylaminobenzene; each of these steps requires 1 mol of NADPH. An enzyme-mediated Bamberger-like rearrangement converts hydroxylaminobenzene to 2-aminophenol, which then undergoes meta ring cleavage to 2-aminomuconic semialdehyde. The mechanism for release of ammonia and subsequent metabolism are under investigation. PMID:8368838
Han, Su-Xia; He, Guang-Ming; Wang, Tao; Chen, Lei; Ning, Yun-Ye; Luo, Feng; An, Jin; Yang, Ting; Dong, Jia-Jia; Liao, Zeng-Lin; Xu, Dan; Wen, Fu-Qiang
2010-05-15
Chronic cigarette smoking induces pulmonary arterial hypertension (PAH) by largely unknown mechanisms. Renin-angiotensin system (RAS) is known to function in the development of PAH. Losartan, a specific angiotensin II receptor antagonist, is a well-known antihypertensive drug with a potential role in regulating angiotensin-converting enzyme-2 (ACE2), a recently found regulator of RAS. To determine the effect of losartan on smoke-induced PAH and its possible mechanism, rats were daily exposed to cigarette smoke for 6months in the absence and in the presence of losartan. Elevated right ventricular systolic pressure (RVSP), thickened wall of pulmonary arteries with apparent medial hypertrophy along with increased angiotensin II (Ang II) and decreased ACE2 levels were observed in smoke-exposed-only rats. Losartan administration ameliorated pulmonary vascular remodeling, inhibited the smoke-induced RVSP and Ang II elevation and partially reversed the ACE2 decrease in rat lungs. In cultured primary pulmonary artery smooth muscle cells (PASMCs) from 3- and 6-month smoke-exposed rats, ACE2 levels were significantly lower than in those from the control rats. Moreover, PASMCs from 6-month exposed rats proliferated more rapidly than those from 3-month exposed or control rats, and cells grew even more rapidly in the presence of DX600, an ACE2 inhibitor. Consistent with the in vivo study, in vitro losartan pretreatment also inhibited cigarette smoke extract (CSE)-induced cell proliferation and ACE2 reduction in rat PASMCs. The results suggest that losartan may be therapeutically useful in the chronic smoking-induced pulmonary vascular remodeling and PAH and ACE2 may be involved as part of its mechanism. Our study might provide insight into the development of new therapeutic interventions for PAH smokers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han Suxia; He Guangming; Wang Tao
Chronic cigarette smoking induces pulmonary arterial hypertension (PAH) by largely unknown mechanisms. Renin-angiotensin system (RAS) is known to function in the development of PAH. Losartan, a specific angiotensin II receptor antagonist, is a well-known antihypertensive drug with a potential role in regulating angiotensin-converting enzyme-2 (ACE2), a recently found regulator of RAS. To determine the effect of losartan on smoke-induced PAH and its possible mechanism, rats were daily exposed to cigarette smoke for 6 months in the absence and in the presence of losartan. Elevated right ventricular systolic pressure (RVSP), thickened wall of pulmonary arteries with apparent medial hypertrophy along withmore » increased angiotensin II (Ang II) and decreased ACE2 levels were observed in smoke-exposed-only rats. Losartan administration ameliorated pulmonary vascular remodeling, inhibited the smoke-induced RVSP and Ang II elevation and partially reversed the ACE2 decrease in rat lungs. In cultured primary pulmonary artery smooth muscle cells (PASMCs) from 3- and 6-month smoke-exposed rats, ACE2 levels were significantly lower than in those from the control rats. Moreover, PASMCs from 6-month exposed rats proliferated more rapidly than those from 3-month exposed or control rats, and cells grew even more rapidly in the presence of DX600, an ACE2 inhibitor. Consistent with the in vivo study, in vitro losartan pretreatment also inhibited cigarette smoke extract (CSE)-induced cell proliferation and ACE2 reduction in rat PASMCs. The results suggest that losartan may be therapeutically useful in the chronic smoking-induced pulmonary vascular remodeling and PAH and ACE2 may be involved as part of its mechanism. Our study might provide insight into the development of new therapeutic interventions for PAH smokers.« less
Iwanami, Jun; Mogi, Masaki; Tsukuda, Kana; Wang, Xiao-Li; Nakaoka, Hirotomo; Ohshima, Kousei; Chisaka, Toshiyuki; Bai, Hui-Yu; Kanno, Harumi; Min, Li-Juan; Horiuchi, Masatsugu
2014-07-01
The possible counteracting effect of angiotensin (Ang)-converting enzyme (ACE)2/Ang-(1-7)/Mas axis against the ACE/Ang II/Ang II type 1 (AT1) receptor axis in blood pressure control has been previously described. We examined the possibility that this pathway might be involved in the anti-hypertensive effect of a newly developed AT1 receptor blocker (ARB), azilsartan, and compared azilsartan's effects with those of another ARB, olmesartan. Transgenic mice carrying the human renin and angiotensinogen genes (hRN/hANG-Tg) were given azilsartan or olmesartan. Systolic and diastolic blood pressure, as determined by radiotelemetry, were significantly higher in hRN/hANG-Tg mice than in wild-type (WT) mice. Treatment with azilsartan or olmesartan (1 or 5 mg kg(-1) per day) significantly decreased systolic and diastolic blood pressure, and the blood pressure-lowering effect of azilsartan was more marked than that of olmesartan. The urinary Na concentration decreased in an age-dependent manner in hRN/hANG-Tg mice. Administration of azilsartan or olmesartan increased urinary Na concentration, and this effect was weaker with olmesartan than with azilsartan. Azilsartan decreased ENaC-α mRNA expression in the kidney and decreased the ratio of heart to body weight. Olmesartan had a similar but less-marked effect. ACE2 mRNA expression was lower in the kidneys and hearts of hRN/hANG-Tg mice than in WT mice. This decrease in ACE2 mRNA expression was attenuated by azilsartan, but not by olmesartan. These results suggest that the hypotensive and anti-hypertrophic effects of azilsartan may involve activation of the ACE2/Ang-(1-7)/Mas axis with AT1 receptor blockade.
Prognostic significance of ventricular late potentials in patients with pulmonary sarcoidosis.
Yodogawa, Kenji; Seino, Yoshihiko; Ohara, Toshihiko; Iwasaki, Yu-Ki; Hayashi, Meiso; Miyauchi, Yasushi; Azuma, Arata; Shimizu, Wataru
2018-06-01
Early detection of cardiac involvement in sarcoidosis is difficult but essential to achieve optimal treatment. Signal-averaged electrocardiography (SAECG) can detect subtle cardiac electrical abnormalities termed late potentials (LPs) and would be useful for the early diagnosis of cardiac involvement. This study aims to investigate the prognostic significance of LP in patients with pulmonary sarcoidosis. We prospectively studied 74 patients with pulmonary sarcoidosis without overt electrocardiographic abnormalities. All participants underwent SAECG, cardiac echocardiography, and 24-hour ambulatory Holter monitoring. Serum angiotensin-converting enzyme and B-type natriuretic peptide levels were also evaluated. We followed these patients for the evaluation of incidence of cardiac events including cardiac death, arrhythmias, and heart failure requiring hospital admission. Of the studied population, 29 patients (39.2%) had detectable LP. During a mean follow-up period of 9.8 years, 8 patients with LPs had cardiovascular events, including development of complete atrioventricular block (n = 4), ventricular tachycardia (n = 2), and heart failure (n = 2). Meanwhile, only 1 of 45 patients without LP developed cardiac event (heart failure). Multivariate analyses revealed that LPs were associated with an increased risk of developing cardiac events (hazard ratio 9.66; 95% confidence interval 1.20-78.01; P = .033) whereas age, sex, serum angiotensin-converting enzyme and B-type natriuretic peptide levels, number of premature ventricular contractions on 24-hour Holter monitoring, and echocardiographic parameters were not associated with subsequent cardiac events. SAECG might possibly be useful for the early detection of cardiac sarcoidosis and, if independently validated, could eventually be considered as a screening test for further risk stratification. Copyright © 2018 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.
Ma, Youlong; Teng, Feiyue; Libera, Matthew
2018-06-05
Solid-phase oligonucleotide amplification is of interest because of possible applications to next-generation sequencing, multiplexed microarray-based detection, and cell-free synthetic biology. Its efficiency is, however, less than that of traditional liquid-phase amplification involving unconstrained primers and enzymes, and understanding how to optimize the solid-phase amplification process remains challenging. Here, we demonstrate the concept of solid-phase nucleic acid sequence-based amplification (SP-NASBA) and use it to study the effect of tethering density on amplification efficiency. SP-NASBA involves two enzymes, avian myeloblastosis virus reverse transcriptase (AMV-RT) and RNase H, to convert tethered forward and reverse primers into tethered double-stranded DNA (ds-DNA) bridges from which RNA - amplicons can be generated by a third enzyme, T7 RNA polymerase. We create microgels on silicon surfaces using electron-beam patterning of thin-film blends of hydroxyl-terminated and biotin-terminated poly(ethylene glycol) (PEG-OH, PEG-B). The tethering density is linearly related to the PEG-B concentration, and biotinylated primers and molecular beacon detection probes are tethered to streptavidin-activated microgels. While SP-NASBA is very efficient at low tethering densities, the efficiency decreases dramatically with increasing tethering density due to three effects: (a) a reduced hybridization efficiency of tethered molecular beacon detection probes; (b) a decrease in T7 RNA polymerase efficiency; (c) inhibition of T7 RNA polymerase activity by AMV-RT.
USDA-ARS?s Scientific Manuscript database
We report on the cloning, sequencing, characterization, 3D modeling and docking of Aedes aegypti juvenile hormone acid methyl transferase (AeaJHAMT), the enzyme that converts juvenile hormone acid (JHA) into juvenile hormone (JH). Purified recombinant AeaJHAMT was extensively characterized for enzym...
Takami, N; Oda, K; Fujiwara, T; Ikehara, Y
1990-12-27
Electron microscopic observations showed that the fungal metabolite brefeldin A caused disassembly of the Golgi complex in human choriocarcinoma cells and accumulation of alkaline phosphatase (ALP) in the endoplasmic reticulum (ER) and nuclear envelope, where ALP was not apparently detectable in control cells. Pulse/chase experiments with [35S]methionine demonstrated that in the control cells, ALP synthesized as a 63-kDa precursor form was rapidly converted to a 66-kDa form, by processing of its N-linked oligosaccharides from the high-mannose type to the complex type, which was expressed on the cell surface after 30 min of chase. In contrast, in the brefeldin-A-treated cells the precursor was gradually converted to a 65-kDa form, slightly smaller than the control mature form, which was not expressed on the cell surface even after a prolonged time of chase. Kinetics of the ALP processing in the brefeldin-A-treated cells demonstrated that the precursor was initially converted to an intermediate form, partially sensitive to endo-beta-N-acetylglucosaminidase H (endo H), then to an endo-H-resistant 65-kDa form. In addition, this form was found to be sensitive to neuraminidase digestion, though its sialylation was not so complete as that of the control mature form. Taken together, these results suggest that under disassembly of the Golgi complex caused by brefeldin A, oligosaccharide-processing enzymes including sialyltransferase, an enzyme in the trans Golgi cisterna(e) and/or the trans Golgi network, might be redistributed into the ER and involved in processing of the oligosaccharides of ALP accumulating there.
NASA Technical Reports Server (NTRS)
Georgiou, Christos D.; Zisimopoulos, Dimitrios; Panagiotidis, Konstantinos; Grintzalis, Kontantinos; Papapostolou, Ioannis; Quinn, Richard C.; McKay, Christopher P.; Sun, Henry J.
2015-01-01
This study presents an assay for the detection and quantification of soil metal superoxides and peroxides in regolith and soil. The O2 release (OR) assay is based on the enzymatic conversion of the hydrolysis products of metal oxides to O2, and their quantification by an O2 electrode based on the stoichiometry of the involved reactions: The intermediate product O2 from the hydrolysis of metal superoxides is converted by cytochrome c to O2, and also by superoxide dismutase (SOD) to 1/2 mol O2 and 1/2 mol H2O2, which is then converted by catalase (CAT) to 1/2 mol O2. The product H2O2 from the hydrolysis of metal peroxides and hydroperoxides is converted to 1/2 mol O2 by CAT. The assay-method was validated in a sealed sample chamber using a liquid-phase Clark-type O2 electrode with known concentrations of O2 and H2O2, and with commercial metal superoxide and peroxide mixed with Mars analogue Mojave and Atacama Desert soils. Carbonates and perchlorates, both present on Mars, do not interfere with the assay. The assay lower limit of detection, using luminescence quenching/optical sensing O2-electrodes, is 1 nmol O2 cm(exp. -3) or better. The activity of the assay enzymes SOD and cytochrome c was unaffected up to 6 Gy exposure by gamma-radiation, while CAT retained 100% and 40% of its activity at 3 and 6 Gy, respectively, demonstrating the suitability of these enzymes for planetary missions, e.g., in Mars or Europa.
Georgiou, Christos D; Zisimopoulos, Dimitrios; Panagiotidis, Konstantinos; Grintzalis, Konstantinos; Papapostolou, Ioannis; Quinn, Richard C; McKay, Christopher P; Sun, Henry J
2016-02-01
This study presents an assay for the detection and quantification of soil metal superoxides and peroxides in regolith and soil. The O2 release (OR) assay is based on the enzymatic conversion of the hydrolysis products of metal oxides to O2 and their quantification by an O2 electrode based on the stoichiometry of the involved reactions. The intermediate product O₂˙⁻ from the hydrolysis of metal superoxides is converted by cytochrome c to O2 and by superoxide dismutase (SOD) to ½ mol O2 and ½ mol H2O2, which is then converted by catalase (CAT) to ½ mol O2. The product H2O2 from the hydrolysis of metal peroxides and hydroperoxides is converted to ½ mol O2 by CAT. The assay method was validated in a sealed sample chamber by using a liquid-phase Clark-type O2 electrode with known concentrations of O₂˙⁻ and H2O2, and commercial metal superoxide and peroxide mixed with Mars analog Mojave and Atacama Desert soils. Carbonates and perchlorates, both present on Mars, do not interfere with the assay. The assay lower limit of detection, when using luminescence quenching/optical sensing O2-electrodes, is 1 nmol O2 cm(-3) or better. The activity of the assay enzymes SOD and cytochrome c was unaffected up to 6 Gy exposure by γ radiation, while CAT retained 100% and 40% of its activity at 3 and 6 Gy, respectively, which demonstrates the suitability of these enzymes for planetary missions, for example, on Mars or Europa.
Arginine production in the neonate
USDA-ARS?s Scientific Manuscript database
Endogenous arginine synthesis in adults is a complex multiorgan process, in which citrulline is synthesized in the gut, enters the general circulation, and is converted into arginine in the kidney, by what is known as the intestinal-renal axis. In neonates, the enzymes required to convert citrulline...
The effect of angiotensin-converting enzyme inhibition throughout a superovulation protocol in ewes.
Pereira, Alécio Matos; de Souza Júnior, Antônio; Machado, Fernanda Brandão; Gonçalves, Gleisy Kelly Neves; Feitosa, Lauro César Soares; Reis, Adelina Martha; Santos, Robson Augusto Souza; Honorato-Sampaio, Kinulpe; Costa, Amilton Raposo
2015-12-01
Many studies identified new components of the renin–angiotensin system (RAS), such as Angiotensin-(1-7) [Ang-(1–7)] and Angiotensin-converting enzyme type 2 (ACE2), in mammalian ovaries.We previously showed Angiotensin-Converting Enzyme (ACE) inhibition, which increases the level of Ang-(1–7), stimulated ovarian estradiol output in ewe after estrous synchronization. Considering that Ang-(1–7) stimulates ovarian function and elevated estradiol before ovulation is associated with increased chance of achieving pregnancy, the present study investigated whether ACE inhibition throughout a superovulation protocol in ewe might improve ovulation outcome. At first, immunohistochemistry in ovaries of nonpregnant ewes revealed localization of Angiotensin II (Ang II), Ang-(1–7) and ACE2 in theca cells of antral follicles and in corpus luteum. Ang II and Ang-(1–7)were also detected in follicular fluid (FF) by Radioimmunoassay (RIA). Enalapril treatment throughout the superovulation protocol decreased 17β-estradiol (E2) output and raised progesterone:estradiol (P4:E2) ratio without a direct influence on ovulation and quality of embryos.
Li, Hui-Jie; Zheng, Cheng-Rong; Chen, Guo-Zhu; Qin, Jun; Zhang, Ji-Hang; Yu, Jie; Zhang, En-Hao; Huang, Lan
2016-01-01
Inhaled budesonide is a novel approach to prevent acute mountain sickness (AMS). However, its mechanism is not completely understood. We aimed to investigate the effects of budesonide and dexamethasone on renin-angiotensin-aldosterone system in AMS prevention. Data were obtained from a randomised controlled trial including 138 participants. The participants were randomly assigned to receive budesonide, dexamethasone or placebo as prophylaxis before they travelled to 3450 m altitude from 400 m by car. Their plasma concentrations of renin, angiotensin-converting enzyme (ACE) and aldosterone were measured at both altitudes. All parameters were comparable among the three groups at 400 m. After high-altitude exposure of 3450, renin in all groups increased significantly; the ACE, aldosterone concentrations, as well as the aldosterone/renin ratio, rose markedly in the dexamethasone and placebo groups but not in the budesonide group. Moreover, the aldosterone/renin ratio correlated closely with ACE concentration. Upon acute high-altitude exposure, budesonide, but not dexamethasone, blunted the response of aldosterone to renin elevation by suppressing angiotensin converting enzyme. © The Author(s) 2016.
Sankaranarayanan, Mugesh; Seol, Eunhee; Kim, Yeonhee; Chauhan, Ashish Singh; Park, Sunghoon
2017-03-01
Glycerol dehydratase (GDHt), which converts glycerol to 3-hydroxypropionaldehyde, is essential to the production of 1,3-propanediol (1,3-PDO) or 3-hydroxypropionic acid (3-HP). A reliable GDHt activity assay in crude-cell extract was developed. In the assay, GDHt converted 1,2-propanediol (1,2-PDO) to propionaldehyde, which was further converted to 1-propionic acid by aldehyde dehydrogenase (KGSADH) or to 1-propanol by yeast-alcohol dehydrogenase (yADH), while the NADH concentration change was monitored spectrophotometrically. Cells should be disintegrated by Bead Beater/French Press, not by chemical methods (BugBuster ® /B-PER™), because the reagents significantly inactivated GDHt and coupling enzymes. Furthermore, in the assay mixture, a much higher activity of KGSADH (>200-fold) or yADH (>400-fold) than that of GDHt should have been maintained. Under optimal conditions, both KGSADH and yADH showed practically the same activity. The coupled-enzyme assay method established here should prove to be applicable to recombinant strains developed for the production of 3-HP and/or 1,3-PDO from glycerol.
Motawi, Tarek K; El-Maraghy, Shohda A; Senousy, Mahmoud A
2013-07-01
Angiotensin-converting enzyme (ACE) is upregulated in the diabetic kidney and contributes to renal injury. This study investigates the possible beneficial effects of the ACE inhibitor (ACEI), enalapril and the AT1 receptor blocker (ARB), valsartan, on renal ACE expression, renal structure, and function in streptozotocin (STZ)-induced diabetic rats. Male Wistar rats were allocated into four groups: control, STZ-diabetic rats, and STZ-diabetic rats treated with either enalapril (10 mg/kg/day) or valsartan (50 mg/kg/day) for 8 weeks. Enalapril and valsartan reduced renal ACE mRNA and protein expression, Na(+) /K(+) -ATPase activity, oxidative stress, and serum transforming growth factor-β1 levels compared to the diabetic group. Both treatments normalized renal nitrate/nitrite levels and ameliorated the observed histopathological changes. In conclusion, ACE downregulation by ACEI and ARB indicates that angiotensin II upregulates ACE through AT1 receptor. Prevention of diabetes-induced changes in ACE expression and Na(+) /K(+) -ATPase activity could be a new explanation of the renoprotective effects of ACEIs and ARBs. © 2013 Wiley Periodicals, Inc.
Tu, Maolin; Liu, Hanxiong; Zhang, Ruyi; Chen, Hui; Mao, Fengjiao; Cheng, Shuzhen; Lu, Weihong; Du, Ming
2018-04-25
Casein hydrolysates exert various biological activities, and the responsible functional peptides are being identified from them continuously. In this study, the tryptic casein hydrolysate was fractionated by an ultrafiltration membrane (3 kDa), and the peptides were identified by capillary electrophoresis-quadrupole-time-of-flight-tandem mass spectrometry. Meanwhile, in silico methods were used to analyze the toxicity, solubility, stability, and affinity between the peptides and angiotensin-I-converting enzyme (ACE). Finally, a new angiotensin-I-converting enzyme inhibitory (ACEI) peptide, EKVNELSK, derived from α s1 -casein (fragment 35-42) was screened. The half maximal inhibitory concentration value of the peptide is 5.998 mM, which was determined by a high-performance liquid chromatography method. The Lineweaver-Burk plot indicated that this peptide is a mixed-type inhibitor against ACE. Moreover, Discovery Studio 2017 R2 software was adopted to perform molecular docking to propose the potential mechanisms underlying the ACEI activity of the peptide. These results indicated that EKVNELSK is a new ACEI peptide identified from casein hydrolysate.
Ontogenetic role of angiontensin-converting enzyme in rats: thirst and sodium appetite evaluation.
Mecawi, André S; Araujo, Iracema G; Rocha, Fábio F; Coimbra, Terezila M; Antunes-Rodrigues, José; Reis, Luís C
2010-01-12
We investigated the influence of captopril (an angiotensin converting enzyme inhibitor) treatment during pregnancy and lactation period on hydromineral balance of the male adult offspring, particularly, concerning thirst and sodium appetite. We did not observe significant alterations in basal hydromineral (water intake, 0.3M NaCl intake, volume and sodium urinary concentration) or cardiovascular parameters in adult male rats perinatally treated with captopril compared to controls. However, male offspring rats that perinatally exposed to captopril showed a significant attenuation in water intake induced by osmotic stimulation, extracellular dehydration and beta-adrenergic stimulation. Moreover, captopril treatment during perinatal period decreased the salt appetite induced by sodium depletion. This treatment also attenuated thirst and sodium appetite aroused during inhibition of peripheral angiotensin II generation raised by low concentration of captopril in the adult offspring. Interestingly, perinatal exposure to captopril did not alter water or salt intake induced by i.c.v. administration of angiotensin I or angiotensin II. These results showed that chronic inhibition of angiotensin converting enzyme during pregnancy and lactation modifies the regulation of induced thirst and sodium appetite in adulthood.
Li, Hui-Jie; Zheng, Cheng-Rong; Chen, Guo-Zhu; Qin, Jun; Zhang, Ji-Hang; Yu, Jie; Zhang, En-Hao; Huang, Lan
2016-01-01
Introduction: Inhaled budesonide is a novel approach to prevent acute mountain sickness (AMS). However, its mechanism is not completely understood. We aimed to investigate the effects of budesonide and dexamethasone on renin–angiotensin–aldosterone system in AMS prevention. Materials and methods: Data were obtained from a randomised controlled trial including 138 participants. The participants were randomly assigned to receive budesonide, dexamethasone or placebo as prophylaxis before they travelled to 3450 m altitude from 400 m by car. Their plasma concentrations of renin, angiotensin-converting enzyme (ACE) and aldosterone were measured at both altitudes. Results: All parameters were comparable among the three groups at 400 m. After high-altitude exposure of 3450, renin in all groups increased significantly; the ACE, aldosterone concentrations, as well as the aldosterone/renin ratio, rose markedly in the dexamethasone and placebo groups but not in the budesonide group. Moreover, the aldosterone/renin ratio correlated closely with ACE concentration. Conclusions: Upon acute high-altitude exposure, budesonide, but not dexamethasone, blunted the response of aldosterone to renin elevation by suppressing angiotensin converting enzyme. PMID:27317302
Hiwada, K; Inoue, Y; Kokubu, T
1990-01-01
1. An in vitro experiment was carried out to compare the inhibitory effect of SQ29,852 on human renal angiotensin converting enzyme (ACE) with those of captopril, enalapril and enalaprilat. 2. SQ29,852 strongly inhibited human renal ACE; its IC50 value was 1.5 x 10(-8) M. In terms of the IC50, SQ29,852's efficacy was about 1/10 of that of captopril and 1/28 of that of enalaprilat, but it was about 14 times more potent than enalapril. 3. SQ29,852 showed no inhibitory effects on cathepsin D, urinary kallikrein, renal renin, pepsin, trypsin and chymotrypsin. Its ACE-specificity was higher than that of captopril. 4. ACE inhibition by SQ29,852 was shown to be competitive, as revealed by Lineweaver-Burk plots. The affinity of SQ29,852 to ACE was shown to be high by a Ki value of 1.2 x 10(-8) M.
Fennema, Diede; Phillips, Ian R.
2016-01-01
Flavin-containing monooxygenase 3 (FMO3) is known primarily as an enzyme involved in the metabolism of therapeutic drugs. On a daily basis, however, we are exposed to one of the most abundant substrates of the enzyme trimethylamine (TMA), which is released from various dietary components by the action of gut bacteria. FMO3 converts the odorous TMA to nonodorous TMA N-oxide (TMAO), which is excreted in urine. Impaired FMO3 activity gives rise to the inherited disorder primary trimethylaminuria (TMAU). Affected individuals cannot produce TMAO and, consequently, excrete large amounts of TMA. A dysbiosis in gut bacteria can give rise to secondary TMAU. Recently, there has been much interest in FMO3 and its catalytic product, TMAO, because TMAO has been implicated in various conditions affecting health, including cardiovascular disease, reverse cholesterol transport, and glucose and lipid homeostasis. In this review, we consider the dietary components that can give rise to TMA, the gut bacteria involved in the production of TMA from dietary precursors, the metabolic reactions by which bacteria produce and use TMA, and the enzymes that catalyze the reactions. Also included is information on bacteria that produce TMA in the oral cavity and vagina, two key microbiome niches that can influence health. Finally, we discuss the importance of the TMA/TMAO microbiome-host axis in health and disease, considering factors that affect bacterial production and host metabolism of TMA, the involvement of TMAO and FMO3 in disease, and the implications of the host-microbiome axis for management of TMAU. PMID:27190056
Genetics Home Reference: Bietti crystalline dystrophy
... broken down and converted into energy, but the enzyme's specific function is not well understood. CYP4V2 gene mutations that cause Bietti crystalline dystrophy impair or eliminate the function of this enzyme and are believed to affect lipid breakdown. However, ...
2013-01-01
Background Ganoderma lucidum has been purported as a potent remedy in the treatment and prevention of several ailments, including hypertension. This study aimed to explore the anti-ACE potential of protein fractions from the mycelia of G. lucidum. Methods Ganoderma lucidum mycelia were cultivated by submerged fermentation in a liquid medium containing brown sugar and spent brewer’s yeast. Intracellular proteins were fractionated from mycelia crude water extract by ammonium sulphate precipitation, and their angiotensin converting enzyme inhibitory activity was evaluated. The potential anti-ACE protein fractions were further separated by RP-HPLC and characterised using proteomics platforms. Results Preliminary result demonstrated that the mycelia crude water extract inhibited ACE at IC50 value of 1.134 ± 0.036 mg/mL. Following protein fractionation and HPLC purification, the presence of highly potential anti-ACE proteins with the IC50 values less than 200 μg/mL was detected. Characterisation of these proteins demonstrated the presence of four different antihypertensive-related proteins involved in the regulation of blood pressure through different mechanisms. Conclusions This study suggests that the mycelia of G. lucidum has high potential in lowering blood pressure level due to the presence of several antihypertensive-related proteins such as cystathionine beta synthase-like protein, DEAD/DEAH box helicase-like protein, paxillin-like protein, and alpha/beta hydrolase-like protein. PMID:24093919
Park, Phil June; Lee, Tae Ryong; Cho, Eun-Gyung
2015-02-01
Substance P (SP) is a well-known neuropeptide implicated in the wound-healing process. The wound occasionally causes a pigmented scar. In the present study, we examined whether increased levels of SP affected melanogenesis. When human melanocytes were treated with SP, the melanin content increased and the pigmentation process accelerated in a dose-dependent manner. In addition to melanogenesis-related genes, the expression of neurokinin 1 receptor, endothelin 1 (EDN1), and EDN receptor type B (EDNRB) also increased at both the messenger RNA and protein levels. Interestingly, secreted EDN1 was observed in the melanocyte culture medium, and this phenomenon was significantly enhanced by SP treatment. Through knockdown experiments using small interfering RNAs (siRNAs), we confirmed that endothelin-converting enzyme 1 (ECE1), EDN1, and EDNRB were involved in SP-induced pigmentation and found that EDN1 secretion was affected by ECE1 and EDN1 siRNAs, but not by EDNRB siRNA. These findings indicate that ECE1 is essential for EDN1 secretion in melanocytes and that EDNRB functions downstream of secreted EDN1 to increase the cAMP levels and activate the melanogenesis-related phosphorylation cascade. This study provides in vitro evidence for a melanogenic function of SP in the skin and suggests that the SP-related signal is a potent target for regulating stress- or wound-induced pigmentation.
Water-soluble benzodiazepine prodrug/enzyme combinations for intranasal rescue therapies.
Siegel, Ronald A; Kapoor, Mamta; Cheryala, Narsihmulu; Georg, Gunda I; Cloyd, James C
2015-08-01
Benzodiazepines (BZDs), including diazepam (DZP) and midazolam (MDZ), are drugs of choice for rapid treatment of seizure emergencies. Current approved use of these drugs involves administration via either intravenous or rectal routes. The former requires trained medical personnel, while the latter is socially unacceptable for many patients and caregivers. In recent years, efforts have been made to formulate BZDs for nasal administration. Because of the low solubility of these molecules, organic vehicles have been used to solubilize the drugs in the nasal products under development. However, organic solvents are irritating, potentially resulting in injury to nasal tissue. Here we report preliminary studies supporting a strategy in which water-soluble BZD prodrugs and a suitable converting enzyme are coadministered in an aqueous vehicle. Diazepam and midazolam prodrugs were synthesized and were readily converted to their active forms by a protease from Aspergillus oryzae. Using a permeation assay based on monolayers of Madin-Darby canine kidney II-wild type cells, we found that enzymatically produced BZDs could be maintained at high degrees of supersaturation, enabling faster transport across the membrane than can be achieved using saturated solutions. This strategy not only obviates the need for organic solvents, but it also suggests more rapid absorption and earlier peak concentrations than can be otherwise achieved. This article is part of a Special Issue entitled "Status Epilepticus". Copyright © 2015 Elsevier Inc. All rights reserved.
Analysis of serum angiotensin-converting enzyme.
Muller, B R
2002-09-01
Serum angiotensin-converting enzyme (SACE) levels are influenced by genetic polymorphism. Interpretation of serum levels with the appropriate genotypic reference range improves the diagnostic sensitivity of the assay for sarcoidosis. SACE assays are performed by a large number of routine clinical laboratories. However, there is no external quality assessment (EQA) for SACE other than an informal regional scheme. This showed analytical performance of SACE assays to be poor, with a diversity of reference ranges, leading to widely disparate clinical classification of EQA samples. Genetic polymorphism combined with poor analytical performance suggest that perhaps SACE assays should revert to being the province of specialized laboratories.
Bartholomew, B A; Smith, M J; Long, M T; Darcy, P J; Trudgill, P W; Hopper, D J
1995-04-15
Tropine dehydrogenase was induced by growth of Pseudomonas AT3 on atropine, tropine or tropinone. It was NADP(+)-dependent and gave no activity with NAD+. The enzyme was very unstable but a rapid purification procedure using affinity chromatography that gave highly purified enzyme was developed. The enzyme gave a single band on isoelectric focusing with an isoelectric point at approximately pH 4. The native enzyme had an M(r) of 58,000 by gel filtration and 28,000 by SDS/PAGE and therefore consists of two subunits of equal size. The enzyme displayed a narrow range of specificity and was active with tropine and nortropine but not with pseudotropine, pseudonortropine, or a number of related compounds. The apparent Kms were 6.06 microM for tropine and 73.4 microM for nortropine with the specificity constant (Vmax/Km) for tropine 7.8 times that for pseudotropine. The apparent Km for NADP+ was 48 microM. The deuterium of [3-2H]tropine and [3-2H]pseudotropine was retained when these compounds were converted into 6-hydroxycyclohepta-1,4-dione, an intermediate in tropine catabolism, showing that the tropine dehydrogenase, although induced by growth on tropine, is not involved in the catabolic pathway for this compound. 6-Hydroxycyclohepta-1,4-dione was also implicated as an intermediate in the pathways for pseudotropine and tropinone catabolism.
Picot, Marie C N; Zengin, Gokhan; Mollica, Adriano; Stefanucci, Azzurra; Carradori, Simone; Mahomoodally, Mohamad F
2017-01-01
Mangiferin, was identified in the crude methanol extract, ethyl acetate, and n-butanol fractions of Aphloia theiformis (Vahl.) Benn. This study aimed to analyze the plausible binding modes of mangiferin to key enzymes linked to diabetes type 2 (DT2), obesity, hypertension, Alzheimer's disease, and urolithiasis using molecular docking. Crystallographic structures of α-amylase, α-glucosidase, glycogen phosphorylase (GP), pancreatic lipase, cholesterol esterase (CEase), angiotensin-I-converting enzyme (ACE), acetyl cholinesterase (AChE), and urease available on the Protein Databank database were docked to mangiferin using Gold 6.0 software. We showed that mangiferin bound to all enzymes by π-π and hydrogen bonds mostly. Mangiferin was docked to both allosteric and orthosteric sites of α-glucosidase by π-π interactions. However, several hydrogen bonds were observed at the orthosteric position, suggesting a preference for this site. The docking of mangiferin on AChE with the catalytic pocket occupied by paraoxon could be attributed to π-π stacking involving amino acid residues, Trp341 and Trp124. This study provided an insight of the molecular interaction of mangiferin with the studied enzymes and can be considered as a valuable tool for designing new drugs for better management of these diseases. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Personal glucose meters for detection and quantification of a broad range of analytes
Lu, Yi; Xiang, Yu
2015-02-03
A general methodology for the development of highly sensitive and selective sensors that can achieve portable, low-cost and quantitative detection of a broad range of targets using only a personal glucose meter (PGM) is disclosed. The method uses recognition molecules that are specific for a target agent, enzymes that can convert an enzyme substrate into glucose, and PGM. Also provided are sensors, which can include a solid support to which is attached a recognition molecule that permits detection of a target agent, wherein the recognition molecule specifically binds to the target agent in the presence of the target agent but not significantly to other agents as well as an enzyme that can catalyze the conversion of a substance into glucose, wherein the enzyme is attached directly or indirectly to the recognition molecule, and wherein in the presence of the target agent the enzyme can convert the substance into glucose. The disclosed sensors can be part of a lateral flow device. Methods of using such sensors for detecting target agents are also provided.
Pie waste - A component of food waste and a renewable substrate for producing ethanol.
Magyar, Margaret; da Costa Sousa, Leonardo; Jayanthi, Singaram; Balan, Venkatesh
2017-04-01
Sugar-rich food waste is a sustainable feedstock that can be converted into ethanol without an expensive thermochemical pretreatment that is commonly used in first and second generation processes. In this manuscript we have outlined the pie waste conversion to ethanol through a two-step process, namely, enzyme hydrolysis using commercial enzyme products mixtures and microbial fermentation using yeast. Optimized enzyme cocktail was found to be 45% alpha amylase, 45% gamma amylase, and 10% pectinase at 2.5mg enzyme protein/g glucan produced a hydrolysate with high glucose concentration. All three solid loadings (20%, 30%, and 40%) produced sugar-rich hydrolysates and ethanol with little to no enzyme or yeast inhibition. Enzymatic hydrolysis and fermentation process mass balance was carried out using pie waste on a 1000g dry weight basis that produced 329g ethanol at 20% solids loading. This process clearly demonstrate how food waste could be efficiently converted to ethanol that could be used for making biodiesel by reacting with waste cooking oil. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hargono, Kumoro, Andri Cahyo; Jos, Bakti
2015-12-01
Inconventional ethanol production process, starch is converted into dextrins via liquefaction using α-amylase enzyme at high temperature (90-120°C). Then, dextrins are saccharified by glucoamylase to obtain to monomeric sugars (glucose). Recently, a granular starch hydrolyzing enzymes (GSHE), Stargen 002, was developed to convert starch into dextrins at low temperature (< 32°C) and hydrolyzes dextrins into glucose. The subject of this research was to compare ethanol production using a granular starch hydrolyzing enzymes and conventional enzymatic liquefaction and saccharification in cassava starch processing. Starch slurry concentrations were 20% w/v, and dosage of enzymes 0.50, 1.0 and 2%, respectively, were studied. After 48 hr process the final ethanol concentration for the respective enzyme concentration for conventional process were 34.90, 36.16 and 42.10 g/L, whereas for the non-thermal treatment, final ethanol concentration were 46.4, 57.62 and 59.65 g/L, respectively. By implementation of this non thermal process, the use of energy can be saved by carrying out saccharification step at lower temperature (30°C) could be realized.
Arginine de novo and nitric oxide production in disease states
Luiking, Yvette C.; Ten Have, Gabriella A. M.; Wolfe, Robert R.
2012-01-01
Arginine is derived from dietary protein intake, body protein breakdown, or endogenous de novo arginine production. The latter may be linked to the availability of citrulline, which is the immediate precursor of arginine and limiting factor for de novo arginine production. Arginine metabolism is highly compartmentalized due to the expression of the enzymes involved in arginine metabolism in various organs. A small fraction of arginine enters the NO synthase (NOS) pathway. Tetrahydrobiopterin (BH4) is an essential and rate-limiting cofactor for the production of NO. Depletion of BH4 in oxidative-stressed endothelial cells can result in so-called NOS3 “uncoupling,” resulting in production of superoxide instead of NO. Moreover, distribution of arginine between intracellular transporters and arginine-converting enzymes, as well as between the arginine-converting and arginine-synthesizing enzymes, determines the metabolic fate of arginine. Alternatively, NO can be derived from conversion of nitrite. Reduced arginine availability stemming from reduced de novo production and elevated arginase activity have been reported in various conditions of acute and chronic stress, which are often characterized by increased NOS2 and reduced NOS3 activity. Cardiovascular and pulmonary disorders such as atherosclerosis, diabetes, hypercholesterolemia, ischemic heart disease, and hypertension are characterized by NOS3 uncoupling. Therapeutic applications to influence (de novo) arginine and NO metabolism aim at increasing substrate availability or at influencing the metabolic fate of specific pathways related to NO bioavailability and prevention of NOS3 uncoupling. These include supplementation of arginine or citrulline, provision of NO donors including inhaled NO and nitrite (sources), NOS3 modulating agents, or the targeting of endogenous NOS inhibitors like asymmetric dimethylarginine. PMID:23011059
Koivistoinen, Outi M; Richard, Peter; Penttilä, Merja; Ruohonen, Laura; Mojzita, Dominik
2012-02-17
In filamentous fungi D-galactose can be catabolised through the oxido-reductive and/or the Leloir pathway. In the oxido-reductive pathway D-galactose is converted to d-fructose in a series of steps where the last step is the oxidation of d-sorbitol by an NAD-dependent dehydrogenase. We identified a sorbitol dehydrogenase gene, sdhA (JGI53356), in Aspergillus niger encoding a medium chain dehydrogenase which is involved in D-galactose and D-sorbitol catabolism. The gene is upregulated in the presence of D-galactose, galactitol and D-sorbitol. An sdhA deletion strain showed reduced growth on galactitol and growth on D-sorbitol was completely abolished. The purified enzyme converted D-sorbitol to D-fructose with K(m) of 50±5 mM and v(max) of 80±10 U/mg. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Ammonia formation by a thiolate-bridged diiron amide complex as a nitrogenase mimic
NASA Astrophysics Data System (ADS)
Li, Yang; Li, Ying; Wang, Baomin; Luo, Yi; Yang, Dawei; Tong, Peng; Zhao, Jinfeng; Luo, Lun; Zhou, Yuhan; Chen, Si; Cheng, Fang; Qu, Jingping
2013-04-01
Although nitrogenase enzymes routinely convert molecular nitrogen into ammonia under ambient temperature and pressure, this reaction is currently carried out industrially using the Haber-Bosch process, which requires extreme temperatures and pressures to activate dinitrogen. Biological fixation occurs through dinitrogen and reduced NxHy species at multi-iron centres of compounds bearing sulfur ligands, but it is difficult to elucidate the mechanistic details and to obtain stable model intermediate complexes for further investigation. Metal-based synthetic models have been applied to reveal partial details, although most models involve a mononuclear system. Here, we report a diiron complex bridged by a bidentate thiolate ligand that can accommodate HN=NH. Following reductions and protonations, HN=NH is converted to NH3 through pivotal intermediate complexes bridged by N2H3- and NH2- species. Notably, the final ammonia release was effected with water as the proton source. Density functional theory calculations were carried out, and a pathway of biological nitrogen fixation is proposed.
Evidence-based Evaluation and Management of Chronic Cough.
Achilleos, Andreas
2016-09-01
Chronic cough is common and has a significant impact on the wellbeing of patients and the use and cost of health care services. Traditionally the approach to chronic cough in patients who are nonsmokers and are not taking an angiotensin-converting enzyme inhibitor has focused on the diagnosis and management of the upper airway cough syndrome, asthma, and reflux disease. The evaluation of patients with chronic cough frequently involves trials of empiric therapy for these 3 conditions. Chronic cough may be perpetuated by abnormalities of the cough reflex and sensitization of its afferent and central components. Copyright © 2016 Elsevier Inc. All rights reserved.
Adeboye, Peter Temitope; Bettiga, Maurizio; Olsson, Lisbeth
2017-01-01
The ability of Saccharomyces cerevisiae to catabolize phenolic compounds remains to be fully elucidated. Conversion of coniferyl aldehyde, ferulic acid and p-coumaric acid by S. cerevisiae under aerobic conditions was previously reported. A conversion pathway was also proposed. In the present study, possible enzymes involved in the reported conversion were investigated. Aldehyde dehydrogenase Ald5, phenylacrylic acid decarboxylase Pad1, and alcohol acetyltransferases Atf1 and Atf2, were hypothesised to be involved. Corresponding genes for the four enzymes were overexpressed in a S. cerevisiae strain named APT_1. The ability of APT_1 to tolerate and convert the three phenolic compounds was tested. APT_1 was also compared to strains B_CALD heterologously expressing coniferyl aldehyde dehydrogenase from Pseudomonas, and an ald5Δ strain, all previously reported. APT_1 exhibited the fastest conversion of coniferyl aldehyde, ferulic acid and p-coumaric acid. Using the intermediates and conversion products of each compound, the catabolic route of coniferyl aldehyde, ferulic acid and p-coumaric acid in S. cerevisiae was studied in greater detail. PMID:28205618
Regulation of uric acid metabolism and excretion.
Maiuolo, Jessica; Oppedisano, Francesca; Gratteri, Santo; Muscoli, Carolina; Mollace, Vincenzo
2016-06-15
Purines perform many important functions in the cell, being the formation of the monomeric precursors of nucleic acids DNA and RNA the most relevant one. Purines which also contribute to modulate energy metabolism and signal transduction, are structural components of some coenzymes and have been shown to play important roles in the physiology of platelets, muscles and neurotransmission. All cells require a balanced quantity of purines for growth, proliferation and survival. Under physiological conditions the enzymes involved in the purine metabolism maintain in the cell a balanced ratio between their synthesis and degradation. In humans the final compound of purines catabolism is uric acid. All other mammals possess the enzyme uricase that converts uric acid to allantoin that is easily eliminated through urine. Overproduction of uric acid, generated from the metabolism of purines, has been proven to play emerging roles in human disease. In fact the increase of serum uric acid is inversely associated with disease severity and especially with cardiovascular disease states. This review describes the enzymatic pathways involved in the degradation of purines, getting into their structure and biochemistry until the uric acid formation. Copyright © 2015. Published by Elsevier Ireland Ltd.
Angiotensin II-producing enzyme III from acidified serum of nephrectomized dogs.
Haas, E; Lewis, L; Koshy, T J; Varde, A U; Renerts, L; Bagai, R C
1989-09-01
A highly active angiotensin-producing enzyme (enzyme III) was obtained from the serum of bilaterally nephrectomized dogs by acid treatment and ammonium sulfate fractionation. An inactive precursor (proenzyme III) was converted to enzyme III during prolonged storage (or by treatment with acid or with cathepsin G or by incubation at 38 degrees C as described in the following paper). Enzyme III reacted maximally at pH 7.7 and it produced up to 400 ng of angiotensin II/mL serum/h (i.e., amounts 4000 times higher than that generated by the endogenous renin present in serum after bilateral nephrectomy). Enzyme III produced angiotensin II at identical rates when either dog angiotensinogen or angiotensin I was used as substrate, but the rate was 710 times higher with synthetic tetradecapeptide renin substrate. Enzyme III is not identical to renin, cathepsin G, tonin, enzyme I, enzyme II, the calcium-dependent angiotensin I-converting enzyme, or the calcium-independent carboxy peptidase, which acts by sequential cleavage of angiotensin I. Enzyme III was inhibited by alpha-1-antitrypsin, diisopropyl fluorophosphate, and lima bean trypsin inhibitor (hence it is a serine proteinase). It was not inhibited by Captopril, Teprotide, or Enalapril. It had been reported previously that cathepsin G released from neutrophil granulocytes, by producing high local concentrations of angiotensin II, may provide a mobile means for modulating blood flow in tissue microvasculature during the inflammatory response. The present study offers a new, additional pathway, by enzyme III, for a similar rapid formation of angiotensin II from serum protein substrate or angiotensin I.
Sun, Lianli; Ruppert, Martin; Sheludko, Yuri; Warzecha, Heribert; Zhao, Yu; Stöckigt, Joachim
2008-07-01
Perakine reductase (PR) catalyzes an NADPH-dependent step in a side-branch of the 10-step biosynthetic pathway of the alkaloid ajmaline. The enzyme was cloned by a "reverse-genetic" approach from cell suspension cultures of the plant Rauvolfia serpentina (Apocynaceae) and functionally expressed in Escherichia coli as the N-terminal His(6)-tagged protein. PR displays a broad substrate acceptance, converting 16 out of 28 tested compounds with reducible carbonyl function which belong to three substrate groups: benzaldehyde, cinnamic aldehyde derivatives and monoterpenoid indole alkaloids. The enzyme has an extraordinary selectivity in the group of alkaloids. Sequence alignments define PR as a new member of the aldo-keto reductase (AKR) super family, exhibiting the conserved catalytic tetrad Asp52, Tyr57, Lys84, His126. Site-directed mutagenesis of each of these functional residues to an alanine residue results in >97.8% loss of enzyme activity, in compounds of each substrate group. PR represents the first example of the large AKR-family which is involved in the biosynthesis of plant monoterpenoid indole alkaloids. In addition to a new esterase, PR significantly extends the Rauvolfia alkaloid network to the novel group of peraksine alkaloids.
A cluster of bacterial genes for anaerobic benzene ring biodegradation
Egland, Paul G.; Pelletier, Dale A.; Dispensa, Marilyn; Gibson, Jane; Harwood, Caroline S.
1997-01-01
A reductive benzoate pathway is the central conduit for the anaerobic biodegradation of aromatic pollutants and lignin monomers. Benzene ring reduction requires a large input of energy and this metabolic capability has, so far, been reported only in bacteria. To determine the molecular basis for this environmentally important process, we cloned and analyzed genes required for the anaerobic degradation of benzoate and related compounds from the phototrophic bacterium, Rhodopseudomonas palustris. A cluster of 24 genes was identified that includes twelve genes likely to be involved in anaerobic benzoate degradation and additional genes that convert the related compounds 4-hydroxybenzoate and cyclohexanecarboxylate to benzoyl-CoA. Genes encoding benzoyl-CoA reductase, a novel enzyme able to overcome the resonance stability of the aromatic ring, were identified by directed mutagenesis. The gene encoding the ring-cleavage enzyme, 2-ketocyclohexanecarboxyl-CoA hydrolase, was identified by assaying the enzymatic activity of the protein expressed in Escherichia coli. Physiological data and DNA sequence analyses indicate that the benzoate pathway consists of unusual enzymes for ring reduction and cleavage interposed among enzymes homologous to those catalyzing fatty acid degradation. The cloned genes should be useful as probes to identify benzoate degradation genes from other metabolically distinct groups of anaerobic bacteria, such as denitrifying bacteria and sulfate-reducing bacteria. PMID:9177244
Locating active-site hydrogen atoms in d-xylose isomerase: Time-of-flight neutron diffraction
Katz, Amy K.; Li, Xinmin; Carrell, H. L.; Hanson, B. Leif; Langan, Paul; Coates, Leighton; Schoenborn, Benno P.; Glusker, Jenny P.; Bunick, Gerard J.
2006-01-01
Time-of-flight neutron diffraction has been used to locate hydrogen atoms that define the ionization states of amino acids in crystals of d-xylose isomerase. This enzyme, from Streptomyces rubiginosus, is one of the largest enzymes studied to date at high resolution (1.8 Å) by this method. We have determined the position and orientation of a metal ion-bound water molecule that is located in the active site of the enzyme; this water has been thought to be involved in the isomerization step in which d-xylose is converted to d-xylulose or d-glucose to d-fructose. It is shown to be water (rather than a hydroxyl group) under the conditions of measurement (pH 8.0). Our analyses also reveal that one lysine probably has an −NH2-terminal group (rather than NH3+). The ionization state of each histidine residue also was determined. High-resolution x-ray studies (at 0.94 Å) indicate disorder in some side chains when a truncated substrate is bound and suggest how some side chains might move during catalysis. This combination of time-of-flight neutron diffraction and x-ray diffraction can contribute greatly to the elucidation of enzyme mechanisms. PMID:16707576
Zeglen, Sławomir; Zakliczyński, Michał; Nozyński, Jerzy; Rogala, Barbara; Zembala, Marian
2006-11-01
sCD30 and ICE/caspase-1 as apoptosis-regulating factors are suspected to be involved in the survival rate of immunocompetent cells during immunosuppression after allotransplantation. Serum CD30 and ICE/caspase-1 concentrations were estimated and associated with unspecific serum apoptosis marker--anti-Annexin V antibodies and myocardial biopsies results. 28 clinically stabile patients--heart transplant recipients at least 3 months after cardiac transplantation performed due to heart failure caused by ischaemic and/or congestive cardiomyopathy or/and primary valvular heart disease (26 men and 2 women, mean age=36.8 years, S.D.=7.6) with normal heart function assessed by use of ultrasound scan--were involved in the trial. The patients were divided and analyzed in two ways: first according to the results of elective endomyocardial biopsies and second to main immunosuppressive agent used. The enzyme immunoassay (CD30, Dako; interleukin-1beta-converting enzyme (ICE)/Caspase-1 ELISA and anti-Annexin V BENDER MedSystem) for soluble CD30, caspase-1 and anti-Annexin V autoantibodies serum levels was used. sCD30 and caspase-1 concentrations were non-significantly up-regulated in all analysed groups--with or without rejection signs or immunosuppressed with cyclosporine or especially tacrolimus. In contrast anti-Annexin V autoantibodies concentration was non-significantly down-regulated also in all studied groups. Moreover in the group with signs of transplant rejection, strong negative correlation between anti-Annexin antibodies and rejection grade was observed (-0.65, p<0.05). Biopsy results were comparable in groups treated with tacrolimus and cyclosporine A. The increasing tendency of sCD30 and caspase-1 as well as the decrease in anti-Annexin V autoantibodies concentrations in heart recipients could be the result of post-transplant apoptosis disturbances. This tendency seems to be inhibited in a greater degree by tacrolimus than by cyclosporine. Anti-Annexin V autoantibodies might be considered as negative rejection markers due to their strong negative correlation with the rejection grade.
Acute kidney injury post-major orthopaedic surgery: A single-Centre case-control study.
Ying, Tracey; Chan, Samantha; Lane, Stephen; Somerville, Christine
2018-02-01
To identify risk factors for acute kidney injury following major orthopaedic surgery. We included all patients undergoing major orthopaedic surgery at University Hospital Geelong between 2008 and 2014 in the study. Out of 2188 surgeries audited, we identified cases of acute kidney injury using the RIFLE criteria and matched those to controls 2:1 for age, sex, procedure and chronic kidney disease stage. We reviewed their records for risk factors of postoperative acute kidney injury, including medications such as gentamicin, diuretics, non-steroidal anti-inflammatory drugs and angiotensin-converting enzyme inhibitor or angiotensin receptor blocker use. We reviewed the patients' history of cardiovascular disease, chronic liver disease, hypertension and diabetes mellitus along with presence of sepsis and obesity. Associations of hypothetical risk factors were estimated using conditional logistic regression. We identified 164 cases of AKI in an elderly cohort (median age = 73 years). Controlling for baseline comorbidities, both diuretic and angiotensin-converting enzyme inhibitor or angiotensin receptor blocker use were found to be associated with a twofold risk of acute kidney injury (diuretic - OR 2.06 95% CI:1.30-3.26, P < 0.005, angiotensin-converting enzyme inhibitor or angiotensin receptor blocker use OR 2.09 95% CI:1.31-3.32, P < 0.005). A dose-effect model accounting for perioperative nonsteroidal anti-inflammatory drug administration demonstrated a linear relationship between the number of times these drugs were given and postoperative acute kidney injury risk (OR 1.35 95% CI:1.05-1.73, P = 0.02). We identified perioperative diuretics, non-steroidal anti-inflammatory drugs and angiotensin-converting enzyme inhibitor or angiotensin receptor blocker to be significantly associated with postoperative AKI. Further prospective studies are required to confirm this. © 2016 Asian Pacific Society of Nephrology.
Purification and characterization of a tuliposide-converting enzyme from bulbs of Tulipa gesneriana.
Kato, Yasuo; Shoji, Kazuaki; Ubukata, Makoto; Shigetomi, Kengo; Sato, Yukio; Nakajima, Noriyuki; Ogita, Shinjiro
2009-08-01
An enzyme that catalyzes the stoichiometric conversion of 6-tuliposide into tulipalin was purified and characterized from bulbs of Tulipa gesneriana. The enzyme appeared to be a dimer, the relative molecular mass (Mr) of each subunit being 34,900; it had maximum activity and stability at neutral pH and moderate temperature. The enzyme preferentially acted on such glucose esters as 6-tuliposides, and to a lesser extent on p-nitrophenylacetate.
Genetics Home Reference: combined malonic and methylmalonic aciduria
... acids are building blocks used to make fats (lipids). The ACSF3 enzyme performs a chemical reaction that converts malonic acid to malonyl-CoA, which is the first step of fatty acid synthesis in cellular structures called mitochondria . Based on this activity, the enzyme ...
Wang, Wenya; Zhang, Chao; Sun, Xinxiao; Su, Sisi; Li, Qiang; Linhardt, Robert J
2017-06-01
Lignin is the second most abundant bio-resource in nature. It is increasingly important to convert lignin into high value-added chemicals to accelerate the development of the lignocellulose biorefinery. Over the past several decades, physical and chemical methods have been widely explored to degrade lignin and convert it into valuable chemicals. Unfortunately, these developments have lagged because of several difficulties, of which high energy consumption and non-specific cleavage of chemical bonds in lignin remain the greatest challenges. A large number of enzymes have been discovered for lignin degradation and these are classified as radical lignolytic enzymes and non-radical lignolytic enzymes. Radical lignolytic enzymes, including laccases, lignin peroxidases, manganese peroxidases and versatile peroxidases, are radical-based bio-catalysts, which degrade lignins through non-specific cleavage of chemical bonds but can also catalyze the radical-based re-polymerization of lignin fragments. In contrast, non-radical lignolytic enzymes selectively cleave chemical bonds in lignin and lignin model compounds and, thus, show promise for use in the preparation of high value-added chemicals. In this mini-review, recent developments on non-radical lignolytic enzymes are discussed. These include recently discovered non-radical lignolytic enzymes, their metabolic pathways for lignin conversion, their recent application in the lignin biorefinery, and the combination of bio-catalysts with physical/chemical methods for industrial development of the lignin refinery.
Masuyer, Geoffrey; Yates, Christopher J; Sturrock, Edward D; Acharya, K Ravi
2014-10-01
Somatic angiotensin-I converting enzyme (sACE) has an essential role in the regulation of blood pressure and electrolyte fluid homeostasis. It is a zinc protease that cleaves angiotensin-I (AngI), bradykinin, and a broad range of other signalling peptides. The enzyme activity is provided by two homologous domains (N- and C-), which display clear differences in substrate specificities and chloride activation. The presence of chloride ions in sACE and its unusual role in activity was identified early on in the characterisation of the enzyme. The molecular mechanisms of chloride activation have been investigated thoroughly through mutagenesis studies and shown to be substrate-dependent. Recent results from X-ray crystallography structural analysis have provided the basis for the intricate interactions between ACE, its substrate and chloride ions. Here we describe the role of chloride ions in human ACE and its physiological consequences. Insights into the chloride activation of the N- and C-domains could impact the design of improved domain-specific ACE inhibitors.
Nomura, Taiji; Ueno, Ayaka; Ogita, Shinjiro; Kato, Yasuo
2017-06-01
6-Tuliposide B (PosB) is a glucose ester accumulated in tulip (Tulipa gesneriana) as a major secondary metabolite. PosB serves as the precursor of the antimicrobial lactone tulipalin B (PaB), which is formed by PosB-converting enzyme (TCEB). The gene TgTCEB1, encoding a TCEB, is transcribed in tulip pollen but scarcely transcribed in other tissues (e.g. roots) even though those tissues show high TCEB activity. This led to the prediction of the presence of a TCEB isozyme with distinct tissue specificity. Herein, we describe the identification of the TgTCEB-R gene from roots via native enzyme purification; this gene is a paralog of TgTCEB1. Recombinant enzyme characterization verified that TgTCEB-R encodes a TCEB. Moreover, TgTCEB-R was localized in tulip plastids, as found for pollen TgTCEB1. TgTCEB-R is transcribed almost exclusively in roots, indicating a tissue preference for the transcription of TCEB isozyme genes.
Kim, Sujin; Bae, Sang-Jeong; Hahn, Ji-Sook
2016-04-07
Spatial organization of metabolic enzymes allows substrate channeling, which accelerates processing of intermediates. Here, we investigated the effect of substrate channeling on the flux partitioning at a metabolic branch point, focusing on pyruvate metabolism in Saccharomyces cerevisiae. As a platform strain for the channeling of pyruvate flux, PYK1-Coh-Myc strain was constructed in which PYK1 gene encoding pyruvate kinase is tagged with cohesin domain. By using high-affinity cohesin-dockerin interaction, the pyruvate-forming enzyme Pyk1 was tethered to heterologous pyruvate-converting enzymes, lactate dehydrogenase and α-acetolactate synthase, to produce lactic acid and 2,3-butanediol, respectively. Pyruvate flux was successfully redirected toward desired pathways, with a concomitant decrease in ethanol production even without genetic attenuation of the ethanol-producing pathway. This pyruvate channeling strategy led to an improvement of 2,3-butanediol production by 38%, while showing a limitation in improving lactic acid production due to a reduced activity of lactate dehydrogenase by dockerin tagging.
Angiotensin-converting enzyme in epithelial and neuroepithelial cells.
Defendini, R; Zimmerman, E A; Weare, J A; Alhenc-Gelas, F; Erdös, E G
1983-07-01
Angiotensin-converting enzyme (CE) occurs in three types of cell: endothelial, epithelial, and neuroepithelial. In all three, it appears to be bound to plasma membrane. With antisera to the human enzyme, CE is demonstrated in paraffin sections on the apical surface of epithelial cells in the proximal tubule of the kidney, the mucosa of the small intestine, the syncytial trophoblast of the placenta, and the choroid plexus. Epithelial CE is characteristically found on microvillous surfaces in contact with an effluent, well placed to act on substrate in flux. In the brain, CE occurs in nerve fibers and terminals, mainly mesiobasally and in basal ganglia. Mesiobasal CE coincides with other components of the renin-angiotensin system (RAS) in the choroid/ventricular fluid, the subfornical organ, and the magnocellular neurosecretory system of the hypothalamus. Extrapyramidal CE, however, may not be related to the RAS. In the substantia nigra and the globus pallidus, the enzyme has the same cellular distribution as two putative neuromodulators, substance P and enkephalin, the latter a known substrate of CE.
You, Chun; Shi, Ting; Li, Yunjie; Han, Pingping; Zhou, Xigui; Zhang, Yi-Heng Percival
2017-08-01
Myo-Inositol (vitamin B8) is widely used in the drug, cosmetic, and food & feed industries. Here, we present an in vitro non-fermentative enzymatic pathway that converts starch to inositol in one vessel. This in vitro pathway is comprised of four enzymes that operate without ATP or NAD + supplementation. All enzyme BioBricks are carefully selected from hyperthermophilic microorganisms, that is, alpha-glucan phosphorylase from Thermotoga maritima, phosphoglucomutase from Thermococcus kodakarensis, inositol 1-phosphate synthase from Archaeoglobus fulgidus, and inositol monophosphatase from T. maritima. They were expressed efficiently in high-density fermentation of Escherichia coli BL21(DE3) and easily purified by heat treatment. The four-enzyme pathway supplemented with two other hyperthermophilic enzymes (i.e., 4-α-glucanotransferase from Thermococcus litoralis and isoamylase from Sulfolobus tokodaii) converts branched or linear starch to inositol, accomplishing a very high product yield of 98.9 ± 1.8% wt./wt. This in vitro (aeration-free) biomanufacturing has been successfully operated on 20,000-L reactors. Less costly inositol would be widely added in heath food, low-end soft drink, and animal feed, and may be converted to other value-added biochemicals (e.g., glucarate). This biochemical is the first product manufactured by the in vitro synthetic biology platform on an industrial scale. Biotechnol. Bioeng. 2017;114: 1855-1864. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Soler, María José; Lloveras, Josep; Batlle, Daniel
2008-07-12
The renin-angiotensin system (RAS) plays a key role in the regulation of cardiovascular and renal function. Thus, RAS blockade with an angiotensin-converting enzyme (ACE) and/or angiotensin receptor blocker decreases blood pressure, cardiovascular events, and delays the progression of kidney disease. The discovery of ACE2, a homologue of ACE, capable of degrading angiotensin II to angiotensin 1-7, may offer new insights into the RAS. In this review we discuss the possible protective role of ACE2 in different organs, namely heart, lungs and kidneys. The role of this enzyme is inferred from recent studies performed using genetically manipulated mice that lack the ACE2 gene and also mice treated with pharmacological ACE2 inhibitors. These results suggest that ACE2 might be a new therapeutic target within the RAS.
Satagopan, Sriram; Sun, Yuan; Parquette, Jon R; Tabita, F Robert
2017-01-01
With increasing concerns over global warming and depletion of fossil-fuel reserves, it is attractive to develop innovative strategies to assimilate CO 2 , a greenhouse gas, into usable organic carbon. Cell-free systems can be designed to operate as catalytic platforms with enzymes that offer exceptional selectivity and efficiency, without the need to support ancillary reactions of metabolic pathways operating in intact cells. Such systems are yet to be exploited for applications involving CO 2 utilization and subsequent conversion to valuable products, including biofuels. The Calvin-Benson-Bassham (CBB) cycle and the enzyme ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO) play a pivotal role in global CO 2 fixation. We hereby demonstrate the co-assembly of two RubisCO-associated multienzyme cascades with self-assembled synthetic amphiphilic peptide nanostructures. The immobilized enzyme cascades sequentially convert either ribose-5-phosphate (R-5-P) or glucose, a simpler substrate, to ribulose 1,5-bisphosphate (RuBP), the acceptor for incoming CO 2 in the carboxylation reaction catalyzed by RubisCO. Protection from proteolytic degradation was observed in nanostructures associated with the small dimeric form of RubisCO and ancillary enzymes. Furthermore, nanostructures associated with a larger variant of RubisCO resulted in a significant enhancement of the enzyme's selectivity towards CO 2 , without adversely affecting the catalytic activity. The ability to assemble a cascade of enzymes for CO 2 capture using self-assembling nanostructure scaffolds with functional enhancements show promise for potentially engineering entire pathways (with RubisCO or other CO 2 -fixing enzymes) to redirect carbon from industrial effluents into useful bioproducts.
The Molecular Biology, Biochemistry, and Physiology of Human Steroidogenesis and Its Disorders
Auchus, Richard J.
2011-01-01
Steroidogenesis entails processes by which cholesterol is converted to biologically active steroid hormones. Whereas most endocrine texts discuss adrenal, ovarian, testicular, placental, and other steroidogenic processes in a gland-specific fashion, steroidogenesis is better understood as a single process that is repeated in each gland with cell-type-specific variations on a single theme. Thus, understanding steroidogenesis is rooted in an understanding of the biochemistry of the various steroidogenic enzymes and cofactors and the genes that encode them. The first and rate-limiting step in steroidogenesis is the conversion of cholesterol to pregnenolone by a single enzyme, P450scc (CYP11A1), but this enzymatically complex step is subject to multiple regulatory mechanisms, yielding finely tuned quantitative regulation. Qualitative regulation determining the type of steroid to be produced is mediated by many enzymes and cofactors. Steroidogenic enzymes fall into two groups: cytochrome P450 enzymes and hydroxysteroid dehydrogenases. A cytochrome P450 may be either type 1 (in mitochondria) or type 2 (in endoplasmic reticulum), and a hydroxysteroid dehydrogenase may belong to either the aldo-keto reductase or short-chain dehydrogenase/reductase families. The activities of these enzymes are modulated by posttranslational modifications and by cofactors, especially electron-donating redox partners. The elucidation of the precise roles of these various enzymes and cofactors has been greatly facilitated by identifying the genetic bases of rare disorders of steroidogenesis. Some enzymes not principally involved in steroidogenesis may also catalyze extraglandular steroidogenesis, modulating the phenotype expected to result from some mutations. Understanding steroidogenesis is of fundamental importance to understanding disorders of sexual differentiation, reproduction, fertility, hypertension, obesity, and physiological homeostasis. PMID:21051590
1992-01-01
T cell stimulation by the human immunodeficiency virus 1 gp160-derived peptide p18 presented by H-2Dd class I major histocompatibility complex molecules in a cell-free system was found to require proteolytic cleavage. This extracellular processing was mediated by peptidases present in fetal calf serum. In vitro processing of p18 resulted in a distinct reverse phase high performance liquid chromatography profile, from which a biologically active product was isolated and sequenced. This peptide processing can be specifically blocked by the angiotensin- 1 converting enzyme (ACE) inhibitor captopril, and can occur by exposing p18 to purified ACE. The ability of naturally occurring extracellular proteases to convert inactive peptides to T cell antigens has important implications for understanding cytotoxic T lymphocyte responses in vivo, and for rational peptide vaccine design. PMID:1316930
21 CFR 184.1388 - Lactase enzyme preparation from Kluyveromyces lactis.
Code of Federal Regulations, 2011 CFR
2011-04-01
...-galactoside galactohydrase (CAS Reg. No. CBS 683), which converts lactose to glucose and galactose. It is... in § 170.3(o)(9) of this chapter to convert lactose to glucose and galactose. (2) The ingredient is... practice is to use this ingredient in milk to produce lactase-treated milk, which contains less lactose...
21 CFR 184.1388 - Lactase enzyme preparation from Kluyveromyces lactis.
Code of Federal Regulations, 2010 CFR
2010-04-01
...-galactoside galactohydrase (CAS Reg. No. CBS 683), which converts lactose to glucose and galactose. It is... in § 170.3(o)(9) of this chapter to convert lactose to glucose and galactose. (2) The ingredient is... practice is to use this ingredient in milk to produce lactase-treated milk, which contains less lactose...
Mercier, Kelly; Smith, Holly; Biederman, Jason
2014-12-01
Angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) therapy in hypertensive diabetic patients with macroalbuminuria, microalbuminuria, or normoalbuminuria has been repeatedly shown to improve cardiovascular mortality and reduce the decline in glomerular filtration rate. Renin-angiotensin-aldosterone system (RAAS) blockade in normotensive diabetic patients with normoalbuminuria or microalbuminuria cannot be advocated at present. Dual RAAS inhibition with ACE inhibitors plus ARBs or ACE inhibitors plus direct renin inhibitors has failed to improve cardiovascular or renal outcomes but has predisposed patients to serious adverse events. Copyright © 2014 Elsevier Inc. All rights reserved.
Angiotensin converting enzyme over expression in myelocytes enhances the immune response
Bernstein, Kenneth E.; Gonzalez-Villalobos, Romer A.; Giani, Jorge F.; Shah, Kandarp; Bernstein, Ellen; Janjulia, Tea; Koronyo, Yosef; Shi, Peng D.; Koronyo-Hamaoui, Maya; Fuchs, Sebastien; Shen, Xiao Z.
2015-01-01
Angiotensin converting enzyme (ACE) plays an important role in blood pressure control. ACE also has effects on renal function, reproduction, hematopoiesis and several aspects of the immune response. ACE 10/10 mice over express ACE in monocytic cells; macrophages from ACE 10/10 mice demonstrate increased polarization towards a proinflammatory phenotype. As a result, ACE 10/10 mice have a highly effective immune response following challenge with either melanoma, bacterial infection or Alzheimer’s disease. The ACE 10/10 mice suggest that enhanced monocytic function greatly contributes to the ability of the immune response to defend against a wide variety of antigenic and non-antigenic challenges. PMID:24633750
Muñoz, Ana; Rey, Pablo; Guerra, Maria J; Mendez-Alvarez, Estefania; Soto-Otero, Ramon; Labandeira-Garcia, Jose L
2006-07-01
There is growing evidence indicating that oxidative stress is a key contributor to the pathogenesis and progression of Parkinson's disease. The brain, and particularly the basal ganglia, possesses a local rennin-angiotensin system. Angiotensin activates NAD(P)H-dependent oxidases, which are a major intracellular source of superoxide, and angiotensin converting enzyme inhibitors (ACEIs) have shown antioxidant properties. We treated mice with MPTP and the ACEI captopril to study the possible neuroprotective and antioxidant effects of the latter on the dopaminergic system. Pre-treatment with captopril induced a significant reduction in the MPTP-induced loss of dopaminergic neurons in the substantia nigra and a significant reduction in the loss of dopaminergic terminals in the striatum. Furthermore, captopril reduced the MPTP-induced increase in the levels of major oxidative stress indicators (i.e. lipid peroxidation and protein oxidation) in the ventral midbrain and the striatum. Captopril did not reduce striatal MPP(+) levels, MAO-B activity or dopamine transporter activity, which may reduce MPTP neurotoxicity. Our results suggest that angiotensin-converting enzyme inhibitors may be useful for treatment of Parkinson's disease, and that further investigation should focus on the neuroprotective capacity of these compounds.
Ghanbari, Raheleh; Zarei, Mohammad; Ebrahimpour, Afshin; Abdul-Hamid, Azizah; Ismail, Amin; Saari, Nazamid
2015-01-01
In recent years, food protein-derived hydrolysates have received considerable attention because of their numerous health benefits. Amongst the hydrolysates, those with anti-hypertensive and anti-oxidative activities are receiving special attention as both activities can play significant roles in preventing cardiovascular diseases. The present study investigated the angiotensin-I converting enzyme (ACE) inhibitory and anti-oxidative activities of Actinopyga lecanora (A. lecanora) hydrolysates, which had been prepared by alcalase, papain, bromelain, flavourzyme, pepsin, and trypsin under their optimum conditions. The alcalase hydrolysate showed the highest ACE inhibitory activity (69.8%) after 8 h of hydrolysis while the highest anti-oxidative activities measured by 2,2-diphenyl 1-1-picrylhydrazyl radical scavenging (DPPH) (56.00%) and ferrous ion-chelating (FIC) (59.00%) methods were exhibited after 24 h and 8 h of hydrolysis, respectively. The ACE-inhibitory and anti-oxidative activities displayed dose-dependent trends, and increased with increasing protein hydrolysate concentrations. Moreover, strong positive correlations between angiotensin-I converting enzyme (ACE) inhibitory and anti-oxidative activities were also observed. This study indicates that A. lecanora hydrolysate can be exploited as a source of functional food owing to its anti-oxidant as well as anti-hypertension functions. PMID:26690117
NASA Astrophysics Data System (ADS)
Liao, Fang-Tsu; Chang, Cheng-Yi; Su, Ming-Tsan; Kuo, Wen-Chuan
2014-01-01
Prior studies have established the necessity of an angiotensin-converting enzyme-related (ACER) gene for heart morphogenesis of Drosophila. Nevertheless, the physiology of ACER has yet to be comprehensively understood. Herein, we employed RNA interference to down-regulate the expression of ACER in Drosophila's heart and swept source optical coherence tomography to assess whether ACER is required for cardiac functions in living adult flies. Several contractile parameters of Drosophila heart, including the heart rate (HR), end-diastolic diameter (EDD), end-systolic diameter (ESD), percent fractional shortening (%FS), and stress-induced cardiac performance, are shown, which are age dependent. These age-dependent cardiac functions declined significantly when ACER was down-regulated. Moreover, the lifespans of ACER knock-down flies were significantly shorter than those of wild-type control flies. Thus, we posit that ACER, the Drosophila ortholog of mammalian angiotensin-converting enzyme 2 (ACE2), is essential for both heart physiology and longevity of animals. Since mammalian ACE2 controls many cardiovascular physiological features and is implicated in cardiomyopathies, our findings that ACER plays conserved roles in genetically tractable animals will pave the way for uncovering the genetic pathway that controls the renin-angiotensin system.
Rai, Amit Kumar; Sanjukta, Samurailatpam; Jeyaram, Kumaraswamy
2017-09-02
Fermented milk is a potential source of various biologically active peptides with specific health benefits. Angiotensin converting enzyme inhibitory (ACE-I) peptides are one of the most studied bioactive peptides produced during milk fermentation. The presence of these peptides is reported in various fermented milk products such as, yoghurt, cheese, sour milk, etc., which are also available as commercial products. Many of the ACE-I peptides formed during milk fermentation are resistant to gastrointestinal digestion and inhibit angiotensin converting enzyme (ACE) in the rennin angiotension system (RAS). There are various factors, which affect the formation ACE-I peptides and their ability to reach the target tissue in active form, which includes type of starters (lactic acid bacteria (LAB), yeast, etc.), substrate composition (casein type, whey protein, etc.), composition of ACE-I peptide, pre and post-fermentation treatments, and its stability during gastrointestinal digestion. The antihypertensive effect of fermented milk products has also been proved by various in vitro and in vivo (animal and human trials) experiments. This paper reviews the literature on fermented milk products as a source of ACE-I peptides and various factors affecting the production and activity of ACE-I peptides.
Synthesis of guanidinoacetate and creatine from amino acids by rat pancreas.
da Silva, Robin P; Clow, Kathy; Brosnan, John T; Brosnan, Margaret E
2014-02-01
Creatine is an important molecule involved in cellular energy metabolism. Creatine is spontaneously converted to creatinine at a rate of 1·7% per d; creatinine is lost in the urine. Creatine can be obtained from the diet or synthesised from endogenous amino acids via the enzymes arginine:glycine amidinotransferase (AGAT) and guanidinoacetate N-methyltransferase (GAMT). The liver has high GAMT activity and the kidney has high AGAT activity. Although the pancreas has both AGAT and GAMT activities, its possible role in creatine synthesis has not been characterised. In the present study, we examined the enzymes involved in creatine synthesis in the pancreas as well as the synthesis of guanidinoacetate (GAA) and creatine by isolated pancreatic acini. We found significant AGAT activity and somewhat lower GAMT activity in the pancreas and that pancreatic acini had measurable activities of both AGAT and GAMT and the capacity to synthesise GAA and creatine from amino acids. Creatine supplementation led to a decrease in AGAT activity in the pancreas, though it did not affect its mRNA or protein abundance. This was in contrast with the reduction of AGAT activity and mRNA and protein abundance in the kidney, suggesting that the regulatory mechanisms that control the expression of this enzyme in the pancreas are different from those in the kidney. Dietary creatine increased the concentrations of GAA, creatine and phosphocreatine in the pancreas. Unexpectedly, creatine supplementation decreased the concentrations of S-adenosylmethionine, while those of S-adenosylhomocysteine were not altered significantly.
Muramatsu, Matthew K.; Brothwell, Julie A.; Stein, Barry D.; Putman, Timothy E.; Rockey, Daniel D.
2016-01-01
Chlamydia trachomatis can enter a viable but nonculturable state in vitro termed persistence. A common feature of C. trachomatis persistence models is that reticulate bodies fail to divide and make few infectious progeny until the persistence-inducing stressor is removed. One model of persistence that has relevance to human disease involves tryptophan limitation mediated by the host enzyme indoleamine 2,3-dioxygenase, which converts l-tryptophan to N-formylkynurenine. Genital C. trachomatis strains can counter tryptophan limitation because they encode a tryptophan-synthesizing enzyme. Tryptophan synthase is the only enzyme that has been confirmed to play a role in interferon gamma (IFN-γ)-induced persistence, although profound changes in chlamydial physiology and gene expression occur in the presence of persistence-inducing stressors. Thus, we screened a population of mutagenized C. trachomatis strains for mutants that failed to reactivate from IFN-γ-induced persistence. Six mutants were identified, and the mutations linked to the persistence phenotype in three of these were successfully mapped. One mutant had a missense mutation in tryptophan synthase; however, this mutant behaved differently from previously described synthase null mutants. Two hypothetical genes of unknown function, ctl0225 and ctl0694, were also identified and may be involved in amino acid transport and DNA damage repair, respectively. Our results indicate that C. trachomatis utilizes functionally diverse genes to mediate survival during and reactivation from persistence in HeLa cells. PMID:27430273
Irondi, Emmanuel Anyachukwu; Agboola, Samson Olalekan; Oboh, Ganiyu; Boligon, Aline Augusti
2016-01-01
Aim: To evaluate the phenolics composition and inhibitory effect of the leaves extracts of Ocimum basilicum and Ocimum gratissimum on two key enzymes (pancreatic lipase [PL] and angiotensin 1-converting enzyme [ACE]) involved in obesity and hypertension in vitro. Materials and Methods: The phenolics (flavonoids and phenolic acids) were quantified using high-performance liquid chromatography coupled with diode array detection. PL and ACE inhibitory effects; DPPH* and ABTS*+ scavenging activities of the extracts were tested using spectrophotometric methods. Results: O. basilicum had the following major phenolics: Rutin, quercetin, and quercitrin (flavonoids); caffeic, chlorogenic, and gallic acids (phenolic acids); while O. gratissimum had the following major phenolics: Rutin, quercitrin, and luteolin (flavonoids); ellagic and chlorogenic acids (phenolic acids). “Extracts of both plants inhibited PL and ACE; scavenged DPPH* in a dose-dependent manner”. O. gratissimum extract was more potent in inhibiting PL (IC50: 20.69 µg/mL) and ACE (IC50: 29.44 µg/mL) than O. basilicum (IC50: 52.14 µg/mL and IC50: 64.99 µg/mL, against PL and ACE, respectively). O. gratissimum also scavenged DPPH* and ABTS*+ more than O. basilicum. Conclusion: O. basilicum and O. gratissimum leaves could be used as functional foods for the management of obesity and obesity-related hypertension. However, O. gratissimum may be more effective than O. basilicum. PMID:27757270
Rineau, Francois; Roth, Doris; Shah, Firoz; Smits, Mark; Johansson, Tomas; Canbäck, Björn; Olsen, Peter Bjarke; Persson, Per; Grell, Morten Nedergaard; Lindquist, Erika; Grigoriev, Igor V; Lange, Lene; Tunlid, Anders
2012-01-01
Soils in boreal forests contain large stocks of carbon. Plants are the main source of this carbon through tissue residues and root exudates. A major part of the exudates are allocated to symbiotic ectomycorrhizal fungi. In return, the plant receives nutrients, in particular nitrogen from the mycorrhizal fungi. To capture the nitrogen, the fungi must at least partly disrupt the recalcitrant organic matter–protein complexes within which the nitrogen is embedded. This disruption process is poorly characterized. We used spectroscopic analyses and transcriptome profiling to examine the mechanism by which the ectomycorrhizal fungus Paxillus involutus degrades organic matter when acquiring nitrogen from plant litter. The fungus partially degraded polysaccharides and modified the structure of polyphenols. The observed chemical changes were consistent with a hydroxyl radical attack, involving Fenton chemistry similar to that of brown-rot fungi. The set of enzymes expressed by Pa. involutus during the degradation of the organic matter was similar to the set of enzymes involved in the oxidative degradation of wood by brown-rot fungi. However, Pa. involutus lacked transcripts encoding extracellular enzymes needed for metabolizing the released carbon. The saprotrophic activity has been reduced to a radical-based biodegradation system that can efficiently disrupt the organic matter–protein complexes and thereby mobilize the entrapped nutrients. We suggest that the released carbon then becomes available for further degradation and assimilation by commensal microbes, and that these activities have been lost in ectomycorrhizal fungi as an adaptation to symbiotic growth on host photosynthate. The interdependence of ectomycorrhizal symbionts and saprophytic microbes would provide a key link in the turnover of nutrients and carbon in forest ecosystems. PMID:22469289
CMPF: class-switching minimized pathfinding in metabolic networks.
Lim, Kevin; Wong, Limsoon
2012-01-01
The metabolic network is an aggregation of enzyme catalyzed reactions that converts one compound to another. Paths in a metabolic network are a sequence of enzymes that describe how a chemical compound of interest can be produced in a biological system. As the number of such paths is quite large, many methods have been developed to score paths so that the k-shortest paths represent the set of paths that are biologically meaningful or efficient. However, these approaches do not consider whether the sequence of enzymes can be manufactured in the same pathway/species/localization. As a result, a predicted sequence might consist of groups of enzymes that operate in distinct pathway/species/localization and may not truly reflect the events occurring within cell. We propose a path weighting method CMPF (Class-switching Minimized Pathfinder) to search for routes in a metabolic network which minimizes pathway switching. In biological terms, a pathway is a series of chemical reactions which define a specific function (e.g. glycolysis). We conjecture that routes that cross many pathways are inefficient since different pathways define different metabolic functions. In addition, native routes are also well characterized within pathways, suggesting that reasonable paths should not involve too many pathway switches. Our method can be generalized when reactions participate in a class set (e.g., pathways, species or cellular localization) so that the paths predicted have minimal class crossings. We show that our method generates k-paths that involve the least number of class switching. In addition, we also show that native paths are recoverable and alternative paths deviates less from native paths compared to other methods. This suggests that paths ranked by our method could be a way to predict paths that are likely to occur in biological systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bera, Asim K.; Atanasova, Vesna; Gamage, Swarna
2010-06-01
The structure of EhpF from P. agglomerans has been solved alone and in complex with phenazine-1,6-dicarboxylate. Apo EhpF was solved and refined in two different space groups at 1.95 and 2.3 Å resolution and the EhpF–phenazine-1,6-dicarboxylate complex structure was determined at 2.8 Å resolution. The structure of EhpF, a 41 kDa protein that functions in the biosynthetic pathway leading to the broad-spectrum antimicrobial compound d-alanylgriseoluteic acid (AGA), is reported. A cluster of approximately 16 genes, including ehpF, located on a 200 kbp plasmid native to certain strains of Pantoea agglomerans encodes the proteins that are required for the conversion ofmore » chorismic acid to AGA. Phenazine-1,6-dicarboxylate has been identified as an intermediate in AGA biosynthesis and deletion of ehpF results in accumulation of this compound in vivo. The crystallographic data presented here reveal that EhpF is an atypical member of the acyl-CoA synthase or ANL superfamily of adenylating enzymes. These enzymes typically catalyze two-step reactions involving adenylation of a carboxylate substrate followed by transfer of the substrate from AMP to coenzyme A or another phosphopantetheine. EhpF is distinguished by the absence of the C-terminal domain that is characteristic of enzymes from this family and is involved in phosphopantetheine binding and in the second half of the canonical two-step reaction that is typically observed. Based on the structure of EhpF and a bioinformatic analysis, it is proposed that EhpF and EhpG convert phenazine-1,6-dicarboxylate to 6-formylphenazine-1-carboxylate via an adenylyl intermediate.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-05-01
A biological/chemical process for converting cyclohexane into caprolactam was investigated: microorganisms in a bioreactor would be used to convert cyclohexane into caprolactone followed by chemical synthesis of caprolactam using ammonia. Four microorganisms were isolated from natural soil and water, that can utilize cyclohexane as a sole source of C and energy for growth. They were shown to have the correct metabolic intermediates and enzymes to convert cyclohexane into cyclohexanol, cyclohexanone, and caprolactone. Genetic techniques to create and select for caprolactone hydrolase negative-mutants were developed; those are used to convert cyclohexane into caprolactone but, because of the block, are unable tomore » metabolize the caprolactone further. Because of a new nylon carpet reycle process and the long time frame for a totally new bioprocess, a limited study was done to evaluate whether a simplified bioprocess to convert cyclohexanol into cyclohexanone or caprolactone was feasible; growth rates and key enzyme levels were measured in a collection of microorganisms that metabolize cyclohexanol to determine if the bioactivity is high enough to support an economical cyclohexanol bioprocess. Although these microorganisms had sufficient bioactivity, they could tolerate only low levels (<1%) of cyclohexanol and thus are not suitable for developing a cost effective bioprocess because of the high cost of dilute product recovery.« less
Alvarez, Luis A.; Kovačič, Lidija; Rodríguez, Javier; Gosemann, Jan-Hendrik; Kubica, Malgorzata; Pircalabioru, Gratiela G.; Friedmacher, Florian; Cean, Ada; Ghişe, Alina; Sărăndan, Mihai B.; Puri, Prem; Daff, Simon; Plettner, Erika; von Kriegsheim, Alex; Bourke, Billy; Knaus, Ulla G.
2016-01-01
Strengthening the host immune system to fully exploit its potential as antimicrobial defense is vital in countering antibiotic resistance. Chemical compounds released during bidirectional host–pathogen cross-talk, which follows a sensing-response paradigm, can serve as protective mediators. A potent, diffusible messenger is hydrogen peroxide (H2O2), but its consequences on extracellular pathogens are unknown. Here we show that H2O2, released by the host on pathogen contact, subverts the tyrosine signaling network of a number of bacteria accustomed to low-oxygen environments. This defense mechanism uses heme-containing bacterial enzymes with peroxidase-like activity to facilitate phosphotyrosine (p-Tyr) oxidation. An intrabacterial reaction converts p-Tyr to protein-bound dopa (PB-DOPA) via a tyrosinyl radical intermediate, thereby altering antioxidant defense and inactivating enzymes involved in polysaccharide biosynthesis and metabolism. Disruption of bacterial signaling by DOPA modification reveals an infection containment strategy that weakens bacterial fitness and could be a blueprint for antivirulence approaches. PMID:27562167
Alvarez, Luis A; Kovačič, Lidija; Rodríguez, Javier; Gosemann, Jan-Hendrik; Kubica, Malgorzata; Pircalabioru, Gratiela G; Friedmacher, Florian; Cean, Ada; Ghişe, Alina; Sărăndan, Mihai B; Puri, Prem; Daff, Simon; Plettner, Erika; von Kriegsheim, Alex; Bourke, Billy; Knaus, Ulla G
2016-09-13
Strengthening the host immune system to fully exploit its potential as antimicrobial defense is vital in countering antibiotic resistance. Chemical compounds released during bidirectional host-pathogen cross-talk, which follows a sensing-response paradigm, can serve as protective mediators. A potent, diffusible messenger is hydrogen peroxide (H2O2), but its consequences on extracellular pathogens are unknown. Here we show that H2O2, released by the host on pathogen contact, subverts the tyrosine signaling network of a number of bacteria accustomed to low-oxygen environments. This defense mechanism uses heme-containing bacterial enzymes with peroxidase-like activity to facilitate phosphotyrosine (p-Tyr) oxidation. An intrabacterial reaction converts p-Tyr to protein-bound dopa (PB-DOPA) via a tyrosinyl radical intermediate, thereby altering antioxidant defense and inactivating enzymes involved in polysaccharide biosynthesis and metabolism. Disruption of bacterial signaling by DOPA modification reveals an infection containment strategy that weakens bacterial fitness and could be a blueprint for antivirulence approaches.
Nomura, Daniel K; Lombardi, Donald P; Chang, Jae Won; Niessen, Sherry; Ward, Anna M; Long, Jonathan Z; Hoover, Heather H; Cravatt, Benjamin F
2011-07-29
Cancer cells couple heightened lipogenesis with lipolysis to produce fatty acid networks that support malignancy. Monoacylglycerol lipase (MAGL) plays a principal role in this process by converting monoglycerides, including the endocannabinoid 2-arachidonoylglycerol (2-AG), to free fatty acids. Here, we show that MAGL is elevated in androgen-independent versus androgen-dependent human prostate cancer cell lines, and that pharmacological or RNA-interference disruption of this enzyme impairs prostate cancer aggressiveness. These effects were partially reversed by treatment with fatty acids or a cannabinoid receptor-1 (CB1) antagonist, and fully reversed by cotreatment with both agents. We further show that MAGL is part of a gene signature correlated with epithelial-to-mesenchymal transition and the stem-like properties of cancer cells, supporting a role for this enzyme in protumorigenic metabolism that, for prostate cancer, involves the dual control of endocannabinoid and fatty acid pathways. Copyright © 2011 Elsevier Ltd. All rights reserved.
Towards Tuneable Retaining Glycosidase-Inhibiting Peptides by Mimicry of a Plant Flavonol Warhead.
Yoshisada, Ryoji; van Gijzel, Lieke; Jongkees, Seino A K
2017-12-05
Retaining glycosidases are an important class of enzymes involved in glycan degradation. To study better the role of specific enzymes in deglycosylation processes, and thereby the importance of particular glycosylation patterns, a set of potent inhibitors, each specific to a particular glycosidase, would be an invaluable toolkit. Towards this goal, we detail here a more in-depth study of a prototypical macrocyclic peptide inhibitor of the model retaining glycosidase human pancreatic α-amylase (HPA). Notably, incorporation of l-DOPA into this peptide affords an inhibitor of HPA with potency that is tenfold higher (K i =480 pm) than that of the previously found consensus sequence. This represents a first successful step in converting a recently discovered natural-product-derived motif, already specific for the catalytic side-chain arrangement conserved in the active sites of retaining glycosidases, into a tuneable retaining glycosidase inhibition warhead. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Xu, Qingping; Mengin-Lecreulx, Dominique; Liu, Xueqian W.; ...
2015-09-15
Bacterial SH3 (SH3b) domains are commonly fused with papain-like Nlp/P60 cell wall hydrolase domains. To understand how the modular architecture of SH3b and NlpC/P60 affects the activity of the catalytic domain, three putative NlpC/P60 cell wall hydrolases were biochemically and structurally characterized. In addition, these enzymes all have γ-d-Glu-A 2pm (A 2pm is diaminopimelic acid) cysteine amidase (ordl-endopeptidase) activities but with different substrate specificities. One enzyme is a cell wall lysin that cleaves peptidoglycan (PG), while the other two are cell wall recycling enzymes that only cleave stem peptides with an N-terminall-Ala. Their crystal structures revealed a highly conserved structuremore » consisting of two SH3b domains and a C-terminal NlpC/P60 catalytic domain, despite very low sequence identity. Interestingly, loops from the first SH3b domain dock into the ends of the active site groove of the catalytic domain, remodel the substrate binding site, and modulate substrate specificity. Two amino acid differences at the domain interface alter the substrate binding specificity in favor of stem peptides in recycling enzymes, whereas the SH3b domain may extend the peptidoglycan binding surface in the cell wall lysins. Remarkably, the cell wall lysin can be converted into a recycling enzyme with a single mutation.Peptidoglycan is a meshlike polymer that envelops the bacterial plasma membrane and bestows structural integrity. Cell wall lysins and recycling enzymes are part of a set of lytic enzymes that target covalent bonds connecting the amino acid and amino sugar building blocks of the PG network. These hydrolases are involved in processes such as cell growth and division, autolysis, invasion, and PG turnover and recycling. To avoid cleavage of unintended substrates, these enzymes have very selective substrate specificities. Our biochemical and structural analysis of three modular NlpC/P60 hydrolases, one lysin, and two recycling enzymes, show that they may have evolved from a common molecular architecture, where the substrate preference is modulated by local changes. These results also suggest that new pathways for recycling PG turnover products, such as tracheal cytotoxin, may have evolved in bacteria in the human gut microbiome that involve NlpC/P60 cell wall hydrolases.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Qingping; Mengin-Lecreulx, Dominique; Liu, Xueqian W.
Bacterial SH3 (SH3b) domains are commonly fused with papain-like Nlp/P60 cell wall hydrolase domains. To understand how the modular architecture of SH3b and NlpC/P60 affects the activity of the catalytic domain, three putative NlpC/P60 cell wall hydrolases were biochemically and structurally characterized. In addition, these enzymes all have γ-d-Glu-A 2pm (A 2pm is diaminopimelic acid) cysteine amidase (ordl-endopeptidase) activities but with different substrate specificities. One enzyme is a cell wall lysin that cleaves peptidoglycan (PG), while the other two are cell wall recycling enzymes that only cleave stem peptides with an N-terminall-Ala. Their crystal structures revealed a highly conserved structuremore » consisting of two SH3b domains and a C-terminal NlpC/P60 catalytic domain, despite very low sequence identity. Interestingly, loops from the first SH3b domain dock into the ends of the active site groove of the catalytic domain, remodel the substrate binding site, and modulate substrate specificity. Two amino acid differences at the domain interface alter the substrate binding specificity in favor of stem peptides in recycling enzymes, whereas the SH3b domain may extend the peptidoglycan binding surface in the cell wall lysins. Remarkably, the cell wall lysin can be converted into a recycling enzyme with a single mutation.Peptidoglycan is a meshlike polymer that envelops the bacterial plasma membrane and bestows structural integrity. Cell wall lysins and recycling enzymes are part of a set of lytic enzymes that target covalent bonds connecting the amino acid and amino sugar building blocks of the PG network. These hydrolases are involved in processes such as cell growth and division, autolysis, invasion, and PG turnover and recycling. To avoid cleavage of unintended substrates, these enzymes have very selective substrate specificities. Our biochemical and structural analysis of three modular NlpC/P60 hydrolases, one lysin, and two recycling enzymes, show that they may have evolved from a common molecular architecture, where the substrate preference is modulated by local changes. These results also suggest that new pathways for recycling PG turnover products, such as tracheal cytotoxin, may have evolved in bacteria in the human gut microbiome that involve NlpC/P60 cell wall hydrolases.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Qingping; Mengin-Lecreulx, Dominique; Liu, Xueqian W.
ABSTRACT Bacterial SH3 (SH3b) domains are commonly fused with papain-like Nlp/P60 cell wall hydrolase domains. To understand how the modular architecture of SH3b and NlpC/P60 affects the activity of the catalytic domain, three putative NlpC/P60 cell wall hydrolases were biochemically and structurally characterized. These enzymes all have γ-d-Glu-A 2pm (A 2pm is diaminopimelic acid) cysteine amidase (ordl-endopeptidase) activities but with different substrate specificities. One enzyme is a cell wall lysin that cleaves peptidoglycan (PG), while the other two are cell wall recycling enzymes that only cleave stem peptides with an N-terminall-Ala. Their crystal structures revealed a highly conserved structure consistingmore » of two SH3b domains and a C-terminal NlpC/P60 catalytic domain, despite very low sequence identity. Interestingly, loops from the first SH3b domain dock into the ends of the active site groove of the catalytic domain, remodel the substrate binding site, and modulate substrate specificity. Two amino acid differences at the domain interface alter the substrate binding specificity in favor of stem peptides in recycling enzymes, whereas the SH3b domain may extend the peptidoglycan binding surface in the cell wall lysins. Remarkably, the cell wall lysin can be converted into a recycling enzyme with a single mutation. IMPORTANCEPeptidoglycan is a meshlike polymer that envelops the bacterial plasma membrane and bestows structural integrity. Cell wall lysins and recycling enzymes are part of a set of lytic enzymes that target covalent bonds connecting the amino acid and amino sugar building blocks of the PG network. These hydrolases are involved in processes such as cell growth and division, autolysis, invasion, and PG turnover and recycling. To avoid cleavage of unintended substrates, these enzymes have very selective substrate specificities. Our biochemical and structural analysis of three modular NlpC/P60 hydrolases, one lysin, and two recycling enzymes, show that they may have evolved from a common molecular architecture, where the substrate preference is modulated by local changes. These results also suggest that new pathways for recycling PG turnover products, such as tracheal cytotoxin, may have evolved in bacteria in the human gut microbiome that involve NlpC/P60 cell wall hydrolases.« less
Pacheco-Quinto, Javier; Eckman, Christopher B; Eckman, Elizabeth A
2016-12-01
Impaired clearance of amyloid-β peptide (Aβ) has been postulated to significantly contribute to the amyloid accumulation typical of Alzheimer's disease. Among the enzymes known to degrade Aβ in vivo are endothelin-converting enzyme (ECE)-1, ECE-2, and neprilysin (NEP), and evidence suggests that they regulate independent pools of Aβ that may be functionally significant. To better understand the differential regulation of Aβ concentration by its physiological degrading enzymes, we characterized the cell and region-specific expression pattern of ECE-1, ECE-2, and NEP by in situ hybridization and immunohistochemistry in brain areas relevant to Alzheimer's disease. In contrast to the broader distribution of ECE-1, ECE-2 and NEP were found enriched in GABAergic neurons. ECE-2 was majorly expressed by somatostatin-expressing interneurons and was active in isolated synaptosomes. NEP messenger RNA was found mainly in parvalbumin-expressing interneurons, with NEP protein localized to perisomatic parvalbuminergic synapses. The identification of somatostatinergic and parvalbuminergic synapses as hubs for Aβ degradation is consistent with the possibility that Aβ may have a physiological function related to the regulation of inhibitory signaling. Copyright © 2016 Elsevier Inc. All rights reserved.
Chen, Hui-Ling; Lünsdorf, Heinrich; Hecht, Hans-Jürgen; Tsai, Hsin
2010-08-01
The somatic angiotensin I-converting enzyme (sACE; peptidyl-dipeptidase A; EC 3.4.15.1) was isolated from pig lung and purified to homogeneity. The purified enzyme has a molecular mass of about 180 kDa. Upon proteolytic cleavage, two approximately 90 kDa fragments were obtained and identified by amino-terminal sequence analysis as the N- and C-domains of sACE. Both purified domains were shown to be catalytically active. A 2.3 nm resolution model of sACE was obtained by three-dimensional electron microscopic reconstruction of negatively stained sACE particles, based on atomic X-ray data fitting. Our model shows for the first time the relative orientation of the sACE catalytically active domains and their spatial distance. (c) 2010 Elsevier Ltd. All rights reserved.
Aβ degradation or cerebral perfusion? Divergent effects of multifunctional enzymes.
Miners, J Scott; Palmer, Jennifer C; Tayler, Hannah; Palmer, Laura E; Ashby, Emma; Kehoe, Patrick G; Love, Seth
2014-01-01
There is increasing evidence that deficient clearance of β-amyloid (Aβ) contributes to its accumulation in late-onset Alzheimer disease (AD). Several Aβ-degrading enzymes, including neprilysin (NEP), endothelin-converting enzyme (ECE), and angiotensin-converting enzyme (ACE) reduce Aβ levels and protect against cognitive impairment in mouse models of AD. In post-mortem human brain tissue we have found that the activity of these Aβ-degrading enzymes rise with age and increases still further in AD, perhaps as a physiological response that helps to minimize the build-up of Aβ. ECE-1/-2 and ACE are also rate-limiting enzymes in the production of endothelin-1 (ET-1) and angiotensin II (Ang II), two potent vasoconstrictors, increases in the levels of which are likely to contribute to reduced blood flow in AD. This review considers the possible interdependence between Aβ-degrading enzymes, ischemia and Aβ in AD: ischemia has been shown to increase Aβ production both in vitro and in vivo, whereas increased Aβ probably enhances ischemia by vasoconstriction, mediated at least in part by increased ECE and ACE activity. In contrast, NEP activity may help to maintain cerebral perfusion, by reducing the accumulation of Aβ in cerebral blood vessels and lessening its toxicity to vascular smooth muscle cells. In assessing the role of Aβ-degrading proteases in the pathogenesis of AD and, particularly, their potential as therapeutic agents, it is important to bear in mind the multifunctional nature of these enzymes and to consider their effects on other substrates and pathways.
21 CFR 184.1387 - Lactase enzyme preparation from Candida pseudotropicalis.
Code of Federal Regulations, 2010 CFR
2010-04-01
....2.1.23), which converts lactose to glucose and galactose. It is prepared from yeast that has been... defined in § 170.3(o)(9) of this chapter, to convert lactose to glucose and galactose. (2) The ingredient... manufacturing practice is limited to use of this ingredient to reduce the lactose content in milk and milk...
21 CFR 184.1387 - Lactase enzyme preparation from Candida pseudotropicalis.
Code of Federal Regulations, 2011 CFR
2011-04-01
....2.1.23), which converts lactose to glucose and galactose. It is prepared from yeast that has been... defined in § 170.3(o)(9) of this chapter, to convert lactose to glucose and galactose. (2) The ingredient... manufacturing practice is limited to use of this ingredient to reduce the lactose content in milk and milk...
Koeduka, Takao; Louie, Gordon V.; Orlova, Irina; Kish, Christine M.; Ibdah, Mwafaq; Wilkerson, Curtis G.; Bowman, Marianne E.; Baiga, Thomas J.; Noel, Joseph P.; Dudareva, Natalia; Pichersky, Eran
2009-01-01
Summary Many plants synthesize the volatile phenylpropene compounds eugenol and isoeugenol to serve in defense against herbivores and pathogens and to attract pollinators. Clarkia breweri flowers emit a mixture of eugenol and isoeugenol, while Petunia hybrida flowers emit mostly isoeugenol with small amounts of eugenol. We recently reported the identification of a petunia enzyme, PhIGS1, that catalyzes the formation of isoeugenol, and an Ocimum basilicum (basil) enzyme, ObEGS1, that produces eugenol. ObEGS1 and PhIGS1 both utilize coniferyl acetate, are 52% sequence identical, and belong to a family of NADPH-dependent reductases involved in secondary metabolism. Here we show that C. breweri flowers have two closely related proteins (96% identity), CbIGS1 and CbEGS1, that are similar to ObEGS1 (58% and 59%) and catalyze the formation of isoeugenol and eugenol, respectively. In vitro mutagenesis experiments demonstrate that substitution of only a single residue can substantially affect the product specificity of these enzymes. A third C. breweri enzyme identified, CbEGS2, also catalyzes the formation of eugenol from coniferyl acetate and is only 46% identical to CbIGS1 and CbEGS1 but more similar (>70%) to other types of reductases. We also found that petunia flowers contain an enzyme, PhEGS1, that is highly similar to CbEGS2 (82% identity) and that converts coniferyl acetate to eugenol. Our results indicate that plant enzymes with EGS and IGS activities have arisen multiple times and in different protein lineages. PMID:18208524
Zhong, W G; Wang, Y; Zhu, H; Zhao, X
2012-08-13
Preeclampsia affects 3-8% of pregnancies and is a major cause of maternal and perinatal morbidity and mortality worldwide. Inappropriate activation of the renin-angiotensin system may play a role in the development of preeclampsia. An insertion/deletion polymorphism in the angiotensin-converting enzyme gene (ACE-I/D) has been associated with differences in ACE activity. However, there are controversies in reports on the association of ACE-I/D with preeclampsia. Data were analyzed using Review Manager Version 5.0 and a random effects model was applied irrespective of between studies heterogeneity, which was evaluated via sensitivity and subgroup analyses. Publication bias was evaluated using the fail-safe number. A systematic search was performed based on published case control studies up to October 1, 2011, and 11 studies were included, involving 800 patients and 949 controls. Significant association of the ACE D allele with increase risk of preeclampsia was found (odds ratio = 1.93, 95% confidence interval = 1.19-3.12; P = 0.008). Sensitivity analysis showed that no individual study had an undue influence on the summary odds ratios for all contrasts. An analysis stratified by study size showed an attenuated odds ratio towards a null effect as study size increased. Based on our meta-analysis, we suggest that the D allele of the ACE gene is related with increased risk for preeclampsia in the Chinese population. Considering the potential existence of small study bias, further research should be performed with a larger dataset.
Evolutionary history and metabolic insights of ancient mammalian uricases
Kratzer, James T.; Lanaspa, Miguel A.; Murphy, Michael N.; Cicerchi, Christina; Graves, Christina L.; Tipton, Peter A.; Ortlund, Eric A.; Johnson, Richard J.; Gaucher, Eric A.
2014-01-01
Uricase is an enzyme involved in purine catabolism and is found in all three domains of life. Curiously, uricase is not functional in some organisms despite its role in converting highly insoluble uric acid into 5-hydroxyisourate. Of particular interest is the observation that apes, including humans, cannot oxidize uric acid, and it appears that multiple, independent evolutionary events led to the silencing or pseudogenization of the uricase gene in ancestral apes. Various arguments have been made to suggest why natural selection would allow the accumulation of uric acid despite the physiological consequences of crystallized monosodium urate acutely causing liver/kidney damage or chronically causing gout. We have applied evolutionary models to understand the history of primate uricases by resurrecting ancestral mammalian intermediates before the pseudogenization events of this gene family. Resurrected proteins reveal that ancestral uricases have steadily decreased in activity since the last common ancestor of mammals gave rise to descendent primate lineages. We were also able to determine the 3D distribution of amino acid replacements as they accumulated during evolutionary history by crystallizing a mammalian uricase protein. Further, ancient and modern uricases were stably transfected into HepG2 liver cells to test one hypothesis that uricase pseudogenization allowed ancient frugivorous apes to rapidly convert fructose into fat. Finally, pharmacokinetics of an ancient uricase injected in rodents suggest that our integrated approach provides the foundation for an evolutionarily-engineered enzyme capable of treating gout and preventing tumor lysis syndrome in human patients. PMID:24550457
Cook, Paul D.; Kubiak, Rachel L.; Toomey, Daniel P.; Holden, Hazel M.
2009-01-01
l-colitose and d-perosamine are unusual sugars found in the O-antigens of some Gram-negative bacteria such as Escherichia coli, Vibrio cholerae, and Salmonella enterica, among others. The biosynthetic pathways for these two sugars begin with the formation of GDP-mannose from d-mannose-1-phosphate and GTP followed by the subsequent dehydration and oxidation of GDP-mannose to yield GDP-4-keto-6-deoxymannose. Following the production of GDP-4-keto-6-deoxymannose, the two pathways diverge. In the case of GDP-perosamine biosynthesis, the next step involves an amination reaction at the C-4′ position of the sugar, whereas in GDP-colitose production, the 3′-hydroxyl group is removed. The enzymes catalyzing these reactions are GDP-perosamine synthase and GDP-4-keto-6-deoxymannose-3-dehydratase (ColD), respectively. Both of these enzymes are pyridoxal-5′-phosphate (PLP)-dependent and their three-dimensional structures place them into the well-characterized aspartate aminotransferase superfamily. A comparison of the active site architecture of ColD from Escherichia coli (Strain 5a, type O55:H7) to that of GDP-perosamine synthase from Caulobacter crescentus CB15, suggested that only two mutations would be required to convert ColD into an aminotransferase. Here we present a combined structural and functional analysis of the ColD S187N/H188K mutant protein that, indeed, has been converted from a dehydratase into an aminotransferase. PMID:19402712
Law, Ivy Ka Man; Murphy, Jane E; Bakirtzi, Kyriaki; Bunnett, Nigel W; Pothoulakis, Charalabos
2012-04-27
The neuropeptide/hormone neurotensin (NT) mediates intestinal inflammation and cell proliferation by binding of its high affinity receptor, neurotensin receptor-1 (NTR1). NT stimulates IL-8 expression in NCM460 human colonic epithelial cells by both MAP kinase- and NF-κB-dependent pathways. Although the mechanism of NTR1 endocytosis has been studied, the relationship between NTR1 intracellular trafficking and inflammatory signaling remains to be elucidated. In the present study, we show that in NCM460 cells exposed to NT, β-arrestin-1 (βARR1), and β-arrestin-2 (βARR2) translocate to early endosomes together with NTR1. Endothelin-converting enzyme-1 (ECE-1) degrades NT in acidic conditions, and its activity is crucial for NTR1 recycling. Pretreatment of NCM460 cells with the ECE-1 inhibitor SM19712 or gene silencing of βARR1 or βARR2 inhibits NT-stimulated ERK1/2 and JNK phosphorylation, NF-κB p65 nuclear translocation and phosphorylation, and IL-8 secretion. Furthermore, NT-induced cell proliferation, but not IL-8 transcription, is attenuated by the JNK inhibitor, JNK(AII). Thus, NTR1 internalization and recycling in human colonic epithelial cells involves βARRs and ECE-1, respectively. Our results also indicate that βARRs and ECE-1-dependent recycling regulate MAP kinase and NF-κB signaling as well as cell proliferation in human colonocytes in response to NT.
Bartholomew, B A; Smith, M J; Long, M T; Darcy, P J; Trudgill, P W; Hopper, D J
1995-01-01
Tropine dehydrogenase was induced by growth of Pseudomonas AT3 on atropine, tropine or tropinone. It was NADP(+)-dependent and gave no activity with NAD+. The enzyme was very unstable but a rapid purification procedure using affinity chromatography that gave highly purified enzyme was developed. The enzyme gave a single band on isoelectric focusing with an isoelectric point at approximately pH 4. The native enzyme had an M(r) of 58,000 by gel filtration and 28,000 by SDS/PAGE and therefore consists of two subunits of equal size. The enzyme displayed a narrow range of specificity and was active with tropine and nortropine but not with pseudotropine, pseudonortropine, or a number of related compounds. The apparent Kms were 6.06 microM for tropine and 73.4 microM for nortropine with the specificity constant (Vmax/Km) for tropine 7.8 times that for pseudotropine. The apparent Km for NADP+ was 48 microM. The deuterium of [3-2H]tropine and [3-2H]pseudotropine was retained when these compounds were converted into 6-hydroxycyclohepta-1,4-dione, an intermediate in tropine catabolism, showing that the tropine dehydrogenase, although induced by growth on tropine, is not involved in the catabolic pathway for this compound. 6-Hydroxycyclohepta-1,4-dione was also implicated as an intermediate in the pathways for pseudotropine and tropinone catabolism. Images Figure 1 PMID:7733902
Reza, Hasan Mahmud; Tabassum, Nabila; Sagor, Md Abu Taher; Chowdhury, Mohammed Riaz Hasan; Rahman, Mahbubur; Jain, Preeti; Alam, Md Ashraful
2016-01-01
Hepatic fibrosis is a common feature of chronic liver injury, and the involvement of angiotensin II in such process has been studied earlier. We hypothesized that anti-angiotensin II agents may be effective in preventing hepatic fibrosis. In this study, Long Evans female rats were used and divided into four groups such as Group-I, Control; Group-II, Control + ramipril; Group-III, CCl4; and Group-IV, CCl4 + ramipril. Group II and IV are treated with ramipril for 14 d. At the end of treatment, the livers were removed, and the level of hepatic marker enzymes (aspartate aminotransferase, Alanine aminotransferase, and alkaline phosphatase), nitric oxide, advanced protein oxidation product , catalase activity, and lipid peroxidation were determined. The degree of fibrosis was evaluated through histopathological staining with Sirius red and trichrome milligan staining. Carbon-tetrachloride (CCl4) administration in rats developed hepatic dysfunction and raised the hepatic marker enzymes activities significantly. CCl4 administration in rats also produced oxidative stress, inflammation, and fibrosis in liver. Furthermore, angiotensinogen-inhibitor ramipril normalized the hepatic enzymes activities and improved the antioxidant enzyme catalase activity. Moreover, ramipril treatment ameliorated lipid peroxidation and hepatic inflammation in CCl4-treated rats. Ramipril treatment also significantly reduced hepatic fibrosis in CCl4-administered rats. In conclusion, our investigation suggests that the antifibrotic effect of ramipril may be attributed to inhibition of angiotensin-II mediated oxidative stress and inflammation in liver CCl4-administered rats.
Wang, Yan; Xu, Heng-Yong; Zhu, Qing
2007-10-01
Diacylglycerol acyltransferase (DGAT; EC 2.3.1.20) is a microsomal enzyme that plays a central role in the metabolism of cellular glycerolipids. DGAT catalyzes the final step in triacylglycerol (TAG) biosynthesis by converting diacylgycerol (DAG) and fatty acyl-coenzyme A (CoA) into triacylglycero1. DGAT plays a fundamental role in the metabolism of cellular diacylglycerol and is important in higher eukaryotes for physiologic processes involving triacylglycerol metabolism such as intestinal fat absorption, lipoprotein assembly, adipose tissue formation, and lactation. Therefore, DGAT is not only an key factor for control triglycerides and fatty acids, but also may play a key modulatory role in animal fat deposition.
2015-12-01
J Hypertension 2008, 26:1037–1042. The following authors, Drs A.M. Dart, A. Lawler, P.A. Blombery, Prof. B.A. Kingwell, have requested retraction of a paper by A.A. Ahimastos et al. An investigation by the Research Conduct Office of the Baker Heart and Diabetes Institute found irregularities in a study, including falsification of patients' records and misrepresentation of results, from which this article was derived. On the basis of this investigation the Baker Heart and Diabetes Institute strongly supports retraction and points out the co-authors asking for retraction were found not be involved in the research misconduct. The article is retracted.
Rodgers, Jo E
2017-06-01
Sacubitril/valsartan combines a neprilysin inhibitor with an angiotensin receptor blocker. As an inhibitor of neprilysin, an enzyme that degrades biologically active natriuretic peptides, this first-in-class therapy increases levels of circulating natriuretic peptides, resulting in natriuretic, diuretic, and vasodilatory effects. In patients with chronic New York Heart Association class II-IV heart failure with reduced ejection fraction, the PARADIGM-HF trial demonstrated that sacubitril/valsartan significantly reduced the primary endpoint of cardiovascular mortality and heart failure hospitalization, compared with enalapril. The rate of all-cause mortality was also significantly reduced. Subsequently, the American College of Cardiology/American Heart Association/Heart Failure Society of America recently updated guideline recommendations for Stage C patients with heart failure with reduced ejection fraction to recommend angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, or sacubitril/valsartan in conjunction with other evidence-based therapies to reduce morbidity and mortality. Several analyses have suggested the cost-effectiveness of this new therapy. To ensure tolerability, initiating the lower dosage form of sacubitril/valsartan is warranted in patients with severe renal impairment, moderate hepatic impairment, and low blood pressure, and close monitoring is warranted in such patients. A 36-hour washout period is recommended when switching patients from an angiotensin-converting enzyme inhibitor to sacubitril/valsartan. Similarly, sacubitril/valsartan is contraindicated in patients receiving concomitant angiotensin-converting enzyme inhibitor or angiotensin receptor blocker and those with a history of angioedema. Copyright © 2017 Elsevier Inc. All rights reserved.
Gangoiti, Joana; van Leeuwen, Sander S; Meng, Xiangfeng; Duboux, Stéphane; Vafiadi, Christina; Pijning, Tjaard; Dijkhuizen, Lubbert
2017-08-30
The Glycoside hydrolase (GH) family 70 originally was established for glucansucrases of lactic acid bacteria (LAB) converting sucrose into α-glucan polymers. In recent years we have identified 3 subfamilies of GH70 enzymes (designated GtfB, GtfC and GtfD) as 4,6-α-glucanotransferases, cleaving (α1 → 4)-linkages in maltodextrins/starch and synthesizing new (α1 → 6)-linkages. In this work, 106 putative GtfBs were identified in the Nestlé Culture Collection genome database with ~2700 genomes, and the L. reuteri NCC 2613 one was selected for further characterization based on variations in its conserved motifs. Using amylose the L. reuteri NCC 2613 GtfB synthesizes a low-molecular-mass reuteran-like polymer consisting of linear (α1 → 4) sequences interspersed with (α1 → 6) linkages, and (α1 → 4,6) branching points. This product specificity is novel within the GtfB subfamily, mostly comprising 4,6-α-glucanotransferases synthesizing consecutive (α1 → 6)-linkages. Instead, its activity resembles that of the GtfD 4,6-α-glucanotransferases identified in non-LAB strains. This study demonstrates the potential of large-scale genome sequence data for the discovery of enzymes of interest for the food industry. The L. reuteri NCC 2613 GtfB is a valuable addition to the starch-converting GH70 enzyme toolbox. It represents a new evolutionary intermediate between families GH13 and GH70, and provides further insights into the structure-function relationships of the GtfB subfamily enzymes.
Chlorophyll Catabolites – Chemical and Structural Footprints of a Fascinating Biological Phenomenon
Moser, Simone; Müller, Thomas; Oberhuber, Michael; Kräutler, Bernhard
2009-01-01
Twenty years ago, the molecular basis for the seasonal disappearance of chlorophyll was still enigmatic. In the meantime, our knowledge on chlorophyll breakdown has grown considerably. As outlined here, it has been possible to decipher the basic transformations involved in natural chlorophyll breakdown by identification of chlorophyll catabolites in higher plants, and with the help of the synthesis of (putative) catabolic intermediates. In vascular plants, chlorophyll breakdown typically converts the green plant pigments efficiently into colorless and non-fluorescent tetrapyrroles. It involves colored intermediates only fleetingly and in an (elusive) enzyme-bound form. The non-fluorescent chlorophyll catabolites accumulate in the vacuoles of degreened leaves and are considered the products, primarily, of a detoxification process. However, they are effective antioxidants, and may thus also have physiologically beneficial chemical properties.(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2009) PMID:21037946
[Menopause: Hypertension and vascular disease].
Zilberman, J M
Hypertension is the main cardiovascular risk factor affecting 25% of women. Hormone changes and hypertension after menopause may lead to higher target organ damage and cardiovascular disease such as increased arterial stiffness, coronary diseases, chronic heart failure and stroke. The physiopathological mechanisms involved in the development of hypertension and cardiovascular diseases in menopausal women are controversial. There are pharmacokinetic and pharmacodynamic differences in both sexes, the women have more coughing when using the converting-enzyme inhibitors, more cramps when using thiazide diuretics and more oedema in the inferior limbs when using calcium antagonists. The aim of this review is to analyse possible physiopathological mechanisms involved in hypertension after menopause and to gain a better understanding of the biological effects mediated by vascular ageing in women when the level of oestrogen protective effect decreases over the vascular system. Copyright © 2017 SEH-LELHA. Publicado por Elsevier España, S.L.U. All rights reserved.
Honda, Kohsuke; Maya, Shohei; Omasa, Takeshi; Hirota, Ryuichi; Kuroda, Akio; Ohtake, Hisao
2010-08-02
Six thermophilic enzymes from Thermus thermophilus were used to construct an 'artificial bio-synthetic pathway' for the production of 2-deoxyribose 5-phosphate from fructose. By a simple operation using six recombinant Escherichia coli strains producing the thermophilic enzymes, respectively, fructose was converted to 2-deoxyribose 5-phosphate with a molar yield of 55%. Copyright 2010 Elsevier B.V. All rights reserved.
Cheng, Hai-Li; Zhao, Rui-Yu; Chen, Tian-Jiao; Yu, Wen-Bo; Wang, Fen; Cheng, Ke-Di; Zhu, Ping
2013-01-01
Paclitaxel, a natural antitumor compound, is produced by yew trees at very low concentrations, causing a worldwide shortage of this important anticancer medicine. These plants also produce significant amounts of 7-β-xylosyl-10-deacetyltaxol, which can be bio-converted into 10-deacetyltaxol for the semi-synthesis of paclitaxel. Some microorganisms can convert 7-β-xylosyl-10-deacetyltaxol into 10-deacetyltaxol, but the bioconversion yield needs to be drastically improved for industrial applications. In addition, the related β-xylosidases of these organisms have not yet been defined. We set out to discover an efficient enzyme for 10-deacetyltaxol production. By combining the de novo sequencing of β-xylosidase isolated from Lentinula edodes with RT-PCR and the rapid amplification of cDNA ends, we cloned two cDNA variants, Lxyl-p1–1 and Lxyl-p1–2, which were previously unknown at the gene and protein levels. Both variants encode a specific bifunctional β-d-xylosidase/β-d-glucosidase with an identical ORF length of 2412 bp (97% identity). The enzymes were characterized, and their 3.6-kb genomic DNAs (G-Lxyl-p1–1, G-Lxyl-p1–2), each harboring 18 introns, were also obtained. Putative substrate binding motifs, the catalytic nucleophile, the catalytic acid/base, and potential N-glycosylation sites of the enzymes were predicted. Kinetic analysis of both enzymes showed kcat/Km of up to 1.07 s−1mm−1 against 7-β-xylosyl-10-deacetyltaxol. Importantly, at substrate concentrations of up to 10 mg/ml (oversaturated), the engineered yeast could still robustly convert 7-β-xylosyl-10-deacetyltaxol into 10-deacetyltaxol with a conversion rate of over 85% and a highest yield of 8.42 mg/ml within 24 h, which is much higher than those reported previously. Therefore, our discovery might lead to significant progress in the development of new 7-β-xylosyl-10-deacetyltaxol-converting enzymes for more efficient use of 7-β-xylosyltaxanes to semi-synthesize paclitaxel and its analogues. This work also might lead to further studies on how these enzymes act on 7-β-xylosyltaxanes and contribute to the growing database of glycoside hydrolases. PMID:23665501
Thyroid hormone (TH) signaling and homeostasis is dependent upon coordination of multiple key events including thyroidal iodide uptake and hormone synthesis, and peripheral metabolism and elimination. Deiodinase enzymes play an essential role in converting the pro-hormone thyroxi...
Lin, Kai; Zhang, Lanwei; Han, Xue; Meng, Zhaoxu; Zhang, Jianming; Wu, Yifan; Cheng, Dayou
2018-03-28
In this study, Qula casein derived from yak milk casein was hydrolyzed using a two-enzyme combination approach, and high angiotensin I-converting enzyme (ACE) inhibitory activity peptides were screened by quantitative structure-activity relationship (QSAR) modeling integrated with molecular docking analysis. Hydrolysates (<3 kDa) derived from combinations of thermolysin + alcalase and thermolysin + proteinase K demonstrated high ACE inhibitory activities. Peptide sequences in hydrolysates derived from these two combinations were identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS). On the basis of the QSAR modeling prediction, a total of 16 peptides were selected for molecular docking analysis. The docking study revealed that four of the peptides (KFPQY, MPFPKYP, MFPPQ, and QWQVL) bound the active site of ACE. These four novel peptides were chemically synthesized, and their IC 50 was determined. Among these peptides, KFPQY showed the highest ACE inhibitory activity (IC 50 = 12.37 ± 0.43 μM). Our study indicated that Qula casein presents an excellent source to produce ACE inhibitory peptides.
Murakami, Keiko; Yamanaka, Naoki; Ohnishi, Katsunori; Fukayama, Minoru; Yoshino, Masataka
2012-06-01
Angiotensin I converting enzyme (ACE) was inhibited by the culture medium of Bacillus subtilis subsp. natto, which ferments boiled soy beans to natto, a Japanese traditional food. Subtilisin NAT (nattokinase) produced by B. subtilis also inhibited ACE, and the inhibition was markedly stimulated by heat treatment of subtilisin at 120 °C for 15 min. Inhibition of ACE by subtilisin was of a mixed type: the decrease in V(max) and the increase in K(m) value. SDS-polyacrylamide gel electrophoresis showed that heat treatment of subtilisin caused inactivation with fragmentation of the enzyme protein into small peptides. The inhibitory action of subtilisin was not due to an enzymatic action of protease, but may be ascribed to the potent ACE-inhibitory peptides such as LY and FY, amino acid sequences in subtilisin. HPLC-MS analysis of heat-inactivated subtilisin confirmed that LY and FY were liberated by fragmentation of the enzyme. Inhibition of ACE by subtilisin and its degradation peptides such as LY and FY may participate in the suppression of blood pressure by ingestion of natto.
Vollmer, M D; Schlömann, M
1995-01-01
2-Chloro-cis,cis-muconate, the product of ortho-cleavage of 3-chlorocatechol, was converted by purified preparations of the pJP4- and pAC27-encoded chloromuconate cycloisomerases (EC 5.5.1.7) to trans-dienelactone (trans-4-carboxymethylenebut-2-en-4-olide). The same compound was also formed when (+)-2-chloro- and (+)-5-chloromuconolactone were substrates of these enzyme preparations. Thus, the pJP4- and pAC27-encoded chloromuconate cycloisomerases are able to catalyze chloride elimination from (+)-5-chloromuconolactone. The ability to convert (+)-2-chloromuconolactone differentiates these enzymes from other groups of cycloisomerases. PMID:7751312
Castro Braga, F; Wagner, H; Lombardi, J A; de Oliveira, A B
2000-06-01
The evaluation of several antihypertensive activity of Brazilian plant species was performed using in vitro inhibition of the angiotensin I-converting enzyme (ACE). Nineteen species belonging to 13 families were investigated. Plants were selected based on their use as diuretics and on a chemosystematic consideration. Extracts of the following species presented the highest ACE inhibition rate, at concentrations of 0.33 mg/ml: Ouratea semiserrata (Mart. & Nees) Engl. stems (68%), Cuphea cartagenesis (Jacq.) Macbride leaves (50%) and Mansoa hirsuta DC. leaves (54%). Some hypotheses about the nature of the compounds that may be responsible for the activity of these species are discussed in the paper.
LECITHINASE AND LYSOLECITHINASE ACTIVITY OF RAT INTESTINAL MUCOSA AFTER WHOLE-BODY X-IRRADIATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ottolenghi, A.; Bernheim, F.
1961-11-01
Twenty-four hours after whole-body x irradiation the lecithinase activity of rat intestinal mucosa has markedly decreased and the lysolecithinase activity has decreasecp to a lesser extent. Addition of normal mucosa or chyi'otrypsin to the irradiated mucosa restores the activity of both enzymes. This indicates that irradiation eithei produces an inhibitor or inactivates a mechanism necessarly to convert pro-enzymes into active enzymes. Since chymo trypsin can increase to some extent the activity of the enzymes in normal mucosa, the second possibility seems more probable. (auth)
Ginglinger, Jean-François; Boachon, Benoit; Höfer, René; Paetz, Christian; Köllner, Tobias G.; Miesch, Laurence; Lugan, Raphael; Baltenweck, Raymonde; Mutterer, Jérôme; Ullmann, Pascaline; Beran, Franziska; Claudel, Patricia; Verstappen, Francel; Fischer, Marc J.C.; Karst, Francis; Bouwmeester, Harro; Miesch, Michel; Schneider, Bernd; Gershenzon, Jonathan; Ehlting, Jürgen; Werck-Reichhart, Danièle
2013-01-01
The cytochrome P450 family encompasses the largest family of enzymes in plant metabolism, and the functions of many of its members in Arabidopsis thaliana are still unknown. Gene coexpression analysis pointed to two P450s that were coexpressed with two monoterpene synthases in flowers and were thus predicted to be involved in monoterpenoid metabolism. We show that all four selected genes, the two terpene synthases (TPS10 and TPS14) and the two cytochrome P450s (CYP71B31 and CYP76C3), are simultaneously expressed at anthesis, mainly in upper anther filaments and in petals. Upon transient expression in Nicotiana benthamiana, the TPS enzymes colocalize in vesicular structures associated with the plastid surface, whereas the P450 proteins were detected in the endoplasmic reticulum. Whether they were expressed in Saccharomyces cerevisiae or in N. benthamiana, the TPS enzymes formed two different enantiomers of linalool: (−)-(R)-linalool for TPS10 and (+)-(S)-linalool for TPS14. Both P450 enzymes metabolize the two linalool enantiomers to form different but overlapping sets of hydroxylated or epoxidized products. These oxygenated products are not emitted into the floral headspace, but accumulate in floral tissues as further converted or conjugated metabolites. This work reveals complex linalool metabolism in Arabidopsis flowers, the ecological role of which remains to be determined. PMID:24285789
The functional divergence of short-chain dehydrogenases involved in tropinone reduction.
Brock, Andrea; Brandt, Wolfgang; Dräger, Birgit
2008-05-01
Tropane alkaloids typically occur in the Solanaceae and are also found in Cochlearia officinalis, a member of the Brassicaceae. Tropinone reductases are key enzymes of tropane alkaloid metabolism. Two different tropinone reductases form one stereoisomeric product each, either tropine for esterified alkaloids or pseudotropine that is converted to calystegines. A cDNA sequence with similarity to known tropinone reductases (TR) was cloned from C. officinalis. The protein was expressed in Escherichia coli, and found to catalyze the reduction of tropinone. The enzyme is a member of the short-chain dehydrogenase enzyme family and shows broad substrate specificity. Several synthetic ketones were accepted as substrates, with higher affinity and faster enzymatic turnover than observed for tropinone. C. officinalis TR produced both the isomeric alcohols tropine and pseudotropine from tropinone using NADPH + H(+) as co-substrate. Tropinone reductases of the Solanaceae, in contrast, are strictly stereospecific and form one tropane alcohol only. The Arabidopsis thaliana homologue of C. officinalis TR showed high sequence similarity, but did not reduce tropinone. A tyrosine residue was identified in the active site of C. officinalis TR that appeared responsible for binding and orientation of tropinone. Mutagenesis of the tyrosine residue yielded an active reductase, but with complete loss of TR activity. Thus C. officinalis TR presents an example of an enzyme with relaxed substrate specificity, like short-chain dehydrogenases, that provides favorable preconditions for the evolution of novel functions in biosynthetic sequences.
Bach, P H; Bridges, J W
1984-08-01
There has been no cogent hypothesis to explain the molecular basis of analgesic and non-steroidal anti-inflammatory drug (NSAID) associated renal papillary necrosis (RPN) and upper urothelial carcinoma (UUC). The microsomal cytochrome P-450 enzyme system may generate reactive intermediates which promote pathophysiological effects in the lung, liver and renal cortex, but the absence of P-450 activity in the medulla suggests that it is unlikely that similar events lead to RPN and UUC. Other enzymes (eg. peroxidases) convert substituted aromatics into benzoquinoneimines (an intermediate that has previously been defined in P-450-mediated toxicity). The medulla is rich in fatty acid peroxidases involved in the metabolism of arachidonic acid. NSAID and analgesics interact with key enzymes in this pathway, which could lead to the co-oxygenation of exogenous and endogenous compounds via the peroxidase, lipoxygenase, or prostaglandin hydroperoxidase enzymes. The generation of reactive molecules in the medulla could explain both RPN and UUC via the alkylation of macromolecules. The formation of free radicals would give rise to extensive lipid peroxidation, (there are large quantities of free polyunsaturated fatty acids in the medullary interstitial cells), an event of major potential importance to local cell destruction and genotoxic effects. At present this proposed mechanism of co-oxygenation offers the most attractive working hypothesis to explain the molecular pathogenesis of both RPN and UUC.
Nwanna, E. E; Ibukun, E. O; Oboh, G.; Ademosun, A. O.; Boligon, A. A.; Athayde, M.
2014-01-01
AIM: Garden egg (Solanum aethiopium) is an edible fruits vegetable with different species.This study investigated characterisation and the effect of the phenolics extracts from S. aethiopium species with enzymes linked with type -2-diabetes (α-amylase and α-glucosidase) and hypertension [Angiotensin-1-converting enzyme (ACE)]. METHODS: Fresh samples of the 5 species of the garden egg namely, [Solanum gilo (PW), Solanum torvum (TWS), Solanum kumba (PGR), Solanum incanum (GSB), and Solanum indicum (WSB)] were oven-dried at 50°C and milled into flour. The aqueous extracts were prepared (1:50 w/v). The phenolic contents (total phenol and total flavonoid), vitamin C and 1,1-diphenyl–2-picrylhydrazyl (DPPH), the antioxidant activities of the extracts were evaluated. The ability of the extracts to inhibit diabetes enzymes in rat pancreas as well as the inhibition of angiotensin-1-converting (ACE) enzyme in lungs homogenates in vitro were investigated. Furthermore, the fruits polyphenols were identified and quantified using HPLC-DAD. RESULTS: The phenolic contents ranged from 2.70-3.76 mgGAE/g, while there were no significant (P>0.05) differences in their flavonoid content and ability to reduce Fe3+ to Fe2+. The vitamin C contents of the species ranged from 4.01-6.52 mg/ml. The extracts scavenged DPPH in a dose dependent manner with the IC50 values ranging from 3.23-4.20 mg/ml. Furthermore, the extracts showed strong inhibition of α-glucosidase, mild inhibition of α-amylase and strong inhibition of ACE activities. CONCLUSION: This study showed that the inhibition of the key enzymes relevant to type-2 diabetes and hypertension could be part of the mechanisms by which garden egg manage/prevent the degenerative conditions. PMID:25598760
Ong, Frank S.; Blackwell, Wendell-Lamar B.; Shah, Kandarp H.; Giani, Jorge F.; Gonzalez-Villalobos, Romer A.; Shen, Xiao Z.; Fuchs, Sebastien
2013-01-01
Angiotensin-converting enzyme (ACE) is a zinc-dependent peptidase responsible for converting angiotensin I into the vasoconstrictor angiotensin II. However, ACE is a relatively nonspecific peptidase that is capable of cleaving a wide range of substrates. Because of this, ACE and its peptide substrates and products affect many physiologic processes, including blood pressure control, hematopoiesis, reproduction, renal development, renal function, and the immune response. The defining feature of ACE is that it is composed of two homologous and independently catalytic domains, the result of an ancient gene duplication, and ACE-like genes are widely distributed in nature. The two ACE catalytic domains contribute to the wide substrate diversity of ACE and, by extension, the physiologic impact of the enzyme. Several studies suggest that the two catalytic domains have different biologic functions. Recently, the X-ray crystal structure of ACE has elucidated some of the structural differences between the two ACE domains. This is important now that ACE domain-specific inhibitors have been synthesized and characterized. Once widely available, these reagents will undoubtedly be powerful tools for probing the physiologic actions of each ACE domain. In turn, this knowledge should allow clinicians to envision new therapies for diseases not currently treated with ACE inhibitors. PMID:23257181
Sonsalla, Patricia K.; Coleman, Christal; Wong, Lai-Yoong; Harris, Suzan L.; Richardson, Jason R.; Gadad, Bharathi S.; Li, Wenhao; German, Dwight C.
2013-01-01
Parkinson’s disease (PD) is a progressive neurodegenerative disorder characterized by a prominent loss of nigrostriatal dopamine (DA) neurons with an accompanying neuroinflammation. The peptide angiotensin II (AngII) plays a role in oxidative-stress induced disorders and is thought to mediate its detrimental actions via activation of AngII AT1 receptors. The brain renin-angiotensin system is implicated in neurodegenerative disorders including PD. Blockade of the angiotensin converting enzyme or AT1 receptors provides protection in acute animal models of parkinsonism. We demonstrate here that treatment of mice with the angiotensin converting enzyme inhibitor captopril protects the striatum from acutely administered 1-methyl-4-phenyl-1,2,3,6-tetrahydropyrine (MPTP), and that chronic captopril protects the nigral DA cell bodies from degeneration in a progressive rat model of parkinsonism created by the chronic intracerebral infusion of 1-methyl-4-phenylpyridinium (MPP+). The accompanying activation of microglia in the substantia nigra of MPP+-treated rats was reduced by the chronic captopril treatment. These findings indicate that captopril is neuroprotective for nigrostriatal DA neurons in both acute and chronic rodent PD models. Targeting the brain AngII pathway may be a feasible approach to slowing neurodegeneration in PD. PMID:24184050
Ong, Shufen Angeline; Ng, Zhi Jian; Wu, Jin Chuan
2016-07-01
Thermophilic Bacillus coagulans WCP10-4 is found to be able to convert cellobiose to optically pure L-lactic acid. Its β-glucosidase activity is detected in whole cells (7.3 U/g dry cells) but not in culture medium, indicating the intracellular location of the enzyme. Its β-glucosidase activity is observed only when cultured using cellobiose as the sole carbon source, indicating that the expression of this enzyme is tightly regulated in cells. The enzyme is most active at 50 °C and pH 7.0. The supplement of external β-glucosidase during fermentation of cellobiose (106 g/l) by B. coagulans WCP10-4 increased the fermentation time from 21 to 23 h and decreased the lactic acid yield from 96.1 to 92.9 % compared to the control without β-glucosidase supplementation. B. coagulans WCP10-4 converted 200 g/l of cellobiose to 196.3 g/l of L-lactic acid at a yield of 97.8 % and a productivity of 7.01 g/l/h. This result shows that B. coagulans WCP10-4 is a highly efficient strain for converting cellobiose to L-lactic acid without the need of supplementing external β-glucosidases.
Pavkov-Keller, Tea; Strohmeier, Gernot A.; Diepold, Matthias; Peeters, Wilco; Smeets, Natascha; Schürmann, Martin; Gruber, Karl; Schwab, Helmut; Steiner, Kerstin
2016-01-01
Transaminases are useful biocatalysts for the production of amino acids and chiral amines as intermediates for a broad range of drugs and fine chemicals. Here, we describe the discovery and characterisation of new transaminases from microorganisms which were enriched in selective media containing (R)-amines as sole nitrogen source. While most of the candidate proteins were clearly assigned to known subgroups of the fold IV family of PLP-dependent enzymes by sequence analysis and characterisation of their substrate specificity, some of them did not fit to any of these groups. The structure of one of these enzymes from Curtobacterium pusillum, which can convert d-amino acids and various (R)-amines with high enantioselectivity, was solved at a resolution of 2.4 Å. It shows significant differences especially in the active site compared to other transaminases of the fold IV family and thus indicates the existence of a new subgroup within this family. Although the discovered transaminases were not able to convert ketones in a reasonable time frame, overall, the enrichment-based approach was successful, as we identified two amine transaminases, which convert (R)-amines with high enantioselectivity, and can be used for a kinetic resolution of 1-phenylethylamine and analogues to obtain the (S)-amines with e.e.s >99%. PMID:27905516
Zeyer, J; Kocher, H P
1988-01-01
A nitrophenol oxygenase which stoichiometrically converted ortho-nitrophenol (ONP) to catechol and nitrite was isolated from Pseudomonas putida B2 and purified. The substrate specificity of the enzyme was broad and included several halogen- and alkyl-substituted ONPs. The oxygenase consisted of a single polypeptide chain with a molecular weight of 58,000 (determined by gel filtration) or 65,000 (determined on a sodium dodecyl sulfate-polyacrylamide gel). The enzymatic reaction was NADPH dependent, and one molecule of oxygen was consumed per molecule of ONP converted. Enzymatic activity was stimulated by magnesium or manganese ions, whereas the addition of flavin adenine dinucleotide, flavin mononucleotide, or reducing agents had no effect. The apparent Kms for ONP and NADPH were 8 and 140 microM, respectively. 2,4-Dinitrophenol competitively (Ki = 0.5 microM) inhibited ONP turnover. The optimal pH for enzyme stability and activity was in the range of 7.5 to 8.0. At 40 degrees C, the enzyme was totally inactivated within 2 min; however, in the presence of 1 mM ONP, 40% of the activity was recovered, even after 10 min. Enzymatic activity was best preserved at -20 degrees C in the presence of 50% glycerol. Images PMID:3350791
Anaerobic biodegradation of aromatic compounds.
Jothimani, P; Kalaichelvan, G; Bhaskaran, A; Selvaseelan, D Augustine; Ramasamy, K
2003-09-01
Many aromatic compounds and their monomers are existing in nature. Besides they are introduced into the environment by human activity. The conversion of these aromatic compounds is mainly an aerobic process because of the involvement of molecular oxygen in ring fission and as an electron acceptor. Recent literatures indicated that ring fission of monomers and obligomers mainly occurs in anaerobic environments through anaerobic respiration with nitrate, sulphate, carbon dioxide or carbonate as electron acceptors. These anaerobic processes will help to work out the better situation for bioremediation of contaminated environments. While there are plenty of efforts to reduce the release of these chemicals to the environment, already contaminated sites need to be remediated not only to restore the sites but to prevent the leachates spreading to nearby environment. Basically microorganisms are better candidates for breakdown of these compounds because of their wider catalytic mechanisms and the ability to act even in the absence of oxygen. These microbes can be grouped based on their energy mechanisms. Normally, the aerobic counterparts employ the enzymes like mono-and-dioxygenases. The end product is basically catechol, which further may be metabolised to CO2 by means of quinones reductases cycles. In the absense of reductases compounds, the reduced catechols tend to become oxidised to form many quinone compounds. The quinone products are more recalcitrant and lead to other aesthetic problems like colour in water, unpleasant odour, etc. On the contrary, in the reducing environment this process is prevented and in a cascade of pathways, the cleaved products are converted to acetyl co-A to be integrated into other central metabolite paths. The central metabolite of anaerobic degradation is invariably co-A thio-esters of benzoic acid or hydroxy benzoic acid. The benzene ring undergoes various substitution and addition reactions to form chloro-, nitro-, methyl- compounds. For complete degradation the side chains must be removed first and then the benzene ring is activated by carboxylation or hydroxylation or co-A thioester formation. In the next step the activated ring is converted to a form that can be collected in the central pool of metabolism. The third step is the channeling reaction in which the products of the catalysis are directed into central metabolite pool. The enzymes involved in these mechanisms are mostly benzyl co-A ligase, benzyl alcohol dehydrogenase. Other enzymes involved in this path are yet to be purified though many of the reactions products that have been theoretically postulated have been identified. This is mainly due to the instability of intermediate compounds as well as the association of the enzyme substrate is femoral and experimental conditions need to be sophisticated further for isolation of these enzymes. The first structural genes of benzoate and hydroxy benzoate ligases were isolated from Rhodopseudomonas palustris. This gene cluster of 30 kb size found in Rhodopseudomonas palustris coded for the Bad A protein. Similarly, some of the bph A,B,C and D cluster of genes coding for the degradation of pentachlorobenzenes were located in Pseudomonas pseudoalgaligenesKF 707.
Brownstein, Daniel J; Salagre, Estela; Köhler, Cristiano; Stubbs, Brendon; Vian, João; Pereira, Ciria; Chavarria, Victor; Karmakar, Chandan; Turner, Alyna; Quevedo, João; Carvalho, André F; Berk, Michael; Fernandes, Brisa S
2018-01-01
It is unclear whether blockade of the angiotensin system has effects on mental health. Our objective was to determine the impact of angiotensin converting enzyme inhibitors and angiotensin II type 1 receptor (AT1R) blockers on mental health domain of quality of life. Meta-analysis of published literature. PubMed and clinicaltrials.gov databases. The last search was conducted in January 2017. Randomized controlled trials comparing any angiotensin converting enzyme inhibitor or AT1R blocker versus placebo or non-angiotensin converting enzyme inhibitor or non-AT1R blocker were selected. Study participants were adults without any major physical symptoms. We adhered to meta-analysis reporting methods as per PRISMA and the Cochrane Collaboration. Eleven studies were included in the analysis. When compared with placebo or other antihypertensive medications, AT1R blockers and angiotensin converting enzyme inhibitors were associated with improved overall quality of life (standard mean difference = 0.11, 95% confidence interval = [0.08, 0.14], p < 0.0001), positive wellbeing (standard mean difference = 0.11, 95% confidence interval = [0.05, 0.17], p < 0.0001), mental (standard mean difference = 0.15, 95% confidence interval = [0.06, 0.25], p < 0.0001), and anxiety (standard mean difference = 0.08, 95% confidence interval = [0.01, 0.16], p < 0.0001) domains of QoL. No significant difference was found for the depression domain (standard mean difference = 0.05, 95% confidence interval = [0.02, 0.12], p = 0.15). Use of angiotensin blockers and inhibitors for the treatment of hypertension in otherwise healthy adults is associated with improved mental health domains of quality of life. Mental health quality of life was a secondary outcome in the included studies. Research specifically designed to analyse the usefulness of drugs that block the angiotensin system is necessary to properly evaluate this novel psychiatric target.
Lely, A Titia; Heerspink, Hiddo J Lambers; Zuurman, Mike; Visser, Folkert W; Kocks, Menno J A; Boomsma, Frans; Navis, Gerjan
2010-12-01
Renin-angiotensin-aldosterone system blockade is a cornerstone in cardiovascular protection. Angiotensin-converting enzyme (ACE)-DD genotype has been associated with resistance to angiotensin-converting enzyme inhibition (ACEi), but data are conflicting. As sodium intake modifies the effect of ACEi as well as the genotype-phenotype relationship, we hypothesize gene-environment interaction between sodium-status, the response to ACEi, and ACE genotype. Thirty-five male volunteers (26 ± 9 years; II n = 6, ID n = 18, DD n = 11) were studied during placebo and ACEi (double blind, enalapril 20 mg/day) on low [7 days 50 mmol Na/day (low salt)] and high [7 days 200 mmol Na/day (high salt)] sodium, with a washout of 6 weeks in-between. After each period mean arterial pressure (MAP) was measured before and during graded infusion of angiotensin II (Ang II). During high salt, ACEi reduced MAP in II and ID, but not in DD [II: 88 (78-94) versus 76 (72-88); ID: 87 (84-91) versus 83 (79-87); both P < 0.05 and DD: 86 (82-96) versus 88 (80-90); ns, P < 0.05 between genotypes]. However, during low salt, ACEi reduced MAP in all genotype groups [II: 83 (78-89) versus 77 (72-83); ID: 88 (84-91) versus 82 (78-86); DD: 84 (80-91) versus 81 (75-85); all P < 0.05]. During high salt + ACEi, the Ang II response was blunted in DD, with an 18% rise in MAP during the highest dose versus 22 and 31% in ID and II (P < 0.05). Low salt annihilated these differences. In healthy participants, the MAP response to ACEi is selectively blunted in DD genotype during high salt, accompanied by blunted sensitivity to Ang II. Low salt corrects both abnormalities. Further analysis of this gene-environment interaction in patients may contribute to strategies for improvement of individual treatment efficacy.
Mancia, Giuseppe; Cannon, Christopher P; Tikkanen, Ilkka; Zeller, Cordula; Ley, Ludwin; Woerle, Hans J; Broedl, Uli C; Johansen, Odd Erik
2016-12-01
In the EMPA-REG BP trial, empagliflozin 10 mg and 25 mg once daily reduced glycohemoglobin, blood pressure (BP), and weight versus placebo in patients with type 2 diabetes mellitus and hypertension. Patients received placebo (n=271), empagliflozin 10 mg (n=276), or empagliflozin 25 mg (n=276) for 12 weeks (n=full analysis set). This present analysis investigated changes from baseline to week 12 in mean 24-hour systolic BP (SBP) and diastolic BP (DBP) in patients receiving 0, 1, or ≥2 antihypertensive medications and patients receiving/not receiving diuretics or angiotensin-converting enzyme inhibitors/angiotensin receptor blockers. Compared with placebo, empagliflozin 10 mg and 25 mg reduced mean 24-hour SBP/DBP in patients receiving 0 (10 mg: -3.89/-2.58 mm Hg; 25 mg: -3.77/-2.45 mm Hg), 1 (10 mg: -4.74/-1.97 mm Hg; 25 mg: -4.27/-1.81 mm Hg), or ≥2 (10 mg: -2.36/-0.68 mm Hg; 25 mg: -4.17/-1.54 mm Hg) antihypertensives. The effect of empagliflozin was not significantly different between subgroups by number of antihypertensives for changes in SBP (interaction P value 0.448) or DBP (interaction P value 0.498). Empagliflozin reduced 24-hour mean SBP/DBP irrespective of diuretic or angiotensin-converting enzyme inhibitor/angiotensin receptor blocker use, with no significant difference between subgroups by use/no use of diuretics (interaction P values 0.380 [systolic]; 0.240 [diastolic]) or angiotensin-converting enzyme inhibitors/angiotensin receptor blockers (interaction P values 0.900 [systolic]; 0.359 [diastolic]). In conclusion, in patients with type 2 diabetes mellitus and hypertension, empagliflozin for 12 weeks reduced SBP and DBP versus placebo, irrespective of the number of antihypertensives and use of diuretics or angiotensin-converting enzyme inhibitors/angiotensin receptor blockers. URL: https://clinicaltrials.gov. Unique identifier: NCT01370005. © 2016 American Heart Association, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mazzola Jr., Robert D.; Zhu, Zhaoning; Sinning, Lisa
2010-10-01
A series of cyclopropyl hydroxamic acids were prepared. Many of the compounds displayed picomolar affinity for the TACE enzyme while maintaining good to excellent selectivity profiles versus MMP-1, -2, -3, -7, -14, and ADAM-10. X-ray analysis of an inhibitor in the TACE active site indicated that the molecules bound to the enzyme in the S1{prime}-S3{prime} pocket.
Lopez-Sublet, Marilucy; di Lanzacco, Lorenzo Caratti; Jan Danser, A H; Lambert, Michel; Elourimi, Ghassan; Persu, Alexandre
2018-06-18
Angiotensin I-converting enzyme (ACE) is a well-known zinc-metallopeptidase that converts angiotensin I to the potent vasoconstrictor angiotensin II and degrades bradykinin, a powerful vasodilator, and as such plays a key role in the regulation of vascular tone and cardiac function. Increased circulating ACE (cACE) activity has been reported in multiple diseases, including but not limited to granulomatous disorders. Since 2001, genetic mutations leading to cACE elevation have also been described. This review takes advantage of the identification of a novel ACE mutation (25-IVS25 + 1G > A) in two Belgian pedigrees to summarize current knowledge about the differential diagnosis of cACE elevation, based on literature review and the experience of our centre. Furthermore, we propose a practical approach for the evaluation and management of patients with elevated cACE and discuss in which cases search for genetic mutations should be considered. Copyright © 2018. Published by Elsevier Inc.
Angiotensin converting enzyme immobilized on magnetic beads as a tool for ligand fishing.
de Almeida, Fernando G; Vanzolini, Kenia L; Cass, Quezia B
2017-01-05
Angiotensin converting enzyme (ACE) presents an important role in blood pressure regulation, since that converts angiotensin I to the vasoconstrictor angiotensin II. Some commercially available ACE inhibitors are captopril, lisinopril and enalapril; due to their side effects, naturally occurring inhibitors have been prospected. In order to endorse this research field we have developed a new tool for ACE ligand screening. To this end, ACE was extracted from bovine lung, purified and chemically immobilized in modified ferrite magnetic beads (ACE-MBs). The ACE-MBs have shown a Michaelian kinetic behavior towards hippuryl-histidyl-leucine. Moreover, as proof of concept, the ACE-MBs was inhibited by lisinopril with a half maximal inhibitory concentration (IC 50 ) of 10nM. At the fishing assay, ACE-MBs were able not only to fish out the reference inhibitor, but also one peptide from a pool of tryptic digested BSA. In conclusion, ACE-MBs emerge as new straightforward tool for ACE kinetics determination, inhibition and binder screening. Copyright © 2016 Elsevier B.V. All rights reserved.
Liu, Tingqiang; Yu, Hongshan; Liu, Chunying; Bao, Yongming; Hu, Xiangchun; Wang, Yuanhao; Liu, Bing; Fu, Yaoyao; Tang, Sihui; Jin, Fengxie
2013-05-01
Progenin III, one of the most active spirostanol saponins, is a potential candidate for anti-cancer therapy due to its strong antitumor activity and low hemolytic activity. However, the concentration of progenin III is extremely low in natural Dioscorea plants. In this paper, the progenin III production from total steroidal saponins of Dioscorea nipponica Makino was studied using the crude enzyme from Aspergillus oryzae DLFCC-38. The crude enzyme converting total steroidal saponins into progenin III was obtained from the A. oryzae DLFCC-38 culture. For enzyme production, the strain was cultured for 72 h at 30 °C with shaking at 150 rpm in 5 % (w/v) malt extract medium containing 2 % (v/v) extract of D. nipponica as the enzyme inducer. The crude enzyme converted total steroidal saponins into major progenin III with a high yield when the reaction was carried out for 9 h at 50 °C and pH 5.0 with the 20 mg/ml of substrate. In the preparation of progenin III, 117 g of crude progenin III was obtained from 160 g of substrate, and the crude product was purified with silica gel column to obtain 60.3 g progenin III of 93.4 % purity.
Ohkura, Sei-ichiro; Takashima, Shin-ichiro; Yoshioka, Kazuaki; Okamoto, Yasuo; Inagaki, Yutaka; Sugimoto, Naotoshi; Kitano, Teppei; Takamura, Masayuki; Wada, Takashi; Kaneko, Shuichi; Takuwa, Yoh
2017-01-01
Background: Cardiac fibroblasts, together with cardiomyocytes, occupy the majority of cells in the myocardium and are involved in myocardial remodeling. The lysophospholipid mediator sphigosine-1-phosphate (S1P) regulates functions of cardiovascular cells through multiple receptors including S1PR1–S1PR3. S1PR1 but not other S1P receptors was upregulated in angiotensin II-induced hypertrophic hearts. Therefore, we investigated a role of S1PR1 in fibroblasts for cardiac remodeling by employing transgenic mice that overexpressed S1PR1 under the control of α-smooth muscle actin promoter. In S1PR1-transgenic mouse heart, fibroblasts and/or myofibroblasts were hyperplastic, and those cells as well as vascular smooth muscle cells overexpressed S1PR1. Transgenic mice developed bi-ventricular hypertrophy by 12-week-old and diffuse interstitial fibrosis by 24-week-old without hemodynamic stress. Cardiac remodeling in transgenic mice was associated with greater ERK phosphorylation, upregulation of fetal genes, and systolic dysfunction. Transgenic mouse heart showed increased mRNA expression of angiotensin-converting enzyme and interleukin-6 (IL-6). Isolated fibroblasts from transgenic mice exhibited enhanced generation of angiotensin II, which in turn stimulated IL-6 release. Either an AT1 blocker or angiotensin-converting enzyme inhibitor prevented development of cardiac hypertrophy and fibrosis, systolic dysfunction and increased IL-6 expression in transgenic mice. Finally, administration of anti-IL-6 antibody abolished an increase in tyrosine phosphorylation of STAT3, a major signaling molecule downstream of IL-6, in the transgenic mouse heart and prevented development of cardiac hypertrophy in transgenic mice. These results demonstrate a promoting role of S1PR1 in cardiac fibroblasts for cardiac remodeling, in which angiotensin II—AT1 and IL-6 are involved. PMID:28771545
Liu, Wanhong; Chen, Rong; Chen, Min; Zhang, Haoxing; Peng, Meifang; Yang, Chunxian; Ming, Xingjia; Lan, Xiaozhong; Liao, Zhihua
2012-07-01
Tryptophan decarboxylase (TDC) converts tryptophan into tryptamine that is the indole moiety of ajmalicine. The full-length cDNA of Rauvolfia verticillata (RvTDC) was 1,772 bps that contained a 1,500-bp ORF encoding a 499-amino-acid polypeptide. Recombinant 55.5 kDa RvTDC converted tryptophan into tryptamine. The K (m) of RvTDC for tryptophan was 2.89 mM, higher than those reported in other TIAs-producing plants. It demonstrated that RvTDC had lower affinity to tryptophan than other plant TDCs. The K (m) of RvTDC was also much higher than that of strictosidine synthase and strictosidine glucosidase in Rauvolfia. This suggested that TDC might be the committed-step enzyme involved in ajmalicine biosynthesis in R. verticillata. The expression of RvTDC was slightly upregulated by MeJA; the five MEP pathway genes and SGD showed no positive response to MeJA; and STR was sharply downregulated by MeJA. MeJA-treated hairy roots produced higher level of ajmalicine (0.270 mg g(-1) DW) than the EtOH control (0.183 mg g(-1) DW). Highest RvTDC expression level was detected in hairy root, about respectively 11, 19, 65, and 109-fold higher than in bark, young leaf, old leaf, and root. Highest ajmalicine content was also found in hairy root (0.249 mg g(-1) DW) followed by in bark (0.161 mg g(-1) DW) and young leaf (0.130 mg g(-1) DW), and least in root (0.014 mg g(-1) DW). Generally, the expression level of RvTDC was positively consistent with the accumulation of ajmalicine. Therefore, it could be deduced that TDC might be the key enzyme involved in ajmalicine biosynthesis in Rauvolfia.
Skidgel, Randal A; Erdös, Ervin G
2004-03-01
Our investigations started when synthetic bradykinin became available and we could characterize two enzymes that cleaved it: kininase I or plasma carboxypeptidase N and kininase II, a peptidyl dipeptide hydrolase that we later found to be identical with the angiotensin I converting enzyme (ACE). When we noticed that ACE can cleave peptides without a free C-terminal carboxyl group (e.g., with a C-terminal nitrobenzylamine), we investigated inactivation of substance P, which has a C-terminal Met(11)-NH(2). The studies were extended to the hydrolysis of the neuropeptide, neurotensin and to compare hydrolysis of the same peptides by neprilysin (neutral endopeptidase 24.11, CD10, NEP). Our publication in 1984 dealt with ACE and NEP purified to homogeneity from human kidney. NEP cleaved substance P (SP) at Gln(6)-Phe(7), Phe(7)[see text]-Phe(8), and Gly(9)-Leu(10) and neurotensin (NT) at Pro(10)-Tyr(11) and Tyr(11)-Ile(12). Purified ACE also rapidly inactivated SP as measured in bioassay. HPLC analysis showed that ACE cleaved SP at Phe(8)-Gly(9) and Gly(9)-Leu(10) to release C-terminal tri- and dipeptide (ratio = 4:1). The hydrolysis was Cl(-) dependent and inhibited by captopril. ACE released only dipeptide from SP free acid. ACE hydrolyzed NT at Tyr(11)-Ile(12) to release Ile(12)-Leu(13). Then peptide substrates were used to inhibit ACE hydrolyzing Fa-Phe-Gly-Gly and NEP cleaving Leu(5)-enkephalin. The K(i) values in microM were as follows: for ACE, bradykinin = 0.4, angiotensin I = 4, SP = 25, SP free acid = 2, NT = 14, and Met(5)-enkephalin = 450, and for NEP, bradykinin = 162, angiotensin I = 36, SP = 190, NT = 39, Met(5)-enkephalin = 22. These studies showed that ACE and NEP, two enzymes widely distributed in the body, are involved in the metabolism of SP and NT. Below we briefly survey how NEP and ACE in two decades have gained the reputation as very important factors in health and disease. This is due to the discovery of more endogenous substrates of the enzymes and to the very broad and beneficial therapeutic applications of ACE inhibitors.
Mattam, Anu Jose; Kuila, Arindam; Suralikerimath, Niranjan; Choudary, Nettem; Rao, Peddy V C; Velankar, Harshad Ravindra
2016-01-01
Lignocellulosic ethanol production involves major steps such as thermochemical pretreatment of biomass, enzymatic hydrolysis of pre-treated biomass and the fermentation of released sugars into ethanol. At least two different organisms are conventionally utilized for producing cellulolytic enzymes and for ethanol production through fermentation, whereas in the present study a single yeast isolate with the capacity to simultaneously produce cellulases and xylanases and ferment the released sugars into ethanol and xylitol has been described. A yeast strain isolated from soil samples and identified as Candida tropicalis MTCC 25057 expressed cellulases and xylanases over a wide range of temperatures (32 and 42 °C) and in the presence of different cellulosic substrates [carboxymethylcellulose and wheat straw (WS)]. The studies indicated that the cultivation of yeast at 42 °C in pre-treated hydrolysate containing 0.5 % WS resulted in proportional expression of cellulases (exoglucanases and endoglucanases) at concentrations of 114.1 and 97.8 U g(-1) ds, respectively. A high xylanase activity (689.3 U g(-1) ds) was also exhibited by the yeast under similar growth conditions. Maximum expression of cellulolytic enzymes by the yeast occurred within 24 h of incubation. Of the sugars released from biomass after pretreatment, 49 g L(-1) xylose was aerobically converted into 15.8 g L(-1) of xylitol. In addition, 25.4 g L(-1) glucose released after the enzymatic hydrolysis of biomass was fermented by the same yeast to obtain an ethanol titer of 7.3 g L(-1). During the present study, a new strain of C. tropicalis was isolated and found to have potential for consolidated bioprocessing (CBP) applications. The strain could grow in a wide range of process conditions (temperature, pH) and in the presence of lignocellulosic inhibitors such as furfural, HMF and acetic acid. The new yeast produced cellulolytic enzymes over a wide temperature range and in the presence of various cellulosic substrates. The cellulolytic enzymes produced by the yeast were effectively used for the hydrolysis of pretreated biomass. The released sugars, xylose and glucose were, respectively, converted into xylitol and ethanol. The potential shown by the new inhibitor tolerant cellulolytic C. tropicalis to produce ethanol or xylitol is of great industrial significance.
Thyroid hormone (TH) homeostasis is dependent on multiple proteins for TH synthesis, transport, and peripheral metabolism and elimination. Deiodinase enzymes play an essential role in converting THs between active and inactive forms by deiodinating the pro-hormone thyroxine (T4) ...
21 CFR 184.1372 - Insoluble glucose isomerase enzyme preparations.
Code of Federal Regulations, 2013 CFR
2013-04-01
... high fructose corn syrup described in § 184.1866. They are derived from recognized species of precisely... ingredient is used as an enzyme, as defined in § 170.3(o)(9) of this chapter, to convert glucose to fructose. (2) The ingredient is used in high fructose corn syrup, at levels not to exceed current good...
21 CFR 184.1372 - Insoluble glucose isomerase enzyme preparations.
Code of Federal Regulations, 2014 CFR
2014-04-01
... isomerase enzyme preparations are used in the production of high fructose corn syrup described in § 184.1866... defined in § 170.3(o)(9) of this chapter, to convert glucose to fructose. (2) The ingredient is used in high fructose corn syrup, at levels not to exceed current good manufacturing practice. [48 FR 5720, Feb...
21 CFR 184.1372 - Insoluble glucose isomerase enzyme preparations.
Code of Federal Regulations, 2011 CFR
2011-04-01
... high fructose corn syrup described in § 184.1866. They are derived from recognized species of precisely... ingredient is used as an enzyme, as defined in § 170.3(o)(9) of this chapter, to convert glucose to fructose. (2) The ingredient is used in high fructose corn syrup, at levels not to exceed current good...
21 CFR 184.1372 - Insoluble glucose isomerase enzyme preparations.
Code of Federal Regulations, 2010 CFR
2010-04-01
... high fructose corn syrup described in § 184.1866. They are derived from recognized species of precisely... ingredient is used as an enzyme, as defined in § 170.3(o)(9) of this chapter, to convert glucose to fructose. (2) The ingredient is used in high fructose corn syrup, at levels not to exceed current good...
21 CFR 184.1372 - Insoluble glucose isomerase enzyme preparations.
Code of Federal Regulations, 2012 CFR
2012-04-01
... high fructose corn syrup described in § 184.1866. They are derived from recognized species of precisely... ingredient is used as an enzyme, as defined in § 170.3(o)(9) of this chapter, to convert glucose to fructose. (2) The ingredient is used in high fructose corn syrup, at levels not to exceed current good...
Transport of pyruvate into mitochondria is involved in methylmercury toxicity
Lee, Jin-Yong; Ishida, Yosuke; Takahashi, Tsutomu; Naganuma, Akira; Hwang, Gi-Wook
2016-01-01
We have previously demonstrated that the overexpression of enzymes involved in the production of pyruvate, enolase 2 (Eno2) and D-lactate dehydrogenase (Dld3) renders yeast highly sensitive to methylmercury and that the promotion of intracellular pyruvate synthesis may be involved in intensifying the toxicity of methylmercury. In the present study, we showed that the addition of pyruvate to culture media in non-toxic concentrations significantly enhanced the sensitivity of yeast and human neuroblastoma cells to methylmercury. The results also suggested that methylmercury promoted the transport of pyruvate into mitochondria and that the increased pyruvate concentrations in mitochondria were involved in intensifying the toxicity of methylmercury without pyruvate being converted to acetyl-CoA. Furthermore, in human neuroblastoma cells, methylmercury treatment alone decreased the mitochondrial membrane potential, and the addition of pyruvate led to a further significant decrease. In addition, treatment with N-acetylcysteine (an antioxidant) significantly alleviated the toxicity of methylmercury and significantly inhibited the intensification of methylmercury toxicity by pyruvate. Based on these data, we hypothesize that methylmercury exerts its toxicity by raising the level of pyruvate in mitochondria and that mitochondrial dysfunction and increased levels of reactive oxygen species are involved in the action of pyruvate. PMID:26899208
Serine proteases as candidates for proteolytic processing of angiotensin-I converting enzyme.
Aragão, Danielle S; de Andrade, Maria Claudina C; Ebihara, Fabiana; Watanabe, Ingrid K M; Magalhães, Dayane C B P; Juliano, Maria Aparecida; Hirata, Izaura Yoshico; Casarini, Dulce Elena
2015-01-01
Somatic angiotensin-I converting enzyme (sACE) is a broadly distributed peptidase which plays a role in blood pressure and electrolyte homeostasis by the conversion of angiotensin I into angiotensin II. N-domain isoforms (nACE) with 65 and 90 kDa have been described in body fluids, tissues and mesangial cells (MC), and a 90 kDa nACE has been described only in spontaneously hypertensive rats. The aim of this study was to investigate the existence of proteolytic enzymes that may act in the hydrolysis of sACE generating nACEs in MC. After the confirmation of the presence of ACE sheddases in Immortalized MC (IMC), we purified and characterized these enzymes using fluorogenic substrates specifically designed for ACE sheddases. Purified enzyme identified as a serine protease by N-terminal sequence was able to generate nACE. In the present study, we described for the first time the presence of ACE sheddases in IMC, identified as serine proteases able to hydrolyze sACE in vitro. Further investigations are necessary to elucidate the mechanisms responsible for the expression and regulation of ACE sheddases in MC and their roles in the generation of nACEs, especially the 90 kDa form possibly related to hypertension. Copyright © 2014 Elsevier B.V. All rights reserved.
Biosynthesis, Trafficking and Secretion of Pro-opiomelanocortin-derived peptides
Cawley, Niamh X.; Li, Zhaojin; Loh, Y. Peng
2016-01-01
Pro-opiomelanocortin (POMC) is a prohormone that encodes multiple smaller peptide hormones within its structure. These peptide hormones can be generated by cleavage of POMC at basic-residue cleavage sites by prohormone converting enzymes in the regulated secretory pathway of POMC synthesizing endocrine cells and neurons. The peptides are stored inside the cells in dense core secretory granules until released in a stimulus dependent manner. The complexity of the regulation of the biosynthesis, trafficking and secretion of POMC and its peptides reflect an impressive level of control over many factors involved in the ultimate role of POMC expressing cells, i.e. to produce a range of different biologically active peptide hormones ready for action when signaled by the body. From the discovery of POMC as the precursor to ACTH and β-Lipotropin in the late 1970s to our current knowledge, the understanding of POMC physiology remains a monumental body of work that has provided insight into many aspects of molecular endocrinology. In this chapter, we describe the intracellular trafficking of POMC in endocrine cells, its sorting into dense core secretory granules and transport of these granules to the regulated secretory pathway. Additionally, we review the enzymes involved in the maturation of POMC to its various peptides and the mechanisms involved in the differential processing of POMC in different cell types. Finally, we highlight studies pertaining to the regulation of ACTH secretion in the anterior and intermediate pituitary and POMC neurons of the hypothalamus. PMID:26880796
Andrade, Sheila Siqueira; Smaili, Soraya Soubhi; Monteforte, Priscila Totarelli; Miranda, Antônio; Kouyoumdjian, Maria; Sampaio, Misako Uemura; Lopes, Guiomar Silva; Oliva, Maria Luiza V
2012-09-01
BbKI is a kallikrein inhibitor with a reactive site sequence similar to that of kinins, the vasoactive peptides inserted in kininogen moieties. This structural similarity probably contributes to the strong interaction with plasma kallikrein, the enzyme that releases, from high-molecular weight kininogen (HMWK), the proinflammatory peptide bradykinin, which acts on B(2) receptors (B(2)R). BbKI was examined on smooth muscle contraction and Ca(2+) mobilization, in which the kallikrein-kinin system is involved. Contrary to expectations, BbKI (1.8 μm) increased [Ca(2+)](c) and contraction, as observed with BK (2.0 μm). Not blocked by B(1) receptors (B(1)R), the BbKI agonistic effect was blocked by the B(2)R antagonist, HOE-140 (6 μm), and the involvement of B(2)R was confirmed in B(2)R-knockout mice intestine. The same tissue response was obtained using a synthetic peptide derived from the BbKI reactive site structure, more resistant than BK to angiotensin I-converting enzyme (ACE) hydrolysis. Depending on the concentration, BbKI has a dual effect. At a low concentration, BbKI acts as a potent kallikrein inhibitor; however, due to the similarity to BK, in high concentrations, BbKI greatly increases Ca(2+) release from internal storages, as a consequence of its interaction with B(2)R. Therefore, the antagonistic and agonistic effects of BbKI may be considered in conditions of B(2)R involvement.
Lu, Zhonghui; Ott, Gregory R; Anand, Rajan; Liu, Rui-Qin; Covington, Maryanne B; Vaddi, Krishna; Qian, Mingxin; Newton, Robert C; Christ, David D; Trzaskos, James; Duan, James J-W
2008-03-15
Potent and selective inhibitors of tumor necrosis factor-alpha converting enzyme (TACE) were discovered with several new heterocyclic P1' groups in conjunction with cyclic beta-amino hydroxamic acid scaffolds. Among them, the pyrazolopyridine provided the best overall profile when combined with tetrahydropyran beta-amino hydroxamic acid scaffold. Specifically, inhibitor 49 showed IC(50) value of 1 nM against porcine TACE and 170 nM in the suppression of LPS-induced TNF-alpha of human whole blood. Compound 49 also displayed excellent selectivity over a wide panel of MMPs as well as excellent oral bioavailability (F%>90%) in rat n-in-1 PK studies.
Fructose 1,6-diphosphatase in striated muscle
Krebs, H. A.; Woodford, Muriel
1965-01-01
1. The occurrence of fructose diphosphatase in muscle tissue was investigated with reference to the question whether lactate can be converted into glycogen in muscle, as postulated by Meyerhof (1930), fructose diphosphatase being one of the enzymes required for this conversion. 2. Fructose diphosphatase was found in skeletal muscle of man, dog, cat, rat, mouse, rabbit, guinea pig, cattle, sheep, pigeon, fowl and frog. Under the test conditions between 5 and 60 μmoles of substrate were split/g. fresh wt./hr. at 22°. 3. Like liver fructose diphosphatase, the muscle enzyme is inhibited by substrate concentrations above 0·1 mm, by AMP and by trace quantities of Zn2+, Fe2+ and Fe3+; it is `activated' by EDTA. Inhibitions by the above agents may account for the failure of previous authors to detect the enzyme. 4. Heart muscle of several vertebrate species and the smooth muscle of pigeon and fowl gizzard had no measurable activity. 5. The presence of fructose diphosphatase and the virtual absence of the enzyme systems converting pyruvate into phosphopyruvate means that lactate and pyruvate cannot be converted into glycogen in muscle, whereas the phosphorylated C3 compounds can. The reconversion into carbohydrate of lactate (which readily diffuses out of muscle) occurs in liver and kidney only. The reconversion of phosphorylated C3 intermediates (which cannot diffuse out of the tissue) can occur only within the muscle. 6. α-Glycerophosphate is probably the main intermediate requiring conversion into glycogen. The possible role of α-glycerophosphate formation in vertebrate muscle, already well established in insect muscle, is discussed. PMID:14346089
Liscombe, David K; Facchini, Peter J
2007-05-18
S-Adenosyl-l-methionine:tetrahydroprotoberberine cis-N-methyltransferase (EC 2.1.1.122) catalyzes the conversion of (S)-stylopine to the quaternary ammonium alkaloid, (S)-cis-N-methylstylopine, as a key step in the biosynthesis of protopine and benzophenanthridine alkaloids in plants. A full-length cDNA encoding a protein exhibiting 45 and 48% amino acid identity with coclaurine N-methyltransferase from Papaver somniferum (opium poppy) and Coptis japonica, respectively, was identified in an elicitor-treated opium poppy cell culture expressed sequence tag data base. Phylogenetic analysis showed that the protein belongs to a unique clade of enzymes that includes coclaurine N-methyltransferase, the predicated translation products of the Arabidopsis thaliana genes, At4g33110 and At4g33120, and bacterial S-adenosyl-L-methionine-dependent cyclopropane fatty acid synthases. Expression of the cDNA in Escherichia coli produced a recombinant enzyme able to convert the protoberberine alkaloids stylopine, canadine, and tetrahydropalmatine to their corresponding N-methylated derivatives. However, the protoberberine alkaloids tetrahydroxyberbine and scoulerine, and simple isoquinoline, benzylisoquinoline, and pavine alkaloids were not accepted as substrates, demonstrating the strict specificity of the enzyme. The apparent K(m) values for (R,S)-stylopine and S-adenosyl-L-methionine were 0.6 and 11.5 microm, respectively. TNMT gene transcripts and enzyme activity were detected in opium poppy seedlings and all mature plant organs and were induced in cultured opium poppy cells after treatment with a fungal elicitor. The enzyme was detected in cell cultures of other members of the Papaveraceae but not in species of related plant families that do not accumulate protopine and benzophenanthridine alkaloids.
Sánchez-Carrón, Guiomar; Martínez-Moñino, Ana Belén; Sola-Carvajal, Agustín; Takami, Hideto; García-Carmona, Francisco; Sánchez-Ferrer, Álvaro
2013-01-01
Nicotinamide mononucleotide (NMN) deamidase is one of the key enzymes of the bacterial pyridine nucleotide cycle (PNC). It catalyzes the conversion of NMN to nicotinic acid mononucleotide, which is later converted to NAD+ by entering the Preiss-Handler pathway. However, very few biochemical data are available regarding this enzyme. This paper represents the first complete molecular characterization of a novel NMN deamidase from the halotolerant and alkaliphilic bacterium Oceanobacillus iheyensis (OiPncC). The enzyme was active over a broad pH range, with an optimum at pH 7.4, whilst maintaining 90 % activity at pH 10.0. Surprisingly, the enzyme was quite stable at such basic pH, maintaining 61 % activity after 21 days. As regard temperature, it had an optimum at 65 °C but its stability was better below 50 °C. OiPncC was a Michaelian enzyme towards its only substrate NMN, with a K m value of 0.18 mM and a kcat/K m of 2.1 mM-1 s-1. To further our understanding of these enzymes, a complete phylogenetic and structural analysis was carried out taking into account the two Pfam domains usually associated with them (MocF and CinA). This analysis sheds light on the evolution of NMN deamidases, and enables the classification of NMN deamidases into 12 different subgroups, pointing to a novel domain architecture never before described. Using a Logo representation, conserved blocks were determined, providing new insights on the crucial residues involved in the binding and catalysis of both CinA and MocF domains. The analysis of these conserved blocks within new protein sequences could permit the more efficient data curation of incoming NMN deamidases. PMID:24340054
Bayineni, Venkata Krishna; Venkatesh, Krishna; Sahu, Chandan Kumar; Kadeppagari, Ravi-Kumar
2016-04-01
Methotrexate degrading enzymes are required to overcome the toxicity of the methotrexate while treating the cancer. The enzyme from Variovorax paradoxus converts the methotrexate in to non toxic products. Methotrexate degrading enzyme from V. paradoxus is a dimeric protein with a molecular mass of 46 kDa and it acts on casein and gelatin. This enzyme is optimally active at pH 7.5 and 40°C and nanoparticles of this enzyme were prepared by desolvation-crosslinking method. Enzyme nanoparticles could degrade methotrexate faster than the native enzyme and they show lower Km compare to the native enzyme. Enzyme nanoparticles show better thermostability and they were stable for much longer time in the serum compare to the native enzyme. Enzyme nanoparticles show better functionality than the native enzyme while clearing the methotrexate added to the serum suggesting their advantage over the native enzyme for the therapeutic and biotechnological applications. Copyright © 2016 Elsevier Inc. All rights reserved.
Ngo, Dai-Hung; Ryu, BoMi; Kim, Se-Kwon
2014-01-15
Skin gelatin of skate (Okamejei kenojei) was hydrolyzed using Alcalase, flavourzyme, Neutrase and protamex. It was found that the Alcalase hydrolysate exhibited the highest angiotensin-I converting enzyme (ACE) inhibitory activity. Then, Alcalase hydrolysate was further hydrolyzed with protease and separated by an ultrafiltration membrane system. Finally, two peptides responsible for ACE inhibitory activity were identified to be MVGSAPGVL (829Da) and LGPLGHQ (720Da), with IC50 values of 3.09 and 4.22μM, respectively. Moreover, the free radical-scavenging activity of the purified peptides was determined in human endothelial cells. In addition, the antioxidative mechanism of the purified peptides was evaluated by protein and gene expression levels of antioxidant enzymes. The current study demonstrated that the peptides derived from skate skin gelatin could be used in the food industry as functional ingredients with potent antihypertensive and antioxidant benefits. Copyright © 2013 Elsevier Ltd. All rights reserved.
A 3-hydroxypropionate/4-hydroxybutyrate autotrophic carbon dioxide assimilation pathway in Archaea.
Berg, Ivan A; Kockelkorn, Daniel; Buckel, Wolfgang; Fuchs, Georg
2007-12-14
The assimilation of carbon dioxide (CO2) into organic material is quantitatively the most important biosynthetic process. We discovered that an autotrophic member of the archaeal order Sulfolobales, Metallosphaera sedula, fixed CO2 with acetyl-coenzyme A (acetyl-CoA)/propionyl-CoA carboxylase as the key carboxylating enzyme. In this system, one acetyl-CoA and two bicarbonate molecules were reductively converted via 3-hydroxypropionate to succinyl-CoA. This intermediate was reduced to 4-hydroxybutyrate and converted into two acetyl-CoA molecules via 4-hydroxybutyryl-CoA dehydratase. The key genes of this pathway were found not only in Metallosphaera but also in Sulfolobus, Archaeoglobus, and Cenarchaeum species. Moreover, the Global Ocean Sampling database contains half as many 4-hydroxybutyryl-CoA dehydratase sequences as compared with those found for another key photosynthetic CO2-fixing enzyme, ribulose-1,5-bisphosphate carboxylase-oxygenase. This indicates the importance of this enzyme in global carbon cycling.
Thweatt, Jennifer L; Ferlez, Bryan H; Golbeck, John H; Bryant, Donald A
2017-01-27
Green bacteria are chlorophotorophs that synthesize bacteriochlorophyll (BChl) c, d, or e, which assemble into supramolecular, nanotubular structures in large light-harvesting structures called chlorosomes. The biosynthetic pathways of these chlorophylls are known except for one reaction. Null mutants of bciD, which encodes a putative radical S-adenosyl-l-methionine (SAM) protein, are unable to synthesize BChl e but accumulate BChl c; however, it is unknown whether BciD is sufficient to convert BChl c (or its precursor, bacteriochlorophyllide (BChlide) c) into BChl e (or BChlide e). To determine the function of BciD, we expressed the bciD gene of Chlorobaculum limnaeum strain DSMZ 1677 T in Escherichia coli and purified the enzyme under anoxic conditions. Electron paramagnetic resonance spectroscopy of BciD indicated that it contains a single [4Fe-4S] cluster. In assays containing SAM, BChlide c or d, and sodium dithionite, BciD catalyzed the conversion of SAM into 5'-deoxyadenosine and BChlide c or d into BChlide e or f, respectively. Our analyses also identified intermediates that are proposed to be 7 1 -OH-BChlide c and d Thus, BciD is a radical SAM enzyme that converts the methyl group of BChlide c or d into the formyl group of BChlide e or f This probably occurs by a mechanism involving consecutive hydroxylation reactions of the C-7 methyl group to form a geminal diol intermediate, which spontaneously dehydrates to produce the final products, BChlide e or BChlide f The demonstration that BciD is sufficient to catalyze the conversion of BChlide c into BChlide e completes the biosynthetic pathways for all "Chlorobium chlorophylls." © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Dubreuil, P; Fulcrand, P; Rodriguez, M; Fulcrand, H; Laur, J; Martinez, J
1989-01-01
ACE (angiotensin-converting enzyme; peptidyl dipeptidase A; EC 3.4.15.1), cleaves C-terminal dipeptides from active peptides containing a free C-terminus. We investigated the hydrolysis of cholecystokinin-8 [CCK-8; Asp-Tyr(SO3H)-Met-Gly-Trp-Met-Asp-Phe-NH2] and of various gastrin analogues by purified rabbit lung ACE. Although these peptides are amidated at their C-terminal end, they were metabolized by ACE to several peptide fragments. These fragments were analysed by h.p.l.c., isolated and identified by comparison with synthetic fragments, and by amino acid analysis. The initial and major site of hydrolysis was the penultimate peptide bond, which generated a major product, the C-terminal amidated dipeptide Asp-Phe-NH2. As a secondary cleavage, ACE subsequently released di- or tri-peptides from the C-terminal end of the remaining N-terminal fragments. The cleavage of CCK-8 and gastrin analogues was inhibited by ACE inhibitors (Captopril and EDTA), but not by other enzyme inhibitors (phosphoramidon, thiorphan, bestatin etc.). Hydrolysis of [Leu15]gastrin-(14-17)-peptide [Boc (t-butoxycarbonyl)-Trp-Leu-Asp-Phe-NH2] in the presence of ACE was found to be dependent on the chloride-ion concentration. Km values for the hydrolysis of CCK-8, [Leu15]gastrin-(11-17)-peptide and Boc-[Leu15]gastrin-(14-17)-peptide at an NaCl concentration of 300 mM were respectively 115, 420 and 3280 microM, and the catalytic constants were about 33, 115 and 885 min-1. The kcat/Km for the reactions at 37 degrees C was approx. 0.28 microM-1.min-1, which is approx. 35 times less than that reported for the cleavage of angiotensin I. These results suggest that ACE might be involved in the metabolism in vivo of CCK and gastrin short fragments. PMID:2554881
Mechanism of high glucose induced angiotensin II production in rat vascular smooth muscle cells.
Lavrentyev, Eduard N; Estes, Anne M; Malik, Kafait U
2007-08-31
Angiotensin II (Ang II), a circulating hormone that can be synthesized locally in the vasculature, has been implicated in diabetes-associated vascular complications. This study was conducted to determine whether high glucose (HG) (approximately 23.1 mmol/L), a diabetic-like condition, stimulates Ang II generation and the underlying mechanism of its production in rat vascular smooth muscle cells. The contribution of various enzymes involved in Ang II generation was investigated by silencing their expression with small interfering RNA in cells exposed to normal glucose (approximately 4.1 mmol/L) and HG. Angiotensin I (Ang I) was generated from angiotensinogen by cathepsin D in the presence of normal glucose or HG. Although HG did not affect the rate of angiotensinogen conversion, it decreased expression of angiotensin-converting enzyme (ACE), downregulated ACE-dependent Ang II generation, and upregulated rat vascular chymase-dependent Ang II generation. The ACE inhibitor captopril reduced Ang II levels in the media by 90% in the presence of normal glucose and 19% in HG, whereas rat vascular chymase silencing reduced Ang II production in cells exposed to HG but not normal glucose. The glucose transporter inhibitor cytochalasin B, the aldose reductase inhibitor alrestatin, and the advanced glycation end product formation inhibitor aminoguanidine attenuated HG-induced Ang II generation. HG caused a transient increase in extracellular signal-regulated kinase (ERK)1/2 phosphorylation, and ERK1/2 inhibitors reduced Ang II accumulation by HG. These data suggest that polyol pathway metabolites and AGE can stimulate rat vascular chymase activity via ERK1/2 activation and increase Ang II production. In addition, decreased Ang II degradation, which, in part, could be attributable to a decrease in angiotensin-converting enzyme 2 expression observed in HG, contributes to increased accumulation of Ang II in vascular smooth muscle cells by HG.
Mechanistic Studies of an Autonomously Pulsing Hydrogel/Enzyme System for Rhythmic Hormone Delivery
Bhalla, Amardeep S.; Siegel, Ronald A.
2014-01-01
Numerous hormones are known to be endogenously secreted in a pulsatile manner. In particular, gonadotropin replacing hormone (GnRH) is released in rhythmic pulses, and disruption of this rhythm is associated with pathologies of reproduction and sexual development. In an effort to develop an implantable, rhythmic delivery system, a scheme has been demonstrated involving a negative feedback instability between a pH-sensitive membrane and enzymes that convert endogenous glucose to hydrogen ion. A bench prototype system based on this scheme was previously shown to produce near rhythmic oscillations in internal pH and in GnRH delivery over a period of one week. In the present work, a systematic study of conditions permitting such oscillations is presented, along with a study of factors causing period of oscillations to increase with time and ultimately cease. Membrane composition, glucose concentration, and surface area of marble (CaCO3), which is incorporated as a reactant, were found to affect the capacity of the system to oscillate, and the pH range over which oscillations occur. Accumulation of gluconate- and Ca2+ in the system over time correlated with lengthening of oscillation period, and possibly with cessation of oscillations. Enzyme degradation may also be a factor. These studies provide the groundwork for future improvements in device design. PMID:25450402
Enzymatic formation of the bisfuran structure in aflatoxin biosynthesis.
Wan, N C; Hsieh, D P
1980-01-01
A relatively stable enzyme system that converts versiconal hemiacetal acetate to versicolorin A was isolated from the soluble fraction of the homogenized cells of Aspergillus parasiticus ATCC 15517. The cell-free preparation did not require oxygen or oxidized nicotinamide adenine dinucleotide phosphate for activity, nor did it require dithiothreitol, polyclar (polyvinyl pyrrolidone), or glycerol for stabilization of activity. It was susceptible to inhibition by dichlorvos and cysteine. Isotope tracer studies revealed involvement of several intermediates in the conversion of versiconal hemiacetal acetate to versicolorin A. These findings confirm the biogenetic relationship of versiconal hemiacetal acetate and versicolorin A, and they confirm that the bisfuran ring structure in aflatoxins and related fungal metabolites is derived from the hemiacetal structure of versiconal hemiacetal acetate. Images PMID:7356313
Europe Report, Science and Technology.
1986-06-18
amylase, heat stable alpha-amylase and glucoamylase for processing starch as a substrate for 71 glucose and its isomerization to fructose using an...continuous column process under laboratory conditions. We have demonstrated that these preparations isomerize glucose syrups up to 42 percent, converting...food industry is the leading consumer of microbial enzymes devouring about 80 percent of the world production of enzymes -- glucose isomerase, alpha
Epilactose production by 2 cellobiose 2-epimerases in natural milk.
Krewinkel, Manuel; Gosch, Maria; Rentschler, Eva; Fischer, Lutz
2014-01-01
It was reported recently that cellobiose 2-epimerases (CE) from various aerobic microorganisms convert lactose to epilactose in defined buffer systems. In this study, we showed that CE from 2 mesophilic microorganisms, Flavobacterium johnsoniae and Pedobacter heparinus, were capable of converting lactose to prebiotic epilactose not only in buffer but also in a complex milk system. First, the 2 enzymes were separately cloned, recombinantly expressed in Escherichia coli, and purified by column chromatography. The production of F. johnsoniae CE was carried out in a stirred-tank reactor, indicating that future upscaling is possible. The bioconversions of milk lactose were carried out at an industrially relevant low temperature of 8°C to avoid undesired microbial contaminations or chemical side reactions. Both enzymes were reasonably active at this low temperature, because of their origin from mesophilic organisms. The enzymes showed different operational stabilities over a 24-h time-course. A conversion yield of about 30 to 33% epilactose was achieved with both enzymes. No side products were detected other than epilactose. Therefore, CE may introduce an added value for particular dairy products by in situ production of the prebiotic sugar epilactose. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
De Mello Costa, Maria Fernanda; Slocombe, Ron
2012-01-01
Angiotensin II is a key regulator of blood pressure and cardiovascular function in mammals. The conversion of angiotensin into its active form is carried out by Angiotensin I-Converting Enzyme (ACE). The measurement of ACE concentration in plasma or serum, its enzymatic activity, and the correlation between an insertion/deletion (I/D) genetic polymorphism of the ACE gene have been investigated as possible indicators of superior athletic performance in humans. In this context, other indicators of superior adaptation to exercise resulting in better athletic performance (such as ventricular hypertrophy, VO2 max, and competition results) were mostly used to study the association between ACE I/D polymorphism and improved performance. Despite the fact that the existing literature presents little consensus, there is sufficient scientific evidence to warrant further investigation on the usage of ACE activity and the I/D ACE gene polymorphism as biomarkers of superior athletic performance in humans of specific ethnicities or in athletes involved in certain sports. In this sense, a biomarker would be a substance or genetic component that could be measured to provide a degree of certainty, or an indication, of the presence of a certain trait or characteristic that would be beneficial to the athlete’s performance. Difficulties in interpreting and comparing the results of scientific research on the topic arise from dissimilar protocols and variation in study design. This review aims to investigate the current literature on the use of ACE I/D polymorphism as a biomarker of performance in humans through the comparison of scientific publications. PMID:25586030
De Mello Costa, Maria Fernanda; Slocombe, Ron
2012-10-09
Angiotensin II is a key regulator of blood pressure and cardiovascular function in mammals. The conversion of angiotensin into its active form is carried out by Angiotensin I-Converting Enzyme (ACE). The measurement of ACE concentration in plasma or serum, its enzymatic activity, and the correlation between an insertion/deletion (I/D) genetic polymorphism of the ACE gene have been investigated as possible indicators of superior athletic performance in humans. In this context, other indicators of superior adaptation to exercise resulting in better athletic performance (such as ventricular hypertrophy, VO2 max, and competition results) were mostly used to study the association between ACE I/D polymorphism and improved performance. Despite the fact that the existing literature presents little consensus, there is sufficient scientific evidence to warrant further investigation on the usage of ACE activity and the I/D ACE gene polymorphism as biomarkers of superior athletic performance in humans of specific ethnicities or in athletes involved in certain sports. In this sense, a biomarker would be a substance or genetic component that could be measured to provide a degree of certainty, or an indication, of the presence of a certain trait or characteristic that would be beneficial to the athlete's performance. Difficulties in interpreting and comparing the results of scientific research on the topic arise from dissimilar protocols and variation in study design. This review aims to investigate the current literature on the use of ACE I/D polymorphism as a biomarker of performance in humans through the comparison of scientific publications.
McClay, Kevin; Boss, Corinne; Keresztes, Ivan; Steffan, Robert J.
2005-01-01
Broad-substrate-range monooygenase enzymes, including toluene-4-monooxygenase (T4MO), can catalyze the oxidation of indole. The indole oxidation products can then condense to form the industrially important dye indigo. Site-directed mutagenesis of T4MO resulted in the creation of T4MO isoforms with altered pigment production phenotypes. High-pressure liquid chromatography, thin-layer chromatography, and nuclear magnetic resonance analysis of the indole oxidation products generated by the mutant T4MO isoforms revealed that the phenotypic differences were primarily due to changes in the regiospecificity of indole oxidation. Most of the mutations described in this study changed the ratio of the primary indole oxidation products formed (indoxyl, 2-oxindole, and isatin), but some mutations, particularly those involving amino acid G103 of tmoA, allowed for the formation of additional products, including 7-hydroxyindole and novel indigoid pigments. For example, mutant G103L converted 17% of added indole to 7-hydroxyindole and 29% to indigoid pigments including indigo and indirubin and two other structurally related pigments. The double mutant G103L:A107G converted 47% of indole to 7-hydroxyindole, but no detectable indigoid pigments were formed, similar to the product distribution observed with the toluene-2-monooxygenase (T2MO) of Burkholderia cepacia G4. These results demonstrate that modification of the tmoA active site can change the products produced by the enzyme and lead to the production of novel pigments and other indole oxidation products with potential commercial and medicinal utility. PMID:16151140
Rella, Monika; Elliot, Joann L; Revett, Timothy J; Lanfear, Jerry; Phelan, Anne; Jackson, Richard M; Turner, Anthony J; Hooper, Nigel M
2007-01-01
Background Mammalian angiotensin converting enzyme (ACE) plays a key role in blood pressure regulation. Although multiple ACE-like proteins exist in non-mammalian organisms, to date only one other ACE homologue, ACE2, has been identified in mammals. Results Here we report the identification and characterisation of the gene encoding a third homologue of ACE, termed ACE3, in several mammalian genomes. The ACE3 gene is located on the same chromosome downstream of the ACE gene. Multiple sequence alignment and molecular modelling have been employed to characterise the predicted ACE3 protein. In mouse, rat, cow and dog, the predicted protein has mutations in some of the critical residues involved in catalysis, including the catalytic Glu in the HEXXH zinc binding motif which is Gln, and ESTs or reverse-transcription PCR indicate that the gene is expressed. In humans, the predicted ACE3 protein has an intact HEXXH motif, but there are other deletions and insertions in the gene and no ESTs have been identified. Conclusion In the genomes of several mammalian species there is a gene that encodes a novel, single domain ACE-like protein, ACE3. In mouse, rat, cow and dog ACE3, the catalytic Glu is replaced by Gln in the putative zinc binding motif, indicating that in these species ACE3 would lack catalytic activity as a zinc metalloprotease. In humans, no evidence was found that the ACE3 gene is expressed and the presence of deletions and insertions in the sequence indicate that ACE3 is a pseudogene. PMID:17597519
Angiotensin converting enzyme DD genotype is associated with hypertensive crisis.
Sunder-Plassmann, Gere; Kittler, Harald; Eberle, Corinna; Hirschl, Michael M; Woisetschläger, Christian; Derhaschnig, Ulla; Laggner, Anton N; Hörl, Walter H; Födinger, Manuela
2002-10-01
The genetic background of hypertensive crisis is unknown. We examined the association of polymorphisms in genes involved in the renin-angiotensin-aldosterone-system with hypertensive crisis. Population-based case-control study. Emergency department at a tertiary care university hospital. A total of 182 patients with essential hypertension who were admitted to an emergency department for treatment of hypertensive crisis and 182 age- and sex-matched healthy individuals. None. Analysis of polymorphisms in genes coding for angiotensinogen (AJT 704T-->C), angiotensin II receptor 1 (AGTR1 1166A-->C), renin (REN 2646G-->A), renin-binding protein (RENBP 61T-->C), alpha-adducin (ADD1 1378G-->T), beta-2-adrenergic receptor (ADRB2 46A-->G, 79C-->G), and angiotensin I converting enzyme (ACE I/D) was performed by polymerase chain reaction and restriction fragment length polymorphism analysis. MAIN RESULTS Among patients, the ACE I/D polymorphism showed a deviation from Hardy-Weinberg equilibrium (p =.01). In controls, all polymorphisms were in the Hardy-Weinberg equilibrium. The frequency of the DD genotype was increased in patients (n = 70, 38.5%) vs. controls (n = 51; 28.0%;p =.03; odds ratio, 1.61; 95% confidence interval, 1.03-2.50), which was due to the DD genotype in 40 male patients (44%) vs. 23 in male controls (25.3%;p =.004; odds ratio, 3.48; 95% confidence interval, 1.47-8.30). There were no differences in genotype distributions among other polymorphisms. We demonstrate a possible association of the DD genotype with hypertensive crisis in men.
John, Harald; Hierer, Jessica; Haas, Olga; Forssmann, Wolf-Georg
2007-03-01
Chemerin is a chemoattractive protein acting as a ligand for the G-protein-coupled receptor ChemR23/CMKLR1 and plays an important role in the innate and adaptive immunity. Proteolytic processing of its C terminus is essential for receptor binding and physiological activity. Therefore, we investigated the plasma stability of the decapeptide chemerin 145-154 (P(145)-F(154)) corresponding to the C terminus of the physiologically active chemerin variant E(21)-F(154) from human hemofiltrate. For monitoring concentration-time profiles and degradation products we developed a novel matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry procedure using an internal peptide standard (hemorphin LVV-H7) for quantification. The linear range covers 2.5 orders of magnitude in the lower micromolar concentration range (lower limit of quantification 0.312 microg/ml, 0.25 microM) characterized by satisfactory reproducibility (CV < or =9%), accuracy (< or =10%), ruggedness, and recovery (98%). We found that chemerin 145-154 is C-terminally truncated in human citrate plasma by the cleavage of the penultimate dipeptidyl residue. N-terminal truncation was not observed. In contrast to citrate plasma, no degradation was detected in ethylenediammetetraacetate (EDTA) plasma. We identified angiotensin-converting-enzyme (ACE) to be responsible for C-terminal truncation, which could be completely inhibited by EDTA and captopril. These results are relevant to clarify the natural processing of chemerin and the potential involvement of ACE in mediating the immune response.
Industrial production of L-ascorbic Acid (vitamin C) and D-isoascorbic acid.
Pappenberger, Günter; Hohmann, Hans-Peter
2014-01-01
L-ascorbic acid (vitamin C) was first isolated in 1928 and subsequently identified as the long-sought antiscorbutic factor. Industrially produced L-ascorbic acid is widely used in the feed, food, and pharmaceutical sector as nutritional supplement and preservative, making use of its antioxidative properties. Until recently, the Reichstein-Grüssner process, designed in 1933, was the main industrial route. Here, D-sorbitol is converted to L-ascorbic acid via 2-keto-L-gulonic acid (2KGA) as key intermediate, using a bio-oxidation with Gluconobacter oxydans and several chemical steps. Today, industrial production processes use additional bio-oxidation steps with Ketogulonicigenium vulgare as biocatalyst to convert D-sorbitol to the intermediate 2KGA without chemical steps. The enzymes involved are characterized by a broad substrate range, but remarkable regiospecificity. This puzzling specificity pattern can be understood from the preferences of these enyzmes for certain of the many isomeric structures which the carbohydrate substrates adopt in aqueous solution. Recently, novel enzymes were identified that generate L-ascorbic acid directly via oxidation of L-sorbosone, an intermediate of the bio-oxidation of D-sorbitol to 2KGA. This opens the possibility for a direct route from D-sorbitol to L-ascorbic acid, obviating the need for chemical rearrangement of 2KGA. Similar concepts for industrial processes apply for the production of D-isoascorbic acid, the C5 epimer of L-ascorbic acid. D-isoascorbic acid has the same conformation at C5 as D-glucose and can be derived more directly than L-ascorbic acid from this common carbohydrate feed stock.
Firouzabadi, Negar; Shafiei, Massoumeh; Bahramali, Ehsan; Ebrahimi, Soltan Ahmed; Bakhshandeh, Hooman; Tajik, Nader
2012-12-30
Genetic factors contribute substantially to the likelihood of developing major depressive disorder (MDD). The importance of renin-angiotensin system (RAS) elements in cognition and behaviour and their involvement in aetiology and treatment of depression imply that RAS gene polymorphism(s) associated with RAS overactivity might also be associated with depression. In the present study, genotype and allele frequencies of six common polymorphisms of genes encoding for RAS components were determined in DNAs extracted from venous blood of 191 depressed and 104 healthy individuals using polymerase chain reaction (PCR) and polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and serum angiotensin-converting enzyme (ACE) activity was assayed using a high-performance liquid chromatography (HPLC) method. The results showed, for the first time, that GG genotype of ACE A2350G was significantly associated with MDD among Iranian participants (P=0.001; odds ratio (OR)=6.2; 95% confidence interval (CI)=2.1-18.3). Significant higher serum ACE activity (P=0.0001) as well as higher diastolic blood pressure (P=0.036) were observed in depressed patients compared to the healthy control group. Depressed patients carrying GG genotype of the A2350G polymorphism had a significantly higher serum ACE activity (P=0.02) than individuals with either AA or AG genotype. In conclusion, this study supports the hypothesis of RAS overactivity in depression in that the genotype associated with higher serum ACE activity in an Iranian population was also associated with MDD. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Roşca, A.E.; Stoian, I.; Badiu, C.; Gaman, L.; Popescu, B.O.; Iosif, L.; Mirica, R.; Tivig, I.C.; Stancu, C.S.; Căruntu, C.; Voiculescu, S.E.; Zăgrean, L.
2016-01-01
Supraphysiological administration of anabolic androgenic steroids has been linked to increased blood pressure. The widely distributed amino acid taurine seems to be an effective depressor agent in drug-induced hypertension. The purpose of this study was to assess the impact of chronic high dose administration of nandrolone decanoate (DECA) and taurine on blood pressure in rats and to verify the potentially involved mechanisms. The study was conducted in 4 groups of 8 adult male Wistar rats, aged 14 weeks, treated for 12 weeks with: DECA (A group); vehicle (C group); taurine (T group), or with both drugs (AT group). Systolic blood pressure (SBP) was measured at the beginning of the study (SBP1), 2 (SBP2) and 3 months (SBP3) later. Plasma angiotensin-converting enzyme (ACE) activity and plasma end products of nitric oxide metabolism (NOx) were also determined. SBP3 and SBP2 were significantly increased compared to SBP1 only in the A group (P<0.002 for both). SBP2, SBP3 and ACE activity showed a statistically significant increase in the A vs C (P<0.005), andvs AT groups (P<0.05), while NOx was significantly decreased in the A and AT groups vs controls (P=0.01). ACE activity was strongly correlated with SBP3 in the A group (r=0.71, P=0.04). These findings suggest that oral supplementation of taurine may prevent the increase in SBP induced by DECA, an effect potentially mediated by angiotensin-converting enzyme. PMID:27254659
Law, Ivy Ka Man; Murphy, Jane E.; Bakirtzi, Kyriaki; Bunnett, Nigel W.; Pothoulakis, Charalabos
2012-01-01
The neuropeptide/hormone neurotensin (NT) mediates intestinal inflammation and cell proliferation by binding of its high affinity receptor, neurotensin receptor-1 (NTR1). NT stimulates IL-8 expression in NCM460 human colonic epithelial cells by both MAP kinase- and NF-κB-dependent pathways. Although the mechanism of NTR1 endocytosis has been studied, the relationship between NTR1 intracellular trafficking and inflammatory signaling remains to be elucidated. In the present study, we show that in NCM460 cells exposed to NT, β-arrestin-1 (βARR1), and β-arrestin-2 (βARR2) translocate to early endosomes together with NTR1. Endothelin-converting enzyme-1 (ECE-1) degrades NT in acidic conditions, and its activity is crucial for NTR1 recycling. Pretreatment of NCM460 cells with the ECE-1 inhibitor SM19712 or gene silencing of βARR1 or βARR2 inhibits NT-stimulated ERK1/2 and JNK phosphorylation, NF-κB p65 nuclear translocation and phosphorylation, and IL-8 secretion. Furthermore, NT-induced cell proliferation, but not IL-8 transcription, is attenuated by the JNK inhibitor, JNK(AII). Thus, NTR1 internalization and recycling in human colonic epithelial cells involves βARRs and ECE-1, respectively. Our results also indicate that βARRs and ECE-1-dependent recycling regulate MAP kinase and NF-κB signaling as well as cell proliferation in human colonocytes in response to NT. PMID:22416137
[Cutaneous lesions during hot-tub hypersensitivity pneumonitis: Pseudomonas folliculitis ?
Sokolowsky, N; Rolland, L; Vandenhende, M-A; Colin, J-Y; Laurent, F; Morlat, P; Bonnet, F; Beylot-Barry, M
2017-04-01
Interstitial lung disease, cutaneous rash and elevated serum angiotensin converting enzyme (ACE) may suggest diagnoses other than sarcoidosis. A 58-year-old man had presented dyspnoea for 2 years with increased angiotensin-converting enzyme, as well as an interstitial syndrome and micronodules. The possibility of sarcoidosis was raised. Systemic corticosteroids resulted in improvement of the dyspnoea although it recurred on dose reduction. We noted fluctuating eczematous macules of the limbs with a histology of aspecific folliculitis. The identification of Mycobacterium avium complex (MAC) in the bronchoalveolar wash prompted us to initiate antimycobacterial therapy, but this was to no avail. Review of the CT-scan and questioning of the patient (daily use of a Jacuzzi for 7 years) resulted in diagnosis of hypersensitivity pneumonitis due to MAC. The cutaneous lesions were taken to indicate "hot tub folliculitis". Discontinuation of hot-tub use and a short course of oral corticosteroids resulted in healing within 4 months, with no recurrence at 2 years. HTL is a form of hypersensitivity pneumonitis due to the presence of MAC in the water of Jacuzzis. This condition regresses spontaneously without treatment on discontinuation of Jacuzzi use. Hot-tub folliculitis due to Pseudomonas aeruginosa (PA) presents as macules and papules on covered skin areas (swimsuit) within 48hours of bathing and often declines within 2 weeks. Our case is original as regards the concomitant lung and cutaneous involvement associated with Jacuzzi use, with an immunoallergic mechanism for the MAC and probably an infectious mechanism for the PA. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Serum and tissue angiotensin-converting enzyme in patients with alopecia areata.
Fahim, Shabnam; Montazer, Fatemeh; Tohidinik, Hamid Reza; Naraghi, Zahra Safaei; Abedini, Robabeh; Nasimi, Maryam; Ghandi, Narges
2018-03-27
Alopecia areata is an immune-dependent disorder characterized by the interaction of T-lymphocytes with follicular antigens. Recent studies have shown the existence of a local renin-angiotensin system in the skin, where angiotensin-converting enzyme (ACE) plays a role in autoimmunity and inflammation. The objective of this study was to evaluate serum and tissue ACE activity in patients with alopecia areata. This case-control study was conducted on patients with alopecia areata and healthy controls. Serum and tissue ACE activity were assessed and compared between the two groups. Twenty-five alopecia areata patients (60% male, mean age 32.1 ± 9.9 years) and 24 controls (50% male, mean age 37.4 ± 8.8 years) were included. Mean serum ACE activity was 52.1 ± 9 U/L in cases and 55.3 ± 14.7 U/L in controls (P = 0.37). Tissue ACE activity was significantly lower in cases in all parts of the skin i.e. epidermis (P = 0.016), follicular epithelium (P = 0.004), and endothelium (P = 0.037). Among cases, serum ACE activity was significantly higher in patients with more severe disease (P = 0.030), nonpatchy alopecia areata (alopecia universalis; ophiasis, patchy and ophiasis, diffuse) (P = 0.029), and with nail involvement (P = 0.027). The sample size was too small to draw definite conclusions. Further, most of the patients had only mild or moderate alopecia areata. Unlike in some other inflammatory diseases, the tissue level of ACE seems to be significantly lower in alopecia areata compared to normal controls. Serum ACE was significantly higher in patients with more severe disease.
Nillni, Eduardo A; Xie, Weihua; Mulcahy, Lawrence; Sanchez, Vanesa C; Wetsel, William C
2002-12-13
Cpe(fat/fat) mice are obese, diabetic, and infertile. They have a mutation in carboxypeptidase E (CPE), an enzyme that converts prohormone intermediates to bioactive peptides. The Cpe(fat) mutation leads to rapid degradation of the enzyme. To test whether pro-thyrotropin-releasing hormone (TRH) conversion to TRH involves CPE, processing was examined in the Cpe(fat/fat) mouse. Hypothalamic TRH is depressed by at least 75% compared with wild-type controls. Concentrations of pro-TRH forms are increased in homozygotes. TRH-[Gly(4)-Lys(5)-Arg(6)] and TRH-[Gly(4)-Lys(5)] represent approximately 45% of the total TRH-like immunoreactivity in Cpe(fat/fat) mice; they constitute approximately 1% in controls. Levels of TRH-[Gly(4)] were depressed in homozygotes. Because the hypothalamus contains some TRH, another carboxypeptidase must be responsible for processing. Immunocytochemical studies indicate that TRH neurons contain CPE- and carboxypeptidase D-like immunoreactivity. Recombinant CPE or carboxypeptidase D can convert synthetic TRH-[Gly(4)-Lys(5)] and TRH-[Gly(4)-Lys(5)-Arg(6)] to TRH-[Gly(4)]. When Cpe(fat/fat) mice are exposed to cold, they cannot maintain their body temperatures, and this loss is associated with hypothalamic TRH depletion and reduction in thyroid hormone. These findings demonstrate that the Cpe(fat) mutation can affect not only carboxypeptidase activity but also endoproteolysis. Because Cpe(fat/fat) mice cannot sustain a cold challenge, and because alterations in the hypothalamic-pituitary-thyroid axis can affect metabolism, deficits in pro-TRH processing may contribute to the obese and diabetic phenotype in these mice.
Läufer, Albrecht
2017-03-07
Nature uses enzymes to build and convert biomass; mankind uses the same enzymes and produces them on a large scale to make optimum use of biomass in biorefineries. Bacterial α-amylases and fungal glucoamylases have been the workhorses of starch biorefineries for many decades. Pullulanases were introduced in the 1980s. Proteases, cellulases, hemicellulases, and phytases have been on the market for a few years as process aids, improving yields, performance, and costs. Detailed studies of the complex chemical structures of biomass and of the physicochemical limitations of industrial biorefineries have led enzyme developers to produce novel tailor-made solutions for improving yield and profitability in the industry. This chapter reviews the development of enzyme applications in the major starch biorefining processes.
Ademiluyi, Adedayo O; Oboh, Ganiyu
2013-03-01
This study sought to assess the inhibitory activities of phenolic-rich extracts from soybean on α-amylase, α-glucosidase and angiotensin I converting enzyme (ACE) activities in vitro. The free phenolic extract of the soybean was obtained by extraction with 80% acetone, while that of the bound phenolic extract was done by extracting the alkaline and acid hydrolyzed residue with ethyl acetate. The inhibitory action of these extracts on the enzymes activity as well as their antioxidant properties was assessed. Both phenolic-rich extracts inhibited α-amylase, α-glucosidase and ACE enzyme activities in a dose dependent pattern. However, the bound phenolic extract exhibited significantly (P < 0.05) higher α-amylase and ACE inhibition while the free phenolic extract had significantly (P < 0.05) higher α-glucosidase inhibitory activity. Nevertheless, the free phenolic extract had higher α-glucosidase inhibitory activity when compared to that of α-amylase; this property confer an advantage on soybean phenolic-rich extracts over commercial antidiabetic drugs with little or no side effect. And inhibition of ACE suggests the antihypertension potential of soybean phenolic-rich extracts. Furthermore, the enzyme inhibitory activities of the phenolic-rich extracts were not associated with their phenolic content. Therefore, phenolic-rich extracts of soybean could inhibit key-enzyme linked to type 2 diabetes (α-amylase and α-glucosidase) and hypertension (ACE) and thus could explain in part the mechanism by which soybean renders these health promoting effect. Copyright © 2011 Elsevier GmbH. All rights reserved.
Marketing research on the angiotensin-converting enzyme inhibitors antihypertensive medicines.
Boboia, Anamaria; Grigorescu, Marius Rareş; Turcu-Ştiolică, Adina
2017-01-01
The research aimed at investigating sales trends of angiotensin-converting enzyme inhibitors antihypertensive medicines, both in terms of quantity and value, in ten community pharmacies, for a period of three years. The research on the antihypertensive medicines consumption is important for highlighting the ever increasing impact of hypertension among the population. The methods used in this research were the following: marketing research, method of sampling, descriptive methods, retrospective analysis, method of comparison. The results showed that the drugs containing the active substances of the angiotensin converting enzyme inhibitors class had had significant increases in quantitative and value sales, bringing substantial revenues to pharmacies. From the quantitative perspective, the best-selling products were those containing Enalaprilum, while in terms of value, the best-selling medicines were those containing Perindoprilum. We evidenced that spectacular sales were also achieved for products that have Lisinoprilum, respectively Captoprilum, as active substances. The largest quantities were marketed for the Captopril Terapia® product and the highest earnings were recorded for the Prestarium® medicine. This paper approaches an interesting and topical issue, which can be helpful to professionals (pharmacists, doctors) and other categories, such as economists, statisticians, representatives of companies manufacturing medicines, as well as to hypertensive patients, as it could be used to warn population regarding the incidence of cardiovascular diseases, and, at the same time, trace sales trends in order to accomplish profitable business plans.
So, Pamela Berilyn T; Rubio, Peter; Lirio, Stephen; Macabeo, Allan Patrick; Huang, Hsi-Ya; Corpuz, Mary Jho-Anne T; Villaflores, Oliver B
2016-09-01
The anti-angiotensin I converting enzyme activity of box jellyfish, Chiropsalmus quadrigatus Haeckel venom hydrolysate was studied. The venom extract was obtained by centrifugation and ultrasonication. Protein concentration of 12.99 μg/mL was determined using Bradford assay. The pepsin and papain hydrolysate was tested for its toxicity by Limit test following the OECD Guideline 425 using 5 female Sprague-Dawley rats. Results showed that the hydrolysate is nontoxic with an LD50 above 2000 mg/kg. In vitro angiotensin I converting enzyme (ACE) inhibitory activity was determined using ACE kit-WST. Isolation of ACE inhibitory peptides using column chromatography with SP-Sephadex G-25 yielded 8 pooled fractions with fraction 3 (86.5%) exhibiting the highest activity. This was followed by reverse phase - high performance liquid chromatography (RP-HPLC) with an octadecyl silica column (Inertsil ODS-3) using methanol:water 15:85 at a flow rate of 1.0 mL/min. Among the 13 fractions separated with the RP-HPLC, fraction 3.5 exhibited the highest ACE inhibitory activity (84.1%). The peptide sequence ACPGPNPGRP (IC50 2.03 μM) from fraction 3.5 was identified using Matrix-assisted laser desorption/ionization with time-of-flight tandem mass spectroscopy analysis (MALDI-TOF/MS). Copyright © 2016 Elsevier Ltd. All rights reserved.
Diz, Debra I.; Garcia-Espinosa, Maria A.; Gegick, Stephen; Tommasi, Ellen N.; Ferrario, Carlos M.; Tallant, E. Ann; Chappell, Mark C.; Gallagher, Patricia E.
2009-01-01
Injections of the angiotensin(1–7) [Ang(1–7)] antagonist [d-Ala7]-Ang(1–7) into the nucleus of the solitary tract (NTS) of Sprague–Dawley rats reduce baroreceptor reflex sensitivity (BRS) for control of heart rate by ~40%, whereas injections of the angiotensin II (Ang II) type 1 receptor antagonist candesartan increase BRS by 40% when reflex bradycardia is assessed. The enzyme angiotensin-converting enzyme 2 (ACE2) is known to convert Ang II to Ang(1–7). We report that ACE2 activity, as well as ACE and neprilysin activities, are present in plasma membrane fractions of the dorsomedial medulla of Sprague–Dawley rats. Moreover, we show that BRS for reflex bradycardia is attenuated (1.16±0.29 ms mmHg−1 before versus 0.33±0.11 ms mmHg−1 after; P < 0.05; n = 8) 30–60 min following injection of the selective ACE2 inhibitor MLN4760 (12 pmol in 120 nl) into the NTS. These findings support the concept that within the NTS, local synthesis of Ang(1–7) from Ang II is required for normal sensitivity for the baroreflex control of heart rate in response to increases in arterial pressure. PMID:18356558
Effect of protease inhibitors on angiotensin-converting enzyme activity in human T-lymphocytes.
Petrov, V; Fagard, R; Lijnen, P
2000-05-01
The purpose of these investigations was to determine whether the aminopeptidase B and leucine aminopeptidase inhibitor bestatin, the chymase inhibitor chymostatin, the calpain inhibitor E-64, and the neutral serine protease inhibitor leupeptin affect the angiotensin converting enzyme (ACE) activity in T-lymphocytes. ACE activity in homogenates of T-lymphocytes or in intact T-lymphocytes in suspension was measured by determining fluorimetrically histidyl-leucine, formed from the conversion of hippuryl-histidyl-leucine, coupled with ophtaldialdehyde. The effect of various concentrations (10(-9) to 10(-3) mol/L) of the angiotensin-converting enzyme inhibitors lisinopril and captopril and of the various protease inhibitors on ACE activity was studied. Lisinopril and captopril reduced the ACE activity in homogenates of T-lymphocytes in a concentration-dependent manner. Lisinopril exhibited a more pronounced inhibition of ACE in T-lymphocytes than did captopril. Chymostatin and E-64 had no effect on the ACE activity in T-lymphocytes, whereas leupeptin inhibited its activity in a dose-dependent fashion. Bestatin, on the contrary, increased the ACE activity in homogenates of T-lymphocytes as well as in intact T-lymphocytes in proportion to the concentration. Our data showed that the ACE activity in T-lymphocytes was stimulated by bestatin and inhibited by leupeptin, whereas chymostatin and E-64 did not affect the ACE activity in T-lymphocytes.
Predictors of heart failure in patients with stable coronary artery disease: a PEACE study.
Lewis, Eldrin F; Solomon, Scott D; Jablonski, Kathleen A; Rice, Madeline Murguia; Clemenza, Francesco; Hsia, Judith; Maggioni, Aldo P; Zabalgoitia, Miguel; Huynh, Thao; Cuddy, Thomas E; Gersh, Bernard J; Rouleau, Jean; Braunwald, Eugene; Pfeffer, Marc A
2009-05-01
Heart failure (HF) is a disease commonly associated with coronary artery disease. Most risk models for HF development have focused on patients with acute myocardial infarction. The Prevention of Events with Angiotensin-Converting Enzyme Inhibition population enabled the development of a risk model to predict HF in patients with stable coronary artery disease and preserved ejection fraction. In the 8290, Prevention of Events with Angiotensin-Converting Enzyme Inhibition patients without preexisting HF, new-onset HF hospitalizations, and fatal HF were assessed over a median follow-up of 4.8 years. Covariates were evaluated and maintained in the Cox regression multivariable model using backward selection if P<0.05. A risk score was developed and converted to an integer-based scoring system. Among the Prevention of Events with Angiotensin-Converting Enzyme Inhibition population (age, 64+/-8; female, 18%; prior myocardial infarction, 55%), there were 268 cases of fatal and nonfatal HF. Twelve characteristics were associated with increased risk of HF along with several baseline medications, including older age, history of hypertension, and diabetes. Randomization to trandolapril independently reduced the risk of HF. There was no interaction between trandolapril treatment and other risk factors for HF. The risk score (range, 0 to 21) demonstrated excellent discriminatory power (c-statistic 0.80). Risk of HF ranged from 1.75% in patients with a risk score of 0% to 33% in patients with risk score >or=16. Among patients with stable coronary artery disease and preserved ejection fraction, traditional and newer factors were independently associated with increased risk of HF. Trandolopril decreased the risk of HF in these patients with preserved ejection fraction.
Dagher, Suzanne F.; Azcarate-Peril, M. Andrea
2013-01-01
Galacto-oligosaccharides (GOS) are indigestible dietary fibers that are able to reach the lower gastrointestinal tract to be selectively fermented by health-promoting bacteria. In this report, we describe the heterologous expression of an optimized synthetically produced version of the β-hexosyltransferase gene (Bht) from Sporobolomyces singularis. The Bht gene encodes a glycosyl hydrolase (EC 3.2.1.21) that acts as galactosyltransferase, able to catalyze a one-step conversion of lactose to GOS. Expression of the enzyme in Escherichia coli yielded an inactive insoluble protein, while the methylotrophic yeast Pichia pastoris GS115 produced a bioactive β-hexosyltransferase (rBHT). The enzyme exhibited faster kinetics at pHs between 3.5 and 6 and at temperatures between 40 and 50°C. Enzyme stability improved at temperatures lower than 40°C, and glucose was found to be a competitive inhibitor of enzymatic activity. P. pastoris secreted a fraction of the bioactive rBHT into the fermentation broth, while the majority of the enzyme remained associated with the outer membrane. Both the secreted and the membrane-associated forms were able to efficiently convert lactose to GOS. Additionally, resting cells with membrane-bound enzyme converted 90% of the initial lactose into GOS at 68% yield (g/g) (the maximum theoretical is 75%) with no secondary residual (glucose or galactose) products. This is the first report of a bioactive BHT from S. singularis that has been heterologously expressed. PMID:23241974
Kajiwara, S; Kakizono, T; Saito, T; Kondo, K; Ohtani, T; Nishio, N; Nagai, S; Misawa, N
1995-10-01
We succeeded in isolating a novel cDNA involved in astaxanthin biosynthesis from the green alga Haematococcus pluvialis, by an expression cloning method using an Escherichia coli transformant as a host that synthesizes beta-carotene due to the Erwinia uredovora carotenoid biosynthesis genes. The cloned cDNA was shown to encode a novel enzyme, beta-carotene ketolase (beta-carotene oxygenase), which converted beta-carotene to canthaxanthin via echinenone, through chromatographic and spectroscopic analysis of the pigments accumulated in an E. coli transformant. This indicates that the encoded enzyme is responsible for the direct conversion of methylene to keto groups, a mechanism that usually requires two different enzymatic reactions proceeding via a hydroxy intermediate. Northern blot analysis showed that the mRNA was synthesized only in the cyst cells of H. pluvialis. E. coli carrying the H. pluvialis cDNA and the E. uredovora genes required for zeaxanthin biosynthesis was also found to synthesize astaxanthin (3S, 3'S), which was identified after purification by a variety of spectroscopic methods.
Androgenic correlates of genetic variation in the gene encoding 5alpha-reductase type 1.
Ellis, Justine A; Panagiotopoulos, Sianna; Akdeniz, Aysel; Jerums, George; Harrap, Stephen B
2005-01-01
Androgens determine male secondary sexual characteristics and influence a variety of metabolic pathways. Circulating levels of androgens are highly heritable; however, the genes involved are largely unknown. The 5alpha-reductase enzymes types 1 and 2 responsible for converting testosterone to the more potent androgen dihydrotestosterone are encoded by the SRD5A1 and SRD5A2 genes, respectively. We performed indirect genetic association studies of SRD5A1 and SRD5A2 and the dihydrotestosterone/testosterone ratio that reflects the activity of 5alpha-reductase in 57 males with type 2 diabetes. We found evidence of significant association between a single nucleotide polymorphism in SRD5A1 and the dihydrotestosterone/testosterone ratio (median 0.10, interquartile range 0.08 vs. median 0.06, interquartile range 0.04, P = 0.009). The polymorphism was not associated with any diabetic phenotypes. These results suggest that functional genetic variants might exist in or around SRD5A1 that affect the activity of the 5alpha-reductase enzyme type 1 and influence androgen levels.
Yuan, Zhi-Xin; Rapoport, Stanley I
2015-10-01
Transient postnatal exposure of rodents to the selective serotonin (5-HT) reuptake inhibitor (SSRI) fluoxetine alters behavior and brain 5-HT neurotransmission during adulthood, and also reduces brain arachidonic (ARA) metabolic consumption and protein level of the ARA metabolizing enzyme, cytochrome P4504A (CYP4A). Brain 20-hydroxyeicosatetraenoic acid (20-HETE), converted by CYP4A from ARA, will be reduced in adult mice treated transiently and postnatally with fluoxetine. Male mice pups were injected i.p. daily with fluoxetine (10mg/kg) or saline during P4-P21. At P90 their brain was high-energy microwaved and analyzed for 20-HETE and six other ARA metabolites by enzyme immunoassay. Postnatal fluoxetine vs. saline significantly decreased brain concentrations of 20-HETE (-70.3%) and 15-epi-lipoxin A4 (-60%) in adult mice, but did not change other eicosanoid concentrations. Behavioral changes in adult mice treated postnatally with fluoxetine may be related to reduced brain ARA metabolism involving CYP4A and 20-HETE formation. Published by Elsevier Ltd.
Springer-Wanner, C; Brauns, T
2017-06-01
Ocular manifestation of sarcoidosis occurs in up to 60% of patients with confirmed systemic sarcoidosis and represents one of the most common forms of noninfectious uveitis. In known pulmonary sarcoidosis, ocular involvement can occur in up to 80% of cases. Sarcoidosis can also present only in the eye, without a systemic manifestation (ocular sarcoidosis). Typically, ocular sarcoidosis shows bilateral granulomatous uveitis and can involve all parts of the eye. Apart from an acute anterior uveitis, chronic intermediate or posterior uveitis can be found. In order to prevent a severe reduction of visual acuity leading to blindness, early diagnosis and treatment is essential. For diagnosis, specific clinical signs involving the eye (bilateral granulomatous changes in all parts of the eye) and typical laboratory investigations (angiotensin-converting enzyme, ACE; lysozyme; soluble interleukin 2 receptor, sIL2R; chest X‑ray; chest CT) have to be taken into account, since biopsy to prove noncaseating granulomas is not performed with changes restricted to the eye due to the high risk of vision loss. Ocular sarcoidosis mostly responds well to local or systemic steroid treatment. If the therapeutic effect is insufficient, immunosuppressive agents and biologics can be applied.
Rasmussen, M L; Shrestha, P; Khanal, S K; Pometto, A L; Hans van Leeuwen, J
2010-05-01
Degradation of lignocellulosic biomass to sugars through a purely biological process is a key to sustainable biofuel production. Hydrolysis of the corn wet-milling co-product-corn fiber-to simple sugars by the brown rot fungus Gloeophyllum trabeum was studied in suspended-culture and solid-state fermentations. Suspended-culture experiments were not effective in producing harvestable sugars from the corn fiber. The fungus consumed sugars released by fungal extracellular enzymes. Solid-state fermentation demonstrated up to 40% fiber degradation within 9days. Enzyme activity assays on solid-state fermentation filtrates confirmed the involvement of starch- and cellulose-degrading enzymes. To reduce fungal consumption of sugars and to accelerate enzyme activity, 2- and 3-d solid-state fermentation biomasses (fiber and fungus) were submerged in buffer and incubated at 37 degrees C without shaking. This anaerobic incubation converted up to almost 11% of the corn fiber into harvestable reducing sugars. Sugars released by G. trabeum were fermented to a maximum yield of 3.3g ethanol/100g fiber. This is the first report, to our knowledge, of G. trabeum fermenting sugar to ethanol. The addition of Saccharomyces cerevisiae as a co-culture led to more rapid fermentation to a maximum yield of 4.0g ethanol/100g fiber. The findings demonstrate the potential for this simple fungal process, requiring no pretreatment of the corn fiber, to produce more ethanol by hydrolyzing and fermenting carbohydrates in this lignocellulosic co-product. Copyright 2010 Elsevier Ltd. All rights reserved.
Oboh, Ganiyu; Adebayo, Adeniyi A; Ademosun, Ayokunle O
2018-05-19
Herbs have been used from ages to manage male sexual dysfunction. Hence, this study sought to investigate the effects of Eurycoma longifolia (EL) and Cylicodiscus gabunensis (CG) stem bark extracts on some enzymes implicated in erectile dysfunction in vitro. The extracts were prepared, and their effects on phosphodiesterase-5 (PDE-5), arginase, and angiotensin-1-converting enzyme (ACE) as well as pro-oxidant-induced lipid peroxidation were assessed. Furthermore, phenolic contents were determined, and their components were characterized and quantified using high-performance liquid chromatography with diode array detector (HPLC-DAD). The results revealed that the extracts inhibited PDE-5, arginase, and ACE in a concentration-dependent manner. However, IC50 values revealed that CG had higher inhibitory potential on PDE-5 (IC50=204.4 μg/mL), arginase (IC50=39.01 μg/mL), and ACE (IC50=48.81 μg/mL) than EL. In addition, the extracts inhibited pro-oxidant-induced lipid peroxidation in penile tissue homogenate. HPLC-DAD analysis showed that CG is richer in phenolic compounds than EL, and this could be responsible for higher biological activities observed in CG than EL. Hence, the observed antioxidant property and inhibitory action of CG and EL on enzymes relevant to erectile dysfunction in vitro could be part of possible mechanisms underlying their involvement in traditional medicine for the management of male sexual dysfunction.
Goring, Mark E; Leibovitch, Matthew; Gea-Mallorqui, Ester; Karls, Shawn; Richard, Francis; Hanic-Joyce, Pamela J; Joyce, Paul B M
2013-10-01
We report that the temperature-sensitive (ts) phenotype in Saccharomyces cerevisiae associated with a variant tRNA nucleotidyltransferase containing an amino acid substitution at position 189 results from a reduced ability to incorporate AMP and CMP into tRNAs. We show that this defect can be compensated for by a second-site suppressor converting residue arginine 64 to tryptophan. The R64W substitution does not alter the structure or thermal stability of the enzyme dramatically but restores catalytic activity in vitro and suppresses the ts phenotype in vivo. R64 is found in motif A known to be involved in catalysis and nucleotide triphosphate binding while E189 lies within motif C previously thought only to connect the head and neck domains of the protein. Although mutagenesis experiments indicate that residues R64 and E189 do not interact directly, our data suggest a critical role for residue E189 in enzyme structure and function. Both R64 and E189 may contribute to the organization of the catalytic domain of the enzyme. These results, along with overexpression and deletion analyses, show that the ts phenotype of cca1-E189F does not arise from thermal instability of the variant tRNA nucleotidyltransferase but instead from the inability of a partially active enzyme to support growth only at higher temperatures. © 2013.
Sun, Xiaoou; Wiesner, Burkhard; Lorenz, Dorothea; Papsdorf, Gisela; Pankow, Kristin; Wang, Po; Dietrich, Nils; Siems, Wolf-Eberhard; Maul, Björn
2008-12-01
Angiotensin-converting enzyme (ACE) demonstrates, besides its typical dipeptidyl-carboxypeptidase activity, several unusual functions. Here, we demonstrate with molecular, biochemical, and cellular techniques that the somatic wild-type murine ACE (mACE), stably transfected in Chinese Hamster Ovary (CHO) or Madin-Darby Canine Kidney (MDCK) cells, interacts with endogenous membranal co-localized carboxypeptidase M (CPM). CPM belongs to the group of glycosylphosphatidylinositol (GPI)-anchored proteins. Here we report that ACE, completely independent of its known dipeptidase activities, has GPI-targeted properties. Our results indicate that the spatial proximity between mACE and the endogenous CPM enables an ACE-evoked release of CPM. These results are discussed with respect to the recently proposed GPI-ase activity and function of sperm-bound ACE.
Angiotensin converting enzyme inhibition and the kidney
NASA Technical Reports Server (NTRS)
Hollenberg, N. K.
1988-01-01
Angiotensin II (Ang II) induces a marked reduction in renal blood flow at doses well below those required to induce a pressor response, and as blood flow falls there is a decline in glomerular filtration rate and sodium excretion. This striking sensitivity of the renal blood supply led many workers to consider the possibility that angiotensin functions as a local renal hormone. As angiotensin converting enzyme (ACE) was found in particular abundance in the lung, it seemed reasonable to suspect that most of the conversion occurred there, and that the function of Ang II would be primarily systemic, rather than intrarenal. In this review, I will explore the evidence that has accumulated on these two possibilities, since they have important implications for our current understanding of normal kidney function and derangements of kidney function in disease.
Angiotensin converting enzyme insertion/deletion polymorphism: association with ethnic origin.
Barley, J; Blackwood, A; Carter, N D; Crews, D E; Cruickshank, J K; Jeffery, S; Ogunlesi, A O; Sagnella, G A
1994-08-01
To determine the distribution of the insertion/deletion (I/D) polymorphism of the angiotensin converting enzyme (ACE) gene in several ethnic groups: Caucasian Europeans, Black Nigerians, Samoan Polynesians and Yanomami Indians. The ratio of the frequencies of the II, ID and DD genotypes were 1:2:1 in the Europeans, but there was a tendency towards a higher frequency of the D allele in the Nigerians. In contrast, the Samoans and the Yanomami Indians displayed a much higher frequency of the I allele than of the D allele. The relationship between ACE genotype and disease in these latter groups is still not known, but the present results clearly suggest that ethnic origin should be carefully considered in the increasing number of studies on the association between I/D ACE genotype and disease aetiology.
Kumbhare, Ravindra M; Kosurkar, Umesh B; Bagul, Pankaj K; Kanwal, Abhinav; Appalanaidu, K; Dadmal, Tulshiram L; Banerjee, Sanjay Kumar
2014-11-01
A series of novel diethyl 2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate embedded triazole and mannich bases were synthesized, and evaluated for their angiotensin converting enzyme (ACE) inhibitory activity. Screening of above synthesized compounds for ACE inhibition showed that triazoles functionalized compounds have better ACE inhibitory activity compared to that of mannich bases analogues. Among all triazoles we found 6 h, 6 i and 6 j to have good ACE inhibition activity with IC50 values 0.713 μM, 0.409 μM and 0.653 μM, respectively. Among mannich bases series compounds, only 7c resulted as most active ACE inhibitor with IC50 value of 0.928 μM. Copyright © 2014. Published by Elsevier Ltd.
Wu, Shanguang; Feng, Xuezhen; Lu, Yuan; Lu, Yuting; Liu, Saisai; Tian, Yuhong
2017-10-01
Casein proteins were hydrolyzed by papain to identify inhibitory peptides of angiotensin I-converting enzyme (ACE). The hydrolysate was fractionized by immobilized metal affinity chromatography (IMAC-Ni 2+ ). The fraction with high ACE inhibitory activity was enriched and further chromatographed on a reverse-phase column to yield four fractions. Among the fractions, the L4 fraction exhibited the highest ACE inhibitory activity and was identified by sequence analysis as Trp-Tyr-Leu-His-Tyr-Ala (WYLHYA), with IC 50 value of 16.22 ± 0.83 µM in vitro. This peptide was expected to be applied as an ingredient for preventing hypertension and IMAC-Ni 2+ may provide a simple method for purification of ACE inhibitory peptides.
Freas, Nicholas; Newton, Peter; Perozich, John
2016-01-01
UDP-glucose dehydrogenase (UDPGDH), UDP-N-acetyl-mannosamine dehydrogenase (UDPNAMDH) and GDP-mannose dehydrogenase (GDPMDH) belong to a family of NAD (+)-linked 4-electron-transfering oxidoreductases called nucleotide diphosphate sugar dehydrogenases (NDP-SDHs). UDPGDH is an enzyme responsible for converting UDP-d-glucose to UDP-d-glucuronic acid, a product that has different roles depending on the organism in which it is found. UDPNAMDH and GDPMDH convert UDP-N-acetyl-mannosamine to UDP-N-acetyl-mannosaminuronic acid and GDP-mannose to GDP-mannuronic acid, respectively, by a similar mechanism to UDPGDH. Their products are used as essential building blocks for the exopolysaccharides found in organisms like Pseudomonas aeruginosa and Staphylococcus aureus. Few studies have investigated the relationships between these enzymes. This study reveals the relationships between the three enzymes by analysing 229 amino acid sequences. Eighteen invariant and several other highly conserved residues were identified, each serving critical roles in maintaining enzyme structure, coenzyme binding or catalytic function. Also, 10 conserved motifs that included most of the conserved residues were identified and their roles proposed. A phylogenetic tree demonstrated relationships between each group and verified group assignment. Finally, group entropy analysis identified novel conservations unique to each NDP-SDH group, including residue positions critical to NDP-sugar substrate interaction, enzyme structure and intersubunit contact. These positions may serve as targets for future research. UDP-glucose dehydrogenase (UDPGDH, EC 1.1.1.22).
Abeta-degrading enzymes in Alzheimer's disease.
Miners, James Scott; Baig, Shabnam; Palmer, Jennifer; Palmer, Laura E; Kehoe, Patrick G; Love, Seth
2008-04-01
In Alzheimer's disease (AD) Abeta accumulates because of imbalance between the production of Abeta and its removal from the brain. There is increasing evidence that in most sporadic forms of AD, the accumulation of Abeta is partly, if not in some cases solely, because of defects in its removal--mediated through a combination of diffusion along perivascular extracellular matrix, transport across vessel walls into the blood stream and enzymatic degradation. Multiple enzymes within the central nervous system (CNS) are capable of degrading Abeta. Most are produced by neurons or glia, but some are expressed in the cerebral vasculature, where reduced Abeta-degrading activity may contribute to the development of cerebral amyloid angiopathy (CAA). Neprilysin and insulin-degrading enzyme (IDE), which have been most extensively studied, are expressed both neuronally and within the vasculature. The levels of both of these enzymes are reduced in AD although the correlation with enzyme activity is still not entirely clear. Other enzymes shown capable of degrading Abetain vitro or in animal studies include plasmin; endothelin-converting enzymes ECE-1 and -2; matrix metalloproteinases MMP-2, -3 and -9; and angiotensin-converting enzyme (ACE). The levels of plasmin and plasminogen activators (uPA and tPA) and ECE-2 are reported to be reduced in AD. Reductions in neprilysin, IDE and plasmin in AD have been associated with possession of APOEepsilon4. We found no change in the level or activity of MMP-2, -3 or -9 in AD. The level and activity of ACE are increased, the level being directly related to Abeta plaque load. Up-regulation of some Abeta-degrading enzymes may initially compensate for declining activity of others, but as age, genetic factors and diseases such as hypertension and diabetes diminish the effectiveness of other Abeta-clearance pathways, reductions in the activity of particular Abeta-degrading enzymes may become critical, leading to the development of AD and CAA.
Integrated Optic Chemical-Biological Sensors
1999-02-26
response. In this process, an enzyme ( urease ) acts as a catalyst, converting a specific substrate (urea) to a specific product (ammonia). Implementing...a sandwich assay, a urease labeled antibody is introduced to a surface bound antigen. This complex is exposed to urea, generating ammonia. Using a...containing suspected agents. After agent binding to the antibody-coated beads, an appropriate enzyme labeled antibody (an antibody with a urease label
Wang, L H; Ahmad, S; Benter, I F; Chow, A; Mizutani, S; Ward, P E
1991-01-01
In addition to plasma metabolism of substance P (SP) by angiotensin converting enzyme (ACE; EC 3.4.15.1) (less than 1.0 nmol/min/ml), the majority of SP hydrolysis by rat and human plasma was due to dipeptidyl(amino)peptidase IV (DAP IV; EC 3.4.14.5) (3.15-5.91 nmol/min/ml), which sequentially converted SP to SP(3-11) and SP(5-11). In turn, the SP(5-11) metabolite was rapidly hydrolyzed by rat and human plasma aminopeptidase M (AmM; EC 3.4.11.2) (24.2-25.5 nmol/min/ml). The Km values of SP for DAP IV and of SP(5-11) for AmM ranged from 32.7 to 123 microM. In contrast, neurokinin A (NKA) was resistant to both ACE and DAP IV but was subject to N-terminal hydrolysis by AmM (3.76-10.8 nmol/min/ml; Km = 90.7 microM). These data demonstrate differential processing of SP and NKA by specific peptidases in rat and human plasma.
Isaac, R E; Michaud, A; Keen, J N; Williams, T A; Coates, D; Wetsel, W C; Corvol, P
1999-06-01
Endoproteolytic cleavage of protein prohormones often generates intermediates extended at the C-terminus by Arg-Arg or Lys-Arg, the removal of which by a carboxypeptidase (CPE) is normally an important step in the maturation of many peptide hormones. Recent studies in mice that lack CP activity indicate the existence of alternative tissue or plasma enzymes capable of removing C-terminal basic residues from prohormone intermediates. Using inhibitors of angiotensin I-converting enzyme (ACE) and CP, we show that both these enzymes in mouse serum can remove the basic amino acids from the C-terminus of CCK5-GRR and LH-RH-GKR, but only CP is responsible for converting diarginyl insulin to insulin. ACE activity removes C-terminal dipeptides to generate the Gly-extended peptides, whereas CP hydrolysis gives rise to CCK5-GR and LH-RH-GK, both of which are susceptible to the dipeptidyl carboxypeptidase activity of ACE. Somatic ACE has two similar protein domains (the N-domain and the C-domain), each with an active site that can display different substrate specificities. CCK5-GRR is a high-affinity substrate for both the N-domain and C-domain active sites of human sACE (Km of 9.4 microm and 9.0 microm, respectively) with the N-domain showing greater efficiency (kcat : Km ratio of 2.6 in favour of the N-domain). We conclude that somatic forms of ACE should be considered as alternatives to CPs for the removal of basic residues from some Arg/Lys-extended peptides.
Jia, Yi; Domenico, Joanne; Swasey, Christina; Wang, Meiqin; Gelfand, Erwin W.; Lucas, Joseph J.
2014-01-01
G1-phase cell cycle defects, such as alterations in cyclin D1 or cyclin-dependent kinase (cdk) levels, are seen in most tumors. For example, increased cyclin D1 and decreased cdk6 levels are seen in many human breast tumors. Overexpression of cdk6 in breast tumor cells in culture has been shown to suppress proliferation, unlike the growth stimulating effects of its close homolog, cdk4. In addition to directly affecting proliferation, alterations in cdk6 or cdk4 levels in breast tumor cells also differentially influence levels of numerous steroid metabolic enzymes (SMEs), including those involved in estrogen metabolism. Overexpression of cdk6 in tumor cell lines having low cdk6 resulted in decreased levels of mRNAs encoding aldo-keto reductase (AKR)1C1, AKR1C2 and AKR1C3, which are hydroxysteroid dehydrogenases (HSDs) involved in steroid hormone metabolism. In contrast, increasing cdk4 dramatically increased these transcript levels, especially those encoding AKR1C3, an enzyme that converts estrone to 17β-estradiol, a change that could result in a pro-estrogenic state favoring tumor growth. Effects on other estrogen metabolizing enzymes, including cytochrome P450 (CYP) 19 aromatase, 17β-HSD2, and CYP1B1 transcripts, were also observed. Interactions of cdk6 and cdk4, but not cyclin D1, with the promoter region of a cdk-regulated gene, 17β-HSD2, were detected. The results uncover a previously unsuspected link between the cell cycle and hormone metabolism and differential roles for cdk6 and cdk4 in a novel mechanism for pre-receptor control of steroid hormone action, with important implications for the origin and treatment of steroid hormone-dependent cancers. PMID:24848372
Kung, Johannes W.; Seifert, Jana; von Bergen, Martin
2013-01-01
The strictly anaerobic Syntrophus aciditrophicus is a fermenting deltaproteobacterium that is able to degrade benzoate or crotonate in the presence and in the absence of a hydrogen-consuming partner. During growth in pure culture, both substrates are dismutated to acetate and cyclohexane carboxylate. In this work, the unknown enzymes involved in the late steps of cyclohexane carboxylate formation were studied. Using enzyme assays monitoring the oxidative direction, a cyclohex-1-ene-1-carboxyl-CoA (Ch1CoA)-forming cyclohexanecarboxyl-CoA (ChCoA) dehydrogenase was purified and characterized from S. aciditrophicus and after heterologous expression of its gene in Escherichia coli. In addition, a cyclohexa-1,5-diene-1-carboxyl-CoA (Ch1,5CoA)-forming Ch1CoA dehydrogenase was characterized after purification of the heterologously expressed gene. Both enzymes had a native molecular mass of 150 kDa and were composed of a single, 40- to 45-kDa subunit; both contained flavin adenine dinucleotide (FAD) as a cofactor. While the ChCoA dehydrogenase was competitively inhibited by Ch1CoA in the oxidative direction, Ch1CoA dehydrogenase further converted the product Ch1,5CoA to benzoyl-CoA. The results obtained suggest that Ch1,5CoA is a common intermediate in benzoate and crotonate fermentation that serves as an electron-accepting substrate for the two consecutively operating acyl-CoA dehydrogenases characterized in this work. In the case of benzoate fermentation, Ch1,5CoA is formed by a class II benzoyl-CoA reductase; in the case of crotonate fermentation, Ch1,5CoA is formed by reversing the reactions of the benzoyl-CoA degradation pathway that are also employed during the oxidative (degradative) branch of benzoate fermentation. PMID:23667239
Crovadore, Julien; Soljan, Vice; Calmin, Gautier; Chablais, Romain; Cochard, Bastien; Lefort, François
2017-10-01
Anaerobic digestion is a common method for reducing the amount of sludge solids in used waters and enabling biogas production. The wet oxidation process (WOX) improves anaerobic digestion by converting carbon into methane through oxidation of organic compounds. WOX produces effluents rich in ammonia, which must be removed to maintain the activity of methanogens. Ammonia removal from WOX could be biologically operated by aerobic granules. To this end, granulation experiments were conducted in 2 bioreactors containing an activated sludge (AS). For the first time, the dynamics of the microbial community structure and the expression levels of 7 enzymes of the nitrogen metabolism in such active microbial communities were followed in regard to time by metagenomics and metatranscriptomics. It was shown that bacterial communities adapt to the wet oxidation effluent by increasing the expression level of the nitrogen metabolism, suggesting that these biological activities could be a less costly alternative for the elimination of ammonia, resulting in a reduction of the use of chemicals and energy consumption in sewage plants. This study reached a strong sequencing depth (from 4.4 to 7.6 Gb) and enlightened a yet unknown diversity of the microorganisms involved in the nitrogen pathway. Moreover, this approach revealed the abundance and expression levels of specialised enzymes involved in nitrification, denitrification, ammonification, dissimilatory nitrate reduction to ammonium (DNRA) and nitrogen fixation processes in AS.
Functions of the RNA Editing Enzyme ADAR1 and Their Relevance to Human Diseases.
Song, Chunzi; Sakurai, Masayuki; Shiromoto, Yusuke; Nishikura, Kazuko
2016-12-17
Adenosine deaminases acting on RNA (ADARs) convert adenosine to inosine in double-stranded RNA (dsRNA). Among the three types of mammalian ADARs, ADAR1 has long been recognized as an essential enzyme for normal development. The interferon-inducible ADAR1p150 is involved in immune responses to both exogenous and endogenous triggers, whereas the functions of the constitutively expressed ADAR1p110 are variable. Recent findings that ADAR1 is involved in the recognition of self versus non-self dsRNA provide potential explanations for its links to hematopoiesis, type I interferonopathies, and viral infections. Editing in both coding and noncoding sequences results in diseases ranging from cancers to neurological abnormalities. Furthermore, editing of noncoding sequences, like microRNAs, can regulate protein expression, while editing of Alu sequences can affect translational efficiency and editing of proximal sequences. Novel identifications of long noncoding RNA and retrotransposons as editing targets further expand the effects of A-to-I editing. Besides editing, ADAR1 also interacts with other dsRNA-binding proteins in editing-independent manners. Elucidating the disease-specific patterns of editing and/or ADAR1 expression may be useful in making diagnoses and prognoses. In this review, we relate the mechanisms of ADAR1's actions to its pathological implications, and suggest possible mechanisms for the unexplained associations between ADAR1 and human diseases.
Functions of the RNA Editing Enzyme ADAR1 and Their Relevance to Human Diseases
Song, Chunzi; Sakurai, Masayuki; Shiromoto, Yusuke; Nishikura, Kazuko
2016-01-01
Adenosine deaminases acting on RNA (ADARs) convert adenosine to inosine in double-stranded RNA (dsRNA). Among the three types of mammalian ADARs, ADAR1 has long been recognized as an essential enzyme for normal development. The interferon-inducible ADAR1p150 is involved in immune responses to both exogenous and endogenous triggers, whereas the functions of the constitutively expressed ADAR1p110 are variable. Recent findings that ADAR1 is involved in the recognition of self versus non-self dsRNA provide potential explanations for its links to hematopoiesis, type I interferonopathies, and viral infections. Editing in both coding and noncoding sequences results in diseases ranging from cancers to neurological abnormalities. Furthermore, editing of noncoding sequences, like microRNAs, can regulate protein expression, while editing of Alu sequences can affect translational efficiency and editing of proximal sequences. Novel identifications of long noncoding RNA and retrotransposons as editing targets further expand the effects of A-to-I editing. Besides editing, ADAR1 also interacts with other dsRNA-binding proteins in editing-independent manners. Elucidating the disease-specific patterns of editing and/or ADAR1 expression may be useful in making diagnoses and prognoses. In this review, we relate the mechanisms of ADAR1′s actions to its pathological implications, and suggest possible mechanisms for the unexplained associations between ADAR1 and human diseases. PMID:27999332
Sifi, Amina; Adi-Bessalem, Sonia; Laraba-Djebari, Fatima
2017-02-01
Scorpion stings are mainly associated with cardiovascular disturbances that may be the cause of death. In this study, the involvement of angiotensin II (Ang II) in cardiac and aortic inflammatory response was studied. Mice were injected with Androctonus australis hector (Aah) scorpion venom (0.5mg/kg, subcutaneously), in the presence or absence of an angiotensin converting enzyme (ACE) inhibitor, captopril (15mg/kg/day/1day intraperitoneally) or an angiotensin type-1 receptor (AT1R) antagonist, valsartan (15mg/kg/day/15days, orally). In the envenomed group, results revealed severe tissue alterations with a concomitant increase of metabolic enzymes (CK and CK-MB) in sera. An important inflammatory cell (neutrophil and eosinophil) infiltration into the heart and aorta were observed, accompanied by imbalanced redox status (NO, MDA, catalase and GSH) and high cytokine levels (IL-6 and TNF-α) in sera with the expression of MMP-2 and MMP-9 metalloproteinases. However, the blockade of the actions of AngII by the ACE inhibitor or by the AT1R antagonist prevented cardiac and aortic tissue alterations, inflammatory cell infiltration, as well as the oxidative stress generation and cytokine and metalloproteinase expression. These results suggest the involvement of AngII, through its AT1R in the inflammation induced by Aah venom, in the heart and the aorta. Copyright © 2016 Elsevier Inc. All rights reserved.
McDermott, J R; Virmani, M A; Turner, J D; Kidd, A M
1986-01-01
In order to identify which peptidases are involved in the catabolism of neurotensin in the CNS, [3H-Tyr3,11]-neurotensin was superfused over rat hypothalamic slices in the presence and absence of peptidase inhibitors. The degree of degradation of the peptide was determined by reverse phase HPLC separation of 3H-labelled neurotensin from 3H-labelled products. Very little degrading activity was released from the slice into the medium during the superfusion. In the absence of inhibitors, 20 to 50% of 3H-neurotensin was degraded giving mainly 3H-Tyr along with other unidentified 3H-labelled products. Inhibitors of endopeptidase 24.11 (phosphoramidon) and proline endopeptidase (antibody) had no effect on the degradation. Captopril, an inhibitor of angiotensin converting enzyme, had a small inhibitory effect. In contrast, dynorphin(1-13), an inhibitor of a soluble, thiol dependent metallopeptidase which hydrolyses neurotensin at Arg8-Arg9, gave greater than 80% inhibition of 3H-neurotensin degradation in the slice preparation. 1,10-Phenanthroline, an inhibitor of metallopeptidases, was also an effective inhibitor. The dynorphin sequence responsible for the inhibition contains the Arg6-Arg7 bond. Other peptides (bradykinin and angiotensin) which are substrates of the soluble metallopeptidase also inhibited neurotensin breakdown by the slice. This evidence suggests that this thiol dependent metalloendopeptidase is the major neurotensin catabolizing enzyme in hypothalamic slices.
Identification of an itaconic acid degrading pathway in itaconic acid producing Aspergillus terreus.
Chen, Mei; Huang, Xuenian; Zhong, Chengwei; Li, Jianjun; Lu, Xuefeng
2016-09-01
Itaconic acid, one of the most promising and flexible bio-based chemicals, is mainly produced by Aspergillus terreus. Previous studies to improve itaconic acid production in A. terreus through metabolic engineering were mainly focused on its biosynthesis pathway, while the itaconic acid-degrading pathway has largely been ignored. In this study, we used transcriptomic, proteomic, bioinformatic, and in vitro enzymatic analyses to identify three key enzymes, itaconyl-CoA transferase (IctA), itaconyl-CoA hydratase (IchA), and citramalyl-CoA lyase (CclA), that are involved in the catabolic pathway of itaconic acid in A. terreus. In the itaconic acid catabolic pathway in A. terreus, itaconic acid is first converted by IctA into itaconyl-CoA with succinyl-CoA as the CoA donor, and then itaconyl-CoA is hydrated into citramalyl-CoA by IchA. Finally, citramalyl-CoA is cleaved into acetyl-CoA and pyruvate by CclA. Moreover, IctA can also catalyze the reaction between citramalyl-CoA and succinate to generate succinyl-CoA and citramalate. These results, for the first time, identify the three key enzymes, IctA, IchA, and CclA, involved in the itaconic acid degrading pathway in itaconic acid producing A. terreus. The results will facilitate the improvement of itaconic acid production by metabolically engineering the catabolic pathway of itaconic acid in A. terreus.
Clinch, Keith; Crump, Douglas R.; Evans, Gary B.; Hazleton, Keith Z.; Mason, Jennifer M.; Schramm, Vern L.
2013-01-01
The pathogenic protozoa responsible for malaria lack enzymes for the de novo synthesis of purines and rely on purine salvage from the host. In Plasmodium falciparum (Pf), hypoxanthine-guanine-xanthine phosphoribosyltransferase (HGXPRT) converts hypoxanthine to inosine monophosphate and is essential for purine salvage making the enzyme an anti-malarial drug target. We have synthesized a number of simple acyclic aza-C- nucleosides and shown that some are potent inhibitors of Pf HGXPRT while showing excellent selectivity for the Pf versus the human enzyme. PMID:23810424
Non-enzymic beta-decarboxylation of aspartic acid.
NASA Technical Reports Server (NTRS)
Doctor, V. M.; Oro, J.
1972-01-01
Study of the mechanism of nonenzymic beta-decarboxylation of aspartic acid in the presence of metal ions and pyridoxal. The results suggest that aspartic acid is first converted to oxalacetic acid by transamination with pyridoxal which in turn is converted to pyridoxamine. This is followed by decarboxylation of oxalacetic acid to form pyruvic acid which transaminates with pyridoxamine to form alanine. The possible significance of these results to prebiotic molecular evolution is briefly discussed.
Genetic Analysis of Benzothiophene Biodesulfurization Pathway of Gordonia terrae Strain C-6
Lian, Kehui; Zhang, Yue; Tian, Huimei; Ji, Kaihua; Li, Guoqiang
2013-01-01
Sulfur can be removed from benzothiophene (BT) by some bacteria without breaking carbon-carbon bonds. However, a clear mechanism for BT desulfurization and its genetic components have not been reported in literatures so far. In this study, we used comparative transcriptomics to study differential expression of genes in Gordonia terrae C-6 cultured with BT or sodium sulfate as the sole source of sulfur. We found that 135 genes were up-regulated with BT relative to sodium sulfate as the sole sulfur source. Many of these genes encode flavin-dependent monooxygenases, alkane sulfonate monooxygenases and desulfinase, which perform similar functions to those involved in the 4S pathway of dibenzothiophene (DBT) biodesulfurization. Three of the genes were found to be located in the same operon, designated bdsABC. Cell extracts of pET28a-bdsABC transfected E. coli Rosetta (DE3) converted BT to a phenolic compound, identified as o-hydroxystyrene. These results advance our understanding of enzymes involved in the BT biodesulfurization pathway. PMID:24367657
Mutations in PCYT1A cause spondylometaphyseal dysplasia with cone-rod dystrophy.
Yamamoto, Guilherme L; Baratela, Wagner A R; Almeida, Tatiana F; Lazar, Monize; Afonso, Clara L; Oyamada, Maria K; Suzuki, Lisa; Oliveira, Luiz A N; Ramos, Ester S; Kim, Chong A; Passos-Bueno, Maria Rita; Bertola, Débora R
2014-01-02
Spondylometaphyseal dysplasia with cone-rod dystrophy is a rare autosomal-recessive disorder characterized by severe short stature, progressive lower-limb bowing, flattened vertebral bodies, metaphyseal involvement, and visual impairment caused by cone-rod dystrophy. Whole-exome sequencing of four individuals affected by this disorder from two Brazilian families identified two previously unreported homozygous mutations in PCYT1A. This gene encodes the alpha isoform of the phosphate cytidylyltransferase 1 choline enzyme, which is responsible for converting phosphocholine into cytidine diphosphate-choline, a key intermediate step in the phosphatidylcholine biosynthesis pathway. A different enzymatic defect in this pathway has been previously associated with a muscular dystrophy with mitochondrial structural abnormalities that does not have cartilage and/or bone or retinal involvement. Thus, the deregulation of the phosphatidylcholine pathway may play a role in multiple genetic diseases in humans, and further studies are necessary to uncover its precise pathogenic mechanisms and the entirety of its phenotypic spectrum. Copyright © 2014 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
Ceker, Zahit; Takmaz, Suna Akın; Baltaci, Bülent; Başar, Hülya
2015-01-01
The importance of minimizing the exaggerated sympatho-adrenergic responses and QT interval and QT interval dispersion changes that may develop due to laryngoscopy and tracheal intubation during anesthesia induction in the hypertensive patients is clear. Esmolol decreases the hemodynamic response to laryngoscopy and intubation. However, the effect of esmolol in decreasing the prolonged QT interval and QT interval dispersion as induced by laryngoscopy and intubation is controversial. We investigated the effect of esmolol on the hemodynamic, and corrected-QT interval and corrected-QT interval dispersion changes seen during anesthesia induction in hypertensive patients using angiotensin converting enzyme inhibitors. 60 ASA I-II patients, with essential hypertension using angiotensin converting enzyme inhibitors were included in the study. The esmolol group received esmolol at a bolus dose of 500mcg/kg followed by a 100mcg/kg/min infusion which continued until the 4th min after intubation. The control group received 0.9% saline similar to the esmolol group. The mean blood pressure, heart rate values and the electrocardiogram records were obtained as baseline values before the anesthesia, 5min after esmolol and saline administration, 3min after the induction and 30s, 2min and 4min after intubation. The corrected-QT interval was shorter in the esmolol group (p=0.012), the corrected-QT interval dispersion interval was longer in the control group (p=0.034) and the mean heart rate was higher in the control group (p=0.022) 30s after intubation. The risk of arrhythmia frequency was higher in the control group in the 4-min period following intubation (p=0.038). Endotracheal intubation was found to prolong corrected-QT interval and corrected-QT interval dispersion, and increase the heart rate during anesthesia induction with propofol in hypertensive patients using angiotensin converting enzyme inhibitors. These effects were prevented with esmolol (500mcg/kg bolus, followed by 100mcg/kg/min infusion). During induction, the blood pressure tends to decrease with esmolol where care is needed. Copyright © 2014 Sociedade Brasileira de Anestesiologia. Publicado por Elsevier Editora Ltda. All rights reserved.
Witthoff, Sabrina; Mühlroth, Alice
2013-01-01
Methanol is considered an interesting carbon source in “bio-based” microbial production processes. Since Corynebacterium glutamicum is an important host in industrial biotechnology, in particular for amino acid production, we performed studies of the response of this organism to methanol. The C. glutamicum wild type was able to convert 13C-labeled methanol to 13CO2. Analysis of global gene expression in the presence of methanol revealed several genes of ethanol catabolism to be upregulated, indicating that some of the corresponding enzymes are involved in methanol oxidation. Indeed, a mutant lacking the alcohol dehydrogenase gene adhA showed a 62% reduced methanol consumption rate, indicating that AdhA is mainly responsible for methanol oxidation to formaldehyde. Further studies revealed that oxidation of formaldehyde to formate is catalyzed predominantly by two enzymes, the acetaldehyde dehydrogenase Ald and the mycothiol-dependent formaldehyde dehydrogenase AdhE. The Δald ΔadhE and Δald ΔmshC deletion mutants were severely impaired in their ability to oxidize formaldehyde, but residual methanol oxidation to CO2 was still possible. The oxidation of formate to CO2 is catalyzed by the formate dehydrogenase FdhF, recently identified by us. Similar to the case with ethanol, methanol catabolism is subject to carbon catabolite repression in the presence of glucose and is dependent on the transcriptional regulator RamA, which was previously shown to be essential for expression of adhA and ald. In conclusion, we were able to show that C. glutamicum possesses an endogenous pathway for methanol oxidation to CO2 and to identify the enzymes and a transcriptional regulator involved in this pathway. PMID:24014532
Khurshed, Mohammed; Molenaar, Remco J; Lenting, Krissie; Leenders, William P; van Noorden, Cornelis J F
2017-07-25
Hotspot mutations in isocitrate dehydrogenase 1 (IDH1) initiate low-grade glioma and secondary glioblastoma and induce a neomorphic activity that converts α-ketoglutarate (α-KG) to the oncometabolite D-2-hydroxyglutarate (D-2-HG). It causes metabolic rewiring that is not fully understood. We investigated the effects of IDH1 mutations (IDH1MUT) on expression of genes that encode for metabolic enzymes by data mining The Cancer Genome Atlas. We analyzed 112 IDH1 wild-type (IDH1WT) versus 399 IDH1MUT low-grade glioma and 157 IDH1WT versus 9 IDH1MUT glioblastoma samples. In both glioma types, IDH1WT was associated with high expression levels of genes encoding enzymes that are involved in glycolysis and acetate anaplerosis, whereas IDH1MUT glioma overexpress genes encoding enzymes that are involved in the oxidative tricarboxylic acid (TCA) cycle. In vitro, we observed that IDH1MUT cancer cells have a higher basal respiration compared to IDH1WT cancer cells and inhibition of the IDH1MUT shifts the metabolism by decreasing oxygen consumption and increasing glycolysis. Our findings indicate that IDH1WT glioma have a typical Warburg phenotype whereas in IDH1MUT glioma the TCA cycle, rather than glycolytic lactate production, is the predominant metabolic pathway. Our data further suggest that the TCA in IDH1MUT glioma is driven by lactate and glutamate anaplerosis to facilitate production of α-KG, and ultimately D-2-HG. This metabolic rewiring may be a basis for novel therapies for IDH1MUT and IDH1WT glioma.
Hirota, Yoshihisa; Tsugawa, Naoko; Nakagawa, Kimie; Suhara, Yoshitomo; Tanaka, Kiyoshi; Uchino, Yuri; Takeuchi, Atsuko; Sawada, Natsumi; Kamao, Maya; Wada, Akimori; Okitsu, Takashi; Okano, Toshio
2013-01-01
Mice have the ability to convert dietary phylloquinone (vitamin K1) into menaquinone-4 (vitamin K2) and store the latter in tissues. A prenyltransferase enzyme, UbiA prenyltransferase domain-containing 1 (UBIAD1), is involved in this conversion. There is evidence that UBIAD1 has a weak side chain cleavage activity for phylloquinone but a strong prenylation activity for menadione (vitamin K3), which has long been postulated as an intermediate in this conversion. Further evidence indicates that when intravenously administered in mice phylloquinone can enter into tissues but is not converted further to menaquinone-4. These findings raise the question whether phylloquinone is absorbed and delivered to tissues in its original form and converted to menaquinone-4 or whether it is converted to menadione in the intestine followed by delivery of menadione to tissues and subsequent conversion to menaquinone-4. To answer this question, we conducted cannulation experiments using stable isotope tracer technology in rats. We confirmed that the second pathway is correct on the basis of structural assignments and measurements of phylloquinone-derived menadione using high resolution MS analysis and a bioassay using recombinant UBIAD1 protein. Furthermore, high resolution MS and 1H NMR analyses of the product generated from the incubation of menadione with recombinant UBIAD1 revealed that the hydroquinone, but not the quinone form of menadione, was an intermediate of the conversion. Taken together, these results provide unequivocal evidence that menadione is a catabolic product of oral phylloquinone and a major source of tissue menaquinone-4. PMID:24085302
Hirota, Yoshihisa; Tsugawa, Naoko; Nakagawa, Kimie; Suhara, Yoshitomo; Tanaka, Kiyoshi; Uchino, Yuri; Takeuchi, Atsuko; Sawada, Natsumi; Kamao, Maya; Wada, Akimori; Okitsu, Takashi; Okano, Toshio
2013-11-15
Mice have the ability to convert dietary phylloquinone (vitamin K1) into menaquinone-4 (vitamin K2) and store the latter in tissues. A prenyltransferase enzyme, UbiA prenyltransferase domain-containing 1 (UBIAD1), is involved in this conversion. There is evidence that UBIAD1 has a weak side chain cleavage activity for phylloquinone but a strong prenylation activity for menadione (vitamin K3), which has long been postulated as an intermediate in this conversion. Further evidence indicates that when intravenously administered in mice phylloquinone can enter into tissues but is not converted further to menaquinone-4. These findings raise the question whether phylloquinone is absorbed and delivered to tissues in its original form and converted to menaquinone-4 or whether it is converted to menadione in the intestine followed by delivery of menadione to tissues and subsequent conversion to menaquinone-4. To answer this question, we conducted cannulation experiments using stable isotope tracer technology in rats. We confirmed that the second pathway is correct on the basis of structural assignments and measurements of phylloquinone-derived menadione using high resolution MS analysis and a bioassay using recombinant UBIAD1 protein. Furthermore, high resolution MS and (1)H NMR analyses of the product generated from the incubation of menadione with recombinant UBIAD1 revealed that the hydroquinone, but not the quinone form of menadione, was an intermediate of the conversion. Taken together, these results provide unequivocal evidence that menadione is a catabolic product of oral phylloquinone and a major source of tissue menaquinone-4.
Endogenous Methanol Regulates Mammalian Gene Activity
Komarova, Tatiana V.; Petrunia, Igor V.; Shindyapina, Anastasia V.; Silachev, Denis N.; Sheshukova, Ekaterina V.; Kiryanov, Gleb I.; Dorokhov, Yuri L.
2014-01-01
We recently showed that methanol emitted by wounded plants might function as a signaling molecule for plant-to-plant and plant-to-animal communications. In mammals, methanol is considered a poison because the enzyme alcohol dehydrogenase (ADH) converts methanol into toxic formaldehyde. However, the detection of methanol in the blood and exhaled air of healthy volunteers suggests that methanol may be a chemical with specific functions rather than a metabolic waste product. Using a genome-wide analysis of the mouse brain, we demonstrated that an increase in blood methanol concentration led to a change in the accumulation of mRNAs from genes primarily involved in detoxification processes and regulation of the alcohol/aldehyde dehydrogenases gene cluster. To test the role of ADH in the maintenance of low methanol concentration in the plasma, we used the specific ADH inhibitor 4-methylpyrazole (4-MP) and showed that intraperitoneal administration of 4-MP resulted in a significant increase in the plasma methanol, ethanol and formaldehyde concentrations. Removal of the intestine significantly decreased the rate of methanol addition to the plasma and suggested that the gut flora may be involved in the endogenous production of methanol. ADH in the liver was identified as the main enzyme for metabolizing methanol because an increase in the methanol and ethanol contents in the liver homogenate was observed after 4-MP administration into the portal vein. Liver mRNA quantification showed changes in the accumulation of mRNAs from genes involved in cell signalling and detoxification processes. We hypothesized that endogenous methanol acts as a regulator of homeostasis by controlling the mRNA synthesis. PMID:24587296
Converting baker's waste into alcohol. Revised final progress report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halsey, R.; Wilson, P.B.
All types of baker's waste (including waste from candy manufacturers) can be converted into alcohol to be used as a fuel. All types of waste at any stage in process can be converted, such as: basic ingredients (including floor sweepings); dry mixes (including floor sweepings); dough at any stage; partially or fully cooked products; and day old returned products. The basic steps are the same, only the initial preparation will vary slightly. The variation will be: amount of water to be added and amount and type of nutrients (if any) to be added. The basic steps are: slurrying, liquefying tomore » put starch into liquid state, saccharifying to convert starch into fermentable sugars, fermentation to convert sugars into alcohol, and distillation to separate the alcohol from the mash. Each step is discussed in detail along with problems that may arise. Directions are given and materials (enzymes, yeast, etc.) and equipment are descibed briefly.« less
Genetics Home Reference: fundus albipunctatus
... integral operation of the visual cycle is the recycling of a molecule called 11-cis retinal, which ... dehydrogenase 5, which performs one step in this recycling process. This enzyme converts a molecule called 11- ...
Mondal, Subhanjan; Hsiao, Kevin; Goueli, Said A
Adenosine monophosphate (AMP) is a key cellular metabolite regulating energy homeostasis and signal transduction. AMP is also a product of various enzymatic reactions, many of which are dysregulated during disease conditions. Thus, monitoring the activities of these enzymes is a primary goal for developing modulators for these enzymes. In this study, we demonstrate the versatility of an enzyme-coupled assay that quantifies the amount of AMP produced by any enzymatic reaction regardless of its substrates. We successfully implemented it to enzyme reactions that use adenosine triphosphate (ATP) as a substrate (aminoacyl tRNA synthetase and DNA ligase) by an elaborate strategy of removing residual ATP and converting AMP produced into ATP; so it can be detected using luciferase/luciferin and generating light. We also tested this assay to measure the activities of AMP-generating enzymes that do not require ATP as substrate, including phosphodiesterases (cyclic adenosine monophosphate) and Escherichia coli DNA ligases (nicotinamide adenine dinucleotide [NAD + ]). In a further elaboration of the AMP-Glo platform, we coupled it to E. coli DNA ligase, enabling measurement of NAD + and enzymes that use NAD + like monoadenosine and polyadenosine diphosphate-ribosyltransferases. Sulfotransferases use 3'-phosphoadenosine-5'-phosphosulfate as the universal sulfo-group donor and phosphoadenosine-5'-phosphate (PAP) is the universal product. PAP can be quantified by converting PAP to AMP by a Golgi-resident PAP-specific phosphatase, IMPAD1. By coupling IMPAD1 to the AMP-Glo system, we can measure the activities of sulfotransferases. Thus, by utilizing the combinations of biochemical enzymatic conversion of various cellular metabolites to AMP, we were able to demonstrate the versatility of the AMP-Glo assay.
Measuring H(+) Pumping and Membrane Potential Formation in Sealed Membrane Vesicle Systems.
Wielandt, Alex Green; Palmgren, Michael G; Fuglsang, Anja Thoe; Günther-Pomorski, Thomas; Justesen, Bo Højen
2016-01-01
The activity of enzymes involved in active transport of matter across lipid bilayers can conveniently be assayed by measuring their consumption of energy, such as ATP hydrolysis, while it is more challenging to directly measure their transport activities as the transported substrate is not converted into a product and only moves a few nanometers in space. Here, we describe two methods for the measurement of active proton pumping across lipid bilayers and the concomitant formation of a membrane potential, applying the dyes 9-amino-6-chloro-2-methoxyacridine (ACMA) and oxonol VI. The methods are exemplified by assaying transport of the Arabidopsis thaliana plasma membrane H(+)-ATPase (proton pump), which after heterologous expression in Saccharomyces cerevisiae and subsequent purification has been reconstituted in proteoliposomes.
Wellner, Vaira P.; Sekura, Ronald; Meister, Alton; Larsson, Agne
1974-01-01
Enzyme studies on placenta, cultured skin fibroblasts, and erythrocytes from two sisters with the inborn error 5-oxoprolinuria (pyroglutamic aciduria) indicate that the metabolic lesion in this disease is at the glutathione synthetase (EC 6.3.2.3) step of the γ-glutamyl cycle. Excessive urinary excretion of 5-oxoproline by these patients appears to be associated with increased synthesis of γ-glutamyl-cysteine and formation of 5-oxoproline from this dipeptide. Thus, 5-oxoproline is produced in amounts that exceed the normal capacity of 5-oxoprolinase to convert it to glutamate. The data indicate that it may be possible to identify individuals who are heterozygous for this trait by determinations of erythrocyte glutathione synthetase. PMID:4152248
Involvement of phenoloxidase in browning during grinding of Tenebrio molitor larvae
Lakemond, Catriona M. M.; Fogliano, Vincenzo; Renzone, Giovanni; Scaloni, Andrea; Vincken, Jean-Paul
2017-01-01
Insects are investigated as alternative protein source to meet the increasing demand for proteins in the future. Enzymatic browning occurring during grinding of insect and subsequent extraction of proteins can influence the proteins’ properties, but it is unclear which enzymes are responsible for this phenomenon. This study was performed on larvae of three commonly used insect species, namely Tenebrio molitor, Alphitobius diaperinus and Hermetia illucens. Oxygen consumption measurements on protein extracts showed activity on L-tyrosine, L-3,4-di-hydroxy-phenylalanine (L-DOPA) and L-dopamine, indicating phenoloxidase as a key player in browning. Furthermore, no reaction on 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) was observed, ruling out an important contribution of laccase to browning. The browning reaction was most prominent at pH 6 for T. molitor and A. diaperinus, and 7 for H. illucens. As the enzyme activity of H. illucens was the lowest with the darkest color formation, this was likely caused by another factor. The activity of phenoloxidase was confirmed for T. molitor and A. diaperinus by activity measurements after fractionation by anion-exchange chromatography. Color measurements showed the presence of activity on both L-DOPA and L-tyrosine in the same fractions. Both substrates were converted into dopachrome after incubation with enzyme-enriched fractions. No DOPA-decarboxylase, tyrosine hydroxylase and peroxidase activities were observed. By using native PAGE with L-DOPA as staining-solution, active T. molitor protein bands were resolved and characterized, identifying a tyrosinase/phenoloxidase as the active enzyme species. All together, these data confirmed that tyrosinase is an important enzyme in causing enzymatic browning in T. molitor and likely in A. diaperinus. PMID:29244828
Involvement of phenoloxidase in browning during grinding of Tenebrio molitor larvae.
Janssen, Renske H; Lakemond, Catriona M M; Fogliano, Vincenzo; Renzone, Giovanni; Scaloni, Andrea; Vincken, Jean-Paul
2017-01-01
Insects are investigated as alternative protein source to meet the increasing demand for proteins in the future. Enzymatic browning occurring during grinding of insect and subsequent extraction of proteins can influence the proteins' properties, but it is unclear which enzymes are responsible for this phenomenon. This study was performed on larvae of three commonly used insect species, namely Tenebrio molitor, Alphitobius diaperinus and Hermetia illucens. Oxygen consumption measurements on protein extracts showed activity on L-tyrosine, L-3,4-di-hydroxy-phenylalanine (L-DOPA) and L-dopamine, indicating phenoloxidase as a key player in browning. Furthermore, no reaction on 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) was observed, ruling out an important contribution of laccase to browning. The browning reaction was most prominent at pH 6 for T. molitor and A. diaperinus, and 7 for H. illucens. As the enzyme activity of H. illucens was the lowest with the darkest color formation, this was likely caused by another factor. The activity of phenoloxidase was confirmed for T. molitor and A. diaperinus by activity measurements after fractionation by anion-exchange chromatography. Color measurements showed the presence of activity on both L-DOPA and L-tyrosine in the same fractions. Both substrates were converted into dopachrome after incubation with enzyme-enriched fractions. No DOPA-decarboxylase, tyrosine hydroxylase and peroxidase activities were observed. By using native PAGE with L-DOPA as staining-solution, active T. molitor protein bands were resolved and characterized, identifying a tyrosinase/phenoloxidase as the active enzyme species. All together, these data confirmed that tyrosinase is an important enzyme in causing enzymatic browning in T. molitor and likely in A. diaperinus.
Molecular diversity of tuliposide A-converting enzyme in the tulip.
Nomura, Taiji; Tsuchigami, Aya; Ogita, Shinjiro; Kato, Yasuo
2013-01-01
Tuliposide A-converting enzyme (TCEA) catalyzes the conversion of 6-tuliposide A to its lactonized aglycon, tulipalin A, in the tulip (Tulipa gesneriana). The TgTCEA gene, isolated previously from petals, was transcribed in all tulip tissues but not in the bulbs despite the presence of TCEA activity, which allowed prediction of the presence of a TgTCEA isozyme gene preferentially expressed in the bulbs. Here, the TgTCEA-b gene, the TgTCEA homolog, was identified in bulbs. TgTCEA-b polypeptides showed approximately 77% identity to the petal TgTCEA. Functional characterization of the recombinant enzyme verified that TgTCEA-b encoded the TCEA. Moreover, the TgTCEA-b was found to be localized to plastids, as found for the petal TgTCEA. Transcript analysis revealed that TgTCEA-b was functionally transcribed in the bulb scales, unlike the TgTCEA gene, whose transcripts were absent there. In contrast, TgTCEA-b transcripts were in the minority in other tissues where TgTCEA transcripts were dominant, indicating a tissue preference for the transcription of those isozyme genes.
Park, Soo Yeon; Je, Jae-Young; Hwang, Joung-Youl; Ahn, Chang-Bum
2015-09-01
Abalone protein was hydrolyzed by enzymatic hydrolysis and the optimal enzyme/substrate (E/S) ratios were determined. Abalone protein hydrolysates (APH) produced by Protamex at E/S ratio of 1:100 showed angiotensin I converting enzyme inhibitory activity with IC50 of 0.46 mg/mL, and APH obtained by Flavourzyme at E/S ratio of 1:100 possessed the oxygen radical absorbance capacity value of 457.6 μM trolox equivalent/mg sample. Flavourzyme abalone protein hydrolysates (FAPH) also exhibited H2O2 scavenging activity with IC50 of 0.48 mg/mL and Fe(2+) chelating activity with IC50 of 2.26 mg/mL as well as high reducing power. FAPH significantly (P<0.05) protected H2O2-induced hepatic cell damage in cultured hepatocytes, and the cell viability was restored to 90.27% in the presence of FAPH. FAPH exhibited 46.20% intracellular ROS scavenging activity and 57.89% lipid peroxidation inhibition activity in cultured hepatocytes. Overall, APH may be useful as an ingredient for functional foods.
Park, Soo Yeon; Je, Jae-Young; Hwang, Joung-Youl; Ahn, Chang-Bum
2015-01-01
Abalone protein was hydrolyzed by enzymatic hydrolysis and the optimal enzyme/substrate (E/S) ratios were determined. Abalone protein hydrolysates (APH) produced by Protamex at E/S ratio of 1:100 showed angiotensin I converting enzyme inhibitory activity with IC50 of 0.46 mg/mL, and APH obtained by Flavourzyme at E/S ratio of 1:100 possessed the oxygen radical absorbance capacity value of 457.6 μM trolox equivalent/mg sample. Flavourzyme abalone protein hydrolysates (FAPH) also exhibited H2O2 scavenging activity with IC50 of 0.48 mg/mL and Fe2+ chelating activity with IC50 of 2.26 mg/mL as well as high reducing power. FAPH significantly (P<0.05) protected H2O2-induced hepatic cell damage in cultured hepatocytes, and the cell viability was restored to 90.27% in the presence of FAPH. FAPH exhibited 46.20% intracellular ROS scavenging activity and 57.89% lipid peroxidation inhibition activity in cultured hepatocytes. Overall, APH may be useful as an ingredient for functional foods. PMID:26451354
Pan, Huanglei; She, Xingxing; Wu, Hongli; Ma, Jun; Ren, Difeng; Lu, Jun
2015-09-09
This study investigated the long-term (8 weeks) anti-hypertensive effects of 10 mg/kg tripeptides isolated from Spirulina platensis, Ile-Gln-Pro (IQP) and Val-Glu-Pro (VEP), and S. platensis hydrolysates (SH) on spontaneously hypertensive rats. The treatment period was 6 weeks, and observation continued for another 2 weeks. After treatment, weighted systolic blood pressure, weighted diastolic blood pressure, left ventricular mass index, and right ventricular mass index of groups treated with IQP, VEP, and SH were significantly lower than those of the group treated with distilled water, even when the treatments had been withdrawn for 2 weeks. Quantitative real-time polymerase chain reaction, enzyme-linked immunosorbent assay, and Western blotting showed the mRNA expression levels and protein/peptide concentrations of the main components of the renin angiotensin system in myocardium were significantly affected by treatment: angiotensin converting enzyme, angiotensin II, and angiotensin type 1 receptor were down-regulated, whereas angiotensin type 2 receptor, angiotensin converting enzyme 2, angiotensin-(1-7), and Mas receptor were up-regulated.
Muhammad Auwal, Shehu; Zarei, Mohammad; Abdul-Hamid, Azizah; Saari, Nazamid
2017-03-31
The stone fish is an under-utilized sea cucumber with many nutritional and ethno-medicinal values. This study aimed to establish the conditions for its optimum hydrolysis with bromelain to generate angiotensin I-converting enzyme (ACE)-inhibitory hydrolysates. Response surface methodology (RSM) based on a central composite design was used to model and optimize the degree of hydrolysis (DH) and ACE-inhibitory activity. Process conditions including pH (4-7), temperature (40-70 °C), enzyme/substrate (E/S) ratio (0.5%-2%) and time (30-360 min) were used. A pH of 7.0, temperature of 40 °C, E/S ratio of 2% and time of 240 min were determined using a response surface model as the optimum levels to obtain the maximum ACE-inhibitory activity of 84.26% at 44.59% degree of hydrolysis. Hence, RSM can serve as an effective approach in the design of experiments to improve the antihypertensive effect of stone fish hydrolysates, which can thus be used as a value-added ingredient for various applications in the functional foods industries.
Kaur, Charanpreet; Sharma, Shweta; Hasan, Mohammad Rokebul; Pareek, Ashwani; Singla-Pareek, Sneh L; Sopory, Sudhir K
2017-03-30
The glyoxalase system is the ubiquitous pathway for the detoxification of methylglyoxal (MG) in the biological systems. It comprises two enzymes, glyoxalase I (GLYI) and glyoxalase II (GLYII), which act sequentially to convert MG into d-lactate, thereby helping living systems get rid of this otherwise cytotoxic byproduct of metabolism. In addition, a glutathione-independent GLYIII enzyme activity also exists in the biological systems that can directly convert MG to d-lactate. Humans and Escherichia coli possess a single copy of GLYI (encoding either the Ni- or Zn-dependent form) and GLYII genes, which through MG detoxification provide protection against various pathological and disease conditions. By contrast, the plant genome possesses multiple GLYI and GLYII genes with a role in abiotic stress tolerance. Plants possess both Ni 2+ - and Zn 2+ -dependent forms of GLYI, and studies on plant glyoxalases reveal the various unique features of these enzymes distinguishing them from prokaryotic and other eukaryotic glyoxalases. Through this review, we provide an overview of the plant glyoxalase family along with a comparative analysis of glyoxalases across various species, highlighting similarities as well as differences in the biochemical, molecular, and physiological properties of these enzymes. We believe that the evolution of multiple glyoxalases isoforms in plants is an important component of their robust defense strategies.
Tahir, Hindia; Jackson, Leslie L; Warnock, David G
2007-09-01
This report describes an open-label, nonrandomized, prospective evaluation of the effects of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker therapy on patients who have Fabry disease and also received enzyme replacement therapy with agalsidase-beta, given at 1 mg/kg body wt every 2 wk. Previous placebo-controlled phase III and phase IV trials with agalsidase-beta demonstrated clearing of globotriaosylceramide from vascular endothelia but little effect on proteinuria or progressive loss of kidney function in patients with Fabry disease and severe chronic kidney disease marked by overt proteinuria and/or estimated GFR <60 ml/min per 1.73 m2. Angiotensin-converting enzyme inhibitor and/or angiotensin receptor blocker therapy is the standard of care for patients with proteinuric kidney diseases, but their use is challenging in patients with Fabry disease and low or low-normal baseline systemic BP. A group of patients with Fabry disease were treated with antiproteinuric therapy, in conjunction with agalsidase-beta; sustained reductions in proteinuria with stabilization of kidney function were achieved in a group of six patients who had severe Fabry nephropathy; the progression rate was -0.23 +/- 1.12 ml/min per 1.73 m2 per yr with 30 mo of follow-up.
Adenine formation from adenosine by mycoplasmas: adenosine phosphorylase activity.
Hatanaka, M; Del Giudice, R; Long, C
1975-01-01
Mammalian cells have enzymes to convert adenosine to inosine by deamination and inosine to hypoxanthine by phosphorolysis, but they do not possess the enzymes necessary to form the free base, adenine, from adenosine. Mycoplasmas grown in broth or in cell cultures can produce adenine from adenosine. This activity was detected in a variety of mycoplasmatales, and the enzyme was shown to be adenosine phosphorylase. Adenosine formation from adenine and ribose 1-phosphate, the reverse reaction of adenine formation from adenosine, was also observed with the mycoplasma enzyme. Adenosine phosphorylase is apparently common to the mycoplasmatales but it is not universal, and the organisms can be divided into three groups on the basis of their use of adenosine as substrate. Thirteen of 16 Mycoplasma, Acholeplasma, and Siroplasma species tested exhibit adenosine phosphorylase activity. M. lipophilium differed from the other mycoplasmas and shared with mammalian cells the ability to convert adenosine to inosine by deamination. M. pneumoniae and the unclassified M. sp. 70-159 showed no reaction with adenosine. Adenosine phosphorylase activity offers an additional method for the detection of mycoplasma contamination of cells. The patterns of nucleoside metabolism will provide additional characteristics for identification of mycoplasmas and also may provide new insight into the classification of mycoplasmas. PMID:236559
NASA Astrophysics Data System (ADS)
Ransom, Callista; Balan, Venkatesh; Biswas, Gadab; Dale, Bruce; Crockett, Elaine; Sticklen, Mariam
Commercial conversion of lignocellulosic biomass to fermentable sugars requires inexpensive bulk production of biologically active cellulase enzymes, which might be achieved through direct production of these enzymes within the biomass crops. Transgenic corn plants containing the catalytic domain of Acidothermus cellulolyticus E1 endo-1,4-β glucanase and the bar bialaphos resistance coding sequences were generated after Biolistic® (BioRad Hercules, CA) bombardment of immature embryo-derived cells. E1 sequences were regulated under the control of the cauliflower mosaic virus 35S promoter and tobacco mosaic virus translational enhancer, and E1 protein was targeted to the apoplast using the signal peptide of tobacco pathogenesis-related protein to achieve accumulation of this enzyme. The integration, expression, and segregation of E1 and bar transgenes were demonstrated, respectively, through Southern and Western blotting, and progeny analyses. Accumulation of up to 1.13% of transgenic plant total soluble proteins was detected as biologically active E1 by enzymatic activity assay. The corn-produced, heterologous E1 could successfully convert ammonia fiber explosion-pretreated corn stover polysaccharides into glucose as a fermentable sugar for ethanol production, confirming that the E1 enzyme is produced in its active from.
Scaffoldless engineered enzyme assembly for enhanced methanol utilization
Price, J. Vincent; Chen, Long; Whitaker, W. Brian; ...
2016-10-24
Methanol is an important feedstock derived from natural gas and can be chemically converted into commodity and specialty chemicals at high pressure and temperature. Although biological conversion of methanol can proceed at ambient conditions, there is a dearth of engineered microorganisms that use methanol to produce metabolites. In nature, methanol dehydrogenase (Mdh), which converts methanol to formaldehyde, highly favors the reverse reaction. Thus, efficient coupling with the irreversible sequestration of formaldehyde by 3-hexulose-6-phosphate synthase (Hps) and 6-phospho-3-hexuloseisomerase (Phi) serves as the key driving force to pull the pathway equilibrium toward central metabolism. An emerging strategy to promote efficient substrate channelingmore » is to spatially organize pathway enzymes in an engineered assembly to provide kinetic driving forces that promote carbon flux in a desirable direction. Here, we report a scaffoldless, self-assembly strategy to organize Mdh, Hps, and Phi into an engineered supramolecular enzyme complex using an SH3–ligand interaction pair, which enhances methanol conversion to fructose-6-phosphate (F6P). To increase methanol consumption, an “NADH Sink” was created using Escherichia coli lactate dehydrogenase as an NADH scavenger, thereby preventing reversible formaldehyde reduction. Combination of the two strategies improved in vitro F6P production by 97-fold compared with unassembled enzymes. The beneficial effect of supramolecular enzyme assembly was also realized in vivo as the engineered enzyme assembly improved whole-cell methanol consumption rate by ninefold. This approach will ultimately allow direct coupling of enhanced F6P synthesis with other metabolic engineering strategies for the production of many desired metabolites from methanol.« less
Scaffoldless engineered enzyme assembly for enhanced methanol utilization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Price, J. Vincent; Chen, Long; Whitaker, W. Brian
Methanol is an important feedstock derived from natural gas and can be chemically converted into commodity and specialty chemicals at high pressure and temperature. Although biological conversion of methanol can proceed at ambient conditions, there is a dearth of engineered microorganisms that use methanol to produce metabolites. In nature, methanol dehydrogenase (Mdh), which converts methanol to formaldehyde, highly favors the reverse reaction. Thus, efficient coupling with the irreversible sequestration of formaldehyde by 3-hexulose-6-phosphate synthase (Hps) and 6-phospho-3-hexuloseisomerase (Phi) serves as the key driving force to pull the pathway equilibrium toward central metabolism. An emerging strategy to promote efficient substrate channelingmore » is to spatially organize pathway enzymes in an engineered assembly to provide kinetic driving forces that promote carbon flux in a desirable direction. Here, we report a scaffoldless, self-assembly strategy to organize Mdh, Hps, and Phi into an engineered supramolecular enzyme complex using an SH3–ligand interaction pair, which enhances methanol conversion to fructose-6-phosphate (F6P). To increase methanol consumption, an “NADH Sink” was created using Escherichia coli lactate dehydrogenase as an NADH scavenger, thereby preventing reversible formaldehyde reduction. Combination of the two strategies improved in vitro F6P production by 97-fold compared with unassembled enzymes. The beneficial effect of supramolecular enzyme assembly was also realized in vivo as the engineered enzyme assembly improved whole-cell methanol consumption rate by ninefold. This approach will ultimately allow direct coupling of enhanced F6P synthesis with other metabolic engineering strategies for the production of many desired metabolites from methanol.« less
Scaffoldless engineered enzyme assembly for enhanced methanol utilization
Price, J. Vincent; Chen, Long; Whitaker, W. Brian; Papoutsakis, Eleftherios; Chen, Wilfred
2016-01-01
Methanol is an important feedstock derived from natural gas and can be chemically converted into commodity and specialty chemicals at high pressure and temperature. Although biological conversion of methanol can proceed at ambient conditions, there is a dearth of engineered microorganisms that use methanol to produce metabolites. In nature, methanol dehydrogenase (Mdh), which converts methanol to formaldehyde, highly favors the reverse reaction. Thus, efficient coupling with the irreversible sequestration of formaldehyde by 3-hexulose-6-phosphate synthase (Hps) and 6-phospho-3-hexuloseisomerase (Phi) serves as the key driving force to pull the pathway equilibrium toward central metabolism. An emerging strategy to promote efficient substrate channeling is to spatially organize pathway enzymes in an engineered assembly to provide kinetic driving forces that promote carbon flux in a desirable direction. Here, we report a scaffoldless, self-assembly strategy to organize Mdh, Hps, and Phi into an engineered supramolecular enzyme complex using an SH3–ligand interaction pair, which enhances methanol conversion to fructose-6-phosphate (F6P). To increase methanol consumption, an “NADH Sink” was created using Escherichia coli lactate dehydrogenase as an NADH scavenger, thereby preventing reversible formaldehyde reduction. Combination of the two strategies improved in vitro F6P production by 97-fold compared with unassembled enzymes. The beneficial effect of supramolecular enzyme assembly was also realized in vivo as the engineered enzyme assembly improved whole-cell methanol consumption rate by ninefold. This approach will ultimately allow direct coupling of enhanced F6P synthesis with other metabolic engineering strategies for the production of many desired metabolites from methanol. PMID:27791059
Purification and properties of nitroalkane-oxidizing enzyme from Hansenula mrakii.
Kido, T; Yamamoto, T; Soda, K
1976-01-01
A nitroalkane-oxidizing enzyme was purified about 1,300-fold from a cell extract of Hansenula mrakii grown in a medium containing nitroethane as the sole nitrogen source by ammonium sulfate fractionation, diethylaminoethyl-cellulose column chromatography, hydroxyapatite column chromatography, and Bio-Gel P-150 column chromatography. The enzyme was shown to be homogeneous upon acrylamide gel electrophoresis and ultracentrifugation. The enzyme exhibits absorption maxima at 274, 370, 415, and 440 nm and a shoulder at 470 nm. Balance studies showed that 2 mol of 2-nitropropane is converted into an equimolar amount of acetone and nitrite with the consumption of 1 mol of oxygen. Hydrogen peroxide is not formed in the enzyme reaction. In addition to 2-nitropropane, 1-nitropropane and nitroethane are oxidatively dentrified by the enzyme, but nitromethane is inert to the enzyme. The nitroalkanes are not oxidized under anaerobic conditions. Images PMID:947888
NASA Astrophysics Data System (ADS)
Sun, Xueping; Wang, Man; Liu, Buming; Sun, Zhenliang
2017-10-01
Three angiotensin I converting enzyme (ACE) inhibition peptides were isolated from sandworm Sipunculus nudus protein hydrolysate prepared using protamex. Consecutive purification methods, including size exclusion chromatography and reverse-phase high performance liquid chromatography (RP-HPLC), were used to isolate the ACE inhibition peptides. The amino acid sequences of the peptides were identified as Ile-Asn-Asp, Val-Glu-Pro-Gly and Leu-Ala-Asp-Glu-Phe. The IC50 values of the purified peptides for ACE inhibition activity were 34.72 μmol L-1, 20.55 μmol L-1 and 22.77 μmol L-1, respectively. These results suggested that S. nudus proteins contain specific peptides that can be released by enzymatic hydrolysis. This study may provide an experimental basis for further systematic research, rational development and clinical utilization of sandworm resources.
The carboxypeptidase angiotensin converting enzyme (ACE) shapes the MHC class I peptide repertoire
Shen, Xiao Z.; Billet, Sandrine; Lin, Chentao; Okwan-Duodu, Derick; Chen, Xu; Lukacher, Aron E.; Bernstein, Kenneth E.
2011-01-01
The surface presentation of peptides by major histocompatibility complex (MHC) class I molecules is critical to CD8+ T cell mediated adaptive immune responses. Aminopeptidases are implicated in the editing of peptides for MHC class I loading, but C-terminal editing is thought due to proteasome cleavage. By comparing genetically deficient, wild-type and over-expressing mice, we now identify the dipeptidase angiotensin-converting enzyme (ACE) as playing a physiologic role in peptide processing for MHC class I. ACE edits the C-termini of proteasome-produced class I peptides. The lack of ACE exposes novel antigens but also abrogates some self-antigens. ACE has major effects on surface MHC class I expression in a haplotype-dependent manner. We propose a revised model of MHC class I peptide processing by introducing carboxypeptidase activity. PMID:21964607
NASA Astrophysics Data System (ADS)
Ghann, William E.; Aras, Omer; Fleiter, Thorsten; Daniel, Marie-Christine
2011-05-01
For patients with a history of heart attack or stroke, the prevention of another cardiovascular or cerebrovascular event is crucial. The development of cardiac and pulmonary fibrosis has been associated with overexpression of tissue angiotensin-converting enzyme (ACE). Recently, gold nanoparticles (GNPs) have shown great potential as X-ray computed tomography (CT) contrast agents. Since lisinopril is an ACE inhibitor, it has been used as coating on GNPs for targeted imaging of tissue ACE in prevention of fibrosis. Herein, lisinopril-capped gold nanoparticles (LIS-GNPs) were synthesized up to a concentration of 55 mgAu/mL. Their contrast was measured using CT and the results were compared to Omnipaque, a commonly used iodine-based contrast agent. The targeting ability of these LIS-GNPs was also assessed.
Li, Guan-Hong; Wan, Ju-Zhen; Le, Guo-Wei; Shi, Yong-Hui
2006-08-01
Mung bean protein isolates were hydrolyzed for 2 h by Alcalase. The generated hydrolysate showed angiotensin I-converting enzyme (ACE) inhibitory activity with the IC(50) value of 0.64 mg protein/ml. Three kinds of novel ACE inhibitory peptides were isolated from the hydrolysate by Sephadex G-15 and reverse-phase high performance liquid chromatography (RP-HPLC). These peptides were identified by amino acid composition analysis and matrix assisted-laser desorption/ionization time-of-flight tandem mass spectrometry (MALDI-TOF MS/MS), as Lys-Asp-Tyr-Arg-Leu, Val-Thr-Pro-Ala-Leu-Arg and Lys-Leu-Pro-Ala-Gly-Thr-Leu-Phe with the IC(50) values of 26.5 microM, 82.4 microM and 13.4 microM, respectively. Copyright (c) 2006 European Peptide Society and John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Banchelli, Martina; Guardiani, Carlo; Sandberg, Robert B.; Menichetti, Stefano; Procacci, Piero; Caminati, Gabriella
2015-07-01
Small-molecule inhibitors of Tumor Necrosis Factor α Converting Enzyme (TACE) are a promising therapeutic tool for Rheumatoid Arthritis, Multiple Sclerosis and other autoimmune diseases. Here we report on an extensive chemical-physical analysis of the media effects in modulating the conformational landscape of MBET306, the common scaffold and a synthetic precursor of a family of recently discovered tartrate-based TACE inhibitors. The structural features of this molecule with potential pharmaceutical applications have been disclosed by interpreting extensive photophysical measurements in various solvents with the aid of enhanced sampling molecular dynamics simulations and time dependent density functional calculations. Using a combination of experimental and computational techniques, the paper provides a general protocol for studying the structure in solution of molecular systems characterized by the existence of conformational metastable states.
Ultrasensitivity by Molecular Titration in Spatially Propagating Enzymatic Reactions
Semenov, Sergey N.; Markvoort, Albert J.; Gevers, Wouter B.L.; Piruska, Aigars; de Greef, Tom F.A.; Huck, Wilhelm T.S.
2013-01-01
Delineating design principles of biological systems by reconstitution of purified components offers a platform to gauge the influence of critical physicochemical parameters on minimal biological systems of reduced complexity. Here we unravel the effect of strong reversible inhibitors on the spatiotemporal propagation of enzymatic reactions in a confined environment in vitro. We use micropatterned, enzyme-laden agarose gels which are stamped on polyacrylamide films containing immobilized substrates and reversible inhibitors. Quantitative fluorescence imaging combined with detailed numerical simulations of the reaction-diffusion process reveal that a shallow gradient of enzyme is converted into a steep product gradient by addition of strong inhibitors, consistent with a mathematical model of molecular titration. The results confirm that ultrasensitive and threshold effects at the molecular level can convert a graded input signal to a steep spatial response at macroscopic length scales. PMID:23972857
Isolation and structural analysis of antihypertensive peptides that exist naturally in Gouda cheese.
Saito, T; Nakamura, T; Kitazawa, H; Kawai, Y; Itoh, T
2000-07-01
Seven kinds of ripened cheeses (8-mo-aged and 24-mo-aged Gouda, Emmental, Blue, Camembert, Edam, and Havarti) were homogenized with distilled water, and water-soluble peptides were prepared by C-18 hydrophobic chromatography. The inhibitory activity to angiotensin I-converting enzyme and decrease in the systolic blood pressure in spontaneously hypertensive rats were measured before and after oral administration of each peptide sample. The strongest depressive effect in the systolic blood pressure (-24.7 mm Hg) and intensive inhibitory activity to angiotensin I-converting enzyme (75.7%) were detected in the peptides from 8-mo-aged Gouda cheese. Four peptides were isolated by HPLC with reverse-phase and gel filtration modes. Their chemical structures and origins, clarified by combination analyses of protein sequencing, amino acid composition, and mass spectrometry, were as follows: peptide A, Arg-Pro-Lys-His-Pro-Ile-Lys-His-Gln [alpha(s1)-casein (CN), B-8P; f 1-9]; peptide B, Arg-Pro-Lys-His-Pro-Ile-Lys-His-Gln-Gly-Leu-Pro-Gln (alpha(s1)-CN, B-8P; f 1-13); peptide F, Tyr-Pro-Phe-Pro-Gly-Pro-Ile-Pro-Asn (beta-CN, A2-5P; f 60-68); and peptide G, Met-Pro-Phe-Pro-Lys-Tyr-Pro-Val-Gln-Pro-Phe (beta-CN, A2-5P; f 109-119). Peptides A and F, which were chemically synthesized, showed potent angiotensin I-converting enzyme inhibitory activity with little antihypertensive effects.
Cho, Soo Hyun; Park, Young W; Song, Gyu Yong
2017-01-01
This study was conducted to isolate and characterize Paenibacillus sp. MBT213 possessing β-glucosidase activity from raw milk, and examine the enzymatic capacity on the hydrolysis of a major ginsenoside (Rb1). Strain MBT213 was found to have a high hydrolytic ability on ginsenoside Rb1 by Esculin Iron Agar test. 16S rDNA analysis revealed that MBT213 was Paenibacillu sp. Crude enzyme of MBT213 strain exhibited high conversion capacity on ginsenoside Rb1 into ginsenoside Rd proven by TLC and HPLC analyses. The API ZYM kit confirmed that Paenibacillu sp. MBT213 exerted higher β-glucosidase and β-galactosidase activity than other strains. Optimum pH and temperature for crude enzyme were found at 7.0 and 35°C in hydrolysis of ginsenoside Rb1. After 10 d of optimal reaction conditions for the crude enzyme, ginsenoside Rb1 fully converted to ginsenoside Rd. Ginseng roots (20%) were fermented for 14 d, and analyzed by HPLC showed that amount of ginsenoside Rb1 significantly decreased, while that of ginsenoside Rd was significantly increased. The study confirmed that the β-glucosidase produced by Paenibacillus sp. MBT213 can hydrolyze the major ginsenoside Rb1 and convert to Rd during fermentation of the ginseng. The β-glucosidase activity of this novel Paenibacillus sp. MBT213 strain may be utilized in development of variety of health foods, dairy foods and pharmaceutical products. PMID:29147097
Marketing research on the angiotensin-converting enzyme inhibitors antihypertensive medicines
BOBOIA, ANAMARIA; GRIGORESCU, MARIUS RAREŞ; TURCU - ŞTIOLICĂ, ADINA
2017-01-01
Background and aims The research aimed at investigating sales trends of angiotensin-converting enzyme inhibitors antihypertensive medicines, both in terms of quantity and value, in ten community pharmacies, for a period of three years. The research on the antihypertensive medicines consumption is important for highlighting the ever increasing impact of hypertension among the population. Methods The methods used in this research were the following: marketing research, method of sampling, descriptive methods, retrospective analysis, method of comparison. Results The results showed that the drugs containing the active substances of the angiotensin converting enzyme inhibitors class had had significant increases in quantitative and value sales, bringing substantial revenues to pharmacies. From the quantitative perspective, the best-selling products were those containing Enalaprilum, while in terms of value, the best-selling medicines were those containing Perindoprilum. We evidenced that spectacular sales were also achieved for products that have Lisinoprilum, respectively Captoprilum, as active substances. The largest quantities were marketed for the Captopril Terapia® product and the highest earnings were recorded for the Prestarium® medicine. Conclusion This paper approaches an interesting and topical issue, which can be helpful to professionals (pharmacists, doctors) and other categories, such as economists, statisticians, representatives of companies manufacturing medicines, as well as to hypertensive patients, as it could be used to warn population regarding the incidence of cardiovascular diseases, and, at the same time, trace sales trends in order to accomplish profitable business plans. PMID:28246502
The role of aldosterone antagonism agents in diabetic kidney disease.
Wombwell, Eric; Naglich, Andrew
2015-03-01
Diabetic kidney disease is a common consequence of the development of diabetes. In the United Kingdom 18-30% of chronic kidney disease cases and 44% of end-stage renal disease cases in the United States have been attributed to complications of diabetic kidney disease. Angiotensin blockade using angiotensin converting enzyme inhibitors or angiotensin receptor blockers is the standard for slowing the progression of diabetic kidney disease. Evidence suggests that aldosterone antagonism added to standard therapy may be beneficial. This paper aims to explore the pathophysiological contribution of aldosterone in diabetic kidney disease and review available literature for aldosterone antagonism through mineralocorticoid receptor blockade. A comprehensive literature search was conducted. Results were analysed and summarised. Nine trials evaluating a total of 535 patients with diabetic kidney disease were identified that evaluated the use of aldosterone antagonists for reducing the signs of diabetic kidney disease. All trials demonstrated a marked decrease in urinary protein excretion when compared to, or added to angiotensin converting enzyme inhibition or angiotensin receptor blockade. The most commonly reported side effect in all of the trials was hyperkalaemia, which occurred in 6.1% of all patients evaluated. Aldosterone antagonists were generally well tolerated in the evaluated patient populations. Aldosterone antagonism may represent a safe and effective complimentary therapy to the use of angiotensin converting enzyme inhibition, or angiotensin receptor blockade, for slowing the progression of diabetic kidney disease. © 2014 European Dialysis and Transplant Nurses Association/European Renal Care Association.
Toda, Hiroshi; Itoh, Nobuya
2012-01-01
Styrene metabolism genes were isolated from styrene-assimilating bacteria Rhodococcus sp. ST-5 and ST-10. Strain ST-5 had a gene cluster containing four open reading frames which encoded styrene degradation enzymes. The genes showed high similarity to styABCD of Pseudomonas sp. Y2. On the other hand, strain ST-10 had only two genes which encoded styrene monooxygenase and flavin oxidoreductase (styAB). Escherichia coli transformants possessing the sty genes of strains ST-5 and ST-10 produced (S)-styrene oxide from styrene, indicating that these genes function as styrene degradation enzymes. Metabolite analysis by resting-cell reaction with gas chromatography-mass spectrometry revealed that strain ST-5 converts styrene to phenylacetaldehyde via styrene oxide by styrene oxide isomerase (styC) reaction. On the other hand, strain ST-10 lacked this enzyme, and thus accumulated styrene oxide as an intermediate. HPLC analysis showed that styrene oxide was spontaneously isomerized to phenylacetaldehyde by chemical reaction. The produced phenylacetaldehyde was converted to phenylacetic acid (PAA) in strain ST-10 as well as in strain ST-5. Furthermore, phenylacetic acid was converted to phenylacetyl-CoA by the catalysis of phenylacetate-CoA ligase in strains ST-5 and ST-10. This study proposes possible styrene metabolism pathways in Rhodococcus sp. strains ST-5 and ST-10. Copyright © 2011 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Omar, Ali Zainal; Maulood, Ismail M.
2017-09-01
The renin-angiotensin system (RAS), one of the most important hormonal systems, controls the kidney functions by regulating fluid volume, and electrolyte balance. The current study included the effects of kinin-kallikrein system (KKS) and its interaction with both angiotensin converting enzyme (ACE) and endothelin converting enzyme (ECE) on some of kidney function test parameters. In the present experiment, rats were divided into six groups, the first group was infused with normal saline, the second group was L-NG-Nitroarginine methyl ester (L-NAME) treated rats, third group was bradykinin (BK), forth group was captopril (ACEi), fifth group was phosphoramidon (ECEi), sixth group was a combination of BK with phosphoramidon. L-NAME was intravenously infused for one hour to develop systematic hypertension in male rats. After one hour of infusion, the results showed that L-NAME significantly increased serum creatinine. While, it decreased glomerular filtration rate (GFR), and K+ excretion rate. Moreover, BK increased packed cell volume PCV%, serum creatinine and K+ ion concentration. While, it reduced GFR, serum Ca+2 ion concentration, K+ and Na+ excretion rates. On the other hand, captopril infusion showed its effect by reduction in GFR, serum Ca+2 ion and electrolyte excretion rates. Phosphoramidon an ECEi dramatically reduced serum Ca+2 ion, but it increased pH, GFR and Ca+2 excretion rate. The results suggested that BK and Captopril each alone severely reduces GFR value. Interestingly, inhibition of ET-1 production via phosphoramidon could markedly elevate GFR values.
Ames, Marisa K; Atkins, Clarke E; Lantis, Andrea C; zum Brunnen, James
2016-01-01
The objective of this study was to evaluate subacute changes in renin-angiotensin-aldosterone system (RAAS) activity during angiotensin-converting enzyme inhibitor (ACEI) therapy in dogs with experimental RAAS activation. Analysis of data (urine aldosterone:creatinine ratio (UAldo:C) and serum angiotensin-converting enzyme activity), in 31 healthy dogs with furosemide or amlodipine-activated RAAS that received an ACEI. When furosemide or amlodipine activation of RAAS preceded ACEI administration, incomplete RAAS blockade (IRB) was defined as a UAldo:C greater than (a) the dog's 'activated' baseline value or (b) a population-derived cut-off value (mean + 2 SD (>1.0 μg/g) of pretreatment UAldo:C from our population of research dogs). In studies where RAAS activation occurred concurrently with ACEIs, IRB was defined as (a) a UAldo:C greater than either twofold the dog's prestimulation baseline value or (b) 1.0 µg/g. Dogs were followed for 7-17 days. Serum angiotensin-converting enzyme activity was measured in 19 dogs and was significantly reduced (P<0.0001) after ACEI administration. The overall incidence of IRB, when RAAS activation preceded ACEI administration, was 33% and 8% for definitions (a) and (b), respectively. The overall incidence of IRB, when ACEIs were concurrent with RAAS activation, was 65% and 61% for definitions (a) and (b), respectively. Increases in UAldo:C, despite ACEI administration, is evidence of IRB in this subacute model of experimental RAAS activation and suppression. © The Author(s) 2016.
Lebel, N.; D'Orléans-Juste, P.; Fournier, A.; Sirois, P.
1996-01-01
1. We have studied the conversion of big endothelin-1 (big ET-1), big endothelin-2 (big ET-2) and big endothelin-3 (big ET-3) and characterized the enzyme involved in the conversion of the three peptides in guinea-pig lung parenchyma (GPLP). 2. Endothelin-1 (ET-1), endothelin-2 (ET-2) and endothelin-3 (ET-3) (10 nM to 100 nM) caused similar concentration-dependent contractions of strips of GPLP. 3. Big ET-1 and big ET-2 also elicited concentration-dependent contractions of GPLP strips. In contrast, big ET-3, up to a concentration of 100 nM, failed to induce a contraction of the GPLP. 4. Incubation of strips of GPLP with the dual endothelin converting enzyme (ECE) and neutral endopeptidase (NEP) inhibitor, phosphoramidon (10 microM), as well as two other NEP inhibitors thiorphan (10 microM) or SQ 28,603 (10 microM) decreased by 43% (P < 0.05), 42% (P < 0.05) and 40% (P < 0.05) the contractions induced by 30 nM of big ET-1 respectively. Captopril (10 microM), an angiotensin-converting enzyme inhibitor, had no effect on the contractions induced by big ET-1. 5. The incubation of strips of GPLP with phosphoramidon (10 microM), thiorphan (10 microM) or SQ 28,603 (10 microM) also decreased by 74% (P < 0.05), 34% and 50% (P < 0.05) the contractions induced by 30 nM big ET-2 respectively. As for the contractions induced by big ET-1, captopril (10 microM) had no effect on the concentration-dependent contractions induced by big ET-2. 6. Phosphoramidon (10 microM), thiorphan (10 microM) and SQ 28,603 (10 microM) significantly potentiated the contractions of strips of GPLP induced by both ET-1 (30 nM) and ET-3 (30 nM). However, the enzymatic inhibitors did not significantly affect the contractions induced by ET-2 (30 nM) in this tissue. 7. These results suggest that the effects of big ET-1 and big ET-2 result from the conversion to ET-1 and ET-2 by at least one enzyme sensitive to phosphoramidon, thiorphan and SQ 28,603. This enzyme corresponds possibly to EC 3.4.24.11 (NEP 24.11) and could also be responsible for the degradation of ETs in the GPLP. Images Figure 4 PMID:8825361
Goel, Ruby; Bhat, Shahnawaz Ali; Rajasekar, N; Hanif, Kashif; Nath, Chandishwar; Shukla, Rakesh
2015-06-01
Hypertension is a risk factor for cognitive impairment. Furthermore, neuroinflammation and neurodegeneration are intricately associated with memory impairment. Therefore, the present study aimed to explore the involvement of hypertension and angiotensin system in neurodegeneration and memory dysfunction in the presence of neuroinflammatory stimulus. Memory impairment was induced by chronic neuroinflammation that was developed by repeated intracerebroventricular (ICV) injections of lipopolysaccharide (LPS) on the 1st, 4th, 7th, and 10th day. Memory functions were evaluated by the Morris water maze (MWM) test on days 13-15, followed by biochemical and molecular studies in the cortex and hippocampus regions of rat brain. LPS at the dose of 25μg ICV caused memory impairment in spontaneously hypertensive rats (SHRs) but not in normotensive Wistar rats (NWRs). Memory deficit was obtained with 50μg of LPS (ICV) in NWRs. Control SHRs already exhibited increased angiotensin converting enzyme (ACE) activity and expression, neuroinflammation (increased TNF-α, GFAP, COX-2 and NF-kB), oxidative stress (increased iNOS, ROS and nitrite levels), TLR-4 expression and TUNEL positive cells as compared to control NWRs. Further, LPS (25μg ICV) exaggerated inflammatory response, oxidative stress and apoptosis in SHRs but similar effects were witnessed at 50μg of LPS (ICV) in NWRs. Oral administration of perindopril (ACE inhibitor), at non-antihypertensive dose (0.1mg/kg), for 15days attenuated LPS induced deleterious changes in both NWRs and SHRs. Our data suggest that susceptibility of the brain for neurodegeneration and memory impairment induced by neuroinflammation is enhanced in hypertension, and that can be protected by ACE inhibition. Copyright © 2015 Elsevier Inc. All rights reserved.
Evidence for metalloprotease involvement in the in vivo effects of big endothelin 1.
Pollock, D M; Opgenorth, T J
1991-07-01
The potent vasoconstrictor endothelin 1 (ET-1) is thought to arise from the proteolytic processing of big endothelin 1 (Big ET) by a unique endothelin-converting enzyme, possibly a metalloprotease. Experiments were conducted to determine the effects of Big ET on cardiovascular and renal functions during inhibition of metalloprotease activity in vivo. Intravenous infusion of Big ET (0.1 nmol.kg-1.min-1) in anesthetized euvolemic rats produced a significant increase in mean arterial pressure (MAP; 39 +/- 8%) and a decrease in effective renal plasma flow (ERPF; -39 +/- 2%), whereas glomerular filtration rate (GFR) remained unchanged (-8 +/- 8%). Simultaneous intravenous infusion of phosphoramidon (0.25 mg.kg-1.min-1), an inhibitor of metalloprotease activity including neutral endopeptidase EC 3.4.24.11 (NEP), completely prevented these effects of Big ET. Thiorphan (0.1 mg.kg-1.min-1), also an inhibitor of NEP, had absolutely no effect on either the renal or cardiovascular response to Big ET. Similarly, the response to Big ET was unaffected by infusion of enalaprilat (0.1 mg.kg-1.min-1), an inhibitor of the angiotensin-converting enzyme, which is also a metalloprotease. To determine whether the effect of phosphoramidon was due to antagonism of ET-1, an identical series of experiments was performed using ET-1 infusion (0.02 nmol.kg-1.min-1). Although the increase in MAP (24 +/- 5%) produced by ET-1 was less than that observed for the given dose of Big ET, the renal vasoconstriction was much more severe; the smaller peptide changed ERPF and GFR by -66 +/- 7 and -54 +/- 9%, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)
Abd Allah, Eman S H; Gomaa, Asmaa M S
2015-10-01
Oxidative stress and inflammation are involved in the development and progression of diabetes and its complications. The renin-angiotensin system also plays an important role in the pathogenesis of diabetes and its complications. We hypothesized that curcumin and captopril would restore the kidney and nerve functions of diabetic rats through their angiotensin converting enzyme 1 (ACE1) inhibiting activity as well as their antioxidant and anti-inflammatory effects. Diabetes was induced by a single intraperitoneal injection of streptozotocin (100 mg·kg(-1) body weight). One week after induction of diabetes, rats were treated with 100 mg·kg(-1)·day(-1) curcumin or 50 mg·kg(-1)·day(-1) captopril orally for 6 weeks. Compared with diabetic control rats, curcumin- or captopril-treated diabetic rats had significantly improved blood glucose, lipid profile, kidney/body weight ratio, serum creatinine, blood urea nitrogen (BUN), and pain thresholds assessed by Von Frey filaments, hot plate test, and tail-flick test. Diabetic control rats showed increased levels of total peroxide, renal and neural tumor necrosis factor-α and interleukin-10, and renal ACE1 compared with nondiabetic rats. Although treatment with either curcumin or captopril restored the altered variables, captopril was more effective in reducing these variables. ACE1 was positively correlated with BUN and creatinine and negatively correlated with paw withdrawal threshold, hot plate reaction time, and tail-flick latency, suggesting a possible causal relationship. We conclude that curcumin and captopril protect against diabetic nephropathy and neuropathy by inhibiting ACE1 as well as oxidation and inflammation. These findings suggest that curcumin and captopril may have a role in the treatment of diabetic nephropathy and neuropathy.
Sulpizio, Anthony C; Pullen, Mark A; Edwards, Richard M; Brooks, David P
2004-06-01
The effect of angiotensin-converting enzyme (ACE) and neutral endopeptidase (NEP) inhibition on microvascular plasma leakage (extravasation) was evaluated in a rat model. Progressive inhibition of ACE using captopril caused increased extravasation when lung ACE was inhibited by >55%. In contrast, the selective inhibition of renal NEP by >90% using ecadotril did not increase extravasation. In NEP-inhibited rats, extravasation produced by the ACE inhibitors captopril and lisinopril was markedly enhanced. The dual ACE and NEP inhibitor omapatrilat, at oral doses of 0.03, 0.1, and 0.3 mg/kg, selectively inhibited lung ACE by 19, 61, and 76%, respectively, and did not cause significant extravasation. Doses of 1 and 10 mg/kg omapatrilat, which produced >90% inhibition of ACE and also inhibited renal NEP by 54 and 78%, respectively, significantly increased extravasation. In this model, bradykinin and substance P produced extravasation that could be abolished by the bradykinin 2 (B2) receptor antagonist Hoe 140 (icatibant) or the neurokinin1 (NK1) antagonist CP99994 [(+)-(2S,3S)-3-(2-methoxybenzylamino)-2-phenylpiperidine], respectively. Bradykinin induced extravasation was also partially ( approximately 40%) inhibited by CP99994, indicating that a portion of the response involves B2 receptor-mediated release of substance P. In conclusion, this study is the first to relate the degree of ACE and/or NEP inhibition to extravasation liability in the rat model. Our data clearly demonstrate that ACE inhibitor-induced plasma extravasation is enhanced by concomitant inhibition of NEP. In addition, this study provides further evidence for the role for B2 and NK1 receptors in mediating plasma extravasation in the rat.
Cherian, Milu T.; Yang, Lei; Chai, Sergio C.; Lin, Wenwei
2016-01-01
The constitutive androstane receptor (CAR) regulates the expression of genes involved in drug metabolism and other processes. A specific inhibitor of CAR is critical for modulating constitutive CAR activity. We recently described a specific small-molecule inhibitor of CAR, CINPA1 (ethyl (5-(diethylglycyl)-10,11-dihydro-5H-dibenzo[b,f]azepin-3-yl)carbamate), which is capable of reducing CAR-mediated transcription by changing the coregulator recruitment pattern and reducing CAR occupancy at the promoter regions of its target genes. In this study, we showed that CINPA1 is converted to two main metabolites in human liver microsomes. By using cell-based reporter gene and biochemical coregulator recruitment assays, we showed that although metabolite 1 was very weak in inhibiting CAR function and disrupting CAR-coactivator interaction, metabolite 2 was inactive in this regard. Docking studies using the CAR ligand-binding domain structure showed that although CINPA1 and metabolite 1 can bind in the CAR ligand-binding pocket, metabolite 2 may be incapable of the molecular interactions required for binding. These results indicate that the metabolites of CINPA1 may not interfere with the action of CINPA1. We also used in vitro enzyme assays to identify the cytochrome P450 enzymes responsible for metabolizing CINPA1 in human liver microsomes and showed that CINPA1 was first converted to metabolite 1 by CYP3A4 and then further metabolized by CYP2D6 to metabolite 2. Identification and characterization of the metabolites of CINPA1 enabled structure-activity relationship studies of this family of small molecules and provided information to guide in vivo pharmacological studies. PMID:27519550
Ghosh, Ajit; Kushwaha, Hemant R; Hasan, Mohammad R; Pareek, Ashwani; Sopory, Sudhir K; Singla-Pareek, Sneh L
2016-01-01
Glyoxalase pathway, comprising glyoxalase I (GLY I) and glyoxalase II (GLY II) enzymes, is the major pathway for detoxification of methylglyoxal (MG) into D-lactate involving reduced glutathione (GSH). However, in bacteria, glyoxalase III (GLY III) with DJ-1/PfpI domain(s) can do the same conversion in a single step without GSH. Our investigations for the presence of DJ-1/PfpI domain containing proteins in plants have indicated the existence of GLY III-like proteins in monocots, dicots, lycopods, gymnosperm and bryophytes. A deeper in silico analysis of rice genome identified twelve DJ-1 proteins encoded by six genes. Detailed analysis has been carried out including their chromosomal distribution, genomic architecture and localization. Transcript profiling under multiple stress conditions indicated strong induction of OsDJ-1 in response to exogenous MG. A member of OsDJ-1 family, OsDJ-1C, showed high constitutive expression at all developmental stages and tissues of rice. MG depletion study complemented by simultaneous formation of D-lactate proved OsDJ-1C to be a GLY III enzyme that converts MG directly into D-lactate in a GSH-independent manner. Site directed mutagenesis of Cys-119 to Alanine significantly reduces its GLY III activity indicating towards the existence of functional GLY III enzyme in rice—a shorter route for MG detoxification. PMID:26732528
Mechanistic studies of an autonomously pulsing hydrogel/enzyme system for rhythmic hormone delivery.
Bhalla, Amardeep S; Siegel, Ronald A
2014-12-28
Numerous hormones are known to be endogenously secreted in a pulsatile manner. In particular, gonadotropin replacing hormone (GnRH) is released in rhythmic pulses, and disruption of this rhythm is associated with pathologies of reproduction and sexual development. In an effort to develop an implantable, rhythmic delivery system, a scheme has been demonstrated involving a negative feedback instability between a pH-sensitive membrane and enzymes that convert endogenous glucose to hydrogen ion. A bench prototype system based on this scheme was previously shown to produce near rhythmic oscillations in internal pH and in GnRH delivery over a period of one week. In the present work, a systematic study of conditions permitting such oscillations is presented, along with a study of factors causing period of oscillations to increase with time and ultimately cease. Membrane composition, glucose concentration, and surface area of marble (CaCO3), which is incorporated as a reactant, were found to affect the capacity of the system to oscillate, and the pH range over which oscillations occur. Accumulation of gluconate- and Ca2+ in the system over time correlated with lengthening of oscillation period, and possibly with cessation of oscillations. Enzyme degradation may also be a factor. These studies provide the groundwork for future improvements in device design. Copyright © 2014 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michalska, Karolina; Cuff, Marianne E.; Structural Biology Center, Biosciences Division, Argonne National Laboratory
The crystal structure of 2-oxo-3-deoxygalactonate kinase from the De Ley–Doudoroff pathway of galactose metabolism has been determined at 2.1 Å resolution. In most organisms, efficient d-galactose utilization requires the highly conserved Leloir pathway that converts d-galactose to d-glucose 1-phosphate. However, in some bacterial and fungal species alternative routes of d-galactose assimilation have been identified. In the so-called De Ley–Doudoroff pathway, d-galactose is metabolized into pyruvate and d-glyceraldehyde 3-phosphate in five consecutive reactions carried out by specific enzymes. The penultimate step in this pathway involves the phosphorylation of 2-oxo-3-deoxygalactonate to 2-oxo-3-deoxygalactonate 6-phosphate catalyzed by 2-oxo-3-deoxygalactonate kinase, with ATP serving as amore » phosphoryl-group donor. Here, a crystal structure of 2-oxo-3-deoxygalactonate kinase from Klebsiella pneumoniae determined at 2.1 Å resolution is reported, the first structure of an enzyme from the De Ley–Doudoroff pathway. Structural comparison indicates that the enzyme belongs to the ASKHA (acetate and sugar kinases/hsc70/actin) family of phosphotransferases. The protein is composed of two α/β domains, each of which contains a core common to all family members. Additional elements introduced between conserved structural motifs define the unique features of 2-oxo-3-deoxygalactonate kinase and possibly determine the biological function of the protein.« less
Tuveng, Tina R; Hagen, Live Heldal; Mekasha, Sophanit; Frank, Jeremy; Arntzen, Magnus Øverlie; Vaaje-Kolstad, Gustav; Eijsink, Vincent G H
2017-04-01
The chitinolytic machinery of Serratia marcescens BJL200 has been studied in detail over the last couple of decades, however, the proteome secreted by this Gram-negative bacterium during growth on chitin has not been studied in depth. In addition, the genome of this most studied chitinolytic Serratia strain has until now, not been sequenced. We report a draft genome sequence for S. marcescens BJL200. Using label-free quantification (LFQ) proteomics and a recently developed plate-method for assessing secretomes during growth on solid substrates, we find that, as expected, the chitin-active enzymes (ChiA, B, C, and CBP21) are produced in high amounts when the bacterium grows on chitin. Other proteins produced in high amounts after bacterial growth on chitin provide interesting targets for further exploration of the proteins involved in degradation of chitin-rich biomasses. The genome encodes a fourth chitinase (ChiD), which is produced in low amounts during growth on chitin. Studies of chitin degradation with mixtures of recombinantly produced chitin-degrading enzymes showed that ChiD does not contribute to the overall efficiency of the process. ChiD is capable of converting N,N'-diacetyl chitobiose to N-acetyl glucosamine, but is less efficient than another enzyme produced for this purpose, the Chitobiase. Thus, the role of ChiD in chitin degradation, if any, remains unclear. Copyright © 2017 Elsevier B.V. All rights reserved.
PV source based high voltage gain current fed converter
NASA Astrophysics Data System (ADS)
Saha, Soumya; Poddar, Sahityika; Chimonyo, Kudzai B.; Arunkumar, G.; Elangovan, D.
2017-11-01
This work involves designing and simulation of a PV source based high voltage gain, current fed converter. It deals with an isolated DC-DC converter which utilizes boost converter topology. The proposed converter is capable of high voltage gain and above all have very high efficiency levels as proved by the simulation results. The project intends to produce an output of 800 V dc from a 48 V dc input. The simulation results obtained from PSIM application interface were used to analyze the performance of the proposed converter. Transformer used in the circuit steps up the voltage as well as to provide electrical isolation between the low voltage and high voltage side. Since the converter involves high switching frequency of 100 kHz, ultrafast recovery diodes are employed in the circuitry. The major application of the project is for future modeling of solar powered electric hybrid cars.
Genetics Home Reference: hereditary paraganglioma-pheochromocytoma
... two important cellular pathways called the citric acid cycle (or Krebs cycle) and oxidative phosphorylation. These pathways are critical in ... can use. As part of the citric acid cycle, the SDH enzyme converts a compound called succinate ...
Pang, Yongzhen; Abeysinghe, I Sarath B; He, Ji; He, Xianzhi; Huhman, David; Mewan, K Mudith; Sumner, Lloyd W; Yun, Jianfei; Dixon, Richard A
2013-03-01
Tea (Camellia sinensis) is rich in specialized metabolites, especially polyphenolic proanthocyanidins (PAs) and their precursors. To better understand the PA pathway in tea, we generated a complementary DNA library from leaf tissue of the blister blight-resistant tea cultivar TRI2043 and functionally characterized key enzymes responsible for the biosynthesis of PA precursors. Structural genes encoding enzymes involved in the general phenylpropanoid/flavonoid pathway and the PA-specific branch pathway were well represented in the library. Recombinant tea leucoanthocyanidin reductase (CsLAR) expressed in Escherichia coli was active with leucocyanidin as substrate to produce the 2R,3S-trans-flavan-ol (+)-catechin in vitro. Two genes encoding anthocyanidin reductase, CsANR1 and CsANR2, were also expressed in E. coli, and the recombinant proteins exhibited similar kinetic properties. Both converted cyanidin to a mixture of (+)-epicatechin and (-)-catechin, although in different proportions, indicating that both enzymes possess epimerase activity. These epimers were unexpected based on the belief that tea PAs are made from (-)-epicatechin and (+)-catechin. Ectopic expression of CsANR2 or CsLAR led to the accumulation of low levels of PA precursors and their conjugates in Medicago truncatula hairy roots and anthocyanin-overproducing tobacco (Nicotiana tabacum), but levels of oligomeric PAs were very low. Surprisingly, the expression of CsLAR in tobacco overproducing anthocyanin led to the accumulation of higher levels of epicatechin and its glucoside than of catechin, again highlighting the potential importance of epimerization in flavan-3-ol biosynthesis. These data provide a resource for understanding tea PA biosynthesis and tools for the bioengineering of flavanols.
Remaining challenges in cellular flavin cofactor homeostasis and flavoprotein biogenesis
Giancaspero, Teresa A.; Colella, Matilde; Brizio, Carmen; Difonzo, Graziana; Fiorino, Giuseppina M.; Leone, Piero; Brandsch, Roderich; Bonomi, Francesco; Iametti, Stefania; Barile, Maria
2015-01-01
The primary role of the water-soluble vitamin B2 (riboflavin) in cell biology is connected with its conversion into FMN and FAD, the cofactors of a large number of dehydrogenases, oxidases and reductases involved in a broad spectrum of biological activities, among which energetic metabolism and chromatin remodeling. Subcellular localisation of FAD synthase (EC 2.7.7.2, FADS), the second enzyme in the FAD forming pathway, is addressed here in HepG2 cells by confocal microscopy, in the frame of its relationships with kinetics of FAD synthesis and delivery to client apo-flavoproteins. FAD synthesis catalyzed by recombinant isoform 2 of FADS occurs via an ordered bi-bi mechanism in which ATP binds prior to FMN, and pyrophosphate is released before FAD. Spectrophotometric continuous assays of the reconstitution rate of apo-D-aminoacid oxidase with its cofactor, allowed us to propose that besides its FAD synthesizing activity, hFADS is able to operate as a FAD “chaperone.” The physical interaction between FAD forming enzyme and its clients was further confirmed by dot blot and immunoprecipitation experiments carried out testing as a client either a nuclear lysine-specific demethylase 1 (LSD1) or a mitochondrial dimethylglycine dehydrogenase (Me2GlyDH, EC 1.5.8.4). Both enzymes carry out similar reactions of oxidative demethylation, in which tetrahydrofolate is converted into 5,10-methylene-tetrahydrofolate. A direct transfer of the cofactor from hFADS2 to apo-dimethyl glycine dehydrogenase was also demonstrated. Thus, FAD synthesis and delivery to these enzymes are crucial processes for bioenergetics and nutri-epigenetics of liver cells. PMID:25954742
Sun, Boqiao; Hartl, Florian; Castiglione, Kathrin; Weuster-Botz, Dirk
2015-01-01
Ursodeoxycholic acid (UDCA) is a bile acid which is used as pharmaceutical for the treatment of several diseases, such as cholesterol gallstones, primary sclerosing cholangitis or primary biliary cirrhosis. A potential chemoenzymatic synthesis route of UDCA comprises the two-step reduction of dehydrocholic acid to 12-keto-ursodeoxycholic acid (12-keto-UDCA), which can be conducted in a multienzymatic one-pot process using 3α-hydroxysteroid dehydrogenase (3α-HSDH), 7β-hydroxysteroid dehydrogenase (7β-HSDH), and glucose dehydrogenase (GDH) with glucose as cosubstrate for the regeneration of cofactor. Here, we present a dynamic mechanistic model of this one-pot reduction which involves three enzymes, four different bile acids, and two different cofactors, each with different oxidation states. In addition, every enzyme faces two competing substrates, whereas each bile acid and cofactor is formed or converted by two different enzymes. First, the kinetic mechanisms of both HSDH were identified to follow an ordered bi-bi mechanism with EBQ-type uncompetitive substrate inhibition. Rate equations were then derived for this mechanism and for mechanisms describing competing substrates. After the estimation of the model parameters of each enzyme independently by progress curve analyses, the full process model of a simple batch-process was established by coupling rate equations and mass balances. Validation experiments of the one-pot multienzymatic batch process revealed high prediction accuracy of the process model and a model analysis offered important insight to the identification of optimum reaction conditions. © 2015 American Institute of Chemical Engineers.
Guo, Tingting; Zhang, Li; Xin, Yongping; Xu, ZhenShang; He, Huiying; Kong, Jian
2017-11-01
Lactobacillus brevis is an obligatory heterofermentative lactic acid bacterium that produces high levels of acetate, which improve the aerobic stability of silages against deterioration caused by yeasts and molds. However, the mechanism involved in acetate accumulation has yet to be elucidated. Here, experimental evidence indicated that aerobiosis resulted in the conversion of lactate to acetate after glucose exhaustion in L. brevis ATCC 367 (GenBank accession number NC_008497). To elucidate the conversion pathway, in silico analysis showed that lactate was first converted to pyruvate by the reverse catalytic reaction of lactate dehydrogenase (LDH); subsequently, pyruvate conversion to acetate might be mediated by pyruvate dehydrogenase (PDH) or pyruvate oxidase (POX). Transcriptional analysis indicated that the pdh and pox genes of L. brevis ATCC 367 were upregulated 37.92- and 18.32-fold, respectively, by oxygen and glucose exhaustion, corresponding to 5.32- and 2.35-fold increases in the respective enzyme activities. Compared with the wild-type strain, the transcription and enzymatic activity of PDH remained stable in the Δ pox mutant, while those of POX increased significantly in the Δ pdh mutant. More lactate but less acetate was produced in the Δ pdh mutant than in the wild-type and Δ pox mutant strains, and more H 2 O 2 (a product of the POX pathway) was produced in the Δ pdh mutant. We speculated that the high levels of aerobic acetate accumulation in L. brevis ATCC 367 originated mainly from the reuse of lactate to produce pyruvate, which was further converted to acetate by the predominant and secondary functions of PDH and POX, respectively. IMPORTANCE PDH and POX are two possible key enzymes involved in aerobic acetate accumulation in lactic acid bacteria (LAB). It is currently thought that POX plays the major role in aerobic growth in homofermentative LAB and some heterofermentative LAB, while the impact of PDH remains unclear. In this study, we reported that both PDH and POX worked in the aerobic conversion of lactate to acetate in L. brevis ATCC 367, in dominant and secondary roles, respectively. Our findings will further develop the theory of aerobic metabolism by LAB. Copyright © 2017 American Society for Microbiology.
Guo, Tingting; Zhang, Li; Xin, Yongping; Xu, ZhenShang; He, Huiying
2017-01-01
ABSTRACT Lactobacillus brevis is an obligatory heterofermentative lactic acid bacterium that produces high levels of acetate, which improve the aerobic stability of silages against deterioration caused by yeasts and molds. However, the mechanism involved in acetate accumulation has yet to be elucidated. Here, experimental evidence indicated that aerobiosis resulted in the conversion of lactate to acetate after glucose exhaustion in L. brevis ATCC 367 (GenBank accession number NC_008497). To elucidate the conversion pathway, in silico analysis showed that lactate was first converted to pyruvate by the reverse catalytic reaction of lactate dehydrogenase (LDH); subsequently, pyruvate conversion to acetate might be mediated by pyruvate dehydrogenase (PDH) or pyruvate oxidase (POX). Transcriptional analysis indicated that the pdh and pox genes of L. brevis ATCC 367 were upregulated 37.92- and 18.32-fold, respectively, by oxygen and glucose exhaustion, corresponding to 5.32- and 2.35-fold increases in the respective enzyme activities. Compared with the wild-type strain, the transcription and enzymatic activity of PDH remained stable in the Δpox mutant, while those of POX increased significantly in the Δpdh mutant. More lactate but less acetate was produced in the Δpdh mutant than in the wild-type and Δpox mutant strains, and more H2O2 (a product of the POX pathway) was produced in the Δpdh mutant. We speculated that the high levels of aerobic acetate accumulation in L. brevis ATCC 367 originated mainly from the reuse of lactate to produce pyruvate, which was further converted to acetate by the predominant and secondary functions of PDH and POX, respectively. IMPORTANCE PDH and POX are two possible key enzymes involved in aerobic acetate accumulation in lactic acid bacteria (LAB). It is currently thought that POX plays the major role in aerobic growth in homofermentative LAB and some heterofermentative LAB, while the impact of PDH remains unclear. In this study, we reported that both PDH and POX worked in the aerobic conversion of lactate to acetate in L. brevis ATCC 367, in dominant and secondary roles, respectively. Our findings will further develop the theory of aerobic metabolism by LAB. PMID:28842545
Hong, Yang-Hee; Jung, Eun Young; Noh, Dong Ouk; Suh, Hyung Joo
2014-03-01
Green tea contains numerous polyphenols, which have health-promoting effects. The purpose of this study was to evaluate the effect of tannase-converted green tea extract (TGE) formulation on the physical stability and activities of skin-related enzymes. Physical stability was evaluated by measuring the pH, precipitation, and colors at 25 ± 2 °C/ambient humidity and at 40 ± 2 °C/70% ± 5% relative humidity for 4 months. Activities of collagenase, elastase, and tyrosinase as skin-related enzymes were assessed on TGE formulation. The concentrations of epigallocatechin-3-gallate and epicatechin-3-gallate in green tea extract were greatly decreased to the extent of negligible level when treated with tannase. The formulation containing 5% tannase-converted green tea extract showed relatively stable pH, precipitation, and color features for 16 weeks. When TGE was added to the formulation, there was a significant increase in the inhibition of elastase and tyrosinase activities ( p < 0.05) compared with the formulation containing 5% normal green tea extract. The TGE could be used in cosmetics as skin antiwrinkling or depigmenting agent.
Arnal, J F; Castano, C; Maupas, E; Mugniot, A; Darblade, B; Gourdy, P; Michel, J B; Bayard, F
2001-04-01
Angiotensin-converting enzyme (ACE) is mainly responsible for converting angiotensin I (AI) to angiotensin II (AII), and ACE inhibitors prevent atherosclerosis in animal models. Neutral endopeptidase 24.11 (NEP) degrades substance P, kinins and atrial natriuretic peptide (ANP), and aortic wall NEP activity was found to be increased in atherosclerosis. In the present study, we have evaluated the effect of candoxatril, a NEP inhibitor, and of omapatrilat, a dual ACE and NEP inhibitor, on the development of fatty streak in apolipoprotein E (apoE)-deficient mice. Groups of ten male apoE-deficient mice were given either placebo, candoxatril 50 mg/kg per day, or omapatrilat 10, or 100 mg/kg per day for 4 months. None of the treatments influenced body weight, serum total or HDL-cholesterol. Compared with the placebo, candoxatril did not protect the mice from fatty streak deposit. In contrast, omapatrilat dose dependently inhibited the constitution of fatty streak in apoE-deficient mice. The precise advantages of the dual ACE and NEP inhibition versus the inhibition of only ACE should now be considered in the prevention of atherosclerosis as well as in the occurrence of its complications.
Sanz, J M; Lopez, R; Garcia, J L
1988-05-23
Tertiary amines appear to be the minimal structure needed to convert in vitro the inactive form (E-form) of pneumococcal amidase to the catalytic active form (C-form). Diethylethanolamine was one of the compounds that converted the E-form, a finding that has been used successfully to develop an affinity chromatography system in DEAE-cellulose for the rapid and efficient purification of lytic enzymes of pneumococcus and its bacteriophages.
Gao, Hongwei; Li, Subo; Tan, Yingxia; Ji, Shouping; Wang, Yingli; Bao, Guoqiang; Xu, Lijuan; Gong, Feng
2013-02-01
Enzymatical conversion of A or B RBCs into group O RBCs (ECORBCs) was achieved by using α-N-acetylgalactosaminidase and α-galactosidase, respectively. Now, we initiated AB to O-RBC conversion by using these two enzymes together. But α-N-acetylgalactosaminidase and α-galactosidase's preserving and their reaction buffer were quite different. The aim of this study is to confirm an available system for converting AB to O RBCs, especially to study the maximal permission amount of PCS which was brought to the system-accompanied enzyme addition. Enzyme activity was detected by using GalNAc-pNp or Gal-pNp as substrates. The efficiency of the conversion of A or B antigen was evaluated by routine method and measured by fluorescence-activated cell sorting analysis. The optimal buffer component and the doses of α-N-acetylgalactosaminidase and α-galactosidase were confirmed according to A and B antigen epitope removal efficiency. The activity of α-N-acetylgalactosaminidase and α-galactosidase was not decreased drastically when they were kept in PCS Buffer in 4°C. The optimal reaction buffer composed of glycine 250 mM and NaCl 3 mM, pH 6.8 and PCS less than 10%(v/v). For converting A(1)B to O RBCs completely, the doses of α-N-acetylgalactosaminidase and α-galactosidase were confirmed as 0.015 mg/ml packed RBCs(pRBCs) for A(1) antigen epitopes and 0.005 mg/ml pRBCs for B epitopes. Approximately 0.004 mg α-N-acetylgalactosaminidase and 0.005 mg α-galactosidase were required to convert 1 ml pRBCs. Our studies indicated that α-N-acetylgalactosaminidase and α-galactosidase were stable in PCS buffer and a modified protocol which was propitious to converting AB to O RBCs was provided.
Bourand, A.; Yebra, M. J.; Boël, G.; Mazé, A.
2013-01-01
Lactobacillus casei strains 64H and BL23, but not ATCC 334, are able to ferment d-ribitol (also called d-adonitol). However, a BL23-derived ptsI mutant lacking enzyme I of the phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS) was not able to utilize this pentitol, suggesting that strain BL23 transports and phosphorylates d-ribitol via a PTS. We identified an 11-kb region in the genome sequence of L. casei strain BL23 (LCABL_29160 to LCABL_29270) which is absent from strain ATCC 334 and which contains the genes for a GlpR/IolR-like repressor, the four components of a mannose-type PTS, and six metabolic enzymes potentially involved in d-ribitol metabolism. Deletion of the gene encoding the EIIB component of the presumed ribitol PTS indeed prevented d-ribitol fermentation. In addition, we overexpressed the six catabolic genes, purified the encoded enzymes, and determined the activities of four of them. They encode a d-ribitol-5-phosphate (d-ribitol-5-P) 2-dehydrogenase, a d-ribulose-5-P 3-epimerase, a d-ribose-5-P isomerase, and a d-xylulose-5-P phosphoketolase. In the first catabolic step, the protein d-ribitol-5-P 2-dehydrogenase uses NAD+ to oxidize d-ribitol-5-P formed during PTS-catalyzed transport to d-ribulose-5-P, which, in turn, is converted to d-xylulose-5-P by the enzyme d-ribulose-5-P 3-epimerase. Finally, the resulting d-xylulose-5-P is split by d-xylulose-5-P phosphoketolase in an inorganic phosphate-requiring reaction into acetylphosphate and the glycolytic intermediate d-glyceraldehyde-3-P. The three remaining enzymes, one of which was identified as d-ribose-5-P-isomerase, probably catalyze an alternative ribitol degradation pathway, which might be functional in L. casei strain 64H but not in BL23, because one of the BL23 genes carries a frameshift mutation. PMID:23564164
Weiss, Michael; Denger, Karin; Huhn, Thomas
2012-01-01
Complete biodegradation of the surfactant linear alkylbenzenesulfonate (LAS) is accomplished by complex bacterial communities in two steps. First, all LAS congeners are degraded into about 50 sulfophenylcarboxylates (SPC), one of which is 3-(4-sulfophenyl)butyrate (3-C4-SPC). Second, these SPCs are mineralized. 3-C4-SPC is mineralized by Comamonas testosteroni KF-1 in a process involving 4-sulfoacetophenone (SAP) as a metabolite and an unknown inducible Baeyer-Villiger monooxygenase (BVMO) to yield 4-sulfophenyl acetate (SPAc) from SAP (SAPMO enzyme); hydrolysis of SPAc to 4-sulfophenol and acetate is catalyzed by an unknown inducible esterase (SPAc esterase). Transcriptional analysis showed that one of four candidate genes for BVMOs in the genome of strain KF-1, as well as an SPAc esterase candidate gene directly upstream, was inducibly transcribed during growth with 3-C4-SPC. The same genes were identified by enzyme purification and peptide fingerprinting-mass spectrometry when SAPMO was enriched and SPAc esterase purified to homogeneity by protein chromatography. Heterologously overproduced pure SAPMO converted SAP to SPAc and was active with phenylacetone and 4-hydroxyacetophenone but not with cyclohexanone and progesterone. SAPMO showed the highest sequence homology to the archetypal phenylacetone BVMO (57%), followed by steroid BVMO (55%) and 4-hydroxyacetophenone BVMO (30%). Finally, the two pure enzymes added sequentially, SAPMO with NADPH and SAP, and then SPAc esterase, catalyzed the conversion of SAP via SPAc to 4-sulfophenol and acetate in a 1:1:1:1 molar ratio. Hence, the first two enzymes of a complete LAS degradation pathway were identified, giving evidence for the recruitment of members of the very versatile type I BVMO and carboxylester hydrolase enzyme families for the utilization of a xenobiotic compound by bacteria. PMID:23001656
Saha, S; Hollands, W; Needs, P W; Ostertag, L M; de Roos, B; Duthie, G G; Kroon, P A
2012-06-01
Epicatechin is a widely consumed dietary flavonoid and there is substantial evidence that it contributes to the health benefits reported for flavanol-rich cocoa products including dark chocolate. Numerous reports have described the appearance of epicatechin and epicatechin phase-2 conjugates (sulfates and glucuronides of epicatechin and methylepicatechin) in blood and urine samples of subjects following ingestion of epicatechin. The most widely reported method of quantifying total epicatechin in plasma and urine samples involves hydrolysis with a mixture of β-glucuronidase and sulfatase to convert the conjugates to epicatechin aglycone which is subsequently quantified. We observed a lack of hydrolysis of epicatechin sulfates and methylepicatechin sulfates using commercial sulfatases and investigated this further. Samples of urine or plasma from subjects who had consumed epicatechin were subjected to enzyme hydrolysis and then analysed using LC-MS/MS, or analysed without enzyme hydrolysis. Attempts to increase the extent of hydrolysis of epicatechin conjugates were made by increasing the amount of enzyme, hydrolysis pH and length of incubations, and using alternative sources of enzyme. The standard hydrolysis conditions failed to hydrolyse the majority of epicatechin sulfates and methylepicatechin sulfates. Even when the quantity of enzyme and incubation period was increased, the pH optimised, or alternative sources of sulfatases were used, epicatechin monosulfates and methylepicatechin monosulfates remained as major peaks in the chromatograms of the samples. An assessment of literature data strongly suggested that the majority of reports where enzyme hydrolysis was used had significantly underestimated epicatechin bioavailability in humans. Methods for quantifying epicatechin concentrations in blood and urine need to take account of the lack of hydrolysis of (methyl)epicatechin-sulfates, for example by quantifying these directly using LC-MS/MS. Copyright © 2012 Elsevier Ltd. All rights reserved.
Pedersen, Kim Brint; Chodavarapu, Harshita
2017-01-01
Angiotensin-converting enzyme 2 (ACE2) has protective effects on a wide range of morbidities associated with elevated angiotensin-II signaling. Most tissues, including pancreatic islets, express ACE2 mainly from the proximal promoter region. We previously found that hepatocyte nuclear factors 1α and 1β stimulate ACE2 expression from three highly conserved hepatocyte nuclear factor 1 binding motifs in the proximal promoter region. We hypothesized that other highly conserved motifs would also affect ACE2 expression. By systematic mutation of conserved elements, we identified five regions affecting ACE2 expression, of which two regions bound transcriptional activators. One of these is a functional FOXA binding motif. We further identified the main protein binding the FOXA motif in 832/13 insulinoma cells as well as in mouse pancreatic islets as FOXA2. PMID:29082356
Muslih, A I
2012-06-30
The angiotensin converting enzyme inhibitors (ACEIs) are a group of pharmaceuticals that are used primarily in treatment of hypertension and congestive heart failure, in some cases as the drugs of first choice. The renin-angiotensin system is activated in response to hypotension, decreased sodium concentration in the distal tubule, decreased blood volume and in renal sympathetic nerve stimulation. This study examines the effects of angiotensin converting enzyme inhibitor (Lisinopril) on blood pressure (BP) 131 ± 2.4 and proteinuria 0.198 ± 0.005 in Kurd hypertensive patients, mean arterial blood pressure and proteinuria excretion were measured weekly along the period of 12 weeks. Lisinopril significantly reduced mean arterial blood pressure, and attenuated proteinuria level in patients subjected to this study in lisinopril 10mg dose dependent manner (p<0.05, n=24). In conclusion, lisinopril is of beneficial of renoprotection and in lowering BP.
Paitz, Ryan T; Duffield, Kristin R; Bowden, Rachel M
2017-12-15
All vertebrate embryos are exposed to maternally derived steroids during development. In placental vertebrates, metabolism of maternal steroids by the placenta modulates embryonic exposure, but how exposure is regulated in oviparous vertebrates is less clear. Recent work in oviparous vertebrates has demonstrated that steroids are not static molecules, as they can be converted to more polar steroid sulfates by sulfotransferase enzymes. Importantly, these steroid sulfates can be converted back to the parent compound by the enzyme steroid sulfatase (STS). We investigated when and where STS was present during embryonic development in the red-eared slider turtle, Trachemys scripta We report that STS is present during all stages of development and in all tissues we examined. We conclude that STS activity may be particularly important for regulating maternal steroid exposure in oviparous vertebrates. © 2017. Published by The Company of Biologists Ltd.
Screening of Zulu medicinal plants for angiotensin converting enzyme (ACE) inhibitors.
Duncan, A C; Jäger, A K; van Staden, J
1999-12-15
Twenty plants used by traditional healers in South Africa for the treatment of high blood pressure were investigated for their anti-hypertensive properties, utilizing the angiotensin converting enzyme assay. A hit rate of 65% was achieved, with the highest inhibition (97%) obtained by Adenopodia spicata leaves. A further seven plants exhibited an inhibition greater than 70% and five more over 50%. The leaves of the plants showed the greatest levels of inhibition. There was little difference in the overall hit rate between ethanolic and aqueous extracts, although in most cases there was a marked difference in activity between aqueous and ethanolic extracts from the same species. Plants exhibiting inhibition levels greater than 50% were further tested for the presence of tannins in order to eliminate possible false positives. Active plants that did not contain tannins were Agapanthus africanus, Agave americana, Clausena anisata, Dietes iridioides, Mesembruanthemum spp., Stangeria eriopus and Tulbaghia violacea.
Rupert, J L; Devine, D V; Monsalve, M V; Hochachka, P W
1999-01-01
Recently it was reported that an allelic variant of the gene encoding angiotensin-converting enzyme (ACE) was significantly over-represented in a cohort of elite British mountaineers. It was proposed that this may be evidence for a specific genetic factor influencing the human capacity for physical performance. The implication that this allele could enhance performance at high altitude prompted us to determine its frequency in Quechua speaking natives living at altitudes greater than 3000m on the Andean Altiplano in South America. We found that the frequency of the putative performance allele in the Quechuas, although significantly higher than in Caucasians, was not different from lowland Native American populations. This observation suggests that, although the higher frequency of the 'performance allele' may have facilitated the migration of the ancestral Quechua to the highlands, the ACE insertion allele has not been subsequently selected for in this high altitude population.
Matos, Teresa J; Jaleco, Sara P; Gonçalo, Margarida; Duarte, Carlos B; Lopes, M Celeste
2005-08-14
We used a mouse fetal skin dendritic cell line (FSDC) to study the effect of the strong allergen 2,4-dinitrofluorobenzene (DNFB) on interleukin (IL)-1beta release and IL-1beta receptor immunoreactivity. Stimulation with DNFB (30 minutes) increased IL-1 release without changing the mRNA levels of the protein. Furthermore, DNFB increased transiently the interleukin-1beta-converting enzyme (ICE) activity, as measured with its fluorogenic substrate Z-Tyr-Val-Ala-Asp-AFC. The ICE inhibitor Z-YVAD-FMK prevented the release of IL-1beta evoked by DNFB. Incubation of the cells with DNFB (30 minutes) strongly increased IL-1beta receptor immunoreactivity. The rapid effect of DNFB on the release of mature IL-1beta, without inducing an increase of IL-1beta mRNA in FSDC, suggests a posttranslational modification of pro-IL-1beta by ICE activity.
Angiotensin-I-Converting Enzyme (ACE)-Inhibitory Peptides from Plants
Daskaya-Dikmen, Ceren; Yucetepe, Aysun; Karbancioglu-Guler, Funda; Daskaya, Hayrettin; Ozcelik, Beraat
2017-01-01
Hypertension is an important factor in cardiovascular diseases. Angiotensin-I-converting enzyme (ACE) inhibitors like synthetic drugs are widely used to control hypertension. ACE-inhibitory peptides from food origins could be a good alternative to synthetic drugs. A number of plant-based peptides have been investigated for their potential ACE inhibitor activities by using in vitro and in vivo assays. These plant-based peptides can be obtained by solvent extraction, enzymatic hydrolysis with or without novel food processing methods, and fermentation. ACE-inhibitory activities of peptides can be affected by their structural characteristics such as chain length, composition and sequence. ACE-inhibitory peptides should have gastrointestinal stability and reach the cardiovascular system to show their bioactivity. This paper reviews the current literature on plant-derived ACE-inhibitory peptides including their sources, production and structure, as well as their activity by in vitro and in vivo studies and their bioavailability. PMID:28333109
Suppression of LPS-induced inflammatory responses by the hydroxyl groups of dexamethasone
Chuang, Ting-Yun; Cheng, An-Jie; Chen, I-Ting; Lan, Tien-Yun; Huang, I-Hsuan; Shiau, Chung-Wai; Hsu, Chia-Lin; Liu, Ya-Wen; Chang, Zee-Fen; Tseng, Ping-Hui; Kuo, Jean-Cheng
2017-01-01
The innate immune response is a central process that is activated during pathogenic infection in order to maintain physiological homeostasis. It is well known that dexamethasone (Dex), a synthetic glucocorticoid, is a potent immunosuppressant that inhibits the cytokine production induced by bacterial lipopolysaccharides (LPS). Nevertheless, the extent to which the functional groups of Dex control the excessive activation of inflammatory reactions remains unknown. Furthermore, importantly, the role of Dex in the innate immune response remains unclear. Here we explore the mechanism of LPS-induced TNF-α secretion and reveal p38 MAPK signaling as a target of Dex that is involved in control of tumor necrosis factor-α (TNF-α)-converting enzyme (TACE) activity; that later mediates the shedding of TNF-α that allows its secretion. We further demonstrate that the 11-hydroxyl and 21-hydroxyl groups of Dex are the main groups that are involved in reducing LPS-induced TNF-α secretion by activated macrophages. Blockage of the hydroxyl groups of Dex inhibits immunosuppressant effect of Dex during LPS-induced TNF-α secretion and mouse mortality. Our findings demonstrate Dex signaling is involved in the control of innate immunity. PMID:28537905
The key nickel enzyme of methanogenesis catalyses the anaerobic oxidation of methane.
Scheller, Silvan; Goenrich, Meike; Boecher, Reinhard; Thauer, Rudolf K; Jaun, Bernhard
2010-06-03
Large amounts (estimates range from 70 Tg per year to 300 Tg per year) of the potent greenhouse gas methane are oxidized to carbon dioxide in marine sediments by communities of methanotrophic archaea and sulphate-reducing bacteria, and thus are prevented from escaping into the atmosphere. Indirect evidence indicates that the anaerobic oxidation of methane might proceed as the reverse of archaeal methanogenesis from carbon dioxide with the nickel-containing methyl-coenzyme M reductase (MCR) as the methane-activating enzyme. However, experiments showing that MCR can catalyse the endergonic back reaction have been lacking. Here we report that purified MCR from Methanothermobacter marburgensis converts methane into methyl-coenzyme M under equilibrium conditions with apparent V(max) (maximum rate) and K(m) (Michaelis constant) values consistent with the observed in vivo kinetics of the anaerobic oxidation of methane with sulphate. This result supports the hypothesis of 'reverse methanogenesis' and is paramount to understanding the still-unknown mechanism of the last step of methanogenesis. The ability of MCR to cleave the particularly strong C-H bond of methane without the involvement of highly reactive oxygen-derived intermediates is directly relevant to catalytic C-H activation, currently an area of great interest in chemistry.
Michel, Gurvan; Tonon, Thierry; Scornet, Delphine; Cock, J Mark; Kloareg, Bernard
2010-10-01
• Brown algae exhibit a unique carbon (C) storage metabolism. The photoassimilate D-fructose 6-phosphate is not used to produce sucrose but is converted into D-mannitol. These seaweeds also store C as β-1,3-glucan (laminarin), thus markedly departing from most living organisms, which use α-1,4-glucans (glycogen or starch). • Using a combination of bioinformatic and phylogenetic approaches, we identified the candidate genes for the enzymes involved in C storage in the genome of the brown alga Ectocarpus siliculosus and traced their evolutionary origins. • Ectocarpus possesses a complete set of enzymes for synthesis of mannitol, laminarin and trehalose. By contrast, the pathways for sucrose, starch and glycogen are completely absent. • The synthesis of β-1,3-glucans appears to be a very ancient eukaryotic pathway. Brown algae inherited the trehalose pathway from the red algal progenitor of phaeoplasts, while the mannitol pathway was acquired by lateral gene transfer from Actinobacteria. The starch metabolism of the red algal endosymbiont was entirely lost in the ancestor of Stramenopiles. In light of these novel findings we question the validity of the 'Chromalveolate hypothesis'.
Senthil-Nathan, Sengottayan
2013-01-01
This review described the physiological and biochemical effects of various secondary metabolites from Meliaceae against major Lepidopteran insect pest including, Noctuidae and Pyralidae. The biochemical effect of major Meliaceae secondary metabolites were discussed more in this review. Several enzymes based on food materials have critical roles in nutritional indices (food utilization) of the insect pest population. Several research work has been referred and the effect of Meliaceae secondary metabolites on feeding parameters of insects by demonstrating food consumption, approximate digestibility of consumed food, efficiency of converting the ingested food to body substance, efficiency of converting digested food to body substance and consumption index was reviewed in detail. Further how the digestive enzymes including a-Amylases, α and β-glucosidases (EC 3.2.1.1), lipases (EC 3.1.1) Proteases, serine, cysteine, and aspartic proteinases affected by the Meliaceae secondary metabolites was reviewed. Further effect of Meliaceae secondary metabolites on detoxifying enzymes have been found to react against botanical insecticides including general esterases (EST), glutathione S-transferase (GST) and phosphatases was reviewed. Alkaline phosphatase (ALP, E.C.3.1.3.1) and acid phosphatase (ACP, E.C.3.1.3.2) are hydrolytic enzymes, which hydrolyze phosphomonoesters under alkaline or acid conditions, respectively. These enzymes were affected by the secondary metabolites treatment. The detailed mechanism of action was further explained in this review. Acethylcholine esterase (AChE) is a key enzyme that terminates nerve impulses by catalyzing the hydrolysis of neurotransmitter, acetylcholine, in the nervous system of various organisms. How the AChE activity was altered by the Meliaceae secondary metabolites reviewed in detail. PMID:24391591
Martín, Juan F.; Liras, Paloma
2017-01-01
The clavine alkaloids produced by the fungi of the Aspergillaceae and Arthrodermatacea families differ from the ergot alkaloids produced by Claviceps and Neotyphodium. The clavine alkaloids lack the extensive peptide chain modifications that occur in lysergic acid derived ergot alkaloids. Both clavine and ergot alkaloids arise from the condensation of tryptophan and dimethylallylpyrophosphate by the action of the dimethylallyltryptophan synthase. The first five steps of the biosynthetic pathway that convert tryptophan and dimethylallyl-pyrophosphate (DMA-PP) in chanoclavine-1-aldehyde are common to both clavine and ergot alkaloids. The biosynthesis of ergot alkaloids has been extensively studied and is not considered in this article. We focus this review on recent advances in the gene clusters for clavine alkaloids in the species of Penicillium, Aspergillus (Neosartorya), Arthroderma and Trychophyton and the enzymes encoded by them. The final products of the clavine alkaloids pathways derive from the tetracyclic ergoline ring, which is modified by late enzymes, including a reverse type prenyltransferase, P450 monooxygenases and acetyltransferases. In Aspergillus japonicus, a α-ketoglutarate and Fe2+-dependent dioxygenase is involved in the cyclization of a festuclavine-like unknown type intermediate into cycloclavine. Related dioxygenases occur in the biosynthetic gene clusters of ergot alkaloids in Claviceps purpurea and also in the clavine clusters in Penicillium species. The final products of the clavine alkaloid pathway in these fungi differ from each other depending on the late biosynthetic enzymes involved. An important difference between clavine and ergot alkaloid pathways is that clavine producers lack the enzyme CloA, a P450 monooxygenase, involved in one of the steps of the conversion of chanoclavine-1-aldehyde into lysergic acid. Bioinformatic analysis of the sequenced genomes of the Aspergillaceae and Arthrodermataceae fungi showed the presence of clavine gene clusters in Arthroderma species, Penicillium roqueforti, Penicillium commune, Penicillium camemberti, Penicillium expansum, Penicillium steckii and Penicillium griseofulvum. Analysis of the gene clusters in several clavine alkaloid producers indicates that there are gene gains, gene losses and gene rearrangements. These findings may be explained by a divergent evolution of the gene clusters of ergot and clavine alkaloids from a common ancestral progenitor six genes cluster although horizontal gene transfer of some specific genes may have occurred more recently. PMID:29186777
Angiotensin peptides in the non-gravid uterus: Paracrine actions beyond circulation.
Casalechi, Maíra; Dela Cruz, Cynthia; Lima, Luiza C; Maciel, Luciana P; Pereira, Virgínia M; Reis, Fernando M
2018-03-01
The renin-angiotensin system (RAS) involves a complex network of precursors, peptides, enzymes and receptors comprising a systemic (endocrine) and a local (paracrine/autocrine) system. The local RAS plays important roles in tissue modulation and may operate independently of or in close interaction with the circulatory RAS, acting in a complementary fashion. Angiotensin (Ang) II, its receptor AT 1 and Ang-(1-7) expression in the endometrium vary with menstrual cycle, and stromal cell decidualization in vitro is accompanied by local synthesis of angiotensinogen and prorenin. Mas receptor is unlikely to undergo marked changes accompanying the cyclic ovarian steroid hormone fluctuations. Studies investigating the functional relevance of the RAS in the non-gravid uterus show a number of paracrine effects beyond circulation and suggest that RAS peptides may be involved in the pathophysiology of proliferative and fibrotic diseases. Endometrial cancer is associated with increased expression of Ang II, Ang-converting enzyme 1 and AT 1 in the tumoral tissue compared to neighboring non-neoplastic endometrium, and also with a gene polymorphism that enhances AT 1 signal. Ang II induces human endometrial cells to transdifferentiate into cells with myofibroblast phenotype and to synthetize extracellular matrix components that might contribute to endometrial fibrosis. Altogether, these findings point to a fully operating RAS within the uterus, but since many concepts rely on preliminary evidence further studies are needed to clarify the role of the local RAS in uterine physiology and pathophysiology. Copyright © 2018 Elsevier Inc. All rights reserved.
Choudhary, Deepanshu; Panjikar, Santosh; Anand, Ruchi
2013-01-01
Formylglycinamide ribonucleotide amidotransferase (FGAR-AT) is a 140 kDa bi-functional enzyme involved in a coupled reaction, where the glutaminase active site produces ammonia that is subsequently utilized to convert FGAR to its corresponding amidine in an ATP assisted fashion. The structure of FGAR-AT has been previously determined in an inactive state and the mechanism of activation remains largely unknown. In the current study, hydrophobic cavities were used as markers to identify regions involved in domain movements that facilitate catalytic coupling and subsequent activation of the enzyme. Three internal hydrophobic cavities were located by xenon trapping experiments on FGAR-AT crystals and further, these cavities were perturbed via site-directed mutagenesis. Biophysical characterization of the mutants demonstrated that two of these three voids are crucial for stability and function of the protein, although being ∼20 Å from the active centers. Interestingly, correlation analysis corroborated the experimental findings, and revealed that amino acids lining the functionally important cavities form correlated sets (co-evolving residues) that connect these regions to the amidotransferase active center. It was further proposed that the first cavity is transient and allows for breathing motion to occur and thereby serves as an allosteric hotspot. In contrast, the third cavity which lacks correlated residues was found to be highly plastic and accommodated steric congestion by local adjustment of the structure without affecting either stability or activity. PMID:24223728