Science.gov

Sample records for cool roofing membranes

  1. Aging and weathering of cool roofing membranes

    SciTech Connect

    Akbari, Hashem; Berhe, Asmeret A.; Levinson, Ronnen; Graveline,Stanley; Foley, Kevin; Delgado, Ana H.; Paroli, Ralph M.

    2005-08-23

    Aging and weathering can reduce the solar reflectance of cool roofing materials. This paper summarizes laboratory measurements of the solar spectral reflectance of unweathered, weathered, and cleaned samples collected from single-ply roofing membranes at various sites across the United States. Fifteen samples were examined in each of the following six conditions: unweathered; weathered; weathered and brushed; weathered, brushed and then rinsed with water; weathered, brushed, rinsed with water, and then washed with soap and water; and weathered, brushed, rinsed with water, washed with soap and water, and then washed with an algaecide. Another 25 samples from 25 roofs across the United States and Canada were measured in their unweathered state, weathered, and weathered and wiped. We document reduction in reflectivity resulted from various soiling mechanisms and provide data on the effectiveness of various cleaning approaches. Results indicate that although the majority of samples after being washed with detergent could be brought to within 90% of their unweathered reflectivity, in some instances an algaecide was required to restore this level of reflectivity.

  2. Why Cool Roofs?

    SciTech Connect

    Chu, Steven

    2010-01-01

    By installing a cool roof at DOE, the federal government and Secretary Chu are helping to educate families and businesses about the important energy and cost savings that can come with this simple, low-cost technology. Cool roofs have the potential to quickly and dramatically reduce global carbon emissions while saving money every month on consumers' electrical bills.

  3. Why Cool Roofs?

    ScienceCinema

    Chu, Steven

    2016-07-12

    By installing a cool roof at DOE, the federal government and Secretary Chu are helping to educate families and businesses about the important energy and cost savings that can come with this simple, low-cost technology. Cool roofs have the potential to quickly and dramatically reduce global carbon emissions while saving money every month on consumers' electrical bills.

  4. Guide to Cool Roofs

    SciTech Connect

    2011-02-01

    Traditional dark-colored roofing materials absorb sunlight, making them warm in the sun and increasing the need for air conditioning. White or special "cool color" roofs absorb less sunlight, stay cooler in the sun and transmit less heat into the building.

  5. Selecting a Roof Membrane.

    ERIC Educational Resources Information Center

    Waldron, Larry W.

    1990-01-01

    Offers a brief synopsis of the unique characteristics of the following roof membranes: (1) built-up roofing; (2) elastoplastic membranes; (3) modified bitumen membranes; (4) liquid applied membranes; and (5) metal roofing. A chart compares the characteristics of the raw membranes only. (MLF)

  6. How Cool Is Your Roof?

    ERIC Educational Resources Information Center

    Fickes, Michael

    2001-01-01

    Explains a concept called cool roof that is used to reduce electricity costs for air conditioning, and also reduce the price of air conditioning units. Discusses the light reflecting capabilities of metal roofing as well as coatings that can stop leaks. (GR)

  7. How Cool Is Your Roof?

    ERIC Educational Resources Information Center

    Fickes, Michael

    2001-01-01

    Explains a concept called cool roof that is used to reduce electricity costs for air conditioning, and also reduce the price of air conditioning units. Discusses the light reflecting capabilities of metal roofing as well as coatings that can stop leaks. (GR)

  8. Cool Roof Systems; What is the Condensation Risk?

    SciTech Connect

    Kehrer, Manfred; Pallin, Simon B

    2014-01-01

    A white roof, or cool roof, is constructed to decrease thermal loads from solar radiation, therefore saving energy by decreasing the cooling demands. Unfortunately, cool roofs with a mechanically attached membrane have shown a higher risk of intermediate condensation in the materials below the membrane in certain climates (Ennis & Kehrer, 2011) and in comparison with similar constructions with a darker exterior surface (Bludau, Zirkelbach, & Kuenzel, 2009). As a consequence, questions have been raised regarding the sustainability and reliability of using cool roof membranes in northern U.S. climate zones.

  9. Protected Membrane Roofs: A Sustainable Roofing Solution.

    ERIC Educational Resources Information Center

    Roodvoets, David L.

    2003-01-01

    Examines the benefits of protected membrane roofing (PMR) for school buildings. PMR uses an upside-down approach, where the insulation is placed on top of the waterproofing membrane to improve membrane effectiveness, reduce ultraviolet degradation, and improve insulation efficiency. The article explains what makes PMR sustainable, focusing on…

  10. Protected Membrane Roofs: A Sustainable Roofing Solution.

    ERIC Educational Resources Information Center

    Roodvoets, David L.

    2003-01-01

    Examines the benefits of protected membrane roofing (PMR) for school buildings. PMR uses an upside-down approach, where the insulation is placed on top of the waterproofing membrane to improve membrane effectiveness, reduce ultraviolet degradation, and improve insulation efficiency. The article explains what makes PMR sustainable, focusing on…

  11. The Effects of Roof Membrane Color on Moisture Accumulation in Low-slope Commercial Roof Systems

    SciTech Connect

    Kehrer, Manfred

    2011-01-01

    The use of highly reflective roof membrane systems is being promoted and in some cases required in energy codes and green building codes and standards. Highly reflective membranes, which typically are light in color, have demonstrated reduced overall energy consumption in cooling dominated climate. These membranes also are theorized to reduce the heat island effect. Concern has been expressed about using highly reflective roof membrane systems in cool to cold climate zones because they potentially increase moisture accumulation in roof systems. Roof membranes are vapor retarders. The theory is that highly reflective membranes reflect the heat that could enter the roof assembly, potentially providing a condensing surface on the cold side of the roof assembly during winter months. The other concern is that roof systems using highly reflective membranes will not get hot enough during the summer months to dry out moisture that may have condensed or otherwise entered the roof assembly. This study focuses on mechanically attached, highly reflective, single-ply roof systems installed on low-slope (less than 2:12) structures in cool to cold climate zones. Three sources of data are considered when determining the moisture accumulation potential of these systems. 1.Test roof cuts taken during the winter months 2.Modeling data from a building envelope model specifically designed to evaluate moisture accumulation 3.Data from previous studies to determine the effects of roof membrane color on the drying rate of low-slope roof assemblies

  12. Impact of Sustainable Cool Roof Technology on Building Energy Consumption

    NASA Astrophysics Data System (ADS)

    Vuppuluri, Prem Kiran

    Highly reflective roofing systems have been analyzed over several decades to evaluate their ability to meet sustainability goals, including reducing building energy consumption and mitigating the urban heat island. Studies have isolated and evaluated the effects of climate, surface reflectivity, and roof insulation on energy savings, thermal load mitigation and also ameliorating the urban heat island. Other sustainable roofing systems, like green-roofs and solar panels have been similarly evaluated. The motivation for the present study is twofold: the first goal is to present a method for simultaneous evaluation and inter-comparison of multiple roofing systems, and the second goal is to quantitatively evaluate the realized heating and cooling energy savings associated with a white roof system compared to the reduction in roof-top heat flux. To address the first research goal a field experiment was conducted at the International Harvester Building located in Portland, OR. Thermal data was collected for a white roof, vegetated roof, and a solar panel shaded vegetated roof, and the heat flux through these roofing systems was compared against a control patch of conventional dark roof membrane. The second research goal was accomplished using a building energy simulation program to determine the impact of roof area and roof insulation on the savings from a white roof, in both Portland and Phoenix. The ratio of cooling energy savings to roof heat flux reduction from replacing a dark roof with a white roof was 1:4 for the month of July, and 1:5 annually in Portland. The COP of the associated chillers ranges from 2.8-4.2, indicating that the ratio of cooling energy savings to heat flux reduction is not accounted for solely by the COP of the chillers. The results of the building simulation indicate that based on energy savings alone, white roofs are not an optimal choice for Portland. The benefits associated with cooling energy savings relative to a black roof are offset by

  13. Demonstration of energy savings of cool roofs

    SciTech Connect

    Konopacki, S.; Gartland, L.; Akbari, H.; Rainer, L.

    1998-06-01

    Dark roofs raise the summertime air-conditioning demand of buildings. For highly-absorptive roofs, the difference between the surface and ambient air temperatures can be as high as 90 F, while for highly-reflective roofs with similar insulative properties, the difference is only about 20 F. For this reason, cool roofs are effective in reducing cooling energy use. Several experiments on individual residential buildings in California and Florida show that coating roofs white reduces summertime average daily air-conditioning electricity use from 2--63%. This demonstration project was carried out to address some of the practical issues regarding the implementation of reflective roofs in a few commercial buildings. The authors monitored air-conditioning electricity use, roof surface temperature, plenum, indoor, and outdoor air temperatures, and other environmental variables in three buildings in California: two medical office buildings in Gilroy and Davis and a retail store in San Jose. Coating the roofs of these buildings with a reflective coating increased the roof albedo from an average of 0.20--0.60. The roof surface temperature on hot sunny summer afternoons fell from 175 F--120 F after the coating was applied. Summertime average daily air-conditioning electricity use was reduced by 18% (6.3 kWh/1000ft{sup 2}) in the Davis building, 13% (3.6 kWh/1000ft{sup 2}) in the Gilroy building, and 2% (0.4 kWh/1000ft{sup 2}) in the San Jose store. In each building, a kiosk was installed to display information from the project in order to educate and inform the general public about the environmental and energy-saving benefits of cool roofs. They were designed to explain cool-roof coating theory and to display real-time measurements of weather conditions, roof surface temperature, and air-conditioning electricity use. 55 figs., 15 tabs.

  14. Effectiveness of Cool Roof Coatings with Ceramic Particles

    SciTech Connect

    Brehob, Ellen G; Desjarlais, Andre Omer; Atchley, Jerald Allen

    2011-01-01

    Liquid applied coatings promoted as cool roof coatings, including several with ceramic particles, were tested at Oak Ridge National Laboratory (ORNL), Oak Ridge, Tenn., for the purpose of quantifying their thermal performances. Solar reflectance measurements were made for new samples and aged samples using a portable reflectometer (ASTM C1549, Standard Test Method for Determination of Solar Reflectance Near Ambient Temperature Using a Portable Solar Reflectometer) and for new samples using the integrating spheres method (ASTM E903, Standard Test Method for Solar Absorptance, Reflectance, and Transmittance of Materials Using Integrating Spheres). Thermal emittance was measured for the new samples using a portable emissometer (ASTM C1371, Standard Test Method for Determination of Emittance of Materials Near Room 1 Proceedings of the 2011 International Roofing Symposium Temperature Using Portable Emissometers). Thermal conductivity of the coatings was measured using a FOX 304 heat flow meter (ASTM C518, Standard Test Method for Steady-State Thermal Transmission Properties by Means of the Heat Flow Meter Apparatus). The surface properties of the cool roof coatings had higher solar reflectance than the reference black and white material, but there were no significant differences among coatings with and without ceramics. The coatings were applied to EPDM (ethylene propylene diene monomer) membranes and installed on the Roof Thermal Research Apparatus (RTRA), an instrumented facility at ORNL for testing roofs. Roof temperatures and heat flux through the roof were obtained for a year of exposure in east Tennessee. The field tests showed significant reduction in cooling required compared with the black reference roof (~80 percent) and a modest reduction in cooling compared with the white reference roof (~33 percent). The coating material with the highest solar reflectivity (no ceramic particles) demonstrated the best overall thermal performance (combination of reducing the

  15. Cool Roofs Through Time and Space

    ScienceCinema

    Levinson, Ronnen

    2016-07-12

    Ronnen Levinson, from the Lab's Heat Island Group, presents his research on cool roofs and introduces the California Cities Albedo Map at our '8 Big Ideas' Science at the Theater event on October 8th, 2014, in Oakland, California

  16. Cool Roofs Through Time and Space

    SciTech Connect

    Levinson, Ronnen

    2014-10-17

    Ronnen Levinson, from the Lab's Heat Island Group, presents his research on cool roofs and introduces the California Cities Albedo Map at our '8 Big Ideas' Science at the Theater event on October 8th, 2014, in Oakland, California

  17. Evolution of cool-roof standards in the United States

    SciTech Connect

    Akbari, Hashem; Akbari, Hashem; Levinson, Ronnen

    2008-07-11

    Roofs that have high solar reflectance and high thermal emittance stay cool in the sun. A roof with lower thermal emittance but exceptionally high solar reflectance can also stay cool in the sun. Substituting a cool roof for a noncool roof decreases cooling-electricity use, cooling-power demand, and cooling-equipment capacity requirements, while slightly increasing heating-energy consumption. Cool roofs can also lower citywide ambient air temperature in summer, slowing ozone formation and increasing human comfort. Provisions for cool roofs in energy-efficiency standards can promote the building- and climate-appropriate use of cool roofing technologies. Cool-roof requirements are designed to reduce building energy use, while energy-neutral cool-roof credits permit the use of less energy-efficient components (e.g., larger windows) in a building that has energy-saving cool roofs. Both types of measures can reduce the life-cycle cost of a building (initial cost plus lifetime energy cost). Since 1999, several widely used building energy-efficiency standards, including ASHRAE 90.1, ASHRAE 90.2, the International Energy Conservation Code, and California's Title 24 have adopted cool-roof credits or requirements. This paper reviews the technical development of cool-roof provisions in the ASHRAE 90.1, ASHRAE 90.2, and California Title 24 standards, and discusses the treatment of cool roofs in other standards and energy-efficiency programs. The techniques used to develop the ASHRAE and Title 24 cool-roof provisions can be used as models to address cool roofs in building energy-efficiency standards worldwide.

  18. Status of cool roof standards in the United States

    SciTech Connect

    Akbari, Hashem; Levinson, Ronnen

    2007-06-01

    Since 1999, several widely used building energy efficiency standards, including ASHRAE 90.1, ASHRAE 90.2, the International Energy Conservation Code, and California's Title 24 have adopted cool roof credits or requirements. We review the technical development of cool roof provisions in the ASHRAE 90.1, ASHRAE 90.2, and California Title 24 standards, and discuss the treatment of cool roofs in other standards and energy-efficiency programs. The techniques used to develop the ASHRAE and Title 24 cool roof provisions can be used as models to address cool roofs in building energy standards worldwide.

  19. Cool roofs as an energy conservation measure for federal buildings

    SciTech Connect

    Taha, Haider; Akbari, Hashem

    2003-04-07

    We have developed initial estimates of the potential benefits of cool roofs on federal buildings and facilities (building scale) as well as extrapolated the results to all national facilities under the administration of the Federal Energy Management Program (FEMP). In addition, a spreadsheet ''calculator'' is devised to help FEMP estimate potential energy and cost savings of cool roof projects. Based on calculations for an average insulation level of R-11 for roofs, it is estimated that nationwide annual savings in energy costs will amount to $16M and $32M for two scenarios of increased roof albedo (moderate and high increases), respectively. These savings, corresponding to about 3.8 percent and 7.5 percent of the base energy costs for FEMP facilities, include the increased heating energy use (penalties) in winter. To keep the cost of conserved energy (CCE) under $0.08 kWh-1 as a nationwide average, the calculations suggest that the incremental cost for cool roofs should not exceed $0.06 ft-2, assuming that cool roofs have the same life span as their non-cool counterparts. However, cool roofs usually have extended life spans, e.g., 15-30 years versus 10 years for conventional roofs, and if the costs of re-roofing are also factored in, the cutoff incremental cost to keep CCE under $0.08 kWh-1 can be much higher. In between these two ends, there is of course a range of various combinations and options.

  20. Demonstration of energy savings of cool roofs. Executive summary

    SciTech Connect

    Konopacki, S.; Gartland, L.; Akbari, H.; Rainer, L.

    1998-06-01

    The use of dark roofs affects cooling and heating energy use in buildings and the urban climate. At the building scale, dark roofs are heated by the summer sun and thus raise the summertime air-conditioning (a/c) demand. For highly-absorptive (low-albedo) roofs the difference between the surface and ambient air temperatures may be as high as 90 F on a summer afternoon. While for less absorptive (high-albedo) surfaces with similar insulative properties, such as roofs covered with a white coating, the difference is only about 20 F. For this reason, cool roofs (which absorb little insolation) can be effective in reducing cooling energy use. Earlier studies have suggested that cool roofs incur no additional cost if color changes are incorporated into routine re-roofing and re-surfacing schedules. There is a sizable body of measured data (primarily collected for residential sector) documenting energy-saving effects of cool roofs as shown. Both measured data and simulations clearly demonstrate that increasing the albedo of roofs is an attractive (and cost-effective) way of reducing the net radiative heat gains through the roof and hence, reducing building cooling loads. To change the albedo, the rooftops of buildings may be painted with reflective coatings or covered with a new light-colored material. Since most roofs have regular maintenance schedules or need to be re-roofed or re-coated periodically, the change of the albedo should be done then. In that case, the cost would be limited to the incremental cost associated with the high-albedo material. In buildings and climates with significant air-conditioning use, increasing the albedo of roofs will reduce energy use and produce a stream of savings immediately.

  1. Cool Roofs to Save Money and Delay Global Warming

    NASA Astrophysics Data System (ADS)

    Rosenfeld, Arthur

    2006-04-01

    White roofs, and now cool-colored roofs, with a high reflectivity or `albedo' have a long history (best known around the Mediterranean) of keeping buildings and cities cool. In modern times, cool roofs have been shown to reduce air conditioning (a-c) demand and slow the formation of ozone (smog). Studies establishing a typical 10% reduction in a-c demand and electricity savings due to white roofs in California (CA) resulted in the 2005 CA new building energy efficiency standard prescribing that low-slope roofs be white, but exempting sloping roofs for aesthetic reasons. The advent (thanks to physicists' efforts) of inexpensive colored pigments with high albedo has led to 2008 CA standards requiring that even sloping roofs be cool. Here, I show that cooling the planet by reducing urban albedo through white and other cool roofs is a direct effect, much larger and immediate than the 2nd-order cooling from reduced CO2 from reduced a-c use. I then investigate widespread deployment of cool roof in major tropical and temperate cities, which cover 2% of global land area and have a proportionately higher albedo impact due to lower latitude. Here, cool roofs and cooler pavements can raise urban albedo by 10%. This directly drops the global average temperature by ˜0.05 /deg C. Though small compared to a likely 3 /deg C rise by 2060, an immediate drop of 0.05 /deg C represents a reprieve in global warming of 1 year, and represents avoiding a year's current annual world emissions of CO2, i.e. 25 GT(CO2). At a trading price of 25/tCO2, this is worth ˜625B. Cooling the planet also could save annually hundreds of billions on a-c electric bills. Finally I suggest policies to increase cool roof deployment, for example, developed world Kyoto signatories could use its CDM (Clean Development Mechanism) for cool roof programs in developing countries.

  2. Radiant cooling by metal roofs in developing countries

    SciTech Connect

    Givoni, B.; Gulich, M.; Gomez, C.; Gomez, A.

    1996-10-01

    In many developing countries corrugated metal roofs are very common. During the nights the roof cools down rather quickly, acting in effect as an effective nocturnal radiator located directly above the living space. However, during the daytime hours the indoor climate in buildings with such roofs is often uncomfortably hot. Installing operable hinged interior insulating plates under the roof can reduce greatly the daytime heating without interfering too much with the cooling effect of such roofs during the nights. A model of this system (a test cell) was built and tested at UCLA. The paper describes the details of the model and its control mechanisms and provides information on the cooling performance of the system.

  3. 7. COOLING TOWER FROM ROOF. Hot Springs National Park, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. COOLING TOWER FROM ROOF. - Hot Springs National Park, Bathhouse Row, Quapaw Bathhouse: Mechanical & Piping Systems, State Highway 7, 1 mile north of U.S. Highway 70, Hot Springs, Garland County, AR

  4. 14. ENGINE TEST CELL BUILDING ROOF. VENTILATION AND COOLING TOWERS. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. ENGINE TEST CELL BUILDING ROOF. VENTILATION AND COOLING TOWERS. LOOKING EAST. - Fairchild Air Force Base, Engine Test Cell Building, Near intersection of Arnold Street & George Avenue, Spokane, Spokane County, WA

  5. Comparison of software models for energy savings from cool roofs

    DOE PAGES

    New, Joshua; Miller, William A.; Huang, Yu; ...

    2015-06-07

    For this study, a web-based Roof Savings Calculator (RSC) has been deployed for the United States Department of Energy as an industry-consensus tool to help building owners, manufacturers, distributors, contractors and researchers easily run complex roof and attic simulations. RSC simulates multiple roof and attic technologies for side-by-side comparison including reflective roofs, different roof slopes, above sheathing ventilation, radiant barriers, low-emittance roof surfaces, duct location, duct leakage rates, multiple substrate types, and insulation levels. Annual simulations of hour-by-hour, whole-building performance are used to provide estimated annual energy and cost savings from reduced HVAC use. While RSC reported similar cooling savingsmore » to other simulation engines, heating penalty varied significantly. RSC results show reduced cool roofing cost-effectiveness, thus mitigating expected economic incentives for this countermeasure to the urban heat island effect. This paper consolidates comparison of RSC's projected energy savings to other simulation engines including DOE-2.1E, AtticSim, Micropas, and EnergyPlus. Also included are comparisons to previous simulation-based studies, analysis of RSC cooling savings and heating penalties, the role of radiative heat exchange in an attic assembly, and changes made for increased accuracy of the duct model. Finally, radiant heat transfer and duct interaction not previously modeled is considered a major contributor to heating penalties.« less

  6. Comparison of software models for energy savings from cool roofs

    SciTech Connect

    New, Joshua; Miller, William A.; Huang, Yu; Levinson, Ronnen

    2015-06-07

    For this study, a web-based Roof Savings Calculator (RSC) has been deployed for the United States Department of Energy as an industry-consensus tool to help building owners, manufacturers, distributors, contractors and researchers easily run complex roof and attic simulations. RSC simulates multiple roof and attic technologies for side-by-side comparison including reflective roofs, different roof slopes, above sheathing ventilation, radiant barriers, low-emittance roof surfaces, duct location, duct leakage rates, multiple substrate types, and insulation levels. Annual simulations of hour-by-hour, whole-building performance are used to provide estimated annual energy and cost savings from reduced HVAC use. While RSC reported similar cooling savings to other simulation engines, heating penalty varied significantly. RSC results show reduced cool roofing cost-effectiveness, thus mitigating expected economic incentives for this countermeasure to the urban heat island effect. This paper consolidates comparison of RSC's projected energy savings to other simulation engines including DOE-2.1E, AtticSim, Micropas, and EnergyPlus. Also included are comparisons to previous simulation-based studies, analysis of RSC cooling savings and heating penalties, the role of radiative heat exchange in an attic assembly, and changes made for increased accuracy of the duct model. Finally, radiant heat transfer and duct interaction not previously modeled is considered a major contributor to heating penalties.

  7. Preliminary Analysis of Energy Consumption for Cool Roofing Measures

    SciTech Connect

    Mellot, Joe; New, Joshua Ryan; Sanyal, Jibonananda

    2013-01-01

    The spread of cool roofing has been more than prolific over the last decade. Driven by public demand and by government initiatives cool roofing has been a recognized low cost method to reduce energy demand by reflecting sunlight away from structures and back in to the atmosphere. While much of the country can benefit from the use of cool coatings it remains to be seen whether the energy savings described are appropriate in cooler climates. By use of commonly available calculators one can analyze the potential energy savings based on environmental conditions and construction practices.

  8. Preliminary Analysis of Energy Consumption for Cool Roofing Measures

    SciTech Connect

    Mellot, Joe; Sanyal, Jibonananda; New, Joshua Ryan

    2013-01-01

    The spread of cool roofing has been more than prolific over the last decade. Driven by public demand and by government initiatives cool roofing has been a recognized low cost method to reduce energy demand by reflecting sunlight away from structures and back in to the atmosphere. While much of the country can benefit from the use of cool coatings it remains to be seen whether the energy savings described are appropriate in cooler climates. By use of commonly available calculators one can analyze the potential energy savings based on environmental conditions and construction practices.

  9. Inclusion of cool roofs in nonresidential Title 24 prescriptive requirements

    SciTech Connect

    Levinson, Ronnen; Akbari, Hashem; Konopacki, Steve; Bretz, Sarah

    2002-12-15

    Roofs that have high solar reflectance (high ability to reflect sunlight) and high thermal emittance (high ability to radiate heat) tend to stay cool in the sun. The same is true of low-emittance roofs with exceptionally high solar reflectance. Substituting a cool roof for a noncool roof tends to decrease cooling electricity use, cooling power demand, and cooling-equipment capacity requirements, while slightly increasing heating energy consumption. Cool roofs can also lower the ambient air temperature in summer, slowing ozone formation and increasing human comfort. DOE-2.1E building energy simulations indicate that use of a cool roofing material on a prototypical California nonresidential building with a low-sloped roof yields average annual cooling energy savings of approximately 300 kWh/1000 ft2 [3.2 kWh/m2], average annual natural gas deficits of 4.9 therm/1000 ft2 [5.6 MJ/m2], average source energy savings of 2.6 MBTU/1000 ft2 [30 MJ/m2], and average peak power demand savings of 0. 19 kW/1000 ft2 [2.1 W/m2]. The 15-year net present value (NPV) of energy savings averages $450/1000 ft2 [$4.90/m2] with time dependent valuation (TDV), and $370/1000 ft2 [$4.00/m2] without TDV. When cost savings from downsizing cooling equipment are included, the average total savings (15-year NPV + equipment savings) rises to $550/1000 ft2 [$5.90/m2] with TDV, and to $470/1000 ft2 [$5.00/m2] without TDV. Total savings range from 0.18 to 0.77 $/ft2 [1.90 to 8.30 $/m2] with TDV, and from 0.16 to 0.66 $/ft2 [1.70 to 7.10 $/m2] without TDV, across California's 16 climate zones. The typical cost premium for a cool roof is 0.00 to 0.20 $/ft2 [0.00 to 2.20 $/m2]. Cool roofs with premiums up to $0.20/ft2 [$2.20/m2] are expected to be cost effective in climate zones 2 through 16; those with premiums not exceeding $0.18/ft2 [$1.90/m2] are expected to be also cost effective in climate zone 1. Hence, this study recommends that the year-2005 California building energy efficiency code (Title 24

  10. Comparison of Software Models for Energy Savings from Cool Roofs

    SciTech Connect

    New, Joshua Ryan; Miller, William A; Huang, Yu; Levinson, Ronnen

    2014-01-01

    A web-based Roof Savings Calculator (RSC) has been deployed for the United States Department of Energy as an industry-consensus tool to help building owners, manufacturers, distributors, contractors and researchers easily run complex roof and attic simulations. This tool employs modern web technologies, usability design, and national average defaults as an interface to annual simulations of hour-by-hour, whole-building performance using the world-class simulation tools DOE-2.1E and AtticSim in order to provide estimated annual energy and cost savings. In addition to cool reflective roofs, RSC simulates multiple roof and attic configurations including different roof slopes, above sheathing ventilation, radiant barriers, low-emittance roof surfaces, duct location, duct leakage rates, multiple substrate types, and insulation levels. A base case and energy-efficient alternative can be compared side-by-side to estimate monthly energy. RSC was benchmarked against field data from demonstration homes in Ft. Irwin, California; while cooling savings were similar, heating penalty varied significantly across different simulation engines. RSC results reduce cool roofing cost-effectiveness thus mitigating expected economic incentives for this countermeasure to the urban heat island effect. This paper consolidates comparison of RSC s projected energy savings to other simulation engines including DOE-2.1E, AtticSim, Micropas, and EnergyPlus, and presents preliminary analyses. RSC s algorithms for capturing radiant heat transfer and duct interaction in the attic assembly are considered major contributing factors to increased cooling savings and heating penalties. Comparison to previous simulation-based studies, analysis on the force multiplier of RSC cooling savings and heating penalties, the role of radiative heat exchange in an attic assembly, and changes made for increased accuracy of the duct model are included.

  11. Evaporative Cooling Membrane Device

    NASA Technical Reports Server (NTRS)

    Lomax, Curtis (Inventor); Moskito, John (Inventor)

    1999-01-01

    An evaporative cooling membrane device is disclosed having a flat or pleated plate housing with an enclosed bottom and an exposed top that is covered with at least one sheet of hydrophobic porous material having a thin thickness so as to serve as a membrane. The hydrophobic porous material has pores with predetermined dimensions so as to resist any fluid in its liquid state from passing therethrough but to allow passage of the fluid in its vapor state, thereby, causing the evaporation of the fluid and the cooling of the remaining fluid. The fluid has a predetermined flow rate. The evaporative cooling membrane device has a channel which is sized in cooperation with the predetermined flow rate of the fluid so as to produce laminar flow therein. The evaporative cooling membrane device provides for the convenient control of the evaporation rates of the circulating fluid by adjusting the flow rates of the laminar flowing fluid.

  12. Predictive Service Life Tests for Roofing Membranes

    NASA Astrophysics Data System (ADS)

    Bailey, David M.; Cash, Carl G.; Davies, Arthur G.

    2002-09-01

    The average service life of roofing membranes used in low-slope applications on U.S. Army buildings is estimated to be considerably shorter than the industry-presumed 20-year design life, even when installers carefully adhere to the latest guide specifications. This problem is due in large part to market-driven product development cycles, which do not include time for long-term field testing. To reduce delivery costs, contractors may provide untested, interior membranes in place of ones proven satisfactory in long-term service. Federal procurement regulations require that roofing systems and components be selected according to desired properties and generic type, not brand name. The problem is that a material certified to have satisfactory properties at installation time will not necessarily retain those properties in service. The overall objective of this research is to develop a testing program that can be executed in a matter of weeks to adequately predict a membrane's long-term performance in service. This report details accelerated aging tests of 12 popular membrane materials in the laboratory, and describes outdoor experiment stations set up for long-term exposure tests of those same membranes. The laboratory results will later be correlated with the outdoor test results to develop performance models and predictive service life tests.

  13. Inclusion of cool roofs in nonresidential Title 24 prescriptiverequirements

    SciTech Connect

    Levinson, Ronnen; Akbari, Hashem; Konopacki, Steve; Bretz, Sarah

    2003-07-01

    Roofs that have high solar reflectance (high ability toreflect sunlight) and high thermal emittance (high ability to radiateheat) tend to stay cool in the sun. The same is true of low-emittanceroofs with exceptionally high solar reflectance. Substituting a cool rooffor a non-cool roof tends to decrease cooling electricity use, coolingpower demand, and cooling-equipment capacity requirements, while slightlyincreasing heating energy consumption. Cool roofs can also lower citywideambient air temperature in summer, slowing ozone formation and increasinghuman comfort.DOE-2.1E building energy simulations indicate that use of acool roofing material on a prototypical California nonresidential (NR)building with a low-sloped roof yields average annual cooling energysavings of approximately 3.2 kW h/m2 (300 kW h/1000 ft2), average annualnatural gas deficits of 5.6 MJ/m2 (4.9 therm/1000 ft2), average annualsource energy savings of 30 MJ/m2 (2.6 MBTU/1000 ft2), and average peakpower demand savings of 2.1 W/m2 (0.19 kW/1000 ft2). The 15-year netpresent value (NPV) of energy savings averages $4.90/m2 ($450/1000 ft2)with time-dependent valuation (TDV), and $4.00/m2 ($370/1000 ft2) withoutTDV. When cost savings from downsizing cooling equipment are included,the average total savings (15-year NPV+equipment savings) rises to$5.90/m2 ($550/1000 ft2) with TDV, and to $5.00/m2 ($470/1000 ft2)without TDV.Total savings range from 1.90 to 8.30 $/m2 (0.18 0.77 $/ft2)with TDV, and from 1.70 to 7.10 $/m2 (0.16 0.66 $/ft2) without TDV,across California's 16 climate zones. The typical cost premium for a coolroof is 0.00 2.20 $/m2 (0.00 0.20 $/ft2). Cool roofs with premiums up to$2.20/m2 ($0.20/ft2) are expected to be cost effective in climate zones 216; those with premiums not exceeding $1.90/m2 ($0.18/ft2) are expectedto be also cost effective in climate zone 1. Hence, this study recommendsthat the year-2005 California building energy efficiency code (Title 24,Part 6 of the California Code of

  14. High Efficiency Solar Integrated Roof Membrane Product

    SciTech Connect

    Partyka, Eric; Shenoy, Anil

    2013-05-15

    This project was designed to address the Solar Energy Technology Program objective, to develop new methods to integrate photovoltaic (PV) cells or modules within a building-integrated photovoltaic (BIPV) application that will result in lower installed cost as well as higher efficiencies of the encapsulated/embedded PV module. The technology assessment and development focused on the evaluation and identification of manufacturing technologies and equipment capable of producing such low-cost, high-efficiency, flexible BIPV solar cells on single-ply roofing membranes.

  15. PBF Cooling Tower. View from highbay roof of Reactor Building ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Cooling Tower. View from high-bay roof of Reactor Building (PER-620). Camera faces northwest. East louvered face has been installed. Inlet pipes protrude from fan deck. Two redwood vents under construction at top. Note piping, control, and power lines at sub-grade level in trench leading to Reactor Building. Photographer: Kirsh. Date: June 6, 1969. INEEL negative no. 69-3466 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  16. Thermal performance of a Concrete Cool Roof under different climatic conditions of Mexico

    SciTech Connect

    Hernández-Pérez, I.; Álvarez, G.; Gilbert, H.; Xamán, J.; Chávez, Y.; Shah, B.

    2014-11-27

    A cool roof is an ordinary roof with a reflective coating on the exterior surface which has a high solar reflectance and high thermal emittance. These properties let the roof keep a lower temperature than a standard roof under the same conditions. In this work, the thermal performance of a concrete roof with and without insulation and with two colors has been analyzed using the finite volume method. The boundary conditions of the external roof surface were taken from hourly averaged climatic data of four cities. For the internal surface, it is considered that the building is air-conditioned and the inside air has a constant temperature. The interior surface temperature and the heat flux rates into the roofs were obtained for two consecutive days in order to assess the benefits of a cool roofs in different climates.

  17. Thermal performance of a Concrete Cool Roof under different climatic conditions of Mexico

    DOE PAGES

    Hernández-Pérez, I.; Álvarez, G.; Gilbert, H.; ...

    2014-11-27

    A cool roof is an ordinary roof with a reflective coating on the exterior surface which has a high solar reflectance and high thermal emittance. These properties let the roof keep a lower temperature than a standard roof under the same conditions. In this work, the thermal performance of a concrete roof with and without insulation and with two colors has been analyzed using the finite volume method. The boundary conditions of the external roof surface were taken from hourly averaged climatic data of four cities. For the internal surface, it is considered that the building is air-conditioned and themore » inside air has a constant temperature. The interior surface temperature and the heat flux rates into the roofs were obtained for two consecutive days in order to assess the benefits of a cool roofs in different climates.« less

  18. Monitoring the Energy-Use Effects of Cool Roofs on California Commercial Buildings

    SciTech Connect

    Akbari, Hashem; Levinson, Ronnen; Konopaki, Steve; Rainer, Leo

    2004-07-01

    Solar-reflective roofs stay cooler in the sun than solar-absorptive roofs. Such ''cool'' roofs achieve lower surface temperatures that reduce heat conduction into the building and the building's cooling load. The California Energy Commission has funded research in which Lawrence Berkeley National Laboratory (LBNL) has measured the electricity use and peak demand in commercial buildings to document savings from implementing the Commission's Cool Roofs program. The study seeks to determine the savings achieved by cool roofs by monitoring the energy use of a carefully selected assortment of buildings participating in the Cool Roofs program. Measurements were needed because the peak savings resulting from the application of cool roofs on different types of buildings in the diverse California climate zones have not been well characterized to date. Only a few occupancy categories (e.g., office and retail buildings) have been monitored before this, and those were done under a limited number of climatic conditions. To help rectify this situation, LBNL was tasked to select the buildings to be monitored, measure roof performance before and after replacing a hot roof by a cool roof, and document both energy and peak demand savings resulting from installation of cool roofs. We monitored the effects of cool roofs on energy use and environmental parameters in six California buildings at three different sites: a retail store in Sacramento; an elementary school in San Marcos (near San Diego); and a 4-building cold storage facility in Reedley (near Fresno). The latter included a cold storage building, a conditioning and fruit-palletizing area, a conditioned packing area, and two unconditioned packing areas (counted as one building).

  19. Global Cooling: Policies to Cool the World and Offset Global Warming from CO2 Using Reflective Roofs and Pavements

    SciTech Connect

    Akbari, Hashem; Levinson, Ronnen; Rosenfeld, Arthur; Elliot, Matthew

    2009-08-28

    Increasing the solar reflectance of the urban surface reduce its solar heat gain, lowers its temperatures, and decreases its outflow of thermal infrared radiation into the atmosphere. This process of 'negative radiative forcing' can help counter the effects of global warming. In addition, cool roofs reduce cooling-energy use in air conditioned buildings and increase comfort in unconditioned buildings; and cool roofs and cool pavements mitigate summer urban heat islands, improving outdoor air quality and comfort. Installing cool roofs and cool pavements in cities worldwide is a compelling win-win-win activity that can be undertaken immediately, outside of international negotiations to cap CO{sub 2} emissions. We propose an international campaign to use solar reflective materials when roofs and pavements are built or resurfaced in temperate and tropical regions.

  20. The effectiveness of cool and green roofs as urban heat island mitigation strategies

    NASA Astrophysics Data System (ADS)

    Li, Dan; Bou-Zeid, Elie; Oppenheimer, Michael

    2014-05-01

    Mitigation of the urban heat island (UHI) effect at the city-scale is investigated using the Weather Research and Forecasting (WRF) model in conjunction with the Princeton Urban Canopy Model (PUCM). Specifically, the cooling impacts of green roof and cool (white/high-albedo) roof strategies over the Baltimore-Washington metropolitan area during a heat wave period (7 June-10 June 2008) are assessed using the optimal set-up of WRF-PUCM described in the companion paper by Li and Bou-Zeid (2014). Results indicate that the surface UHI effect (defined based on the urban-rural surface temperature difference) is reduced significantly more than the near-surface UHI effect (defined based on urban-rural 2 m air temperature difference) when these mitigation strategies are adopted. In addition, as the green and cool roof fractions increase, the surface and near-surface UHIs are reduced almost linearly. Green roofs with relatively abundant soil moisture have comparable effect in reducing the surface and near-surface UHIs to cool roofs with an albedo value of 0.7. Significant indirect effects are also observed for both green and cool roof strategies; mainly, the low-level advection of atmospheric moisture from rural areas into urban terrain is enhanced when the fraction of these roofs increases, thus increasing the humidity in urban areas. The additional benefits or penalties associated with modifications of the main physical determinants of green or cool roof performance are also investigated. For green roofs, when the soil moisture is increased by irrigation, additional cooling effect is obtained, especially when the ‘unmanaged’ soil moisture is low. The effects of changing the albedo of cool roofs are also substantial. These results also underline the capabilities of the WRF-PUCM framework to support detailed analysis and diagnosis of the UHI phenomenon, and of its different mitigation strategies.

  1. Revisiting the Climate Impacts of Cool Roofs around the Globe Using an Earth System Model

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Ban-Weiss, G. A.; Zhang, K.; Liu, J.

    2016-12-01

    Solar reflective "cool roofs" absorb less sunlight than traditional dark roofs, reducing solar heat gain, and decreasing the amount of heat transferred to the atmosphere. Widespread adoption of cool roofs could therefore reduce temperatures in urban areas, partially mitigating the urban heat island effect, and contributing to reversing the local impacts of global climate change. The impacts of cool roofs on global climate remain debated by past research and are uncertain. Using a sophisticated Earth system model, the impacts of cool roofs on climate are investigated at urban, continental, and global scales. We find that global adoption of cool roofs in urban areas reduces urban heat islands everywhere, with an annual- and global-mean decrease from 1.6 to 1.2 K. Decreases are statistically significant, except for some areas in Africa and Mexico where urban fraction is low, and some high-latitude areas during wintertime. Analysis of the surface and TOA energy budget in urban regions at continental-scale shows cool roofs causing increases in solar radiation leaving the Earth-atmosphere system in most regions around the globe, though the presence of aerosols and clouds are found to partially offset increases in upward radiation. Aerosols dampen cool roof-induced increases in upward solar radiation, ranging from 4% in the United States to 18% in more polluted China. Adoption of cool roofs also causes statistically significant reductions in surface air temperatures in urbanized regions of China (-0.11±0.10 K) and the United States (-0.14±0.12 K); India and Europe show statistically insignificant changes. Though past research has disagreed on whether widespread adoption of cool roofs would cool or warm global climate, these studies have lacked analysis on the statistical significance of global temperature changes. The research presented here indicates that adoption of cool roofs around the globe would lead to statistically insignificant reductions in global mean air

  2. Design of evaporative-cooling roof for decreasing air temperatures in buildings in the humid tropics

    NASA Astrophysics Data System (ADS)

    Kindangen, Jefrey I.; Umboh, Markus K.

    2017-03-01

    This subject points to assess the benefits of the evaporative-cooling roof, particularly for buildings with corrugated zinc roofs. In Manado, many buildings have roofed with corrugated zinc sheets; because this material is truly practical, easy and economical application. In general, to achieve thermal comfort in buildings in a humid tropical climate, people applying cross ventilation to cool the air in the room and avoid overheating. Cross ventilation is a very popular path to achieve thermal comfort; yet, at that place are other techniques that allow reducing the problem of excessive high temperature in the room in the constructions. This study emphasizes applications of the evaporative-cooling roof. Spraying water on the surface of the ceiling has been executed on the test cell and the reuse of water after being sprayed and cooled once more by applying a heat exchanger. Initial results indicate a reliable design and successfully meet the target as an effective evaporative-cooling roof technique. Application of water spraying automatic and cooling water installations can work optimally and can be an optimal model for the cooling roof as one of the green technologies. The role of heat exchangers can lower the temperature of the water from spraying the surface of the ceiling, which has become a hot, down an average of 0.77° C. The mass flow rate of the cooling water is approximately 1.106 kg/h and the rate of heat flow is around 515 Watt, depend on the site.

  3. Revisiting the climate impacts of cool roofs around the globe using an Earth system model

    NASA Astrophysics Data System (ADS)

    Zhang, Jiachen; Zhang, Kai; Liu, Junfeng; Ban-Weiss, George

    2016-08-01

    Solar reflective ‘cool roofs’ absorb less sunlight than traditional dark roofs, reducing solar heat gain, and decreasing the amount of heat transferred to the atmosphere. Widespread adoption of cool roofs could therefore reduce temperatures in urban areas, partially mitigating the urban heat island effect, and contributing to reversing the local impacts of global climate change. The impacts of cool roofs on global climate remain debated by past research and are uncertain. Using a sophisticated Earth system model, the impacts of cool roofs on climate are investigated at urban, continental, and global scales. We find that global adoption of cool roofs in urban areas reduces urban heat islands everywhere, with an annual- and global-mean decrease from 1.6 to 1.2 K. Decreases are statistically significant, except for some areas in Africa and Mexico where urban fraction is low, and some high-latitude areas during wintertime. Analysis of the surface and TOA energy budget in urban regions at continental-scale shows cool roofs causing increases in solar radiation leaving the Earth-atmosphere system in most regions around the globe, though the presence of aerosols and clouds are found to partially offset increases in upward radiation. Aerosols dampen cool roof-induced increases in upward solar radiation, ranging from 4% in the United States to 18% in more polluted China. Adoption of cool roofs also causes statistically significant reductions in surface air temperatures in urbanized regions of China (-0.11 ± 0.10 K) and the United States (-0.14 ± 0.12 K); India and Europe show statistically insignificant changes. Though past research has disagreed on whether widespread adoption of cool roofs would cool or warm global climate, these studies have lacked analysis on the statistical significance of global temperature changes. The research presented here indicates that adoption of cool roofs around the globe would lead to statistically insignificant reductions in global mean

  4. Effects of Building‒roof Cooling on Flow and Distribution of Reactive Pollutants in street canyons

    NASA Astrophysics Data System (ADS)

    Park, S. J.; Choi, W.; Kim, J.; Jeong, J. H.

    2016-12-01

    The effects of building‒roof cooling on flow and dispersion of reactive pollutants were investigated in the framework of flow dynamics and chemistry using a coupled CFD‒chemistry model. For this, flow characteristics were analyzed first in street canyons in the presence of building‒roof cooling. A portal vortex was generated in street canyon, producing dominant reverse and outward flows near the ground in all the cases. The building‒roof cooling increased horizontal wind speeds at the building roof and strengthened the downward motion near the downwind building in the street canyon, resultantly intensifying street canyon vortex strength. The flow affected the distribution of primary and secondary pollutants. Concentrations of primary pollutants such as NOx, VOC and CO was high near the upwind building because the reverse flows were dominant at street level, making this area the downwind region of emission sources. Concentration of secondary pollutant such as O3 was lower than the background near the ground, where NOX concentrations were high. Building‒roof cooling decreased the concentration of primary pollutants in contrasted to those under non‒cooling conditions. In contrast, building‒roof cooling increased O3 by reducing NO concentrations in urban street canyon compared to concentrations under non‒cooling conditions.

  5. Revisiting the climate impacts of cool roofs around the globe using an Earth system model

    SciTech Connect

    Zhang, Jiachen; Zhang, Kai; Liu, Junfeng; Ban-Weiss, George

    2016-08-01

    Solar reflective “cool roofs” absorb less sunlight than traditional dark roofs, reducing solar heat gain, and decreasing the amount of heat transferred to the atmosphere. Widespread adoption of cool roofs could therefore reduce temperatures in urban areas, partially mitigating the urban heat island effect, and contributing to reversing the local impacts of global climate change. The impacts of cool roofs on global climate remain debated by past research and are uncertain. Using a sophisticated Earth system model, the impacts of cool roofs on climate are investigated at urban, continental, and global scales. We find that global adoption of cool roofs in urban areas reduces urban heat islands everywhere, with an annual- and global-mean decrease from 1.6 to 1.2 K. Decreases are statistically significant, except for some areas in Africa and Mexico where urban fraction is low, and some high-latitude areas during wintertime. Analysis of the surface and TOA energy budget in urban regions at continental-scale shows cool roofs causing increases in solar radiation leaving the Earth-atmosphere system in most regions around the globe, though the presence of aerosols and clouds are found to partially offset increases in upward radiation. Aerosols dampen cool roof-induced increases in upward solar radiation, ranging from 4% in the United States to 18% in more polluted China. Adoption of cool roofs also causes statistically significant reductions in surface air temperatures in urbanized regions of China (0.11±0.10 K) and the United States (0.14±0.12 K); India and Europe show statistically insignificant changes. The research presented here indicates that adoption of cool roofs around the globe would lead to statistically insignificant reductions in global mean air temperature (0.0021 ±0.026 K). This counters past research suggesting that cool roofs can reduce, or even increase global mean temperatures. Thus, we suggest that while cool roofs are an effective tool for

  6. Citywide Impacts of Cool Roof and Rooftop Solar Photovoltaic Deployment on Near-Surface Air Temperature and Cooling Energy Demand

    NASA Astrophysics Data System (ADS)

    Salamanca, F.; Georgescu, M.; Mahalov, A.; Moustaoui, M.; Martilli, A.

    2016-10-01

    Assessment of mitigation strategies that combat global warming, urban heat islands (UHIs), and urban energy demand can be crucial for urban planners and energy providers, especially for hot, semi-arid urban environments where summertime cooling demands are excessive. Within this context, summertime regional impacts of cool roof and rooftop solar photovoltaic deployment on near-surface air temperature and cooling energy demand are examined for the two major USA cities of Arizona: Phoenix and Tucson. A detailed physics-based parametrization of solar photovoltaic panels is developed and implemented in a multilayer building energy model that is fully coupled to the Weather Research and Forecasting mesoscale numerical model. We conduct a suite of sensitivity experiments (with different coverage rates of cool roof and rooftop solar photovoltaic deployment) for a 10-day clear-sky extreme heat period over the Phoenix and Tucson metropolitan areas at high spatial resolution (1-km horizontal grid spacing). Results show that deployment of cool roofs and rooftop solar photovoltaic panels reduce near-surface air temperature across the diurnal cycle and decrease daily citywide cooling energy demand. During the day, cool roofs are more effective at cooling than rooftop solar photovoltaic systems, but during the night, solar panels are more efficient at reducing the UHI effect. For the maximum coverage rate deployment, cool roofs reduced daily citywide cooling energy demand by 13-14 %, while rooftop solar photovoltaic panels by 8-11 % (without considering the additional savings derived from their electricity production). The results presented here demonstrate that deployment of both roofing technologies have multiple benefits for the urban environment, while solar photovoltaic panels add additional value because they reduce the dependence on fossil fuel consumption for electricity generation.

  7. Integration of active and passive cool roof system for attic temperature reduction

    NASA Astrophysics Data System (ADS)

    Yew, Ming Chian; Yew, Ming Kun; Saw, Lip Huat; Durairaj, Rajkumar

    2017-04-01

    The aim of this project is to study the capability of cool roof system in the reduction of heat transmission through metal roof into an attic. The cool roof system is designed in active and passive methods to reduce the thermal loads imposed to a building. Two main features are introduced to this cool roof system, which is thermal insulation coating (TIC) and moving air cavity (MAC) that served as active and passive manner, respectively. For MAC, two designs are introduced. Normal MAC is fabricated by six aluminium tubes whereby each aluminium tube is made up by sticking up of five aluminium cans. While improved MAC is also made by six aluminium tubes whereby each aluminium tube is custom made from steel rods and aluminium foils. MAC provides ventilation and heat reflection under the metal roof before the heat transfer into attic. It also coupled with three solar powered fans to increase heat flow inside the channel. The cool roof that incorporated TIC, MAC with solar powered fans and opened attic inlet showed a significant improvement with a reduction of up to 14 °C in the attic temperature compared to conventional roof system.

  8. Revisiting the Climate Impacts of Cool Roofs around the Globe Using an Earth System Model

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Zhang, K.; Ban-Weiss, G. A.

    2015-12-01

    In this study, we use the Community Earth System Model to investigate the effects of employing cool roofs (i.e. increasing roof albedo from 0.15 to 0.9) on urban, regional, and global climates. After increasing the roof albedo, urban heat islands are reduced significantly over the globe during summer, and those at low latitudes during winter; the annual- and global-mean urban minus rural air temperature decreases from 1.6 K to 1.2 K. We mainly focus on changes in energy fluxes and climates in four regions: the United States, China, India, and Europe. For each region, solar radiation reflected by surface increases proportionally to the estimated albedo increase induced by roof albedo change. Without considering clouds, the increase in reflected solar radiation at surface leads to proportional increase in outgoing shortwave radiation at top of the atmosphere, suggesting a radiative cooling effect of cool roofs. On the other hand, the variations of cloud forcing in the model are more significant than the influence of cool roofs on energy balance at top of the atmosphere in some areas. Aerosols are known to partially offset the effects of cool roofs by absorbing solar radiation, and also reflecting radiation back to surface. However, we find that additional aerosol forcing is only 5-10% of the increase in reflected solar radiation at surface. Previous studies disagree in cool roof's influence on global climate. We find that its influence on global mean temperature is negligible; the temperature decreases by 0.0015 K, with a high uncertainty of 0.026 K.

  9. Highly reflective roof surfaces reduce cooling energy use and peak demand

    SciTech Connect

    George, K.L.

    1993-12-31

    Light-colored building surfaces are a time-honored method of staying cool, familiar to anyone who has seen the white-washed buildings in the Mediterranean, the Caribbean, and other warm climes. This heat rejecting strategy has been largely ignored in many places since the advent of mechanical air conditioning. However, recent monitoring experiments suggest that utilities could reduce summer cooling loads significantly by encouraging wide-scale application of light-colored, highly reflective roof surfaces on homes and small commercial buildings. Recent field tests in California and Florida show that application of light-colored coatings to poorly insulated roof systems can reduce cooling energy use and peak demand by more than one-third. Installation of highly reflective, or high ``albedo,`` roofs can be a cost-effective and low-risk utility DSM measure if done during new construction or when buildings are scheduled for reroofing. Most commercial building roofing materials are available in white versions or are easily coated. The residential market is more problematic, however, since asphalt shingles, which constitute more than half of the US residential roofing market, are not highly reflective. More research and market development is warranted to help realize the potential of highly reflective roofs. This includes additional product testing, labeling of highly reflective roofing materials, development of nonwhite reflective surfaces, additional performance monitoring, and implementation of utility pilot programs.

  10. Cooling energy savings potential of light-colored roofs for residential and commercial buildings in 11 US metropolitan areas

    SciTech Connect

    Konopacki, S.; Akbari, H.; Pomerantz, M.; Gabersek, S.; Gartland, L.

    1997-05-01

    Light-colored roofs reflect more sunlight than dark roofs, thus they keep buildings cooler and reduce air-conditioning demand. Typical roofs in the United States are dark, which creates a potential for savings energy and money by changing to reflective roofs. In this report, the authors make quantitative estimates of the impact of roof color by simulating prototypical buildings with light- and dark-colored roofs and calculating savings by taking the differences in annual cooling and heating energy use, and peak electricity demand. Monetary savings are calculated using local utility rates. Savings are estimated for 11 U.S. Metropolitan Statistical Areas (MSAs) in a variety of climates.

  11. Ethnography of Cool Roof Retrofits: The Role of Rebates in the Materials Selection Process

    SciTech Connect

    Mazur-Stommen, Susan

    2011-02-01

    In the summer of 2010, ethnographic research was conducted with nine households in the Bay Area and Sacramento region. The purpose of this task was to collect methodologically grounded insights into how and why consumers chose the cool roofing material they selected. These nine households comprised fifteen respondents, and their dependents. They were selected from among a pool of respondents to a mail solicitation of all Sacramento Municipal Utility District and Pacific Gas and Electric customers who had received a rebate for their cool roof retrofit. Consumers are uniformly happy with their cool roof retrofits. Consumers typically stayed very close to the aesthetic of the original roof style. Price was not a primary concern, while longevity was paramount. Consumers did not use roofing price, nor energy savings (with one exception), in tracking return on investment through energy savings. The utility rebate had little role to play in terms of incentivizing customers to choose cool materials. Contractors were critical partners in the decision-­making process.

  12. Durability of high-albedo roof coatings and implications for cooling energy savings. Final report

    SciTech Connect

    Bretz, S.E.; Akbari, H.

    1994-06-01

    Twenty-six spot albedo measurements of roofs were made using a calibrated pyranometer. The roofs were surfaced with either an acrylic elastomeric coating, a polymer coating with an acrylic base, or a cementitious coating. Some of the roofs` albedos were measured before and after washing to determine whether the albedo decrease was permanent. Data indicated that most of the albedo degradation occurred within the first year, and even within the first two months. On one roof, 70% of one year`s albedo degradation occurred in the first two months. After the first year, the degradation slowed, with data indicating small losses in albedo after the second year. Measurements of seasonal cooling energy savings by Akbari et al. (1993) included the effects of over two months of albedo degradation. We estimated {approximately}20% loss in cooling-energy savings after the first year because of dirt accumulation. For most of the roofs we cleaned, the albedo was restored to within 90% of its initial value. Although washing is effective at restoring albedo, the increase in energy savings is temporary and labor costs are significant in comparison to savings. By our calculations, it is not cost-effective to hire someone to clean a high-albedo roof only to achieve energy savings. Thus, it would be useful to develop and identify dirt-resistant high-albedo coatings.

  13. Interactions between Cool Roofs and Urban Irrigation: Do Cooling Strategies Reduce Water Consumption in the San Francisco Bay Area?

    NASA Astrophysics Data System (ADS)

    Vahmani, P.; Jones, A. D.

    2016-12-01

    California has experienced progressive drought since 2012, with 2012-2014 constituting a nearly 10,000-year drought event, resulting in a suite of policies with the goal of reducing water consumption. At the same time, climate warming effects of accelerated urbanization along with projected global climate change raise an urgent need for sustainable mitigation and adaptation strategies to cool urban climates. In this study, for the first time, we assess the overarching benefits of cooling strategies on urban water consumption. We employ a satellite-supported regional climate-modeling framework over the San Francisco Bay Area to assess the effects of cool roofs on urban irrigation, a topic of increasing importance as it accounts for a significant fraction of urban water use particularly in arid and semi-arid regions. We use a suit of climatological simulations at high (1.5 km) spatial resolution, based on a Weather Research and Forecasting (WRF)-Urban Canopy Model (UCM) modeling framework, reinforced with remotely sensed observations of Green Vegetation Fraction (GVF), leaf area index (LAI), and albedo. Our analysis shows that widespread incorporation of cool roofs would result in a mean daytime cooling of about 0.7° C, which in turn results in roughly 4% reduction in irrigation water, largely due to decreases in surface evapotranspiration rates. We further investigate the critical interactions between cool roofs, wind, and sea-breeze patterns as well as fog formation, a dominant weather pattern in San Francisco Bay area.

  14. Monitoring the energy-use effects of cool roofs on Californiacommercial buildings

    SciTech Connect

    Akbari, Hashem; Levinson, Ronnen; Rainer, Leo

    2004-07-14

    Solar-reflective roofs stay cooler in the sun than solar-absorptive roofs. Such 'cool' roofs achieve lower surface temperatures that reduce heat conduction into the building and the building's cooling load. We monitored the effects of cool roofs on energy use and environmental parameters in six California buildings at three different sites: a retail store in Sacramento; an elementary school in San Marcos (near San Diego); and a four-building cold storage facility in Reedley (near Fresno). The latter included a cold storage building, a conditioning and fruit-palletizing area, a conditioned packing area, and two unconditioned packing areas. Results showed that installing a cool roof reduced the daily peak roof surface temperature of each building by 33-42 K. In the retail store building in Sacramento, for the monitored period of 8 August-30 September 2002, the estimated savings in average air conditioning energy use was about 72 Wh/m{sup 2}/day (52%). On hot days when the afternoon temperature exceeded 38 C, the measured savings in average peak demand for peak hours (noon-5 p.m.) was about 10 W/m{sup 2} of conditioned area. In the school building in San Marcos, for the monitored period of 8 July-20 August 2002, the estimated savings in average air conditioning energy use was about 42-48 Wh/m{sup 2}/day (17-18%). On hot days, when the afternoon temperature exceeded 32 C, the measured savings in average peak demand for hours 10 a.m.-4 p.m. was about 5 W/m{sup 2} of conditioned area. In the cold storage facility in Reedley, for the monitored period of 11 July-14 September 2002, and 11 July-18 August 2003, the estimated savings in average chiller energy use was about 57-81 Wh/m{sup 2}/day (3-4%). On hot days when the afternoon temperature exceeded 38 C, the measured savings in average peak-period demand (average cooling-power demand during peak demand hours, typically noon-6 p.m.) was about 5-6 W/m{sup 2} of conditioned area. Using the measured data and calibrated

  15. The Advancement of Cool Roof Standards in China from 2010 to 2015

    SciTech Connect

    Ge, Jing; Levinson, Ronnen M.

    2016-11-01

    Since the initiation of the U.S.-China Clean Energy Research Center-Building Energy Efficiency (CERC-BEE) cool roof research collaboration between the Lawrence Berkeley National Laboratory Heat Island Group and Chinese institutions in 2010, new cool surface credits (insulation trade- offs) have been adopted in Chinese building energy efficiency standards, industry standards, and green building standards. JGJ 75-2012: Design Standard for Energy Efficiency of Residential Buildings in Hot Summer and Warm Winter Zone became the first national level standard to provide cool surface credits. GB/T 50378-2014: Assessment Standard for Green Building is the first national level green building standard that offers points for heat island mitigation. JGJ/T 359-2015: Technical Specification for Application of Architectural Reflective Thermal Insulation Coating is the first industry standard that offers cool coating credits for both public and residential buildings in all hot-summer climates (Hot Summer/Cold Winter, Hot Summer/Warm Winter). As of December 2015, eight provinces or municipalities in hot-summer regions have credited cool surfaces credits in their residential and/or public building design standards; five other provinces or municipalities in hot-summer regions recommend, but do not credit, the use of cool surfaces in their building design standards. Cool surfaces could be further advanced in China by including cool roof credits for residential and public building energy efficiency standards in all hot-summer regions; developing a standardized process for natural exposure and aged-property rating of cool roofing products; and adapting the U.S.-developed laboratory aging process for roofing materials to replicate solar reflectance changes induced by natural exposure in China.

  16. COOLING TOWER PUMP HOUSE, TRA606. ELEVATIONS, STRUCTURAL AND ROOF PLAN, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    COOLING TOWER PUMP HOUSE, TRA-606. ELEVATIONS, STRUCTURAL AND ROOF PLAN, DETAILS. BLAW-KNOX 3150-807-1, 2/1950. INL INDEX NO. 531-0607-00-098-100670. REV. 3. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  17. Cool Colored Roofs to Save Energy and Improve Air Quality

    SciTech Connect

    Akbari, Hashem; Levinson, Ronnen; Miller, William; Berdahl, Paul

    2005-08-23

    Urban areas tend to have higher air temperatures than their rural surroundings as a result of gradual surface modifications that include replacing the natural vegetation with buildings and roads. The term ''Urban Heat Island'' describes this phenomenon. The surfaces of buildings and pavements absorb solar radiation and become extremely hot, which in turn warm the surrounding air. Cities that have been ''paved over'' do not receive the benefit of the natural cooling effect of vegetation. As the air temperature rises, so does the demand for air-conditioning (a/c). This leads to higher emissions from power plants, as well as increased smog formation as a result of warmer temperatures. In the United States, we have found that this increase in air temperature is responsible for 5-10% of urban peak electric demand for a/c use, and as much as 20% of population-weighted smog concentrations in urban areas. Simple ways to cool the cities are the use of reflective surfaces (rooftops and pavements) and planting of urban vegetation. On a large scale, the evapotranspiration from vegetation and increased reflection of incoming solar radiation by reflective surfaces will cool a community a few degrees in the summer. As an example, computer simulations for Los Angeles, CA show that resurfacing about two-third of the pavements and rooftops with reflective surfaces and planting three trees per house can cool down LA by an average of 2-3K. This reduction in air temperature will reduce urban smog exposure in the LA basin by roughly the same amount as removing the basin entire onroad vehicle exhaust. Heat island mitigation is an effective air pollution control strategy, more than paying for itself in cooling energy cost savings. We estimate that the cooling energy savings in U.S. from cool surfaces and shade trees, when fully implemented, is about $5 billion per year (about $100 per air-conditioned house).

  18. TASK 2.5.7 FIELD EXPERIMENTS TO EVALUATE COOL-COLORED ROOFING

    SciTech Connect

    Miller, William A; Cherry, Nigel J; Allen, Richard Lowell; Childs, Phillip W; Atchley, Jerald Allen; Ronnen, Levinson; Akbari, Hashem; Berhahl, Paul

    2010-03-01

    Aesthetically pleasing dark roofs can be formulated to reflect like a highly reflective white roof in the near infrared portion of the solar spectrum. New paint pigments increase the near infrared reflectance of exterior finishes by minimizing the absorption of near-infrared radiation (NIR). The boost in the NIR reflectance drops the surface temperatures of roofs and walls, which in turn reduces cooling-energy use and provides savings for the homeowner and relief for the utilities. In moderate and hot climates, a roof surface with high solar reflectance and high thermal emittance was shown by Akbari et al. (2004) and by Parker and Sherwin (1998) to reduce the exterior temperature and produce savings in comfort cooling. The new cool color pigments can potentially reduce emissions of carbon dioxide, which in turn reduces metropolitan heat buildup and urban smog. The pigments can also help conserve water resources otherwise used to clean and process fuel consumed by fossil-fuel driven power plants. Cool roofs also result in a lower ambient temperature that further decreases the need for air conditioning, retards smog formation, and improves thermal comfort. Parker, Sonne and Sherwin (2002) demonstrated that white barrel and white flat tiles reduced cooling energy consumption by 22% of the base load used by an adjacent and identical home having direct nailed dark shingles. Part of the savings was due to the reflectance of the white tiles; however, another part was due to the mass of the tile and to the venting occurring within the double batten installation. With, Cherry and Haig (2009) have studied the influence of the thermal mass and batten space ventilation and have found that, referenced to an asphalt shingle system, it can be equivalent to an additional 28 points of solar reflectivity. The double batten arrangement has wooden counter battens laid vertically (soffit-to-ridge) against the roof deck, and then the conventional battens are laid horizontally across the

  19. Cool roofs with high solar reflectance for the welfare of dairy farming animals

    NASA Astrophysics Data System (ADS)

    Santunione, G.; Libbra, A.; Muscio, A.

    2017-01-01

    Ensuring livestock welfare in dairy farming promotes the production capacity of the animals in terms of both quantity and quality. In welfare conditions, the animals can produce at their full potential. For the dairy cattle the most debilitating period of the year is summer, when the stress arising from overheating induces physiological alterations that compromise the animals’ productivity. In this study, the summer discomfort of dairy animals is primarily quantified and the production loss is quantified versus the Temperature Humidity Index (THI), which correlates the values of temperature and relative humidity to the thermal stress. In order to reduce or eliminate such thermal stress, it is then proposed to coat the roof of the stables with a paint having high solar reflectance and thermal emittance, that is a cool roof product. This type of roofing solution can considerably limit the overheating of stables caused by solar radiation, thus providing a positive impact on the animals’ welfare and improving significantly their productivity in summer.

  20. Evaluating Cool Impervious Surfaces: Application to an Energy-Efficient Residential Roof and to City Pavements

    NASA Astrophysics Data System (ADS)

    Rosado, Pablo Javier

    Summer urban heat island (UHI) refers to the phenomenon of having higher urban temperatures compared to the those in surrounding suburban and rural areas. Higher urban air temperatures lead to increased cooling demand, accelerates the formation of smog, and contributes to the generation of greenhouse gas emissions. Dark-colored impervious surfaces cover a significant fraction of an urban fabric, and as hot and dry surfaces, are a major contributor to the UHI effect. Adopting solar-reflective ("cool") roofs and cool pavements, and increasing the urban vegetation, are strategies proven to mitigate urban heat islands. These strategies often have an "indirect" effect (ambient cooling) and "direct" effect (change in solar energy flux entering the conditioned space) on the energy use of buildings. This work investigates some elements of the UHI mitigation strategies, specifically the annual direct effect of a cool roof, and the direct and indirect effects of cool pavements. The first topic researched in this paper consists in an experimental assessment of the direct effects from replacing a conventional dark roof with a highly energy-efficient cool roof. The study measures and calculates the annual benefits of the cool roof on the cooling and heating energy uses, and the associated emission reductions. The energy savings attributed to the cool roof are validated by measuring the difference between the homes in the heat loads that entered the conditioned space through the ceiling and HVAC ducts. Fractional annual cooling energy savings (26%) were 2.6 times the 10% daily cooling energy savings measured in a previous study that used a white coating to increase the albedo of an asphalt shingle roof by the same amount (0.44). The improved cooling energy savings (26% vs. 10%) may be attributed to the cool tile's above-sheathing ventilation, rather than to its high thermal mass. The roof also provided energy savings during the heating season, yielding fractional annual gas

  1. Photovoltaic Membrane (PVM) Roof System. Technical progress report, first quarter 1986

    SciTech Connect

    Francovitch, T.F.

    1986-04-28

    Testing of the Photovoltaic Membrane Roof System for wind uplift resistance is reported. A wind uplift table was used to simulate this load by applying positive pressure to a section of roof. Four such tests were conducted, using reinforced EPDM, Gates' reinforced Hypolon, and reinforced PVC. (LEW)

  2. Effects of soiling and cleaning on the reflectance and solar heat gain of a light-colored roofing membrane

    NASA Astrophysics Data System (ADS)

    Levinson, Ronnen; Berdahl, Paul; Asefaw Berhe, Asmeret; Akbari, Hashem

    A roof with high solar reflectance and high thermal emittance (e.g., a white roof) stays cool in the sun, reducing cooling power demand in a conditioned building and increasing summertime comfort in an unconditioned building. The high initial solar reflectance of a white membrane roof (circa 0.8) can be lowered by deposition of soot, dust, and/or biomass (e.g., fungi or algae) to about 0.6; degraded solar reflectances range from 0.3 to 0.8, depending on exposure. We investigate the effects of soiling and cleaning on the solar spectral reflectances and solar absorptances of 15 initially white or light-gray polyvinyl chloride membrane samples taken from roofs across the United States. Black carbon and organic carbon were the two identifiable strongly absorbing contaminants on the membranes. Wiping was effective at removing black carbon, and less so at removing organic carbon. Rinsing and/or washing removed nearly all of the remaining soil layer, with the exception of (a) thin layers of organic carbon and (b) isolated dark spots of biomass. Bleach was required to clear these last two features. At the most soiled location on each membrane, the ratio of solar reflectance to unsoiled solar reflectance (a measure of cleanliness) ranged from 0.41 to 0.89 for the soiled samples; 0.53 to 0.95 for the wiped samples; 0.74 to 0.98 for the rinsed samples; 0.79 to 1.00 for the washed samples; and 0.94 to 1.02 for the bleached samples. However, the influences of membrane soiling and cleaning on roof heat gain are better gauged by fractional variations in solar absorptance. Solar absorptance ratios (indicating solar heat gain relative to that of an unsoiled membrane) ranged from 1.4 to 3.5 for the soiled samples; 1.1 to 3.1 for the wiped samples; 1.0 to 2.0 for the rinsed samples; 1.0 to 1.9 for the washed samples; and 0.9 to 1.3 for the bleached samples.

  3. In situ thermal performance of APP modified bitumen roof membranes coated with reflective coatings

    SciTech Connect

    Carlson, J.D.; Smith, T.L. ); Christian, J.E. )

    1992-01-01

    A multi-faceted field research program regarding seven atactic polypropylene (APP) modified bitumen membrane roof systems and four reflective coatings began in 1991. This long-term project is evaluating the performance of various APP modified bitumen membranes (both coated and uncoated), the comparative performance of coating application soon after membrane installation versus preweathering, coating performance, and aspects of recoating. This paper is a progress report on the in situ thermal performance of the various types of coatings compared to the thermal performance of the exposed membrane. The thermal performance of an adjacent ballasted ethylene propylene diene terpolymer (EPDM) roofing system is also described.

  4. In situ thermal performance of APP modified bitumen roof membranes coated with reflective coatings

    SciTech Connect

    Carlson, J.D.; Smith, T.L.; Christian, J.E.

    1992-10-01

    A multi-faceted field research program regarding seven atactic polypropylene (APP) modified bitumen membrane roof systems and four reflective coatings began in 1991. This long-term project is evaluating the performance of various APP modified bitumen membranes (both coated and uncoated), the comparative performance of coating application soon after membrane installation versus preweathering, coating performance, and aspects of recoating. This paper is a progress report on the in situ thermal performance of the various types of coatings compared to the thermal performance of the exposed membrane. The thermal performance of an adjacent ballasted ethylene propylene diene terpolymer (EPDM) roofing system is also described.

  5. Cool Roofs in Guangzhou, China: Outdoor Air Temperature Reductions during Heat Waves and Typical Summer Conditions.

    PubMed

    Cao, Meichun; Rosado, Pablo; Lin, Zhaohui; Levinson, Ronnen; Millstein, Dev

    2015-12-15

    In this paper, we simulate temperature reductions during heat-wave events and during typical summer conditions from the installation of highly reflective "cool" roofs in the Chinese megacity of Guangzhou. We simulate temperature reductions during six of the strongest historical heat-wave events over the past decade, finding average urban midday temperature reductions of 1.2 °C. In comparison, we simulate 25 typical summer weeks between 2004 and 2008, finding average urban midday temperature reductions of 0.8 °C, indicating that air temperature sensitivity to urban albedo in Guangzhou varies with meteorological conditions. We find that roughly three-fourths of the variance in air temperature reductions across all episodes can be accounted for by a linear regression, including only three basic properties related to the meteorological conditions: mean daytime temperature, humidity, and ventilation to the greater Guangzhou urban area. While these results highlight the potential for cool roofs to mitigate peak temperatures during heat waves, the temperature reductions reported here are based on the upper bound case, which increases albedos of all roofs (but does not modify road albedo or wall albedo).

  6. Investigating the climate impacts of urbanization and the potential for cool roofs to counter future climate change in Southern California

    DOE PAGES

    Vahmani, P.; Sun, F.; Hall, A.; ...

    2016-12-15

    The climate warming effects of accelerated urbanization along with projected global climate change raise an urgent need for sustainable mitigation and adaptation strategies to cool urban climates. Our modeling results show that historical urbanization in the Los Angeles and San Diego metropolitan areas has increased daytime urban air temperature by 1.3 °C, in part due to a weakening of the onshore sea breeze circulation. We find that metropolis-wide adoption of cool roofs can meaningfully offset this daytime warming, reducing temperatures by 0.9 °C relative to a case without cool roofs. Residential cool roofs were responsible for 67% of the cooling.more » Nocturnal temperature increases of 3.1 °C from urbanization were larger than daytime warming, while nocturnal temperature reductions from cool roofs of 0.5 °C were weaker than corresponding daytime reductions. We further show that cool roof deployment could partially counter the local impacts of global climate change in the Los Angeles metropolitan area. Assuming a scenario in which there are dramatic decreases in greenhouse gas emissions in the 21st century (RCP2.6), mid- and end-of-century temperature increases from global change relative to current climate are similarly reduced by cool roofs from 1.4 °C to 0.6 °C. Assuming a scenario with continued emissions increases throughout the century (RCP8.5), mid-century warming is significantly reduced by cool roofs from 2.0 °C to 1.0 °C. The end-century warming, however, is significantly offset only in small localized areas containing mostly industrial/commercial buildings where cool roofs with the highest albedo are adopted. We conclude that metropolis-wide adoption of cool roofs can play an important role in mitigating the urban heat island effect, and offsetting near-term local warming from global climate change. Global-scale reductions in greenhouse gas emissions are the only way of avoiding long-term warming, however. We further suggest that both

  7. Investigating the climate impacts of urbanization and the potential for cool roofs to counter future climate change in Southern California

    NASA Astrophysics Data System (ADS)

    Vahmani, P.; Sun, F.; Hall, A.; Ban-Weiss, G.

    2016-12-01

    The climate warming effects of accelerated urbanization along with projected global climate change raise an urgent need for sustainable mitigation and adaptation strategies to cool urban climates. Our modeling results show that historical urbanization in the Los Angeles and San Diego metropolitan areas has increased daytime urban air temperature by 1.3 °C, in part due to a weakening of the onshore sea breeze circulation. We find that metropolis-wide adoption of cool roofs can meaningfully offset this daytime warming, reducing temperatures by 0.9 °C relative to a case without cool roofs. Residential cool roofs were responsible for 67% of the cooling. Nocturnal temperature increases of 3.1 °C from urbanization were larger than daytime warming, while nocturnal temperature reductions from cool roofs of 0.5 °C were weaker than corresponding daytime reductions. We further show that cool roof deployment could partially counter the local impacts of global climate change in the Los Angeles metropolitan area. Assuming a scenario in which there are dramatic decreases in greenhouse gas emissions in the 21st century (RCP2.6), mid- and end-of-century temperature increases from global change relative to current climate are similarly reduced by cool roofs from 1.4 °C to 0.6 °C. Assuming a scenario with continued emissions increases throughout the century (RCP8.5), mid-century warming is significantly reduced by cool roofs from 2.0 °C to 1.0 °C. The end-century warming, however, is significantly offset only in small localized areas containing mostly industrial/commercial buildings where cool roofs with the highest albedo are adopted. We conclude that metropolis-wide adoption of cool roofs can play an important role in mitigating the urban heat island effect, and offsetting near-term local warming from global climate change. Global-scale reductions in greenhouse gas emissions are the only way of avoiding long-term warming, however. We further suggest that both climate

  8. Survey of Passive Leak Detection Technologies for Membrane Roofing

    DTIC Science & Technology

    1994-03-01

    use a layer of adhered closed-cell insulation boards with taped joints. Placing the sensors and transmission medium into a roofing system that USACUIL...with nonabsorbent insulations (i.e., polyisocyanurate ), excessive amounts of moisture may be allowed to enter the roofing system before the insulation...system must have at least two layers of insulation, with the sensors being placed on the bottom boards at predetermined intervals along the joints of

  9. A novel technique for the production of cool colored concrete tile and asphalt shingle roofing products

    SciTech Connect

    Levinson, Ronnen; Akbari, Hashem; Berdahl, Paul; Wood, Kurt; Skilton, Wayne; Petersheim, Jerry

    2009-11-20

    The widespread use of solar-reflective roofing materials can save energy, mitigate urban heat islands and slow global warming by cooling the roughly 20% of the urban surface that is roofed. In this study we created prototype solar-reflective nonwhite concrete tile and asphalt shingle roofing materials using a two-layer spray coating process intended to maximize both solar reflectance and factory-line throughput. Each layer is a thin, quick-drying, pigmented latex paint based on either acrylic or a poly(vinylidene fluoride)/acrylic blend. The first layer is a titanium dioxide rutile white basecoat that increases the solar reflectance of a gray-cement concrete tile from 0.18 to 0.79, and that of a shingle surfaced with bare granules from 0.06 to 0.62. The second layer is a 'cool' color topcoat with weak near-infrared (NIR) absorption and/or strong NIR backscattering. Each layer dries within seconds, potentially allowing a factory line to pass first under the white spray, then under the color spray. We combined a white basecoat with monocolor topcoats in various shades of red, brown, green and blue to prepare 24 cool color prototype tiles and 24 cool color prototypes shingles. The solar reflectances of the tiles ranged from 0.26 (dark brown; CIELAB lightness value L* = 29) to 0.57 (light green; L* = 76); those of the shingles ranged from 0.18 (dark brown; L* = 26) to 0.34 (light green; L* = 68). Over half of the tiles had a solar reflectance of at least 0.40, and over half of the shingles had a solar reflectance of at least 0.25.

  10. Membrane evaporative cooling to 30 degrees C or less: 1. Membrane evaporative cooling of contained water.

    PubMed

    Loeb, Sidney

    2003-03-01

    Microporous hydrophobic membranes have been examined for possible use as containers in the evaporative cooling of water, particularly in desert climates. An experimental determination was made of the overall heat and mass transfer coefficients of these membranes while surmounting contained water and with air flowing over the surface of the membranes. Similar tests were made with water alone, that is, without a membrane. The coefficients were then used to compare the performance of existing (canvas water) coolers and membrane evaporative coolers under desert conditions. The performance of the membrane coolers was close enough to that of the canvas coolers that extensive investigation of various aspects of membrane evaporative cooling appears to be justified, particularly in view of the potential advantages of the latter over the existing evaporative cooling methods. For example, for cool storage of perishable goods in a desert climate, the membrane container might be uniquely qualified because of its low rate of water consumption compared to that of a canvas cooler.

  11. Sperm Membrane Behaviour during Cooling and Cryopreservation.

    PubMed

    Sieme, H; Oldenhof, H; Wolkers, W F

    2015-09-01

    Native sperm is only marginally stable after collection. Cryopreservation of semen facilitates transport and storage for later use in artificial reproduction technologies, but cryopreservation processing may result in cellular damage compromising sperm function. Membranes are thought to be the primary site of cryopreservation injury. Therefore, insights into the effects of cooling, ice formation and protective agents on sperm membranes may help to rationally design cryopreservation protocols. In this review, we describe membrane phase behaviour of sperm at supra- and subzero temperatures. In addition, factors affecting membrane phase transitions and stability, sperm osmotic tolerance limits and mode of action of cryoprotective agents are discussed. It is shown how cooling only results in minor thermotropic non-cooperative phase transitions, whereas freezing causes sharp lyotropic fluid-to-gel phase transitions. Membrane cholesterol content affects suprazero membrane phase behaviour and osmotic tolerance. The rate and extent of cellular dehydration coinciding with freezing-induced membrane phase transitions are affected by the cooling rate and ice nucleation temperature and can be modulated by cryoprotective agents. Permeating agents such as glycerol can move across cellular membranes, whereas non-permeating agents such as sucrose cannot. Both, permeating and non-permeating protectants preserve biomolecular and cellular structures by forming a protective glassy state during freezing.

  12. Cooled membrane for high sensitivity gas sampling.

    PubMed

    Jiang, Ruifen; Pawliszyn, Janusz

    2014-04-18

    A novel sample preparation method that combines the advantages of high surface area geometry and cold surface effect was proposed to achieve high sensitivity gas sampling. To accomplish this goal, a device that enables the membrane to be cooled down was developed for sampling, and a gas chromatograph-mass spectrometer was used for separation and quantification analysis. Method development included investigation of the effect of membrane temperature, membrane size, gas flow rate and humidity. Results showed that high sensitivity for equilibrium sampling, such as limonene sampling in the current study could be achieved by either cooling down the membrane and/or using a large volume extraction phase. On the other hand, for pre-equilibrium extraction, in which the extracted amount was mainly determined by membrane surface area and diffusion coefficient, high sensitivity could be obtained by using thinner membranes with a larger surface and/or a higher sampling flow rate. In addition, humidity showed no significant influence on extraction efficiency, due to the absorption property of the liquid extraction phase. Next, the limit of detection (LOD) was found, and the reproducibility of the developed cooled membrane gas sampling method was evaluated. Results showed that LODs with a membrane diameter of 19mm at room temperature sampling were 9.2ng/L, 0.12ng/L, 0.10ng/L for limonene, cinnamaldehyde and 2-pentadecanone, respectively. Intra- and inter-membrane sampling reproducibility revealed RSD% lower than 8% and 13%, respectively. Results uniformly demonstrated that the proposed cooled membrane device could serve as an alternative powerful tool for future gas sampling.

  13. Air-quality implications of widespread adoption of cool roofs on ozone and particulate matter in southern California.

    PubMed

    Epstein, Scott A; Lee, Sang-Mi; Katzenstein, Aaron S; Carreras-Sospedra, Marc; Zhang, Xinqiu; Farina, Salvatore C; Vahmani, Pouya; Fine, Philip M; Ban-Weiss, George

    2017-08-22

    The installation of roofing materials with increased solar reflectance (i.e., "cool roofs") can mitigate the urban heat island effect and reduce energy use. In addition, meteorological changes, along with the possibility of enhanced UV reflection from these surfaces, can have complex impacts on ozone and PM2.5 concentrations. We aim to evaluate the air-quality impacts of widespread cool-roof installations prescribed by California's Title 24 building energy efficiency standards within the heavily populated and polluted South Coast Air Basin (SoCAB). Development of a comprehensive rooftop area database and evaluation of spectral reflectance measurements of roofing materials allows us to project potential future changes in solar and UV reflectance for simulations using the Weather Research Forecast and Community Multiscale Air Quality (CMAQ) models. 2012 meteorological simulations indicate a decrease in daily maximum temperatures, daily maximum boundary layer heights, and ventilation coefficients throughout the SoCAB upon widespread installation of cool roofs. CMAQ simulations show significant increases in PM2.5 concentrations and policy-relevant design values. Changes in 8-h ozone concentrations depend on the potential change in UV reflectance, ranging from a decrease in population-weighted concentrations when UV reflectance remains unchanged to an increase when changes in UV reflectance are at an upper bound. However, 8-h policy-relevant ozone design values increase in all cases. Although the other benefits of cool roofs could outweigh small air-quality penalties, UV reflectance standards for cool roofing materials could mitigate these negative consequences. Results of this study motivate the careful consideration of future rooftop and pavement solar reflectance modification policies.

  14. Internal Roof and Attic Thermal Radiation Control Retrofit Strategies for Cooling-Dominated Climates

    SciTech Connect

    Fallahi, A.; Duraschlag, H.; Elliott, D.; Hartsough, J.; Shukla, N.; Kosny, J.

    2013-12-01

    This project evaluates the cooling energy savings and cost effectiveness of radiation control retrofit strategies for residential attics in U.S. cooling-dominated climates. Usually, in residential applications, radiation control retrofit strategies are applied below the roof deck or on top of the attic floor insulation. They offer an alternative option to the addition of conventional bulk insulation such as fiberglass or cellulose insulation. Radiation control is a potentially low-cost energy efficiency retrofit strategy that does not require significant changes to existing homes. In this project, two groups of low-cost radiation control strategies were evaluated for southern U.S. applications. One uses a radiant barrier composed of two aluminum foils combined with an enclosed reflective air space and the second uses spray-applied interior radiation control coatings (IRCC).

  15. Internal Roof and Attic Thermal Radiation Control Retrofit Strategies for Cooling-Dominated Climates

    SciTech Connect

    Fallahi, A.; Durschlag, H.; Elliott, D.; Hartsough, J.; Shukla, N.; Kosny, J.

    2013-12-01

    This project evaluates the cooling energy savings and cost effectiveness of radiation control retrofit strategies for residential attics in U.S. cooling-dominated climates. Usually, in residential applications, radiation control retrofit strategies are applied below the roof deck or on top of the attic floor insulation. They offer an alternative option to the addition of conventional bulkinsulation such as fiberglass or cellulose insulation. Radiation control is a potentially low-cost energy efficiency retrofit strategy that does not require significant changes to existing homes. In this project, two groups of low-cost radiation control strategies were evaluated for southern U.S. applications. One uses a radiant barrier composed of two aluminum foils combined with an enclosedreflective air space and the second uses spray-applied interior radiation control coatings (IRCC).

  16. Blistering of Built-Up Roof Membranes Pressure Measurements.

    DTIC Science & Technology

    1986-10-01

    not leak if they are intact. But because the roof surface is raised and unsupported at a blister, the potential for damage and subsequent leakage is...great. Foot traffic, dropped objects and in- creased weathering on the raised, stretched surface of a blister are all likely to lead to damage. Of...thermocouple (2). 3.eC evident when the needle was inserted. As a safeguard against subsequent leakage the surface bitumen was melted with a small propane

  17. Air-quality implications of widespread adoption of cool roofs on ozone and particulate matter in southern California

    NASA Astrophysics Data System (ADS)

    Epstein, Scott A.; Lee, Sang-Mi; Katzenstein, Aaron S.; Carreras-Sospedra, Marc; Zhang, Xinqiu; Farina, Salvatore C.; Vahmani, Pouya; Fine, Philip M.; Ban-Weiss, George

    2017-08-01

    The installation of roofing materials with increased solar reflectance (i.e., “cool roofs”) can mitigate the urban heat island effect and reduce energy use. In addition, meteorological changes, along with the possibility of enhanced UV reflection from these surfaces, can have complex impacts on ozone and PM2.5 concentrations. We aim to evaluate the air-quality impacts of widespread cool-roof installations prescribed by California’s Title 24 building energy efficiency standards within the heavily populated and polluted South Coast Air Basin (SoCAB). Development of a comprehensive rooftop area database and evaluation of spectral reflectance measurements of roofing materials allows us to project potential future changes in solar and UV reflectance for simulations using the Weather Research Forecast and Community Multiscale Air Quality (CMAQ) models. 2012 meteorological simulations indicate a decrease in daily maximum temperatures, daily maximum boundary layer heights, and ventilation coefficients throughout the SoCAB upon widespread installation of cool roofs. CMAQ simulations show significant increases in PM2.5 concentrations and policy-relevant design values. Changes in 8-h ozone concentrations depend on the potential change in UV reflectance, ranging from a decrease in population-weighted concentrations when UV reflectance remains unchanged to an increase when changes in UV reflectance are at an upper bound. However, 8-h policy-relevant ozone design values increase in all cases. Although the other benefits of cool roofs could outweigh small air-quality penalties, UV reflectance standards for cool roofing materials could mitigate these negative consequences. Results of this study motivate the careful consideration of future rooftop and pavement solar reflectance modification policies.

  18. Simulation model for the performance analysis of roof pond systems for heating and cooling

    SciTech Connect

    Tavana, M.; Kammerud, R.; Akbari, H.; Borgers, T.

    1980-06-01

    A detailed computer model has been developed for simulating the dynamic thermal behavior of roof pond systems. The model is composed of outer movable insulation, an optional evaporative water layer over water bags on steel decking, and an inner movable insulation. A control strategy for the movable insulations which provides near optimum thermal performance is included in the model. An hourly thermal balance analysis of the system is performed using theoretical and/or empirical expressions to determine the heat transfer coefficients for each of the surfaces in the model. The model has been used to study the effect on system thermal performance of (1) the R-value of both the top and bottom movable insulations; (2) the depth of the pond water, and (3) the depth of the evaporative layer. The heating and cooling potentials of the roof pond have also been investigated in four climates. The model was developed for incorporation into the public domain building energy analysis computer program BLAST.

  19. Membrane evaporative cooling to 30 degrees C or less: 2. Membrane evaporative air cooling.

    PubMed

    Loeb, Sidney

    2003-03-01

    Microporous hydrophobic membranes were examined for use in steady state membrane evaporative air cooling. The examination consisted of calculating membrane performance as a function of overall heat and mass transfer coefficients already obtained and reported in Part 1 (previous paper, this volume). This performance was compared with that obtained by similar calculations made on existing evaporative air coolers. It was found that the cooling performance of the membrane evaporative air cooler was not as good as that of the existing evaporative air cooler. This is to be expected since the existing cooler has only one resistance, the air boundary layer (ABL), whereas the membrane cooler has the ABL and the membrane resistance. However, the membrane air cooler has advantages, such as appreciably lower water consumption and operation under more sanitary conditions, that is, without intimate conjunction of flowing air and liquid water on solid surfaces.

  20. Cooling energy savings potential of light-colored roofs for residential and commercial buildings in 11 US metropolitan areas

    SciTech Connect

    Konopacki, S.; Akbari, H.; Gartland, L.

    1997-05-01

    The U.S. Environmental Protection Agency (EPA) sponsored this project to estimate potential energy and monetary savings resulting from the implementation of light-colored roofs on residential and commercial buildings in major U.S. metropolitan areas. Light-colored roofs reflect more sunlight than dark roofs, so they keep buildings cooler and reduce air-conditioning demand. Typically, rooftops in the United States are dark, and thus there is a potential for saving energy and money by changing to reflective roofs. Naturally, the expected savings are higher in southern, sunny, and cloudless climates. In this study, we make quantitative estimates of reduction in peak power demand and annual cooling electricity use that would result from increasing the reflectivity of the roofs. Since light-colored roofs also reflect heat in the winter, the estimates of annual electricity savings are a net value corrected for the increased wintertime energy use. Savings estimates only include direct reduction in building energy use and do not account for the indirect benefit that would also occur from the reduction in ambient temperature, i.e. a reduction in the heat island effect. This analysis is based on simulations of building energy use, using the DOE-2 building energy simulation program. Our methodology starts with specifying 11 prototypical buildings: single-family residential (old and new), office (old and new), retail store (old and new), school (primary and secondary), health (hospital and nursing home), and grocery store. Most prototypes are simulated with two heating systems: gas furnace and heat pumps. We then perform DOE-2 simulations of the prototypical buildings, with light and dark roofs, in a variety of climates and obtain estimates of the energy use for air conditioning and heating.

  1. Evaluation of Green Roof Plants and Materials for Semi-Arid Climates

    EPA Science Inventory

    Abstract While green roof systems have proven to be highly effective in the evaporative cooling of buildings, reduction of roof top temperatures, protection of roof membranes from solar radiation degradation, reducing stormwater runoff, as well as beautification of the urban roo...

  2. Evaluation of Green Roof Plants and Materials for Semi-Arid Climates

    EPA Science Inventory

    Abstract While green roof systems have proven to be highly effective in the evaporative cooling of buildings, reduction of roof top temperatures, protection of roof membranes from solar radiation degradation, reducing stormwater runoff, as well as beautification of the urban roo...

  3. Green and cool roofs to mitigate urban heat island effects in the Chicago metropolitan area: evaluation with a regional climate model

    NASA Astrophysics Data System (ADS)

    Sharma, A.; Conry, P.; Fernando, H. J. S.; Hamlet, Alan F.; Hellmann, J. J.; Chen, F.

    2016-06-01

    The effects of urban heat islands (UHIs) have a substantial bearing on the sustainability of cities and environs. This paper examines the efficacy of green and cool roofs as potential UHI mitigation strategies to make cities more resilient against UHI. We have employed the urbanized version of the Weather Research and Forecasting (uWRF) model at high (1 km) resolution with physically-based rooftop parameterization schemes (conventional, green and cool), a first-time application to the Chicago metropolitan area. We simulated a hot summer period (16-18 August 2013) and assessed (i) UHI reductions for different urban landuse with green/cool roofs, (ii) the interaction of lake breeze and UHI, and (iii) diurnal boundary layer dynamics. The performance of uWRF was evaluated using sensible heat flux and air temperature measurements from an urban mini-field campaign. The simulated roof surface energy balance captured the energy distribution with respective rooftop algorithms. Results showed that daytime roof temperature reduced and varied linearly with increasing green roof fractions, from less than 1 °C for the case of 25% green roof to ˜3 °C during peak daytime for 100% green roof. Diurnal transitions from land to lake breeze and vice versa had a substantial impact on the daytime cycle of roof surface UHI, which had a 3-4 hour lag in comparison to 2 m UHI. Green and cool roofs reduced horizontal and vertical wind speeds and affected lower atmosphere dynamics, including reduced vertical mixing, lower boundary layer depth, and weaker convective rolls. The lowered wind speeds and vertical mixing during daytime led to stagnation of air near the surface, potentially causing air quality issues. The selection of green and cool roofs for UHI mitigation should therefore carefully consider the competing feedbacks. The new results for regional land-lake circulations and boundary layer dynamics from this study may be extended to other urbanized areas, particularly to coastal

  4. Demonstration of Cooling Savings of Light Colored Roof Surfacing in Florida Commercial Buildings: Our Savior's School.

    ERIC Educational Resources Information Center

    Parker, Danny S.; Sherwin, John R.; Sonne, Jeffrey K.; Barkaszi, Stephen F., Jr.

    A 2-year Florida study attempted to quantify air conditioning cost savings when buildings have a white reflective roof. A 10,000 square foot elementary school with a gray modified bitumen roof over plywood decking that had a solar reflectance of 23 percent was monitored for an entire year. After one year of building thermal conditions and…

  5. Using Cool Roofs to Reduce Energy Use, Greenhouse Gas Emissions, and Urban Heat-island Effects: Findings from an India Experiment

    SciTech Connect

    Akbari, Hashem; Xu, Tengfang; Taha, Haider; Wray, Craig; Sathaye, Jayant; Garg, Vishal; Tetali, Surekha; Babu, M. Hari; Reddy, K. Niranjan

    2011-05-25

    Cool roofs, cool pavements, and urban vegetation reduce energy use in buildings, lower local air pollutant concentrations, and decrease greenhouse gas emissions from urban areas. This report summarizes the results of a detailed monitoring project in India and related simulations of meteorology and air quality in three developing countries. The field results quantified direct energy savings from installation of cool roofs on individual commercial buildings. The measured annual energy savings potential from roof-whitening of previously black roofs ranged from 20-22 kWh/m2 of roof area, corresponding to an air-conditioning energy use reduction of 14-26% in commercial buildings. The study estimated that typical annual savings of 13-14 kWh/m2 of roof area could be achieved by applying white coating to uncoated concrete roofs on commercial buildings in the Metropolitan Hyderabad region, corresponding to cooling energy savings of 10-19%. With the assumption of an annual increase of 100,000 square meters of new roof construction for the next 10 years in the Metropolitan Hyderabad region, the annual cooling energy savings due to whitening concrete roof would be 13-14 GWh of electricity in year ten alone, with cumulative 10-year cooling energy savings of 73-79 GWh for the region. The estimated savings for the entire country would be at least 10 times the savings in Hyderabad, i.e., more than 730-790 GWh. We estimated that annual direct CO2 reduction associated with reduced energy use would be 11-12 kg CO2/m2 of flat concrete roof area whitened, and the cumulative 10-year CO2 reduction would be approximately 0.60-0.65 million tons in India. With the price of electricity estimated at seven Rupees per kWh, the annual electricity savings on air-conditioning would be approximately 93-101 Rupees per m2 of roof. This would translate into annual national savings of approximately one billion Rupees in year ten, and cumulative 10-year savings of over five billion Rupees for cooling

  6. Heat Transfer Performance of a Roof-Spray Cooling System Employing the Transfer Function Method

    DTIC Science & Technology

    1993-01-01

    Fry = Try(T)* 1.8: CONVERT TEMP FROM K TO F REM CALCULATE SATURATION PRESSURE OF WATER ON ROOF SURFACE FROM MATHUR [19881 PARTO = 670.2012: PARTI...5.325521*Fry PART2 = .0159464*Fry**2: PART3 = -. 00002134061*Fry**3 PART4 = 1.077853E-08*Fry**4 Pwr = ( PARTO +PARTI+PART2+PART3+PART4)*6894.8: REM Pa

  7. Predictive Service Life Tests for Roofing Membranes: Phase II Investigation of Accelerated Aging Tests for Tracking Degradation of Roofing Membrane Materials

    DTIC Science & Technology

    2002-09-01

    bitumen 2 ply SBS modified bitumen G H J K L M 2 ply APP modified bitumen 2 ply APP modified bitumen 1 ply EPDM, nonreinforced 1 ply EPDM...chloride] (PVC), and modified bitumen (MB) roofing systems, the Army currently uses these materials on all types of low-slope applications. Even when...asphalt built-up roofing (BUR), poly [vinyl choloride] (PVC,) styrene-butadiene-styrene ( SBS ) modified bi- tumen (MB), atactic polypropylene (APP) MB

  8. Membrane and Flashing Condition Indexes for Built-Up Roofs. Volume 2. Inspection and Distress Manual.

    DTIC Science & Technology

    1987-09-01

    Engineering and Materials (EM) Division, U.S. Army Construction Engineering Research Laboratory (USA-CERL) in cooperation with the U.S. Army Cold...7 Approach .......................................................... 7 Using the Manual.................................................... 8 2...Flashing Condition Indexes (MCI and FCI) and Ratings 8 2 Roof Inspection Worksheet 10 3 Legend to be Used on Roof Section Plans 11 4 Completed Roof

  9. Thermal Performance of Vegetative Roofing Systems

    SciTech Connect

    Desjarlais, Andre Omer; Zaltash, Abdolreza; Atchley, Jerald Allen; Ennis, Mike J

    2010-01-01

    Vegetative roofing, otherwise known as green or garden roofing, has seen tremendous growth in the last decade in the United States. The numerous benefits that green roofs provide have helped to fuel their resurgence in industrial and urban settings. There are many environmental and economical benefits that can be realized by incorporating a vegetative roof into the design of a building. These include storm-water retention, energy conservation, reduction in the urban heat island effect, increased longevity of the roofing membrane, the ability of plants to create biodiversity and filter air contaminants, and beautification of the surroundings by incorporating green space. The vegetative roof research project at Oak Ridge National Laboratory (ORNL) was initiated to quantify the thermal performance of various vegetative roofing systems relative to black and white roofs. Single Ply Roofing Institute (SPRI) continued its long-term commitment to cooperative research with ORNL in this project. Low-slope roof systems for this study were constructed and instrumented for continuous monitoring in the mixed climate of East Tennessee. This report summarizes the results of the annual cooling and heating loads per unit area of three vegetative roofing systems with side-by-side comparison to black and white roofing systems as well as a test section with just the growing media without plants. Results showed vegetative roofs reduced heat gain (reduced cooling loads) compared to the white control system due to the thermal mass, extra insulation, and evapo-transpiration associated with the vegetative roofing systems. The 4-inch and tray systems reduced the heat gain by approximately 61%, while the reduction with the 8-inch vegetative roof was found to be approximately 67%. The vegetative roofing systems were more effective in reducing heat gain than in reducing heat losses (heating loads). The reduction in heat losses for the 4-inch and tray systems were found to be approximately 40

  10. Roof System EPDM Shrinkage.

    ERIC Educational Resources Information Center

    Betker, Edward

    1998-01-01

    Looks at Ethylene Propylene Diene Terpolymer rubber roof membranes and the potential problems associated with this material's shrinkage. Discusses how long such a roof should perform and issues affecting repair or replacement. Recommends that a building's function be considered in any roofing decision. (RJM)

  11. Roof System EPDM Shrinkage.

    ERIC Educational Resources Information Center

    Betker, Edward

    1998-01-01

    Looks at Ethylene Propylene Diene Terpolymer rubber roof membranes and the potential problems associated with this material's shrinkage. Discusses how long such a roof should perform and issues affecting repair or replacement. Recommends that a building's function be considered in any roofing decision. (RJM)

  12. Effects of Soiling and Cleaning on the Reflectance and Solar HeatGain of a Light-Colored Roofing Membrane

    SciTech Connect

    Levinson, Ronnen; Berdahl, Paul; Berhe, Asmeret Asefaw; Akbari,Hashem

    2005-04-12

    A roof with high solar reflectance and high thermalemittance (e.g., a white roof) stays coolin the sun, reducing coolingpower demand in a conditioned building and increasing comfort in anunconditioned building. The high initial solar reflectance of a whitemembrane roof (circa 0.8) can be degraded by deposition of soot, dust,and/or algae to about 0.6 (range 0.3 to 0.8, depending on exposure) Weinvestigate the effects of soiling and cleaning on the solar spectralreflectance and solar absorptance of 15 initially white or light-graymembrane samples taken from roofs across the United States. Soot andorganic carbon were the two identifiable strongly absorbing contaminantson the membranes. Wiping was effective at removing soot, and less so atremoving organic carbon. Rinsing and/or washing removed nearly all of theremaining soil layer, with the exceptions of (a) thin layers of organiccarbon and (b) isolated dark spots of algae. Bleach was required toremove the last two features. The ratio of solar reflectance to unsoiledsolar reflectance (a measure of cleanliness) ranged from 0.41 to 0.89 forthe soiled samples; 0.53to 0.95 for the wiped samples; 0.74 to 0.98 forthe rinsed samples; 0.79 to 1.00 for the washed samples; and 0.94 to 1.02for the bleached samples. However, the influence of membrane soiling andcleaning on roof heat gain is better gauged by variations in solarabsorptance. Relative solar absorptances (indicating solar heat gainrelative to that of the unsoiled membrane) ranged from 1.4 to 3.5 for thesoiled samples; 1.1 to 3.1 for the wiped samples; 1.0 to 2.0 for therinsed samples; 1.0 to 1.9 for the washed samples; and 0.9 to 1.3 for thebleached samples.

  13. Mini-Membrane Evaporator for Contingency Spacesuit Cooling

    NASA Technical Reports Server (NTRS)

    Makinen, Janice V.; Bue, Grant C.; Campbell, Colin; Craft, Jesse; Lynch, William; Wilkes, Robert; Vogel, Matthew

    2014-01-01

    The next-generation Advanced Extravehicular Mobility Unit (AEMU) Portable Life Support System (PLSS) is integrating a number of new technologies to improve reliability and functionality. One of these improvements is the development of the Auxiliary Cooling Loop (ACL) for contingency crewmember cooling. The ACL is a completely redundant, independent cooling system that consists of a small evaporative cooler--the Mini Membrane Evaporator (Mini-ME), independent pump, independent feedwater assembly and independent Liquid Cooling Garment (LCG). The Mini-ME utilizes the same hollow fiber technology featured in the full-sized AEMU PLSS cooling device, the Spacesuit Water Membrane Evaporator (SWME), but Mini-ME occupies only 25% of the volume of SWME, thereby providing only the necessary crewmember cooling in a contingency situation. The ACL provides a number of benefits when compared with the current EMU PLSS contingency cooling technology, which relies upon a Secondary Oxygen Vessel; contingency crewmember cooling can be provided for a longer period of time, more contingency situations can be accounted for, no reliance on a Secondary Oxygen Vessel (SOV) for contingency cooling--thereby allowing a reduction in SOV size and pressure, and the ACL can be recharged-allowing the AEMU PLSS to be reused, even after a contingency event. The first iteration of Mini-ME was developed and tested in-house. Mini-ME is currently packaged in AEMU PLSS 2.0, where it is being tested in environments and situations that are representative of potential future Extravehicular Activities (EVA's). The second iteration of Mini-ME, known as Mini- ME2, is currently being developed to offer more heat rejection capability. The development of this contingency evaporative cooling system will contribute to a more robust and comprehensive AEMU PLSS.

  14. Mini-Membrane Evaporator for Contingency Spacesuit Cooling

    NASA Technical Reports Server (NTRS)

    Makinen, Janice V.; Bue, Grant C.; Campbell, Colin; Petty, Brian; Craft, Jesse; Lynch, William; Wilkes, Robert; Vogel, Matthew

    2015-01-01

    The next-generation Advanced Extravehicular Mobility Unit (AEMU) Portable Life Support System (PLSS) is integrating a number of new technologies to improve reliability and functionality. One of these improvements is the development of the Auxiliary Cooling Loop (ACL) for contingency crewmember cooling. The ACL is a completely redundant, independent cooling system that consists of a small evaporative cooler--the Mini Membrane Evaporator (Mini-ME), independent pump, independent feedwater assembly and independent Liquid Cooling Garment (LCG). The Mini-ME utilizes the same hollow fiber technology featured in the full-sized AEMU PLSS cooling device, the Spacesuit Water Membrane Evaporator (SWME), but Mini-ME occupies only approximately 25% of the volume of SWME, thereby providing only the necessary crewmember cooling in a contingency situation. The ACL provides a number of benefits when compared with the current EMU PLSS contingency cooling technology, which relies upon a Secondary Oxygen Vessel; contingency crewmember cooling can be provided for a longer period of time, more contingency situations can be accounted for, no reliance on a Secondary Oxygen Vessel (SOV) for contingency cooling--thereby allowing a reduction in SOV size and pressure, and the ACL can be recharged-allowing the AEMU PLSS to be reused, even after a contingency event. The first iteration of Mini-ME was developed and tested in-house. Mini-ME is currently packaged in AEMU PLSS 2.0, where it is being tested in environments and situations that are representative of potential future Extravehicular Activities (EVA's). The second iteration of Mini-ME, known as Mini-ME2, is currently being developed to offer more heat rejection capability. The development of this contingency evaporative cooling system will contribute to a more robust and comprehensive AEMU PLSS.

  15. Roof Savings Calculator Suite

    SciTech Connect

    New, Joshua R; Garrett, Aaron; Erdem, Ender; Huang, Yu

    2013-11-22

    The software options currently supported by the simulation engine can be seen/experienced at www.roofcalc.com. It defaults all values to national averages with options to test a base-case (residential or commercial) building versus a comparison building with inputs for building type, location, building vintage, conditioned area, number of floors, and window-to-wall ratio, cooling system efficiency, type of heating, heating system efficiency, duct location, roof/ceiling insulation level, above-sheathing ventilation, radiant barrier, roof thermal mass, roof solar reflectance, roof thermal emittance, utility costs, roof pitch. The Roof Savings Caculator Suite adds utilities and website/web service and the integration of AtticSim with DOE-2.1E, with the end-result being Roof Savings Calculator.

  16. Combating the Urban Heat Island Effect: Results from a Long-Term Monitoring Study on Urban Green, White, and Black Roofs in New York City

    NASA Astrophysics Data System (ADS)

    Gaffin, S. R.; Kong, A. Y.; Hartung, E.; Hsu, B.; Roditi, A.; Rosenzweig, C.

    2011-12-01

    Urban heat island mitigation strategies include increasing urban vegetation and increasing the albedo of impervious surfaces. Vegetated "green" roofs can provide benefits to stormwater management, water quality, energy cost efficiency, and biodiversity in cities, but the body of research on green roofs in the US is not large and cities in the US have been slow to adopt green roofs. On the other hand, "high-albedo" white roofs have been applied more widely through projects such as New York City Cool Roofs. There are several major issues (e.g., albedo decline, product differences, and long-term temperature controls) about green and white roof performance versus typical black roofs with respect to urban heat island mitigation that have yet to be fully addressed. Here, we present data from an on-going, long-term study in New York City in which pilot, urban albedo enhancement and vegetation effects have been monitored at the building-scale since 2007. Although the urban heat island effect can be detected throughout the year, our objective for this paper was to compare green roof vegetation with those of the high-albedo roofs for their ability to reduce the electricity demand for cooling in the summer. Using energy balance methodology across our sites (three), we found that green and white roof membrane temperature peaks are on average 60°F (33°C) and 30° F (17°C), respectively, cooler than black roof temperature peaks, and that these alternative surfaces significantly reduce thermal stress to roof membranes. Interestingly, we found that industrial white membranes [thermoplastic polyolefin (TPO) and ethylene propylene diene monomer (EPDM)] stay cleaner longer, thereby, maintaining the high-albedo benefits longer than the painted roofs, which tend to lose their albedo properties rapidly. Results thus far suggest that more long-term research comparing the albedo and cooling benefits of green and white roofs to black roofs is necessary to understand temporal changes to

  17. Membrane hydraulic permeability changes during cooling of mammalian cells.

    PubMed

    Akhoondi, Maryam; Oldenhof, Harriëtte; Stoll, Christoph; Sieme, Harald; Wolkers, Willem F

    2011-03-01

    In order to predict optimal cooling rates for cryopreservation of cells, the cell-specific membrane hydraulic permeability and corresponding activation energy for water transport need to be experimentally determined. These parameters should preferably be determined at subzero temperatures in the presence of ice. There is, however, a lack of methods to study membrane properties of cells in the presence of ice. We have used Fourier transform infrared spectroscopy to study freezing-induced membrane dehydration of mouse embryonic fibroblast (3T3) cells and derived the subzero membrane hydraulic permeability and the activation energy for water transport from these data. Coulter counter measurements were used to determine the suprazero membrane hydraulic permeability parameters from cellular volume changes of cells exposed to osmotic stress. The activation energy for water transport in the ice phase is about three fold greater compared to that at suprazero temperatures. The membrane hydraulic permeability at 0 °C that was extrapolated from suprazero measurements is about five fold greater compared to that extrapolated from subzero measurements. This difference is likely due to a freezing-induced dehydration of the bound water around the phospholipid head groups. Using Fourier transform infrared spectroscopy, two distinct water transport processes, that of free and membrane bound water, can be identified during freezing with distinct activation energies. Dimethylsulfoxide, a widely used cryoprotective agent, did not prevent freezing-induced membrane dehydration but decreased the activation energy for water transport. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. Condensation Risk of Mechanically Attached Roof Systems in Cold Climate Zones

    SciTech Connect

    Pallin, Simon B

    2013-01-01

    A white roof, cool roof, is constructed to decrease thermal loads from solar radiation, therefore saving energy by decreasing the cooling demands. Unfortunately, cool roofs with mechanically attached membrane, have shown to have a higher risk of intermediate condensation in the materials below the membrane in certain climates (Ennis & Kehrer, 2011) and in comparisons with similar construction with a darker exterior surface (Bludau, Zirkelbach, & Kuenzel, 2009). As a consequence, questions have been raised regarding the sustainability and reliability of using cool roof membranes in Northern U.S. climate zones. A white roof surface reflects more of the incident solar radiation in comparisons with a dark surface, which makes a distinguished difference on the surface temperature of the roof. However, flat roofs with either a light or dark surface and if facing a clear sky, are constantly losing energy to the sky due to the exchange of infrared radiation. This phenomenon exists both during the night and the day. During the day, if the sun shines on the roof surface, the exchange of infrared radiation typically becomes insignificant. During nights and in cold climates, the temperature difference between the roof surface and the sky can deviate up to 20 C (Hagentoft, 2001) which could result in a very cold surface temperature compared to the ambient temperature. Further, a colder surface temperature of the roof increases the energy loss and the risk of condensation in the building materials below the membrane. In conclusion, both light and dark coated roof membranes are cooled by the infrared radiation exchange during the night, though a darker membrane is more heated by the solar radiation during the day, thus decreasing the risk of condensation. The phenomenon of night time cooling from the sky and the lack of solar gains during the day is not likely the exclusive problem concerning the risk of condensation in cool roofs with mechanically attached membranes. Roof

  19. Externally cooled high temperature polymer electrolyte membrane fuel cell stack

    NASA Astrophysics Data System (ADS)

    Scholta, J.; Messerschmidt, M.; Jörissen, L.; Hartnig, Ch.

    One key issue in high temperature polymer electrolyte membrane fuel cell (HT-PEMFC) stack development is heat removal at the operating temperature of 140-180 °C. Conventionally, this process is done using coolants such as thermooil, steam or pressurized water. In this contribution, external liquid cooling designs are described, which are avoiding two constraints. First, in the cell active area, no liquid coolant is present avoiding any sealing problems with respect to the electrode. Secondly, the external positioning allows high temperature gradients between the heat removal zone and the active area resulting in a good adjustability of appropriate reformate conversion temperatures (e.g. 160 °C) and a more compact cell design. Different design concepts were investigated using modeling techniques and a selection of them has also been investigated experimentally. The experiments proved the feasibility of the external cooling design and showed that the temperature gradients within the active area are below 15 K under typical operating conditions.

  20. The joint influence of albedo and insulation on roof performance: An observational study

    DOE PAGES

    Ramamurthy, P.; Sun, T.; Rule, K.; ...

    2015-02-23

    We focus on understanding the temperature and heat flux fields in building roofs, and how they are modulated by the interacting influences of albedo and insulation at annual, seasonal and diurnal scales. High precision heat flux plates and thermocouples were installed over multiple rooftops of varying insulation thickness and albedo in the Northeastern United States to monitor the temperature and the heat flux into and out of the roof structures for a whole year. This analysis shows that while membrane reflectivity (albedo) plays a dominant role in reducing the heat conducted inward through the roof structures during the warmer months,more » insulation thickness becomes the main roof attribute in preventing heat loss from the buildings during colder months. On a diurnal scale, the thermal state of the white roof structures fluctuated little compared to black roof structures; membrane temperature over white roofs ranged between 10 °C and 45 °C during summer months compared to black membranes that ranged between 10 °C and 80 °C. Insulation thickness, apart from reducing the heat conducted through the roof structure, also delayed the transfer of heat, owing to the thermal inertia of the insulation layer. Furthermore, this has important implications for determining the peak heating and cooling times.« less

  1. The joint influence of albedo and insulation on roof performance: An observational study

    SciTech Connect

    Ramamurthy, P.; Sun, T.; Rule, K.; Bou-Zeid, E.

    2015-02-23

    We focus on understanding the temperature and heat flux fields in building roofs, and how they are modulated by the interacting influences of albedo and insulation at annual, seasonal and diurnal scales. High precision heat flux plates and thermocouples were installed over multiple rooftops of varying insulation thickness and albedo in the Northeastern United States to monitor the temperature and the heat flux into and out of the roof structures for a whole year. This analysis shows that while membrane reflectivity (albedo) plays a dominant role in reducing the heat conducted inward through the roof structures during the warmer months, insulation thickness becomes the main roof attribute in preventing heat loss from the buildings during colder months. On a diurnal scale, the thermal state of the white roof structures fluctuated little compared to black roof structures; membrane temperature over white roofs ranged between 10 °C and 45 °C during summer months compared to black membranes that ranged between 10 °C and 80 °C. Insulation thickness, apart from reducing the heat conducted through the roof structure, also delayed the transfer of heat, owing to the thermal inertia of the insulation layer. Furthermore, this has important implications for determining the peak heating and cooling times.

  2. Roof Roundup.

    ERIC Educational Resources Information Center

    American School and University, 1984

    1984-01-01

    The roof management program at the University of Wyoming involved a consulting firm that provided a computer analysis of the condition of each roof on campus and trained university personnel to act as inspectors in the future. (MLF)

  3. Retractable Roof Greenhouses and Shadehouses

    Treesearch

    Jr. Bartok

    2005-01-01

    Open-roof greenhouses provide a natural environment for plant growth when the outdoor weather is suitable and an artificial environment when it is too hot or cold. Opening the roof over the plants increases light intensity, which can help to control the growth habit, flowering, and crop timing. It also reduces electricity costs because expensive fan cooling is not...

  4. Energy Performance Impacts from Competing Low-slope Roofing Choices and Photovoltaic Technologies

    NASA Astrophysics Data System (ADS)

    Nagengast, Amy L.

    With such a vast quantity of space, commercial low-slope roofs offer significant potential for sustainable roofing technology deployment. Specifically, building energy performance can be improved by installing rooftop energy technologies such as photovoltaic (PV) panels, and/or including designs such as white or green roofs instead of traditional black. This research aims to inform and support roof decisions through quantified energy performance impacts across roof choices and photovoltaic technologies. The primary dataset for this research was measured over a 16 month period (May 24, 2011 to October 13, 2012) from a large field experiment in Pittsburgh, Pennsylvania on top of a commercial warehouse with white, black and green roof sections, each with portions covered by polycrystalline photovoltaic panels. Results from the Pittsburgh experiment were extended to three different cities (San Diego, CA; Huntsville, AL; and Phoenix, AZ) chosen to represent a wide range of irradiance and temperature values. First, this research evaluated the difference in electricity production from a green-moss roof and black roof underneath photovoltaic panels to determine if the green roof's cooler air increases the panel efficiency. Second, separate studies examine 1) average hourly heat flux by month for unobstructed and shaded roof membranes 2) heat flux peak time delay, and 3) air temperature across roof types. Results of this research show green roofs slightly increased (0.8-1.5%) PV panel efficiency in temperatures approximately at or above 25° C (77°F) compared to black roofs. However in cool climates, like Pittsburgh, the roof type under the PV panels had little overall impact on PV performance when considering year round temperatures. Instead, roof decisions should place a stronger emphasis on heat flux impacts. The green roof outperformed both black and white roofs at minimizing total conductive heat flux. These heat flow values were used to develop a new, straight

  5. Cool Shelter

    ERIC Educational Resources Information Center

    Praeger, Charles E.

    2005-01-01

    Amid climbing energy costs and tightening budgets, administrators at school districts, colleges and universities are looking for all avenues of potential savings while promoting sustainable communities. Cool metal roofing can save schools money and promote sustainable design at the same time. Cool metal roofing keeps the sun's heat from collecting…

  6. Cool Shelter

    ERIC Educational Resources Information Center

    Praeger, Charles E.

    2005-01-01

    Amid climbing energy costs and tightening budgets, administrators at school districts, colleges and universities are looking for all avenues of potential savings while promoting sustainable communities. Cool metal roofing can save schools money and promote sustainable design at the same time. Cool metal roofing keeps the sun's heat from collecting…

  7. Sustainable roofs with real energy savings

    SciTech Connect

    Christian, J.E.; Petrie, T.W.

    1996-12-31

    This paper addresses the general concept of sustainability and relates it to the building owner`s selection of a low-slope roof. It offers a list of performance features of sustainable roofs. Experiences and data relevant to these features for four unique roofs are then presented which include: self-drying systems, low total equivalent warming foam insulation, roof coatings and green roofs. The paper concludes with a list of sustainable roofing features worth considering for a low-slope roof investment. Building owners and community developers are showing more interest in investing in sustainability. The potential exists to design, construct, and maintain roofs that last twice as long and reduce the building space heating and cooling energy loads resulting from the roof by 50% (based on the current predominant design of a 10-year life and a single layer of 1 to 2 in. (2.5 to 5.1 cm) of insulation). The opportunity to provide better low-slope roofs and sell more roof maintenance service is escalating. The general trend of outsourcing services could lead to roofing companies` owning the roofs they install while the traditional building owner owns the rest of the building. Such a situation would have a very desirable potential to internalize the costs of poor roof maintenance practices and high roof waste disposal costs, and to offer a profit for installing roofs that are more sustainable. 14 refs., 12 figs.

  8. Properties of Weathered Uncoated and ’Resaturant’-Coated Bituminous Built-Up Roofing Membranes.

    DTIC Science & Technology

    1983-06-01

    judged as pliable or brittle. The general condition of the samples was observed at room temperature prior to removal of the strip 4 S for delamination...judged to be pliable at room temperature. It was visually estimated that they contained a normal thickness of interply asphalt and had good adhesion...specimens delaminated after relatively few cycles 6 in the tension fatigue test. These brittle membrane specimens attached to fibrous glass insulation

  9. Cleaning Aged EPDM Rubber Roofing Membrane Material for Patching: Laboratory Investigations and Recommendations

    DTIC Science & Technology

    1992-08-01

    preparation on the surface characteristics of a cleaned sheet of aged EPDM rubber and the bond strength of seam specimens fabricated from it. This report...aged EPDM membrane material under creep conditions was compared with that of specimens fabricated from new, well cleaned EPDM rubber . 5. The results...field seams fabricated from solvent-based adhesives and new EPDM rubber .1 9 Only three of the surface cleaning methods (No. 2, 4, and 11) produced

  10. Roof aperture system for selective collection and control of solar energy for building heating, cooling and daylighting

    DOEpatents

    Sanders, William J.; Snyder, Marvin K.; Harter, James W.

    1983-01-01

    The amount of building heating, cooling and daylighting is controlled by at least one pair of solar energy passing panels, with each panel of the pair of panels being exposed to a separate direction of sun incidence. A shutter-shade combination is associated with each pair of panels and the shutter is connected to the shade so that rectilinear movement of the shutter causes pivotal movement of the shade.

  11. Prolong Your Roof's Performance: Roof Asset Management.

    ERIC Educational Resources Information Center

    Teitsma, Jerry

    2001-01-01

    Discusses the roof asset management process for maintaining a roof system's integrity and value in a cost-effective manner. Included is a breakdown of roofing surface characteristics for multiply and single ply roofing systems. (GR)

  12. Mitigating the cooling need and improvement of indoor conditions in Mediterranean educational buildings, by means of green roofs. Results of a case study

    NASA Astrophysics Data System (ADS)

    Ascione, F.; Bianco, N.; De Masi, R. F.; de Rossi, F.; Vanoli, G. P.

    2015-11-01

    Indoor overheating risk and increased energy demand for cooling are becoming more and more frequent in the building sector of the Mediterranean area. In detail, for the reduction of the energy consumption of educational buildings, characterized by high endogenous gains, the particular boundary conditions affecting their use should be taken in consideration, and thus schedules of occupancy, wide necessity of air-changes for air quality. This paper, with reference to a case study, proposes deep investigations aimed at optimizing the annual energy performance of an educational building of the University of Sannio, located in the Southern Italy. A numerical model of the building has been designed and validated according to monitored data. Starting from the present scenario, after a complete refurbishment of the building envelope, the potentialities of several typologies of green roofs - by considering also the implementation of the adaptive approach in the comfort standard - have been tested. The scope is the optimization of the energy demand for the annual microclimatic control, by avoiding an energy-intensive operation of the air-conditioning devices during the warm season.

  13. Green roofs: potential at LANL

    SciTech Connect

    Pacheco, Elena M

    2009-01-01

    Green roofs, roof systems that support vegetation, are rapidly becoming one of the most popular sustainable methods to combat urban environmental problems in North America. An extensive list of literature has been published in the past three decades recording the ecological benefits of green roofs; and now those benefits have been measured in enumerated data as a means to analyze the costs and returns of green roof technology. Most recently several studies have made substantial progress quantifying the monetary savings associated with storm water mitigation, the lessoning of the Urban Heat Island, and reduction of building cooling demands due to the implementation of green roof systems. Like any natural vegetation, a green roof is capable of absorbing the precipitation that falls on it. This capability has shown to significantly decrease the amount of storm water runoff produced by buildings as well as slow the rate at which runoff is dispensed. As a result of this reduction in volume and velocity, storm drains and sewage systems are relieved of any excess stress they might experience in a storm. For many municipalities and private building owners, any increase in storm water mitigation can result in major tax incentives and revenue that does not have to be spent on extra water treatments. Along with absorption of water, vegetation on green roofs is also capable of transpiration, the process by which moisture is evaporated into the air to cool ambient temperatures. This natural process aims to minimize the Urban Heat Island Effect, a phenomenon brought on by the dark and paved surfaces that increases air temperatures in urban cores. As the sun distributes solar radiation over a city's area, dark surfaces such as bitumen rooftops absorb solar rays and their heat. That heat is later released during the evening hours and the ambient temperatures do not cool as they normally would, creating an island of constant heat. Such excessively high temperatures induce heat

  14. Green Roofs

    SciTech Connect

    2004-08-01

    A New Technology Demonstration Publication Green roofs can improve the energy performance of federal buildings, help manage stormwater, reduce airborne emissions, and mitigate the effects of urban heat islands.

  15. Photovoltaic Roofs

    NASA Technical Reports Server (NTRS)

    Drummond, R. W., Jr.; Shepard, N. F., Jr.

    1984-01-01

    Solar cells perform two functions: waterproofing roof and generating electricity. Sections through horizontal and slanting joints show overlapping modules sealed by L-section rubber strips and side-by-side modules sealed by P-section strips. Water seeping through seals of slanting joints drains along channels. Rooftop photovoltaic array used watertight south facing roof, replacing shingles, tar, and gravel. Concept reduces cost of residential solar-cell array.

  16. Dehumidifying Air for Cooling & Refrigeration: Nanotechnology Membrane-based Dehumidifier

    SciTech Connect

    2010-10-01

    Broad Funding Opportunity Announcement Project: Dais is developing a product called NanoAir which dehumidifies the air entering a building to make air conditioning more energy efficient. The system uses a polymer membrane that allows moisture but not air to pass through it. A vacuum behind the membrane pulls water vapor from the air, and a second set of membranes releases the water vapor outside. The membrane’s high selectivity translates into reduced energy consumption for dehumidification. Dais’ design goals for NanoAir are the use of proprietary materials and processes and industry-standard installation techniques. NanoAir is also complementary to many other energy saving strategies, including energy recovery.

  17. Atom-membrane cooling and entanglement using cavity electromagnetically induced transparency

    SciTech Connect

    Genes, Claudiu; Ritsch, Helmut; Drewsen, Michael; Dantan, Aurelien

    2011-11-15

    We investigate a hybrid optomechanical system composed of a micromechanical oscillator as a movable membrane and an atomic three-level ensemble within an optical cavity. We show that a suitably tailored cavity field response via electromagnetically induced transparency (EIT) in the atomic medium allows for strong coupling of the membrane's mechanical oscillations to the collective atomic ground-state spin. This facilitates ground-state cooling of the membrane motion, quantum state mapping, and robust atom-membrane entanglement even for cavity widths larger than the mechanical resonance frequency.

  18. Self drying roofs: What! No dripping!

    SciTech Connect

    Desjarlais, A.

    1995-12-31

    Many roofs are replaced because water accumulates in portions of the roofing system.These accumulations can cause dripping, accelerated membrane failure, poor thermal performance, the threat of structural decay, and the depreciation of building assets. Traditionally, the roofing industry has been concerned with controlling the inflow of water into the roof. An example of this strategy would be the development of a more reliable membrane. However, roof membranes inevitably leak. For this reason, the roof design strategy of the future must be concerned with controlling water outflow. The requirements of this type of roof system are described. Under normal operating conditions (no leaks), the total moisture content of a self-drying roof system shall not increase with time and condensation shall not occur under the membrane during winter uptake. Moisture vapor movement by convection must be eliminated and the flow of water by gravity through imperfections in the roof system must be controlled. After a leak has occurred, no condensation on the upper surface of the deck shall be tolerated and the water introduced by the leak must be dissipated to the building interior in a minimum amount of time. Finite difference computer modeling is used to demonstrate the effectiveness of the design. The impact of deck and insulation permeance, climate, leaks, and wintertime water uptake are simulated. A database of simulations is qualitatively described; this database will be used in future work to produce a simplified means of assessing the design parameters of a self-drying roof system.

  19. Laser Cooling of a Micromechanical Membrane to the Quantum Backaction Limit.

    PubMed

    Peterson, R W; Purdy, T P; Kampel, N S; Andrews, R W; Yu, P-L; Lehnert, K W; Regal, C A

    2016-02-12

    The radiation pressure of light can act to damp and cool the vibrational motion of a mechanical resonator, but even if the light field has no thermal component, shot noise still sets a limit on the minimum phonon occupation. In optomechanical sideband cooling in a cavity, the finite off-resonant Stokes scattering defined by the cavity linewidth combined with shot noise fluctuations dictates a quantum backaction limit, analogous to the Doppler limit of atomic laser cooling. In our work, we sideband cool a micromechanical membrane resonator to the quantum backaction limit. Monitoring the optical sidebands allows us to directly observe the mechanical object come to thermal equilibrium with the optical bath. This level of optomechanical coupling that overwhelms the intrinsic thermal decoherence was not reached in previous ground-state cooling demonstrations.

  20. An office building used as a federal test bed for energy-efficient roofs

    SciTech Connect

    McLain, H.A.; Christian, J.E.

    1995-08-01

    The energy savings benefits of re-covering the roof of an existing federal office building with a sprayed polyurethane foam system are documented. The building is a 12,880 ft{sup 2} (1,197 m{sup 2}), 1 story, masonry structure located at the Oak Ridge National Laboratory (ORNL), Oak Ridge, TN. Prior to re-covering, the roof had a thin fiberglass insulation layer, which had become partially soaked because of water leakage through the failed built-up roof membrane. The average R-value for this roof measured at 2 hr{center_dot}ft{sup 2}{center_dot}{degrees}F/Btu (0.3 m{sup 2} {center_dot}K/W). After re-covering the roof, it measured at 13 hr{center_dot}ft{sup 2}{degrees}F/Btu (2.3 m{sup 2}{center_dot}K/W). The building itself is being used as a test bed to document the benefits of a number of energy efficiency improvements. As such, it was instrumented to measure the half-hourly energy consumption of the whole building and of the individual rooftop air conditioners, the roof heat fluxes and the interior air and roof temperatures. These data were used to evaluate the energy effectiveness of the roof re-covering action. The energy savings analysis was done using the DOE-2.lE building simulation program, which was calibrated to match the measured data. The roof re-covering led to around 10% cooling energy savings and around 50% heating energy savings. The resulting energy cost reductions alone are not sufficient to justify re-covered roofs for buildings having high internal loads, such as the building investigated here. However the energy savings do contribute significantly to the measure`s Savings-to-Investment Ratio (SIR).

  1. Construction of Experimental Roofing.

    DTIC Science & Technology

    1981-11-01

    64 m) of rigid closed-cell inorganic board in hot asphalt. 4. Bonding a 60-mil- (1.5-ram)- thick EPDM membrane to the insulation surface. - 15 a...specified that the existing roofing, flashing, lightweight concrete fill, rigid board insulation, and earthquake copper bel- lows be removed down to...asphalt-saturated and coated inorganic base sheet in hot asphalt. 3. Providing lightweight asphaltic concrete insulating fill and two courses of rigid

  2. Roof Plans: Section "CC", Roof Plan; Roof Framing Plans: Section ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Roof Plans: Section "C-C", Roof Plan; Roof Framing Plans: Section "C-C", Section "D-D"; Roof Framing Sections: Cross Section "G-G", Cross Section "H-H" - Fort Washington, Fort Washington Light, Northeast side of Potomac River at Fort Washington Park, Fort Washington, Prince George's County, MD

  3. Development of Membrane-Based Desiccant Fiber for Vacuum Desiccant Cooling.

    PubMed

    Yang, Yifan; Rana, Dipak; Lan, Christopher Q; Matsuura, Takeshi

    2016-06-22

    A novel hydrophobic membrane-based desiccant fiber (MDF) was developed by loading lithium chloride into hydrophobic hollow fiber membranes. The MDF thus made was then tested for vapor absorption under controlled conditions. Furthermore, an MDF pad, which was made by weaving MDF into a piece of garment, was built into a laboratory vacuum desiccant cooling (VDC) setup, which included the MDF pad as the desiccant layer and a cooling towel saturated with water as the water reservoir, to test the cooling effects at atmospheric pressure and vacuum of 25 in. of Hg. Results indicate that MDF is suitable for applications such as in VDC. Mass and heat transfer of vapor absorption by MDF were also analyzed.

  4. Roofs That Last...And Last...And Last.

    ERIC Educational Resources Information Center

    Fickes, Michael

    1999-01-01

    Describes the benefits of using protected membrane roofing (PMR) systems as a means of cutting maintenance and repair costs over the roof's lifetime. Addresses responses to arguments against using PMR systems. (GR)

  5. An environmental cost-benefit analysis of alternative green roofing strategies

    NASA Astrophysics Data System (ADS)

    Richardson, M.; William, R. K.; Goodwell, A. E.; Le, P. V.; Kumar, P.; Stillwell, A. S.

    2016-12-01

    Green roofs and cool roofs are alternative roofing strategies that mitigate urban heat island effects and improve building energy performance. Green roofs consist of soil and vegetation layers that provide runoff reduction, thermal insulation, and potential natural habitat, but can require regular maintenance. Cool roofs involve a reflective layer that reflects more sunlight than traditional roofing materials, but require additional insulation during winter months. This study evaluates several roofing strategies in terms of energy performance, urban heat island mitigation, water consumption, and economic cost. We use MLCan, a multi-layer canopy model, to simulate irrigated and non-irrigated green roof cases with shallow and deep soil depths during the spring and early summer of 2012, a drought period in central Illinois. Due to the dry conditions studied, periodic irrigation is implemented in the model to evaluate its effect on evapotranspiration. We simulate traditional and cool roof scenarios by altering surface albedo and omitting vegetation and soil layers. We find that both green roofs and cool roofs significantly reduce surface temperature compared to the traditional roof simulation. Cool roof temperatures always remain below air temperature and, similar to traditional roofs, require low maintenance. Green roofs remain close to air temperature and also provide thermal insulation, runoff reduction, and carbon uptake, but might require irrigation during dry periods. Due to the longer lifetime of a green roof compared to cool and traditional roofs, we find that green roofs realize the highest long term cost savings under simulated conditions. However, using longer-life traditional roof materials (which have a higher upfront cost) can help decrease this price differential, making cool roofs the most affordable option due to the higher maintenance costs associated with green roofs

  6. Removal of seminal plasma enhances membrane stability on fresh and cooled stallion spermatozoa.

    PubMed

    Barrier-Battut, I; Bonnet, C; Giraudo, A; Dubois, C; Caillaud, M; Vidament, M

    2013-02-01

    Fertility is reduced after semen cooling for a considerable number of stallions. The main hypotheses include alterations in plasma membrane following cooling and deleterious influence of seminal plasma. However, interindividual variability is controversial. We hypothesized that the removal of seminal plasma could enhance motility in some 'poor cooler' stallions, but could also affect, negatively or positively, membrane quality in some stallions. This study examined the effect of centrifugation, followed or not by removal of seminal plasma, on parameters indicating semen quality after 48 h at 4 °C: motility, plasma membrane integrity as evaluated by hypo-osmotic swelling test, acrosome integrity and response to a pharmacological induction of acrosome reaction using ionophore A23187. Sixty-six ejaculates from 14 stallions were used, including stallions showing high or low sperm motility after cooled storage. Centrifugation without removal of seminal plasma did not affect sperm parameters. Removal of seminal plasma did not affect motility, but significantly stabilized sperm membranes, as demonstrated by a higher response to the osmotic challenge, and a reduced reactivity of the acrosome. Moreover, for the same semen sample, the response to an induction of acrosome reaction was significantly higher when the induction was performed in the presence of seminal plasma, compared with the induction in the absence of seminal plasma. This was observed both for fresh and cooled semen. When the induction of acrosome reaction with ionophore A23187 is used to evaluate sperm quality, care must therefore be taken to standardize the proportion of seminal plasma between samples. For the 10 stallions serving at least 25 mares, the only variable significantly correlated with fertility was motility. The influence of membrane stabilization regarding fertility requires further investigations.

  7. Nanowire-integrated microporous silicon membrane for continuous fluid transport in micro cooling device

    NASA Astrophysics Data System (ADS)

    So, Hongyun; Cheng, Jim C.; Pisano, Albert P.

    2013-10-01

    We report an efficient passive micro pump system combining the physical properties of nanowires and micropores. This nanowire-integrated microporous silicon membrane was created to feed coolant continuously onto the surface of the wick in a micro cooling device to ensure it remains hydrated and in case of dryout, allow for regeneration of the system. The membrane was fabricated by photoelectrochemical etching to form micropores followed by hydrothermal growth of nanowires. This study shows a promising approach to address thermal management challenges for next generation electronic devices with absence of external power.

  8. Nanowire-integrated microporous silicon membrane for continuous fluid transport in micro cooling device

    SciTech Connect

    So, Hongyun; Pisano, Albert P.; Cheng, Jim C.

    2013-10-14

    We report an efficient passive micro pump system combining the physical properties of nanowires and micropores. This nanowire-integrated microporous silicon membrane was created to feed coolant continuously onto the surface of the wick in a micro cooling device to ensure it remains hydrated and in case of dryout, allow for regeneration of the system. The membrane was fabricated by photoelectrochemical etching to form micropores followed by hydrothermal growth of nanowires. This study shows a promising approach to address thermal management challenges for next generation electronic devices with absence of external power.

  9. Lightweight, self-ballasting photovoltaic roofing assembly

    DOEpatents

    Dinwoodie, T.L.

    1998-05-05

    A photovoltaic roofing assembly comprises a roofing membrane (102), a plurality of photovoltaic modules (104, 106, 108) disposed as a layer on top of the roofing membrane (102), and a plurality of pre-formed spacers, pedestals or supports (112, 114, 116, 118, 120, 122) which are respectively disposed below the plurality of photovoltaic modules (104, 106, 108) and integral therewith, or fixed thereto. Spacers (112, 114, 116, 118, 120, 122) are disposed on top of roofing membrane (102). Membrane (102) is supported on conventional roof framing, and attached thereto by conventional methods. In an alternative embodiment, the roofing assembly may have insulation block (322) below the spacers (314, 314', 315, 315'). The geometry of the preformed spacers (112, 114, 116, 118, 120, 122, 314, 314', 315, 315') is such that wind tunnel testing has shown its maximum effectiveness in reducing net forces of wind uplift on the overall assembly. Such construction results in a simple, lightweight, self-ballasting, readily assembled roofing assembly which resists the forces of wind uplift using no roofing penetrations.

  10. Lightweight, self-ballasting photovoltaic roofing assembly

    DOEpatents

    Dinwoodie, Thomas L.

    1998-01-01

    A photovoltaic roofing assembly comprises a roofing membrane (102), a plurality of photovoltaic modules (104, 106, 108) disposed as a layer on top of the roofing membrane (102), and a plurality of pre-formed spacers, pedestals or supports (112, 114, 116, 118, 120, 122) which are respectively disposed below the plurality of photovoltaic modules (104, 106, 108) and integral therewith, or fixed thereto. Spacers (112, 114, 116, 118, 120, 122) are disposed on top of roofing membrane (102). Membrane (102) is supported on conventional roof framing, and attached thereto by conventional methods. In an alternative embodiment, the roofing assembly may have insulation block (322) below the spacers (314, 314', 315, 315'). The geometry of the preformed spacers (112, 114, 116, 118, 120, 122, 314, 314', 315, 315') is such that wind tunnel testing has shown its maximum effectiveness in reducing net forces of wind uplift on the overall assembly. Such construction results in a simple, lightweight, self-ballasting, readily assembled roofing assembly which resists the forces of wind uplift using no roofing penetrations.

  11. Lightweight, self-ballasting photovoltaic roofing assembly

    DOEpatents

    Dinwoodie, Thomas L.

    2006-02-28

    A photovoltaic roofing assembly comprises a roofing membrane (102), a plurality of photovoltaic modules (104, 106, 108) disposed as a layer on top of the roofing membrane (102), and a plurality of pre-formed spacers, pedestals or supports (112, 114, 116, 118, 120, 122) which are respectively disposed below the plurality of photovoltaic modules (104, 106, 108) and integral therewith, or fixed thereto. Spacers (112, 114, 116, 118, 120, 122) are disposed on top of roofing membrane (102). Membrane (102) is supported on conventional roof framing, and attached thereto by conventional methods. In an alternative embodiment, the roofing assembly may have insulation block (322) below the spacers (314, 314', 315, 315'). The geometry of the pre-formed spacers (112, 114, 116, 118, 120, 122, 314, 314', 315, 315') is such that wind tunnel testing has shown its maximum effectiveness in reducing net forces of wind uplift on the overall assembly. Such construction results in a simple, lightweight, self-ballasting, readily assembled roofing assembly which resists the forces of wind uplift using no roofing penetrations.

  12. Understanding Roofing Systems.

    ERIC Educational Resources Information Center

    Michelsen, Ted

    2001-01-01

    Reviews the various types of multi- and single-ply roofing commonly used today in educational facilities. Roofing types described involve built-up systems, modified bitumen systems; ethylene propylene diene terpolymer roofs; and roofs of thermoplastic, metal, and foam. A description of the Roofing Industry Educational Institute is included. (GR)

  13. Understanding Roofing Systems.

    ERIC Educational Resources Information Center

    Michelsen, Ted

    2001-01-01

    Reviews the various types of multi- and single-ply roofing commonly used today in educational facilities. Roofing types described involve built-up systems, modified bitumen systems; ethylene propylene diene terpolymer roofs; and roofs of thermoplastic, metal, and foam. A description of the Roofing Industry Educational Institute is included. (GR)

  14. Membrane-Based Absorption Refrigeration Systems: Nanoengineered Membrane-Based Absorption Cooling for Buildings Using Unconcentrated Solar & Waste Heat

    SciTech Connect

    2010-09-01

    BEETIT Project: UFL is improving a refrigeration system that uses low quality heat to provide the energy needed to drive cooling. This system, known as absorption refrigeration system (ARS), typically consists of large coils that transfer heat. Unfortunately, these large heat exchanger coils are responsible for bulkiness and high cost of ARS. UFL is using new materials as well as system design innovations to develop nanoengineered membranes to allow for enhanced heat exchange that reduces bulkiness. UFL’s design allows for compact, cheaper and more reliable use of ARS that use solar or waste heat.

  15. Rules To Roof By.

    ERIC Educational Resources Information Center

    Hale, Olivia

    2002-01-01

    Advises schools on keeping roofs healthy, thereby saving costly repairs to both the roof and the entire building. Discusses inspections, preventive-maintenance programs, weather, and when to re-roof. (EV)

  16. Effects of various cryoprotective agents and membrane-stabilizing compounds on bull sperm membrane integrity after cooling and freezing.

    PubMed

    De Leeuw, F E; De Leeuw, A M; Den Daas, J H; Colenbrander, B; Verkleij, A J

    1993-02-01

    In this study attempts were made to improve the survival rates of bull spermatozoa after freezing/thawing and to clarify the importance of certain agents to the cryopreservation of spermatozoa. For that purpose the standard freezing extender was modified by the addition of different concentrations of various cryoprotectants and membrane-stabilizing agents: glycerol, 1,2-propanediol, polyvinylpyrrolidone, sucrose, egg yolk, lipid vesicles, and bovine serum albumin (BSA). Sperm membrane impermeability toward H33258 was employed as the parameter for sperm integrity during cooling and after freezing/thawing. Exclusion of glycerol from the extender did not significantly affect sperm integrity. Replacing 6% glycerol by 6% 1,2-propanediol resulted in reduced sperm survival, whereas replacement of glycerol by 62.5 mM sucrose slightly improved survival rates. Addition of 5 or 10% polyvinylpyrrolidone (either or not in combination with 0.5 M sucrose) significantly reduced sperm integrity. Excluding egg yolk from the extender caused a serious decrease of sperm survival after both cooling and freezing. The cryoprotection offered by egg yolk could not be mimicked by dioleoylphosphatidylcholine (DOPC) vesicles or DOPC/phosphatidic acid/cholesterol vesicles in concentrations up to 29 or 9 mM, respectively. However, the freezing extender containing 6.5 mM DOPC vesicles in combination with 6% BSA yielded results which did not significantly differ from those obtained with the standard extender; higher vesicle concentrations combined with BSA might produce even better results. Further research on the cryopreservation of bovine spermatozoa should focus on membrane stabilization since the membrane-stabilizing compounds yield more promising results than the ice-preventing agents.

  17. Metal foams application to enhance cooling of open cathode polymer electrolyte membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Sajid Hossain, Mohammad; Shabani, Bahman

    2015-11-01

    Conventional channel flow fields of open cathode Polymer Electrolyte Membrane Fuel Cells (PEMFCs) introduce some challenges linked to humidity, temperature, pressure and oxygen concentration gradients along the conventional flow fields that reduce the cell performance. According to previous experimental reports, with conventional air flow fields, hotspot formation due to water accumulation in Gas Diffusion Layer (GDL) is common. Unlike continuous long flow passages in conventional channels, metal foams provide randomly interrupted flow passages. Re-circulation of fluid, due to randomly distributed tortuous ligaments, enhances temperature and humidity uniformity in the fluid. Moreover, the higher electrical conductivity of metal foams compared to non-metal current collectors and their very low mass density compared to solid metal materials are expected to increase the electrical performance of the cell while significantly reducing its weight. This article reviews the existing cooling systems and identifies the important parameters on the basis of reported literature in the air cooling systems of PEMFCs. This is followed by investigating metal foams as a possible option to be used within the structure of such PEMFCs as an option that can potentially address cooling and flow distribution challenges associated with using conventional flow channels, especially in air-cooled PEMFCs.

  18. Aging of reflective roofs: soot deposition.

    PubMed

    Berdahl, Paul; Akbari, Hashem; Rose, Leanna S

    2002-04-20

    Solar-reflective roofs remain cooler than absorptive roofs and thus conserve electricity otherwise needed for air conditioning. A currently controversial aspect of solar-reflective cool roofing is the extent to which an initially high solar reflectance decreases with time. We present experimental data on the spectral absorption of deposits that accumulate on roofs, and we attribute most of the absorption to carbon soot originally produced by combustion. The deposits absorb more at short wavelengths (e.g., in the blue) than in the red and infrared, imparting a slightly yellow tinge to formerly white surfaces. The initial rate of reflectance reduction by soot accumulation is consistent with known emission rates that are due to combustion. The long-term reflectance change appears to be determined by the ability of the soot to adhere to the roof, resisting washout by rain.

  19. Environmental assessment of extensive green roofs in the UK

    NASA Astrophysics Data System (ADS)

    Ruan, Fei

    The advantages of the planted roofs are undoubtedly numerous from both the ecological and the social point of view. They act positively upon the climate of the city and its region, as well as upon the interior climate of the building beneath them. This dissertation, therefore, explores the environmental performance of the extensive green roofs in UK. The investigation was implemented in two phases: during the first phase, detailed introduction of green roofs with the emphasis on their thermal properties and behavior is provided with the support of literature review evidence. During the second phase of the study, the thermal properties of the green roof, as well as, the energy saving were examined, through two computer programs: Wufi and TAS. Two hypothetic models have been developed in these programs to evaluate thermal and energy performances of a building with a green roof, varying different parameters for the green roof or changing different internal condition for the building. The main conclusion of these analyses is that two parameters: vegetation solar absorptivity and water content of green roofs play significant role in the thermal performance of green roofs. Lower vegetation solar absorptivity and higher water content will help green roofs to further reduce the external heat flux and summer inward heat flux which consequently mitigate the urban heat island effect and summer energy consumption. On the other hand, in comparison with the traditional roofs, green roofs appear to have less heating loads but higher cooling loads when internal gain is higher. Finally, when comparing Wufi results to TAS results, both represent that featured as lower solar absorptivity and higher insulation value, green roofs do alleviate the urban heat island effect and reduce the heat flux through the roof. Nevertheless, by taking account of evaporative cooling effect of green roofs, Wufi provides a more accurate approach to simulate the performance of green roofs

  20. Cooling induces phase separation in membranes derived from isolated CNS myelin.

    PubMed

    Pusterla, Julio M; Schneck, Emanuel; Funari, Sérgio S; Démé, Bruno; Tanaka, Motomu; Oliveira, Rafael G

    2017-01-01

    Purified myelin membranes (PMMs) are the starting material for biochemical analyses such as the isolation of detergent-insoluble glycosphingolipid-rich domains (DIGs), which are believed to be representatives of functional lipid rafts. The normal DIGs isolation protocol involves the extraction of lipids under moderate cooling. Here, we thus address the influence of cooling on the structure of PMMs and its sub-fractions. Thermodynamic and structural aspects of periodic, multilamellar PMMs are examined between 4°C and 45°C and in various biologically relevant aqueous solutions. The phase behavior is investigated by small-angle X-ray scattering (SAXS) and differential scanning calorimetry (DSC). Complementary neutron diffraction (ND) experiments with solid-supported myelin multilayers confirm that the phase behavior is unaffected by planar confinement. SAXS and ND consistently show that multilamellar PMMs in pure water become heterogeneous when cooled by more than 10-15°C below physiological temperature, as during the DIGs isolation procedure. The heterogeneous state of PMMs is stabilized in physiological solution, where phase coexistence persists up to near the physiological temperature. This result supports the general view that membranes under physiological conditions are close to critical points for phase separation. In presence of elevated Ca2+ concentrations (> 10 mM), phase coexistence is found even far above physiological temperatures. The relative fractions of the two phases, and thus presumably also their compositions, are found to vary with temperature. Depending on the conditions, an "expanded" phase with larger lamellar period or a "compacted" phase with smaller lamellar period coexists with the native phase. Both expanded and compacted periods are also observed in DIGs under the respective conditions. The observed subtle temperature-dependence of the phase behavior of PMMs suggests that the composition of DIGs is sensitive to the details of the

  1. Advanced Energy Efficient Roof System

    SciTech Connect

    Jane Davidson

    2008-09-30

    Energy consumption in buildings represents 40 percent of primary U.S. energy consumption, split almost equally between residential (22%) and commercial (18%) buildings.1 Space heating (31%) and cooling (12%) account for approximately 9 quadrillion Btu. Improvements in the building envelope can have a significant impact on reducing energy consumption. Thermal losses (or gains) from the roof make up 14 percent of the building component energy load. Infiltration through the building envelope, including the roof, accounts for an additional 28 percent of the heating loads and 16 percent of the cooling loads. These figures provide a strong incentive to develop and implement more energy efficient roof systems. The roof is perhaps the most challenging component of the building envelope to change for many reasons. The engineered roof truss, which has been around since 1956, is relatively low cost and is the industry standard. The roof has multiple functions. A typical wood frame home lasts a long time. Building codes vary across the country. Customer and trade acceptance of new building products and materials may impede market penetration. The energy savings of a new roof system must be balanced with other requirements such as first and life-cycle costs, durability, appearance, and ease of construction. Conventional residential roof construction utilizes closely spaced roof trusses supporting a layer of sheathing and roofing materials. Gypsum board is typically attached to the lower chord of the trusses forming the finished ceiling for the occupied space. Often in warmer climates, the HVAC system and ducts are placed in the unconditioned and otherwise unusable attic. High temperature differentials and leaky ducts result in thermal losses. Penetrations through the ceilings are notoriously difficult to seal and lead to moisture and air infiltration. These issues all contribute to greater energy use and have led builders to consider construction of a conditioned attic. The

  2. 40 CFR Appendix A to Subpart M of... - Interpretive Rule Governing Roof Removal Operations

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... include built-up roofing; asphalt-containing single ply membrane systems; asphalt shingles; asphalt....141). In particular, it is EPA's view that the removal of roofing systems (i.e., the roof membrane..., then EPA (or the delegated agency) must be notified in advance of the removal in accordance with the...

  3. Comparison of different UHI mitigation strategies: the street- versus roof-level implementation

    NASA Astrophysics Data System (ADS)

    Li, X.; Georgescu, M.; Norford, L. K.

    2015-12-01

    Many mitigation approaches have been proposed to ameliorate the deleterious aspects of urbalization on climate, with special focus on the notorious urban heat island (UHI) effect. Of these approaches, high reflectance roof (cool roof) and pavement (cool pavement) and green roof or greenery are most commonly used and widely studied. However, the debate regarding the better implementation of cool and green technology is still ongoing. In this study, numerical sensitivity tests are carried out to evaluate the mitigation effect of the cool and green implementations at the city scale. The effects of roof-level and street-level implementations are compared in the context of a tropical urban environment.

  4. Raising the Roof.

    ERIC Educational Resources Information Center

    Savage, John

    2000-01-01

    Discusses how the use of metal standing-seam roofs can help conserve energy, and with proper maintenance, be long-lasting. An example is given of one high school's replacement of their leaking roof with a metal standing-seam roof. (GR)

  5. EPA's Green Roof Research

    EPA Science Inventory

    This is a presentation on the basics of green roof technology. The presentation highlights some of the recent ORD research projects on green roofs and provices insight for the end user as to the benefits for green roof technology. It provides links to currently available EPA re...

  6. EPA's Green Roof Research

    EPA Science Inventory

    This is a presentation on the basics of green roof technology. The presentation highlights some of the recent ORD research projects on green roofs and provices insight for the end user as to the benefits for green roof technology. It provides links to currently available EPA re...

  7. Green roofs as a means of pollution abatement.

    PubMed

    Rowe, D Bradley

    2011-01-01

    Green roofs involve growing vegetation on rooftops and are one tool that can help mitigate the negative effects of pollution. This review encompasses published research to date on how green roofs can help mitigate pollution, how green roof materials influence the magnitude of these benefits, and suggests future research directions. The discussion concentrates on how green roofs influence air pollution, carbon dioxide emissions, carbon sequestration, longevity of roofing membranes that result in fewer roofing materials in landfills, water quality of stormwater runoff, and noise pollution. Suggestions for future directions for research include plant selection, development of improved growing substrates, urban rooftop agriculture, water quality of runoff, supplemental irrigation, the use of grey water, air pollution, carbon sequestration, effects on human health, combining green roofs with complementary related technologies, and economics and policy issues. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Bright is the New Black - Multi-Year Performance of Generic High-Albedo Roofs in an Urban Climate

    NASA Technical Reports Server (NTRS)

    Gaffin, S. R.; Imhoff, M.; Rosenzweig, C.; Khanbilvardi, R.; Pasqualini, A.; Kong, A. Y. Y.; Grillo, D.; Freed, A.; Hillel, D.; Hartung, E.

    2012-01-01

    High-albedo white and cool roofing membranes are recognized as a fundamental strategy that dense urban areas can deploy on a large scale, at low cost, to mitigate the urban heat island effect. We are monitoring three generic white membranes within New York City that represent a cross-section of the dominant white membrane options for U.S. flat roofs: (1) an ethylene propylene diene monomer (EPDM) rubber membrane; (2) a thermoplastic polyolefin (TPO) membrane and; (3) an asphaltic multi-ply built-up membrane coated with white elastomeric acrylic paint. The paint product is being used by New York City s government for the first major urban albedo enhancement program in its history. We report on the temperature and related albedo performance of these three membranes at three different sites over a multi-year period. The results indicate that the professionally installed white membranes are maintaining their temperature control effectively and are meeting the Energy Star Cool Roofing performance standards requiring a three-year aged albedo above 0.50. The EPDM membrane however shows evidence of low emissivity. The painted asphaltic surface shows high emissivity but lost about half of its initial albedo within two years after installation. Given that the acrylic approach is an important "do-it-yourself," low-cost, retrofit technique, and, as such, offers the most rapid technique for increasing urban albedo, further product performance research is recommended to identify conditions that optimize its long-term albedo control. Even so, its current multi-year performance still represents a significant albedo enhancement for urban heat island mitigation.

  9. Bright is the new black—multi-year performance of high-albedo roofs in an urban climate

    NASA Astrophysics Data System (ADS)

    Gaffin, S. R.; Imhoff, M.; Rosenzweig, C.; Khanbilvardi, R.; Pasqualini, A.; Kong, A. Y. Y.; Grillo, D.; Freed, A.; Hillel, D.; Hartung, E.

    2012-03-01

    High-albedo white and cool roofing membranes are recognized as a fundamental strategy that dense urban areas can deploy on a large scale, at low cost, to mitigate the urban heat island effect. We are monitoring three generic white membranes within New York City that represent a cross section of the dominant white membrane options for US flat roofs: (1) an ethylene-propylene-diene monomer (EPDM) rubber membrane; (2) a thermoplastic polyolefin (TPO) membrane; and (3) an asphaltic multi-ply built-up membrane coated with white elastomeric acrylic paint. The paint product is being used by New York City’s government for the first major urban albedo enhancement program in its history. We report on the temperature and related albedo performance of these three membranes at three different sites over a multi-year period. The results indicate that the professionally installed white membranes are maintaining their temperature control effectively and are meeting the Energy Star Cool Roofing performance standards requiring a three-year aged albedo above 0.50. The EPDM membrane shows evidence of low emissivity; however this had the interesting effect of avoiding any ‘winter heat penalty’ for this building. The painted asphaltic surface shows high emissivity but lost about half of its initial albedo within two years of installation. Given that the acrylic approach is such an important ‘do-it-yourself’, low-cost, retrofit technique, and, as such, offers the most rapid technique for increasing urban albedo, further product performance research is recommended to identify conditions that optimize its long-term albedo control. Even so, its current multi-year performance still represents a significant albedo enhancement for urban heat island mitigation.

  10. Spacesuit Water Membrane Evaporator; An Enhanced Evaporative Cooling Systems for the Advanced Extravehicular Mobility Unit Portable Life Support System

    NASA Technical Reports Server (NTRS)

    Bue, Grant C.; Makinen, Janice V.; Miller, Sean.; Campbell, Colin; Lynch, Bill; Vogel, Matt; Craft, Jesse; Petty, Brian

    2014-01-01

    Spacesuit Water Membrane Evaporator - Baseline heat rejection technology for the Portable Life Support System of the Advanced EMU center dot Replaces sublimator in the current EMU center dot Contamination insensitive center dot Can work with Lithium Chloride Absorber Radiator in Spacesuit Evaporator Absorber Radiator (SEAR) to reject heat and reuse evaporated water The Spacesuit Water Membrane Evaporator (SWME) is being developed to replace the sublimator for future generation spacesuits. Water in LCVG absorbs body heat while circulating center dot Warm water pumped through SWME center dot SWME evaporates water vapor, while maintaining liquid water - Cools water center dot Cooled water is then recirculated through LCVG. center dot LCVG water lost due to evaporation (cooling) is replaced from feedwater The Independent TCV Manifold reduces design complexity and manufacturing difficulty of the SWME End Cap. center dot The offset motor for the new BPV reduces the volume profile of the SWME by laying the motor flat on the End Cap alongside the TCV.

  11. Modeling the effects of reflective roofing

    SciTech Connect

    Gartland, L.M.; Konopacki, S.J.; Akbari, H.

    1996-08-01

    Roofing materials which are highly reflective to sunlight are currently being developed. Reflective roofing is an effective summertime energy saver in warm and sunny climates. It has been demonstrated to save up to 40% of the energy needed to cool a building during the summer months. Buildings without air conditioning can reduce their indoor temperatures and improve occupant comfort during the summer if highly reflective roofing materials are used. But there are questions about the tradeoff between summer energy savings and extra wintertime energy use due to reduced heat collection by the roof. These questions are being answered by simulating buildings in various climates using the DOE-2 program (version 2.1E). Unfortunately, DOE-2 does not accurately model radiative, convective and conductive processes in the roof-attic. Radiative heat transfer from the underside of a reflective roof is much smaller than that of a roof which absorbs heat from sunlight, and must be accounted for in the building energy model. Convection correlations for the attic and the roof surface must be fine tuned. An equation to model the insulation`s conductivity dependence on temperature must also be added. A function was written to incorporate the attic heat transfer processes into the DOE-2 building energy simulation. This function adds radiative, convective and conductive equations to the energy balance of the roof. Results of the enhanced DOE-2 model were compared to measured data collected from a school bungalow in a Sacramento Municipal Utility District monitoring project, with particular attention paid to the year-round energy effects.

  12. 5. VIEW OF VENTILATION HOUSES AND ROOF MONITOR FROM SOUTHEAST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. VIEW OF VENTILATION HOUSES AND ROOF MONITOR FROM SOUTHEAST CORNER OF ROOF. ROOF MONITOR WINDOWS HAVE BEEN INFILLED WITH BRICK. THE VENTILATION HOUSES ARE PART OF THE ORIGINAL CENTRAL AIR CONDITIONING SYSTEM AND CONTAINED AIR WASHERS, FANS AND OTHER HUMIDFYING EQUIPMENT FROM PARKS-CRAMER COMPANY OF FITCHBURG, MASSACHUSETTS. LOCATING THIS EQUIPMENT ON THE ROOF MADE IT UNNECESSARY TO CONSTRUCT A FULL BASEMENT, AND THEREFORE LOWERED CONSTRUCTION COSTS. THIS ARRANGEMENT ALSO PUT THE AIR CONDITIONING EQUIPMENT CLOSEST TO THE TOP FLOOR SPINNING ROOM, WHICH HAD THE GREATEST COOLING REQUIREMENTS. - Stark Mill, 117 Corinth Road, Hogansville, Troup County, GA

  13. A Review of Methods for the Manufacture of Residential Roofing Materials

    SciTech Connect

    Akbari, Hashem; Levinson, Ronnen; Berdahl, Paul

    2003-06-01

    Shingles, tiles, and metal products comprise over 80% (by roof area) of the California roofing market (54-58% fiberglass shingle, 8-10% concrete tile, 8-10% clay tile, 7% metal, 3% wood shake, and 3% slate). In climates with significant demand for cooling energy, increasing roof solar reflectance reduces energy consumption in mechanically cooled buildings, and improves occupant comfort in non-conditioned buildings. This report examines methods for manufacturing fiberglass shingles, concrete tiles, clay tiles, and metal roofing. The report also discusses innovative methods for increasing the solar reflectance of these roofing materials. We have focused on these four roofing products because they are typically colored with pigmented coatings or additives. A better understanding of the current practices for manufacturing colored roofing materials would allow us to develop cool colored materials creatively and more effectively.

  14. Construction of Experimental Modified Bitumen Roofing at Fort Polk, LA

    DTIC Science & Technology

    1991-04-01

    with polyester reinforcement and factory- applied granule surfacing (area A), - Membrane B -- a hot-mopped SBS modified bitumen with polyester...roofing that should be removed. Membrane B Reroofing of area B with the hot-mopped SBS modified bitumen membrane began on September 8. Installation of...Research Laboratory AD-A235 492/ Iuilli itI 1 I II HUE Construction of Experimental Modified Bitumen Roofing at Fort Polk, LA by David M. Bailey 40 This

  15. Analytical study of residential building with reflecting roofs

    SciTech Connect

    Zarr, R.R.

    1998-10-01

    This report presents an analysis of the effect of roof solar reflectance on the annual heating (cooling) loads, peak heating (cooling) loads, and roof temperatures of the residential buildings. The annual heating (cooling) loads, peak heating (cooling) loads, and exterior roof temperatures for a small compact ranch house are computed using the Thermal Analysis Research Program (TARP). The residential models, with minor modifications in the thermal envelope for different locations, are subjected to hourly weather data for one year compiled in the Weather Year for Energy Calculation (WYEC) for in the following locations: Birmingham, Alabama; Bismarck, North Dakota; Miami, Florida; Phoenix, Arizona; Portland, Maine; and, Washington, D.C. Building loads have been determined for a full factorial experimental design that varies the following parameters of the residential model: solar reflectance of the roof, ceiling thermal resistance, attic ventilation, and attic mass framing area. The computed results for annual heating (cooling) loads and peak heating (cooling) loads are illustrated graphically, both globally for all cities and locally for each geographic location. The effect of peak parameter is ranked (highest to lowest) for effect on annual heating and cooling loads, and peak heating and cooling loads. A parametric study plots the building loads as a function of roof solar reflectance for different levels of ceiling thermal resistances and for each geographic location.

  16. What's Up with Your Roof?

    ERIC Educational Resources Information Center

    Kalinger, Peter

    1998-01-01

    Explains the importance of knowing what condition the school's roof(s) is in and how to design a preventive maintenance program that is cost effective and will help extend the roof's lifecycle. Cost calculation techniques to value a roof maintenance program, maintenance documentation requirements, and roof surveying are discussed. (GR)

  17. IMPROVED ROOF STABILIZATION TECHNOLOGIES

    SciTech Connect

    M.A. Ebadian, Ph.D.

    1999-01-01

    Many U.S. Department of Energy (DOE) remediation sites have performed roof repair and roof replacement to stabilize facilities prior to performing deactivation and decommissioning (D&D) activities. This project will review the decision criteria used by these DOE sites, along with the type of repair system used for each different roof type. Based on this information, along with that compiled from roofing experts, a decision-making tool will be generated to aid in selecting the proper roof repair systems. Where appropriate, innovative technologies will be reviewed and applied to the decision-making tool to determine their applicability. Based on the results, applied research and development will be conducted to develop a method to repair these existing roofing systems, while providing protection for the D and D worker in a cost-efficient manner.

  18. Mine roof support

    SciTech Connect

    Bollmann, A.

    1981-02-24

    A mine roof support has a base and a roof shield pivoted to the base and carrying at its upper end a pivoted cap which is urged upwardly against the mine roof by a hydraulic pit prop reacting between the cap and the base. The lower end of the roof shield is connected to the base by two links each having a pivot cooperating with a pivot on the roof shield, and a pivot cooperating with a pivot on the base. In addition, the base and/or the lower end of the roof shield has an auxiliary for each link and each link has an auxiliary pivot which can be connected with one of the auxiliary pivots of the base or lower end.

  19. Study of using microfiltration and reverse osmosis membrane technologies for reclaiming cooling water in the power industry.

    PubMed

    Li, J; Xu, Z Y; An, H G; Liu, L Q

    2007-07-01

    A study of using dual membrane technologies, microfiltration (MF) and reverse osmosis (RO), for reclaiming blowdown of the cooling tower was conducted at ZJK power plant, Hebei province, China. The study shows that the combined MF-RO system can effectively reduce water consumption in the power industry. The results indicate that MF process is capable of producing a filtrate suitable for RO treatment and achieving a silt density index (SDI) less than 2, turbidity of 0.2 NTU. The water quality of RO effluent is very good with an average conductivity of about 40 micros/cm and rejection of 98%. The product water is suitable for injection into the cooling tower to counteract with cooling water intrusion. After adopting this system, water-saving effectiveness as expressed in terms of cycles of concentration could be increased from 2.5-2.8 times to 5 times.

  20. Good Roof Construction Makes Sense.

    ERIC Educational Resources Information Center

    Hubert, Edward F.

    1987-01-01

    A roofing project of any substantial size should involve an architect, an engineer, or a roof consultant. Careful planning and design, diligent construction, and quality inspection, offer owners a quality roof job. (MLF)

  1. Soiling of building envelope surfaces and its effect on solar reflectance – Part II: Development of an accelerated aging method for roofing materials

    SciTech Connect

    Sleiman, Mohamad; Kirchstetter, Thomas W.; Berdahl, Paul; Gilbert, Haley E.; Quelen, Sarah; Marlot, Lea; Preble, Chelsea V.; Chen, Sharon; Montalbano, Amandine; Rosseler, Olivier; Akbari, Hashem; Levinson, Ronnen; Destaillats, Hugo

    2014-01-09

    Highly reflective roofs can decrease the energy required for building air conditioning, help mitigate the urban heat island effect, and slow global warming. However, these benefits are diminished by soiling and weathering processes that reduce the solar reflectance of most roofing materials. Soiling results from the deposition of atmospheric particulate matter and the growth of microorganisms, each of which absorb sunlight. Weathering of materials occurs with exposure to water, sunlight, and high temperatures. This study developed an accelerated aging method that incorporates features of soiling and weathering. The method sprays a calibrated aqueous soiling mixture of dust minerals, black carbon, humic acid, and salts onto preconditioned coupons of roofing materials, then subjects the soiled coupons to cycles of ultraviolet radiation, heat and water in a commercial weatherometer. Three soiling mixtures were optimized to reproduce the site-specific solar spectral reflectance features of roofing products exposed for 3 years in a hot and humid climate (Miami, Florida); a hot and dry climate (Phoenix, Arizona); and a polluted atmosphere in a temperate climate (Cleveland, Ohio). A fourth mixture was designed to reproduce the three-site average values of solar reflectance and thermal emittance attained after 3 years of natural exposure, which the Cool Roof Rating Council (CRRC) uses to rate roofing products sold in the US. This accelerated aging method was applied to 25 products₋single ply membranes, factory and field applied coatings, tiles, modified bitumen cap sheets, and asphalt shingles₋and reproduced in 3 days the CRRC's 3-year aged values of solar reflectance. In conclusion, this accelerated aging method can be used to speed the evaluation and rating of new cool roofing materials.

  2. Membrane Dehumidifier: High-Efficiency, On-Line Membrane Air Dehumidifier Enabling Sensible Cooling for Warm and Humid Climates

    SciTech Connect

    2010-09-01

    BEETIT Project: ADMA Products is developing a foil-like membrane for air conditioners that efficiently removes moisture from humid air. ADMA Products’s metal foil-like membrane consists of a paper thin, porous metal sheet coated with a layer of water-loving molecules. This new membrane allows water vapor to permeate across the membrane at high fluxes and at the same time, blocks air penetration efficiently resulting in high selectivity. The high selectivity of the membrane translates to less energy use, while the high permeation fluxes result in a more compact device. The new materials and the flat foil-like nature of the membrane facilitate the mass production of a low-coast compact dehumidification device

  3. Roofing Source File.

    ERIC Educational Resources Information Center

    American School & University, 1998

    1998-01-01

    Provides guidelines for school administrators to aid in the selection of school-roofing systems, and information required to make specification and purchasing decisions. Low-slope roofing systems are examined, as are multiply systems such as modified bitumen, EPDM, thermoplastic, metal, and foam. (GR)

  4. Roofing Source File.

    ERIC Educational Resources Information Center

    American School & University, 1998

    1998-01-01

    Provides guidelines for school administrators to aid in the selection of school-roofing systems, and information required to make specification and purchasing decisions. Low-slope roofing systems are examined, as are multiply systems such as modified bitumen, EPDM, thermoplastic, metal, and foam. (GR)

  5. Million Solar Roofs

    SciTech Connect

    2003-11-01

    Since its announcement in June 1997, the Million Solar Roofs Initiative has generated a major buzz in communities, states, and throughout the nation. With more than 300,000 installations, the buzz is getting louder. This brochure describes Million Solar Roofs activities and partnerships.

  6. In-situ aging of roof systems containing polyisocyanurate roof insulation foamed with alternative blowing agents

    SciTech Connect

    Desjarlais, A.O.; Christian, J.E.; Graves, R.S.

    1993-10-01

    Experimental polyisocyanurate (PIR) foam roof insulations with permeable facers were installed in roofing systems and continuously monitored for thermal performance for four years. The foams were produced using a specific formulation that represented current technology in 1989 and were blown with CFC-11, HCFC-123, and HCFC-141b. These foams were installed in roof systems comprised of loosely-laid insulation boards covered by either a loosely-laid single ply white or black membrane. The in-situ testing was carried out on an outdoor test facility, the Roof Thermal Research Apparatus (RTRA). Additional specimens of these foams were aged in the laboratory and periodically evaluated using laboratory measurement equipment. This paper summarizes the in-situ data compiled to date, compares these data with the laboratory results, and examines whether the proposed laboratory procedure for accelerating the aging of foams by the slicing and scaling method accurately predicts the aging characteristics of these materials installed in roof systems. These experiments are part of a joint industry/government project established to evaluate the technical viability of alternative HCFC blowing agents for rigid closed-cell polyisocyanurate foam roof insulations. Members of the project are the US Department of Energy (DOE)/Oak Ridge National Laboratory (ORNL), the US Environmental Protection Agency (EPA), the Society of the Plastics Industry-Polyurethane Division (SPI), the Polyisocyanurate Insulation Manufacturers Association (PIMA), and the National Roofing Contractors Association (NRCA).

  7. Urban heat mitigation by roof surface materials during the East Asian summer monsoon

    NASA Astrophysics Data System (ADS)

    Lee, Seungjoon; Ryu, Youngryel; Jiang, Chongya

    2015-12-01

    Roof surface materials, such as green and white roofs, have attracted attention in their role in urban heat mitigation, and various studies have assessed the cooling performance of roof surface materials during hot and sunny summer seasons. However, summers in the East Asian monsoon climate region are characterized by significant fluctuations in weather events, such as dry periods, heatwaves, and rainy and cloudy days. This study investigated the efficacy of different roof surface materials for heat mitigation, considering the temperatures both at and beneath the surface of the roof covering materials during a summer monsoon in Seoul, Korea. We performed continuous observations of temperature at and beneath the surface of the roof covering materials, and manual observation of albedo and the normalized difference vegetation index for a white roof, two green roofs (grass (Poa pratensis) and sedum (Sedum sarmentosum)), and a reference surface. Overall, the surface temperature of the white roof was significantly lower than that of the grass and sedum roofs (1.1 °C and 1.3 °C), whereas the temperature beneath the surface of the white roof did not differ significantly from that of the grass and sedum roofs during the summer. The degree of cloudiness significantly modified the surface temperature of the white roof compared with that of the grass and sedum roofs, which depended on plant metabolisms. It was difficult for the grass to maintain its cooling ability without adequate watering management. After considering the cooling performance and maintenance efforts for different environmental conditions, we concluded that white roof performed better in urban heat mitigation than grass and sedum during the East Asian summer monsoon. Our findings will be useful in urban heat mitigation in the region.

  8. Urban heat mitigation by roof surface materials during the East Asian summer monsoon

    NASA Astrophysics Data System (ADS)

    Lee, Seungjoon; Ryu, Youngryel; Jiang, Chongya

    2017-04-01

    Roof surface materials, such as green and white roofs, have attracted attention in their role in urban heat mitigation, and various studies have assessed the cooling performance of roof surface materials during hot and sunny summer seasons. However, summers in the East Asian monsoon climate region are characterized by significant fluctuations in weather events, such as dry periods, heatwaves, and rainy and cloudy days. This study investigated the efficacy of different roof surface materials for heat mitigation, considering the temperatures both at and beneath the surface of the roof covering materials during a summer monsoon in Seoul, Korea. We performed continuous observations of temperature at and beneath the surface of the roof covering materials, and manual observation of albedo and the normalized difference vegetation index (NDVI) for a white roof, two green roofs (grass [Poa pratensis] and sedum [Sedum sarmentosum]), and a reference surface. Overall, the surface temperature of the white roof was significantly lower than that of the grass and sedum roofs (1.1 and 1.3°C), whereas the temperature beneath the surface of the white roof did not differ significantly from that of the grass and sedum roofs during the summer. The degree of cloudiness significantly modified the surface temperature of the white roof compared with that of the grass and sedum roofs, which depended on plant metabolisms. It was difficult for the grass to maintain its cooling ability without adequate watering management. After considering the cooling performance and maintenance efforts for different environmental conditions, we concluded that white roof performed better in urban heat mitigation than grass and sedum during the East Asian summer monsoon. Our findings will be useful in urban heat mitigation in the region.

  9. Roof sprinkling system sweats down A/C costs

    SciTech Connect

    Not Available

    1984-05-01

    This article describes a roof spray system which enhances the energy efficiency of a building's HVAC system at a nominal cost in relationship to the benefits it yields. Roof spray cooling is based on the fact that water, when it evaporates, absorbs large amounts of heat. The evaporation of one gallon of water will dissipate about 8500 BTU's of heat; and three fallons of water evaporated over one hour's time offers the same cooling capacity as a two-ton airconditioner operated over the same period. By intermittently spraying its surface with water, a direct evaporative cooling system allows a roof to sweat away the sun's radiant heat, cooling an un-airconditioned building from 10 to 12 degrees mrt and reducing summer electric costs by 25%.

  10. Rooster sperm plasma membrane protein and phospholipid organization and reorganization attributed to cooling and cryopreservation

    USDA-ARS?s Scientific Manuscript database

    Cholesterol to phospholipid ratio is used as a representation for membrane fluidity, and predictor of cryopreservation success but results are not consistent across species and ignore the impact of membrane proteins. Therefore, this research explored the modulation of membrane fluidity and protein ...

  11. Conduction cooled tube supports

    DOEpatents

    Worley, Arthur C.; Becht, IV, Charles

    1984-01-01

    In boilers, process tubes are suspended by means of support studs that are in thermal contact with and attached to the metal roof casing of the boiler and the upper bend portions of the process tubes. The support studs are sufficiently short that when the boiler is in use, the support studs are cooled by conduction of heat to the process tubes and the roof casing thereby maintaining the temperature of the stud so that it does not exceed 1400.degree. F.

  12. Improved roof stabilization technologies

    SciTech Connect

    Ebadian, M.A.

    1998-01-01

    Decontamination and decommissioning (D and D) activities require that personnel have access to all areas of structures, some of which are more than 40 years old. In many cases, these structures have remained in a standby condition for up to 10 years; few preventative maintenance activities have been performed on them because of lack of funding or a defined future plan of action. This situation has led to deteriorated building conditions, resulting in potential personnel safety hazards. In addition, leaky roofs allow water to enter the buildings, which can cause the spread of contamination and increase building deterioration, worsening the already unsafe working conditions. To ensure worker safety and facilitate building dismantlement, the assessment of roof stabilization techniques applicable to US Department of Energy (DOE) structures has become an important issue. During Fiscal year 1997 (FY97), a comprehensive reliability-based model for the structural stabilization analysis of roof system in complex structures was developed. The model consists of three major components: a material testing method, a deterministic structural computer model, and a reliability-based optimization, and probabilistic analyses of roof structures can be implemented. Given site-specific needs, this model recommends the most appropriate roof stabilization system. This model will give not only an accurate evaluation of the existing roof system in complex structures, but it will also be a reliable method to aid the decision-making process. This final report includes in its appendix a Users` Manual for the Program of Deterministic and Reliability Analysis of Roof Structures.

  13. Spacesuit Water Membrane Evaporator; An Enhanced Evaporative Cooling System for the Advanced Extravehicular Mobility Unit Portable Life Support System

    NASA Technical Reports Server (NTRS)

    Bue, Grant C.; Makinen, Janice V.; Miller, Sean; Campbell, Colin; Lynch, Bill; Vogel, Matt; Craft, Jesse; Wilkes, Robert; Kuehnel, Eric

    2014-01-01

    Development of the Advanced Extravehicular Mobility Unit (AEMU) portable life support subsystem (PLSS) is currently under way at NASA Johnson Space Center. The AEMU PLSS features a new evaporative cooling system, the Generation 4 Spacesuit Water Membrane Evaporator (Gen4 SWME). The SWME offers several advantages when compared with prior crewmember cooling technologies, including the ability to reject heat at increased atmospheric pressures, reduced loop infrastructure, and higher tolerance to fouling. Like its predecessors, Gen4 SWME provides nominal crew member and electronics cooling by flowing water through porous hollow fibers. Water vapor escapes through the hollow fiber pores, thereby cooling the liquid water that remains inside of the fibers. This cooled water is then recirculated to remove heat from the crew member and PLSS electronics. Test results from the backup cooling system which is based on a similar design and the subject of a companion paper, suggested that further volume reductions could be achieved through fiber density optimization. Testing was performed with four fiber bundle configurations ranging from 35,850 fibers to 41,180 fibers. The optimal configuration reduced the Gen4 SWME envelope volume by 15% from that of Gen3 while dramatically increasing the performance margin of the system. A rectangular block design was chosen over the Gen3 cylindrical design, for packaging configurations within the AEMU PLSS envelope. Several important innovations were made in the redesign of the backpressure valve which is used to control evaporation. A twin-port pivot concept was selected from among three low profile valve designs for superior robustness, control and packaging. The backpressure valve motor, the thermal control valve, delta pressure sensors and temperature sensors were incorporated into the manifold endcaps, also for packaging considerations. Flight-like materials including a titanium housing were used for all components. Performance testing

  14. Green Roofs for Stormwater Management

    EPA Science Inventory

    This project evaluated green roofs as a stormwater management tool. Results indicate that the green roofs are capable of removing 40% of the annual rainfall volume from a roof through retention and evapotranspiration. Rainfall not retained by green roofs is detained, effectively...

  15. Green Roofs for Stormwater Management

    EPA Science Inventory

    This project evaluated green roofs as a stormwater management tool. Results indicate that the green roofs are capable of removing 40% of the annual rainfall volume from a roof through retention and evapotranspiration. Rainfall not retained by green roofs is detained, effectively...

  16. Roof bolting equipment & technology

    SciTech Connect

    Fiscor, S.

    2009-04-15

    Technology provides an evaluator path to improvement for roof bolting machines. Bucyrus offers three different roof bolts models for various mining conditions. The LRB-15 AR is a single-arm boiler recommended for ranges of 32 inches and above; the dual-arm RB2-52A for ranges of 42 inches and above; and the dual-arm RB2-88A for ranges of 54 inches and above. Design features are discussed in the article. Developments in roof bolting technology by Joy Mining Machinery are reported. 4 photos.

  17. Comparative life cycle assessment of standard and green roofs.

    PubMed

    Saiz, Susana; Kennedy, Christopher; Bass, Brad; Pressnail, Kim

    2006-07-01

    Life cycle assessment (LCA) is used to evaluate the benefits, primarily from reduced energy consumption, resulting from the addition of a green roof to an eight story residential building in Madrid. Building energy use is simulated and a bottom-up LCA is conducted assuming a 50 year building life. The key property of a green roof is its low solar absorptance, which causes lower surface temperature, thereby reducing the heat flux through the roof. Savings in annual energy use are just over 1%, but summer cooling load is reduced by over 6% and reductions in peak hour cooling load in the upper floors reach 25%. By replacing the common flat roof with a green roof, environmental impacts are reduced by between 1.0 and 5.3%. Similar reductions might be achieved by using a white roof with additional insulation for winter, but more substantial reductions are achieved if common use of green roofs leads to reductions in the urban heat island.

  18. Modelling reduction of urban heat load in Vienna by modifying surface properties of roofs

    NASA Astrophysics Data System (ADS)

    Žuvela-Aloise, Maja; Andre, Konrad; Schwaiger, Hannes; Bird, David Neil; Gallaun, Heinz

    2017-01-01

    The study examines the potential of urban roofs to reduce the urban heat island (UHI) effect by changing their reflectivity and implementing vegetation (green roofs) using the example of the City of Vienna. The urban modelling simulations are performed based on high-resolution orography and land use data, climatological observations, surface albedo values from satellite imagery and registry of the green roof potential in Vienna. The modelling results show that a moderate increase in reflectivity of roofs (up to 0.45) reduces the mean summer temperatures in the densely built-up environment by approximately 0.25 °C. Applying high reflectivity materials (roof albedo up to 0.7) leads to average cooling in densely built-up area of approximately 0.5 °C. The green roofs yield a heat load reduction in similar order of magnitude as the high reflectivity materials. However, only 45 % of roof area in Vienna is suitable for greening and the green roof potential mostly applies to industrial areas in city outskirts and is therefore not sufficient for substantial reduction of the UHI effect, particularly in the city centre which has the highest heat load. The strongest cooling effect can be achieved by combining the green roofs with high reflectivity materials. In this case, using 50 or 100 % of the green roof potential and applying high reflectivity materials on the remaining surfaces have a similar cooling effect.

  19. Solar power roof shingle

    NASA Technical Reports Server (NTRS)

    Forestieri, A. F.; Ratajczak, A. F.; Sidorak, L. G.

    1975-01-01

    Silicon solar cell module provides both all-weather protection and electrical power. Module consists of array of circular silicon solar cells bonded to fiberglass substrate roof shingle with fluorinated ethylene propylene encapsulant.

  20. Field Testing Unvented Roofs with Asphalt Shingles in Cold and Hot-Humid Climates

    SciTech Connect

    Ueno, Kohta; Lstiburek, Joseph W.

    2015-09-01

    Test houses with unvented roof assemblies were built to measure long-term moisture performance, in the Chicago area (5A) and the Houston area (2A). The Chicago-area test bed had seven experimental rafter bays, including a control vented compact roof, and six unvented roof variants with cellulose or fiberglass insulation. The interior was run at 50% RH. The Houston-area roof was an unvented attic insulated with spray-applied fiberglass. Most ridges and hips were built with a diffusion vent detail, capped with vapor permeable roof membrane. In contrast, the diffusion vent roofs had drier conditions at the roof peak in wintertime, but during the summer, RHs and MCs were higher than the unvented roof (albeit in the safe range).

  1. Energy Star{reg{underscore}sign} label for roof products

    SciTech Connect

    Schmeltz, R.S.; Bretz, S.E.

    1998-07-01

    Home and buildings owners can save up to 40% of cooling energy costs by installing reflective roofs, especially in hot and sunny climates. The increase in exterior albedo and subsequent decrease in heat flow across the building envelope reduces the energy requirements to maintain air-conditioned space. Indirectly, the increase in overall albedo of a community as these roofs are installed in a large fraction of the buildings results in lower ambient air temperature and less need for air conditioning. Another indirect effect is a decrease in smog formation due to lower ambient air temperatures and less air pollution from power plants because of minimized electrical demand and use. The US Environmental Protection Agency and the US Department of Energy are currently developing the Energy Star Roof Products Program to create a vibrant market for energy-efficient, cost-effective roof materials through the widespread availability of products, clear recognition of the benefits by consumers, and active promotion of products by manufacturers. Several activities, including pilot procurements of room materials, and the development of outreach and training materials, will be performed to assist the transformation of the roofing market toward more energy-efficient products. Using the experiences gained in establishing the Energy Star Roof Products Program as an example, this paper will discuss the barriers to the development of energy-efficient roofing practices, program implementation, and program successes. This paper will further describe the specifics of the Energy Star Roof Products Program, its goals, benefits, activities, and timeframe.

  2. The effects of commercial cool water washing of shell eggs on Haugh unit, vitelline membrane strength, aerobic microorganisms, and fungi.

    PubMed

    Caudill, A B; Curtis, P A; Anderson, K E; Kerth, L K; Oyarazabal, O; Jones, D R; Musgrove, M T

    2010-01-01

    Current egg washing practices use wash water temperatures averaging 49 degrees C and have been found to increase internal egg temperature by 6.7 to 7.8 degrees C. These high temperatures create a more optimal environment for bacterial growth, including Salmonella Enteritidis if it is present. Salmonella Enteritidis is the most common human pathogen associated with shell eggs and egg products. Its growth is inhibited at temperatures of 7.2 degrees C and below. The objective of this study was to determine if commercially washing eggs in cool water would aid in quickly reducing internal egg temperature, preserving interior egg quality, and slowing microbial growth. During 3 consecutive days, eggs were washed using 4 dual-tank wash water temperature schemes (HH = 49 degrees C, 49 degrees C; HC = 49 degrees C, 24 degrees C; CC = 24 degrees C, 24 degrees C; CH = 24 degrees C, 49 degrees C) at 2 commercial processing facilities. A 10-wk storage study followed, in which vitelline membrane strength, Haugh unit, and aerobic microorganisms and fungi (yeasts and molds) were monitored weekly. As storage time progressed, average Haugh unit values declined 14.8%, the average force required to rupture the vitelline membrane decreased 20.6%, average numbers of bacteria present on shell surfaces decreased 11.3%, and bacteria present in egg contents increased 39.5% during storage. Wash water temperature did not significantly affect Haugh unit values, vitelline membrane strength, or the numbers of aerobic microorganisms and fungi within the shell matrices of processed eggs. Results of this study indicate that incorporating cool water into commercial shell egg processing, while maintaining a pH of 10 to 12, lowers postprocessing egg temperatures and allows for more rapid cooling, without causing a decline in egg quality or increasing the presence of aerobic microorganisms and fungi for approximately 5 wk postprocessing.

  3. Control of differential strain during heating and cooling of mixed conducting metal oxide membranes

    DOEpatents

    Carolan, Michael Francis

    2007-12-25

    Method of operating an oxygen-permeable mixed conducting membrane having an oxidant feed side and a permeate side, which method comprises controlling the differential strain between the oxidant feed side and the permeate side by varying either or both of the oxygen partial pressure and the total gas pressure on either or both of the oxidant feed side and the permeate side of the membrane while changing the temperature of the membrane from a first temperature to a second temperature.

  4. Field Testing of an Unvented Roof with Fibrous Insulation, Tiles, and Vapor Diffusion Venting

    SciTech Connect

    Ueno, K.; Lstiburek, J. W.

    2016-02-01

    This research is a test implementation of an unvented tile roof assembly in a hot-humid climate (Orlando, FL; Zone 2A), insulated with air permeable insulation (netted and blown fiberglass). Given the localized moisture accumulation and failures seen in previous unvented roof field work, it was theorized that a 'diffusion vent' (water vapor open, but air barrier 'closed') at the highest points in the roof assembly might allow for the wintertime release of moisture, to safe levels. The 'diffusion vent' is an open slot at the ridge and hips, covered with a water-resistant but vapor open (500+ perm) air barrier membrane. As a control comparison, one portion of the roof was constructed as a typical unvented roof (self-adhered membrane at ridge). The data collected to date indicate that the diffusion vent roof shows greater moisture safety than the conventional, unvented roof design.

  5. Analysis of asphalt-based roof systems using thermal analysis

    SciTech Connect

    Paroli, R.M.; Delgado, A.H.

    1996-12-31

    Asphalt has been used in the construction of roads and houses for thousands of years. The properties of asphalt has rendered it quite useful in roofing and waterproofing applications. The most popular use of asphalt in industrial roofing is in the form of a built-up roof or modified-bituminous sheet. This type of roof consists of asphalt, reinforcement and aggregate which is used to protect the asphalt from ultraviolet rays. All materials have their weaknesses and asphalt is no exception. A good asphalt (e.g., low asphaltene content) must be used to ensure the quality and low-temperature performance of roofing asphalts. Polymer additives can be added. The objective of this work was to demonstrate the utility of termogravimetry and dynamic mechanical analysis in establishing the durability of modified bituminous membranes.

  6. Harvesting and cryo-cooling crystals of membrane proteins grown in lipidic mesophases for structure determination by macromolecular crystallography.

    PubMed

    Li, Dianfan; Boland, Coilín; Aragao, David; Walsh, Kilian; Caffrey, Martin

    2012-09-02

    An important route to understanding how proteins function at a mechanistic level is to have the structure of the target protein available, ideally at atomic resolution. Presently, there is only one way to capture such information as applied to integral membrane proteins (Figure 1), and the complexes they form, and that method is macromolecular X-ray crystallography (MX). To do MX diffraction quality crystals are needed which, in the case of membrane proteins, do not form readily. A method for crystallizing membrane proteins that involves the use of lipidic mesophases, specifically the cubic and sponge phases(1-5), has gained considerable attention of late due to the successes it has had in the G protein-coupled receptor field(6-21) (www.mpdb.tcd.ie). However, the method, henceforth referred to as the in meso or lipidic cubic phase method, comes with its own technical challenges. These arise, in part, due to the generally viscous and sticky nature of the lipidic mesophase in which the crystals, which are often micro-crystals, grow. Manipulating crystals becomes difficult as a result and particularly so during harvesting(22,23). Problems arise too at the step that precedes harvesting which requires that the glass sandwich plates in which the crystals grow (Figure 2)(24,25) are opened to expose the mesophase bolus, and the crystals therein, for harvesting, cryo-cooling and eventual X-ray diffraction data collection. The cubic and sponge mesophase variants (Figure 3) from which crystals must be harvested have profoundly different rheologies(4,26). The cubic phase is viscous and sticky akin to a thick toothpaste. By contrast, the sponge phase is more fluid with a distinct tendency to flow. Accordingly, different approaches for opening crystallization wells containing crystals growing in the cubic and the sponge phase are called for as indeed different methods are required for harvesting crystals from the two mesophase types. Protocols for doing just that have been

  7. The Trade-off between Solar Reflectance and Above-Sheathing Ventilation for Metal Roofs on Residential and Commercial Buildings

    SciTech Connect

    Desjarlais, Andre Omer; Kriner, Scott; Miller, William A

    2013-01-01

    An alternative to white and cool-color roofs that meets prescriptive requirements for steep-slope (residential and non-residential) and low-slope (non-residential) roofing has been documented. Roofs fitted with an inclined air space above the sheathing (herein termed above-sheathing ventilation, or ASV), performed as well as if not better than high-reflectance, high-emittance roofs fastened directly to the deck. Field measurements demonstrated the benefit of roofs designed with ASV. A computer tool was benchmarked against the field data. Testing and benchmarks were conducted at roofs inclined at 18.34 ; the roof span from soffit to ridge was 18.7 ft (5.7 m). The tool was then exercised to compute the solar reflectance needed by a roof equipped with ASV to exhibit the same annual cooling load as that for a direct-to-deck cool-color roof. A painted metal roof with an air space height of 0.75 in. (0.019 m) and spanning 18.7 ft (5.7 m) up the roof incline of 18.34 needed only a 0.10 solar reflectance to exhibit the same annual cooling load as a direct-to-deck cool-color metal roof (solar reflectance of 0.25). This held for all eight ASHRAE climate zones complying with ASHRAE 90.1 (2007a). A dark heat-absorbing roof fitted with 1.5 in. (0.038 m) air space spanning 18.7 ft (5.7 m) and inclined at 18.34 was shown to have a seasonal cooling load equivalent to that of a conventional direct-to-deck cool-color metal roof. Computations for retrofit application based on ASHRAE 90.1 (1980) showed that ASV air spaces of either 0.75 or 1.5 in. (0.019 and 0.038 m) would permit black roofs to have annual cooling loads equivalent to the direct-to-deck cool roof. Results are encouraging, and a parametric study of roof slope and ASV aspect ratio is needed for developing guidelines applicable to all steep- and low-slope roof applications.

  8. Structural assessment of roof decking using visual inspection methods

    SciTech Connect

    Giller, R.A.; McCoy, R.M.; Wagenblast, G.R.

    1993-10-01

    The Hanford Site has approximately 1,100 buildings, some of which date back to the early 1940s. The roof on these buildings provides a weather resisting cover as well as the load resisting structure. Past experience has been that these roof structures may have structural modifications, the weather resisting membrane may have been replaced several times, and the members may experience some type of material degradation. This material degradation has progressed to cause the collapse of some roof deck members. The intent of the Hanford Site Central Engineering roof assessment effort is to provide an expedient structural assessment of the large number of buildings at the Hanford Site. This assessment is made by qualified structural inspectors following the {open_quotes}Preliminary Assessment{close_quote} procedures given in the American Society of Civil Engineers (ASCE) Standard ASCE 11-90. This roof assessment effort does not provide a total qualification of the roof for the design or in-place loads. This inspection does provide a reasonable estimate of the roof loading capacity to determine if personnel access restrictions are needed. A document search and a visual walkdown inspection provide the initial screening to identify modifications and components having questionable structural integrity. The structural assessment consists of baseline dead and live load stress calculations of all roofing components based on original design material strengths. The results of these assessments are documented in a final report which is retrievable form that future inspections will have comparative information.

  9. Hygrothermal Performance of West Coast Wood Deck Roofing System

    SciTech Connect

    Pallin, Simon B; Kehrer, Manfred; Desjarlais, Andre Omer

    2014-02-01

    Simulations of roofing assemblies are necessary in order to understand and adequately predict actual the hygrothermal performance. At the request of GAF, simulations have been setup to verify the difference in performance between white and black roofing membrane colors in relation to critical moisture accumulation for traditional low slope wood deck roofing systems typically deployed in various western U.S. Climate Zones. The performance of these roof assemblies has been simulated in the hygrothermal calculation tool of WUFI, from which the result was evaluated based on a defined criterion for moisture safety. The criterion was defined as the maximum accepted water content for wood materials and the highest acceptable moisture accumulation rate in relation to the risk of rot. Based on the criterion, the roof assemblies were certified as being either safe, risky or assumed to fail. The roof assemblies were simulated in different western climates, with varying insulation thicknesses, two different types of wooden decking, applied with varying interior moisture load and with either a high or low solar absorptivity at the roof surface (black or white surface color). The results show that the performance of the studied roof assemblies differs with regard to all of the varying parameters, especially the climate and the indoor moisture load.

  10. ROOF, A view looking north from the stair tower roof ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ROOF, A view looking north from the stair tower roof at the external piping - Department of Energy, Mound Facility, Hydrolysis House Building (HH Building), One Mound Road, Miamisburg, Montgomery County, OH

  11. 8. Detail of interior roof showing truss bracing and roof ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Detail of interior roof showing truss bracing and roof plank decking; view to east from approximately the center of the shelter. - Warm River Shelter, Warm River Campground, Ashton, Fremont County, ID

  12. Roof structural system, similar in design to peaked roofs of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Roof structural system, similar in design to peaked roofs of rolling mill, yet note abandonment of phoenix columns for compression members. - Phoenix Iron Company, Girder Shop No. 6, North of French Creek, west of Gay Street, Phoenixville, Chester County, PA

  13. 5. MAIN BAY SHOWING ROOF CONSTRUCTION, ROOF TRUSS, CLERESTORY MONITOR, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. MAIN BAY SHOWING ROOF CONSTRUCTION, ROOF TRUSS, CLERESTORY MONITOR, AND GIRDER FOR ELECTRIC OVERHEAD TRAVEL CRANE (BOTTOM) - Oldman Boiler Works, Boilershop, 32 Illinois Street, Buffalo, Erie County, NY

  14. Rod shop, roof and truss detail showing older pink roof ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Rod shop, roof and truss detail showing older pink roof truss, newer pratt truss, and longitudinal, truss for overhead traveling crane - Chicago, Burlington & Quincy Railroad, Roundhouse & Shops, Broadway & Spring Streets, Aurora, Kane County, IL

  15. Development of a Roof Savings Calculator

    SciTech Connect

    New, Joshua Ryan; Miller, William A; Desjarlais, Andre Omer; Erdem, Ender; Huang, Joe

    2011-01-01

    A web-based Roof Savings Calculator (RSC) has been deployed for the Department of Energy as an industry-consensus tool to help building owners, manufacturers, distributors, contractors and researchers easily run complex roof and attic simulations. This tool employs the latest web technologies and usability design to provide an easy input interface to an annual simulation of hour-by-hour, whole-building performance using the world-class simulation tools DOE-2.1E and AtticSim. Building defaults were assigned and can provide estimated annual energy and cost savings after the user selects nothing more than building location. In addition to cool reflective roofs, the RSC tool can simulate multiple roof types at arbitrary inclinations. There are options for above sheathing ventilation, radiant barriers, and low-emittance surfaces. The tool also accommodates HVAC ducts either in the conditioned space or in the attic with custom air leakage rates. Multiple layers of building materials, ceiling and deck insulation, and other parameters can be compared side-by-side to generate an energy/cost savings estimate between two buildings. The RSC tool was benchmarked against field data for demonstration homes in Ft. Irwin, CA.

  16. Development of a Roof Savings Calculator

    SciTech Connect

    New, Joshua Ryan; Miller, William A; Huang, Joe; Erdem, Ender

    2011-01-01

    A web-based Roof Savings Calculator (RSC) has been deployed for the Department of Energy as an industry-consensus tool to help building owners, manufacturers, distributors, contractors and researchers easily run complex roof and attic simulations. This tool employs the latest web technologies and usability design to provide an easy input interface to an annual simulation of hour-by-hour, whole-building performance using the world-class simulation tools DOE-2.1E and AtticSim. Building defaults were assigned and can provide annual energy and cost savings after the user selects nothing more than building location. In addition to cool reflective roofs, the RSC tool can simulate multiple roof types at arbitrary inclinations. There are options for above sheathing ventilation, radiant barriers and low-emittance surfaces. The tool also accommodates HVAC ducts either in the conditioned space or in the attic with custom air leakage rates. Multiple layers of thermal mass, ceiling insulation and other parameters can be compared side-by-side to generate energy/cost savings between two buildings. The RSC tool was benchmarked against field data for demonstration homes in Ft Irwin, CA.

  17. Condition Assessment Survey (CAS) Program. Deficiency standards and inspections methods manual: Volume 5, 0.05 Roofing

    SciTech Connect

    Not Available

    1993-05-01

    General information is presented for asset determinant factor/CAS repair codes/CAS cost factors; guide sheet tool & material listing; testing methods; inspection frequency; standard system design life tables; and system work breakdown structure. Deficiency standards and inspection methods are presented for built-up membrane; single- ply membrane; metal roofing systems; coated foam membrane; shingles; tiles; parapets; roof drainage system; roof specialties; and skylights.

  18. The effect of roofing material on the quality of harvested rainwater.

    PubMed

    Mendez, Carolina B; Klenzendorf, J Brandon; Afshar, Brigit R; Simmons, Mark T; Barrett, Michael E; Kinney, Kerry A; Kirisits, Mary Jo

    2011-02-01

    Due to decreases in the availability and quality of traditional water resources, harvested rainwater is increasingly used for potable and non-potable purposes. In this study, we examined the effect of conventional roofing materials (i.e., asphalt fiberglass shingle, Galvalume(®) metal, and concrete tile) and alternative roofing materials (i.e., cool and green) on the quality of harvested rainwater. Results from pilot-scale and full-scale roofs demonstrated that rainwater harvested from any of these roofing materials would require treatment if the consumer wanted to meet United States Environmental Protection Agency primary and secondary drinking water standards or non-potable water reuse guidelines; at a minimum, first-flush diversion, filtration, and disinfection are recommended. Metal roofs are commonly recommended for rainwater harvesting applications, and this study showed that rainwater harvested from metal roofs tends to have lower concentrations of fecal indicator bacteria as compared to other roofing materials. However, concrete tile and cool roofs produced harvested rainwater quality similar to that from the metal roofs, indicating that these roofing materials also are suitable for rainwater harvesting applications. Although the shingle and green roofs produced water quality comparable in many respects to that from the other roofing materials, their dissolved organic carbon concentrations were very high (approximately one order of magnitude higher than what is typical for a finished drinking water in the United States), which might lead to high concentrations of disinfection byproducts after chlorination. Furthermore the concentrations of some metals (e.g., arsenic) in rainwater harvested from the green roof suggest that the quality of commercial growing media should be carefully examined if the harvested rainwater is being considered for domestic use. Hence, roofing material is an important consideration when designing a rainwater catchment.

  19. Green Roofs for Stormwater Runoff Control - Abstract

    EPA Science Inventory

    This project evaluated green roofs as a stormwater management tool. Specifically, runoff quantity and quality from green and flat asphalt roofs were compared. Evapotranspiration from planted green roofs and evaporation from unplanted media roofs were also compared. The influence...

  20. Green Roofs for Stormwater Runoff Control - Abstract

    EPA Science Inventory

    This project evaluated green roofs as a stormwater management tool. Specifically, runoff quantity and quality from green and flat asphalt roofs were compared. Evapotranspiration from planted green roofs and evaporation from unplanted media roofs were also compared. The influence...

  1. 24. Roof detail from liftbed truck, showing pan roof above ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. Roof detail from lift-bed truck, showing pan roof above breezeway, with sawn redwood trim, tube-type drains; note missing rain gutter at roof edge, deteriorated condition of slates; view to south, 90mm lens. - Southern Pacific Depot, 559 El Camino Real, San Carlos, San Mateo County, CA

  2. Roofing: Workbook and Tests. Built-up Roofing.

    ERIC Educational Resources Information Center

    Klingensmith, Robert, Ed.

    Designed for use in roofing apprenticeship classes, this workbook contains eight units on skills used in built-up roofing, a listing of instructional materials, a glossary, and the text of Labor Code Article 30, Construction Safety Orders, "Roofing Operations and Equipment." Each instructional unit includes a listing of performance statements and…

  3. How To Prevent Roof Abuse.

    ERIC Educational Resources Information Center

    Hutchinson, Thomas W.

    2000-01-01

    Discusses ways to prevent school roofing failure through good maintenance practice and the proper handling of emergency situations. What types of problems show up when roofs are not maintained are highlighted. (GR)

  4. Photovoltaic roofing tile systems

    NASA Astrophysics Data System (ADS)

    Melchior, B.

    The integration of photovoltaic (PV) systems in architecture is discussed. A PV-solar roofing tile system with polymer concrete base; PV-roofing tile with elastomer frame profiles and aluminum profile frames; contact technique; and solar cell modules measuring technique are described. Field tests at several places were conducted on the solar generator, electric current behavior, battery station, electric installation, power conditioner, solar measuring system with magnetic bubble memory technique, data transmission via telephone modems, and data processing system. The very favorable response to the PV-compact system proves the commercial possibilities of photovoltaic integration in architecture.

  5. ENERGY STAR Certified Roof Products

    EPA Pesticide Factsheets

    Certified models meet all ENERGY STAR requirements as listed in the Version 2.3 ENERGY STAR Program Requirements for Roof Products that are effective as of July 1, 2012 or the Version 3.0 ENERGY STAR Program Requirements for Roof Products that are effective as of July 1, 2017 . A detailed listing of key efficiency criteria are available at http://www.energystar.gov/index.cfm?c=roof_prods.pr_crit_roof_products

  6. High-Tech Roof Management.

    ERIC Educational Resources Information Center

    Benzie, Tim

    1997-01-01

    Describes the use of a computerized roof management system (CRMS) for school districts to foster multiple roof maintenance efficiency and cost effectiveness. Highlights CRMS software manufacturer choices, as well as the types of nondestructive testing equipment tools that can be used to evaluate roof conditions. (GR)

  7. High-Tech Roof Management.

    ERIC Educational Resources Information Center

    Benzie, Tim

    1997-01-01

    Describes the use of a computerized roof management system (CRMS) for school districts to foster multiple roof maintenance efficiency and cost effectiveness. Highlights CRMS software manufacturer choices, as well as the types of nondestructive testing equipment tools that can be used to evaluate roof conditions. (GR)

  8. Cognition Is Cool: Can Hemispheric Activation Be Assessed by Tympanic Membrane Thermometry?

    ERIC Educational Resources Information Center

    Cherbuin, Nicolas; Brinkman, Cobie

    2004-01-01

    Hemispheric activation during cognitive tasks using functional magnetic resonance imaging (fMRI) can be difficult to interpret, uncomfortable, and is not widely available. This study investigated whether tympanic membrane thermometry could be used as a broad measure of hemispheric activation. Infrared probes measured ear temperature continuously…

  9. Cognition Is Cool: Can Hemispheric Activation Be Assessed by Tympanic Membrane Thermometry?

    ERIC Educational Resources Information Center

    Cherbuin, Nicolas; Brinkman, Cobie

    2004-01-01

    Hemispheric activation during cognitive tasks using functional magnetic resonance imaging (fMRI) can be difficult to interpret, uncomfortable, and is not widely available. This study investigated whether tympanic membrane thermometry could be used as a broad measure of hemispheric activation. Infrared probes measured ear temperature continuously…

  10. Reduced Volume Prototype Spacesuit Water Membrane Evaporator; A Next-Generation Evaporative Cooling System for the Advanced Extravehicular Mobility Unit Portable Life Support System

    NASA Technical Reports Server (NTRS)

    Makinen, Janice V.; Anchondo, Ian; Bue, Grant C.; Campbell, Colin; Colunga, Aaron

    2013-01-01

    Development of the Advanced Extravehicular Mobility Unit (AEMU) portable life support subsystem (PLSS) is currently under way at NASA Johnson Space Center. The AEMU PLSS features a new evaporative cooling system, the reduced volume prototype (RVP) spacesuit water membrane evaporator (SWME). The RVP SWME is the third generation of hollow fiber SWME hardware. Like its predecessors, RVP SWME provides nominal crew member and electronics cooling by flowing water through porous hollow fibers. Water vapor escapes through the hollow fiber pores, thereby cooling the liquid water that remains inside of the fibers. This cooled water is then recirculated to remove heat from the crew member and PLSS electronics. Major design improvements, including a 36% reduction in volume, reduced weight, and a more flight-like backpressure valve, facilitate the packaging of RVP SWME in the AEMU PLSS envelope. The development of these evaporative cooling systems will contribute to a more robust and comprehensive AEMU PLSS.

  11. Load test of the 283W Clearwell Roof Deck and Support Structure

    SciTech Connect

    McCoy, R.M.

    1994-09-12

    The 283W Clearwell roof area was load tested according to the approved load-test procedure, WHC-SD-GN-TP-30015, Revision 0, as modified below. The 283W Clearwell is located in the 200 West Area of the Hanford Site and has the following characteristics: Roof deck - concrete slab supported by columns and walls; Roof membrane - tar and gravel; Roof slope - flat (< 10 deg); and Roof elevation - approximately 6 in. above ground level. The 283W Clearwell was visited in April 1993 for a visual inspection, but could not be inspected because of the confined space requirements. It was revisited in February 1994 for the purpose of writing this test report. Because the roof could not be inspected, a test was determined to be the best way to qualify the roof for personnel access.

  12. Choosing the Right Roof.

    ERIC Educational Resources Information Center

    Evans, Jeff

    1999-01-01

    Offers tips for selecting roofing products for new or renovated buildings. Examines various site-specific design parameters such as building life, climatic exposure, water drainage, traffic resistance, and insurer's requirements. Notes points to address in preparing clear, detailed, and well-conceived specifications. (GR)

  13. Cool Cities, Cool Planet (LBNL Science at the Theater)

    ScienceCinema

    Rosenfeld, Arthur; Pomerantz, Melvin; Levinson, Ronnen

    2016-07-12

    Science at the Theater: Berkeley Lab scientists discuss how cool roofs can cool your building, your city ... and our planet. Arthur Rosenfeld, Professor of Physics Emeritus at UC Berkeley, founded the Berkeley Lab Center for Building Science in 1974. He served on the California Energy Commission from 2000 to 2010 and is commonly referred to as California's godfather of energy efficiency. Melvin Pomerantz is a member of the Heat Island Group at Berkeley Lab. Trained as a physicist at UC Berkeley, he specializes in research on making cooler pavements and evaluating their effects. Ronnen Levinson is a staff scientist at Berkeley Lab and the acting leader of its Heat Island Group. He has developed cool roofing and paving materials and helped bring cool roof requirements into building energy efficiency standards.

  14. Cool Cities, Cool Planet (LBNL Science at the Theater)

    SciTech Connect

    Rosenfeld, Arthur; Pomerantz, Melvin; Levinson, Ronnen

    2010-10-11

    Science at the Theater: Berkeley Lab scientists discuss how cool roofs can cool your building, your city ... and our planet. Arthur Rosenfeld, Professor of Physics Emeritus at UC Berkeley, founded the Berkeley Lab Center for Building Science in 1974. He served on the California Energy Commission from 2000 to 2010 and is commonly referred to as California's godfather of energy efficiency. Melvin Pomerantz is a member of the Heat Island Group at Berkeley Lab. Trained as a physicist at UC Berkeley, he specializes in research on making cooler pavements and evaluating their effects. Ronnen Levinson is a staff scientist at Berkeley Lab and the acting leader of its Heat Island Group. He has developed cool roofing and paving materials and helped bring cool roof requirements into building energy efficiency standards.

  15. Continuous preparation of polymer coated drug crystals by solid hollow fiber membrane-based cooling crystallization.

    PubMed

    Chen, Dengyue; Singh, Dhananjay; Sirkar, Kamalesh K; Pfeffer, Robert

    2016-02-29

    A facile way to continuously coat drug crystals with a polymer is needed in controlled drug release. Conventional polymer coating methods have disadvantages: high energy consumption, low productivity, batch processing. A novel method for continuous polymer coating of drug crystals based on solid hollow fiber cooling crystallization (SHFCC) is introduced here. The drug acting as the host particle and the polymer for coating are Griseofulvin (GF) and Eudragit RL100, respectively. The polymer's cloud point temperature in its acetone solution was determined by UV spectrophotometry. An acetone solution of the polymer containing the drug in solution as well as undissolved drug crystals in suspension were pumped through the tube side of the SHFCC device; a cold liquid was circulated in the shell side to rapidly cool down the feed solution-suspension in the hollow-fiber lumen. The polymer precipitated from the solution and coated the suspended crystals due to rapid temperature reduction and heterogeneous nucleation; crystals formed from the solution were also coated by the polymer. Characterizations by scanning electron microscopy, thermogravimetric analysis, laser diffraction spectroscopy, X-ray diffraction, Raman spectroscopy, and dissolution tests show that a uniformly coated, free-flowing drug/product can be obtained under appropriate operating conditions without losing the drug's pharmaceutical properties and controlled release characteristics. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Using Remote Sensing to Quantify Roof Albedo in Seven California Cities

    NASA Astrophysics Data System (ADS)

    Ban-Weiss, G. A.; Woods, J.; Millstein, D.; Levinson, R.

    2013-12-01

    Cool roofs reflect sunlight and therefore can reduce cooling energy use in buildings. Further, since roofs cover about 20-25% of cities, wide spread deployment of cool roofs could mitigate the urban heat island effect and partially counter urban temperature increases associated with global climate change. Accurately predicting the potential for increasing urban albedo using reflective roofs and its associated energy use and climate benefits requires detailed knowledge of the current stock of roofs at the city scale. Until now this knowledge has been limited due to a lack of availability of albedo data with sufficient spatial coverage, spatial resolution, and spectral information. In this work we use a novel source of multiband aerial imagery to derive the albedos of individual roofs in seven California cities: Los Angeles, Long Beach, San Diego, Bakersfield, Sacramento, San Francisco, and San Jose. The radiometrically calibrated, remotely sensed imagery has high spatial resolution (1 m) and four narrow (less than 0.1 μm wide) band reflectances: blue, green, red, and near-infrared. To derive the albedo of roofs in each city, we first locate roof pixels within GIS building outlines. Next we use laboratory measurements of the solar spectral reflectances of 190 roofing products to empirically relate solar reflectance (albedo) to reflectances in the four narrow bands; the root-mean-square of the residuals for the albedo prediction is 0.016. Albedos computed from remotely sensed reflectances are calibrated to ground measurements of roof albedo in each city. The error (both precision and accuracy) of albedo values is presented for each city. The area-weighted mean roof albedo (× standard deviation) for each city ranges from 0.17 × 0.08 (Los Angeles) to 0.29 × 0.15 (San Diego). In each city most roofs have low albedo in the range of 0.1 to 0.3. Roofs with albedo greater than 0.4 comprise less than 3% of total roofs and 7% of total roof area in each city. The California

  17. Storm Water Retention on Three Green Roofs with Distinct Climates

    NASA Astrophysics Data System (ADS)

    Breach, P. A.; Sims, A.; O'Carroll, D. M.; Robinson, C. E.; Smart, C. C.; Powers, B. S. C.

    2014-12-01

    As urbanization continues to increase the impact of cities on their surrounding environments, the feasibility of implementing low-impact development such as green roofs is of increasing interest. Green roofs retain and attenuate storm water thereby reducing the load on urban sewer systems. In addition, green roofs can provide insulation and lower roof surface temperature leading to a decrease in building energy load. Green roof technology in North American urban environments remains underused, in part due to a lack of climate appropriate green roof design guidelines. The capacity of a green roof to moderate runoff depends on the storage capacity of the growing medium at the start of a rainfall event. Storage capacity is finite, which makes rapid drainage and evapotranspiration loss critical for maximizing storage capacity between subsequent storms. Here the retention and attenuation of storm events are quantified for experimental green roof sites located in three representative Canadian climates corresponding to; semiarid conditions in Calgary, Alberta, moderate conditions in London, Ontario, and cool and humid conditions in Halifax, Nova Scotia. The storage recovery and storm water retention at each site is modelled using a modified water balance approach. Components of the water balance including evapotranspiration are predicted using climate data collected from 2012 to 2014 at each of the experimental sites. During the measurement period there were over 300 precipitation events ranging from small, frequent events (< 2 mm) to a storm with a 250 year return period. The modeling approach adopted provides a tool for planners to assess the feasibility of implementing green roofs in their respective climates.

  18. Rainwater runoff retention on an aged intensive green roof.

    PubMed

    Speak, A F; Rothwell, J J; Lindley, S J; Smith, C L

    2013-09-01

    Urban areas are characterised by large proportions of impervious surfaces which increases rainwater runoff and the potential for surface water flooding. Increased precipitation is predicted under current climate change projections, which will put further pressure on urban populations and infrastructure. Roof greening can be used within flood mitigation schemes to restore the urban hydrological balance of cities. Intensive green roofs, with their deeper substrates and higher plant biomass, are able to retain greater quantities of runoff, and there is a need for more studies on this less common type of green roof which also investigate the effect of factors such as age and vegetation composition. Runoff quantities from an aged intensive green roof in Manchester, UK, were analysed for 69 rainfall events, and compared to those on an adjacent paved roof. Average retention was 65.7% on the green roof and 33.6% on the bare roof. A comprehensive soil classification revealed the substrate, a mineral soil, to be in good general condition and also high in organic matter content which can increase the water holding capacity of soils. Large variation in the retention data made the use of predictive regression models unfeasible. This variation arose from complex interactions between Antecedant Dry Weather Period (ADWP), season, monthly weather trends, and rainfall duration, quantity and peak intensity. However, significantly lower retention was seen for high rainfall events, and in autumn, which had above average rainfall. The study period only covers one unusually wet year, so a longer study may uncover relationships to factors which can be applied to intensive roofs elsewhere. Annual rainfall retention for Manchester city centre could be increased by 2.3% by a 10% increase in intensive green roof construction. The results of this study will be of particular interest to practitioners implementing greenspace adaptation in temperate and cool maritime climates. Copyright © 2013

  19. Field Testing Unvented Roofs with Asphalt Shingles in Cold and Hot-Humid Climates

    SciTech Connect

    Ueno, Kohta; Lstiburek, Joseph W.

    2015-09-01

    Insulating roofs with dense-pack cellulose (instead of spray foam) has moisture risks, but is a lower cost approach. If moisture risks could be addressed, buildings could benefit from retrofit options, and the ability to bring HVAC systems within the conditioned space. Test houses with unvented roof assemblies were built to measure long-term moisture performance, in the Chicago area (5A) and the Houston area (2A). The Chicago-area test bed had seven experimental rafter bays, including a control vented compact roof, and six unvented roof variants with cellulose or fiberglass insulation. The interior was run at 50% RH. All roofs except the vented cathedral assembly experienced wood moisture contents and RH levels high enough to constitute failure. Disassembly at the end of the experiment showed that the unvented fiberglass roofs had wet sheathing and mold growth. In contrast, the cellulose roofs only had slight issues, such as rusted fasteners and sheathing grain raise. The Houston-area roof was an unvented attic insulated with spray-applied fiberglass. Most ridges and hips were built with a diffusion vent detail, capped with vapor permeable roof membrane. Some ridge sections were built as a conventional unvented roof, as a control. In the control unvented roofs, roof peak RHs reached high levels in the first winter; as exterior conditions warmed, RHs quickly fell. In contrast, the diffusion vent roofs had drier conditions at the roof peak in wintertime, but during the summer, RHs and MCs were higher than the unvented roof (albeit in the safe range).

  20. The impact of roofing material on building energy performance

    NASA Astrophysics Data System (ADS)

    Badiee, Ali

    The last decade has seen an increase in the efficient use of energy sources such as water, electricity, and natural gas as well as a variety of roofing materials, in the heating and cooling of both residential and commercial infrastructure. Oil costs, coal and natural gas prices remain high and unstable. All of these instabilities and increased costs have resulted in higher heating and cooling costs, and engineers are making an effort to keep them under control by using energy efficient building materials. The building envelope (that which separates the indoor and outdoor environments of a building) plays a significant role in the rate of building energy consumption. An appropriate architectural design of a building envelope can considerably lower the energy consumption during hot summers and cold winters, resulting in reduced HVAC loads. Several building components (walls, roofs, fenestration, foundations, thermal insulation, external shading devices, thermal mass, etc.) make up this essential part of a building. However, thermal insulation of a building's rooftop is the most essential part of a building envelope in that it reduces the incoming "heat flux" (defined as the amount of heat transferred per unit area per unit time from or to a surface) (Sadineni et al., 2011). Moreover, more than 60% of heat transfer occurs through the roof regardless of weather, since a roof is often the building surface that receives the largest amount of solar radiation per square annually (Suman, and Srivastava, 2009). Hence, an argument can be made that the emphasis on building energy efficiency has influenced roofing manufacturing more than any other building envelope component. This research project will address roofing energy performance as the source of nearly 60% of the building heat transfer (Suman, and Srivastava, 2009). We will also rank different roofing materials in terms of their energy performance. Other parts of the building envelope such as walls, foundation

  1. 3. Oblique view shows east corner. Pipe loops in roof ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Oblique view shows east corner. Pipe loops in roof are part of a condenser apparatus for the retorts. Ruin in foreground was concrete foundation for a water cooling tank. - Pacific Creosoting Plant, Engine Room Building, 5350 Creosote Place, Northeast, Bremerton, Kitsap County, WA

  2. Load test of the 3701U Building roof deck and support structure

    SciTech Connect

    McCoy, R.M.

    1994-09-14

    The 3701U Building roof area was load tested according to the approved load-test procedure. The 3701U Building is located in the 300 Area of the Hanford Site and has the following characteristics: Roof deck--metal decking supported by steel purlins; Roof membrane--tar and gravel; Roof slope--flat (<10 deg); and Roof elevation--height of about 12.5 ft. The 3701U Building was visited in August 1992 for a visual inspection, but because of insulation an inspection could not be performed. The building was revisited in March 1994 for the purpose of writing this test report. Because the roof could not be inspected, a test was determined to be the best way to qualify the roof for personnel access. The test procedure called for the use of a remotely-controlled robot. The conclusions are that the roof has been qualified for 500-lb total roof load and that the ``No Roof Access`` signs can be changed to ``Roof Access Restricted`` signs.

  3. Load test of the 277W Building high bay roof deck and support structure

    SciTech Connect

    McCoy, R.M.

    1994-12-02

    The 277W Building high bay roof area was load tested according to the approved load-test procedure, WHC-SD-GN-TP-30015, Revision 1. The 277W Building is located in the 200 West Area of the Hanford Site and has the following characteristics: roof deck -- wood decking supported by 4 x 14 timber purlins; roof membrane -- tar and gravel; roof slope -- flat (<10 deg); and roof elevation -- maximum height of about 63 ft. The 227W Building was visited in March 1994 for a visual inspection. During this inspection, cracked areas were visible in the decking, but it was not possible to determine whether these cracks extended completely through the decking, which is 2-in. thick. The building was revisited in March 1994 for the purpose of writing this test report. Because the roof requires personnel access, a test was determined to be the best way to qualify the roof. The conclusions are that the roof has been qualified for 500-lb total roof load and that the ``No Roof Access`` signs can be changed to ``Roof Access Restricted`` signs.

  4. Evaluation on Thermal Behavior of a Green Roof Retrofit System Installed on Experimental Building in Composite Climate of Roorkee, India

    NASA Astrophysics Data System (ADS)

    Kumar, Ashok; Deoliya, Rajesh; Chani, P. S.

    2015-12-01

    Green roofs not only provide cooling by shading, but also by transpiration of water through the stomata. However, the evidence for green roofs providing significant air cooling remains limited. No literature investigates the thermal performance of prefab brick panel roofing technology with green roof. Hence, the aim of this research is to investigate the thermal behavior of an experimental room, built at CSIR-Central Building Research Institute (CBRI) campus, Roorkee, India using such roofing technology during May 2013. The study also explores the feasibility of green roof with grass carpets that require minimum irrigation, to assess the expected indoor thermal comfort improvements by doing real-time experimental studies. The results show that the proposed green roof system is suitable for reducing the energy demand for space cooling during hot summer, without worsening the winter energy performance. The cost of proposed retrofit system is about Rs. 1075 per m2. Therefore, green roofs can be used efficiently in retrofitting existing buildings in India to improve the micro-climate on building roofs and roof insulation, where the additional load carrying capacity of buildings is about 100-130 kg/m2.

  5. Moisture design to improve durability of low-slope roofing systems

    SciTech Connect

    Desjarlais, A.; Byars, N.

    1996-12-31

    The roofing industry has traditionally held that moisture control in low-slope roofing comprises two independent elements: (1) provide a waterproof exterior covering (or membrane) to protect the low-slope roof from external sources of moisture and (2) perform a condensation calculation to determine if a vapor retarder is required to protect a roof system from internal moisture sources. The first criterion is assumed to be satisfied if a membrane system is specified; in reality, all membrane systems eventually fail, and existing moisture control strategies offer no mechanism for analyzing the inevitable failure. The means of assessing the second criterion, the need for a vapor retarder, has evolved in recent years. The criteria have become more liberal with time because it has been observed that roofing systems installed in a geographic area in which the old criteria required a vapor retarder, have performed well without one.

  6. Producing superhydrophobic roof tiles.

    PubMed

    Carrascosa, Luis A M; Facio, Dario S; Mosquera, Maria J

    2016-03-04

    Superhydrophobic materials can find promising applications in the field of building. However, their application has been very limited because the synthesis routes involve tedious processes, preventing large-scale application. A second drawback is related to their short-term life under outdoor conditions. A simple and low-cost synthesis route for producing superhydrophobic surfaces on building materials is developed and their effectiveness and their durability on clay roof tiles are evaluated. Specifically, an organic-inorganic hybrid gel containing silica nanoparticles is produced. The nanoparticles create a densely packed coating on the roof tile surface in which air is trapped. This roughness produces a Cassie-Baxter regime, promoting superhydrophobicity. A surfactant, n-octylamine, was also added to the starting sol to catalyze the sol-gel process and to coarsen the pore structure of the gel network, preventing cracking. The application of ultrasound obviates the need to use volatile organic compounds in the synthesis, thereby making a 'green' product. It was also demonstrated that a co-condensation process effective between the organic and inorganic species is crucial to obtain durable and effective coatings. After an aging test, high hydrophobicity was maintained and water absorption was completely prevented for the roof tile samples under study. However, a transition from a Cassie-Baxter to a Wenzel state regime was observed as a consequence of the increase in the distance between the roughness pitches produced by the aging of the coating.

  7. Producing superhydrophobic roof tiles

    NASA Astrophysics Data System (ADS)

    Carrascosa, Luis A. M.; Facio, Dario S.; Mosquera, Maria J.

    2016-03-01

    Superhydrophobic materials can find promising applications in the field of building. However, their application has been very limited because the synthesis routes involve tedious processes, preventing large-scale application. A second drawback is related to their short-term life under outdoor conditions. A simple and low-cost synthesis route for producing superhydrophobic surfaces on building materials is developed and their effectiveness and their durability on clay roof tiles are evaluated. Specifically, an organic-inorganic hybrid gel containing silica nanoparticles is produced. The nanoparticles create a densely packed coating on the roof tile surface in which air is trapped. This roughness produces a Cassie-Baxter regime, promoting superhydrophobicity. A surfactant, n-octylamine, was also added to the starting sol to catalyze the sol-gel process and to coarsen the pore structure of the gel network, preventing cracking. The application of ultrasound obviates the need to use volatile organic compounds in the synthesis, thereby making a ‘green’ product. It was also demonstrated that a co-condensation process effective between the organic and inorganic species is crucial to obtain durable and effective coatings. After an aging test, high hydrophobicity was maintained and water absorption was completely prevented for the roof tile samples under study. However, a transition from a Cassie-Baxter to a Wenzel state regime was observed as a consequence of the increase in the distance between the roughness pitches produced by the aging of the coating.

  8. Field Testing of an Unvented Roof with Fibrous Insulation, Tiles and Vapor Diffusion Venting

    SciTech Connect

    Ueno, K.; Lstiburek, J. W.

    2016-02-05

    This research is a test implementation of an unvented tile roof assembly in a hot-humid climate (Orlando, FL; Zone 2A), insulated with air permeable insulation (netted and blown fiberglass). Given the localized moisture accumulation and failures seen in previous unvented roof field work, it was theorized that a 'diffusion vent' (water vapor open, but air barrier 'closed') at the highest points in the roof assembly might allow for the wintertime release of moisture, to safe levels. The 'diffusion vent' is an open slot at the ridge and hips, covered with a water-resistant but vapor open (500+ perm) air barrier membrane. As a control comparison, one portion of the roof was constructed as a typical unvented roof (self-adhered membrane at ridge). The data collected to date indicate that the diffusion vent roof shows greater moisture safety than the conventional, unvented roof design. The unvented roof had extended winter periods of 95-100% RH, and wafer (wood surrogate RH sensor) measurements indicating possible condensation; high moisture levels were concentrated at the roof ridge. In contrast, the diffusion vent roofs had drier conditions, with most peak MCs (sheathing) below 20%. In the spring, as outdoor temperatures warmed, all roofs dried well into the safe range (10% MC or less). Some roof-wall interfaces showed moderately high MCs; this might be due to moisture accumulation at the highest point in the lower attic, and/or shading of the roof by the adjacent second story. Monitoring will be continued at least through spring 2016 (another winter and spring).

  9. Building America Case Study: Field Testing an Unvented Roof with Fibrous Insulation and Tiles, Orlando, Florida

    SciTech Connect

    2015-11-01

    This research is a test implementation of an unvented tile roof assembly in a hot-humid climate (Orlando, FL; Zone 2A), insulated with air permeable insulation (netted and blown fiberglass). Given the localized moisture accumulation and failures seen in previous unvented roof field work, it was theorized that a 'diffusion vent' (water vapor open, but air barrier 'closed') at the highest points in the roof assembly might allow for the wintertime release of moisture, to safe levels. The 'diffusion vent' is an open slot at the ridge and hips, covered with a water-resistant but vapor open (500+ perm) air barrier membrane. As a control comparison, one portion of the roof was constructed as a typical unvented roof (self-adhered membrane at ridge). The data collected to date indicate that the diffusion vent roof shows greater moisture safety than the conventional, unvented roof design. The unvented roof had extended winter periods of 95-100% RH, and wafer (wood surrogate RH sensor) measurements indicating possible condensation; high moisture levels were concentrated at the roof ridge. In contrast, the diffusion vent roofs had drier conditions, with most peak MCs (sheathing) below 20%. In the spring, as outdoor temperatures warmed, all roofs dried well into the safe range (10% MC or less). Some roof-wall interfaces showed moderately high MCs; this might be due to moisture accumulation at the highest point in the lower attic, and/or shading of the roof by the adjacent second story. Monitoring will be continued at least through spring 2016 (another winter and spring).

  10. An Evaluation of Vegetated Roofing Technology: Application at Air Force Plant Four, Building 15

    DTIC Science & Technology

    2004-03-01

    insulation. Both insulations were made by Johns Manville . Waterproofing membrane – Paradiene 20 covered in type IV asphalt and Teranap (a modified...up to standards. The estimate is to remove the existing roof system and replace it with a Johns - Manville 4 ply, type six, asphalt and gravel roof

  11. The Benefits of Preventive Roof Maintenance.

    ERIC Educational Resources Information Center

    Kalinger, Peter

    1998-01-01

    Explains how to convince school administration of the importance of roof-maintenance programs as a way of extending roof life and saving money, even in the presence of roof warranties. Discusses techniques for evaluating the cost benefits of roof maintenance and the importance of creating a roof historical file. (GR)

  12. Stormwater Attenuation by Green Roofs

    NASA Astrophysics Data System (ADS)

    Sims, A.; O'Carroll, D. M.; Robinson, C. E.; Smart, C. C.

    2014-12-01

    Innovative municipal stormwater management technologies are urgently required in urban centers. Inadequate stormwater management can lead to excessive flooding, channel erosion, decreased stream baseflows, and degraded water quality. A major source of urban stormwater is unused roof space. Green roofs can be used as a stormwater management tool to reduce roof generated stormwater and generally improve the quality of runoff. With recent legislation in some North American cities, including Toronto, requiring the installation of green roofs on large buildings, research on the effectiveness of green roofs for stormwater management is important. This study aims to assess the hydrologic response of an extensive sedum green roof in London, Ontario, with emphasis on the response to large precipitation events that stress municipal stormwater infrastructure. A green roof rapidly reaches field capacity during large storm events and can show significantly different behavior before and after field capacity. At field capacity a green roof has no capillary storage left for retention of stormwater, but may still be an effective tool to attenuate peak runoff rates by transport through the green roof substrate. The attenuation of green roofs after field capacity is linked to gravity storage, where gravity storage is the water that is temporarily stored and can drain freely over time after field capacity has been established. Stormwater attenuation of a modular experimental green roof is determined from water balance calculations at 1-minute intervals. Data is used to evaluate green roof attenuation and the impact of field capacity on peak flow rates and gravity storage. In addition, a numerical model is used to simulate event based stormwater attenuation. This model is based off of the Richards equation and supporting theory of multiphase flow through porous media.

  13. 30 CFR 75.205 - Installation of roof support using mining machines with integral roof bolters.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... machines with integral roof bolters. 75.205 Section 75.205 Mineral Resources MINE SAFETY AND HEALTH... Roof Support § 75.205 Installation of roof support using mining machines with integral roof bolters. When roof bolts are installed by a continuous mining machine with intregal roof bolting equipment:...

  14. 30 CFR 75.205 - Installation of roof support using mining machines with integral roof bolters.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... machines with integral roof bolters. 75.205 Section 75.205 Mineral Resources MINE SAFETY AND HEALTH... Roof Support § 75.205 Installation of roof support using mining machines with integral roof bolters. When roof bolts are installed by a continuous mining machine with intregal roof bolting equipment:...

  15. 30 CFR 75.205 - Installation of roof support using mining machines with integral roof bolters.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... machines with integral roof bolters. 75.205 Section 75.205 Mineral Resources MINE SAFETY AND HEALTH... Roof Support § 75.205 Installation of roof support using mining machines with integral roof bolters. When roof bolts are installed by a continuous mining machine with intregal roof bolting equipment:...

  16. 30 CFR 75.205 - Installation of roof support using mining machines with integral roof bolters.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... machines with integral roof bolters. 75.205 Section 75.205 Mineral Resources MINE SAFETY AND HEALTH... Roof Support § 75.205 Installation of roof support using mining machines with integral roof bolters. When roof bolts are installed by a continuous mining machine with intregal roof bolting equipment:...

  17. 30 CFR 75.205 - Installation of roof support using mining machines with integral roof bolters.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... machines with integral roof bolters. 75.205 Section 75.205 Mineral Resources MINE SAFETY AND HEALTH... Roof Support § 75.205 Installation of roof support using mining machines with integral roof bolters. When roof bolts are installed by a continuous mining machine with intregal roof bolting equipment:...

  18. A Study of the Energy-Saving Potential of Metal Roofs Incorporating Dynamic Insulation Systems

    SciTech Connect

    Biswas, Kaushik; Miller, William A; Kriner, Scott; Manlove, Gary

    2013-01-01

    This article presents various metal roof configurations that were tested at Oak Ridge National Laboratory in Tennessee, U.S. between 2009 and 2013, and describes their potential for reducing the attic-generated space-conditioning loads. These roofs contained different combinations of phase-change material, rigid insulation, low emittance surface, and above-sheathing ventilation with standing-seam metal panels on top. These roofs were designed to be installed on existing roofs decks, or on top of asphalt shingles for retrofit construction. All the tested roofs showed the potential for substantial energy savings compared to an asphalt shingle roof, which was used as a control for comparison. The roofs were constructed on a series of adjacent attics separated at the gables using thick foam insulation. The attics were built on top of a conditioned room. All attics were vented at the soffit and ridge. The test roofs and attics were instrumented with an array of thermocouples. Heat flux transducers were installed in the roof deck and attic floor (ceiling) to measure the heat flows through the roof and between the attic and conditioned space below. Temperature and heat flux data were collected during the heating, cooling and swing seasons over a three-year period. Data from previous years of testing have been published. Here, data from the latest roof configurations being tested in year three of the project are presented. All test roofs were highly effective in reducing the heat flows through the roof and ceiling, and in reducing the diurnal attic-temperature fluctuations.

  19. Validation of the thermal effect of roof with the Spraying and green plants in an insulated building

    SciTech Connect

    Zhou, Nan; Gao, Weijun; Nishida, Masaru; Ojima, Toshio

    2004-08-08

    In recent years, roof-spraying and rooftop lawns have proven effective on roofs with poor thermal insulation. However, the roofs of most buildings have insulating material to provide thermal insulation during the winter. The effects of insulation has not previously been quantified. In this study, the authors collected measurements of an insulated building to quantify the thermal effects of roof-spraying and rooftop lawns. Roof-spraying did not significantly reduce cooling loads and required significant amounts of water. The conclusion is that roof spraying is not suitable for buildings with well-insulated roofs. Rooftop lawns, however, significantly stabilized the indoor temperature while additionally helping to mitigate the heat island phenomenon.

  20. Validation on the thermal effect of roof with the spraying and green plants in an insulated building

    SciTech Connect

    Zhou, Nan; Gao, Weijun; Nishida, Masaru; Ojima, Toshio

    2004-03-20

    In recent years, roof-spraying and rooftop lawns has proved effective on roofs with poor thermal insulation. However, roofs of most buildings have insulating material to provide thermal insulation during the winter. The effects of such a practice have not previously been quantified. In this study, the authors conducted measurements of an insulated building to quantify the thermal effects of roof-spraying and rooftop lawns. Roof-spraying did not significantly reduce cooling loads, and required significant amounts of water. The conclusion is that roof spraying is not suitable for buildings with well-insulated roofs. Rooftop lawns, however, significantly stabilized the indoor temperature while additionally helping to mitigate the heat island phenomenon.

  1. Effects of a long-day light programme on the motility and membrane integrity of cooled-stored and cyropreserved semen in Shetland pony stallions.

    PubMed

    Deichsel, Katharina; Schrammel, Nadine; Aurich, Jörg; Aurich, Christine

    2016-04-01

    Increasing day length in spring stimulates reproductive functions in horses. In this study, we have analysed the effect of artificial long days on the quality of cooled-stored and cryopreserved semen in Shetland stallions. Stallions of the treatment group (AL, n = 8) were exposed to 16 h light and 8h darkness from 15th December to 20th March while control stallions (CON, n = 7) were kept under natural photoperiod. Semen was collected once weekly and processed for cooled-storage and cryopreservation once per month. Total and progressive motility and percentage of membrane intact spermatozoa were analysed at 24, 48 and 72 h of cooled-storage and after freezing-thawing, respectively. Total and progressive motility and membrane integrity decreased during cooled-storage for 72 h in each month and both groups (p < 0.001). All these parameters were lower in CON versus AL stallions (p < 0.05) and the decrease was more pronounced in group CON (storage time x group p < 0.05). Differences between groups decreased throughout the observation period from January (p < 0.05 between groups) to July (e.g. total motility after 72 h of cooled-storage in January for group AL 80 ± 3 and group CON 49 ± 12%, respective values in July, 83 ± 2 and 72 ± 6%). Neither total and progressive motility nor percentage of membrane-intact and morphologically defect spermatozoa in frozen-thawed semen differed between groups and months. In conclusion, motility of cooled-stored semen was reduced in January and increased in stallions kept under a long day light programme for at least 30 days.

  2. 13. ONE OF TWO LATERAL ROOF TRUSSES AND ROOF SUPPORT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. ONE OF TWO LATERAL ROOF TRUSSES AND ROOF SUPPORT BEAMS OF SARATOGA GAS LIGHT COMPANY GASHOLDER NO. 2 HOUSE LOOKING WEST. THE WIRES AND BEAM AT RIGHT CENTER OF PHOTOGRAPH HAVE BEEN ADDED TO STABILIZE TRUSS SYSTEM - Saratoga Gas Light Company, Gasholder No. 2, Niagara Mohawk Power Corporation Substation Facility, intersection of Excelsior & East Avenues, Saratoga Springs, NY

  3. 12. CENTRAL ROOF TRUSS AND ROOF SUPPORT BEAMS OF SARATOGA ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. CENTRAL ROOF TRUSS AND ROOF SUPPORT BEAMS OF SARATOGA GAS LIGHT COMPANY GASHOLDER NO. 2 HOUSE, LOOKING WEST. THE WIRES AND BEAM AT RIGHT OF PHOTOGRAPH HAVE BEEN ADDED TO STABILIZE TRUSS SYSTEM. - Saratoga Gas Light Company, Gasholder No. 2, Niagara Mohawk Power Corporation Substation Facility, intersection of Excelsior & East Avenues, Saratoga Springs, NY

  4. Entering the Roofing and Waterproofing Industry. Roofing Workbook and Tests.

    ERIC Educational Resources Information Center

    California State Dept. of Education, Sacramento. Bureau of Publications.

    This book is one of a series of 10 units of instruction for roofing apprenticeship classes in California. It covers the following 14 topics and provides tests for them: the nature of the roofing and waterproofing industry; the apprenticeship program; apprenticeship and the public schools; collective bargaining, wages, and benefits; safety in the…

  5. EXTERIOR, ROOF, A view looking southeast from the roof toward ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EXTERIOR, ROOF, A view looking southeast from the roof toward a low wall and the west facade of a penthouse with two stacks located in the southern courtyard - Department of Energy, Mound Facility, B Building, One Mound Road, Miamisburg, Montgomery County, OH

  6. Mapping the Green Infrastructure potential - and it's water-energy impacts on New York City roof Tops

    NASA Astrophysics Data System (ADS)

    Engström, Rebecka; Destouni, Georgia; Howells, Mark

    2017-04-01

    Green Roofs have the potential to provide multiple services in cities. Besides acting as carbon sinks, providing noise reduction and decreasing air pollution - without requiring any additional "land-use" in a city (only roof-use), green roofs have a quantifiable potential to reduce direct and indirect energy and water use. They enhance the insulating capacity of a conventional residential roof and thereby decrease both cooling demands in summer and heating demands in winter. The former is further mitigated by the cooling effect of evapotranspiration from the roofs In New York City green roofs are additionally a valuable component of reducing "combined sewer overflows", as these roofs can retain storm water. This can improve water quality in the city's rivers as well as decrease the total volume of water treated in the city's wastewater treatment plants, thereby indirectly reduce energy demands. The impacts of green roofs on NYC's water-energy nexus has been initially studied (Engström et. al, forthcoming). The present study expands that work to more comprehensively investigate the potential of this type of nature-based solution in a dense city. By employing Geographical Information Systems analysis, the roof top area of New York City is analysed and roof space suitable for green roofs of varying types (ranging from extensive to intensive) are mapped and quantified. The total green roof area is then connected with estimates of potential water-energy benefits (and costs) of each type of green roof. The results indicate where green roofs can be beneficially installed throughout the city, and quantifies the related impacts on both water and energy use. These outputs can provide policy makers with valuable support when facing investment decisions in green infrastructure, in a city where there is great interest for these types of nature-based solutions.

  7. Measuring mine roof bolt strains

    DOEpatents

    Steblay, Bernard J.

    1986-01-01

    A mine roof bolt and a method of measuring the strain in mine roof bolts of this type are disclosed. According to the method, a flat portion on the head of the mine roof bolt is first machined. Next, a hole is drilled radially through the bolt at a predetermined distance from the bolt head. After installation of the mine roof bolt and loading, the strain of the mine roof bolt is measured by generating an ultrasonic pulse at the flat portion. The time of travel of the ultrasonic pulse reflected from the hole is measured. This time of travel is a function of the distance from the flat portion to the hole and increases as the bolt is loaded. Consequently, the time measurement is correlated to the strain in the bolt. Compensation for various factors affecting the travel time are also provided.

  8. Linking evapotranspiration to stormwater reduction and attenuation in green roofs in Calgary, Alberta

    NASA Astrophysics Data System (ADS)

    Breach, P. A.; Robinson, C. E.; Voogt, J. A.; Smart, C. C.; O'Carroll, D. M.

    2013-12-01

    Green roofs have been used for centuries to insulate buildings and beautify urban environments. European countries, especially Germany, have adopted green roofs use in modern buildings, helping raise awareness of their many potential benefits. Green roofs have been shown to: effectively reduce and filter stormwater thereby decreasing the burden on urban sewer systems; provide insulation and lower roof surface temperature leading to a decrease in building energy load and reduced sensible heat flux to the urban atmosphere; and to extend the life of a roof by decreasing the temperature fluctuations which cause roof damage. Given that green buildings can mitigate against the negative impacts of storm water runoff and reduce the heating and cooling demands, use of green roofs in Canada might prove extremely beneficial due to our intense climate. However, the implementation of green roofs in North American urban environments remains underused, in part due to a lack of climate appropriate green roof design guidelines that are supported by scientific understanding of their performance in North American climates. The capacity of a green roof installation to moderate runoff depends on the storage capacity of the rooting medium at the start of the rainfall event which in turn is constrained by roof loading. The influence of medium depth is investigated through comparison to 15 cm and 10cm deep planting modules. Storage capacity has a finite limit, making rapid drainage and evapotranspiration loss essential to restore the retardation of a subsequent storm. Sustaining live plant cover requires avoidance of saturated conditions and retention of minimum soil moisture levels. These limits constrain the design options with distinctive climatic stresses. Here the performance of experimental green roof modules is investigated under particularly high climatic stressing at Calgary Alberta Canada. 10 cm modules show rapid drying to unacceptably low residual moisture content, whereas 15

  9. Establishment and performance of an experimental green roof under extreme climatic conditions.

    PubMed

    Klein, Petra M; Coffman, Reid

    2015-04-15

    Green roofs alter the surface energy balance and can help in mitigating urban heat islands. However, the cooling of green roofs due to evapotranspiration strongly depends on the climatic conditions, and vegetation type and density. In the Southern Central Plains of the United States, extreme weather events, such as high winds, heat waves and drought conditions pose challenges for successful implementation of green roofs, and likely alter their standard performance. The National Weather Center Experimental Green Roof, an interdisciplinary research site established in 2010 in Norman, OK, aimed to investigate the ecological performance and surface energy balance of green roof systems. Starting in May 2010, 26 months of vegetation studies were conducted and the radiation balance, air temperature, relative humidity, and buoyancy fluxes were monitored at two meteorological stations during April-October 2011. The establishment of a vegetative community trended towards prairie plant dominance. High mortality of succulents and low germination of grasses and herbaceous plants contributed to low vegetative coverage. In this condition succulent diversity declined. Bouteloua gracilis and Delosperma cooperi showed typological dominance in harsh climatic conditions, while Sedum species experienced high mortality. The plant community diversified through volunteers such as Euphorbia maculate and Portulaca maculate. Net radiation measured at a green-roof meteorological station was higher than at a control station over the original, light-colored roofing material. These findings indicate that the albedo of the green roof was lower than the albedo of the original roofing material. The low vegetative coverage during the heat and drought conditions in 2011, which resulted in the dark substrate used in the green roof containers being exposed, likely contributed to the low albedo values. Nevertheless, air temperatures and buoyancy fluxes were often lower over the green roof indicating

  10. A parametric study of the thermal performance of green roofs in different climates through energy modeling

    NASA Astrophysics Data System (ADS)

    Mukherjee, Sananda

    In recent years, there has been great interest in the potential of green roofs as an alternative roofing option to reduce the energy consumed by individual buildings as well as mitigate large scale urban environmental problems such as the heat island effect. There is a widespread recognition and a growing literature of measured data that suggest green roofs can reduce building energy consumption. This thesis investigates the potential of green roofs in reducing the building energy loads and focuses on how the different parameters of a green roof assembly affect the thermal performance of a building. A green roof assembly is modeled in Design Builder- a 3D graphical design modeling and energy use simulation program (interface) that uses the EnergyPlus simulation engine, and the simulated data set thus obtained is compared to field experiment data to validate the roof assembly model on the basis of how accurately it simulates the behavior of a green roof. Then the software is used to evaluate the thermal performance of several green roof assemblies under three different climate types, looking at the whole building energy consumption. For the purpose of this parametric simulation study, a prototypical single story small office building is considered and one parameter of the green roof is altered for each simulation run in order to understand its effect on building's energy loads. These parameters include different insulation thicknesses, leaf area indices (LAI) and growing medium or soil depth, each of which are tested under the three different climate types. The energy use intensities (EUIs), the peak and annual heating and cooling loads resulting from the use of these green roof assemblies are compared with each other and to a cool roof base case to determine the energy load reductions, if any. The heat flux through the roof is also evaluated and compared. The simulation results are then organized and finally presented as a decision support tool that would

  11. Steep-Slope Assembly Testing of Clay and Concrete Tile With and Without Cool Pigmented Colors

    SciTech Connect

    Miller, William A

    2005-11-01

    Cool color pigments and sub-tile venting of clay and concrete tile roofs significantly impact the heat flow crossing the roof deck of a steep-slope roof. Field measures for the tile roofs revealed a 70% drop in the peak heat flow crossing the deck as compared to a direct-nailed asphalt shingle roof. The Tile Roofing Institute (TRI) and its affiliate members are keenly interested in documenting the magnitude of the drop for obtaining solar reflectance credits with state and federal "cool roof" building efficiency standards. Tile roofs are direct-nailed or are attached to a deck with batten or batten and counter-batten construction. S-Misson clay and concrete tile roofs, a medium-profile concrete tile roof, and a flat slate tile roof were installed on fully nstrumented attic test assemblies. Temperature measures of the roof, deck, attic, and ceiling, heat flows, solar reflectance, thermal emittance, and the ambient weather were recorded for each of the tile roofs and also on an adjacent attic cavity covered with a conventional pigmented and directnailed asphalt shingle roof. ORNL measured the tile's underside temperature and the bulk air temperature and heat flows just underneath the tile for batten and counter-batten tile systems and compared the results to the conventional asphalt shingle.

  12. Hydronic rooftop cooling systems

    DOEpatents

    Bourne, Richard C [Davis, CA; Lee, Brian Eric [Monterey, CA; Berman, Mark J [Davis, CA

    2008-01-29

    A roof top cooling unit has an evaporative cooling section that includes at least one evaporative module that pre-cools ventilation air and water; a condenser; a water reservoir and pump that captures and re-circulates water within the evaporative modules; a fan that exhausts air from the building and the evaporative modules and systems that refill and drain the water reservoir. The cooling unit also has a refrigerant section that includes a compressor, an expansion device, evaporator and condenser heat exchangers, and connecting refrigerant piping. Supply air components include a blower, an air filter, a cooling and/or heating coil to condition air for supply to the building, and optional dampers that, in designs that supply less than 100% outdoor air to the building, control the mixture of return and ventilation air.

  13. Measured performance of a reflective roofing system in a Florida commercial building

    SciTech Connect

    Parker, D.S.; Sherwin, J.R.; Sonne, J.K.

    1998-10-01

    This paper reports on the first results from tests on a reflective roofing system on a commercial building in Florida. The building is a elementary school with a sloped, modified bitumen roof. Air-conditioning power was measured in a base configuration prior to the roofing system being changed to a white color. Roof, decking, and plenum air temperatures were strongly affected by the change to a white roof system. The school, which was monitored for a full year in both the pre- and post-condition, saw the measured annual chiller electric power reduced by 10%, or 13,000 kWh/yr. Cooling-load reductions during the utility summer peak were substantially greater, more than 30% during the afternoon hours.

  14. Fiddling on the roof

    NASA Astrophysics Data System (ADS)

    Willcox, Norman

    2009-08-01

    I would like to pass on my experience with regard to Tim Simpson's comment on hot-water heating (June p19). I had a solar water-heating system installed on my roof here in Southern France in 2008. When I spoke to two "satisfied customers" about their systems, neither could tell me how much they saved in energy costs, and they did not seem to realize that the "auxiliary" immersion heater - which is permanently fitted on all systems, including my own - would come on whenever the temperature in the solar-heated tank dropped below the thermostat setting. This year we were well into the month of May before we could sometimes rely on the solar heat alone. I have fitted a time switch to the immersion heater and I switch it off completely when we have periods of full sunshine, but it is not easy to match the need for hot water to the possible availability.

  15. Mine roof support

    SciTech Connect

    Bower, L.R.; Scarfe, A.; Smith, J.C.

    1982-01-19

    A self-advancing, hydraulically powered mine roof support comprises a base means and double-acting hydraulic advancing ram extending in the intended direction of advance of the support in use. The cylinder of the advancing ram is located towards the forward end of the support and the piston rod of the advancing ram is located towards the rearward end of the support. A lifting ram is mounted on the support at or towards the forward end thereof and is operable on the periphery of the cylinder to lift the forward end with respect to the cylinder. The end of the cylinder remote from the piston rod is connectable to a pan of an armoured conveyor, and the advancing ram is connected to the support by an inclined link means pivotally attached to the base means and to the piston rod.

  16. Radiation control coatings on rough-surfaced roofs at a federal facility: Two summers of monitoring plus roof and whole building modeling

    SciTech Connect

    Petrie, T.W.; Childs, P.W.; Christian, J.E.

    1998-01-01

    Support of the federal New Technology Demonstration Program (NTDP) allowed the authors to learn the effect of radiation control coatings on roofs at a federal facility in the Panhandle of Florida. Two rough-surfaced, moderately well-insulated, low solar reflectance built-up roofs (BURs) were spray coated with a white, latex-based product with ceramic beads. Samples of the coated roofs were brought periodically to the laboratory to measure the solar reflectance as the coatings weathered. The authors monitored the power demand of the all-electric buildings that the roofs covered and temperatures and heat fluxes for two instrumented areas on each roof. Average decreases in the sunlit temperatures of the coated vs. the uncoated surfaces show weathering effects. They also show that the shading enhanced the effect of the coating on the significantly shaded roof because the coated instrumented area on it was preferentially shaded near noon of sunny days. Whole building models were constructed for DOE 2.1E and model predictions were compared to measurements of total electrical power for each all-electric building. The building with the significantly shaded roof had very high internal loads. The effect of the shading on annual energy use for cooling was twice that of the coating but the coating decreased annual cooling energy needs only by 0.5%. The building with the heavyweight concrete-decked roof had small internal loads. For it, the DOE 2.1E model predicted a 7.4% decrease in annual cooling energy use due to the coating and a comparatively small effect of the less extensive shading.

  17. Keeping Cool.

    ERIC Educational Resources Information Center

    Kehrer, James

    2000-01-01

    Explores roofing options that can help control energy costs through use of highly reflective roofing materials. Additionally discussed is the "Urban Heat Island" phenomenon created when several super-heated buildings are clustered in a small area. (GR)

  18. Staying Cool.

    ERIC Educational Resources Information Center

    Kennedy, Mike

    2001-01-01

    Illustrates how roofs that deflect the sun's heat away from the building can significantly reduce school energy budgets. Discusses the installation of white polymer roofs and use of reflective coatings. (GR)

  19. Staying Cool.

    ERIC Educational Resources Information Center

    Kennedy, Mike

    2001-01-01

    Illustrates how roofs that deflect the sun's heat away from the building can significantly reduce school energy budgets. Discusses the installation of white polymer roofs and use of reflective coatings. (GR)

  20. 30 CFR 75.204 - Roof bolting.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... accessories addressed in ASTM F432-95, “Standard Specification for Roof and Rock Bolts and Accessories,” the.... (4) In each roof bolting cycle, the actual torque or tension of the first tensioned roof bolt... during each roof bolting cycle shall be tested during or immediately after the first row of bolts has...

  1. 30 CFR 75.204 - Roof bolting.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... accessories addressed in ASTM F432-95, “Standard Specification for Roof and Rock Bolts and Accessories,” the.... (4) In each roof bolting cycle, the actual torque or tension of the first tensioned roof bolt... during each roof bolting cycle shall be tested during or immediately after the first row of bolts has...

  2. 30 CFR 75.204 - Roof bolting.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... accessories addressed in ASTM F432-95, “Standard Specification for Roof and Rock Bolts and Accessories,” the.... (4) In each roof bolting cycle, the actual torque or tension of the first tensioned roof bolt... during each roof bolting cycle shall be tested during or immediately after the first row of bolts has...

  3. 30 CFR 75.204 - Roof bolting.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... accessories addressed in ASTM F432-95, “Standard Specification for Roof and Rock Bolts and Accessories,” the.... (4) In each roof bolting cycle, the actual torque or tension of the first tensioned roof bolt... during each roof bolting cycle shall be tested during or immediately after the first row of bolts has...

  4. 30 CFR 75.204 - Roof bolting.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... accessories addressed in ASTM F432-95, “Standard Specification for Roof and Rock Bolts and Accessories,” the.... (4) In each roof bolting cycle, the actual torque or tension of the first tensioned roof bolt... during each roof bolting cycle shall be tested during or immediately after the first row of bolts has...

  5. Green Roofs for Stormwater Runoff Control

    EPA Science Inventory

    This project evaluated green roofs as a stormwater management tool. Specifically, runoff quantity and quality from green and flat asphalt roofs were compared. Evapotranspiration from planted green roofs and evaporation from unplanted media roofs were also compared. The influence...

  6. Green Roofs for Stormwater Runoff Control

    EPA Science Inventory

    This project evaluated green roofs as a stormwater management tool. Specifically, runoff quantity and quality from green and flat asphalt roofs were compared. Evapotranspiration from planted green roofs and evaporation from unplanted media roofs were also compared. The influence...

  7. Building America Case Study: Field Testing an Unvented Roof with Asphalt Shingles in a Cold Climate, Boilingbrook, Illinois

    SciTech Connect

    2015-09-01

    Insulating roofs with dense-pack cellulose (instead of spray foam) has moisture risks, but is a lower cost approach. If moisture risks could be addressed, buildings could benefit from retrofit options, and the ability to bring HVAC systems within the conditioned space. Test houses with unvented roof assemblies were built to measure long-term moisture performance, in the Chicago area (5A) and the Houston area (2A). The Chicago-area test bed had seven experimental rafter bays, including a 'control' vented compact roof, and six unvented roof variants with cellulose or fiberglass insulation. The interior was run at 50% RH. All roofs except the vented cathedral assembly experienced wood moisture contents and RH levels high enough to constitute failure. Disassembly at the end of the experiment showed that the unvented fiberglass roofs had wet sheathing and mold growth. In contrast, the cellulose roofs only had slight issues, such as rusted fasteners and sheathing grain raise. The Houston-area roof was an unvented attic insulated with spray-applied fiberglass. Most ridges and hips were built with a 'diffusion vent' detail, capped with vapor permeable roof membrane. Some ridge sections were built as a conventional unvented roof, as a control. In the control unvented roofs, roof peak RHs reached high levels in the first winter; as exterior conditions warmed, RHs quickly fell. In contrast, the diffusion vent roofs had drier conditions at the roof peak in wintertime, but during the summer, RHs and MCs were higher than the unvented roof (albeit in the safe range).

  8. Low Impact Development (LID) Technologies for Sustainable Water Management: Studies from a Green Roof

    NASA Astrophysics Data System (ADS)

    Digiovanni, K. A.; Montalto, F. A.; Gaffin, S.

    2009-12-01

    Anthropogenic induced landscape alterations, such as urbanization, can cause drastic alterations to predevelopment hydrologic conditions and the systems linked to these cycles. Low impact development (LID) technologies, such as green roofs, can help to minimize these impacts given their ability to retain and detain stormwater and subsequently evapotranspire or infiltrate excess water. An innovative technique for simultaneously monitoring stormwater retention, allowing for runoff quantification, as well as evapotranspiration from a small scale green roof box was employed for a green roof at the Ethical Culture Fieldston School located in the Bronx, NY. A 1.2 meter long by 0.6 meter wide green roof box was created as a replica section of the 525 m2 green roof on the building. The layers of the green roof box consisted of a roof membrane, drainage layer, four inch media layer, and vegetative Sedum layer. Monitoring equipment on the green roof included a weather station and real time environmental sensors which quantify wind speed, precipitation, soil moisture, temperature, humidity, albedo, and incident solar radiation. In addition to this equipment, a platform scale was positioned beneath the green roof box. Data was collected at 5 minute time intervals over a six month monitoring period between Spring and Fall 2009. A mass balance technique was utilized to quantify runoff from the green roof box. Evapotranspiration during antecedent conditions was also quantified utilizing a mass balance methodology and compared to energy balance estimates based on climatic conditions measured on the green roof. Results of runoff generation under a variety of rainfall conditions, as well as a comparison between mass balance and energy balance measures of evapotranspiration will be presented. The incorporation of this and further data collection into model development and calibration activities will be informative in predicting the impact that the implementation of green roof

  9. Beyond Cool

    ERIC Educational Resources Information Center

    Westerling, Tyler

    2010-01-01

    Roofs always have been a major focus for building energy-conservation measures. The emphasis traditionally has been on beefing up insulation. More recently, advances in roofing materials technology and analytical techniques have found new ways to fine-tune the energy performance of roofing to reduce not only operating costs, but also environmental…

  10. Beyond Cool

    ERIC Educational Resources Information Center

    Westerling, Tyler

    2010-01-01

    Roofs always have been a major focus for building energy-conservation measures. The emphasis traditionally has been on beefing up insulation. More recently, advances in roofing materials technology and analytical techniques have found new ways to fine-tune the energy performance of roofing to reduce not only operating costs, but also environmental…

  11. Assessment of the use of green and reflective roofing on the urban heat island in London

    NASA Astrophysics Data System (ADS)

    Katigbak, Kevin

    High-density urban development, highly absorptive surfaces and absence of green space have had a negative impact on localized microclimate. The increase of surface temperature due to these factors exhibits consequential increase energy consumption and implies the need for increased climate conditioning. The model demonstrates the impact of typical urban composition on the surrounding environment and suggests the urban fabric itself causes the major weight of UHI. Where variables, such as roof types, are introduced, the patterns in surface temperature suggest a strong correlation between roof surface and energy consumption. A hypothetical city block located in a densely developed urban area has been modeled using TAS EDSL as the modeling tool, in an attempt to assert the effects of green and reflective roofing on the surface and surrounding temperatures of the model. Additionally the effect of these technologies has on the overall building energy consumption has been examined. Key findings concur with previous research conducted in the field including: The modeled green roof shows a reduction in surface temperatures compared to the base model Using materials with various increased reflectivity from the base model show reduction in surface temperatures and surrounding temperatures as compared to the base model. Both the use of green roofing and reflective roofing materials have a positive affect on the reduction of overall energy consumption for a cooling season Through the use of green roofing or highly reflective roofing materials, the effects of UHI and global warming may be reduced.

  12. Three-Year Field Test Summary for Experimental Modified Bitumen Roofing at Fort Polk, Louisiana

    DTIC Science & Technology

    1992-12-01

    forcement and factory-applied granule surfacing (area A), Membrane B-a hot-mopped SBS (styrene butadiene styrene) modified bitumen with polyester...membrane C) were in excellent condition. No visible changes were noted. However, the hot-mopped SBS modified bitumen (membrane B) had several problems...all of which seemed to be caused by the membrane plys slipping down the roof slope. Slippage of hot-mopped SBS modified bitumen membrane systems has

  13. [A review of green roof performance towards management of roof runoff].

    PubMed

    Chen, Xiao-ping; Huang, Pei; Zhou, Zhi-xiang; Gao, Chi

    2015-08-01

    Green roof has a significant influence on reducing runoff volume, delaying runoff-yielding time, reducing the peak flow and improving runoff quality. This paper addressed the related research around the world and concluded from several aspects, i.e., the definition of green roof of different types, the mechanism how green roof manages runoff quantity and quality, the ability how green roof controls roof runoff, and the influence factors of green roof toward runoff quantity and quality. Afterwards, there was a need for more future work on research of green roof toward roof runoff, i.e., vegetation selection of green roof, efficient construction model selection of green roof, the regulating characteristics of green roof on roof runoff, the value assessment of green roof on roof runoff, analysis of source-sink function of green roof on the water pollutants of roof runoff and the research on the mitigation measures of roof runoff pollution. This paper provided a guideline to develop green roofs aiming to regulating roof runoff.

  14. Performance Evaluation of Advanced Retrofit Roof Technologies Using Field-Test Data Phase Three Final Report, Volume 1

    SciTech Connect

    Biswas, Kaushik; Childs, Phillip W; Atchley, Jerald Allen

    2014-05-01

    This article presents various metal roof configurations that were tested at Oak Ridge National Laboratory in Tennessee, U.S.A. between 2009 and 2013, and describes their potential for reducing the attic-generated space conditioning loads. These roofs contained different combinations of phase change material, rigid insulation, low emittance surface and above-sheathing ventilation, with standing-seam metal panels on top. These roofs were designed to be installed on existing roofs decks, or on top of asphalt shingles for retrofit construction. All the tested roofs showed the potential for substantial energy savings compared to an asphalt shingle roof, which was used as a control for comparison. The roofs were constructed on a series of adjacent attics separated at the gables using thick foam insulation. The attics were built on top of a conditioned room. All attics were vented at the soffit and ridge. The test roofs and attics were instrumented with an array of thermocouples. Heat flux transducers were installed in the roof deck and attic floor (ceiling) to measure the heat flows through the roof and between the attic and conditioned space below. Temperature and heat flux data were collected during the heating, cooling and swing seasons over a 3 year period. Data from previous years of testing have been published. Here, data from the latest roof configurations being tested in year 3 of the project are presented. All test roofs were highly effective in reducing the heat flows through the roof and ceiling, and in reducing the diurnal attic temperature fluctuations.

  15. EVALUATION OF ROOF BOLTING REQUIREMENTS BASED ON IN-MINE ROOF BOLTER DRILLING

    SciTech Connect

    Syd S. Peng

    2003-04-15

    Roof bolting is the most popular method for underground openings in the mining industry, especially in the bedded deposits such as coal, potash, salt etc. In fact, all U.S. underground coal mine entries are roof-bolted as required by law. However, roof falls still occur frequently in the roof bolted entries. The two possible reasons are: the lack of knowledge of and technology to detect the roof geological conditions in advance of mining, and lack of roof bolting design criteria for modern roof bolting systems. This research is to develop a method for predicting the roof geology and stability condition in real time during roof bolting operation. Based on such information, roof bolting design criteria for modern roof bolting systems will be developed for implementation in real time. More field tests have been performed. A trendline analysis method has been developed. This method would improve the accuracy in detecting the locations of fractures and in determining the rock strength.

  16. EVALUATION OF ROOF BOLTING REQUIREMENTS BASED ON IN-MINE ROOF BOLTER DRILLING

    SciTech Connect

    Syd S. Peng

    2003-01-15

    Roof bolting is the most popular method for underground openings in the mining industry, especially in the bedded deposits such as coal, potash, salt etc. In fact, all U.S. underground coal mine entries are roof-bolted as required by law. However, roof falls still occur frequently in the roof bolted entries. The two possible reasons are: the lack of knowledge of and technology to detect the roof geological conditions in advance of mining, and lack of roof bolting design criteria for modern roof bolting systems. This research is to develop a method for predicting the roof geology and stability condition in real time during roof bolting operation. Based on such information, roof bolting design criteria for modern roof bolting systems will be developed for implementation in real time. Additional field tests have been performed. It is found that the drilling power can be used as a supplementary method for detecting voids/fractures and rock interfaces.

  17. EVALUATION OF ROOF BOLTING REQUIREMENTS BASED ON IN-MINE ROOF BOLTER DRILLING

    SciTech Connect

    Syd S. Peng

    2002-10-15

    Roof bolting is the most popular method for underground openings in the mining industry, especially in the bedded deposits such as coal, potash, salt etc. In fact, all U.S. underground coal mine entries are roof-bolted as required by law. However, roof falls still occur frequently in the roof bolted entries. The two possible reasons are: the lack of knowledge of and technology to detect the roof geological conditions in advance of mining, and lack of roof bolting design criteria for modern roof bolting systems. This research is to develop a method for predicting the roof geology and stability condition in real time during roof bolting operation. Based on such information, roof bolting design criteria for modern roof bolting systems will be developed for implementation in real time. Additional field tests have been performed in this quarter. The development of the data interpretation methodology and other related tasks are still continuing.

  18. Assessing the Performance of Large Scale Green Roofs and Their Impact on the Urban Microclimate

    NASA Astrophysics Data System (ADS)

    Smalls-Mantey, L.; Foti, R.; Montalto, F. A.

    2015-12-01

    In ultra-urban environments green roofs offer a feasible solution to add green infrastructure (GI) in neighborhoods where space is limited. Green roofs offer the typical advantages of urban GI such as stormwater reduction and management while providing direct benefits to the buildings on which they are installed through thermal protection and mitigation of temperature fluctuations. At 6.8 acres, the Jacob K. Javits Convention Center (JJCC) in New York City, hosts the second largest green roof in the United States. Since its installation in August 2013, the Sustainable Water Resource (SWRE) Laboratory at Drexel University has monitored the climate on and around the green roof by means of four weather stations situated on various roof and ground locations. Using two years of fine scale climatic data collected at the JJCC, this study explores the energy balance of a large scale green roof system. Temperature, radiation, evapotranspiration and wind profiles pre- and post- installation of the JJCC green roof were analyzed and compared across monitored locations, with the goal of identifying the impact of the green roof on the building and urban micro-climate. Our findings indicate that the presence of the green roof, not only altered the climatic conditions above the JJCC, but also had a measurable impact on the climatic profile of the areas immediately surrounding it. Furthermore, as a result of the mitigation of roof temperature fluctuations and of the cooling provided during warmer months, an improvement of the building thermal efficiency was contextually observed. Such findings support the installation of GI as an effective practice in urban settings and important in the discussion of key issues including energy conservation measures, carbon emission reductions and the mitigation of urban heat islands.

  19. Thermal Infrared Inspection of Roof Insulation Using Unmanned Aerial Vehicles

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Jung, J.; Sohn, G.; Cohen, M.

    2015-08-01

    UAVs equipped with high-resolution thermal cameras provide an excellent investigative tool used for a multitude of building-specific applications, including roof insulation inspection. We have presented in this study a relative thermographic calibration algorithm and a superpixel Markov Random Field model to address problems in thermal infrared inspection of roof insulation using UAVs. The relative thermographic radiometric calibration algorithm is designed to address the autogain problem of the thermal camera. Results show the algorithm can enhance the contrast between warm and cool areas on the roof surface in thermal images, and produces more constant thermal signatures of different roof insulations or surfaces, which could facilitate both visual interpretation and computer-based thermal anomaly detection. An automatic thermal anomaly detection algorithm based on superpixel Markov Random Field is proposed, which is more computationally efficient than pixel based MRF, and can potentially improve the production throughput capacity and increase the detection accuracy for thermal anomaly detection. Experimental results show the effectiveness of the proposed method.

  20. Roof Management Program--Three Steps to Success.

    ERIC Educational Resources Information Center

    Young, D. B., Jr.

    1987-01-01

    A roof management program protects the capital investment of a new roof. Steps to create a program are (1) assemble roof information files, (2) implement a roof inspection program with periodic inspection, and (3) establish maintenance scheduling and implementation. (MLF)

  1. Investigation to Identify Performance Criteria and Test Methods for Evaluating Single-Ply Roofing Systems.

    DTIC Science & Technology

    1987-03-01

    directly on a steel deck with combustible wood fiber insulation . The results demonstrated that a hot bituminous mopping which is thick enough to bond the... wood fiber insulation cannot be part of a fire-resistant steel-deck roof system. Flame-Spread Test. To satisfy building code and insurer requirements, a...usually is installed over insulation but it can be applied directly to the structural roof deck. In the United States, bituminous membrane BURs are

  2. A Web-Based Simulation Tool on The Performance of Different Roofing Systems

    SciTech Connect

    Huang, Joe; New, Joshua Ryan; Miller, William A; Childs, Kenneth W; Levinson, Ronnen

    2015-01-01

    The Roof Savings Calculator (www.roofcalc.com) provides the general public with a web-based program for calculating the energy savings of different roofing and attic systems on four different building types (residential, office, retail, and warehouse) in 239 US TMY2 locations. The core simulation engine of the RSC is doe2attic, which couples the AtticSim program developed by Oak Ridge National Laboratory with the DOE-2.1E program originally developed by Lawrence Berkeley National Laboratory a widely used whole-building simulation program since the 1980 s. Although simulating heat flows through the roof may seem to be an easy task, simulating the net effect of roofing strategies on building heating and cooling energy use can be quite challenging. Few simulation programs can reliably capture dynamics including an attic or plenum with large day-night temperature swings, high ventilation rates, significant radiant exchange between the roof and the attic floor and thermal interactions when there are ducts in the attic, as is typical in North American buildings. The doe2attic program has been tested against detailed measurements gathered in two residential buildings in Fresno, California from cooling energy use to air and surface temperatures, and heat fluxes of the roof and attic floor. The focus of this paper is on the doe2attic simulation tool, but the user interface of the RSC will also be briefly described.

  3. Analysis of DOE s Roof Savings Calculator with Comparison to other Simulation Engines

    SciTech Connect

    New, Joshua Ryan; Huang, Yu; Levinson, Ronnen; Mellot, Joe; Sanyal, Jibonananda; Childs, Kenneth W

    2014-01-01

    A web-based Roof Savings Calculator (RSC) has been deployed for the Department of Energy as an industry-consensus tool to help building owners, manufacturers, distributors, contractors and researchers easily run complex roof and attic simulations. This tool employs the latest web technologies and usability design to provide an easy input interface to an annual simulation of hour-by-hour, whole-building performance using the world-class simulation tools DOE-2.1E and AtticSim. Building defaults were assigned based on national averages and can provide estimated annual energy and cost savings after the user selects nothing more than building location. In addition to cool reflective roofs, the RSC tool can simulate multiple roof and attic configurations including different roof slopes, above sheathing ventilation, radiant barriers, low-emittance surfaces, HVAC duct location, duct leakage rates, multiple layers of building materials, ceiling and deck insulation levels, and other parameters. A base case and energy-efficient alternative can be compared side-by-side to generate an energy/cost savings estimate between two buildings. The RSC tool was benchmarked against field data for demonstration homes in Ft. Irwin, CA. However, RSC gives different energy savings estimates than previous cool roof simulation tools so more thorough software and empirical validation proved necessary. This report consolidates much of the preliminary analysis for comparison of RSC s projected energy savings to that from other simulation engines.

  4. Marked thermal exaltation in hybrid thin membranous nanomaterials covered by stretched nanodots for thermoelectrics and passive cooling.

    PubMed

    Gillet, Jean-Numa

    2010-12-01

    An anisotropic thin membranous nanomaterial is modeled at the molecular scale to obtain a hybrid thermal behavior with applications from thermoelectrics to passive heat sinking. These antagonist phenomena, with different heat carriers, are obtained in two orthogonal in-plane directions, respectively x and y, when the thin membrane is covered by stretched nanodots forming elongated islands parallel to y. The phonon thermal conductivity is minimal in the direction x but maximal in that y. In nanomaterials composed of Si and Ge for the membrane and islands, respectively, thermal-conductivity exaltation as high as 22 folds is computed between the two phonon regimes in this theoretical study.

  5. IDENTIFYING ROOF FALL PREDICTORS USING FUZZY CLASSIFICATION

    SciTech Connect

    Bertoncini, C. A.; Hinders, M. K.

    2010-02-22

    Microseismic monitoring involves placing geophones on the rock surfaces of a mine to record seismic activity. Classification of microseismic mine data can be used to predict seismic events in a mine to mitigate mining hazards, such as roof falls, where properly bolting and bracing the roof is often an insufficient method of preventing weak roofs from destabilizing. In this study, six months of recorded acoustic waveforms from microseismic monitoring in a Pennsylvania limestone mine were analyzed using classification techniques to predict roof falls. Fuzzy classification using features selected for computational ease was applied on the mine data. Both large roof fall events could be predicted using a Roof Fall Index (RFI) metric calculated from the results of the fuzzy classification. RFI was successfully used to resolve the two significant roof fall events and predicted both events by at least 15 hours before visual signs of the roof falls were evident.

  6. Self advancing mine roof supports

    SciTech Connect

    Seddon, J.; Jones, F.

    1985-03-19

    A self-advancing mine-roof-support for use in or aligned with a main roadway or gate has a floor-engaging part and a roof engaging part spaced apart by extensible load-bearing prop or jack means, and engagement means for a face-conveyor and a transversely acting transfer conveyor whereby their relative positions are constrained to facilitate discharge of mineral from one conveyor to the other. The engagement means for the face conveyor comprises sliding anchor beams that assure maintenance of the relative attitudes of the support and the face conveyor and the transfer conveyor is held fore and aft of the support.

  7. Common Roofing and Waterproofing Materials and Equipment. Roofing Workbook and Tests.

    ERIC Educational Resources Information Center

    California State Dept. of Education, Sacramento. Bureau of Publications.

    This publication on common roofing and waterproofing materials and equipment is one of a series of units of instruction for roofing apprenticeship classes. The workbook portion is divided into eight topics: production of bitumens and asphalt roofing materials, built-up materials and adhesives, asphalt products and rigid roofing materials,…

  8. Roofing: Workbook and Tests. Common Roofing and Waterproofing Materials and Equipment.

    ERIC Educational Resources Information Center

    California State Dept. of Education, Sacramento. Bureau of Publications.

    This workbook on materials and equipment is one of a series of nine individual units of instruction for roofing apprenticeship classes in California. The workbook covers eight topics: production of bitumens and asphaltic roofing materials; built-up roofing materials and adhesives; asphaltic products and rigid roofing materials; elastomeric and…

  9. 40 CFR 65.45 - External floating roof converted into an internal floating roof.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 15 2011-07-01 2011-07-01 false External floating roof converted into an internal floating roof. 65.45 Section 65.45 Protection of Environment ENVIRONMENTAL PROTECTION... External floating roof converted into an internal floating roof. The owner or operator who elects to...

  10. 40 CFR 65.45 - External floating roof converted into an internal floating roof.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 16 2014-07-01 2014-07-01 false External floating roof converted into an internal floating roof. 65.45 Section 65.45 Protection of Environment ENVIRONMENTAL PROTECTION... External floating roof converted into an internal floating roof. The owner or operator who elects to...

  11. 40 CFR 65.43 - Fixed roof with an internal floating roof (IFR).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 16 2012-07-01 2012-07-01 false Fixed roof with an internal floating... internal floating roof (IFR). (a) IFR design requirements. The owner or operator who elects to control storage vessel regulated material emissions by using a fixed roof and an internal floating roof shall...

  12. 40 CFR 65.45 - External floating roof converted into an internal floating roof.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 16 2013-07-01 2013-07-01 false External floating roof converted into an internal floating roof. 65.45 Section 65.45 Protection of Environment ENVIRONMENTAL PROTECTION... External floating roof converted into an internal floating roof. The owner or operator who elects to...

  13. 40 CFR 65.45 - External floating roof converted into an internal floating roof.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 16 2012-07-01 2012-07-01 false External floating roof converted into an internal floating roof. 65.45 Section 65.45 Protection of Environment ENVIRONMENTAL PROTECTION... External floating roof converted into an internal floating roof. The owner or operator who elects to...

  14. 40 CFR 65.45 - External floating roof converted into an internal floating roof.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 15 2010-07-01 2010-07-01 false External floating roof converted into an internal floating roof. 65.45 Section 65.45 Protection of Environment ENVIRONMENTAL PROTECTION... External floating roof converted into an internal floating roof. The owner or operator who elects...

  15. Common Roofing and Waterproofing Materials and Equipment. Roofing Workbook and Tests.

    ERIC Educational Resources Information Center

    California State Dept. of Education, Sacramento. Bureau of Publications.

    This publication on common roofing and waterproofing materials and equipment is one of a series of units of instruction for roofing apprenticeship classes. The workbook portion is divided into eight topics: production of bitumens and asphalt roofing materials, built-up materials and adhesives, asphalt products and rigid roofing materials,…

  16. Cold-Applied Roofing Systems and Waterproofing and Dampproofing. Roofing Workbook and Tests.

    ERIC Educational Resources Information Center

    Brown, Arthur

    This workbook for students in California roofing apprenticeship programs provides information for classroom work in the area of cold-applied roofing systems and waterproofing and dampproofing. Eight topics are covered: introduction to cold-applied roofing systems and waterproofing and dampproofing, tools and equipment used in cold-applied roofing,…

  17. The impact of surface reflectance on the thermal performance of roofs: An experimental study

    SciTech Connect

    Griggs, E.I.

    1988-01-01

    The thermal effects of black versus white membranes on an insulated low slope roof were studied over an 18 month period. Half of the insulated roof test panel's 4 ft x 8 ft surface was covered with a black polyisobutylene (PIB) membrane. A white PIB membrane was installed over the other half. Both sections were identically insulated with fiberglass board to provide a nominal thermal resistance of 7.5 hr-ft/sup 2/-)degree)FBtu. A heat flux transducer was installed in the center of each section with themrocouples placed below the membrane, at the midplane and beneath the insulation. Local weather data together with specimen heat flux and tempeature data were recorded hourly. Seasonal distinctions in measured data between the black and white membranes are reproted. Included are cumulative and instantaneous heat fluxes and hourly surface temperature variations. Peak membrane temperatures were observed to differ by up to 50)degree)F during the day. Nighttime differences in membrane surface temperatures were negligible. Changes due to dirt accumulation and local environmental factors were observed in surface reflectance values calculated from the energy balance at the roof membrane and from reflectometer measurements. The experimental results reported here are currently being used to validate numerical modeling of surface effects upon roof system performance and building energy requirements. The results of the modeling and analysis efforts will be reported in a subsequent paper. 20 refs., 11 figs., 3 tabs

  18. Roofing Workbook and Tests: Entering the Roofing and Waterproofing Industry.

    ERIC Educational Resources Information Center

    California State Dept. of Education, Sacramento. Vocational Education Services.

    This document is one of a series of nine individual units of instruction for use in roofing apprenticeship classes in California. The unit consists of a workbook and test, perforated for student use. Fourteen topics are covered in the workbook and corresponding multiple-choice tests. For each topic, objectives, information sheets, and study…

  19. Sloped Roof Conversions for Small, Flat-Roof Buildings.

    DTIC Science & Technology

    1984-12-01

    co solve other, unrelated Table 5 List of Contacts Involved in Roof Conversion Projects California AEP-Span, San Diego Florida Duval County...Survlvablllty Section, CCB-CPS Infrastructure Branch, LANDA HQ UsaUCOH 09128 ATTN: ECJ 4/7-LOE Fort Belvoir, VA 22060 (7) ATTN

  20. Roofing Materials Assessment: Investigation of Five Metals in Runoff from Roofing Materials.

    PubMed

    Winters, Nancy; Granuke, Kyle; McCall, Melissa

    2015-09-01

    To assess the contribution of five toxic metals from new roofing materials to stormwater, runoff was collected from 14 types of roofing materials and controls during 20 rain events and analyzed for metals. Many of the new roofing materials evaluated did not show elevated metals concentrations in the runoff. Runoff from several other roofing materials was significantly higher than the controls for arsenic, copper, and zinc. Notably, treated wood shakes released arsenic and copper, copper roofing released copper, PVC roofing released arsenic, and Zincalume® and EPDM roofing released zinc. For the runoff from some of the roofing materials, metals concentrations decreased significantly over an approximately one-year period of aging. Metals concentrations in runoff were demonstrated to depend on a number of factors, such as roofing materials, age of the materials, and climatic conditions. Thus, application of runoff concentrations from roofing materials to estimate basin-wide releases should be undertaken cautiously.

  1. A guidebook for insulated low-slope roof systems. IEA Annex 19, Low-slope roof systems: International Energy Agency Energy Conservation in Buildings and Community Systems Programme

    SciTech Connect

    Not Available

    1994-02-01

    Low-slope roof systems are common on commercial and industrial buildings and, to a lesser extent, on residential buildings. Although insulating materials have nearly always been a component of low-slope roofs, the amount of insulation used has increased in the past two decades because of escalation of heating and cooling costs and increased awareness of the need for energy conservation. As the amount of insulation has increased, the demand has intensified for design, installation, and maintenance information specifically for well-insulated roofs. Existing practices for design, installation, and maintenance of insulated roofs have evolved from experience. Typically, these practices feature compromises due to the different properties of materials making up a given roof system. Therefore, they should be examined from time to time to ensure that they are appropriate as new materials continue to enter the market and as the data base on existing systems expands. A primary purpose of this International Energy Agency (IEA) study is to assess current roofing insulation practices in the context of an accumulating data base on performance.

  2. GREEN ROOFS — A GROWING TREND

    EPA Science Inventory

    One of the most interesting stormwater control systems under evaluation by EPA are “green roofs”. Green roofs are vegetative covers applied to building roofs to slow, or totally absorb, rainfall runoff during storms. While the concept of over-planted roofs is very ancient, the go...

  3. GREEN ROOFS — A GROWING TREND

    EPA Science Inventory

    One of the most interesting stormwater control systems under evaluation by EPA are “green roofs”. Green roofs are vegetative covers applied to building roofs to slow, or totally absorb, rainfall runoff during storms. While the concept of over-planted roofs is very ancient, the go...

  4. Guidelines for Inspecting Your Roof Systems.

    ERIC Educational Resources Information Center

    Watkins, Daniel L.

    2003-01-01

    Provides guidelines for inspecting the roof of a facility. Suggests that periodic roof inspections should be performed on a quarterly or semi-annual basis and after severe storms. Proactively identifying potential problem areas is the best defense against roof leaks. (SLD)

  5. Keys to a Successful Roofing System.

    ERIC Educational Resources Information Center

    Kornahrens, Rob

    1999-01-01

    Provides advice on successfully managing an educational facility's roofing system by first getting the best roofing system possible, then undertaking regular precautionary measures to assure its peak performance. Specific points address such areas as choosing a roofing contractor, hiring a professional to create specifications, monitoring…

  6. Cooling causes changes in the distribution of lipoprotein lipase and milk fat globule membrane proteins between the skim milk and cream phase.

    PubMed

    Dickow, J A; Larsen, L B; Hammershøj, M; Wiking, L

    2011-02-01

    Lipoprotein lipase (LPL) activity and free fatty acid levels were studied in freshly milked, uncooled milk from individual Danish Holstein or Jersey cows, or after storage for up to 24h at either a cooling temperature (4°C) or at the milking temperature (31°C). Upon cooling for up to 24h, LPL activity increased in the cream phase, whereas the activity in the skim milk was steady, as observed for Jersey cows, or increased, as seen for the Holsteins. Storage at 31°C decreased the LPL activity in both the cream phase and the skim milk phase. The increase in free fatty acid levels was found to depend on LPL activity, incubation temperature, substrate availability, and incubation time. Furthermore, the migration of milk proteins between the skim milk phase and the cream phase upon cooling of milk from Jersey cows or from Danish Holstein cows was studied using proteomic methods involving 2-dimensional gel electrophoresis and mass spectrometry. Proteins associated with the milk fat globules were isolated from all milk fractions and analyzed. Major changes in the distributions of proteins between the skim milk phase and the cream phase were observed after cooling at 4°C for 4h, where a total of 29 proteins between the 2 breeds was found to change their association with the milk fat globule membrane (MFGM) significantly. Among these, the MFGM proteins adipophilin, fatty acid-binding protein, and lactadherin, as well as the non-MFGM proteins β-casein, lactoferrin, and heat shock protein-71, were identified. Adipophilin, lactadherin, and lactoferrin were quantitatively more associated with the MFGM upon cold storage at 4°C, whereas β-casein, fatty acid-binding protein, and heat shock protein-71 were found to be less associated with the MFGM upon cold storage.

  7. Assessment of technologies for constructing self-drying low-slope roofs

    SciTech Connect

    Kyle, D.M.; Desjarlais, A.O.

    1994-05-01

    Issues associated with removing excessive moisture from low-slope roofs have been assessed. The economic costs associated with moisture trapped in existing roofs have been estimated. The evidence suggests that existing moisture levels cause approximately a 40% overall reduction in the R-value of installed roofing insulation in the United States. Excess operating costs are further increased by a summertime heat transfer mode unique to wet insulation, caused by the daily migration of water within the roof. By itself, this effect can increase peak electrical demand for air conditioning by roughly 15 W/m{sup 2} of roofing, depending on the type of insulation. This effect will increase peak demand capacity required of utilities in any geographic region (e.g., 900 MW in the South). A simple formula has been derived for predicting the effect that self-drying roofs can have upon time-averaged construction costs. It is presumed that time-averaged costs depend predominantly upon (1) actual service life and (2) the likelihood that the less expensive recover membranes can be installed safely over old roofs. For example, an increase in service life from 15 to 20 years should reduce the current cost of roofing ($12 billion/year) by 21%. Another simple formula for predicting the reroofing waste volume indicates that an increase in service life from 15 to 20 years might reduce the current estimated 0.4 billion ft{sup 3}/year of waste by 25%. A finite-difference computer program has been used to study the flow of heat and moisture within typical existing roofs for a variety of US climates. Nearly all publicly available experimental drying data have been consulted. The drying times for most existing low-slope roofs in the United States are controlled largely climate and the permeability of the structural deck to water vapor.

  8. 1. Credit BG. View looking southeast down onto roof and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Credit BG. View looking southeast down onto roof and the north and west facades of Steam Generator Plant, Building 4280/E-81. Vents on roof were from gas-fired steam generators. Pipes emerging from north facade are for steam. Elevated narrow tray is for electrical cables. To lower left of image (immediate north of 4280/E-81) is concrete-lined pond originally built to neutralize rocket engine exhaust compounds; it was only used as a cooling pond. To the lower right of this image are concrete pads which held two 7,500 gallon feedwater tanks for the boilers in 4280/E-81; these tanks were transferred to another federal space science organization and removed from the JPL compound in 1994. Beyond 4280/E-81 to the upper left is a reclamation pond. ... - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Steam Generator Plant, Edwards Air Force Base, Boron, Kern County, CA

  9. Modeling Košice Green Roofs Maps

    NASA Astrophysics Data System (ADS)

    Poorova, Zuzana; Vranayova, Zuzana

    2017-06-01

    The need to house population in urban areas is expected to rise to 66% in 2050, according to United Nations. The replacement of natural permeable green areas with concrete constructions and hard surfaces will be noticed. The densification of existing built-up areas is responsible for the decreasing vegetation, which results in the lack of evapotranspiration cooling the air. Such decreasing vegetation causes urban heat islands. Since roofs and pavements have a very low albedo, they absorb a lot of sunlight. Several studies have shown that natural and permeable surfaces, as in the case of green roofs, can play crucial role in mitigating this negative climate phenomenon and providing higher efficiency for the building, leading to savings. Such as water saving, what is the main idea of this research.

  10. Evaluation of Roof Bolting Requirements Based on In-Mine Roof Bolter Drilling

    SciTech Connect

    Syd S. Peng

    2005-10-01

    Roof bolting is the most popular method for underground openings in the mining industry, especially in the bedded deposits such as coal. In fact, all U.S. underground coal mine entries are roof-bolted as required by law. However, roof falls still occur frequently in the roof bolted entries. The two possible reasons are: the lack of knowledge of and technology to detect the roof geological conditions in advance of mining, and lack of roof bolting design criteria for modern roof bolting systems. This research is to develop a method for predicting the roof geology and stability condition in real time during roof bolting operation. Based on this information, roof bolting design criteria for modern roof bolting systems will be developed for implementation in real time. For the prediction of roof geology and stability condition in real time, a micro processor was used and a program developed to monitor and record the drilling parameters of roof bolter. These parameters include feed pressure, feed flow (penetration rate), rotation pressure, rotation rate, vacuum pressure, oil temperature of hydraulic circuit, and signals for controlling machine. From the results of a series of laboratory and underground tests so far, feed pressure is found to be a good indicator for identifying the voids/fractures and estimating the roof rock strength. The method for determining quantitatively the location and the size of void/fracture and estimating the roof rock strength from the drilling parameters of roof bolter was developed. Also, a set of computational rules has been developed for in-mine roof using measured roof drilling parameters and implemented in MRGIS (Mine Roof Geology Information System), a software package developed to allow mine engineers to make use of the large amount of roof drilling parameters for predicting roof geology properties automatically. For the development of roof bolting criteria, finite element models were developed for tensioned and fully grouted bolting

  11. Roof temperatures in simulated attics

    Treesearch

    J. E. Winandy; R. Beaumont

    The degradation of wood treated with fire retardant (FR) chemicals in roof systems is a problem of major national significance. Understanding of this phenomenon is limited by lack of information on how the performance of FR-treated wood in the laboratory correlates to that of FR-treated wood in the field. In this study, five outdoor field exposure chambers were...

  12. Literature Review of the Potential Energy Savings and Retention Water from Green Roofs in Comparison with Conventional Ones

    NASA Astrophysics Data System (ADS)

    Tselekis, Kyriakoulis

    2012-09-01

    The objective of this study is the comparison of green roof systems with conventional isolated and non-isolated ones in order to identify the potential energy savings of green roofs and the benefits provided in comparison with the cost of construction to the buildings. The region of interest is the Watergraafsmeer area in the city of Amsterdam. The method evaluates literature reports - mostly from 2003 to 2010 - that present the advantages of green roofs. Examples in real implementation of green roofs in USA, UK and Germany, retention of rainfall and a Life Cycle Assessment from a residential construction in Madrid will be introduced, showing the energy savings from insulation and heating/cooling that can be gained. All the reports have shown a reduction in energy costs and in runoff of water. Hence, costs and retrofitting potential completes the research. The age of buildings and the absence of insulation make green roofs an ideal alternative project for the retrofit of Watergraafsmeer.

  13. Local thermal resonance control of GaInP photonic crystal membrane cavities using ambient gas cooling

    SciTech Connect

    Sokolov, Sergei Lian, Jin; Yüce, Emre; Mosk, Allard P.; Combrié, Sylvain; Lehoucq, Gaelle; De Rossi, Alfredo

    2015-04-27

    We perform spatially dependent tuning of a GaInP photonic crystal cavity using a continuous wave violet laser. Local tuning is obtained by laser heating of the photonic crystal membrane. The cavity resonance shift is measured for different pump positions and for two ambient gases: He and N{sub 2}. We find that the width of the temperature profile induced in the membrane depends strongly on the thermal conductivity of the ambient gas. For He gas, a narrow spatial width of the temperature profile of 2.8 μm is predicted and verified in experiment.

  14. A Roof for ALMA

    NASA Astrophysics Data System (ADS)

    2007-03-01

    On 10 March, an official ceremony took place on the 2,900m high site of the Atacama Large Millimeter/submillimeter Array (ALMA) Operations Support Facility, from where the ALMA antennas will be remotely controlled. The ceremony marked the completion of the structural works, while the building itself will be finished by the end of the year. This will become the operational centre of one of the most important ground-based astronomical facilities on Earth. ESO PR Photo 13a/07 ESO PR Photo 13a/07 Cutting the Red Ribbon The ceremony, known as 'Tijerales' in Chile, is the equivalent to the 'roof-topping ceremony' that takes place worldwide, in one form or another, to celebrate reaching the highest level of a construction. It this case, the construction is the unique ALMA Operations Support Facility (OSF), located near the town of San Pedro de Atacama. "The end of this first stage represents an historic moment for ALMA," said Hans Rykaczewski, the European ALMA Project Manager. "Once completed in December 2007, this monumental building of 7,000 square metres will be one of the largest and most important astronomical operation centres in the world." ALMA, located at an elevation of 5,000m in the Atacama Desert of northern Chile, will provide astronomers with the world's most advanced tool for exploring the Universe at millimetre and submillimetre wavelengths. ALMA will detect fainter objects and be able to produce much higher-quality images at these wavelengths than any previous telescope system. The OSF buildings are designed to suit the requirements of this exceptional observatory in a remote, desert location. The facility, which will host about 100 people during operations, consists of three main buildings: the technical building, hosting the control centre of the observatory, the antenna assembly building, including four antenna foundations for testing and maintenance purposes, and the warehouse building, including mechanical workshops. Further secondary buildings are

  15. In-Depth Analysis of Simulation Engine Codes for Comparison with DOE s Roof Savings Calculator and Measured Data

    SciTech Connect

    New, Joshua Ryan; Levinson, Ronnen; Huang, Yu; Sanyal, Jibonananda; Miller, William A.; Mellot, Joe; Childs, Kenneth W.; Kriner, Scott

    2014-06-01

    The Roof Savings Calculator (RSC) was developed through collaborations among Oak Ridge National Laboratory (ORNL), White Box Technologies, Lawrence Berkeley National Laboratory (LBNL), and the Environmental Protection Agency in the context of a California Energy Commission Public Interest Energy Research project to make cool-color roofing materials a market reality. The RSC website and a simulation engine validated against demonstration homes were developed to replace the liberal DOE Cool Roof Calculator and the conservative EPA Energy Star Roofing Calculator, which reported different roof savings estimates. A preliminary analysis arrived at a tentative explanation for why RSC results differed from previous LBNL studies and provided guidance for future analysis in the comparison of four simulation programs (doe2attic, DOE-2.1E, EnergyPlus, and MicroPas), including heat exchange between the attic surfaces (principally the roof and ceiling) and the resulting heat flows through the ceiling to the building below. The results were consolidated in an ORNL technical report, ORNL/TM-2013/501. This report is an in-depth inter-comparison of four programs with detailed measured data from an experimental facility operated by ORNL in South Carolina in which different segments of the attic had different roof and attic systems.

  16. Ground state cooling of a quantum electromechanical system with a silicon nitride membrane in a 3D loop-gap cavity

    NASA Astrophysics Data System (ADS)

    Noguchi, Atsushi; Yamazaki, Rekishu; Ataka, Manabu; Fujita, Hiroyuki; Tabuchi, Yutaka; Ishikawa, Toyofumi; Usami, Koji; Nakamura, Yasunobu

    2016-10-01

    Cavity electro-(opto-)mechanics gives us a quantum tool to access mechanical modes in a massive object. Here we develop a quantum electromechanical system in which a vibrational mode of a SiN x membrane are coupled to a three-dimensional loop-gap superconducting microwave cavity. The tight confinement of the electric field across a mechanically compliant narrow-gap capacitor realizes the quantum strong coupling regime under a red-sideband pump field and the quantum ground state cooling of the mechanical mode. We also demonstrate strong coupling between two mechanical modes, which is induced by two-tone parametric drives and mediated by a virtual photon in the cavity.

  17. Soiling of building envelope surfaces and its effect on solar reflectance. Part I: Analysis of roofing product databases

    SciTech Connect

    Sleiman, Mohamad; Ban-Weiss, George; Gilbert, Haley E.; François, David; Berdahl, Paul; Kirchstetter, Thomas W.; Destaillats, Hugo; Levinson, Ronnen

    2011-12-01

    The use of highly reflective “cool” roofing materials can decrease demand for air conditioning, mitigate the urban heat island effect, and potentially slow global warming. However, initially high roof solar reflectance can be degraded by natural soiling and weathering processes. We evaluated solar reflectance losses after three years of natural exposure reported in two separate databases: the Rated Products Directory of the US Cool Roof Rating Council (CRRC) and information reported by manufacturers to the US Environmental Protection Agency (EPA)’s ENERGY STAR® rating program. Many product ratings were culled because they were duplicative (within a database) or not measured. A second, site-resolved version of the CRRC dataset was created by transcribing from paper records the site-specific measurements of aged solar reflectance in Florida, Arizona and Ohio. Products with high initial solar reflectance tended to lose reflectance, while those with very low initial solar reflectance tended to become more reflective as they aged. Within the site-resolved CRRC database, absolute solar reflectance losses for samples of medium-to-high initial solar reflectance were 2 - 3 times greater in Florida (hot and humid) than in Arizona (hot and dry); losses in Ohio (temperate but polluted) were intermediate. Disaggregating results by product type, factory-applied coating, field-applied coating, metal, modified bitumen, shingle, singleply membrane and tile, revealed that absolute solar reflectance losses were largest for fieldapplied coating, modified bitumen and single-ply membrane products, and smallest for factoryapplied coating and metal products.The 2008 Title 24 provisional aged solar reflectance formula overpredicts the measured aged solar reflectance of 0% to 30% of each product type in the culled public CRRC database. The rate of overprediction was greatest for field-applied coating and single-ply membrane products and least for factory-applied coating, shingle, and

  18. Soiling of building envelope surfaces and its effect on solar reflectance. Part I: Analysis of roofing product databases

    DOE PAGES

    Sleiman, Mohamad; Ban-Weiss, George; Gilbert, Haley E.; ...

    2011-12-01

    The use of highly reflective “cool” roofing materials can decrease demand for air conditioning, mitigate the urban heat island effect, and potentially slow global warming. However, initially high roof solar reflectance can be degraded by natural soiling and weathering processes. We evaluated solar reflectance losses after three years of natural exposure reported in two separate databases: the Rated Products Directory of the US Cool Roof Rating Council (CRRC) and information reported by manufacturers to the US Environmental Protection Agency (EPA)’s ENERGY STAR® rating program. Many product ratings were culled because they were duplicative (within a database) or not measured. Amore » second, site-resolved version of the CRRC dataset was created by transcribing from paper records the site-specific measurements of aged solar reflectance in Florida, Arizona and Ohio. Products with high initial solar reflectance tended to lose reflectance, while those with very low initial solar reflectance tended to become more reflective as they aged. Within the site-resolved CRRC database, absolute solar reflectance losses for samples of medium-to-high initial solar reflectance were 2 - 3 times greater in Florida (hot and humid) than in Arizona (hot and dry); losses in Ohio (temperate but polluted) were intermediate. Disaggregating results by product type, factory-applied coating, field-applied coating, metal, modified bitumen, shingle, singleply membrane and tile, revealed that absolute solar reflectance losses were largest for fieldapplied coating, modified bitumen and single-ply membrane products, and smallest for factoryapplied coating and metal products.The 2008 Title 24 provisional aged solar reflectance formula overpredicts the measured aged solar reflectance of 0% to 30% of each product type in the culled public CRRC database. The rate of overprediction was greatest for field-applied coating and single-ply membrane products and least for factory-applied coating

  19. EVALUATION OF ROOF BOLTING REQUIREMENTS BASED ON IN-MINE ROOF BOLTER DRILLING

    SciTech Connect

    Syd S. Peng

    2001-10-15

    Roof bolting is the most popular method for underground openings in the mining industry, especially in the bedded deposits such as coal, potash, salt etc. In fact, all U.S. underground coal mine entries are roof-bolted as required by law. However, roof falls still occur frequently in the roof bolted entries. The two possible reasons are: the lack of knowledge of and technology to detect the roof geological conditions in advance of mining, and lack of roof bolting design criteria for modern roof bolting systems. This research is to develop a method for predicting the roof geology and stability condition in real time during roof bolting operation. Based on such information, roof bolting design criteria for modern roof bolting systems will be developed for implementation in real time. The retrofitting works for a dedicated roof bolter for this research has been completed. The laboratory tests performed using this machine on simulated roof blocks have been conducted. The analysis performed on the testing data showed promising signs to detect the rock interface, fractures, as well as the rock types. The other tasks were progressing as planned.

  20. EVALUATION OF ROOF BOLTING REQUIREMENTS BASED ON IN-MINE ROOF BOLTER DRILLING

    SciTech Connect

    Syd S. Peng

    2001-07-15

    Roof bolting is the most popular method for underground openings in the mining industry, especially in the bedded deposits such as coal, potash, salt etc. In fact, all U.S. underground coal mine entries are roof-bolted as required by law. However, roof falls still occur frequently in the roof bolted entries. The two possible reasons are: the lack of knowledge of and technology to detect the roof geological conditions in advance of mining, and lack of roof bolting design criteria for modern roof bolting systems. This research is to develop a method for predicting the roof geology and stability condition in real time during roof bolting operation. Based on such information, roof bolting design criteria for modern roof bolting systems will be developed for implementation in real time. In this quarter, retrofitting work to build a dedicated roof bolter for this research has been started. A number of numerical methods have been developed to improve the quality of and to analyze the collected drilling parameters. Finite element modeling of roof bolting mechanism is continuing.

  1. Effects of substrate properties on the hydraulic and thermal behavior of a green roof

    NASA Astrophysics Data System (ADS)

    Sandoval, V. P.; Suarez, F. I.; Victorero, F.; Bonilla, C.; Gironas, J. A.; Vera, S.; Bustamante, W.; Rojas, V.; Pasten, P.

    2014-12-01

    Green roofs are a sustainable urban development solution that incorporates a growing media (also known as substrate) and vegetation into infrastructures to reach additional benefits such as the reduction of: rooftop runoff peak flows, roof surface temperatures, energy utilized for cooling/heating buildings, and the heat island effect. The substrate is a key component of the green roof that allows achieving these benefits. It is an artificial soil that has an improved behavior compared to natural soils, facilitating vegetation growth, water storage and typically with smaller densities to reduce the loads over the structures. Therefore, it is important to study the effects of substrate properties on green roof performance. The objective of this study is to investigate the physical properties of four substrates designed to improve the behavior of a green roof, and to study their impact on the efficiency of a green roof. The substrates that were investigated are: organic soil; crushed bricks; a mixture of mineral soil with perlite; and a mixture of crushed bricks and organic soil. The thermal properties (thermal conductivity, volumetric heat capacity and thermal diffusivity) were measured using a dual needle probe (Decagon Devices, Inc.) at different saturation levels, and the hydraulic properties were measured with a constant head permeameter (hydraulic conductivity) and a pressure plate extractor (water retention curve). This characterization, combined with numerical models, allows understanding the effect of these properties on the hydraulic and thermal behavior of a green roof. Results show that substrates composed by crushed bricks improve the thermal insulation of infrastructures and at the same time, retain more water in their pores. Simulation results also show that the hydraulic and thermal behavior of a green roof strongly depends on the moisture content prior to a rainstorm.

  2. A modelling study of long term green roof retention performance.

    PubMed

    Stovin, Virginia; Poë, Simon; Berretta, Christian

    2013-12-15

    This paper outlines the development of a conceptual hydrological flux model for the long term continuous simulation of runoff and drought risk for green roof systems. A green roof's retention capacity depends upon its physical configuration, but it is also strongly influenced by local climatic controls, including the rainfall characteristics and the restoration of retention capacity associated with evapotranspiration during dry weather periods. The model includes a function that links evapotranspiration rates to substrate moisture content, and is validated against observed runoff data. The model's application to typical extensive green roof configurations is demonstrated with reference to four UK locations characterised by contrasting climatic regimes, using 30-year rainfall time-series inputs at hourly simulation time steps. It is shown that retention performance is dependent upon local climatic conditions. Volumetric retention ranges from 0.19 (cool, wet climate) to 0.59 (warm, dry climate). Per event retention is also considered, and it is demonstrated that retention performance decreases significantly when high return period events are considered in isolation. For example, in Sheffield the median per-event retention is 1.00 (many small events), but the median retention for events exceeding a 1 in 1 yr return period threshold is only 0.10. The simulation tool also provides useful information about the likelihood of drought periods, for which irrigation may be required. A sensitivity study suggests that green roofs with reduced moisture-holding capacity and/or low evapotranspiration rates will tend to offer reduced levels of retention, whilst high moisture-holding capacity and low evapotranspiration rates offer the strongest drought resistance. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Orbital dystopia due to orbital roof defect.

    PubMed

    Rha, Eun Young; Joo, Hong Sil; Byeon, Jun Hee

    2013-01-01

    We performed a retrospective review of patients who presented with delayed dystopia as a consequence of an orbital roof defect due to fractures and nontraumatic causes to search for a correlation between orbital roof defect size and surgical indications for the treatment thereof. Retrospective analyses were performed in 7 patients, all of whom presented with delayed dystopia due to orbital roof defects, between January 2001 and June 2011. The causes of orbital roof defects were displaced orbital roof fractures (5 cases), tumor (1 case), and congenital sphenoid dysplasia (1 case). All 7 patients had initially been treated conservatively and later presented with significant dystopia. The sizes of the defects were calculated on computed tomographic scans. Among the 7 patients, aspiration of cerebrospinal fluid, which caused ocular symptoms, in 1 patient with minimal displaced orbital roof and reconstruction with calvarial bone, titanium micromesh, or Medpor in 6 other patients were performed. The minimal size of the orbital roof in patients who underwent orbital roof reconstruction was 1.2 cm (defect height) x 1.0 cm (defect length), 0.94 cm(2). For all patients with orbital dystopia, displacement of the globe was corrected without any complications, regardless of whether the patient was evaluated grossly or by radiology. In this retrospective study, continuous monitoring of clinical signs and active surgical management should be considered for cases in which an orbital roof defect is detected, even if no definite symptoms are noted, to prevent delayed sequelae.

  4. A Study of Climatic Effects on Roof Systems at Cape Hatteras, North Carolina.

    DTIC Science & Technology

    1981-03-01

    number) Cape Hatteras, NC roofs \\climate SI ’I"’ACr e~indbe 01 Poersn 4010P N mormessm 1~0tl by block aimlkw) ’A heat -transfer model was used to...tions, anid the transient heat flux was determined for the nine roof systems. 4 UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE(UYen Date tntteO...17 Temperature Effects Cooling and Warming Rates Length of Freezing and Thawing Periods Number of Freeze-Thaw Cycles Transient Heat Flux 5 SUMM4ARY

  5. 40 CFR 65.43 - Fixed roof with an internal floating roof (IFR).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... floating roof shall be equipped with a closure device between the wall of the storage vessel and the floating roof edge and shall consist of one of the following devices: (i) A liquid-mounted seal. (ii) A... 40 Protection of Environment 15 2010-07-01 2010-07-01 false Fixed roof with an internal...

  6. EVALUATION OF ROOF BOLTING REQUIREMENTS BASED ON IN-MINE ROOF BOLTER DRILLING

    SciTech Connect

    Syd S. Peng

    2003-07-15

    Roof bolting is the most popular method for underground openings in the mining industry, especially in the bedded deposits such as coal, potash, salt etc. In fact, all U.S. underground coal mine entries are roof-bolted as required by law. However, roof falls still occur frequently in the roof bolted entries. The two possible reasons are: the lack of knowledge of and technology to detect the roof geological conditions in advance of mining, and lack of roof bolting design criteria for modern roof bolting systems. This research is to develop a method for predicting the roof geology and stability condition in real time during roof bolting operation. Based on such information, roof bolting design criteria for modern roof bolting systems will be developed for implementation in real time. In this quarter, the field, theoretical and programming works have been performed toward achieving the research goals set in the proposal. The selected site and the field testing plan enabled us to test all three aspects of roof geological features. The development of the data interpretation methodologies and the geology mapping computer program have also been preceding well.

  7. The case for using a sacrificial layer of absorbent insulation in the design of flat and low-sloped roofing

    NASA Astrophysics Data System (ADS)

    Stockton, Gregory R.

    2013-05-01

    Beginning about twenty-five years ago, there was a marked increase in the number of single-ply membrane roof designs used to cover and waterproof flat and low-sloped building roofs. Over the past ten years, there has been a substantial increase in the number of installations of white and more reflective single-ply roof systems, mostly using high density cellular foam insulation in the substrate for insulation. A major factor in the increase in the popularity of these highly insulated and more reflective roof systems is the fact that many governments began offering incentives for building owners to use reflective coverings and better insulated roofs. Now, owing to the energy efficient requirements for the design and construction of new buildings put forth in ASHRAE Standard 90.1, "Energy Standard for Buildings Except Low-Rise Residential Buildings" and the world's apparent desire to be "green" (or at least appear to be), more and more roof designs will include these reflective single-ply membranes, which use the cellular foam insulation boards to meet these requirements. Using a lower density traditional insulation will mean that the roof will have to be very thick to comply, increasing the costs of installation. High density cellular foams do not absorb water until time, vapor pressure drive, UV and thermal shock break down the foam and it becomes more absorbent. This could be 5-7 years or longer, depending on the roof construction and other factors. This means that any water that enters the roof through a breach (leak) in the membrane goes straight into the building. This is not a good consequence since the failure mode of any roof is water entering the building. Keeping the water out of the building is the purpose of the waterproofing layer. This paper reviews the techniques of moisture testing on building roofs and infrared (IR) thermography, and puts forth the idea and reasoning behind having a sacrificial layer of very absorbent insulation installed in every

  8. 30 CFR 75.221 - Roof control plan information.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... to be used in the roof, face and rib control system, including, if roof bolts are to be installed— (i... mining approaches within 150 feet of an outcrop. (12) A description of the roof and rib support necessary...

  9. Green roofs for a drier world: effects of hydrogel amendment on substrate and plant water status.

    PubMed

    Savi, Tadeja; Marin, Maria; Boldrin, David; Incerti, Guido; Andri, Sergio; Nardini, Andrea

    2014-08-15

    Climate features of the Mediterranean area make plant survival over green roofs challenging, thus calling for research work to improve water holding capacities of green roof systems. We assessed the effects of polymer hydrogel amendment on the water holding capacity of a green roof substrate, as well as on water status and growth of Salvia officinalis. Plants were grown in green roof experimental modules containing 8 cm or 12 cm deep substrate (control) or substrate mixed with hydrogel at two different concentrations: 0.3 or 0.6%. Hydrogel significantly increased the substrate's water content at saturation, as well as water available to vegetation. Plants grown in 8 cm deep substrate mixed with 0.6% of hydrogel showed the best performance in terms of water status and membrane integrity under drought stress, associated to the lowest above-ground biomass. Our results provide experimental evidence that polymer hydrogel amendments enhance water supply to vegetation at the establishment phase of a green roof. In particular, the water status of plants is most effectively improved when reduced substrate depths are used to limit the biomass accumulation during early growth stages. A significant loss of water holding capacity of substrate-hydrogel blends was observed after 5 months from establishment of the experimental modules. We suggest that cross-optimization of physical-chemical characteristics of hydrogels and green roof substrates is needed to improve long term effectiveness of polymer-hydrogel blends.

  10. Drought versus heat: What's the major constraint on Mediterranean green roof plants?

    PubMed

    Savi, Tadeja; Dal Borgo, Anna; Love, Veronica L; Andri, Sergio; Tretiach, Mauro; Nardini, Andrea

    2016-10-01

    Green roofs are gaining momentum in the arid and semi-arid regions due to their multiple benefits as compared with conventional roofs. One of the most critical steps in green roof installation is the selection of drought and heat tolerant species that can thrive under extreme microclimate conditions. We monitored the water status, growth and survival of 11 drought-adapted shrub species grown on shallow green roof modules (10 and 13cm deep substrate) and analyzed traits enabling plants to cope with drought (symplastic and apoplastic resistance) and heat stress (root membrane stability). The physiological traits conferring efficiency/safety to the water transport system under severe drought influenced plant water status and represent good predictors of both plant water use and growth rates over green roofs. Moreover, our data suggest that high substrate temperature represents a stress factor affecting plant survival to a larger extent than drought per se. In fact, the major cause influencing seedling survival on shallow substrates was the species-specific root resistance to heat, a single and easy measurable trait that should be integrated into the methodological framework for screening and selection of suitable shrub species for roof greening in the Mediterranean. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Laboratory measurements of the drying rates of low-slope roofing systems

    SciTech Connect

    Desjarlais, A.O.; Kyle, D.M.; Childs, P.W.; Christian, J.E.

    1994-05-01

    The service life of a roofing system typically ends when excessive amounts of water have entered the system. Roofing professionals determine whether the existing failed roofing system can be repaired or salvaged by recovering. A key element in this decision is whether the accumulated water will be able to leave the roofing system in a time frame that will prevent irreparable structural damage. There are several combined heat and mass transfer models that can be used to predict drying times for low-slope roofing systems. Very little experimental data exists that can be used to validate the performance of these models. To satisfy these needs, a series of laboratory experiments has been performed. Five test panels, comprised of a plywood deck, four types of roofing insulation, and a single ply membrane were installed in a climate simulator. The test panels were outfitted with temperature sensors and heat flux transducers, and were mounted on load cells. Water was added to the test panels and they were subjected to external diurnal cycles representative of summer and winter conditions for a southern US continental climate. The load cells supplied continuous records of the weights of the test panels; these data were used to compute the drying rates of the test panels. When these experiments were completed, the test panels were ``recovered`` with different thicknesses of insulation and the environmental conditions were reapplied to the test panels. This paper reports on the design and performance of these experiments. The data compiled during these tests supply insight into the effects of meteorological conditions, insulation R-value, insulation water vapor permeance, and roof recover on the rate that water will be removed from low-slope roofing systems.

  12. Energy and peak power saved by passively cooled residences

    NASA Astrophysics Data System (ADS)

    Clark, G.; Loxsom, F.; Doderer, E.; Vieira, R.; Fleischhacker, P.

    1983-11-01

    The energy displacement potential of roof pond cooling in humid climates is sensitive to the type of dehumidification equipment employed and the humidity levels allowed. The simulated energy requirements of roof pond residences assisted by two high efficiency dehumidifier options are described. One dehumidifier was a vapor compression air conditioner with sensible cooling recovery by an air-to-air heat exchanger (improved mechanical dehumidification or IMD). The second option was a solar regenerated desiccant dehumidifier (SRDD). An IMD assisted roof pond house had energy savings of 30 to 65% in humid climates compared to the conventional house; an SRDD assisted roof pond house had energy savings of 70 to 75% in humid climates.

  13. EVALUATION OF ROOF BOLTING REQUIREMENTS BASED ON IN-MINE ROOF BOLTER DRILLING

    SciTech Connect

    Syd S. Peng

    2002-01-15

    Roof bolting is the most popular method for underground openings in the mining industry, especially in the bedded deposits such as coal, potash, salt etc. In fact, all U.S. underground coal mine entries are roof-bolted as required by law. However, roof falls still occur frequently in the roof bolted entries. The two possible reasons are: the lack of knowledge of and technology to detect the roof geological conditions in advance of mining, and lack of roof bolting design criteria for modern roof bolting systems. This research is to develop a method for predicting the roof geology and stability condition in real time during roof bolting operation. Based on such information, roof bolting design criteria for modern roof bolting systems will be developed for implementation in real time. A new mechanical approach to estimate rock strengths using the acquired drilling parameters has been proposed. This approach takes a number of important factors, that have never been studied in the previous researches, into the considerations. Good results have been shown using the new approach on the testing data.

  14. EVALUATION OF ROOF BOLTING REQUIREMENTS BASED ON IN-MINE ROOF BOLTER DRILLING

    SciTech Connect

    Syd S. Peng

    2002-04-15

    Roof bolting is the most popular method for underground openings in the mining industry, especially in the bedded deposits such as coal, potash, salt etc. In fact, all U.S. underground coal mine entries are roof-bolted as required by law. However, roof falls still occur frequently in the roof bolted entries. The two possible reasons are: the lack of knowledge of and technology to detect the roof geological conditions in advance of mining, and lack of roof bolting design criteria for modern roof bolting systems. This research is to develop a method for predicting the roof geology and stability condition in real time during roof bolting operation. Based on such information, roof bolting design criteria for modern roof bolting systems will be developed for implementation in real time. More laboratory tests have been performed in this quarter. The analysis performed on the testing data showed: (1) abnormal rotational accelerations can be used as the indicator of the rock interfaces, and (2) the sharp drops of drilling thrust and torque agree well with the locations of fractures.

  15. Metal Roofing in a "Class" by Itself.

    ERIC Educational Resources Information Center

    Nimtz, Paul D.

    1990-01-01

    The structural standing seam roof has the advantages of ease of application, low maintenance, and low life-cycle costs. Explains and illustrates how the system's concealed clip attachments are designed so that the roof panels can expand and contract independently of the insulation. (MLF)

  16. Roofs--Their Problems and Solutions.

    ERIC Educational Resources Information Center

    Swentkofske, Carl J.

    Most roofs are meant to withstand the elements for a period of 20 years; to achieve this goal, however, school officials must believe in a dedicated maintenance program and sell it to their superiors and school boards. Establishment of a school district roof maintenance program is explained. Job qualifications and training methods for an inhouse…

  17. Roof management alternatives for aging launch infrastructure

    NASA Astrophysics Data System (ADS)

    Firman, Dennis

    This paper describes a Roof Management System approach to better cope with aging and deteriorating infrastructure support facilities at our national spaceports. It describes facility conditions at the two Air Force space launch complexes and highlights an innovative cradle-to-grave alternate approach for repair and maintenance of roofing assets.

  18. Roofs--Their Problems and Solutions.

    ERIC Educational Resources Information Center

    Swentkofske, Carl J.

    Most roofs are meant to withstand the elements for a period of 20 years; to achieve this goal, however, school officials must believe in a dedicated maintenance program and sell it to their superiors and school boards. Establishment of a school district roof maintenance program is explained. Job qualifications and training methods for an inhouse…

  19. Integrated roof wind energy system

    NASA Astrophysics Data System (ADS)

    Suma, A. B.; Ferraro, R. M.; Dano, B.; Moonen, S. P. G.

    2012-10-01

    Wind is an attractive renewable source of energy. Recent innovations in research and design have reduced to a few alternatives with limited impact on residential construction. Cost effective solutions have been found at larger scale, but storage and delivery of energy to the actual location it is used, remain a critical issue. The Integrated Roof Wind Energy System is designed to overcome the current issues of urban and larger scale renewable energy system. The system is built up by an axial array of skewed shaped funnels that make use of the Venturi Effect to accelerate the wind flow. This inventive use of shape and geometry leads to a converging air capturing inlet to create high wind mass flow and velocity toward a vertical-axis wind turbine in the top of the roof for generation of a relatively high amount of energy. The methods used in this overview of studies include an array of tools from analytical modelling, PIV wind tunnel testing, and CFD simulation studies. The results define the main design parameters for an efficient system, and show the potential for the generation of high amounts of renewable energy with a novel and effective system suited for the built environment.

  20. Experimental polyurethane foam roof systems, part 2

    NASA Astrophysics Data System (ADS)

    Alumbaugh, R. L.; Keeton, J. R.; Humm, E. F.

    1983-01-01

    An experimental roofing installation is described in which polyurethane foam (PUF) was spray-applied directly to metal Butlerib-type metal decks, the roof divided into five approximately equal areas, and the PUF protected with five different elastomeric coating systems. Three of the coating systems were damaged by hailstones about a year after installation; these systems were recoated within 3 years of the initial installation. The current coatings include two of the original coating systems - a plural component silicone and a single component silicone - and those applied over the three systems damaged by hail - a single component silicone, an aluminum filled, hydrocarbon-extended catalyzed urethane, and a catalyzed urethane. The performance of these five PUF systems over a 7-year period is reported. The temperature distributions throughout the roof systems are described. The decay in the thermal conductivity of the PUF roof over a 5-year period is presented, and the energy savings realized by foaming the roof are presented.

  1. Soiling of building envelope surfaces and its effect on solar reflectance – Part III: Interlaboratory study of an accelerated aging method for roofing materials

    SciTech Connect

    Sleiman, Mohamad; Chen, Sharon; Gilbert, Haley E.; Kirchstetter, Thomas W.; Berdahl, Paul; Bibian, Erica; Bruckman, Laura S.; Cremona, Dominic; French, Roger H.; Gordon, Devin A.; Emiliani, Marco; Kable, Justin; Ma, Liyan; Martarelli, Milena; Paolini, Riccardo; Prestia, Matthew; Renowden, John; Marco Revel, Gian; Rosseler, Olivier; Shiao, Ming; Terraneo, Giancarlo; Yang, Tammy; Yu, Lingtao; Zinzi, Michele; Akbari, Hashem; Levinson, Ronnen; Destaillats, Hugo

    2015-09-22

    A laboratory method to simulate natural exposure of roofing materials has been reported in a companion article. Here in the current article, we describe the results of an international, nine-participant interlaboratory study (ILS) conducted in accordance with ASTM Standard E691-09 to establish the precision and reproducibility of this protocol. The accelerated soiling and weathering method was applied four times by each laboratory to replicate coupons of 12 products representing a wide variety of roofing categories (single-ply membrane, factory-applied coating (on metal), bare metal, field-applied coating, asphalt shingle, modified-bitumen cap sheet, clay tile, and concrete tile). Participants reported initial and laboratory-aged values of solar reflectance and thermal emittance. Measured solar reflectances were consistent within and across eight of the nine participating laboratories. Measured thermal emittances reported by six participants exhibited comparable consistency. For solar reflectance, the accelerated aging method is both repeatable and reproducible within an acceptable range of standard deviations: the repeatability standard deviation sr ranged from 0.008 to 0.015 (relative standard deviation of 1.2–2.1%) and the reproducibility standard deviation sR ranged from 0.022 to 0.036 (relative standard deviation of 3.2–5.8%). The ILS confirmed that the accelerated aging method can be reproduced by multiple independent laboratories with acceptable precision. In conclusion, this study supports the adoption of the accelerated aging practice to speed the evaluation and performance rating of new cool roofing materials.

  2. Plant species and functional group combinations affect green roof ecosystem functions.

    PubMed

    Lundholm, Jeremy; Macivor, J Scott; Macdougall, Zachary; Ranalli, Melissa

    2010-03-12

    Green roofs perform ecosystem services such as summer roof temperature reduction and stormwater capture that directly contribute to lower building energy use and potential economic savings. These services are in turn related to ecosystem functions performed by the vegetation layer such as radiation reflection and transpiration, but little work has examined the role of plant species composition and diversity in improving these functions. We used a replicated modular extensive (shallow growing- medium) green roof system planted with monocultures or mixtures containing one, three or five life-forms, to quantify two ecosystem services: summer roof cooling and water capture. We also measured the related ecosystem properties/processes of albedo, evapotranspiration, and the mean and temporal variability of aboveground biomass over four months. Mixtures containing three or five life-form groups, simultaneously optimized several green roof ecosystem functions, outperforming monocultures and single life-form groups, but there was much variation in performance depending on which life-forms were present in the three life-form mixtures. Some mixtures outperformed the best monocultures for water capture, evapotranspiration, and an index combining both water capture and temperature reductions. Combinations of tall forbs, grasses and succulents simultaneously optimized a range of ecosystem performance measures, thus the main benefit of including all three groups was not to maximize any single process but to perform a variety of functions well. Ecosystem services from green roofs can be improved by planting certain life-form groups in combination, directly contributing to climate change mitigation and adaptation strategies. The strong performance by certain mixtures of life-forms, especially tall forbs, grasses and succulents, warrants further investigation into niche complementarity or facilitation as mechanisms governing biodiversity-ecosystem functioning relationships in green

  3. Plant Species and Functional Group Combinations Affect Green Roof Ecosystem Functions

    PubMed Central

    Lundholm, Jeremy; MacIvor, J. Scott; MacDougall, Zachary; Ranalli, Melissa

    2010-01-01

    Background Green roofs perform ecosystem services such as summer roof temperature reduction and stormwater capture that directly contribute to lower building energy use and potential economic savings. These services are in turn related to ecosystem functions performed by the vegetation layer such as radiation reflection and transpiration, but little work has examined the role of plant species composition and diversity in improving these functions. Methodology/Principal Findings We used a replicated modular extensive (shallow growing- medium) green roof system planted with monocultures or mixtures containing one, three or five life-forms, to quantify two ecosystem services: summer roof cooling and water capture. We also measured the related ecosystem properties/processes of albedo, evapotranspiration, and the mean and temporal variability of aboveground biomass over four months. Mixtures containing three or five life-form groups, simultaneously optimized several green roof ecosystem functions, outperforming monocultures and single life-form groups, but there was much variation in performance depending on which life-forms were present in the three life-form mixtures. Some mixtures outperformed the best monocultures for water capture, evapotranspiration, and an index combining both water capture and temperature reductions. Combinations of tall forbs, grasses and succulents simultaneously optimized a range of ecosystem performance measures, thus the main benefit of including all three groups was not to maximize any single process but to perform a variety of functions well. Conclusions/Significance Ecosystem services from green roofs can be improved by planting certain life-form groups in combination, directly contributing to climate change mitigation and adaptation strategies. The strong performance by certain mixtures of life-forms, especially tall forbs, grasses and succulents, warrants further investigation into niche complementarity or facilitation as mechanisms

  4. Roof Rockmass Characterization in an Illinois Underground Coal Mine

    NASA Astrophysics Data System (ADS)

    Osouli, Abdolreza; Shafii, Iman

    2016-08-01

    Among all United States underground coal fields, those in Illinois have the highest rate of roof fall events due to their weak and severely moisture sensitive roof rock units. Rockmass characterization is the key initial step in designing safe and economical roof control measures in underground coal mines. In this study, a performance-based roof rockmass characterization is investigated. The geologic conditions as well as underground mine geographic specifications, roof fall analysis, mining method, utilized supplemental roof control measures, and geotechnical properties of roof rock units were considered to link the roof performance to rockmass characterization. The coal mine roof rating (CMRR) rockmass characterization method was used to evaluate the roof conditions and roof support design for an underground coal mine located in the Illinois Coal Basin. The results of several mine visit mappings, laboratory test results, and geotechnical issues and concerns are presented and discussed. The roof support designs are analyzed based on the rockmass characterization and are compared with the observed performance. This study shows that (1) CMRR index is a reasonable method for characterizing roof rockmass; (2) moisture sensitivity and bedding strengths in the horizontal direction are essential parameters for roof support design in mines with weak roof conditions; and (3) the applicability of the analysis of roof bolt system for roof support design of the studied mine is questionable.

  5. Energy performance of an architectural fabric roof: Experimental and analytical results

    SciTech Connect

    Gridley, R.B.; Hart, G.H.; Goss, W.P.

    1985-01-01

    As part of a research program on the thermal performance of translucent fabric-covered buildings, a comparison between measured and predicted fabric roof heat transfer was made. Predictions, based on a steady-state ASHRAE calculation technique, were compared against measured heat transfer through three different roof systems operating under outside weather conditions. The goals of the study were to evaluate the ability to predict the net energy transfer through the fabric roof systems tested, to identify parameters that would contribute to major differences between the measured and predicted results, and to recommend improvements to those parameters. It is expected that those improvements could be made in the computer program, DOE-2. The heat transfer through a single-layer, a double-layer, and a translucent insulated fabric roof system was measured in a vertical heat flow, guarded hot box located outdoors in Granville, Ohio. The results obtained by comparing the measured and predicted net heat transfer through the three roof systems indicated that the ASHRAE calculational technique predicted heat loss to within +. 25%, but it consistently overpredicted the heat gain during cooling load situations.

  6. Green roof stormwater retention: effects of roof surface, slope, and media depth.

    PubMed

    VanWoert, Nicholaus D; Rowe, D Bradley; Andresen, Jeffrey A; Rugh, Clayton L; Fernandez, R Thomas; Xiao, Lan

    2005-01-01

    Urban areas generate considerably more stormwater runoff than natural areas of the same size due to a greater percentage of impervious surfaces that impede water infiltration. Roof surfaces account for a large portion of this impervious cover. Establishing vegetation on rooftops, known as green roofs, is one method of recovering lost green space that can aid in mitigating stormwater runoff. Two studies were performed using several roof platforms to quantify the effects of various treatments on stormwater retention. The first study used three different roof surface treatments to quantify differences in stormwater retention of a standard commercial roof with gravel ballast, an extensive green roof system without vegetation, and a typical extensive green roof with vegetation. Overall, mean percent rainfall retention ranged from 48.7% (gravel) to 82.8% (vegetated). The second study tested the influence of roof slope (2 and 6.5%) and green roof media depth (2.5, 4.0, and 6.0 cm) on stormwater retention. For all combined rain events, platforms at 2% slope with a 4-cm media depth had the greatest mean retention, 87%, although the difference from the other treatments was minimal. The combination of reduced slope and deeper media clearly reduced the total quantity of runoff. For both studies, vegetated green roof systems not only reduced the amount of stormwater runoff, they also extended its duration over a period of time beyond the actual rain event.

  7. Scanning electron microscopy of a blister roof in dystrophic epidermolysis bullosa.

    PubMed

    Almeida, Hiram Larangeira de; Monteiro, Luciane; Marques e Silva, Ricardo; Rocha, Nara Moreira; Scheffer, Hans

    2013-01-01

    In dystrophic epidermolysis bullosa the genetic defect of anchoring fibrils leads to cleavage beneath the basement membrane, with its consequent loss. We performed scanning electron microscopy of an inverted blister roof of a case of dystrophic epidermolysis bullosa, confirmed by immunomapping and gene sequencing. With a magnification of 2000 times a net attached to the blister roof could be easily identified. This net was composed of intertwined flat fibers. With higher magnifications, different fiber sizes could be observed, some thin fibers measuring around 80 nm and thicker ones measuring between 200 and 300 nm.

  8. Scanning electron microscopy of a blister roof in dystrophic epidermolysis bullosa*

    PubMed Central

    de Almeida Jr., Hiram Larangeira; Monteiro, Luciane; Silva, Ricardo Marques e; Rocha, Nara Moreira; Scheffer, Hans

    2013-01-01

    In dystrophic epidermolysis bullosa the genetic defect of anchoring fibrils leads to cleavage beneath the basement membrane, with its consequent loss. We performed scanning electron microscopy of an inverted blister roof of a case of dystrophic epidermolysis bullosa, confirmed by immunomapping and gene sequencing. With a magnification of 2000 times a net attached to the blister roof could be easily identified. This net was composed of intertwined flat fibers. With higher magnifications, different fiber sizes could be observed, some thin fibers measuring around 80 nm and thicker ones measuring between 200 and 300 nm. PMID:24474107

  9. Energy factors and temperature distribution in insulated built-up roofs. Technical note July 1977-January 1980

    SciTech Connect

    Keeton, J.R.; Alumbaugh, R.L.

    1981-02-01

    Surface temperatures of 4-ply built-up roofs insulated with (1) 1 inch of perlite (R = 2.8) and 2-1/2 inches of urethane (R = 19.2) and (2) 1 inch of urethane (R = 7.1) and 1-7/8 inches of glass fiber (R = 7.7) are presented. Energy factors are shown in terms of temperature-time areas defined as solar heat response, cooling (heating) required, radiative cooling, and insulation efficiency. Results indicate that for a black surface, solar heat response is significantly higher in the roof portion with the higher R-value. Solar heat response is directly affected by color of surfacing; lowest to highest values were found with white, white gravel, gray gravel, aluminum-gray, and black. Recommendations are given for reducing surface temperatures of insulated built-up roofs.

  10. Use of treated woods in roof assembly.

    PubMed

    Edlich, Richard F; Winters, Kathryne L; Long, William B; Gubler, K Dean; Britt, L D

    2005-01-01

    On February 12, 2002, the US Environmental Protection Agency (EPA) announced a voluntary decision by industry to move consumer use of treated lumber products away from a variety of pressure-treated wood that contains Arsenate (As) by December 31, 2003, in favor of new alternative wood preservatives. It is the purpose of this report to outline legislative efforts to ban the use of chromated copper arsenate (CCA)-treated wood for residential roofing in the State of Oregon. At the time that the legislation was introduced, it was coincidental that the National Roofing Contractors Association (NRCA) recommended that CCA-treated wood should not be used in residential roofing. A summary of the report is included in this review. Finally, we discuss some of the potentially harmful environmental hazards of wood preservatives on the environment. In addition to the toxicity of pressure-treated wood on our environment, we point out that wood as well as pressure-treated wood assemblies are highly flammable. Consequently, we recommend the use of residential roofing systems that have Class A fire protection for the homeowner. Because residential roof fires remain a life-threatening danger to residential homeowners in the United States, we describe a national fire prevention program for reducing residential roof fires by use of an Underwriters Laboratories Inc. (UL) and National Fire Protection Association Class A fire-rated roof system.

  11. Decision Guide for Roof Slope Selection

    SciTech Connect

    Sharp, T.R.

    1988-01-01

    This decision guide has been written for personnel who are responsible for the design, construction, and replacement of Air Force roofs. It provides the necessary information and analytical tools for making prudent and cost-effective decisions regarding the amount of slope to provide in various roofing situations. Because the expertise and experience of the decision makers will vary, the guide contains both basic slope-related concepts as well as more sophisticated technical data. This breadth of information enables the less experienced user to develop an understanding of roof slope issues before applying the more sophisticated analytical tools, while the experienced user can proceed directly to the technical sections. Although much of this guide is devoted to the analysis of costs, it is not a cost-estimating document. It does, however, provide the reader with the relative costs of a variety of roof slope options; and it shows how to determine the relative cost-effectiveness of different options. The selection of the proper roof slope coupled with good roof design, a quality installation, periodic inspection, and appropriate maintenance and repair will achieve the Air Force's objective of obtaining the best possible roofing value for its buildings.

  12. PERFORMANCE EVALUATION OF A SUSTAINABLE AND ENERGY EFFICIENT RE-ROOFING TECHNOLOGY USING FIELD-TEST DATA

    SciTech Connect

    Biswas, Kaushik; Miller, William A; Childs, Phillip W; Kosny, Jan; Kriner, Scott

    2011-01-01

    Three test attics were constructed to evaluate a new sustainable method of re-roofing utilizing photo-voltaic (PV) laminates, metal roofing panels, and PCM heat sink in the Envelope Systems Research Apparatus (ESRA) facility in the ORNL campus. Figure 1 is a picture of the three attic roofs located adjacent to each other. The leftmost roof is the conventional shingle roof, followed by the metal panel roof incorporating the cool-roof coating, and third from left is the roof with the PCM. On the PCM roof, the PV panels are seen as well; they're labelled from left-to-right as panels 5, 6 and 7. The metal panel roof consists of three metal panels with the cool-roof coating; in further discussion this is referred to as the infrared reflective (IRR) metal roof. The IRR metal panels reflect the incoming solar radiation and then quickly re-emit the remaining absorbed portion, thereby reducing the solar heat gain of the attic. Surface reflectance of the panels were measured using a Solar Spectrum Reflectometer. In the 0.35-2.0 {mu}m wavelength interval, which accounts for more than 94% of the solar energy, the IRR panels have an average reflectance of 0.303. In the infrared portion of the spectrum, the IRR panel reflectance is 0.633. The PCM roof consists of a layer of macro-encapsulated bio-based PCM at the bottom, followed by a 2-cm thick layer of dense fiberglass insulation with a reflective surface on top, and metal panels with pre-installed PV laminates on top. The PCM has a melting point of 29 C (84.2 F) and total enthalpy between 180 and 190 J/g. The PCM was macro-packaged in between two layers of heavy-duty plastic foil forming arrays of PCM cells. Two air cavities, between PCM cells and above the fiberglass insulation, helped the over-the-deck natural air ventilation. It is anticipated that during summer, this extra ventilation will help in reducing the attic-generated cooling loads. The extra ventilation, in conjunction with the PCM heat sink, are used to minimize

  13. 30 CFR 75.221 - Roof control plan information.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Roof control plan information. 75.221 Section... AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Roof Support § 75.221 Roof control plan information. (a) The following information shall be included in each roof control plan: (1) The name...

  14. 30 CFR 75.220 - Roof control plan.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Roof control plan. 75.220 Section 75.220... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Roof Support § 75.220 Roof control plan. (a)(1) Each mine operator shall develop and follow a roof control plan, approved by the District Manager, that is...

  15. 30 CFR 75.213 - Roof support removal.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Roof support removal. 75.213 Section 75.213... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Roof Support § 75.213 Roof support removal. (a)(1) All persons who perform the work of removing permanent roof supports shall be supervised by a...

  16. 30 CFR 75.220 - Roof control plan.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Roof control plan. 75.220 Section 75.220... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Roof Support § 75.220 Roof control plan. (a)(1) Each mine operator shall develop and follow a roof control plan, approved by the District Manager, that is...

  17. 30 CFR 75.220 - Roof control plan.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Roof control plan. 75.220 Section 75.220... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Roof Support § 75.220 Roof control plan. (a)(1) Each mine operator shall develop and follow a roof control plan, approved by the District Manager, that is...

  18. 30 CFR 75.206 - Conventional roof support.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Conventional roof support. 75.206 Section 75... HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Roof Support § 75.206 Conventional roof support. (a) Except in anthracite mines using non-mechanized mining systems, when conventional roof...

  19. 30 CFR 75.206 - Conventional roof support.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Conventional roof support. 75.206 Section 75... HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Roof Support § 75.206 Conventional roof support. (a) Except in anthracite mines using non-mechanized mining systems, when conventional roof...

  20. Cooling concept integration. Phase I final technical report, October 1, 1979-July 31, 1981. [For pre-engineered metal buildings

    SciTech Connect

    Fraker, H.; Glennie, W.; Snyder, M.K.

    1981-08-19

    Before specific test prototypes were developed, six potential evaporative roof cooling configurations with alternative storage and heat transfer mechanisms were examined, and preliminary cost estimates were made. Each system uses a wet roof system which sprays or floods the roof, allowing evaporative heat transfer to the environment. Finite difference thermal network methods were used for the evaluation of the systems. Detailed results including charts of the hourly heat flows during particular days are presented, and the performance is summarized for Las Vegas. (LEW)

  1. Metal and nutrient dynamics on an aged intensive green roof.

    PubMed

    Speak, A F; Rothwell, J J; Lindley, S J; Smith, C L

    2014-01-01

    Runoff and rainfall quality was compared between an aged intensive green roof and an adjacent conventional roof surface. Nutrient concentrations in the runoff were generally below Environmental Quality Standard (EQS) values and the green roof exhibited NO3(-) retention. Cu, Pb and Zn concentrations were in excess of EQS values for the protection of surface water. Green roof runoff was also significantly higher in Fe and Pb than on the bare roof and in rainfall. Input-output fluxes revealed the green roof to be a potential source of Pb. High concentrations of Pb within the green roof soil and bare roof dusts provide a potential source of Pb in runoff. The origin of the Pb is likely from historic urban atmospheric deposition. Aged green roofs may therefore act as a source of legacy metal pollution. This needs to be considered when constructing green roofs with the aim of improving pollution remediation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Do vegetated rooftops attract more mosquitoes? Monitoring disease vector abundance on urban green roofs.

    PubMed

    Wong, Gwendolyn K L; Jim, C Y

    2016-12-15

    Green roof, an increasingly common constituent of urban green infrastructure, can provide multiple ecosystem services and mitigate climate-change and urban-heat-island challenges. Its adoption has been beset by a longstanding preconception of attracting urban pests like mosquitoes. As more cities may become vulnerable to emerging and re-emerging mosquito-borne infectious diseases, the knowledge gap needs to be filled. This study gauges the habitat preference of vector mosquitoes for extensive green roofs vis-à-vis positive and negative control sites in an urban setting. Seven sites in a university campus were selected to represent three experimental treatments: green roofs (GR), ground-level blue-green spaces as positive controls (PC), and bare roofs as negative controls (NC). Mosquito-trapping devices were deployed for a year from March 2015 to 2016. Human-biting mosquito species known to transmit infectious diseases in the region were identified and recorded as target species. Generalized linear models evaluated the effects of site type, season, and weather on vector-mosquito abundance. Our model revealed site type as a significant predictor of vector mosquito abundance, with considerably more vector mosquitoes captured in PC than in GR and NC. Vector abundance was higher in NC than in GR, attributed to the occasional presence of water pools in depressions of roofing membrane after rainfall. Our data also demonstrated seasonal differences in abundance. Weather variables were evaluated to assess human-vector contact risks under different weather conditions. Culex quinquefasciatus, a competent vector of diseases including lymphatic filariasis and West Nile fever, could be the most adaptable species. Our analysis demonstrates that green roofs are not particularly preferred by local vector mosquitoes compared to bare roofs and other urban spaces in a humid subtropical setting. The findings call for a better understanding of vector ecology in diverse urban landscapes

  3. Demonstration of Three Corrosion-Resistant Sustainable Roofing Systems

    DTIC Science & Technology

    2013-06-01

    sloped- roof conversion using standing-seam metal roofing system with heat-shedding coating, and (3) a fiber - glass -reinforced plastic (FRP) panel...the location to demonstrate (1) a heat-resistant metal shingle roofing sys- tem with above-sheathing ventilation (ASV), (2) a sloped- roof conversion...51 Appendix A: Roof Design Drawings for Buildings 8-3846 and 3-2631 (Stone- Coated Shingle System

  4. Stochastic Cooling

    SciTech Connect

    Blaskiewicz, M.

    2011-01-01

    Stochastic Cooling was invented by Simon van der Meer and was demonstrated at the CERN ISR and ICE (Initial Cooling Experiment). Operational systems were developed at Fermilab and CERN. A complete theory of cooling of unbunched beams was developed, and was applied at CERN and Fermilab. Several new and existing rings employ coasting beam cooling. Bunched beam cooling was demonstrated in ICE and has been observed in several rings designed for coasting beam cooling. High energy bunched beams have proven more difficult. Signal suppression was achieved in the Tevatron, though operational cooling was not pursued at Fermilab. Longitudinal cooling was achieved in the RHIC collider. More recently a vertical cooling system in RHIC cooled both transverse dimensions via betatron coupling.

  5. Advantages of a Vertical High-Resolution Distributed-Temperature-Sensing System Used to Evaluate the Thermal Behavior of Green Roofs

    NASA Astrophysics Data System (ADS)

    Hausner, M. B.; Suarez, F. I.; Cousiño, J. A.; Victorero, F.; Bonilla, C. A.; Gironas, J. A.; Vera, S.; Bustamante, W.; Rojas, V.; Leiva, E.; Pasten, P.

    2015-12-01

    Technological innovations used for sustainable urban development, green roofs offer a range of benefits, including reduced heat island effect, rooftop runoff, roof surface temperatures, energy consumption, and noise levels inside buildings, as well as increased urban biodiversity. Green roofs feature layered construction, with the most important layers being the vegetation and the substrate layers located above the traditional roof. These layers provide both insulation and warm season cooling by latent heat flux, reducing the thermal load to the building. To understand and improve the processes driving this thermal energy reduction, it is important to observe the thermal dynamics of a green roof at the appropriate spatial and temporal scales. Traditionally, to observe the thermal behavior of green roofs, a series of thermocouples have been installed at discrete depths within the layers of the roof. Here, we present a vertical high-resolution distributed-temperature-sensing (DTS) system installed in different green roof modules of the Laboratory of Vegetated Infrastructure for Buildings (LIVE -its acronym in Spanish) of the Pontifical Catholic University of Chile. This DTS system allows near-continuous measurement of the thermal profile at spatial and temporal resolutions of approximately 1 cm and 30 s, respectively. In this investigation, the temperature observations from the DTS system are compared with the measurements of a series of thermocouples installed in the green roofs. This comparison makes it possible to assess the value of thermal observations at better spatial and temporal resolutions. We show that the errors associated with lower resolution observations (i.e., from the thermocouples) are propagated in the calculations of the heat fluxes through the different layers of the green roof. Our results highlight the value of having a vertical high-resolution DTS system to observe the thermal dynamics in green roofs.

  6. A Subambient Open Roof Surface under the Mid-Summer Sun.

    PubMed

    Gentle, Angus R; Smith, Geoff B

    2015-09-01

    A novel material open to warm air stays below ambient temperature under maximum solar intensities of mid-summer. It is found to be 11 °C cooler than a commercial white cool roof nearby. A combination of specially chosen polymers and a silver thin film yields values near 100% for both solar reflectance, and thermal emittance at infrared wavelengths from 7.9 to 13 μm.

  7. MC Contracting, Paint, & Roofing, LLC Information Sheet

    EPA Pesticide Factsheets

    MC Contracting, Paint, & Roofing, LLC, d/b/a M.C. Painting & Contractor and M.C. Painting Group (the Company) is located in Philadelphia, Pennsylvania. The settlement involves renovation activities conducted at property constructed prior to 1978.

  8. Carbon sequestration potential of extensive green roofs.

    PubMed

    Getter, Kristin L; Rowe, D Bradley; Robertson, G Philip; Cregg, Bert M; Andresen, Jeffrey A

    2009-10-01

    Two studies were conducted with the objective of quantifying the carbon storage potential of extensive green roofs. The first was performed on eight roofs in Michigan and four roofs in Maryland, ranging from 1 to 6 years in age. All 12 green roofs were composed primarily of Sedum species, and substrate depths ranged from 2.5 to 12.7 cm. Aboveground plant material was harvested in the fall of 2006. On average, these roofs stored 162 g C x m(-2) in aboveground biomass. The second study was conducted on a roof in East Lansing, MI. Twenty plots were established on 21 April 2007 with a substrate depth of 6.0 cm. In addition to a substrate only control, the other plots were sown with a single species of Sedum (S. acre, S. album, S. kamtshaticum, or S. spurium). Species and substrate depth represent typical extensive green roofs in the United States. Plant material and substrate were harvested seven times across two growing seasons. Results at the end of the second year showed that aboveground plant material storage varied by species, ranging from 64 g C x m(-2) (S. acre) to 239 g C x m(-2) (S. album), with an average of 168 g C x m(-2). Belowground biomass ranged from 37 g C x m(-2) (S. acre) to 185 g C x m(-2) (S. kamtschaticum) and averaged 107 g C x m(-2). Substrate carbon content averaged 913 g C x m(-2), with no species effect, which represents a sequestration rate of 100 g C x m(-2) over the 2 years of this study. The entire extensive green roof system sequestered 375 g C x m(-2) in above- and belowground biomass and substrate organic matter.

  9. Liquid storage tank with floating roof structure

    SciTech Connect

    Vaughn, L.G.

    1993-07-27

    In a cylindrical wall storage tank for containing a liquid, said tank is described having a floor, a floatable roof supportable by said contained liquid, said roof including a peripheral seal for engaging the cylindrical wall to maintain a fluid-tight sliding seal therewith, and support means associated with said roof including, the improvement in said tank of, at least one cylindrical guide sleeve extending downwardly from said floatable roof; a shoe depending laterally from said at least one cylindrical guide sleeve's lower end for engaging the tank floor when the level of contained liquid is insufficient to support said floatable roof, said shoe having means forming a passage there through to register a support column and, an elongated support column removably positioned in said at least one cylindrical guide sleeve, of being sufficient length to extend downward beyond the shoe to engage the tank floor, whereby to sustain the floatable roof a predetermined distance above said floor after the contained liquid has drained from the tank.

  10. The effects of high temperature and roof modification on physiological responses of swamp buffalo ( Bubalus bubalis) in the tropics

    NASA Astrophysics Data System (ADS)

    Khongdee, Titaporn; Sripoon, S.; Vajrabukka, C.

    2013-05-01

    The objective of the experiments reported here was to measure the effects of cooling techniques (Modified roof vs Normal roof) on the performance and physiology of 12 young male buffaloes with a similar live weight of 160 kg. The study was conducted at Chainat Agriculture and Technology College, Chainat Province, Thailand. The animals were divided randomly into two groups, each group comprising six buffaloes, and the two groups were studied to evaluate the effects of modified roofing (normal roof fitted with woven polypropylene shade cloth) on the subjects' physiological responses to heat stress under hot humid conditions. The modified roof resulted in lowered heat stress in buffaloes compared to those under a standard roof. The difference was shown by the buffaloes having a significantly lower mean rectal temperature (39.14 ± 0.07 vs 40.00 ± 0.10°C) and plasma cortisol (2.14 ± 0.24 vs 3.38 ± 0.37 ng/ml). The average daily water consumption was significantly lower in the MR group (MR, 29.71 ± 0.86 vs NR, 34.14 ± 1.06 L head -1 day-1), while there was a tendency for the roughage intake to be higher in the MR group compared to that of the NR group (MR, 5.88 ± 0.18 vs NR, 6.44 ± 0.19 kg head-1 -1 day-1; P = 0.0508). It was concluded that roof modification facilitated a reduction in heat load from roof re-radiation, and was an effective means of alleviating thermal stress in young buffaloes.

  11. Assessment of a fiber-optic distributed-temperature-sensing system to monitor the thermal dynamics of vegetated roof

    NASA Astrophysics Data System (ADS)

    Cousiño, J. A.; Hausner, M. B.; Victorero, F.; Bonilla, C.; Gironas, J. A.; Vera, S.; Bustamante, W.; Rojas, V.; Pasten, P.; Suarez, F. I.

    2014-12-01

    Vegetated (green) roofs include a growing media and vegetation layer, and offer a range of benefits such as the reduction of: the heat island effect, rooftop runoff peak flows, roof surface temperatures, energy used for cooling or heating buildings, and noise levels inside infrastructures. Vegetated roofs also offer aesthetic benefits and increase the biodiversity of the urban environment, and are increasingly used in sustainable urban development. Understanding the thermal dynamics of vegetated roofs will make it possible to improve their design and to better assess their impacts on energy efficiency. Here, we evaluate the first vertical high-resolution distributed-temperature-sensing (DTS) system installed in a vegetated roof. This system allows a continuous measurement of the thermal profile within a vegetated roof - going from the interior, upward through the drainage layers and soil substrate of the vegetated roof and ending in the air above the vegetation. Temperatures can be observed as frequently as every 30 s at a spatial resolution on the order of centimeters. This DTS system was installed in the "Laboratory of Vegetal Infrastructure of Buildings" (LIVE - its acronym in Spanish), located in the San Joaquín Campus of the Pontifical Catholic University, Santiago, Chile. The laboratory features 18 experimental modules to investigate different configurations of the vegetated roof layers. The LIVE was designed with the installation of the optical fibers in mind, and the DTS system allows simultaneous monitoring of three or four modules of the LIVE. In this work, we describe the design of this DTS deployment, the calibration metrics obtained using the software provided by the manufacturers, and other calibration algorithms previously developed. We compare the results obtained using single- and double-ended measurements, highlighting strengths and weaknesses of DTS methods. Finally, we present the observations obtained from this biophysical environment

  12. The effects of high temperature and roof modification on physiological responses of swamp buffalo (Bubalus bubalis) in the tropics.

    PubMed

    Khongdee, Titaporn; Sripoon, S; Vajrabukka, C

    2013-05-01

    The objective of the experiments reported here was to measure the effects of cooling techniques (Modified roof vs Normal roof) on the performance and physiology of 12 young male buffaloes with a similar live weight of 160 kg. The study was conducted at Chainat Agriculture and Technology College, Chainat Province, Thailand. The animals were divided randomly into two groups, each group comprising six buffaloes, and the two groups were studied to evaluate the effects of modified roofing (normal roof fitted with woven polypropylene shade cloth) on the subjects' physiological responses to heat stress under hot humid conditions. The modified roof resulted in lowered heat stress in buffaloes compared to those under a standard roof. The difference was shown by the buffaloes having a significantly lower mean rectal temperature (39.14 ± 0.07 vs 40.00 ± 0.10°C) and plasma cortisol (2.14 ± 0.24 vs 3.38 ± 0.37 ng/ml). The average daily water consumption was significantly lower in the MR group (MR, 29.71 ± 0.86 vs NR, 34.14 ± 1.06 L head (-1) day(-1)), while there was a tendency for the roughage intake to be higher in the MR group compared to that of the NR group (MR, 5.88 ± 0.18 vs NR, 6.44 ± 0.19 kg head-1 (-1) day(-1); P = 0.0508). It was concluded that roof modification facilitated a reduction in heat load from roof re-radiation, and was an effective means of alleviating thermal stress in young buffaloes.

  13. Research on the compressive strength of a passenger vehicle roof

    NASA Astrophysics Data System (ADS)

    Zhao, Guanglei; Cao, Jianxiao; Liu, Tao; Yang, Na; Zhao, Hongguang

    2017-05-01

    To study the compressive strength of a passenger vehicle roof, this paper makes the simulation test on the static collapse of the passenger vehicle roof and analyzes the stress and deformation of the vehicle roof under pressure in accordance with the Roof Crush Resistance of Passenger Cars (GB26134-2010). It studies the optimization on the major stressed parts, pillar A, pillar B and the rail of roof, during the static collapse process of passenger vehicle roof. The result shows that the thickness of pillar A and the roof rail has significant influence on the compressive strength of the roof while that of pillar B has minor influence on the compressive strength of the roof.

  14. 40 CFR 65.43 - Fixed roof with an internal floating roof (IFR).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... internal floating roof (IFR). (a) IFR design requirements. The owner or operator who elects to control... installing the control equipment required to comply with § 65.42(b)(1) or (3), visually inspect the internal... 40 Protection of Environment 15 2011-07-01 2011-07-01 false Fixed roof with an internal...

  15. Green roof valuation: a probabilistic economic analysis of environmental benefits.

    PubMed

    Clark, Corrie; Adriaens, Peter; Talbot, F Brian

    2008-03-15

    Green (vegetated) roofs have gained global acceptance as a technologythat has the potential to help mitigate the multifaceted, complex environmental problems of urban centers. While policies that encourage green roofs exist atthe local and regional level, installation costs remain at a premium and deter investment in this technology. The objective of this paper is to quantitatively integrate the range of stormwater, energy, and air pollution benefits of green roofs into an economic model that captures the building-specific scale. Currently, green roofs are primarily valued on increased roof longevity, reduced stormwater runoff, and decreased building energy consumption. Proper valuation of these benefits can reduce the present value of a green roof if investors look beyond the upfront capital costs. Net present value (NPV) analysis comparing a conventional roof system to an extensive green roof system demonstrates that at the end of the green roof lifetime the NPV for the green roof is between 20.3 and 25.2% less than the NPV for the conventional roof over 40 years. The additional upfront investment is recovered at the time when a conventional roof would be replaced. Increasing evidence suggests that green roofs may play a significant role in urban air quality improvement For example, uptake of N0x is estimated to range from $1683 to $6383 per metric ton of NOx reduction. These benefits were included in this study, and results translate to an annual benefit of $895-3392 for a 2000 square meter vegetated roof. Improved air quality leads to a mean NPV for the green roof that is 24.5-40.2% less than the mean conventional roof NPV. Through innovative policies, the inclusion of air pollution mitigation and the reduction of municipal stormwater infrastructure costs in economic valuation of environmental benefits of green roofs can reduce the cost gap that currently hinders U.S. investment in green roof technology.

  16. Evaluation of Physically and Empirically Based Models for the Estimation of Green Roof Evapotranspiration

    NASA Astrophysics Data System (ADS)

    Digiovanni, K. A.; Montalto, F. A.; Gaffin, S.; Rosenzweig, C.

    2010-12-01

    Green roofs and other urban green spaces can provide a variety of valuable benefits including reduction of the urban heat island effect, reduction of stormwater runoff, carbon sequestration, oxygen generation, air pollution mitigation etc. As many of these benefits are directly linked to the processes of evaporation and transpiration, accurate and representative estimation of urban evapotranspiration (ET) is a necessary tool for predicting and quantifying such benefits. However, many common ET estimation procedures were developed for agricultural applications, and thus carry inherent assumptions that may only be rarely applicable to urban green spaces. Various researchers have identified the estimation of expected urban ET rates as critical, yet poorly studied components of urban green space performance prediction and cite that further evaluation is needed to reconcile differences in predictions from varying ET modeling approaches. A small scale green roof lysimeter setup situated on the green roof of the Ethical Culture Fieldston School in the Bronx, NY has been the focus of ongoing monitoring initiated in June 2009. The experimental setup includes a 0.6 m by 1.2 m Lysimeter replicating the anatomy of the 500 m2 green roof of the building, with a roof membrane, drainage layer, 10 cm media depth, and planted with a variety of Sedum species. Soil moisture sensors and qualitative runoff measurements are also recorded in the Lysimeter, while a weather station situated on the rooftop records climatologic data. Direct quantification of actual evapotranspiration (AET) from the green roof weighing lysimeter was achieved through a mass balance approaches during periods absent of precipitation and drainage. A comparison of AET to estimates of potential evapotranspiration (PET) calculated from empirically and physically based ET models was performed in order to evaluate the applicability of conventional ET equations for the estimation of ET from green roofs. Results have

  17. Experimental Investigation of Thermal Performance in a Vehicle Cabin Test Setup With Pcm in the Roof

    NASA Astrophysics Data System (ADS)

    Purusothaman, M.; kota, Saichand; Cornilius, C. Sam; Siva, R.

    2017-05-01

    Heat flow from the roof with radiation through glass windows obviously high level that contributes to the total heat gained of a vehicle cabin. The cabin temperature of closed stationary vehicles in direct sunlight can quickly rise to a very level that may damage property and harm children or pets left in the vehicle. The problem that is faced by many car users today is very hot interior after certain minutes or hours of parking in open or un-shaded parking area. The heat accumulated inside the vehicle with undesired temperature rise would cause the parts of the car’s interior to degrade. Even the passengers are affected with the thermal condition inside the vehicle itself. The passenger has to wait for a certain time before getting into the car to cool down the interior condition either by lowering down the window or switching on the air conditioner at high speed that really affect the fuel consumption. A new roofing structure to improve its total thermal resistance is developed. Its uses phase change material properties to trap the heat from solar radiation and then release it back to the outer atmosphere by external convection when the vehicle is in use or during the nocturnal cycle. Phase change material, which has become an attractive means to store. Thermal energy, which has a wide range of applications, has been used. Phase change material has a high heat of fusion which is able to store and release large amount of energy. This PCM has been insulated in the roof of the vehicle to arrest the heat entering into the vehicle cabin. Experimental and numerical analyses have been conducted to compare the thermal performance of the new roofing structure and the normal roofing. By this experiment, the cooling process of the cabin could be much lower. The experimental investigation revealed that, on a hot day, the interior temperature of the vehicles cabin was approximately 22ºCe higher than the ambient temperature. The results show that the new roofing structure

  18. Fuel consumption impacts of auto roof racks

    DOE PAGES

    Chen, Yuche; Meier, Alan

    2016-03-23

    The after-market roof rack is one of the most common components attached to a vehicle for carrying over-sized items, such as bicycles and skis. It is important to understand these racks' fuel consumption impacts on both individual vehicles and the national fleet because they are widely used. We estimate the national fuel consumption impacts of roof racks using a bottom-up approach. Our model incorporates real-world data and vehicle stock information to enable assessing fuel consumption impacts for several categories of vehicles, rack configurations, and usage conditions. In addition, the model draws on two new data-gathering techniques, on-line forums and crowd-sourcing.more » The results show that nationwide, roof racks are responsible for 0.8‰ of light duty vehicle fuel consumption in 2015, corresponding to 100 million gallons of gasoline per year. Sensitivity analyses show that results are most sensitive to the fraction of vehicles with installed roof racks but carrying no equipment. Here, the aerodynamic efficiency of typical roof racks can be greatly improved and reduce individual vehicle fuel consumption; however, government policies to minimize extensive driving with empty racks--if successful--could save more fuel nationally.« less

  19. Fuel consumption impacts of auto roof racks

    SciTech Connect

    Chen, Yuche; Meier, Alan

    2016-03-23

    The after-market roof rack is one of the most common components attached to a vehicle for carrying over-sized items, such as bicycles and skis. It is important to understand these racks' fuel consumption impacts on both individual vehicles and the national fleet because they are widely used. We estimate the national fuel consumption impacts of roof racks using a bottom-up approach. Our model incorporates real-world data and vehicle stock information to enable assessing fuel consumption impacts for several categories of vehicles, rack configurations, and usage conditions. In addition, the model draws on two new data-gathering techniques, on-line forums and crowd-sourcing. The results show that nationwide, roof racks are responsible for 0.8‰ of light duty vehicle fuel consumption in 2015, corresponding to 100 million gallons of gasoline per year. Sensitivity analyses show that results are most sensitive to the fraction of vehicles with installed roof racks but carrying no equipment. Here, the aerodynamic efficiency of typical roof racks can be greatly improved and reduce individual vehicle fuel consumption; however, government policies to minimize extensive driving with empty racks--if successful--could save more fuel nationally.

  20. Fuel Consumption Impacts of Auto Roof Racks

    SciTech Connect

    Chen, Yuche; Meier, Alan

    2016-05-01

    The after-market roof rack is one of the most common components attached to a vehicle for carrying over-sized items, such as bicycles and skis. It is important to understand these racks' fuel consumption impacts on both individual vehicles and the national fleet because they are widely used. We estimate the national fuel consumption impacts of roof racks using a bottom-up approach. Our model incorporates real-world data and vehicle stock information to enable assessing fuel consumption impacts for several categories of vehicles, rack configurations, and usage conditions. In addition, the model draws on two new data-gathering techniques, on-line forums and crowd-sourcing. The results show that nationwide, roof racks are responsible for 0.8% of light duty vehicle fuel consumption in 2015, corresponding to 100 million gallons of gasoline per year. Sensitivity analyses show that results are most sensitive to the fraction of vehicles with installed roof racks but carrying no equipment. The aerodynamic efficiency of typical roof racks can be greatly improved and reduce individual vehicle fuel consumption; however, government policies to minimize extensive driving with empty racks--if successful--could save more fuel nationally.

  1. Roofing as a source of nonpoint water pollution.

    PubMed

    Chang, Mingteh; McBroom, Matthew W; Scott Beasley, R

    2004-12-01

    Sixteen wooden structures with two roofs each were installed to study runoff quality for four commonly used roofing materials (wood shingle, composition shingle, painted aluminum, and galvanized iron) at Nacogdoches, Texas. Each roof, either facing NW or SE, was 1.22 m wide x 3.66 m long with a 25.8% roof slope. Thus, there were 32 alternatively arranged roofs, consisting of four roof types x two aspects x four replicates, in the study. Runoff from the roofs was collected through galvanized gutters, downspouts, and splitters. The roof runoff was compared to rainwater collected by a wet/dry acid rain collector for the concentrations of eight water quality variables, i.e. Cu(2+), Mn(2+), Pb(2+), Zn(2+), Mg(2+), Al(3+), EC and pH. Based on 31 storms collected between October 1997 and December 1998, the results showed: (1) concentrations of pH, Cu, and Zn in rainwater already exceed the EPA freshwater quality standards even without pollutant inputs from roofs, (2) Zn and Cu, the two most serious pollutants in roof runoff, exceeded the EPA national freshwater water quality standards in virtually 100% and more than 60% of the samples, respectively, (3) pH, EC, and Zn were the only three variables significantly affected by roofing materials, (4) differences in Zn concentrations were significant among all roof types and between all roof runoff and rainwater samples, (5) although there were no differences in Cu concentrations among all roof types and between roof runoff and rainwater, all means and medians of runoff and rainwater exceeded the national water quality standards, (6) water quality from wood shingles was the worst among the roof types studied, and (7) although SE is the most frequent and NW the least frequent direction for incoming storms, only EC, Mg, Mn, and Zn in wood shingle runoff from the SE were significantly higher than those from the NW; the two aspects affected no other elements in runoff from the other three roof types. Also, Zn concentrations from

  2. Weathering of Roofing Materials-An Overview

    SciTech Connect

    Berdahl, Paul; Akbari, Hashem; Levinson, Ronnen; Miller, William A.

    2006-03-30

    An overview of several aspects of the weathering of roofing materials is presented. Degradation of materials initiated by ultraviolet radiation is discussed for plastics used in roofing, as well as wood and asphalt. Elevated temperatures accelerate many deleterious chemical reactions and hasten diffusion of material components. Effects of moisture include decay of wood, acceleration of corrosion of metals, staining of clay, and freeze-thaw damage. Soiling of roofing materials causes objectionable stains and reduces the solar reflectance of reflective materials. (Soiling of non-reflective materials can also increase solar reflectance.) Soiling can be attributed to biological growth (e.g., cyanobacteria, fungi, algae), deposits of organic and mineral particles, and to the accumulation of flyash, hydrocarbons and soot from combustion.

  3. 46. C. 1854 BUILDING ATTIC ROOF SPACE, VIEW OF KING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    46. C. 1854 BUILDING ATTIC ROOF SPACE, VIEW OF KING POST TRUSS ALONG LENGTH OF THE BUILDING. RAILS ON FLOOR FOR MOVEMENT OF GOODS STORED IN ROOF SPACE. - Continental Gin Company, Prattville, Autauga County, AL

  4. Thermoplastic Single-Ply Roof Relieves Water Damage and Inconvenience.

    ERIC Educational Resources Information Center

    Williams, Jennifer Lynn

    2002-01-01

    Assesses use of thermoplastic single-ply roofs by North Carolina's Mars Hill College to prevent leaks, reduce maintenance costs, and enhance the value of their older historic buildings. Administrators comment on the roof's installation efficiency and cleanliness. (GR)

  5. BLACKSMITH SHOP ROOF STRUCTURE AT JUNCTION BETWEEN 60 FT. AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    BLACKSMITH SHOP ROOF STRUCTURE AT JUNCTION BETWEEN 60 FT. AND 90 FT. SPAN ROOF TRUSSES, LOOKING SOUTH. - Southern Pacific, Sacramento Shops, Blacksmith Shop, 111 I Street, Sacramento, Sacramento County, CA

  6. 30 CFR 75.221 - Roof control plan information.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... address of the company. (2) The name, address, mine identification number and location of the mine. (3... to be used in the roof, face and rib control system, including, if roof bolts are to be installed— (i...

  7. 13. INTERIOR OF TAN 629 HANGAR, TAKEN ON LOW ROOF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. INTERIOR OF TAN 629 HANGAR, TAKEN ON LOW ROOF ON WEST SIDE, FACING SOUTH. SHOWS SMC ROOF UTILITY PAD. - Idaho National Engineering Laboratory, Test Area North, Hangar No. 629, Scoville, Butte County, ID

  8. Eastern portal, looking W. Note hipped roof covered with wood ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Eastern portal, looking W. Note hipped roof covered with wood shingles, added in 1993. The hipped roof is unique in U.S. covered bridges. - Doe River Bridge, Spanning Doe River, Third Avenue, Elizabethton, Carter County, TN

  9. 5. ROOF DETAIL, LOOKING EAST TOWARD SECOND FLOOR WAREHOUSE FROM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. ROOF DETAIL, LOOKING EAST TOWARD SECOND FLOOR WAREHOUSE FROM ROOF OF ASSEMBLY AREA. - Ford Motor Company Long Beach Assembly Plant, Assembly Building, 700 Henry Ford Avenue, Long Beach, Los Angeles County, CA

  10. The Map to Cost-Effective Summer Roofing.

    ERIC Educational Resources Information Center

    Waldron, Larry W.

    1988-01-01

    Roofing is one of the major expense items in school district maintenance budgets. Outlines steps to take in project planning, developing budget estimates and specifications, and completing a roofing project on time. (MLF)

  11. Predicting moisture problems in low-slope roofing

    SciTech Connect

    Desjarlais, A.O.; Byars, N.A.

    1998-11-01

    Moisture intrusion is the major reason why low-slope roofing systems fail prematurely. With approximately 75% of all roofing activity being reroofing, the roofing professional is faced with deciding what to do with an existing wet roof on almost a daily basis. This paper describes finite-difference computer modeling that has been performed to address moisture control in low-slope roof systems. Based on a large database of finite difference modeling results, algorithms have been developed that allow the roofing practitioners to simply determine if a roofing system design requires a vapor retarder or if the system can be modified to enhance its tolerance for small leaks. This paper illustrates how modeling results were obtained, describes the process employed to develop the algorithms, and demonstrates how these algorithms can be used to design a moisture tolerant low-slope roof. The range of applicability and limitations of these algorithms is also detailed.

  12. Thermoplastic Single-Ply Roof Relieves Water Damage and Inconvenience.

    ERIC Educational Resources Information Center

    Williams, Jennifer Lynn

    2002-01-01

    Assesses use of thermoplastic single-ply roofs by North Carolina's Mars Hill College to prevent leaks, reduce maintenance costs, and enhance the value of their older historic buildings. Administrators comment on the roof's installation efficiency and cleanliness. (GR)

  13. Interior view of the Sheet Metal Shop showing the roof ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior view of the Sheet Metal Shop showing the roof trusses and corrugated metal roof covering, view facing northwest - Kahului Cannery, Plant No. 28, Boiler House, Sheet Metal and Electrical Shops, 120 Kane Street, Kahului, Maui County, HI

  14. 46. OCTAGONAL & WEST TOWERS FROM SOUTH TOWER ROOF, LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    46. OCTAGONAL & WEST TOWERS FROM SOUTH TOWER ROOF, LOOKING NORTHWEST, WITH WEST WING ROOF - Smithsonian Institution Building, 1000 Jefferson Drive, between Ninth & Twelfth Streets, Southwest, Washington, District of Columbia, DC

  15. 42. SOUTHEAST TOWER & EAST WING ROOF FROM SOUTH TOWER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    42. SOUTHEAST TOWER & EAST WING ROOF FROM SOUTH TOWER ROOF, LOOKING EAST BY NORTHEAST - Smithsonian Institution Building, 1000 Jefferson Drive, between Ninth & Twelfth Streets, Southwest, Washington, District of Columbia, DC

  16. 14. DETAIL OF ROOF SUPPORT BEAMS BRACED AGAINST HEXAGONAL WOODEN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. DETAIL OF ROOF SUPPORT BEAMS BRACED AGAINST HEXAGONAL WOODEN COMPRESSION RING AT TOP OF CENTRAL ROOF TRUSS. - Saratoga Gas Light Company, Gasholder No. 2, Niagara Mohawk Power Corporation Substation Facility, intersection of Excelsior & East Avenues, Saratoga Springs, NY

  17. Mine roof drill bits that save money

    SciTech Connect

    Ford, L.M.

    1982-04-01

    Sandia National Laboratories, Albuquerque, NM, has developed advanced technology roof bolt drill bits which have demonstrated longer life, higher penetration rates at lower thrust and torque, and lower specific energy than conventional roof bolt drill bits. This is achieved through use of advanced technology cutting materials and novel bit body designs. These bits have received extensive laboratory and mine testing. Their performance has been evaluated and estimates of their value in reducing coal production costs have been made. The work was sponsored by the United States Department of Energy.

  18. Solar-Heated and Cooled Office Building--Columbus, Ohio

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Final report documents solar-energy system installed in office building to provide space heating, space cooling and domestic hot water. Collectors mounted on roof track Sun and concentrate rays on fluid-circulating tubes. Collected energy is distributed to hot-water-fired absorption chiller and space-heating and domestic-hot-water preheating systems.

  19. 29 CFR 570.67 - Occupations in roofing operations and on or about a roof (Order 16).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... pitch, asphalt prepared paper, tile, composite roofing materials, slate, metal, translucent materials..., roofing helper, materials handler and tending a tar heater. (c) Exemptions. This section shall not apply...) and (c)....

  20. 29 CFR 570.67 - Occupations in roofing operations and on or about a roof (Order 16).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... pitch, asphalt prepared paper, tile, composite roofing materials, slate, metal, translucent materials..., roofing helper, materials handler and tending a tar heater. (c) Exemptions. This section shall not apply...) and (c)....

  1. ROOFER Inventory Procedures and Inspection Manual for Metal Panel Roofing

    DTIC Science & Technology

    2012-12-01

    from the NRCA Roofing Manual: Metal Panel and SPF Roof Systems – 2012, with the permission of the Na- tional Roofing Contractor Association (NRCA...RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE ( DD -MM-YYYY) December 2012 2. REPORT TYPE Final 3. DATES COVERED (From - To) 4. TITLE

  2. 30 CFR 75.213 - Roof support removal.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... persons who perform the work of removing permanent roof supports shall be supervised by a management... mining experience shall perform permanent roof support removal work. (b) Prior to the removal of... where— (1) Roof bolt torque or tension measurements or the condition of conventional support...

  3. 40 CFR 65.44 - External floating roof (EFR).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... breaker vents) and rim space vents, each opening in the noncontact external floating roof shall provide a... they are closed. (iii) Except for automatic bleeder vents, rim space vents, roof drains, and leg... and rim space vents shall be equipped with a gasket. (v) Each roof drain that empties into the...

  4. 40 CFR 65.44 - External floating roof (EFR).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... breaker vents) and rim space vents, each opening in the noncontact external floating roof shall provide a... they are closed. (iii) Except for automatic bleeder vents, rim space vents, roof drains, and leg... and rim space vents shall be equipped with a gasket. (v) Each roof drain that empties into the...

  5. 40 CFR 65.44 - External floating roof (EFR).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 15 2010-07-01 2010-07-01 false External floating roof (EFR). 65.44... (CONTINUED) CONSOLIDATED FEDERAL AIR RULE Storage Vessels § 65.44 External floating roof (EFR). (a) EFR... emissions by using an external floating roof shall comply with the design requirements listed in...

  6. 49 CFR 238.441 - Emergency roof access.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Emergency roof access. 238.441 Section 238.441... Equipment § 238.441 Emergency roof access. (a) Existing passenger cars and power cars. Each passenger car..., 2011, shall have a minimum of one roof hatch emergency access location with a minimum opening of...

  7. 49 CFR 238.123 - Emergency roof access.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Emergency roof access. 238.123 Section 238.123... § 238.123 Emergency roof access. Except as provided in § 238.441 of this chapter— (a) Number and... or after April 1, 2011, shall have a minimum of two emergency roof access locations, each with...

  8. 49 CFR 238.123 - Emergency roof access.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Emergency roof access. 238.123 Section 238.123... § 238.123 Emergency roof access. Except as provided in § 238.441 of this chapter— (a) Number and... or after April 1, 2011, shall have a minimum of two emergency roof access locations, each with...

  9. Which Roof is Tops? Grades PreK-2.

    ERIC Educational Resources Information Center

    Rushton, Erik; Ryan, Emily; Swift, Charles

    This introductory activity explores the advantages of different roof shapes for different climates or situations. It addresses questions such as "When you walk or drive around your neighborhood, what do the roofs look like?" and "What if you lived in an area with a different climate, how would that affect the style of roof that you might find?"…

  10. 49 CFR 238.441 - Emergency roof access.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Emergency roof access. 238.441 Section 238.441... Equipment § 238.441 Emergency roof access. (a) Existing passenger cars and power cars. Each passenger car..., 2011, shall have a minimum of one roof hatch emergency access location with a minimum opening of...

  11. Recovery and reuse of asphalt roofing waste. Final report

    SciTech Connect

    Desai, S.; Graziano, G.; Shepherd, P.

    1984-02-02

    Burning of asphalt roofing waste as a fuel and incorporating asphalt roofing waste in bituminous paving were identified as the two outstanding resource recovery concepts out of ten studied. Four additional concepts might be worth considering under different market or technical circumstances. Another four concepts were rated as worth no further consideration at this time. This study of the recovery of the resource represented in asphalt roofing waste has identified the sources and quantities of roofing waste. About six million cubic yards of scrap roofing are generated annually in the United States, about 94% from removal of old roofing at the job site and the remainder from roofing material production at factories. Waste disposal is a growing problem for manufacturers and contractors. Nearly all roofing waste is hauled to landfills at a considerable expense to roofing contractors and manufacturers. Recovery of the roofing waste resource should require only a modest economic incentive. The asphalt contained in roofing waste represents an energy resource of more than 7 x 10/sup 13/ Btu/year. Another 1 x 10/sup 13/ Btu/year may be contained in field-applied asphalt on commercial building roofs. The two concepts recommended by this study appear to offer the broadest applicability, the most favorable economics, and the highest potential for near-term implementation to reuse this resource.

  12. Surface energy balance of an extensive green roof as quantified by full year eddy-covariance measurements.

    PubMed

    Heusinger, Jannik; Weber, Stephan

    2017-01-15

    Green roofs are discussed as a promising type of green infrastructure to lower heat stress in cities. In order to enhance evaporative cooling, green roofs should ideally have similar Bowen ratio (β=sensible heat flux/latent heat flux) characteristics such as rural sites, especially during summer periods with high air temperatures. We use the eddy-covariance (EC) method to quantify the energy balance of an 8600m(2) extensive, non-irrigated green roof at the Berlin Brandenburg Airport, Germany over a full annual cycle. To understand the influence of water availability on green roof-atmosphere energy exchange, we studied dry and wet periods and looked into functional relationships between leaf area, volumetric water content (VWC) of the substrate, shortwave radiation and β. The surface energy balance was dominated by turbulent heat fluxes in comparison to conductive substrate heat fluxes. The Bowen ratio was slightly below unity on average but highly variable due to ambient meteorology and substrate water availability, i.e. β increased to 2 in the summer season. During dry periods mean daytime β was 3, which is comparable to typical values of urban instead of rural sites. In contrast, mean daytime β was 0.3 during wet periods. Following a summer wet period the green roof maximum daily evapotranspiration (ET) was 3.3mm, which is a threefold increase with respect to the mean summer ET. A multiple regression model indicated that the substrate VWC at the present site has to be >0.11m(3)m(-3) during summer high insolation periods (>500Wm(-2)) in order to maintain favourable green roof energy partitioning, i.e. mid-day β<1. The microclimate benefit of urban green roofs can be significantly optimised by using sustainable irrigation approaches. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Demonstration of Improved Technologies for Rehabilitating Metal Roofing in Severely Corrosive Environments

    DTIC Science & Technology

    2012-03-01

    pur- lins and roof panels. The above- sheathing ventilation between the old and new roof should improve the thermal performance in cooling and wet cli...to be revised to include removal of the shingles and sheathing and addition of a new SSSMR with new metal fas- cia and soffit (Figure 24 and Figure 25...S~II!’C~; 11𔃻:.e.e>~ J.fmJ’ A~~ wum~t S:it~<cr. • .Al’J)Gil’Ct:ltf (.~HI) "’’" 6 Mar ~s • Thuro - cor cle’an~a an gut:~t’$ 10 rancw croctagK mat

  14. 40 CFR 65.43 - Fixed roof with an internal floating roof (IFR).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... drains, each opening shall be equipped with a gasketed cover or gasketed lid. (iii) Each penetration of... cover, access hatch, gauge float well, or lid on any opening in the internal floating roof shall...

  15. 40 CFR 65.43 - Fixed roof with an internal floating roof (IFR).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... drains, each opening shall be equipped with a gasketed cover or gasketed lid. (iii) Each penetration of... cover, access hatch, gauge float well, or lid on any opening in the internal floating roof shall...

  16. Cooling wall

    SciTech Connect

    Nosenko, V.I.

    1995-07-01

    Protecting the shells of blast furnaces is being resolved by installing cast iron cooling plates. The cooling plates become non-operational in three to five years. The problem is that defects occur in manufacturing the cooling plates. With increased volume and intensity of work placed on blast furnaces, heat on the cast iron cooling plates reduces their reliability that limits the interim repair period of blast furnaces. Scientists and engineers from the Ukraine studied this problem for several years, developing a new method of cooling the blast furnace shaft called the cooling wall. Traditional cast iron plates were replaced by a screen of steel tubes, with the area between the tubes filled with fireproof concrete. Before placing the newly developed furnace shaft into operation, considerable work was completed such as theoretical calculations, design, research of temperature fields and tension. Continual testing over many years confirms the value of this research in operating blast furnaces. The cooling wall works with water cooling as well as vapor cooling and is operating in 14 blast furnaces in the Ukraine and two in Russia, and has operated for as long as 14 years.

  17. Cool & Connected

    EPA Pesticide Factsheets

    The Cool & Connected planning assistance program helps communities develop strategies and an action plan for using broadband to promote environmentally and economically sustainable community development.

  18. Practical aspects of mobile roof support usage

    SciTech Connect

    Chase, F.E.; Mark, C.; Barczak, T.M.

    1996-12-01

    Mobile roof supports are shield-type support units mounted on crawler tracks. Mobile roof support (MRS) units are used during retreat mining, and they eliminate the setting of roadway, turn, and crosscut breaker posts which are required during pillar recovery operations. Mobiles are a more effective ground support than timbers, and their usage enhance the safety of section personnel and reduces material handling injuries. MRS usage is rapidly increasing, and approximately 40 U.S. coal mines have successfully employed this relatively new technology. This paper is in response to increasing requests from operators, State and Federal Regulatory Agencies, and others on the practical aspects of MRS usage in underground coal mines. During this investigation, nearly half of the U.S. mines which have utilized mobiles were visited. This report depicts the more common pillar extraction methods which operators have found success. The Christmas tree and outside lift methods are illustrated and discussed. Roof control plans that do not require breaker posts or allow pillar extraction with fewer than four mobiles are also examined. In addition, operators` experiences with setting pressures, loads, and rates of loading during pillar extraction are addressed. Mining and support strategies to more effectively control hillseams, weak roof, and gob overrides which have entrapped equipment are also discussed.

  19. Accidents due to falls from roof slabs.

    PubMed

    Rudelli, Bruno Alves; Silva, Marcelo Valerio Alabarce da; Akkari, Miguel; Santili, Claudio

    2013-01-01

    CONTEXT AND OBJECTIVE Falls from the roof slabs of houses are accidents of high potential severity that occur in large Brazilian cities and often affect children and adolescents. The aims of this study were to characterize the factors that predispose towards this type of fall involving children and adolescents, quantify the severity of associated lesions and suggest preventive measures. DESIGN AND SETTING Descriptive observational prospective longitudinal study in two hospitals in the metropolitan region of São Paulo. METHODS Data were collected from 29 cases of falls from roof slabs involving children and adolescents between October 2008 and October 2009. RESULTS Cases involving males were more prevalent, accounting for 84%. The predominant age group was schoolchildren (7 to 12 years old; 44%). Leisure activities were most frequently being practiced on the roof slab at the time of the fall (86%), and flying a kite was the most prevalent game (37.9%). In 72% of the cases, the children were unaccompanied by an adult responsible for them. Severe conditions such as multiple trauma and traumatic brain injuries resulted from 79% of the accidents. CONCLUSION Falls from roof slabs are accidents of high potential severity, and preventive measures aimed towards informing parents and guardians about the dangers and risk factors associated with this type of accident are needed, along with physical protective measures, such as low walls around the slab and gates with locks to restrict free access to these places.

  20. Waste and Abuse: Public School Roofing Projects.

    ERIC Educational Resources Information Center

    2000

    This report details the results of a comprehensive inquiry by New Jersey into one aspect of school construction, the repair and replacement of roof systems, which represents the single most expensive and integral component of a school's physical structure. The investigation began in late 1997 after confidential complaints suggested abuse in the…

  1. Thrust bolting: roof bolt support apparatus

    DOEpatents

    Tadolini, Stephen C.; Dolinar, Dennis R.

    1992-01-01

    A method of installing a tensioned roof bolt in a borehole of a rock formation without the aid of a mechanical anchoring device or threaded tensioning threads by applying thrust to the bolt (19) as the bonding material (7') is curing to compress the strata (3) surrounding the borehole (1), and then relieving the thrust when the bonding material (7') has cured.

  2. Roofing with Urethane: Pro and Con.

    ERIC Educational Resources Information Center

    Kinzer, Michael; Scott, Gerald P.E.

    1981-01-01

    Gerald Scott's favorable evaluation of the foamed polyurethane roofing system is based on experiences with 55 buildings at Texas A & M. Michael Kinzer, an architect at Colorado State University, disagrees and claims that the system is difficult to install and maintain, and the cost prohibitive. (MLF)

  3. 7 CFR 3201.11 - Roof coatings.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., overlap with the following EPA-designated recovered content product: Roofing Materials. USDA is requesting that manufacturers of these qualifying biobased products provide information for the BioPreferred Web... not the product contains any type of recovered material, in addition to biobased ingredients,...

  4. 7 CFR 3201.11 - Roof coatings.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., overlap with the following EPA-designated recovered content product: Roofing Materials. USDA is requesting that manufacturers of these qualifying biobased products provide information for the BioPreferred Web... not the product contains any type of recovered material, in addition to biobased ingredients,...

  5. 7 CFR 3201.11 - Roof coatings.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., overlap with the following EPA-designated recovered content product: Roofing Materials. USDA is requesting that manufacturers of these qualifying biobased products provide information for the BioPreferred Web... not the product contains any type of recovered material, in addition to biobased ingredients,...

  6. Update on the Million Solar Roofs Initiative

    SciTech Connect

    Herig, C.

    1999-05-09

    The Million Solar Roofs Initiative, announced by the President in June of 1997, spans a period of twelve years and intends to increase domestic deployment of solar technologies. This paper presents an overview of the development of the initiative and significant activities to date.

  7. Roof Shield for Advance and Retreat Mining

    NASA Technical Reports Server (NTRS)

    Lewis, E. V.

    1985-01-01

    Shield sections change their configuration to suit mining mode. Articulation cylinders raise rear shield to advance position, and locking cylinders hold it there. To change to retreat position articulation cylinders lower shield. Locking pins at edge of outermost shield plate latch shield to chock base. Shield accommodates roof heights ranging from 36 to 60 inches (0.9 to 1.52 meters).

  8. Roofing with Urethane: Pro and Con.

    ERIC Educational Resources Information Center

    Kinzer, Michael; Scott, Gerald P.E.

    1981-01-01

    Gerald Scott's favorable evaluation of the foamed polyurethane roofing system is based on experiences with 55 buildings at Texas A & M. Michael Kinzer, an architect at Colorado State University, disagrees and claims that the system is difficult to install and maintain, and the cost prohibitive. (MLF)

  9. 7 CFR 2902.11 - Roof coatings.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... single-coat monolith coating system. (b) Minimum biobased content. The minimum biobased content is 20... content product. Qualifying biobased products that fall under this item may, in some cases, overlap with... determining whether or not a qualifying biobased product overlaps with recovered content roofing materials and...

  10. 7 CFR 2902.11 - Roof coatings.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... single-coat monolith coating system. (b) Minimum biobased content. The minimum biobased content is 20... content product. Qualifying biobased products that fall under this item may, in some cases, overlap with... determining whether or not a qualifying biobased product overlaps with recovered content roofing materials and...

  11. Predictive Service Life Tests for Roofing Membranes: Phase 1

    DTIC Science & Technology

    1993-12-01

    Heat) Solar Radiation Water Ozone Hail 6 DEGRADATION MECHANISMS ............................................. 29 BUR PVC Modified Bitumens EPDM 7...March 1975). The natural environmental factors are: * Terrain * Temperature * Humidity - Pressure * Solar Radiation • Rain * Solid Precipitation...mountains, because the magnitude of the extremes of temperature, solar radiation, and wind in these remote regions is great and requires individual

  12. A new look at moisture control in low slope roofing

    SciTech Connect

    Desjarlais, A.O.; Byars, N.A.

    1997-03-01

    One of the criteria for a moisture-tolerant roof is that moisture accumulation in a roofing system must not be large enough to cause condensation within the roof, since this can damage the insulation and reduce its effectiveness. Failing this criterion would require the inclusion of a vapor retarder into the roofing system. We have tested this requirement using computer simulations for a series of new roofing systems and environmental conditions. This paper uses the database from those simulations to develop a simplified method to predict condensation control using only variables associated with the roof and environmental conditions. This method assesses the potential for condensation within the roof assembly without having to perform a computer simulation. Using the computer simulation output data, the moisture accumulation inside each of the roofing systems was calculated. A critical threshold of moisture accumulation was assigned by analyzing the roofing systems which fail to prevent condensation from occurring within the roofing system. An empirical equation for moisture accumulation as a function of roof system and environmental condition variables is developed. The moisture accumulation calculated using this relationship correlates well with the moisture accumulation based on the results of computer simulations. The ability of these two different relationships for moisture accumulation to predict condensation control using the established critical threshold is assessed. Accuracy of both methods is over 95%.

  13. System effects on the thermal aging of experimental polyisocyanurate roof insulation foamed with an alternative blowing agent

    SciTech Connect

    Desjarlais, A.O.; Christian, J.E; Linkous, R.L.

    1992-09-01

    Experimental polyisocyanurate foam roof insulation with 0.6mm thick permeable black facers blown with HCFC-141b installed on test roofs at the Oak Ridge National Laboratory for almost three years show various degrees of aging. Four roof systems are being monitored to determine the effect of system type on board aging. The four systems are comprised of a dry stack of insulation boards covered, respectively, by a loose-laid single ply white membrane, a loose-laid single ply black membrane, a built-up roof (BUR), and a fully adhered ethylene propylene diene monomer (EPDM) membrane. A comparison to periodic laboratory testing of the insulation boards is also included. The data analysis program, PROPOR, has been used to estimate the thermal properties of the polyisocyanurate foam insulation, to gain insight into the data and the pure conduction model used by PROPOR through sequential value and residual analyses, and to estimate precision of the results with confidence intervals. These confidence intervals are then used to determine if the differences noted due to aging of the insulation boards contained within these systems are statistically significant.

  14. System effects on the thermal aging of experimental polyisocyanurate roof insulation foamed with an alternative blowing agent

    SciTech Connect

    Desjarlais, A.O.; Christian, J.E; Linkous, R.L.

    1992-01-01

    Experimental polyisocyanurate foam roof insulation with 0.6mm thick permeable black facers blown with HCFC-141b installed on test roofs at the Oak Ridge National Laboratory for almost three years show various degrees of aging. Four roof systems are being monitored to determine the effect of system type on board aging. The four systems are comprised of a dry stack of insulation boards covered, respectively, by a loose-laid single ply white membrane, a loose-laid single ply black membrane, a built-up roof (BUR), and a fully adhered ethylene propylene diene monomer (EPDM) membrane. A comparison to periodic laboratory testing of the insulation boards is also included. The data analysis program, PROPOR, has been used to estimate the thermal properties of the polyisocyanurate foam insulation, to gain insight into the data and the pure conduction model used by PROPOR through sequential value and residual analyses, and to estimate precision of the results with confidence intervals. These confidence intervals are then used to determine if the differences noted due to aging of the insulation boards contained within these systems are statistically significant.

  15. Establishing Green Roof Infrastructure Through Environmental Policy Instruments

    NASA Astrophysics Data System (ADS)

    Carter, Timothy; Fowler, Laurie

    2008-07-01

    Traditional construction practices provide little opportunity for environmental remediation to occur in urban areas. As concerns for environmental improvement in urban areas become more prevalent, innovative practices which create ecosystem services and ecologically functional land cover in cities will be in higher demand. Green roofs are a prime example of one of these practices. The past decade has seen the North American green roof industry rapidly expand through international green roof conferences, demonstration sites, case studies, and scientific research. This study evaluates existing international and North American green roof policies at the federal, municipal, and community levels. Green roof policies fall into a number of general categories, including direct and indirect regulation, direct and indirect financial incentives, and funding of demonstration or research projects. Advantages and disadvantages of each category are discussed. Salient features and a list of prompting standards common to successfully implemented green roof strategies are then distilled from these existing policies. By combining these features with data collected from an experimental green roof site in Athens, Georgia, the planning and regulatory framework for widespread green roof infrastructure can be developed. The authors propose policy instruments be multi-faceted and spatially focused, and also propose the following recommendations: (1) Identification of green roof overlay zones with specifications for green roofs built in these zones. This spatial analysis is important for prioritizing areas of the jurisdiction where green roofs will most efficiently function; (2) Offer financial incentives in the form of density credits and stormwater utility fee credits to help overcome the barriers to entry of the new technology; (3) Construct demonstration projects and institutionalize a commitment greening roofs on publicly-owned buildings as an effective way of establishing an educated

  16. Establishing green roof infrastructure through environmental policy instruments.

    PubMed

    Carter, Timothy; Fowler, Laurie

    2008-07-01

    Traditional construction practices provide little opportunity for environmental remediation to occur in urban areas. As concerns for environmental improvement in urban areas become more prevalent, innovative practices which create ecosystem services and ecologically functional land cover in cities will be in higher demand. Green roofs are a prime example of one of these practices. The past decade has seen the North American green roof industry rapidly expand through international green roof conferences, demonstration sites, case studies, and scientific research. This study evaluates existing international and North American green roof policies at the federal, municipal, and community levels. Green roof policies fall into a number of general categories, including direct and indirect regulation, direct and indirect financial incentives, and funding of demonstration or research projects. Advantages and disadvantages of each category are discussed. Salient features and a list of prompting standards common to successfully implemented green roof strategies are then distilled from these existing policies. By combining these features with data collected from an experimental green roof site in Athens, Georgia, the planning and regulatory framework for widespread green roof infrastructure can be developed. The authors propose policy instruments be multi-faceted and spatially focused, and also propose the following recommendations: (1) Identification of green roof overlay zones with specifications for green roofs built in these zones. This spatial analysis is important for prioritizing areas of the jurisdiction where green roofs will most efficiently function; (2) Offer financial incentives in the form of density credits and stormwater utility fee credits to help overcome the barriers to entry of the new technology; (3) Construct demonstration projects and institutionalize a commitment greening roofs on publicly-owned buildings as an effective way of establishing an educated

  17. Become One In A Million: Partnership Updates. Million Solar Roofs and Interstate Renewable Energy Council Annual Meeting, Washington, D.C., October 2005

    SciTech Connect

    Tombari, C.

    2005-09-01

    The U.S. Department of Energy's Million Solar Roofs Initiative (MSR) is a unique public-private partnership aimed at overcoming market barriers for photovoltaics (PV), solar water heating, transpired solar collectors, solar space heating and cooling, and pool heating. This report contains annual progress reports from 866 partners across the United States.

  18. Electron Cooling

    NASA Astrophysics Data System (ADS)

    Ellison, Timothy J. P.

    1991-08-01

    Electron cooling is a method of reducing the 6 -dimensional phase space volume of a stored ion beam. The technique was invented by Budker and first developed by him and his colleagues at the Institute for Nuclear Physics in Novosibirsk. Further studies of electron cooling were subsequently performed at CERN and Fermilab. At the Indiana University Cyclotron Facility (IUCF) an electron cooling system was designed, built, and commissioned in 1988. This was the highest energy system built to date (270 keV for cooling 500 MeV protons) and the first such system to be used as an instrument for performing nuclear and atomic physics experiments. This dissertation summarizes the design principles; measurements of the longitudinal drag rate (cooling force), equilibrium cooled beam properties and effective longitudinal electron beam temperature. These measurements are compared with theory and with the measured performance of other cooling systems. In addition the feasibility of extending this technology to energies an order of magnitude higher are discussed.

  19. Cooled railplug

    DOEpatents

    Weldon, William F.

    1996-01-01

    The railplug is a plasma ignitor capable of injecting a high energy plasma jet into a combustion chamber of an internal combustion engine or continuous combustion system. An improved railplug is provided which has dual coaxial chambers (either internal or external to the center electrode) that provide for forced convective cooling of the electrodes using the normal pressure changes occurring in an internal combustion engine. This convective cooling reduces the temperature of the hot spot associated with the plasma initiation point, particularly in coaxial railplug configurations, and extends the useful life of the railplug. The convective cooling technique may also be employed in a railplug having parallel dual rails using dual, coaxial chambers.

  20. PERFORMANCE OF AN EARTHQUAKE EXCITED ROOF DIAPHRAGM.

    USGS Publications Warehouse

    Celebi, M.; Brady, G.; Safak, E.; Converse, A.; ,

    1986-01-01

    The objective of this paper is to study the earthquake performance of the roof diaphragm of the West Valley College gymnasium in Saratoga, California through a complete set of acceleration records obtained during the 24 April 1984 Morgan Hill Earthquake (M equals 6. 1). The roof diaphragm of the 112 ft. multiplied by 144 ft. rectangular, symmetric gymnasium consists of 3/8 in. plywood over tongue-and-groove sheathing attached to steel trusses supported by reinforced concrete columns and walls. Three sensors placed in the direction of each of the axes of the diaphragm facilitate the evaluation of in-plane deformation of the diaphragm. Other sensors placed at ground level measure vertical and horizontal motion of the building floor, and consequently allow the calculation of the relative motion of the diaphragm with respect to the ground level.

  1. Cool Vest

    NASA Technical Reports Server (NTRS)

    1982-01-01

    ILC, Dover Division's lightweight cooling garment, called Cool Vest was designed to eliminate the harmful effects of heat stress; increases tolerance time in hot environments by almost 300 percent. Made of urethane-coated nylon used in Apollo, it works to keep the body cool, circulating chilled water throughout the lining by means of a small battery-powered pump. A pocket houses the pump, battery and the coolant which can be ice or a frozen gel, a valve control allows temperature regulation. One version is self-contained and portable for unrestrained movement, another has an umbilical line attached to an external source of coolant, such as standard tap water, when extended mobility is not required. It is reported from customers that the Cool Vest pays for itself in increased productivity in very high temperatures.

  2. Cool School.

    ERIC Educational Resources Information Center

    Stephens, Suzanne

    1980-01-01

    The design for Floyd Elementary School in Miami (Florida) seeks to harness solar energy to provide at least 70 percent of the annual energy for cooling needs and 90 percent for hot water. (Author/MLF)

  3. Thermal Conductivity of Weathered Polyurethane Foam Roofing.

    DTIC Science & Technology

    1982-09-01

    Experimental polyurethane foam roofing systems, by J. R. Keeton , R. L. Alumbaugh, Ph.D , and E. F. Humm. Port Hueneme, Calif., Aug 1976. 2. . Purchase...101. Pearl Harbor, HI; CODE 09P PEARL HARBOR HI: Code 2011 Pearl Harbor. HI; Code 402. RDT&E. Pearl Harbor HI; Commander. Pearl Harbor. HI: Library...Code 2011 San Bruno, CA NAVFACENGCOM CONTRACTS AROICC MCAS El Toro; AROICC, NAVSTA Brooklyn, NY; AROICC, Point Mugu CA; AROICC, Quantico, VA; Colts

  4. Installation of a Roof Mounted Photovoltaic System

    NASA Astrophysics Data System (ADS)

    Lam, M.

    2015-12-01

    In order to create a safe and comfortable environment for students to learn, a lot of electricity, which is generated from coal fired power plants, is used. Therefore, ISF Academy, a school in Hong Kong with approximately 1,500 students, will be installing a rooftop photovoltaic (PV) system with 302 solar panels. Not only will these panels be used to power a classroom, they will also serve as an educational opportunity for students to learn about the importance of renewable energy technology and its uses. There were four different options for the installation of the solar panels, and the final choice was made based on the loading capacity of the roof, considering the fact that overstressing the roof could prove to be a safety hazard. Moreover, due to consideration of the risk of typhoons in Hong Kong, the solar panel PV system will include concrete plinths as counterweights - but not so much that the roof would be severely overstressed. During and after the installation of the PV system, students involved would be able to do multiple calculations, such as determining the reduction of the school's carbon footprint. This can allow students to learn about the impact renewable energy can have on the environment. Another project students can participate in includes measuring the efficiency of the solar panels and how much power can be produced per year, which in turn can help with calculate the amount of money saved per year and when we will achieve economic parity. In short, the installation of the roof mounted PV system will not only be able to help save money for the school but also provide learning opportunities for students studying at the ISF Academy.

  5. Thrust bolting: Roof-bolt-support apparatus

    SciTech Connect

    Tadolini, S.C.; Dolinar, D.R.

    1991-01-01

    The invention relates to a method for installing a roof bolt in a borehole of a rock formation and more specifically to tensioning the unit without the aid of a mechanical anchoring device or threaded tensioning threads. The bolt is capable of being placed into tension along the length and the levels of active support can be controlled by varying the length of the grouted portion and the level of thrust applied to the bolt during installation.

  6. Experimental Polyurethane Foam Roof Systems - II.

    DTIC Science & Technology

    1983-01-01

    reflect the effects of cloud cover, windspeed, and radiation from the roof during early morning and late evening hours. Measurement of the area under the...INN \\k I, N’. tlir’I’iii V A I \\’A SIurelS42r. K110i tlIe. I ct Ili Solair i imip .\\r nill. Kiw\\\\, tMe. I N I C(I’ 0)1,4 (IC, Ni’rtolk. \\.A ( ( I

  7. ETR CRITICAL FACILITY, TRA654. CONTEXTUAL VIEW. CAMERA ON ROOF OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ETR CRITICAL FACILITY, TRA-654. CONTEXTUAL VIEW. CAMERA ON ROOF OF MTR BUILDING AND FACING SOUTH. ETR AND ITS COOLANT BUILDING AT UPPER PART OF VIEW. ETR COOLING TOWER NEAR TOP EDGE OF VIEW. EXCAVATION AT CENTER IS FOR ETR CF. CENTER OF WHICH WILL CONTAIN POOL FOR REACTOR. NOTE CHOPPER TUBE PROCEEDING FROM MTR IN LOWER LEFT OF VIEW, DIAGONAL TOWARD LEFT. INL NEGATIVE NO. 56-4227. Jack L. Anderson, Photographer, 12/18/1956 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  8. Rotating bubble membrane radiator

    DOEpatents

    Webb, Brent J.; Coomes, Edmund P.

    1988-12-06

    A heat radiator useful for expelling waste heat from a power generating system aboard a space vehicle is disclosed. Liquid to be cooled is passed to the interior of a rotating bubble membrane radiator, where it is sprayed into the interior of the bubble. Liquid impacting upon the interior surface of the bubble is cooled and the heat radiated from the outer surface of the membrane. Cooled liquid is collected by the action of centrifical force about the equator of the rotating membrane and returned to the power system. Details regarding a complete space power system employing the radiator are given.

  9. Floating roof tank with rim space seal

    SciTech Connect

    Grove, R.B.; Peters, S.W.; Tellalian, M.L.

    1986-10-07

    This patent describes a vertical cylindrical liquid storage tank having a circular floating roof of smaller diameter than the tank thereby defining a clearance space between the roof edge and the tank wall; a seal joined to the roof and extending upwardly therefrom into slidable contact with the tank wall; the seal completely covering the clearance space; the seal comprising a plurality of individual flexible sections of sheet material in substantially side-by-side arrangement but with adjacent section side edge portions overlapping each other; a gasket between the overlapping side edge portions; a clip attached to each section adjacent its edge portion which is overlapped by the edge portion of an adjacent section; the clip having a wing spaced upward from the section to which it is attached and extending over the edge portion of the adjacent section to press the edge portions together, but permit the edge portions to slide laterally with respect to each other; and a flexible elastometric tip joined to the outer end of the sections and in slidable contact with the tank wall.

  10. EVALUATION OF ROOF BOLTING REQUIREMENTS BASED ON IN-MINE ROOF BOLTER DRILLING

    SciTech Connect

    Syd S. Peng

    2005-01-15

    In this quarter, the field, theoretical and programming works have been performed toward achieving the research goals set in the proposal. The main accomplishments in this quarter included: (1) one more field test has been conducted in an underground coal mine, (2) optimization studies of the control parameters have been conducted, (3) method to use torque to thrust ratio as indicator of rock relative hardness has also been explored, and (4) about 98% of the development work for the roof geology mapping program, MRGIS, has completed, (5) A real time roof geology mapping system for roof bolters in limestone mine, including a special version of the geology mapping program and hardware, has already been verified to perform very well in underground production condition.

  11. 30 CFR 75.202 - Protection from falls of roof, face and ribs.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Protection from falls of roof, face and ribs... Protection from falls of roof, face and ribs. (a) The roof, face and ribs of areas where persons work or... roof, face or ribs and coal or rock bursts. (b) No person shall work or travel under unsupported roof...

  12. 30 CFR 75.202 - Protection from falls of roof, face and ribs.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Protection from falls of roof, face and ribs... Protection from falls of roof, face and ribs. (a) The roof, face and ribs of areas where persons work or... roof, face or ribs and coal or rock bursts. (b) No person shall work or travel under unsupported roof...

  13. 30 CFR 75.202 - Protection from falls of roof, face and ribs.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Protection from falls of roof, face and ribs... Protection from falls of roof, face and ribs. (a) The roof, face and ribs of areas where persons work or... roof, face or ribs and coal or rock bursts. (b) No person shall work or travel under unsupported roof...

  14. 30 CFR 75.202 - Protection from falls of roof, face and ribs.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Protection from falls of roof, face and ribs... Protection from falls of roof, face and ribs. (a) The roof, face and ribs of areas where persons work or... roof, face or ribs and coal or rock bursts. (b) No person shall work or travel under unsupported roof...

  15. Green Roofs: Federal Energy Management Program (FEMP) Federal Technology Alert

    SciTech Connect

    Scholz-Barth, K.; Tanner, S.

    2004-09-01

    In a ''green roof,'' a layer of vegetation (e.g., a roof garden) covers the surface of a roof to provide shade, cooler indoor and outdoor temperatures, and effective storm-water management to reduce runoff. The main components are waterproofing, soil, and plants. There are two basic kinds: intensive and extensive. An intensive green roof often features large shrubs and trees, and it can be expensive to install and maintain. An extensive green roof features shallow soil and low-growing, horizontally spreading plants that can thrive in the alpine conditions of many rooftops. These plants do not require a lot of water or soil, and they can tolerate a significant amount of exposure to the sun and wind. This Federal Technology Alert focuses on the benefits, design, and implementation of extensive green roofs and includes criteria for their use on federal facilities.

  16. Relationship of roof rat population indices with damage to sugarcane

    USGS Publications Warehouse

    Lefebvre, Lynn W.; Engeman, Richard M.; Decker, David G.; Holler, Nicholas R.

    1989-01-01

    Roof rats (Rattus rattus) cause substantial damage to sugarcane in South Florida (Samol 1972; Lefebvre et al. 1978, 1985). Accurate estimates of roof rat populations in sugarcane fields would be useful for determining when to to treat a field to control roof rats and for assessing the efficacy of control. However, previous studies have indicated that roof rats exhibit trap shyness, which makes capture-recapture population estimates difficult (Lefebvre et al. 1978, 1985; Holler et al., 1981). Until trapping methods are sufficiently improved to allow accurate population estimates, indices of population size that relate to damage need to be developed. The objectives of our study were to examine the relationship of several indices of roof rat populations to the percentage of sugarcane stalks damaged at harvest; to determine which population index would be most useful for sugarcane growers; and to report on a test of several types of live traps for roof rats.

  17. Measuring the glass transition temperature of EPDM roofing materials: Comparison of DMA, TMA, and DSC techniques

    SciTech Connect

    Paroli, R.M.; Penn, J.

    1994-09-01

    Two ethylene-propylene-diene monomer (EPDM) roofing membranes were aged at 100 C for 7 and 28 days. The T{sub g} of these membranes was then determined by dynamic mechanical analysis (DMA), thermomechanical analysis (TMA), and differential scanning calorimetry (DSC) and the results compared. It was found that: (1) T{sub g} data can be obtained easily using the DMA and TMA techniques. The DSC method requires greater care due to the broad step change in the baseline which is associated with heavily plasticized materials. (2) The closest correspondence between techniques was for TMA and DSC (half-height). The latter, within experimental error, yielded the same glass transition temperature before and after heat-aging. (3) The peak maxima associated with tan{delta} and E{double_prime} measurements should be cited with T{sub g} values as significant differences can exist. (4) The T{sub g}(E{double_prime}) values were closer to the T{sub g}(TMA) and T{sub g}(DSC) data than were the T{sub g}(tan{delta}) values. Data obtained at 1 Hz (or possibly less) should be used when making comparisons based on various techniques. An assessment of T{sub g} values indicated that EPDM 112 roofing membrane is more stable than the EPDM 111 membrane. The T{sub g} for EPDM 112 did not change significantly with heat-aging for 28 days at 130 C.

  18. SOLERAS solar active cooling field test operations

    NASA Astrophysics Data System (ADS)

    Williamson, J.; Martin, R.

    Four small-scale commercial size solar cooling systems being tested in Arizona as part of the SOLERAS program are described, together with 1981 performance summaries. A 63 kW air-cooled Rankine cycle system powered by parabolic troughs is used to cool a one-story office building. The system has both hot and cold storage tanks and uses R-11 fluid. A 49 kW Rankine cycle system driven by 218.5 sq m of evacuated tube collectors features direct expansion cooling of part of an office building, as well as part-time electrical generation for the grid. A water-absorption cycle system with 53 kW of power from 133.8 sq m of tracking parabolic trough receivers is employed to cool a warehouse office area. The system includes a hot storage tank and ground-mounted solar energy collection. Computer room cooling is provided by the fourth system, a 35 kW air-cooled absorption system system featuring 89.2 sq m of Fresnel lens collectors mounted roof-top. Design simplicity has been found to be mandatory for performance optimization, thereby ruling out cogeneration. Alsi, the use of both hot and cold storage has proven beneficial from cost and operational points of view

  19. Interior Cornice Profile, Interior Pilaster Profile, Lions Head Roof Scupper, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior Cornice Profile, Interior Pilaster Profile, Lions Head Roof Scupper, and Interior Panel Moulding - Flanders Field American Cemetery & Memorial, Chapel, Wortegemseweg 117, Waregem, West Flanders (Belgium)

  20. 71. Joe Moore, Photographer. September, 1996. BEVATRON ROOF SHIELDING AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    71. Joe Moore, Photographer. September, 1996. BEVATRON ROOF SHIELDING AND BUILDING TRUSS STRUCTURE - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  1. 43. TOP OF SOUTHEAST TOWER FROM SOUTH TOWER ROOF, LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    43. TOP OF SOUTHEAST TOWER FROM SOUTH TOWER ROOF, LOOKING EAST - Smithsonian Institution Building, 1000 Jefferson Drive, between Ninth & Twelfth Streets, Southwest, Washington, District of Columbia, DC

  2. 36. FLAG TOWER CLOCK ZONE FROM SOUTH TOWER ROOF, LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    36. FLAG TOWER CLOCK ZONE FROM SOUTH TOWER ROOF, LOOKING NORTH - Smithsonian Institution Building, 1000 Jefferson Drive, between Ninth & Twelfth Streets, Southwest, Washington, District of Columbia, DC

  3. 39. CLOSER VIEW OF CAMPANILE FROM SOUTH TOWER ROOF, LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    39. CLOSER VIEW OF CAMPANILE FROM SOUTH TOWER ROOF, LOOKING NORTHEAST - Smithsonian Institution Building, 1000 Jefferson Drive, between Ninth & Twelfth Streets, Southwest, Washington, District of Columbia, DC

  4. 44. ARTS AND INDUSTRIES BUILDING FROM SOUTH TOWER ROOF, LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    44. ARTS AND INDUSTRIES BUILDING FROM SOUTH TOWER ROOF, LOOKING SOUTHEAST - Smithsonian Institution Building, 1000 Jefferson Drive, between Ninth & Twelfth Streets, Southwest, Washington, District of Columbia, DC

  5. 37. NORTH TOWER UPPER ZONE FROM SOUTH TOWER ROOF, LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    37. NORTH TOWER UPPER ZONE FROM SOUTH TOWER ROOF, LOOKING NORTH - Smithsonian Institution Building, 1000 Jefferson Drive, between Ninth & Twelfth Streets, Southwest, Washington, District of Columbia, DC

  6. 47. NORTHWEST TOWER FROM SOUTH TOWER ROOF, LOOKING NORTH BY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    47. NORTHWEST TOWER FROM SOUTH TOWER ROOF, LOOKING NORTH BY NORTHWEST - Smithsonian Institution Building, 1000 Jefferson Drive, between Ninth & Twelfth Streets, Southwest, Washington, District of Columbia, DC

  7. 40. CAMPANILE & SOUTHEAST TOWER FROM SOUTH TOWER ROOF, LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    40. CAMPANILE & SOUTHEAST TOWER FROM SOUTH TOWER ROOF, LOOKING EAST BY NORTHEAST - Smithsonian Institution Building, 1000 Jefferson Drive, between Ninth & Twelfth Streets, Southwest, Washington, District of Columbia, DC

  8. Cooled railplug

    DOEpatents

    Weldon, W.F.

    1996-05-07

    The railplug is a plasma ignitor capable of injecting a high energy plasma jet into a combustion chamber of an internal combustion engine or continuous combustion system. An improved railplug is provided which has dual coaxial chambers (either internal or external to the center electrode) that provide for forced convective cooling of the electrodes using the normal pressure changes occurring in an internal combustion engine. This convective cooling reduces the temperature of the hot spot associated with the plasma initiation point, particularly in coaxial railplug configurations, and extends the useful life of the railplug. The convective cooling technique may also be employed in a railplug having parallel dual rails using dual, coaxial chambers. 10 figs.

  9. Cooling Vest

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Because quadriplegics are unable to perspire below the level of spinal injury, they cannot tolerate heat stress. A cooling vest developed by Ames Research Center and Upjohn Company allows them to participate in outdoor activities. The vest is an adaptation of Ames technology for thermal control garments used to remove excess body heat of astronauts. The vest consists of a series of corrugated channels through which cooled water circulates. Its two outer layers are urethane coated nylon, and there is an inner layer which incorporates the corrugated channels. It can be worn as a backpack or affixed to a wheelchair. The unit includes a rechargeable battery, mini-pump, two quart reservoir and heat sink to cool the water.

  10. Numerical investigation of the impact of gas and cooling flow configurations on current and water distributions in a polymer membrane fuel cell through a pseudo-two-dimensional diphasic model

    NASA Astrophysics Data System (ADS)

    Chupin, Sylvain; Colinart, Thibaut; Didierjean, Sophie; Dubé, Yves; Agbossou, Kodjo; Maranzana, Gaël; Lottin, Olivier

    For optimal performances, proton exchange membrane fuel cells require fine water and thermal management. Accurate modelling of the physical phenomena occurring in the fuel cell is a key issue to improve fuel cell technology. Here, an analytic steady state diphasic 2D model of heat and mass transfer is presented. Through this model, the aim of this work is to study the influence of local events on the global performances of a fuel cell. A part of the complete model is a microscopic representation of the coupling between water transport and charge transfers in the electrodes. The thickness of the liquid layer around the reactive agglomerates is deduced from the saturation. The evolution of the quantity of water within the catalyst layer is monitored and its influence on the global performances of the cell is investigated. In gas diffusion layers (GDLs), liquid and vapour water transport through are computed regarding the temperature. The flow direction of cooling water modifies the current density distribution along the cell. The impact of the direction of air and hydrogen feeding channels are investigated. It can modify greatly the fuel cell mean current density and the net water transport coefficient. The counter-flow mode was preferable. Likewise, thanks to a better membrane hydration, it results in independent performances regarding the hydrogen inlet relative humidity or stoichiometry.

  11. Estimating Heat and Mass Transfer Processes in Green Roof Systems: Current Modeling Capabilities and Limitations (Presentation)

    SciTech Connect

    Tabares Velasco, P. C.

    2011-04-01

    This presentation discusses estimating heat and mass transfer processes in green roof systems: current modeling capabilities and limitations. Green roofs are 'specialized roofing systems that support vegetation growth on rooftops.'

  12. 40 CFR 427.60 - Applicability; description of the asbestos roofing subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... asbestos roofing subcategory. 427.60 Section 427.60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Asbestos Roofing Subcategory § 427.60 Applicability; description of the asbestos roofing subcategory....

  13. Cooling vest

    NASA Technical Reports Server (NTRS)

    Kosmo, J.; Kane, J.; Coverdale, J.

    1977-01-01

    Inexpensive vest of heat-sealable urethane material, when strapped to person's body, presents significant uncomplicated cooling system for environments where heavy accumulation of metabolic heat exists. Garment is applicable to occupations where physical exertion is required under heavy protective clothing.

  14. Cool Andromeda

    NASA Image and Video Library

    2013-01-28

    In this new view of the Andromeda, also known as M31, galaxy from the Herschel space observatory, cool lanes of forming stars are revealed in the finest detail yet. M31 is the nearest major galaxy to our own Milky Way at a distance of 2.5 million light-ye

  15. Sheet Membrane Spacesuit Water Membrane Evaporator

    NASA Technical Reports Server (NTRS)

    Bue, Grant; Trevino, Luis; Zapata, Felipe; Dillion, Paul; Castillo, Juan; Vonau, Walter; Wilkes, Robert; Vogel, Matthew; Frodge, Curtis

    2013-01-01

    A document describes a sheet membrane spacesuit water membrane evaporator (SWME), which allows for the use of one common water tank that can supply cooling water to the astronaut and to the evaporator. Test data showed that heat rejection performance dropped only 6 percent after being subjected to highly contaminated water. It also exhibited robustness with respect to freezing and Martian atmospheric simulation testing. Water was allowed to freeze in the water channels during testing that simulated a water loop failure and vapor backpressure valve failure. Upon closing the backpressure valve and energizing the pump, the ice eventually thawed and water began to flow with no apparent damage to the sheet membrane. The membrane evaporator also serves to de-gas the water loop from entrained gases, thereby eliminating the need for special degassing equipment such as is needed by the current spacesuit system. As water flows through the three annular water channels, water evaporates with the vapor flowing across the hydrophobic, porous sheet membrane to the vacuum side of the membrane. The rate at which water evaporates, and therefore, the rate at which the flowing water is cooled, is a function of the difference between the water saturation pressure on the water side of the membrane, and the pressure on the vacuum side of the membrane. The primary theory is that the hydrophobic sheet membrane retains water, but permits vapor pass-through when the vapor side pressure is less than the water saturation pressure. This results in evaporative cooling of the remaining water.

  16. Roof system effects on in-situ thermal performance of HCFC polyisocyanurate insulation

    SciTech Connect

    Christian, J.E.; Desjarlais, A.O.; Courville, G.; Graves, R.

    1992-10-01

    Industry-produced, permeably-faced, experimental polyisocyanurate (PIR) laminated boardstock foamed with several different hydrochlorofluorcarbons (HCFCS) is undergoing in-situ testing at the Building Envelopes Research User Center at Oak Ridge National Laboratory (ORNL). The overall objective of this research is to determine the long term thermal performance differences between PIR foamed with CFC-11 and PIR foamed with HCFC-123, HCFC-14lb and blends of HCFCs. Boards from the same batch were installed in outdoor test facilities and instrumented in part to determine if the insulation thermal performance aging characteristics are dependent on how they are handled and installed in the field. One of the major contributions of this research is the field validation of an accelerated thermal aging procedure. The laboratory measurements of the apparent thermal conductivity (k) of 10-mm-thick slices conducted over a period of less than a year are used to predict the k of 38-50-mm-thick PIR laminated board stock for 12--20 years after production. In situ thermal performance measurements of these well characterized three-year-old boards under white and under black ethylene propylene diene monomer (EPDM) membranes are compared with the accelerated aging procedure and with boards from the same batch in different roofing systems: mechanically attached EPDM, fully adhered EPDM, and built-up roof (BUR). The comparison indicates that this accelerated aging procedure should be seriously considered for providing in-service thermal performance information to building owners and roofing contractors.

  17. Roof system effects on in-situ thermal performance of HCFC polyisocyanurate insulation. [Hydrochlorofluorocarbon (HCFC)

    SciTech Connect

    Christian, J.E.; Desjarlais, A.O.; Courville, G.; Graves, R.

    1992-01-01

    Industry-produced, permeably-faced, experimental polyisocyanurate (PIR) laminated boardstock foamed with several different hydrochlorofluorcarbons (HCFCS) is undergoing in-situ testing at the Building Envelopes Research User Center at Oak Ridge National Laboratory (ORNL). The overall objective of this research is to determine the long term thermal performance differences between PIR foamed with CFC-11 and PIR foamed with HCFC-123, HCFC-14lb and blends of HCFCs. Boards from the same batch were installed in outdoor test facilities and instrumented in part to determine if the insulation thermal performance aging characteristics are dependent on how they are handled and installed in the field. One of the major contributions of this research is the field validation of an accelerated thermal aging procedure. The laboratory measurements of the apparent thermal conductivity (k) of 10-mm-thick slices conducted over a period of less than a year are used to predict the k of 38-50-mm-thick PIR laminated board stock for 12--20 years after production. In situ thermal performance measurements of these well characterized three-year-old boards under white and under black ethylene propylene diene monomer (EPDM) membranes are compared with the accelerated aging procedure and with boards from the same batch in different roofing systems: mechanically attached EPDM, fully adhered EPDM, and built-up roof (BUR). The comparison indicates that this accelerated aging procedure should be seriously considered for providing in-service thermal performance information to building owners and roofing contractors.

  18. Development of design guidelines and roof-control standards for coal-mine roofs

    SciTech Connect

    Unal, E.

    1983-01-01

    Three of the most crucial problems still facing the mining-engineering profession today are that of finding better anchorage testing procedures, effective roof-stability monitoring systems and rationally based design guidelines. First the feasibility of new anchorage-testing procedures and roof-stability monitoring techniques has been investigated through a series of laboratory experiments, utilizing a special instrumented facility and an acoustic emission (AE) monitoring system. Furthermore, two engineering approaches have been used in analyzing the time-dependent behavior of coal-mine roofs and in developing the design guidelines for support selection. The anchorage-testing results provide information on the behavior of the bolt shell and the bolt rod. The bolt capacity is determined from the resulting support characteristic curves which appear to represent a more realistic picture of the behavior of the rock-bolt unit than data presently available from typical field pull-tests. The stability monitoring results indicate a significant correlation between the applied torque, shell movement, bolt-tension and AE. The Integrated Approach is found useful in analyzing the time-dependent behavior of the unsupported and supported roofs, conceptually. The design procedures presented in the Empirical Approach are intended as a guide for selecting rock-bolt types, rock-bolt specifications, bolting patterns, and supplementary support needs for coal-mine roadways as well as for four-way intersections. Furthermore, for a quick reference, in selecting the roof-support options, a series of support charts is presented. Finally, for the step-by-step illustration of the design procedures, a practical example is included.

  19. Extensive Green Roof Research Program at Colorado State University

    EPA Science Inventory

    In the high elevation, semi-arid climate of Colorado, green roofs have not been scientifically tested. This research examined alternative plant species, media blends, and plant interactions on an existing modular extensive green roof in Denver, Colorado. Six plant species were ev...

  20. ROOF, Taken looking southeast from the southeast corner of the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ROOF, Taken looking southeast from the southeast corner of the stair tower roof, showing external piping and west facade of Penthouse 201P. The large stack is seen behind the Penthouse - Department of Energy, Mound Facility, Hydrolysis House Building (HH Building), One Mound Road, Miamisburg, Montgomery County, OH

  1. 1. OVERVIEW OF BUILDING 105 SHOWING LOCAL SETTING. ROOF, NORTH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. OVERVIEW OF BUILDING 105 SHOWING LOCAL SETTING. ROOF, NORTH END, AND WEST SIDE OF BUILDING 105 ARE VISIBLE AT LEFT PHOTO CENTER BEHIND UTILITY POLE. ROOF AND WEST END OF BUILDING 110 ARE VISIBLE AT PHOTO RIGHT BEHIND TREES. VIEW TO SOUTH FROM STREET ABOVE HOUSES. - Big Creek Hydroelectric System, Powerhouse 8, Operator Cottage, Big Creek, Big Creek, Fresno County, CA

  2. What You Should Know about Single-Ply Roofing.

    ERIC Educational Resources Information Center

    Szcygiel, Tony L.

    1998-01-01

    Explains why a single-ply roofing system is the best choice for educational facilities. It discusses how single-ply roofing systems offer flexibility with ease of application; cause less disruption during installation; and are clean, safe, and energy efficient. (GR)

  3. Fourier analysis of conductive heat transfer for glazed roofing materials

    NASA Astrophysics Data System (ADS)

    Roslan, Nurhana Lyana; Bahaman, Nurfaradila; Almanan, Raja Noorliyana Raja; Ismail, Razidah; Zakaria, Nor Zaini

    2014-07-01

    For low-rise buildings, roof is the most exposed surface to solar radiation. The main mode of heat transfer from outdoor via the roof is conduction. The rate of heat transfer and the thermal impact is dependent on the thermophysical properties of roofing materials. Thus, it is important to analyze the heat distribution for the various types of roofing materials. The objectives of this paper are to obtain the Fourier series for the conductive heat transfer for two types of glazed roofing materials, namely polycarbonate and polyfilled, and also to determine the relationship between the ambient temperature and the conductive heat transfer for these materials. Ambient and surface temperature data were collected from an empirical field investigation in the campus of Universiti Teknologi MARA Shah Alam. The roofing materials were installed on free-standing structures in natural ventilation. Since the temperature data are generally periodic, Fourier series and numerical harmonic analysis are applied. Based on the 24-point harmonic analysis, the eleventh order harmonics is found to generate an adequate Fourier series expansion for both glazed roofing materials. In addition, there exists a linear relationship between the ambient temperature and the conductive heat transfer for both glazed roofing materials. Based on the gradient of the graphs, lower heat transfer is indicated through polyfilled. Thus polyfilled would have a lower thermal impact compared to polycarbonate.

  4. Getting a Clear Focus on Roof Replacement and Management.

    ERIC Educational Resources Information Center

    Patterson, Valerie B.

    2002-01-01

    Describes how a new generation of X-ray-like vision--the patented INFRARED2k--provides roof-condition reports that help extend roof life, conserve energy, and survey for mold-supporting environments, thereby improving indoor air quality. (EV)

  5. Snow loads on roofs in areas of heavy snowfall

    Treesearch

    Robert D. Doty; Glenn H. Deitschman

    1966-01-01

    This study tested the feasibility of estimating snow loads on roofs from measurements of depth and water content of snow on nearby ground. The water content, and therefore the weight, of snow on the ground proved comparable to that of snow on roofs.

  6. Effect of roof strength in injury mitigation during pole impact.

    PubMed

    Friedman, Keith; Hutchinson, John; Mihora, Dennis; Kumar, Sri; Frieder, Russell; Sances, Anthony

    2007-01-01

    Motor vehicle accidents involving pole impacts often result in serious head and neck injuries to occupants. Pole impacts are typically associated with rollover and side collisions. During such events, the roof structure is often deformed into the occupant survival space. The existence of a strengthened roof structure would reduce roof deformation and accordingly provide better protection to occupants. The present study examines the effect of reinforced (strengthened) roofs using experimental crash study and computer model simulation. The experimental study includes the production cab structure of a pickup truck. The cab structure was loaded using an actual telephone pole under controlled laboratory conditions. The cab structure was subjected to two separate load conditions at the A-pillar and door frame. The contact force and deformation were measured using a force gauge and potentiometer, respectively. A computer finite element model was created to simulate the experimental studies. The results of finite element model matched well with experimental data during two different load conditions. The validated finite element model was then used to simulate a reinforced roof structure. The reinforced roof significantly reduced the structural deformations compared to those observed in the production roof. The peak deformation was reduced by approximately 75% and peak velocity was reduced by approximately 50%. Such a reduction in the deformation of the roof structure helps to maintain a safe occupant survival space.

  7. 14. View south from first level roof of firing pier. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. View south from first level roof of firing pier. Pitched corrugated metal roof marks location of the frame approach connecting the firing pier to the shop (shown in left distance). - Naval Torpedo Station, Firing Pier, North end of Gould Island in Narragansett Bay, Newport, Newport County, RI

  8. Extensive Green Roof Research Program at Colorado State University

    EPA Science Inventory

    In the high elevation, semi-arid climate of Colorado, green roofs have not been scientifically tested. This research examined alternative plant species, media blends, and plant interactions on an existing modular extensive green roof in Denver, Colorado. Six plant species were ev...

  9. Green roof hydrologic performance and modeling: a review.

    PubMed

    Li, Yanling; Babcock, Roger W

    2014-01-01

    Green roofs reduce runoff from impervious surfaces in urban development. This paper reviews the technical literature on green roof hydrology. Laboratory experiments and field measurements have shown that green roofs can reduce stormwater runoff volume by 30 to 86%, reduce peak flow rate by 22 to 93% and delay the peak flow by 0 to 30 min and thereby decrease pollution, flooding and erosion during precipitation events. However, the effectiveness can vary substantially due to design characteristics making performance predictions difficult. Evaluation of the most recently published study findings indicates that the major factors affecting green roof hydrology are precipitation volume, precipitation dynamics, antecedent conditions, growth medium, plant species, and roof slope. This paper also evaluates the computer models commonly used to simulate hydrologic processes for green roofs, including stormwater management model, soil water atmosphere and plant, SWMS-2D, HYDRUS, and other models that are shown to be effective for predicting precipitation response and economic benefits. The review findings indicate that green roofs are effective for reduction of runoff volume and peak flow, and delay of peak flow, however, no tool or model is available to predict expected performance for any given anticipated system based on design parameters that directly affect green roof hydrology.

  10. 9. Grandstand seating and aisles viewed from roof of north ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Grandstand seating and aisles viewed from roof of north addition of Clubhouse (roof of Chinook Pass Room). TV Center is partially visible on far left. Camera pointed N. (July 1993) - Longacres, Original Grandstand, 1621 Southwest Sixteenth Street, Renton, King County, WA

  11. 16. DETAIL OF ROOF TRUSS SYSTEM, FACING EAST, THIRD BAY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. DETAIL OF ROOF TRUSS SYSTEM, FACING EAST, THIRD BAY Showing bottom chords and diagonal braces of roof trusses, hoist I-beam and pulley. - U.S. Military Academy, Ice House, Mills Road at Howze Place, West Point, Orange County, NY

  12. Getting a Clear Focus on Roof Replacement and Management.

    ERIC Educational Resources Information Center

    Patterson, Valerie B.

    2002-01-01

    Describes how a new generation of X-ray-like vision--the patented INFRARED2k--provides roof-condition reports that help extend roof life, conserve energy, and survey for mold-supporting environments, thereby improving indoor air quality. (EV)

  13. What You Should Know about Single-Ply Roofing.

    ERIC Educational Resources Information Center

    Szcygiel, Tony L.

    1998-01-01

    Explains why a single-ply roofing system is the best choice for educational facilities. It discusses how single-ply roofing systems offer flexibility with ease of application; cause less disruption during installation; and are clean, safe, and energy efficient. (GR)

  14. 23. INTERIOR OF TAN 629 HANGAR, TAKEN FROM LOW ROOF, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. INTERIOR OF TAN 629 HANGAR, TAKEN FROM LOW ROOF, FACING NORTHEAST. SHOWS GROUND LEVEL USE OF FLOOR SPACE FOR TEMPORARY STORAGE OF CRATES. MOISTURE ON SURFACE IS FROM LEAKY HANGAR ROOF. - Idaho National Engineering Laboratory, Test Area North, Hangar No. 629, Scoville, Butte County, ID

  15. Fourier analysis of conductive heat transfer for glazed roofing materials

    SciTech Connect

    Roslan, Nurhana Lyana; Bahaman, Nurfaradila; Almanan, Raja Noorliyana Raja; Ismail, Razidah; Zakaria, Nor Zaini

    2014-07-10

    For low-rise buildings, roof is the most exposed surface to solar radiation. The main mode of heat transfer from outdoor via the roof is conduction. The rate of heat transfer and the thermal impact is dependent on the thermophysical properties of roofing materials. Thus, it is important to analyze the heat distribution for the various types of roofing materials. The objectives of this paper are to obtain the Fourier series for the conductive heat transfer for two types of glazed roofing materials, namely polycarbonate and polyfilled, and also to determine the relationship between the ambient temperature and the conductive heat transfer for these materials. Ambient and surface temperature data were collected from an empirical field investigation in the campus of Universiti Teknologi MARA Shah Alam. The roofing materials were installed on free-standing structures in natural ventilation. Since the temperature data are generally periodic, Fourier series and numerical harmonic analysis are applied. Based on the 24-point harmonic analysis, the eleventh order harmonics is found to generate an adequate Fourier series expansion for both glazed roofing materials. In addition, there exists a linear relationship between the ambient temperature and the conductive heat transfer for both glazed roofing materials. Based on the gradient of the graphs, lower heat transfer is indicated through polyfilled. Thus polyfilled would have a lower thermal impact compared to polycarbonate.

  16. Installation, care, and maintenance of wood shake and shingle roofs

    Treesearch

    Tony Bonura; Jack Dwyer; Arnie Nebelsick; Brent Stuart; R. Sam Williams; Christopher Hunt

    2011-01-01

    This article gives general guidelines for selection, installation, finishing, and maintenance of wood shake and shingle roofs. The authors have gathered information from a variety of sources: research publications on wood finishing, technical data sheets from paint manufacturers, installation instructions for shake and shingle roofs, and interviews with experts having...

  17. Methods of beam cooling

    SciTech Connect

    Sessler, A.M.

    1996-02-01

    Diverse methods which are available for particle beam cooling are reviewed. They consist of some highly developed techniques such as radiation damping, electron cooling, stochastic cooling and the more recently developed, laser cooling. Methods which have been theoretically developed, but not yet achieved experimentally, are also reviewed. They consist of ionization cooling, laser cooling in three dimensions and stimulated radiation cooling.

  18. A Roof for the Lion's House

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Fans of the National Football League's Detroit Lions don't worry about gameday weather. Their magnificent new Pontiac Stadium has a domed, air-supported, fabric roof that admits light but protects the playing field and patrons from the elements. The 80,000-seat "Silverdome" is the world's largest fabric-covered structure-and aerospace technology played an important part in its construction. The key to economical construction of the Silverdome-and many other types of buildings-is a spinoff of fiber glass Beta yarn coated with Teflon TFE fluorocarbon resin. The big advance it offers is permanency. Fabric structures-tents, for example have been around since the earliest years of human civilization. But their coverings-hides, canvas and more recently plastics-were considered temporary; though tough, these fabrics were subject to weather deterioration. Teflon TFE-coated Beta Fiberglas is virtually impervious to the effects of weather and sunlight and it won't stretch, shrink, mildew or rot, thus has exceptional longevity; it is also very strong, lightweight, flame resistant and requires no periodic cleaning, because dirt will not stick to the surface of Teflon TFE. And to top all that, it costs only 30 to 40 percent as much as conventional roofing.

  19. Infiltration of a copper roof runoff through artificial barriers.

    PubMed

    Athanasiadis, K; Helmreich, B; Wilderer, P A

    2006-01-01

    On-site infiltration of a copper roof runoff may contribute to deterioration of the ground and ground water. To avoid such a negative effect the performance of two different technical systems, equipped with four different barrier materials, regarding copper elimination was examined in a field study. During the period March 2004 to January 2005, 16 rain events were examined. Copper concentrations between 200 and 11,000 microg/L in the roof runoff during a rain event were observed. The cover material of the roof and the drainage system were responsible for the high concentrations of copper in the roof runoff. It was evident that roof aspects facing towards the wind direction were receiving higher rainfall, thus were establishing higher copper runoff rates. The retention facilities have reached a performance of up to 97% regarding copper elimination.

  20. Analysis of asphalt-based roof systems using thermal analysis

    SciTech Connect

    Paroli, R.M.; Delgado, A.H.

    1996-10-01

    Asphalt is used extensively in roofing applications. Traditionally, it is used in a built-up roof system, where four or five plies are applied in conjunction with asphalt. This is labour intensive and requires good quality assurance on the roof top. Alternatively, asphalt can be used in a polymer-modified sheet where styrene-butadiene-styrene (SBS) or atactic polypropylene (APP) are added to the asphalt shipped in a roll where reinforcement (e.g., glass fibre mat) has been added. Regardless of the system used, the roof must be able to withstand the environmental loads such UV, heat, etc. Thermoanalytical techniques such as DSC, DMA, TMA and TG/DTA are ideally suited to monitor the weathering of asphalt. This paper presents data obtained using these techniques and shows how the performance of asphalt-based roof systems can be followed by thermal analysis.