Null testing convex optical surfaces.
Szulc, A
1997-09-01
A new test for convex optical surfaces is presented. It makes use of an auxiliary ellipsoidal mirror that is of approximately the same diameter as the convex mirror tested. The test is a null test of excellent precision. The auxiliary ellipsoid used is also tested in a null fashion, permitting good precision to be obtained.
Algorithm for detecting human faces based on convex-hull.
Park, Minsick; Park, Chang-Woo; Park, Mignon; Lee, Chang-Hoon
2002-03-25
In this paper, we proposed a new method to detect faces in color based on the convex-hull. We detect two kinds of regions that are skin and hair likeness region. After preprocessing, we apply the convex-hull to their regions and can find a face from their intersection relationship. The proposed algorithm can accomplish face detection in an image involving rotated and turned faces as well as several faces. To validity the effectiveness of the proposed method, we make experiment with various cases.
NASA Astrophysics Data System (ADS)
Oka, T.; Takahashi, Y.; Yaginuma, S.; Ogawa, J.; Fukui, S.; Sato, T.; Yokoyama, K.; Nakamura, T.
The authors have been attempting to obtain the uniform magnetic field distribution in the space between the face-to-face HTS bulk magnets. The magnetic poles containing the HTS bulk magnets are usually characterized as non-uniform magnetic field distribution. Since the distributions show the conical or convex shapes, it is difficult to obtain the uniform magnetic field spaces even when the magnetic poles would be placed face-to-face. The authors have modified the shape of the distribution of one-side magnetic pole by attaching an iron plate on the surface, and formed the concave magnetic field distribution on the pole surface. The steep concave or convex distributions at each pole surface change to be flat with increasing distance from the pole surface. After the experimental result recording the best uniformity of 358 ppm by combining the concave and convex field distributions face-to-face, we attempted to simulate the feasible performance in this configuration. In the numerical simulation, the concave field distribution modified by attaching an imaginary spiral coil on the pole surface was coupled with the original convex field. We succeeded in obtaining the best uniformity of 30 ppm at 1.1 T in 4 x 4 mm2x-y plane at 7 mm distant from the pole surface in the gap of 30 mm. This result suggests that the concave and convex magnetic field distributions compensate the field uniformity with each other with keeping the magnetic field strength in the gap, and also suggests the novel compact NMR/MRI devices in the future.
ERIC Educational Resources Information Center
Berger, Marcel
1990-01-01
Discussed are the idea, examples, problems, and applications of convexity. Topics include historical examples, definitions, the John-Loewner ellipsoid, convex functions, polytopes, the algebraic operation of duality and addition, and topology of convex bodies. (KR)
ERIC Educational Resources Information Center
Berger, Marcel
1990-01-01
Discussed are the idea, examples, problems, and applications of convexity. Topics include historical examples, definitions, the John-Loewner ellipsoid, convex functions, polytopes, the algebraic operation of duality and addition, and topology of convex bodies. (KR)
Convex Aspherical Surface Testing Using Catadioptric Partial Compensating System
NASA Astrophysics Data System (ADS)
Wang, Jingxian; Hao, Qun; Hu, Yao; Wang, Shaopu; Li, Tengfei; Tian, Yuhan; Li, Lin
2016-01-01
Aspheric optical components are the indispensable part of modern optics systems. With the constant development of aspheric optical fabrication technique, the systems with large aperture convex aspheric optical components are widely used in astronomy and space optics. Thus, the measurement of the figure error of the whole convex aspherical surface with high precision comes to be a challenge in the area of optical surface manufacture, and surface testing method is also very important. This paper presents a new partial compensating system by the combination of a refractive lens and a reflective mirror for testing convex aspherical surface. The refractive lens is used to compensate the aberration of the tested convex asphere partially. The reflective mirror is a spherical mirror which is coaxial to the refractive lens and reflecting the lights reflected by the tested convex asphere back to the convex asphere itself. With the long focal length and large aperture system we can realize a lighter and more compact system than the refractive partial compensating system because the spheric reflective mirror is more easily to realize and can bending the light conveniently.
Parallelized cytoindentation using convex micropatterned surfaces.
Jia, Bojing; Wee, Tse-Luen; Boudreau, Colton G; Berard, Daniel J; Mallik, Adiel; Juncker, David; Brown, Claire M; Leslie, Sabrina R
2016-01-01
Here we present a high-throughput, parallelized cytoindentor for local compression of live cells. The cytoindentor uses convex lens-induced confinement (CLiC) to indent micrometer-sized areas in single cells and/or populations of cells with submicron precision. This is accomplished using micropatterned poly(dimethylsiloxane) (PDMS) films that are adhered to a convex lens to create arrays of extrusions referred to here as "posts." These posts caused local deformation of subcellular regions without any evidence of cell lysis upon CLiC indentation. Our micropost arrays were also functionalized with glycoproteins, such as fibronectin, to both pull and compress cells under customized confinement geometries. Measurements of Chinese hamster ovary (CHO-K1) cell migration trajectories and oxidative stress showed that the CLiC device did not damage or significantly stress the cells. Our novel tool opens a new area of investigation for visualizing mechanobiology and mechanochemistry within living cells, and the high-throughput nature of the technique will streamline investigations as current tools for mechanically probing material properties and molecular dynamics within cells, such as traditional cytoindentors and atomic force microscopy (AFM), are typically restricted to single-cell manipulation.
Turbulent boundary layer on a convex, curved surface
NASA Technical Reports Server (NTRS)
Gillis, J. C.; Johnston, J. P.; Kays, W. M.; Moffat, R. J.
1980-01-01
The effects of strong convex curvature on boundary layer turbulence were investigated. The data gathered on the behavior of Reynolds stress suggested the formulation of a simple turbulence model. Three sets of data were taken on two separate facilities. Both rigs had flow from a flat surface, over a convex surface with 90 deg of turning, and then onto a flat recovery surface. The geometry was adjusted so that, for both rigs, the pressure gradient along the test surface was zero - thus avoiding any effects of streamwise acceleration on the wall layers. Results show that after a sudden introduction of curvature, the shear stress in the outer part of the boundary layer is sharply diminished and is even slightly negative near the edge. The wall shear also drops off quickly downstream. In contrast, when the surface suddenly becomes flat again, the wall shear and shear stress profiles recover very slowly towards flat wall conditions.
Bouncing dynamics of impact droplets on the convex superhydrophobic surfaces
NASA Astrophysics Data System (ADS)
Shen, Yizhou; Liu, Senyun; Zhu, Chunling; Tao, Jie; Chen, Zhong; Tao, Haijun; Pan, Lei; Wang, Guanyu; Wang, Tao
2017-05-01
Bouncing dynamics of impact droplets on solid surfaces intensively appeal to researchers due to the importance in many industrial fields. Here, we found that droplets impacting onto dome convex superhydrophobic surfaces could rapidly bounce off with a 28.5% reduction in the contact time, compared with that on flat superhydrophobic surfaces. This is mainly determined by the retracting process of impact droplets. Under the action of dome convexity, the impact droplet gradually evolves into an annulus shape with a special hydrodynamic distribution. As a consequence, both the inner and external rims of the annulus shape droplet possess a higher retracting velocity under the actions of the inertia force and the surface energy change, respectively. Also, the numerical simulation provides a quantitative evidence to further verify the interpretation on the regimes behind the rapidly detached phenomenon of impact droplets.
Interferometric test method for testing convex aspheric mirror surfaces
NASA Astrophysics Data System (ADS)
McKechnie, T. Stewart
2010-07-01
An interferometric null Test Method is described for testing convex aspheric surfaces, such as found in secondary mirrors of Cassegrain telescopes or variations thereof such as Mersenne and Ritchey-Chrétien. A family of test designs is described covering a wide range of mirror diameters, radii of curvature, and aspheric shapes as described by conic constants and/or polynomials. The Test Method has been used successfully for testing the convex hyperboloid surface of the 244-mm diameter secondary mirror of the NASA 3-meter IRTF telescope. The Test Method is currently being used to test the 120-mm diameter, convex paraboloid secondary mirrors of the Magdalena Ridge Observatory Interferometer (MROI). Test designs exist on paper for both Keck secondary mirrors (0.53-m and 1.4-m diameter), the HST secondary (0.3-meter diameter), and secondary mirrors of some of the extremely large telescopes of the future, such as the TMT secondary (3.2-m diameter). In typical test embodiments, the simplicity of the Test enables rapid implementation at a fraction of the cost of comparable Hindle-Sphere or Hindle-Simpson tests.
Highlights, disparity, and perceived gloss with convex and concave surfaces.
Kerrigan, Iona S; Adams, Wendy J
2013-01-04
Glossy and matte objects can be differentiated using specular highlights: bright patches in the retinal image produced when light rays are reflected regularly from smooth surfaces. However, bright patches also occur on matte objects, due to local illumination or reflectance changes. Binocular vision provides information that could distinguish specular highlights from other luminance discontinuities; unlike surface markings, specular highlights lie not at the surface depth, but "float" in front of concave surfaces and behind convex ones. We ask whether observers implicitly understand and exploit the peculiarities of specular geometry for gloss and shape perception. Our participants judged the glossiness and shape of curved surfaces that included specular highlights at various depths. Observers demonstrated substantial deviations from a full geometric model of specular reflection. Concave surfaces appeared glossy both when highlights lay in front of and (incorrectly) behind the surface. Failings in the interpretation of monocular highlights were also apparent. Highlight disparity had no effect on shape perception. However, the perceived gloss of convex surfaces did follow geometric constraints: only highlights at appropriate depths produced high gloss ratings. We suggest, in contrast with previous work, that the visual system invokes simple heuristics as gloss indicators to accommodate complex reflections and inter-reflections that occur particularly inside concavities.
Analysis of backtrack algorithms for listing all vertices and all faces of a convex polyhedron
Margot, F.; Fukuda, K.; Liebling, T.
1994-12-31
We investigate the applicability of backtrack technique for solving the vertex enumeration problem and the face enumeration problem for a convex polyhedron given by a system of linear inequalities. We show that there is a linear-time backtrack algorithm for the face enumeration problem whose space complexity is polynomial in the input size, but the vertex enumeration problem requires a backtrack algorithm to solve a decision problem, called the restricted vertex problem, for each output, which is shown to be NP-complete. Some related NP-complete problems associated with a system of linear inequalities are also discussed, including the optimal vertex problems for polyhedra and arrangements of hyperplanes.
Approximating convex Pareto surfaces in multiobjective radiotherapy planning
Craft, David L.; Halabi, Tarek F.; Shih, Helen A.; Bortfeld, Thomas R.
2006-09-15
Radiotherapy planning involves inherent tradeoffs: the primary mission, to treat the tumor with a high, uniform dose, is in conflict with normal tissue sparing. We seek to understand these tradeoffs on a case-to-case basis, by computing for each patient a database of Pareto optimal plans. A treatment plan is Pareto optimal if there does not exist another plan which is better in every measurable dimension. The set of all such plans is called the Pareto optimal surface. This article presents an algorithm for computing well distributed points on the (convex) Pareto optimal surface of a multiobjective programming problem. The algorithm is applied to intensity-modulated radiation therapy inverse planning problems, and results of a prostate case and a skull base case are presented, in three and four dimensions, investigating tradeoffs between tumor coverage and critical organ sparing.
Design of a novel hologram for full measurement of large and deep convex aspheric surfaces.
Liu, Hua; Lu, Zhenwu; Li, Fengyou; Sun, Qiang
2007-03-19
We proposed a valid method with a novel computer-generated hologram (CGH) to test large-aperture convex aspheric. The CGH consisted of two zones with different amounts of power: the central zone has a larger amount of power than the marginal zone. Compared with other CGHs used for convex aspheric testing [SPIE.2576.258 (1995)], it could overcome the difficulty of measuring the central region of the convex surface under test, while relaxing the requirement for the illumination optics and CGH of the test system. We have designed an optical test system with the novel CGH to test a 150 mm-diameter convex surface with full aperture by using optical design software Zemax. The simulated result verified the efficiency of the novel CGH. It is believed that this kind of CGHs can be used to measure any large and deep convex surface with full aperture.
Corrow, Sherryse L; Mathison, Jordan; Granrud, Carl E; Yonas, Albert
2014-01-01
Corrow, Granrud, Mathison, and Yonas (2011, Perception, 40, 1376-1383) found evidence that 6-month-old infants perceive the hollow face illusion. In the present study we asked whether 6-month-old infants perceive illusory depth reversal for a nonface object and whether infants' perception of the hollow face illusion is affected by mask orientation inversion. In experiment 1 infants viewed a concave bowl, and their reaches were recorded under monocular and binocular viewing conditions. Infants reached to the bowl as if it were convex significantly more often in the monocular than in the binocular viewing condition. These results suggest that infants perceive illusory depth reversal with a nonface stimulus and that the infant visual system has a bias to perceive objects as convex. Infants in experiment 2 viewed a concave face-like mask in upright and inverted orientations. Infants reached to the display as if it were convex more in the monocular than in the binocular condition; however, mask orientation had no effect on reaching. Previous findings that adults' perception of the hollow face illusion is affected by mask orientation inversion have been interpreted as evidence of stored-knowledge influences on perception. However, we found no evidence of such influences in infants, suggesting that their perception of this illusion may not be affected by stored knowledge, and that perceived depth reversal is not face-specific in infants.
Twist-bulge derivatives and deformations of convex real projective structures on surfaces
NASA Astrophysics Data System (ADS)
Long, Terence
Let S be a closed orientable surface with genus g > 1 equipped with a convex RP2 structure. A basic example of such a convex $RP2 structure on a surface S is the one associated to a hyperbolic structure on S, and in this special case Wolpert proved formulas for computing the Lie derivatives talpha lbeta and tgamma talphal, where t alpha is the Fenchel-Nielsen twist vector field associated to the twist along a geodesic alpha, and l* is the hyperbolic geodesic length function. In this dissertation, we extend Wolpert's calculation of talphal beta and tgammat alphabeta in the hyperbolic setting to the case of convex real projective surfaces; in particular, our t alpha is the twist-bulge vector field along geodesic alpha coming from the parametrization of the deformation space of convex RP 2 structures on a surface due to Goldman, and our geodesic length function l* is in terms of a generalized cross-ratio in the sense of Labourie. To this end, we use results due to Labourie and Fock-Goncharov on the existence of an equivariant flag curve associated to Hitchin representations, of which convex real projective surfaces are an example. This flag curve allows us to extend the notions arising in the hyperbolic case to that of convex real projective structures and to complete our generalization of Wolpert's formulas.
A Uniform GTD Analysis of the Scattering of Electromagnetic Waves by a Smooth Convex Surface.
1979-04-01
optical electromagnetic field, an arbitrary convex surface, and a near zone field point (for which the field point may be sev- eral wavelengths from...of an arbitrary ray optical electromagnetic field by an edge in an otherwise smooth surface. Let P SB denote a field point on SB. The continuity of...surface when it is excited by a ray optical electromagnetic field. This asymptotic solution is uniform in the sense that it is valid within the
Indirect methods to measure wetting and contact angles on spherical convex and concave surfaces.
Extrand, C W; Moon, Sung In
2012-05-22
In this work, a method was developed for indirectly estimating contact angles of sessile liquid drops on convex and concave surfaces. Assuming that drops were sufficiently small that no gravitational distortion occurred, equations were derived to compute intrinsic contact angles from the radius of curvature of the solid surface, the volume of the liquid drop, and its contact diameter. These expressions were tested against experimental data for various liquids on polytetrafluoroethylene (PTFE) and polycarbonate (PC) in the form of flat surfaces, spheres, and concave cavities. Intrinsic contact angles estimated indirectly using dimensions and volumes generally agreed with the values measured directly from flat surfaces using the traditional tangent method.
Encapsulation and convex-face thiozonolysis of triatomic sulfur (S3) with carbon nanotubes
Castillo, Álvaro; Lee, Leda; Greer, Alexander
2012-01-01
Nanotubes are a class of host cavities increasingly used to encapsulate unstable molecules, yet none have been exploited to host reactive sulfur species, such as thiozone (S3). In this paper, density functional theory and (ONIOM) calculations were used to compute single-walled carbon nanotube (SWNT)–thiozone combinations for the inclusion of S3 into the hollow nanotube space and to rationalize when 1,2,3-thiozonide formation can take place. Nanotube diameter selectivity for the isomerization of the C2v form of S3 to the D3h form proved to be elusive. Acyclic C2v S3 was ~6 kcal/mol more stable than cyclic D3h S3 whether it was free or encapsulated within an SWNT. 1,2,3-Thiozonide formation took place on the convex side of nanotubes of low tube radii, such as the armchair (4,4) and (5,5) SWNTs. In terms of the reaction mode of C2v S3, the 1,3-dipolar addition reaction was preferred compared with the [2 + 2] cycloaddition and chelotrope paths. PMID:22701272
NASA Technical Reports Server (NTRS)
Wang, T.; Simon, T. W.
1987-01-01
The test section of the present experiment to ascertain the effects of convex curvature and freestream turbulence on boundary layer momentum and heat transfer during natural transition provided a two-dimensional boundary layer flow on a uniformly heated curved surface, with bending to various curvature radii, R. Attention is given to results for the cases of R = infinity, 180 cm, and 90 cm, each with two freestream turbulence intensity levels. While the mild convex curvature of R = 180 cm delays transition, further bending to R = 90 cm leads to no signifucant further delay of transition. Cases with both curvature and higher freestream disturbance effects exhibit the latter's pronounced dominance. These data are pertinent to the development of transition prediction models for gas turbine blade design.
Long-term discission rate after placing posterior chamber lenses with the convex surface posterior.
Downing, J E
1986-11-01
The incidence of secondary capsulotomy was studied in a group of 757 posterior chamber intraocular lenses placed with the convex surface posterior within the capsular bag. Minimum follow-up was 12 months and ranged up to 61 months, with a mean of 33 months. In the first year, only 2.9% of cases required discission, but this rose to 15.7% at five years. The need for capsulotomy with angled-haptic lenses was 7.9% at three years; it was 15.0% with uniplanar lenses (P = .04). This difference appeared to be due to better apposition of the optic to the posterior capsule in the angled lenses, creating a more effective barrier to epithelial pearl migration. Capsulotomy carries significant risks and lens designs that minimize the long-term need for capsulotomy should be sought. Convex posterior lenses with angled haptics have a low incidence of posterior capsule opacification.
NASA Technical Reports Server (NTRS)
Wang, T.; Simon, T. W.
1987-01-01
The test section of the present experiment to ascertain the effects of convex curvature and freestream turbulence on boundary layer momentum and heat transfer during natural transition provided a two-dimensional boundary layer flow on a uniformly heated curved surface, with bending to various curvature radii, R. Attention is given to results for the cases of R = infinity, 180 cm, and 90 cm, each with two freestream turbulence intensity levels. While the mild convex curvature of R = 180 cm delays transition, further bending to R = 90 cm leads to no signifucant further delay of transition. Cases with both curvature and higher freestream disturbance effects exhibit the latter's pronounced dominance. These data are pertinent to the development of transition prediction models for gas turbine blade design.
Experimental data and model for the turbulent boundary layer on a convex, curved surface
NASA Technical Reports Server (NTRS)
Gillis, J. C.; Johnson, J. P.; Moffat, R. J.; Kays, W. M.
1981-01-01
Experiments were performed to determine how boundary layer turbulence is affected by strong convex curvature. The data gathered on the behavior of the Reynolds stress suggested the formulation of a simple turbulence model. Data were taken on two separate facilities. Both rigs had flow from a flat surface, over a convex surface with 90 deg of turning and then onto a flat recovery surface. The geometry was adjusted so that, for both rigs, the pressure gradient along the test surface was zero. Two experiments were performed at delta/R approximately 0.10, and one at weaker curvature with delta/R approximately 0.05. Results show that after a sudden introduction of curvature the shear stress in the outer part of the boundary layer is sharply diminished and is even slightly negative near the edge. The wall shear also drops off quickly downstream. When the surface suddenly becomes flat again, the wall shear and shear stress profiles recover very slowly towards flat wall conditions. A simple turbulence model, which was based on the theory that the Prandtl mixing length in the outer layer should scale on the velocity gradient layer, was shown to account for the slow recovery.
Advanced Face Gear Surface Durability Evaluations
NASA Technical Reports Server (NTRS)
Lewicki, David G.; Heath, Gregory F.
2016-01-01
The surface durability life of helical face gears and isotropic super-finished (ISF) face gears was investigated. Experimental fatigue tests were performed at the NASA Glenn Research Center. Endurance tests were performed on 10 sets of helical face gears in mesh with tapered involute helical pinions, and 10 sets of ISF-enhanced straight face gears in mesh with tapered involute spur pinions. The results were compared to previous tests on straight face gears. The life of the ISF configuration was slightly less than that of previous tests on straight face gears. The life of the ISF configuration was slightly greater than that of the helical configuration.
Smart, passive sun facing surfaces
Hively, L.M.
1996-04-30
An article adapted for selectively utilizing solar radiation comprises an absorptive surface and a reflective surface, the absorptive surface and the reflective surface oriented to absorb solar radiation when the sun is in a relatively low position, and to reflect solar radiation when the sun is in a relatively high position. 17 figs.
Smart, passive sun facing surfaces
Hively, Lee M.
1996-01-01
An article adapted for selectively utilizing solar radiation comprises an absorptive surface and a reflective surface, the absorptive surface and the reflective surface oriented to absorb solar radiation when the sun is in a relatively low position, and to reflect solar radiation when the sun is in a relatively high position.
EyeSys corneal topography measurement applied to calibrated ellipsoidal convex surfaces.
Douthwaite, W A
1995-01-01
AIMS/BACKGROUND--This study was carried out to assess the accuracy of the EyeSys videokeratoscope by using convex ellipsoidal surfaces of known form. METHODS--PMMA convex ellipsoidal buttons were calibrated using Form Talysurf analysis which allowed subsequent calculation of the vertex radius and p value of the surface. The EyeSys videokeratoscope was used to examine the same ellipsoids. The tabular data provided by the instrument software were used to plot a graph of r2 versus y2 where r is the measured radius at y, the distance from the corneal point being measured to the surface vertex. The intercept on the ordinate of this graph gives the vertex radius and the slope the p value. The results arising from the Talysurf and the EyeSys techniques were compared. RESULTS--The EyeSys videokeratoscope gave readings for both vertex radius and p value that were higher than those of the Talysurf analysis. The vertex radius was around 0.1 mm greater. The p value results were similar by the two methods for p values around unity but the EyeSys results were higher and the discrepancy increased as the p value approached that of a paraboloid. CONCLUSIONS--Although the videokeratoscope may be useful in comparative studies of the cornea, there must be some doubt about the absolute values displayed. The disagreement is sufficiently large to suggest that the instrument may not be accurate enough for contact lens fitting purposes. PMID:7488595
NASA Technical Reports Server (NTRS)
Mottard, Elmo J.
1959-01-01
A hydrodynamic investigation was made in Langley tank no. 1 of a planing surface which was curved longitudinally in the shape of a circular arc with the center of curvature above the model and had a beam of inches and a radius of curvature of 20 beams. The planing surface had length-beam ratio of 9 and an angle of dead rise of 0 deg. Wetted length, resistance, and trimming moment were determined for values of load coefficient C(sub Delta) from -4.2 to 63.9 and values of speed coefficient C(sub V) from 6 to 25. The effects of convexity were to increase the wetted length-beam ratio (for a given lift), to decrease the lift-drag ratio, to move the center of pressure forward, and ta increase the trim for maximum lift-drag ratio as compared with values for a flat surface. The effects were greatest at low trims and large drafts. The maximum negative lift coefficient C(sub L,b) obtainable with a ratio of the radius of curvature to the beam of 20 was -0.02. The effects of camber were greater in magnitude for convexity than for the same amount of concavity.
NASA Astrophysics Data System (ADS)
Zhou, Annan; Zhang, Yue
2015-05-01
An adaptive substepping explicit integration scheme with a novel loading-unloading decision method is developed here for the non-isothermal unified hardening (UH) model. The non-isothermal UH model includes a convex subloading surface in the - plane and a nonconvex subloading surface in the - plane. Because of the convex/nonconvex subloading surfaces, the conventional loading-unloading decision method used in stress integration schemes may lead to incorrect elasticity/elastoplasticity judgements. In addition, the conventional loading-unloading decision method is unable to determine the division point that separates the elastic segment from the elastoplastic segment. A simple but robust method, the double cosine (DC) method, is proposed in this paper to solve loading-unloading decision problems. The proposed DC method is then embedded into an adaptive substepping explicit integration scheme to implement the non-isothermal UH model. The accuracy and efficiency of the DC method are discussed by comparing the method with the conventional loading-unloading decision method (the CV method) and the root-finding loading-unloading decision method (the RF method). The performance of the proposed scheme with the DC method is also discussed.
Fabrication of micro-lens array on convex surface by meaning of micro-milling
NASA Astrophysics Data System (ADS)
Zhang, Peng; Du, Yunlong; Wang, Bo; Shan, Debin
2014-08-01
In order to develop the application of the micro-milling technology, and to fabricate ultra-precision optical surface with complex microstructure, in this paper, the primary experimental research on micro-milling complex microstructure array is carried out. A complex microstructure array surface with vary parameters is designed, and the mathematic model of the surface is set up and simulated. For the fabrication of the designed microstructure array surface, a micro three-axis ultra-precision milling machine tool is developed, aerostatic guideway drove directly by linear motor is adopted in order to guarantee the enough stiffness of the machine, and novel numerical control strategy with linear encoders of 5nm resolution used as the feedback of the control system is employed to ensure the extremely high motion control accuracy. With the help of CAD/CAM technology, convex micro lens array on convex spherical surface with different scales on material of polyvinyl chloride (PVC) and pure copper is fabricated using micro tungsten carbide ball end milling tool based on the ultra-precision micro-milling machine. Excellent nanometer-level micro-movement performance of the axis is proved by motion control experiment. The fabrication is nearly as the same as the design, the characteristic scale of the microstructure is less than 200μm and the accuracy is better than 1μm. It prove that ultra-precision micro-milling technology based on micro ultra-precision machine tool is a suitable and optional method for micro manufacture of microstructure array surface on different kinds of materials, and with the development of micro milling cutter, ultraprecision micro-milling complex microstructure surface will be achieved in future.
A combination of concave/convex surfaces for field-enhancement optimization: the indented nanocone.
García-Etxarri, Aitzol; Apell, Peter; Käll, Mikael; Aizpurua, Javier
2012-11-05
We introduce a design strategy to maximize the Near Field (NF) enhancement near plasmonic antennas. We start by identifying and studying the basic electromagnetic effects that contribute to the electric near field enhancement. Next, we show how the concatenation of a convex and a concave surface allows merging all the effects on a single, continuous nanoantenna. As an example of this NF maximization strategy, we engineer a nanostructure, the indented nanocone. This structure, combines all the studied NF maximization effects with a synergistic boost provided by a Fano-like interference effect activated by the presence of the concave surface. As a result, the antenna exhibits a NF amplitude enhancement of ~ 800, which transforms into ~1600 when coupled to a perfect metallic surface. This strong enhancement makes the proposed structure a robust candidate to be used in field enhancement based technologies. Further elaborations of the concept may produce even larger and more effective enhancements.
Streamwise Vortices on the Convex Surfaces of Circular Cylinders and Turbomachinery Blading
NASA Technical Reports Server (NTRS)
Gostelow, Paul
2010-01-01
In assessing the results please recall that the Mach number regimes and model geometries differ considerably. Selection of the radius of curvature at the 10% chord location is consistent but arbitrary, although it does seem representative for most blades and gives a good fit for the results. Measured spanwise wavelengths of the periodic vortex arrays on blading are predicted well by the Kestin and Wood theory. If this behavior is at all common it could have implications for turbine aerodynamic and blade cooling design. The outcome is to establish that organized streamwise vorticity may occur more frequently on convex surfaces, such as turbine blade suction surfaces, than hitherto appreciated. Investigations and predictions of flow behavior should be extended to encompass that possibility.
NASA Astrophysics Data System (ADS)
Kibar, Ali
2017-02-01
Experiments and numerical simulations were carried out to examine the vertical impingement a round liquid jet on the edges of horizontal convex surfaces that were either superhydrophobic or hydrophobic. The experiments examine the effects on the flow behaviour of curvature, wettability, inertia of the jet, and the impingement rate. Three copper pipes with outer diameters of 15, 22, and 35 mm were investigated. The pipes were wrapped with a piece of a Brassica oleracea leaf or a smooth Teflon sheet, which have apparent contact angles of 160° and 113°. The Reynolds number ranged from 1000 to 4500, and the impingement rates of the liquid jets were varied. Numerical results show good agreement with the experimental results for explaining flow and provide detailed information about the impingement on the surfaces. The liquid jet reflected off the superhydrophobic surfaces for all conditions. However, the jet reflected or deflected off the hydrophobic surface, depending on the inertia of the jet, the curvature of the surface, and the impingement rate. The results suggest that pressure is not the main reason for the bending of the jet around the curved hydrophobic surface.
Laser differential confocal ultra-large radius measurement for convex spherical surface.
Li, Zhigang; Qiu, Lirong; Zhao, Weiqian; Yang, Shuai
2016-08-22
A new laser differential confocal ultra-large radius measurement (LDCRM) method is proposed for high-precision measurement of ultra-large radii. Based on the property that the zero point of a differential confocal axial intensity curve precisely corresponds to the focus points of focusing beam, LDCRM measures the vertex positions of the test lens and the last optical surface of objective lens to obtain position difference L_{1}, and then measures the vertex positions of the reflector and the last optical surface of objective lens to obtain the position difference L_{2}, finally uses the measured L_{1} and L_{2} to calculate the radius of test lens. This method does not require the identification of confocal position. Preliminary experimental results and theoretical analyses indicate that the relative uncertainty is 0.03% for a convex spherical lens with a radius of approximately 20 m. LDCRM provides a novel approach for high-precision ultra-large radius measurement.
Fiber coupler end face wavefront surface metrology
NASA Astrophysics Data System (ADS)
Compertore, David C.; Ignatovich, Filipp V.; Marcus, Michael A.
2015-09-01
Despite significant technological advances in the field of fiber optic communications, one area remains surprisingly `low-tech': fiber termination. In many instances it involves manual labor and subjective visual inspection. At the same time, high quality fiber connections are one of the most critical parameters in constructing an efficient communication link. The shape and finish of the fiber end faces determines the efficiency of a connection comprised of coupled fiber end faces. The importance of fiber end face quality becomes even more critical for fiber connection arrays and for in the field applications. In this article we propose and demonstrate a quantitative inspection method for the fiber connectors using reflected wavefront technology. The manufactured and polished fiber tip is illuminated by a collimated light from a microscope objective. The reflected light is collected by the objective and is directed to a Shack-Hartmann wavefront sensor. A set of lenses is used to create the image of the fiber tip on the surface of the sensor. The wavefront is analyzed by the sensor, and the measured parameters are used to obtain surface properties of the fiber tip, and estimate connection loss. For example, defocus components in the reflected light indicate the presence of bow in the fiber end face. This inspection method provides a contact-free approach for quantitative inspection of fiber end faces and for estimating the connection loss, and can potentially be integrated into a feedback system for automated inspection and polishing of fiber tips and fiber tip arrays.
NASA Astrophysics Data System (ADS)
Kupeev, Konstantin Y.; Wolfson, Haim J.
1995-08-01
Often objects which are not convex in the mathematical sense are treated as `perceptually convex'. We present an algorithm for recognition of the perceptual convexity of a 2D contour. We start by reducing the notion of `a contour is perceptually convex' to the notion of `a contour is Y-convex'. The latter reflects an absence of large concavities in the OY direction of an XOY frame. Then we represented a contour by a G-graph and modify the slowest descent-- the small leaf trimming procedure recently introduced for the estimation of shape similarity. We prove that executing the slowest descent dow to a G-graph consisting of 3 vertices allows us to detect large concavities in the OY direction. This allows us to recognize the perceptual convexity of an input contour.
NASA Astrophysics Data System (ADS)
Ono, Hiroaki; Ogawa, Akihiro; Yamasaki, Takahiro; Koshihara, Takahiro; Kodama, Toshifumi; Iizuka, Yukinori; Oshige, Takahiko
2016-09-01
Optical surface inspection of steel mill products such as pipes, plates and slabs usually has the problem of overdetection, which is caused by signals from harmless parts such as scale and surface texture. The authors propose a new inspection technique based on the experience that most harmful defects on these products have a concave or convex shape, whereas most harmless parts that might be overdetected have flat shapes. The proposed technique is called the `twin-illumination and subtraction technique'. In this technique, firstly, two images of the target area on a steel surface illuminated from the two sides are captured, respectively. A subtraction image is then calculated from these images. Comparing the images illuminated from the different sides, the images from concave or convex defects look different due to their different shadows, while images from harmless flat parts look the same because illumination does not cause any shadow. As a result, two images with the same appearances from a harmless part are canceled by subtraction, and two images with different appearances from a concave or convex defect remain even after subtraction. Finally, it is possible to detect only concave or convex defects without overdetecting flat patterns. In this manuscript, first, we explain the proposed technique and confirmation experiments in the laboratory. We also explain a new optical inspection system based on the concept described above and its application to moving hot pipes in a steel manufacturing plant to prove the effectiveness of the technique. We concluded that the inspection system has sufficient performance for use as a practical system.
Biwasaka, Hitoshi; Sato, Kei; Aoki, Yasuhiro; Kato, Hideaki; Maeno, Yoshitaka; Tanijiri, Toyohisa; Fujita, Sachiko; Dewa, Koji
2013-09-01
Three dimensional pubic bone images were analyzed to quantify some age-dependent morphological changes of the symphyseal faces of contemporary Japanese residents. The images were synthesized from 145 bone specimens with 3D measuring device. Phases of Suchey-Brooks system were determined on the 3D pubic symphyseal images without discrepancy from those carried out on the real bones because of the high fidelity. Subsequently, mean curvatures of the pubic symphyseal faces to examine concavo-convex condition of the surfaces were analyzed on the 3D images. Average values of absolute mean curvatures of phase 1 and 2 groups were higher than those of phase 3-6 ones, whereas the values were approximately constant over phase 3 presumably reflecting the inactivation of pubic faces over phase 3. Ratio of the concave areas increased gradually with progressing phase or age classes, although convex areas were predominant in every phase.
[3-D endocardial surface modelling based on the convex hull algorithm].
Lu, Ying; Xi, Ri-hui; Shen, Hai-dong; Ye, You-li; Zhang, Yong
2006-11-01
In this paper, a method based on the convex hull algorithm is presented for extracting modelling data from the locations of catheter electrodes within a cardiac chamber, so as to create a 3-D model of the heart chamber during diastole and to obtain a good result in the 3-D reconstruction of the chamber based on VTK.
NASA Astrophysics Data System (ADS)
Mahata, Paritosh; Das, Sovan Lal
2014-12-01
Adsorption of proteins on membrane surfaces plays an important role in cell biological processes. In this work, we develop a two-dimensional fluid model for proteins. The protein molecules have been modeled as two-dimensional convex and soft particles. The Lennard-Jones potential for circular particles and Kihara (12,6) potential for elliptical particles with hard core have been used to model pairwise intermolecular interactions. The equation of state of the fluid model has been derived using Weeks-Chandler-Andersen decomposition and it involves three parameters, an attraction, a repulsion, and a size parameter, which depend on the shape and core size of the molecules. For validation of the model, a two-dimensional molecular dynamics simulation has been performed. Finally, the model has been applied to study the adsorption of proteins on a flat membrane. In comparison with the existing model of hard and convex particles for protein adsorption, our model predicts a higher packing fraction for the adsorption equilibria. Although the present work is based on Lennard-Jones-type interaction, it can be extended for other specific soft interactions between convex molecules. Thus the model has general applicability for any other two-dimensional adsorption systems of molecules with soft interaction.
Mehrotra, Sanjay; Papp, Dávid
2014-01-01
We present and analyze a central cutting surface algorithm for general semi-infinite convex optimization problems and use it to develop a novel algorithm for distributionally robust optimization problems in which the uncertainty set consists of probability distributions with given bounds on their moments. Moments of arbitrary order, as well as nonpolynomial moments, can be included in the formulation. We show that this gives rise to a hierarchy of optimization problems with decreasing levels of risk-aversion, with classic robust optimization at one end of the spectrum and stochastic programming at the other. Although our primary motivation is to solve distributionally robustmore » optimization problems with moment uncertainty, the cutting surface method for general semi-infinite convex programs is also of independent interest. The proposed method is applicable to problems with nondifferentiable semi-infinite constraints indexed by an infinite dimensional index set. Examples comparing the cutting surface algorithm to the central cutting plane algorithm of Kortanek and No demonstrate the potential of our algorithm even in the solution of traditional semi-infinite convex programming problems, whose constraints are differentiable, and are indexed by an index set of low dimension. After the rate of convergence analysis of the cutting surface algorithm, we extend the authors' moment matching scenario generation algorithm to a probabilistic algorithm that finds optimal probability distributions subject to moment constraints. The combination of this distribution optimization method and the central cutting surface algorithm yields a solution to a family of distributionally robust optimization problems that are considerably more general than the ones proposed to date.« less
Mehrotra, Sanjay; Papp, Dávid
2014-01-01
We present and analyze a central cutting surface algorithm for general semi-infinite convex optimization problems and use it to develop a novel algorithm for distributionally robust optimization problems in which the uncertainty set consists of probability distributions with given bounds on their moments. Moments of arbitrary order, as well as nonpolynomial moments, can be included in the formulation. We show that this gives rise to a hierarchy of optimization problems with decreasing levels of risk-aversion, with classic robust optimization at one end of the spectrum and stochastic programming at the other. Although our primary motivation is to solve distributionally robust optimization problems with moment uncertainty, the cutting surface method for general semi-infinite convex programs is also of independent interest. The proposed method is applicable to problems with nondifferentiable semi-infinite constraints indexed by an infinite dimensional index set. Examples comparing the cutting surface algorithm to the central cutting plane algorithm of Kortanek and No demonstrate the potential of our algorithm even in the solution of traditional semi-infinite convex programming problems, whose constraints are differentiable, and are indexed by an index set of low dimension. After the rate of convergence analysis of the cutting surface algorithm, we extend the authors' moment matching scenario generation algorithm to a probabilistic algorithm that finds optimal probability distributions subject to moment constraints. The combination of this distribution optimization method and the central cutting surface algorithm yields a solution to a family of distributionally robust optimization problems that are considerably more general than the ones proposed to date.
Baker, Paul A; Thompson, Raymond G; Catledge, Shane A
2016-03-01
Using microwave-plasma Chemical Vapor Deposition (CVD), a 3-micron thick nanostructured-diamond (NSD) layer was deposited onto polished, convex and concave components that were machined from Ti-6Al-4V alloy. These components had the same radius of curvature, 25.4mm. Wear testing of the surfaces was performed by rotating articulation of the diamond-deposited surfaces (diamond-on-diamond) with a load of 225N for a total of 5 million cycles in bovine serum resulting in polishing of the diamond surface and formation of very shallow, linear wear grooves of less than 50nm depth. The two diamond surfaces remained adhered to the components and polished each other to an average surface roughness that was reduced by as much as a factor of 80 for the most polished region located at the center of the condyle. Imaging of the surfaces showed that the initial wearing-in phase of diamond was only beginning at the end of the 5 million cycles. Atomic force microscopy, scanning electron microscopy, Raman spectroscopy, and surface profilometry were used to characterize the surfaces and verify that the diamond remained intact and uniform over the surface, thereby protecting the underlying metal. These wear simulation results show that diamond deposition on Ti alloy has potential application for joint replacement devices with improved longevity over existing devices made of cobalt chrome and ultra-high molecular weight polyethylene (UHMWPE).
Baker, Paul A.; Thompson, Raymond G.; Catledge, Shane A.
2015-01-01
Using microwave-plasma Chemical Vapor Deposition (CVD), a 3-micron thick nanostructured-diamond (NSD) layer was deposited onto polished, convex and concave components that were machined from Ti-6Al-4V alloy. These components had the same radius of curvature, 25.4mm. Wear testing of the surfaces was performed by rotating articulation of the diamond-deposited surfaces (diamond-on-diamond) with a load of 225N for a total of 5 million cycles in bovine serum resulting in polishing of the diamond surface and formation of very shallow, linear wear grooves of less than 50nm depth. The two diamond surfaces remained adhered to the components and polished each other to an average surface roughness that was reduced by as much as a factor of 80 for the most polished region located at the center of the condyle. Imaging of the surfaces showed that the initial wearing-in phase of diamond was only beginning at the end of the 5 million cycles. Atomic force microscopy, scanning electron microscopy, Raman spectroscopy, and surface profilometry were used to characterize the surfaces and verify that the diamond remained intact and uniform over the surface, thereby protecting the underlying metal. These wear simulation results show that diamond deposition on Ti alloy has potential application for joint replacement devices with improved longevity over existing devices made of cobalt chrome and ultra-high molecular weight polyethylene (UHMWPE). PMID:26989457
ERIC Educational Resources Information Center
Alexandrov, V. A.
1998-01-01
Discusses some questions connected with Cauchy's theorem which states that two convex closed polyhedral surfaces whose corresponding faces are congruent and whose faces adjoin each other in the same way are congruent. Describes how to construct a flexible polyhedron. (ASK)
Sadeghi, Mohammad Hossein; Hassanpour, Hamed
2014-01-01
Advancement in machining technology of curved surfaces for various engineering applications is increasing. Various methodologies and computer tools have been developed by the manufacturers to improve efficiency of freeform surface machining. Selection of the right sets of cutter path strategies and appropriate cutting conditions is extremely important in ensuring high productivity rate, meeting the better quality level, and lower cutting forces. In this paper, cutting force as a new decision criterion for the best selection of tool paths on convex surfaces is presented. Therefore, this work aims at studying and analyzing different finishing strategies to assess their influence on surface texture, cutting forces, and machining time. Design and analysis of experiments are performed by means of Taguchi technique and analysis of variance. In addition, the significant parameters affecting the cutting force in each strategy are introduced. Machining strategies employed include raster, 3D-offset, radial, and spiral. The cutting parameters were feed rate, cutting speed, and step over. The experiments were carried out on low curvature convex surfaces of stainless steel 1.4903. The conclusion is that radial strategy provokes the best surface texture and the lowest cutting forces and spiral strategy signifies the worst surface texture and the highest cutting forces. PMID:24701163
Shajari, Shaghayegh; Sadeghi, Mohammad Hossein; Hassanpour, Hamed
2014-01-01
Advancement in machining technology of curved surfaces for various engineering applications is increasing. Various methodologies and computer tools have been developed by the manufacturers to improve efficiency of freeform surface machining. Selection of the right sets of cutter path strategies and appropriate cutting conditions is extremely important in ensuring high productivity rate, meeting the better quality level, and lower cutting forces. In this paper, cutting force as a new decision criterion for the best selection of tool paths on convex surfaces is presented. Therefore, this work aims at studying and analyzing different finishing strategies to assess their influence on surface texture, cutting forces, and machining time. Design and analysis of experiments are performed by means of Taguchi technique and analysis of variance. In addition, the significant parameters affecting the cutting force in each strategy are introduced. Machining strategies employed include raster, 3D-offset, radial, and spiral. The cutting parameters were feed rate, cutting speed, and step over. The experiments were carried out on low curvature convex surfaces of stainless steel 1.4903. The conclusion is that radial strategy provokes the best surface texture and the lowest cutting forces and spiral strategy signifies the worst surface texture and the highest cutting forces.
Martínez-Oliván, Juan; Arias-Moreno, Xabier; Velazquez-Campoy, Adrián; Millet, Oscar; Sancho, Javier
2014-03-01
The molecular mechanism of lipoprotein binding by the low-density lipoprotein (LDL) receptor (LDLR) is poorly understood, one reason being that structures of lipoprotein-receptor complexes are not available. LDLR uses calcium-binding repeats (LRs) to interact with apolipoprotein B and apolipoprotein E (ApoB and ApoE). We have used NMR and SPR to characterize the complexes formed by LR5 and three peptides encompassing the putative binding regions of ApoB (site A and site B) and ApoE. The three peptides bind at the hydrophilic convex face of LR5, forming complexes that are weakened at low [Ca(2+) ] and low pH. Thus, endosomal conditions favour dissociation of LDLR/lipoprotein complexes regardless of whether active displacement of bound lipoproteins by the β-propeller in LDLR takes place. The multiple ApoE copies in β very low density lipoproteins (β-VLDLs), and the presence of two competent binding sites (A and B) in LDLs, suggest that LDLR chelates lipoproteins and enhances complex affinity by using more than one LR.
NASA Astrophysics Data System (ADS)
Komov, A. T.; Varava, A. V.; Zakharenkov, A. V.; Dedov, A. V.; Boltenko, E. A.; Agishev, B. Y.
2016-10-01
The work is a continuation of the experimental studies on the enhancement of heat transfer in the fuel assembly on the experimental stand in National Research University "Moscow Power Engineering Institute". The description of the experimental setup, construction and main geometrical parameters of intensifier are presented. The new experimental data on the pressure loss and heat transfer coefficient using an edge enhancer - twisted wire single-phase convection mode are presented. In the research, the range mode parameters and geometric characteristics of the intensifier were extended. The relation of the coefficients of hydraulic resistance and the Nusselt number of steps twist twisted wire was found, the effect of the ribs on the heat transfer coefficient was shown. It is found that for any twist pitch ranging from 20 to 100 mm corresponds to a maximum heat transfer rib height H = 0,35. An increase in the heat transfer coefficient in the convex heating surface was experimentally obtained.
NASA Astrophysics Data System (ADS)
Chernyaev, Yu. A.
2016-10-01
The gradient projection method and Newton's method are generalized to the case of nonconvex constraint sets representing the set-theoretic intersection of a spherical surface with a convex closed set. Necessary extremum conditions are examined, and the convergence of the methods is analyzed.
Contents: Introduction The dual cone of C (psi sub 1,..., psi sub n) Extreme rays The cone dual to an intersection of generalized convexity cones... Generalized difference quotients and multivariate convexity Miscellaneous applications of generalized convexity.
Kong, Junhua; Wei, Yuefan; Zhao, Chenyang; Toh, Meng Yew; Yee, Wu Aik; Zhou, Dan; Phua, Si Lei; Dong, Yuliang; Lu, Xuehong
2014-04-21
In this work, bundles of rutile TiO₂ nanoneedles/nanorods are hydrothermally grown on carbon nanofibers (CNFs), forming free-standing mats consisting of three dimensional hierarchical nanostructures (TiO₂-on-CNFs). Morphologies and structures of the TiO₂-on-CNFs are studied using a field-emission scanning electron microscope (FESEM), transmission electron microscope (TEM), X-ray diffractometer (XRD) and thermogravimetric analyzer (TGA). Their electrochemical properties as electrodes in lithium ion batteries (LIBs) are investigated and correlated with the morphologies and structures. It is shown that the lateral size of the TiO₂ nanoneedles/nanorods ranges from a few nanometers to tens of nanometers, and increases with the hydrothermal temperature. Small interspaces are observed between individual nanoneedles/nanorods, which are due to the diverging arrangement of nanoneedles/nanorods induced by growing on the convex surface of nanocylinders. It is found that the growth process can be divided into two stages: initial growth on the CNF surface and further growth upon re-nucleation on the TiO₂ bundles formed in the initial growth stage. In order to achieve good electrochemical performance in LIBs, the size of the TiO₂ nanostructures needs to be small enough to ensure complete alloying and fast charge transport, while the further growth stage has to be avoided to realize direct attachment of TiO₂ nanostructures on the CNFs, facilitating electron transport. The sample obtained after hydrothermal treatment at 130 °C for 2 h (TiO₂-130-2) shows the above features and hence exhibits the best cyclability and rate capacity among all samples; the cyclability and rate capacity of TiO₂-130-2 are also superior to those of other rutile TiO₂-based LIB electrodes.
NASA Technical Reports Server (NTRS)
Syed, H. H.; Volakis, John L.
1992-01-01
Asymptotic/high-frequency solutions are developed for analyzing the non-specular scattering mechanisms associated with coated convex surfaces and edges simulated by approximate boundary conditions. In particular, the standard impedance boundary conditions (SIBC's) and the second order generalized impedance boundary conditions (GIBC's) are employed for a characterization of the edge diffraction, creeping wave, and surface diffracted wave contributions. To study the creeping wave and surface diffracted wave mechanisms, rigorous UTD (uniform geometrical theory of diffraction) diffraction coefficients are developed for a convex coated cylinder simulated with SIBC's and GIBC's. The ray solutions obtained remain valid in the transition region and reduce uniformly to those in the deep lit and shadow regions. A uniform asymptotic solution is also presented for observations in the close vicinity of the cylinder. The diffraction coefficient for a convex cylinder are obtained via a generalization of the corresponding ones of the circular cylinder. To validate the asymptotic/high-frequency solution, integral equations are derived for both E and H-polarization and solved numerically using the method of moments. Results are presented for a single and three layered coated convex cylinder. Some insights are also provided on the accuracy of the employed GIBC's versus SIBC's for application to curved surfaces. To characterize the scattering by impedance wedges illuminated at skew incidence, diffraction coefficients are derived from an approximate solution of the governing functional difference equations. This solution exactly recovers the known ones for an impedance half plane or an arbitrary wedge at normal incidence, and to validate it for other wedge angles, a moment method code was used. Finally, to test the usefulness of the approximate skew incidence impedance wedge diffraction coefficient for three dimensional structures, equivalent currents are derived in the context of the
ERIC Educational Resources Information Center
Scott, Paul
2006-01-01
A "convex" polygon is one with no re-entrant angles. Alternatively one can use the standard convexity definition, asserting that for any two points of the convex polygon, the line segment joining them is contained completely within the polygon. In this article, the author provides a solution to a problem involving convex lattice polygons.
RDS-21 Face-Gear Surface Durability Tests
NASA Technical Reports Server (NTRS)
Lewicki, David G.; Heath, Gregory F.; Filler, Robert R.; Slaughter, Stephen C.; Fetty, Jason
2007-01-01
Experimental fatigue tests were performed to determine the surface durability life of a face gear in mesh with a tapered spur involute pinion. Twenty-four sets of gears were tested at three load levels: 7200, 8185, and 9075 lb-in face gear torque, and 2190 to 3280 rpm face gear speed. The gears were carburized and ground, shot-peened and vibro-honed, and made from VIM-VAR Pyrowear 53 steel per AMS 6308. The tests produced 17 gear tooth spalling failures and 7 suspensions. For all the failed sets, spalling occurred on at least one tooth of all the pinions. In some cases, the spalling initiated a crack in the pinion teeth which progressed to tooth fracture. Also, spalling occurred on some face gear teeth. The AGMA endurance allowable stress for a tapered spur involute pinion in mesh with a face gear was determined to be 275 ksi for the material tested. For the application of a tapered spur involute pinion in mesh with a face gear, proper face gear shim controlled the desired gear tooth contact pattern while proper pinion shim was an effective way of adjusting backlash without severely affecting the contact pattern.
Uniformly convex and strictly convex Orlicz spaces
NASA Astrophysics Data System (ADS)
Masta, Al Azhary
2016-02-01
In this paper we define the new norm of Orlicz spaces on ℝn through a multiplication operator on an old Orlicz spaces. We obtain some necessary and sufficient conditions that the new norm to be a uniformly convex and strictly convex spaces.
Free surface stability of liquid metal plasma facing components
NASA Astrophysics Data System (ADS)
Fiflis, P.; Christenson, M.; Szott, M.; Kalathiparambil, K.; Ruzic, D. N.
2016-10-01
An outstanding concern raised over the implementation of liquid metal plasma facing components in fusion reactors is the potential for ejection of liquid metal into the fusion plasma. The influences of Rayleigh-Taylor-like and Kelvin-Helmholtz-like instabilities were experimentally observed and quantified on the thermoelectric-driven liquid-metal plasma-facing structures (TELS) chamber at the University of Illinois at Urbana-Champaign. To probe the stability boundary, plasma currents and velocities were first characterized with a flush probe array. Subsequent observations of lithium ejection under exposure in the TELS chamber exhibited a departure from previous theory based on linear perturbation analysis. The stability boundary is mapped experimentally over the range of plasma impulses of which TELS is capable to deliver, and a new theory based on a modified set of the shallow water equations is presented which accurately predicts the stability of the lithium surface under plasma exposure.
Facing extremes: archaeal surface-layer (glyco)proteins.
Eichler, Jerry
2003-12-01
Archaea are best known in their capacities as extremophiles, i.e. micro-organisms able to thrive in some of the most drastic environments on Earth. The protein-based surface layer that envelopes many archaeal strains must thus correctly assemble and maintain its structural integrity in the face of the physical challenges associated with, for instance, life in high salinity, at elevated temperatures or in acidic surroundings. Study of archaeal surface-layer (glyco)proteins has thus offered insight into the strategies employed by these proteins to survive direct contact with extreme environments, yet has also served to elucidate other aspects of archaeal protein biosynthesis, including glycosylation, lipid modification and protein export. In this mini-review, recent advances in the study of archaeal surface-layer (glyco)proteins are discussed.
Understanding plasma facing surfaces in magnetic fusion devices
NASA Astrophysics Data System (ADS)
Skinner, C. H.; Capece, A. M.; Koel, B. E.; Roszell, J. P.
2013-09-01
The plasma-material interface is recognized to be the most critical challenge in the realization of fusion energy. Liquid metals offer a self-healing, renewable interface that bypasses present issues with solid, neutron-damaged materials such as tungsten. Lithium in particular has dramatically improved plasma performance in many tokamaks through a reduction of hydrogen recycling. However the detailed chemical composition and properties of the top few nm that interact with the plasma are often obscure. Surface analysis has proven to be a key tool in semiconductor processing and a new laboratory has been established at PPPL to apply surface science techniques to plasma facing materials. We have shown that lithiated PFC surfaces in tokamaks will likely be oxidized during the intershot interval. Present work is focused on deuterium uptake of solid and liquid metals for plasma density control and sub-micron scale wetting of liquid metals on their substrates. The long-term goal is to provide a material database for designing liquid metal plasma facing components for tokamaks such as National Spherical Torus Experiment-Upgrade (NSTX-U) and Fusion Nuclear Science Facility-ST (FNSF-ST). Support was provided through DOE-PPPL Contract Number is DE-AC02-09CH11466.
NASA Technical Reports Server (NTRS)
Tennille, Geoffrey M.; Howser, Lona M.
1993-01-01
The use of the CONVEX computers that are an integral part of the Supercomputing Network Subsystems (SNS) of the Central Scientific Computing Complex of LaRC is briefly described. Features of the CONVEX computers that are significantly different than the CRAY supercomputers are covered, including: FORTRAN, C, architecture of the CONVEX computers, the CONVEX environment, batch job submittal, debugging, performance analysis, utilities unique to CONVEX, and documentation. This revision reflects the addition of the Applications Compiler and X-based debugger, CXdb. The document id intended for all CONVEX users as a ready reference to frequently asked questions and to more detailed information contained with the vendor manuals. It is appropriate for both the novice and the experienced user.
Supratentorial high convexity intradural extramedullary cavernous angioma: case report.
Sakakibara, Yohtaro; Matsumori, Takashi; Taguchi, Yoshio; Koizumi, Hirotaka
2010-01-01
A 59-year-old man presented with a 2-month history of numbness in the lower left side of the face and upper left extremity. Axial T(1)-weighted magnetic resonance imaging showed a wedge-shaped mass measuring 3 x 2.5 cm in the right frontoparietal high convexity area that was heterogeneously enhanced after administration of gadolinium-diethylenetriaminepenta-acetic acid. Right frontoparietal craniotomy was performed and a bluish soft mass was found under the arachnoid membrane. The mass could be dissected free from the arachnoid membrane and the brain surface. Histological examination revealed the typical findings of cavernous angioma. Cavernous angioma should be considered in the differential diagnosis of supratentorial high convexity intradural extramedullary tumor, especially appearing as a heterogeneously enhanced mass adjacent to the brain parenchyma causing mass effect.
Formation of surface nanodroplets facing a structured microchannel wall.
Yu, Haitao; Maheshwari, Shantanu; Zhu, Jiuyang; Lohse, Detlef; Zhang, Xuehua
2017-04-11
Surface nanodroplets are important units for lab-on-a-chip devices, compartmentalised catalytic reactions, high-resolution near-field imaging, and many others. Solvent exchange is a simple solution-based bottom-up approach for producing surface nanodroplets by displacing a good solvent of the droplet liquid by a poor one in a narrow channel in the laminar regime. The droplet size is controlled by the solution composition and the flow conditions during the solvent exchange. In this paper, we investigated the effects of local microfluidic structures on the formation of surface nanodroplets. The microstructures consist of a microgap with a well-defined geometry, embedded on the opposite microchannel wall, facing the substrate where nucleation takes place. For a given channel height, the dimensionless control parameters were the Peclet number of the flow, the ratio between the gap height and the channel height, and the aspect ratio between the gap length and the channel height. We found and explained three prominent features in the surface nanodroplet distribution at the surface opposite to the microgap: (i) enhanced volume of the droplets; (ii) asymmetry as compared to the location of the gap in the spatial droplet distribution with increasing Pe; (iii) reduced exponent of the effective scaling law of the droplet size with Pe. The droplet size also varied with the aspect and height ratios of the microgap at a given Pe value. Our simulations of the profile of oversaturation in the channel reveal that the droplet size distribution may be attributed to the local flow patterns induced by the gap. Finally, in a tapered microchannel, a gradient of surface nanodroplet size was obtained. Our work shows the potential for controlling nanodroplet size and spatial organization on a homogeneous surface in a bottom-up approach by simple microfluidic structures.
ERIC Educational Resources Information Center
Hodge, Jonathan K.; Marshall, Emily; Patterson, Geoff
2010-01-01
Convexity-based measures of shape compactness provide an effective way to identify irregularities in congressional district boundaries. A low convexity coefficient may suggest that a district has been gerrymandered, or it may simply reflect irregularities in the corresponding state boundary. Furthermore, the distribution of population within a…
Convex set and linear mixing model
NASA Technical Reports Server (NTRS)
Xu, P.; Greeley, R.
1993-01-01
A major goal of optical remote sensing is to determine surface compositions of the earth and other planetary objects. For assessment of composition, single pixels in multi-spectral images usually record a mixture of the signals from various materials within the corresponding surface area. In this report, we introduce a closed and bounded convex set as a mathematical model for linear mixing. This model has a clear geometric implication because the closed and bounded convex set is a natural generalization of a triangle in n-space. The endmembers are extreme points of the convex set. Every point in the convex closure of the endmembers is a linear mixture of those endmembers, which is exactly how linear mixing is defined. With this model, some general criteria for selecting endmembers could be described. This model can lead to a better understanding of linear mixing models.
More Realistic Face Model Surface Improves Relevance of Pediatric In-Vitro Aerosol Studies.
Amirav, Israel; Halamish, Asaf; Gorenberg, Miguel; Omar, Hamza; Newhouse, Michael T
2015-01-01
Various hard face models are commonly used to evaluate the efficiency of aerosol face masks. Softer more realistic "face" surface materials, like skin, deform upon mask application and should provide more relevant in-vitro tests. Studies that simultaneously take into consideration many of the factors characteristic of the in vivo face are lacking. These include airways, various application forces, comparison of various devices, comparison with a hard-surface model and use of a more representative model face based on large numbers of actual faces. To compare mask to "face" seal and aerosol delivery of two pediatric masks using a soft vs. a hard, appropriately representative, pediatric face model under various applied forces. Two identical face models and upper airways replicas were constructed, the only difference being the suppleness and compressibility of the surface layer of the "face." Integrity of the seal and aerosol delivery of two different masks [AeroChamber (AC) and SootherMask (SM)] were compared using a breath simulator, filter collection and realistic applied forces. The soft "face" significantly increased the delivery efficiency and the sealing characteristics of both masks. Aerosol delivery with the soft "face" was significantly greater for the SM compared to the AC (p< 0.01). No statistically significant difference between the two masks was observed with the hard "face." The material and pliability of the model "face" surface has a significant influence on both the seal and delivery efficiency of face masks. This finding should be taken into account during in-vitro aerosol studies.
Stereotype locally convex spaces
NASA Astrophysics Data System (ADS)
Akbarov, S. S.
2000-08-01
We give complete proofs of some previously announced results in the theory of stereotype (that is, reflexive in the sense of Pontryagin duality) locally convex spaces. These spaces have important applications in topological algebra and functional analysis.
Splitting Methods for Convex Clustering
Chi, Eric C.; Lange, Kenneth
2016-01-01
Clustering is a fundamental problem in many scientific applications. Standard methods such as k-means, Gaussian mixture models, and hierarchical clustering, however, are beset by local minima, which are sometimes drastically suboptimal. Recently introduced convex relaxations of k-means and hierarchical clustering shrink cluster centroids toward one another and ensure a unique global minimizer. In this work we present two splitting methods for solving the convex clustering problem. The first is an instance of the alternating direction method of multipliers (ADMM); the second is an instance of the alternating minimization algorithm (AMA). In contrast to previously considered algorithms, our ADMM and AMA formulations provide simple and unified frameworks for solving the convex clustering problem under the previously studied norms and open the door to potentially novel norms. We demonstrate the performance of our algorithm on both simulated and real data examples. While the differences between the two algorithms appear to be minor on the surface, complexity analysis and numerical experiments show AMA to be significantly more efficient. This article has supplemental materials available online. PMID:27087770
The importance of surface-based cues for face discrimination in non-human primates
Parr, Lisa A.; Taubert, Jessica
2011-01-01
Understanding how individual identity is processed from faces remains a complex problem. Contrast reversal, showing faces in photographic negative, impairs face recognition in humans and demonstrates the importance of surface-based information (shading and pigmentation) in face recognition. We tested the importance of contrast information for face encoding in chimpanzees and rhesus monkeys using a computerized face-matching task. Results showed that contrast reversal (positive to negative) selectively impaired face processing in these two species, although the impairment was greater for chimpanzees. Unlike chimpanzees, however, monkeys performed just as well matching negative to positive faces, suggesting that they retained some ability to extract identity information from negative faces. A control task showed that chimpanzees, but not rhesus monkeys, performed significantly better matching face parts compared with whole faces after a contrast reversal, suggesting that contrast reversal acts selectively on face processing, rather than general visual-processing mechanisms. These results confirm the importance of surface-based cues for face processing in chimpanzees and humans, while the results were less salient for rhesus monkeys. These findings make a significant contribution to understanding the evolution of cognitive specializations for face processing among primates, and suggest potential differences between monkeys and apes. PMID:21123266
Analysis of the skin surface and inner structure around pores on the face.
Mizukoshi, Koji; Takahashi, Kazuhiro
2014-02-01
Facial pores do not appear to close again in old skin. Therefore, the tissue structure around the pore has been speculated to keep the pore open. To elucidate the reason for pore enlargement, we examined the relationship between the skin surface and inner skin structural characteristics in the same regions especially around the pore. Samples of the skin surface were obtained from the cheek and examined using a laser image processor to obtain three-dimensional (3D) data. The inner structure of the skin was analyzed using in vivo confocal laser scanning microscopy (CLSM). The conspicuous pore not only had a concave structure but also a discontinuous convex structure on the skin surface surrounding the pore. Furthermore, CLSM image indicated that the skin inner structure developed a discontinuous dermal papilla structure and isotropic dermal fiber structure. There were structural changes in the skin surface around conspicuous pores, including not only a concave structure but also a convex structure with skin inner structure changing. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Berkovich, Iu A; Ziablova, N V; Erokhin, A N; Smolianina, S O; Krivobok, N M
2007-01-01
IBMP has developed a technology and unit for cultivating self-opening crops on a convex planting surface illuminated by light-emitting diodes mounted on an external concentric panel ("Hemisphere"). The unit has a structure of two-member clinostat with semispherical plant growth chamber with a 600-mm diameter and a speed of from 1 to 10 revo about each axis; water potential in the root supply system is maintained at 1.0 +/- 0.45 KPa. Having the data of 1200 measurements in the growth chamber, PAR latitude and meridian gradients were determined which did not exceed 0.7 micromol/(m2 x s x cm) in the work area and differed from the radial gradient by order and, therefore, had a negligible contribution to the axial organs' deviation from the radial directions during laboratory tests. Maximal centrifugal acceleration was equal to 10(-10) of the acceleration of gravity and did not impact the gravitropic crop reactions in the growth chamber. Five 5-day tests with semidwarf wheat Triticum aestivum L., cult. Lada were performed in the "Hemisphere" growth chamber turned at different angles relative to the gravity vector. In immobile growth chamber plants inclination from the vertical was a function of the angle between the PAR gradient and vector and the gravity vector at the site of each seed. Crop rotation at 3 revo about the horizontal axis did not produce noteworthy plant inclination suggesting neutralization of the plant geotropic reactions. In all tests about 80% of the plants formed the first leaf and about 20% reached the coleoptiles phase. Morphometric differences in the tests were insignificant. On a balance, the tests showed that prototype of space greenhouse "Hemisphere" is fit to run laboratory investigations of the plant gravitropic reactions in both static and dynamic conditions.
Effects of surface materials on polarimetric-thermal measurements: applications to face recognition.
Short, Nathaniel J; Yuffa, Alex J; Videen, Gorden; Hu, Shuowen
2016-07-01
Materials, such as cosmetics, applied to the face can severely inhibit biometric face-recognition systems operating in the visible spectrum. These products are typically made up of materials having different spectral properties and color pigmentation that distorts the perceived shape of the face. The surface of the face emits thermal radiation, due to the living tissue beneath the surface of the skin. The emissivity of skin is approximately 0.99; in comparison, oil- and plastic-based materials, commonly found in cosmetics and face paints, have an emissivity range of 0.9-0.95 in the long-wavelength infrared part of the spectrum. Due to these properties, all three are good thermal emitters and have little impact on the heat transferred from the face. Polarimetric-thermal imaging provides additional details of the face and is also dependent upon the thermal radiation from the face. In this paper, we provide a theoretical analysis on the thermal conductivity of various materials commonly applied to the face using a metallic sphere. Additionally, we observe the impact of environmental conditions on the strength of the polarimetric signature and the ability to recover geometric details. Finally, we show how these materials degrade the performance of traditional face-recognition methods and provide an approach to mitigating this effect using polarimetric-thermal imaging.
2010-12-02
evaluating the function ΘP (A) for any fixed A,P is equivalent to solving the so-called Quadratic Assignment Problem ( QAP ), and thus we can employ various...tractable linear programming, spectral, and SDP relaxations of QAP [40, 11, 33]. In particular we discuss recent work [14] on exploiting group...symmetry in SDP relaxations of QAP , which is useful for approximately computing elementary convex graph invariants in many interesting cases. Finally in
Thermal expansion compensator having an elastic conductive element bonded to two facing surfaces
NASA Technical Reports Server (NTRS)
Determan, William (Inventor); Matejczyk, Daniel Edward (Inventor)
2012-01-01
A thermal expansion compensator is provided and includes a first electrode structure having a first surface, a second electrode structure having a second surface facing the first surface and an elastic element bonded to the first and second surfaces and including a conductive element by which the first and second electrode structures electrically and/or thermally communicate, the conductive element having a length that is not substantially longer than a distance between the first and second surfaces.
Microscopic theory of electron absorption by plasma-facing surfaces
NASA Astrophysics Data System (ADS)
Bronold, F. X.; Fehske, H.
2017-01-01
We describe a method for calculating the probability with which the wall of a plasma absorbs an electron at low energy. The method, based on an invariant embedding principle, expresses the electron absorption probability as the probability for transmission through the wall’s long-range surface potential times the probability to stay inside the wall despite of internal backscattering. To illustrate the approach we apply it to a SiO2 surface. Besides emission of optical phonons inside the wall we take elastic scattering at imperfections of the plasma-wall interface into account and obtain absorption probabilities significantly less than unity in accordance with available electron-beam scattering data but in disagreement with the widely used perfect absorber model.
More Realistic Face Model Surface Improves Relevance of Pediatric In-Vitro Aerosol Studies
Amirav, Israel; Halamish, Asaf; Gorenberg, Miguel; Omar, Hamza; Newhouse, Michael T.
2015-01-01
Background Various hard face models are commonly used to evaluate the efficiency of aerosol face masks. Softer more realistic “face” surface materials, like skin, deform upon mask application and should provide more relevant in-vitro tests. Studies that simultaneously take into consideration many of the factors characteristic of the in vivo face are lacking. These include airways, various application forces, comparison of various devices, comparison with a hard-surface model and use of a more representative model face based on large numbers of actual faces. Aim To compare mask to “face” seal and aerosol delivery of two pediatric masks using a soft vs. a hard, appropriately representative, pediatric face model under various applied forces. Methods Two identical face models and upper airways replicas were constructed, the only difference being the suppleness and compressibility of the surface layer of the “face.” Integrity of the seal and aerosol delivery of two different masks [AeroChamber (AC) and SootherMask (SM)] were compared using a breath simulator, filter collection and realistic applied forces. Results The soft “face” significantly increased the delivery efficiency and the sealing characteristics of both masks. Aerosol delivery with the soft “face” was significantly greater for the SM compared to the AC (p< 0.01). No statistically significant difference between the two masks was observed with the hard “face.” Conclusions The material and pliability of the model “face” surface has a significant influence on both the seal and delivery efficiency of face masks. This finding should be taken into account during in-vitro aerosol studies. PMID:26090661
Surface Stereo Imager on Mars, Face-On
NASA Technical Reports Server (NTRS)
2008-01-01
This image is a view of NASA's Phoenix Mars Lander's Surface Stereo Imager (SSI) as seen by the lander's Robotic Arm Camera. This image was taken on the afternoon of the 116th Martian day, or sol, of the mission (September 22, 2008). The mast-mounted SSI, which provided the images used in the 360 degree panoramic view of Phoenix's landing site, is about 4 inches tall and 8 inches long. The two 'eyes' of the SSI seen in this image can take photos to create three-dimensional views of the landing site.
The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.
Surface reconstruction and graphene formation on face-to-face 6H-SiC at 2000 ^oC
NASA Astrophysics Data System (ADS)
Elmquist, Randolph E.; Real, Mariano; Bush, Brian G.; Shen, Tian; Stiles, Mark D.; Lass, Eric A.
2012-02-01
Improved epitaxial graphene films have been widely reported when the sublimation rate of Si is reduced by ambient Ar gas, vapor phase silane, or confined Si vapor. We describe graphene growth on (0001) 6H-SiC samples annealed ``face-to-face'' [1]; in our modified method the separation is limited only by the flatness of the surfaces. After annealing in 100 kPa Ar gas at 2000 ^oC for 300 s, atomic force microscopy (AFM) and electrostatic force microscopy (EFM) show graphene coverage is typically between one and a few layers. Samples without prior hydrogen etching undergo surface reconstruction in the graphitization process, resulting in atomically flat terraces with step bunching. Estimates of the sequestered carbon in the form of graphene are compared to calculated levels due to sublimation and diffusion rates where the sublimated gas is dominated by Si atoms below 2100 ^oC. The 2000 ^oC samples are contrasted against samples processed between 1700 ^oC and 1900 ^oC and transport results on large-scale graphene devices are presented.[4pt] [1] X.Z Yu, C.G. Hwang, C.M. Jozwiak, A. Kohl, A.K. Schmid and A. Lanzara, New synthesis method for the growth of epitaxial graphene, Journal of Electron Spectroscopy and Related Phenomena 184 (2011) 100-106.
Computing Surface Coordinates Of Face-Milled Spiral-Bevel Gear Teeth
NASA Technical Reports Server (NTRS)
Handschuh, Robert F.; Litvin, Faydor L.
1995-01-01
Surface coordinates of face-milled spiral-bevel gear teeth computed by method involving numerical solution of governing equations. Needed to generate mathematical models of tooth surfaces for use in finite-element analyses of stresses, strains, and vibrations in meshing spiral-bevel gears.
3D face recognition using simulated annealing and the surface interpenetration measure.
Queirolo, Chauã C; Silva, Luciano; Bellon, Olga R P; Segundo, Maurício Pamplona
2010-02-01
This paper presents a novel automatic framework to perform 3D face recognition. The proposed method uses a Simulated Annealing-based approach (SA) for range image registration with the Surface Interpenetration Measure (SIM), as similarity measure, in order to match two face images. The authentication score is obtained by combining the SIM values corresponding to the matching of four different face regions: circular and elliptical areas around the nose, forehead, and the entire face region. Then, a modified SA approach is proposed taking advantage of invariant face regions to better handle facial expressions. Comprehensive experiments were performed on the FRGC v2 database, the largest available database of 3D face images composed of 4,007 images with different facial expressions. The experiments simulated both verification and identification systems and the results compared to those reported by state-of-the-art works. By using all of the images in the database, a verification rate of 96.5 percent was achieved at a False Acceptance Rate (FAR) of 0.1 percent. In the identification scenario, a rank-one accuracy of 98.4 percent was achieved. To the best of our knowledge, this is the highest rank-one score ever achieved for the FRGC v2 database when compared to results published in the literature.
Bailey, T; Cowles, J
1987-02-01
A new characterization of the interior of the convex hull of a finite point set is given. An inclusion test based on this characterization is, on average, almost linear in the number of points times the dimensionality.
Computational redesign of the lipid-facing surface of the outer membrane protein OmpA.
Stapleton, James A; Whitehead, Timothy A; Nanda, Vikas
2015-08-04
Advances in computational design methods have made possible extensive engineering of soluble proteins, but designed β-barrel membrane proteins await improvements in our understanding of the sequence determinants of folding and stability. A subset of the amino acid residues of membrane proteins interact with the cell membrane, and the design rules that govern this lipid-facing surface are poorly understood. We applied a residue-level depth potential for β-barrel membrane proteins to the complete redesign of the lipid-facing surface of Escherichia coli OmpA. Initial designs failed to fold correctly, but reversion of a small number of mutations indicated by backcross experiments yielded designs with substitutions to up to 60% of the surface that did support folding and membrane insertion.
Computational redesign of the lipid-facing surface of the outer membrane protein OmpA
Stapleton, James A.; Whitehead, Timothy A.; Nanda, Vikas
2015-01-01
Advances in computational design methods have made possible extensive engineering of soluble proteins, but designed β-barrel membrane proteins await improvements in our understanding of the sequence determinants of folding and stability. A subset of the amino acid residues of membrane proteins interact with the cell membrane, and the design rules that govern this lipid-facing surface are poorly understood. We applied a residue-level depth potential for β-barrel membrane proteins to the complete redesign of the lipid-facing surface of Escherichia coli OmpA. Initial designs failed to fold correctly, but reversion of a small number of mutations indicated by backcross experiments yielded designs with substitutions to up to 60% of the surface that did support folding and membrane insertion. PMID:26199411
Convex polytopes and quantum separability
Holik, F.; Plastino, A.
2011-12-15
We advance a perspective of the entanglement issue that appeals to the Schlienz-Mahler measure [Phys. Rev. A 52, 4396 (1995)]. Related to it, we propose a criterium based on the consideration of convex subsets of quantum states. This criterium generalizes a property of product states to convex subsets (of the set of quantum states) that is able to uncover an interesting geometrical property of the separability property.
The Convex Coordinates of the Symmedian Point
ERIC Educational Resources Information Center
Boyd, J. N.; Raychowdhury, P. N.
2006-01-01
In this note, we recall the convex (or barycentric) coordinates of the points of a closed triangular region. We relate the convex and trilinear coordinates of the interior points of the triangular region. We use the relationship between convex and trilinear coordinates to calculate the convex coordinates of the symmedian point of the triangular…
Fabrication of micro-convex domes using long pulse laser
NASA Astrophysics Data System (ADS)
Wang, Xingsheng; Zhang, Yongnian; Wang, Ling; Xian, Jieyu; Jin, Meifu; Kang, Min
2017-01-01
Micro-convex domes inspired from nature can be machined by chemical and physical routes to achieve specific functions. Laser surface texturing (LST) is the front runner among the current material micro-processing technologies. However, most of the studies relating to LST dealt with the formation of micro-dimples. In this paper, LST using long pulse laser was used to create micro-convex domes on 304L stainless steel. Spherical-cap-shaped domes with diameters of 30-75 μm and height of 0.9-5.5 μm were created through LST. The effects of laser-processing parameters on surface morphologies of the created convex domes were investigated. The height of the convex dome increased at first and then decreased with the increasing laser power. The change tendency of the height with the pulse duration varied at different laser powers. The diameter of the convex dome increased almost linearly with the laser power or pulse duration. The superior micro-convex domes were achieved at a pulse energy of 5.6 mJ with a laser power of 80 W and pulse duration of 70 μs.
[Optimization of cataplasm matrix with face-centered design-response surface method].
Liu, Shuzhi; Li, Junhong; Jin, Rixian; Du, Maobo
2009-12-01
To optimize the matrix formulation of cataplasm. Face-centered design was used in the experimental design, and response surface was produced in quadratic polynomial after data fitting in order to explore the impacts of Sodium Polyacrylate, Carbomer and the cross-linking agent on stickiness of cataplasm, optimize the prescription of the cataplasm matrix and perform the evaluation analysis. The multiple correlation coefficient (R2) and adjusted R2 in the fitting method using quadratic polynomial were 0.970 and 0. 952 (F = 53.953, P = 0.0001), respectively, and the model was significant different. The ratio of optimum proportion of Sodium Polyacrylate, Carbomer and the cross-linking agent in the matrix of cataplasm was determined, which was proved efficaciously. Face-centered design-response surface method is a simple method with good prediction result for the optimization of cataplasm matrix.
Surface melting on the close-packed (111) face of methane thin films condensed on graphite
NASA Astrophysics Data System (ADS)
Bienfait, M.; Zeppenfeld, P.; Gay, J. M.; Palmari, J. P.
1990-02-01
Quasi-elastic neutron scattering was used to measure the temperature dependence of the thickness and of the translational mobility of the liquid-like phase, stable below the bulk melting temperature, at the solid-vapor interface of thin CH 4(111) films adsorbed on graphite. It is shown that on the close-packed (111) face of CH 4 surface melting occurs. The average mobility of the liquid-like layer is similar to that of bulk liquid, as well as for the more open (100) face (diffusion coefficient in the 10 -5 cm -2 s -1 range). At the same temperature, the liquid-like layer is slightly thinner on the (111) surface than on the (100) plane. This near isotropy with crystallographic orientation was expected from the molecular dynamics simulation of van der Waals solids.
Simulated plasma facing component measurements for an in situ surface diagnostic on Alcator C-Moda)
NASA Astrophysics Data System (ADS)
Hartwig, Z. S.; Whyte, D. G.
2010-10-01
The ideal in situ plasma facing component (PFC) diagnostic for magnetic fusion devices would perform surface element and isotope composition measurements on a shot-to-shot (˜10 min) time scale with ˜1 μm depth and ˜1 cm spatial resolution over large areas of PFCs. To this end, the experimental adaptation of the customary laboratory surface diagnostic—nuclear scattering of MeV ions—to the Alcator C-Mod tokamak is being guided by ACRONYM, a Geant4 synthetic diagnostic. The diagnostic technique and ACRONYM are described, and synthetic measurements of film thickness for boron-coated PFCs are presented.
Simulated plasma facing component measurements for an in situ surface diagnostic on Alcator C-Mod
Hartwig, Z. S.; Whyte, D. G.
2010-10-15
The ideal in situ plasma facing component (PFC) diagnostic for magnetic fusion devices would perform surface element and isotope composition measurements on a shot-to-shot ({approx}10 min) time scale with {approx}1 {mu}m depth and {approx}1 cm spatial resolution over large areas of PFCs. To this end, the experimental adaptation of the customary laboratory surface diagnostic - nuclear scattering of MeV ions - to the Alcator C-Mod tokamak is being guided by ACRONYM, a Geant4 synthetic diagnostic. The diagnostic technique and ACRONYM are described, and synthetic measurements of film thickness for boron-coated PFCs are presented.
Partwise cross-parameterization via nonregular convex hull domains.
Wu, Huai-Yu; Pan, Chunhong; Zha, Hongbin; Yang, Qing; Ma, Songde
2011-10-01
In this paper, we propose a novel partwise framework for cross-parameterization between 3D mesh models. Unlike most existing methods that use regular parameterization domains, our framework uses nonregular approximation domains to build the cross-parameterization. Once the nonregular approximation domains are constructed for 3D models, different (and complex) input shapes are transformed into similar (and simple) shapes, thus facilitating the cross-parameterization process. Specifically, a novel nonregular domain, the convex hull, is adopted to build shape correspondence. We first construct convex hulls for each part of the segmented model, and then adopt our convex-hull cross-parameterization method to generate compatible meshes. Our method exploits properties of the convex hull, e.g., good approximation ability and linear convex representation for interior vertices. After building an initial cross-parameterization via convex-hull domains, we use compatible remeshing algorithms to achieve an accurate approximation of the target geometry and to ensure a complete surface matching. Experimental results show that the compatible meshes constructed are well suited for shape blending and other geometric applications.
The identification of molecular surfaces' feature regions based on spherical mapping
NASA Astrophysics Data System (ADS)
Zhang, Meiling; Zhang, Jingqiao
2017-02-01
As possible active sites, the concave and convex feature regions of the molecule are the locations where the molecular docking will happen more possibly. Then how to search for those regions is valuable to study. In this paper, a new method is proposed for identifying concave and convex regions. Based on the established spherical mapping between molecular surfaces and its bounding-sphere surfaces, the concave and convex vertices of local areas can be determined according to the expansion distance defined by the spherical mapping. Then through mesh growing, a feature region can be firmed by a concave point or a convex point, also called center point, and its neighboring faces, whose normal vector has an angle in a specified range with the center point. After that, areas and volumes of feature regions are calculated. The experimental results indicate that the method can well identify the concave and convex characteristics of the molecule.
High-speed surface temperature measurements on plasma facing materials for fusion applications
Araki, M.; Kobayashi, M.
1996-01-01
For the lifetime evaluation of plasma facing materials in fusion experimental machines, it is essential to investigate their surface behavior and their temperature responses during an off-normal event such as the plasma disruptions. An infrared thermometer with a sampling speed as fast as 1{times}10{sup {minus}6} s/data, namely, the high-speed infrared thermometer (HSIR), has been developed by the National Research Laboratory of Metrology in Japan. To evaluate an applicability of the newly developed HSIR on the surface temperature measurement of plasma facing materials, high heat flux beam irradiation experiments have been performed with three different materials under the surface heat fluxes up to 170 MW/m{sup 2} for 0.04 s in a hydrogen ion beam test facility at the Japan Atomic Energy Research Institute. As for the results, HSIR can be applicable for measuring the surface temperature responses of the armor tile materials with a little modification. It is also confirmed that surface temperatures measured with the HSIR thermometer show good agreement with the analytical results for stainless steel and carbon based materials at a temperature range of up to 2500{degree}C. However, for aluminum the HSIR could measure the temperature of the high dense vapor cloud which was produced during the heating due to lower melting temperature. Based on the result, a multichannel arrayed HSIR thermometer has been designed and fabricated. {copyright} {ital 1996 American Institute of Physics.}
1980-08-01
where each face F. of 11(R) is represented by a sequence of its1 vertices. A lo)rithm CONVEXHULL(S,H(S) ,k) 2.1. Obtain CP(S), the set of corner...two. A chain is a finite sequence of digital points such that every element of the sequence except the first is a 6-neighbor of its predecessor. A set R...tno Lube wnosu edge is o1 length n. S is represented by a run lenqth code [121 such that RC(i,j) is a finite sequence of run lkLjntns of U’s
Stöckl, Quirin S; Wu, Tsun-Cheng; Mairena, Anaïs; Wu, Yao-Ting; Ernst, Karl-Heinz
2017-08-03
A 2D self-assembly of a C32H12 buckybowl on the Cu(111) surface has been studied by means of scanning tunnelling microscopy. Additional aromatic rings at the rim of the corannulene core cause the bowl-shaped molecule to stand on its edge. This adsorption mode allows distinct π-π and C-Hπ interactions between the convex bowl surfaces as well as between the hydrogen-terminated rim and the convex bowl faces.
Non-uniform Erosion and Surface Evolution of Plasma-Facing Materials for Electric Propulsion
NASA Astrophysics Data System (ADS)
Matthes, Christopher Stanley Rutter
A study regarding the surface evolution of plasma-facing materials is presented. Experimental efforts were performed in the UCLA Pi Facility, designed to explore the physics of plasma-surface interactions. The influence of micro-architectured surfaces on the effects of plasma sputtering is compared with the response of planar samples. Ballistic deposition of sputtered atoms as a result of geometric re-trapping is observed. This provides a self-healing mechanism of micro-architectured surfaces during plasma exposure. This result is quantified using a QCM to demonstrate the evolution of surface features and the corresponding influence on the instantaneous sputtering yield. The sputtering yield of textured molybdenum samples exposed to 300 eV Ar plasma is found to be roughly 1 of the 2 corresponding value of flat samples, and increases with ion fluence. Mo samples exhibited a sputtering yield initially as low as 0.22+/-8%, converging to 0.4+/-8% at high fluence. Although the yield is dependent on the initial surface structure, it is shown to be transient, reaching a steady-state value that is independent of initial surface conditions. A continuum model of surface evolution resulting from sputtering, deposition and surface diffusion is also derived to resemble the damped Kuramoto-Sivashinsky (KS) equation of non-linear dynamics. Linear stability analysis of the evolution equation provides an estimate of the selected wavelength, and its dependence on the ion energy and angle of incidence. The analytical results are confirmed by numerical simulations of the equation with a Fast Fourier Transform method. It is shown that for an initially flat surface, small perturbations lead to the evolution of a selected surface pattern that has nano- scale wavelength. When the surface is initially patterned by other means, the final resulting pattern is a competition between the "templated" pattern and the "self-organized" structure. Potential future routes of research are also
Experiments on High-Speed Liquid Films Over Downward-Facing Wetting and Nonwetting Surfaces
Anderson, J.K.; Yoda, M.; Abdel-Khalik, S.I.; Sadowski, D.L.
2003-07-15
The fusion event in inertial fusion energy reactors can damage the chamber first walls. The Prometheus design study used a high-speed tangentially injected thin film of molten lead to protect the upper endcap of the reactor chamber. To assure full chamber coverage, the film must remain attached. Film detachment due to gravitational effects is most likely to occur on downward-facing surfaces.Experiments were therefore conducted on turbulent water films with initial thicknessess and speeds up to 2 mm and 11 m/s, respectively, onto the downward-facing surface of a flat plate 0-45 deg. below the horizontal. Average film detachment and lateral extent along the plate were measured. Detachment length appears to be a linear function of Froude number. Results for film flows over wetting and nonwetting surfaces show that surface wettability has a major impact. The data are used to establish conservative 'design windows' for film detachment. Film flow around cylindrical obstacles, modeling protective dams around chamber penetrations, was also studied. The results suggest that cylindrical dams cannot be used to protect penetrations, and that new chamber penetration geometries that avoid flow separation are a major design issue for this type of thin liquid protection.
Crack-face displacements for embedded elliptic and semi-elliptical surface cracks
NASA Technical Reports Server (NTRS)
Raju, I. S.
1989-01-01
Analytical expressions for the crack-face displacements of an embedded elliptic crack in infinite solid subjected to arbitrary tractions are obtained. The tractions on the crack faces are assumed to be expressed in a polynomial form. These displacements expressions complete the exact solution of Vijayakumar and Atluri, and Nishioki and Atluri. For the special case of an embedded crack in an infinite solid subjected to uniform pressure loading, the present displacements agree with those by Green and Sneddon. The displacement equations derived were used with the finite-element alternating method (FEAM) for the analysis of a semi-elliptic surface crack in a finite solid subjected to remote tensile loading. The maximum opening displacements obtained with FEAM are compared to those with the finite-element method with singularity elements. The maximum crack opening displacements by the two methods showed good agreement.
Surface flow visualisation over forward facing steps with varying yaw angle
NASA Astrophysics Data System (ADS)
Rowcroft, J.; Burton, D.; Blackburn, H. M.; Sheridan, J.
2014-12-01
Many Australian wind farms are located near escarpments and cliffs where flow separation occurs. An absence of literature addressing the effect of wind direction over cliffs have motivated surface shear stress visualisations on forward facing steps at yaw angles between 0° and 50°. These visualisations have been conducted in the Monash University 450 kW wind tunnel. Mean reattachment lengths were measured and shown to vary as a function of the boundary layer thickness to step height ratio and the yaw angle. Vortices shed off the crest of the step induced surface shear stresses on the top surface of the step. The orientation of these shear stresses varied linearly with the yaw angle. Three-dimensional structures of different forms were also observed. At zero yaw angle the flow converged at points along the crest. At high yaw angles distinct sections of misaligned flow were observed downstream of the reattachment line, indicating a spatial periodicity in shedding.
Dzhelyova, Milena; Rossion, Bruno
2014-12-24
Face perception depends on two main sources of information--shape and surface cues. Behavioral studies suggest that both of them contribute roughly equally to discrimination of individual faces, with only a small advantage provided by their combination. However, it is difficult to quantify the respective contribution of each source of information to the visual representation of individual faces with explicit behavioral measures. To address this issue, facial morphs were created that varied in shape only, surface only, or both. Electrocephalogram (EEG) were recorded from 10 participants during visual stimulation at a fast periodic rate, in which the same face was presented four times consecutively and the fifth face (the oddball) varied along one of the morphed dimensions. Individual face discrimination was indexed by the periodic EEG response at the oddball rate (e.g., 5.88 Hz/5 = 1.18 Hz). While shape information was discriminated mainly at right occipitotemporal electrode sites, surface information was coded more bilaterally and provided a larger response overall. Most importantly, shape and surface changes alone were associated with much weaker responses than when both sources of information were combined in the stimulus, revealing a supra-additive effect. These observations suggest that the two kinds of information combine nonlinearly to provide a full individual face representation, face identity being more than the sum of the contribution of shape and surface cues. © 2014 ARVO.
Bi-convex aspheric optical lenses
NASA Astrophysics Data System (ADS)
Roy, Abhijit Chandra; Yadav, Mridul; Khanna, Anubhav; Ghatak, Animangsu
2017-03-01
Aspheric optical lenses are important for a variety of optical applications but are difficult to fabricate in conventional top-down processes. Here, we have presented a bottom-up approach involving controlled spreading of a thermally crosslinkable polymeric liquid dispensed on specially prepared substrates for making aspheric bi-convex lenses. In particular, the substrate is a solid film with a tiny hole drilled on it through which the liquid can flow in and out from the top to the bottom side of the substrate. In addition, the two surfaces of the substrate are made to have similar or different wettabilities so that the combined effect of gravity and surface wettability determines the distribution of the liquid between its two sides. The substrate is maintained at an elevated temperature, so that the liquid spreads on its surfaces but only to a limited extent because of rapid crosslinking at the vicinity of the moving front. This process leads to bi-convex, hyperboloids and prolate spheroids, which yield aberration free images with optical resolution that far exceeds that generated by conventional microscope objectives.
NASA Astrophysics Data System (ADS)
Rivera, David; Wirz, Richard E.; Ghoniem, Nasr M.
2017-04-01
The thermomechanical damage and residual stresses in plasma-facing materials operating at high heat flux are experimentally investigated. Materials with micro-surfaces are found to be more resilient, when exposed to cyclic high heat flux generated by an arc-jet plasma. An experimental facility, dedicated to High Energy Flux Testing (HEFTY), is developed for testing cyclic heat flux in excess of 10 MW/m2. We show that plastic deformation and subsequent fracture of the surface can be controlled by sample cooling. We demonstrate that W surfaces with micro-pillar type surface architecture have significantly reduced residual thermal stresses after plasma exposure, as compared to those with flat surfaces. X-ray diffraction (XRD) spectra of the W-(110) peak reveal that broadening of the Full Width at Half Maximum (FWHM) for micro-engineered samples is substantially smaller than corresponding flat surfaces. Spectral shifts of XRD signals indicate that residual stresses due to plasma exposure of micro-engineered surfaces build up in the first few cycles of exposure. Subsequent cyclic plasma heat loading is shown to anneal out most of the built-up residual stresses in micro-engineered surfaces. These findings are consistent with relaxation of residual thermal stresses in surfaces with micro-engineered features. The initial residual stress state of highly polished flat W samples is compressive (≈ -1.3 GPa). After exposure to 50 plasma cycles, the surface stress relaxes to -1.0 GPa. Micro-engineered samples exposed to the same thermal cycling show that the initial residual stress state is compressive at (- 250 MPa), and remains largely unchanged after plasma exposure.
Analysis of human face skin surface molecules in situ by Fourier-transform infrared spectroscopy.
Sakuyama, Shu; Hirabayashi, Chiaki; Hasegawa, Jun-Ichi; Yoshida, Satoshi
2010-05-01
For medical and dermatological researchers, it is important to realize the molecular dynamics and its control in the stratum corneum (SC) of human skin, which may be related to some skin abnormalities such as atopic dermatitis and skin pruritus. We have tried to analyze the periodic molecular dynamics of the outermost layers of SC in vivo. We measured the skin surface molecules of human face in situ non-invasively using a Fourier-transform infrared (FTIR) spectroscopy system attached with a newly designed attenuated total reflection (ATR) probe. The water-extracted components from the SC were also analyzed using mass spectrometry, an enzymatic assay and high-performance liquid chromatography characterization. The infrared spectral changes of some components on the face skin at around 1000-1200 cm(-1) with circa-monthly rhythms were observed when monitored for 10 months, and the components also showed a seasonal change. The analysis of different FTIR spectrum of the changeable components with circa-monthly rhythm suggested the presence of a lactate compound. The presence of magnesium lactate in a conjugated form was detected in the water extract of SC. We demonstrate that the periodically changed components of the human face skin contained magnesium lactate conjugate as a major component.
Generalized geometrically convex functions and inequalities.
Noor, Muhammad Aslam; Noor, Khalida Inayat; Safdar, Farhat
2017-01-01
In this paper, we introduce and study a new class of generalized functions, called generalized geometrically convex functions. We establish several basic inequalities related to generalized geometrically convex functions. We also derive several new inequalities of the Hermite-Hadamard type for generalized geometrically convex functions. Several special cases are discussed, which can be deduced from our main results.
Detection of Convexity and Concavity in Context
ERIC Educational Resources Information Center
Bertamini, Marco
2008-01-01
Sensitivity to shape changes was measured, in particular detection of convexity and concavity changes. The available data are contradictory. The author used a change detection task and simple polygons to systematically manipulate convexity/concavity. Performance was high for detecting a change of sign (a new concave vertex along a convex contour…
Revisiting separation properties of convex fuzzy sets
USDA-ARS?s Scientific Manuscript database
Separation of convex sets by hyperplanes has been extensively studied on crisp sets. In a seminal paper separability and convexity are investigated, however there is a flaw on the definition of degree of separation. We revisited separation on convex fuzzy sets that have level-wise (crisp) disjointne...
Detection of Convexity and Concavity in Context
ERIC Educational Resources Information Center
Bertamini, Marco
2008-01-01
Sensitivity to shape changes was measured, in particular detection of convexity and concavity changes. The available data are contradictory. The author used a change detection task and simple polygons to systematically manipulate convexity/concavity. Performance was high for detecting a change of sign (a new concave vertex along a convex contour…
Convex lens-induced nanoscale templating
Berard, Daniel J.; Michaud, François; Mahshid, Sara; Ahamed, Mohammed Jalal; McFaul, Christopher M. J.; Leith, Jason S.; Bérubé, Pierre; Sladek, Rob; Reisner, Walter; Leslie, Sabrina R.
2014-01-01
We demonstrate a new platform, convex lens-induced nanoscale templating (CLINT), for dynamic manipulation and trapping of single DNA molecules. In the CLINT technique, the curved surface of a convex lens is used to deform a flexible coverslip above a substrate containing embedded nanotopography, creating a nanoscale gap that can be adjusted during an experiment to confine molecules within the embedded nanostructures. Critically, CLINT has the capability of transforming a macroscale flow cell into a nanofluidic device without the need for permanent direct bonding, thus simplifying sample loading, providing greater accessibility of the surface for functionalization, and enabling dynamic manipulation of confinement during device operation. Moreover, as DNA molecules present in the gap are driven into the embedded topography from above, CLINT eliminates the need for the high pressures or electric fields required to load DNA into direct-bonded nanofluidic devices. To demonstrate the versatility of CLINT, we confine DNA to nanogroove and nanopit structures, demonstrating DNA nanochannel-based stretching, denaturation mapping, and partitioning/trapping of single molecules in multiple embedded cavities. In particular, using ionic strengths that are in line with typical biological buffers, we have successfully extended DNA in sub–30-nm nanochannels, achieving high stretching (90%) that is in good agreement with Odijk deflection theory, and we have mapped genomic features using denaturation analysis. PMID:25092333
Convex lens-induced nanoscale templating.
Berard, Daniel J; Michaud, François; Mahshid, Sara; Ahamed, Mohammed Jalal; McFaul, Christopher M J; Leith, Jason S; Bérubé, Pierre; Sladek, Rob; Reisner, Walter; Leslie, Sabrina R
2014-09-16
We demonstrate a new platform, convex lens-induced nanoscale templating (CLINT), for dynamic manipulation and trapping of single DNA molecules. In the CLINT technique, the curved surface of a convex lens is used to deform a flexible coverslip above a substrate containing embedded nanotopography, creating a nanoscale gap that can be adjusted during an experiment to confine molecules within the embedded nanostructures. Critically, CLINT has the capability of transforming a macroscale flow cell into a nanofluidic device without the need for permanent direct bonding, thus simplifying sample loading, providing greater accessibility of the surface for functionalization, and enabling dynamic manipulation of confinement during device operation. Moreover, as DNA molecules present in the gap are driven into the embedded topography from above, CLINT eliminates the need for the high pressures or electric fields required to load DNA into direct-bonded nanofluidic devices. To demonstrate the versatility of CLINT, we confine DNA to nanogroove and nanopit structures, demonstrating DNA nanochannel-based stretching, denaturation mapping, and partitioning/trapping of single molecules in multiple embedded cavities. In particular, using ionic strengths that are in line with typical biological buffers, we have successfully extended DNA in sub-30-nm nanochannels, achieving high stretching (90%) that is in good agreement with Odijk deflection theory, and we have mapped genomic features using denaturation analysis.
Natural and orbital debris particles on LDEF's trailing and forward-facing surfaces
NASA Technical Reports Server (NTRS)
Hoerz, Friedrich; See, Thomas H.; Bernhard, Ronald P.; Brownlee, Donald E.
1995-01-01
Approximately 1000 impact craters on the Chemistry of Meteoroid Experiment (CME) have been analyzed by means of Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Analysis (EDXA) to determine the compositional make-up of projectile residues. This report completes our systematic survey of gold and aluminum surfaces exposed at the trailing-edge (A03) and forward-facing (A11) LDEF sites, respectively. The major categories for the projectile residues were (1) natural, with diverse subgroups such as chondritic, monomineralic silicates, and sulfides, and (2) man made, that were classified into aluminum (metallic or oxide) and miscellaneous materials (such as stainless steel, paint flakes, etc). On CME gold collectors on LDEF's trailing edge approximately 11 percent of all craters greater than 100 micron in diameter were due to man-made debris, the majority (8.6 percent) caused by pure aluminum, approximately 31.4 percent were due to cosmic dust, while the remaining 58 percent were indeterminate via the analytical techniques utilized in this study. The aluminum surfaces located at the A11 forward-facing site did not permit analysis of aluminum impactors, but approximately 9.4 percent of all craters were demonstratably caused by miscellaneous debris materials and approximately 39.2 percent were the result of natural particles, leaving approximately 50 percent which were indeterminate. Model considerations and calculations are presented that focus on the crater-production rates for features greater than 100 micron in diameter, and on assigning the intermediate crater population to man-made or natural particles. An enhancement factor of 6 in the crater-production rate of natural impactors for the 'forward-facing' versus the 'trailing-edge' CME collectors was found to best explain all observations (i.e., total crater number(s), as well as their computational characteristics). Enhancement factors of 10 and 4 are either too high or too low. It is also suggested that
Fitzner, Martin; Sosso, Gabriele C; Cox, Stephen J; Michaelides, Angelos
2015-10-28
What makes a material a good ice nucleating agent? Despite the importance of heterogeneous ice nucleation to a variety of fields, from cloud science to microbiology, major gaps in our understanding of this ubiquitous process still prevent us from answering this question. In this work, we have examined the ability of generic crystalline substrates to promote ice nucleation as a function of the hydrophobicity and the morphology of the surface. Nucleation rates have been obtained by brute-force molecular dynamics simulations of coarse-grained water on top of different surfaces of a model fcc crystal, varying the water-surface interaction and the surface lattice parameter. It turns out that the lattice mismatch of the surface with respect to ice, customarily regarded as the most important requirement for a good ice nucleating agent, is at most desirable but not a requirement. On the other hand, the balance between the morphology of the surface and its hydrophobicity can significantly alter the ice nucleation rate and can also lead to the formation of up to three different faces of ice on the same substrate. We have pinpointed three circumstances where heterogeneous ice nucleation can be promoted by the crystalline surface: (i) the formation of a water overlayer that acts as an in-plane template; (ii) the emergence of a contact layer buckled in an ice-like manner; and (iii) nucleation on compact surfaces with very high interaction strength. We hope that this extensive systematic study will foster future experimental work aimed at testing the physiochemical understanding presented herein.
Size-Dependent Surface Energy Density of Spherical Face-Centered-Cubic Metallic Nanoparticles.
Wei, Yaochi; Chen, Shaohua
2015-12-01
The surface energy density of nano-sized elements exhibits a significantly size-dependent behavior. Spherical nanoparticle, as an important element in nano-devices and nano-composites, has attracted many interesting studies on size effect, most of which are molecular dynamics (MD) simulations. However, the existing MD calculations yield two opposite size-dependent trends of surface energy density of nanoparticles. In order to clarify such a real underlying problem, atomistic calculations are carried out in the present paper for various spherical face-centered-cubic (fcc) metallic nanoparticles. Both the embedded atom method (EAM) potential and the modified embedded atom method (MEAM) one are adopted. It is found that the size-dependent trend of surface energy density of nanoparticles is not governed by the chosen potential function or variation trend of surface energy, but by the defined radius of spherical nanoparticles in MD models. The finding in the present paper should be helpful for further theoretical studies on surface/interface effect of nanoparticles and nanoparticle-reinforced composites.
Multilayer surface albedo for face recognition with reference images in bad lighting conditions.
Lai, Zhao-Rong; Dai, Dao-Qing; Ren, Chuan-Xian; Huang, Ke-Kun
2014-11-01
In this paper, we propose a multilayer surface albedo (MLSA) model to tackle face recognition in bad lighting conditions, especially with reference images in bad lighting conditions. Some previous researches conclude that illumination variations mainly lie in the large-scale features of an image and extract small-scale features in the surface albedo (or surface texture). However, this surface albedo is not robust enough, which still contains some detrimental sharp features. To improve robustness of the surface albedo, MLSA further decomposes it as a linear sum of several detailed layers, to separate and represent features of different scales in a more specific way. Then, the layers are adjusted by separate weights, which are global parameters and selected for only once. A criterion function is developed to select these layer weights with an independent training set. Despite controlled illumination variations, MLSA is also effective to uncontrolled illumination variations, even mixed with other complicated variations (expression, pose, occlusion, and so on). Extensive experiments on four benchmark data sets show that MLSA has good receiver operating characteristic curve and statistical discriminating capability. The refined albedo improves recognition performance, especially with reference images in bad lighting conditions.
Natural and orbital debris particles on LDEF`s trailing and forward-facing surfaces
Hoerz, F.; See, T.H.; Bernhard, R.P.; Brownlee, D.E. |
1995-02-01
Approximately 1000 impact craters on the Chemistry of Meteoroid Experiment (CME) have been analyzed by means of Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Analysis (EDXA) to determine the compositional make-up of projectile residues. This report completes the authors systematic survey of gold and aluminum surfaces exposed at the trailing-edge (A03) and forward-facing (A11) LDEF sites, respectively. The major categories for the projectile residues were (1) natural, with diverse subgroups such as chondritic, monomineralic silicates, and sulfides, and (2) man made, that were classified into aluminum (metallic or oxide) and miscellaneous materials (such as stainless steel, paint flakes, etc). On CME gold collectors on LDEF`s trailing edge approximately 11 percent of all craters greater than 100 micron in diameter were due to man-made debris, the majority (8.6 percent) caused by pure aluminum, approximately 31.4 percent were due to cosmic dust, while the remaining 58 percent were indeterminate via the analytical techniques utilized in this study. The aluminum surfaces located at the A11 forward-facing site did not permit analysis of aluminum impactors, but approximately 9.4 percent of all craters were demonstratably caused by miscellaneous debris materials and approximately 39.2 percent were the result of natural particles, leaving approximately 50 percent which were indeterminate. Model considerations and calculations are presented that focus on the crater-production rates for features greater than 100 micron in diameter, and on assigning the intermediate crater population to man-made or natural particles. An enhancement factor of 6 in the crater-production rate of natural impactors for the `forward-facing` versus the `trailing-edge` CME collectors was found to best explain all observations (i.e., total crater number(s), as well as their computational characteristics). Enhancement factors of 10 and 4 are either too high or too low.
Surface roughness of rock faces through the curvature of triangulated meshes
NASA Astrophysics Data System (ADS)
Lai, P.; Samson, C.; Bose, P.
2014-09-01
In this paper, we examine three different measures of roughness based on a geometric property of surfaces known as curvature. These methods were demonstrated using an image of a large rock face made up of a smooth blocky limestone in contact with a rough friable dolostone. The point cloud analysed contained 10,334,288 points and was acquired at a distance of 3 m from the rock face. The point cloud was first decimated using an epsilon-net and then meshed using the Poisson surface reconstruction method before the proposed measures of roughness were applied. The first measure of roughness is defined as the difference in curvature between a mesh and a smoothed version of the same mesh. The second measure of roughness is a voting system applied to each vertex which identifies the subset of vertices which represent rough regions within the mesh. The third measure of roughness uses a combination of spatial partitioning data structures and data clustering in order to define roughness for a region in the mesh. The spatial partitioning data structure allows for a hierarchy of roughness values which is related to the size of the region being considered. All of the proposed measures of roughness are visualised using colour-coded displays which allows for an intuitive interpretation.
Enforcing Convexity for Improved Alignment with Constrained Local Models
Wang, Yang; Lucey, Simon; Cohn, Jeffrey F.
2010-01-01
Constrained local models (CLMs) have recently demonstrated good performance in non-rigid object alignment/tracking in comparison to leading holistic approaches (e.g., AAMs). A major problem hindering the development of CLMs further, for non-rigid object alignment/tracking, is how to jointly optimize the global warp update across all local search responses. Previous methods have either used general purpose optimizers (e.g., simplex methods) or graph based optimization techniques. Unfortunately, problems exist with both these approaches when applied to CLMs. In this paper, we propose a new approach for optimizing the global warp update in an efficient manner by enforcing convexity at each local patch response surface. Furthermore, we show that the classic Lucas-Kanade approach to gradient descent image alignment can be viewed as a special case of our proposed framework. Finally, we demonstrate that our approach receives improved performance for the task of non-rigid face alignment/tracking on the MultiPIE database and the UNBC-McMaster archive. PMID:20622926
2D surface temperature measurement of plasma facing components with modulated active pyrometry
Amiel, S.; Loarer, T.; Pocheau, C.; Roche, H.; Gauthier, E.; Aumeunier, M.-H.; Courtois, X.; Jouve, M.; Balorin, C.; Moncada, V.; Le Niliot, C.; Rigollet, F.
2014-10-01
In nuclear fusion devices, such as Tore Supra, the plasma facing components (PFC) are in carbon. Such components are exposed to very high heat flux and the surface temperature measurement is mandatory for the safety of the device and also for efficient plasma scenario development. Besides this measurement is essential to evaluate these heat fluxes for a better knowledge of the physics of plasma-wall interaction, it is also required to monitor the fatigue of PFCs. Infrared system (IR) is used to manage to measure surface temperature in real time. For carbon PFCs, the emissivity is high and known (ε ~ 0.8), therefore the contribution of the reflected flux from environment and collected by the IR cameras can be neglected. However, the future tokamaks such as WEST and ITER will be equipped with PFCs in metal (W and Be/W, respectively) with low and variable emissivities (ε ~ 0.1–0.4). Consequently, the reflected flux will contribute significantly in the collected flux by IR camera. The modulated active pyrometry, using a bicolor camera, proposed in this paper allows a 2D surface temperature measurement independently of the reflected fluxes and the emissivity. Experimental results with Tungsten sample are reported and compared with simultaneous measurement performed with classical pyrometry (monochromatic and bichromatic) with and without reflective flux demonstrating the efficiency of this method for surface temperature measurement independently of the reflected flux and the emissivity.
2D surface temperature measurement of plasma facing components with modulated active pyrometry.
Amiel, S; Loarer, T; Pocheau, C; Roche, H; Gauthier, E; Aumeunier, M-H; Le Niliot, C; Rigollet, F; Courtois, X; Jouve, M; Balorin, C; Moncada, V
2014-10-01
In nuclear fusion devices, such as Tore Supra, the plasma facing components (PFC) are in carbon. Such components are exposed to very high heat flux and the surface temperature measurement is mandatory for the safety of the device and also for efficient plasma scenario development. Besides this measurement is essential to evaluate these heat fluxes for a better knowledge of the physics of plasma-wall interaction, it is also required to monitor the fatigue of PFCs. Infrared system (IR) is used to manage to measure surface temperature in real time. For carbon PFCs, the emissivity is high and known (ɛ ∼ 0.8), therefore the contribution of the reflected flux from environment and collected by the IR cameras can be neglected. However, the future tokamaks such as WEST and ITER will be equipped with PFCs in metal (W and Be/W, respectively) with low and variable emissivities (ɛ ∼ 0.1-0.4). Consequently, the reflected flux will contribute significantly in the collected flux by IR camera. The modulated active pyrometry, using a bicolor camera, proposed in this paper allows a 2D surface temperature measurement independently of the reflected fluxes and the emissivity. Experimental results with Tungsten sample are reported and compared with simultaneous measurement performed with classical pyrometry (monochromatic and bichromatic) with and without reflective flux demonstrating the efficiency of this method for surface temperature measurement independently of the reflected flux and the emissivity.
Nitrogen retention mechanisms in tokamaks with beryllium and tungsten plasma-facing surfaces
NASA Astrophysics Data System (ADS)
Oberkofler, M.; Meisl, G.; Hakola, A.; Drenik, A.; Alegre, D.; Brezinsek, S.; Craven, R.; Dittmar, T.; Keenan, T.; Romanelli, S. G.; Smith, R.; Douai, D.; Herrmann, A.; Krieger, K.; Kruezi, U.; Liang, G.; Linsmeier, Ch; Mozetic, M.; Rohde, V.; the ASDEX Upgrade Team; the EUROfusion MST1 Team; Contributors, JET
2016-02-01
Global gas balance experiments at ASDEX Upgrade (AUG) and JET have shown that a considerable fraction of nitrogen injected for radiative cooling is not recovered as N2 upon regeneration of the liquid helium cryo pump. The most probable loss channels are ion implantation into plasma-facing materials, co-deposition and ammonia formation. These three mechanisms are investigated in laboratory and tokamak experiments and by numerical simulations. Laboratory experiments have shown that implantation of nitrogen ions into beryllium and tungsten leads to the formation of surface nitrides, which may decompose under thermal loads. On beryllium the presence of nitrogen at the surface has been seen to reduce the sputtering yield. On tungsten surfaces it has been observed that the presence of nitrogen can increase hydrogen retention. The global nitrogen retention in AUG by implantation into the tungsten surfaces saturates. At JET the steady state nitrogen retention is increased by co-deposition with beryllium. The tokamak experiments are interpreted in detail by simulations of the global migration with WallDYN. Mass spectrometry of the exhaust gas of AUG and JET has revealed the conversion of nitrogen to ammonia at percent-levels. Conclusions are drawn on the potential implications of nitrogen seeding on the operation of a reactor in a deuterium-tritium mix.
Convex Accelerated Maximum Entropy Reconstruction
Worley, Bradley
2016-01-01
Maximum entropy (MaxEnt) spectral reconstruction methods provide a powerful framework for spectral estimation of nonuniformly sampled datasets. Many methods exist within this framework, usually defined based on the magnitude of a Lagrange multiplier in the MaxEnt objective function. An algorithm is presented here that utilizes accelerated first-order convex optimization techniques to rapidly and reliably reconstruct nonuniformly sampled NMR datasets using the principle of maximum entropy. This algorithm – called CAMERA for Convex Accelerated Maximum Entropy Reconstruction Algorithm – is a new approach to spectral reconstruction that exhibits fast, tunable convergence in both constant-aim and constant-lambda modes. A high-performance, open source NMR data processing tool is described that implements CAMERA, and brief comparisons to existing reconstruction methods are made on several example spectra. PMID:26894476
Convex accelerated maximum entropy reconstruction.
Worley, Bradley
2016-04-01
Maximum entropy (MaxEnt) spectral reconstruction methods provide a powerful framework for spectral estimation of nonuniformly sampled datasets. Many methods exist within this framework, usually defined based on the magnitude of a Lagrange multiplier in the MaxEnt objective function. An algorithm is presented here that utilizes accelerated first-order convex optimization techniques to rapidly and reliably reconstruct nonuniformly sampled NMR datasets using the principle of maximum entropy. This algorithm - called CAMERA for Convex Accelerated Maximum Entropy Reconstruction Algorithm - is a new approach to spectral reconstruction that exhibits fast, tunable convergence in both constant-aim and constant-lambda modes. A high-performance, open source NMR data processing tool is described that implements CAMERA, and brief comparisons to existing reconstruction methods are made on several example spectra. Copyright © 2016 Elsevier Inc. All rights reserved.
Convex accelerated maximum entropy reconstruction
NASA Astrophysics Data System (ADS)
Worley, Bradley
2016-04-01
Maximum entropy (MaxEnt) spectral reconstruction methods provide a powerful framework for spectral estimation of nonuniformly sampled datasets. Many methods exist within this framework, usually defined based on the magnitude of a Lagrange multiplier in the MaxEnt objective function. An algorithm is presented here that utilizes accelerated first-order convex optimization techniques to rapidly and reliably reconstruct nonuniformly sampled NMR datasets using the principle of maximum entropy. This algorithm - called CAMERA for Convex Accelerated Maximum Entropy Reconstruction Algorithm - is a new approach to spectral reconstruction that exhibits fast, tunable convergence in both constant-aim and constant-lambda modes. A high-performance, open source NMR data processing tool is described that implements CAMERA, and brief comparisons to existing reconstruction methods are made on several example spectra.
Convex Diffraction Grating Imaging Spectrometer
NASA Technical Reports Server (NTRS)
Chrisp, Michael P. (Inventor)
1999-01-01
A 1:1 Offner mirror system for imaging off-axis objects is modified by replacing a concave spherical primary mirror that is concentric with a convex secondary mirror with two concave spherical mirrors M1 and M2 of the same or different radii positioned with their respective distances d1 and d2 from a concentric convex spherical diffraction grating having its grooves parallel to the entrance slit of the spectrometer which replaces the convex secondary mirror. By adjusting their distances d1 and d2 and their respective angles of reflection alpha and beta, defined as the respective angles between their incident and reflected rays, all aberrations are corrected without the need to increase the spectrometer size for a given entrance slit size to reduce astigmatism, thus allowing the imaging spectrometer volume to be less for a given application than would be possible with conventional imaging spectrometers and still give excellent spatial and spectral imaging of the slit image spectra over the focal plane.
Shi, Huan-Nan; Zhang, Jing; Ma, Qing-Hua
2016-01-01
In this paper, using the properties of Schur-convex function, Schur-geometrically convex function and Schur-harmonically convex function, we provide much simpler proofs of the Schur-convexity, Schur-geometric convexity and Schur-harmonic convexity for a composite function of the complete symmetric function.
Molecular Graphics of Convex Body Fluids.
Gabriel, Adrian T; Meyer, Timm; Germano, Guido
2008-03-01
Coarse-grained modeling of molecular fluids is often based on nonspherical convex rigid bodies like ellipsoids or spherocylinders representing rodlike or platelike molecules or groups of atoms, with site-site interaction potentials depending both on the distance among the particles and the relative orientation. In this category of potentials, the Gay-Berne family has been studied most extensively. However, conventional molecular graphics programs are not designed to visualize such objects. Usually the basic units are atoms displayed as spheres or as vertices in a graph. Atomic aggregates can be highlighted through an increasing amount of stylized representations, e.g., Richardson ribbon diagrams for the secondary structure of proteins, Connolly molecular surfaces, density maps, etc., but ellipsoids and spherocylinders are generally missing, especially as elementary simulation units. We fill this gap providing and discussing a customized OpenGL-based program for the interactive, rendered representation of large ensembles of convex bodies, useful especially in liquid crystal research. We pay particular attention to the performance issues for typical system sizes in this field. The code is distributed as open source.
The Origin of Convex Waterfalls Along the Niobrara River by Valentine, Nebraska
NASA Astrophysics Data System (ADS)
Pederson, D. T.; Mason, L. J.; Goble, R. J.
2003-12-01
Waterfalls on tributaries along a stretch of the Niobrara River east of Valentine, Nebraska have a convex-downstream geometry in the horizontal plane and an arc in the vertical plane. Siltstone forming the cliff face is only slightly indurated and should be easily eroded by stream water. This is not the case as the cliff face on either side of the waterfalls clearly undergoes more rapid erosion than the face of the falls forming a convex geometry. This differential erosion rate includes points where waterfalls occur immediately along the banks of the Niobrara River. At these points, riverbank erosion is clearly more effective upstream and downstream of a waterfall as evidenced by the protrusion of the waterfall face into the river. There appears to be repetitive-cycles of waterfall evolution along the tributaries. The convexity increases until collapse occurs on the face of the falls, headward erosion then occurs, followed by the development of a new convex waterfall. The waterfalls have a more typical geometry (convex upstream) on tributaries in the lower reaches of the Niobrara River, where cliff faces become coarser grained. The tributaries are fed by springs. Several processes interact to form the convex geometry. Freeze/thaw erosion is more effective on either side of the waterfalls. Water enters the face of the falls and wicks into the cliff causing negative pore pressures. Clay coatings on mineral grains appear to play a role in protection from erosion. Algae and lichen growth aids in protecting the face of the falls. Small groundwater flow systems, represented by seepage into the streambed above the falls and discharge to the side of the falls can cause seepage erosion and enhancement of freeze/thaw erosion.
Critical heat flux (CHF) phenomenon on a downward facing curved surface
Cheung, F.B.; Haddad, K.H.; Liu, Y.C.
1997-06-01
This report describes a theoretical and experimental study of the boundary layer boiling and critical heat flux phenomena on a downward facing curved heating surface, including both hemispherical and toroidal surfaces. A subscale boundary layer boiling (SBLB) test facility was developed to measure the spatial variation of the critical heat flux and observe the underlying mechanisms. Transient quenching and steady-state boiling experiments were performed in the SBLB facility under both saturated and subcooled conditions to obtain a complete database on the critical heat flux. To complement the experimental effort, an advanced hydrodynamic CHF model was developed from the conservation laws along with sound physical arguments. The model provides a clear physical explanation for the spatial variation of the CHF observed in the SBLB experiments and for the weak dependence of the CHF data on the physical size of the vessel. Based upon the CHF model, a scaling law was established for estimating the local critical heat flux on the outer surface of a heated hemispherical vessel that is fully submerged in water. The scaling law, which compares favorably with all the available local CHF data obtained for various vessel sizes, can be used to predict the local CHF limits on large commercial-size vessels. This technical information represents one of the essential elements that is needed in assessing the efficacy of external cooling of core melt by cavity flooding as a severe accident management strategy. 83 figs., 3 tabs.
Shazman, Shula; Elber, Gershon; Mandel-Gutfreund, Yael
2011-01-01
Protein nucleic acid interactions play a critical role in all steps of the gene expression pathway. Nucleic acid (NA) binding proteins interact with their partners, DNA or RNA, via distinct regions on their surface that are characterized by an ensemble of chemical, physical and geometrical properties. In this study, we introduce a novel methodology based on differential geometry, commonly used in face recognition, to characterize and predict NA binding surfaces on proteins. Applying the method on experimentally solved three-dimensional structures of proteins we successfully classify double-stranded DNA (dsDNA) from single-stranded RNA (ssRNA) binding proteins, with 83% accuracy. We show that the method is insensitive to conformational changes that occur upon binding and can be applicable for de novo protein-function prediction. Remarkably, when concentrating on the zinc finger motif, we distinguish successfully between RNA and DNA binding interfaces possessing the same binding motif even within the same protein, as demonstrated for the RNA polymerase transcription-factor, TFIIIA. In conclusion, we present a novel methodology to characterize protein surfaces, which can accurately tell apart dsDNA from an ssRNA binding interfaces. The strength of our method in recognizing fine-tuned differences on NA binding interfaces make it applicable for many other molecular recognition problems, with potential implications for drug design. PMID:21693557
NASA Astrophysics Data System (ADS)
Allain, J. P.; Rokusek, D. L.; Harilal, S. S.; Nieto-Perez, M.; Skinner, C. H.; Kugel, H. W.; Heim, B.; Kaita, R.; Majeski, R.
2009-06-01
Lithium has enhanced the operational performance of fusion devices such as: TFTR, CDX-U, FTU, T-11 M, and NSTX. Lithium in the solid and liquid state has been studied extensively in laboratory experiments including its erosion and hydrogen-retaining properties. Reductions in physical sputtering up to 40-60% have been measured for deuterated solid and liquid lithium surfaces. Computational modeling indicates that up to a 1:1 deuterium volumetric retention in lithium is possible. This paper presents the results of systematic in situ laboratory experimental studies on the surface chemistry evolution of ATJ graphite under lithium deposition. Results are compared to post-mortem analysis of similar lithium surface coatings on graphite exposed to deuterium discharge plasmas in NSTX. Lithium coatings on plasma-facing components in NSTX have shown substantial reduction of hydrogenic recycling. Questions remain on the role lithium surface chemistry on a graphite substrate has on particle sputtering (physical and chemical) as well as hydrogen isotope recycling. This is particularly due to the lack of in situ measurements of plasma-surface interactions in tokamaks such as NSTX. Results suggest that the lithium bonding state on ATJ graphite is lithium peroxide and with sufficient exposure to ambient air conditions, lithium carbonate is generated. Correlation between both results is used to assess the role of lithium chemistry on the state of lithium bonding and implications on hydrogen pumping and lithium sputtering. In addition, reduction of factors between 10 and 30 reduction in physical sputtering from lithiated graphite compared to pure lithium or carbon is also measured.
NASA Astrophysics Data System (ADS)
Zhang, Zhengwei; Wang, Qiang; Wang, Xu; Gao, Lin
2017-02-01
When the MBT-:Cl- ratio is 50-10:1 in a solution containing of NaCl and Na-MBT (sodium salt of 2-mercaptobenzothiazole), the copper sample-1 (S1) was passivated; when the ration is 10-5:1, it was corroded. The copper sample-2 (S2) had no anti-corrosive ability in all solutions with MBT-:Cl- = 50-5:1. First-principle calculation revealed that the Cu atoms of (220) face, the main face of S1, have more unsaturated and energetic electrons than that of (200) and (111) faces, the main faces of S2. The highest chemical activation of the (220) face leads the S1 surface to show a better anti-corrosive ability.
Neck and face surface electromyography for prosthetic voice control after total laryngectomy.
Stepp, Cara E; Heaton, James T; Rolland, Rebecca G; Hillman, Robert E
2009-04-01
The electrolarynx (EL) is a common rehabilitative speech aid for individuals who have undergone total laryngectomy, but they typically lack pitch control and require the exclusive use of one hand. The viability of using neck and face surface electromyography (sEMG) to control the onset, offset, and pitch of an EMG-controlled EL (EMG-EL) was studied. Eight individuals who had undergone total laryngectomy produced serial and running speech using a typical handheld EL and the EMG-EL while attending to real-time visual sEMG biofeedback. Running speech tokens produced with the EMG-EL were examined for naturalness by 10 listeners relative to those produced with a typical EL using a visual analog scale. Serial speech performance was assessed as the percentage of words that were fully voiced and pauses that were successfully produced. Results of the visual analog scale assessment indicated that individuals were able to use the EMG-EL without training to produce running speech perceived as natural as that produced with a typical handheld EL. All participants were able to produce running and serial speech with the EMG-EL controlled by sEMG from multiple recording locations, with the superior ventral neck or submental surface locations providing at least one of the two best control locations.
Multiwavelength study of nearly face-on low surface brightness disk galaxies
NASA Astrophysics Data System (ADS)
Gao, Dong; Liang, Yan-Chun; Liu, Shun-Fang; Zhong, Guo-Hu; Chen, Xiao-Yan; Yang, Yan-Bin; Hammer, Francois; Yang, Guo-Chao; Deng, Li-Cai; Hu, Jing-Yao
2010-12-01
We study the ages of a large sample (1802) of nearly face-on disk low surface brightness galaxies (LSBGs) using the evolutionary population synthesis (EPS) model PEGASE with an exponentially decreasing star formation rate to fit their multiwavelength spectral energy distributions (SEDs) from far-ultraviolet (FUV) to near-infrared (NIR). The derived ages of LSBGs are 1-5 Gyr for most of the sample no matter if constant or varying dust extinction is adopted, which are similar to most of the previous studies on smaller samples. This means that these LSBGs formed the majority of their stars quite recently. However, a small part of the sample (~2%-3%) has larger ages of 5-8 Gyr, meaning their major star forming process may have occurred earlier. At the same time, a large sample (5886) of high surface brightness galaxies (HSBGs) are selected and studied using the same method for comparisons. The derived ages are 1-5 Gyr for most of the sample (97%) as well. These results probably mean that these LSBGs have not much different star formation histories from their HSBGs counterparts. However, we should notice that the HSBGs are generally about 0.2 Gyr younger, which could mean that the HSBGs may have undergone more recent star forming activities than the LSBGs.
Use of Convexity in Ostomy Care
Salvadalena, Ginger; Pridham, Sue; Droste, Werner; McNichol, Laurie; Gray, Mikel
2017-01-01
Ostomy skin barriers that incorporate a convexity feature have been available in the marketplace for decades, but limited resources are available to guide clinicians in selection and use of convex products. Given the widespread use of convexity, and the need to provide practical guidelines for appropriate use of pouching systems with convex features, an international consensus panel was convened to provide consensus-based guidance for this aspect of ostomy practice. Panelists were provided with a summary of relevant literature in advance of the meeting; these articles were used to generate and reach consensus on 26 statements during a 1-day meeting. Consensus was achieved when 80% of panelists agreed on a statement using an anonymous electronic response system. The 26 statements provide guidance for convex product characteristics, patient assessment, convexity use, and outcomes. PMID:28002174
Quantification of small, convex particles by TEM.
Andersen, Sigmund J; Holme, Børge; Marioara, Calin D
2008-07-01
It is shown how size distributions of arbitrarily oriented, convex, non-overlapping particles extracted from conventional transmission electron microscopy (TEM) images may be determined by a variation of the Schwartz-Saltykov method. In TEM, particles cut at the surfaces have diminished projections, which alter the observed size distribution. We represent this distribution as a vector and multiply it with the inverse of a matrix comprising thickness-dependent Scheil or Schwartz-Saltykov terms. The result is a corrected size distribution of the projections of uncut particles. It is shown how the real (3D) distribution may be estimated when particle shape is considered. Computer code to generate the matrix is given. A log-normal distribution of spheres and a real distribution of pill-box-shaped dispersoids in an Al-Mg-Si alloy are given as examples. The errors are discussed in detail.
Surface potentials of (001), (012), (113) hematite (α-Fe2O3) crystal faces in aqueous solution.
Chatman, Shawn; Zarzycki, Piotr; Rosso, Kevin M
2013-09-07
Hematite (α-Fe2O3) is an important candidate electrode for energy system technologies such as photoelectrochemical water splitting. Conversion efficiency issues with this material are presently being addressed through nanostructuring, doping, and surface modification. However, key electrochemical properties of hematite/electrolyte interfaces remain poorly understood at a fundamental level, in particular those of crystallographically well-defined hematite faces likely present as interfacial components at the grain scale. We report a combined measurement and theory study that isolates and evaluates the equilibrium surface potentials of three nearly defect-free single crystal faces of hematite, titrated from pH 3 to 11.25. We link measured surface potentials with atomic-scale surface topology, namely the ratio and distributions of surface protonation-deprotonation site types expected from the bulk structure. The data reveal face-specific points of zero potential (PZP) relatable to points of zero net charge (PZC) that lie within a small pH window (8.35-8.85). Over the entire pH range the surface potentials show strong non-Nernstian charging at pH extremes separated by a wide central plateau in agreement with surface complexation modeling predictions, but with important face-specific distinctions. We introduce a new surface complexation model based on fitting the entire data set that depends primarily only on the proton affinities of two site types and the two associated electrical double layer capacitances. The data and model show that magnitudes of surface potential biases at the pH extremes are on the order of 100 mV, similar to the activation energy for electron hopping mobility. An energy band diagram for hematite crystallites with specific face expression and pH effects is proposed that could provide a baseline for understanding water splitting performance enhancement effects from nanostructuring, and guide morphology targets and pH for systematic improvements in
Surface Potentials of (001), (012), (113) Hematite (α-Fe2O3) Crystal Faces in Aqueous Solution
Chatman, Shawn ME; Zarzycki, Piotr P.; Rosso, Kevin M.
2013-09-05
Hematite (α-Fe2O3) is an important candidate electrode for energy system technologies such as photoelectrochemical water splitting. Conversion efficiency issues with this material are presently being addressed through nanostructuring, doping, and surface modification. However, key electrochemical properties of hematite/electrolyte interfaces remain poorly understood at a fundamental level, in particular those of crystallographically well-defined hematite faces likely present as interfacial components at the grain scale. We report a combined measurement and theory study that isolates and evaluates the equilibrium surface potentials of three nearly defect-free single crystal faces of hematite, titrated from pH 3 to 11.25. We link measured surface potentials with atomic-scale surface topology, namely the ratio and distributions of surface protonation/deprotonation site types expected from the bulk structure. The data reveal face-specific points of zero potential (PZP) relatable to points of zero net charge (PZC) that lie within a small pH window (8.35-8.85). Over the entire pH range the surface potentials show strong non-Nernstian charging at pH extremes separated by a wide central plateau in agreement with surface complexation modeling predictions, but with important face-specific distinctions. We introduce a new surface complexation model based on fitting the entire data set that depends primarily only on the proton affinities of two site types and the two associated electrical double layer capacitances. The data and model show that magnitudes of surface potential biases at the pH extremes are on the order of 100 mV, similar to the activation energy for electron hopping mobility. An energy band diagram for hematite crystallites with specific face expression and pH effects is proposed that could provide a baseline for understanding water splitting performance enhancement effects from nanostructuring, and guide morphology targets and pH for systematic improvements in
Effect of Surface Site Interactions on Potentiometric Titration of Hematite (α-Fe2O3) Crystal Faces
Chatman, Shawn ME; Zarzycki, Piotr P.; Preocanin, Tajana; Rosso, Kevin M.
2013-02-01
Time dependent potentiometric pH titrations were used to study the effect of atomic scale surface structure on the protonation behavior of the structurally well defined hematite/aqueous electrolyte interfaces. Our recently proposed thermodynamic model [1,23] was applied to measured acidimetric and alkalimetric titration hysteresis loops, collected from highly organized (001), (012), and (113) crystal face terminations using pH equilibration times ranging from 15 to 30 mins. Hysteresis loop areas indicate that (001) faces equilibrate faster than the (012) and (113) faces, consistent with the different expected ensembles of singly, doubly, and triply coordinated surface sites on each face. Strongly non-linear hysteretic pH-potential relationships were found, with slopes exceeding Nernstian, collectively indicating that protonation and deprotonation is much more complex than embodied in present day surface complexation models. The asymmetrical shape of the acidimetric and alkalimetric titration branches were used to illustrate a proposed steric "leaky screen" repulsion/trapping interaction mechanism that stems from high affinity singly-coordinated sites electrostatically and sterically screening lower affinity doubly and triply coordinated sites. Our data indicate that site interaction is the dominant phenomenon defining surface potential accumulation behavior on single crystal faces of metal oxide minerals.
Magnetic-field-assisted fabrication of micro-convex domes using long pulse laser
NASA Astrophysics Data System (ADS)
Wang, Xingsheng; Xu, Weiteng; Liu, Lu; Zhang, Zhengwei; Jin, Meifu; Kang, Min
2017-09-01
Surfaces with mimic micro-convex domes offer superior functions such as superhydrophobicity, self-cleaning, anti-wear and drag reduction. In this paper, magnetic-filed-assisted laser surface texturing (LST) using long pulse laser was employed to create micro-convex domes on 304L stainless steel. Spherical cap shaped domes with ripples around the bottom were fabricated through LST. The effects of laser power and magnetic flux density on surface morphologies of the created convex domes were investigated. It was found that the height and diameter of the created convex dome increased with the increment of the laser power without magnetic field. Moreover, the height of the created convex dome grew up gradually with the increase of magnetic flux density due to the induced Lorentz force. The height of the convex dome was increased by as much as 14.5% as compared to LST without the applied magnetic field at a laser power of 54 W. However, the applied magnetic field had no evident effect on the diameter of the created convex dome.
Flat tori in three-dimensional space and convex integration.
Borrelli, Vincent; Jabrane, Saïd; Lazarus, Francis; Thibert, Boris
2012-05-08
It is well-known that the curvature tensor is an isometric invariant of C(2) Riemannian manifolds. This invariant is at the origin of the rigidity observed in Riemannian geometry. In the mid 1950s, Nash amazed the world mathematical community by showing that this rigidity breaks down in regularity C(1). This unexpected flexibility has many paradoxical consequences, one of them is the existence of C(1) isometric embeddings of flat tori into Euclidean three-dimensional space. In the 1970s and 1980s, M. Gromov, revisiting Nash's results introduced convex integration theory offering a general framework to solve this type of geometric problems. In this research, we convert convex integration theory into an algorithm that produces isometric maps of flat tori. We provide an implementation of a convex integration process leading to images of an embedding of a flat torus. The resulting surface reveals a C(1) fractal structure: Although the tangent plane is defined everywhere, the normal vector exhibits a fractal behavior. Isometric embeddings of flat tori may thus appear as a geometric occurrence of a structure that is simultaneously C(1) and fractal. Beyond these results, our implementation demonstrates that convex integration, a theory still confined to specialists, can produce computationally tractable solutions of partial differential relations.
Flat tori in three-dimensional space and convex integration
Borrelli, Vincent; Jabrane, Saïd; Lazarus, Francis; Thibert, Boris
2012-01-01
It is well-known that the curvature tensor is an isometric invariant of C2 Riemannian manifolds. This invariant is at the origin of the rigidity observed in Riemannian geometry. In the mid 1950s, Nash amazed the world mathematical community by showing that this rigidity breaks down in regularity C1. This unexpected flexibility has many paradoxical consequences, one of them is the existence of C1 isometric embeddings of flat tori into Euclidean three-dimensional space. In the 1970s and 1980s, M. Gromov, revisiting Nash’s results introduced convex integration theory offering a general framework to solve this type of geometric problems. In this research, we convert convex integration theory into an algorithm that produces isometric maps of flat tori. We provide an implementation of a convex integration process leading to images of an embedding of a flat torus. The resulting surface reveals a C1 fractal structure: Although the tangent plane is defined everywhere, the normal vector exhibits a fractal behavior. Isometric embeddings of flat tori may thus appear as a geometric occurrence of a structure that is simultaneously C1 and fractal. Beyond these results, our implementation demonstrates that convex integration, a theory still confined to specialists, can produce computationally tractable solutions of partial differential relations. PMID:22523238
1990-01-01
to Convex Bodies, Geometriae Dedicata 2" (1973) 225-248. 10. H. Guggenheimer, "The Analytic Geometry of the Unsymmetric Minkowski Plane," Lecture...Mathematics, Vol. 58, No. 2, 1975. 19. E. Lutwak, "On Cross-Sectional Measures of Polar Reciprocal Convex Bodies," Geometriae Dedicata 5, (1976) 79-80
ERIC Educational Resources Information Center
Swanson, David
2011-01-01
We give elementary proofs of formulas for the area and perimeter of a planar convex body surrounded by a band of uniform thickness. The primary tool is a integral formula for the perimeter of a convex body which describes the perimeter in terms of the projections of the body onto lines in the plane.
ERIC Educational Resources Information Center
Swanson, David
2011-01-01
We give elementary proofs of formulas for the area and perimeter of a planar convex body surrounded by a band of uniform thickness. The primary tool is a integral formula for the perimeter of a convex body which describes the perimeter in terms of the projections of the body onto lines in the plane.
Surface acoustic load sensing using a face-shear PIN-PMN-PT single-crystal resonator.
Kim, Kyungrim; Zhang, Shujun; Jiang, Xiaoning
2012-11-01
Pb(In(0.5)Nb(0.5))O(3)-Pb(Mg(1/3)Nb(2/3))O(3)-PbTiO(3) (PIN-PMN-PT) resonators for surface acoustic load sensing are presented in this paper. Different acoustic loads are applied to thickness mode, thickness-shear mode, and face-shear mode resonators, and the electrical impedances at resonance and anti-resonance frequencies are recorded. More than one order of magnitude higher sensitivity (ratio of electrical impedance change to surface acoustic impedance change) at the resonance is achieved for the face-shear-mode resonator compared with other resonators with the same dimensions. The Krimholtz, Leedom, and Matthaei (KLM) model is used to verify the surface acoustic loading effect on the electrical impedance spectrum of face-shear PIN-PMN-PT single-crystal resonators. The demonstrated high sensitivity of face-shear mode resonators to surface loads is promising for a broad range of applications, including artificial skin, biological and chemical sensors, touch screens, and other touch-based sensors.
Mixtures, Generalized Convexity and Balayages.
1986-06-01
A I X) Bk dX(x 11Xi)1 (Sufficiency) Let f c C (K). Then, by LeIn 4.3, Corollary 4.5, Lera 4.6 and the definition of v , I fdv - ldv0 , hfdvo hf( ) 1k...denote the mixed model. hen the models, F., 9 c e , arise from a family of densities (f: 0 e e) with respect to a q-finite measure m, f- fe dX will...said to be a dilation of another d distribution F, written G > F, if I cdF cdG for all convex c .) Shaked showed that fx - f e has two sign changes and
NASA Astrophysics Data System (ADS)
Amini, S.; Hosseinabadi, H. Nouri; Sajjady, S. A.
2016-12-01
Ultrasonic vibration-assisted turning process (UVAT) is one of the effective methods in improving the tribological properties. In this research, the effect of different machining parameters such as cutting speed and feed rate as well as the effect of three vibration modes of one-dimensional (LVT), elliptical (EVT), and three-dimensional (3D-VT) on the tribological properties is examined. In order to validate the results of UVAT process, conventional face-turning operation was performed as well. Wear and friction tests were performed using pin-on-disk wear and friction machine with identical vertical load and sliding speed. The results of the tests show that the surfaces upon which micro-dimples have been created by UVAT processes reduce the average friction coefficient, wear rate and adhesion between pin and samples surface compared with conventional machined surfaces. Compared with conventional face-turning surfaces, average friction coefficient of the surfaces face-turned by LVT, EVT, and 3D-VT processes, show a maximum decrease of 13%, 18%, and 21% respectively. Moreover, compared with CT process, because of the unique features of UVAT process in creating micro-dimples, the contact between chrome steel pin and the sample surface decreases; this in turn leads to further reduction in wear rate for the processes of LVT, EVT, and 3D-VT respectively.
Effects of an aft facing step on the surface of a laminar flow glider wing
NASA Technical Reports Server (NTRS)
Sandlin, Doral R.; Saiki, Neal
1993-01-01
A motor glider was used to perform a flight test study on the effects of aft facing steps in a laminar boundary layer. This study focuses on two dimensional aft facing steps oriented spanwise to the flow. The size and location of the aft facing steps were varied in order to determine the critical size that will force premature transition. Transition over a step was found to be primarily a function of Reynolds number based on step height. Both of the step height Reynolds numbers for premature and full transition were determined. A hot film anemometry system was used to detect transition.
Kudrawiec, R.; Janicki, L.; Gladysiewicz, M.; Misiewicz, J.; Cywinski, G.; Boćkowski, M.; Muzioł, G.
2013-07-29
Two series of N- and Ga-face GaN Van Hoof structures were grown by plasma-assisted molecular beam epitaxy to study the surface potential barrier by contactless electroreflectance (CER). A clear CER resonance followed by strong Franz-Keldysh oscillation of period varying with the thickness of undoped GaN layer was observed for these structures. This period was much shorter for N-polar structures that means smaller surface potential barrier in these structures than in Ga-polar structures. From the analysis of built-in electric field it was determined that the Fermi-level is located 0.27 ± 0.05 and 0.60 ± 0.05 eV below the conduction band for N- and Ga-face GaN surface, respectively.
What causes the facing-the-viewer bias in biological motion?
Weech, Séamas; McAdam, Matthew; Kenny, Sophie; Troje, Nikolaus F
2014-10-13
Orthographically projected biological motion point-light displays are generally ambiguous with respect to their orientation in depth, yet observers consistently prefer the facing-the-viewer interpretation. There has been discussion as to whether this bias can be attributed to the social relevance of biological motion stimuli or relates to local, low-level stimulus properties. In the present study we address this question. In Experiment 1, we compared the facing-the-viewer bias produced by a series of four stick figures and three human silhouettes that differed in posture, gender, and the presence versus absence of walking motion. Using a paradigm in which we asked observers to indicate the spinning direction of these figures, we found no bias when participants observed silhouettes, whereas a pronounced degree of bias was elicited by most stick figures. We hypothesized that the ambiguous surface normals on the lines and dots that comprise stick figures are prone to a visual bias that assumes surfaces to be convex. The local surface orientations of the occluding contours of silhouettes are unambiguous, and as such the convexity bias does not apply. In Experiment 2, we tested the role of local features in ambiguous surface perception by adding dots to the elbows and knees of silhouettes. We found biases consistent with the facing directions implied by a convex body surface. The results unify a number of findings regarding the facing-the-viewer bias. We conclude that the facing-the-viewer bias is established at the level of surface reconstruction from local image features rather than on a semantic level.
NASA Technical Reports Server (NTRS)
Palac, Donald T.
2011-01-01
The Fission Surface Power Systems Project became part of the ETDP on October 1, 2008. Its goal was to demonstrate fission power system technology readiness in an operationally relevant environment, while providing data on fission system characteristics pertinent to the use of a fission power system on planetary surfaces. During fiscal years 08 to 10, the FSPS project activities were dominated by hardware demonstrations of component technologies, to verify their readiness for inclusion in the fission surface power system. These Pathfinders demonstrated multi-kWe Stirling power conversion operating with heat delivered via liquid metal NaK, composite Ti/H2O heat pipe radiator panel operations at 400 K input water temperature, no-moving-part electromagnetic liquid metal pump operation with NaK at flight-like temperatures, and subscale performance of an electric resistance reactor simulator capable of reproducing characteristics of a nuclear reactor for the purpose of system-level testing, and a longer list of component technologies included in the attached report. Based on the successful conclusion of Pathfinder testing, work began in 2010 on design and development of the Technology Demonstration Unit (TDU), a full-scale 1/4 power system-level non-nuclear assembly of a reactor simulator, power conversion, heat rejection, instrumentation and controls, and power management and distribution. The TDU will be developed and fabricated during fiscal years 11 and 12, culminating in initial testing with water cooling replacing the heat rejection system in 2012, and complete testing of the full TDU by the end of 2014. Due to its importance for Mars exploration, potential applicability to missions preceding Mars missions, and readiness for an early system-level demonstration, the Enabling Technology Development and Demonstration program is currently planning to continue the project as the Fission Power Systems project, including emphasis on the TDU completion and testing.
Hill, Harold; Johnston, Alan
2007-01-01
The hollow-face illusion, in which a mask appears as a convex face, is a powerful example of binocular depth inversion occurring with a real object under a wide range of viewing conditions. Explanations of the illusion are reviewed and six experiments reported. In experiment 1 the detrimental effect of figural inversion, evidence for the importance of familiarity, was found for other oriented objects. The inversion effect held for masks lit from the side (experiment 2). The illusion was stronger for a mask rotated by 90 degrees lit from its forehead than from its chin, suggesting that familiar patterns of shading enhance the illusion (experiment 2). There were no effects of light source visibility or any left/right asymmetry (experiment 3). In experiments 4-6 we used a 'virtual' hollow face, with illusion strength quantified by the proportion of noise texture needed to eliminate the illusion. Adding characteristic surface colour enhanced the illusion, consistent with the familiar face pigmentation outweighing additional bottom-up cues (experiment 4). There was no difference between perspective and orthographic projection. Photographic negation reduced, but did not eliminate, the illusion, suggesting shading is important but not essential (experiment 5). Absolute depth was not critical, although a shallower mask was given less extreme convexity ratings (experiment 6). We argue that the illusion arises owing to a convexity preference when the raw data have ambiguous interpretations. However, using a familiar object with typical orientation, shading, and pigmentation greatly enhances the effect.
Using Fisher Information Criteria for Chemical Sensor Selection via Convex Optimization Methods
2016-11-16
Information Matrices of Elliptically Contoured Dis- tributions...robust in the face of many potentially similar but varying covariance matrices or array responses. Fisher Information Criteria for Sensors 3 Fortunately...ln(det(X )) as the final objective function. It is proven below that this function is concave (convex up) for all positive semidefinite matrices , X
Interferometric cross test of a convex even asphere
NASA Astrophysics Data System (ADS)
Xue, Shuai; Chen, Shanyong; Zheng, Liehua; Li, Yepeng
2015-08-01
Large convex aspheres are difficult to test since larger null optics are required. We propose to test a convex even asphere by near-null subaperture stitching based on the reconfigurable optical null. This paper starts with an introduction to the principle of reconfigurable optical null and the near-null stitching algorithm. For the purpose of cross test, alternative two measurements of the surface are obtained and quantitatively compared with the stitching test. The first one is null test with a single asphereic lens which is in situ calibrated by an ordinary null. The test beam travels the same path when used for measuring the convex asphere and calibrated by the ordinary null, which relaxes the tolerance on transmissive quality and fabrication error of the large aspheric lens. The other alternative is back-through null test with a null lens. A singlet is designed to balance the positive spherical aberration existing in the back-through test of the even asphere. A low coherence interferometer is employed to precisely measure or monitor the surface thickness or air clearance in the null test. The three measurements are finally registered to each other to calculate the difference or similarity quantitatively.
Koike, M; Cai, Z; Fujii, H; Brezner, M; Okabe, T
2003-11-01
This study characterized the corrosion behavior of cast CP titanium made with a face-coating method. Wax patterns were coated with oxide slurry of Y(2)O(3) or ZrO(2) before investing with a MgO-based investment. Three surface preparations were tested: ground, sandblasted, and as-cast. Uncoated castings served as controls. Sixteen-hour open circuit potential (OCP) measurement, linear polarization and potentiodynamic cathodic polarization were performed in an aerated modified Tani-Zucchi synthetic saliva at 37 degrees C. Anodic polarization was conducted in the same deaerated medium. Polarization resistance (R(p)) and Tafel slopes were determined. Corrosion current density was calculated for each specimen. Results (n=4) were subjected to nonparametric statistical analysis (alpha=0.05). Cross sections of cast specimens were examined by optical microscopy. Energy dispersive spectroscopy (EDS) spot analysis was performed at various depths below the surface. The OCP stabilized within several hours for all the specimens. Apparent differences in anodic polarization behavior were observed among the different surfaces. A distinctive wide passive region followed by breakdown was seen on specimens with ground and sandblasted surfaces. There were no significant differences in the corrosion resistance among the control and the two face-coating groups for each group. The Mann-Whitney test showed significantly lower OCP and higher R(p) values for ground surfaces. The surface condition significantly affected the corrosion behavior more than the face coating methods. In most cases, specimens with as-cast surfaces exhibited the least corrosion resistance during the potentiodynamic anodic polarization.
Recent characterizations of generalized convexity in convexity in cooperative game thoery
Driessen, T.
1994-12-31
The notion of convexity for a real-valued function on the power set of the finite set N (the so-called cooperative game with player set N) is defined as in other mathematical fields. The study of convexity plays an important role within the field of cooperative game theory because the application of the solution part of game theory to convex games provides elegant results for the solution concepts involved. Especially, the well known solution concept called core is, for convex games, very well characterized. The current paper focuses on a notion of generalized convexity, called k- convexity, for cooperative n-person games. Due to very recent characterizations of convexity for cooperative games, the goal is to provide similar new characterizations of k-convexity. The main characterization states that for the k-convexity of an n-person game it is both necessary and sufficient that half of all the so-called marginal worth vectors belong to the core of the game. Here it is taken into account whether a marginal worth vector corresponds to an even or odd ordering of k elements of the n-person player set N. Another characterization of k-convexity is presented in terms of a so-called finite min-modular decomposition. That is, some specific cover game of a k-convex game can be decomposed as the minimum of a finite number of modular (or additive) games. Finally it is established that the k-convexity of a game can be characterized in terms of the second order partial derivates of the so-called multilinear extension of the game.
Geometric-Harmonic convexity and integral inequalities
NASA Astrophysics Data System (ADS)
Akdemir, Ahmet Ocak; Yalçin, Abdüllatif; Polat, Fatma; Kavurmaci-Önalan, Havva
2016-04-01
In this paper, some new integral inequalities have been proved for functions whose absolute value of derivatives are GH-convex functions by using integral equalities that have been obtained previously.
NASA Astrophysics Data System (ADS)
Parekh, Ankit
Sparsity has become the basis of some important signal processing methods over the last ten years. Many signal processing problems (e.g., denoising, deconvolution, non-linear component analysis) can be expressed as inverse problems. Sparsity is invoked through the formulation of an inverse problem with suitably designed regularization terms. The regularization terms alone encode sparsity into the problem formulation. Often, the ℓ1 norm is used to induce sparsity, so much so that ℓ1 regularization is considered to be `modern least-squares'. The use of ℓ1 norm, as a sparsity-inducing regularizer, leads to a convex optimization problem, which has several benefits: the absence of extraneous local minima, well developed theory of globally convergent algorithms, even for large-scale problems. Convex regularization via the ℓ1 norm, however, tends to under-estimate the non-zero values of sparse signals. In order to estimate the non-zero values more accurately, non-convex regularization is often favored over convex regularization. However, non-convex regularization generally leads to non-convex optimization, which suffers from numerous issues: convergence may be guaranteed to only a stationary point, problem specific parameters may be difficult to set, and the solution is sensitive to the initialization of the algorithm. The first part of this thesis is aimed toward combining the benefits of non-convex regularization and convex optimization to estimate sparse signals more effectively. To this end, we propose to use parameterized non-convex regularizers with designated non-convexity and provide a range for the non-convex parameter so as to ensure that the objective function is strictly convex. By ensuring convexity of the objective function (sum of data-fidelity and non-convex regularizer), we can make use of a wide variety of convex optimization algorithms to obtain the unique global minimum reliably. The second part of this thesis proposes a non-linear signal
Anderson, Jonathan K.; Durbin, Samuel G. II; Sadowski, Dennis L.; Yoda, Minami; Abdel-Khalik, Said I.
2003-05-15
The fusion event in inertial fusion energy (IFE) reactors creates neutrons, photons, and charged particles that can damage the chamber first walls. The Prometheus design study used a high-speed thin film of molten lead injected tangential to the wall to protect the upper endcap of the reactor chamber from damaging X rays and target debris. To assure full chamber coverage, the film must remain attached. Film detachment under the influence of gravity is most likely to occur on the downward-facing surfaces over the upper endcap of the reactor chamber. Accurate numerical predictions of detachment length are effectively impossible in this turbulent flow because of difficulties in determining appropriate boundary conditions near the detachment point.As part of the ARIES-IFE study, experimental investigations of high-speed water films injected onto downward-facing planar surfaces at angles of inclination up to 45 deg below the horizontal were therefore performed. The initial growth and subsequent detachment of films with initial thickness up to 2 mm and injection speed up to 11 m/s were measured. To our knowledge, these experiments are the first to investigate the detachment of turbulent liquid films on downward-facing surfaces. The implications of these initial results on thin liquid protection and the 'wet wall' concept are discussed.
A further characteristic of abstract convexity structures on topological spaces
NASA Astrophysics Data System (ADS)
Xiang, Shu-Wen; Xia, Shunyou
2007-11-01
In this paper, we give a characteristic of abstract convexity structures on topological spaces with selection property. We show that if a convexity structure defined on a topological space has the weak selection property then satisfies H0-condition. Moreover, in a compact convex subset of a topological space with convexity structure, the weak selection property implies the fixed point property.
Convexity conditions and normal structure of Banach spaces
NASA Astrophysics Data System (ADS)
Saejung, Satit
2008-08-01
We prove that F-convexity, the property dual to P-convexity of Kottman, implies uniform normal structure. Moreover, in the presence of the WORTH property, normal structure follows from a weaker convexity condition than F-convexity. The latter result improves the known fact that every uniformly nonsquare space with the WORTH property has normal structure.
Exact and Approximate Sizes of Convex Datacubes
NASA Astrophysics Data System (ADS)
Nedjar, Sébastien
In various approaches, data cubes are pre-computed in order to efficiently answer Olap queries. The notion of data cube has been explored in various ways: iceberg cubes, range cubes, differential cubes or emerging cubes. Previously, we have introduced the concept of convex cube which generalizes all the quoted variants of cubes. More precisely, the convex cube captures all the tuples satisfying a monotone and/or antimonotone constraint combination. This paper is dedicated to a study of the convex cube size. Actually, knowing the size of such a cube even before computing it has various advantages. First of all, free space can be saved for its storage and the data warehouse administration can be improved. However the main interest of this size knowledge is to choose at best the constraints to apply in order to get a workable result. For an aided calibrating of constraints, we propose a sound characterization, based on inclusion-exclusion principle, of the exact size of convex cube as long as an upper bound which can be very quickly yielded. Moreover we adapt the nearly optimal algorithm HyperLogLog in order to provide a very good approximation of the exact size of convex cubes. Our analytical results are confirmed by experiments: the approximated size of convex cubes is really close to their exact size and can be computed quasi immediately.
Neural networks for convex hull computation.
Leung, Y; Zhang, J S; Xu, Z B
1997-01-01
Computing convex hull is one of the central problems in various applications of computational geometry. In this paper, a convex hull computing neural network (CHCNN) is developed to solve the related problems in the N-dimensional spaces. The algorithm is based on a two-layered neural network, topologically similar to ART, with a newly developed adaptive training strategy called excited learning. The CHCNN provides a parallel online and real-time processing of data which, after training, yields two closely related approximations, one from within and one from outside, of the desired convex hull. It is shown that accuracy of the approximate convex hulls obtained is around O[K(-1)(N-1/)], where K is the number of neurons in the output layer of the CHCNN. When K is taken to be sufficiently large, the CHCNN can generate any accurate approximate convex hull. We also show that an upper bound exists such that the CHCNN will yield the precise convex hull when K is larger than or equal to this bound. A series of simulations and applications is provided to demonstrate the feasibility, effectiveness, and high efficiency of the proposed algorithm.
Gourdin, W H; Dzenitis, E; Martin, D; Listiyo, K; Sherman, G; Kent, W; Butlin, R; Stolz, C J; Pryatel, J
2004-11-10
We describe a system to inspect and remove surface debris in-situ from the surfaces of upward-facing mirrors that transport 1053 nm laser light to the target chamber of the National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory. Grazing angle (2-5{sup o}) illumination with a bar light highlights debris {approx}10 {micro}m in size and larger, which is then viewed through windows in the enclosures of selected mirrors. Debris is removed with 1-second bursts of high velocity (76 m/s) clean air delivered across the optic surfaces by a commercially available linear nozzle (''gas knife''). Experiments with aluminum, stainless steel, glass and polystyrene particles of various sizes >30 {micro}m show that particle removal efficiency is near 100% over most of the mirror surfaces for all sizes tested.
Face-dependent Auger neutralization and ground-state energy shift for He in front of Al surfaces
Wethekam, S.; Winter, H.; Valdes, Diego; Monreal, R. C.
2008-08-15
He atoms and ions with keV energies are scattered under grazing angles of incidence from Al(111), Al(100), and Al(110) surfaces. Fractions of surviving ions and normal energy gains of He{sup +} ions prior to neutralization, derived from shifts of angular distributions for incident atoms and ions, are compared to results from three-dimensional Monte Carlo simulations based on theoretically calculated Auger neutralization rates and He ground-state energy shifts. From the good agreement of experimental data with simulations, we conclude a detailed microscopic understanding for a model system of ion-surface interactions. Our work provides further evidence for the recently reported surface Miller index dependence for the neutralization of He{sup +} ions at metal surfaces. The study is extended to the face dependence of the He ground-state energy shift.
Jet printing of convex and concave polymer micro-lenses.
Blattmann, M; Ocker, M; Zappe, H; Seifert, A
2015-09-21
We describe a novel approach for fabricating customized convex as well as concave micro-lenses using substrates with sophisticated pinning architecture and utilizing a drop-on-demand jet printer. The polymeric lens material deposited on the wafer is cured by UV light irradiation yielding lenses with high quality surfaces. Surface shape and roughness of the cured polymer lenses are characterized by white light interferometry. Their optical quality is demonstrated by imaging an USAF1951 test chart. The evaluated modulation transfer function is compared to Zemax simulations as a benchmark for the fabricated lenses.
Surface-induced ordering and disordering in face-centered-cubic alloys: A Monte Carlo study
NASA Astrophysics Data System (ADS)
Schweika, W.; Landau, D. P.; Binder, K.
1996-04-01
Using extensive Monte Carlo simulations we have studied phase transitions in a fcc model with antiferromagnetic nearest-neighbor couplings J in the presence of different free surfaces which lead either to surface-induced order or to surface-induced disorder. Our model is a prototype for CuAu-type ordering alloys and shows a strong first-order bulk transition at a temperature kTcb/||J||=1.738 005(50). For free (100) surfaces, we find a continuous surface transition at a temperature Tcs>~Tcb exhibiting critical exponents of the two-dimensional Ising model. Surface-induced ordering occurs as the temperature approaches Tcb and the surface excess order and surface excess energy diverges logarithmically. For a free (111) surface, the surface order vanishes continuously at Tcb accompanied by surface-induced disorder (SID). In addition to a logarithmic divergence of the excess quantities of order and energy, we find further critical exponents which confirm the actual theory of SID and critical wetting and which can be understood in terms of rough interfaces. For both cases of free surfaces, the asymptotic behavior of the squared interfacial width shows the expected logarithmic divergence.
Duquenne, Philippe; Simon, Xavier; Demange, Valérie; Harper, Martin; Wild, Pascal
2015-05-01
A set of 270 bioaerosol samples was taken from 15 composting facilities using polystyrene closed-face filter cassettes (CFCs). The objective was to measure the quantity of endotoxin deposits on the inner surfaces of the cassettes (sometimes referred to as 'wall deposits'). The results show that endotoxins are deposited on the inner surfaces of the CFCs through sampling and/or handling of samples. The quantity of endotoxins measured on inner surfaces range between 0.05 (the limit of detection of the method) and 3100 endotoxin units per cassette. The deposits can represent a large and variable percentage of the endotoxins sampled. More than a third of the samples presented a percentage of inner surface deposits >40% of the total quantity of endotoxins collected (filter + inner surfaces). Omitting these inner surface deposits in the analytical process lead to measurement errors relative to sampling all particles entering the CFC sampler, corresponding to a developing consensus on matching the inhalable particulate sampling convention. The result would be underestimated exposures and could affect the decision as to whether or not a result is acceptable in comparison to airborne concentration limits defined in terms of the inhalability convention. The results of this study suggest including the endotoxins deposited on the inner surfaces of CFCs during analysis. Further researches are necessary to investigate endotoxin deposits on the inner cassette surfaces in other working sectors.
Sparse recovery via convex optimization
NASA Astrophysics Data System (ADS)
Randall, Paige Alicia
program which can be written as either a linear program or a second-order cone program, and the well-established machinery of convex optimization used to solve it rapidly.
The many faces of Mars. [Mariner 9 photography of Mars surface, satellites, and atmosphere
NASA Technical Reports Server (NTRS)
1973-01-01
The Mariner Mars 1971 spacecraft was the first to orbit another planet. For 349 days, it transmitted a vast amount of data, including 7300 television pictures, gathered by its five scientific instruments. This memorandum presents some of the findings on the characteristics of the surface, atmosphere, and satellites of Mars. Included are photographs of the surface, atmosphere, satellites, surface maps, and spectrometric data for the atmosphere.
NASA Technical Reports Server (NTRS)
Weinberg, I.; Hsu, L. C.
1977-01-01
Increased solar cell efficiencies are attained by reduction of surface recombination and variation of impurity concentration profiles at the n(+) surface of silicon solar cells. Diagnostic techniques are employed to evaluate the effects of specific materials preparation methodologies on surface and near surface concentrations. It is demonstrated that the MOS C-V method, when combined with a bulk measurement technique, yields more complete concentration data than are obtainable by either method alone. Specifically, new solar cell MOS C-V measurements are combined with bulk concentrations obtained by a successive layer removal technique utilizing measurements of sheet resistivity and Hall coefficient.
Weinberg, SM; Naidoo, SD; Bardi, KM; Brandon, CA; Neiswanger, K; Resick, JM; Martin, RA; Marazita, ML
2009-01-01
Objective Various lines of evidence suggest that face shape may be a predisposing factor for nonsyndromic cleft lip with or without cleft palate (CL/P). In the present study, 3D surface imaging and statistical shape analysis were used to evaluate face shape differences between the unaffected (non-cleft) parents of individuals with CL/P and unrelated controls. Methods Sixteen facial landmarks were collected from 3D captures of 80 unaffected parents and 80 matched controls. Prior to analysis, each unaffected parent was assigned to a subgroup on the basis of prior family history (positive or negative). A geometric morphometric approach was utilized to scale and superimpose the landmark coordinate data (Procrustes analysis), test for omnibus group differences in face shape, and uncover specific modes of shape variation capable of discriminating unaffected parents from controls. Results Significant disparity in face shape was observed between unaffected parents and controls (p < 0.01). Notably, these changes were specific to parents with a positive family history of CL/P. Shape changes associated with CL/P predisposition included marked flattening of the facial profile (midface retrusion), reduced upper facial height, increased lower facial height and excess interorbital width. Additionally, a sex-specific pattern of parent-control difference was evident in the transverse dimensions of the nasolabial complex. Conclusions The faces of unaffected parents from multiplex cleft families display meaningful shape differences compared with the general population. Quantitative assessment of the facial phenotype in cleft families may enhance efforts to discover the root causes of CL/P. PMID:19840279
Convex Banding of the Covariance Matrix
Bien, Jacob; Bunea, Florentina; Xiao, Luo
2016-01-01
We introduce a new sparse estimator of the covariance matrix for high-dimensional models in which the variables have a known ordering. Our estimator, which is the solution to a convex optimization problem, is equivalently expressed as an estimator which tapers the sample covariance matrix by a Toeplitz, sparsely-banded, data-adaptive matrix. As a result of this adaptivity, the convex banding estimator enjoys theoretical optimality properties not attained by previous banding or tapered estimators. In particular, our convex banding estimator is minimax rate adaptive in Frobenius and operator norms, up to log factors, over commonly-studied classes of covariance matrices, and over more general classes. Furthermore, it correctly recovers the bandwidth when the true covariance is exactly banded. Our convex formulation admits a simple and efficient algorithm. Empirical studies demonstrate its practical effectiveness and illustrate that our exactly-banded estimator works well even when the true covariance matrix is only close to a banded matrix, confirming our theoretical results. Our method compares favorably with all existing methods, in terms of accuracy and speed. We illustrate the practical merits of the convex banding estimator by showing that it can be used to improve the performance of discriminant analysis for classifying sound recordings. PMID:28042189
Convex Banding of the Covariance Matrix.
Bien, Jacob; Bunea, Florentina; Xiao, Luo
2016-01-01
We introduce a new sparse estimator of the covariance matrix for high-dimensional models in which the variables have a known ordering. Our estimator, which is the solution to a convex optimization problem, is equivalently expressed as an estimator which tapers the sample covariance matrix by a Toeplitz, sparsely-banded, data-adaptive matrix. As a result of this adaptivity, the convex banding estimator enjoys theoretical optimality properties not attained by previous banding or tapered estimators. In particular, our convex banding estimator is minimax rate adaptive in Frobenius and operator norms, up to log factors, over commonly-studied classes of covariance matrices, and over more general classes. Furthermore, it correctly recovers the bandwidth when the true covariance is exactly banded. Our convex formulation admits a simple and efficient algorithm. Empirical studies demonstrate its practical effectiveness and illustrate that our exactly-banded estimator works well even when the true covariance matrix is only close to a banded matrix, confirming our theoretical results. Our method compares favorably with all existing methods, in terms of accuracy and speed. We illustrate the practical merits of the convex banding estimator by showing that it can be used to improve the performance of discriminant analysis for classifying sound recordings.
Ehst, D.A.; Hassanein, A.
1996-02-01
Ablation damage to solid targets with high heat flux impulses is generally greater high-energy electron beam heat sources compared to low-energy plasma guns. This sensitivity to incoming particle kinetic energy is explored with computer modelling; a fast-running routine (DESIRE) is developed for initial scoping analysis and is found to be in reasonable agreement with several experiments on graphite and tungsten targets. If tokamak disruptions are characterized by particle energies less than {approximately}1 keV, then we expect plasma guns are a better analogue than electron beams for simulating disruption behavior and testing candidate plasma-facing materials.
Characterizing Incentive Compatibility for Convex Valuations
NASA Astrophysics Data System (ADS)
Berger, André; Müller, Rudolf; Naeemi, Seyed Hossein
We study implementability in dominant strategies of social choice functions when sets of types are multi-dimensional and convex, sets of outcomes are arbitrary, valuations for outcomes are convex functions in the type, and utilities over outcomes and payments are quasi-linear. Archer and Kleinberg [1] have proven that in case of valuation functions that are linear in the type monotonicity in combination with a local integrability condition are equivalent with implementability. We show that in the case of convex valuation functions one has to require in addition a property called decomposition monotonicity in order to conclude implementability from monotonicity and the integrability condition. Decomposition monotonicity is automatically satisfied in the linear case.
Automatic Treatment Planning with Convex Imputing
NASA Astrophysics Data System (ADS)
Sayre, G. A.; Ruan, D.
2014-03-01
Current inverse optimization-based treatment planning for radiotherapy requires a set of complex DVH objectives to be simultaneously minimized. This process, known as multi-objective optimization, is challenging due to non-convexity in individual objectives and insufficient knowledge in the tradeoffs among the objective set. As such, clinical practice involves numerous iterations of human intervention that is costly and often inconsistent. In this work, we propose to address treatment planning with convex imputing, a new-data mining technique that explores the existence of a latent convex objective whose optimizer reflects the DVH and dose-shaping properties of previously optimized cases. Using ten clinical prostate cases as the basis for comparison, we imputed a simple least-squares problem from the optimized solutions of the prostate cases, and show that the imputed plans are more consistent than their clinical counterparts in achieving planning goals.
SU-D-BRA-02: Motion Assessment During Open Face Mask SRS Using CBCT and Surface Monitoring
Williams, BB; Fox, CJ; Hartford, AC; Gladstone, DJ
2016-06-15
Purpose: To assess the robustness of immobilization using open-face mask technology for linac-based stereotactic radiosurgery (SRS) with multiple non-coplanar arcs via repeated CBCT acquisition, with comparison to contemporaneous optical surface tracking data. Methods: 25 patients were treated in open faced masks with cranial SRS using 3–4 non-coplanar arcs. Repeated CBCT imaging was performed to verify the maintenance of proper patient positioning during treatment. Initial patient positioning was performed based on prescribed shifts and optical surface tracking. Positioning refinements employed rigid 3D-matching of the planning CT and CBCT images and were implemented via automated 6DOF couch control. CBCT imaging was repeated following the treatment of all non-transverse beams with associated couch kicks. Detected patient translations and rotations were recorded and automatically corrected. Optical surface tracking was applied throughout the treatments to monitor motion, and this contemporaneous patient positioning data was recorded to compare against CBCT data and 6DOF couch adjustments. Results: Initial patient positions were refined on average by translations of 3±1mm and rotations of ±0.9-degrees. Optical surface tracking corroborated couch corrections to within 1±1mm and ±0.4-degrees. Following treatment of the transverse and subsequent superior-oblique beam, average translations of 0.6±0.4mm and rotations of ±0.4-degrees were reported via CBCT, with optical surface tracking in agreement to within 1.1±0.6mm and ±0.6-degrees. Following treatment of the third beam, CBCT indicated additional translations of 0.4±0.2mm and rotations of ±0.3-degrees. Cumulative couch corrections resulted in 0.7 ± 0.4mm average magnitude translations and rotations of ±0.4-degrees. Conclusion: Based on CBCT measurements of patients during SRS, the open face mask maintained patient positioning to within 1.5mm and 1-degree with >95% confidence. Patient positioning
Strain responsive concave and convex microlens arrays
NASA Astrophysics Data System (ADS)
Chandra, Dinesh; Yang, Shu; Lin, Pei-Chun
2007-12-01
We report the fabrication of single-component, strain responsive microlens arrays with real-time tunability. The concave lens array is fabricated by patterning hard oxide layer on a bidirectionally prestretched soft elastomer, poly(dimethylsiloxane) (PDMS) followed by confined buckling upon release of the prestrain. The convex microlens array is replica molded from the concave lenses in PDMS. Due to difference in lens formation mechanisms, the two types of lenses show different tunable range of focal length in response to the applied strain: large focal length change is observed from the concave microlens array, whereas that from the convex microlens array is much smaller.
A Convex Approach to Fault Tolerant Control
NASA Technical Reports Server (NTRS)
Maghami, Peiman G.; Cox, David E.; Bauer, Frank (Technical Monitor)
2002-01-01
The design of control laws for dynamic systems with the potential for actuator failures is considered in this work. The use of Linear Matrix Inequalities allows more freedom in controller design criteria than typically available with robust control. This work proposes an extension of fault-scheduled control design techniques that can find a fixed controller with provable performance over a set of plants. Through convexity of the objective function, performance bounds on this set of plants implies performance bounds on a range of systems defined by a convex hull. This is used to incorporate performance bounds for a variety of soft and hard failures into the control design problem.
Probing convex polygons with X-rays
Edelsbrunner, H.; Skiena, S.S. )
1988-10-01
An X-ray probe through a polygon measures the length of intersection between a line and the polygon. This paper considers the properties of various classes of X-ray probes, and shows how they interact to give finite strategies for completely describing convex n-gons. It is shown that (3n/2)+6 probes are sufficient to verify a specified n-gon, while for determining convex polygons (3n-1)/2 X-ray probes are necessary and 5n+O(1) sufficient, with 3n+O(1) sufficient given that a lower bound on the size of the smallest edge of P is known.
Fukushima, Hirokata; Hirata, Satoshi; Ueno, Ari; Matsuda, Goh; Fuwa, Kohki; Sugama, Keiko; Kusunoki, Kiyo; Hirai, Masahiro; Hiraki, Kazuo; Tomonaga, Masaki; Hasegawa, Toshikazu
2010-10-12
The neural system of our closest living relative, the chimpanzee, is a topic of increasing research interest. However, electrophysiological examinations of neural activity during visual processing in awake chimpanzees are currently lacking. In the present report, skin-surface event-related brain potentials (ERPs) were measured while a fully awake chimpanzee observed photographs of faces and objects in two experiments. In Experiment 1, human faces and stimuli composed of scrambled face images were displayed. In Experiment 2, three types of pictures (faces, flowers, and cars) were presented. The waveforms evoked by face stimuli were distinguished from other stimulus types, as reflected by an enhanced early positivity appearing before 200 ms post stimulus, and an enhanced late negativity after 200 ms, around posterior and occipito-temporal sites. Face-sensitive activity was clearly observed in both experiments. However, in contrast to the robustly observed face-evoked N170 component in humans, we found that faces did not elicit a peak in the latency range of 150-200 ms in either experiment. Although this pilot study examined a single subject and requires further examination, the observed scalp voltage patterns suggest that selective processing of faces in the chimpanzee brain can be detected by recording surface ERPs. In addition, this non-invasive method for examining an awake chimpanzee can be used to extend our knowledge of the characteristics of visual cognition in other primate species.
Fukushima, Hirokata; Hirata, Satoshi; Ueno, Ari; Matsuda, Goh; Fuwa, Kohki; Sugama, Keiko; Kusunoki, Kiyo; Hirai, Masahiro; Hiraki, Kazuo; Tomonaga, Masaki; Hasegawa, Toshikazu
2010-01-01
Background The neural system of our closest living relative, the chimpanzee, is a topic of increasing research interest. However, electrophysiological examinations of neural activity during visual processing in awake chimpanzees are currently lacking. Methodology/Principal Findings In the present report, skin-surface event-related brain potentials (ERPs) were measured while a fully awake chimpanzee observed photographs of faces and objects in two experiments. In Experiment 1, human faces and stimuli composed of scrambled face images were displayed. In Experiment 2, three types of pictures (faces, flowers, and cars) were presented. The waveforms evoked by face stimuli were distinguished from other stimulus types, as reflected by an enhanced early positivity appearing before 200 ms post stimulus, and an enhanced late negativity after 200 ms, around posterior and occipito-temporal sites. Face-sensitive activity was clearly observed in both experiments. However, in contrast to the robustly observed face-evoked N170 component in humans, we found that faces did not elicit a peak in the latency range of 150–200 ms in either experiment. Conclusions/Significance Although this pilot study examined a single subject and requires further examination, the observed scalp voltage patterns suggest that selective processing of faces in the chimpanzee brain can be detected by recording surface ERPs. In addition, this non-invasive method for examining an awake chimpanzee can be used to extend our knowledge of the characteristics of visual cognition in other primate species. PMID:20967284
Modern technologies of fabrication and testing of large convex secondary mirrors
NASA Astrophysics Data System (ADS)
Oh, Chang Jin; Lowman, Andrew E.; Dubin, Matt; Smith, Greg; Frater, Eric; Zhao, Chunyu; Burge, James H.
2016-07-01
Modern large telescopes such as TAO, LSST, TMT and EELT require 0.9m-4m monolithic convex secondary mirrors. The fabrication and testing of these large convex secondary mirrors of astronomical telescopes is getting challenging as the aperture of the mirror is getting bigger. The biggest challenge to fabricate these large convex aspheric mirrors is to measure the surface figure to a few nanometers, while maintaining the testing and fabrication cycle to be efficient to minimize the downtime. For the last a couple of decades there was huge advancement in the metrology and fabrication of large aspheric secondary mirrors. College of Optical Sciences in the University Arizona developed a full fabrication and metrology process with extremely high accuracy and efficiency for manufacturing the large convex secondary mirrors. In this paper modern metrology systems including Swing-Arm Optical Coordinate Measuring System (SOCMM) which is comparable to Interferometry and a Sub-aperture stitching interferometry scalable to a several meters have been presented. Also a Computer Controlled Fabrication Process which produces extremely fine surface figure and finish has been demonstrated. These most recent development has been applied to the fabrication and testing of 0.9m aspheric convex secondary mirror for the Tokyo Atacama Observatory's 6.5m telescope and the result has been presented.
Convex Formulations of Learning from Crowds
NASA Astrophysics Data System (ADS)
Kajino, Hiroshi; Kashima, Hisashi
It has attracted considerable attention to use crowdsourcing services to collect a large amount of labeled data for machine learning, since crowdsourcing services allow one to ask the general public to label data at very low cost through the Internet. The use of crowdsourcing has introduced a new challenge in machine learning, that is, coping with low quality of crowd-generated data. There have been many recent attempts to address the quality problem of multiple labelers, however, there are two serious drawbacks in the existing approaches, that are, (i) non-convexity and (ii) task homogeneity. Most of the existing methods consider true labels as latent variables, which results in non-convex optimization problems. Also, the existing models assume only single homogeneous tasks, while in realistic situations, clients can offer multiple tasks to crowds and crowd workers can work on different tasks in parallel. In this paper, we propose a convex optimization formulation of learning from crowds by introducing personal models of individual crowds without estimating true labels. We further extend the proposed model to multi-task learning based on the resemblance between the proposed formulation and that for an existing multi-task learning model. We also devise efficient iterative methods for solving the convex optimization problems by exploiting conditional independence structures in multiple classifiers.
Robust Utility Maximization Under Convex Portfolio Constraints
Matoussi, Anis; Mezghani, Hanen Mnif, Mohamed
2015-04-15
We study a robust maximization problem from terminal wealth and consumption under a convex constraints on the portfolio. We state the existence and the uniqueness of the consumption–investment strategy by studying the associated quadratic backward stochastic differential equation. We characterize the optimal control by using the duality method and deriving a dynamic maximum principle.
Convex bodies of states and maps
NASA Astrophysics Data System (ADS)
Grabowski, Janusz; Ibort, Alberto; Kuś, Marek; Marmo, Giuseppe
2013-10-01
We give a general solution to the question of when the convex hulls of orbits of quantum states on a finite-dimensional Hilbert space under unitary actions of a compact group have a non-empty interior in the surrounding space of all density operators. The same approach can be applied to study convex combinations of quantum channels. The importance of both problems stems from the fact that, usually, only sets with non-vanishing volumes in the embedding spaces of all states or channels are of practical importance. For the group of local transformations on a bipartite system we characterize maximally entangled states by the properties of a convex hull of orbits through them. We also compare two partial characteristics of convex bodies in terms of the largest balls and maximum volume ellipsoids contained in them and show that, in general, they do not coincide. Separable states, mixed-unitary channels and k-entangled states are also considered as examples of our techniques.
Directional Convexity and Finite Optimality Conditions.
1984-03-01
system, Necessary Conditions for optimality. Work Unit Number 5 (Optimization and Large Scale Systems) *Istituto di Matematica Applicata, Universita...that R(T) is convex would then imply x(u,T) e int R(T). Cletituto di Matematica Applicata, Universita di Padova, 35100 ITALY. Sponsored by the United
On strongly GA-convex functions and stochastic processes
NASA Astrophysics Data System (ADS)
Bekar, Nurgül Okur; Akdemir, Hande Günay; Işcan, Imdat
2014-08-01
In this study, we introduce strongly GA-convex functions and stochastic processes. We provide related well-known Kuhn type results and Hermite-Hadamard type inequality for strongly GA-convex functions and stochastic processes.
On strongly GA-convex functions and stochastic processes
Bekar, Nurgül Okur; Akdemir, Hande Günay; İşcan, İmdat
2014-08-20
In this study, we introduce strongly GA-convex functions and stochastic processes. We provide related well-known Kuhn type results and Hermite-Hadamard type inequality for strongly GA-convex functions and stochastic processes.
Local Convexity-Preserving C 2 Rational Cubic Spline for Convex Data
Abd Majid, Ahmad; Ali, Jamaludin Md.
2014-01-01
We present the smooth and visually pleasant display of 2D data when it is convex, which is contribution towards the improvements over existing methods. This improvement can be used to get the more accurate results. An attempt has been made in order to develop the local convexity-preserving interpolant for convex data using C 2 rational cubic spline. It involves three families of shape parameters in its representation. Data dependent sufficient constraints are imposed on single shape parameter to conserve the inherited shape feature of data. Remaining two of these shape parameters are used for the modification of convex curve to get a visually pleasing curve according to industrial demand. The scheme is tested through several numerical examples, showing that the scheme is local, computationally economical, and visually pleasing. PMID:24757421
Local convexity-preserving C2 rational cubic spline for convex data.
Abbas, Muhammad; Abd Majid, Ahmad; Ali, Jamaludin Md
2014-01-01
We present the smooth and visually pleasant display of 2D data when it is convex, which is contribution towards the improvements over existing methods. This improvement can be used to get the more accurate results. An attempt has been made in order to develop the local convexity-preserving interpolant for convex data using C(2) rational cubic spline. It involves three families of shape parameters in its representation. Data dependent sufficient constraints are imposed on single shape parameter to conserve the inherited shape feature of data. Remaining two of these shape parameters are used for the modification of convex curve to get a visually pleasing curve according to industrial demand. The scheme is tested through several numerical examples, showing that the scheme is local, computationally economical, and visually pleasing.
Heat transfer at an upstream-facing surface washed by fluid en route to an aperture in the surface
NASA Astrophysics Data System (ADS)
Sparrow, E. M.; Gurdal, U.
1981-05-01
Forced convection heat transfer coefficients were measured at a plane surface pierced by an aperture (or tube inlet) of diameter (d) into which fluid flows from a large upstream space. Heat transfer effects were confined to a portion of the surface contained within an annulus of outer diameter D which surrounds the aperture. The experiments were carried out for several values of the d/D ratio ranging from 1/6 to 1/14.4, and for each fixed d/D the Reynolds number was varied parameterically over a range that spanned a factor of five. Dimensional analysis led to a Reynolds number involving the rate of mass flow through the aperture and the outer diameter of the thermall active region. The end result of the dimensional analysis indicated that for a fixed Prandtl number, the Nusselt number could depend on both Re and d/D. When the Nusselt number data for all cases were brought together on a single graph which spanned more than a decade in Reynolds number, no dependence on d/D was observed. It was also found that the average rate of heat transfer per unit area drops off sharply as the outer diameter of the thermally active annular region increases.
On the convexity of N-Chebyshev sets
NASA Astrophysics Data System (ADS)
Borodin, Petr A.
2011-10-01
We define N-Chebyshev sets in a Banach space X for every positive integer N (when N=1, these are ordinary Chebyshev sets) and study conditions that guarantee their convexity. In particular, we prove that all N-Chebyshev sets are convex when N is even and X is uniformly convex or N\\ge 3 is odd and X is smooth uniformly convex.
Deuterium retention enhancement in lithiated graphite plasma-facing surfaces in fusion devices
NASA Astrophysics Data System (ADS)
Allain, Jean Paul
2011-10-01
Lithium conditioning has been adopted in a number of magnetic confinement devices resulting in significant effects on plasma performance. In NSTX for example effects include: reduction of ELMs, reduced edge neutral density, increased pedestal electron and ion temperature, and improved energy confinement. The main assumption conjectured for the effects observed in NSTX plasmas is the retention of hydrogen by coatings of lithium on ATJ graphite tile surfaces. The main binding channel understood to be the ionic lithium hydride bond. However, the likelihood that the dominant retention mechanism is governed by lithium-hydride bonding seems less probable based on well-known intercalation effects of lithium in graphite. The observed effects on plasma behavior in NSTX, despite the strong chemical interaction of D, Li, O and carbon, indicate an enhanced mechanism for retaining hydrogen in addition to Li-D binding. This paper summarizes the key mechanisms understood today of enhanced hydrogen retention in lithium-treated ATJ graphite surfaces. The mechanisms are elucidated by four major efforts: 1) controlled in-situ off-line experiments at Purdue,, 2) post-mortem NSTX tile analysis, 3) in-vacuo PMI probe data in NSTX, and 4) computational quantum-based atomistic simulations. Results show that a saturation limit of D pumping by lithium conditioning of ATJ graphite surfaces is reached in a few number of shots. Computational modeling using semi-empirical quantum mechanics of electrons and classical mechanics of nuclei elucidate on the polar-covalent interactions that emerge between lithium and the C-D-O system.
Left ventricle segmentation in MRI via convex relaxed distribution matching.
Nambakhsh, Cyrus M S; Yuan, Jing; Punithakumar, Kumaradevan; Goela, Aashish; Rajchl, Martin; Peters, Terry M; Ayed, Ismail Ben
2013-12-01
A fundamental step in the diagnosis of cardiovascular diseases, automatic left ventricle (LV) segmentation in cardiac magnetic resonance images (MRIs) is still acknowledged to be a difficult problem. Most of the existing algorithms require either extensive training or intensive user inputs. This study investigates fast detection of the left ventricle (LV) endo- and epicardium surfaces in cardiac MRI via convex relaxation and distribution matching. The algorithm requires a single subject for training and a very simple user input, which amounts to a single point (mouse click) per target region (cavity or myocardium). It seeks cavity and myocardium regions within each 3D phase by optimizing two functionals, each containing two distribution-matching constraints: (1) a distance-based shape prior and (2) an intensity prior. Based on a global measure of similarity between distributions, the shape prior is intrinsically invariant with respect to translation and rotation. We further introduce a scale variable from which we derive a fixed-point equation (FPE), thereby achieving scale-invariance with only few fast computations. The proposed algorithm relaxes the need for costly pose estimation (or registration) procedures and large training sets, and can tolerate shape deformations, unlike template (or atlas) based priors. Our formulation leads to a challenging problem, which is not directly amenable to convex-optimization techniques. For each functional, we split the problem into a sequence of sub-problems, each of which can be solved exactly and globally via a convex relaxation and the augmented Lagrangian method. Unlike related graph-cut approaches, the proposed convex-relaxation solution can be parallelized to reduce substantially the computational time for 3D domains (or higher), extends directly to high dimensions, and does not have the grid-bias problem. Our parallelized implementation on a graphics processing unit (GPU) demonstrates that the proposed algorithm
Approximate proximal point methods for convex programming problems
Eggermont, P.
1994-12-31
We study proximal point methods for the finite dimensional convex programming problem minimize f(x) such that x {element_of} C, where f : dom f {contained_in} RIR is a proper convex function and C {contained_in} R is a closed convex set.
Primary Breakup in Turbulent Liquid Films on Downward-Facing Surfaces
Shellabarger, B.T.; Durbin, S.G.; Yoda, M.; Abdel Khalik, S.I.; Sadowski, D.L.
2004-12-15
A number of thin liquid protection schemes involving a sacrificial thin liquid layer have been proposed to protect the first walls of inertial fusion energy reactor chambers from excessive radiation and energetic ion damage. The Prometheus study used a tangentially injected high-speed film of molten lead attached to the first wall to protect the upper endcap of the chamber reactor. Minimizing droplet formation and detachment from this film to avoid interference with beam propagation is a major design issue for such flows.Experiments were conducted on turbulent films of water injected tangentially with a rectangular nozzle into ambient air onto the underside of a horizontal flat plate. Previous efforts were focused on the effect of various design and operational parameters on the film detachment distance. This study focuses on measurement of the ''hydrodynamic source term,'' i.e., the rate of droplet formation due to primary turbulent breakup at the film surface. Droplet mass flux was measured using a simple collection technique at various standoff distances measured with respect to the plate surface and downstream distances measured from the nozzle exit. The data show that the ejected droplet mass flux increases as the standoff distance decreases and as both downstream distance and Weber number increase. Comparisons of the experimental data on the estimated ejected droplet mass flux with previously published correlations suggest that the correlations overpredict the ejected droplet mass flux by more than three orders of magnitude.
Study on optical fabrication and metrology of precise convex aspheric mirror
NASA Astrophysics Data System (ADS)
Wang, Huijun; Xu, Jin; Wang, Peng; Li, Ang; Guo, Wen; Du, Yan
2016-10-01
Optical fabrication and metrology technologies are studied in the paper to improve the accuracy of surface figure of a convex aspheric mirror. First, the main specifications of a convex aspheric mirror which is chosen to be the secondary mirror of an optical system are presented. The aperture of the mirror is 400mm. The mirror is made of ultra-low expansion (ULE) glass with honeycomb sandwich structure to get the ideal lightweight requirement. Then the mirror is surfaced by ultrasonic grinding, smart robot lapping and smart robot polishing processes relatively. Large-apertured tool is applied to reduce the mid-frequency surface error. Both the contour measuring method in the grinding and lapping stage and the measuring method with meniscus lens and its calibration mirror in the polishing stage are studied. The final surface figure of the mirror is that the root mean-square value (RMS value) is 0.016λ (λ=632.8nm), which meets the requirement of the optical system. The results show that the forging surfacing processes and measuring methods are accurate and efficient to fabricate the convex aspheric mirror and can be applied in optical fabrication for larger-apertured convex aspheric mirrors.
Alder, Nathan N; Jensen, Robert E; Johnson, Arthur E
2008-08-08
Protein translocation across the mitochondrial inner membrane is mediated by the TIM23 complex. While its central component, Tim23, is believed to form a protein-conducting channel, the regions of this subunit that face the imported protein are unknown. To examine Tim23 structure and environment in intact membranes at high resolution, various derivatives, each with a single, environment-sensitive fluorescent probe positioned at a specific site, were assembled into functional TIM23 complexes in active mitochondria and analyzed by multiple spectral techniques. Probes placed sequentially throughout a transmembrane region that was identified by crosslinking as part of the protein-conducting channel revealed an alpha helix in an amphipathic environment. Probes on the aqueous-facing helical surface specifically underwent spectral changes during protein import, and their accessibility to hydrophilic quenching agents is considered in terms of channel gating. This approach has therefore provided an unprecedented view of a translocon channel structure in an intact, fully operational, membrane-embedded complex.
NASA Astrophysics Data System (ADS)
Pratt, J.; Busse, A.; Müller, W.-C.; Watkins, N. W.; Chapman, S. C.
2017-06-01
We investigate the utility of the convex hull of many Lagrangian tracers to analyze transport properties of turbulent flows with different anisotropy. In direct numerical simulations of statistically homogeneous and stationary Navier-Stokes turbulence, neutral fluid Boussinesq convection, and MHD Boussinesq convection a comparison with Lagrangian pair dispersion shows that convex hull statistics capture the asymptotic dispersive behavior of a large group of passive tracer particles. Moreover, convex hull analysis provides additional information on the sub-ensemble of tracers that on average disperse most efficiently in the form of extreme value statistics and flow anisotropy via the geometric properties of the convex hulls. We use the convex hull surface geometry to examine the anisotropy that occurs in turbulent convection. Applying extreme value theory, we show that the maximal square extensions of convex hull vertices are well described by a classic extreme value distribution, the Gumbel distribution. During turbulent convection, intermittent convective plumes grow and accelerate the dispersion of Lagrangian tracers. Convex hull analysis yields information that supplements standard Lagrangian analysis of coherent turbulent structures and their influence on the global statistics of the flow.
Cheung, F.B.; Haddad, K.H.
1996-03-01
Steady-state boiling experiments were performed in the SBLB test facility to observe the two-phase boundary layer flow behavior on the outer surface of a heated hemispherical vessel near the critical heat flux (CHF) limit and to measure the spatial variation of the local CHF along the vessel outer surface. Based upon the flow observations, an advanced hydrodynamic CHF model was developed. The model considers the existence of a micro-layer underneath an elongated vapor slug on the downward facing curved heating surface. The micro-layer is treated as a thin liquid film with numerous micro-vapor jets penetrating through it. The micro-jets have the characteristic size dictated by Helmholtz instability. Local dryout is considered to occur when the supply of fresh liquid from the two phase boundary layer to the micro-layer is not sufficient to prevent depletion of the liquid film by boiling. A boundary layer analysis, treating the two-phase motion as a separated flow, is performed to determine the liquid supply rate and thus the local critical heat flux. The model provides a clear physical explanation for the spatial variation of the CHF observed in the SBLB experiments and for the weak dependence of the CHF data on the physical size of the vessel.
El-Genk, M.S.; Glebov, A.G.
1995-09-01
Quenching experiments were performed to investigate the effects of water subcooling and wall thickness on pool boiling from a downward-facing curved surface. Experiments used three copper sections of the same diameter (50.8 mm) and surface radius (148 mm), but different thickness (12.8, 20 and 30 mm). Local and average pool boiling curves were obtained at saturation and 5 K, 10 K, and 14 K subcooling. Water subcooling increased the maximum heat flux, but decreased the corresponding wall superheat. The minimum film boiling heat flux and the corresponding wall superheat, however, increased with increased subcooling. The maximum and minimum film boiling heat fluxes were independent of wall thickness above 20 mm and Biot Number > 0.8, indicating that boiling curves for the 20 and 30 thick sections were representative of quasi steady-state, but not those for the 12.8 mm thick section. When compared with that for a flat surface section of the same thickness, the data for the 12.8 mm thick section showed significant increases in both the maximum heat flux (from 0.21 to 0.41 MW/m{sup 2}) and the minimum film boiling heat flux (from 2 to 13 kW/m{sup 2}) and about 11.5 K and 60 K increase in the corresponding wall superheats, respectively.
Rapid Generation of Optimal Asteroid Powered Descent Trajectories Via Convex Optimization
NASA Technical Reports Server (NTRS)
Pinson, Robin; Lu, Ping
2015-01-01
This paper investigates a convex optimization based method that can rapidly generate the fuel optimal asteroid powered descent trajectory. The ultimate goal is to autonomously design the optimal powered descent trajectory on-board the spacecraft immediately prior to the descent burn. Compared to a planetary powered landing problem, the major difficulty is the complex gravity field near the surface of an asteroid that cannot be approximated by a constant gravity field. This paper uses relaxation techniques and a successive solution process that seeks the solution to the original nonlinear, nonconvex problem through the solutions to a sequence of convex optimal control problems.
Caustics in a meridional plane produced by plano-convex aspheric lenses.
Avendaño-Alejo, Maximino
2013-03-01
We study the formation of caustic surfaces formed in both convex-plano and plano-convex aspheric lenses by considering a plane wave incident on the lens along the optical axis. Using the caustic formulas and a paraxial approximation we derive expressions to evaluate the spherical aberration at third-order and also provide a formula to reduce it, where the first-order aspheric term is given in a simply analytic equation. Furthermore, we redefine the method to evaluate the circle of least confusion for a positive lens as a function of all parameters involved in the process of refraction through the aspheric lenses.
Caustics in a meridional plane produced by plano-convex conic lenses.
Avendaño-Alejo, Maximino; González-Utrera, Dulce; Castañeda, Luis
2011-12-01
We study the formation of caustic surfaces formed in both convex-plano and plano-convex conic lenses by considering a plane wave incident on the lens along the optical axis. By using the caustic formulas and a paraxial approximation, we derive analytic expressions to evaluate the spherical aberration to the third order, and a formula to reduce this aberration is provided. Furthermore, we apply the formulas to evaluate the circle of least confusion for a positive lens as a function of all parameters involved in the process of refraction through the conic lenses.
Stress-Strain diagrams for non-convex particles
NASA Astrophysics Data System (ADS)
Matuttis, Hans-Georg; Nawa, Masaki; Krengel, Dominik
2017-06-01
While most granular materials in nature and technology consist of non-convex particles, the majority of discrete element (DEM) codes are still only able to cope with convex particles, due to the complexity of the computational geometry and the occurrence of multiple contacts. We have reengineered a code for convex polygonal particles to model non-convex particles as rigidly connected clusters. Constricting non-convex particles along the symmetry axes by 30% leads to an increase of the materials strength of up to 50%.
Convexity Bias and Perspective Cues in the Reverse-Perspective Illusion.
Dobias, Joshua J; Papathomas, Thomas V; Vlajnic, Vanja M
2016-01-01
The present experiment was designed to examine the roles of painted linear perspective cues, and the convexity bias that are known to influence human observers' perception of three-dimensional (3D) objects and scenes. Reverse-perspective stimuli were used to elicit a depth-inversion illusion, in which far points on the stimulus appear to be closer than near points and vice versa, with a 2 (Type of stimulus) × 2 (Fixation mark position) design. To study perspective, two types of stimuli were used: a version with painted linear perspective cues and a version with blank (unpainted) surfaces. To examine the role of convexity, two locations were used for the fixation mark: either in a locally convex or a locally concave part of each stimulus (painted and unpainted versions). Results indicated that the reverse-perspective illusion was stronger when the stimulus contained strong perspective cues and when observers fixated a locally concave region within the scene.
Convex nonnegative matrix factorization with manifold regularization.
Hu, Wenjun; Choi, Kup-Sze; Wang, Peiliang; Jiang, Yunliang; Wang, Shitong
2015-03-01
Nonnegative Matrix Factorization (NMF) has been extensively applied in many areas, including computer vision, pattern recognition, text mining, and signal processing. However, nonnegative entries are usually required for the data matrix in NMF, which limits its application. Besides, while the basis and encoding vectors obtained by NMF can represent the original data in low dimension, the representations do not always reflect the intrinsic geometric structure embedded in the data. Motivated by manifold learning and Convex NMF (CNMF), we propose a novel matrix factorization method called Graph Regularized and Convex Nonnegative Matrix Factorization (GCNMF) by introducing a graph regularized term into CNMF. The proposed matrix factorization technique not only inherits the intrinsic low-dimensional manifold structure, but also allows the processing of mixed-sign data matrix. Clustering experiments on nonnegative and mixed-sign real-world data sets are conducted to demonstrate the effectiveness of the proposed method. Copyright © 2014 Elsevier Ltd. All rights reserved.
Convex Modeling of Interactions with Strong Heredity
Haris, Asad; Witten, Daniela; Simon, Noah
2015-01-01
We consider the task of fitting a regression model involving interactions among a potentially large set of covariates, in which we wish to enforce strong heredity. We propose FAMILY, a very general framework for this task. Our proposal is a generalization of several existing methods, such as VANISH [Radchenko and James, 2010], hierNet [Bien et al., 2013], the all-pairs lasso, and the lasso using only main effects. It can be formulated as the solution to a convex optimization problem, which we solve using an efficient alternating directions method of multipliers (ADMM) algorithm. This algorithm has guaranteed convergence to the global optimum, can be easily specialized to any convex penalty function of interest, and allows for a straightforward extension to the setting of generalized linear models. We derive an unbiased estimator of the degrees of freedom of FAMILY, and explore its performance in a simulation study and on an HIV sequence data set.
Convex Arrhenius plots and their interpretation
Truhlar, Donald G.; Kohen, Amnon
2001-01-01
This paper draws attention to selected experiments on enzyme-catalyzed reactions that show convex Arrhenius plots, which are very rare, and points out that Tolman's interpretation of the activation energy places a fundamental model-independent constraint on any detailed explanation of these reactions. The analysis presented here shows that in such systems, the rate coefficient as a function of energy is not just increasing more slowly than expected, it is actually decreasing. This interpretation of the data provides a constraint on proposed microscopic models, i.e., it requires that any successful model of a reaction with a convex Arrhenius plot should be consistent with the microcanonical rate coefficient being a decreasing function of energy. The implications and limitations of this analysis to interpreting enzyme mechanisms are discussed. This model-independent conclusion has broad applicability to all fields of kinetics, and we also draw attention to an analogy with diffusion in metastable fluids and glasses. PMID:11158559
Compact coverings for Baire locally convex spaces
NASA Astrophysics Data System (ADS)
Ka[Combining Cedilla]Kol, J.; Lopez Pellicer, M.
2007-08-01
Very recently Tkachuk has proved that for a completely regular Hausdorff space X the space Cp(X) of continuous real-valued functions on X with the pointwise topology is metrizable, complete and separable iff Cp(X) is Baire (i.e. of the second Baire category) and is covered by a family of compact sets such that K[alpha][subset of]K[beta] if [alpha][less-than-or-equals, slant][beta]. Our general result, which extends some results of De Wilde, Sunyach and Valdivia, states that a locally convex space E is separable metrizable and complete iff E is Baire and is covered by an ordered family of relatively countably compact sets. Consequently every Baire locally convex space which is quasi-Suslin is separable metrizable and complete.
Convexity, gauge-dependence and tunneling rates
NASA Astrophysics Data System (ADS)
Plascencia, Alexis D.; Tamarit, Carlos
2016-10-01
We clarify issues of convexity, gauge-dependence and radiative corrections in relation to tunneling rates. Despite the gauge dependence of the effective action at zero and finite temperature, it is shown that tunneling and nucleation rates remain independent of the choice of gauge-fixing. Taking as a starting point the functional that defines the transition amplitude from a false vacuum onto itself, it is shown that decay rates are exactly determined by a non-convex, false vacuum effective action evaluated at an extremum. The latter can be viewed as a generalized bounce configuration, and gauge-independence follows from the appropriate Nielsen identities. This holds for any election of gauge-fixing that leads to an invertible Faddeev-Popov matrix.
Convex hull test for ordered categorical data.
Berger, V W; Permutt, T; Ivanova, A
1998-12-01
When testing for stochastic order in ordered 2 x J contingency tables, it is common to select the cutoff required to declare significance so as to ensure that the size of the test is exactly alpha conditionally on the margins. It is valid, however, to use the margins to select not only the cutoff but also the form of the test. Linear rank tests, which are locally most powerful and frequently used in practice, suffer from the drawback that they may have power as low as zero to detect some alternatives of interest when the margins satisfy certain conditions. The Smirnov and convex hull tests are shown, through exact conditional power calculations and simulations, to avoid this drawback. The convex hull test is also admissible and palindromic invariant and minimizes the required significance level to have limiting power of one as the alternative moves away from the null in any direction.
Computational and statistical tradeoffs via convex relaxation
Chandrasekaran, Venkat; Jordan, Michael I.
2013-01-01
Modern massive datasets create a fundamental problem at the intersection of the computational and statistical sciences: how to provide guarantees on the quality of statistical inference given bounds on computational resources, such as time or space. Our approach to this problem is to define a notion of “algorithmic weakening,” in which a hierarchy of algorithms is ordered by both computational efficiency and statistical efficiency, allowing the growing strength of the data at scale to be traded off against the need for sophisticated processing. We illustrate this approach in the setting of denoising problems, using convex relaxation as the core inferential tool. Hierarchies of convex relaxations have been widely used in theoretical computer science to yield tractable approximation algorithms to many computationally intractable tasks. In the current paper, we show how to endow such hierarchies with a statistical characterization and thereby obtain concrete tradeoffs relating algorithmic runtime to amount of data. PMID:23479655
Monotone and convex quadratic spline interpolation
NASA Technical Reports Server (NTRS)
Lam, Maria H.
1990-01-01
A method for producing interpolants that preserve the monotonicity and convexity of discrete data is described. It utilizes the quadratic spline proposed by Schumaker (1983) which was subsequently characterized by De Vore and Yan (1986). The selection of first order derivatives at the given data points is essential to this spline. An observation made by De Vore and Yan is generalized, and an improved method to select these derivatives is proposed. The resulting spline is completely local, efficient, and simple to implement.
On the convexity of relativistic hydrodynamics
NASA Astrophysics Data System (ADS)
Ibáñez, José M.; Cordero-Carrión, Isabel; Martí, José M.; Miralles, Juan A.
2013-03-01
The relativistic hydrodynamic system of equations for a perfect fluid obeying a causal equation of state is hyperbolic (Anile 1989 Relativistic Fluids and Magneto-Fluids (Cambridge: Cambridge University Press)). In this report, we derive the conditions for this system to be convex in terms of the fundamental derivative of the equation of state (Menikoff and Plohr1989 Rev. Mod. Phys. 61 75). The classical limit is recovered. Communicated by L Rezzolla
NASA Astrophysics Data System (ADS)
Chiwa, M.; Oshiro, N.; Miyake, T.; Nakatani, N.; Kimura, N.; Yuhara, T.; Hashimoto, N.; Sakugawa, H.
Dry deposition and dew components on pine foliage were measured from 1998 to 2000 on the urban- and mountain-facing sides of Mt. Gokurakuji in order to estimate the effect of anthropogenic activities to dry deposition and dew concentration on the surfaces of pine foliage. A leaf wash experiment was employed to determine the dry deposition rates on the pine foliage. The NO 3- and SO 42- dry deposition rates per unit surface area of pine foliage were 1.47 and 0.28 μmol m -2 h -1 respectively on the urban-facing side and 0.32 and 0.09 μmol m -2 h -1 on the mountain-facing side. Dry deposition fluxes of N (NO 3-+NH 4+) and S (SO 42-) to the forest floors were 8.4 kg N ha -1 yr -1 and 2.8 kg S ha -1 yr -1 on the urban-facing, and 3.3 kg N ha -1 yr -1 and 1.8 kg S ha -1 yr -1 on the mountain-facing side, respectively. The higher dry deposition fluxes of N and S on the urban-facing side could be attributed to its proximity to traffic roads and the urban area. The concentrations of most ions in the dew were higher on the urban-facing side (U130) than on the mountain-facing side (M430). NO 3- and SO 42- concentrations in dew at U130 were 802 and 428 μeq l -1, respectively, while at M430 they were 199 and 222 μeq l -1, respectively, suggesting that higher dry deposition rates on the urban-facing side enhanced their concentrations in the dew on this side. The role of dry deposits and subsequently dissolved ones in dew on the needle surfaces is discussed in terms of pine tree damage by atmospheric depositions.
NASA Astrophysics Data System (ADS)
Zhang, C.; Gauthier, E.; Pocheau, C.; Balorin, C.; Pascal, J. Y.; Jouve, M.; Aumeunier, M. H.; Courtois, X.; Loarer, Th.; Houry, M.
2017-03-01
For the long-pulse high-confinement discharges in tokamaks, the equilibrium of plasma requires a contact with the first wall materials. The heat flux resulting from this interaction is of the order of 10 MW/m2 for steady state conditions and up to 20 MW/m2 for transient phases. The monitoring on surface temperatures of the plasma facing components (PFCs) is a major concern to ensure safe operation and to optimize performances of experimental operations on large fusion facilities. Furthermore, this measurement is also required to study the physics associated to the plasma material interactions and the heat flux deposition process. In tokamaks, infrared (IR) thermography systems are routinely used to monitor the surface temperature of the PFCs. This measurement requires an accurate knowledge of the surface emissivity. However, and particularly for metallic materials such as tungsten, this emissivity value can vary over a wide range with both the surface condition and the temperature itself, which makes instantaneous measurement challenging. In this context, the multi-spectral infrared method appears as a very promising alternative solution. Indeed, the system has the advantage to carry out a non-intrusive measurement on thermal radiation while evaluating surface temperature without requiring a mandatory surface emissivity measurement. In this paper, a conceptual design for the multi-spectral infrared thermography is proposed. The numerical study of the multi-channel system based on the Levenberg-Marquardt (LM) nonlinear curve fitting is applied. The numerical results presented in this paper demonstrate the design allows for measurements over a large temperature range with a relative error of less than 10%. Furthermore, laboratory experiments have been performed from 200 °C to 740 °C to confirm the feasibility for temperature measurements on stainless steel and tungsten. In these experiments, the unfolding results from the multi-channel detection provide good
Fundamental mechanisms of deuterium retention in lithiated graphite plasma facing surfaces
NASA Astrophysics Data System (ADS)
Taylor, Chase N.
at a deuterium fluence of ˜ 2.9×10 17 cm-2. This implies that the NSTX deuterium flux of 1017 - 1018 cm-2 s-1 saturates the typical 10-100 nm lithium evaporations after a single plasma discharge. Atomistic simulations synergistically corroborate the above experimental findings. Experiments show significant influence of oxygen in retaining deuterium. Density functional theory simulations were updated to include oxygen and lithium in a carbon matrix at concentrations observed in experiments (˜20%). Results show that deuterium preferentially chooses to be near and bind with oxygen. Later experiments demonstrate the role of oxygen in retaining deuterium, but also show that lithium is required to attract sucient quantities of oxygen to the surface and to retain the oxygen. This dissertation conclusively demonstrates that the mechanism by which deuterium is retained in lithiated graphite is through a lithium-catalyzed oxygen-deuterium bond..
Convex relaxations for gas expansion planning
Borraz-Sanchez, Conrado; Bent, Russell Whitford; Backhaus, Scott N.; Hijazi, Hassan; Van Hentenryck, Pascal
2016-01-01
Expansion of natural gas networks is a critical process involving substantial capital expenditures with complex decision-support requirements. Here, given the non-convex nature of gas transmission constraints, global optimality and infeasibility guarantees can only be offered by global optimisation approaches. Unfortunately, state-of-the-art global optimisation solvers are unable to scale up to real-world size instances. In this study, we present a convex mixed-integer second-order cone relaxation for the gas expansion planning problem under steady-state conditions. The underlying model offers tight lower bounds with high computational efficiency. In addition, the optimal solution of the relaxation can often be used to derive high-quality solutions to the original problem, leading to provably tight optimality gaps and, in some cases, global optimal solutions. The convex relaxation is based on a few key ideas, including the introduction of flux direction variables, exact McCormick relaxations, on/off constraints, and integer cuts. Numerical experiments are conducted on the traditional Belgian gas network, as well as other real larger networks. The results demonstrate both the accuracy and computational speed of the relaxation and its ability to produce high-quality solution
Convex relaxations for gas expansion planning
Borraz-Sanchez, Conrado; Bent, Russell Whitford; Backhaus, Scott N.; ...
2016-01-01
Expansion of natural gas networks is a critical process involving substantial capital expenditures with complex decision-support requirements. Here, given the non-convex nature of gas transmission constraints, global optimality and infeasibility guarantees can only be offered by global optimisation approaches. Unfortunately, state-of-the-art global optimisation solvers are unable to scale up to real-world size instances. In this study, we present a convex mixed-integer second-order cone relaxation for the gas expansion planning problem under steady-state conditions. The underlying model offers tight lower bounds with high computational efficiency. In addition, the optimal solution of the relaxation can often be used to derive high-quality solutionsmore » to the original problem, leading to provably tight optimality gaps and, in some cases, global optimal solutions. The convex relaxation is based on a few key ideas, including the introduction of flux direction variables, exact McCormick relaxations, on/off constraints, and integer cuts. Numerical experiments are conducted on the traditional Belgian gas network, as well as other real larger networks. The results demonstrate both the accuracy and computational speed of the relaxation and its ability to produce high-quality solution« less
Convex Hull Aided Registration Method (CHARM).
Fan, Jingfan; Yang, Jian; Zhao, Yitian; Ai, Danni; Liu, Yonghuai; Wang, Ge; Wang, Yongtian
2016-08-31
Non-rigid registration finds many applications such as photogrammetry, motion tracking, model retrieval, and object recognition. In this paper we propose a novel convex hull aided registration method (CHARM) to match two point sets subject to a non-rigid transformation. Firstly, two convex hulls are extracted from the source and target respectively. Then, all points of the point sets are projected onto the reference plane through each triangular facet of the hulls. From these projections, invariant features are extracted and matched optimally. The matched feature point pairs are mapped back onto the triangular facets of the convex hulls to remove outliers that are outside any relevant triangular facet. The rigid transformation from the source to the target is robustly estimated by the random sample consensus (RANSAC) scheme through minimizing the distance between the matched feature point pairs. Finally, these feature points are utilized as the control points to achieve nonrigid deformation in the form of thin-plate spline of the entire source point set towards the target one. The experimental results based on both synthetic and real data show that the proposed algorithm outperforms several state-of-the-art ones with respect to sampling, rotational angle, and data noise. In addition, the proposed CHARM algorithm also shows higher computational efficiency compared to these methods.
On convex relaxation of graph isomorphism
Aflalo, Yonathan; Bronstein, Alexander; Kimmel, Ron
2015-01-01
We consider the problem of exact and inexact matching of weighted undirected graphs, in which a bijective correspondence is sought to minimize a quadratic weight disagreement. This computationally challenging problem is often relaxed as a convex quadratic program, in which the space of permutations is replaced by the space of doubly stochastic matrices. However, the applicability of such a relaxation is poorly understood. We define a broad class of friendly graphs characterized by an easily verifiable spectral property. We prove that for friendly graphs, the convex relaxation is guaranteed to find the exact isomorphism or certify its inexistence. This result is further extended to approximately isomorphic graphs, for which we develop an explicit bound on the amount of weight disagreement under which the relaxation is guaranteed to find the globally optimal approximate isomorphism. We also show that in many cases, the graph matching problem can be further harmlessly relaxed to a convex quadratic program with only n separable linear equality constraints, which is substantially more efficient than the standard relaxation involving 2n equality and n2 inequality constraints. Finally, we show that our results are still valid for unfriendly graphs if additional information in the form of seeds or attributes is allowed, with the latter satisfying an easy to verify spectral characteristic. PMID:25713342
Generalized vector calculus on convex domain
NASA Astrophysics Data System (ADS)
Agrawal, Om P.; Xu, Yufeng
2015-06-01
In this paper, we apply recently proposed generalized integral and differential operators to develop generalized vector calculus and generalized variational calculus for problems defined over a convex domain. In particular, we present some generalization of Green's and Gauss divergence theorems involving some new operators, and apply these theorems to generalized variational calculus. For fractional power kernels, the formulation leads to fractional vector calculus and fractional variational calculus for problems defined over a convex domain. In special cases, when certain parameters take integer values, we obtain formulations for integer order problems. Two examples are presented to demonstrate applications of the generalized variational calculus which utilize the generalized vector calculus developed in the paper. The first example leads to a generalized partial differential equation and the second example leads to a generalized eigenvalue problem, both in two dimensional convex domains. We solve the generalized partial differential equation by using polynomial approximation. A special case of the second example is a generalized isoperimetric problem. We find an approximate solution to this problem. Many physical problems containing integer order integrals and derivatives are defined over arbitrary domains. We speculate that future problems containing fractional and generalized integrals and derivatives in fractional mechanics will be defined over arbitrary domains, and therefore, a general variational calculus incorporating a general vector calculus will be needed for these problems. This research is our first attempt in that direction.
Convex lens-induced confinement for imaging single molecules.
Leslie, Sabrina R; Fields, Alexander P; Cohen, Adam E
2010-07-15
Fluorescence imaging is used to study the dynamics of a wide variety of single molecules in solution or attached to a surface. Two key challenges in this pursuit are (1) to image immobilized single molecules in the presence of a high level of fluorescent background and (2) to image freely diffusing single molecules for long times. Strategies that perform well by one measure often perform poorly by the other. Here, we present a simple modification to a wide-field fluorescence microscope that addresses both challenges and dramatically improves single-molecule imaging. The technique of convex lens-induced confinement (CLIC) restricts molecules to a wedge-shaped gap of nanoscale depth, formed between a plano-convex lens and a planar coverslip. The shallow depth of the imaging volume leads to 20-fold greater rejection of background fluorescence than is achieved with total internal reflection fluorescence (TIRF) imaging. Elimination of out-of-plane diffusion leads to an approximately 10,000-fold longer diffusion-limited observation time per molecule than is achieved with confocal fluorescence correlation spectroscopy. The CLIC system also provides a new means to determine molecular size. The CLIC system does not require any nanofabrication, nor any custom optics, electronics, or computer control.
NASA Astrophysics Data System (ADS)
Suslova, A.; El-Atwani, O.; Harilal, S. S.; Hassanein, A.
2015-03-01
We investigated the effect of edge-localized mode like transient heat events on pristine samples for two different grades of deformed tungsten with ultrafine and nanocrystalline grains as potential candidates for plasma-facing components. Pulses from a laser beam with durations ∼1 ms and operating in the near infrared wavelength were used for simulating transient heat loading in fusion devices. We specifically focused on investigating and analysis of different mechanisms for material removal from the sample surface under repetitive transient heat loads. Several techniques were applied for analysing different mechanisms leading to material removal from the W surface under repetitive transient heat loads which include witness plates for collected ejected material, and subsequent analysis using x-ray photoelectron spectroscopy and scanning electron microscopy, visible imaging using fast-gated camera, and evaluating thermal emission from the particles using optical emission spectroscopy. Our results show a significantly improved performance of polycrystalline cold-rolled tungsten compared to tungsten produced using an orthogonal machining process under repetitive transient loads for a wide range of the power densities.
NASA Astrophysics Data System (ADS)
Kihm, K. D.; Cheeti, S. K. R.
1994-08-01
A laser specklegram or speckle photography technique allows a direct measurement of surface temperature gradients and provides a full field interrogation with an extremely high resolution from a single data taking. The specklegram technique has been successfully applied to investigate the natural convection heat transfer from an upward-facing isothermal plate. For a plate with a large aspect ratio of 15, both local and global Nusselt numbers have been determined from the direct measurement of local temperature gradients. The Rayleigh number, based on the length scale equivalent to the ratio of the surface area to the perimeter, has been varied from 9.0 × 103 to 4.0 × 104. The present result for the global heat transfer has shown that a 1/5-power law, i.e., Nu = C1 Ra 1/5, correlates the data more properly whilst previously published results showed a large scatter in the exponent, ranging from 1/8-power to 1/4-power. The proportional constant, C1 has been determined to be 0.56 which shows a fairly good agreement with previously published theoretical results. The laser specklegram technique has shown a strong potential as a powerful and convenient method for an experimental assessment of natural convection heat transfer problems. The specklegram technique at the same time has eliminated the deficiencies of both the mass transfer analogy technique and the classical heat transfer measurement technique.
On the embedding of convex spaces in stratified L-convex spaces.
Jin, Qiu; Li, Lingqiang
2016-01-01
Consider L being a continuous lattice, two functors from the category of convex spaces (denoted by CS) to the category of stratified L-convex spaces (denoted by SL-CS) are defined. The first functor enables us to prove that the category CS can be embedded in the category SL-CS as a reflective subcategory. The second functor enables us to prove that the category CS can be embedded in the category SL-CS as a coreflective subcategory when L satisfying a multiplicative condition. By comparing the two functors and the well known Lowen functor (between topological spaces and stratified L-topological spaces), we exhibit the difference between (stratified L-)topological spaces and (stratified L-)convex spaces.
NASA Astrophysics Data System (ADS)
Mason, L. J.; Pederson, D. T.; Goble, R. J.
2004-12-01
More than 200 waterfalls exist along the southern spring branch tributaries that feed an approximately twenty-five mile section of the Niobrara River, east of Valentine, Nebraska. Many of these waterfalls posses a convex shape in the horizontal plane and are buttressed. This morphology is controlled by focused, season-specific weathering along the escarpments adjacent to the waterfall face and a lack of stream erosion on the actual waterfall face. The waterfalls are composed of the Rosebud Formation, a poorly indurated siltstone that should be easily eroded by stream flow. The spring creeks are ineffective at significantly eroding the waterfall face mainly due to their relatively low discharge, three to five cubic feet per second, and low sediment load. The erosive power of the streams is further reduced at the site of the waterfall by the buttressed shape spreading the flow into a thin sheet. The buttressed shape of the waterfall develops in response to stress relief. The only areas of the waterfall face showing stream erosion and lack of diatom cover is where free falling water is impacting the waterfall face. Large, loose talus slopes at the base of the waterfall escarpments further support that the weathering processes operate at a faster rate than stream erosion. Observable groundwater seepage from the escarpments on either side of the waterfalls exposes the faces to season-specific weathering processes. The moisture content of the escarpments varies with exposure to sunlight and changes in air temperature. Cyclic differential expansion and contraction of clays and minerals as well as precipitation and hydration of salts operate on a daily and seasonal basis. These repeated stresses give the escarpments a flaky, shingle like appearance and can cause rapid deterioration of the escarpment. During the winter, the seeping groundwater and waterfall spray form large ice flows on either side of the waterfall face. Freeze-thaw processes operate on a seasonal and
Morphological convexity measures for terrestrial basins derived from digital elevation models
NASA Astrophysics Data System (ADS)
Lim, Sin Liang; Daya Sagar, B. S.; Chet Koo, Voon; Tien Tay, Lea
2011-09-01
Geophysical basins of terrestrial surfaces have been quantitatively characterized through a host of indices such as topological quantities (e.g. channel bifurcation and length ratios), allometric scaling exponents (e.g. fractal dimensions), and other geomorphometric parameters (channel density, Hack's and Hurst exponents). Channel density, estimated by taking the ratio between the length of channel network ( L) and the area of basin ( A) in planar form, provides a quantitative index that has hitherto been related to various geomorphologically significant processes. This index, computed by taking the planar forms of channel network and its corresponding basin, is a kind of convexity measure in the two-dimensional case. Such a measure - estimated in general as a function of basin area and channel network length, where the important elevation values of the topological region within a basin and channel network are ignored - fails to capture the spatial variability between homotopic basins possessing different altitude-ranges. Two types of convexity measures that have potential to capture the terrain elevation variability are defined as the ratio of (i) length of channel network function and area of basin function and (ii) areas of basin and its convex hull functions. These two convexity measures are estimated in three data sets that include (a) synthetic basin functions, (b) fractal basin functions, and (c) realistic digital elevation models (DEMs) of two regions of peninsular Malaysia. It is proven that the proposed convexity measures are altitude-dependent and that they could capture the spatial variability across the homotopic basins of different altitudes. It is also demonstrated on terrestrial DEMs that these convexity measures possess relationships with other quantitative indexes such as fractal dimensions and complexity measures (roughness indexes).
Dynamics of laminar circular jet impingement upon convex cylinders
NASA Astrophysics Data System (ADS)
New, T. H.; Long, J.
2015-02-01
Flow dynamics associated with a laminar circular jet impinging upon a convex cylinder has been investigated by laser-induced fluorescence and digital particle-image velocimetry techniques. Cylinder-to-jet diameter ratios of 1, 2, and 4 were investigated, while the jet-to-cylinder separation distance was kept at four jet diameters throughout. Flow visualization and λ2 criterion results show that once the jet ring-vortices impinge upon the cylindrical surface, they move away from the impingement point by wrapping themselves partially around the surface. As the cylinder diameter increases, wall boundary layer separation, vortex dipole formation, and separation locations are initiated earlier along the cylindrical surface, producing significantly larger wakes. Along the cylinder straight-edges, ring-vortex cores are significantly smaller after impingement. This is due to accentuated vortex-stretching caused by partial wrapping around the cylindrical surface by the ring-vortices, on top of their movement away from the impingement point. Interestingly, vortex dipoles demonstrate a strong tendency to travel upstream and interact with other upstream vortex dipoles, instead of moving downstream gradually seen for flat-surface jet-impingements. Wall shear stress results are also presented to quantify the effects of cylinder diameter-ratio on surface skin friction distribution. Finally, these preceding observations are corroborated and explained in a three-dimensional flow dynamics model presented here.
CVXPY: A Python-Embedded Modeling Language for Convex Optimization.
Diamond, Steven; Boyd, Stephen
2016-04-01
CVXPY is a domain-specific language for convex optimization embedded in Python. It allows the user to express convex optimization problems in a natural syntax that follows the math, rather than in the restrictive standard form required by solvers. CVXPY makes it easy to combine convex optimization with high-level features of Python such as parallelism and object-oriented design. CVXPY is available at http://www.cvxpy.org/ under the GPL license, along with documentation and examples.
CVXPY: A Python-Embedded Modeling Language for Convex Optimization
Diamond, Steven; Boyd, Stephen
2016-01-01
CVXPY is a domain-specific language for convex optimization embedded in Python. It allows the user to express convex optimization problems in a natural syntax that follows the math, rather than in the restrictive standard form required by solvers. CVXPY makes it easy to combine convex optimization with high-level features of Python such as parallelism and object-oriented design. CVXPY is available at http://www.cvxpy.org/ under the GPL license, along with documentation and examples. PMID:27375369
A Cutting Plane Algorithm for Problems Containing Convex and Reverse Convex Constraints,
The method of cut generation used in this paper was initially described by Tui for minimizing a concave function subject to linear constraints. Balas...Glover, and Young have recognized the applicability of such ’convexity cuts ’ to integer problems. This paper shows that these cuts can be used in the solution of an even larger class of nonconvex problems.
NASA Astrophysics Data System (ADS)
Mason, L. J.; Pederson, D. T.; Goble, R. J.
2003-12-01
Numerous waterfalls are present along the spring branch canyons of the Niobrara River, downstream of Cornell Dam, Valentine, Nebraska. Although the sizes of the waterfalls are variable, a majority of the waterfall faces have a convex outward geometry. In order to gain a better understanding of the processes responsible for the development of this profile, it is useful to quantify the convexity of the waterfall face. Due to the rugged topography of the spring branch canyon environment, traditional techniques, such as pin-flag and tape measurements are not practical and even dangerous. The waterfall faces are often greater than 3 meters high, steep, and algae covered. The spring branch canyon walls are also steep with actively creeping scree slopes along the bases. Therefore, due to this topography there is no easy way to access the waterfall faces for accurate measurements. The measurement problem was overcome by using a hand-held laser meter mounted on a tripod. A baseline was established below the waterfall face. The length of the baseline was measured using the hand-held laser meter. Measurements were taken on distinct features across the waterfall face and sidewalls from both endpoints of the baseline. The angle of the laser off the baseline and off the horizontal were measured using a compass with mirror. With these measurements, the waterfall faces profile relative to the baseline was reconstructed. A hand-held laser meter is an important tool for measuring waterfalls and other geomorphic features in hazardous environments because measurements can be taken from a safe location. It is possible for one person to take accurate measurements. New baselines can readily be established to measure relative erosion along the waterfall face over time.
In-situ erosion and deposition measurements of plasma-facing surfaces in Alcator C-Mod
NASA Astrophysics Data System (ADS)
Barnard, Harold S.
2014-10-01
The Accelerator Based In-situ Materials Surveillance (AIMS) diagnostic was recently developed to demonstrate the novel application of ion beam analysis (IBA) to in-vessel studies of plasma materials interactions in Alcator C-Mod. The AIMS diagnostic injects a 900 keV deuterium ion beam into the tokamak's vacuum vessel between plasma discharges while magnetic fields are used to steer the ion beam to plasma facing component (PFC) surfaces. Spectroscopic analysis of neutrons and gamma rays from the induced nuclear reactions provides a quantitative, spatially resolved map of the PFC surface composition that includes boron (B) and deuterium (D) content. Since AIMS is sensitive to low-Z elements and C-Mod regularly boronizes PFCs, the evolution of B and D on PFCs can be used to directly study erosion, deposition, and fuel retention in response to plasma operations and wall conditioning processes. AIMS analysis of 18 lower single null I-mode discharges show a net boron deposition rate of 6 +/- 2 nm/s on the inner wall while subsequent inner wall limited discharges and a disruption did not show significant changes in B. Measurements of D content showed relative changes of >2.5 following a similar trend. This suggests high D retention rates and net B deposition rates of ~18 cm/year of plasma exposure are possible and depend strongly on the plasma conditions. Ex-situ IBA was also performed on the same PFCs after removal from C-Mod, successfully validating the AIMS technique. These IBA measurements also show that the B content on the inner wall varied toroidally and poloidally from 0 to 3000 nm, demonstrating the importance of the spatial resolution provided by AIMS and the sensitivity of PFCs to B-field alignment. AIMS upgrades are underway for operation in 2014 and we anticipate new measurements correlating the evolution of PFC surfaces to plasma configuration, RF heating, and current drive scenarios. This work is supported by U.S. DOE Grant No. DE-FG02-94ER54235 and
The problem of convexity of Chebyshev sets
NASA Astrophysics Data System (ADS)
Balaganskii, V. S.; Vlasov, L. P.
1996-12-01
Contents Introduction §1. Definitions and notation §2. Reference theorems §3. Some results Chapter I. Characterization of Banach spaces by means of the relations between approximation properties of sets §1. Existence, uniqueness §2. Prom approximate compactness to 'sun'-property §3. From 'sun'-property to approximate compactness §4. Differentiability in the direction of the gradient is sufficient for Fréchet and Gâteaux differentiability §5. Sets with convex complement Chapter II. The structure of Chebyshev and related sets §1. The isolated point method §2. Restrictions of the type \\vert\\overline{W}\\vert < \\vert X\\vert §3. The case where M is locally compact §4. The case where W lies in a hyperplane §5. Other cases Chapter III. Selected results §1. Some applications of the theory of monotone operators §2. A non-convex Chebyshev set in pre-Hilbert space §3. The example of Klee (discrete Chebyshev set) §4. A survey of some other results Conclusion Bibliography
Some Randomized Algorithms for Convex Quadratic Programming
Goldbach, R.
1999-01-15
We adapt some randomized algorithms of Clarkson [3] for linear programming to the framework of so-called LP-type problems, which was introduced by Sharir and Welzl [10]. This framework is quite general and allows a unified and elegant presentation and analysis. We also show that LP-type problems include minimization of a convex quadratic function subject to convex quadratic constraints as a special case, for which the algorithms can be implemented efficiently, if only linear constraints are present. We show that the expected running times depend only linearly on the number of constraints, and illustrate this by some numerical results. Even though the framework of LP-type problems may appear rather abstract at first, application of the methods considered in this paper to a given problem of that type is easy and efficient. Moreover, our proofs are in fact rather simple, since many technical details of more explicit problem representations are handled in a uniform manner by our approach. In particular, we do not assume boundedness of the feasible set as required in related methods.
NASA Astrophysics Data System (ADS)
Azadi Moghaddam, Masoud; Kolahan, Farhad
2016-12-01
Face milling is an important and common machining operation because of its versatility and capability to produce various surfaces. Face milling is a machining process of removing material by the relative motion between a work piece and rotating cutter with multiple cutting edges. It is an interrupted cutting operation in which the teeth of the milling cutter enter and exit the work piece during each revolution. This paper is concerned with the experimental and numerical study of face milling of AISI1045. The proposed approach is based on statistical analysis on the experimental data gathered using Taguchi design matrix. Surface roughness is the most important performance characteristics of the face milling process. In this study the effect of input face milling process parameters on surface roughness of AISI1045 steel milled parts have been studied. The input parameters are cutting speed ( v), feed rate ( f z ) and depth of cut ( a p ). The experimental data are gathered using Taguchi L9 design matrix. In order to establish the relations between the input and the output parameters, various regression functions have been fitted on the data based on output characteristics. The significance of the process parameters on the quality characteristics of the process was also evaluated quantitatively using the analysis of variance method. Then, statistical analysis and validation experiments have been carried out to compare and select the best and most fitted models. In the last section of this research, mathematical model has been developed for surface roughness prediction using particle swarm optimization (PSO) on the basis of experimental results. The model developed for optimization has been validated by confirmation experiments. It has been found that the predicted roughness using PSO is in good agreement with the actual surface roughness.
Burge, Johannes; Fowlkes, Charless C; Banks, Martin S
2010-05-26
The shape of the contour separating two regions strongly influences judgments of which region is "figure" and which is "ground." Convexity and other figure-ground cues are generally assumed to indicate only which region is nearer, but nothing about how much the regions are separated in depth. To determine the depth information conveyed by convexity, we examined natural scenes and found that depth steps across surfaces with convex silhouettes are likely to be larger than steps across surfaces with concave silhouettes. In a psychophysical experiment, we found that humans exploit this correlation. For a given binocular disparity, observers perceived more depth when the near surface's silhouette was convex rather than concave. We estimated the depth distributions observers used in making those judgments: they were similar to the natural-scene distributions. Our findings show that convexity should be reclassified as a metric depth cue. They also suggest that the dichotomy between metric and nonmetric depth cues is false and that the depth information provided many cues should be evaluated with respect to natural-scene statistics. Finally, the findings provide an explanation for why figure-ground cues modulate the responses of disparity-sensitive cells in visual cortex.
Fowlkes, Charless C.; Banks, Martin S.
2010-01-01
The shape of the contour separating two regions strongly influences judgments of which region is “figure” and which is “ground.” Convexity and other figure–ground cues are generally assumed to indicate only which region is nearer, but nothing about how much the regions are separated in depth. To determine the depth information conveyed by convexity, we examined natural scenes and found that depth steps across surfaces with convex silhouettes are likely to be larger than steps across surfaces with concave silhouettes. In a psychophysical experiment, we found that humans exploit this correlation. For a given binocular disparity, observers perceived more depth when the near surface's silhouette was convex rather than concave. We estimated the depth distributions observers used in making those judgments: they were similar to the natural-scene distributions. Our findings show that convexity should be reclassified as a metric depth cue. They also suggest that the dichotomy between metric and nonmetric depth cues is false and that the depth information provided many cues should be evaluated with respect to natural-scene statistics. Finally, the findings provide an explanation for why figure–ground cues modulate the responses of disparity-sensitive cells in visual cortex. PMID:20505093
Cromrich, J.; Cromrich, L.B.
1990-10-16
This patent describes a method for forming insulated brick intended solely for use in building walls and having superior insulation qualities and lighter weight consonant with the load bearing capabilities of building bricks and the appearance of facing brick. It comprises dry mixing two parts of vermiculite and one part of brick clay, thereby forming a dry mixture having a vermiculite to clay ratio of approximately two-to-one by volume; adding water to the dry mixture and mixing, so that a substantially dry admixture having expanded vermiculite and brick clay is formed; forming a facing layer solely from brick clay; molding and compressing the substantially dry admixture, so as to form a generally rectangular main body layer having parallel top and bottom faces, a pair of parallel side faces and a pair of parallel end faces, respectively, the top and bottom faces being substantially larger in area than the respective side faces, and the side faces being substantially larger in area than the respective end faces, the body layer further having at least one bore formed therein, the bore running from the top face to the bottom face perpendicularly thereto and substantially parallel to the side surfaces thereof, the bore being substantially centrally disposed and wherein the facing layer is disposed on one of the side surfaces of the body portion; curing the molded admixture having the facing layer disposed thereon; whereby a cured brick is formed; and firing the cured brick and the facing layer disposed thereon, whereby an integral brick is formed having top and bottom faces of the brick which are entirely devoid of facing layers, wherein the brick has the desired load bearing capability substantially between its top and bottom faces, whereby the outer facing layer only provides the desired appearance and weather resistance, and further whereby the weight of the brick is substantially reduced.
Study on the method to test large-aperture hyperboloid convex mirror
NASA Astrophysics Data System (ADS)
Meng, Xiaohui; Dong, Huiwen; Guo, Wen; Wang, Huijun
2014-08-01
There are numerous reflecting optical system designs that call for large-aperture convex surfaces, such as secondary mirror in on-axis three mirror anastigmatic (TMA). Several methods to test high accuracy hyperboloid convex surfaces are introduced separately in this paper. A kind of arrangement is chosen to test a surface with diameter of 420mm, radius of 1371mm, and conic K -2.1229. The CGH compensator for testing is designed, which is made up of illumination lens and hologram test plate with designed residual wavefront aberration less than 0.001λ (RMS). The second transmitted method that is equipped with a technical flat surface coating by Ag film in the bottom of surface mirror under test, which form an auto-collimation optical system to eliminate the aberration. The Hindle-Simpson test that requires a larger meniscus lens to compensate the optical aberration, and the designed result of optical test system is less than 0.0016λ. Contrasting the CGH compensator and the second transmitted method, the Hindle-Simpson testing method has the advantage of it is easily to manufacture and adjust; meanwhile the test result is stable and has been less affected by the environment. It has been found that the method is rational and reliable, and it can fulfill the requirement of manufacturing and testing process for hyperboloid convex mirrors.
Livi, Kenneth J T; Villalobos, Mario; Leary, Rowan; Varela, Maria; Barnard, Jon; Villacís-García, Milton; Zanella, Rodolfo; Goodridge, Anna; Midgley, Paul
2017-09-12
Two synthetic goethites of varying crystal size distributions were analyzed by BET, conventional TEM, cryo-TEM, atomic resolution STEM and HRTEM, and electron tomography in order to determine the effects of crystal size, shape, and atomic scale surface roughness on their adsorption capacities. The two samples were determined by BET to have very different site densities based on Cr(VI) adsorption experiments. Model specific surface areas generated from TEM observations showed that, based on size and shape, there should be little difference in their adsorption capacities. Electron tomography revealed that both samples crystallized with an asymmetric {101} tablet habit. STEM and HRTEM images showed a significant increase in atomic-scale surface roughness of the larger goethite. This difference in roughness was quantified based on measurements of relative abundances of crystal faces {101} and {201} for the two goethites, and a reactive surface site density was calculated for each goethite. Singly coordinated sites on face {210} are 2.5 more dense than on face {101}, and the larger goethite showed an average total of 36% {210} as compared to 14% for the smaller goethite. This difference explains the considerably larger adsorption capacitiy of the larger goethite vs the smaller sample and points toward the necessity of knowing the atomic scale surface structure in predicting mineral adsorption processes.
Fabrication of ф 160 mm convex hyperbolic mirror for remote sensing instrument
NASA Astrophysics Data System (ADS)
Kuo, Ching-Hsiang; Yu, Zong-Ru; Ho, Cheng-Fang; Hsu, Wei-Yao; Chen, Fong-Zhi
2012-10-01
In this study, efficient polishing processes with inspection procedures for a large convex hyperbolic mirror of Cassegrain optical system are presented. The polishing process combines the techniques of conventional lapping and CNC polishing. We apply the conventional spherical lapping process to quickly remove the sub-surface damage (SSD) layer caused by grinding process and to get the accurate radius of best-fit sphere (BFS) of aspheric surface with fine surface texture simultaneously. Thus the removed material for aspherization process can be minimized and the polishing time for SSD removal can also be reduced substantially. The inspection procedure was carried out by using phase shift interferometer with CGH and stitching technique. To acquire the real surface form error of each sub aperture, the wavefront errors of the reference flat and CGH flat due to gravity effect of the vertical setup are calibrated in advance. Subsequently, we stitch 10 calibrated sub-aperture surface form errors to establish the whole irregularity of the mirror in 160 mm diameter for correction polishing. The final result of the In this study, efficient polishing processes with inspection procedures for a large convex hyperbolic mirror of Cassegrain optical system are presented. The polishing process combines the techniques of conventional lapping and CNC polishing. We apply the conventional spherical lapping process to quickly remove the sub-surface damage (SSD) layer caused by grinding process and to get the accurate radius of best-fit sphere (BFS) of aspheric surface with fine surface texture simultaneously. Thus the removed material for aspherization process can be minimized and the polishing time for SSD removal can also be reduced substantially. The inspection procedure was carried out by using phase shift interferometer with CGH and stitching technique. To acquire the real surface form error of each sub aperture, the wavefront errors of the reference flat and CGH flat due to
Active Batch Selection via Convex Relaxations with Guaranteed Solution Bounds.
Chakraborty, Shayok; Balasubramanian, Vineeth; Sun, Qian; Panchanathan, Sethuraman; Ye, Jieping
2015-10-01
Active learning techniques have gained popularity to reduce human effort in labeling data instances for inducing a classifier. When faced with large amounts of unlabeled data, such algorithms automatically identify the exemplar instances for manual annotation. More recently, there have been attempts towards a batch mode form of active learning, where a batch of data points is simultaneously selected from an unlabeled set. In this paper, we propose two novel batch mode active learning (BMAL) algorithms: BatchRank and BatchRand. We first formulate the batch selection task as an NP-hard optimization problem; we then propose two convex relaxations, one based on linear programming and the other based on semi-definite programming to solve the batch selection problem. Finally, a deterministic bound is derived on the solution quality for the first relaxation and a probabilistic bound for the second. To the best of our knowledge, this is the first research effort to derive mathematical guarantees on the solution quality of the BMAL problem. Our extensive empirical studies on 15 binary, multi-class and multi-label challenging datasets corroborate that the proposed algorithms perform at par with the state-of-the-art techniques, deliver high quality solutions and are robust to real-world issues like label noise and class imbalance.
Multi-Stage Convex Relaxation Methods for Machine Learning
2013-03-01
Many problems in machine learning can be naturally formulated as non-convex optimization problems. However, such direct nonconvex formulations have...original nonconvex formulation. We will develop theoretical properties of this method and algorithmic consequences. Related convex and nonconvex machine learning methods will also be investigated.
Infants' Perception of Information along Object Boundaries: Concavities versus Convexities
ERIC Educational Resources Information Center
Bhatt, Ramesh S.; Hayden, Angela; Reed, Andrea; Bertin, Evelin; Joseph, Jane
2006-01-01
Object parts are signaled by concave discontinuities in shape contours. In seven experiments, we examined whether 5- and 6 1/2-month-olds are sensitive to concavities as special aspects of contours. Infants of both ages detected discrepant concave elements amid convex distractors but failed to discriminate convex elements among concave…
Infants' Perception of Information along Object Boundaries: Concavities versus Convexities
ERIC Educational Resources Information Center
Bhatt, Ramesh S.; Hayden, Angela; Reed, Andrea; Bertin, Evelin; Joseph, Jane
2006-01-01
Object parts are signaled by concave discontinuities in shape contours. In seven experiments, we examined whether 5- and 6 1/2-month-olds are sensitive to concavities as special aspects of contours. Infants of both ages detected discrepant concave elements amid convex distractors but failed to discriminate convex elements among concave…
On some interpolation properties in locally convex spaces
Pater, Flavius
2015-03-10
The aim of this paper is to introduce the notion of interpolation between locally convex spaces, the real method, and to present some elementary results in this setting. This represents a generalization from the Banach spaces framework to the locally convex spaces sequentially complete one, where the operators acting on them are locally bounded.
Optimality Certificates for Convex Minimization and Helly Numbers
2016-10-20
duality theory for general convex mixed-integer problems. The approach taken by Moran et al. was essentially algebraic , drawing on the theory of...Mathematical Programming, 124:143–174, 2010. [8] Cor A J Hurkens. Blowing up convex sets in the plane. Linear Algebra and its Applications, 134:121–128
NASA Astrophysics Data System (ADS)
Patrykiejew, A.; Sokołowski, S.; Zientarski, T.; Binder, K.
1998-03-01
The results of Monte Carlo simulation of two-dimensional films formed on the (110) face of a face-centered-cubic crystal are presented. Systems with different corrugation of the gas-solid potential and different size of adsorbed atoms are discussed. It is demonstrated that even small changes in the gas-solid potential corrugation considerably affect the inner structure of the low-temperature ordered phases and the location of the order-disorder phase transition.
... face may be caused by a nerve problem, injury, or infection. Face pain may also begin in other places in ... zoster (shingles) or herpes simplex (cold sores) infection Injury to the face Migraine Myofascial pain syndrome Sinusitis or sinus infection ( ...
Convex Lower Bounds for Free Energy Minimization
NASA Astrophysics Data System (ADS)
Moussa, Jonathan
We construct lower bounds on free energy with convex relaxations from the nonlinear minimization over probabilities to linear programs over expectation values. Finite-temperature expectation values are further resolved into distributions over energy. A superset of valid expectation values is delineated by an incomplete set of linear constraints. Free energy bounds can be improved systematically by adding constraints, which also increases their computational cost. We compute several free energy bounds of increasing accuracy for the triangular-lattice Ising model to assess the utility of this method. This work was supported by the Laboratory Directed Research and Development program at Sandia National Laboratories. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.
Imaging spectrometer/camera having convex grating
NASA Technical Reports Server (NTRS)
Reininger, Francis M. (Inventor)
2000-01-01
An imaging spectrometer has fore-optics coupled to a spectral resolving system with an entrance slit extending in a first direction at an imaging location of the fore-optics for receiving the image, a convex diffraction grating for separating the image into a plurality of spectra of predetermined wavelength ranges; a spectrometer array for detecting the spectra; and at least one concave sperical mirror concentric with the diffraction grating for relaying the image from the entrance slit to the diffraction grating and from the diffraction grating to the spectrometer array. In one embodiment, the spectrometer is configured in a lateral mode in which the entrance slit and the spectrometer array are displaced laterally on opposite sides of the diffraction grating in a second direction substantially perpendicular to the first direction. In another embodiment, the spectrometer is combined with a polychromatic imaging camera array disposed adjacent said entrance slit for recording said image.
On generalized quasi-convex bounded sequences
NASA Astrophysics Data System (ADS)
Karakuş, Mahmut
2016-08-01
The space of all sequences a = (ak) for which ‖a ‖q= ∑k k |Δ2ak | +supk|ak | <∞ is denoted by q. Here, Δak = ak - ak+1 and Δmak = Δ(Δm-1ak) = Δm-1ak - Δm-1ak+1 with Δ0ak = ak, m ≥ 1. If a = (ak) ∈q then kΔak → 0 (k → ∞) and q ⊂ bv, the space of all sequences of bounded-variation, since ∑k | Δ ak | ≤ ∑k k | Δ2ak | In this study, we give a generalization of quasi-convex bounded sequences.
CPU timing routines for a CONVEX C220 computer system
NASA Technical Reports Server (NTRS)
Bynum, Mary Ann
1989-01-01
The timing routines available on the CONVEX C220 computer system in the Structural Mechanics Division (SMD) at NASA Langley Research Center are examined. The function of the timing routines, the use of the timing routines in sequential, parallel, and vector code, and the interpretation of the results from the timing routines with respect to the CONVEX model of computing are described. The timing routines available on the SMD CONVEX fall into two groups. The first group includes standard timing routines generally available with UNIX 4.3 BSD operating systems, while the second group includes routines unique to the SMD CONVEX. The standard timing routines described in this report are /bin/csh time,/bin/time, etime, and ctime. The routines unique to the SMD CONVEX are getinfo, second, cputime, toc, and a parallel profiling package made up of palprof, palinit, and palsum.
NASA Astrophysics Data System (ADS)
Gong, YanJun; Wu, ZhenSen; Wang, MingJun; Cao, YunHua
2010-01-01
We propose an analytical model of Doppler power spectra in backscatter from arbitrary rough convex quadric bodies of revolution (whose lateral surface is a quadric) rotating around axes. In the global Cartesian coordinate system, the analytical model deduced is suitable for general convex quadric body of revolution. Based on this analytical model, the Doppler power spectra of cones, cylinders, paraboloids of revolution, and sphere-cones combination are proposed. We analyze numerically the influence of geometric parameters, aspect angle, wavelength and reflectance of rough surface of the objects on the broadened spectra because of the Doppler effect. This analytical solution may contribute to laser Doppler velocimetry, and remote sensing of ballistic missile that spin.
Suscavage, M.J.; Yip, P.W.; Ryder, D.F. Jr.
1997-12-31
The effects of both temperature and atmosphere on the resulting morphological features of the polar faces of single crystal ZnO were investigated and characterized by atomic force microscopy (AFM). In studies where ZnO was thermally processed in flowing oxygen at atmospheric conditions within the temperature range of 500 C to 900 C for 30 minutes, the Zn-surface showed a tendency to reconstruct with increasing temperature until terraces became evident at 900 C. Terrace heights were as small as 0.9 nm. In contrast, the O-surface was observed to change very little during the O{sub 2}-atmosphere, thermal treatment and remained comparatively rougher than the Zn-surface. ZnO samples which were thermally processed under high vacuum (i.e., 5 {times} 10{sup {minus}7} Torr) conditions exhibited a more dramatic contrast. The vacuum annealed Zn-surface was observed to develop very smooth surface features (Roughness = 0.09 nm) at annealing temperatures within the 700--800 C range. In contrast, and as expected, the O-surface roughness increased due to surface reduction reactions. In addition to these findings, it is noted that AFM measurements may be utilized as a convenient method to distinguish between the two polar surfaces of ZnO. Aluminum nitride was deposited on the Zn- and O-surfaces from 700 to 850 C by pulsed laser evaporation. X-ray diffraction indicated that the AlN was c-axis oriented with no interface reaction products detected between the ZnO substrate and AlN film.
From concave to convex: capillary bridges in slit pore geometry.
Broesch, David J; Frechette, Joelle
2012-11-06
We investigate the morphological evolution of nonaxisymmetric capillary bridges in slit-pore geometry as the height of the pore and aspect ratio of the bridge are varied. The liquid bridges are formed between two hydrophobic surfaces patterned with hydrophilic strips. The aspect ratio of the capillary bridges (length/width) is varied from 2.5 to 120 by changing the separation between the surfaces, the width of the strips, or the fluid volume. As the bridge height is increased, the aspect ratio decreases and we observe a large increase in the mean curvature of the bridge. More specifically, the following counterintuitive result is observed: the mean curvature of the bridges changes sign and goes from negative (concave bridge) to positive (convex bridge) when the height is increased at constant volume. These experimental observations are in quantitative agreement with Surface Evolver simulations. Scaling shows a collapse of the data indicating that this transition in the sign of the Laplace pressure is universal for capillary bridges with high aspect ratios. Finally, we show that the morphology diagrams obtained from our 3D analysis are considerably different from those expected from a 2D analysis.
Schein, Stan; Gayed, James Maurice
2014-01-01
The three known classes of convex polyhedron with equal edge lengths and polyhedral symmetry––tetrahedral, octahedral, and icosahedral––are the 5 Platonic polyhedra, the 13 Archimedean polyhedra––including the truncated icosahedron or soccer ball––and the 2 rhombic polyhedra reported by Johannes Kepler in 1611. (Some carbon fullerenes, inorganic cages, icosahedral viruses, geodesic structures, and protein complexes resemble these fundamental shapes.) Here we add a fourth class, “Goldberg polyhedra,” which are also convex and equilateral. We begin by decorating each of the triangular facets of a tetrahedron, an octahedron, or an icosahedron with the T vertices and connecting edges of a “Goldberg triangle.” We obtain the unique set of internal angles in each planar face of each polyhedron by solving a system of n equations and n variables, where the equations set the dihedral angle discrepancy about different types of edge to zero, and the variables are a subset of the internal angles in 6gons. Like the faces in Kepler’s rhombic polyhedra, the 6gon faces in Goldberg polyhedra are equilateral and planar but not equiangular. We show that there is just a single tetrahedral Goldberg polyhedron, a single octahedral one, and a systematic, countable infinity of icosahedral ones, one for each Goldberg triangle. Unlike carbon fullerenes and faceted viruses, the icosahedral Goldberg polyhedra are nearly spherical. The reasoning and techniques presented here will enable discovery of still more classes of convex equilateral polyhedra with polyhedral symmetry. PMID:24516137
Razavi, Sonia M; Gonzalez, Marcial; Cuitiño, Alberto M
2015-04-30
We propose a general framework for determining optimal relationships for tensile strength of doubly convex tablets under diametrical compression. This approach is based on the observation that tensile strength is directly proportional to the breaking force and inversely proportional to a non-linear function of geometric parameters and materials properties. This generalization reduces to the analytical expression commonly used for flat faced tablets, i.e., Hertz solution, and to the empirical relationship currently used in the pharmaceutical industry for convex-faced tablets, i.e., Pitt's equation. Under proper parametrization, optimal tensile strength relationship can be determined from experimental results by minimizing a figure of merit of choice. This optimization is performed under the first-order approximation that a flat faced tablet and a doubly curved tablet have the same tensile strength if they have the same relative density and are made of the same powder, under equivalent manufacturing conditions. Furthermore, we provide a set of recommendations and best practices for assessing the performance of optimal tensile strength relationships in general. Based on these guidelines, we identify two new models, namely the general and mechanistic models, which are effective and predictive alternatives to the tensile strength relationship currently used in the pharmaceutical industry. Copyright © 2015 Elsevier B.V. All rights reserved.
Weaver, M L; Qiu, S R; Hoyer, J R; Casey, W H; Nancollas, G H; De Yoreo, J J
2008-05-28
The growth of calcium oxalate monohydrate in the presence of Tamm-Horsfall protein (THP), osteopontin (OPN), and the 27-residue synthetic peptides (DDDS){sub 6}DDD and (DDDG){sub 6}DDD [where D = aspartic acid and X = S (serine) or G (glycine)] was investigated via in situ atomic force microscopy (AFM). The results show that these three growth modulators create extensive deposits on the crystal faces. Depending on the modulator and crystal face, these deposits can occur as discrete aggregates, filamentary structures, or uniform coatings. These proteinaceous films can lead to either the inhibition or increase of the step speeds (with respect to the impurity-free system) depending on a range of factors that include peptide or protein concentration, supersaturation and ionic strength. While THP and the linear peptides act, respectively, to exclusively increase and inhibit growth on the (-101) face, both exhibit dual functionality on the (010) face, inhibiting growth at low supersaturation or high modulator concentration and accelerating growth at high supersaturation or low modulator concentration. Based on analyses of growth morphologies and dependencies of step speeds on supersaturation and protein or peptide concentration, we argue for a picture of growth modulation that accounts for the observations in terms of the strength of binding to the surfaces and steps and the interplay of electrostatic and solvent-induced forces at crystal surface.
[A convex-concave contact lens for vitreoretinal operations with the BIOM].
Eckardt, C; Wiechens, B
1991-01-01
A new convex-concave contact lens for wide-angle vitreoretinal surgery with the BIOM was developed. Placed on an eye, in which silicone oil is injected, it prevents the formation of an optically disturbing oil-water-film on the surface of the cornea. Thus the new contact lens leads to an essential improvement of the fundus view intraoperatively without affecting the optical properties of the BIOM.
NASA Technical Reports Server (NTRS)
Gratz, Andrew J.; Bird, Peter; Quiro, Glenn B.
1990-01-01
A highly accurate method, called the negative crystal method, for determining the rate of dissolution on specific crystallographic faces of crystals was developed, in which the dissolution rates of nominally perfect crystal faces are obtained by measuring the size of individual negative crystals during a sequence of dissolution steps. The method was applied to determine the apparent activation energy and rate constants for the dissolution of quartz in 0.01 M KOH solutions at temperatures from 106 to 236 C. Also investigated were the effects of hydroxyl activity and ionic strength. The apparent activation energies for the dissolution of the prism and of the rhomb were determined.
NASA Technical Reports Server (NTRS)
Gratz, Andrew J.; Bird, Peter; Quiro, Glenn B.
1990-01-01
A highly accurate method, called the negative crystal method, for determining the rate of dissolution on specific crystallographic faces of crystals was developed, in which the dissolution rates of nominally perfect crystal faces are obtained by measuring the size of individual negative crystals during a sequence of dissolution steps. The method was applied to determine the apparent activation energy and rate constants for the dissolution of quartz in 0.01 M KOH solutions at temperatures from 106 to 236 C. Also investigated were the effects of hydroxyl activity and ionic strength. The apparent activation energies for the dissolution of the prism and of the rhomb were determined.
Anderson, I A; Carman, J B
2000-03-01
Models of regular cellular-solids representing femoral head 'medial group' bone were used to (1) compare thickness data for plate-like and beam-like structures at realistic surface areas and densities; (2) test the validity of a standard formula for trabecular thickness (Tb.Th); and (3) study how systematic changes in cancellous bone thicknesses, spacing, and face-connectivity affect relative density and surface area. Models of different face-connectivities, produced by plate removal from the unit cell, were fitted to bone density and surface area data. The medial group bone was anisotropic: the supero-inferior (SI) direction was the principal direction for bone plate alignment and the plane normal to this had the largest number of bone/void intersections per unit line length (P(I)). A comparison of boundary perimeter per unit area data, in planes normal to SI, with surface area data placed the medial group bone between prismatic structures in which walls are parallel to one principal direction and isotropic structures. Selective removal of plates from a closed-cell model produced a similar result. For the same relative density and surface-area, plate-like models had significantly thinner cross-sections than beam-like models. The formula for Tb.Th produced overestimates of model plate thickness by up to 20% at realistic femoral cancellous densities. Trends in data on surface area to volume ratio and density observed on sampled medial group bone could be simulated by plate thickness changes on models of intermediate face-connectivity (approximately 1.5) or by plate removal from models with relatively thick and short (low aspect-ratio) plates. The latter mechanism is unrealistic for it resulted in beam-like structures at low 'medial group' densities, an architecture unlike the predominantly plate-like bone in the sample.
A convex urostomy pouch with adhesive border: a patient survey.
McPhail, Jacqueline; Nichols, Thom; Menier, Melissa
Patients previously using a standard-wear convex skin barrier urostomy pouch were invited by letter from a Dispensing Appliance Contractor to evaluate a similar pouching system, but with the addition of an extended-wear convex barrier and adhesive border. A total of 47 patients agreed to take part. Patients were asked to try three pouches and complete one evaluation form. Study participants found the addition of an extended-wear convex barrier and adhesive border, was easy to use, provided them with security and the potential for longer wear time.
Convex weighting criteria for speaking rate estimation
Jiao, Yishan; Berisha, Visar; Tu, Ming; Liss, Julie
2015-01-01
Speaking rate estimation directly from the speech waveform is a long-standing problem in speech signal processing. In this paper, we pose the speaking rate estimation problem as that of estimating a temporal density function whose integral over a given interval yields the speaking rate within that interval. In contrast to many existing methods, we avoid the more difficult task of detecting individual phonemes within the speech signal and we avoid heuristics such as thresholding the temporal envelope to estimate the number of vowels. Rather, the proposed method aims to learn an optimal weighting function that can be directly applied to time-frequency features in a speech signal to yield a temporal density function. We propose two convex cost functions for learning the weighting functions and an adaptation strategy to customize the approach to a particular speaker using minimal training. The algorithms are evaluated on the TIMIT corpus, on a dysarthric speech corpus, and on the ICSI Switchboard spontaneous speech corpus. Results show that the proposed methods outperform three competing methods on both healthy and dysarthric speech. In addition, for spontaneous speech rate estimation, the result show a high correlation between the estimated speaking rate and ground truth values. PMID:26167516
Abstract Convex Underestimation Assisted Multistage Differential Evolution.
Zhou, Xiao-Gen; Zhang, Gui-Jun
2017-09-01
In differential evolution (DE), different strategies applied in different evolutionary stages may be more effective than a single strategy used in the entire evolutionary process. However, it is not trivial to appropriately determine the evolutionary stage. In this paper, we present an abstract convex underestimation-assisted multistage DE. In the proposed algorithm, the underestimation is calculated through the supporting vectors of some neighboring individuals. Based on the variation of the average underestimation error (UE), the evolutionary process is divided into three stages. Each stage includes a pool of suitable candidate strategies. At the beginning of each generation, the evolutionary stage is first estimated according to the average UE of the previous generation. Subsequently, a strategy is automatically chosen from the corresponding candidate pool to create a mutant vector. In addition, a centroid-based strategy which utilizes the information of multiple superior individuals is designed to balance the population diversity and convergence speed in the second stage. Experiments are conducted on 23 widely used test functions, CEC 2013, and CEC 2014 benchmark sets to demonstrate the performance of the proposed algorithm. The results reveal that the proposed algorithm exhibits better performance compared with several advanced DE variants and some non-DE approaches.
Flip to Regular Triangulation and Convex Hull.
Gao, Mingcen; Cao, Thanh-Tung; Tan, Tiow-Seng
2017-02-01
Flip is a simple and local operation to transform one triangulation to another. It makes changes only to some neighboring simplices, without considering any attribute or configuration global in nature to the triangulation. Thanks to this characteristic, several flips can be independently applied to different small, non-overlapping regions of one triangulation. Such operation is favored when designing algorithms for data-parallel, massively multithreaded hardware, such as the GPU. However, most existing flip algorithms are designed to be executed sequentially, and usually need some restrictions on the execution order of flips, making them hard to be adapted to parallel computation. In this paper, we present an in depth study of flip algorithms in low dimensions, with the emphasis on the flexibility of their execution order. In particular, we propose a series of provably correct flip algorithms for regular triangulation and convex hull in 2D and 3D, with implementations for both CPUs and GPUs. Our experiment shows that our GPU implementation for constructing these structures from a given point set achieves up to two orders of magnitude of speedup over other popular single-threaded CPU implementation of existing algorithms.
Convexity and symmetrization in relativistic theories
NASA Astrophysics Data System (ADS)
Ruggeri, T.
1990-09-01
There is a strong motivation for the desire to have symmetric hyperbolic field equations in thermodynamics, because they guarantee well-posedness of Cauchy problems. A generic quasi-linear first order system of balance laws — in the non-relativistic case — can be shown to be symmetric hyperbolic, if the entropy density is concave with respect to the variables. In relativistic thermodynamics this is not so. This paper shows that there exists a scalar quantity in relativistic thermodynamics whose concavity guarantees a symmetric hyperbolic system. But that quantity — we call it —bar h — is not the entropy, although it is closely related to it. It is formed by contracting the entropy flux vector — ha with a privileged time-like congruencebar ξ _α . It is also shown that the convexity of h plus the requirement that all speeds be smaller than the speed of light c provide symmetric hyperbolic field equations for all choices of the direction of time. At this level of generality the physical meaning of —h is unknown. However, in many circumstances it is equal to the entropy. This is so, of course, in the non-relativistic limit but also in the non-dissipative relativistic fluid and even in relativistic extended thermodynamics for a non-degenerate gas.
Convex recoloring as an evolutionary marker.
Frenkel, Zeev; Kiat, Yosef; Izhaki, Ido; Snir, Sagi
2017-02-01
With the availability of enormous quantities of genetic data it has become common to construct very accurate trees describing the evolutionary history of the species under study, as well as every single gene of these species. These trees allow us to examine the evolutionary compliance of given markers (characters). A marker compliant with the history of the species investigated, has undergone mutations along the species tree branches, such that every subtree of that tree exhibits a different state. Convex recoloring (CR) uses combinatorial representation to measure the adequacy of a taxonomic classifier to a given tree. Despite its biological origins, research on CR has been almost exclusively dedicated to mathematical properties of the problem, or variants of it with little, if any, relationship to taxonomy. In this work we return to the origins of CR. We put CR in a statistical framework and introduce and learn the notion of the statistical significance of a character. We apply this measure to two data sets - Passerine birds and prokaryotes, and four examples. These examples demonstrate various applications of CR, from evolutionary relatedness, through lateral evolution, to supertree construction. The above study was done with a new software that we provide, containing algorithmic improvement with a graphical output of a (optimally) recolored tree.
Convex Lens-induced Confinement to Visualize Biopolymers and Interaction Parameters
NASA Astrophysics Data System (ADS)
Stabile, Frank; Berard, Daniel; Henkin, Gil; Shayegan, Marjan; Michaud, François; Leslie, Sabrina
In this poster, we present a versatile CLiC (Convex Lens-induced Confinement) microscopy system to access a broad range of biopolymer visualization and interaction parameters. In the CLiC technique, the curved surface of a convex lens is used to deform a flexible coverslip above a glass substrate, creating a nanoscale gap that can be tuned during an experiment to load and confine molecules into nanoscale features, both linear and circular, embedded in the bottom substrate. We demonstrate and characterize massively parallel DNA nanochannel-based stretching, building on prior work. Further, we demonstrate controlled insertion of reagent molecules within the CLiC imaging chamber. We visualize real-time reaction dynamics of nanoconfined species, including dye/DNA intercalation and DNA/DNA ligation reactions, demonstrating the versatility of this nanoscale microscopy platform.
NASA Astrophysics Data System (ADS)
Somasi, Sweta; Khomami, Bamin; Lovett, Ronald
2001-04-01
We introduce a new molecular dynamics simulation path to easily calculate solid-vapor surface free energies. The method is illustrated with explicit calculations of the surface free energies of a face-centered-cubic (fcc) crystal (the [110], [111], and [100] surfaces) and a hexagonal-close-packed (hcp) crystal (the [111] surface) of Lennard-Jones atoms. We verify that, because of the reduced symmetry at interfaces, simulation of the surface structure and free energy requires a large cutoff distance for the range of the pair potential. To estimate when a growing crystal resolves the fcc/hcp structural ambiguity, we observe the binding free energy and dynamics of clusters of adatoms on [111] surfaces of fcc and hcp crystals. A structural distinction only appears when clusters become large enough that their slow translational motion allows a structural relaxation of the crystal's surface. From the observed distribution over cluster structures we deduce thermodynamic parameters that can be used to model the equilibrium between fcc-like clusters and hcp-like clusters on [111] surfaces and the rate of transformation between these.
Entropy and convexity for nonlinear partial differential equations.
Ball, John M; Chen, Gui-Qiang G
2013-12-28
Partial differential equations are ubiquitous in almost all applications of mathematics, where they provide a natural mathematical description of many phenomena involving change in physical, chemical, biological and social processes. The concept of entropy originated in thermodynamics and statistical physics during the nineteenth century to describe the heat exchanges that occur in the thermal processes in a thermodynamic system, while the original notion of convexity is for sets and functions in mathematics. Since then, entropy and convexity have become two of the most important concepts in mathematics. In particular, nonlinear methods via entropy and convexity have been playing an increasingly important role in the analysis of nonlinear partial differential equations in recent decades. This opening article of the Theme Issue is intended to provide an introduction to entropy, convexity and related nonlinear methods for the analysis of nonlinear partial differential equations. We also provide a brief discussion about the content and contributions of the papers that make up this Theme Issue.
On convex least squares estimation when the truth is linear.
Chen, Yining; Wellner, Jon A
2016-01-01
We prove that the convex least squares estimator (LSE) attains a n(-1/2) pointwise rate of convergence in any region where the truth is linear. In addition, the asymptotic distribution can be characterized by a modified invelope process. Analogous results hold when one uses the derivative of the convex LSE to perform derivative estimation. These asymptotic results facilitate a new consistent testing procedure on the linearity against a convex alternative. Moreover, we show that the convex LSE adapts to the optimal rate at the boundary points of the region where the truth is linear, up to a log-log factor. These conclusions are valid in the context of both density estimation and regression function estimation.
A novel neural network for nonlinear convex programming.
Gao, Xing-Bao
2004-05-01
In this paper, we present a neural network for solving the nonlinear convex programming problem in real time by means of the projection method. The main idea is to convert the convex programming problem into a variational inequality problem. Then a dynamical system and a convex energy function are constructed for resulting variational inequality problem. It is shown that the proposed neural network is stable in the sense of Lyapunov and can converge to an exact optimal solution of the original problem. Compared with the existing neural networks for solving the nonlinear convex programming problem, the proposed neural network has no Lipschitz condition, no adjustable parameter, and its structure is simple. The validity and transient behavior of the proposed neural network are demonstrated by some simulation results.
Entropy and convexity for nonlinear partial differential equations
Ball, John M.; Chen, Gui-Qiang G.
2013-01-01
Partial differential equations are ubiquitous in almost all applications of mathematics, where they provide a natural mathematical description of many phenomena involving change in physical, chemical, biological and social processes. The concept of entropy originated in thermodynamics and statistical physics during the nineteenth century to describe the heat exchanges that occur in the thermal processes in a thermodynamic system, while the original notion of convexity is for sets and functions in mathematics. Since then, entropy and convexity have become two of the most important concepts in mathematics. In particular, nonlinear methods via entropy and convexity have been playing an increasingly important role in the analysis of nonlinear partial differential equations in recent decades. This opening article of the Theme Issue is intended to provide an introduction to entropy, convexity and related nonlinear methods for the analysis of nonlinear partial differential equations. We also provide a brief discussion about the content and contributions of the papers that make up this Theme Issue. PMID:24249768
A Convex Polytope Technique for Analyzing the Performance of Universities.
ERIC Educational Resources Information Center
Lindsay, Alan W.; Bailey, Michael
1980-01-01
A general convex polytope technique for exploratory data analysis and its particular application to analyzing the input-output relationship in universities is discussed. Its use is illustrated by means of a simple analysis of data from Australian universities. (MLW)
Wan, Dinah; Small, Kevin H; Barton, Fritz E
2015-11-01
After studying this article, the participant should be able to: 1. Identify the essential anatomy of the aging face and its relationship to face-lift surgery. 2. Understand the common operative approaches to the aging face and a historical perspective. 3. Understand and describe the common complications following face lifting and treatment options. Surgical rejuvenation of the aging face remains one of the most commonly performed plastic surgery procedures. This article reviews the anatomy of the face and its impact on surgical correction. In addition, this review discusses the evolution of various face-lift techniques and the current surgical approach to the aging face. Finally, this article discusses potential postoperative complications after rhytidectomy and management solutions.
ERIC Educational Resources Information Center
Weiner, Jill
2005-01-01
In this article, the author discusses "Game Face: Life Lessons Across the Curriculum", a teaching kit that challenges assumptions and builds confidence. Game Face, which is derived from a book and art exhibition, "Game Face: What Does a Female Athlete Look Like?", uses layered and powerful images of women and girls participating in sports to teach…
Object perception and masking: contributions of sides and convexities.
Poirier, Frédéric J A M; Wilson, Hugh R
2007-10-01
Object perception uses a variety of visual cues, including shape cues derived from sides and convexities. Two recent masking studies using radial frequency patterns have argued, respectively, for a predominant role of convexity [Habak, C., Wilkinson, F., Zakher, B., & Wilson, H. R. (2004). Curvature population coding for complex shapes in human vision. Vision Research, 44 (24), 2815-2823] or side information [Hess, R. F., Wang, Y. -Z., & Dakin, S. C. (1999). Are judgements of circularity local or global? Vision Research, 39, 4354-4360]. Here we resolve the controversy by separating the masks into their parts (e.g., convexities and sides), and measuring the relative masking influences of the different mask components. We found that both side and convexity information contribute to masking. However, masking due to side information was much less dependent on alignment compared to masking due to convexities. This supports a theory where convexities constitute a prime source of information for shape processing, and sides do also contribute but to a smaller extent.
NASA Astrophysics Data System (ADS)
Yang, Jialing; Eller, Brianna S.; Nemanich, Robert J.
2014-09-01
The effects of surface pretreatment, dielectric growth, and post deposition annealing on interface electronic structure and polarization charge compensation of Ga- and N-face bulk GaN were investigated. The cleaning process consisted of an ex-situ wet chemical NH4OH treatment and an in-situ elevated temperature NH3 plasma process to remove carbon contamination, reduce oxygen coverage, and potentially passivate N-vacancy related defects. After the cleaning process, carbon contamination decreased below the x-ray photoemission spectroscopy detection limit, and the oxygen coverage stabilized at ˜1 monolayer on both Ga- and N-face GaN. In addition, Ga- and N-face GaN had an upward band bending of 0.8 ± 0.1 eV and 0.6 ± 0.1 eV, respectively, which suggested the net charge of the surface states and polarization bound charge was similar on Ga- and N-face GaN. Furthermore, three dielectrics (HfO2, Al2O3, and SiO2) were prepared by plasma-enhanced atomic layer deposition on Ga- or N-face GaN and annealed in N2 ambient to investigate the effect of the polarization charge on the interface electronic structure and band offsets. The respective valence band offsets of HfO2, Al2O3, and SiO2 with respect to Ga- and N-face GaN were 1.4 ± 0.1, 2.0 ± 0.1, and 3.2 ± 0.1 eV, regardless of dielectric thickness. The corresponding conduction band offsets were 1.0 ± 0.1, 1.3 ± 0.1, and 2.3 ± 0.1 eV, respectively. Experimental band offset results were consistent with theoretical calculations based on the charge neutrality level model. The trend of band offsets for dielectric/GaN interfaces was related to the band gap and/or the electronic part of the dielectric constant. The effect of polarization charge on band offset was apparently screened by the dielectric-GaN interface states.
Stochastic convex sparse principal component analysis.
Baytas, Inci M; Lin, Kaixiang; Wang, Fei; Jain, Anil K; Zhou, Jiayu
2016-12-01
Principal component analysis (PCA) is a dimensionality reduction and data analysis tool commonly used in many areas. The main idea of PCA is to represent high-dimensional data with a few representative components that capture most of the variance present in the data. However, there is an obvious disadvantage of traditional PCA when it is applied to analyze data where interpretability is important. In applications, where the features have some physical meanings, we lose the ability to interpret the principal components extracted by conventional PCA because each principal component is a linear combination of all the original features. For this reason, sparse PCA has been proposed to improve the interpretability of traditional PCA by introducing sparsity to the loading vectors of principal components. The sparse PCA can be formulated as an ℓ1 regularized optimization problem, which can be solved by proximal gradient methods. However, these methods do not scale well because computation of the exact gradient is generally required at each iteration. Stochastic gradient framework addresses this challenge by computing an expected gradient at each iteration. Nevertheless, stochastic approaches typically have low convergence rates due to the high variance. In this paper, we propose a convex sparse principal component analysis (Cvx-SPCA), which leverages a proximal variance reduced stochastic scheme to achieve a geometric convergence rate. We further show that the convergence analysis can be significantly simplified by using a weak condition which allows a broader class of objectives to be applied. The efficiency and effectiveness of the proposed method are demonstrated on a large-scale electronic medical record cohort.
Spectral calibration for convex grating imaging spectrometer
NASA Astrophysics Data System (ADS)
Zhou, Jiankang; Chen, Xinhua; Ji, Yiqun; Chen, Yuheng; Shen, Weimin
2013-12-01
Spectral calibration of imaging spectrometer plays an important role for acquiring target accurate spectrum. There are two spectral calibration types in essence, the wavelength scanning and characteristic line sampling. Only the calibrated pixel is used for the wavelength scanning methods and he spectral response function (SRF) is constructed by the calibrated pixel itself. The different wavelength can be generated by the monochromator. The SRF is constructed by adjacent pixels of the calibrated one for the characteristic line sampling methods. And the pixels are illuminated by the narrow spectrum line and the center wavelength of the spectral line is exactly known. The calibration result comes from scanning method is precise, but it takes much time and data to deal with. The wavelength scanning method cannot be used in field or space environment. The characteristic line sampling method is simple, but the calibration precision is not easy to confirm. The standard spectroscopic lamp is used to calibrate our manufactured convex grating imaging spectrometer which has Offner concentric structure and can supply high resolution and uniform spectral signal. Gaussian fitting algorithm is used to determine the center position and the Full-Width-Half-Maximum（FWHM）of the characteristic spectrum line. The central wavelengths and FWHMs of spectral pixels are calibrated by cubic polynomial fitting. By setting a fitting error thresh hold and abandoning the maximum deviation point, an optimization calculation is achieved. The integrated calibration experiment equipment for spectral calibration is developed to enhance calibration efficiency. The spectral calibration result comes from spectral lamp method are verified by monochromator wavelength scanning calibration technique. The result shows that spectral calibration uncertainty of FWHM and center wavelength are both less than 0.08nm, or 5.2% of spectral FWHM.
NASA Technical Reports Server (NTRS)
Kantsios, A. G.; Henley, W. C., Jr.; Snow, W. L.
1982-01-01
The use of a photographic pyrometer for nonintrusive measurement of high temperature surfaces in a wind tunnel test is described. The advantages of the pyrometer for measuring surfaces whose unique shape makes use of thermocouples difficult are pointed out. The use of computer operated densitometers or optical processors for the data reduction is recommended.
NASA Astrophysics Data System (ADS)
Chen, Jian; Deng, Xin; Gong, Manfeng; Liu, Wei; Wu, Shanghua
2016-09-01
This paper systematically investigated a set of functionally graded WC-TiC-Mo-Co cemented carbides with modified surface layer (called fcc-rich surface layer in this study), which is mainly composed of fcc phases (Ti(CN) and TiN) and WC. Nitridation at liquid phase sintering temperature is the key process making this fcc-rich surface layer. The functionally graded WC-TiC-Mo-Co cemented carbides synthesized in this study show 3 layer structure: the outer layer, i.e. the fcc-rich surface layer; the intermediate layer, which is characterized by abnormally large WC and high Co content; and the inner layer. It was found that TiC is the most critical component for the formation of fcc-rich surface layer. The higher content of TiC results in the thicker fcc-rich outer layer, higher (Ti(CN) and TiN) content in the outer layer, and higher hardness of the fcc-rich outer layer. The formation of this fcc-rich surface layer is mainly due to the nitridation process between Ti and N, which leads to the diffusion of Ti outwards (from the inside of the sample to the surface) and the subsequent migration of liquid cobalt inwards (from surface to the inside of the sample). The three-layer structure developed in this study provides the excellent combination of high wear resistance and high toughness, which is favorable for some applications.
A high-accuracy and convenient figure measurement system for large convex lens.
Tian, Zhihui; Yang, Wang; Sui, Yongxin; Kang, Yusi; Liu, Weiqi; Yang, Huaijiang
2012-05-07
We present a novel optical configuration of a phase-shifting interferometer for high-accuracy figure metrology of large dioptric convex spherical surfaces. The conformation and design considerations according to measurement accuracy, practicability, and system errors analysis are described. More in detail, we show the design principle and methods for the crucial parts. Some are expounded upon with examples for thorough understanding. The measurement procedures and the alignment approaches are also described. Finally, a verification experiment is further presented to verify our theoretical design. This system gives full-aperture and high-precision surface testing while maintaining relatively low cost and convenient operation.
Tahiri Joutei Hassani, Rachid; Liang, Hong; El Sanharawi, Mohamed; Brasnu, Emmanuelle; Kallel, Sofiene; Labbé, Antoine; Baudouin, Christophe
2014-10-01
To explore the potential of spectral-domain optical coherence tomography (SD-OCT) using the en-face technology for the imaging of ocular surface diseases and to correlate the findings with in vivo confocal microscopy (IVCM) images. 113 eyes of 75 subjects with various ocular surface diseases were investigated with the RTVue(®) anterior-segment en face OCT. En face OCT images were compared to B-scan OCT and IVCM images. Patients with corneal dystrophies, corneal deposits, keratitis, pterygium, conjunctivochalasis, or ocular surface squamous neoplasia and patients who underwent lamellar corneal surgeries were included. En-face OCT images showed ocular surface tissue changes that were not discernible using conventional B-scan OCT. Nevertheless, there was a good correlation with IVCM analysis. Compared with IVCM, the major advantages of en-face OCT included easy operation and rapid image acquisition, with minimal operator experience required. In addition, the non-contact method avoided patient discomfort and external pressure on the globe, which was especially useful in patients with corneal dystrophies, ulcers, or corneal abscesses. Although the resolution of en-face OCT was lower than that of IVCM, it allowed useful overall visualization of corneal lesions due to the larger areas analyzed. En-face SD-OCT is a novel, valuable tool to assess a wide variety of ocular surface diseases. It can provide additional information and new insight into different ocular surface conditions with no corneal contact. Copyright © 2014 Elsevier Inc. All rights reserved.
Ion beam figuring of Φ520mm convex hyperbolic secondary mirror
NASA Astrophysics Data System (ADS)
Meng, Xiaohui; Wang, Yonggang; Li, Ang; Li, Wenqing
2016-10-01
The convex hyperbolic secondary mirror is a Φ520-mm Zerodur lightweight hyperbolic convex mirror. Typically conventional methods like CCOS, stressed-lap polishing are used to manufacture this secondary mirror. Nevertheless, the required surface accuracy cannot be achieved through the use of conventional polishing methods because of the unpredictable behavior of the polishing tools, which leads to an unstable removal rate. Ion beam figuring is an optical fabrication method that provides highly controlled error of previously polished surfaces using a directed, inert and neutralized ion beam to physically sputter material from the optic surface. Several iterations with different ion beam size are selected and optimized to fit different stages of surface figure error and spatial frequency components. Before ion beam figuring, surface figure error of the secondary mirror is 2.5λ p-v, 0.23λ rms, and is improved to 0.12λ p-v, 0.014λ rms in several process iterations. The demonstration clearly shows that ion beam figuring can not only be used to the final correction of aspheric, but also be suitable for polishing the coarse surface of large, complex mirror.
NASA Astrophysics Data System (ADS)
Aref'eva, L. P.; Shebzukhova, I. G.
2016-07-01
A technique for the evaluation of the electron work function of metallic single crystals and the electron work function anisotropy has been developed in the framework of the electron-statistical method. The surface energy and the electron work function have been calculated for crystal faces of allotropic modifications of 4 d- and 5 d-metals. A change in the electron work function due to the allotropic transformations has been estimated, and the periodic dependence of the electron work function has been determined. It has been shown that the results obtained using the proposed technique correlate with the available experimental data for polycrystals.
Visual Adaptation to Convexity in Macaque Area V4
Müller, Kai-Markus; Wilke, Melanie; Leopold, David A.
2009-01-01
After-effects are perceptual illusions caused by visual adaptation to one or more stimulus attribute, such as orientation, motion, or shape, and are generally characterized by a repulsive shift in the perception of the adapted features in a corresponding test stimulus. Neurophysiological studies seeking to understand the basis of adaptation have observed firing rate reduction and changes in tuning of sensory neurons during periods of prolonged stimulation. In the domain of shape, recent psychophysical work has shown that adaptation to a convex pattern induces a subsequently seen rectangle to appear slightly concave. In the present study, we investigate the possible contribution of V4 neurons, which are thought to be involved in the coding of convexity, to such shape-specific adaptation. Visually responsive neurons were monitored during the brief presentation of simple shapes varying in their convexity level. Each test presentation was preceded by either a blank period or several seconds of adaptation to a convex or concave stimulus, presented in two different sizes. Adaptation consistently changed the tuning of neurons away from the convex or concave adaptor, shifting the response to the neutral rectangle in the direction of the opposite convexity. This repulsive shift was consistent with the known perceptual distortion associated with adaptation to such stimuli. Adaptation also caused a nonspecific decrease in firing, as well as the shape-selective suppression for the repeated presentation of the adaptor stimulus. The latter effects were observed whether or not the adapting and test stimuli matched closely in their size. Taken together, these results provide evidence for shape-specific adaptation of neurons in area V4, which may contribute to the perception of the convexity aftereffect. PMID:19345725
Investigation on the surface characterization of Ga-faced GaN after chemical-mechanical polishing
NASA Astrophysics Data System (ADS)
Gong, Hua; Pan, Guoshun; Zhou, Yan; Shi, Xiaolei; Zou, Chunli; Zhang, Suman
2015-05-01
The relationship between the surface characterization after chemical mechanical polishing (CMP) and the size of the silica (SiO2) abrasive used for CMP of gallium nitride (GaN) substrates was investigated in detail. Atomic force microscope was used for measuring the surface morphology, pit feature, pit depth distribution, and atomic step-terrace structure. With the decrease of SiO2 abrasive size, the pit depth reduced and the atomic step-terrace structure became more whole with smaller damage area, resulting in smaller roughness. For tiny-sized SiO2 abrasive, an almost complete atomic step-terrace structure with 0.0523 nm roughness was achieved. On the other hand, in order to acquire higher removal, Pt/C nanoparticle was employed as a catalyst in CMP slurry. The result indicates that when Pt/C catalyst content was reached to 1.0 ppm, material removal rate was increased by 47.69% compared to that by none of the catalyst, and besides, the pit depth reduced and the surface atomic step-terrace structure was not destroyed. The Pt/C nanoparticle is proved to be the promising catalyst to the surface preparation of super-hard and inert materials with high efficiency and good surface.
Inhibitory competition in figure-ground perception: context and convexity.
Peterson, Mary A; Salvagio, Elizabeth
2008-12-15
Convexity has long been considered a potent cue as to which of two regions on opposite sides of an edge is the shaped figure. Experiment 1 shows that for a single edge, there is only a weak bias toward seeing the figure on the convex side. Experiments 1-3 show that the bias toward seeing the convex side as figure increases as the number of edges delimiting alternating convex and concave regions increases, provided that the concave regions are homogeneous in color. The results of Experiments 2 and 3 rule out a probability summation explanation for these context effects. Taken together, the results of Experiments 1-3 show that the homogeneity versus heterogeneity of the convex regions is irrelevant. Experiment 4 shows that homogeneity of alternating regions is not sufficient for context effects; a cue that favors the perception of the intervening regions as figures is necessary. Thus homogeneity alone does not alone operate as a background cue. We interpret our results within a model of figure-ground perception in which shape properties on opposite sides of an edge compete for representation and the competitive strength of weak competitors is further reduced when they are homogeneous.
{epsilon}-optimality conditions for weakly convex problems
Pappalardo, M.
1994-12-31
There are several generalizations concerning the concept of convexity both for sets and for functions. Weak convexity, among these, has showed many possibilities of applications and many theoretical properties. It has, in fact, been applied in several fields of mathematics: see for example geometry and optimization. We want to analyze this generalization of the concept of convexity via the image-space approach. This kind of approach has showed its utility in many fields of optimization. In particular, we introduce a new concept of {open_quotes}image{close_quotes} based on a suitable relaxation or reduction (lower and upper) of the image itself. Moreover we analyze the main properties of this concept and we show how to utilize it in the study of weakly convex constrained extremum problems in order to obtain {epsilon}-optimality conditions. The paper is divided in three parts: in the first we introduce the concept of perturbed image and we investigate the main theoretical properties. In the second we state {epsilon}-optimality conditions for weakly convex constrained extremum problems. In the third one we study relationships between this type of image and the augmented lagrangian.
Bao, Luyao; Hu, Haibao; Wen, Jun; Sepri, Paavo; Luo, Kai
2016-07-19
A liquid in the vicinity of a solid-liquid interface (SLI) may exhibit complex structures. In this study, we used molecular dynamics simulations demonstrating for the first time that the liquid adjacent to the SLI can have a two-level structure in some cases: a major structure and a minor structure. Through a time-averaging process of molecular motions, we identified the type of the liquid structure by calculating positions of the maximum liquid density in three spatial dimensions, and these positions were found to distribute in many dispersed zones (called high-density zones (HDZs)). The major structure appears throughout the SLI, while the minor structure only occurs significantly within the third layer. Instead of the previously reported body-centered cubic (BCC) or face-centered-cubic (FCC) types, the major structure was found to show a body-centered tetragonal (BCT) type. The adjacent HDZs are connected by specific junctions, demonstrating that atoms diffuse along some particular high probability paths from one HDZ to another. By considering the three-dimensional liquid density distribution from the continuum point of view, more complete details of the structure and diffusive behavior of liquids in the SLI are also possible to be revealed.
Bao, Luyao; Hu, Haibao; Wen, Jun; Sepri, Paavo; Luo, Kai
2016-01-01
A liquid in the vicinity of a solid-liquid interface (SLI) may exhibit complex structures. In this study, we used molecular dynamics simulations demonstrating for the first time that the liquid adjacent to the SLI can have a two-level structure in some cases: a major structure and a minor structure. Through a time-averaging process of molecular motions, we identified the type of the liquid structure by calculating positions of the maximum liquid density in three spatial dimensions, and these positions were found to distribute in many dispersed zones (called high-density zones (HDZs)). The major structure appears throughout the SLI, while the minor structure only occurs significantly within the third layer. Instead of the previously reported body-centered cubic (BCC) or face-centered-cubic (FCC) types, the major structure was found to show a body-centered tetragonal (BCT) type. The adjacent HDZs are connected by specific junctions, demonstrating that atoms diffuse along some particular high probability paths from one HDZ to another. By considering the three-dimensional liquid density distribution from the continuum point of view, more complete details of the structure and diffusive behavior of liquids in the SLI are also possible to be revealed. PMID:27430188
NASA Astrophysics Data System (ADS)
Bao, Luyao; Hu, Haibao; Wen, Jun; Sepri, Paavo; Luo, Kai
2016-07-01
A liquid in the vicinity of a solid-liquid interface (SLI) may exhibit complex structures. In this study, we used molecular dynamics simulations demonstrating for the first time that the liquid adjacent to the SLI can have a two-level structure in some cases: a major structure and a minor structure. Through a time-averaging process of molecular motions, we identified the type of the liquid structure by calculating positions of the maximum liquid density in three spatial dimensions, and these positions were found to distribute in many dispersed zones (called high-density zones (HDZs)). The major structure appears throughout the SLI, while the minor structure only occurs significantly within the third layer. Instead of the previously reported body-centered cubic (BCC) or face-centered-cubic (FCC) types, the major structure was found to show a body-centered tetragonal (BCT) type. The adjacent HDZs are connected by specific junctions, demonstrating that atoms diffuse along some particular high probability paths from one HDZ to another. By considering the three-dimensional liquid density distribution from the continuum point of view, more complete details of the structure and diffusive behavior of liquids in the SLI are also possible to be revealed.
ERIC Educational Resources Information Center
Brooks, Diana
1995-01-01
Discusses the use of face painting as a technique for making the endangered species issue tangible for children while addressing the complexity of the issue. Children are "given" an animal of their own and are educated about the animal while having their faces painted to resemble the animal. (LZ)
2010-12-06
2007). 16. W. Barthlott, “Epidermal and seed surface characters of plants: systematic applicability and some evolutionary aspects,” Nord. J. Bot. 1(3...infrared spectral region,” Appl. Opt. 32(7), 1154–1167 (1993). 1. Introduction Optical fibers are of great interest for a variety of applications in...intensity laser illumination [12] which is of great interest for high-power applications . While most of the work has been directed to bulk optics
Convexity and concavity constants in Lorentz and Marcinkiewicz spaces
NASA Astrophysics Data System (ADS)
Kaminska, Anna; Parrish, Anca M.
2008-07-01
We provide here the formulas for the q-convexity and q-concavity constants for function and sequence Lorentz spaces associated to either decreasing or increasing weights. It yields also the formula for the q-convexity constants in function and sequence Marcinkiewicz spaces. In this paper we extent and enhance the results from [G.J.O. Jameson, The q-concavity constants of Lorentz sequence spaces and related inequalities, Math. Z. 227 (1998) 129-142] and [A. Kaminska, A.M. Parrish, The q-concavity and q-convexity constants in Lorentz spaces, in: Banach Spaces and Their Applications in Analysis, Conference in Honor of Nigel Kalton, May 2006, Walter de Gruyter, Berlin, 2007, pp. 357-373].
Worst case estimation of homology design by convex analysis
NASA Technical Reports Server (NTRS)
Yoshikawa, N.; Elishakoff, Isaac; Nakagiri, S.
1998-01-01
The methodology of homology design is investigated for optimum design of advanced structures. for which the achievement of delicate tasks by the aid of active control system is demanded. The proposed formulation of homology design, based on the finite element sensitivity analysis, necessarily requires the specification of external loadings. The formulation to evaluate the worst case for homology design caused by uncertain fluctuation of loadings is presented by means of the convex model of uncertainty, in which uncertainty variables are assigned to discretized nodal forces and are confined within a conceivable convex hull given as a hyperellipse. The worst case of the distortion from objective homologous deformation is estimated by the Lagrange multiplier method searching the point to maximize the error index on the boundary of the convex hull. The validity of the proposed method is demonstrated in a numerical example using the eleven-bar truss structure.
Widths of some classes of convex functions and bodies
NASA Astrophysics Data System (ADS)
Konovalov, V. N.; Maiorov, Vitalii E.
2010-02-01
We consider classes of uniformly bounded convex functions defined on convex compact bodies in \\mathbb{R}^d and satisfying a Lipschitz condition and establish the exact orders of their Kolmogorov, entropy, and pseudo-dimension widths in the L_1-metric. We also introduce the notions of pseudo-dimension and pseudo-dimension widths for classes of sets and determine the exact orders of the entropy and pseudo-dimension widths of some classes of convex bodies in \\mathbb{R}^drelative to the pseudo-metric defined as the d-dimensional Lebesgue volume of the symmetric difference of two sets. We also find the exact orders of the entropy and pseudo-dimension widths of the corresponding classes of characteristic functions in L_p-spaces, 1\\le p\\le\\infty.
Worst case estimation of homology design by convex analysis
NASA Technical Reports Server (NTRS)
Yoshikawa, N.; Elishakoff, Isaac; Nakagiri, S.
1998-01-01
The methodology of homology design is investigated for optimum design of advanced structures. for which the achievement of delicate tasks by the aid of active control system is demanded. The proposed formulation of homology design, based on the finite element sensitivity analysis, necessarily requires the specification of external loadings. The formulation to evaluate the worst case for homology design caused by uncertain fluctuation of loadings is presented by means of the convex model of uncertainty, in which uncertainty variables are assigned to discretized nodal forces and are confined within a conceivable convex hull given as a hyperellipse. The worst case of the distortion from objective homologous deformation is estimated by the Lagrange multiplier method searching the point to maximize the error index on the boundary of the convex hull. The validity of the proposed method is demonstrated in a numerical example using the eleven-bar truss structure.
Revisiting the method of characteristics via a convex hull algorithm
NASA Astrophysics Data System (ADS)
LeFloch, Philippe G.; Mercier, Jean-Marc
2015-10-01
We revisit the method of characteristics for shock wave solutions to nonlinear hyperbolic problems and we propose a novel numerical algorithm-the convex hull algorithm (CHA)-which allows us to compute both entropy dissipative solutions (satisfying all entropy inequalities) and entropy conservative (or multi-valued) solutions. From the multi-valued solutions determined by the method of characteristics, our algorithm "extracts" the entropy dissipative solutions, even after the formation of shocks. It applies to both convex and non-convex flux/Hamiltonians. We demonstrate the relevance of the proposed method with a variety of numerical tests, including conservation laws in one or two spatial dimensions and problem arising in fluid dynamics.
First and second order convex approximation strategies in structural optimization
NASA Technical Reports Server (NTRS)
Fleury, C.
1989-01-01
In this paper, various methods based on convex approximation schemes are discussed that have demonstrated strong potential for efficient solution of structural optimization problems. First, the convex linearization method (Conlin) is briefly described, as well as one of its recent generalizations, the method of moving asymptotes (MMA). Both Conlin and MMA can be interpreted as first-order convex approximation methods that attempt to estimate the curvature of the problem functions on the basis of semiempirical rules. Attention is next directed toward methods that use diagonal second derivatives in order to provide a sound basis for building up high-quality explicit approximations of the behavior constraints. In particular, it is shown how second-order information can be effectively used without demanding a prohibitive computational cost. Various first-order and second-order approaches are compared by applying them to simple problems that have a closed form solution.
NASA Astrophysics Data System (ADS)
Skala, Vaclav
2016-06-01
There are many space subdivision and space partitioning techniques used in many algorithms to speed up computations. They mostly rely on orthogonal space subdivision, resp. using hierarchical data structures, e.g. BSP trees, quadtrees, octrees, kd-trees, bounding volume hierarchies etc. However in some applications a non-orthogonal space subdivision can offer new ways for actual speed up. In the case of convex polygon in E2 a simple Point-in-Polygon test is of the O(N) complexity and the optimal algorithm is of O(log N) computational complexity. In the E3 case, the complexity is O(N) even for the convex polyhedron as no ordering is defined. New Point-in-Convex Polygon and Point-in-Convex Polyhedron algorithms are presented based on space subdivision in the preprocessing stage resulting to O(1) run-time complexity. The presented approach is simple to implement. Due to the principle of duality, dual problems, e.g. line-convex polygon, line clipping, can be solved in a similarly.
Skala, Vaclav
2016-06-08
There are many space subdivision and space partitioning techniques used in many algorithms to speed up computations. They mostly rely on orthogonal space subdivision, resp. using hierarchical data structures, e.g. BSP trees, quadtrees, octrees, kd-trees, bounding volume hierarchies etc. However in some applications a non-orthogonal space subdivision can offer new ways for actual speed up. In the case of convex polygon in E{sup 2} a simple Point-in-Polygon test is of the O(N) complexity and the optimal algorithm is of O(log N) computational complexity. In the E{sup 3} case, the complexity is O(N) even for the convex polyhedron as no ordering is defined. New Point-in-Convex Polygon and Point-in-Convex Polyhedron algorithms are presented based on space subdivision in the preprocessing stage resulting to O(1) run-time complexity. The presented approach is simple to implement. Due to the principle of duality, dual problems, e.g. line-convex polygon, line clipping, can be solved in a similarly.
Laser micromilling of convex microfluidic channels onto glassy carbon for glass molding dies
NASA Astrophysics Data System (ADS)
Tseng, Shih-Feng; Chen, Ming-Fei; Hsiao, Wen-Tse; Huang, Chien-Yao; Yang, Chung-Heng; Chen, Yu-Sheng
2014-06-01
This study reports the fabrication of convex microfluidic channels on glassy carbon using an ultraviolet laser processing system to produce glass molding dies. The laser processing parameters, including various laser fluences and scanning speeds of galvanometers, were adjusted to mill a convex microchannel on a glassy carbon substrate to identify the effects of material removal. The machined glassy carbon substrate was then applied as a glass molding die to fabricate a glass-based microfluidic biochip. The surface morphology, milled width and depth, and surface roughness of the microchannel die after laser micromilling were examined using a three-dimensional confocal laser scanning microscope. This study also investigates the transcription rate of microchannels after the glass molding process. To produce a 180 μm high microchannel on the GC substrate, the optimal number of milled cycles, laser fluence, and scanning speed were 25, 4.9 J/cm2, and 200 mm/s, respectively. The width, height, and surface roughness of milled convex microchannels were 119.6±0.217 μm, 180.26±0.01 μm, and 0.672±0.08 μm, respectively. These measured values were close to the predicted values and suitable for a glass molding die. After the glass molding process, a typical glass-based microchannel chip was formed at a molding temperature of 660 °C and the molding force of 0.45 kN. The transcription rates of the microchannel width and depth were 100% and 99.6%, respectively. Thus, the proposed approach is suitable for performing in chemical, biochemical, or medical reactions.
NASA Astrophysics Data System (ADS)
Dmitriev, V. G.
1982-04-01
It is proved that a hypersurface f imbedded in \\mathbf{R}^{n + 1}, n \\geq 2, which is locally convex at all points except for a closed set E with (n - 1)-dimensional Hausdorff measure \\mathcal{K}_{n - 1}(E) = 0, and strictly convex near E is in fact locally convex everywhere. The author also gives various corollaries. In particular, let M be a complete two-dimensional Riemannian manifold of nonnegative curvature K and E \\subset M a closed subset for which \\mathcal{K}_1(E) = 0. Assume further that there exists a neighborhood U \\supset E such that K(x) > 0 for x \\in U \\setminus E, f \\colon M \\to \\mathbf{R}^3 is such that f\\big\\vert _{U \\setminus E} is an imbedding, and f\\big\\vert _{M \\setminus E} \\in C^{1, \\alpha}, \\alpha > 2/3. Then f(M) is a complete convex surface in \\mathbf{R}^3. This result is an generalization of results in the paper reviewed in MR 51 # 11374.Bibliography: 19 titles.
Oliker, Vladimir
2008-12-01
The problem of design of a two-lens optical system for reshaping the irradiance distribution of a laser beam in a prescribed manner is considered in the geometrical optics approximation. The presented design equations are derived in a rigorous manner and are applicable to free-form two-lens optical systems without any a priori symmetry assumptions on radiance profiles and beam cross sections. The obtained equations are applied to derive an equation defining sensitivity of the output radiation intensity to figure errors. This equation is applied to analyze sensitivity in several cases, including rotationally symmetric reshapers with nonrotationally symmetric figure error. The presented approach shows also that even in the general case two different designs are available for the same data. In one of these designs one lens is always concave or convex and the second is convex or concave, while in the second design the lenses may be neither convex nor concave. Since, in general, the surface lenses are aspherical, the availability of a design with convex/concave lenses is particularly important for fabrication.
Non-convex entropies for conservation laws with involutions.
Dafermos, Constantine M
2013-12-28
The paper discusses systems of conservation laws endowed with involutions and contingent entropies. Under the assumption that the contingent entropy function is convex merely in the direction of a cone in state space, associated with the involution, it is shown that the Cauchy problem is locally well posed in the class of classical solutions, and that classical solutions are unique and stable even within the broader class of weak solutions that satisfy an entropy inequality. This is on a par with the classical theory of solutions to hyperbolic systems of conservation laws endowed with a convex entropy. The equations of elastodynamics provide the prototypical example for the above setting.
Interpolation Error Estimates for Mean Value Coordinates over Convex Polygons
Rand, Alexander; Gillette, Andrew; Bajaj, Chandrajit
2012-01-01
In a similar fashion to estimates shown for Harmonic, Wachspress, and Sibson coordinates in [Gillette et al., AiCM, to appear], we prove interpolation error estimates for the mean value coordinates on convex polygons suitable for standard finite element analysis. Our analysis is based on providing a uniform bound on the gradient of the mean value functions for all convex polygons of diameter one satisfying certain simple geometric restrictions. This work makes rigorous an observed practical advantage of the mean value coordinates: unlike Wachspress coordinates, the gradient of the mean value coordinates does not become large as interior angles of the polygon approach π. PMID:24027379
An Algorithm to Find the Intersection of Two Convex Polygons
1993-09-01
I NSWCDD/TR-93/345/ I AD-A274 722I I I~IIIIIIII IIlllllil llllllllllllili I AN ALGORITHM TO FIND THE INTERSECTION OF TWO CONVEX POLYGONSI I BY ARMIDO...CENTER DAHLGREN DIVISIONmIN A Dahlgren. Virginia 22448-5000 I* • ( 94-01450 I �I 12 0 43 ~~~l NSWCDD/TR-93/345 AN ALGORITHM TO FIND THE...Division (LIO) of the Strike Systems Department. A description of the analysis and software developed to find the intersection of two convex polygons is
Nonparametric estimation of a convex bathtub-shaped hazard function.
Jankowski, Hanna K; Wellner, Jon A
2009-11-01
In this paper, we study the nonparametric maximum likelihood estimator (MLE) of a convex hazard function. We show that the MLE is consistent and converges at a local rate of n(2/5) at points x(0) where the true hazard function is positive and strictly convex. Moreover, we establish the pointwise asymptotic distribution theory of our estimator under these same assumptions. One notable feature of the nonparametric MLE studied here is that no arbitrary choice of tuning parameter (or complicated data-adaptive selection of the tuning parameter) is required.
Nonparametric estimation of a convex bathtub-shaped hazard function
JANKOWSKI, HANNA K.; WELLNER, JON A.
2010-01-01
In this paper, we study the nonparametric maximum likelihood estimator (MLE) of a convex hazard function. We show that the MLE is consistent and converges at a local rate of n2/5 at points x0 where the true hazard function is positive and strictly convex. Moreover, we establish the pointwise asymptotic distribution theory of our estimator under these same assumptions. One notable feature of the nonparametric MLE studied here is that no arbitrary choice of tuning parameter (or complicated data-adaptive selection of the tuning parameter) is required. PMID:20383267
Warren, Richard J; Aston, Sherrell J; Mendelson, Bryan C
2011-12-01
After reading this article, the participant should be able to: 1. Identify and describe the anatomy of and changes to the aging face, including changes in bone mass and structure and changes to the skin, tissue, and muscles. 2. Assess each individual's unique anatomy before embarking on face-lift surgery and incorporate various surgical techniques, including fat grafting and other corrective procedures in addition to shifting existing fat to a higher position on the face, into discussions with patients. 3. Identify risk factors and potential complications in prospective patients. 4. Describe the benefits and risks of various techniques. The ability to surgically rejuvenate the aging face has progressed in parallel with plastic surgeons' understanding of facial anatomy. In turn, a more clear explanation now exists for the visible changes seen in the aging face. This article and its associated video content review the current understanding of facial anatomy as it relates to facial aging. The standard face-lift techniques are explained and their various features, both good and bad, are reviewed. The objective is for surgeons to make a better aesthetic diagnosis before embarking on face-lift surgery, and to have the ability to use the appropriate technique depending on the clinical situation.
Effects of Ultrasonics-Assisted Face Milling on Surface Integrity and Fatigue Life of Ni-Alloy 718
NASA Astrophysics Data System (ADS)
Suárez, Alfredo; Veiga, Fernando; de Lacalle, Luis N. López; Polvorosa, Roberto; Lutze, Steffen; Wretland, Anders
2016-11-01
This work investigates the effects of ultrasonic vibration-assisted milling on important aspects such us material surface integrity, tool wear, cutting forces and fatigue resistance. As an alternative to natural application of ultrasonic milling in brittle materials, in this study, ultrasonics have been applied to a difficult-to-cut material, Alloy 718, very common in high-temperature applications. Results show alterations in the sub-superficial part of the material which could influence fatigue resistance of the material, as it has been observed in a fatigue test campaign of specimens obtained with the application of ultrasonic milling in comparison with another batch obtained applying conventional milling. Tool wear pattern was found to be very similar for both milling technologies, concluding the study with the analysis of cutting forces, exhibiting certain improvement in case of the application of ultrasonic milling with a more stable evolution.
ERIC Educational Resources Information Center
Ellis, Hadyn D.
1975-01-01
The proposition that the mechanisms underlying facial recognition are different from those involved in recognizing other classes of pictorial material was assessed following a general review of the literature concerned with recognizing faces. (Author/RK)
Convexity preserving C2 rational quadratic trigonometric spline
NASA Astrophysics Data System (ADS)
Dube, Mridula; Tiwari, Preeti
2012-09-01
A C2 rational quadratic trigonometric spline interpolation has been studied using two kind of rational quadratic trigonometric splines. It is shown that under some natural conditions the solution of the problem exits and is unique. The necessary and sufficient condition that constrain the interpolation curves to be convex in the interpolating interval or subinterval are derived.
Convexity dural cavernous haemangioma mimicking meningioma: A case report.
Wang, Xiang; Liu, Jian-Ping; You, Chao; Mao, Qing
2016-06-01
Dural cavernous haemangiomas are rare, and they do not display a classical ring of haemosiderin on MRI as parenchymal cavernous haemangiomas. Sometimes, they are misinterpreted as meningiomas with a dural tail sign. In this short report, a 37-year-old woman was diagnosed with a convexity cavernous haemangioma, and the tumour was totally resected.
Monotonicity, concavity, and convexity of fractional derivative of functions.
Zhou, Xian-Feng; Liu, Song; Zhang, Zhixin; Jiang, Wei
2013-01-01
The monotonicity of the solutions of a class of nonlinear fractional differential equations is studied first, and the existing results were extended. Then we discuss monotonicity, concavity, and convexity of fractional derivative of some functions and derive corresponding criteria. Several examples are provided to illustrate the applications of our results.
Method of orthogonal simplexes and its applications to convex programming
NASA Astrophysics Data System (ADS)
Bulatov, V. P.
2008-04-01
Numerical methods for solving a convex programming problem are considered whose guaranteed convergence rate depends only on the space dimension. On average, the ratio of the corresponding geometric progression is better than that in the basis model of ellipsoids or simplexes. Results of numerical experiments are presented.
Prolonged cerebral "luxury perfusion" after removal of a convexity meningioma.
Lunsford, L D; Selker, R G
1979-04-01
Following total removal of a convexity meningioma, serial computerized tomographic scans disclosed massive hemispheric contrast enhancement compatible with "luxury perfusion". Maximum enhancement occurred one month following the operation and resolved two months postoperatively. Luxury perfusion appeared to be associated with slowly resolving cerebral edema.
ConvexLAR: An Extension of Least Angle Regression*
Xiao, Wei; Zhou, Hua
2016-01-01
The least angle regression (LAR) was proposed by Efron, Hastie, Johnstone and Tibshirani (2004) for continuous model selection in linear regression. It is motivated by a geometric argument and tracks a path along which the predictors enter successively and the active predictors always maintain the same absolute correlation (angle) with the residual vector. Although it gains popularity quickly, its extensions seem rare compared to the penalty methods. In this expository article, we show that the powerful geometric idea of LAR can be generalized in a fruitful way. We propose a ConvexLAR algorithm that works for any convex loss function and naturally extends to group selection and data adaptive variable selection. After simple modification it also yields new exact path algorithms for certain penalty methods such as a convex loss function with lasso or group lasso penalty. Variable selection in recurrent event and panel count data analysis, Ada-Boost, and Gaussian graphical model is reconsidered from the ConvexLAR angle. PMID:27114697
Preconditioning 2D Integer Data for Fast Convex Hull Computations.
Cadenas, José Oswaldo; Megson, Graham M; Luengo Hendriks, Cris L
2016-01-01
In order to accelerate computing the convex hull on a set of n points, a heuristic procedure is often applied to reduce the number of points to a set of s points, s ≤ n, which also contains the same hull. We present an algorithm to precondition 2D data with integer coordinates bounded by a box of size p × q before building a 2D convex hull, with three distinct advantages. First, we prove that under the condition min(p, q) ≤ n the algorithm executes in time within O(n); second, no explicit sorting of data is required; and third, the reduced set of s points forms a simple polygonal chain and thus can be directly pipelined into an O(n) time convex hull algorithm. This paper empirically evaluates and quantifies the speed up gained by preconditioning a set of points by a method based on the proposed algorithm before using common convex hull algorithms to build the final hull. A speedup factor of at least four is consistently found from experiments on various datasets when the condition min(p, q) ≤ n holds; the smaller the ratio min(p, q)/n is in the dataset, the greater the speedup factor achieved.
Online support vector machine based on convex hull vertices selection.
Wang, Di; Qiao, Hong; Zhang, Bo; Wang, Min
2013-04-01
The support vector machine (SVM) method, as a promising classification technique, has been widely used in various fields due to its high efficiency. However, SVM cannot effectively solve online classification problems since, when a new sample is misclassified, the classifier has to be retrained with all training samples plus the new sample, which is time consuming. According to the geometric characteristics of SVM, in this paper we propose an online SVM classifier called VS-OSVM, which is based on convex hull vertices selection within each class. The VS-OSVM algorithm has two steps: 1) the samples selection process, in which a small number of skeleton samples constituting an approximate convex hull in each class of the current training samples are selected and 2) the online updating process, in which the classifier is updated with newly arriving samples and the selected skeleton samples. From the theoretical point of view, the first d+1 (d is the dimension of the input samples) selected samples are proved to be vertices of the convex hull. This guarantees that the selected samples in our approach keep the greatest amount of information of the convex hull. From the application point of view, the new algorithm can update the classifier without reducing its classification performance. Experimental results on benchmark data sets have shown the validity and effectiveness of the VS-OSVM algorithm.
The Projection Neural Network for Solving Convex Nonlinear Programming
NASA Astrophysics Data System (ADS)
Yang, Yongqing; Xu, Xianyun
In this paper, a projection neural network for solving convex optimization is investigated. Using Lyapunov stability theory and LaSalle invariance principle, the proposed network is showed to be globally stable and converge to exact optimal solution. Two examples show the effectiveness of the proposed neural network model.
Compact, Convex, and Symmetric Sets Are Discs. Classroom Notes
ERIC Educational Resources Information Center
Lynch, Mark
2004-01-01
Define the centre of a parallelogram to be the intersection of its diagonals. It was shown in an earlier paper that the intersection of arbitrarily many parallelograms with the same centre is the unit disc about that centre in a metric defined using ideas from Linear Algebra. In this note, it is shown that this characterizes compact, convex sets,…
The Existence Problem for Steiner Networks in Strictly Convex Domains
NASA Astrophysics Data System (ADS)
Freire, Alexandre
2011-05-01
We consider the existence problem for `Steiner networks' (trivalent graphs with 2 π/3 angles at each junction) in strictly convex domains, with `Neumann' boundary conditions. For each of the three possible combinatorial possibilities, sufficient conditions on the domain are derived for existence. In addition, in each case explicit examples of nonexistence are given.
NASA Astrophysics Data System (ADS)
Majeski, Dick
2016-10-01
High edge electron temperatures (200 eV or greater) have been measured at the wall-limited plasma boundary in the Lithium Tokamak eXperiment (LTX). High edge temperatures, with flat electron temperature profiles, are a long-predicted consequence of low recycling boundary conditions. The temperature profile in LTX, measured by Thomson scattering, varies by as little as 10% from the plasma axis to the boundary, determined by the lithium-coated high field-side wall. The hydrogen plasma density in the outer scrape-off layer is very low, 2-3 x 1017 m-3 , consistent with a low recycling metallic lithium boundary. The plasma surface interaction in LTX is characterized by a low flux of high energy protons to the lithium PFC, with an estimated Debye sheath potential approaching 1 kV. Plasma-material interactions in LTX are consequently in a novel regime, where the impacting proton energy exceeds the peak in the sputtering yield for the lithium wall. In this regime, further increases in the edge temperature will decrease, rather than increase, the sputtering yield. Despite the high edge temperature, the core impurity content is low. Zeff is 1.2 - 1.5, with a very modest contribution (<0.1) from lithium. So far experiments are transient. Gas puffing is used to increase the plasma density. After gas injection stops, the discharge density is allowed to drop, and the edge is pumped by the low recycling lithium wall. An upgrade to LTX which includes a 35A, 20 kV neutral beam injector to provide core fueling to maintain constant density, as well as auxiliary heating, is underway. Two beam systems have been loaned to LTX by Tri Alpha Energy. Additional results from LTX, as well as progress on the upgrade - LTX- β - will be discussed. Work supported by US DOE contracts DE-AC02-09CH11466 and DE-AC05-00OR22725.
Emergency decompressive craniectomy after removal of convexity meningiomas
Missori, Paolo; Domenicucci, Maurizio; Paolini, Sergio; Mancarella, Cristina; Tola, Serena; D’Elia, Alessandro; Marotta, Nicola; Seferi, Arsen; Esposito, Vincenzo
2016-01-01
Background: Convexity meningiomas are benign brain tumors that are amenable to complete surgical resection and are associated with a low complication rate. The aim of this study was to identify factors that result in acute postoperative neurological worsening after the removal of convexity meningiomas. Methods: Clinical evaluation and neuroradiological analysis of patients who underwent removal of a supratentorial convexity meningioma were reviewed. Patients were selected when their postoperative course was complicated by acute neurological deterioration requiring decompressive craniectomy. Results: Six patients (mean age: 43.3 years) underwent surgical removal of a supratentorial convexity meningioma. Brain shift (mean: 9.9 mm) was evident on preoperative imaging due to lesions of varying size and perilesional edema. At various times postoperatively, patient consciousness worsened (up to decerebrate posture) with contralateral paresis and pupillary anisocoria. Computed tomography revealed no postoperative hematoma, however, did indicate increased brain edema and ventricular shift (mean: 12 mm). Emergency decompressive craniectomy and brief ventilator assistance were performed in all patients. Ischemia of the ipsilateral posterior cerebral artery occurred in 3 patients and hydrocephalus occurred in 2 patients. Outcome was good in 2, fair in 2, 1 patient had severe disability, and 1 patient died after 8 months. Conclusions: Brain shift on preoperative imaging is a substantial risk factor for postoperative neurological worsening in young adult patients after the removal of convexity meningiomas. Emergency decompressive craniectomy must be considered because it is effective in most cases. Other than consciousness impairment, there is no reliable clinical landmark to guide the decision to perform decompressive craniectomy; however, brain ischemia may have already occurred. PMID:27857859
Iida, Ryo; Kawamura, Hitoshi; Niikura, Kenichi; Kimura, Takashi; Sekiguchi, Shota; Joti, Yasumasa; Bessho, Yoshitaka; Mitomo, Hideyuki; Nishino, Yoshinori; Ijiro, Kuniharu
2015-04-14
This study aims at the synthesis of Janus gold nanoparticles (Janus GNPs) with hydrophilic/hydrophobic faces by a simple ligand exchange reaction in an homogeneous system and at the elucidation of the self-assembled structures of the Janus GNPs in water. As hydrophilic surface ligands, we synthesized hexaethylene glycol (E6)-terminated thiolate ligands with C3, C7, or C11 alkyl chains, referred to as E6C3, E6C7, and E6C11, respectively. As a hydrophobic ligand, a butyl-headed thiolate ligand C4-E6C11, in which a C4 alkyl was introduced on the E6C11 terminus, was synthesized. The degree of segregation between the two ligands on the GNPs (5 nm in diameter) was examined by matrix-assisted laser desorption/ionization time-of fright mass spectrometry (MALDI-TOF MS) analysis. We found that the choice of immobilization methods, one-step or two-step addition of the two ligands to the GNP solution, crucially affects the degree of segregation. The two-step addition of a hydrophilic ligand (E6C3) followed by a hydrophobic ligand (C4-E6C11) produced a large degree of segregation on the GNPs, providing Janus-like GNPs. When dispersed in water, these Janus-like GNPs formed assemblies of ∼160 nm in diameter, whereas Domain GNPs, in which the two ligands formed partial domains on the surface, were precipitated even when the molar ratio of the hydrophilic ligand and the hydrophobic ligand on the surface of the NPs was almost 1:1. The assembled structure of the Janus-like GNPs in water was directly observed by pulsed coherent X-ray solution scattering using an X-ray free-electron laser, revealing irregular spherical structures with uneven surfaces.
Ihlow, Dankmar; Kubein-Meesenburg, Dietmar; Hunze, Justus; Dathe, Henning; Planert, Jens; Schwestka-Polly, Rainer; Nägerl, Hans
2002-07-01
Radii for concave-convex vertical stripping instruments can be derived from measurements of the natural curvature morphology in the horizontal contact area of the mandibular dentition. The concave-convex adjustment of contacts in the anterior dental arch with a newly developed set of concave-convex stripping instruments should enable orthodontic crowding problems to be alleviated biomechanically.
Hermite-Hadamard type inequality for φ{sub h}-convex stochastic processes
Sarıkaya, Mehmet Zeki; Kiriş, Mehmet Eyüp; Çelik, Nuri
2016-04-18
The main aim of the present paper is to introduce φ{sub h}-convex stochastic processes and we investigate main properties of these mappings. Moreover, we prove the Hadamard-type inequalities for φ{sub h}-convex stochastic processes. We also give some new general inequalities for φ{sub h}-convex stochastic processes.
NASA Astrophysics Data System (ADS)
Pal, Prem; Sato, Kazuo; Gosalvez, Miguel A.; Shikida, Mitsuhiro
2007-11-01
In this paper, we have studied the undercutting at rounded concave and sharp convex corners in (1 0 0)-silicon wafers using a complementary metal-oxide semiconductor (CMOS) compatible tetramethyl ammonium hydroxide (TMAH) solution with and without surfactant. In order to minimize the undercutting at both corner types while keeping reasonable etch rates, smooth etched-surfaces and CMOS compatibility, the non-ionic surfactant NC-200 that contains 100% polyoxyethylene-alkyl-phenyl-ether is considered. The effect of concentration and etching temperature is studied using 10, 20 and 25 wt% TMAH solutions at 60, 70 and 80 °C. When NC-200 at 0.1% of the total volume of the etchant is used, the undercutting ratio at both rounded concave and sharp convex corners is beneficially reduced as the etchant concentration is increased while, simultaneously, the etch rate increases. This is the opposite trend to the etch characteristics of pure TMAH. In addition, the rough etched surface morphology at low concentration is also improved by using NC-200.
Convex hull matching and hierarchical decomposition for multimodality medical image registration.
Yang, Jian; Fan, Jingfan; Fu, Tianyu; Ai, Danni; Zhu, Jianjun; Li, Qin; Wang, Yongtian
2015-01-01
This study proposes a novel hierarchical pyramid strategy for 3D registration of multimodality medical images. The surfaces of the source and target volume data are first extracted, and the surface point clouds are then aligned roughly using convex hull matching. The convex hull matching registration procedure could align images with large-scale transformations. The original images are divided into blocks and the corresponding blocks in the two images are registered by affine and non-rigid registration procedures. The sub-blocks are iteratively smoothed by the Gaussian kernel with different sizes during the registration procedure. The registration result of the large kernel is taken as the input of the small kernel registration. The fine registration of the two volume data sets is achieved by iteratively increasing the number of blocks, in which increase in similarity measure is taken as a criterion for acceptation of each iteration level. Results demonstrate the effectiveness and robustness of the proposed method in registering the multiple modalities of medical images.
Choi, Samuel; Watanabe, Tomoya; Suzuki, Takamasa; Nin, Fumiaki; Hibino, Hiroshi; Sasaki, Osami
2015-08-10
Microvibrations that occur in bio-tissues are considered to play pivotal roles in organ function; however techniques for their measurement have remained underdeveloped. To address this issue, in the present study we have developed a novel optical coherence tomography (OCT) method that utilizes multifrequency swept interferometry. The OCT volume data can be acquired by sweeping the multifrequency modes produced by combining a tunable Fabry-Perot filter and an 840 nm super-luminescent diode with a bandwidth of 160 nm. The system employing the wide-field heterodyne method does not require mechanical scanning probes, which are usually incorporated in conventional Doppler OCTs and heterodyne-type interferometers. These arrangements allow obtaining not only 3D tomographic images but also various vibration parameters such as spatial amplitude, phase, and frequency, with high temporal and transverse resolutions over a wide field. Indeed, our OCT achieved the axial resolution of ~2.5 μm when scanning the surface of a glass plate. Moreover, when examining a mechanically resonant multilayered bio-tissue in full-field configuration, we captured 22 nm vibrations of its internal surfaces at 1 kHz by reconstructing temporal phase variations. This so-called "multifrequency swept common-path en-face OCT" can be applied for measuring microdynamics of a variety of biological samples, thus contributing to the progress in life sciences research.
MedlinePlus Videos and Cool Tools
... PTSD (posttraumatic stress disorder). Watch the intro This is AboutFace In these videos, Veterans, family members, and clinicians share their experiences with PTSD and PTSD treatment. Choose a topic below to hear what they have to say. What is PTSD? → How ...
ERIC Educational Resources Information Center
Hadash, Dre Ann
1984-01-01
Eighth graders made prints of their own faces, using photographic papers and chemicals. Describes the supplies needed and the printing process involved. Because junior high school students are so concerned with self, this was a very meaningful activity for them. (CS)
ERIC Educational Resources Information Center
Greene, Yvonne
2000-01-01
Presents a torn-paper and gadget-print activity for younger students, specifically pre-kindergarten to first grade, that can be done any time over the school year or at Halloween. Discusses how the students create their funny faces and lists the materials needed. (CMK)
ERIC Educational Resources Information Center
Greene, Yvonne
2000-01-01
Presents a torn-paper and gadget-print activity for younger students, specifically pre-kindergarten to first grade, that can be done any time over the school year or at Halloween. Discusses how the students create their funny faces and lists the materials needed. (CMK)
On Rank One Convex Functions that are Homogeneous of Degree One
NASA Astrophysics Data System (ADS)
Kirchheim, Bernd; Kristensen, Jan
2016-07-01
We show that positively 1-homogeneous rank one convex functions are convex at 0 and at matrices of rank one. The result is a special case of an abstract convexity result that we establish for positively 1-homogeneous directionally convex functions defined on an open convex cone in a finite dimensional vector space. From these results we derive a number of consequences including various generalizations of the Ornstein L1 non inequalities. Most of the results were announced in ( C R Acad Sci Paris Ser I 349:407-409, 2011).
Delivering Sound Energy along an Arbitrary Convex Trajectory
Zhao, Sipei; Hu, Yuxiang; Lu, Jing; Qiu, Xiaojun; Cheng, Jianchun; Burnett, Ian
2014-01-01
Accelerating beams have attracted considerable research interest due to their peculiar properties and various applications. Although there have been numerous research on the generation and application of accelerating light beams, few results have been published on the generation of accelerating acoustic beams. Here we report on the experimental observation of accelerating acoustic beams along arbitrary convex trajectories. The desired trajectory is projected to the spatial phase profile on the boundary which is discretized and sampled spatially. The sound field distribution is formulated with the Green function and the integral equation method. Both the paraxial and the non-paraxial regimes are examined and observed in the experiments. The effect of obstacle scattering in the sound field is also investigated and the results demonstrate that the approach is robust against obstacle scattering. The realization of accelerating acoustic beams will have an impact on various applications where acoustic information and energy are required to be delivered along an arbitrary convex trajectory. PMID:25316353
Shock wave reflection over convex and concave wedge
NASA Astrophysics Data System (ADS)
Kitade, M.; Kosugi, T.; Yada, K.; Takayama, Kazuyoshi
2001-04-01
It is well known that the transition criterion nearly agrees with the detachment criterion in the case of strong shocks, two-dimensional, and pseudosteady flow. However, when the shock wave diffracts over a wedge whose angle is below the detachment criterion, that is, in the domain of Mach reflection, precursory regular reflection (PRR) appears near the leading edge and as the shock wave propagates, the PRR is swept away by the overtaking corner signal (cs) that forces the transition to Mach reflection. It is clear that viscosity and thermal conductivity influences transition and the triple point trajectory. On the other hand, the reflection over concave and convex wedges is truly unsteady flow, and the effect of viscosity and thermal conductivity on transition and triple point trajectory has not been reported. This paper describes that influence of viscosity over convex and concave corners investigated both experiments and numerical simulations.
Delivering sound energy along an arbitrary convex trajectory.
Zhao, Sipei; Hu, Yuxiang; Lu, Jing; Qiu, Xiaojun; Cheng, Jianchun; Burnett, Ian
2014-10-15
Accelerating beams have attracted considerable research interest due to their peculiar properties and various applications. Although there have been numerous research on the generation and application of accelerating light beams, few results have been published on the generation of accelerating acoustic beams. Here we report on the experimental observation of accelerating acoustic beams along arbitrary convex trajectories. The desired trajectory is projected to the spatial phase profile on the boundary which is discretized and sampled spatially. The sound field distribution is formulated with the Green function and the integral equation method. Both the paraxial and the non-paraxial regimes are examined and observed in the experiments. The effect of obstacle scattering in the sound field is also investigated and the results demonstrate that the approach is robust against obstacle scattering. The realization of accelerating acoustic beams will have an impact on various applications where acoustic information and energy are required to be delivered along an arbitrary convex trajectory.
Reducing the duality gap in partially convex programming
Correa, R.
1994-12-31
We consider the non-linear minimization program {alpha} = min{sub z{element_of}D, x{element_of}C}{l_brace}f{sub 0}(z, x) : f{sub i}(z, x) {<=} 0, i {element_of} {l_brace}1, ..., m{r_brace}{r_brace} where f{sub i}(z, {center_dot}) are convex functions, C is convex and D is compact. Following Ben-Tal, Eiger and Gershowitz we prove the existence of a partial dual program whose optimum is arbitrarily close to {alpha}. The idea, corresponds to the branching principle in Branch and Bound methods. We describe such a kind of algorithm for obtaining the desired partial dual.
Non-convex Statistical Optimization for Sparse Tensor Graphical Model
Sun, Wei; Wang, Zhaoran; Liu, Han; Cheng, Guang
2016-01-01
We consider the estimation of sparse graphical models that characterize the dependency structure of high-dimensional tensor-valued data. To facilitate the estimation of the precision matrix corresponding to each way of the tensor, we assume the data follow a tensor normal distribution whose covariance has a Kronecker product structure. The penalized maximum likelihood estimation of this model involves minimizing a non-convex objective function. In spite of the non-convexity of this estimation problem, we prove that an alternating minimization algorithm, which iteratively estimates each sparse precision matrix while fixing the others, attains an estimator with the optimal statistical rate of convergence as well as consistent graph recovery. Notably, such an estimator achieves estimation consistency with only one tensor sample, which is unobserved in previous work. Our theoretical results are backed by thorough numerical studies.
Convex hull of a Brownian motion in confinement.
Chupeau, Marie; Bénichou, Olivier; Majumdar, Satya N
2015-05-01
We study the effect of confinement on the mean perimeter of the convex hull of a planar Brownian motion, defined as the minimum convex polygon enclosing the trajectory. We use a minimal model where an infinite reflecting wall confines the walk to one side. We show that the mean perimeter displays a surprising minimum with respect to the starting distance to the wall and exhibits a nonanalyticity for small distances. In addition, the mean span of the trajectory in a fixed direction θ∈]0,π/2[, which can be shown to yield the mean perimeter by integration over θ, presents these same two characteristics. This is in striking contrast to the one-dimensional case, where the mean span is an increasing analytical function. The nonmonotonicity in the two-dimensional case originates from the competition between two antagonistic effects due to the presence of the wall: reduction of the space accessible to the Brownian motion and effective repulsion.
Convex hull of a Brownian motion in confinement
NASA Astrophysics Data System (ADS)
Chupeau, Marie; Bénichou, Olivier; Majumdar, Satya N.
2015-05-01
We study the effect of confinement on the mean perimeter of the convex hull of a planar Brownian motion, defined as the minimum convex polygon enclosing the trajectory. We use a minimal model where an infinite reflecting wall confines the walk to one side. We show that the mean perimeter displays a surprising minimum with respect to the starting distance to the wall and exhibits a nonanalyticity for small distances. In addition, the mean span of the trajectory in a fixed direction θ ∈]0 ,π /2 [ , which can be shown to yield the mean perimeter by integration over θ , presents these same two characteristics. This is in striking contrast to the one-dimensional case, where the mean span is an increasing analytical function. The nonmonotonicity in the two-dimensional case originates from the competition between two antagonistic effects due to the presence of the wall: reduction of the space accessible to the Brownian motion and effective repulsion.
Convexity and the Euclidean Metric of Space-Time
NASA Astrophysics Data System (ADS)
Kalogeropoulos, Nikolaos
2017-02-01
We address the question about the reasons why the "Wick-rotated", positive-definite, space-time metric obeys the Pythagorean theorem. An answer is proposed based on the convexity and smoothness properties of the functional spaces purporting to provide the kinematic framework of approaches to quantum gravity. We employ moduli of convexity and smoothness which are eventually extremized by Hilbert spaces. We point out the potential physical significance that functional analytical dualities play in this framework. Following the spirit of the variational principles employed in classical and quantum Physics, such Hilbert spaces dominate in a generalized functional integral approach. The metric of space-time is induced by the inner product of such Hilbert spaces.
The effects of a convex rear-view mirror on ocular accommodative responses.
Nagata, Tatsuo; Iwasaki, Tsuneto; Kondo, Hiroyuki; Tawara, Akihiko
2013-11-01
Convex mirrors are universally used as rear-view mirrors in automobiles. However, the ocular accommodative responses during the use of these mirrors have not yet been examined. This study investigated the effects of a convex mirror on the ocular accommodative systems. Seven young adults with normal visual functions were ordered to binocularly watch an object in a convex or plane mirror. The accommodative responses were measured with an infrared optometer. The average of the accommodation of all subjects while viewing the object in the convex mirror were significantly nearer than in the plane mirror, although all subjects perceived the position of the object in the convex mirror as being farther away. Moreover, the fluctuations of accommodation were significantly larger for the convex mirror. The convex mirror caused the 'false recognition of distance', which induced the large accommodative fluctuations and blurred vision. Manufactures should consider the ocular accommodative responses as a new indicator for increasing automotive safety.
A convex penalty for switching control of partial differential equations
Clason, Christian; Rund, Armin; Kunisch, Karl; ...
2016-01-19
A convex penalty for promoting switching controls for partial differential equations is introduced; such controls consist of an arbitrary number of components of which at most one should be simultaneously active. Using a Moreau–Yosida approximation, a family of approximating problems is obtained that is amenable to solution by a semismooth Newton method. In conclusion, the efficiency of this approach and the structure of the obtained controls are demonstrated by numerical examples.
Convex Clustering: An Attractive Alternative to Hierarchical Clustering
Chen, Gary K.; Chi, Eric C.; Ranola, John Michael O.; Lange, Kenneth
2015-01-01
The primary goal in cluster analysis is to discover natural groupings of objects. The field of cluster analysis is crowded with diverse methods that make special assumptions about data and address different scientific aims. Despite its shortcomings in accuracy, hierarchical clustering is the dominant clustering method in bioinformatics. Biologists find the trees constructed by hierarchical clustering visually appealing and in tune with their evolutionary perspective. Hierarchical clustering operates on multiple scales simultaneously. This is essential, for instance, in transcriptome data, where one may be interested in making qualitative inferences about how lower-order relationships like gene modules lead to higher-order relationships like pathways or biological processes. The recently developed method of convex clustering preserves the visual appeal of hierarchical clustering while ameliorating its propensity to make false inferences in the presence of outliers and noise. The solution paths generated by convex clustering reveal relationships between clusters that are hidden by static methods such as k-means clustering. The current paper derives and tests a novel proximal distance algorithm for minimizing the objective function of convex clustering. The algorithm separates parameters, accommodates missing data, and supports prior information on relationships. Our program CONVEXCLUSTER incorporating the algorithm is implemented on ATI and nVidia graphics processing units (GPUs) for maximal speed. Several biological examples illustrate the strengths of convex clustering and the ability of the proximal distance algorithm to handle high-dimensional problems. CONVEXCLUSTER can be freely downloaded from the UCLA Human Genetics web site at http://www.genetics.ucla.edu/software/ PMID:25965340
Convex Models of Malfunction Diagnosis in High Performance Aircraft
1989-05-01
initiated as in the open-loop mode: with one fixed non -zero control function. The time-dependent controller is actuated as soon as any of the state ... controllers ) the diagnosis algorithm is designed by solving 8 CONCLUI)ING REMARKS AND FUTURE RESEARCH 70 a sequence of linear optimization problems . For...Automatic Controller ............... 8 3.3 Numerical Demonstration of the Normal Dynamics ............ 8 4 Representing Control - Actuator Failure 16 5 Convex
Convexity properties of images under nonlinear integral operators
Kokurin, M Yu
2014-12-31
Conditions are obtained for the image of a given set under a general completely continuous nonlinear integral operator to have convex closure. These results are used to establish the uniqueness of quasi-solutions of nonlinear integral equations of the first kind and to prove the solvability of equations of the first kind on a dense subset of the right-hand sides. Bibliography: 11 titles.
A Partial Differential Equation for the Rank One Convex Envelope
NASA Astrophysics Data System (ADS)
Oberman, Adam M.; Ruan, Yuanlong
2017-02-01
A partial differential equation (PDE) for the rank one convex envelope is introduced. The existence and uniqueness of viscosity solutions to the PDE is established. Elliptic finite difference schemes are constructed and convergence of finite difference solutions to the viscosity solution of the PDE is proven. Computational results are presented and laminates are computed from the envelopes. Results include the Kohn-Strang example, the classical four gradient example, and an example with eight gradients which produces nontrivial laminates.
Unraveling intermittent features in single-particle trajectories by a local convex hull method
NASA Astrophysics Data System (ADS)
Lanoiselée, Yann; Grebenkov, Denis S.
2017-08-01
We propose a model-free method to detect change points between distinct phases in a single random trajectory of an intermittent stochastic process. The local convex hull (LCH) is constructed for each trajectory point, while its geometric properties (e.g., the diameter or the volume) are used as discriminators between phases. The efficiency of the LCH method is validated for six models of intermittent motion, including Brownian motion with different diffusivities or drifts, fractional Brownian motion with different Hurst exponents, and surface-mediated diffusion. We discuss potential applications of the method for detection of active and passive phases in the intracellular transport, temporal trapping or binding of diffusing molecules, alternating bulk and surface diffusion, run and tumble (or search) phases in the motion of bacteria and foraging animals, and instantaneous firing rates in neurons.
Convex bar formation in an alluvial-bedrock stream channel
NASA Astrophysics Data System (ADS)
Keen-Zebert, A.; Curran, J. C.
2006-12-01
Bar formation in the Guadalupe River occurs at a variety of spatial and temporal scales. The Guadalupe River is a mixed alluvial-bedrock river in central Texas which is characterized by the presence of an alluvial macro channel and a bedrock active channel that is shallowly incised. The flow regime in the Guadalupe and other rivers in the Balcones Escarpment region are punctuated by frequent high-magnitude flooding. The combination of low infiltration capacity upland soils, steep highly dissected watersheds, and dryland vegetation, creates conditions for rapid runoff and large volume sediment loads during floods. The processes controlling bar formation in the Guadalupe River are unlike those in alluvial rivers and is dominated by the process of convex bar formation. Convex bar formation has been documented in a large width to depth ratio river in eastern Wyoming where large volumes of sediment were deposited during floods and then re-worked by the active channel scale longitudinal processes at lower flows. This poster illustrates convex bar formation in the Guadalupe River at the macro and active channel scales as part of the hierarchical classification of channel boundary type in mixed rivers.
Generalizations of entanglement based on coherent states and convex sets
NASA Astrophysics Data System (ADS)
Barnum, Howard; Knill, Emanuel; Ortiz, Gerardo; Viola, Lorenza
2003-09-01
Unentangled pure states on a bipartite system are exactly the coherent states with respect to the group of local transformations. What aspects of the study of entanglement are applicable to generalized coherent states? Conversely, what can be learned about entanglement from the well-studied theory of coherent states? With these questions in mind, we characterize unentangled pure states as extremal states when considered as linear functionals on the local Lie algebra. As a result, a relativized notion of purity emerges, showing that there is a close relationship between purity, coherence, and (non)entanglement. To a large extent, these concepts can be defined and studied in the even more general setting of convex cones of states. Based on the idea that entanglement is relative, we suggest considering these notions in the context of partially ordered families of Lie algebras or convex cones, such as those that arise naturally for multipartite systems. The study of entanglement includes notions of local operations and, for information-theoretic purposes, entanglement measures and ways of scaling systems to enable asymptotic developments. We propose ways in which these may be generalized to the Lie-algebraic setting and, to a lesser extent, to the convex-cones setting. One of our motivations for this program is to understand the role of entanglementlike concepts in condensed matter. We discuss how our work provides tools for analyzing the correlations involved in quantum phase transitions and other aspects of condensed-matter systems.
Constrained spacecraft reorientation using mixed integer convex programming
NASA Astrophysics Data System (ADS)
Tam, Margaret; Glenn Lightsey, E.
2016-10-01
A constrained attitude guidance (CAG) system is developed using convex optimization to autonomously achieve spacecraft pointing objectives while meeting the constraints imposed by on-board hardware. These constraints include bounds on the control input and slew rate, as well as pointing constraints imposed by the sensors. The pointing constraints consist of inclusion and exclusion cones that dictate permissible orientations of the spacecraft in order to keep objects in or out of the field of view of the sensors. The optimization scheme drives a body vector towards a target inertial vector along a trajectory that consists solely of permissible orientations in order to achieve the desired attitude for a given mission mode. The non-convex rotational kinematics are handled by discretization, which also ensures that the quaternion stays unity norm. In order to guarantee an admissible path, the pointing constraints are relaxed. Depending on how strict the pointing constraints are, the degree of relaxation is tuneable. The use of binary variables permits the inclusion of logical expressions in the pointing constraints in the case that a set of sensors has redundancies. The resulting mixed integer convex programming (MICP) formulation generates a steering law that can be easily integrated into an attitude determination and control (ADC) system. A sample simulation of the system is performed for the Bevo-2 satellite, including disturbance torques and actuator dynamics which are not modeled by the controller. Simulation results demonstrate the robustness of the system to disturbances while meeting the mission requirements with desirable performance characteristics.
The deconvolution operation in convex analysis: An introduction
Hiriart-Urruty, J.B.
1995-03-01
Performing the infimal convolution of two functions is a frequent and useful operation in Convex Analysis: it is, to great extent, the dual operation of the addition; it serves (like other {open_quotes}convolutions{close_quotes} in Analysis) to regularize functions; it has nice geometrical and economic interpretations. The deconvolution of a (convex) function by another one is a new operation, firstly defined in clear-cut manner, which is to the infimal convolution what the subtraction is to the addition for real numbers; it appears in conjugating the difference of convex functions; it serves in solving explicitly convolution equations; it has an interpretation in terms of subtraction of epigraphs. Since its introduction, the deconvolution operation has been studied more thoroughly by the author and his former students or associates. What we intend to present here is a short (and, hopefully, pedagogical) introduction to the deconvolution operation, in a simplified setting. This can be viewed as a complement to chapter IV and X in the book.
Selective voting in convex-hull ensembles improves classification accuracy
Kodell, Ralph L.; Zhang, Chuanlei; Siegel, Eric R.; Nagarajan, Radhakrishnan
2011-01-01
Objective Classification algorithms can be used to predict risks and responses of patients based on genomic and other high-dimensional data. While there is optimism for using these algorithms to improve the treatment of diseases, they have yet to demonstrate sufficient predictive ability for routine clinical practice. They generally classify all patients according to the same criteria, under an implicit assumption of population homogeneity. The objective here is to allow for population heterogeneity, possibly unrecognized, in order to increase classification accuracy and further the goal of tailoring therapies on an individualized basis. Methods and materials Anew selective-voting algorithm is developed in the context of a classifier ensemble of two-dimensional convex hulls of positive and negative training samples. Individual classifiers in the ensemble are allowed to vote on test samples only if those samples are located within or behind pruned convex hulls of training samples that define the classifiers. Results Validation of the new algorithm’s increased accuracy is carried out using two publicly available datasets having cancer as the outcome variable and expression levels of thousands of genes as predictors. Selective voting leads to statistically significant increases in accuracy from 86.0% to 89.8% (p < 0.001) and 63.2% to 67.8% (p < 0.003) compared to the original algorithm. Conclusion Selective voting by members of convex-hull classifier ensembles significantly increases classification accuracy compared to one-size-fits-all approaches. PMID:22064044
Stochastic Homogenization of Nonconvex Unbounded Integral Functionals with Convex Growth
NASA Astrophysics Data System (ADS)
Duerinckx, Mitia; Gloria, Antoine
2016-09-01
We consider the well-trodden ground of the problem of the homogenization of random integral functionals. When the integrand has standard growth conditions, the qualitative theory is well-understood. When it comes to unbounded functionals, that is, when the domain of the integrand is not the whole space and may depend on the space-variable, there is no satisfactory theory. In this contribution we develop a complete qualitative stochastic homogenization theory for nonconvex unbounded functionals with convex growth. We first prove that if the integrand is convex and has p-growth from below (with p > d, the dimension), then it admits homogenization regardless of growth conditions from above. This result, that crucially relies on the existence and sublinearity at infinity of correctors, is also new in the periodic case. In the case of nonconvex integrands, we prove that a similar homogenization result holds provided that the nonconvex integrand admits a two-sided estimate by a convex integrand (the domain of which may depend on the space variable) that itself admits homogenization. This result is of interest to the rigorous derivation of rubber elasticity from polymer physics, which involves the stochastic homogenization of such unbounded functionals.
Multi-class DTI Segmentation: A Convex Approach.
Xie, Yuchen; Chen, Ting; Ho, Jeffrey; Vemuri, Baba C
2012-10-01
In this paper, we propose a novel variational framework for multi-class DTI segmentation based on global convex optimization. The existing variational approaches to the DTI segmentation problem have mainly used gradient-descent type optimization techniques which are slow in convergence and sensitive to the initialization. This paper on the other hand provides a new perspective on the often difficult optimization problem in DTI segmentation by providing a reasonably tight convex approximation (relaxation) of the original problem, and the relaxed convex problem can then be efficiently solved using various methods such as primal-dual type algorithms. To the best of our knowledge, such a DTI segmentation technique has never been reported in literature. We also show that a variety of tensor metrics (similarity measures) can be easily incorporated in the proposed framework. Experimental results on both synthetic and real diffusion tensor images clearly demonstrate the advantages of our method in terms of segmentation accuracy and robustness. In particular, when compared with existing state-of-the-art methods, our results demonstrate convincingly the importance as well as the benefit of using more refined and elaborated optimization method in diffusion tensor MR image segmentation.
Lateral ventricle segmentation of 3D pre-term neonates US using convex optimization.
Qiu, Wu; Yuan, Jing; Kishimoto, Jessica; Ukwatta, Eranga; Fenster, Aaron
2013-01-01
Intraventricular hemorrhage (IVH) is a common disease among preterm infants with an occurrence of 12-20% in those born at less than 35 weeks gestational age. Neonates at risk of IVH are monitored by conventional 2D ultrasound (US) for hemorrhage and potential ventricular dilation. Compared to 2D US relying on linear measurements from a single slice and visually estimates to determine ventricular dilation, 3D US can provide volumetric ventricle measurements, more sensitive to longitudinal changes in ventricular volume. In this work, we propose a global optimization-based surface evolution approach to the segmentation of the lateral ventricles in preterm neonates with IVH. The proposed segmentation approach makes use of convex optimization technique in combination with a subject-specific shape model. We show that the introduced challenging combinatorial optimization problem can be solved globally by means of convex relaxation. In this regard, we propose a coupled continuous max-flow model, which derives a new and efficient dual based algorithm, that can be implemented on GPUs to achieve a high-performance in numerics. Experiments demonstrate the advantages of our approach in both accuracy and efficiency. To the best of our knowledge, this paper reports the first study on semi-automatic segmentation of lateral ventricles in neonates with IVH from 3D US images.
Designing null phase screens to test a fast plano-convex aspheric lens
NASA Astrophysics Data System (ADS)
DelOlmo-Márquez, Jesús; Castán-Ricaño, Diana; Avendaño-Alejo, Maximino; Díaz-Uribe, Rufino
2015-08-01
We have obtained a formula to represent the wavefront produced by a plano-convex aspheric lens with symmetry of revolution considering a plane wavefront propagating parallel to the optical axis and impinging on the refracting surface, it is called a zero-distance phase front, being it the first wavefront to be out of the optical system. Using a concept of differential geometry called parallel curves it is possible to obtain an analytic formula to represent the wavefront propagated at arbitrary distances through the optical axis. In order to evaluate qualitatively a plano-convex aspheric lens, we have modified slightly an interferometer Tywman-Green as follow: In the reference beam we use a plane mirror and the beam of test we have used a spatial light modulator (SLM) to compensate the phase produced by the lens under test. It will be called a null phase interferometer. The main idea is to recombine both wavefronts in order to get a null interferogram, otherwise we will associate the patterns of the interferogram to deformations of the lens under test. The null phase screens are formed with concentric circumferences assuming different gray levels printed on SLM.
Smith, J.H.
1980-01-15
This handbook provides estimates of average available solar insolation to fixed, flat-plate, south-facing collector surfaces at various array tilt angles at numerous sites in the US. This first volume contains average daily, total insolation estimates, by month, and annual totals for 235 locations. A model that estimates the direct, diffuse, and reflected components of total insolation on an hourly, daily, and monthly basis is presented. A shadow loss model and a reflector augmentation model providing estimates of the losses and gains associated with various fixed array geometries are also described. These models can be used with the insolation model provided or with other recorded data. A FORTRAN computer program with user's guide is presented. The program can be used to generate additional handbook values or to examine the effects of array shadowing and fixed reflector augmentation effects on a daily, monthly, or annual basis. Array shadowing depends on location, array size, array tilt, array separation, and time. The program can be used to examine trade-offs between array spacing and insolation losses due to shadowing. The reflector augmentation program can be used to examine trade-offs among array size and tilt, separation, and reflector tilt to determine the combination of design values that optimize the economic objectives or technical criteria of the system.
Subaperture stitching test of convex aspheres by using the reconfigurable optical null
NASA Astrophysics Data System (ADS)
Chen, Shanyong; Xue, Shuai; Dai, Yifan; Li, Shengyi
2017-06-01
Subaperture stitching test in combination of the reconfigurable optical null we proposed recently provides flexible solutions to various surfaces including convex aspheres and even aspheres of large aperture. However it is challenging for the stitching optimization to get the real surface error because the surface error is strongly coupled with misalignment-induced aberrations in near-null subaperture measurements. Aiming at this challenge, we first figure out the property of aberrations induced by misalignment of optical null or test surface. It shows that identical misalignment of the optical null introduces nearly identical aberrations to subapertures with different off-axis distances, while misalignment of the test surface introduces little aberrations to the central subaperture. The stitching algorithm is then proposed with focus on decoupling surface error and induced aberrations. The major step is to calibrate out the effect of misaligned near-null optics before stitching optimization by using the central subaperture measurement. We also present the through-the-back null test for the purpose of cross test. The axial distance is precisely monitored by a low coherence interferometer, which enables accurate determination of the spherical aberration component of surface error. Final experimental results show consistent spherical aberration obtained by stitching test and by the through-the-back null test. It is a big step towards instrumentation of subaperture stitching test for aspheres with rather big amount of misalignments in surface metrology practice.
Retinotopy versus face selectivity in macaque visual cortex.
Rajimehr, Reza; Bilenko, Natalia Y; Vanduffel, Wim; Tootell, Roger B H
2014-12-01
Retinotopic organization is a ubiquitous property of lower-tier visual cortical areas in human and nonhuman primates. In macaque visual cortex, the retinotopic maps extend to higher-order areas in the ventral visual pathway, including area TEO in the inferior temporal (IT) cortex. Distinct regions within IT cortex are also selective to specific object categories such as faces. Here we tested the topographic relationship between retinotopic maps and face-selective patches in macaque visual cortex using high-resolution fMRI and retinotopic face stimuli. Distinct subregions within face-selective patches showed either (1) a coarse retinotopic map of eccentricity and polar angle, (2) a retinotopic bias to a specific location of visual field, or (3) nonretinotopic selectivity. In general, regions along the lateral convexity of IT cortex showed more overlap between retinotopic maps and face selectivity, compared with regions within the STS. Thus, face patches in macaques can be subdivided into smaller patches with distinguishable retinotopic properties.
NASA Astrophysics Data System (ADS)
McDougall, Jane; Schaubroeck, Lisbeth
2008-04-01
A JS surface is a minimal graph over a polygonal domain that becomes infinite in magnitude at the domain boundary. Jenkins and Serrin characterized the existence of these minimal graphs in terms of the signs of the boundary values and the side-lengths of the polygon. For a convex polygon, there can be essentially only one JS surface, but a non-convex domain may admit several distinct JS surfaces. We consider two families of JS surfaces corresponding to different boundary values, namely JS0 and JS1, over domains in the form of regular stars. We give parameterizations for these surfaces as lifts of harmonic maps, and observe that all previously constructed JS surfaces have been of type JS0. We give an example of a JS1 surface that is a new complete embedded minimal surface generalizing Scherk's doubly periodic surface, and show also that the JS0 surface over a regular convex 2n-gon is the limit of JS1 surfaces over non-convex stars. Finally we consider the construction of other JS surfaces over stars that belong neither to JS0 nor to JS1.
Shultz, Mary Jane; Brumberg, Alexandra; Bisson, Patrick J.; Shultz, Ryan
2015-01-01
The ability to prepare single-crystal faces has become central to developing and testing models for chemistry at interfaces, spectacularly demonstrated by heterogeneous catalysis and nanoscience. This ability has been hampered for hexagonal ice, Ih––a fundamental hydrogen-bonded surface––due to two characteristics of ice: ice does not readily cleave along a crystal lattice plane and properties of ice grown on a substrate can differ significantly from those of neat ice. This work describes laboratory-based methods both to determine the Ih crystal lattice orientation relative to a surface and to use that orientation to prepare any desired face. The work builds on previous results attaining nearly 100% yield of high-quality, single-crystal boules. With these methods, researchers can prepare authentic, single-crystal ice surfaces for numerous studies including uptake measurements, surface reactivity, and catalytic activity of this ubiquitous, fundamental solid. PMID:26512102
Bounding the errors for convex dynamics on one or more polytopes.
Tresser, Charles
2007-09-01
We discuss the greedy algorithm for approximating a sequence of inputs in a family of polytopes lying in affine spaces by an output sequence made of vertices of the respective polytopes. More precisely, we consider here the case when the greed of the algorithm is dictated by the Euclidean norms of the successive cumulative errors. This algorithm can be interpreted as a time-dependent dynamical system in the vector space, where the errors live, or as a time-dependent dynamical system in an affine space containing copies of all the original polytopes. This affine space contains the inputs, as well as the inputs modified by adding the respective former errors; it is the evolution of these modified inputs that the dynamical system in affine space describes. Scheduling problems with many polytopes arise naturally, for instance, when the inputs are from a single polytope P, but one imposes the constraint that whenever the input belongs to a codimension n face, the output has to be in the same codimension n face (as when scheduling drivers among participants of a carpool). It has been previously shown that the error is bounded in the case of a single polytope by proving the existence of an arbitrary large convex invariant region for the dynamics in affine space: A region that is simultaneously invariant for several polytopes, each considered separately, was also constructed. It was then shown that there cannot be an invariant region in affine space in the general case of a family of polytopes. Here we prove the existence of an arbitrary large convex invariant set for the dynamics in the vector space in the case when the sizes of the polytopes in the family are bounded and the set of all the outgoing normals to all the faces of all the polytopes is finite. It was also previously known that starting from zero as the initial error set, the error set could not be saturated in finitely many steps in some cases with several polytopes: Contradicting a former conjecture, we show
Bounding the errors for convex dynamics on one or more polytopes
NASA Astrophysics Data System (ADS)
Tresser, Charles
2007-09-01
We discuss the greedy algorithm for approximating a sequence of inputs in a family of polytopes lying in affine spaces by an output sequence made of vertices of the respective polytopes. More precisely, we consider here the case when the greed of the algorithm is dictated by the Euclidean norms of the successive cumulative errors. This algorithm can be interpreted as a time-dependent dynamical system in the vector space, where the errors live, or as a time-dependent dynamical system in an affine space containing copies of all the original polytopes. This affine space contains the inputs, as well as the inputs modified by adding the respective former errors; it is the evolution of these modified inputs that the dynamical system in affine space describes. Scheduling problems with many polytopes arise naturally, for instance, when the inputs are from a single polytope P, but one imposes the constraint that whenever the input belongs to a codimension n face, the output has to be in the same codimension n face (as when scheduling drivers among participants of a carpool). It has been previously shown that the error is bounded in the case of a single polytope by proving the existence of an arbitrary large convex invariant region for the dynamics in affine space: A region that is simultaneously invariant for several polytopes, each considered separately, was also constructed. It was then shown that there cannot be an invariant region in affine space in the general case of a family of polytopes. Here we prove the existence of an arbitrary large convex invariant set for the dynamics in the vector space in the case when the sizes of the polytopes in the family are bounded and the set of all the outgoing normals to all the faces of all the polytopes is finite. It was also previously known that starting from zero as the initial error set, the error set could not be saturated in finitely many steps in some cases with several polytopes: Contradicting a former conjecture, we show
NASA Technical Reports Server (NTRS)
Weddendorf, Bruce (Inventor)
1991-01-01
A double face sealing device is disclosed for mounting between two surfaces to provide an air-tight and fluid-tight seal between a closure member bearing one of the surfaces and a structure or housing bearing the other surface which extends around the opening or hatchway to be closed. The double face sealing device includes a plurality of sections or segments mounted to one of the surfaces, each having a main body portion, a pair of outwardly extending and diverging, cantilever, spring arms, and a pair of inwardly extending and diverging, cantilever, spring arms, an elastomeric cover on the distal, free ends of the outwardly extending and diverging spring arms, and an elastomeric cover on the distal, free, ends of the outwardly extending and diverging spring arms, and an elastomeric cover on the distal, free ends of the inwardly extending and diverging spring arms. The double face sealing device has application or use in all environments requiring a seal, but is particularly useful to seal openings or hatchways between compartments of spacecraft or aircraft.
NASA Astrophysics Data System (ADS)
Lyu, Ming; Méndez, Mariano; Altamirano, Diego; Zhang, Guobao
2016-12-01
We investigated the convexity of all type I X-ray bursts with millihertz quasi-periodic oscillations (mHz QPOs) in 4U 1636-53 using archival observations with the Rossi X-ray Timing Explorer. We found that, at a 3.5σ confidence level, in all 39 cases in which the mHz QPOs disappeared at the time of an X-ray burst, the convexity of the burst is positive. The convexity measures the shape of the rising part of the burst light curve and, according to recent models, it is related to the ignition site of bursts on the neutron-star surface. This finding suggests that in 4U 1636-53 these 39 bursts and the marginally stable nuclear burning process responsible for the mHz QPOs take place at the neutron-star equator. This scenario could explain the inconsistency between the high accretion rate required for triggering mHz QPOs in theoretical models and the relatively low accretion rate derived from observations.
ERIC Educational Resources Information Center
Stauffer, John
1998-01-01
Discusses the benefits of painting a school's concrete buildings, and considerations when painting new or insufficiently aged concrete. Painting issues include allowing moisture to escape, choosing alkali-resistant paint, removing efflorescence, and surface preparation. (GR)
ERIC Educational Resources Information Center
Stauffer, John
1998-01-01
Discusses the benefits of painting a school's concrete buildings, and considerations when painting new or insufficiently aged concrete. Painting issues include allowing moisture to escape, choosing alkali-resistant paint, removing efflorescence, and surface preparation. (GR)
The role of convexity in perceptual completion: beyond good continuation.
Liu, Z; Jacobs, D W; Basri, R
1999-01-01
Since the seminal work of the Gestalt psychologists, there has been great interest in understanding what factors determine the perceptual organization of images. While the Gestaltists demonstrated the significance of grouping cues such as similarity, proximity and good continuation, it has not been well understood whether their catalog of grouping cues is complete--in part due to the paucity of effective methodologies for examining the significance of various grouping cues. We describe a novel, objective method to study perceptual grouping of planar regions separated by an occluder. We demonstrate that the stronger the grouping between two such regions, the harder it will be to resolve their relative stereoscopic depth. We use this new method to call into question many existing theories of perceptual completion (Ullman, S. (1976). Biological Cybernetics, 25, 1-6; Shashua, A., & Ullman, S. (1988). 2nd International Conference on Computer Vision (pp. 321-327); Parent, P., & Zucker, S. (1989). IEEE Transactions on Pattern Analysis and Machine Intelligence, 11, 823-839; Kellman, P. J., & Shipley, T. F. (1991). Cognitive psychology, Liveright, New York; Heitger, R., & von der Heydt, R. (1993). A computational model of neural contour processing, figure-ground segregation and illusory contours. In Internal Conference Computer Vision (pp. 32-40); Mumford, D. (1994). Algebraic geometry and its applications, Springer, New York; Williams, L. R., & Jacobs, D. W. (1997). Neural Computation, 9, 837-858) that are based on Gestalt grouping cues by demonstrating that convexity plays a strong role in perceptual completion. In some cases convexity dominates the effects of the well known Gestalt cue of good continuation. While convexity has been known to play a role in figure/ground segmentation (Rubin, 1927; Kanizsa & Gerbino, 1976), this is the first demonstration of its importance in perceptual completion.
Kumar, S; Goddeau, R P; Selim, M H; Thomas, A; Schlaug, G; Alhazzani, A; Searls, D E; Caplan, L R
2010-03-16
To identify patterns of clinical presentation, imaging findings, and etiologies in a cohort of hospitalized patients with localized nontraumatic convexal subarachnoid hemorrhage. Twenty-nine consecutive patients with atraumatic convexal subarachnoid hemorrhage were identified using International Classification of Diseases-9 code from 460 patients with subarachnoid hemorrhage evaluated at our institution over a course of 5 years. Retrospective review of patient medical records, neuroimaging studies, and follow-up data was performed. There were 16 women and 13 men between the ages of 29 and 87 years. Two common patterns of presentations were observed. The most frequent presenting symptom in patients < or =60 years (n = 16) was a severe headache (n = 12; 75%) of abrupt onset (n = 9; 56%) with arterial narrowing on conventional angiograms in 4 patients; 10 (p = 0.003) were presumptively diagnosed with a primary vasoconstriction syndrome. Patients >60 years (n = 13) usually had temporary sensory or motor symptoms (n = 7; 54%); brain MRI scans in these patients showed evidence of leukoaraiosis and/or hemispheric microbleeds and superficial siderosis (n = 9; 69%), compatible with amyloid angiopathy (n = 10; p < 0.0001). In a small group of patients, the presentation was more varied and included lethargy, fever, and confusion. Four patients older than 60 years had recurrent intracerebral hemorrhages in the follow-up period with 2 fatalities. Convexal subarachnoid hemorrhage is an important subtype of nonaneurysmal subarachnoid bleeding with diverse etiologies, though a reversible vasoconstriction syndrome appears to be a common cause in patients 60 years or younger whereas amyloid angiopathy is frequent in patients over 60. These observations require confirmation in future studies.
Zuo, Haijie; Choi, Duk-Yong; Gai, Xin; Luther-Davies, Barry; Zhang, Baoping
2017-02-20
We present a novel CMOS-compatible fabrication technique for convex micro-nano lens arrays (MNLAs) with high packing density on the wafer scale. By means of conformal chemical vapor deposition (CVD) of hydrogenated amorphous silicon (a-Si:H) following patterning of silicon pillars via electron beam lithography (EBL) and plasma etching, large areas of a close packed silicon lens array with the diameter from a few micrometers down to a few hundred nanometers was fabricated. The resulting structure shows excellent surface roughness and high uniformity. The optical focusing properties of the lenses at infrared wavelengths were verified by experimental measurements and numerical simulation. This approach provides a feasible solution for fabricating silicon MNLAs compatible for next generation large scale, miniaturized optical imaging detectors and related optical devices.
NASA Astrophysics Data System (ADS)
Blinov, E. V.
2016-01-01
The structure of the surface layer in high-nitrogen 05Kh22AG15N8M2F steel workpieces subjected to face turning is studied by electron microscopy. It is found that improved machinability by VK8 alloy cutting tools is achieved at a cutting depth of 0.25 mm and that the cutting-tool life decreases sharply when the cutting depth increases to 1 mm. A nanocrystalline structure with nanocrystal sizes from several to several tens of nanometers forms in the surface layer upon face turning in the as-cast, hot-rolled, and thermally deformed states. The structure of the surface layer is characterized by a high dislocation density and large austenite fragments with broad subgrains and deformation twins.
Convexity and Stiffness in Energy Functions for Electrostatic Simulations.
Pujos, Justine S; Maggs, A C
2015-04-14
We study the properties of convex functionals which have been proposed for the simulation of charged molecular systems within the Poisson-Boltzmann approximation. We consider the extent to which the functionals reproduce the true fluctuations of electrolytes and thus the one-loop correction to mean field theory-including the Debye-Hückel correction to the free energy of ionic solutions. We also compare the functionals for use in numerical optimization of a mean field model of a charged polymer and show that different functionals have very different stiffnesses leading to substantial differences in accuracy and speed.
A convexity preserving scheme for conservative advection transport
NASA Astrophysics Data System (ADS)
Xiao, Feng; Peng, Xindong
2004-08-01
A simple and practical scheme for advection transport equation is presented. The scheme, namely piecewise rational method (PRM), is a variant of the existing piecewise parabolic method (PPM) of Colella and Woodward (1984). Instead of the parabolic function, a rational function is used for the reconstruction. Making use of the convexity preserving nature of the rational function enables us to obtain oscillation-less numerical solutions, but avoids the adjustments of the cell-interface values to enforce the monotonicity in PPM. The PRM is very simple and computationally efficient. Our numerical results show that PRM is competitive to the PPM in many aspects, such as numerical accuracy and shape-preserving property.
Use of Convex supercomputers for flight simulation at NASA Langley
NASA Technical Reports Server (NTRS)
Cleveland, Jeff I., II
1992-01-01
The use of the Convex Computer Corporation supercomputers for flight simulation is discussed focusing on a real-time input/output system for supporting the flight simulation. The flight simulation computing system is based on two single processor control data corporation CYBER 175 computers, coupled through extended memory. The Advanced Real-Time Simulation System for digital data distribution and signal conversion is a state-of-the-art, high-speed fiber-optic-based, ring network system which is based on the computer automated measurement and control technology.
Convexity, internal representations and the statistical mechanics of neural networks
NASA Astrophysics Data System (ADS)
Opper, M.; Kuhlmann, P.; Mietzner, A.
1997-01-01
We present an approach to the statistical mechanics of feedforward neural networks which is based on counting realizable internal representations by utilizing convexity properties of the weight space. For a toy model, our method yields storage capacities based on an annealed approximation, which are in close agreement with one-step replica symmetry-breaking results obtained from a standard approach. For a single-layer perceptron, a combinatorial result for the number of realizable output combinations is recovered and generalized to fixed stabilities.
Computation of nonparametric convex hazard estimators via profile methods
Jankowski, Hanna K.; Wellner, Jon A.
2010-01-01
This paper proposes a profile likelihood algorithm to compute the nonparametric maximum likelihood estimator of a convex hazard function. The maximisation is performed in two steps: First the support reduction algorithm is used to maximise the likelihood over all hazard functions with a given point of minimum (or antimode). Then it is shown that the profile (or partially maximised) likelihood is quasi-concave as a function of the antimode, so that a bisection algorithm can be applied to find the maximum of the profile likelihood, and hence also the global maximum. The new algorithm is illustrated using both artificial and real data, including lifetime data for Canadian males and females. PMID:20300560
Convex aggregative modelling of infinite memory nonlinear systems
NASA Astrophysics Data System (ADS)
Wachel, Paweł
2016-08-01
The convex aggregation technique is applied for modelling general class of nonlinear systems with unknown structure and infinite memory. The finite sample size properties of the algorithm are formally established and compared to the standard least-squares counterpart of the method. The proposed algorithm demonstrates its advantages when the a-priori knowledge and the measurement data are both scarce, that is, when the information about the actual system structure is unknown or uncertain and the measurement set is small and disturbed by a noise. Numerical experiments illustrate application and practical benefits of the method for various nonlinear systems.
Ordered Incidence Geometry and the Geometric Foundations of Convexity Theory.
1984-03-01
needed in the sequel. 5. Lineal hulls. Characterization of affine sets in terms of lineal hulls, (T2). 6. Convex sets. Definitions (D5)-(D7) and basic...wo) 5. LINEAL HULLS In the Euclidean geometry R" a set A is affine if and only if A = {Xiz,: ;EA, N"Xi=1J51 i.e. A coincides with the set of affine...combination, of its elements. The analogous geometrical representation in an QIG (where algebraic constructions such as (5.1) are not available) is
Advances in dual algorithms and convex approximation methods
NASA Technical Reports Server (NTRS)
Smaoui, H.; Fleury, C.; Schmit, L. A.
1988-01-01
A new algorithm for solving the duals of separable convex optimization problems is presented. The algorithm is based on an active set strategy in conjunction with a variable metric method. This first order algorithm is more reliable than Newton's method used in DUAL-2 because it does not break down when the Hessian matrix becomes singular or nearly singular. A perturbation technique is introduced in order to remove the nondifferentiability of the dual function which arises when linear constraints are present in the approximate problem.
Supervised classification of protein structures based on convex hull representation.
Wang, Yong; Wu, Ling-Yun; Chen, Luonan; Zhang, Xiang-Sun
2007-01-01
One of the central problems in functional genomics is to establish the classification schemes of protein structures. In this paper the relationship of protein structures is uncovered within the framework of supervised learning. Specifically, the novel patterns based on convex hull representation are firstly extracted from a protein structure, then the classification system is constructed and machine learning methods such as neural networks, Hidden Markov Models (HMM) and Support Vector Machines (SVMs) are applied. The CATH scheme is highlighted in the classification experiments. The results indicate that the proposed supervised classification scheme is effective and efficient.
On the structure of self-affine convex bodies
Voynov, A S
2013-08-31
We study the structure of convex bodies in R{sup d} that can be represented as a union of their affine images with no common interior points. Such bodies are called self-affine. Vallet's conjecture on the structure of self-affine bodies was proved for d = 2 by Richter in 2011. In the present paper we disprove the conjecture for all d≥3 and derive a detailed description of self-affine bodies in R{sup 3}. Also we consider the relation between properties of self-affine bodies and functional equations with a contraction of an argument. Bibliography: 10 titles.
Behavior of turbulent boundary layers on curved convex walls
NASA Technical Reports Server (NTRS)
Schmidbauer, Hans
1936-01-01
The system of linear differential equations which indicated the approach of separation and the so-called "boundary-layer thickness" by Gruschwitz is extended in this report to include the case where the friction layer is subject to centrifugal forces. Evaluation of the data yields a strong functional dependence of the momentum change and wall drag on the boundary-layer thickness radius of curvature ratio for the wall. It is further shown that the transition from laminar to turbulent flow occurs at somewhat higher Reynolds Numbers at the convex wall than at the flat plate, due to the stabilizing effect of the centrifugal forces.
Further Development in the Global Resolution of Convex Programs with Complementarity Constraints
2014-04-09
discuss various methods to tighten the relaxation by exploiting complementarity, with the aim of constructing better approximations to the convex hull of...AFRL-OSR-VA-TR-2014-0126 Global Resolution of Convex Programs with Complementarity Constraints Angelia Nedich UNIVERSITY OF ILLINOIS Final Report 04...Development in the Global Resolution of Convex Programs with Complementarity Constraints 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT
Size-controlled nanoparticle-guided assembly of block copolymers for convex lens-shaped particles.
Ku, Kang Hee; Shin, Jae Man; Kim, Minsoo P; Lee, Chun-Ho; Seo, Min-Kyo; Yi, Gi-Ra; Jang, Se Gyu; Kim, Bumjoon J
2014-07-16
The tuning of interfacial properties at selective and desired locations on the particles is of great importance to create the novel structured particles by breaking the symmetry of their surface property. Herein, a dramatic transition of both the external shape and internal morphology of the particles of polystyrene-b-poly(4-vinylpyridine) (PS-b-P4VP) was induced by precise positioning of size-controlled Au nanoparticle surfactants (Au NPs). The size-dependent assembly of the Au NPs was localized preferentially at the interface between the P4VP domain at the particle surface and the surrounding water, which generated a balanced interfacial interaction between two different PS/P4VP domains of the BCP particles and water, producing unique convex lens-shaped BCP particles. In addition, the neutralized interfacial interaction, in combination with the directionality of the solvent-induced ordering of the BCP domains from the interface of the particle/water, generated defect-free, vertically ordered porous channels within the particles. The mechanism for the formation of these novel nanostructures was investigated systemically by varying the size and the volume fraction of the Au NPs. Furthermore, these convex lens-shaped particles with highly ordered channels can be used as a microlens, in which the light can be concentrated toward the focal point with enhanced near-field signals. And, these particles can possess additional optical properties such as unique distribution of light scattering as a result of the well-ordered Au cylinders that filled into the channels, which hold great promise for use in optical, biological-sensing, and imaging applications.
Famous face recognition, face matching, and extraversion.
Lander, Karen; Poyarekar, Siddhi
2015-01-01
It has been previously established that extraverts who are skilled at interpersonal interaction perform significantly better than introverts on a face-specific recognition memory task. In our experiment we further investigate the relationship between extraversion and face recognition, focusing on famous face recognition and face matching. Results indicate that more extraverted individuals perform significantly better on an upright famous face recognition task and show significantly larger face inversion effects. However, our results did not find an effect of extraversion on face matching or inverted famous face recognition.
Entanglement of Convex Linear Combination and Construction of Ppt Entangled States
NASA Astrophysics Data System (ADS)
Cheng, Wei; Xu, Fang; Li, Hua; Wang, Gang
2013-02-01
Given two bipartite quantum states and the convex linear combination of them, we discuss the relation between the entanglement of the convex linear combination state and the entanglement of states being combined. This is achieved by characterizing quantum states quantitatively via the positive partial transpose (PPT) criterion and the computable cross-norm or realignment (CCNR) criterion. Inspired by the Horodecki's 3 ⊗ 3 quantum states, we also give explicit examples to illustrate all possible cases of convex linear combination. Finally, as an application of this method, we show how to construct new bipartite PPT entangled states from known PPT entangled states by convex linear combination.
Face-to-face: Perceived personal relevance amplifies face processing
Pittig, Andre; Schupp, Harald T.; Alpers, Georg W.
2017-01-01
Abstract The human face conveys emotional and social information, but it is not well understood how these two aspects influence face perception. In order to model a group situation, two faces displaying happy, neutral or angry expressions were presented. Importantly, faces were either facing the observer, or they were presented in profile view directed towards, or looking away from each other. In Experiment 1 (n = 64), face pairs were rated regarding perceived relevance, wish-to-interact, and displayed interactivity, as well as valence and arousal. All variables revealed main effects of facial expression (emotional > neutral), face orientation (facing observer > towards > away) and interactions showed that evaluation of emotional faces strongly varies with their orientation. Experiment 2 (n = 33) examined the temporal dynamics of perceptual-attentional processing of these face constellations with event-related potentials. Processing of emotional and neutral faces differed significantly in N170 amplitudes, early posterior negativity (EPN), and sustained positive potentials. Importantly, selective emotional face processing varied as a function of face orientation, indicating early emotion-specific (N170, EPN) and late threat-specific effects (LPP, sustained positivity). Taken together, perceived personal relevance to the observer—conveyed by facial expression and face direction—amplifies emotional face processing within triadic group situations. PMID:28158672
Face-to-face: Perceived personal relevance amplifies face processing.
Bublatzky, Florian; Pittig, Andre; Schupp, Harald T; Alpers, Georg W
2017-05-01
The human face conveys emotional and social information, but it is not well understood how these two aspects influence face perception. In order to model a group situation, two faces displaying happy, neutral or angry expressions were presented. Importantly, faces were either facing the observer, or they were presented in profile view directed towards, or looking away from each other. In Experiment 1 (n = 64), face pairs were rated regarding perceived relevance, wish-to-interact, and displayed interactivity, as well as valence and arousal. All variables revealed main effects of facial expression (emotional > neutral), face orientation (facing observer > towards > away) and interactions showed that evaluation of emotional faces strongly varies with their orientation. Experiment 2 (n = 33) examined the temporal dynamics of perceptual-attentional processing of these face constellations with event-related potentials. Processing of emotional and neutral faces differed significantly in N170 amplitudes, early posterior negativity (EPN), and sustained positive potentials. Importantly, selective emotional face processing varied as a function of face orientation, indicating early emotion-specific (N170, EPN) and late threat-specific effects (LPP, sustained positivity). Taken together, perceived personal relevance to the observer-conveyed by facial expression and face direction-amplifies emotional face processing within triadic group situations. © The Author (2017). Published by Oxford University Press.
Multiband RF pulses with improved performance via convex optimization.
Shang, Hong; Larson, Peder E Z; Kerr, Adam; Reed, Galen; Sukumar, Subramaniam; Elkhaled, Adam; Gordon, Jeremy W; Ohliger, Michael A; Pauly, John M; Lustig, Michael; Vigneron, Daniel B
2016-01-01
Selective RF pulses are commonly designed with the desired profile as a low pass filter frequency response. However, for many MRI and NMR applications, the spectrum is sparse with signals existing at a few discrete resonant frequencies. By specifying a multiband profile and releasing the constraint on "don't-care" regions, the RF pulse performance can be improved to enable a shorter duration, sharper transition, or lower peak B1 amplitude. In this project, a framework for designing multiband RF pulses with improved performance was developed based on the Shinnar-Le Roux (SLR) algorithm and convex optimization. It can create several types of RF pulses with multiband magnitude profiles, arbitrary phase profiles and generalized flip angles. The advantage of this framework with a convex optimization approach is the flexible trade-off of different pulse characteristics. Designs for specialized selective RF pulses for balanced SSFP hyperpolarized (HP) (13)C MRI, a dualband saturation RF pulse for (1)H MR spectroscopy, and a pre-saturation pulse for HP (13)C study were developed and tested.
Nonlinear Rescaling and Proximal-Like Methods in Convex Optimization
NASA Technical Reports Server (NTRS)
Polyak, Roman; Teboulle, Marc
1997-01-01
The nonlinear rescaling principle (NRP) consists of transforming the objective function and/or the constraints of a given constrained optimization problem into another problem which is equivalent to the original one in the sense that their optimal set of solutions coincides. A nonlinear transformation parameterized by a positive scalar parameter and based on a smooth scaling function is used to transform the constraints. The methods based on NRP consist of sequential unconstrained minimization of the classical Lagrangian for the equivalent problem, followed by an explicit formula updating the Lagrange multipliers. We first show that the NRP leads naturally to proximal methods with an entropy-like kernel, which is defined by the conjugate of the scaling function, and establish that the two methods are dually equivalent for convex constrained minimization problems. We then study the convergence properties of the nonlinear rescaling algorithm and the corresponding entropy-like proximal methods for convex constrained optimization problems. Special cases of the nonlinear resealing algorithm are presented. In particular a new class of exponential penalty-modified barrier functions methods is introduced.
Mixed convection heat transfer in concave and convex channels
Moukalled, F.; Doughan, A.; Acharya, S.
1997-07-01
Mixed convection heat transfer studies in the literature have been primarily confined to pipe and rectangular channel geometry's. In some applications, however, heat transfer in curved channels may be of interest (e.g., nozzle and diffuser shaped passages in HVAC systems, fume hoods, chimneys, bell-shaped or dome-shaped chemical reactors, etc.). A numerical investigation of laminar mixed convection heat transfer of air in concave and convex channels is presented. Six different channel aspects ratios (R/L = 1.04, 1.25, 2.5, 5, 10, and {infinity}) and five different values of Gr/Re{sup 2} (Gr/Re{sup 2} = 0, 0.1, 1, 3, 5) are considered. Results are displayed in terms of streamline and isotherm plots, velocity and temperature profiles, and local and average Nusselt number estimates. Numerical predictions reveal that compared to straight channels of equal height, concave channels of low aspect ratio have lower heat transfer at relatively low values of Gr/Re{sup 2} and higher heat transfer at high values of Gr/Re{sup 2}. When compared to straight channels of equal heated length, concave channels are always found to have lower heat transfer and for all values of Gr/Re{sup 2}. On the other hand, predictions for convex channels revealed enhancement in heat transfer compared to straight channels of equal height and/or equal heated length for all values of Gr/Re{sup 2}.
Convex controller design for vibration suppression of a flexible antenna
Leo, D.; Inman, D.
1994-12-31
A procedure based on convex optimization is used to design collocated control laws for a small-scale model of a flexible antenna. The objective of the active control is to minimize the response of a single rib to a disturbance occurring at a remote location on the structure. Two separate designs are examined. The first is standard Linear Quadratic Gaussian (LQG) control, whereby the H{sub 2} norm of the transfer matrix is minimized via the solution of two Riccati equations. Unfortunately, this type of design does not exploit the favorable attributes of sensor/actuator collocation, resulting in control laws that are not robust to model uncertainty and structural variations. An optimization approach to H{sub 2} optimal design is presented that bounds the phase of the control law, thereby increasing its robustness. The optimization is shown to be convex, providing important guarantees on solution accuracy and convergence. Control laws designed with both procedures are experimentally implemented on the antenna testbed. The results illustrate the advantages of designing H{sub 2} optimal controllers that are bounded in phase.
Iterative Projection Onto Convex Sets for Quantitative Susceptibility Mapping
Deng, Weiran; Boada, Fernando; Poser, Benedikt A.; Schirda, Claudiu; Stenger, V. A.
2014-01-01
Purpose Quantitative Susceptibility Map (QSM) reconstruction is ill posed due to the zero values on the “magic angle cone” that make the maps prone to streaking artifacts. We propose Projection Onto Convex Sets (POCS) in the method of Steepest Descent (SD) for QSM reconstruction. Methods Two convex projections, an object-support projection in the image domain and a projection in k-space were used. QSM reconstruction using the proposed SD-POCS method was compared to SD and POCS alone as well as with truncated k-space division (TKD) for numerically simulated and 7 T human brain phase data. Results The QSM reconstruction error from noise-free simulated phase data using SD-POCS is at least two orders of magnitude lower than using SD, POCS or TKD and has reduced streaking artifacts. Using the l1-TV reconstructed susceptibility as a gold standard for 7T in vivo imaging, SD-POCS showed better image quality comparing to SD, POCS or TKD from visual inspection. Conclusion POCS is an alternative method for regularization that can be used in an iterative minimization method such as SD for QSM reconstruction. PMID:24604410
A theorem for piecewise convex-concave data approximation
NASA Astrophysics Data System (ADS)
Demetriou, I. C.
2004-03-01
We are given univariate data that include random errors. We consider the problem of calculating a best approximation to the data by minimizing a strictly convex function of the errors subject to the condition that there are at most q sign changes in the sequence of the second divided differences of the approximation, where q is a prescribed integer. There are about O(nq) combinations of positions of sign changes, which make an exhaustive approach prohibitively expensive. However, Demetriou and Powell (Approximation Theory and Optimization, Cambridge University Press, Cambridge, 1997, pp. 109-132), have proved the remarkable property that there exists a partitioning of the data into (q+1) disjoint subsets such that the approximation may be calculated by a separate convex programming calculation on each subset. Based on this result, we provide a characterization theorem that reduces the problem to an equivalent one, where the unknowns are the positions of the sign changes subject to feasibility restrictions at the sign changes. Furthermore, we present counterexamples on two conjectures that investigate whether the search for optimal sign changes may be restricted to certain subranges of the data.
Convex foundations for generalized MaxEnt models
NASA Astrophysics Data System (ADS)
Frongillo, Rafael; Reid, Mark D.
2014-12-01
We present an approach to maximum entropy models that highlights the convex geometry and duality of generalized exponential families (GEFs) and their connection to Bregman divergences. Using our framework, we are able to resolve a puzzling aspect of the bijection of Banerjee and coauthors between classical exponential families and what they call regular Bregman divergences. Their regularity condition rules out all but Bregman divergences generated from log-convex generators. We recover their bijection and show that a much broader class of divergences correspond to GEFs via two key observations: 1) Like classical exponential families, GEFs have a "cumulant" C whose subdifferential contains the mean: Eo˜pθ[φ(o)]∈∂C(θ) ; 2) Generalized relative entropy is a C-Bregman divergence between parameters: DF(pθ,pθ')= D C(θ,θ') , where DF becomes the KL divergence for F = -H. We also show that every incomplete market with cost function C can be expressed as a complete market, where the prices are constrained to be a GEF with cumulant C. This provides an entirely new interpretation of prediction markets, relating their design back to the principle of maximum entropy.
Convex hulls of random walks: Large-deviation properties
NASA Astrophysics Data System (ADS)
Claussen, Gunnar; Hartmann, Alexander K.; Majumdar, Satya N.
2015-05-01
We study the convex hull of the set of points visited by a two-dimensional random walker of T discrete time steps. Two natural observables that characterize the convex hull in two dimensions are its perimeter L and area A . While the mean perimeter
Convex hulls of random walks: Large-deviation properties.
Claussen, Gunnar; Hartmann, Alexander K; Majumdar, Satya N
2015-05-01
We study the convex hull of the set of points visited by a two-dimensional random walker of T discrete time steps. Two natural observables that characterize the convex hull in two dimensions are its perimeter L and area A. While the mean perimeter 〈L〉 and the mean area 〈A〉 have been studied before, analytically and numerically, and exact results are known for large T (Brownian motion limit), little is known about the full distributions P(A) and P(L). In this paper we provide numerical results for these distributions. We use a sophisticated large-deviation approach that allows us to study the distributions over a larger range of the support, where the probabilities P(A) and P(L) are as small as 10(-300). We analyze (open) random walks as well as (closed) Brownian bridges on the two-dimensional discrete grid as well as in the two-dimensional plane. The resulting distributions exhibit, for large T, a universal scaling behavior (independent of the details of the jump distributions) as a function of A/T and L/√[T], respectively. We are also able to obtain the rate function, describing rare events at the tails of these distributions, via a numerical extrapolation scheme and find a linear and square dependence as a function of the rescaled perimeter and the rescaled area, respectively.
Multiband RF Pulses with Improved Performance via Convex Optimization
Shang, Hong; Larson, Peder E. Z.; Kerr, Adam; Reed, Galen; Sukumar, Subramaniam; Elkhaled, Adam; Gordon, Jeremy W.; Ohliger, Michael A.; Pauly, John M.; Lustig, Michael; Vigneron, Daniel B.
2016-01-01
Selective RF pulses are commonly designed with the desired profile as a low pass filter frequency response. However, for many MRI and NMR applications, the spectrum is sparse with signals existing at a few discrete resonant frequencies. By specifying a multiband profile and releasing the constraint on “don’t-care” regions, the RF pulse performance can be improved to enable a shorter duration, sharper transition, or lower peak B1 amplitude. In this project, a framework for designing multiband RF pulses with improved performance was developed based on the Shinnar-Le Roux (SLR) algorithm and convex optimization. It can create several types of RF pulses with multiband magnitude profiles, arbitrary phase profiles and generalized flip angles. The advantage of this framework with a convex optimization approach is the flexible trade-off of different pulse characteristics. Designs for specialized selective RF pulses for balanced SSFP hyperpolarized (HP) 13C MRI, a dualband saturation RF pulse for 1H MR spectroscopy, and a pre-saturation pulse for HP 13C study were developed and tested. PMID:26754063
Nonlinear Rescaling and Proximal-Like Methods in Convex Optimization
NASA Technical Reports Server (NTRS)
Polyak, Roman; Teboulle, Marc
1997-01-01
The nonlinear rescaling principle (NRP) consists of transforming the objective function and/or the constraints of a given constrained optimization problem into another problem which is equivalent to the original one in the sense that their optimal set of solutions coincides. A nonlinear transformation parameterized by a positive scalar parameter and based on a smooth scaling function is used to transform the constraints. The methods based on NRP consist of sequential unconstrained minimization of the classical Lagrangian for the equivalent problem, followed by an explicit formula updating the Lagrange multipliers. We first show that the NRP leads naturally to proximal methods with an entropy-like kernel, which is defined by the conjugate of the scaling function, and establish that the two methods are dually equivalent for convex constrained minimization problems. We then study the convergence properties of the nonlinear rescaling algorithm and the corresponding entropy-like proximal methods for convex constrained optimization problems. Special cases of the nonlinear resealing algorithm are presented. In particular a new class of exponential penalty-modified barrier functions methods is introduced.
Rationally convex sets on the unit sphere in ℂ2
NASA Astrophysics Data System (ADS)
Wermer, John
2008-04-01
Let X be a rationally convex compact subset of the unit sphere S in ℂ2, of three-dimensional measure zero. Denote by R( X) the uniform closure on X of the space of functions P/ Q, where P and Q are polynomials and Q≠0 on X. When does R( X)= C( X)? Our work makes use of the kernel function for the bar{δ}b operator on S, introduced by Henkin in [5] and builds on results obtained in Anderson Izzo Wermer [3]. We define a real-valued function ɛ X on the open unit ball int B, with ɛ X ( z, w) tending to 0 as ( z, w) tends to X. We give a growth condition on ɛ X ( z, w) as ( z, w) approaches X, and show that this condition is sufficient for R( X)= C( X) (Theorem 1.1). In Section 4, we consider a class of sets X which are limits of a family of Levi-flat hypersurfaces in int B. For each compact set Y in ℂ2, we denote the rationally convex hull of Y by widehat{Y}. A general reference is Rudin [8] or Aleksandrov [1].
Liu, C H; Collin, C A; Chaudhuri, A
2000-01-01
It is now well known that processing of shading information in face recognition is susceptible to bottom lighting and contrast reversal, an effect that may be due to a disruption of 3-D shape processing. The question then is whether the disruption can be rectified by other sources of 3-D information, such as shape-from-stereo. We examined this issue by comparing identification performance either with or without stereo information using top-lit and bottom-lit face stimuli in both photographic positive and negative conditions. The results show that none of the shading effects was reduced by the presence of stereo information. This finding supports the notion that shape-from-shading overrides shape-from-stereo in face perception. Although shape-from-stereo did produce some signs of facilitation for face identification, this effect was negligible. Together, our results support the view that 3-D shape processing plays only a minor role in face recognition. Our data are best accounted for by a weighted function of 2-D processing of shading pattern and 3-D processing of shapes, with a much greater weight assigned to 2-D pattern processing.
Virtual & Real Face to Face Teaching
ERIC Educational Resources Information Center
Teneqexhi, Romeo; Kuneshka, Loreta
2016-01-01
In traditional "face to face" lessons, during the time the teacher writes on a black or white board, the students are always behind the teacher. Sometimes, this happens even in the recorded lesson in videos. Most of the time during the lesson, the teacher shows to the students his back not his face. We do not think the term "face to…
On FastMap and the convex hull of multivariate data: toward fast and robust dimension reduction.
Ostrouchov, George; Samatova, Nagiza F
2005-08-01
FastMap is a dimension reduction technique that operates on distances between objects. Although only distances are used, implicitly the technique assumes that the objects are points in a p-dimensional Euclidean space. It selects a sequence of k < or = p orthogonal axes defined by distant pairs of points (called pivots) and computes the projection of the points onto the orthogonal axes. We show that FastMap uses only the outer envelope of a data set. Pivots are taken from the faces, usually vertices, of the convex hull of the data points in the original implicit Euclidean space. This provides a bridge to results in robust statistics, where the convex hull is used as a tool in multivariate outlier detection and in robust estimation methods. The connection sheds new light on the properties of FastMap, particularly its sensitivity to outliers, and provides an opportunity for a new class of dimension reduction algorithms, RobustMaps, that retain the speed of FastMap and exploit ideas in robust statistics.
Rotationally resliced 3D prostate TRUS segmentation using convex optimization with shape priors.
Qiu, Wu; Yuan, Jing; Ukwatta, Eranga; Fenster, Aaron
2015-02-01
Efficient and accurate segmentations of 3D end-firing transrectal ultrasound (TRUS) images play an important role in planning of 3D TRUS guided prostate biopsy. However, poor image quality of the input 3D TRUS images, such as strong imaging artifacts and speckles, often makes it a challenging task to extract the prostate boundaries accurately and efficiently. In this paper, the authors propose a novel convex optimization-based approach to delineate the prostate surface from a given 3D TRUS image, which reduces the original 3D segmentation problem to a sequence of simple 2D segmentation subproblems over the rotational reslices of the 3D TRUS volume. Essentially, the authors introduce a novel convex relaxation-based contour evolution approach to each 2D slicewise image segmentation with the joint optimization of shape information, where the learned 2D nonlinear statistical shape prior is incorporated to segment the initial slice, its result is propagated as a shape constraint to the segmentation of the following slices. In practice, the proposed segmentation algorithm is implemented on a GPU to achieve the high computational performance. Experimental results using 30 patient 3D TRUS images show that the proposed method can achieve a mean Dice similarity coefficient of 93.4% ± 2.2% in 20 s for one 3D image, outperforming the existing local-optimization-based methods, e.g., level-set and active-contour, in terms of accuracy and efficiency. In addition, inter- and intraobserver variability experiments show its good reproducibility. A semiautomatic segmentation approach is proposed and evaluated to extract the prostate boundary from 3D TRUS images acquired by a 3D end-firing TRUS guided prostate biopsy system. Experimental results suggest that it may be suitable for the clinical use involving the image guided prostate biopsy procedures.
Chance-Constrained Guidance With Non-Convex Constraints
NASA Technical Reports Server (NTRS)
Ono, Masahiro
2011-01-01
Missions to small bodies, such as comets or asteroids, require autonomous guidance for descent to these small bodies. Such guidance is made challenging by uncertainty in the position and velocity of the spacecraft, as well as the uncertainty in the gravitational field around the small body. In addition, the requirement to avoid collision with the asteroid represents a non-convex constraint that means finding the optimal guidance trajectory, in general, is intractable. In this innovation, a new approach is proposed for chance-constrained optimal guidance with non-convex constraints. Chance-constrained guidance takes into account uncertainty so that the probability of collision is below a specified threshold. In this approach, a new bounding method has been developed to obtain a set of decomposed chance constraints that is a sufficient condition of the original chance constraint. The decomposition of the chance constraint enables its efficient evaluation, as well as the application of the branch and bound method. Branch and bound enables non-convex problems to be solved efficiently to global optimality. Considering the problem of finite-horizon robust optimal control of dynamic systems under Gaussian-distributed stochastic uncertainty, with state and control constraints, a discrete-time, continuous-state linear dynamics model is assumed. Gaussian-distributed stochastic uncertainty is a more natural model for exogenous disturbances such as wind gusts and turbulence than the previously studied set-bounded models. However, with stochastic uncertainty, it is often impossible to guarantee that state constraints are satisfied, because there is typically a non-zero probability of having a disturbance that is large enough to push the state out of the feasible region. An effective framework to address robustness with stochastic uncertainty is optimization with chance constraints. These require that the probability of violating the state constraints (i.e., the probability of
Convex Structures: Ray and Modal Techniques for Propagation and Scattering.
NASA Astrophysics Data System (ADS)
Heyman, Ehud
A self-contained theory of two-dimensional time -harmonic and transient fields scattered by and/or guided along a smooth convex object is presented. Emphasis is on the high frequency region where ray methods are applicable. Guidance along a smooth convex boundary is formulated in terms of a self-consistent system of rays which are complex due to energy leakage. These complex ray congruences are generated by a complex caustic whose location relative to the boundary determines the type of the guided mode: trapped wave with slight leakage, creeping wave or leaky wave. While closure can be invoked globally when the object has circular symmetry, a local closure condition can be found in the case of variable curvature when the caustic is close to the boundary. By imposing circumferential periodicity on the guided modes traveling around the object, one may synthesize the complex resonances which form the basis for analysis of transient scattering by the Singularity Expansion Method (SEM). A hybrid method is developed therefrom which expresses transient scattering by a perfectly conducting smooth convex cylinder in terms of a well-defined combination of traveling (creeping) wave fields and of SEM resonances. The former describe efficiently the high-frequency effects that dominate the early time response while the latter are more appropriate for the lower frequency behavior at later times. Intimately related to the phenomena described above is the mechanism of excitation of ray fields, and the associated energy transfer, when a source is located near a curved interface. This problem is explored for a canonical prototype that involves a high-frequency line source on the concave (interior) side of a curved dielectric interface, which side also contains the denser medium. A detailed study of the transmitted field resolves the intricate behavior in the vicinity of the critically refracted ray in terms of GTD parameters appropriate to regular and to transition regions. The
Wang, Tianyun; Lu, Xinfei; Yu, Xiaofei; Xi, Zhendong; Chen, Weidong
2014-03-26
In recent years, various applications regarding sparse continuous signal recovery such as source localization, radar imaging, communication channel estimation, etc., have been addressed from the perspective of compressive sensing (CS) theory. However, there are two major defects that need to be tackled when considering any practical utilization. The first issue is off-grid problem caused by the basis mismatch between arbitrary located unknowns and the pre-specified dictionary, which would make conventional CS reconstruction methods degrade considerably. The second important issue is the urgent demand for low-complexity algorithms, especially when faced with the requirement of real-time implementation. In this paper, to deal with these two problems, we have presented three fast and accurate sparse reconstruction algorithms, termed as HR-DCD, Hlog-DCD and Hlp-DCD, which are based on homotopy, dichotomous coordinate descent (DCD) iterations and non-convex regularizations, by combining with the grid refinement technique. Experimental results are provided to demonstrate the effectiveness of the proposed algorithms and related analysis.
Wang, Tianyun; Lu, Xinfei; Yu, Xiaofei; Xi, Zhendong; Chen, Weidong
2014-01-01
In recent years, various applications regarding sparse continuous signal recovery such as source localization, radar imaging, communication channel estimation, etc., have been addressed from the perspective of compressive sensing (CS) theory. However, there are two major defects that need to be tackled when considering any practical utilization. The first issue is off-grid problem caused by the basis mismatch between arbitrary located unknowns and the pre-specified dictionary, which would make conventional CS reconstruction methods degrade considerably. The second important issue is the urgent demand for low-complexity algorithms, especially when faced with the requirement of real-time implementation. In this paper, to deal with these two problems, we have presented three fast and accurate sparse reconstruction algorithms, termed as HR-DCD, Hlog-DCD and Hlp-DCD, which are based on homotopy, dichotomous coordinate descent (DCD) iterations and non-convex regularizations, by combining with the grid refinement technique. Experimental results are provided to demonstrate the effectiveness of the proposed algorithms and related analysis. PMID:24675758
Fast inference of ill-posed problems within a convex space
NASA Astrophysics Data System (ADS)
Fernandez-de-Cossio-Diaz, J.; Mulet, R.
2016-07-01
In multiple scientific and technological applications we face the problem of having low dimensional data to be justified by a linear model defined in a high dimensional parameter space. The difference in dimensionality makes the problem ill-defined: the model is consistent with the data for many values of its parameters. The objective is to find the probability distribution of parameter values consistent with the data, a problem that can be cast as the exploration of a high dimensional convex polytope. In this work we introduce a novel algorithm to solve this problem efficiently. It provides results that are statistically indistinguishable from currently used numerical techniques while its running time scales linearly with the system size. We show that the algorithm performs robustly in many abstract and practical applications. As working examples we simulate the effects of restricting reaction fluxes on the space of feasible phenotypes of a genome scale Escherichia coli metabolic network and infer the traffic flow between origin and destination nodes in a real communication network.
NASA Technical Reports Server (NTRS)
2003-01-01
MGS MOC Release No. MOC2-361, 15 May 2003
Every day, the Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) wide angle instruments obtain a global view of the planet to help monitor weather and seasonal patterns of frost deposition and removal. The two pictures shown here are taken from the same daily global image mosaic (the only difference is that each was processed slightly differently). The pictures show Galle Crater, informally known as 'Happy Face,' as it appeared in early southern winter. The white-ish gray surfaces are coated with wintertime carbon dioxide frost. The pattern of frost distribution gives the appearance that 'Happy Face' has opened its mouth. Galle Crater is located on the east rim of Argyre at 51oS, 31oW. Sunlight illuminates the scene from the upper left. Galle Crater is 230 km (143 mi) across.
Nonexpansiveness of a linearized augmented Lagrangian operator for hierarchical convex optimization
NASA Astrophysics Data System (ADS)
Yamagishi, Masao; Yamada, Isao
2017-04-01
Hierarchical convex optimization concerns two-stage optimization problems: the first stage problem is a convex optimization; the second stage problem is the minimization of a convex function over the solution set of the first stage problem. For the hierarchical convex optimization, the hybrid steepest descent method (HSDM) can be applied, where the solution set of the first stage problem must be expressed as the fixed point set of a certain nonexpansive operator. In this paper, we propose a nonexpansive operator that yields a computationally efficient update when it is plugged into the HSDM. The proposed operator is inspired by the update of the linearized augmented Lagrangian method. It is applicable to characterize the solution set of recent sophisticated convex optimization problems found in the context of inverse problems, where the sum of multiple proximable convex functions involving linear operators must be minimized to incorporate preferable properties into the minimizers. For such a problem formulation, there has not yet been reported any nonexpansive operator that yields an update free from the inversions of linear operators in cases where it is utilized in the HSDM. Unlike previously known nonexpansive operators, the proposed operator yields an inversion-free update in such cases. As an application of the proposed operator plugged into the HSDM, we also present, in the context of the so-called superiorization, an algorithmic solution to a convex optimization problem over the generalized convex feasible set where the intersection of the hard constraints is not necessarily simple.
NASA Astrophysics Data System (ADS)
Pospelov, A. I.
2016-08-01
Adaptive methods for the polyhedral approximation of the convex Edgeworth-Pareto hull in multiobjective monotone integer optimization problems are proposed and studied. For these methods, theoretical convergence rate estimates with respect to the number of vertices are obtained. The estimates coincide in order with those for filling and augmentation H-methods intended for the approximation of nonsmooth convex compact bodies.
A Bayesian observer replicates convexity context effects in figure-ground perception.
Goldreich, Daniel; Peterson, Mary A
2012-01-01
Peterson and Salvagio (2008) demonstrated convexity context effects in figure-ground perception. Subjects shown displays consisting of unfamiliar alternating convex and concave regions identified the convex regions as foreground objects progressively more frequently as the number of regions increased; this occurred only when the concave regions were homogeneously colored. The origins of these effects have been unclear. Here, we present a two-free-parameter Bayesian observer that replicates convexity context effects. The Bayesian observer incorporates two plausible expectations regarding three-dimensional scenes: (1) objects tend to be convex rather than concave, and (2) backgrounds tend (more than foreground objects) to be homogeneously colored. The Bayesian observer estimates the probability that a depicted scene is three-dimensional, and that the convex regions are figures. It responds stochastically by sampling from its posterior distributions. Like human observers, the Bayesian observer shows convexity context effects only for images with homogeneously colored concave regions. With optimal parameter settings, it performs similarly to the average human subject on the four display types tested. We propose that object convexity and background color homogeneity are environmental regularities exploited by human visual perception; vision achieves figure-ground perception by interpreting ambiguous images in light of these and other expected regularities in natural scenes.
Zheng, Wei; Ruan, Jishou; Hu, Gang; Wang, Kui; Hanlon, Michelle; Gao, Jianzhao
2015-01-01
The prediction of conformational b-cell epitopes plays an important role in immunoinformatics. Several computational methods are proposed on the basis of discrimination determined by the solvent-accessible surface between epitopes and non-epitopes, but the performance of existing methods is far from satisfying. In this paper, depth functions and the k-th surface convex hull are used to analyze epitopes and exposed non-epitopes. On each layer of the protein, we compute relative solvent accessibility and four different types of depth functions, i.e., Chakravarty depth, DPX, half-sphere exposure and half space depth, to analyze the location of epitopes on different layers of the proteins. We found that conformational b-cell epitopes are rich in charged residues Asp, Glu, Lys, Arg, His; aliphatic residues Gly, Pro; non-charged residues Asn, Gln; and aromatic residue Tyr. Conformational b-cell epitopes are rich in coils. Conservation of epitopes is not significantly lower than that of exposed non-epitopes. The average depths (obtained by four methods) for epitopes are significantly lower than that of non-epitopes on the surface using the Wilcoxon rank sum test. Epitopes are more likely to be located in the outer layer of the convex hull of a protein. On the benchmark dataset, the cumulate 10th convex hull covers 84.6% of exposed residues on the protein surface area, and nearly 95% of epitope sites. These findings may be helpful in building a predictor for epitopes.
Convex crystal x-ray spectrometer for laser plasma experiments
May, M.; Heeter, R.; Emig, J.
2004-10-01
Measuring time and space-resolved spectra is important for understanding Hohlraum and Halfraum plasmas. Experiments at the OMEGA laser have used the Nova TSPEC which was not optimized for the OMEGA diagnostic space envelope or for the needed spectroscopic coverage and resolution. An improved multipurpose spectrometer snout, the MSPEC, has been constructed and fielded on OMEGA. The MSPEC provides the maximal internal volume for mounting crystals without any beam interferences at either 2x or 3x magnification. The RAP crystal is in a convex mounting geometry bent to a 20 cm radius of curvature. The spectral resolution, E/dE, is about 200 at 2.5 keV. The spectral coverage is 2 to 4.5 keV. The MSPEC can record four separate spectra on the framing camera at time intervals of up to several ns. The spectrometer design and initial field-test performance will be presented and compared to that of the TSPEC.
Neural network for solving convex quadratic bilevel programming problems.
He, Xing; Li, Chuandong; Huang, Tingwen; Li, Chaojie
2014-03-01
In this paper, using the idea of successive approximation, we propose a neural network to solve convex quadratic bilevel programming problems (CQBPPs), which is modeled by a nonautonomous differential inclusion. Different from the existing neural network for CQBPP, the model has the least number of state variables and simple structure. Based on the theory of nonsmooth analysis, differential inclusions and Lyapunov-like method, the limit equilibrium points sequence of the proposed neural networks can approximately converge to an optimal solution of CQBPP under certain conditions. Finally, simulation results on two numerical examples and the portfolio selection problem show the effectiveness and performance of the proposed neural network. Copyright © 2013 Elsevier Ltd. All rights reserved.
Convex probe endobronchial ultrasound: applications beyond conventional indications
Li, Peng; Zheng, Wei
2015-01-01
Endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA) is maturing and gaining acceptance by more and more clinicians for lymph node staging of lung cancer and diagnosis of mediastinal and hilar masses or lymph node enlargement by convex probe endobronchial ultrasound (CP-EBUS). The application of CP-EBUS, however, is not limited to conventional indications. Diagnostically, elastography is a new technology for the differentiation of benign and malignant lymph nodes before aspiration. CP-EBUS can also be used for pulmonary vascular diseases, such as pulmonary embolism (PE) and non-thrombotic endovascular lesions (NELs). Therapeutically, CP-EBUS can be used for cyst drainage and drug injections. CP-EBUS is not limited to observation and aspiration of mediastinal masses and lymph nodes, but is also suitable for exploration of other tissues external to the central airway, which necessitates unprecedented skills for the bronchoscopist. PMID:26543618
Numerical optimization method for packing regular convex polygons
NASA Astrophysics Data System (ADS)
Galiev, Sh. I.; Lisafina, M. S.
2016-08-01
An algorithm is presented for the approximate solution of the problem of packing regular convex polygons in a given closed bounded domain G so as to maximize the total area of the packed figures. On G a grid is constructed whose nodes generate a finite set W on G, and the centers of the figures to be packed can be placed only at some points of W. The problem of packing these figures with centers in W is reduced to a 0-1 linear programming problem. A two-stage algorithm for solving the resulting problems is proposed. The algorithm finds packings of the indicated figures in an arbitrary closed bounded domain on the plane. Numerical results are presented that demonstrate the effectiveness of the method.
Nonparametric instrumental regression with non-convex constraints
NASA Astrophysics Data System (ADS)
Grasmair, M.; Scherzer, O.; Vanhems, A.
2013-03-01
This paper considers the nonparametric regression model with an additive error that is dependent on the explanatory variables. As is common in empirical studies in epidemiology and economics, it also supposes that valid instrumental variables are observed. A classical example in microeconomics considers the consumer demand function as a function of the price of goods and the income, both variables often considered as endogenous. In this framework, the economic theory also imposes shape restrictions on the demand function, such as integrability conditions. Motivated by this illustration in microeconomics, we study an estimator of a nonparametric constrained regression function using instrumental variables by means of Tikhonov regularization. We derive rates of convergence for the regularized model both in a deterministic and stochastic setting under the assumption that the true regression function satisfies a projected source condition including, because of the non-convexity of the imposed constraints, an additional smallness condition.
Isosurface construction in any dimension using Convex Hulls.
Bhaniramka, Praveen; Wenger, Rephael; Crawfis, Roger
2004-01-01
We present an algorithm for constructing isosurfaces in any dimension. The input to the algorithm is a set of scalar values in a d-dimensional regular grid of (topological) hypercubes. The output is a set of (d-1)-dimensional simplices forming a piecewise linear approximation to the isosurface. The algorithm constructs the isosurface piecewise within each hypercube in the grid using the convex hull of an appropriate set of points. We prove that our algorithm correctly produces a triangulation of a (d-1)-manifold with boundary. In dimensions three and four, lookup tables with 2(8) and 2(16) entries, respectively, can be used to speed the algorithm's running time. In three dimensions, this gives the popular Marching Cubes algorithm. We discuss applications of four-dimensional isosurface construction to time varying isosurfaces, interval volumes, and morphing.
Realization of first-order optical systems using thin convex lenses of fixed focal length.
Yasir, P A Ameen; Ivan, J Solomon
2014-09-01
A general axially symmetric first-order optical system is realized using free propagation and thin convex lenses of fixed focal length. It is shown that not more than five convex lenses of fixed focal length are required to realize the most general first-order optical system, with the required number of lenses depending on the situation. The free propagation distances are evaluated explicitly in each situation. The optimality of the decomposition obtained in each situation is brought out. Decompositions for some familiar subgroups of SL2(R) are also worked out. Convex or concave lenses of arbitrary focal length are realized using three or two convex lenses of fixed focal length, respectively. It is further shown that three convex lenses of arbitrary focal length are sufficient to realize the most general first-order optical system.
Convex rear view mirrors compromise distance and time-to-contact judgements.
Hecht, Heiko; Brauer, Julia
2007-04-01
Convex rear view mirrors increasingly replace planar mirrors in automobiles. While increasing the field of view, convex mirrors are also taken to increase distance estimates and thereby reduce safety margins. However, this study failed to replicate systematic distance estimation errors in a real world setting. Whereas distance estimates were accurate on average, convex mirrors lead to significantly more variance in distance and spacing estimations. A second experiment explored the effect of mirrors on time-to-contact estimations, which had not been previously researched. Potential effects of display size were separated from effects caused by distortion in convex mirrors. Time-to-contact estimations without a mirror were most accurate. However, not distortion, but visual angle seemed to cause estimation biases. Evaluating advantages and disadvantages of convex mirrors is far more complex than expected so far.
Face adaptation depends on seeing the face.
Moradi, Farshad; Koch, Christof; Shimojo, Shinsuke
2005-01-06
Retinal input that is suppressed from visual awareness can nevertheless produce measurable aftereffects, revealing neural processes that do not directly result in a conscious percept. We here report that the face identity-specific aftereffect requires a visible face; it is effectively cancelled by binocular suppression or by inattentional blindness of the inducing face. Conversely, the same suppression does not interfere with the orientation-specific aftereffect. Thus, the competition between incompatible or interfering visual inputs to reach awareness is resolved before those aspects of information that are exploited in face identification are processed. We also found that the face aftereffect remained intact when the visual distracters in the inattention experiment were replaced with auditory distracters. Thus, cross-modal or cognitive interference that does not affect the visibility of the face does not interfere with the face aftereffect. We conclude that adaptation to face identity depends on seeing the face.
NASA Technical Reports Server (NTRS)
2004-01-01
[figure removed for brevity, see original site]
Released 31 May 2004 This image was collected May 29, 2002 during northern spring season. The local time at the image location was about 3:30 pm. The image shows an area between Isidis Basin and Syrtis Major regions.
The THEMIS VIS camera is capable of capturing color images of the martian surface using its five different color filters. In this mode of operation, the spatial resolution and coverage of the image must be reduced to accommodate the additional data volume produced from the use of multiple filters. To make a color image, three of the five filter images (each in grayscale) are selected. Each is contrast enhanced and then converted to a red, green, or blue intensity image. These three images are then combined to produce a full color, single image. Because the THEMIS color filters don't span the full range of colors seen by the human eye, a color THEMIS image does not represent true color. Also, because each single-filter image is contrast enhanced before inclusion in the three-color image, the apparent color variation of the scene is exaggerated. Nevertheless, the color variation that does appear is representative of some change in color, however subtle, in the actual scene. Note that the long edges of THEMIS color images typically contain color artifacts that do not represent surface variation.
Image information: VIS instrument. Latitude 14, Longitude 79.1 East (28.9 West). 38 meter/pixel resolution.
Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.
NASA's Jet
Estimation of Saxophone Control Parameters by Convex Optimization
Wang, Cheng-i; Smyth, Tamara; Lipton, Zachary C.
2015-01-01
In this work, an approach to jointly estimating the tone hole configuration (fingering) and reed model parameters of a saxophone is presented. The problem isn't one of merely estimating pitch as one applied fingering can be used to produce several different pitches by bugling or overblowing. Nor can a fingering be estimated solely by the spectral envelope of the produced sound (as it might for estimation of vocal tract shape in speech) since one fingering can produce markedly different spectral envelopes depending on the player's embouchure and control of the reed. The problem is therefore addressed by jointly estimating both the reed (source) parameters and the fingering (filter) of a saxophone model using convex optimization and 1) a bank of filter frequency responses derived from measurement of the saxophone configured with all possible fingerings and 2) sample recordings of notes produced using all possible fingerings, played with different overblowing, dynamics and timbre. The saxophone model couples one of several possible frequency response pairs (corresponding to the applied fingering), and a quasi-static reed model generating input pressure at the mouthpiece, with control parameters being blowing pressure and reed stiffness. Applied fingering and reed parameters are estimated for a given recording by formalizing a minimization problem, where the cost function is the error between the recording and the synthesized sound produced by the model having incremental parameter values for blowing pressure and reed stiffness. The minimization problem is nonlinear and not differentiable and is made solvable using convex optimization. The performance of the fingering identification is evaluated with better accuracy than previous reported value. PMID:27754493
Path Following in the Exact Penalty Method of Convex Programming.
Zhou, Hua; Lange, Kenneth
2015-07-01
Classical penalty methods solve a sequence of unconstrained problems that put greater and greater stress on meeting the constraints. In the limit as the penalty constant tends to ∞, one recovers the constrained solution. In the exact penalty method, squared penalties are replaced by absolute value penalties, and the solution is recovered for a finite value of the penalty constant. In practice, the kinks in the penalty and the unknown magnitude of the penalty constant prevent wide application of the exact penalty method in nonlinear programming. In this article, we examine a strategy of path following consistent with the exact penalty method. Instead of performing optimization at a single penalty constant, we trace the solution as a continuous function of the penalty constant. Thus, path following starts at the unconstrained solution and follows the solution path as the penalty constant increases. In the process, the solution path hits, slides along, and exits from the various constraints. For quadratic programming, the solution path is piecewise linear and takes large jumps from constraint to constraint. For a general convex program, the solution path is piecewise smooth, and path following operates by numerically solving an ordinary differential equation segment by segment. Our diverse applications to a) projection onto a convex set, b) nonnegative least squares, c) quadratically constrained quadratic programming, d) geometric programming, and e) semidefinite programming illustrate the mechanics and potential of path following. The final detour to image denoising demonstrates the relevance of path following to regularized estimation in inverse problems. In regularized estimation, one follows the solution path as the penalty constant decreases from a large value.
Path Following in the Exact Penalty Method of Convex Programming
Zhou, Hua; Lange, Kenneth
2015-01-01
Classical penalty methods solve a sequence of unconstrained problems that put greater and greater stress on meeting the constraints. In the limit as the penalty constant tends to ∞, one recovers the constrained solution. In the exact penalty method, squared penalties are replaced by absolute value penalties, and the solution is recovered for a finite value of the penalty constant. In practice, the kinks in the penalty and the unknown magnitude of the penalty constant prevent wide application of the exact penalty method in nonlinear programming. In this article, we examine a strategy of path following consistent with the exact penalty method. Instead of performing optimization at a single penalty constant, we trace the solution as a continuous function of the penalty constant. Thus, path following starts at the unconstrained solution and follows the solution path as the penalty constant increases. In the process, the solution path hits, slides along, and exits from the various constraints. For quadratic programming, the solution path is piecewise linear and takes large jumps from constraint to constraint. For a general convex program, the solution path is piecewise smooth, and path following operates by numerically solving an ordinary differential equation segment by segment. Our diverse applications to a) projection onto a convex set, b) nonnegative least squares, c) quadratically constrained quadratic programming, d) geometric programming, and e) semidefinite programming illustrate the mechanics and potential of path following. The final detour to image denoising demonstrates the relevance of path following to regularized estimation in inverse problems. In regularized estimation, one follows the solution path as the penalty constant decreases from a large value. PMID:26366044
Convexity of momentum map, Morse index, and quantum entanglement
NASA Astrophysics Data System (ADS)
Sawicki, Adam; Oszmaniec, Michał; Kuś, Marek
2014-03-01
We analyze from the topological perspective the space of all SLOCC (Stochastic Local Operations with Classical Communication) classes of pure states for composite quantum systems. We do it for both distinguishable and indistinguishable particles. In general, the topology of this space is rather complicated as it is a non-Hausdorff space. Using geometric invariant theory (GIT) and momentum map geometry, we propose a way to divide the space of all SLOCC classes into mathematically and physically meaningful families. Each family consists of possibly many "asymptotically" equivalent SLOCC classes. Moreover, each contains exactly one distinguished SLOCC class on which the total variance (a well-defined measure of entanglement) of the state Var[v] attains maximum. We provide an algorithm for finding critical sets of Var[v], which makes use of the convexity of the momentum map and allows classification of such defined families of SLOCC classes. The number of families is in general infinite. We introduce an additional refinement into finitely many groups of families using some developments in the momentum map geometry known as the Kirwan-Ness stratification. We also discuss how to define it equivalently using the convexity of the momentum map applied to SLOCC classes. Moreover, we note that the Morse index at the critical set of the total variance of state has an interpretation of number of non-SLOCC directions in which entanglement increases and calculate it for several exemplary systems. Finally, we introduce the SLOCC-invariant measure of entanglement as a square root of the total variance of state at the critical point and explain its geometric meaning.
Trajectory Design Employing Convex Optimization for Landing on Irregularly Shaped Asteroids
NASA Technical Reports Server (NTRS)
Pinson, Robin M.; Lu, Ping
2016-01-01
proposed solution for designing the asteroid powered descent trajectory is to use convex optimization, a gravity model with higher fidelity than Newtonian, and an iterative solution process to design the fuel optimal trajectory. The solution to the convex optimization problem is the thrust profile, magnitude and direction, that will yield the minimum fuel trajectory for a soft landing at the target site, subject to various mission and operational constraints. The equations of motion are formulated in a rotating coordinate system and includes a high fidelity gravity model. The vehicle's thrust magnitude can vary between maximum and minimum bounds during the burn. Also, constraints are included to ensure that the vehicle does not run out of propellant, or go below the asteroid's surface, and any vehicle pointing requirements. The equations of motion are discretized and propagated with the trapezoidal rule in order to produce equality constraints for the optimization problem. These equality constraints allow the optimization algorithm to solve the entire problem, without including a propagator inside the optimization algorithm.
Pongakkasira, Kaewmart; Bindemann, Markus
2015-04-01
Human face detection might be driven by skin-coloured face-shaped templates. To explore this idea, this study compared the detection of faces for which the natural height-to-width ratios were preserved with distorted faces that were stretched vertically or horizontally. The impact of stretching on detection performance was not obvious when faces were equated to their unstretched counterparts in terms of their height or width dimension (Experiment 1). However, stretching impaired detection when the original and distorted faces were matched for their surface area (Experiment 2), and this was found with both vertically and horizontally stretched faces (Experiment 3). This effect was evident in accuracy, response times, and also observers' eye movements to faces. These findings demonstrate that height-to-width ratios are an important component of the cognitive template for face detection. The results also highlight important differences between face detection and face recognition. Copyright © 2015 Elsevier Ltd. All rights reserved.
Podczeck, Fridrun; Drake, Kevin R; Newton, J Michael
2013-09-15
In the literature various solutions exist for the calculation of the diametral compression tensile strength of doubly-convex tablets and each approach is based on experimental data obtained from single materials (gypsum, microcrystalline cellulose) only. The solutions are represented by complex equations and further differ for elastic and elasto-plastic behaviour of the compacts. The aim of this work was to develop a general equation that is applicable independently of deformation behaviour and which is based on simple tablet dimensions such as diameter and total tablet thickness only. With the help of 3D-FEM analysis the tensile failure stress of doubly-convex tables with central cylinder to total tablet thickness ratios W/D between 0.06 and 0.50 and face-curvature ratios D/R between 0.25 and 1.85 were evaluated. Both elastic and elasto-plastic deformation behaviour were considered. The results of 80 individual simulations were combined and showed that the tensile failure stress σt of doubly-convex tablets can be calculated from σt=(2P/πDW)(W/T)=2P/πDT with P being the failure load, D the diameter, W the central cylinder thickness, and T the total thickness of the tablet. This equation converts into the standard Brazilian equation (σt=2P/πDW) when W equals T, i.e. is equally valid for flat cylindrical tablets. In practice, the use of this new equation removes the need for complex measurements of tablet dimensions, because it only requires values for diameter and total tablet thickness. It also allows setting of standards for the mechanical strength of doubly-convex tablets. The new equation holds both for elastic and elasto-plastic deformation behaviour of the tablets under load. It is valid for all combinations of W/D-ratios between 0.06 and 0.50 with D/R-ratios between 0.00 and 1.85 except for W/D=0.50 in combination with D/R-ratios of 1.85 and 1.43 and for W/D-ratios of 0.40 and 0.30 in combination with D/R=1.85. FEM-analysis indicated a tendency to
What's in a face? The role of depth undulations in three-dimensional depth-inversion illusions.
Vlajnic, Vanja M; Papathomas, Thomas V; Keane, Brian P; Zalokostas, Anna; Silverstein, Steven M
2014-01-01
Upright hollow human faces produce among the strongest depth-inversion illusions (DIIs), but why? We considered the role of depth undulations by comparing four types of hollow objects: an ellipsoid, a human mask, and two symmetric 'Martian'masks, which wavered in depth like the human mask but which lacked face-like features. Illusion strength was quantified either as the critical viewing distance at which the 3-D percept switched between convex and concave (experiment 1) or as the proportion of time ('predominance') that observers experienced DII from a fixed intermediate viewing distance (experiment 2). Critical distances were smallest--and hence the illusion was strongest--for the upright human mask; the remaining objects produced undifferentiated critical distance values. The predominance results were more fine-grained: illusions were experienced most often for the upright human mask, least often for the hollow ellipsoid, and to an intermediate extent for the Martian and upside-down human masks. These results suggest: (1) an upside-down human mask and a surface with nonface features undulating in depth are equivalent for the purposes of generating DIIs; (2) depth undulations contribute to DII; and (3) such undulations are most effective when structured into an upright human face.
NASA Technical Reports Server (NTRS)
Munson, John
2009-01-01
In the seal literature you can find many attempts by various researchers to adapt film riding seals to the gas turbine engine. None have been successful, potential distortion of the sealing faces is the primary reason. There is a film riding device that does accommodate distortion and is in service in aircraft applications, namely the foil bearing. More specifically a foil thrust bearing. These are not intended to be seals, and they do not accommodate large axial movement between shaft & static structure. By combining the 2 a unique type of face seal has been created. It functions like a normal face seal. The foil thrust bearing replaces the normal primary sealing surface. The compliance of the foil bearing allows the foils to track distortion of the mating seal ring. The foil seal has several perceived advantages over existing hydrodynamic designs, enumerated in the chart. Materials and design methodology needed for this application already exist. Also the load capacity requirements for the foil bearing are low since it only needs to support itself and overcome friction forces at the antirotation keys.
A Face Inversion Effect without a Face
ERIC Educational Resources Information Center
Brandman, Talia; Yovel, Galit
2012-01-01
Numerous studies have attributed the face inversion effect (FIE) to configural processing of internal facial features in upright but not inverted faces. Recent findings suggest that face mechanisms can be activated by faceless stimuli presented in the context of a body. Here we asked whether faceless stimuli with or without body context may induce…
A Face Inversion Effect without a Face
ERIC Educational Resources Information Center
Brandman, Talia; Yovel, Galit
2012-01-01
Numerous studies have attributed the face inversion effect (FIE) to configural processing of internal facial features in upright but not inverted faces. Recent findings suggest that face mechanisms can be activated by faceless stimuli presented in the context of a body. Here we asked whether faceless stimuli with or without body context may induce…
ERIC Educational Resources Information Center
Thompson, Greg; Cook, Ian
2013-01-01
This paper uses Deleuze and Guattari's concept of faciality to analyse the teacher's face. According to Deleuze and Guattari, the teacher-face is a special type of face because it is an "overcoded" face produced in specific landscapes. This paper suggests four limit-faces for teacher faciality that actualise different mixes of significance and…
Learning Faces from Photographs
ERIC Educational Resources Information Center
Longmore, Christopher A.; Liu, Chang Hong; Young, Andrew W.
2008-01-01
Previous studies examining face learning have mostly used only a single exposure to 1 image of each of the faces to be learned. However, in daily life, faces are usually learned from multiple encounters. These 6 experiments examined the effects on face learning of repeated exposures to single or multiple images of a face. All experiments…
Learning Faces from Photographs
ERIC Educational Resources Information Center
Longmore, Christopher A.; Liu, Chang Hong; Young, Andrew W.
2008-01-01
Previous studies examining face learning have mostly used only a single exposure to 1 image of each of the faces to be learned. However, in daily life, faces are usually learned from multiple encounters. These 6 experiments examined the effects on face learning of repeated exposures to single or multiple images of a face. All experiments…
ERIC Educational Resources Information Center
Thompson, Greg; Cook, Ian
2013-01-01
This paper uses Deleuze and Guattari's concept of faciality to analyse the teacher's face. According to Deleuze and Guattari, the teacher-face is a special type of face because it is an "overcoded" face produced in specific landscapes. This paper suggests four limit-faces for teacher faciality that actualise different mixes of significance and…
A convex max-flow segmentation of LV using subject-specific distributions on cardiac MRI.
Nambakhsh, Mohammad Saleh; Yuan, Jing; Ben Ayed, Ismail; Punithakumar, Kumaradevan; Goela, Aashish; Islam, Ali; Peters, Terry; Li, Shuo
2011-01-01
This work studies the convex relaxation approach to the left ventricle (LV) segmentation which gives rise to a challenging multi-region seperation with the geometrical constraint. For each region, we consider the global Bhattacharyya metric prior to evaluate a gray-scale and a radial distance distribution matching. In this regard, the studied problem amounts to finding three regions that most closely match their respective input distribution model. It was previously addressed by curve evolution, which leads to sub-optimal and computationally intensive algorithms, or by graph cuts, which result in heavy metrication errors (grid bias). The proposed convex relaxation approach solves the LV segmentation through a sequence of convex sub-problems. Each sub-problem leads to a novel bound of the Bhattacharyya measure and yields the convex formulation which paves the way to build up the efficient and reliable solver. In this respect, we propose a novel flow configuration that accounts for labeling-function variations, in comparison to the existing flow-maximization configurations. We show it leads to a new convex max-flow formulation which is dual to the obtained convex relaxed sub-problem and does give the exact and global optimums to the original non-convex sub-problem. In addition, we present such flow perspective gives a new and simple way to encode the geometrical constraint of optimal regions. A comprehensive experimental evaluation on sufficient patient subjects demonstrates that our approach yields improvements in optimality and accuracy over related recent methods.
Privileged Coding of Convex Shapes in Human Object-Selective Cortex
Haushofer, Johannes; Baker, Chris I.; Livingstone, Margaret S.; Kanwisher, Nancy
2008-01-01
What is the neural code for object shape? Despite intensive research, the precise nature of object representations in high-level visual cortex remains elusive. Here we use functional magnetic resonance imaging (fMRI) to show that convex shapes are encoded in a privileged fashion by human lateral occipital complex (LOC), a region that has been implicated in object recognition. On each trial, two convex or two concave shapes that were either identical or different were presented sequentially. Critically, the convex and concave stimuli were the same except for a binocular disparity change that reversed the figure–ground assignment. The fMRI response in LOC for convex stimuli was higher for different than that for identical shape pairs, indicating sensitivity to differences in convex shape. However, when the same stimuli were seen as concave, the response for different and identical pairs was the same, indicating lower sensitivity to changes in concave shape than convex shape. This pattern was more pronounced in the anterior than that in the posterior portion of LOC. These results suggest that convex contours could be important elements in cortical object representations. PMID:18579661
Privileged coding of convex shapes in human object-selective cortex.
Haushofer, Johannes; Baker, Chris I; Livingstone, Margaret S; Kanwisher, Nancy
2008-08-01
What is the neural code for object shape? Despite intensive research, the precise nature of object representations in high-level visual cortex remains elusive. Here we use functional magnetic resonance imaging (fMRI) to show that convex shapes are encoded in a privileged fashion by human lateral occipital complex (LOC), a region that has been implicated in object recognition. On each trial, two convex or two concave shapes that were either identical or different were presented sequentially. Critically, the convex and concave stimuli were the same except for a binocular disparity change that reversed the figure-ground assignment. The fMRI response in LOC for convex stimuli was higher for different than that for identical shape pairs, indicating sensitivity to differences in convex shape. However, when the same stimuli were seen as concave, the response for different and identical pairs was the same, indicating lower sensitivity to changes in concave shape than convex shape. This pattern was more pronounced in the anterior than that in the posterior portion of LOC. These results suggest that convex contours could be important elements in cortical object representations.
Maximum margin classification based on flexible convex hulls for fault diagnosis of roller bearings
NASA Astrophysics Data System (ADS)
Zeng, Ming; Yang, Yu; Zheng, Jinde; Cheng, Junsheng
2016-01-01
A maximum margin classification based on flexible convex hulls (MMC-FCH) is proposed and applied to fault diagnosis of roller bearings. In this method, the class region of each sample set is approximated by a flexible convex hull of its training samples, and then an optimal separating hyper-plane that maximizes the geometric margin between flexible convex hulls is constructed by solving a closest pair of points problem. By using the kernel trick, MMC-FCH can be extended to nonlinear cases. In addition, multi-class classification problems can be processed by constructing binary pairwise classifiers as in support vector machine (SVM). Actually, the classical SVM also can be regarded as a maximum margin classification based on convex hulls (MMC-CH), which approximates each class region with a convex hull. The convex hull is a special case of the flexible convex hull. To train a MMC-FCH classifier, time-domain and frequency-domain statistical parameters are extracted not only from raw vibration signals but also from the resulting intrinsic mode functions (IMFs) by performing empirical mode decomposition (EMD) on the raw signals, and then the distance evaluation technique (DET) is used to select salient features from the whole statistical features. The experiments on bearing datasets show that the proposed method can reliably recognize different bearing faults.
Face recognition across non-uniform motion blur, illumination, and pose.
Punnappurath, Abhijith; Rajagopalan, Ambasamudram Narayanan; Taheri, Sima; Chellappa, Rama; Seetharaman, Guna
2015-07-01
Existing methods for performing face recognition in the presence of blur are based on the convolution model and cannot handle non-uniform blurring situations that frequently arise from tilts and rotations in hand-held cameras. In this paper, we propose a methodology for face recognition in the presence of space-varying motion blur comprising of arbitrarily-shaped kernels. We model the blurred face as a convex combination of geometrically transformed instances of the focused gallery face, and show that the set of all images obtained by non-uniformly blurring a given image forms a convex set. We first propose a non-uniform blur-robust algorithm by making use of the assumption of a sparse camera trajectory in the camera motion space to build an energy function with l1 -norm constraint on the camera motion. The framework is then extended to handle illumination variations by exploiting the fact that the set of all images obtained from a face image by non-uniform blurring and changing the illumination forms a bi-convex set. Finally, we propose an elegant extension to also account for variations in pose.
The role of convexity in perception of symmetry and in visual short-term memory.
Bertamini, Marco; Helmy, Mai Salah; Hulleman, Johan
2013-01-01
Visual perception of shape is affected by coding of local convexities and concavities. For instance, a recent study reported that deviations from symmetry carried by convexities were easier to detect than deviations carried by concavities. We removed some confounds and extended this work from a detection of reflection of a contour (i.e., bilateral symmetry), to a detection of repetition of a contour (i.e., translational symmetry). We tested whether any convexity advantage is specific to bilateral symmetry in a two-interval (Experiment 1) and a single-interval (Experiment 2) detection task. In both, we found a convexity advantage only for repetition. When we removed the need to choose which region of the contour to monitor (Experiment 3) the effect disappeared. In a second series of studies, we again used shapes with multiple convex or concave features. Participants performed a change detection task in which only one of the features could change. We did not find any evidence that convexities are special in visual short-term memory, when the to-be-remembered features only changed shape (Experiment 4), when they changed shape and changed from concave to convex and vice versa (Experiment 5), or when these conditions were mixed (Experiment 6). We did find a small advantage for coding convexity as well as concavity over an isolated (and thus ambiguous) contour. The latter is consistent with the known effect of closure on processing of shape. We conclude that convexity plays a role in many perceptual tasks but that it does not have a basic encoding advantage over concavity.
Statistical Mechanics of Optimal Convex Inference in High Dimensions
NASA Astrophysics Data System (ADS)
Advani, Madhu; Ganguli, Surya
2016-07-01
A fundamental problem in modern high-dimensional data analysis involves efficiently inferring a set of P unknown model parameters governing the relationship between the inputs and outputs of N noisy measurements. Various methods have been proposed to regress the outputs against the inputs to recover the P parameters. What are fundamental limits on the accuracy of regression, given finite signal-to-noise ratios, limited measurements, prior information, and computational tractability requirements? How can we optimally combine prior information with measurements to achieve these limits? Classical statistics gives incisive answers to these questions as the measurement density α =(N /P )→∞ . However, these classical results are not relevant to modern high-dimensional inference problems, which instead occur at finite α . We employ replica theory to answer these questions for a class of inference algorithms, known in the statistics literature as M-estimators. These algorithms attempt to recover the P model parameters by solving an optimization problem involving minimizing the sum of a loss function that penalizes deviations between the data and model predictions, and a regularizer that leverages prior information about model parameters. Widely cherished algorithms like maximum likelihood (ML) and maximum-a posteriori (MAP) inference arise as special cases of M-estimators. Our analysis uncovers fundamental limits on the inference accuracy of a subclass of M-estimators corresponding to computationally tractable convex optimization problems. These limits generalize classical statistical theorems like the Cramer-Rao bound to the high-dimensional setting with prior information. We further discover the optimal M-estimator for log-concave signal and noise distributions; we demonstrate that it can achieve our high-dimensional limits on inference accuracy, while ML and MAP cannot. Intriguingly, in high dimensions, these optimal algorithms become computationally simpler than
Anthropometric Analysis of the Face.
Zacharopoulos, Georgios V; Manios, Andreas; Kau, Chung H; Velagrakis, George; Tzanakakis, George N; de Bree, Eelco
2016-01-01
Facial anthropometric analysis is essential for planning cosmetic and reconstructive facial surgery, but has not been available in detail for modern Greeks. In this study, multiple measurements of the face were performed on young Greek males and females to provide a complete facial anthropometric profile of this population and to compare its facial morphology with that of North American Caucasians. Thirty-one direct facial anthropometric measurements were obtained from 152 Greek students. Moreover, the prevalence of the various face types was determined. The resulting data were compared with those published regarding North American Caucasians. A complete set of average anthropometric data was obtained for each sex. Greek males, when compared to Greek females, were found to have statistically significantly longer foreheads as well as greater values in morphologic face height, mandible width, maxillary surface arc distance, and mandibular surface arc distance. In both sexes, the most common face types were mesoprosop, leptoprosop, and hyperleptoprosop. Greek males had significantly wider faces and mandibles than the North American Caucasian males, whereas Greek females had only significantly wider mandibles than their North American counterparts. Differences of statistical significance were noted in the head and face regions among sexes as well as among Greek and North American Caucasians. With the establishment of facial norms for Greek adults, this study contributes to the preoperative planning as well as postoperative evaluation of Greek patients that are, respectively, scheduled for or are to be subjected to facial reconstructive and aesthetic surgery.
On the James constant and B-convexity of Cesaro and Cesaro-Orlicz sequence spaces
NASA Astrophysics Data System (ADS)
Maligranda, Lech; Petrot, Narin; Suantai, Suthep
2007-02-01
The classical James constant and the nth James constants, which are measure of B-convexity for the Cesaro sequence spaces cesp and the Cesaro-Orlicz sequence spaces cesM, are calculated. These investigations show that cesp,cesM are not uniformly non-square and even they are not B-convex. Therefore the classical Cesaro sequence spaces cesp are natural examples of reflexive spaces which are not B-convex. Moreover, the James constant for the two-dimensional Cesaro space is calculated.
1982-12-21
Operations Research, Vol. 18, No. 1, pp. 107-118. FENCHEL , W. (1953). Convex Cones , Sets and Functions . Lecture Notes, Princeton University Press... FUNCTION AND CONVEXITY PROPERTIES OF THE SOLUTION SET MAP ..... .............. ... 40 5. CONCLUDING REMARKS ................ ...... 48 REFERENCES...I * -3- T-471 is the set conv(A) - {x1 + (l-X)x 12 XX 2 e A, A [0,1]1 . The set K CEr is a cone if x e K implies x e K for all > 0 ,and K is a convex
A One-Layer Recurrent Neural Network for Constrained Complex-Variable Convex Optimization.
Qin, Sitian; Feng, Jiqiang; Song, Jiahui; Wen, Xingnan; Xu, Chen
2016-12-22
In this paper, based on CR calculus and penalty method, a one-layer recurrent neural network is proposed for solving constrained complex-variable convex optimization. It is proved that for any initial point from a given domain, the state of the proposed neural network reaches the feasible region in finite time and converges to an optimal solution of the constrained complex-variable convex optimization finally. In contrast to existing neural networks for complex-variable convex optimization, the proposed neural network has a lower model complexity and better convergence. Some numerical examples and application are presented to substantiate the effectiveness of the proposed neural network.
Russ, Trina; Koch, Mark; Koudelka, Melissa; Peters, Ralph; Little, Charles; Boehnen, Chris; Peters, Tanya
2007-07-20
This software distribution contains MATLAB and C++ code to enable identity verification using 3D images that may or may not contain a texture component. The code is organized to support system performance testing and system capability demonstration through the proper configuration of the available user interface. Using specific algorithm parameters the face recognition system has been demonstrated to achieve a 96.6% verification rate (Pd) at 0.001 false alarm rate. The system computes robust facial features of a 3D normalized face using Principal Component Analysis (PCA) and Fisher Linear Discriminant Analysis (FLDA). A 3D normalized face is obtained by alighning each face, represented by a set of XYZ coordinated, to a scaled reference face using the Iterative Closest Point (ICP) algorithm. The scaled reference face is then deformed to the input face using an iterative framework with parameters that control the deformed surface regulation an rate of deformation. A variety of options are available to control the information that is encoded by the PCA. Such options include the XYZ coordinates, the difference of each XYZ coordinates from the reference, the Z coordinate, the intensity/texture values, etc. In addition to PCA/FLDA feature projection this software supports feature matching to obtain similarity matrices for performance analysis. In addition, this software supports visualization of the STL, MRD, 2D normalized, and PCA synthetic representations in a 3D environment.
Precision platform for convex lens-induced confinement microscopy
NASA Astrophysics Data System (ADS)
Berard, Daniel; McFaul, Christopher M. J.; Leith, Jason S.; Arsenault, Adriel K. J.; Michaud, François; Leslie, Sabrina R.
2013-10-01
We present the conception, fabrication, and demonstration of a versatile, computer-controlled microscopy device which transforms a standard inverted fluorescence microscope into a precision single-molecule imaging station. The device uses the principle of convex lens-induced confinement [S. R. Leslie, A. P. Fields, and A. E. Cohen, Anal. Chem. 82, 6224 (2010)], which employs a tunable imaging chamber to enhance background rejection and extend diffusion-limited observation periods. Using nanopositioning stages, this device achieves repeatable and dynamic control over the geometry of the sample chamber on scales as small as the size of individual molecules, enabling regulation of their configurations and dynamics. Using microfluidics, this device enables serial insertion as well as sample recovery, facilitating temporally controlled, high-throughput measurements of multiple reagents. We report on the simulation and experimental characterization of this tunable chamber geometry, and its influence upon the diffusion and conformations of DNA molecules over extended observation periods. This new microscopy platform has the potential to capture, probe, and influence the configurations of single molecules, with dramatically improved imaging conditions in comparison to existing technologies. These capabilities are of immediate interest to a wide range of research and industry sectors in biotechnology, biophysics, materials, and chemistry.
Convex Crystal X-ray Spectrometer for Laser Plasma Experiments
May, M; Heeter, R; Emig, J
2004-04-15
Measuring time and space-resolved spectra is important for understanding Hohlraum and Halfraum plasmas. Experiments at the OMEGA laser have used the Nova TSPEC which was not optimized for the OMEGA diagnostic space envelope or for the needed spectroscopic coverage and resolution. An improved multipurpose spectrometer snout, the MSPEC, has been constructed and fielded on OMEGA. The MSPEC provides the maximal internal volume for mounting crystals without any beam interferences at either 2x or 3x magnification. The RAP crystal is in a convex mounting geometry bent to a 20 cm radius of curvature. The spectral resolution, E/dE, is about 200 at 2.5 keV. The spectral coverage is 2 to 4.5 keV. The MSPEC can record four separate spectra on the framing camera at time intervals of up to several ns. The spectrometer design and initial field-test performance will be presented and compared to that of the TSPEC. Work supported by U. S. DoE/UC LLNL contract W-7405-ENG-48
Ultrafast Quantum Process Tomography via Continuous Measurement and Convex Optimization
NASA Astrophysics Data System (ADS)
Baldwin, Charles; Riofrio, Carlos; Deutsch, Ivan
2013-03-01
Quantum process tomography (QPT) is an essential tool to diagnose the implementation of a dynamical map. However, the standard protocol is extremely resource intensive. For a Hilbert space of dimension d, it requires d2 different input preparations followed by state tomography via the estimation of the expectation values of d2 - 1 orthogonal observables. We show that when the process is nearly unitary, we can dramatically improve the efficiency and robustness of QPT through a collective continuous measurement protocol on an ensemble of identically prepared systems. Given the measurement history we obtain the process matrix via a convex program that optimizes a desired cost function. We study two estimators: least-squares and compressive sensing. Both allow rapid QPT due to the condition of complete positivity of the map; this is a powerful constraint to force the process to be physical and consistent with the data. We apply the method to a real experimental implementation, where optimal control is used to perform a unitary map on a d = 8 dimensional system of hyperfine levels in cesium atoms, and obtain the measurement record via Faraday spectroscopy of a laser probe. Supported by the NSF
A Localization Method for Multistatic SAR Based on Convex Optimization
2015-01-01
In traditional localization methods for Synthetic Aperture Radar (SAR), the bistatic range sum (BRS) estimation and Doppler centroid estimation (DCE) are needed for the calculation of target localization. However, the DCE error greatly influences the localization accuracy. In this paper, a localization method for multistatic SAR based on convex optimization without DCE is investigated and the influence of BRS estimation error on localization accuracy is analysed. Firstly, by using the information of each transmitter and receiver (T/R) pair and the target in SAR image, the model functions of T/R pairs are constructed. Each model function’s maximum is on the circumference of the ellipse which is the iso-range for its model function’s T/R pair. Secondly, the target function whose maximum is located at the position of the target is obtained by adding all model functions. Thirdly, the target function is optimized based on gradient descent method to obtain the position of the target. During the iteration process, principal component analysis is implemented to guarantee the accuracy of the method and improve the computational efficiency. The proposed method only utilizes BRSs of a target in several focused images from multistatic SAR. Therefore, compared with traditional localization methods for SAR, the proposed method greatly improves the localization accuracy. The effectivity of the localization approach is validated by simulation experiment. PMID:26566031
Clinical associations and causes of convexity subarachnoid hemorrhage.
Khurram, Ashan; Kleinig, Timothy; Leyden, James
2014-04-01
It has been previously found noted that ≈15% to 20% of subarachnoid hemorrhage (SAH) is nonaneurysmal. Nontraumatic convexity SAH (cSAH) is increasingly recognized. Data concerning incidence and associations are scant. We identified all SAH-coded cases from South Australian public hospitals between January 2005 and July 2011. Electronic discharge summaries were reviewed, and cases of cSAH were ascertained. Clinical and radiological features were recorded, and pathogenesis was assigned. Of 742 cases with SAH, 41 (6%) cases were cSAH, giving a minimum population annual incidence of 5.1 per million (95% confidence interval, 3.7-7.0). Median age was 70 years (interquartile range, 48-79). Commonest causes were cerebral amyloid angiopathy (39%), reversible cerebral vasoconstriction syndrome (17%), cerebral venous sinus thrombosis (10%), large-vessel stenotic atherosclerosis (10%), and posterior reversible encephalopathy syndrome (5%). No cause was identified in 20% (mostly elderly patients with incomplete evaluation). Most (63%) presented with transient neurological symptoms. Many (49%) were misdiagnosed as transient ischemic attacks and treated inappropriately with antithrombotics. cSAH comprises a significant proportion of SAH. Commonest causes are cerebral amyloid angiopathy in the elderly and reversible cerebral vasoconstriction syndrome in the young, but differential diagnosis is broad. Misdiagnosis is common and leads to potentially harmful treatments.
Nontraumatic convexal subarachnoid hemorrhage concomitant with acute ischemic stroke.
Nakajima, Makoto; Inatomi, Yuichiro; Yonehara, Toshiro; Hirano, Teruyuki; Ando, Yukio
2014-07-01
Nontraumatic convexal subarachnoid hemorrhage (cSAH) rarely occurs subsequent to acute ischemic stroke. The incidence, clinical background characteristics, and outcomes in acute ischemic stroke patients with cSAH were investigated. Our stroke center database was reviewed to identify patients with acute ischemic stroke/transient ischemic attack (TIA) who demonstrated acute cSAH within 14 days of admission between 2005 and 2011. Background characteristics, clinical course, and outcomes at discharge and 3 months after onset were investigated in these patients. Of 4953 acute stroke/TIA patients, cSAH was observed in 8 (.14%) patients (7 men, mean age 71 years): 7 were detected incidentally, and the other was found immediately after a convulsion. Two patients died during their hospital stay, 1 died after discharge, and 3 were dependent at 3 months. Major artery occlusion or severe stenosis was observed in 5 patients. Two patients subsequently developed subcortical hemorrhage. On gradient echo imaging, lobar cerebral microbleeds were observed in 2 patients, and chronic superficial siderosis was observed in 2 patients. In this retrospective review of cases with ischemic stroke and cSAH, over half of patients had occlusion of major arteries. Cerebral amyloid angiopathy was suggested by magnetic resonance imaging findings and subsequent events in 3 patients. The overall outcome was unfavorable although the causal relationship with cSAH was unclear. Copyright © 2014 National Stroke Association. Published by Elsevier Inc. All rights reserved.
A Localization Method for Multistatic SAR Based on Convex Optimization.
Zhong, Xuqi; Wu, Junjie; Yang, Jianyu; Sun, Zhichao; Huang, Yuling; Li, Zhongyu
2015-01-01
In traditional localization methods for Synthetic Aperture Radar (SAR), the bistatic range sum (BRS) estimation and Doppler centroid estimation (DCE) are needed for the calculation of target localization. However, the DCE error greatly influences the localization accuracy. In this paper, a localization method for multistatic SAR based on convex optimization without DCE is investigated and the influence of BRS estimation error on localization accuracy is analysed. Firstly, by using the information of each transmitter and receiver (T/R) pair and the target in SAR image, the model functions of T/R pairs are constructed. Each model function's maximum is on the circumference of the ellipse which is the iso-range for its model function's T/R pair. Secondly, the target function whose maximum is located at the position of the target is obtained by adding all model functions. Thirdly, the target function is optimized based on gradient descent method to obtain the position of the target. During the iteration process, principal component analysis is implemented to guarantee the accuracy of the method and improve the computational efficiency. The proposed method only utilizes BRSs of a target in several focused images from multistatic SAR. Therefore, compared with traditional localization methods for SAR, the proposed method greatly improves the localization accuracy. The effectivity of the localization approach is validated by simulation experiment.
Convexity, Jensen's inequality and benefits of noisy mechanical ventilation.
Brewster, John F; Graham, M Ruth; Mutch, W Alan C
2005-09-22
Mechanical ventilators breathe for you when you cannot or when your lungs are too sick to do their job. Most ventilators monotonously deliver the same-sized breaths, like clockwork; however, healthy people do not breathe this way. This has led to the development of a biologically variable ventilator--one that incorporates noise. There are indications that such a noisy ventilator may be beneficial for patients with very sick lungs. In this paper we use a probabilistic argument, based on Jensen's inequality, to identify the circumstances in which the addition of noise may be beneficial and, equally important, the circumstances in which it may not be beneficial. Using the local convexity of the relationship between airway pressure and tidal volume in the lung, we show that the addition of noise at low volume or low pressure results in higher mean volume (at the same mean pressure) or lower mean pressure (at the same mean volume). The consequence is enhanced gas exchange or less stress on the lungs, both clinically desirable. The argument has implications for other life support devices, such as cardiopulmonary bypass pumps. This paper illustrates the benefits of research that takes place at the interface between mathematics and medicine.
Optimization-based mesh correction with volume and convexity constraints
D'Elia, Marta; Ridzal, Denis; Peterson, Kara J.; ...
2016-02-24
In this study, we consider the problem of finding a mesh such that 1) it is the closest, with respect to a suitable metric, to a given source mesh having the same connectivity, and 2) the volumes of its cells match a set of prescribed positive values that are not necessarily equal to the cell volumes in the source mesh. This volume correction problem arises in important simulation contexts, such as satisfying a discrete geometric conservation law and solving transport equations by incremental remapping or similar semi-Lagrangian transport schemes. In this paper we formulate volume correction as a constrained optimizationmore » problem in which the distance to the source mesh defines an optimization objective, while the prescribed cell volumes, mesh validity and/or cell convexity specify the constraints. We solve this problem numerically using a sequential quadratic programming (SQP) method whose performance scales with the mesh size. To achieve scalable performance we develop a specialized multigrid-based preconditioner for optimality systems that arise in the application of the SQP method to the volume correction problem. Numerical examples illustrate the importance of volume correction, and showcase the accuracy, robustness and scalability of our approach.« less
Optimization-based mesh correction with volume and convexity constraints
D'Elia, Marta; Ridzal, Denis; Peterson, Kara J.; Bochev, Pavel; Shashkov, Mikhail
2016-02-24
In this study, we consider the problem of finding a mesh such that 1) it is the closest, with respect to a suitable metric, to a given source mesh having the same connectivity, and 2) the volumes of its cells match a set of prescribed positive values that are not necessarily equal to the cell volumes in the source mesh. This volume correction problem arises in important simulation contexts, such as satisfying a discrete geometric conservation law and solving transport equations by incremental remapping or similar semi-Lagrangian transport schemes. In this paper we formulate volume correction as a constrained optimization problem in which the distance to the source mesh defines an optimization objective, while the prescribed cell volumes, mesh validity and/or cell convexity specify the constraints. We solve this problem numerically using a sequential quadratic programming (SQP) method whose performance scales with the mesh size. To achieve scalable performance we develop a specialized multigrid-based preconditioner for optimality systems that arise in the application of the SQP method to the volume correction problem. Numerical examples illustrate the importance of volume correction, and showcase the accuracy, robustness and scalability of our approach.
Minimum convex hull mass estimations of complete mounted skeletons.
Sellers, W I; Hepworth-Bell, J; Falkingham, P L; Bates, K T; Brassey, C A; Egerton, V M; Manning, P L
2012-10-23
Body mass is a critical parameter used to constrain biomechanical and physiological traits of organisms. Volumetric methods are becoming more common as techniques for estimating the body masses of fossil vertebrates. However, they are often accused of excessive subjective input when estimating the thickness of missing soft tissue. Here, we demonstrate an alternative approach where a minimum convex hull is derived mathematically from the point cloud generated by laser-scanning mounted skeletons. This has the advantage of requiring minimal user intervention and is thus more objective and far quicker. We test this method on 14 relatively large-bodied mammalian skeletons and demonstrate that it consistently underestimates body mass by 21 per cent with minimal scatter around the regression line. We therefore suggest that it is a robust method of estimating body mass where a mounted skeletal reconstruction is available and demonstrate its usage to predict the body mass of one of the largest, relatively complete sauropod dinosaurs: Giraffatitan brancai (previously Brachiosaurus) as 23200 kg.
Multi-label Moves for MRFs with Truncated Convex Priors
NASA Astrophysics Data System (ADS)
Veksler, Olga
Optimization with graph cuts became very popular in recent years. As more applications rely on graph cuts, different energy functions are being employed. Recent evaluation of optimization algorithms showed that the widely used swap and expansion graph cut algorithms have an excellent performance for energies where the underlying MRF has Potts prior. Potts prior corresponds to assuming that the true labeling is piecewise constant. While surprisingly useful in practice, Potts prior is clearly not appropriate in many circumstances. However for more general priors, the swap and expansion algorithms do not perform as well. Both algorithms are based on moves that give each pixel a choice of only two labels. Therefore such moves can be referred to as binary moves. Recently, range moves that act on multiple labels simultaneously were introduced. As opposed to swap and expansion, each pixel has a choice of more than two labels in a range move. Therefore we call them multi-label moves. Range moves were shown to work better for problems with truncated convex priors, which imply a piecewise smooth labeling. Inspired by range moves, we develop several different variants of multi-label moves. We evaluate them on the problem of stereo correspondence and discuss their relative merits.
Precision platform for convex lens-induced confinement microscopy.
Berard, Daniel; McFaul, Christopher M J; Leith, Jason S; Arsenault, Adriel K J; Michaud, François; Leslie, Sabrina R
2013-10-01
We present the conception, fabrication, and demonstration of a versatile, computer-controlled microscopy device which transforms a standard inverted fluorescence microscope into a precision single-molecule imaging station. The device uses the principle of convex lens-induced confinement [S. R. Leslie, A. P. Fields, and A. E. Cohen, Anal. Chem. 82, 6224 (2010)], which employs a tunable imaging chamber to enhance background rejection and extend diffusion-limited observation periods. Using nanopositioning stages, this device achieves repeatable and dynamic control over the geometry of the sample chamber on scales as small as the size of individual molecules, enabling regulation of their configurations and dynamics. Using microfluidics, this device enables serial insertion as well as sample recovery, facilitating temporally controlled, high-throughput measurements of multiple reagents. We report on the simulation and experimental characterization of this tunable chamber geometry, and its influence upon the diffusion and conformations of DNA molecules over extended observation periods. This new microscopy platform has the potential to capture, probe, and influence the configurations of single molecules, with dramatically improved imaging conditions in comparison to existing technologies. These capabilities are of immediate interest to a wide range of research and industry sectors in biotechnology, biophysics, materials, and chemistry.
Minimum convex hull mass estimations of complete mounted skeletons
Sellers, W. I.; Hepworth-Bell, J.; Falkingham, P. L.; Bates, K. T.; Brassey, C. A.; Egerton, V. M.; Manning, P. L.
2012-01-01
Body mass is a critical parameter used to constrain biomechanical and physiological traits of organisms. Volumetric methods are becoming more common as techniques for estimating the body masses of fossil vertebrates. However, they are often accused of excessive subjective input when estimating the thickness of missing soft tissue. Here, we demonstrate an alternative approach where a minimum convex hull is derived mathematically from the point cloud generated by laser-scanning mounted skeletons. This has the advantage of requiring minimal user intervention and is thus more objective and far quicker. We test this method on 14 relatively large-bodied mammalian skeletons and demonstrate that it consistently underestimates body mass by 21 per cent with minimal scatter around the regression line. We therefore suggest that it is a robust method of estimating body mass where a mounted skeletal reconstruction is available and demonstrate its usage to predict the body mass of one of the largest, relatively complete sauropod dinosaurs: Giraffatitan brancai (previously Brachiosaurus) as 23200 kg. PMID:22675141
Yamada, Jumpei; Matsuyama, Satoshi; Sano, Yasuhisa; Yamauchi, Kazuto
2017-02-01
We propose the use of two pairs of concave-convex mirrors as imaging optics for the compact full-field x-ray microscope with high resolution and magnification factors. The optics consists of two pairs of hyperbolic convex and elliptical concave mirrors with the principal surface near the object, consequently enabling the focal length to be 10 times shorter than conventional advanced Kirkpatrick-Baez mirror optics. This paper describes characteristics of the optics calculated by ray-tracing and wave-optical simulators. The expected spatial resolution is approximately 40 nm with a wide field of view of more than 10 μm and a total length of about 2 m, which may lead to the possibility of laboratory-sized, achromatic, and high-resolution full-field x-ray microscopes.
NASA Astrophysics Data System (ADS)
Li, Qian; Kutz, J. Nathan; Wai, P. K. A.
2013-08-01
We consider the non-adiabatic pulse compression of cascaded soliton propagating in three consecutive optical fiber segments, each of which has a convex dispersion profile with two zero-dispersion wavelengths. The convex dispersion profile provides an accurate description of the chromatic dispersion over the whole frequency range, thus allowing for a comprehensive theoretical treatment of the cascaded third order soliton compression when ultrashort pulses (<1 ps) are considered. Typical dispersion-flattened and decreasing fiber (DFDF) has a convex curvature in its dispersion profile which varies along length of fiber. Compared to DFDF, the cascading of fiber segments with convex dispersion that stays constant along the fiber length greatly reduces the manufacture difficulties and provides a much simpler engineering design in practice. High-degree pulse compression and high-coherence supercontinuum generation are demonstrated.
Shadow-related concavity-convexity inversions reveal a very basic tolerance for impossible shadows.
Casati, Roberto
2014-01-01
The stimuli traditionally used for demonstrating shadow-related concavity-convexity inversions reveal a very basic tolerance for impossible shadows-namely, self shadows do not induce a visual request for geometrically mandatory cast shadows.
Applicability of convex hull in multiple detector response space for neutron dose measurements.
Hashimoto, Makoto; Iimoto, Takeshi; Kosako, Toshiso
2009-08-01
A novel neutron dose measurement method that flexibly responds to variations in the neutron field is being developed by Japan Atomic Energy Agency. This is an implementation of the multi-detector method (first introduced in 1960s) for neutron dose evaluation using a convex hull in the response space defined for multiple detectors. The convex hull provides a range of possible neutron dose corresponding to the incident neutron spectrum. Feasibility of the method was studied using a simulated response of mixed gas proportional counter. Monochromatic neutrons are shown to be fundamentally suitable for mapping the convex. The convex hull can be further reduced taking into consideration a priori information about physically possible incident neutron spectra, for example, theoretically derived moderated neutron spectra originated from a fission neutron source.
Congruency effects in dot comparison tasks: convex hull is more important than dot area.
Gilmore, Camilla; Cragg, Lucy; Hogan, Grace; Inglis, Matthew
2016-11-16
The dot comparison task, in which participants select the more numerous of two dot arrays, has become the predominant method of assessing Approximate Number System (ANS) acuity. Creation of the dot arrays requires the manipulation of visual characteristics, such as dot size and convex hull. For the task to provide a valid measure of ANS acuity, participants must ignore these characteristics and respond on the basis of number. Here, we report two experiments that explore the influence of dot area and convex hull on participants' accuracy on dot comparison tasks. We found that individuals' ability to ignore dot area information increases with age and display time. However, the influence of convex hull information remains stable across development and with additional time. This suggests that convex hull information is more difficult to inhibit when making judgements about numerosity and therefore it is crucial to control this when creating dot comparison tasks.
A Convex Atomic-Norm Approach to Multiple Sequence Alignment and Motif Discovery
Yen, Ian E. H.; Lin, Xin; Zhang, Jiong; Ravikumar, Pradeep; Dhillon, Inderjit S.
2016-01-01
Multiple Sequence Alignment and Motif Discovery, known as NP-hard problems, are two fundamental tasks in Bioinformatics. Existing approaches to these two problems are based on either local search methods such as Expectation Maximization (EM), Gibbs Sampling or greedy heuristic methods. In this work, we develop a convex relaxation approach to both problems based on the recent concept of atomic norm and develop a new algorithm, termed Greedy Direction Method of Multiplier, for solving the convex relaxation with two convex atomic constraints. Experiments show that our convex relaxation approach produces solutions of higher quality than those standard tools widely-used in Bioinformatics community on the Multiple Sequence Alignment and Motif Discovery problems. PMID:27559428
Congruency effects in dot comparison tasks: convex hull is more important than dot area
Gilmore, Camilla; Cragg, Lucy; Hogan, Grace; Inglis, Matthew
2016-01-01
ABSTRACT The dot comparison task, in which participants select the more numerous of two dot arrays, has become the predominant method of assessing Approximate Number System (ANS) acuity. Creation of the dot arrays requires the manipulation of visual characteristics, such as dot size and convex hull. For the task to provide a valid measure of ANS acuity, participants must ignore these characteristics and respond on the basis of number. Here, we report two experiments that explore the influence of dot area and convex hull on participants’ accuracy on dot comparison tasks. We found that individuals’ ability to ignore dot area information increases with age and display time. However, the influence of convex hull information remains stable across development and with additional time. This suggests that convex hull information is more difficult to inhibit when making judgements about numerosity and therefore it is crucial to control this when creating dot comparison tasks. PMID:28163886
Facing facts: neuronal mechanisms of face perception.
Dekowska, Monika; Kuniecki, Michał; Jaśkowski, Piotr
2008-01-01
The face is one of the most important stimuli carrying social meaning. Thanks to the fast analysis of faces, we are able to judge physical attractiveness and features of their owners' personality, intentions, and mood. From one's facial expression we can gain information about danger present in the environment. It is obvious that the ability to process efficiently one's face is crucial for survival. Therefore, it seems natural that in the human brain there exist structures specialized for face processing. In this article, we present recent findings from studies on the neuronal mechanisms of face perception and recognition in the light of current theoretical models. Results from brain imaging (fMRI, PET) and electrophysiology (ERP, MEG) show that in face perception particular regions (i.e. FFA, STS, IOA, AMTG, prefrontal and orbitofrontal cortex) are involved. These results are confirmed by behavioral data and clinical observations as well as by animal studies. The developmental findings reviewed in this article lead us to suppose that the ability to analyze face-like stimuli is hard-wired and improves during development. Still, experience with faces is not sufficient for an individual to become an expert in face perception. This thesis is supported by the investigation of individuals with developmental disabilities, especially with autistic spectrum disorders (ASD).
ERIC Educational Resources Information Center
Langton, Stephen R. H.; Law, Anna S.; Burton, A. Mike; Schweinberger, Stefan R.
2008-01-01
We report three experiments that investigate whether faces are capable of capturing attention when in competition with other non-face objects. In Experiment 1a participants took longer to decide that an array of objects contained a butterfly target when a face appeared as one of the distracting items than when the face did not appear in the array.…
ERIC Educational Resources Information Center
Langton, Stephen R. H.; Law, Anna S.; Burton, A. Mike; Schweinberger, Stefan R.
2008-01-01
We report three experiments that investigate whether faces are capable of capturing attention when in competition with other non-face objects. In Experiment 1a participants took longer to decide that an array of objects contained a butterfly target when a face appeared as one of the distracting items than when the face did not appear in the array.…
Image recovery in computer tomography from partial fan-beam data by convex projections.
Peng, H; Stark, H
1992-01-01
For the image recovery process the authors use the convex projections method, also known as the method of projections onto convex sets (POCS). Several incomplete-data geometries, including those associated with limited source travel and beam-blocking internal opacities, are considered. To enable the recovery several prior-knowledge constraints including one associated with the directivity of the image vector are used. The overall recovery algorithm can be practically implemented by exploiting the Toeplitz structure of key operators.
NASA Astrophysics Data System (ADS)
Acker, A.
Under reasonably general assumptions, we prove the existence of convex classical solutions for the Prandtl-Batchelor free boundary problem in fluid dynamics, in which a flow of constant vorticity density is embedded in a potential flow, with a vortex sheet of constant vorticity density as the flow interface. These results apply to Batchelor flows which are confined to a bounded, convex vessel, and for which the limiting interior flow-speed exceeds the limiting exterior flow-speed along the interface.
Land, T.A.; De Yoreo, J.J.; Lee, J.D.; Ferguson, J.R.
1995-01-10
The growth morphologies of vicinal hillocks on KH{sub 2}PO{sub 4} (101) surfaces have been investigated using atomic force microscopy. Both 2D and spiral dislocation growth hillocks are observed on the same crystal surface at supersaturations of {approximately}5%. Growth occurs on monomolecular 5 {Angstrom} steps both by step-flow and through layer-by-layer growth. The distribution of islands on the terraces demonstrate that surface diffusion is an important factor during growth. Terraces that are less than the diffusion length do not contain any islands. This, together with the length scale of the inter island spacing and the denuded zones provide an estimate of the diffusion length. In situ experiments at very low supersaturation ({approximately}0.l%) show that growth is a discontinuous process due to step pinning. In addition, in situ images allow for the direct determination of the fundamental growth parameters {alpha}, the step edge energy, and {beta}, the kinetic coefficient.
A Fast Algorithm of Convex Hull Vertices Selection for Online Classification.
Ding, Shuguang; Nie, Xiangli; Qiao, Hong; Zhang, Bo
2017-01-20
Reducing samples through convex hull vertices selection (CHVS) within each class is an important and effective method for online classification problems, since the classifier can be trained rapidly with the selected samples. However, the process of CHVS is NP-hard. In this paper, we propose a fast algorithm to select the convex hull vertices, based on the convex hull decomposition and the property of projection. In the proposed algorithm, the quadratic minimization problem of computing the distance between a point and a convex hull is converted into a linear equation problem with a low computational complexity. When the data dimension is high, an approximate, instead of exact, convex hull is allowed to be selected by setting an appropriate termination condition in order to delete more nonimportant samples. In addition, the impact of outliers is also considered, and the proposed algorithm is improved by deleting the outliers in the initial procedure. Furthermore, a dimension convention technique via the kernel trick is used to deal with nonlinearly separable problems. An upper bound is theoretically proved for the difference between the support vector machines based on the approximate convex hull vertices selected and all the training samples. Experimental results on both synthetic and real data sets show the effectiveness and validity of the proposed algorithm.
Friction stir spot welded joints of 409L stainless steels fabricated by a convex shoulder tool
NASA Astrophysics Data System (ADS)
Hossain, Md. Abu Mowazzem; Hasan, Md. Tariqul; Hong, Sung-Tae; Miles, Michael; Cho, Hoon-Hwe; Han, Heung Nam
2013-11-01
Spot joints of ferritic 409L stainless steel are successfully fabricated by friction stir spot welding (FSSW) using a convex shoulder tool. The welding process, microstructure and failure of the FSSW joint are investigated experimentally. During the FSSW process, the Z-force history shows significant variations depending on the contact phenomena between the tool and the joined sheets, while the Z-torque history shows a rather steady increase without pronounced changes in the trend until the initiation of dwelling. Electron back-scatter diffraction suggests that both continuous dynamic recrystallization and recovery occurred in the stir zone during the FSSW process. Observation of the FSSW joint that failed under the given lap shear load shows that the cracks, which are the result of the interfaces between the upper and lower sheets, propagated into the weld along the interfacial surfaces, after which a necking/shear failure occurred. Finally, the rupture of the joint, which was initiated by the necking/shear failure, propagated along the circumference of the weld.
Efficient convex optimization approach to 3D non-rigid MR-TRUS registration.
Sun, Yue; Yuan, Jing; Rajchl, Martin; Qiu, Wu; Romagnoli, Cesare; Fenster, Aaron
2013-01-01
In this study, we propose an efficient non-rigid MR-TRUS deformable registration method to improve the accuracy of targeting suspicious locations during a 3D ultrasound (US) guided prostate biopsy. The proposed deformable registration approach employs the multi-channel modality independent neighbourhood descriptor (MIND) as the local similarity feature across the two modalities of MR and TRUS, and a novel and efficient duality-based convex optimization based algorithmic scheme is introduced to extract the deformations which align the two MIND descriptors. The registration accuracy was evaluated using 10 patient images by measuring the TRE of manually identified corresponding intrinsic fiducials in the whole gland and peripheral zone, and performance metrics (DSC, MAD and MAXD) for the apex, mid-gland and base of the prostate were also calculated by comparing two manually segmented prostate surfaces in the registered 3D MR and TRUS images. Experimental results show that the proposed method yielded an overall mean TRE of 1.74 mm, which is favorably comparable to a clinical requirement for an error of less than 2.5 mm.
Melecky, Roman; Socha, Vladimir; Kutilek, Patrik; Hanakova, Lenka; Takac, Peter; Schlenker, Jakub; Svoboda, Zdenek
2016-01-01
Techniques to quantify postural stability usually rely on the evaluation of only two variables, that is, two coordinates of COP. However, by using three variables, that is, three components of acceleration vector, it is possible to describe human movement more precisely. For this purpose, a single three-axis accelerometer was used, making it possible to evaluate 3D movement by use of a novel method, convex polyhedron (CP), together with a traditional method, based on area of the confidence ellipse (ACE). Ten patients (Pts) with cerebellar ataxia and eleven healthy individuals of control group (CG) participated in the study. The results show a significant increase of volume of the CP (CPV) in Pts or CG standing on foam surface with eyes open (EO) and eyes closed (EC) after the EC phase. Significant difference between Pts and CG was found in all cases as well. Correlation coefficient indicates strong correlation between the CPV and ACE in most cases of patient examinations, thus confirming the possibility of quantification of postural instability by the introduced method of CPV. PMID:27195465
Myowa-Yamakoshi, Masako
2016-01-01
Highly social animals possess a well-developed ability to distinguish the faces of familiar from novel conspecifics to induce distinct behaviors for maintaining society. However, the behaviors of animals when they encounter ambiguous faces of familiar yet novel conspecifics, e.g., strangers with faces resembling known individuals, have not been well characterised. Using a morphing technique and preferential-looking paradigm, we address this question via the chimpanzee’s facial–recognition abilities. We presented eight subjects with three types of stimuli: (1) familiar faces, (2) novel faces and (3) intermediate morphed faces that were 50% familiar and 50% novel faces of conspecifics. We found that chimpanzees spent more time looking at novel faces and scanned novel faces more extensively than familiar or intermediate faces. Interestingly, chimpanzees looked at intermediate faces in a manner similar to familiar faces with regards to the fixation duration, fixation count, and saccade length for facial scanning, even though the participant was encountering the intermediate faces for the first time. We excluded the possibility that subjects merely detected and avoided traces of morphing in the intermediate faces. These findings suggest a bias for a feeling-of-familiarity that chimpanzees perceive familiarity with an intermediate face by detecting traces of a known individual, as 50% alternation is sufficient to perceive familiarity. PMID:27602275
Nontraumatic convexity subarachnoid hemorrhage: different etiologies and outcomes.
Geraldes, Ruth; Sousa, Paulo R; Fonseca, Ana C; Falcão, Filipa; Canhão, Patrícia; Pinho e Melo, Teresa
2014-01-01
Nontraumatic convexity subarachnoid hemorrhage (cSAH) is a rarely reported condition with multiple etiologies. We report the clinical presentation, imaging findings, etiologies, and long-term outcomes of a case series of cSAH. We retrospectively analyzed consecutive cases of cSAH, admitted at a Stroke Unit of a tertiary hospital (January 2006 to March 2012). Recorded variables were demographics, clinical presentation, complementary investigation, etiology, and outcome. We included 15 patients (9 men, median age of 65 years), 7% of the 210 nontraumatic SAH patients in this period. The most common clinical manifestation was a focal neurologic deficit. Predominant location of the cSAH was frontal. In 5 cases, there was a clinical significant internal carotid artery (ICA) atheromatous stenosis, ipsilateral to cSAH. Two patients had a possible cerebral amyloid angiopathy (CAA) at presentation. There were 2 cases of reversible cerebral vasoconstriction syndrome, 1 cerebral venous thrombosis, 2 dural fistulae, and 3 undetermined. Short-term outcomes were good in most patients. At follow-up (24.3 months), 2 of the patients with undetermined etiology had a lobar hematoma conferring a severe disability, and the diagnosis of CAA was made. There were no other relevant events or added disability in the other patients. Significant ICA atherosclerotic stenosis was the most frequent cause of cSAH in our series, reinforcing that cSAH should prompt vascular imagiological evaluation including cervical vessels. Outcomes in cSAH seem to be related to etiology. Patients with undetermined etiology should be followed up because cSAH may be the first manifestation of CAA. Copyright © 2014 National Stroke Association. Published by Elsevier Inc. All rights reserved.
SLOPE—ADAPTIVE VARIABLE SELECTION VIA CONVEX OPTIMIZATION
Bogdan, Małgorzata; van den Berg, Ewout; Sabatti, Chiara; Su, Weijie; Candès, Emmanuel J.
2015-01-01
We introduce a new estimator for the vector of coefficients β in the linear model y = Xβ + z, where X has dimensions n × p with p possibly larger than n. SLOPE, short for Sorted L-One Penalized Estimation, is the solution to minb∈ℝp12‖y−Xb‖ℓ22+λ1|b|(1)+λ2|b|(2)+⋯+λp|b|(p),where λ1 ≥ λ2 ≥ … ≥ λp ≥ 0 and |b|(1)≥|b|(2)≥⋯≥|b|(p) are the decreasing absolute values of the entries of b. This is a convex program and we demonstrate a solution algorithm whose computational complexity is roughly comparable to that of classical ℓ1 procedures such as the Lasso. Here, the regularizer is a sorted ℓ1 norm, which penalizes the regression coefficients according to their rank: the higher the rank—that is, stronger the signal—the larger the penalty. This is similar to the Benjamini and Hochberg [J. Roy. Statist. Soc. Ser. B 57 (1995) 289–300] procedure (BH) which compares more significant p-values with more stringent thresholds. One notable choice of the sequence {λi} is given by the BH critical values λBH(i)=z(1−i⋅q/2p), where q ∈ (0, 1) and z(α) is the quantile of a standard normal distribution. SLOPE aims to provide finite sample guarantees on the selected model; of special interest is the false discovery rate (FDR), defined as the expected proportion of irrelevant regressors among all selected predictors. Under orthogonal designs, SLOPE with λBH provably controls FDR at level q. Moreover, it also appears to have appreciable inferential properties under more general designs X while having substantial power, as demonstrated in a series of experiments running on both simulated and real data. PMID:26709357
Constrained iterations for blind deconvolution and convexity issues
NASA Astrophysics Data System (ADS)
Spaletta, Giulia; Caucci, Luca
2006-12-01
The need for image restoration arises in many applications of various scientific disciplines, such as medicine and astronomy and, in general, whenever an unknown image must be recovered from blurred and noisy data [M. Bertero, P. Boccacci, Introduction to Inverse Problems in Imaging, Institute of Physics Publishing, Philadelphia, PA, USA, 1998]. The algorithm studied in this work restores the image without the knowledge of the blur, using little a priori information and a blind inverse filter iteration. It represents a variation of the methods proposed in Kundur and Hatzinakos [A novel blind deconvolution scheme for image restoration using recursive filtering, IEEE Trans. Signal Process. 46(2) (1998) 375-390] and Ng et al. [Regularization of RIF blind image deconvolution, IEEE Trans. Image Process. 9(6) (2000) 1130-1134]. The problem of interest here is an inverse one, that cannot be solved by simple filtering since it is ill-posed. The imaging system is assumed to be linear and space-invariant: this allows a simplified relationship between unknown and observed images, described by a point spread function modeling the distortion. The blurring, though, makes the restoration ill-conditioned: regularization is therefore also needed, obtained by adding constraints to the formulation. The restoration is modeled as a constrained minimization: particular attention is given here to the analysis of the objective function and on establishing whether or not it is a convex function, whose minima can be located by classic optimization techniques and descent methods. Numerical examples are applied to simulated data and to real data derived from various applications. Comparison with the behavior of methods [D. Kundur, D. Hatzinakos, A novel blind deconvolution scheme for image restoration using recursive filtering, IEEE Trans. Signal Process. 46(2) (1998) 375-390] and [M. Ng, R.J. Plemmons, S. Qiao, Regularization of RIF Blind Image Deconvolution, IEEE Trans. Image Process. 9
Programmed versus Face-to-Face Counseling
ERIC Educational Resources Information Center
Gilbert, William M.; Ewing, Thomas N.
1971-01-01
A comparison was made of the effectiveness of a programmed Self-Counseling Manual and a normal precollege counseling interview by experienced counselors. Findings supported the use of programmed counseling as an adjunct to or substitute for face-to-face counseling. (Author)
Programmed versus Face-to-Face Counseling
ERIC Educational Resources Information Center
Gilbert, William M.; Ewing, Thomas N.
1971-01-01
A comparison was made of the effectiveness of a programmed Self-Counseling Manual and a normal precollege counseling interview by experienced counselors. Findings supported the use of programmed counseling as an adjunct to or substitute for face-to-face counseling. (Author)
A Shape-Based Account for Holistic Face Processing
ERIC Educational Resources Information Center
Zhao, Mintao; Bülthoff, Heinrich H.; Bülthoff, Isabelle
2016-01-01
Faces are processed holistically, so selective attention to 1 face part without any influence of the others often fails. In this study, 3 experiments investigated what type of facial information (shape or surface) underlies holistic face processing and whether generalization of holistic processing to nonexperienced faces requires extensive…